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THESIS LAYOUT

The thesis is arranged into seven chapters each of which has its own tables, figures and
references. The references are numbered and organised alphabetically. The numbering
system for equations, tables, figures and references starts with the chapter number in
front. The equation numbers are shown in round brackets whereas the reference

numbers are given in square brackets.

The word processing application used to prepare all chapters is Microsoft Word for
Windows (version 6). However, several other software packages on different hardware
platforms are involved in the preparation of this thesis. A number of tables and figures
from spreadsheet, drawing and painting applications are directly inserted into the main
text with the help of a new technology called OLE (Object Linking and Embedding) in
the PC Windows environment. But it is still difficult to import objects in the
‘landscépé’ orientation unless a powerﬁﬂ 'publivshivng‘ pac'kagev is used. As a

consequence, a number of figures are placed at the end of each chapter.

viii



SUMMARY

The TLP technology has gained credibility with the offshore industry and the
associated engineering community. The TLP concept covers a number of areas where
there is a great need for research. The developments associated with the TLP
technology are briefly reviewed in Chapter 1. For numerical demonstrations, a TLP
model is selected which was originally chosen by the Derived Loads Committee 1.2 of
the 1985 ISSC. The principal particulars of the ISSC TLP are discussed in detail.

Some important design parameters that influence significantly the configuration of
TLPs are outlined in Chapter 1. A complete global analysis of a TLP includes many
analytical and empirical methods where some of them are fairly standard but some
other may not be well defined. The problem areas involved in the analysis and the
future trends in design are also discussed.

Chapter 2 examines different components of the environmental loading. Second order
effects are included. Drift forces are estimated from simplified analytical solutions. The
calculation of external forces described in Chapter 2 are used in the next chapters.
Some closed-form expressions are derived that are particularly important for
transforming complicated external forces into equivalent nodal loads. A step-by-step
procedure combining transformation matrices and results from standard load cases is
proposed which deals with complex member loads on a 3-D beam, arbitrarily oriented
in space.

Chapter 3 describes the development of a rigid body motion analysis program, RBRA.
The dynamic equation of motion which takes account of all six rigid body degrees of
freedom and the associated coefficient matrices are discussed. A solution technique is
proposed which is found quite effective to estimate the linearised rigid body responses.
The results from RBRA are compared with the published results from 17 organisations
who have used boundary element formulations and diffraction-radiation analysis for
their calculations.

Chapter 4 discusses the development of a computer program, DCATLP which can
bring hydrodynamic and structural aspects together in the dynamic coupled analysis of
a TLP. The TLP is modelled as a 3-D frame structure with internal hinges to account
for the hull-tether connections. However, main particulars of a TLP are not enough for
any structural analysis. For numerical demonstration, the ISSC TLP components are
designed realistically with stiffeners to estimate their scantlings.
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In DCATLP, the global mass and stiffness matrices are stored in skyline arrays. The
dynamic equilibrium equations are solved in the time domain. The non-linear time
integration algorithm belongs to the Newmark-f family but it is a modification and
combination of a number of existing algorithms. DCATLP can calculate internal
member forces in each beam element under the action of environmental loading. The
structural displacements, velocities and accelerations at each and every FE node are
calculated. The static, quasi-static and dynamic components of the environmental
forces are applied simultaneously in DCATLP to include the inertia effects. A different
type of model for the ISSC TLP is developed in LUSAS where tethers are replaced by
linear springs at each corner. Responses of two different ISSC TLP models (one for
DCATLP and the other for LUSAS) under sinusoidal loads are compared. The
structural and hydrodynamic responses of the ISSC TLP in a peak storm event are also
presented.

Chapter 5 presents a step-by-step calculation procedure to find failure probabilities of
TLP column structures after assigning appropriate coefficients of variation to the
strength and load variables. The calculation of longitudinal and hoop stresses from
maximum axial compression, torsion, shear forces, bending moments and
hydrodynamic pressure is also shown. The uncertainty modelling is mainly based on
the previous work carried out in the author’s Department. The failure surfaces for
TLP columns are formulated according to API Bulletin 2U and the Model Code of
TLP RCC. The chapter also describes some improvements achieved in developing a
program BCCNNV, based on the AFOSM method. The program is sufficiently
accurate for non-normal correlated variables and it is validated by considering a few
classic cases.

The main objective in Chapter 6 is to carry out a detailed FE analysis of a part of a
TLP structure with the help of the results obtained from a 3-D beam element based
global analysis. One ring only stiffened and three orthogonally stiffened cylinders,
similar to TLP columns are modelled in LUSAS to compare the numerical predictions
with the experimental results available from other researchers’ work. To get an initial
‘feel’ for the structure, the buckling loads of the FE models are estimated by
eigenvalue buckling analyses. The author also attempts to capture the post-buckling
phase of the FE models through rigorous non-linear FE analyses.

Chapter 7 contains the final discussion and conclusions and ends with some
recommendations for future research work.
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CHAPTER 1

INTRODUCTION



1.1 GENERAL

The most accessible and economically attractive offshore oil reserves are already in
production. A new generation of petroleum reserves is waiting to be developed in far
deeper waters. It is possible for mobile drilling rigs to explore these deep water fields
but it is beyond the technical feasibility for traditional fixed production platforms.
Moreover, the conventional fixed platforms become progressively expensive with
increasing water depths even if they are feasible.

The Tension Leg Platform (TLP) provides a promising solution to the future
development of the new deep water reserves. But the TLP technology is still evolving
and the offshore industries have just started along the learning curve of how best to
implement and use the capabilities of such technology in the near future.

TLPs stand different from other offshore oil production platforms because of their
unique characteristics. This motivated the author to start the work which is presented
in this thesis. This interest in TLPs finally helped the author in developing some
computational tools to assist the TLP designers in future. This thesis illustrates these
computational tools along with the associated analysis methodologies. But the author's
work does not involve any conventional laboratory experiment primarily because he is
interested in engineering software development and thus he devoted his time to
numerical modelling and finite element 'experiments'. However, results from numerical
modelling have been compared with appropriate experiments done elsewhere if test
data are available.

1.2 A FEW WORDS ABOUT TLPS IN SERVICE

TLPs have developed from a scientific concept to a widely accepted engineering
solution for deepwater oil and gas field development. The process has been similar to
that for most innovations, in that time is needed for confidence to build. A milestone
project to investigate the application of a TLP to the offshore energy industry was
initiated in 1973. With sponsorship from 17 oil companies the Deep Oil Technology
constructed a 635 tonne version (about 1/3 scale) of a triangular TLP. It was
successfully tested off the coast of California during 1974 and 1975. This
demonstration was important since it helped the industry to assess the validity of the
analytical methods used to design the model. The test program showed that oil field
equipment and personnel can function effectively on a TLP deck subjected to the test
conditions.

The first TLP from Deep Oil Technology is known as TLP-X1. It was on station for a
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three month period in 58 m (190 feet) of water on the seaward side of Santa Catalina
Island, California. Its design features together with the test program, instrumentation
and lessons derived from analysis of the data acquired are described in a magazine
article [1.3]. Additional and more extensive tests were carried out in 1978 with an
array of risers connected to the seabed.

1.2.1 The Hutton TLP

The Hutton TLP is probably one of the most talked about structures in existence. The
Hutton Field was discovered in 1973 but development was deferred because economic
prospects were unclear at that time. The oil industry was working to solve the problem
of how to produce oil and gas from very deep water by developing sea-floor
production systems. Conoco recognised [1.21] that there would still be a need for
above-water deck space for machinery and the men to operate and maintain it and the
TLP concept would enable operations as much like those on conventional bottom-
fixed platforms as possible. In August 1980, the development plan of a TLP
production platform was approved by the Hutton license group.

Over one and a half million man-hours of engineering were spent in completing the
design of the Hutton TLP. It was a first-of-kind project but the main objective was not
innovation but business-as-usual oil production. The project’s guiding principle was to
err on the side of over- rather than under-design.

‘The Hutton deck is a grillage of plate girders which span the tops of the columns and
provide support for three levels of outfitting. The hull is a six column semisubmersible-
like structure providing buoyancy. The tethers are multi-part thick walled drill pipes.
They were installed from the mooring tunnels inside the corner columns. There are
various publications on different features of the Hutton TLP and it is unnecessary to
reproduce them here. However, there will be discussions as appropriate on existing
TLPs in service in other sections of this thesis.

1.2.2 The Jolliet TLWP

The Jolliet Tension Leg Wellhead Platform (TLWP) was installed during 1989 in 536
m (1760 feet) water in Green Canyon Block 184 in the Gulf of Mexico. It was the
world’s deepest production platform before the installation of the Auger TLP. The oil
field is about 100 miles from shore on a steep slope where the water depth varies from
275 m to 640 m over the four miles breadth of the Block. As the discovery was being
delineated, the perceived centre of the reservoir, the best location for the production
platform, kept migrating to deeper water from 427 m initially to 536 m. A major
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feature of a TLP is that cost is not very dependent on increasing water depth. The use
of a TLP concept in the Jolliet Field allowed this depth change accommodation for
optimum platform location in the middle of detailed structural engineering studies
without affecting the resulting fabrication and installation schedule.

The Hutton experience was, like many first-of-kind projects, more expensive than
planned and perhaps, more conservative than required [1.21]. Even before Hutton was
installed research was underway to enable new designs to benefit from the learning
curve. Faulkner et al [1.10] were carrying out experiments and analyses of
orthogonally stiffened cylindrical shells to support changes in design practices to
enable considerable weight and cost benefits. The Jolliet TLWP hull design uses this
improved know-how.

One-piece foundation template and twelve one-piece buoyant thin walled tendons with
side entry connectors at both the foundation and the hull are the striking features of
Jolliet. All the wells were drilled before the TLWP was installed and consequently,
there is no drilling riser on Jolliet.

1.2.3 The Snorre TLP

The Snorre Field located on the Norwegian North Sea about 95 miles west of Floro
was discovered by Saga Petroleum in 1979. A unique field development plan uses a
TLP and a subsea production facility for the first phase of production. The TLP was
installed in May 1992 and the installation process involved a series of complex and
weather dependent operations [1.27]. The second phase of development may involve
relocation of the TLP after 14 years of service.

The steel hull of the Snorre TLP has four columns. The pontoons are square with a
bilge radius of 2 metres. The deck configuration employs both trusses and plate girders
as required for safety, ventilation and other design issues. The mooring system is a
close cousin of the Hutton system, comprising four tethers per corner, installed
through mooring tunnels in the columns. But the tethers are partially buoyant, thin
walled tubulars. The Snorre TLP is based on four separate concrete foundation
templates, installed on the sea-bed in 310 metres of water in the summer of 1991.

1.2.4 The Auger TLP

Shell's Auger TLP was installed in a record breaking 872 m (2860 feet) of water in
February 1994. The Field is located on Garden Banks Block 426 in the Gulf of



Mexico. The total development cost for Auger, including TLP fabrication, installation,
facilities, pipelines, drilling and well completion is $1.2B [1.8].

The TLP has the capability to support 32 wells, although only 14 wells are anticipated
to be drilled initially. The TLP is held on location by a combination of an eight-point
lateral mooring system (LMS) and 12 tethers latched into the foundation templates.
The unique aspect of Auger centres around the drilling system [1.26]. It has a fixed
drilling rig and free standing individual seafloor wellheads. The LMS is used to
position the drilling rig over any individual well.

The Auger TLP design is accomplished by a number of computer programs. Shell's
TLP_SIZE is one of them which uses a combination of hydrostatic equilibrium, simple
storm response analysis and extrapolations from previous designs to establish payload
specifications. It does a gross simplification of detailed analyses but it has been found
to be an extremely useful tool [1.26] with a fast rate of convergence during conceptual
and preliminary design.

The Auger hull consists of four cylindrical columns connected by four rectangular
pontoons. The 22.5 m (74 feet) diameter columns are orthogonally stiffened with a
10.4 m (34 feet) inner shell stiffened circumferentially. The pontoons are 8.5 m (28
feet) tall by 10.7 m (35 feet) wide boxes, made up of orthogonally stiffened flat plates.
The deck is an open truss design [1.8] covering an approximate area of 8360 m 2 The
LMS is an eight-point catenary mooring system comprising S-inch diameter wire,
chain, linear winches, submerged buoys and anchors. The twelve tethers are 0.66 m
(26 inch) diameter, 3.3 cm (1.3 inch) thick steel tubulars attached externally on the hull
near keel level.

Auger is a learning experience for Shell and other organisations involved. Schott et al
[1.26] expect that all experiences with Auger, both negative and positive, would help
to reduce the cost and cycle time associated in construction of Shell's second
generation Mars TLP.

1.2.5 The Heidrun TLP

The Heidrun TLP is proposed for the Haltenbanken Field in the Norwegian Sea,
approximately 175 km off the coast of Mid-Norway in a water depth of 350 m [1.31].
Conoco and Statoil have decided to construct a concrete hull for Heidrun which would
make the TLP significantly different from the others in service. The selection of
concrete is based on various criteria. The case study [1.31] comparing steel and
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concrete hulls shows that a significant difference exists in the maximum tether load for
the two types of hull. The steel hull produces 1.5 times greater tether load. The
advantages of employing concrete in the hull construction is discussed in Section
1.6.1.

The reduced tether loads on the Heidrun concrete hull are mainly because of the lower
overall centre of gravity achieved by its large mass and deep draft. This places the
centre of gravity closer to the centre of environmental loading and in turn reduces the
platform over-turning moment that must be resisted by the tethers. Like Jolliet,
Heidrun is going for 12 one-piece neutrally buoyant tubular steel tethers with wall
thickness of 3.8 cm [1.2]. The concrete hull will have four columns of 24.5 m
diameter. The pontoons will be square in section with 13.4 m width.

1.3 THE ISSC TLP

It is not possible to explain the analysis methodologies unless a typical TLP
configuration is available for numerical modelling. Chapters 3, 4 and 5 present the
reliability based hydro-structural design concepts with a ‘theoretical TLP' as an
example. The model was initially proposed by Boom and Tan [1.5]. They carried out
Model tests in the Netherlands Ship Model Basin. Their test results are available both
in regular and irregular seas. The same TLP model (see Table 1.'1) was chosen by the
ISSC Derived Loads Committee 1.2 in 1985 for a case study to judge the applicability
of different compliant system packages available [1.28]. The TLP model (better known
as ISSC TLP) has a relatively simple hull configuration. The configuration came from
some elementary design considerations. Details such as cross bracings were left out
since they were not expected to produce significant hydrodynamic effects. The
platform has symmetry about two orthogonal vertical planes. The square deck is
supported by four circular columns which are interconnected by submerged
rectangular pontoons (Fig. 1.1).

One main reason behind this selection was to avoid any company specific TLP in
service. For validation and complex modelling a general purpose software, LUSAS
[1.20] is used in this thesis under an academic research agreement. The author's
Department is involved in many other TLP related activities and thus to avoid any
confusion regarding the software license, TLPs in service are not selected here for
numerical modelling.

The author was initially interested in comparing his results with published ones from
various sources. Ref [1.25] and [1.28] present diffraction/ radiation analysis based
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results from 17 organisations. In fact, that is another reason for selecting the ISSC
TLP for different numerical demonstrations.

Table 1.1 Particulars of the ISSC TLP [1.28]

Spacing between column centres 86.25m

Column radius 844 m

Pontoon width 7.5m

Pontoon height 10.5m

Draft 35.0m
Displacement 54.5 x 106kg
Total mass 40.5 x 106kg
Total tether pretension 137.34 MN
Longitudinal metacentric height 6.00 m

Transverse metacentric height 6.00 m

Roll mass moment of inertia 82.37 x 109kg m?
Pitch moment of inertia 82.37 x 10%kg m?
Yaw moment of inertia 98.07 x 109 kg m?
Vertical position of CG above keel 38.0m

.Length of mooring tethers . | 4150m

Vertical stiffness of combined tethers 813.0 MN/m

Roll and pitch effective stiffness 1501.0 GN/radian

1.4 CONFIGURATION AND PROPORTIONS

The main reason behind the success of TLPs is the restrained heave motion of the
platform which enables drilling and production capabilities similar to those of
conventional fixed platforms. The main well flow control valves (i.e. 'christmas tree’)
can be located at the TLP's deck level. This arrangement is superior to subsea well
developments because of its simpler connections from seabed wellheads and
convenient well system access. Subsea developments obviously have a place in the
deep water areas, but they do not provide a ‘catch-all’ solution. The budget allocations
are much higher for the subsea wells. Oil recovery factors are only 70% of that for
platform wells [1.17] and subsea wells are shut sooner because of high maintenance
costs.



The TLPs which have been designed to date are for quite different missions and
therefore have different dimensions and other features. Some of the characteristics are
also different for new innovation and design evolution. But some dominant factors
influence all designs in the same way [1.6]. This section presents an account of useful
information about these design factors and also provides background which is useful
for discussions and relevant explanations in the next chapters of this thesis.

1.4.1 Number of Columns

A TLP hull can be seen as a 'column-stabilised' floating structure, quite similar to the
semisubmersible drill rigs. Deep Oil Technology's TLP-X1 was a triangular deck with
three columns. But the use of four columns appears to be a firm trend after the
installation of the Hutton TLP.

A three column TLP is more difficult to build. The advantage of a three-legged TLP
might be in equalising tendon loads without restoring to precise tendon lengths,
because it is a determinate structure (like a three-legged stool). However, this feature
is not particularly important in deep water since there is enough stretch in the tendons
to ensure equalisation if four or more tendon sets are used [1.15].

On very large TLPs it may be desirable to increase the number of columns and provide
intermediate supports for the deck truss. If the number of columns in a large TLP is
more than four, it will definitely lead to a lighter deck construction but there may not
be any savings in the total weight of the platform. The 6-column Hutton TLP is
compared with the 4-column Auger TLP to indicate the impact of this approach.

Table 1.2 Effect of Number of Columns on Hull and Deck Weight

Weight in tons Hutton Auger
Fixed Payload 11500 11500
Hull Weight 20500 18200
Deck Structure 7500 10000
Hull and Deck 28000 28200

The 'fixed payload' is the same for both TLPs. But the comparison does not show any
clear advantage from the standpoint of weight since the hull is heavier but the deck is
lighter for more number of columns. However, in this context it should be emphasised
that Auger differs significantly from Hutton in a number of ways. Auger has been
installed with a more efficient design and better technology whereas Hutton is the first



TLP. Problems arose in many facets of the Hutton project as designers addressed first-
of-a-kind components, unfamiliar service requirements and an absence of specific
acceptance criteria.

1.4.2 Column Spacing

Column spacing depends on the deck size and the deck design is governed by the
equipment layouts and well bay size. A change in column spacing affects a number of
important factors.

- Free-floating stability of the TLP during pre-service conditions increases with a
greater column spacing.

- An increase in column spacing can reduce the wave peak enhancement under
the TLP. This can reduce freeboard because the 'minimum air gap' controls the
freeboard requirement.

- A larger column spacing will increase fabrication costs substantially. The
weight of the structure will increase with a heavier deck and more expensive
pontoons because of their additional length.

- But an optimum column spacing should provide enough clearance between the
production risers and the pontoons in order to avoid pontoon-riser interference
in extreme storm conditions.

- The construction and installation process can impose limitations on a column
spacing decision. The building dock has to accommodate the hull structure
within its width. If the hull and deck are to be built separately and joined afloat,
column spacing must account for the breadth of a transport barge sufficient to
carry the deck.

1.4.3 Column and Pontoon Configuration

To a first order selection of column and pontoon, sizes will be governed by hydrostatic
and hydrodynamic principles and not by strength criteria. So the application of the
structural codes usually occurs after some preliminary sizing based on hydrodynamics
and hydrostatics.

The TLP concept originally evolved from the semisubmersible drilling vessel but TLP
column and pontoon proportions have distinctive features. The displacement assigned
to the columns is appreciably larger than that of a semisubmersible. Horton et al [1.16]
have studied optimum hull proportions for three-column TLPs and shown that the
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preferred ratio of column displacement to the total displacement is about 0.7. This
ratio turns out to be reasonable for TLPs with other numbers of columns.

Fairly low ratios of the column length to diameter are selected in the present trend of
TLP design so that the columns can provide adequate bending and shear strength
without diagonal bracing members to provide truss support of the global structure.
This also enhances internal and external inspectability and avoids additional complexity
of small-to-large member junctions.

The pontoons provide an effective structural tie between the columns at the lower end.
The variations in column/pontoon volume ratio have dramatic effects on the tether
tension. Grant, et al [1.11] have mentioned that an optimum proportion of column and
pontoon would minimise the tether pretension (and thus hull displacement) and the
tether design loads, and maximise tether fatigue life. In order to achieve this target, it
is important to select a proper ratio of column and pontoon volume which results in an
effective cancellation of forces between the two at desired wave periods. Larger
pontoons will increase the heave cancellation period and the heave motion response
for lower wave periods (also at heave resonance). Pitch motion is also increased. Small
pontoons will increase the heave response for higher periods [1.12]. Similar effects
were observed by Almeland et al [1.1] in the case of Snorre TLP. A low displacement
ratio (pontoon displacement / total displacement) was found to give less tether force
for lower wave periods, important for fatigue, while a higher displacement ratio was
more favourable for extreme loads. A displacement ratio, close to 0.29, was decided to
be the optimum solution for the Snorre TLP. Horton [1.15] also recommends in
general, a displacement ratio equal to about 0.3, based on an extensive hydrodynamic
analysis.

It is difficult to comment on the choice of pontoon cross-section shape. The pontoons
are usually rectangular, constructed of orthogonally stiffened panels with web frames
and longitudinal stringers, much like a small tankship hull. But the Jolliet TLWP
selected a circular cross section and the Hutton and Snorre TLPs selected a
rectangular section with generously rounded corners. The Auger TLP has chosen a
sharp-edged square pontoon cross-section. As an argument, it can be said that Auger
has lower 'relative design wave height' than the others because it is both a fairly large
platform and is to be located in the Gulf of Mexico, where the waves are not as large
as in the North Sea. So the hydrodynamics involved, does not impose restrictions on a
straight-forward, relatively simpler sharp-edged construction of pontoons.



1.4.4 Tether Pretension

The mooring system of a TLP is a relatively new structural concept, common to all
TLP designs and it seems to be the most critical element of the platform. The
difference between excess buoyancy and platform weight (i.e. 'pretension’) yields a
restoring force to resist the steady horizontal environmental forces, thereby limiting
offset and setdown. Tethers experience tension variations throughout their design life.
But the tether tension must not go beyond the tensile capacity of the tether or drop
down to zero as a result of extreme storm waves. So the pretension magnitude is very
important. If it is too high, the tethers may reach the maximum limit value and high
mean tension is critical for fatigue failures. But if the pretension is too low, the
minimum tether tension can drop down to zero due to dynamic response and the tether
will be slack. Although momentarily slack tethers do not necessarily produce failure
[1.11], the situation is unreliable since the impulsive stresses which follow the slacking
can be high and the tether behaviour becomes uncertain and difficult to predict [1.23].
Mercier, et al [1.21] mention that substantial snatch loads for a four-legged TLP will
only occur if two adjacent legs are to go slack simultaneously. This may lead to failure
and should be avoided. Moreover, some bottom connectors of tethers cannot operate
without tension.

So an optimum selection of the tether pretension ratio (total tether pretension / total
displacement) is essential. The chosen pretension ratio varies from 0.23 to 0.27 for the
first three TLPs to date.

1.4.5 Operational Draft

The choice of operational draft is governed by the maximum and minimum tether
tension, maximum offset and minimum wave gap. It is also influenced by structural
requirements and pre-service conditions. Increased draft will reduce heave and
increase pitch motion when the mass and VCG are fixed [1.12]. In this case the net
effect will lead to an increase in the tether tension. Conversely, for the reduced draft
the effect of increased heave motion will be higher than the reduction in pitch, and it
will again increase dynamic tether tension. If the draft is too small, the pontoons will
have insufficient submergence and the tether tension becomes difficult to predict.
Operational draft also controls hull steel weight and its centre, thus influencing pre-
service draft and stability. Grant et al [1.11] have found that the minimum operational
draft that would satisfy in-place performance criteria, should be typically optimum.



1.4.6 Deck Clearance

The minimum air gap or clearance between the deck and a wave crest is an important
parameter in the design. The minimum air gap is a result of TLP set down, caused by
horizontal offset, and maximum wave crest height. The maximum wave crest height
can be found from a detail analysis giving a wave crest enhancement factor (wave
height with diffraction effects / wave height) which results from the blockage effect on
large TLP columns. Wave asymmetry, column wave run-up and tide must also be
taken into account when calculating the total wave crest. The deck clearance has an
effect on the vertical position of the centre of gravity and in turn on the maximum and
minimum tether tensions. The overturning moment caused by wind forces increases
with the deck elevation. Usually a higher deck has adverse effects on tether tension
responses.

The designer can either provide a minimum deck clearance or allow for wave impact
on portions of the deck, hull or lower appurtenances. In the second choice, the
designer must have confidence in the accuracy of the wave crest elevation and the
contact should be localised. The deck bottom should be designed for the anticipated
local and global wave slamming forces [1.4]. In the present trend of design, usually a
minimum deck clearance is preferred. Almeland et al [1.1] reported that the Snorre
design criteria required a 1.5 m air gap between the wave crest and the underside of
the deck during the 100-year storm event. Both calculations and model tests showed
that the wave enhancement factor would be significant, as much as 1.5, for sea states
having a peak period of about 12 seconds. So required freeboard for Snorre was set at
27 m.

1.5 PROBLEM AREAS INVOLVED IN A TLP GLOBAL ANALYSIS

The large scale production of papers on elements of TLP analysis is one of the
impressive consequences of the TLP innovation. But it is unfortunate that many
articles only provide beautiful panel model figures of TLP column/ pontoon nodes and
response RAOs. They hardly mention the main assumptions involved in the analysis. A
few years back, Shell, Amoco and Exxon undertook analyses of a given TLP
configuration to predict maximum and minimum tether tensions in an extreme design
storm in the Gulf of Mexico [1.14]. Although the participants had close interactions
and in some cases they used the same method of analysis, differences in the results
were observed. But detail explanations regarding the underlying assumptions and the
causes of variation in the results have made the paper different from many others.



The TLP global analysis is very important in setting the TLP configuration. The
method of analysis selected by a designer depends on the availability of computational
tools, current stage of design and the degree of accuracy required. At the preliminary
level of design, the Morison equation based models can be used but they are generally
found to be poor for computing TLP pitch/heave response and it is well accepted that
the large diameter, inertia load dominated TLP columns require diffraction effects to
be handled adequately. So the first-order wave loads can be calculated based on
McCamy-Fuchs theory for the columns and the Morison equation for the pontoons.
But for more reliable results, in many cases a hybrid computing model is used which
accounts for both diffraction/radiation theory and the Morison equation. This implies
that added mass, potential damping and wave drift coefficients are computed by a
panel type of linear diffraction/radiation program and then transferred to the Morison
program. In many cases it may not be straight-forward to replace or supplement
Morison-type hydrodynamic models with data obtained from radiation/diffraction
analysis. Natvig, et al [1.22] have explained that they used both a panel and a space
frame model for the same TLP hull and had to make use of a special program to
transfer all radiation and diffraction data derived from a wetted surface discretisation
of the hull to the Morison equation. In this way, the hydrodynamic analysis can
account for potential forces as well as viscous forces.

At the early stages of configuration development, frequency domain techniques are

usually employed. The most significant limitation of them is that all non-linearities in

the equations of motion must be ignored or replaced by linear approximations.

However, the frequency domain techniques have the advantage of simplifying the
computations and the frequency domain input and output are often more convenient

and useful for the designer. But the fully coupled time domain simulation of TLP

motions is valuable for determining the maximum offset and tendon tensions due to

extreme storm conditions where the linear assumptions break down.

In general, a complete global analysis of a TLP includes many analytical and empirical
methods. Some of them are fairly standard but some other may not be well defined and
universally accepted methodologies since there is no clear analytical solution. Since
they depend on past experience or experimental evidence, they do give some indication
of the relative uncertainties involved in the final results. Some recently identified
problem areas are discussed below.

1.5.1 Nonlinear Resonant Excitations

Nonlinear resonant excitations have been widely observed in model tests but not yet
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easily or well modelled by analytical means. The 'Springing' phenomenon appears to
arise from high frequency excitations attributed to nonlinear sum-frequency
interactions of the wave frequencies. Second-order hydrodynamic theories establish
Quadratic Transfer Functions (QTF) to predict some of these loads but the programs
are not readily available and the resulting response is particularly sensitive to damping,
causing uncertainties in the results [1.1]. It may be speculated that an increased
platform natural period would tend to increase the springing effect on the extreme
response, but it would reduce the effect on the fatigue response. This follows from the
springing response as seen at the double wave frequency [1.12].

The slowly varying wave drift force covers a wide frequency band. So the high period
resonant degrees of freedom, i.e., surge, sway and yaw are excited by the dynamic part
of the wave drift. Wind gust forcing is slowly varying and it affects the motion in much
the same way as the wave drift but with less effect. The magnitude of the total slowly
varying force is generally small, but the damping is usually low because potential
damping is virtually zero in the high period range and the viscous drag is also small if
there is no current. So the estimation of damping is very important. Due to the
contribution of the low frequency resonance, the resulting surge motion is broad
banded.

There is another phenomenon, often referred to as 'ringing' which is not yet fully
understood and verified. It appears as a transient response in model test data. This
excitation is likely to be due to impulsive loadings from large wave crests which are
not accounted for by perturbation theories [1.14]. ‘ ' B

Even the advanced nonlinear second-order diffraction theories can only account for a
portion of these nonlinear resonant excitations. So there is a great need for research in
this area.

1.5.2 Tethers in- Deep Water

Recently, many attempts have been taken to look in some detail at TLP designs for
3000 feet water depth and beyond. With increasing water depth, the current loading on
tethers will cause sagging which will reduce the axial stiffness and increase the natural
period. In most cases, TLP designers want to keep the natural periods in heave, roll
and pitch under four seconds to avoid resonant excitations from the first-order wave
loads. If the natural periods are within the wave period range, the fatigue life of tethers
becomes more critical. In order to reduce the response at resonance, the natural
periods can be reduced by increasing the tether stiffness. So in deep water, the tether
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size will be governed by the stiffness requirement rather than the strength and it is this
requirement that has limited the use of wire strand in composites as TLP tethers
[1.15].

The suspended weight of TLP tethers in very deep water is of such concern that much
research and development effort has been expended to create 'near-buoyant' designs.
Existing tether designs have achieved this by using large diameter, heavy-walled
tubulars that must resist combined hydrostatic and axial loads. Design against collapse
in very deep water results in structural elements that can be difficult to fabricate and
install.

As water depth increases, the assumption that the tethers can be modelled as linear
springs in the hull analysis becomes less accurate. Davies, et al [1.7] have given a
method which would result in a more efficient hull design and in significant savings
over one based on a customary frequency-domain response analysis model using linear
springs. They have suggested a time-domain coupled-model simulation to generate
data needed for spring characterisation of the tethers over the entire range of
frequencies. With increasing water depth a coupled analysis becomes essential because
it is difficult to prescribe sensible boundary conditions at the top of the tethers. These
are actually quite complex orbital paths which are strongly influenced by the effects of
set-down.

1.5.3 Tether Fatigue

API RP 2T [1.4] recommends that the tether components be designed for a life of 10
times the design service life. This is mainly because of a large amount of uncertainty
involved in the tether fatigue which is one of the significant design considerations of
TLPs. Tethers have a high mean tension and experience tension variations throughout
their design life. In addition, most tethers have welds which have a lower fatigue
strength than the base metal. Most designs also incorporate connectors which may
result in additional stress concentrations. A TLP in 3000 feet of water with twelve
tethers and a connector every 80 feet will have approximately 450 connectors and 900
circumferential butt welds to connect the connectors to the base pipe. If a tether has
100 square inches of cross sectional area and one inch long welds, there will be about
90 thousand cubic inches of weld metal in all the tethers. So large scale testing is the
only way to find a fatigue curve and the corresponding scatter band of the weld and
connector profiles in the tethers. Fowler, et al [1.9] describes the development of a
machine which can test full scale sections of tethers to fatigue loadings similar to those
seen in service.
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The main innovative features of the Jolliet TLWP can be seen in its twelve one-piece
tethers with side-entry connectors at both the foundation and the hull. The results of
fatigue and fracture mechanics analyses showed the largest circumferential defect that
could be left in the tethers during fabrication was 0.185 inch deep by 1.75 inches long
[1.13]. This sized defect could be tolerated by the tethers without failure over the life
of the project. The analysis defined a critical size (0.625 inch deep by 5.0 inches long)
and if a defect ever grew to this critical size, the tether should be replaced. Hein, et al
[1.13] describes the development and the first use of the Jolliet TLWP tether
inspection system with a capability of detecting one-half of the originally assumed
installed defect size. The results of the inspection show no flaw indication detected in
any tether that exceeds the half "trigger" size defect, proving the value of the extra
care in the on-land fabrication of the tethers.

But the present trend in design seems to provide a conservative estimate of tether
fatigue. Large scale testing and further research should be necessary to eliminate
uncertainties in this area.

1.6 FUTURE TRENDS IN DESIGN

Oil from deep water does not command a higher sales price than oil from beneath
shallow water or on land. The economics of oil prospects from deep water are less
attractive because of the present oil price. But economic challenges often stimulate
innovative approaches to enable developments to go ahead. Several researchers and
experts are working in various parts of the world to develop new techniques in deep
water technology. Quite a number of these researches are related to TLPs since the
TLP concept seems feasible for future missions in greater water depths. A few
interesting topics are described here.

1.6.1 Concrete TLPs

It is difficult to predict various aspects of the future fleet of TLPs, but it is clear that
concrete is gaining more favour as a promising material of construction after the final
selection of a concrete TLP on the Heidrun field. A number of advantages offered by
concrete, over steel are briefly noted below [1.21], [1.12]:

- Concrete is essentially immune to the marine environment and is almost
maintenance free.

- Concrete fabrication processes are well established in ocean industries since
twenty or so concrete gravity type platforms have been already installed on the
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seabed in the North Sea. A concrete TLP can be built in a similar way.

- The construction time due to the combination of dry dock and inshore
slipforming for a concrete TLP is approximately half as compared to a steel
unit.

- The concrete version of a steel TLP would have significantly deeper draft and
larger displacement. The hydrodynamic responses of a concrete platform are
expected to be favoured by designers because of the deep draft and low centre
of gravity as indicated in Section 1.2.5.

- A concrete hull results in a simpler design with fewer structural elements and
smooth surfaces without the local stiffening found in steel hulls.

- Concrete structures have ample reserve strength against external pressures and
adequate fatigue life. Reserve for fatigue is an advantage because of greater
uncertainty with welded steel!

So it is expected that concrete is likely to compete more effectively with steel for
larger size platforms. But the limiting water depths for tow-out in many locations
around the world can be a problem for the development of deep draft concrete TLPs.
Hannus et al [1.12] find that the natural periods of a concrete hull are markedly higher
than those of the equivalent steel hull. But they show that a concrete hull TLP can
have acceptable fatigue life even at natural periods of about 5 seconds. However, this
topic needs further investigations with various concrete hull forms.

Conoco and Norwegian Contractors undertook a case study on the feasibility of using
floating structures for deep sea oil production in the Norwegian Barents Sea. Karsan
et al [1.18] report that initially six potential floating system configurations are
identified and finally a five column TLP (four corner columns and one central column
for riser protection) is selected by using the Analytical Hierarchy Process for further
study. Tension cable fendering system is a new feature of this proposed concrete TLP
since the area of interest lies in the Sub-Arctic location of the Northern Barents Sea
where interactions with large icebergs and waves are expected. But the TLP would
differ significantly from a "No Ice TLP" in terms of costs.

1.6.2 STLP and HRP

A TLP in very deep water means that the tethers must be very long and progressively
more expensive. TLP foundations and the tether system will also become more
difficult and expensive to install in great water depths. The Single Tension Leg



Platform (STLP) concept came up in order to limit the cost of the mooring system.
The STLP has a centrally located tether ( or tether cluster) that restricts heave like a
conventional TLP but allows compliant response in pitch and roll. The recent Heave-
Restrained Platform (HRP) concept goes another step ahead to combine the roles of
well risers and tethers. An auxiliary spread mooring plays a key role in stress
management for the tie-back components by tightly restricting offsets. A well systems-
centred design approach is followed to permit the most effective drilling and
production operations [1.30]. Several advantages are claimed for this novel concept :

- Well conductors provide excellent anchor piles for a HRP. They penetrate
many times the depth required to secure piles.

- A reduction in deck size is possible because the deck is efficiently supported by
the central column. In addition, the riser/tether tensions combine the mooring
tensions with riser tensioning duty.

- Dual casing of a riser/tether should be safe to encounter abnormal pressure of
fluids in very deep water operations. The outer casing will be there mainly for
corrosion and mechanical protection. Moreover, the two casings together can
provide enough steel cross sectional area to moor the platform in the heave
restrained mode.

- The drilling rig for HRP can be stationary because the lateral mooring system
not only limits horizontal motion but also replaces the rig skidding system
necessary for bringing the platform vertically over the sea floor well during
drilling and workover operations. - -

But some other crucial factors should be verified to ensure the suitability of the
platform.

- The HRP depends even more heavily than the STLP on its spread mooring
system to limit platform offset so that large riser angles and moments at the
seabed are prevented.

- The HRP configuration is very sensitive to changes in draft with increasing
draft beneficial to reducing pitch response.

- Double-walled risers provide a means for safety containing the fluid pressures
expected but the resulting heavy riser sections require large riser top-end
tension loads that must be accommodated by robust deck structures and
additional platform buoyancy.



Direct wave loading is greatly reduced by the moonpool arrangement but
platform pitch and roll motions can impose significant bending moments on the
top of the riser/tether strings.

Recently a family of Seastar TLPs have been developed and patented by Atlantia
Corporation [1.19]. They come from a similar innovative concept like HRP and STLP.
A Seastar TLP will have a single surface-piercing column which results in reduced
environmental loading. The construction cost is expected to be low enough to develop
marginal fields. The primary reasons for low cost are that it would contain less steel
and can be competitively fabricated and installed. Tethers will be attached to three
submerged corner columns to suppress all vertical motions like those in conventional
TLPs. Perhaps this type of configuration design will offer economical opportunities to
develop deepwater oil and gas fields in future.

1.6.3 New Method of Installation

The conventional installation technique controls a TLP configuration in several ways.
The installation methods proposed to date, usually rely on using an offshore deck and
hull mating operation. The hull-deck mating is done in sheltered sites where water
depth is shallow but adequate for this type of operation. The hull is usually ballasted
down to deeper draft, leaving minimum freeboard necessary for the deck carrying
barge to transfer the load. In this operation, the deck goes from a hogging to a sagging
condition and the hull has to withstand heavy hydrostatic pressure for its unusual draft.
The mated hull and deck are subsequently towed out to the final installation site. But
the mated hull and deck form a top heavy floating structure that requires adequate
stability reserve for the tow-out. The stability required in the floating condition
controls hull column spacing and diameter. This is important because the free-floating
stability requirement in tow-out condition may lead to a TLP configuration which may
not be the optimum one for the long-term, in-place conditions. Rajabi et al [1.24]
propose a new method of installation that will allow the deck modules to be installed
on the Module Support Frame (MSF) of the hull in the final installation site after
securing the hull with all tethers.

The new method of installation is particularly suitable in the Gulf of Mexico. The
conventional deck-hull mating at an intermediate site may be adversely affected by the
narrow weather window in the Gulf of Mexico. The operation requires a costly
temporary mooring system which cannot be used readily for other purposes. From a
schedule standpoint, any delay in the deck fabrication will postpone the TLP hull
deployment timing, resulting in an overall schedule delay. The proposed method of
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installation eliminates these deficiencies. It extends the application of heavy lift Semi-
Submersible Construction/Crane Vessel (SSCV) for foundation template setting, pile
driving, tendon installation, crew accommodation and deck module setting in a cost
effective way. But the modular deck approach may require longer hook-up and
commissioning time offshore.

1.6.4 Titanium Stress Joint

Before the installation of the Hutton TLP, one significant problem found during the
analysis was fatigue at the top and bottom end of the stiff tethers. The utilisation of a
flex-joint is a way to accommodate the cyclic load. Nuclear submarines, missiles and
bearings on helicopters that make it possible to change pitch of the blades during each
rotation, use these joints. All TLP projects to date have adopted this flex-joint
solution. Valenzuela [1.29] proposes a replacement of a flex-joint with a titanium
stress joint and a collet connector for a number of prospective advantages. The
titanium stress joint in the new tether system, has longer and better life than steel and
has no moving parts. The collet connector provides easy latching and unlatching
capabilities, specially for tether removal. The new solution is less expensive than the
existing construction of a flex-joint. However, research is necessary in this field since
Valenzuela [1.29] has analysed an isolated case in the Gulf of Mexico.
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CHAPTER 2

EQUIVALENT FORCES
FROM
ENVIRONMENTAL
LOADING



2.1 INTRODUCTION

This thesis is not aimed at designing the structural components of the ISSC TLP,
described in Chapter 1. Rather I want to demonstrate the importance of a hydro-
structural analysis that would help us to start with better scantlings and / or geometry
of TLP components in the next design stage. The ISSC TLP will serve as an example
in the numerical modelling. But a design process also involves external loading acting
on the design structure. Therefore, design environmental conditions in the numerical
demonstration are to be set in order to find the capability of the main structural
components to withstand most severe combinations of extreme environmental loads.

Unfortunately, several idealisations and assumptions are necessary to model
complicated structures as well as external loads in the ocean environment. A space
frame type of structure for TLPs is preferred in this work for a number of reasons.
Chapters 4 and 6 will discuss them in more detail. A frame type model is relatively
simple and computationally efficient but still the environmental loads are to be placed
appropriately on its nodes. This chapter deals with the environmental loading scheme
and the equivalent load calculations. The contents of this chapter are very general in
nature, not specifically for the ISSC TLP.

2.2 SPACE FRAME STRUCTURES

There are various books available, even from the fifties, which deal with framed
structures, made up of many elements. In many cases attention is appropriately paid to
formulate various matrices relating to framed structures. But when modelling external
loads discussions are often limited to concentrated joint loads and uniformly distributed
loads. In the case of other types of member loads, the previous trend was to use
engineering handbooks. Even today, besides concentrated and uniformly distributed
loads, only a few standard types can be handled adequately by general-purpose finite
element software. Here it will be shown that a few sets of equations can be derived
through algebraic manipulations from member loads of a very general nature acting on
three-dimensional beams and the derived equations can be programmed easily for use
as a 'black box' later on. This academic exercise is essential because water wave forces
do not follow any standard pattern. However, some closed-form expressions are
‘achieved' which would offer a number of advantages in the finite element beam
analysis. These expressions are certainly capable of minimising computational time
since equivalent nodal forces can be immediately calculated in the case of a large
element instead of subdividing the element and then summing up individual
contributions from each subdivision. In addition, closed-form expressions can be very



helpful to anyone who does not want to get into the complexities in understanding the
interaction of offshore structures with the environmental loading.

Before the 'computer age', most constructions used to be idealised by means of a
model composed of straight members. For calculation purposes, a structure used to be
modelled as a three-dimensional frame with beams interconnected in different ways. So
beam elements used to have a wide range of applications. Even today it is very difficult
to avoid a space frame formulation of the structural system, especially when global
responses are required. A complete finite element model of an offshore structure using
higher order, multi-node elements can be time consuming and computationally very
expensive. A proper implementation of the boundary conditions can offer a reasonable
solution to the problem of calculating structural responses and the stress resultants
acting in the members of the structure even when they are modelled as beam elements.
The global responses and stress resultant values can be utilised in a local analysis
where the structure is modelled in a relatively sophisticated way using complex finite
elements. Murotsu et al [2.20] have analysed a complete semi-submersible platform as
a three-dimensional framework by the combination of a plastic node method and a
matrix method before performing their reliability analysis. Natvig et al [2.21] have
described a space frame model of a TLP hull which was specially formulated so that a
panel model for radiation and diffraction analysis could be generated directly from that
space frame.

2.2.1 Conventional FE Analysis

The conventional analysis of an indeterminate structural System is achieved by
superimposing the solution of the restrained structure under the action of applied
disturbances, and the solution of the restrained structure for joint displacements. The
artificial restraining actions in the structure vanish when a linear function of the
solutions for the application of unit values of the possible joint displacements is
combined with the solution for the applied loads. However, the combination of these
solutions of the restrained structure must yield the true support reactions acting on the
indeterminate structure.

Let us consider the dynamic equation of motion for a multiple-degree-of-freedom
(MDQOF) system:

M{X} + [BI{X} + [KI{X} = {W(1)} (2.1)

Each element in the joint load matrix, {W(t)} may be the sum of two types of joint
load: (a) applied joint load and (b) equivalent joint load. Any load applied externally to



a joint or a 'node' of a structure is classified as an applied joint load. The joint actions
which result from the loading of the members of the restrained structure along their
length are referred to as equivalent joint loads. Since the analysis procedure assumes
all joints restrained, the reactions developed at the ends of the members are simply
fixed end moments and fixed end shears. The equivalent joint loads appearing at the
end of a member are equal in magnitude and opposite in direction to these fixed end
moments and shears. In other words, a fixed end moment or shear can be transformed
into an equivalent joint load by simply reversing its sign. The fixed end actions for the
more common loading conditions of a prismatic member and a few loading conditions
of particular non-prismatic beam elements can be found in available engineering
handbooks. A general loading on structural members can be converted into equivalent
joint loads by one of several techniques of structural mechanics. Here, the Bernoulli-
Euler theory is used to obtain closed-form expressions of equivalent joint loads where
the structural members are subjected to complicated wave loading.

2.2.2 Shape Functions of Bernoulli-Euler Beams

It is necessary to reproduce the shape functions of a Bernoulli-Euler beam because
they will be used extensively in the next sections. In Fig. 2.1, the transverse deflections
of a uniform beam element of length L, mass density pg, elastic modulus E, cross-

sectional area A and moment of inertia I, are shown. The displacement function is

assumed as:
4
v(x,t) = D wi(x)vi(t) (22)
o P o v .
A
¥, v(x,t)

V4(t)
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Fig. 2.1. The Transverse Deflections of Bernoulli-Euler Beam




where the shape functions, y, (x) satisfy the following boundary conditions:

vi(0) =1, wi(0) = (L) = yi(L) = 0 (2.32)
v2(0) =1, wy(0) = yy(L) = w3(L) = 0 (2.3b)
viL) =1, w3(0) = w3(0) = w3(L) = 0 (2:39)
val) =1, wue(0) = wi(0) = wu(l) = 0 (2.3d)

The general solution to Eq.(2.2) for a uniform beam is a cubic polynomial:

2 3
v(ix) =¢ + cz(%) + c{%) + q;(%) 2.4)

The term (x/L) is used so that all constant terms in the equation will have the same
dimensions. Substituting the four sets of boundary conditions in Egs.(2.3) into
Eq.(2.4), the following shape functions are obtained:

2 3
g =1 - 3(%) + 2(%) (2.52)
2 3
WYy =X - ZL(%) + L(%) (2.5b)
v, = 3[2‘_)2 ) 2(3‘_)3 2.5¢)
3 L L .
W = -L(i)z + L(if (2.5d)
ré L L) .

2.3 ANALYTICAL FIRST-ORDER DIFFRACTION FORCE

In diffraction theory, wave forces are calculated from the integration of total water
pressure field around a body. The method is appropriate when the body is large relative
to the water motion amplitude so that viscous forces are relatively unimportant and the
body is sufficiently large relative to the wavelength to modify the wave field through
diffraction and radiation. An analytic solution to the linear diffraction problem is
possible for a fixed vertical circular cylinder extending from the sea-bed and piercing
the free surface. The problem was initially solved by Havelock [2.12] for the deep-
water case and extended by MacCamy and Fuchs [2.17] for intermediate depths. A
significant practical advantage of the MacCamy and Fuchs' solution is that, while it
accounts for the diffraction effects in an analytical form, it can be applied for any ratio
of wave length to column diameter [2.2]. Although the solution is valid for a circular
cylinder resting on the sea bed, it can be applied with sufficient accuracy in practice for



the calculation of wave inertia forces on floating columns of a platform [2.1]. This
analytic solution seems to have a great practical value since 'panel and sources'
methods are avoided, although the results are comparable. The equivalent forces on 3-
D beams from this analytical diffraction force are derived here and discussed in detail
because they are used in Chapter 4 to calculate inertia forces on TLP columns.

According to the MacCamy and Fuchs' theory is , the net force in the direction of wave
propagation per unit axial length of the cylinder is given by:

2pgH coshk(y, +d) 1

fur(t) = . coshkd JA(kr) cos(kx,, -ot+oy) 2.6)
where
Adkr) = J{2(kr) + Y{ (ki) @.7)
and
_ 1] Ji(kr)

The wave axes x,, and y,, are chosen such that x, is positive in the direction of wave
propagation and y, is positive upward, measured from the SWL. The third wave axis,
z,, is the transverse axis in the horizontal plane. If we consider the centre of gravity of
the structure as the origin of the global XYZ axes system, and if we fix the origin of
the wave axes system on the SWL, directly below or above (depending on the
structure under consideration) the CG position (Fig. 2.2), a simple relation can be
found between the two axes systems:

Xy = XcosO + YsinO 2.9)
Yo =Z th (2.10)

In Fig. 2.2, it is shown that y, is equal to (Z+h). In the deep-water case we can
replace the hyperbolic term in Eq.(2.6) by exp(ky ), since:

~ coshk(y,, +d)
}_‘,‘2 coshkd

= exp(kyw) 2.11)

Substituting Eq.(2.9), (2.10) and (2.11) into Eq.(2.6):

fup(t) = 2ng_Iexp{k(Z + h)} ! cos{k(XcosB + Ysin0)-ot+ay}(2.12)

k JA(kr)

So all the terms in Eq.(2.12) are shown in the global co-ordinates. If we define:

Grr(®) = 222 exp( kh)

1
k JA(kr)

cos{k(XcosO + YsinB)-ot+ay} (2.13)



Eq.(2.12) will be simplified because Gyr(t) does not depend on the global Z co-
ordinates. Thus,

fuir(t) = G (1) exp(kZ)

(2.14)

CcG X
W]t

P, (5\_,/

—> L0
B(X3.Y3.27)

i

SWL

i

X

———> PO
2,

Fig.2.2. The Global and Local Coordinates of Beam AB

In Fig. 2.2, a portion of a vertical circular cylinder is presented as a beam element. The
Z= Zl +X

global Z co-ordinate of the beam has the following relation with its local x co-ordinate:

where

Z,<Z<Z, (2.15)
So the net horizontal force per unit length in Eq.(2.14) can be finally written as:
fur(t) = Gur(t) exp(kZ,) exp(kx) (2.16)
2.3.1 Equivalent Nodal Diffraction Forces and Moments
For Bernoulli-Euler beams:

L
B(t) = [£(x,t)w;(x)dx
0

(2.17)
To find out the equivalent forces and moments acting at the ends of AB, the following



results are used which can be obtained by applying the method of 'integration by parts'":

L kL kL
Kx Le e 1
[xedx = S v = (2.18a)
2 2
! k &k k

+ . (2.18b)

L 2 kL KL kL
szeb‘ dx = L'e ) 2Le2 2e3 23
5 k k k k

3 kL 2_kL kL kL
3K gx = Le _3Le +6Le _6e +i
k k2 k3 k4 4

(2.18¢)

O oy
>

P,(t) is found by substituting Eq.(2.16) and (2.5a) into Eq.(2.17):

L 2 3
Pi(t) = jGw(t)exp(kZI)exp(kx)[l - 3(%) + 2(%) :|dx (2.19)
0
After simplification,

L L L
P,(t) = Gyp(t)exp(kZ;) [je“xdx - Liz j x2eM dx + % j x3ekx dx] (2.20)
0 0 0

The results from Eqs.(2.18) are substituted into Eq.(2.20). Thus,

(e +1) - L;—;(ek]“—l) i ﬂ 2.21a)

Pi(t) = Gyr(t)exp(kZ;) [L26ks

Fig. 2.3a. The Global and Wave Coordinates at Node A

Eq.(2.21a) is the closed-form expression for the equivalent shear force acting at the
node A of the beam element. Similarly, the other three equivalent forces are found:
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Py(t) = Gy (1) exp(kZ;) [fzk?(e“u) -8 (o) + %2-] (2.21b)

1%k*
kL
Py(t) = Gy (t)exp(kZ,) [- L26k3 (e +1) + L;z (1) + P.l.(_} 2.21¢)
_ 2 KL 6 ( ekl
P,(t) = Gyp(t)exp(kZ,) m(2e +1) - o (e -1) - | e

Fig. 2.3b. The Global Components of Equivalent Nodal Force at A

co \e » X

le
*

Fig. 2.3c. The Global Components of Equivalent Nodal Moment at A

The equivalent global load vector, {W(t)}is formed from Figs. 2.3:
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[ P;(t)cosO )
P;(t)sin®
0
—-P,(t)sin0 >
P, (t)cosb
0

{Wa(t)} = 3 (2.22a)

Figs. 2.3 explain the situation at the node A. But {Wg(t)} is formulated easily by
replacing P(t) and P,(t) by P;(t) and P4(t), respectively in Eq.(2.22a).

[ P3(t)cosO )
P5(t)sin®
0
—P4(t)sin6
P;(t)cosO
0

{Ws(t)} = ; (2.22b)

7

The global joint load vector {W(t)} is generated by summing the contributions from
each node.

2.4 REVISED FORM OF MORISON EQUATION

The Morison equation was developed by Morison, O'Brien, Johnson and Schaaf [2.19]
for describing the horizontal wave forces acting on a vertical pile which extends from
the seabed through the free surface. When the characteristic dimensions of the
submerged structures are less than 20% of the wave length under consideration,
diffraction effects become unimportant. So this most widely accepted approach to the
calculation of wave forces can be used which is based on the assumption that the wave
force can be expressed as the linear sum of a drag force, due to the velocity of the
water flowing past the structure, and an inertia force, due to the acceleration of water.
The standard form of Morison equation assumes that the structure, which is
experiencing the forces, is rigid.

fur(t) + fup(t) = CpAl, + LCppDlu, fu, (2.23)

However, if the structure has a dynamic response or is a part of a floating body, its
induced motions may be significant when compared with the water particle velocities
and accelerations. A compliant structure like a TLP is free to move in waves. In these
cases, the following form of the Morison equation can be used to account for the
structural movement:

fra(t) + fup(t) = CpAll, - CopAiig+ $CppDluplu, - $ChpDluglug (2.24)

29



This form is known as the independent flow fields model and is obtained as the linear
superposition of two independent flow fields, a far field due to the wave motion and
relatively unaffected by the structure motion and a near field resulting from the
structure motion. The values of C,, and C, may be obtained from wave experiments

while the coefficients C, and Cp, are derived from the experiments of oscillating

cylinder in calm water.

There is another way of writing the forces in terms of relative motion and single
coefficients can be assumed to apply:

fu(t) + i (1) = CrpA(itp-its) + pAiis+ $CppD|up -ug|(up -us) (225

This relative velocity model needs two coefficients less to determine than in Eq.(2.24).
It has been extensively used in the past to evaluate stochastic dynamic response of
offshore platforms [2.5].

Sometimes it is convenient to separate the inertia coefficient from the added mass term
specially when they come from the diffraction-radiation theory. Therefore, a third
alternative form of the modified Morison equation is:

frr(t) + fup(t) = CpAl, - CopAig+ $CppDluy -ugl(uy -us)  (2.26)

It is difficult to compare the appropriateness of the equations given above because the
original Morison equation is empirical. Obviously the coefficients derived from one of
these formulations can be justifiably used in the application of that form only.

Chapter 3 describes the results from a progrém RBRA (Rigid Body Respohse
Analysis) where as Chapter 4 deals with DCATLP (Dynamic Coupled Analysis of
Tension Leg Platforms). The Morison equation based RBRA originated from the initial
phase of the author’s work and quite simplified in nature. RBRA cannot handle
equations where the structural motions and wave particle velocities are coupled.
Therefore, it is necessary to simplify Eq.(2.26) for RBRA. However, DCATLP
operates in time domain and calculates the wave-current-motion interaction force
which is discussed in Section 2.7.2.

The following approximation was first used by Tasai, et al [2.29]:
%CDleup - usl(up -ug) + %CDpD|us|us = %CDleup|up 2.27)

This approximation has an important consequence. It allows the calculation of wave
forces based on water particle kinematics only. Referring to Eq.(2.1), the structural
contributions can be handled separately. This simplification is used in RBRA and
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described in Chapter 3.

2.4.1 Inertia Forces on a Vertical Cylinder

As indicated earlier, DCATLP in Chapter 4 calculates inertia forces from the
MacCamy and Fuchs' theory but RBRA in Chapter 3 is based on the Morison equation
only. Hence, it is necessary to find the equivalent forces for fyq(t) too.

Based on Airy's linear wave theory, the net inertia force in the direction of wave
propagation per unit axial length of a vertical cylinder can be written as:

fug(t) = %CmpgAHk exp(ky,,)sin(kx,, - ot) (2.28)
Eq.(2.9) and (2.10) can replace the terms involving the wave axis system.
fup(t) = %CmpgAHk exp{k(Z £ h)}sin{k(XcosO + YsinO) - ot} (2.29)
If we again define:
Gy (t) = %CmpgAHk exp(+ kh)sin{k(Xcos® + Ysinf) - ot} (2.30)

then the terms in Eq.(2.29) which are independent of the global Z co-ordinate, can be
isolated. Thus,

fmi (1) = Gm(t)exp(kZ) (231)

Eq.(2.31) is identical to Eq.(2.14). Therefore, from the similarity, we can write directly
the closed-form expressions of the equivalent nodal forces acting at the nodes of the
beam element which is presenting the vertical cylinder submerged in water.

P,(t) = Gyg(t)exp(kZ,) [L—z%(e'iﬂ) i %(ekl‘—l) i ﬂ (2.322)

Py(t) = Gy (t)exp(kZy) [%(ekl‘+2) ; L26k4 (e -1) + kiz] (2.32b)

kL
Py(t) = Gpg(t)exp(kZ;) [—L—f@(e"m) + (e ) + %{—] (2320)

2 (. w 6 (i el
Ps;(t) = Gyg(t)exp(kZ,)) | —=x\2¢ +1) - ——le" -1) - — 2.32d
4(1) = Gag (D exp(kZy) [Lk3( ) - e ) kz] (2.32d)
The joint load vectors {W(t)} and {Wg(t)} can be found straight from Eqs.(2.22).

2.4.2 Drag Forces on a Vertical Cylinder

If the structural velocity terms are uncoupled from water particle velocities, as
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explained earlier, it is possible to find similar closed-form expressions for the
equivalent nodal forces, even in the case of velocity squared non-linear drag forces
acting on a vertical cylinder. Based on Airy's linear wave theory and from Eqs.(2.26)
and (2.27):

fup(t) = +1CppgDHZk exp(2ky,, )cos? (kx,, —ot) (2.33)
The sign of Eq.(2.33) is the same as the sign of cos(kx, —ot). In other words, if
cos(kx,, —ot) is positive, fyp(t) will be positive. Eq.(2.33) is now written in the
global co-ordinate format, using Eqs.(2.9) and (2.10)

fap(t) = -_i-lCngDszexp{2k(Z + h)}cos2 {k(Xcosb + Ysinb)-ot} (2.34)

For a vertical cylinder, the global X and Y co-ordinates are constant throughout its
length. So almost all the terms in Eq.(2.34) do not depend on the global Z co-ordinate.
If we again define:

Gup(t) = ilCngDszexp(iZkh) cos’ {k(Xcos® + YsinB)-ot} (2.35)
Eq.(2.34) takes up a simple form:
fip (t) = Gyp (t)exp(2kZ) (2.36)

Eq.(2.36) is very similar to Eq.(2.31) and it is possible to take advantage of this
similarity by replacing 'k' by '2k' in Egs.(2.32) so that the closed-form expressions are
obtained directly without involving integration.

(e +1) - 4L§k4 (€2 -1) - EIT{] @37)

Py(t) = Gup (1) exp(2kZ;) [ T

P, (t) = Gyp () exp(2kZ;) [4L1k3 (e +2) - 8L3k4 (e -1) + é] (2.37b)

kL
P3(1) = Gaup (Dexp(2KZ,)) [— () ¢ Do) + e;—kJ 2370)

4123 413k*
1 2KL 3 2KL e’
P,(t)=G t)exp(2kZ 2e +1) - ——{e -1) - — 2.37d
4 (t) = Gmp (1) exp(2kZ,) [4Lk3( ) 8L2k4( ) a2 (2.37d)

2.5 A GENERAL APPROACH TO COMPLICATED MEMBER
LOADS ON BEAMS

In this section a general way of handling complicated member loads on a beam
element, arbitrarily oriented in space, is discussed. It is not possible to find the closed-
form expressions of equivalent nodal vector in the most general case. But the following
approach may offer a better understanding to the problem.
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The beam element AB in Fig. 2.4 is divided into N equal parts. The equivalent load

vector is found by superimposing the contributions of external loads acting on each
division of the beam.

» X

Fig. 2.4. Global Member Load ij(t) on jth. Division of AB

e

Let us consider the local co-ordinates of the midpoint of the jth. division,

. L 1L . 1, L
= (-D= + == = (j-o)= 2.38
xj=0-Dg * 5§ 3 2)N (2.38a)
y; =0 (2.38b)
z; =0 (2.38¢c)
The corresponding global co-ordinates are:
X, -X)(-3
Xj — Xl + ( 2 1)(] 2) (2.39&)
N
Y, -Y))(j-1
Y, =Y, + (2-%)(-3) (2.39b)
N
Zy-Z,)(j-%
Zj — Zl + ( 2 1)(] 2) (2.390)
N

The next step is to calculate the external load per unit length in the global X, Y and Z
directions. It may be simple to specify the member load per unit length in the global
directions in most cases but the computation is certainly difficult when ocean-wave
forces on an offshore structure are under consideration. In the following section, an
extension of the Morison equation is used to demonstrate the calculation involved to
specify member load in the global directions.
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2.5.1 Wave Forces on an Inclined Member

The formulation for an inclined cylinder [2.3] is based on the so-called independence
principle. It states that the forces on the inclined cylinder can be decomposed into their
normal and tangential components and the tangential component can be neglected.
However, noting that the water particle motion in waves is orbital, the original
Morison equation also neglects the tangential component of force on the vertical
cylinder.

Using vector algebra, at first, the component of horizontal and vertical water particle
velocities is found which is normal to the axis of the cylinder. This normal velocity
component is then divided into three parts along the wave x,, y,,, and z,, directions.

ug, = Up - Cy, (Cyx up+Cy vp) (2.40a)
uy = vy - Cy (Cyx up+Cy vp) (2.40b)
uz, = -Cz (Cx up+Cy vp) (2.40¢)

The acceleration components along x,,, V., and z,, are obtained by differentiating
Eqs.(2.40) with respect to time. The direction cosines in wave co-ordinates are to be
calculated. It is better to find their relationship with the direction cosines in the global
co-ordinates. From Fig. 2.4,

X=X

Cx = L | N (241a)

Cy = %-Y (2.41b)
L

C, = Zszl (2.41¢)

From Figs. 2.2 and 2.3a and with the help of Eq.(2.9) and (2.10):

Cy, = Cxcosd + Cysin® (2.422)
Cy, = Cz (2.42b)
C,, = Cycosd - Cxsin® (2.42¢)

Now the forces per unit length on a randomly oriented cylinder are calculated in the
wave co-ordinate system from the following expressions:

fmx, (t) = CppAuy  + %CDpDuxw \/uiw +uf,w +u§w (2.43a)
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gy, (1) = CmpAily, + 1CppDuy Ju +ul +ul (2.43b)

faz, (1) = CpAt, + 1CppDu, Juy +uj +uj (2.43c)

Finally the hydrodynamic load per unit length in the global X, Y and Z directions can
be found from the following interrelation:

fux () = fow (t)cosb - fyg,  (t)sin® (2.44a2)
fmy () = famx, (1)sin6 + fiyy, (t)cosd (2.44b)
fmz(t) = fiuy, (V) (2.44c¢)

2.5.2 Equivalent Joint Load Vector

In Section 2.5.1, fyr (t), firy (t) and £z (t) are established as an example of member
load components in the global axes system. It may be possible to specify member load
directly or in a relatively easier way in other cases. But in the next step, it will be
necessary to calculate the components of these forces in the local axes system.
Harrison [2.11] has given the relations between two sets of concurrent orthogonal
forces in equilibrium in matrix format. According to this Eulerian method, the force
transformation matrix can be written as:

—cosag cosPg  sinog cosyg —cosag sinPg sinyg  —sinag sinyg —cosag sinfg cosyg
RM]=| —sina cos —COSQLg COSY g — Sinag sin B sin cosag sinag — sinog sin Py cos
E E E COSYE E ESMYE E E E ECOSYg
sinPg —cosPg sinyg —cosPg cosYg
(2.45)

Fig. 2.5. The Rotational Angle g about X Axis

The Eulerian transformation represented by the three rotations o.g,Bg and yg is the
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most convenient way of dealing with the resolution of forces and moments in three
dimensions. In visualising these rotations, one imagines that the global co-ordinate
system has been moved to coincide with the end A of the beam element, AB. The
sequence of rotations of oL about the Z axis, then Bg about the Y axis and finally y¢
about the X axis are what is done to make the global co-ordinate system coincide with
the local system. The final rotation vy is relevant only to members such as that in Fig.
2.5, which otherwise would not be bent about principal axes by the end moments. The
angle v is, in fact, the only one of the three angles needs to be given as an input. The
other angles are evaluated from the element projections. So the coefficients in the
matrix [RM] can be rewritten as:

RM(1,1) = —(—}Sz—ljil) (2.463)

RM(2,1) = @ (2.46b)

RM(3,1) = —(—ZZ—L'-—ZQ (2.46¢)

RM(1,2) = (Y -Yy)cosy | (X5 -Xi)(Z; ~-Z,)siny (2.46d)
L LL,

RM(2,2) = (X5 — Xy ) cosy " (Y2 -Yi1)(Z,-Z,)siny (2.46¢)
L, LL,

RM(3,2) = % (2.46f)

RM(L,3) = (Y, -Y;)siny + (X3 =X1)(Z; —Z;)cosy (2.46g)
L, LL,

RM(2,3) = (X5 —X;)siny + (Y2 -Y1)(Z; - Z,)cosy (2.46h)
L, LL,

RM(3,3) = —L%ﬂ'- (2.46i)

With the help of [RM], it is possible to calculate the components of fx(t), fy(t) and fz(t)
in the local axes. But Eq.(2.45) is actually the relationship between member-end
actions and the external nodal loads. They are rather against each other to keep the
equilibrium at the node. So a negative sign appears in the following equation:

fx(t) fx (1)
f,(t)p = -[RM] 7 { £y (t) (2.47)
£,(t) f7(t)

2-16



In Fig. 2.6, a classic case is considered where a uniformly distributed load, f{(t) of
length c is acting on a beam element of length L, at a distance (=a) from the node A.
The four fixed end reactions can be found from a standard engineering handbook:

Ryt = FOD , Ro®+Rs(0) (2.483)
L L
¢ ¢
R, () PENPLN R4
g | | | | |f(t) .
b
e
L )
R,® R;®
Fig. 2.6. Fixed-end Forces from UDL of Length ¢
_ ()
R,(t) = TL;[CZ(L—Sb)HZabZ] (2.48b)
Ry = f02 | Ry +R,(1) (2.450)
L L
Ry(t) = -f_gg[cz(psa)ﬂm] |  (2.48d)

If member loads per unit length acting at the midpoint of any division are approximated
as uniform load over the division, a reasonable solution can be achieved with the help
of Eqgs.(2.48). The accuracy will depend on the number of divisions and the element
length. Fig. 2.6 describes a two-dimensional case. In the case of a three-dimensional
beam, arbitrarily oriented in space, the law of superposition will be assumed to
formulate the twelve fixed-end reactions. The standard results from Eqs.(2.48) can be
used in both local x-y and x-z planes. Let us use a subscript 'j' to specify the three
member load components in Eq.(2.47), acting at the midpoint of the jth. division of the
beam element. From Eq.(2.38) and Fig. 2.6:

_(NitpL L
N N
The reactions corresponding to the member load component, fyj (t) in the local y

1.L
= (i-3)= b 2.49
2= (- (2.49)
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direction are found by substituting Eq.(2.49) into Eqs.(2.48).
£y, (DN-j+ 1L

Ry (1) =

N2
ij(t)L -1 .1 .
+—=——(1-4(j-hH(N-j+1)}2j-N-1) (2.50a)
4N
£, (D)2

R, (1) = ’1"2N4 (N-3(N-j+1) + 2(N-j+D)?(-1)}  (2.50b)

fy. MG-HL _fyj (HL
N2 4N*

Ry (1) = {1-4(j-DN-j+P}2j-N-1)  (2.50¢)

fyj(t)L2 S . 1 . 112
R, () = - o~ {(N=-3(j-3) + 12(N-j+3)(-2)"} (2.50d)

Similarly the reactions in the local x-z plane can be found after replacing fyj (t) by
fZj (t) in Eqs.(2.50). With some careful attention paid to signs, the twelve fixed-end

reactions can be written as:

E() = -fy, (1), E(2) = -Ry (), EG) = -R, (1) (251a)

E(4) = 0, E(5) = -R, (1), E(6) = -R, () (2.51b)
E(7) = 0, E@8) = -Ry, (1), E(9) = -R, (1) (2510
E(10) = 0, E(1) = -R, (1), E(12) = -R; (1) (251d)

In some cases the member load in the local x direction, ij (t) (tangential component
of forces) is neglected. So E(1) will be zero when ij (t) is ignored. Combining
Eqs.(2.50) and (2.51):

E(1) = -fy, (1) (2.52a)
fy ))(N-j+7)L £ (YL . . .
EQ) = =5 == 4G-HON-j+DICI-N-1) @52b)
f,,(D(N-j+3)L  f, (HL . : .
EQ) = -——— 5 L (1-4G- PN+ PIRI-N-D) 2520)
E(4) = 0 (2.52d)
£, (L2
E(5) = - ;2N4 (N-3(N-j+1) + 12(N-j+1)?(j-1)} (2.52¢)
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fy, (1)1

E(6) = - N {(N-3(N-j+1) + 12(N-j+%)2(j—%)} (2.529)
E(7) = 0 (2.52g)
f, G-HL £y (HL

E@) = - - 2 y;N4 (1-4(j-H(N-j+H}(2j-N-1) (2.52h)
f, ®G-)L £, (1L . . . :
E@9) = -— " 22 4 ;N“ (1-4G-DHN-j+D}2j-N-1) (2520
E(10) = 0 (2.52))

f, ()L iy
E(11) = ;2N4 {N-3(j-3) + 12(N-j+)(-D%} (2.52k)

f, (L _ _ iy
E(12) = I’ZT{N—%J—%) + 12(N-j+(-5)*) (2.52])

Now the force transformation matrix [RM] can be used again to relate the twelve
fixed-end reactions, {E} to the equivalent joint load vectors {W,(t)} and {Wg(t)} in
the global directions and to complete the computation procedure:

(W, (D] (E(1) ]
WL (2) E(2)
W, (3) E(3)
Wi (4) E(4)
W, (5) [RM] | E(5)
JWa(®)| _ [RM]  JE@©) | (2.53)
Wz (1) [RM] E(7)
Ws(2) [RM] E(8)
Ws(3) E(9)
Ws(4) E(10)
Ws(5) E(11)
LWB(6), ~E(12))

2.5.3 Numerical Verifications

Eqgs.(2.52) appear in a complex form but they are suitable for programming purposes.
Small FORTRAN subroutines are developed to check the important equations
presented in Section 2.5.2. The external forces and the fixed-end reactions should
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maintain the equilibrium at the nodes. So arbitrary values are assigned to the member
load components and the equilibrium condition is verified.

The general step-by-step procedure in Section 2.5.2 is further verified by considering
few classic cases where the reaction forces can be found from a standard engineering
handbook. One of them is described below.

T
f(t)L EO ™\ tor®
1 Y2

Ef(t)l' —2—0—f(t)L

77777

»

Fig. 2.7a. Fixed-end Forces for a Standard Triangular Loading

F.(®
J

Fig. 2.7b. The Approximated Load Case

The hydrostatic loading is a typical example of triangularly distributed load on
members. The 'exact' reaction forces and moments are shown in Fig. 2.7a. The beam is
divided into 10 segments and the member load per unit length acting at the midpoint of
each division is approximated as uniform load over the division. Fig. 2.7b shows the
approximated load case. The fixed-end reactions are found by superimposing the
contributions of external loads acting on each division of the beam. The values are
shown in Table 2.1 where L = 30 units and f{t) = 20 units. The approximation is
reasonable since the calculated values are very close to the 'exact' values in an ideal
situation.
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Table 2.1. The Contributions from Each Division of the Beam

Division No. |  Fy, E(2) E(6) E(8) E(12)
1 -1 2.9715 3.9225 0.0285 -0.2775
2 -3 8.4375 28.9125 0.5625 -5.2875
3 -5 12.6375 62.8125 2.3625 -21.1875
4 -7 15.0675 92.6625 5.9325 -50.1375
5 9 15.5115 109.822 11.4885 -89.9775
6 -11 14.0415 109.973 18.9585 -134.227
7 -13 11.0175 93.1125 27.9825 -172.087
8 -15 7.0875 63.5625 37.9125 -188.438
9 -17 3.1875 29.9625 47.8125 -163.837
10 -19 0.5415 5.2725 56.4585 -74.5275
Total - 90.501 600.015 209.499 -899.985
Theory - 90 600 210 -900

2.6 ENVIRONMENTAL FACTORS COMMON TO RBRA AND
DCATLP

Previous sections have illustrated the equivalent load calculations strategy. With that
background, other components of the environmental loading will be discussed in the
following sections. It should be noted that RBRA does not include anything beyond
the Morison equation based wave forces. Therefore, it is necessary to distinguish
clearly the external loading factors required in RBRA and DCATLP. Section 2.7 will
discuss other environmental forces applicable to DCATLP only.

2.6.1 Acceleration Force and Added Mass Coefficients

In general the inertia and drag coefficients are determined experimentally. Several
published literature are available with experimental values of these coefficients but the
scatter in the results can make an appropriate selection quite difficult. The inertia
coefficients are not required as input when the analytical diffraction solution (i.e.
MacCamy-Fuchs theory) is used to calculate the inertia part of the wave force. This is
one significant advantage of using the MacCamy and Fuchs' solution. But still added
mass coeflicients for columns, pontoons and tethers are required to generate the global
mass matrix of the structure in DCATLP. DCATLP forms the global physical mass
matrix from consistent element mass matrices and the added masses are then lumped
onto the leading diagonal of the global physical mass matrix. However, RBRA forms
the global mass matrix of (6x6) size by adding the physical and added mass matrices
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and the calculation is relatively simple. But RBRA also requires the added mass
coefficients.

At the simplest level C, for columns can be taken as 1.0 but Taylor and Jefferys [2.30]
provide more information in this respect from an axisymmetric finite element solution
used by one of the participants in the ISSC case study. The added mass coefficient will
be less than 1.0 because of three dimensional flow effects past the bottom of the
columns. The finite element solution [2.30] suggests a value of 0.875. So for analysing
the ISSC TLP C, is taken as 0.875 although the interference effects among columns
and pontoons cannot be included. When in line with the structure motion, the pontoon
in-between fore and aft columns would tend to reduce the added mass value calculated
by considering columns in isolation. But the pontoons perpendicular to the motion
would probably increase the estimate but this compensating effect is likely to be small.

It is difficult to select C, for the equivalent tether in each corner. An equivalent tether
ideally should account for the interference effects in the tether group it represents.
Etok and Kirk [2.10] have described a tensioned riser model (diameter = 0.66 m) of a
TLP for dynamic analysis with C, =1.0. For equivalent tethers the same value is

assumed in this study.

Taylor and Jefferys [2.30] have estimated the horizontal and vertical added mass
coefficients for rectangular pontoons from Sarpkaya and Isaacson [2.25]. TLP Rule
Case Committee [2.8] have recommended added mass coefficients for various cross-
sectional shapes in the absence of any experimental data. But C, values in these
references are based on two dimensional flow. DnV [2.9] includes two modification
factors for the corner radius and finite length of the rectangular member:

A 2 TR S (2.54)
e b, )T 1, 11)? '

The coefficient « is to be found from a table and interpolations may be necessary. It is
interesting to note that C, is not defined with respect to any reference cross-sectional

area of a circular cylinder. The added mass of the rectangular member in question can
be simply found as the product of C, in Eq.(2.54) and the enclosed volume of the
member. The values of C, for the ISSC TLP pontoons are given below from different

references:
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Table 2.2. Added Mass Coefficients for the ISSC TLP Pontoons

C, TLP RCC [2.8] DnV [2.9] Ref. [2.24], [2.30]
Horizontal 1.5944 1.5586 1.57
Vertical 0.9081 0.8976 0.91

C, from DnV are less because k; in Eq.(2.54) includes three dimensional flow effects.

For DCATLP and RBRA, input is given based on the DnV formula. Added mass along
the pontoon length is ignored.

2.6.2 Heave Added Mass of Columns

There is no simple formula for the heave added mass of TLP columns which works
reasonably well in the wave frequency range. The heave added mass for columns
cannot be ignored although the predominant contribution is usually from the pontoons.
The heave added mass of a cylinder can be approximated from that of a disk with the
same diameter as the cylinder in question.

4
Moy = SPT° (2.55)

The added mass of the cylinder is half of that for a thin circular disk because only the
cylinder bottom is under water. But Eq.(2.55) does not take into account the aspect
ratio of the cylinder. The effect of aspect ratio is significant and should be considered.
Miller [2.18] gave allowance for the aspect ratio and the 3-D flow around the cylinder.
In his method the cylinder is divided into strips lengthwise and added mass of all these
rectangular strips are calculated. The method, strictly speaking, requires the added
mass coefficients to be known for each rectangular strip but the average value of the
aspect ratio of the strips can provide reasonable solution.

Mean aspect ratio = AN (2.56a)
2d;
M,,, = %pnr3kakﬁ, ky = % (2.56b)

Eq.(2.56) follows from Ref[2.18]. k. takes the effect of three dimensionality into
account and depends on the mean value in Eq.(2.56a). As the draft decreases k

approaches 1. DCATLP and RBRA use Eq.(2.56b) to calculate the vertical
acceleration force acting on the platform.

2.6.3 Froude-Krylov Force on TLP Pontoons
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Chakrabarti [2.5] has described a method for deriving the total force accounting for the
fluid flow around the structure from the Froude-Krylov theory. The force on the
structure in a particular direction is obtained by integrating the component of dynamic
pressure in that direction over the submerged portion of the structure. Some
coefficients are then used as multipliers to get the total force. These coefficients do not
come from the Froude-Krylov theory and limit the applicability of this method in
general. In this work, these coefficients are ignored because we are interested in
calculating the dynamic pressure force only, not the total wave force acting on the
pontoons from this method. The bright side of this method is in the closed-form
expressions for dynamic pressure forces on a few submerged basic structures of
symmetry which are obtained using the linear wave theory.

The water particle acceleration varies along the length of TLP pontoons depending on
their orientation with wave direction. To apply the closed-form equations for Froude-
Krylov Force, it is necessary to divide the pontoons into a number of segments so that
the value of water particle acceleration can be assumed as constant over each segment.
If a pontoon is divided into 'n' segments:

inh(kd, /2) sin(kb, /2
Fr = Lol S (kdp/2) sin(bp2) (2.57)
n (kdp/2)  (kby/2)
Similarly, the total vertical force acting on the rectangular segment is given by:
inh(kd, /2) sin(kb, /2
Fy = Lphbyd, S0y /2) sin(kby 12) 2.57b)
n =77 (kdy/2)  (kb,/2) ,

2.6.4 Dynamic Pressure and Buoyancy

A TLP works under excess buoyancy to keep its tethers under tension. In a typical
TLP configuration columns may contribute 70% of the total displacement [2.13]. The
dynamic buoyancy force from columns is very important. The linear wave theory is
used throughout this study for estimating different components of environmental
loading. The dynamic buoyancy from the columns are calculated by multiplying the
area at the column base with the dynamic pressure at that level. The subsurface
dynamic pressure is:

1
pa = pgds + Eng exp(-kdy) cos(kxy, —ot) (2.58)

If d; is taken up to the undisturbed instantaneous water level, the linear wave theory is
violated. In this work, d; is defined up to the still water level only. But it should be

noted that this draft with respect to SWL increases when a TLP moves away from its
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upright position because of the set-down effect. Although it is not possible to go up to
the instantaneous free surface, DCATLP does consider the variation in d; with time.

t+at

Fig. 2.8. Change in Draft due to Set-down

The added mass of TLP columns would change due to the variation in d;. DCATLP

takes into account the variation in added mass of the platform and the change in
dynamic pressure with time.

As indicated earlier, RBRA cannot consider these added mass and draft variations like
DCATLP. It is worth noting that DCATLP does not have any direct input regarding
tension in the tethers. It calculates tether tension as a difference between variable
buoyancy and platform weight. Therefore, the static term, pgds in Eq.(2.58) is
important for DCATLP. However, RBRA does not include pgd; while computing
dynamic pressure because initial pretension in tethers is one of its direct input. This
topic is discussed in detail in Chapter 3.

2.6.5 Drag coefficients

Drag coefficients depend on Reynolds' number, Keulegan-Carpenter number and
surface roughness of the object. The recommended graphs for selecting Cp

coefficients for circular cylinders in [2.8] and [2.9] are more or less similar. TLP RCC
has suggested a proper upward adjustment of Cy, to account for the surface roughness

resulting from marine growth, fouling and other factors expected to occur during the
life of the platform. For calculating drag coefficients for columns and tethers
corresponding Reynolds numbers are to be estimated. For demonstration purpose the
amplitude of horizontal water particle velocity is calculated at the middle of the
submerged portion of columns and tethers.

upa = " exp(kyw) (2.59)

The Reynolds' number in a wave-current field is often defined as:
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(upe +Vc)D
\Y

R, = (2.60)

For the ISSC TLP, R, at the middle of columns and tethers is 45.382E6 and 8.9ES
respectively. According to Eq.(2.60) there would be a variation in R, over the length
of the tethers. But Cy, chosen here for both columns and tethers is 0.7 which includes
an upward adjustment [2.8].

For rectangular pontoons Cp, is calculated from the empirical formulae given in Ref.
[2.9]. The skin friction along the length is ignored.

Cp along the length = 0.0
Cp in the transverse direction = 2.0 for pontoons (2.61)
Cp in the vertical direction = 1.7143

2.7 OTHER ENVIRONMENTAL FORCES FOR DCATLP ONLY

This section describes other environmental forces that can be accounted for while
performing a dynamic analysis with DCATLP. The principle followed in this study is to
utilise analytical closed-form solutions as far as possible to enhance the computational
efficiency. The time domain algorithm and structural matrices involved in DCATLP are
not straight-forward and demand high speed computational capabilities. So the loading
side is kept relatively simple but sufficient.

271 Wind

TLP RCC [2.8], API RP 2T [2.1] and DnV [2.9] suggest different formulae for
calculating wind velocity as a function of height above the SWL. The formulae are
based on an average wind velocity at the international reference height of 10 m. The
wind force relationship given in API RP 2T [2.1] takes into account the variable nature
of the wind field and the wind-structure interaction. In the present analysis API RP 2T
is followed for calculating the instantaneous wind force. The total wind speed can be
written as a summation of a sustained component and a gust component:

Veat = Vams + Vomg (2.62)

The empirical power law formula can be used to find wind velocity at heights other
than the international reference height:

1/n

V wn
2w = | Zwm (2.63)
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For numerical demonstration in Chapter 4, one hour average wind velocity at the
reference height (i.e. 10 m) above the SWL is taken as 30 m/s. The gust component
is ignored in the calculation because adequate site data is required to define this time
varying function. The instantaneous wind force on each member of the TLP above the
water line is calculated from the following equation [2.1]:

1
Fan(t) = EpaCsAp Vims + ang - usl(ans + ang - us) (2.64)

The shape coefficients taken are 0.5 and 1.0 for TLP columns and deck respectively.
The exposed area of the deck structure has been estimated from the Hutton TLP
configuration. The wind force on the deck structure would have a point of action
above the deck elements shown in Fig. 2.9(a).

Fom v
- [ .
X (@
Deck grillage
}: dg >I
Fen® Zpwn
2dq
Y
Fom® Zpwm
Fwn X 2dcl
F, .z ®)
Zwn® PWRi Deck grillage
2dcl
e dq >
I Fwnl ZPW
2d,
Fig. 2.9. Equivalent Wind Force on Deck

This complication can be solved by resolving the wind force into an equivalent force at
the deck level and two adjusting couples taking care of the difference in height, zpyy,.
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The deck grillage is not shown in Fig. 2.9. The figure considers a specific case where
the wind velocity is along the global X axis. In more general case the couples in Fig.
2.9(b) would have a contribution from the Y-component of F,, (t). For wind force on
columns, the column beam elements are considered individually. The wind force is
assumed to be uniformly distributed along each element although force magnitude per
element would be different depending on the height of interest above SWL.

2.7.2 Current

Three alternative forms of the modified Morison equation have been discussed in
Section 2.4. If we consider one of those alternatives, Eq.(2.26), it would be further
modified in the presence of current:

fvp(t) + fyp(t) = CmpAﬁp - CapAug
+ $CppDlu, * V; - ug|(u, £V, -uy) (2.65)

For TLP columns, the MacCamy-Fuchs analytical diffraction solution is used in
DCATLP and for tethers the drag force is only of interest. So it is necessary to
separate the inertia and drag components from Eq.(2.65). Hence, the drag force in the
presence of waves and current is:

fup(t) = $CppDlu, %V -ug|(up + V; -uy) (2.66)

fup (t) in Eq.(2.66) is also known as wave-current-motion interaction force. It is only
possible to evaluate Eq.(2.66) directly in time domain. Several simplifications are
required to transform Eq.(2.66) to a suitable form when calculations are done in
frequency domain. But it is difficult to supply an appropriate value of Cp, in Eq.(2.66).
The test results in the presence of waves and current and specially in case of floating
structures are almost non-existent. Considerable research is required to achieve insight
into this most complex problem [2.5]. The force and structural displacements depend
on the water particle kinematics as well as the velocity and acceleration of the structure
itself. In numerical demonstrations in Chapter 4, "standard" drag coefficients are
chosen for the absence of proper data and the effects are discussed.
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2.7.2.1 Current profile

The current profile shown in Fig. 2.10 is used in Chapter 4 to model the current field.

Normalised depth
1.00 ——
Current | N. depth

0.75}
130 1.00
0385 095
0.85 090
0.85 0.80 0.50}
0.85 0.50
061 0.05
0.54 0.02
0.49 0.01 0.25¢

0.0 0.5 1.0 1.5
Current (m/s)

Fig. 2.10. Department of Energy (1990) Recommended Current Profile

2.7.3 Free Surface Boundary Condition

The basic assumption of the linear wave theory is that waves are of an infinitesimal
amplitude, in which case linear homogeneous boundary conditions apply, both on the
mean free surface and at the mean position of the platform. Employing the exact free
surface boundary condition is still regrettably far from state-of-the-art within numerical
hydrodynamics [2.22] and presently non-linearities are accounted for by a perturbation
expansion in the velocity potential where the wave amplitude or the wave steepness
usually plays the role of the perturbation parameter, and where the expansion is carried
out only to second-order. This extension of linear theory has profound consequences in
the occurrence of sum and difference frequency terms in bi-chromatic waves.
DCATLP at present is not capable of dealing with these complex issues in numerical
hydrodynamics. Some closed-form expressions (discussed later) are used to estimate
these second-order effects.
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2.7.4 Drift Forces

2.7.4.1 Wave drift

A TLP may experience another type of set-down effect. Because of the relatively large
excursion of a TLP in surge and sway, the calculation of wave forces at its mean
equilibrium position for the dynamic analysis, irrespective of its position during a wave
cycle may be questioned. The results of calculating wave forces at a displaced position
introduces a steady offset in the solution for both deterministic and stochastic wave
fields [2.27]. DCATLP considers this complaint characteristics of TLPs. The external
loading at the immediate future (t+At) time station is determined with a set of
assumed values of TLP responses. The next cycle of iteration starts with the computed
values of responses in the previous iteration cycle so that the structure and the external
forces together 'decide’ the dynamic equilibrium position.

2.7.4.2 Steady viscous drift

There are two areas that may produce a non-zero mean viscous drift force. When
current is present along with waves a mean drift force is generated from the drag force
at any elevation of the cylinder. Several researchers [2.6], [2.4], [2.16] have developed
different expressions for this steady drift force due to viscous flow. The following
relations are from Ref. [2.6]:

- 2
Vv,
T——fL—T = % l+ &— for | C‘Zl (2673)
jpDCDupa 2 Upa Upa
f; 1]V, ’
—2 - = © | (2w —n) + 4 = |siny,
2PDCpup, T |\ YUpa pa
V,
+ (\uc —£+lsin 2\;/0)} for M< (2.67b)
2 2 Up,
where
-1 Vc
Yo =cos | ——| 0Ly . <m (2.67¢)
Upa

But Eq.(2.67) is not required here because DCATLP calculates wave-current-motion
interaction force. Eq. (2.67) is important when the analysis is done in frequency
domain. But the relative velocity model including current in time domain is a better
solution for calculating viscous drift because it accounts for the variation within a wave
cycle and it includes the structural motion.
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The computation of first order effects is limited up to the still water level. Effects of
current are usually present up to SWL. But there will be a mean drift at SWL from the
changing free surface of waves. The linear wave theory is applicable for infinitesimal
wave amplitudes and is valid up to SWL. It is not theoretically possible to use the
expressions for water particle kinematics from the linear wave theory up to the free
surface of a finite wave. Chakrabarti [2.7] recommended the form of velocity and
(hence acceleration) which includes the free surface as:

gkH coshk(y,, +d)
20 coshk(d+mn)

u, = cos(kx,, —ot) (2.68)
Wheeler [2.31] has suggested 'stretching' formulae in finite water depth where the
water particle kinematics are slightly different from Eq.(2.68). But water particle
velocities have the same value at the wave crest and trough as in Eq.(2.68).

o = gkH coshk(y,, +d)(d/(d+mn))
P 20 coshkd

Chakrabarti [2.6] has utilised Eq.(2.69) to find the mean force from the free surface
effect acting on a fixed vertical cylinder:

T 3
pgCpD/k 12 [sinh2kd 2kd

cos(kx,, —ot) (2.69)

The mean force is a function of the cube of wave height as opposed to the square of it
for potential drift force. The integration has been carried out over the entire submerged
length of the cylinder in Eq.(2.70) but it is important to note that the mean force is
only due to the free surface variation. In the absence of free surface (i.é. without wave
elevation) the integration would produce a zero mean. Eq.(2.70) is used in DCATLP
to calculate viscous drift due to free surface effects at the still water level. Please note
that the linear wave theory is used throughout this study with only one exception here
(i.e. Eq.(2.69) ). The author did not follow any 'stretching' formulae for calculating
other forces for their mathematically unpleasant feature. They no longer satisfy the
Laplace equation unless the term (d + ) is treated as a constant in the differentiation
of the velocity potential with respect to other variables.

Standing et al [2.28] have given a similar expression for the mean free surface force in
of deep water case:
B _ (kHY
pgCpD/ k? 127

@2.71)

However, the mean free surface force in Eq.(2.70) approaches zero as the water depth
approaches infinity.
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2.7.4.3 Steady potential drift

The first step in arriving at the slowly varying or steady drift is to compute the second
order force in regular waves. The second order forces are obtained from the first and
second order velocity potentials and the complete Bernoulli's equation. However, if the
structure is allowed to move additional terms arise if the instantaneous position of the
structure is taken into account. The final expression for second order force reduces to
main five integrals and the steady drift force is obtained by averaging these integrals
over a complete cycle of a regular wave. One of the five integrals [2.23] has a zero
mean and does not contribute to the steady drift force. The other four components are:

I)  Wave elevation drift force:- The contribution of first order relative wave
elevation is usually larger than the other components. For a floating hemisphere [2.23]
this one was about twice that of the total force having the same sign.

II)  Velocity head drift force:- This is the contribution of the square of the first
order velocity vector. For the hemisphere its magnitude was around the same as the
total force but the direction was opposite.

III)  Body motion drift force - The contribution of the product of the first order
pressure gradient and first order motion amplitude is less important than the first two
drift components. Body motion drift is zero when the structure is fixed.

IV)  Rotational inertia drift force - It comes from the contribution of the vector
product of first order motion and inertia force. This one is also less important and zero
when the structure is fixed.

For a fixed vertical cylinder the first two drift components (i.e. I and II) can be
obtained in a closed form [2.6], [2.17]. The derivation uses the total first order
pressure including diffraction effects from the MacCamy-Fuchs theory. One of the
main assumptions in formulating the closed-form equation for the wave elevation drift
force is the hydrostatic decay of pressure from SWL to the free surface. The velocity
head drift force is calculated from the pressure due to the velocity squared term in the
Bernoulli's equation. In deep water case, the total of velocity head and wave elevation

drift has the following form:
— — 2
+ d +
F21 2F22 — - 1 ; Z |:1 _ n(n 21):| 1 (2723)
ng r n (kr) n=0 (kr) AnAn+1
where
A, = T (kr) + Y2 (kr) (2.72b)

For large kr (>5.0) the asymptotic value given by Havelock [2.12] is:
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By +EFy _ 1

— 2.73
pgHt 6 @7)
while for small kr (<0.5) Standing et al [2.28] have given:
=
Bitln o 2y 2.74)
pgH’r 3

2.7.4.4 Slowly varying wave drift and springing

Today it is widely appreciated that both low and high frequency responses will occur
due to non-linear additions in the wave loading spectrum. And even though the relative
magnitude of this resonant excitation is small, compared to first order wave frequency
excitation, the corresponding damping levels are also small, leading to considerable
dynamic amplification. For practical TLP design, high and low frequency resonant
responses are both significant and must therefore be taken into account. The high
frequency tension oscillation of the tethers is often called springing.

The slow oscillation is generated in two ways. If the structure is subjected to seiche or
groundswell (of periods of the order of 25 to 120 seconds) the surge response is
greatly magnified because of the low damping at the natural period in surge. Such long
period wave of small amplitude and seiches may occur in nature. The low frequency
forces on the structure also appear due to the difference in the neighbouring
frequencies in the random ocean waves. The first step in high and low frequency
response calculation is to compute the second order forces from the first and second
order velocity potentials and the complete Bernoulli's equation. Assuming two
frequency components, ®; and ® j present in the random wave, the total non-linear

force arising from these frequencies having corresponding wave amplitudes of m,; and
Maj is obtained as:

F'jt(t) annaj[P COS (Dj)t_(siisj)}
i= 1 j=1

+ QlJ sm{(m to; ) (6 15, )}] (2.75)

where T’-,Ji and Gui are the even and odd components of second order forces due to
frequency components ®; and ® ;. The bar indicates that these force components are
normalised by the component wave amplitudes, n,; and M. The number of wave

components in the random wave simulation is 'n'. The negative exponent refers to the
drift force while the positive exponent gives the high frequency springing force. It is
clear that in regular waves:
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F(t) = 0 (2.763)
F(t) = nﬁi{ﬁg cos2(0;t-8;) + Qj sin 2(mit—8i)} (2.76b)

So the low or difference frequency force is absent in regular waves but there is a
constant or mean drift force as discussed earlier. The high or sum frequency force in
regular waves appears at twice the regular wave frequency. The amplitude and phase
of the Quadratic Transfer Function (QTF) with respect to the exciting force are:

v - [ +@)] @7
6ii = -tan'l (;:1;) (277b)

Eqs.(2.76) may appear to be simple but it should be noted that it refers to the QTF in
regular waves only. In practice, QTFs tend to vary fast both with respect to heading
angle and frequency, increasing the computational burden enormously [2.22]. The
calculation involves a 4-dimensional (bi-directional and bi-frequency) matrix of
coefficients. At present QTFs are computed by a few specialised research institutions
rather than by the offshore engineering industry since most of the available software
require specialist knowledge of the codes both to model the structure adequately and
to assess the results for accuracy. Such computer codes require a much finer panel
mesh than a normal wave frequency analysis. Further, a fine panel mesh on the free
surface in the area around the surface piercing part of the TLP is also required to
evaluate the free surface integral. The QTF computations based on panel models are
extremely computationally intensive [2.22].

At present in DCATLP high frequency force is neglected and low frequency force does
not arise because the calculations are done in regular waves. But the analysis can be
extended to account for irregular waves as discussed in more detail in Chapter 4. The
high and low frequency forces can be neglected except close to resonance where due
to low system damping they may contribute substantially to the overall response. A
simplified method [2.5] for calculating the difference frequency force is to consider
those frequencies only which are close to the natural frequencies of the system. The
simplified expression is:

F; (t) = F; cosot (2.78)

where ®, = ®; —®;. Since ®; and ®; are close to each other, F, can be approx-

imated from the steady drift force in regular waves at a frequency that is mean of the
two frequencies @; and o ; whose difference produces the natural frequency, @ .
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2.7.5 Second Order Wave Correction Forces

At present the environmental loading module in DCATLP does calculations based on
regular waves only. So slowly varying drift forces and high frequency springing forces
are not included in the analysis. It is perhaps necessary to estimate the higher order
forces left out. Incecik [2.14] has proposed a closed-form expression based on Ref.
[2.15] which estimates second order dynamic, waterline and correction force for
disturbance due to a vertical cylinder in regular waves. This time varying second order
force appears at twice the regular wave frequency:

F, = —pgrbkr?| 2- ~(1- &2 kin(lox,, — ot)cos(kx, —ot)  (2.79)

At present DCATLP uses this closed-form equation to add second order corrections in
the environmental loading.

2.7.6 Tidal Variations

The water level changes due to the atmospheric tide, astronomical tide and storm
surge. The change because of astronomical tide is usually treated independently from
the occurrence of storm [2.26]. In the numerical demonstration in Chapter 4, the tidal
variations are neglected. But there is no difficulty in including them in the analysis. If
they are required the initial operating draft should be calculated and given as input to
DCATLP. When the analysis starts in time domain all other factors such as tension
variation in tethers, set-down effects would change accordingly with the initial
operating draft.

2.8 CONCLUSIONS

The author has tried to combine some existing computational methods and techniques
of structural mechanics to simplify the task of transferring complicated member loads
to the corresponding nodes of beam elements. In the process, some closed-form
expressions are formulated which can be very helpful to anyone who does not want to
get into the complexity of the interaction of waves with the structure. There is an
added advantage. The closed-form expressions are analytically integrated and
simplified. So there is no need for any numerical integration which is always
computationally expensive. There will be no subdivision of the element. So the
expressions will considerably decrease the computer run time and storage
requirements.

In the case of a beam, arbitrarily oriented in space, the full integration can only be
carried out numerically. The computation procedure proposed here, will achieve a
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reasonable solution depending on the number of divisions and the element length. The

procedure can also deal with any other form of member loads in addition to forces

from ocean waves. In fact, it can be easily programmed and stored as a separate

module which will be utilised later by the actual analysis.

This chapter also provides a background of RBRA and DCATLP discussed later.
Small Fortran subroutines have been developed based on the equations presented here.
They will find their applications in one of the modules in RBRA and/or in DCATLP.
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CHAPTER 3

RIGID BODY
RESPONSE



3.1 INTRODUCTION

In reality a TLP is a continuous system with an infinite number of degrees of freedom
and consequently, an infinite number of free vibration modes and frequencies. But as a
starting point for research, the consideration of the platform as a rigid body with six
degrees of freedom is often more convenient and useful for the researcher to realise the
general characteristics and motion behaviour of the structure.

This chapter describes in brief the theoretical background behind developing a program
RBRA (Rigid Body Response Analysis). This Morison equation based Fortran
program originated from the initial phase of the author’s work and quite simplified in
nature. There were three important reasons behind the author’s involvement in writing
RBRA. First of all, he was interested in understanding the basic characteristics of TLPs
through numerical calculations. Ref. [3.2] is an ideal example where simple hand
calculations are demonstrated to illustrate the dynamic behaviour of a TLP. In fact, a
number of results from RBRA have been checked by hand calculations and
Mathematica [3.11]. Secondly, there are rigid body response results available from
various sources [3.8], [3.9] on the ISSC TLP which is selected here as a demonstration
model. It was of interest to compare those results with the output from a simple and
straight-forward program such as RBRA. Thirdly, a program was required in a
different research work with TLPs and multi-variate environmental modelling [3.7] for
calculating force and response transfer functions quickly and efficiently. RBRA was
tailored to meet that requirement.

3.2 BASIC ASSUMPTIONS

There are a number of assumptions behind the Morison equation based formulation
used in RBRA to calculate motions in all six degrees of freedom. They are stated
below:

1) The cylindrical columns and rectangular pontoons are assumed to have
small ratios of cross-sectional dimension to length. These dimensions are
assumed small when compared to incident wavelengths.

2) The motion amplitudes of the platform and waves are assumed to be
small.

3) Wave forces on individual elements of the structure are computed as
though other members were not present. In other words, hydrodynamic
interference between members is ignored.

4) The forces associated with sinusoidal wave motions are computed

3-1



independently of the forces involving absolute motions of the structure.

5)  The non-linear drag damping term is linearised by assuming an effective
linear damping which would dissipate the same energy at resonance as the
non-linear damping. The contribution of wave radiation effects to the
damping terms is assumed to be negligibly small.

There are programs available [3.8] based on the diffraction analysis which can account
for member interactions with incident waves and interaction due to adjacent members.
Conversely, they do not consider drag forces or non-linear damping effects unless a
hybrid computing model is used. Whatever might be the calculation technique, there
are a few common steps involved in a conventional TLP motion response analysis:

CALCULATION OF ( summaTio oF |
PANEL MODEL OR FORCES, POTENTIALS, CONTRIBUTIONS
BEAM MODEL HYDRODYNAMIC FROM INDIVIDUAL
OF TLP COEFFICIENTS | MEMBERS

SOLUTION OF RIGID BODY

6 DYNAMIC MODEL WITH
EQUATIONS 6 DOF

Fig. 3.1. Conventional Motion Response Analysis of TLPs

3.3 DYNAMIC EQUATION OF MOTION

The dynamic equation of rigid body motions in six degrees of freedom for a TLP can
be written as:

([Mep]+Ma (%} + BN X + (Ka]+[KaD (X} = {E} @D

The subscript ‘r’ is used to distinguish rigid body matrices from those used later in
Chapter 4 to consider structural deformations. Eq.(3.1) is actually simplified by
considering the relatively large magnitude of inertia force and the decay of wave
particle velocities with water depth, which makes the drag damping term small for
members with significant submergence below still water level [3.5].

Ref. [3.5] was quite helpful in the development of RBRA. In RBRA, the formulations



for the coefficients in the matrices on the left hand side of Eq.(3.1) are taken from Ref.
[3.5]. In fact, Patel et al [3.6] were involved in implementing all these matrices in a
motion response program called UCLRIG.

3.3.1 Physical Mass Matrix

; ™M, 0 0 0 0 O]
f o M\ 0 0 0 O
Mg = g g 1\(Af I0 IO IO 32
XX Xy XZ
0 0 0 Iy I, Iy
(0 0 0 I, Iy I |

In RBRA it is not necessary to select the origin of the structural reference axes system
at the centre of gravity of the structure. However, if the reference axes chosen are

principal axes, the physical mass matrix becomes diagonal because the product of
inertia terms (i.e. Iy, Iy, and Iy, ) would be zero.

3.3.2 Added Mass Matrix

The added mass matrix, [M, ] is a symmetric matrix. For calculating its coefficients,

the TLP is assumed to be a collection of circular cylinders and rectangular pontoons
and the hydrodynamic interference between members is ignored. Hence, the added
mass for each TLP member is evaluated separately. The main assumption in the added
mass calculation is that only the acceleration component perpendicular to the
longitudinal axis of a TLP member will have a significant added mass force. A
generalised added mass matrix for a circular cylinder can be readily evaluated [3.5]
when the cylinder end co-ordinates, diameter and applicable normal flow added mass
coefficients are known. The added mass coefficients for the ISSC TLP have been
discussed in Chapter 2.

3.3.3 Damping Matrix

The rigid body damping matrix [B,] for the structure is also evaluated as a sum of the
contribution from each individual member. The main assumption is also the same as in
the case of evaluating the rigid body added mass matrix. Only drag forces normal to
the member longitudinal axis are assumed to be significant. But, unlike the added mass
matrix, the non-linear velocity square proportionality generates an asymmetric damping
matrix. As mentioned before, the matrix components are taken from Ref. [3.5].
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3.3.4 Hydrostatic Stiffness Matrix

Contributions to the hydrostatic stiffness matrix [K;, ] will only arise in the heave, roll

and pitch degrees of freedom due to the buoyancy forces in the water plane cutting
members of the hull. If, for member number, n, A, denotes the water plane area and
Xwes Ywe are the co-ordinates of that water plane area centroid, then the hydrostatic

stiffness elements can be written as the following summations:

Kn(3,3) = pg) Aun (3.32)
Kn(4,3) = pgY YwcAwn (3.3b)
Kn(5.3) = -pgD) XwcAwn (3.3¢)

Kn(54) = pgD AunXucYwe (3.3d)

K. (4,4) = pAGMp (3.3¢)

K4 (5,5 = pAGMRr (3.30)

where A is the vessel displacement and GMR, GMp are meta-centric heights in roll
and pitch respectively. All other stiffness terms in the matrix [K 4 ] are zero.

3.3.5 Tether Stiffness Matrix

The symmetric tether stiffness matrix is taken from Ref. [3.5]. The derivation assumes
that each tether is weightless and perfectly elastic with a known tension and elastic
stiffness. The tether being weightless is assumed to lie along a straight line joining the
two co-ordinates. The platform is presumed to move through small displacements
relative to the tether lengths involved. The tether stiffness in each corner is assumed to
be equal and the vertical stiffness of combined tethers is given by their sum. The 'set
down' effect is also ignored.

The formulation of [K] is simple and straight-forward. But the simple assumptions

might be questionable depending on water depths and platform configurations.
Different spring stiffnesses associated with the tethers are discussed in detail in Chapter
4. It is worth noting in this context that program DCATLP treats the tethers in a
completely different way in order to explore the complicated nature of tether dynamics.

3.4 WAVE FORCE VECTOR
{Fr} in Eq.(3.1) is the right hand side column vector of 6 x 1 dimension. The methods

of calculating equivalent loads at nodes of a TLP member have been discussed in
Chapter 2. RBRA only considers the Morison equation based wave forces. The inertia
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and drag force calculations are briefly described in Section 2.4. Wave forces on each
TLP member are found by using the techniques presented in Chapter 2. These forces
are then summed to obtain the total member wave force. Taking moments of these
elemental forces about a geometrically convenient point on the member, the point of
action of the total member wave force is found. In the next step, member wave forces
are summed in three global directions. In other words, the total surge, sway and heave
forces are evaluated by summing the horizontal, transverse and vertical member wave
forces respectively. These three forces in three global directions are the first three
coefficients in the wave force vector {Fr} The position and direction of action of a

member wave force plays an important role in calculating the next three coefficients in
{F.}. The total roll, pitch and yaw moments are found by taking moments of these

member wave forces about the centre of gravity of the structure.

3.5 SOLUTION OF THE EQUATION OF MOTION

Although the coefficient matrices in the equation of motion are programmed according
to Patel, et al [3.5] but the solution procedure in RBRA is different from them. They
[3.5] have used an iterative technique to account for the non-linear damping term. The
first approximate diagonal linear damping matrix in their analysis was obtained by
ignoring all non-diagonal terms in the total mass and stiffness matrices and assuming
damping of 10% of critical. The equation of motion was then solved with the
approximate damping values to obtain a better approximation for the displacement
vector, {X, }. They have found that the iteration is only significant in the vicinity of

resonant frequencies.

The solution method in RBRA is not extra-ordinary but the author would like to point
out that it does not come from any published literature. It is also an iterative technique
since it is difficult to avoid iterations because of the non-linear drag damping term.

3.5.1 Wave Forces

As indicated before, the wave forces are computed independently of the forces
involving structural motions. The wave force vector {Fr} consists of six terms - three

forces and three moments. First of all, it is necessary to linearise wave forces.
Secondly, it is essential to find the linearised amplitudes of all six terms in {F, } (for a
given wave direction) for calculating force and response RAOs. In order to do that the
wave forces on the structure are calculated for a few wave cycles. Then six different
sinusoidal curves are fitted to wave force data (one curve each for surge, sway, heave

force and roll, pitch, yaw moment) and the amplitudes of these sinusoidal curves are
taken as the linearised wave force amplitudes, {F,, }. This process depends on wave
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height, period and direction. If any one of these three factors is changed, the process
must be repeated to find the new linearised wave force amplitudes. It should be noted
that the sinusoidal curves are very close to the actual curves plotted by joining wave
force data because the non-linear drag contribution is small. The curve fitting is tested
and verified with the help of Mathematica [3.11].

3.5.2 The Iteration Technique

The iteration starts by replacing [B

! In other words,

the following equation is solved instead of Eq.(3. 1):

(M ]+ M) 1%} + [B X} + (Ka+[KaD{Xc} = {E} G9)

Eq.(3.4) is a linear equation and it can be solved directly. For a steady state solution
the response will be sinusoidal if the forcing function is sinusoidal. It may be shown
[3.1] that the response amplitudes can be calculated straight from the following
equation:

_ {Fa}
{Xn} (-([Mrp]+[Mm])°°2 + j[B;]o + ([Krh]+[Krt]))

The denominator on the right hand side of Eq.(3.5) is called impedance matrix. Before
talking about the solution of Eq.(3.5) it is necessary to examine the approximation in
the first step of iteration. The approximation (i.e. replacmg

(3.5)

, {Xr }) can be quite useful and the reason might be explamed thh the help of a
simple example of two érbitrary constants; - |
1 _ Co R O

(Co+jCt = - - -J
0 : Co +JC Co? +C2 Co2 +C2

(3.6)

where C + jC; is a complex number. If C, is small compared to C, then a change in
C, does not affect significantly the inverse of C,, + jC;. Similarly, if [B; Jo is small

compared to (-([Mrp]+ M. ])m2 + ([Kun]+[Kan ])), the approximation in Eq.(3.5)

would be close to the actual solution.

Approximate values of {X,} are obtained from the first iteration. The following

equation is solved in the next iterations until required convergence is achieved:

{Fal
([Mp]*Malo? +j[Balo + (K ]+[Kq])

Eq.(3.7) is very similar to Eq.(3.5) but with a difference in the drag damping term.

(.7)

{Xra} = (
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[B, ] in Eq.(3.5) is replaced by By ] in Eq.(3.7) where the linearised formulation of
[By] is based on the assumption of equal energy dissipation at resonance [3.5]:

[Brl] = %[Br]i{xm }l (3.8)

Since the amplitudes of structural velocities are yet to be established in the iteration
process, the following equation is used to approximate Eq.(3.8):

8w
[Bﬂ] = E[BT]l{Xra}lastiterationl (3'9)

It is found that the iteration is only significant in the vicinity of resonant frequencies.

3.5.3 Complex Matrix Inversion

It is important to note that it is not necessary to calculate the inverse of
(-([M,‘,]+[Mra ])m2 +j[Balo + ([Km]+[Kx ])) to find {X,}. An equation of

type [a]{X}={b}can be solved for {X} without inverting [a]. Usually the solution
process is much faster when the inversion is avoided. Some advanced solution
techniques would be discussed in Chapter 4 for a system of large number of equations.
In RBRA, two powerful routines from Linpack Blas are used to solve Eqgs.(3.5) and
(3.7). The routines in Linpack Blas were developed in the University of New Mexico.
The Fortran source codes of these routines are available free of charge if a request mail
is sent to netlib@ukc.ac.uk.

Three routines (i.e. zgeco, zgesl and zgedi) in Linpack Blas are important while
working with the complex impedance matrix in Eqs.(3.5) and (3.7). The routine, zgeco
reduces a complex matrix to an upper triangular matrix and estimates the condition of
the matrix. To avoid inversion zgeco should be followed by zgesl. However, the
determinant and inverse of a complex matrix can be found if zgeco is followed by a
different routine, zdedi.

These routines in Linpack Blas are excellent in speed and performance. The author has
compared them with many others available from different sources (e.g. NAG library
[3.10] ). But the performance of the Linpack Blas routines has remained unmatched.

3.6 NUMERICAL RESULTS

One main reason for selecting the ISSC TLP configuration was to compare rigid body
response results with those published in Refs. [3.9] and [3.8]. The published results in
Refs. [3.9] and [3.8] are from 17 different organisations who have used boundary
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element formulation and diffraction/ radiation analysis for their calculation. The results
are presented for three wave heading angles. It is worth noting that the ISSC TLP has
a square deck and consequently, two vertical planes of symmetry. Hence, it is not
necessary to present sway and roll responses for waves heading at 0 and 45 degrees. In
addition, there should not be any yaw motion for waves at 0 and 45 degrees. However,
at 22.5 degree wave heading all six responses are required because they would be
substantial and different.

Force and response RAOs calculated from RBRA are presented in Figs. 3.2-3.13 for
waves at 0, 22.5 and 45 degrees. Please note that the formulations in RBRA are
independent of any wave heading angle. Similar results for waves at a different angle
can be calculated without any modification in the program [3.3].

Refs. [3.8] and [3.9] present the results in scattered diagrams based on the data
obtained from 17 organisations. With the help of a digitiser, the upper and lower
boundaries of diffraction analysis based results are captured in a data file since it is
always difficult to compare results from scattered diagrams, especially when the data is
not supplied in a table format. The diffraction upper and lower boundaries together
with the Morison equation based results from RBRA are shown in Figs. 3.2-3.13.

Diffraction becomes increasingly important when the member diameter and wave
length ratio is more than 0.2. Therefore, for the ISSC TLP, the Morison equation is
not valid for wave periods less than 7 seconds. When the wave period is less than 7
seconds, the forces and moments are generally overestimated by RBRA as we can see
in Figs. 3.2-3.13. Otherwise, the results from RBRA are in sufficiently good agreement
with the published results [3.8], [3.9].

3.7 CLOSURE

The philosophy behind this research is to proceed from the simplest computational
methods in the early stages of design to more accurate methods, after understanding
the global behaviour of the structure. This issue has been discussed in more detail in
Ref. [3.4].

Program RBRA has been successfully used in a different research work [3.7] for
modelling multi-variate environmental data. One important feature of RBRA is that it
can quickly and efficiently generate force and response RAOs. The square of the RAOs
can be multiplied to a sea spectrum to generate the corresponding response spectrum.

The Morison equation based models are generally found to be poor for computing
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TLP pitch/heave responses and it is well accepted that the large diameter inertia load

dominated TLP columns require diffraction effects to be handled adequately. So an

immediate step to improve the analysis could be the application of McCamy-Fuchs'

theory for the columns. For more reliable results many researchers are using hybrid

computing models involving both diffraction/radiation theory and the Morison

equation because they can account for potential forces as well as viscous forces.

The simplified formulations in RBRA have helped the author to gain an insight into the
problem. DCATLP described in the next chapter has been developed from this
background.
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4.1 INTRODUCTION

This chapter describes the author’s attempt to overcome the limitations of a
conventional hydrodynamic analysis. The rigid body response calculations are suitable
in establishing maximum motion amplitudes and related factors. But in the context of
structural design, they are not quite helpful. The design process will inevitably demand
a separate space frame analysis and that will involve transfer and modification of
results from the rigid body hydrodynamic program. It is discussed later in detail that
this ‘migration’ from the hydrodynamic domain might be complicated and decisions
involved may vary depending on the TLP configuration. A hydro-structural analysis
program is an ideal solution in this respect because it can take care of the data transfer
‘internally’. Moreover, the solution process would be automatic and independent of the
TLP configuration. The following sections present this hydro-structural analysis
concept relating to TLPs.

4.2 STRUCTURAL CONFIGURATION OF ISSC TLP

Table 1.1 in Chapter 1 provides a complete set of data for conventional hydrodynamic
calculations for the ISSC TLP. RBRA in Chapter 3 has used them to calculate the
response RAOs. But the data in Table 1.1 are not enough for a hydro-structural
analysis. There are several other pieces of information required for structural modelling
of the members. Some important simplifications and assumptions are also necessary to
establish the global structural model. It is worth noting that plate and shell elements are
more appropriate in modelling continuum structures like TLPs. But a global model
using higher-order multi-node elements can be time consuming and computationally -
very expensive. As a reasonable compromise, TLP components can be modelled as
numerous 3-D beam elements. In this study there are two important structural
simplifications. The tether group per comner is replaced by a hydrodynamically
equivalent tether. The whole deck structure that may involve a number of deck layers
in a 'real' TLP is modelled here as a single grillage of box girders.

4.2.1 TLP Member Scantlings

It is at first essential to design the columns, pontoons, deck girders and tethers to
generate additional information necessary for structural analysis. Proper attention has
been given to keep these designs very close to those used in practice. For the corner
columns a typical design is available [4.11] where it was considered as an illustrative
example for the purpose of demonstrating the applications of the new code. A
parametric study was carried out there with a number of models with minor variations
in different parameters. Our column for the ISSC TLP, shown in Table 4.1 is designed



from the "most desirable model" of the TLP Rule Case Committee. But it should be
noted that the North Sea TLP in their study is significantly different from the ISSC one
especially in terms of water depth.

Table 4.1. Design of Corner Columns from TLP RCC Model Code

Parameters Unit TLP RCC ISSC TLP
Radius mm 8840 8440
Shell thickness mm 25.34 25

No. of stringers - 60 60
Stringer web depth mm 300 300
Stringer web thickness | mm 15 15
Stringer flange width mm 189 189
Stringer flange thickness mm 19 19
Ring frame spacing mm 2200 2200

Lee [4.20] has considered the Hutton TLP and two other possible variations for
system reliability analyses. The pontoons of the ISSC TLP (7.5 m x 10.5 m) and the
Hutton TLP (8 m x 10.8 m) are very close in size. So the Hutton TLP is taken as a
starting reference for the pontoon design. The thickness varies for bottom, side shell
and deck plates of the Hutton pontoons. But here we will consider uniform thickness
all around the pontoon as a starting point for design.

Table 4.2. Design of the ISSC TLP Pontoons

Pontoon Parameters Dimension (mm)
Plate thickness (bottom, side and deck) 28
Stiffener (bottom, side and deck) spacing 750
Stiffener web depth 400
Stiffener web thickness 14
Stiffener flange width 150
Stiffener flange thickness 25

Fig. 4.1 shows the pontoon cross-section for numerical studies. Please note that TLP
pontoons have generously rounded corners for hydrodynamic reasons [4.16] when
they have rectangular sections. It is possible to include a corner radius in the analysis
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but there is no information given in Ref. [4.31] in this context. So it is decided here to
go for a rectangular section ignoring the effects of its hard corners. The stiffeners are
also arranged accordingly so that they do not foul with any corner curvature given
later in design.

Deck structure does not come under the main focus of this study. A simple grillage of
box girders is assumed here as the deck. The scantlings of the deck girders (Fig. 4.2)
are taken similar but less than those of the pontoons. The selection of scantlings is
arbitrary but believed to be reasonable to start with.

Table 4.3. Design of the ISSC TLP Deck Girders

Deck Girder Parameters Dimension (mm)
Breadth 7500
Height 7500
Plate thickness (bottom, side and deck) 20
Stiffener (bottom, side and deck) spacing 750
Stiffener web depth 350
Stiffener web thickness 14
Stiffener flange width 150
Stiffener flange thickness 20

Table 4.4 gives brief details about TLPs in service in relation to the ISSC TLP tether
design. The Jolliet, Auger and Heidrun [4.1] TLPs have 12 tethers in total whereas
Hutton and Snorre have 16. Jolliet, Snorre, Auger and Heidrun have thin-walled [4.23]
tethers whereas Hutton, operating in much less water depth, has thick-walled tethers.
The main particulars in Table 1.1 in Chapter 1 do not provide any information about
tethers and risers. It rather suggests to replace tethers by the spring stiffness values
given. In the original TLP Concept, tether and riser dynamics played little part. The
tethers were conceived as being constructed of wire rope or possible drill pipe and
sufficiently tensioned by the excess buoyancy of the platform as to prevent any
significant departure from straight. It is possible to calculate the material area of the
equivalent tether in each corner:

6
AEyA gi3MNm = A=SBXIO XS ossam2 @)

L, 4x%208x10°

This material area is very close to that adopted for Heidrun. Two designs are given in
Table 4.4. The main difference comes in the total number of tethers. It is difficult to do
a beam element based analysis with three tethers per corner. But the equivalent tether
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concept is only for simplifying the calculations. It cannot form the basis of real and
practical design of tethers.

It is worth noting that 'mass' and 'weight' have different roles in a dynamic analysis. If
the system is neutrally buoyant, there is no resultant force in the vertical direction as a
consequence of weight and buoyancy of the system. But it certainly does not suggest
that a neutrally buoyant system will have no lateral dynamics. The lateral dynamics
comes from the system mass and its added mass in the lateral direction. Tether lateral
dynamics is important in certain load cases specially when loading frequencies are close
to tether natural frequencies. But the principal particulars in Table 1.1 do not have any
information regarding tether mass distribution. Tethers here are assumed to have the
standard steel mass density (i.e. 7850 kg/m3). When tether mass is included in the
system it will have some contribution to the overall lateral dynamics. The TLP
behaviour may differ significantly from the original massless spring concept.

43 TWO OTHER DIFFERENT MODELS OF ISSC TLP

4.3.1 Introduction to Other Models

Model_1 for rigid body analysis has been illustrated in Chapter 3 while explaining
results from RBRA. In this chapter, two other models are created for the ISSC TLP.
Table 4.5 briefly distinguishes the differences among these three models:

Table 4.5. Three Different Models of the ISSC TLP

Models Deck Hull Tethers

Model 1 Platform mas lumped at the CG (6x6) restoring matrix
Model 2 Simple grillage Beam elements 6 springs in each corner
Model 3 Simple grillage Beam elements Beam elements

Model 2 and Model 3 have the same three dimensional frame as their hull. But the
modelling of tethers are different. Model 2 has six springs in each corner whereas
Model 3 has ten beam elements in line representing each equivalent tether per corner.
Sketches (i.e. not to scale) in Figs. 4.3-4.8 represent the beam element division of the
hull. It is worth noting that more divisions will not necessarily increase the accuracy in
the solution because many closed-form equations are used that take care of the length
parameter. Consistent mass and stiffness matrices are used that do not depend
significantly on the element length like lumped mass matrix formulation. These issues

4-4



are discussed in more detail in Section 4.5.3. The main objective is to establish a
computational tool that can help a designer to go through the design 'loops' by
reflecting the effects of changes in various design parameters. The aim is not to design
the ISSC TLP itself. This TLP is just an example for numerical studies.

Please note that even in a rigid body motion response analysis 'stick' [4.25] or beam
models are used for calculating the environmental loading but in the equation solving
stage the system is considered as a lumped mass at its CG position (like Model 1 in
Chapter 3). That is where the analysis stands different for Model_2 and Model 3. The
number of equations solved in such cases depends on the number of nodes and
associated boundary conditions.

Element number 82, 84, 86 and 88 actually represent column joints in Fig. 4.10. The
rest of the elements are for equivalent tethers. Fig. 4.9 shows the corresponding nodes.
Tether elements are for Model 3 only. It is important to discuss the origin and
definition of column and pontoon joint elements in this context. These joint elements
are beam elements with stronger sectional properties representing the columns and
pontoons at their junctions. Fig. 4.11 explains the problem of line diagrams through the
centre lines of structural members of finite width and height.

e pee——— e ———————
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Fig. 4.11. Column and Pontoon Joint Elements




The symbols ' and 'h' stand for column radius and pontoon height respectively. A
pontoon joint element is the one with length r (element 89-96 in Fig. 4.8) connected to
the adjacent column. In reality they do not exist because of the width of columns. So
pontoon joint elements are not subjected to external loads in this analysis. Similarly
each column joint element (number 81-88 in Figs. 4.6 and 4.10) is of length h/2 and
with stronger sectional properties because a column-pontoon node in reality has many
additional stiffening members.

One of the main objectives in this study is to compare results with others. So it is
necessary to follow the principal particulars in Table 1.1 in Chapter 1 as close as
possible. Table 4.6 presents the adjustment done to keep the CG position of the hull at
38 m above keel according to Table 1.1. Table 4.6 also provides the mass density
values in Ib./ft3. This calculation is done in a spreadsheet software and the initial values
- of mass densities are taken from Grant et al [4.16] Although the final values are higher
than their typical mass density values, the proportions are roughly the same. This
adjusting calculation has two constraints: the total mass and the CG position. Any
spreadsheet software is extremely helpful in this context because it can instantly reflect
the effects of any changes made.

For any finite element calculation specially with beam elements, the moment of inertia,
rotatory inertia and material cross-sectional area of the element are very important. In
fact they are the main items in the input data file. Table 4.7 presents the sectional
properties of TLP members. Inertia and area values of tether elements are for Model_3
only. ' '

43.2 Model_2 Developed in LUSAS

Model 2 is developed mainly for using it with a finite element package called LUSAS.
LUSAS is from FEA Limited and it has many advanced computational capabilities. It
can handle a wide range of non-linear problems and different types of complicated
structures. The graphical interface of LUSAS, also known as MYSTRO is well
equipped with hidden surface removal and ‘slicing’ algorithms and other advanced
techniques required in a three-dimensional presentation of a complex finite element
problem. But LUSAS cannot perform any interactive hydro-structural response
calculation and there is no straight-forward way of including added mass of the
structure in the analysis. LUSAS also does not offer any loading module for
hydrodynamic calculations. The resources available in LUSAS are very general in
nature.
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However, it is not the correct way to represent roll, pitch and yaw stiffnesses by
attaching rotational springs at the column base although it is suitable as a working
model. If geometric stiffness is introduced, the model can be improved. But this is not
always correct since roll will introduce an apparent side force on the pontoons.
However, it is only the tow out condition that requires this refinement for a TLP.

#
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Simple finite element programs that can only handle ‘'fixed' or 'free' support conditions
are not suitable for TLPs. Only rotational and translational springs can define the
boundary conditions of a TLP hull when tethers are excluded from the analysis.
Fortunately LUSAS works with spring boundary conditions in three dimensions. It is
possible in LUSAS to attach three linear translational and three linear rotational
springs in one node. Other features of LUSAS will be discussed in more detail in
Chapter 6.

Fig. 4.12 shows Model 2 for LUSAS. Six linear springs are attached to four end nodes
(number 114-117 in Fig. 4.9). LUSAS has a library of various elements to be used for
different types of finite element problems. The element type JSH4 [4.21] is selected to
introduce additional mass (i.e. not structural mass) in Model 2. JSH4 elements are
joint elements in true sense, unlike the column and pontoon joint elements mentioned
before. A JSH4 element has six degrees of freedom. Different mass, stiffness and
Rayleigh damping parameters can be specified in each degree of freedom. This
capability of handling different mass, stiffness and Rayleigh damping parameters in
different degrees of freedom actually allows the user to include added mass in the
analysis because added mass is dependent on the direction of motion. The symbol ' Z'
in Fig. 4.12 indicates the nodes where added mass has been lumped in all three
directions. The springs shown at each column base in Fig. 4.12 look a bit clumsy
because of their existence at the same place!

!

)

4.3.3 Surge and Sway Spring Constants for Model_2

In order to find the spring constants it is necessary to deal with different parameters
governing the offset, set-down of the platform and the change in tether tension. The
tethers are assumed to be straight at all times in this section to derive the spring
constants for Mod.i_2 although the curvature and lateral dynamics have been studied
later in case of Model 3. The change in length due to the increase in tether tension is
taken into account although the extensions are marginal. The tethers are generally
slender pipe structures connected with the help of flex-joints to the hull and foundation
at the top and bottom ends. The mathematical model here in this section considers 'ball
and socket' connections at both ends of tethers.

In Fig. 4.13, Fx is the net force (i.e. resultant of platform inertia and external forces) in
the global X direction. Only surge motion is considered to find out the corresponding
spring constant. For sway the spring value would be the same. The tether in Fig. 4.13

is assumed to remain straight while rotating in a pendulum like motion about its lower
end by an angle 0,. The top end of the tether moves with the hull and its resulting
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excursions are X, and Zg in the horizontal and vertical directions respectively. At the
offset position, the five unknown variables are: tether angle (0,), change in tether
length (3 L,), offset (X;), change in tether tension (8 T) and set down (Z). They can

be solved from the following five force balance and geometric constraint equations:

Geometry:
L;-Z
= % 4,
cosO, L +oL, 4.2)
: Xo
sin 6; = 43
b L, +8L, (43)
Force:
FX = (TO +8T)Sin et (44)
To+pgAwpls = (To+6T)cosb; 4.5)
Elasticity:
8L, = L,oT (4.6)
AEy
When the value of 8 L; is substituted from Eq. (4.6) to Eq. (4.2):
oT
Z, =L {1-(0+ cosO 4.7
» = Lll-0+o5-)oosdy) @“.7)
From Eq. (4.4):
OT = Fxcosec 6, -T (4.8)

From (4.4) and (4.5) and using (4.7) and (4.8):

1
AEy

Fxcotf; = To+pgAyLe[1-{1+ (Fxcosec 0, - T)} cos6, ] 4.9

The parametric studies in Ref. [4.13] are partly utilised here to generate a new form of
equation with only one unknown, 6, and the equation can be solved numerically. But

the aim is to find the surge spring constant which is Fy / X;. So Eq.(4.4) is divided by
Eq.(4.5):

Fx = (Tp +pgAywpZs)tand; (4.10)
Similarly dividing Eq.(4.3) by (4.2):
X
tang, = ——° 4.11
anvy L,-Z, ( )

Finally, from Eq.(4.10) and (4.11):

Fx _ (To +pg AwpZs)
XO Lt'Zs

(4.12)
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X, might be negative or positive in sign but Z is a positive quantity (ignoring stretch-
up dynamics discussed later) whenever the platform moves from its upright position
because the top of the tethers would tend to follow a circular arc. Eq.(4.12) ignores
tether lateral dynamics and its curvature due to weight and current drag forces. But
still the spring stiffness in Eq.(4.12) is non-linear in nature and it is difficult to use it in
a linear dynamic analysis with LUSAS. So the effect of set-down is ignored:

K _ T _ (TotrgAwZs)
X0 Lt I-‘t'Zs

(4.13)

Ty /L,, the ideal spring stiffness value for small X, has been widely used in various

published literature and design. But this ideal value is less than the one which is more
close to real-life situation (i.e. Eq.(4.12) ). But the alternative in this case (i.e. a non-
linear dynamic analysis in LUSAS with non-linear large displacement beam elements) is
rather complex and may not be necessary because the ideal spring stiffness may work
within reasonable approximations. The numerical value for the ISSC TLP is:
L5 N W k3 (L N (4.14)
Xo L, 4 415
The factor 1/4 is for the spring at one column base, not for the whole platform. The
ideal spring stiffness in Eq.(4.13) and (4.14) is used for the surge and sway modes of
motion of Model 2.

4.3.4 Heave Spring Constant for Model_2

Heave spring stiffness in one corner is the sum of tether stiffness and hydrostatic
stiffness. From Table 1.1,

Heave stiffness = M + pgAy,p (4.152)
= 203.25x 10% + 1025 x 9.81 x w x (8.44)>  (4.15b)
= 203.25x 10° + 2.25x 10° (4.15¢)
= 205.5x10° N/m (4.15d)

The calculations are given in detail in Eq.(4.15) to show the proportion of tether
stiffness and hydrostatic stiffness in one corner of the platform. For the ISSC TLP the
hydrostatic stiffness is only 1.1% of the tether stiffness.

4.3.5 Roll and Pitch Spring Constants for Model_2

Roll or pitch spring constant is evaluated from the tether roll or pitch stiffness and
hydrostatic stiffness, very similar to the heave stiffness. From Table 1.1,
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Roll stiffness = — x (1501x10° + Ax WR) (4.16a)

NN

Pitch stiffness =

5=

x (1501x 10° + A x GMp) (4.16b)

Here GMy and GMp are the same because the platform has symmetry in two
orthogonal vertical planes. So,

Roll or pitch stiffness = %x (1501 x 10° + 54.5x 10° x 9.81x 6.0) (4.17a)
= 375250 x 10° + 802 x 10° (4.17b)
= 376052 x 10° N-m/ radian (4.17¢c)

The hydrostatic stiffness contribution is negligible in this case.

4.3.6 Yaw Spring Constant for Model_2

The spring constant for yaw motion does not have any straight-forward expression like

those for roll, pitch and heave motion. Fig. 4.14 shows the effect of yaw motion on the
platform. If we assume ¢y, is small, the set-down can be ignored. The restoring force

can be written as (T, + OT) sin0,. For small angle the change in tether tension is also

negligible. The restoring force can be approximated as:

(TO + 8T) Siﬂet = TO Sil’let ~ Toet ~ To tanet (4183)
To tanOt = TO d)yawdc][Z— (418b)
2L,

The yaw restoring moment can be written by multiplying the restoring force with the
moment lever:

. V2 W2 d3
Restoring moment = Ty ¢yawd —thdcl - - Ty d)yawz—it (4.19a)
: Ty dg
So, yaw spring constant per corner = ——% (4.19b)

2L,

Please note that the platform here has a square deck. So the distance between column
centres (d) is the same in both longitudinal and transverse directions. For other TLPs
with rectangular but not square decks, the expression for the yaw spring constant
would be slightly different.

4.3.7 Natural Frequency Analysis and Mode Shapes of Model 2

LUSAS can perform large eigenvalue analysis for natural frequencies and linear
structural buckling. Model 2 has 113 free nodes with six degrees of freedom per node.
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So theoretically Model 2 has 678 natural frequencies and corresponding mode shapes.
But the higher natural frequencies do not have any major role in structural dynamics of
TLPs. The first 20 eigenvalues are extracted in LUSAS and six of them are identified
as the rigid body mode shapes. MYSTRO, the powerful GUI (Graphical User
Interface) for LUSAS, was helpful in identifying the mode shapes in Figs. 4.15-20. The
boundary springs are intentionally omitted to maintain clarity in the plots. Table 4.8
compares the natural frequency values of Model_2 with simple hand calculations done
by Boom and Tan [4.7].

Table 4.8. Natural Frequencies of Model_2

Modes of Natura Period (s) Spring Stiffness

Motion Rigid Body [4.7] Model 2 of Model 2
Surge 106 101.09 82735 N/m
Sway 106 101.09 82735 N/m
Heave 2 1.82 205.5 MN/m
Roll 2.1 1.44 376052 MNm/rad.
Pitch 2.1 1.44 376052 MNm/rad.
Yaw 86 59.87 307735 kNm/rad.

It is quite natural if the results from a large eigenvalue analysis are different from
simple hand calculations. In fact that is not the main reason creating differences in -
Table 4.8. The added mass values assumed by Boom and Tan [4.7] are considerably
larger than those used for Model_2. Table 4.9 provides a comparison. The added mass
coefficients used in this study have been discussed in Chapter 3. It has been possible to
give the total added mass in global X, Y and Z directions in Table 4.9 because LUSAS
estimates the total mass of the system in three global directions. But the added mass
moment of inertia values of Model_2 for roll, pitch and yaw are not known explicitly.
For a rigid body analysis forces are finally summed up in global directions and
moments are calculated from these forces and their 'levers' from a reference point (in
many cases centre of gravity of the structure). But for a 3-D frame with special joint
elements, the analysis technique is different. Each and every lumped added mass in a
specific direction has its contribution to the corresponding mass moment of inertia but
the total summation is not known explicitly.
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Table 4.9. Added Mass Values Compared

Modes of Adde Mass Values in Kg
Motion Rigid Body [4.7] Model 2 for Model 2
Surge 1.0A/g 0.8285 A/g 45.1523 x 106
Sway 1.0A/g 0.8285A/g 45.1523 x 106
Heave 0.7A/g 04782 A/g 26.0632 x 106
Roll 1.0 1, - -
Pitch 1.0 I,y - -
Yaw 1351, - -

4.3.8 Complete Solution of Single Degree of Freedom System

It is important to review the motion characteristics of a Single Degree of Freedom
(SDF) system before describing forces and responses of a Multiple Degrees of
Freedom (MDF) system like a TLP. The derivations in this context are not given here.
They can be found in any standard textbook of vibration (e.g. Mukhopadhyay [4.24] ).
Only a few equations that would be helpful in explaining the importance of damping in
the analysis are given in this section:

leiDl + bDl)'(Dl + lexDl = Fosinmft (420)

Eq.(4.20) is the dynamic equilibrium equation of a SDF system acted upon by a force
Fysinw¢t. The subscript. 'D1' stands for a SDF system. The complete solution of
Eq.(4.20) consists of two parts, the complementary function and the particular integral.
The complementary function here is the solution of the damped free vibration and can

be assumed in the following form:

XDl = Clelsct (421)

The Substitution of Eq.(4.21) into (4.20) transforms a linear second order differential
equation into a quadratic equation. Let us define:

ng= 0L 2 - Koo (4.22)
2mp, mp,;
Now the solution can be written as:
A = -ngt4/n —p2 (4.23)

Three cases may arise but we will discuss only the underdamped system where ng < p,.
Both roots are complex when ny is less than py;:
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Ay = -nsii\/pg —ng (4.24)

From the initial conditions:
- N Xpi, +X .
Xple = €| Xpya cost\/pg -n? + J—Qg‘%sm t,/pz —n2 (4.25)
\) Ps — 1Ny
The trial solution for the particular integral can be assumed as:
Xpp = Cycosot + Cssino gt (4.26)

Values of C, and C; can be found by substituting Eq.(4.26) into Eq.(4.20):

2_ 2
2F Folps —of)/m
Xpip = 2 oznssz/le ~coso gt + 20( 52 5 f) Dl sinogt (4.27)
(ps _(‘)f) +(2nsmf) (ps_mf) +(2ns(’)f)
Defining ¢p;:
‘ 11 2ng0
¢py = tan” L (4.28)
Ps —Qf
Eq.(4.27) now can be simplified to:
Fy /m .
xDlp = 0 DI sm(oa ft_d)Dl) (429)

\ﬂpg —cotz-)2 +(2n0 f)z

Now the complete solution comes from the summation of Eq.(4.29) and Eq.(4.25) as
follows:

; N Xpj, +X .
Xp1 = €™ xp, costyp? —n? + SRl ZDla gng fp2_pn2 | +
[2_ 2
pS nS

Fo /mp, sin(@¢t—dp;) (4.30)

(b2 -02)’ +(2n,0,)?

The first term on the right hand side of Eq.(4.30) with a factor e™! is for the free
damped vibration. The other term with the same frequency as the disturbing force,

represents forced vibration. The actual motion is a superposition of two simple
harmonic motions, with different amplitudes, different frequencies and different phases.
The resulting motion is somewhat irregular and complicated in nature. However, due
to damping in the system the free vibration part vanishes after a short time and only the
forced vibration part remains which is harmonic in nature. So the transient state of the
oscillatory motion involves only the first few cycles.

In most of the solution techniques in the frequency domain, only the forced vibration



part can be taken into account. So the results from a frequency domain technique are
usually linearised steady state solutions. But the situation would be different when the
analysis is sought in the time domain. The author believes that there is a trend among
researchers to consider only mass and stiffness matrices when simplified solutions are
required in the time domain. The damping matrix is usually ignored because of its

-ngt

complicated nature. If we look back to Eq.(4.30), e is 1.0 when damping is
neglected. So the free vibration component would not decrease in an exponential
manner and as a result, the actual motion would never converge to the steady state
response of the system. For steady state response, it is essential that the free vibration
part would die out in the course of time. So some form of damping should be present
in the analysis, otherwise it would be confusing while explaining the results in

connection with frequency domain solutions.

4.4. SINUSOIDAL LOADING AND RESPONSES

4.4.1 Introduction to DCATLP

A brief description of DCATLP is given here before comparing results with LUSAS.
DCATLP (Dynamic Coupled Analysis of Tension Leg Platforms), is a non-linear
program designed for 3-D time domain dynamic simulation of TLPs in deep water. It is
written specifically as a research tool in which various modules can be changed or
added to as desired. The main intention is to establish a direct link between global
motion response analysis and local finite element or reliability based structural analysis
and optimisation of TLP components (Fig. 4.21). The program is interactive in nature
where the environmental loading is dependent on the nodal displacements and
velocities. It is necessary to account for this dependence to ensure the compliant
characteristics of TLPs.

It is not possible to solve this type of interactive problem in LUSAS with complicated
environmental loading. But some form of validation is essential before employing a
computer program for practical use. Several routines in DCATLP when developed, are
checked with LUSAS in parallel by solving standard examples. But still that does not
validate the final results from DCATLP. There are some results available from different
organisations [4.31], [4.33] but their analyses were of a different nature. It is possible
to get some impression about the magnitude of diffraction forces from those results but
they are not enough for the validation, especially when the structural responses are
concerned. Now-a-days 'well-tested' operating systems seem to have a number of bugs
inside. After all, the programs are written in languages other than those we use in
everyday life!
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Fig. 4.21. The Ultimate Goal of DCATLP

The sole purpose of developing Model_2 for LUSAS is to compare its results with
DCATLP. LUSAS cannot process interactive environmental loading but non-
interactive (i.e. force magnitude is known beforehand) sinusoidal loading is not a
problem. It is interesting to note that the resultant horizontal and vertical forces on a
platform from a regular wave are nearly sinusoidal in nature. If we ignore the
contribution of drag forces, the wave force in different locations of the platform can be
visualised as time dependent sine or cosine curves. The summation of all sine curves
with varying phase differences is also sinusoidal if their frequencies are identical. The
following is a simple demonstration:

. + + + t+ - -
ZSln(mt C1 20)t Cz)'COS(m C12(Dt Cz)

2 Sin(mt + M) . cos(ﬂ)
2 2

Cjsin(at+Cy) (4.31a)

sin(ot+C;) + sin(at+C,)

Cl +C2

where C; = ZCOS(%) and C, = (4.31b)

So the resultant in Eq.(4.31b) is also sinusoidal with different phase. The most



probable maximum first order wave force in the surge direction on the ISSC TLP has
been estimated by Prince-Wright [4.28] as 75.6 MN. In the following numerical
examples the magnitude of the sinusoidal surge force is chosen nearly half of that most
probable maximum first order wave force. The selection is arbitrary but believed to be
reasonable because wave surge force of such magnitude (i.e. 40 MN) may occur often
in practice. From 5 seconds to 20 seconds may be considered as the time period region
of most ocean waves. The sinusoidal horizontal force in numerical examples is
associated with three different time periods. Two of them are the lower bound (i.e. 5 s)
and upper bound (i.e. 20 s) of the wave frequency region and the third period is just at
the middle. The 12.5 seconds period is more important because of the energy
associated in the wave spectra around this region. So the importance of damping in the
analysis is demonstrated only in the case of sinusoidal load of 12.5 seconds period.

It has been already mentioned that Model_3 is only for DCATLP and it differs from
Model 2 in the modelling of tethers. There is another important difference. LUSAS
here is chosen to perform linear dynamic analysis in time domain. It forms the global
mass and stiffness matrices of Model_2 only once and employs frontal techniques for
the solution of dynamic equilibrium equations. On the other hand, DCATLP has to
form the global mass and stiffness matrices of Model_3 in each time step for accuracy.
One time step in DCATLP may involve a number of iterations whereas LUSAS does
the linear calculations only once in each time step. A linear dynamic analysis is always
faster when frontal or skyline methods are used. So the usefulness and efficiency of
DCATLP may be questioned. If required results can be found in a linear analysis, there
~ is no need for any further complex computation. Actually the formation of global
stiffness and mass matrices in each time step is required for Model_3 because it
includes the tethers. Fig. 4.13 may explain the problem. The global stiffness matrix is
the summation of element stiffness matrices in the global directions. In the upright
position, when the tethers are included in the system and there is no equivalent spring,
the global stiffness matrix has no contribution from tethers that can produce horizontal
restoring force simply because the tethers are standing vertical. The horizontal
restoring force arises only when the tethers are inclined. But its magnitude varies with
the tether inclination angle. So the initial global stiffness matrix when the platform has
zero offset is of no value unless it is reformed with the change in the tether inclination
angle. For Model 2 the problem does not arise. The horizontal restoring force from
springs is zero when the offset is zero and linearly increases with the surge
displacement. In a nutshell, if linear springs are not allowed in the modelling, a time-
incremental-iterative approach cannot be avoided. The author accepts this negative
feature of including tethers in the analysis. But the iterations and reformations of global
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matrices can be justified if the analysis can capture some special characteristics of
tethers. The tethers cannot remain straight when the platform is under hostile

environment. Fig. 4.22 gives the explanation in detail:

Figs. 4.22(a) and (b). A String under Tension

Figs. 4.22(c)-(e). Deviation of a Tether from its Upright Position



Fig. 4.22(a) presents a classic school physics question - "What is the magnitude of Fy,
that can keep the string straight when Fp is not zero?". The forces in the vertical
direction do not have any component in the horizontal direction. So there would be a
finite displacement C; whose magnitude would depend on the ratio of Fy and Fy.
Similarly a large pretension in tethers cannot keep them straight. The locus of a tether-
top is actually a complex orbital path strongly influenced by second-order effects like
set-down [4.12] and the path can be found only in a coupled (i.e. platform-tether
combination) analysis.

The horizontal current drag forces would cause bending as shown in Fig. 4.22(c).
When the tethers are not neutrally buoyant, self-weight would create more sagging.
The dynamic movement of the hull may induce a different type of bending in tethers.
Fig. 4.22(d) and (e) show the phase difference in movement between the hull and the
tether. When the hull reaches the maximum dynamic offset and starts moving in the
opposite direction, a long tether may take some time to 'turn back'. When the
pretension is large these effects would be small. But there is an important consequence.
Any deviation of tethers from their upright positions would cause additional set-down
of the hull. If there is a phase difference, more or less constant (Fig. 4.22(d) and (e) ),
the additional set-down would produce more tension in tethers in every response cycle.
A slight change in draft may make a significant difference in tether tension because of
relatively large diameter columns and associated water plane area. The additional set-
down in this context goes against the 'air gap' criteria but it has one favourable effect.
If it is found to be significant, a TLP might be designed with less pretension and
consequently more deck payload. - ' I

The minimum tether tension limit state is losing its importance very recently and there
is a trend in industry for designing TLPs with less pretension [4.15]. The additional
set-down, if found significant may support the recent trend. DCATLP has been used to
generate data sets for plotting the shapes of equivalent tethers at different time steps.
Results of this type will be discussed later in Section 4.6.

4.4.2 Comparison of Results from DCATLP and LUSAS

The surge and heave motion of a particular node (node 90, see Fig. 4.9) are plotted in
Figs. 4.23-4.49. The dynamic movements of a TLP hull come under 'large
displacement, small strain' [4.4] category. So translational motions at any node on the
hull practically represent the translational responses of the platform.

Figs. 4.23 and 4.24 present surge and heave responses of Model 2 under a sinusoidal
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load of magnitude 40 MN and period 5 seconds. RMDC and RSDC stand for Rayleigh
Mass and Stiffness Damping Coefficients (i.e. oy and Bg) respectively. Fig. 4.25
shows the responses of Model 3 under the same load from DCATLP. The
displacements are not steady because there is no form of damping included. The
natural vibration part is mixed with the forced oscillation. The possible explanations
are given in detail in Section 4.3.7 where a SDF system has been discussed. There is a
remarkable similarity in nature and magnitude of surge response curves in Fig. 4.23
and 4.25. Please note that MYSTRO has rounded off 'Time (s)' along X axis in many
figures to two decimal places which may create confusion. For example, '0.03 x E3'
should be 0.025 x E3! The grids are equally spaced and it can be easily noticed.
Unfortunately there is no 'user control' to rectify this confusion. FEA Ltd has been
informed and this minor but confusing format error will not be there in the next
upgrade.

The similarity in nature and magnitude of surge response of Model_2 and Model 3 in
fact confirms the non-linear stiffness modelling in DCATLP. It also shows that an
analysis is possible where a TLP can be successfully modelled without any kind of
spring and the results closely follow what is expected. On the other hand, heave
responses are different. The dynamic set-down increases when the hull gradually
moves away from its upright position. To show this characteristics surge and heave are
plotted together in Figs. 4.25, 4.28 and 4.31. The effect is more pronounced in Fig.
4.28. There are quite a few technicalities required for plotting these figures. The time
step for this sinusoidal load analysis was 0.25 second in both LUSAS and DCATLP.
Fig. 4.25 shows surge or heave by joining 1000 points (each representing a time
station) by small straight lines. The points are visible in Fig. 4.25 if examined carefully.
Fig. 4.23 or 4.24 has 250 points joined by straight lines. The PostScript driver from
FEA Ltd. for converting picture files from MYSTRO is found to produce better
quality output. LUSAS creates a very large size database for post-processing in
MYSTRO, specially in the case of dynamic analyses. The size of the MYSTRO
database for Model 2 is 65 megabytes when it is updated once in four successive time
stations (total response time = 250 seconds, time step = 0.25 second). Only a few years
back PCs used to have a hard disk of 20 megabytes size! This is one great
disadvantage of using a general purpose powerful FE package that tends to write all
possible information for graphical post-processing in its database. On the other hand,
DCATLP 'opens' different output files for writing different types of results. The
storage space is not a problem for DCATLP because it writes only what is necessary
and in simple formats so that any graphics or spreadsheet software can read its results
as 'text files' for drawing graphs later.
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The spring stiffness values for Model_2 have already been discussed. The surge spring
stiffness, T, /L, for Model 2 is slightly less than the actual stiffness including set-
down (see Eq.(4.13) ). The surge stiffness for Model_3 does not have any explicit
value because it depends on the global stiffness matrix in each increment. But Model_3
has slightly higher stiffness in surge or sway direction than the ideal spring value in
Eq.(4.13). This is because of end-fixity of tethers which is described later in Section
4.5.6. So the surge response of Model_2 is expected to be slightly more than that of
Model 3 in Figs. 4.23-4.49. Figs. 4.26 and 4.28 can explain it clearly if we focus our
attention on the 'kinks' of the surge curves. But the resemblance in nature of these two
surge curves is remarkable. There is another interesting aspect of the surge curves in
Figs. 4.23, 4.25, 426, 4.28, 4.29 and 4.31. One surge response cycle in these figures
takes around 101 seconds which is the estimated surge or sway natural period of
Model 2 and it does not depend on the external loading frequency. The surge
magnitude is gradually increasing with the forcing period in the wave frequency range.
So one important conclusion can be drawn that in the absence of damping a TLP
would oscillate in the horizontal plane with nearly equal surge /sway natural frequency
and the motion magnitude would increase with the forcing period in the wave
frequency range. But damping is significantly present in reality but its estimate is rather
difficult.

The heave RAOs discussed in Chapter 3 are of the order of millimetres for waves of 1
metre amplitude. But the heave responses within Figs. 4.24-4.49 have considerably
~ different magnitude because they include the initial stretch of tethers due to pretension.

Initial stretch = ——roension 13734 MN _ 100 (432)
Combined Stiffness 813 MN/m

The complex heave response in Fig. 4.25 perhaps indicates the excitation in tethers
because the forcing frequency is near the natural heave frequency of the platform.
Please note that there is no damping in the system and the vertical tether natural
frequencies may have an impact on the heave response. In Figs. 4.24, 4.27 and 4.30 the
heave response period is very close to the forcing periods (5, 20 and 12.5 seconds
respectively) although the force has been applied in the surge direction and only
pretension is present in the vertical direction.

4.4.2.1 Analysis with damping included

Different other characteristics may be found in Figs. 4.23-31 that might be important in
the theoretical study of MDF systems without damping. But they may not have much
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significance in relation to a practical design of TLPs. Fig. 4.32 is the first graph that
includes damping in the analysis. In general, the global damping matrix cannot be
constructed from element damping matrices [4.5] such as the mass and stiffness
matrices of the element assemblage. The purpose of including damping is to
approximate the overall energy dissipation during the system response. In most
practical analyses using direct integration, Rayleigh damping is assumed. A
disadvantage of Rayleigh damping is that the higher modes are considerably more
damped than the lower modes for which the Rayleigh constants have been selected
[4.5]. The following equation relates the Rayleigh damping matrix with the global mass
and stiffness matrices:

[B] = ag[M] + Br[K] (4.33)

ag and By are to be determined from two given modal damping ratios that correspond

to two unequal natural frequencies of vibration. The following equation is useful in
selecting o.g and Py or estimating damping ratios in other modes of vibration:

ag + Broq, = 20,8, (4.34)
However, only two pairs of (§4,,0p, ) and (§4,,0,,) determine og and Bg. When

the damping ratios are known for more than two natural frequencies, average values of
€4 can be used. It is possible to use Caughey series [4.8] for including more than two
pairs of (§4, 0, ) to evaluate the damping coefficients but the damping matrix [B] will
be, in general, a full matrix. The computation and time involved in the analysis are
increased by a very significant amount if the damping matrix is not banded.

For Model_3 the global mass and stiffness matrices are reconstructed at each and
every time step for including the effect of change in the tether inclination angle. So the
damping matrix [B] would proportionally change with them. The variability would be
small because the overall change is small since the hull exhibits rigid body like
movements. But the magnitudes of oy and Bz can be questioned. One practical
solution is to calibrate them from experimental results instead of relating them to the
theoretical modal damping ratios. This section describes oty and B with 1% and 2%
values only. Fortunately it has been found within these limited trials that the steady
state response does not depend significantly on oy and Bz. Several other
combinations of ay and By are possible but they would be meaningful only when they
are supported by experiments. Marthinsen et al [4.22] have compared the predicted
and measured responses of Snorre TLP. The design responses have been found to be 2
to 5 times higher than those in full scale. Marthinsen et al [4.22] think that this is
mostly due to a larger damping in the real world than what could be justified at the
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time of design.

4.4.2.2 Numerical results with damping included

Figs. 4.32 and 4.33 demonstrate the importance of damping in a dynamic system. They
present the transient and nearly steady state surge and heave responses of Model 3.
ag and Bg are both 1% (i.e. [B] = 0.01 [M] + 0.01 [K]). Sometimes it is more
convenient to express damping in the system as a fraction of critical modal damping.
From Table 4.8 the surge and heave natural periods are substituted into Eq.(4.34) and
Esurge AN Epeqye ar€ found to be 8% and 1.87% of critical modal damping respectively.
Fig. 4.33 shows a positive set-down because of the initial stretch in tethers. The heave
motion is actually surge induced and small. It has been mentioned before that the
MYSTRO database created by LUSAS for graphical post-processing is very large in
size. So when Model 2 is analysed in LUSAS from O to 1000 seconds with
ag and Bg both as 1%, the MYSTRO database is created for first and last 250
seconds for saving the storage space. Figs. 4.34 and 4.35 are for the first 250 seconds.
The agreement in the surge response of Model 2 and Model 3 is the same as
expected. The heave response of Model 2 in Fig. 4.35 does not match with that of
Model_3 in Fig. 4.33. So the doubt that tethers do not behave as springs in vertical
direction is more or less confirmed. Figs. 4.32 and 4.33 are reproduced in Figs. 4.36
and 4.37 for 'close up' views of the last 250 seconds of the response time. The surge
motion in Fig. 4.36 clearly shows that the natural vibration part has not yet vanished.
The effect is also present but not so apparent in the heave response in Fig. 4.37. Figs.
4.38 and 4.39 are from MYSTRO and they are compared with Figs. 4.36 and 4.37.
The damping level is now increased twice to observe its effect. As expected the
transient state of response is short and Model_3 undergoes steady state vibration from
500 seconds onwards. The heave response in Fig. 4.41 is very similar to that in Fig.
4.33. Fig. 4.42 and 4.43 refer to the first 250 seconds of response of Model 2. Figs.
4.44 and 4.45 show the steady state surge and heave motions. Fig. 4.46 is for
confirmation from LUSAS. Fig. 4.47 also presents a steady state heave response but
different from that in Fig. 4.45. This difference is expected and some explanations are
suggested in Fig. 4.22. Figs. 4.36 and 4.37 are for nearly steady state response. So for
the sake of completeness Figs. 4.48 and 4.49 present the steady state solution with
ag and Bg both as 1%. The solution becomes steady after a long time (comparing
with Figs. 4.44 and 4.45) because the damping level is low.

4.5. PROGRAM DCATLP

Program DCATLP has been briefly discussed before. This section describes in detail
the main algorithm and matrices within the program. The development of DCATLP
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has a background that explains some interesting aspects and problems involved in
analysing TLP structures. Shin et al [4.32] provided numerical results of the extreme
load effects (six components of force, moment and external pressure on a section of a
platform) on a North Sea TLP. Their analysis throughout followed a reliability based
methodology which employed the best state-of-the-art knowledge at that time. The
probabilistic loading model had three main groups, - static, quasi-static and dynamic.
There were a number of important simplifications. The set-down from the quasi-static
environmental loading was treated as an increase in water level and combined with tide
level variations. That was done because quasi-static and dynamic analyses were
separate. A simplified space frame model of columns, pontoons and main deck girders
was developed for their linear structural analysis. There were 146 beam elements and
133 nodes with 6 degrees of freedom. Tethers or risers were not included in their
structural analysis. The most important simplification was with the boundary
conditions. The TLP for their analysis had mooring flats inside the corner columns for
supporting tethers. One of the four nodes in the space frame model representing these
mooring flats was fixed in all three global directions. There were four other equally
important nodes for transmitting lateral tension just above bellmouth (similar to Fig.
4.50(a) ). One of them was restrained in two lateral directions (global X and Y) and
another was fixed in the global Y direction to achieve a stable system. For any finite
element analysis stability is important but when a TLP hull has six translational degrees
of freedom restrained, the conclusions from the analysis can only be drawn by experts
because in reality a TLP hull is free to move in the horizontal plane. The finite element
analysis with these imposed boundary conditions may appear as a 'black art' to people
- without any prior experience with TLPs. The very recent trend in the commercial
houses is to develop FE software as a standard design office tool [4.34]. Once set up,
the program can be used by technicians for routine detail design in the same way CAD
programs are used for drawing production. However, a TLP design would still demand
some prerequisites and should not be confused with other standard design practices.
But a 'black box' is always preferred than a 'black art"!

In Ref [4.32] and [4.10] a brief description is also there about transfer of
environmental loading onto their space frame model. The calculations of static, quasi-
static and dynamic loading were separate. The deflections, rotations and member
forces due to static loading were computed using the linear elastic theory. Quasi-static
loading of wind, current and wave drift were supérimposed individually. Dynamic
loading came from a rigid body motion analysis (ABS/SPLASH program based on
[4.27]). The rigid body motions were computed and combined with wave induced
forces at the nodes of their space frame model.
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Apparently it is clear that this type of analysis would involve manual calculations
and / or important decisions that may vary with the configuration of the TLP. Forces
from a rigid body motion program are required to be transferred to a space frame. If
one program can calculate both motion and structural responses, the analysis would be
automatic and independent (i.e. no dependency on the TLP configuration). In fact this
objective forms the background of DCATLP. DCATLP attempts to solve the hydro-
structural problem 'mechanically’ without involving any transfer or important decision
after the TLP configuration and design environmental parameters are given as input in
a data file. The penalty lies in the number of equations in each time station which is far
more than only six in a conventional rigid body motion analysis.

The author believes that there are a few other important aspects that need a different
approach for clarification. In a TLP design, directional distributions of environmental
conditions should be considered. The assumption of collinear wind, wave and current
in an extreme storm may produce very conservative results with a much lower
probability of occurrence than that of any one of the governing factors. So the
environmental loading module should be in a position to handle external loads from
any direction. It would be more realistic and appropriate if statistical parameters in
connection with the extreme environment are included in the analysis. At present,
DCATLP does not perform any probabilistic calculation but its loading module accepts
external loads of any direction of action and superimposes them to form a right-hand-
side column vector in a most general way.

The conventional steady offset calculation as a result of wind, current and steady wave
drift forces from a quasi-static analysis is doubtful. Of course, there would be an offset
under the action of quasi-static forces but that may not match with the calculated one
where the effect of platform inertia is ignored. In reality, the platform moves under all
kind of forces from different directions and the effect of inertia is always present. So a
different treatment of external forces in the offset calculation may be questioned. This
could be verified only if the calculation is done without neglecting the platform inertia
and without differentiating forces as quasi-static or dynamic. This real-life simulation is
only possible in time domain. DCATLP works with all kind of forces at any instant of
time. One main intention here is to check the effect of inertia and any discrepancy
therefrom.

The program can be broadly divided into three sections. The master module is to
handle the time integration technique and various matrices generated by other modules.
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The environmental loading part when it is called, returns a column vector with external
loads acting at each and every node of the structure. The structural analysis module is
to calculate the global mass and stiffness matrices and store them in two separate
active column profiles. The ‘skyline’ or non-zero profile of the problem is determined
before the time loop starts. Fig. 4.51 is the main flow chart for DCATLP. The
following discussion would detail the calculation steps involved.

4.5.1 System Dependency

DCATLP is developed in Sun FORTRAN which is an enhanced FORTRAN 77
development system for Sun workstations. While compiling the program, the Level-3
Optimiser is used which does the local and global optimisation along with references
and definitions for external variables. The optimised code also runs without any
difficulty in the latest SPARC 514 computers working with Solaris 2.3 operating
system. A few system dependent routines (e.g. time functions, subroutines for
‘flushing’ the buffer) are used in DCATLP which can be modified easily in case the
program has to run in other systems.

4.5.2 Transformation Matrix

It is useful to first establish the element mass and stiffness matrices corresponding to
the local element degrees of freedom in almost all finite element analyses. But the local
axes system would vary with the member orientation. So a transformation matrix is
required that can help transferring the contributions of mass or stiffness matrix from
local to global co-ordinates. There are a number of textbooks available (e.g. [4.18])
with the derivation of this well known transformation matrix [T,] using vector algebra.
For better explanation only the coefficients in the matrix are given here without any
derivation. [T,] is actually formed by four identical submatrices:

(%]

[T.] = [Tr] [A ] (4.35)

where the submatrix [’i‘,] is of the form:

T 1,02 T.0,3)
[T] = | @D T@2 Te3 (4.36)
TG TG2 T.63)

4-25



The coefficients in [ ] depend on the element orientation with the global axes. They

can be easily found from the global direction cosines:

Cx = X=X (4.37a)
L
cy = =N (4.37b)
L
Z,-2
C, = 2L 1 (4.37¢)
The coefficients in ['i",] can be defined in terms of direction cosines:
T.(1,1) = Cx (4.38a)
T.(,2) = Cy (4.38b)
T.(1,3) = C, (4.38¢)
.21 -sz Cy (4.38d)
c% +C2
T,(2,2) = {C%+C2 (4.38¢)
T.(2,3) = —(—’;l’—(%— (4.380)
CX +CZ
T.G3,1) = ;CZ - (4.38g)
CX +CZ
T.(3,2) = 0 (4.38h)
T.(3,3) = ZCX ; (4.38i)
Cx +Cz
These relations are valid when Cy # *1. Otherwise for the special case:
0 Cy O
[T.]={-Cy 0 0| when Cy=21 (4.39)
0 0 1

4.5.3 Consistent Mass Matrix

The element mass matrix can be formed in two ways. For a beam element the lumped
mass formulation is popular. It is simpler to determine the mass matrix this way by
assuming the mass of the bar in Fig. 4.52(a), cut in halves and concentrated at the



nodes in Fig. 4.52(b). In this case, there is no distribution of mass force involved. It
also ignores the fact that the centroid of the half bar does not coincide with the node at
the beam end. Fig. 4.52(c) is theoretically correct but it cannot be used in common
finite element analysis where equations are formulated only at the nodes.

(2 (®) (c)

Fig. 4.52. Lumped Mass Formulation of a Beam Element

The difference would be significant when the element length is large. For small
elements, however, the idealisation is acceptable. But the increase in beam element
number would increase the total number of equations in each time step. This is one
main reason for using consistent mass matrix formulation in DCATLP. It should be
noted that a lumped mass matrix does not have any off-diagonal term and hence it is
advantageous specially when the time integration scheme is 'explicit'. But DCATLP
uses large step 'implicit' integration scheme for better accuracy. The derivation of the
consistent beam element mass matrix of (12 x 12) size is complicated and beyond the
scope of this thesis. The coefficients are simply reproduced in Fig. 4.53 from Ref.
[4.29]. [ ;I] in Fig. 4.53 includes rotatory-inertia effects but not the shear
deformations. Archer [4.2] first derived the consistent mass matrix of (4 x 4) size
including shear deformation effects. The expressions are too complex and it would be
difficult to explain the relatively simple internal resisting force calculations in DCATLP
if shear deformation effects are included. This is mainly because DCATLP does not
perform any 'theoretically elegant non-linear analysis' (see [4.4]). A 'theoretically
elegant non-linear analysis' with non-linear beams and corresponding tangent stiffness
matrix formulation would be too far away from a straightforward rigid body modelling
of TLPs. The author believes that it is not necessary because TLPs are 'weakly non-
linear' structures [4.32].

4.5.4 Added Mass Matrix

Added mass of an element varies in different directions unlike its physical mass. For a
vertical circular cylinder surge and sway added mass values are the same but its heave
added mass would be different. For a rectangular pontoon the situation is even more
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complicated. The author was not able to find any consistent added mass matrix in
relevant publications. So a simplification was necessary to include added mass
formulations in DCATLP. The simplification ignores rotatory-inertia effects and simply
lump added mass at the end-nodes of a submerged element.

CaY
Caz

[M:g] - %"V

0

Fig. 4.54. Simplified Diagonal Added Mass Matrix

These concentrated added masses at nodes are accounted for by adding them to the
leading diagonal terms in the global consistent physical mass matrix whose
arrangement is discussed in Section 4.5.7.

4.5.5 Element Stiffness Matrix

A book on finite element methods cannot be written without mentioning the beam
element stiffness matrix. Any derivation or discussion in this line would be some
unnecessary repetition of this well established concept. But one point is worth
mentioning here that TLP members such as columns and pontoons do not invite any
additional calculation when modelled as numerous beam elements in formulating their
element stiffness matrices. Additional calculations may arise when the principal axes of
the element cross section vary along the member length. But it only happens in case of
irregular shaped bodies. Fig. 4.55 shows the well-known beam element stiffness matrix
in local co-ordinates without shear deformation effects. Shear deformation effects are
excluded from [K?] because they are not present in [Mgl] (see Section 4.5.3).

4.5.6 Tether Connections

There are a number of ways to connect tethers to a TLP hull. Fig. 4.50(a) shows an
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internal installation and support system adopted for the Hutton TLP. But the Jolliet
design does not have mooring tunnels in the corner columns but rather has external
porches near the bottom of the columns to transfer excess buoyancy loads to the
tethers (Fig. 4.50(b) ). For the ISSC TLP, the external installation and support system
like Jolliet is assumed. For Model 3, node 114, 115, 116 and 117 (see Fig. 4.9) are the
connecting points where equivalent tethers are attached to the column bases. Since
these connecting nodes are flex joints in actual structures it is necessary to formulate
internal hinges at these nodes in Model_3. These internal hinges in both vertical planes
(i.e. global X-Z and Y-Z) would ensure the tether top-end movements. But the
stiffness matrices for element 137, 138, 139 and 140 (see Fig. 4.10) have to be
modified to introduce a hinge at one end of the elements. It should be noted that a
hinge can be introduced by modifying the element stiffness matrix of any one of the
two connecting elements (e.g. element 88 or 140). But the modification depends on
the element orientation and its local axes definition. A more clear explanation is given
in Fig. 4.56 to show the effect of a hinge at one end of a beam AB.

M,# 0

Mg# 0
Fig. 4.56(a). Bending of AB without an End Hinge

M,# 0

C B)
\_\_—___/‘-”]

Fig. 4.56(h). Element AB with an End Hinge at B

If the translational and torsional degrees of freedom are not taken into account, the
element stiffness matrix in Fig. 4.55 would reduce to the following:
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Wang [4.35] has given the modification necessary to introduce a hinge at one end of a
beam including the derivation. For example, if node A of the element AB in Fig. 4.56 is
the origin of its local x axis, [Kf] is modified to the following for a hinge at node B:

[3Eyl

Yy 0 0
L
o Bl 0

5] = L (4.41)

0 0 0 0
0 0 0 0

B _

The analysis assumes the element AB as a prismatic member. In actual calculations in
DCATLP other degrees of freedom are not ignored. The reduced stiffness matrix in
Eq.(4.41) is shown for an illustration. In DCATLP, the corresponding (2 x 2)
submatrices in the element stiffness matrix (Fig. 4.55) for bi-axial bending moments are
modified according to Eq.(4.41).

Tethers also have flex joints at their sea-bed connections. But if internal hinges are
introduced at nodes 154, 155, 156 and 157 in Fig. 4.9, we would in effect release the
rotational degrees of freedom at these boundary nodes. But the structure would lose
stability because there is no lateral stiffness. In that case the tethers may rotate through
any angle under the action of any small lateral force. Perhaps there are a number of
ways to tackle this problem. If the analysis is started with some form of lateral
restraints and when the inertia forces and tether tensions are in action, the restraints
can be gradually released. Another solution might be to put rotational springs with
small stiffness values at boundaries (i.e. nodes 154-157). After all a real flex joint
cannot have zero rotational stiffness! But the simplest and straight-forward solution is
to assume nodes 154-157 as 'fixed' nodes. When the nodes are fixed the structure
would have some lateral stiffness in surge or sway direction. So each equivalent tether
would have one end hinged and the other end fixed. So the lateral stiffness of one
equivalent tether is 3EyI, /13 or 3Byl / ) 5 [4.24] depending on surge or sway

direction. Hence the total structural lateral stiffness of the platform is:
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3 x 208 x 10° x 0.1874
(415)°

Structural lateral stiffness = 4 x = 6544.4N/m (4.42)
From Eq.(4.14):
Ideal horizontal spring stiffness = 4 x 82735 = 330940 N/m  (4.43)

Struct‘ural lateral. stlﬁi?ess _ 6544.4 — 0.019775 (4.44)
Ideal horizontal spring stiffness 330940

Ideally a TLP does not have any structural lateral stiffness. The horizontal restoring
force arises from the tension in inclined tethers. But for stability in the finite element
analysis if the boundary nodes are 'fixed' the increase in stiffness would be less than 2%
for the ISSC TLP. Please note that the actual stiffness is always larger than the ideal
spring stiffness (see Eq.(4.13) ). In the numerical examples in Section 4.6, nodes 154-
157 are fixed. The slight increase in stiffness cannot have any significant effect in an
inertia dominated dynamic analysis.

4.5.7 Skyline Method of Storage

The element mass and stiffness matrices are calculated for each element. The
transformation matrix [T,] is then used to compute the global contributions:

[K5] = (L] [x][T] (4.45)
[M3e] = [T M (4.46)

The global mass and stiffness matrices, [M] and [K] are generated systematically from
these [M;g] and [Kg] respectively. It is straight-forward and easy to use [M] and [K]

in their original square form in next stages of calculation. For small problems it might
be acceptable but for considerably big ones like Model_3 the analysis would be highly
inefficient. Moreover, quite a lot of memory space (i.e. RAM and swap space) might
be necessary to execute such a problem where the global mass and stiffness matrices
are stored in their original square form.

Actually it is not necessary to store the entire [M] and [K]. [M] is always symmetric
and [K] is also symmetric in most cases. For the problem class of Model 3 [K] is
symmetric. So it is sufficient to store only those coefficients above or below the
principal diagonal. This reduces almost half the required storage space. Still larger
savings in storage can be achieved if only the terms within a non-zero band are stored.
In finite element formulations the maximum band-width of non-zero coefficients can
usually be made small compared to the number of unknowns - often 10-20%, which
reduces the storage from n(n+1)/2 to (0.1 to 0.2) n? for symmetric problems of (n x n)
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size. It is possible to reduce the required storage and computational effort still further
by storing the necessary parts of the upper triangular portion of [M] or [K] by
columns. In this method it is necessary to store and compute only within the non-zero
profile of the equations. A clear explanation is given in Fig. 4.57 by showing the
differences in two storing methods. The non-zero profile method is also known as
'skyline' storage scheme because of its typical appearance as shown in Fig. 4.57.

_J Banded storage

Skyline storage

\

Fig. 4.57. Two Different Methods of Storing Global Mass or Stiffness Matrix

The skyline scheme has definite advantages over a banded storage. First, it always
requires less storage unless the matrix is diagonal! Second, the storage requirements
are not severely affected by a few very long columns and last, it is very easy to use
vector dot product routines for triangular decomposition and forward reduction. The
last fact is extremely important to modern vector oriented machines.

In DCATLP [M] and [K] are stored in two separate one-dimensional ‘skyline’ arrays.
But it is sometimes essential to visualise the original reference position of each term in
these profile columns. A transfer routine is there in the program for this purpose.

4.5.8 Solution of Equations

The effective stiffness matrix and modified force vector (described in Section 4.5.9.1)
in the time integration scheme are formed from the contributions of global mass,
damping, stiffness matrices and the external load vector. In fact, a set of differential
equations are converted into a set of algebraic equations in this process.
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4.5.8.1 Triangular decomposition

The first task is to construct the triangular decomposition of the effective stiffness
matrix, [K*]. In this process [K*] is written as a product of a lower triangular matrix
with unit diagonals and an upper triangular matrix:

[X*] = [k ][Ky] (4.473)
where
1 0 0
K; 1 .. 0
K ]=] o (4.47b)
KLnl Lya 1
and

Ky, Ky, - Ky,
0 K .. K
Uz Uan (4.47c)
0 0 .. Ky
This step is accomplished using a compact Crout method which is a variation of Gauss
elimination.

In coefficient matrices resulting from a finite element problem some special properties

is easy to verify in this case that:

Ky, = Ki; Ky, (4.48)

The Crout variation of Gauss elimination is used to successively reduce [K*] to upper
triangular form. The lower triangular portion is not actually set to zero but is used to
construct [K;]. The upper and lower triangular matrices will replace the original
matrix; and consequently it is not possible to retain the principal diagonal elements of
both [Ky] and [K;]. Those of [K; ] are understood since it is known by definition that
they are all unity.

The decomposition algorithm is compact and the original matrix [K*] gets divided into
three parts: part one being the region that is fully reduced, part two the region which is
currently being reduced (called the active zone), and part three the region which
contains the original unreduced coefficients. For a square matrix of (n x n) size the
algorithm is briefly discussed below:
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KU” = Kll (4493)

Ky, =1 (4.49b)
For each active zone j from 2 to n:
*®
Kle = K]l /KU“ (4503)
KUlj = Ky; (4.50b)
thenfori = 1,2,---,j-1:
i-1
KLji = (Kjl - ZKij KUmi ]/KUii (4513)
m=1
, il ‘
u, = K- ZIKL Ky (4.51b)
m=
and finally:
Kij =1 (4.52a)
* J—l
Ky, = Kji- ZKijKUmj (4.52b)
m=1

4.5.8.2 Forward elimination and back substitution

For a linear problem, once the triangular decomposition of [K*] is done, several
solutions for different right-hand-side column vectors (i.e. load vector) can be
computed. This process is often called 'resolution' because it is not necessary to
recompute [K;] and [Ky]. For every large coefficient matrix the decomposition
process involves more computation than its corresponding resolution.

In the resolution process, solution to the original equations are obtained by solving the
following pair of equations:

[k }{G} = {W'} (4.53a)
[Kyl{x} = {G} (4.53b)

where {G} is introduced to facilitate the separation [4.30]. The solution to Eq.(4.53) is
trivial. Fori=2,3,---,n:
G =W (4.54a)

G; = W; - > K| G (4.54b)

and fori=n-1,n-2,---1:
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Xn = Gp/Ky_ (4.552)

n
X; = | G; —jglKUinj /Ky, (4.55b)
Eq.(4.54) is called 'forward elimination' while Eq.(4.55) is called 'back substitution'. It
is very easy to use vector dot product routines in forward reduction and back
substitution. As mentioned before, the solution efficiency can be greatly enhanced if
modern machines are used which are vector oriented.

4.5.8.3 Frontal methods versus active column profile

The frontal methods will be more efficient than band solution methods because the
front width is smaller than the band width (when mid-side nodes are present). This
statement is true for active column profile methods also. There is, however, more than
a simple measure of front versus band or profile width that enters into the cost and
time involved in solving equations. For the discussion here we restrict our comments
to symmetric equations. The profile and band solution methods perform the triangular
decomposition of the effective stiffness matrix by working from the first equation to
the last. On the other hand, the frontal scheme works element by element (solution
efficiency is a function of element order, not node order), forming only that part of the
stiffness matrix belonging to the front. The other limitations are that the front stiffness
must fit into the core and usually there is an extensive amount of transfer of
coefficients before elimination. On the other hand, the active column profile solution
method will require considerable amount of efforts to assemble the global effective
stiffness matrix when many blocks are involved to store the total array. The issue is not
clear as to which is the better method [4.37] and it is the choice of individual users to
select between the two. There is no question that the active column profile is superior
to conventional band solution methods.

4.5.8.4 Special considerations for Model 3

It has been mentioned before that the global stiffness matrix changes with the tether
inclination angle. So a time-incremental-iterative approach cannot be avoided for
Model 3 analysis. The modified Newton-Raphson algorithm is used to update the
effective stiffness matrix in each time station. This updating frequency can be changed
(e.g. once in two consecutive time stations) but it would increase the number of
iterations in each time step. Although the triangular decomposition of [K*] is not
necessary in the iterative loop but ‘forward elimination’ and ‘back substitution’ cannot
be avoided. DCATLP uses the routines developed by Prof. R.L. Taylor [4.37]. They
are highly efficient in the ‘decomposition’ as well as ‘resolution’ process. For a similar
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problem a frontal method may involve more coding details and an extensive amount of
coefficients movement before elimination.

There is another problem with the environmental forces. In many finite element
problems the external forces at t+At are known in advance and at the equation
solving stage, displacements are calculated iteratively so that the internal restoring
forces can match the external ones [4.17]. The environmental forces cannot be
estimated independently because a TLP exhibits compliant characteristics. In DCATLP
the external loading at t+At is determined with a set of assumed values of TLP
responses. The next cycle of iteration starts with the computed values of responses in
the previous iteration cycle. So the structure and the external forces together ‘decide’
the dynamic equilibrium position at each and every time station. This in fact imposes
some restriction on the selection of time increment value because convergence is
expected from both sides.

4.5.9 Time Integration Scheme

The natural heave, roll and pitch periods of a TLP are usually less than 5 seconds
because of high stiffness in the vertical direction. The explicit methods of time
integration are avoided here because they only produce reasonable results at a very
small time step for their dependence on the smallest natural period of the structure.
Moreover, in the analysis of Model 3 the convergence at every time step is expected
from both sides: the external as well as internal resisting forces because of their
dependency on each other. As mentioned before, it puts further restriction on the time
step selection. So a large step integration method for non-linear systems is necessary.
LUSAS can perform implicit or explicit step-by-step dynamic analysis with various
combinations of governing parameters. But to be consistent with DCATLP, Newmark-
B integration scheme for linear systems is selected in LUSAS for analysing Model_2.
The time integration algorithm used in DCATLP does not come straight from any
publication. It is a variation of the original Newmark-3 scheme. The algorithm is an
effective combination of those proposed in Ref. [4.17], [4.6], [4.5] with two major
modifications. The expressions for [K*] and {W*} in DCATLP have been derived from
first principles. At present there are various algorithms available based on the finite
difference equations originally proposed by Newmark [4.26] but still the author
believes that the derivations given in Section 4.5.9.1 are not any reproduction of any
published material. But some mathematical manipulations of finite difference equations
are followed from Chan et al [4.9]

4.5.9.1 Effective stiffness matrix and modified load vector in DCATLP
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It is perhaps better to state the original dynamic equilibrium equation before any

derivation:
M{X} + [B{X} + [K}{X} = {W(1)} (4.56)

Various implicit methods have their origin in the following Taylor series:

ae
6

At?

Xl = (% + (0,86 + (0,5 + (9,

(4.57)

where (n+1) and (n) are the time stations at time t = (n+1) At and nAt respectively.

Newmark assumed that the terms of power 3 and higher could be allowed for by a
term involving two terms of power 2 and a factor By;:

Xhnt = X + AKX, + G - BO)ACEK), + ByAP K,y (4.58)

The other parameter &y introduced by Newmark is set to 0.5 here for avoiding
numerical damping in the analysis. When &y is other than 0.5, numerical damping

appears in the calculated responses [4.26] which might be confusing when interpreting

the results with environmental damping present in the system. So the equation for
velocity calculation with 8y = 0.5 is:

Xt = (K + %({X}n + (Gan) 4.59)

Eq.(4.58) and (4.59) are the finite difference approximations proposed by Newmark.
Now for the derivation of {K*'} and {W*} we consider the dynamic equilibrium
equations at time t = (n+1) At and nAt respectively:

IMIXK)y + Bl + KiXsr = Whn - (4.60)
MIX}, + BEX), + KX} = (Wh (4.61)

Multiplying Eq.(4.60) by By At? and Eq.(4.61) by 2(3 - By)At? and adding:

IM]AC B + 24 - B + BIACBN{X}u + 2G - By){X3n)
+ [KIAC B {X}n + 2 - B)X) = B AP W}y
+2(4 - Ba)AP (W}, (4.62)
From Eq.(4.58):

1 - BARKY, + By AP K = (K - X0, - ALK, (4.63)

We will expand the term At(By{X}p1 + 2(3 - Bn){X}n) as:

S0 + ¢ - BoAR, + By Aty - (K)
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A
2
2 2

~ By AR, + 2By ALKY, + By ALK e)

(Kot - (0 + MO - 28y) 5 A2 (1 - 4By))  (464)

=240, + ¢ - BoAR), + By (X, + ()

= (At{x}n - 2BNAt{X}n + At{X}n + {X}n - {X}n

N | =

N | =

Using Eq.(4.64) and (4.63) in Eq.(4.62):
MI(XK}yer - X - AR, + G - B)ABERY,) +
CLBIKh - 00 + A(1 - 28y) - AR, - 4By)) +
[KIACBN{Xn1 + 2 - BN)a) = By AC{W}y
+2(% - By)A (W}, (4.65)
Rearranging Eq.(4.65):
M) + SH(B] + By APIKD X = AP Wyt + 26} - Br)ACW), +
IMI({X}, + At{X), - G - B AP, - 2[KIAC (G - By) (X, +
ELBIX0n - At(K,0 - 2By) +oACELA - 4By (466)
The right hand side of Eq.(4.66) can be simplified as:
(M1 + ZH[B] + Py ACKD Xy = Py AP Wiy + 26} - B)ACQM] 0, +

[B] X},) + IMI({X}, + At{X}, - G - By)AE(KY,) +

At

[BIC00, - 8200, - B) +o-00a(1 - 4By)  (@67)

@] + %[B] + By ARIKD (g1 = By AW}y +
IMI((X}, + At{X), + (G - By)APXY,) +
At 2 1 At3 -
BIC XK + 820G - B) +5-00,0 - 4B)  (469)

Eq.(4.68) gives the relation between time station (n+1) and (n). It is quite easy to find
similar relationship between (n) and (n-1) time station by replacing the subscript 'n+1'
by 'n' and 'n' by 'n-1"
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(M) + SHB) + By ARIKDX, = By AW, +

IMI({X}py + At{X}y + G - Ba)AR(K),) +

(B 00 + A2 (a5 - Br) +A—t{X}nl(l S aBy) (469

Defining 6{X} = {X}nﬂ - {X}, and subtracting Eq.(4.69) from Eq.(4.68):
M) + LB] + By APKD 00 = Py AR W)y - By AC (W), +

IMI({X}, + At{X}, + G - Ba)ARXD,) +

[B](—{X},. + AR, - B) +-A—t-{X},,(1 - 4By)) -

IMI(X}, + At{X}, + G - B AEK),) -

[B](—{X},,l + AR - B) +A—t{X}n1(l -4y (470)

Eq.(4.70) is very important in deriving [K*] and {W"}. But it needs few mathematical
manipulation specially on its right-hand-side. First, the terms with [M] on RHS of
Eq.(4.70) can be simplified:

IMIEX, + AtX}, + (G - By)AC(XY,) -
MI(X}hy + At{X}y + (G - B AP (K),,) =
IMI (X} - X - At{Xg - G - B AR )
+ ALK, + (% - BR)ALE,) @
But from Eq.(4.58):
X - K - At - G - BO)ACK = Buat(X),  (472)
That provides a compact expression for Eq.(4.71):
M (X} - 0 - A - G - B) AP {KD,)
+ ALK, + (G - Bo)APXY,) =
[MI(BNAT(X), + ALY, + (3 - B)AC(X),) (4.73)

The main aim of this manipulation is to eliminate the terms from (n-1) time station and
that is very important and explained later. Now we concentrate on the terms with [B]
on RHS of Eq.(4.70):
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3 ..
[BIGH00, + AP0, - B) + 50401 - 4B -

1 A

(B 00 + ARG - B) +5(aa(l - 4B)) =

At?

[BX %({X},, + A, + S-0,) - BeAR(OR, + AR,

At?

- %({X}n-l + MM, + -0 + ByAP(Ds + A1) 4T4)

Interchanging few terms in Eq.(4.74):

At?

[BY SH (@0 + A, + S0, - BuAR(E0, + A3,)

At?

- S (K + A8+ - 0) + PaAL (X + A1) =

[BX (000 - 00 - M) - BRAP (K + At(),)

a2
2

_ma?
2 2
From Eq.(4.58):

Ko - AXY, - —3,) + BeAP (X + AHXY,)  (4.75)

2 .
X - X - AtX}, = BAPES, + ATt{)"(}n-l - BA (K} (476)
Utilising Eq.(4.76) into Eq.(4.75):
[B 500 - B - A1) - BuAC (0, + At(y)

st
2

At At

- —2‘(—2—{X}n-l - AH{X}, -

Xa) + BuAP (X + AHK),)) =

2 .. . .o
(B S BnAP (R, + - (0 -ByAP () - BuAP(E, + At0,)

2 . 2 .o . ..
- SHE R - A0, - S00,) + BuAC (R + At,)) =
3 3 3 2 ]
[BY 500, - By + By - 0001 + -0 - BuA?0,
+ BnA (X)) 4.77)

3
Adding and subtracting [B] By ATt (X}, in Eq.(4.77):
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At?

3 3 3
[BY S0, - By (0, + By 5001 + -0, - BAT R,

+ BNA (X}p) =

BIBNAP(Kas + 2100, + 22050, + 205, - pac(s,
+ AP, - ) 4.78)
But from Eq.(4.59):
K = (o + 2% + 20, (4.79)
Putting Eq.(4.79) into Eq.(4.78):
At

[BY BAP (s + 500 + SH00) + S0, - BuAPE,

+ ARG - ) =

At

[BIBNARC0, + - - BuAC (0, + AR, - b)) (480)

So the final form on the right-hand-side of Eq.(4.80) does not have any term from (n-
1) time station. Eq.(4.73) and Eq.(4.80) are useful in rearranging Eq.(4.70):

(M] + %[B] + BNAP[KD (X = ByA{W), - By AC{W), +

[MICBA? (X}, + At(X}, + (3 - Br)AP (X)) +

a0
4

Now multiplying Eq.(4.61) by BNAt2:

[BI BAC (0, + S0, - BuAP (0 + AC 005 - B))  (481)

~By A {W}, + ByA MK}, + ByAP[BI{X), = - BNAP[KI{X), (4.82)
So the final form of Eq.(4.81) is:

(M) + ZHB] + Py APIKDEX = BydP(Whot - [KI(X) +
MICAt X}, + (G - BACR),) +
[BIAPC.( - Br) + APLL G - B)) @83)

Eq.(4.83) has some special characteristics. It does not have any contribution from (n-
1) time station. All the terms are related to the present time step except the external
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load whose value is required at the immediate future time station. If the nature of
external force is known (i.e. if it can be predicted beforehand), the solution of
Eq.(4.83) would be straightforward. Otherwise, if it is dependent on structural
displacement and velocity, it should be extrapolated and finally found through
iterations.

Damping is very important to establish steady state responses but there is no need to
store [B] as a separate matrix in the analysis. So [B] is eliminated by substituting
Eq.(4.33) into Eq.(4.83):

(I + ag 0 + KIBNAE + B 2 3(X) = Bl (Wheyr +

2 2 3
M (B0 (At + ar 5 - arByA®) + (Rhy(S—- A + ag S -ag fuaf))

. 1 . 1
+ [K](- ByAE (X}, + BrAC(X), (7 - Bo) ¥ BRAtZ{X}n(E - Bn)) (4.84)
Now we define the effective stiffness matrix and modified load vector as:

(] = 10 + axSh + IBNA + B2 @ssa

{W'} = BNAE (Wi +

2 2 3
M (), (At + ap S - or PuA®) + (ha(C- BuA® + ag S - rat)

.1 -1
+[K]1C BNAT (X + BRACKh( - By) + BrA(Xa(S - By)) (485b)
So Eq.(4.83) takes a very simple form for solving incremental displacement vector:
[X']sexy = {w'} (4.86)

The flow chart in Fig. 4.51 is in a better position to explain the iterations involved. For
Model 3 analysis, the widely known parameters, 8y and 6y are set to 0.25 and 0.5 for

highly accurate predictions within O(At®). One point should be noted here that [K],
[M] and [K*] are never stored in a square matrix format for avoiding sheer waste of
computational effort and storage. The algorithm deals with these three matrices in
compacted column architecture. But the calculations, specially multiplications of
matrices become complicated when only the non-zero coefficients of a large square
matrix are stored in an one-dimensional array. So additional routines were necessary
while developing DCATLP to maintain a general flow in the predictor-corrector
algorithm while working in the compacted column storage mode.
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4.5.9.2 Algorithm used by LUSAS for Model_2
Although LUSAS can perform 'theoretically elegant non-linear analysis' [4.4], only a
linear standard Newmark-f integration scheme (By = 0.25, 8y =0.5) has been used

for analysing Model_2 in LUSAS. Both three and four point recurrence algorithms are
available in LUSAS. They are multi-purpose schemes derived using a weighted
residual approach [4.21]. The algorithms are very general and many commonly used
schemes may be obtained by using the appropriate weighting functions. For the sake of
completeness the Newmark constant-average-acceleration method used for Model 2 is
briefly discussed below.

Initial Calculations :
1) Formation of global stiffness matrix [K], mass matrix [M] and damping matrix [B].
2) Initialisation of X}, {X} and {X}.
3) Selection of time step size At, parameters By and Oy

Sy = 0.50 By = 0.25(0.5+8y)? (4.87)
4) Calculation of integration constants:

1 8y 1 1

Co= =7 G = ; G = o= G = o= -
O BeAt?T T ByAtT P BeAtT 0 2By

C, = L ; Cs = iA—t(@i - 2); Cg = At(1 - 8y); C; = 8yAt (4.88)
Bn 2 By

5) Generation of effective stiffness matrix : [K*] = [K] + C,[M] + C, [B]
6) Triangularisation of [K"]: [K"] = [Ky][Ky]

For each time step:

1) Calculation of modified load vector at time station (n+1):
{wip =W+ MG + G + iR
+ [B] (CI{X}n + C4{X}n + CS{X}n) (4'89)

2) Solution for displacements at time station (n+1):

(K} Ko]- (X} = (W'}, (4.90)

3) Calculation for accelerations and velocities at time station (n+1):
X1 = Co (K- Xh) - C2K - C3(X), (4.91a)
Xt = X + CoiXhn + Cr{¥lnn (4.91b)
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The algorithm is straightforward and the triangular decomposition of [K*] is required
only once. This is a great advantage of a linear dynamic analysis. As explained earlier it
is only possible for Model_2 because tethers are replaced by springs in each corner.

4.5.10 Internal Resisting Forces

The actual displacement of a TLP hull can be assumed as a superposition of two types
of displacements. The hull under the action of environmental forces would have
infinitesimal strains measured in a body-attached co-ordinate frame while this frame
undergoes large rigid body translations and rotations. The rigid body displacements are
of interest to a hydrodynamist but the strains are of more importance in the context of
structural design of TLP components.

The small differences in displacements (translational and rotational) in two nodes of a
3-D beam element give rise to stresses. From the sectional properties of the element
the internal resisting forces can be calculated. The computation procedure followed in
DCATLP is only applicable for 'small strain' cases [4.4]. The calculation is done for
each element in a specific group for all time stations. The groups are to be defined
before the analysis starts. For example, a group may include all beam elements
representing all corner columns. Otherwise, a group may consist of only few elements
where higher values of internal forces are expected. This internal resisting force
calculation is done only once in a time station and that is after achieving the required
convergence. Let us consider a beam element AB at an arbitrary time station. In the
first step six displacement values at node A and B (total twelve) are extracted from the
converged global displacement vector {X}. The transformation matrix [T,] for element
AB is then calculated based on the dynamic position of AB at that time station. [T,] is
then used to find twelve displacement values in local co-ordinates at A and B from the
following:

{x¢} = [m){x¢} (4.92)

Once displacement values are found in local co-ordinates, the internal resisting forces,
{E} can be simply calculated from the following:

{E} = [kf]{xs} (4.93)

Calculating {E} for many elements in different groups at each and every time station
for searching the maximum values must be time consuming. But this time consuming
search does a good job because it works automatically and it considers a very large set
of time varying load cases on the platform. It is in fact calculating the internal forces in
TLP components under the action of time varying environmental, inertia, damping and
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restoring forces. This automatic, elaborate, element-by-element calculation is
extremely difficult if not impossible, if the structural calculations have to depend on
separate hydrodynamic analysis.

It is possible to avoid the matrix multiplication in Eq.(4.93). There are quite a few zero
coefficients in [K'f] So the analysis would be significantly faster if the results of the

multiplication are programmed:

E(l) = EYA[x"(l) X¢ (7)] (4.942)
EQ2) = IZEYI 2[X5(2)- X[ (8)] + 6EYI 242 [X5(6)+X5(12)]  (4.94b)
E(3) = 1—Z—i—;(—ll[x?(3)—x;°'(9)] - 6—172{—Y[X?(5)+Xf(11)] (4.94¢)
E(4) = gISJJ—"[)(}*(4)-)(}’(10)] (4.94d)
E(5) = -6EL‘2’IY [X‘;(3)—X;"(9)] + 2EA y[x (5)+1x§ (11)] (4.94¢)
E(6) = 6EL§IZ [Xf(2)-X5(8)] + 4EYI 2[X5(6)+3Xf(12)]  (4.940)
E(7) = -E%é[xm)—X?(n] (4.94g)
E(8) = IZEYI 2[X§(2)- x,(S)] 6EYI [X, (6)+X§(12)]  (4.94h)

E(9) = -lziYIY [X53)- x,(9)] [xe(5)+xe(11)] (4.94)

E(10) = -

(4.94))

E(11) = -EEL%I-![X (3)- x,(9)] YIY[JZ-X?(S)+X?(11)] (4.94K)

E(12) = GiYI [

XF(2)-X5®)] + =0

1X5(6)+X5(12)]  (4.941)
Eq.(4.94) appears to be much more complex than the simple straightforward
presentation in Eq.(4.93). But the number of basic numerical operations is much less in
Eq.(4.94). Eq.(4.94) highlights another aspect of internal force calculation. All these
equations find the forces based on the differences in displacements in two nodes of an
element. So the rigid body motion of the element does not affect the force calculation.
But it should be kept in mind that rigid body motions do change stresses in structures
in some non-linear theories (e.g. Cauchy stress changes due to a rigid body rotation of
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the material but not 2nd Piola-Kirchhoff stress tensor [4.4]). The length of the element
in Eq.(4.94) is the original unstretched length. It has been said before that the heave
responses in this chapter include the initial stretch in tethers. This is important in this
context because the initial stretch is necessary in the internal force calculation to reflect
the tension fluctuation and its average magnitude.

This resisting force calculation depends on dynamic position and external nodal forces
on elements. So it varies with time. DCATLP finds the maximum values of {E} in an
element group at each time station and writes them to an output file in simple text
format. The number of this type of output files is the same as the number of element
groups. So at the end of a run each output file would contain the maximum values of
{E} at each and every time station for a specific group of elements. Out of twelve
coefficients of {E}, only six are necessary for further analysis. E(1) would indicate the
axial tension or compression in the element and E(7) is not necessary. The other five
required values are of shear forces in two vertical planes, bi-axial bending moments
and torque. The maximum value of torque recorded by DCATLP in a specific element
group at a particular time station may not correspond to the element where maximum
axial tension or compression occurs. The six coefficients of {E} recorded may
correspond to different elements in the same element group at the same time station.
But different type of recording is also possible.

4.6 ENVIRONMENTAL LOADING AND RESPONSES

For numerical demonstration a regular wave of 18 m height and 17 seconds period is
passed through Model 3. The selection of this wave height and period is based on the
actual observations of peak storm events in the Hutton site in the period 1984-1988.
But it should be kept in mind that the water depth for the ISSC TLP is three times
more than that in the Hutton site. So it would be always a good idea to process the
load effects in a reliability analysis instead of putting them straight into the design. The
18 m high wave propagates along the global X axis. Zero wave heading angle is
purposely selected to eliminate the sway response of the platform. In Section 4.6.1 the
dynamic relation between the platform surge and heave are shown with the help of
Mathematica. It is difficult to interpret such results if sway motion is present along
with surge and heave. One hour average wind speed at the reference height H,,, is
taken as 30 m/s. The Department of Energy [4.14] recommended current profile in
this numerical study has been discussed already in Chapter 2.

In Section 4.4 some numerical results are presented with two different Rayleigh
damping levels. In one damping level oy and By are both 1%. and in the other, they
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are both 2%. It has been shown that the difference in response due to this change in
damping is not significant. But the solution under the action of a sinusoidal load
becomes steady after a long time when oy and By are both 1%. For achieving quick
convergence in connection with the steady state response, oy and By are both 2% in
Figs. 4.58-4.66 and Figs. 4.69-4.93. In Figs. 4.94 and 4.95 surge and heave responses
for two different damping levels are compared. The difference is insignificant.

Figs. 4.58 and 4.59 show the total surge and heave force on the platform. The net
resultant force in the heave direction includes the difference of platform weight and
variable buoyancy. So it is not actually the total external force in Fig. 4.59. Figs. 4.60
and 4.61 present corresponding surge and heave responses. It is not computationally
convenient to sum each component of environmental loading separately at all free
nodes of the structure in each time step. But the very recent trend in industries [4.3] is
to analyse different loading and response components separately in frequency domain.
So in line with this recent trend environmental loading components are separated in
DCATLP and plotted in Fig. 4.62 onwards. The wind force in Fig. 4.62 varies with
time because of the relative velocity model in Eq.(2.64). The most important force
component is shown in Fig. 4.63. The wave inertia includes the main wave drift
component (see Chapter 2) because calculations are done considering the displaced
dynamic position of the TLP. The drift is not much pronounced in Fig. 4.63 because
MacCamy-Fuchs' theory is valid only up to SWL, not the free surface. But there are
other closed-form drift and second order correction forces present in the analysis to
take care of this discrepancy. The steady state offset of 40 m in Fig. 4.60 is largely due
to the wave-current-motion interaction force in Fig. 4.64. The average magnitude of
this interaction force in a wave cycle is quite large and the reason is further
investigated in Figs. 4.65 and 4.66. The horizontal velocity along global X axis at node
90 (see Fig. 4.9) is given in Fig. 4.65. As discussed earlier velocity at node 90 can
represent the rigid body velocity of the TLP hull. The maximum magnitude of velocity
in Fig. 4.65 is around 1.7 m/s under the action of all components of environmental
loading. The wave-current-motion interaction force is calculated in DCATLP from
Eq.(2.66) in Chapter 2. It is interesting to note that the interaction force in Eq.(2.66)
would attain its maximum magnitude when the hull moves against the wave and
current flow. This is examined in Fig. 4.66. The wave and current flow are in the
positive X direction. But when the structural velocity is negative the interaction force
is greatly amplified. Please note that Cp for TLP components are kept constant in
wave cycles. Perhaps that may not be true in reality and further research is required in
this complex area of hydrodynamics. The steady potential and viscous drift force
transfer functions are plotted in Figs. 4.67 and 4.68. The regular wave for this
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numerical demonstration is of 17 seconds period. From Figs. 4.67 and 4.68 we can see
that the steady drift forces at 17 s wave period are negligible for the ISSC TLP. So
second order correction and steady drift forces are 'extracted' together as a group and
plotted in Fig. 4.69. The difference between variable buoyancy and platform weight in
Fig. 4.70 is the major component of tether tension. Figs. 4.71 and 4.72 present wave
inertia and interaction force on Model_3 in the vertical direction.

It is not straightforward to estimate the pitch response of the platform from a finite
element analysis. Translational motions at any node on a TLP hull approximately
represent its rigid body translational motions. But when rotational movements are
concerned, an average should be calculated from the platform geometry and
translational motions at different nodes. This is because rotations in a finite element
refer to that element only. The element rotation does not have any relation with the
whole structure in general. The pitch response in Fig. 4.73 has been calculated from
vertical motions of four nodes (66, 78, 90 and 102 in Fig. 4.9). The dynamic
inclination angles of two pontoons (one joining node 66 and 78 and the other joining
102 and 90) are calculated at each time station from instantaneous vertical positions of
four nodes. The pitch response in Fig. 4.73 is the average of these two inclination
angles. A 'close up' view is also given in Fig. 4.74. The pitch response is in good
agreement with the first order pitch transfer functions published in Ref. [4.31], [4.33].

The maximum pressure and internal resisting forces are important in the context of
structural design and subsequent reliability study. The maximum hydrodynamic
pressure on all four columns at each time station is plotted in Fig. 4.75. The maximum
values (for all four columns) of axial compression, torsion, bi-axial bending moments
and shear forces in local y and z directions are shown in Figs. 4.76-4.81. The peculiar
nature of these curves are not important because they very much depend on the
external forces acting on the structure. As explained earlier the maximum value of any
internal force for an element group may 'shift' from one element to another within a
wave cycle. The similar plots for pontoons and tethers are in Figs. 4.82-4.87 and Figs.
4.88-4.93 respectively. Please note that columns are always under compression in this
numerical demonstration because of the action of deck weight and hydrodynamic
pressure under the column bases. On the other hand, the tethers are always under
tension. But the elements representing pontoons may be under tension or compression.
So maximum values of tension as well as compression in pontoon elements are shown
in Fig. 4.82. Zero compression indicates that all elements at that instant of time are
under tension. For tether elements, the local y axis coincides with the global Y axis.
This is only true for Model_3 mesh. There is no external sway force in this numerical
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study. So the internal shear forces in the tether elements are very small in the global Y
direction as expected. The bending moment about their local z axis is also very small
whereas the bending moment about their local y (i.e. global Y in this case) axes is
substantial. This bending moment actually comes from the end-fixity of four boundary
nodes (i.e. 154-157) and should be interpreted very carefully.

It is quite natural to expect small values of shear force in the global Y direction for
columns similar to the tether elements. But column elements are under compression
and belong to a rigid frame work of the deck grillage and inter-connecting pontoons.
So bending moments and shear forces are substantial and of the same order in both
vertical planes.

Similar results can be reproduced for different damping levels. But slight change in
damping does not have any significant influence on the responses. Figs. 4.94 and 4.95
compare surge and heave of Model_3 with both ay and Bg as 1% and 2%. The
deflection shape of an equivalent tether in the steady state motion is plotted in Fig.
4.96 for a complete wave cycle. It is interesting to notice the influence of end-fixity at
the boundary nodes at the sea-bed level. The deflected shape looks like a deformed
cantilever but an improved tether model with flex joints at the sea-bed should eliminate
this minor discrepancy. Fig. 4.96 is drawn in scale and it is difficult to realise the
dynamic set-down because the vertical axis in the graph covers 415 m. The tether is
under high tension and the additional set-down effects as discussed in Section 4.4 are
not quite apparent. The nodes along the equivalent tether are plotted as very small
“circles. The difference between two consecutive time stations in Fig. 4.96 is one
second. The tether shapes in station I and XVIII are more or less identical because the
next response cycle starts from station XVIII.

4.6.1 Interface with Mathematica

Mathematica from Wolfram Research is a powerful software for doing mathematics by
computers. Mathematica can communicate at a high level with other programs and it is
possible to set up a complete front end or control system in an external program which
can call Mathematica as if it were a subroutine [4.36]. At present, Mathematica is used
to read data in FORTRAN format generated by DCATLP and to send graphics to a
generic PostScript output device. A three-dimensional graphical presentation is more
significant in structural dynamics since the results become more visible and conclusions
can be easily drawn. Fig. 4.97, a typical output from Mathematica is an ideal example
because it actually represents the inverted pendulum like movement of a TLP which is
beyond the scope of two-dimensional graphics.
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4.7 CONCLUSIONS

One important conclusion in this study is about the spring models of tethers. The ideal
horizontal spring stiffness, T /L, can provide reasonable estimates of the platform
surge or sway response but tethers do not behave totally like springs in the vertical
direction. Their behaviour in the vertical direction can only be understood from a hull-
tether coupled analysis.

The importance of damping has also been demonstrated in this work. For steady state
response calculation in time domain, damping in the system is essential. Otherwise the
free vibration part in the transient state of response will not die out in the course of
time. This may create confusion if the results are compared with frequency domain
calculations.

DCATLP has been started with different initial conditions for verifications but the
steady state response found is the same in all cases, as expected. The unsteady part
depends on the initial conditions and if it is of interest (e.g. for estimating reactions of
some impulsive loading) it is possible to start the analysis with specific values of offset,
velocities and accelerations.

DCATLP can handle a large set of time varying load cases on a TLP. It also calculates
the internal forces in TLP components under the action of time varying environmental,
inertia, damping and restoring forces. This automatic, elaborate, element-by-element
calculation is extremely difficult if not impossible, if the structural calculations have to
depend on separate hydrodynamic analysis.

One discouraging aspect of the program is that calculations involved are far from
simple. On a SPARC 514 machine DCATLP takes around 80 minutes CPU time to do
all calculations for one thousand time stations. The real time spent is slightly more than
80 minutes when the machine is not shared by other users. But on an ‘entry level’ 486
PC it would take much more time to complete the same task. In this context perhaps
we should remember that the computing world and associated hardware are improving
dramatically. Not many years back people had to pay for using remote computers.
Developing codes at that time was not easy. Nowadays there is a trend of purchasing a
computer rather than a calculator! The big organisations have several computers and
the cost of computation has practically come down to the electrical power
consumption. In the fast changing world of parallel processing very complicated
calculations are processed without any difficulty [4.19].
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It should not be difficult to improve the capabilities of DCATLP. It can handle
irregular and random waves without much modification. The environmental loading

module can calculate forces from a number of regular waves and superimpose them

together to form the right-hand-side external load vector. A random wave signal can

be separated into a number of regular wave components through FFT (Fast Fourier

Transformation). Standard FFT routines are available in the NAG library (from The

Numerical Algorithms Group Ltd.). So it should not be a problem to handle site data in
the immediate future extension of DCATLP.
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Fig. 4.4. Elements on the Deck Grillage
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Fig. 4.32. Damped Surge Response of Model_3 under Sinusoidal Load of 12.5 s Period
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Fig. 4.33. Damped Heave Response of Model_3 under Sinusoidal Load of 12.5 s Period
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Fig. 4.36. Nearly Steady Surge Response of Model 3 under Sinusoidal Load of 12.5 s Period
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Fig. 4.37. Nearly Steady Heave Response of Model 3 under Sinusoidal Load of 12.5 s Period
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CHAPTER 5

RELIABILITY
ANALYSIS
OF TLP COLUMNS



5.1 INTRODUCTION

This chapter presents some calculations necessary to utilise the results from dynamic
analyses of TLPs done by the program DCATLP. DCATLP treats TLPs as coupled
systems where the structural modelling involves 3-D beam and joint elements. But a
TLP is a continuum structure rather than a framed one. Large diameter columns and
pontoons of a TLP should be modelled with plate, shell and/or brick elements rather
than 3-D beam elements. But an analysis involving plates, bricks or shells is often
complex and time consuming, both to set up and run (see Chapter 6). Moreover, the
calculations done by DCATLP with 3-D beam and joint elements are far from simple
and the introduction of any other higher order element will bring additional
complexities. Still it is also necessary to draw useful conclusions from the results
produced by DCATLP so that they can help the design process.

There are two different ways to make use of the response results from DCATLP. The
internal resisting forces calculated by DCATLP in elements of TLP members can be.
carefully used to define boundary loads with suitable support conditions in a local finite
element analysis. The local analysis with the boundary loads from DCATLP would be
of very general nature because the especial TLP characteristics would no longer be
present. A local FE problem of such type can be solved by a general purpose software
such as LUSAS, ABAQUS and others. The analysis may utilise powerful features of
such packages by using higher order advanced elements in non-linear environments.

A reliability based assessment is another way to use DCATLP results in TLP design.
This report shows an example where the design of the ISSC TLP [5.13], [5.15] corner
columns is assessed based on probabilistic safety level measure in terms of a reliability
or safety index, B which is directly related to the risk of buckling failure of the
columns in the bay instability mode. The reliability index explicitly accounts for
possible variability or uncertainty in the strength and load parameters. This chapter
presents the calculations done by a program, BCCNNV (Beta Calculation of
Correlated Non-Normal Variables). The source code is based on the well known
Advanced First Order Second Moment (AFOSM) method where the expansion of the
failure surface is carried at the 'design point'.

It has been explained earlier in Section 4.5.10 that DCATLP calculates internal
resisting forces for each element in a specific group for all time stations. The groups
are defined before the analysis starts. For example, a group may include all beam
elements representing all corner columns. Otherwise, a group may consist of only a
few elements where higher values of internal forces are expected. This internal resisting

5-1



force calculation is done only once in a time station and that is after achieving the
required convergence. Figs. 4.75-4.81 (see also Ref. [5.4] ), represent maximum axial
compression, torsion, shear forces, bending moments and hydrodynamic pressure on
columns of the ISSC TLP. The next section describes how these graphs can help us in
calculating load effects appropriate for limit state functions defined according to API
Bulletin 2U [5.2] and TLP Rule Case Committee Model Code [5.5].

5.2 LONGITUDINAL AND HOOP STRESSES

Figs. 4.75-4.81 are based on a particular load case which represents a peak storm
event for the ISSC TLP. Instead of describing it as a load case it might be more
appropriate if it is called a 'load set' because the environmental loading changes rapidly
with time and DCATLP does account for this change. However, the load set in this
context specifies wave height, period, wind and current speed at various water depths
and corresponding heading angles. There might be several other worst combinations of
the environmental parameters. In a reliability analysis, these possibilities are taken into
account by assigning a coefficient of variation (COV) to the load effects. The strength
variables of the structure such as thickness, yield stress etc. may have lower COV
values because their distribution types and variations have been more or less
established through extensive experiments in the past and do not in general involve as
much uncertainty as in the case of environmental load effects. The distribution types
and variations of environmental load effects are less known.

To calculate the mean longitudinal and hoop stresses for reliability calculations, the
maximum values of forces, moments and pressure are selected from Figs. 4.75-4.81.
These maximum values, shown in Table 5.1 are time independent and refer to the
particular load set considered in Chapter 4. The selection of maximum time varying
loads on the TLP columns in a peak storm event for calculating mean applied stresses
may sound very conservative. According to the TLP Rule Case Committee [5.5], for
practical purposes the mean of the load-effect variables refers to their extrema. But
non-simultaneous occurrence of the load effect extreme values should be accounted
for. But here simultaneous occurrence of load effects is assumed and appropriate small
COV values can be later on assigned to the applied stresses calculated from the load
effects. However, there are some other reasons behind this selection. We are interested
in the ultimate buckling failure of TLP columns. Perhaps in other modes of failure (e.g.
fatigue) the forces, moments and pressure values should not be selected from the
extreme values. Secondly, we would like to avoid computations with other load sets
for the selection of applied stresses.



The stresses in stiffened cylindrical shells will differ from the membrane stress in
unstiffened shells because of the load sharing effects of the stiffeners. In this report, the
stress calculation from load effects mainly follows the instructions in API Bulletin 2U
[5.2]. However, two limit state functions for combined loading are taken from API and
the RCC Model Code. The limit state functions are used in the reliability calculation
where the total longitudinal and hoop stresses are given as input.

Table 5.1. Maximum Values of Forces, Moments and Hydrodynamic Pressure

on ISSC TLP Columns
Description Symbol Magnitude
Axial compression Pyt 73.71 MN
Torsion Ptq 46.02 MNm
Bending moment about local z axis Pomz 529.3 MNm
Bending moment about local y axis Pomy 498.8 MNm
Shear force in local y direction Pty 13.06 MN
Shear force in local z direction P 13.86 MN
Hydrodynamic pressure Pd 0.4406 MPa

For axial and bending stresses, the effective cross-sectional area of the column is
important. If the stringers are not spaced sufficiently close to make the shell fully

effective then the effective area should be used instead of the actual cross-sectional
area. The factor Q, is a ratio of the effective area to the actual area:

AS + bets

= = 5.1

Qa AS + bats ( )

A = 2Rt + NA, 5.2)

The total cross-sectional area of the column is given in Eq.(5.2).
P,
f, = & 5.3
: = ok (53)

The section provides calculations in detail wherever possible for future -discussions.
The ISSC TLP columns have been designed in Chapter 4 very close to an optimum
model in Ref. [5.5]. The Rule Case Committee considered their model as an illustrative
example for the purpose of demonstrating the applications of their new code. Table 4.1
presents ISSC TLP column design from their optimum model.
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Some parameters for the ISSC TLP columns:
A, = 189*19 + 300*15 = 8091 mm? (5.4a)
A = 2m*(8440 - 25/2)*25 + 60*8091 mm? = 1.8092 m?>  (5.4b)
b, = 27Ry /Ng = 2m*(8440 - 25/2)/60 = 882.5 mm (5.4¢)

b, comes from a lengthy calculation and here it shows that the shell between adjacent

stringers is not fully effective:
b, = 684.4 mm (5.5)
The factor Q, in Eq.(5.1):

+ *
Q, - 8091 + 684.4*25 _ | oocnn (5.6)
8091 + 882.5*25

Applied stress due to axial compression in Eq.(5.3):

£, = — 798 _ 4894 MN/m? (or N/mm?) (5.7
0.835767 *1.8092

Now it is necessary to combine bending moments about their local y and z axes:

Py = ,/Pﬁmngmz (5.8)
2
Py = 1/1>S2fz+1>sfy (5.9)

I

Combined moment

Similar to Eq.(5.8):

Combined shear

From Ref. [5.2]:

f, = —P"% (5.102)
QaTCRclte
te = tg + Ag/b, = 25 + 8091/882.5 = 34.2 mm (5.10b)

. 529.2472 + 498,77 *10°

b = 5 = 11414 N/mm?  (5.10¢)
0.835767*m*8427.5% *34.2

The main contribution to the total hoop stress comes from hydrodynamic pressure:

R
f, = pdt ° KoL (5.11)
S

For the column configuration in Table 4.1, Ko = 1.

0.440643 * 8440
25

= fy = 148.76 N/ mm? (5.12)

To calculate shear stress and torsional stress, the shear area of the column cross-
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section is required. It is not easy to find the shear area of a ring and stringer stiffened
circular shell. Instead of approximating to the shear area by using some empirical
formulae, it is calculated here by a program, CSSP in the VAS suite from BSRA.
CSSP uses the shear flow theory to calculate torsional properties of complicated cross-
sections. It has limited graphics output facilities [5.3] but no Graphical User Interface
(GUI). 1t is essential to prepare a data file by hand according to CSSP's specification.
But one shortcut route was identified during the preparation of data files for CSSP.
Just like any finite element software, CSSP requires node co-ordinates and element
topology. In fact, the main effort goes in the preparation of these two sections. So a
simple interface program has been written to extract node co-ordinates and element
topology from an incomplete LUSAS data file for writing them in a different format for
CSSP. The flow chart in Fig. 5.1 explains it more clearly.

The results from the shear flow analysis are shown in Table 5.2. Some parameters have
been already calculated (i.e. Case 1) in Chapter 4 for finite element calculations. The
shear deformation effects in bending were neglected for maintaining compatibility
between element mass and stiffness matrices. But in this section shear areas are
essential for calculating shear stresses. Agy and Ag, from Case 3 are used because they
are based on better assumptions (i.e. closer to the actual structure than for Case 2).
The model in Case 3 of Table 5.2 is shown in Fig. 5.2. If examined carefully it can be
seen that the model in Fig. 5.2 has flat plates between adjacent stringers instead of a
circular shell.

Command 'Incomplete’
File MYSTRO Data File
for Lusas
CSSP in Data File Simple
VAS for Interface
CSSP Program

Shear Areas
and other
Structural
Properties

Fig. 5.1. Preparation of Data File for CSSP in VAS from BSRA
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Py _ +13.0589% +13.8563°

f —
Ay 0.65261

= 29.18 N/ mm? (5.13)

PgRo _ 46.017*8.44

= 4.13 N/mm? (5.14)
T, 94.0194

ftq =

The total longitudinal and hoop stresses are calculated by summing the appropriate
terms:

fiong = fa + f, = 48.74 + 114.14 = 162.88 N/ mm? (5.15)
froop = fo * f + fig = 148.76 + 29.18 + 4.13 = 182.07N/mm?  (5.16)

The design variables together with their mean values, COVs and their distribution
types are tabulated in Table 5.3. The distribution types and COVs are selected based
on a similar study by Das et al [5.8]. The structural variables in Table 5.3 are random
in nature but still their variations have been more or less established through many
experiments. The variations in load effects in Table 5.1 are more difficult to verify. But
as mentioned before, the longitudinal and hoop stresses in Table 5.3 may be assigned
less COV values because they are calculated from the simultaneous occurrence of
maximum load effects. But their COVs are varied from 5% to 20% to examine the
change in reliability index.

Table §.3. Design Variables for ISSC TLP Columns

Yariables _No. | Distribution Mean COV (%)
Shell thickness 1 | Normal 25 mm 3
Radius (R.;) 2 Normal 8427.5 mm 5
Ring frame spacing 3 Normal 2200 mm 2
Welding parameter 4 Normal 4.5 12
X, (API Bulletin 2U) [5.7] 5 Lognormal 1.13 16.3
X,, (RCC Model Code) [5.7]] 5 Lognormal 1.09 24.8
Young's modulus 6 Lognormal | 208 kN/mm? 5
Yield stress 7 Lognormal | 391 N/mm? 7
Longitudinal stress (f},,,) 8 | Lognormal 162.88 520
Hoop stress (fhoop) 9 | Lognormal 182,07 5-20

The mean bias and COV of model uncertainty factors in API and RCC Model Codes
for combined loading have been evaluated by Das et al [5.8] from a population of 35
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cylinders. For the RCC Code, the mean bias is less but the COV is more than those of
API Bulletin 2U. The design variables are numbered for easy reference which might be
useful in viewing Table 5.5 and 5.6.

5.3 THEORETICAL BACKGROUND OF BCCNNV

A concise summary of the theoretical background of reliability analysis is given here to
explain the development of BCCNNV (Beta Calculation of Correlated Non-Normal
Variables). The author would like to avoid much repetition because the Advanced First
Order Second Moment methods have been discussed in great detail in many references
(e.g. [5.1], [5.10] and [5.16] ). But still some recapitulation of the underlying theory is
required in this section to explain the author's understanding of the reliability index.
The algorithm proposed by Rackwitz [5.12] is also discussed in brief since it forms the
main module of BCCNNV. Some of the equations in the next sections will be used to
explain the results presented in Section 5.5.

5.3.1 Linear Performance Functions

In a broader sense, the reliability of a structural system or any component may be
defined as the probability of performing its intended function or mission. The level of

performance will obviously depend on the properties of the system. The safety margin
of the structure, Zg, in this context can be defined in terms of a performance or state

function g(x;, X5,"---,X,) Where x;, X,,-----,x, are the basic state or design

variables. In this context, the 'safe state' of the structure is defined as follows:
Zsm = g(xli Xoyoreee ’xn) >0 (517)

The 'failure state' is Zg,, < O whereas the boundary separating the safe and failure
states is the 'limit state' defined by the equation Zy,, = 0. Geometrically, the limit
state equation, Z,, = g8(X;, X3,'**,Xp) = 0 is an n-dimensional surface commonly

known as the 'failure surface'. One basic definition of reliability index is the ratio of the
mean and standard deviation of Z:

p= lm (5.18)

Cz

'sm

In the case of a linear performance function this definition does not cause any
complexity especially when the design variables follow the Normal distribution. In this

connection, let us define the reduced variates:
xi - u Xj

X{ = —G— i= 1, 2, cere, N (519)
xA

1
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If the failure surface is portrayed in the space of the reduced variates, the safe state will
be on one side (i.e. g(x;, X,-:::,X,) > 0) with the failure state on the other side.
The probability of failure, P is the volume integral of the joint Probability Density
Function (PDF) of the design variables which is generally a formidable task. However,
Shinozuka [5.14] and other researchers have shown that the point on the failure
surface with minimum distance to the origin of the reduced variates is the most
probable failure point. Thus, in some approximate sense [5.1], this minimum distance

may be used as a measure of reliability and may be regarded as another definition of
the reliability index, B.

The above two definitions of B coincide when the safety margin is expressed as a

linear performance function such as:
g() = Co + D.Cx; (5.20)
i

The failure surface will be a hyper-plane and its distance from the origin of the reduced
variates will be equal to the ratio of the mean and standard deviation of the safety
margin in Eq. (5.18), provided the design variables are uncorrelated and normally
distributed. The reliability index in this case is:

Co + 2 Ciny,
. \/z(cicxi y

5.3.2 Advanced First Order Second Moment (AFOSM) Methods

(5.21)

For non-linear performance functions, there is no unique distance from the failure
surface to the origin of the reduced variates. The evaluation of the exact probability of
failure will involve multiple numerical quadrature for the integration of the joint PDF
of the design variables over the failure region (i.e. g(x;, x5,**-,x,) < 0). For
practical purposes approximation to the exact probability will be necessary. The
tangent plane to the failure surface at the most probable failure point [5.14] with
minimum distance to the origin of the reduced variates may then be used to
approximate the actual failure surface. Depending on whether the exact non-linear
failure surface is convex or concave toward the origin, this approximation will be on
the safe side or unsafe side respectively. This approximation forms the background of
AFOSM methods where the distance from the tangent plane at the failure point (i.e.
(xf , x;, ----- , x;) ) is used as the reliability index to represent the measure of
reliability.

For first order approximations the Taylor series is useful. Expanding Eq. (5.17) in a
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Taylor series and neglecting higher order terms:

* * * 1 * 8
Zgn =~ 8(X1, Xp,00 Xp) + D0 (%i-Xj) 2 (5.22)
i=1 O%; /.
where the partial derivatives are calculated at the unknown failure point,
(x;, x;, ----- , x;). The approximate mean value of the safety margin is:
n . 8
bz, * 2y X)) (523)
i=1 O%i /s

and the standard deviation:

" ((s 21%
oz, ~ Zl{(fi_i).cx‘} (5.24)

i=

Gz, may be expressed as a linear combination of the standard deviations of design

variables:
2 )
Oz, ~ .Zai (S_g) Oy, (5.25)

where

(5.26)

o; may be defined as the sensitivity factor since it reflects the relative influence of the
i-th variable on the safety margin. Now the reliability index B can be calculated from

the ratio of the mean and standard deviation of the safety margin:

n - 8_g
2 (ks i )(5xi l

i=1
= 5.27
’ o, (S_g) 5 2
ETICY A
Eq. (5.27) yields a very important relationship, useful for iterative calculations:
n 8 .
S22 (g, -xi -oiBoy) = 0 (5.28)
i—1\9%; J
The solution of Eq. (5.28) is:
X; = Hy -o;Boy foralli (5.29)



5.3.3 The Rackwitz Algorithm

The algorithm proposed by Rackwitz [5.12] is essentially a B minimisation process.
The algorithm is generally regarded as a powerful method with a fast rate of
convergence. It involves the following steps:

(1) Guess a value of

(2) Initially, set x; = Hy, foralli

(3) Compute (—83-) for all i

Xj
(4) Compute a; for all i
(5) Compute the new failure point from xi' = Hy, -Q chi for all i

(6) Repeat steps 3 to 5 until stable values of xi' are achieved

(7) Evaluate Zg,, = g(x;, x;, ----- ,X5)

(8) Evaluate 5B numerically and compute a better estimation of  from
sm

Z o

Brew = Bprevious - Zsm = —- Repeat steps 3 to 8 to achieve Zy;, = 0
dZ
within specific limits
(9)  Compute the notional failure probability as Py = ®D(-B)

(10) Compute the partial safety factors as the ratio of xi‘ and py. .

5.3.4 Program BCCNNV

The Rackwitz Algorithm forms the basis of the program BCCNNV. BCCNNYV has
been written in a ‘user friendly' way. It is a general purpose program and the user is
supposed to provide his / her performance function in the form of a Fortran routine.
The program guides the user to create necessary data files so that any prior knowledge
regarding the source code is not necessary. There is already one program available in
the Department which has been extensively used in the past. That program has helped
in the verifications while developing BCCNNV. However, BCCNNV has some
additional features:

1)  Improved input data recording
2)  Easily understandable output

3)  Lognormal and Type I asymptotic distributions for non-normal variables.
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4)  Variables need not be uncorrelated

For statistically dependent random variables, BCCNNYV transforms the original variates
to a set of uncorrelated variables. Before the transformation if any non-normal variable
is present, the equivalent normal distribution is found such that the cumulative
probability as well as the probability density ordinate of the equivalent distribution are
equal to those of the original non-normal distribution at the most probable failure point
on the failure surface. Strictly speaking, the transformation (sometimes called rotation
of co-ordinates [5.1]) is applicable only to normal or log-normal variables. But it
provides a good estimate for correlated non-normal variates when compared with the
Rosenblatt transformation. After the transformation, the Rackwitz algorithm is
followed in BCCNNYV. In some cases the performance function might be B -sensitive.
Then it would be difficult to bring the unknown failure point on the failure surface
through iterations because the performance function would change its sign from
negative to positive or vice versa for a slight variation in B but never become zero!

BCCNNYV cleverly handles this typical problem in numerical modelling.

5.3.5 Classic Examples

The author has done a series of validation tests with the results from BCCNNV. This
section will illustrate one well known example of nonlinear but simple performance
function. This example has been illustrated in many places (e.g. [S.1], [5.6] ) but in this
section, for comparison the numerical values are taken from Ref. [5.1] and tabulated in
Table 5.4.

Table 5.4. Three Classic Design Variables

Variables No. Distribution Mean COV (%)
Yield strength 1 Log-normal 40 ksi 12.5
Section modulus 2 Log-normal 50 in® 5
Bending moment 3 Type I asymptotic | 1000 in-kip 20

The fully plastic flexural capacity of a steel beam section may be given as x,x, where
x; and x, represent the yield strength of steel and the section modulus respectively. If
the applied bending moment is x5, the performance function may be defined as:

g(x1, X3, X3) = X1X; - X3 (5.30)

It has been mentioned earlier that the user is supposed to provide the performance
function as an external Fortran routine. It is also possible to link Pascal and C routines
with BCCNNYV but the task is simple and straight-forward in case of Fortran routines.
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In this example the Fortran routine can be written as:

REAL*8 FUNCTION GF(N, A)
REAL*8 A(N)

GF = A(1)*A(2) - A(3)
RETURN

END

For complicated problems the routine might be a few thousand lines long! However,
the three variables are first assumed as uncorrelated and the reliability index calculation
is tabulated in Table 5.5. The results are slightly different from the hand calculations in
Ref. [5.1] because BCCNNV does floating point calculations in double precision (i.e.
up to sixteen decimal places). But the slight difference mainly comes from a simple
approximation used in the hand calculations in Ref. [5.1] while estimating equivalent
normal distributions. The iteration cycle for calculating the reliability index and
corresponding failure point stops after reaching the convergence criteria which is a
user defined small value representing the maximum difference between the new and
previous x; (expressed in percentage). BCCNNYV calculates the ratio of the mean and
standard deviation of the safety margin at the established failure point (see Eq. (5.18) )
and compares it with the B value found through iterations. Both values of the
reliability index are given in output (e.g. Tables 5.5, 5.6, 5.9, 5.10 etc.) for cross-
verification.

To demonstrate a sample analysis with correlated variables, the yield strength and
section modulus in the above example are assumed to be partially correlated with I'j5
= 0.40. But Ii; and I,; are assumed as zero. When variables are no longer
independent the correlation matrix [I'] should be given as input. But [I'] is symmetric
and its leading diagonal has coefficients equal to unity. Therefore, BCCNNV asks for
the coefficients above the leading diagonal only.

While dealing with correlated design variables in BCCNNYV, it is necessary to find the
eigenvalues and corresponding eigenvectors of the correlation matrix, [I']. It is worth
noting that [I'] is real and symmetric and thus the eigenvectors are mutually
orthogonal. Table 5.6 is an easily understandable output where the sensitivity factors
of the transformed orthogonal variables, y,, y, and y; are presented along with
different parameters of the actual variables, x;, x, andx;. In Table 5.6, y;
corresponds to x; and it is difficult to achieve this one-to-one correspondence in the

correct order with almost all standard eigenvalue routines available in many Fortran
and C libraries. This is mainly because the routines usually rearrange the eigenvalues in
ascending order. The ascending order is important in many engineering problems such
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as natural frequency calculations where the lowest eigenvalue is of main interest. But
for correlated design variables the actual order is very important because the sensitivity
of x; is reflected through y;. This unexpected problem is solved in BCCNNV in a
roundabout way. The NAG Fortran Library [5.11] from The Numerical Algorithms
Group Ltd. has various eigenvalue routines for different problems. BCCNNV uses a
routine called FO2AGF [5.11] which calculates all the eigenvalues and eigenvectors of
a real unsymmetric matrix. For a real unsymmetric matrix, the eigenvalues and
eigenvectors might be complex numbers with real and imaginary parts. Complex
numbers cannot be ‘easily' arranged in ascending or descending order (probably
because there is no unique way for arranging them) and thus FO2AGF returns the
eigenvalues to BCCNNV without changing their order. BCCNNV ignores the
imaginary parts of the eigenvalues and eigenvectors of [I'] because they would be zero
since [I'] is real and symmetric! In fact, this is one way of cheating a standard routine

for unsymmetric matrices by giving a symmetric matrix in disguise!

The hand calculations in Ref. [5.1] verify Tables 5.5 and 5.6. The sensitivity and partial
safety factors in Table 5.6 are slightly different from those in Table 5.5. This is the
effect of including I';, = 0.40 in this classic problem. The most probable failure point
[5.14] and the corresponding reliability index calculated through iterations in Tables
5.5 and 5.6 are close but different.

5.4 SAFETY MARGINS FOR CYLINDRICAL STRUCTURES

In the 1970s, the stiffened cylinder buckling formulations that were used were derived
from aircraft technology. This is hardly appropriate for the much less perfect welded
steel structures used in offshore. In the early 1980s, Conoco and ABS along with many
others conducted large scale tests of cylinders under axial, radial and combined loading
for providing useful information on buckling loads and corresponding failure modes.
Ref. [5.8] compares these experimental results with the strength formulations of .
various current codes. This section uses the safety margins developed and discussed in
Refs. [5.7] and [5.8] from the interaction equations in API Bulletin 2U and RCC
Model Code.

5.4.1 Performance Function from API Bulletin 2U

API Bulletin 2U defines the following interaction equation for axial compression,
bending and hoop compression:

2 2
(flong) ) 1.5 (Feep + FhCB) =20 (fk’ng )(fhmp) + [fhmp) = 1.0 (5.31)
F.p oy FyeB J\ FueB Fhep
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where fjo,, and fy,,, come from the applied load effects. In Eq. (5.31) they are not

entirely independent of each other. Their values might be modified (for details see Ref.
[5.2] ) before inserting them into the above interaction equation. X, has been
introduced in Eq. (5.31) to define a suitable performance function in Ref. [5.8] for the
safety margin:

2
g() = 1.0 - (flong) + 1.5 (FXCB+FhCB)-2.O (flong )( fhoop )
\ Fch Cy Fch icB ) Xm

[ f 2
- %) (5.32)
\ Fneg " Xm

5.4.2 Performance Function from RCC Model Code

The interaction equation in the RCC code is very similar to Eq. (5.32). In fact, API has
developed Recommended Practice RP 2T for TLPs and two associated special
Bulletins 2U for cylindrical shells and 2V for plane structures following earlier RCC
work. Before coming to the RCC interaction equation for combined loading it is better
to introduce the non-dimensionalised strength and load parameters:

= flon ~ f ~ F - F
_ g _ _hoop — T'xcB _ I'neB
long — o] > “hoop — G > F xxB = —_ > icB - p (5 3 3)

y y Cy y

Based on these notations, the interaction equation is:

(&1&]2 + ZJ(I—F}%CB)(I_FI%CB)

FyeB " FreB

~ 2
- - fhoo
- 1 |Fiong Froop *+ | 22| = 10 (5.34)
F xcB icB
The performance function for the safety margin includes the model uncertainty factor.

Rearranging Eq. (5.34), g(-) takes the following form [5.8]:

g() =10 -|=

~long }2 i 2\/(1 - l~:)%cB )(1 - F}%CB) 1 flong . ?hoop
\ Fch

1~'-"ch : icB Xm

- 2
f;
B . . (5.35)
\icB Xm

5.5 NUMERICAL RESULTS ON ISSC TLP COLUMNS

The author has done a series of verification tests with the results from BCCNNV.
Table 5.7 checks deterministically the ISSC TLP column design. The value of g(-) has
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been calculated from Egs. (5.32) and (5.35) after ignoring X,,. The positive sign of
g(-) in Table 5.7 (in the absence of X, ) indicates that the design is on the safe side of
the failure surface although X, plays a dominant role as we shall see later. The
ultimate longitudinal (i.e. axial) strength values for the TLP columns found from API
and RCC are almost identical. This similarity between RCC and API follows from the
latter being mainly derived from the former [5.9].

Table 5.7. Deterministic Calculations from API and RCC Model Code

Results Unit Symbol API [5.2] RCC [5.5]
Elastic buckling stress N/mm? FxeB 6467.62 6436.35
Inelastic buckling stress N/mm? FyB 386.57 386.55
Ultimate longitudinal load MN P 584.50 596.82
Average longitudinal stress | N/mm? Fyca 323.08 329.51
Ultimate hoop pressure N/mm? PcB 1.0732 1.2748
Ultimate hoop stress N/mm? Frep 362.33 391.00
g() - - 0.6528 0.7328

Table 5.8 presents another verification test. As discussed before, COVs of stresses are
varied from 5% to 20%. Table 5.8 has only three possible sets of stress COVs. The
first three cases in Table 5.8 deal with the safety margin (i.e. Eq. (5.32) ) from API
Bulletin 2U. The next three cases involve the RCC Model Code. Case 1 and 2, and
similarly Case 4 and 5 study the effects of single precision and double precision
calculations. It is insignificant here but may change results dramatically in other cases
(e.g. in finite element calculations). Case 3 and 6 are the results from the old program
(i.e. not BCCNNYV) already available in the Department. The results are almost the
same but BCCNNYV and the existing program use identical failure surface subroutines
[5.7]. However, the failure surface routines have been checked and revised by the
author.

Tables 5.9 and 5.10 provide hardcopies of typical output from BCCNNV. The variable
numbers are explained in Table 5.3. The partial safety factors are calculated after
establishing the most probable failure point through iterations. Tables 5.9 and 5.10
with 10% COV for both longitudinal and hoop stress should reflect a general
impression about the design. The target safety index is 3.72 (corresponding to a
notional probability of failure of 0* during the lifetime of the structure) in the RCC
Model Code. In Table 5.9, the probability of failure is 0.2 x 0 corresponding to B =
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4.1035. Therefore, the design of ISSC TLP columns may be considered as adequately
safe with a possibility of further optimisation and minimisation of structural weight.
The model uncertainly factor plays a vital role in this study. It has the maximum
sensitivity factor of 0.786 and its partial safety factor is 1.7. The hoop stress is the next
most sensitive one with a partial safety factor of 1.22.

Table 5.10 where the safety margin is defined from the RCC Model Code, presents a
different picture. The reliability index calculated does not reach the target specified by
the Rule Case Committee [5.5]. The ring frame spacing has the minimum sensitivity.
The model uncertainty factor is again the most sensitive one with a sensitivity factor
equal to 0.89474. The next sensitive design variable is again hoop stress. It has been
said before that the mean bias and COV of the model uncertainty factor come from a
population of 35 cylinders [5.8]. After observing the high sensitivity factor of X, the
author took interest to see the change in § value by decreasing the high COV of X .
This is of course a hypothetical observation and should not be used in any practical
design purpose. But the result of varying X 's COV is quite interesting. When its
COV is assumed as 20%, B is 4.022 (i.e. Py = 0.288 x 0 ). If its COV is reduced to
15%, B becomes 4.908 (i.e. Py = 0.46 x 0'6). The mean value and COV of the other

variables are not changed.

The original aim of this study was to see the effect of varying the COVs of applied
stresses while keeping other variables unaltered. Refer to Tables 5.11 and 5.12, each
one of them has 256 B values. The calculations for each § value are similar to those
shown in Tables 5.9 and 5.10. To understand the nature of the variations, two special
plotting methods are used here. Figs. 5.3 and 5.5 are 3-D surface plots showing the
importance of hoop stress in both API and RCC codes. Mathematica [5.17] has special
tools for calculating contours from 3-D surfaces. Figs. 5.4 and 5.6 are the plan views
of Figs. 5.3 and 5.5. The reliability index is constant on any line in Figs. 5.4 and 5.6. So
the lines (iso-beta lines !) are showing the  variation explicitly. It is quite surprising
that there is no variation in 3 due to the change in COV of the longitudinal stress

according to the RCC Model Code. However, 8 changes rapidly in Fig. 5.4 (i.e. API
formulations) when the COV of f,,,, is increased beyond 14% but the change depends

on fi,4p's COV as well.

But these results can not be used to draw general conclusions. They are valid for the
numerical values of the design variables considered. But the results in Figs. 5.4 and 5.6
are unexpected because they do not show any significant influence of the applied
longitudinal stress although its mean value is close to that of the applied hoop stress.
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This is investigated further. The obvious suspect is X, because of its high sensitivity
factor compared to others. It is possible that the effect of some variables have been
suppressed because X,, is so dominant. This might be a shortfall of the underlying

assumption that the design variables are independent.

To understand the nature of variation in the absence of X, its mean and COV are set
to 1.0 and 0.0 respectively. Tables 5.13 and 5.14 are similar to Tables 5.11 and 5.12
but they ignore X . The reliability index now varies over a wide range. If Tables 5.12
and 5.13 are compared, we shall see that the difference in B decreases with an increase
in the COV of longitudinal and / or hoop stress. Here the difference in p refers to the
difference in B values in Tables 5.12 and 5.13 for identical longitudinal and hoop stress
COVs (e.g. 9.534-3.553=5.981 for 5% flong and fhoop). It is also true if Tables 5.11
and 5.14 are compared. The higher f§ values in the absence of X, perhaps indicate the
conservative nature of API and RCC codes. It is therefore the reliability study where
this conservatism can be focused and a level of uniform safety can be achieved in
various codes. The data in Tables 5.13 and 5.14 are plotted in Figs. 5.7-5.10. Figs. 5.8
and 5.10 truly reflect the original nature of the interaction equations (see Egs. (5.31)
and (5.34) ). A 'ridge' on the surface in both Figs. 5.7 and 5.9 is one interesting aspect.
The nature of both surfaces is also strongly similar.

Tables 5.15 and 5.16 present output similar to those in Tables 5.9 and 5.10. But the
model uncertainty factor has been ignored in Tables 5.15 and 5.16 to examine the
sensitivity of other variables in the absence of X,,. The first thing to note is that the
number of iterations has increased considerably in both tables. The starting value of B
has been changed but that change could not influence the number of iterations
required. The maximum sensitive variable in both Tables 5.15 and 5.16 is longitudinal
stress! The sensitivity factors of other variables are appreciable. The applied hoop
stress has negligible sensitivity in Table 5.16 from the RCC code but that can be
explained. The deterministic calculations in Table 5.1 show that the ultimate hoop
stress is equal to the yield stress according to RCC. This prediction indicates that there
would be no buckling of the ISSC TLP columns before yielding under hoop stress only
(i.e. single load action). The ultimate hoop load calculated is also very high. So minor
variations in design variables most probably cannot change the ultimate hoop stress
prediction of RCC which is equal to the yield stress. The applied hoop stress is
included in the performance function after non-dimensionalising it with the ultimate
hoop stress. Therefore, it might be the reason why the hoop stress is not predominant
any more in the absence of X, according to RCC.
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It is due to the position of X, in the performance function (i.e. Eq.(5.35) ) formulated
according to the interaction equation of the RCC code which is causing unacceptable |
trend in Fig. 5.6. It is necessary to check the calibration of the deterministic model and
probably this may require two model uncertainty factors to be used for longitudinal
stress and hoop stress.




5.6 CONCLUSIONS

The analysis technique described in this chapter depends on all partial derivatives
calculated at each iteration. The number crunching involved is not simple and thus
almost nothing can be taken as general conclusions with certainty!

- ®

First of all, let us distinguish the difference between the interaction equations and the
performance functions. The interaction equations (i.e. Egs. (5.31) and (5.34) ) come
straight from the API and RCC codes. They are formulated mainly for deterministic
analyses. The performance functions are defined in Ref. [5.7] from these interaction
equations after inserting the model uncertainty factor. Figs. 5.8 and 5.10 show that the
change in COV for longitudinal stress or hoop stress almost 'equally' affects the
reliability index and that is in the absence of X,. This is also clearly visible in the
symmetric surface plots in Figs. 5.7 and 5.9. But the situation changes when X, is
included in the analysis. The effect of changing the applied longitudinal stress COV
disappears as indicated in Fig. 5.6. Fig. 5.6 is not acceptable because it fails to show
any effect of fi,,, which is the most sensitive in the absence of X,,. It might be

suggested that the performance functions should be reconfigured so that the
modification can capture the effect of changes made in the value of fi,,,. The other
possible solution is to introduce correlation coefficients among variables so that X, is
no longer an independent variable, playing the most dominant role suppressing others.
But the problem lies in the selection of suitable I}; and the author does not have
enough background for this type of selection. BCCNNYV can be used as a 'black box'
once [T'] is ready. The additional input required for the ISSC TLP columns to convert

the analysis status from 'uncorrelated' to 'correlated' are explained clearly in Fig. 5.11.

The ISSC TLP columns are designed from a parametric study conducted by RCC
[5.5]. It is a pure coincidence that the radius and other factors were very close. So the
preliminary design of the ISSC TLP columns was a clever design indeed because it
closely followed the optimum cylinder model established by RCC. Through
deterministic as well as probabilistic checks, it can be concluded that the proposed
design of the ISSC TLP columns is adequately safe.

However, the ultimate goal of this work is not to design the ISSC TLP columns.
Rather it is aimed at setting up an integrated design track for TLPs. The integrated
design process would share more information among hydrodynamics, structural
engineering and associated reliability aspects. In practice, a design problem is handled
by a number of groups of people. Often they share as little as one or two vital pieces of
information (e.g. the maximum stress or load value) to link up their work. Instead of
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sharing a little information, if they share a dynamic database which might be

complicated to set up at first, but this would certainly improve the whole scenario.

Design Variables in Table 5.3
1 2 3 4 5 6 7 8 9
1 10Ty [Ty |y | Ts | Ge | I | Iig | T
2 10 | Ty3 | Tog | Tos | Te | Ty | Thg | Ty
3 10 | T5q | T5s | Ty | T57 | Tsg | T
4 10 | Tys | Tys | Tag | Tag | Tio
5 10 | Tsg | I's; | I'sg | I'so
6 10 | Ty | Teg | Teo
7 Symmetric 1.0 | Tiyg | Ty
8 10 | Tg
9 1.0

Fig. 5.11. Required Input for the Correlation Matrix
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Table 5.5. Reliability Index Calculation in a Classic Problem of Three

ITERATION NO. = 1
VARIABLE FAILURE
X(1) POINT
1 4.0000E+01
2 5.0000E+01
3 1.0000E+03

BETA CALCULATED

ITERATION NO. = 2
VARIABLE FAILURE
X(1i) POINT
1 2.7738E+01
2 4.7532E+01
3 1.3185E+03

3
4.
9

3
4.
8

BETA CALCULATED

ITERATION NO. = 3
VARIABLE FAILURE
X(1) POINT
1 3.3224E+01
2 4.8650E+01
3 1.6163E+03

3
4
6

BETA CALCULATED

ITERATION NO. = 4
VARIABLE FAILURE
X(1) POINT
1 3.4248E+01
2 4.8769E+01
3 1.6702E+03

3
4
6

BETA CALCULATED

ITERATION NO. = 5
VARIABLE FATLURE
X(i) POINT
1 3.4298E+01
2 4.8777E+01
3 1.6729E+03

BETA CALCULATED

(o)~

EQUIV.

MEAN
.9690E+01 4
9938E+01 2
.6612E+02 1

IN ITERATION

EQUIV.

MEAN
.7677E+01 3
9879E+01 2
.6159E+02 3

IN ITERATION

EQUIV.
MEAN

.9133E+01 4
.9921E+01 2.
.6396E+02 4

IN ITERATION

EQUIV.

MEAN
.9299E+01 4.
.9924E+01 2
.2284E+02 4.

IN ITERATION

EQUIV.

MEAN
.9307E+01 4.
.9924E+01 2

.2072E+02 4

IN ITERATION

EQUIV.
SD

.9806E+00
.4984E+00
.9122E+02

NO. 1 =

EQUIV.
SD

.4539E+00
.3751E+00
.1000E+02

NO. 2 =

EQUIV.
SD

.1369E+00

4310E+00

.1411E+02

NO. 3 =

EQUIV.
SD
2644E+00

.4369E+00

3151E+02

NO. 4 =

EQUIV.
SD
2706E+00

.4373E+00
.3238E+02

NO. 5 =

Uncorrelated Nonnormal Variables

SENSITIVITY
FACTOR
7.5579E-01
3.0330E-01
-5.8033E-01

3.17495

SENSITIVITY
FACTOR
4.5996E-01
1.8458E-01
-8.6854E-01

2.80321

SENSITIVITY
FACTOR
4.3054E-01
1.7278E-01
-8.8588E-01

2.74295

SENSITIVITY
FACTOR
4.2772E-01
1.7165E-01
-8.8746E-01

2.74217

SENSITIVITY
FACTOR
4.2759E-01
1.7159E-01
-8.8754E-01

2.74217

NEW FAILURE
POINT
2.7738E+01
4.7532E+01
1.3185E+03

NEW FAILURE
POINT
3.3224E+01
4 .8650E+01
1.6163E+03

NEW FAILURE
POINT
3.4248E+01
4.8769E+01
1.6702E+03

NEW FAILURE
POINT
3.4298E+01
4.8777E+01
1.6729E+03

NEW FAILURE
POINT
3.4299E+01
4.8777E+01
1.6730E+03



Table 5.5. (Continued)

BETA FROM BASIC DEFINITION = 2.74217
BETA THROUGH ITERATION = 2.74217
PROBABILITY OF FAILURE = 0.30517D-02

— PARTIAL SAFETY FACTORS --

VARIABLE PSF
1 1.1662
2 1.0251

3 1.6730
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Table 5.9. Reliability Index Calculation with 10% COY for Longitudinal and

ITERATION NO. = 1
VARIABLE FAILURE
X(i) POINT
1 2.5000E+01
2 8.4275E+03
3 2.2000E+03
4 4.5000E+00
5 1.1300E+00
6 2.0800E+02
7 3.9100E+02
8 1.6288E+02
9 1.8207E+02

Hoop Stresses According to API Code

[N N SISO Y U= I N}

BETA CALCULATED

ITERATION NO. = 2
VARIABLE FAILURE
X(1i) POINT
1 2.5015E+01
2 8.9360E+03
3 2.2415E+03
4 4.8494E+00
5 6.8473E-01
6 1.9847E+02
7 3.5594E+02
8 1.9690E+02
9 2.0816E+02

PR WD DD

BETA CALCULATED

ITERATION NO. = 3
VARIABLE FAILURE
X(1) POINT
1 2.5171E+01
2 8.7099E+03
3 2.2388E+03
4 4.6980E+00
5 6.7175E-01
6 2.0147E+02
7 3.6191E+02
8 1.7472E+02
9 2.2019E+02

PR WD R RN DN

BETA CALCULATED

ITERATION NO. = 4
VARIABLE FAILURE
X(1) POINT
1 2.5219E+01
2 8.6225E+03
3 2.2362E+03

o©

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.1152E+00
.0774E+02
.9004E+02
.6207E+02
.8116E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0188E+00
.0753E+02
.8851E+02
.5857E+02
.7925E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0123E+00
.0764E+02
.8901E+02
.6159E+02
.7724E+02

.5000E+01
.4275E+03
.2000E+03

EQUIV.
MEAN

PRNDRROSSJ

IN ITERATION

EQUIV.
MEAN

NEFENMNOYOE eI

IN ITERATION

EQUIV.
MEAN

NP NP RO

IN ITERATION

EQUIV.
MEAN

[ S |

EQUIV.
SD

-5000E-01
.2138E+02
.4000E+01
.4000E-01
.8298E-01
.0394E+01
.7337E+01
.6247E+01
.8162E+01

NO. 1 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.1088E-01
.9171E+00
.4885E+01
.9641E+01
.0764E+01

NO. 2 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0878E-01
.0067E+01
.5303E+01
.7429E+01
.1964E+01

NO. 3 =

EQUIV.
SDh

.5000E-01
.2138E+02
.4000E+01

SENSITIVITY
FACTOR
-4.8417E-03
-2.8882E-01
-2.2573E-01
-1.5488E-01
5.6303E-01
2.1357E-01
2.9862E-01
-5.1310E-01
-3.5576E-01

4.17812

SENSITIVITY
FACTOR
-5.4948E-02
-1.6118E-01
-2.1216E-01
-8.8186E-02
7.5270E-01
1.4693E-01
2.5709E-01
-1.9774E-01
-4.7421E-01

4.15795

SENSITIVITY
FACTOR
-7.1204E-02
-1.1271E-01
-2.0036E-01
-5.5362E-02
7.8108E-01
1.1236E-01
2.5258E-01
-1.0302E-01
-4.9184E-01

4.10633

SENSITIVITY
FACTOR
~7.4292E-02
-1.0125E-01
-1.9737E-01

NEW FAILURE
POINT

.5015E+01
.9360E+03
.2415E+03
.8494E+00
.8473E-01
.9847E+02
.5594E+02
.9690E+02
.0816E+02

NP WE OGO DN

NEW FAILURE
POINT

.5171E+01
.7099E+03
.2388E+03
.6980E+00
.7175E-01
.0147E+02
.6191E+02
.7472E+02
.2019E+02

NEFEP WD BNOODN

NEW FAILURE
POINT

.5219E+01
.6225E+03
.2362E+03
.6228E+00
.6342E-01
.0300E+02
.6276E+02
.6896E+02
.2160E+02

NP WNOERNDON

NEW FAILURE
POINT
2.5229E+01
8.6026E+03
2.2356E+03



.6228E+00
.6342E-01
.0300E+02
.6276E+02
.6896E+02
.2160E+02

W mdo U
NE WD o
PP WP

BETA CALCULATED

BETA FROM BASIC DEFINITION

BETA THROUGH ITERATION

PROBABILITY OF FAILURE

.5000E+00
.0080E+00
.0769E+02
.8907E+02
.6193E+02
.7696E+02

Table 5.9. (Continued)

NEFENRE W,

IN ITERATION

.4000E-01
.0743E-01
.0144E+01
.5362E+01
.6854E+01
.2105E+01

NO. 4 =

4.10350

4.10350

0.20348D-04

—- PARTIAI, SAFETY FACTORS --

VARIABLE

VWOJAU WD R

PSF

RRrRRRERRRRR

.0091
.0208
.0162
.0233
L7077
.0229
.0775
.0292
.2184

-4.7376E-02
7.8566E-01
1.0432E-01
2.5172E-01

-8.2519E-02

-4.9469E-01

4.10350

DR WO

.6050E+00
.6169E-01
.0334E+02
.6287E+02
.6763E+02
.2183E+02




Table 5.10. Reliability Index Calculation with 10% COYV for Longitudinal and
Hoop Stresses According to RCC Model Code

ITERATION NO. = 1
VARIABLE FAILURE EQUIV. EQUIV. SENSITIVITY NEW FAILURE
X(i) POINT MEAN SD FACTOR POINT
1 2.5000E+01 2.5000E+01 7.5000E-01 9.5291E-02 2.4785E+01
2 8.4275E+03 8.4275E+03 4.2138E+02 -2.0047E-01 8.6821E+03
3 2.2000E+03 2.2000E+03  4.4000E+01 -2.8421E-03 2.2004E+03
4 4.5000E+00 4.5000E+00 5.4000E-01 -1.0234E-01 4.6665E+00
5 1.0900E+00 1.0575E+00 2.6630E-01 6.9074E-01 5.0316E-01
6 2.0800E+02 2.0774E+02  1.0394E+01 1.1502E-01 2.0414E+02
7 3.9100E+02 3.9004E+02  2.7337E+01 3.6712E-01 3.5980E+02
8 1.6288E+02 1.6207E+02  1.6247E+01 -4.8038E-01 1.8559E+02
9 1.8207E+02 1.8116E+02 1.8162E+01 -2.9044E-01 1.9706E+02
BETA CALCULATED IN ITERATION NO. 1 = 3.01351
ITERATION NO. = 2
VARIABLE FAILURE EQUIV. EQUIV. SENSITIVITY NEW FAILURE
X (1) POINT MEAN SD FACTOR POINT
1 2.4785E+01 2.5000E+01  7.5000E-01 2.0054E-02 2.4949E+01
2 8.6821E+03 8.4275E+03  4.2138E+02 -4.0540E-02 8.4854E+03
3 2.2004E+03  2.2000E+03  4.4000E+01 -5.5137E-04 2.2001E+03
4 4.6665E+00 4.5000E+00 5.4000E-01 -2.0769E-02 4.5380E+00
5 5.0316E-01 8.7710E-01  1.2293E-01 8.9141E-01 5.0555E-01
6 2.0414E+02 2.0771E+02 1.0201E+01 2.4020E-02 2.0688E+02
7 3.5980E+02 3.8884E+02  2.5155E+01 2.4907E-01 3.6760E+02
8 1.8559E+02 1.6044E+02 1.8513E+01 -4.0046E-02 1.6296E+02
9 1.9706E+02 1.8049E+02 1.9657E+01 -3.7243E-01 2.0531E+02
BETA CALCULATED IN ITERATION NO. 2 = 3.39078
ITERATION NO. = 3
VARIABLE FAILURE EQUIV. EQUIV. SENSITIVITY NEW FAILURE
X(i) POINT MEAN SD FACTOR POINT
1 2.4949E+01 2.5000E+01  7.5000E-01 1.2597E-02 2.4968E+01
2 8.4854E+03 8.4275E+03  4.2138E+02 -2.6086E-02 8.4647E+03
3 2.2001E+03 2.2000E+03  4.4000E+01 ~3.7203E-04 2.2001E+03
4 4 _.5380E+00 4.5000E+00 5.4000E-01 -1.2907E-02 4.5236E+00
5 5.0555E-01 8.7887E-01  1.2351E-01 8.9474E-01 5.0490E-01
6 2.0688E+02 2.0774E+02 1.0337E+01 1.5031E-02 2.0721E+02
7 3.6760E+02 3.8939E+02 2.5700E+01 2.4194E-01 3.6835E+02
8 1.6296E+02 1.6207E+02 1.6255E+01 -1.0012E-02 1.6262E+02
9 2.0531E+02 1.7962E+02  2.0480E+01 -3.7360E-01 2.0552E+02
BETA CALCULATED IN ITERATION NO. 3 =  3.38408
BETA FROM BASIC DEFINITION = 3.38408
BETA THROUGH ITERATION = 3.38408

PROBABILITY OF FAILURE 0.35709D-03



Table 5.10. (Continued)

-- PARTIAL SAFETY FACTORS --

VARIABLE PSF
.0013
.0044
.0000
.0052
.1589
.0038
.0615
.0016
.1288
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Table 5.15. Reliability Index Calculation with 10% COYV for Longitudinal and

Hoop Stresses Ignoring Model Uncertainty Factor (API)

ITERATION NO. = 1

VARIABLE
X (i)

Vo~JoaudWwN -

FAILURE
POINT

.5000E+01
.4275E+03
.2000E+03
-5000E+00
.0000E+00
.0800E+02
.9100E+02
.6288E+02
.8207E+02

PP W R NN

HREWNDRE®RNDON

BETA CALCULATED

ITERATION NO. = 2
VARIABLE FAILURE
X(1) POINT
1 2.5160E+01
2 9.2630E+03
3 2.2805E+03
4 5.0665E+00
5 1.0000E+00
6 1.9191E+02
7 3.2799E+02
8 2.1430E+02
9 2.3899E+02

P RWNEPEADNDON

BETA CALCULATED

ITERATION NO. = 3

VARIABLE
X(i)

WoOoJaUkWwhPRE

FAILURE
POINT

.5020E+01
.2033E+03
.2684E+03
.0815E+00
.0000E+00
.9204E+02
.3877E+02
.1994E+02
.4557E+02

NNWERRFUNDWON

PR WNDERERDNDDND

BETA CALCULATED

ITERATION NO. = 4
VARIABLE FAILURE
X(i) POINT
1 2.5014E+01
2 9.2274E+03
3 2.2680E+03

o N

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0774E+02
.9004E+02
.6207E+02
.8116E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0712E+02
.8482E+02
.5444E+02
.7279E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0713E+02
.8652E+02
.5279E+02
.7088E+02

.5000E+01
.4275E+03
.2000E+03

EQUIV.
MEAN

P RNDRPOU R

IN ITERATION

EQUIV.
MEAN

NNDNDWO U R I

IN ITERATION

EQUIV.
MEAN

DD WO U

IN ITERATION

EQUIV.
MEAN

B J

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.0394E+01
.7337E+01
.6247E+01
.8162E+01

NO. 1 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E~-01
.0000E+00
.5896E+00
.2931E+01
.1376E+01
.3840E+01

NO. 2 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.5960E+00
.3685E+01
.1939E+01
.4496E+01

NO. 3 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01

SENSITIVITY
FACTOR
-3.5304E-02
-3.2877E-01
-3.0345E-01
-1.7395E-01
0.0000E+00
2.5253E-01
3.7643E-01
~5.3301E-01
-5.2797E-01

6.03068

SENSITIVITY
FACTOR
-4.6570E-03
-3.2457E-01
-2.7395E-01
-1.8984E-01
0.0000E+00
2.7722E-01
3.5404E-01
-5.4013E-01
-5.3815E-01

5.67285

SENSITIVITY
FACTOR
-3.2407E-03
-3.3463E-01
-2.7236E-01
-2.0159-01
0.0000E+00
2.7975E-01
3.4619E-01
-5.4938E-01
-5.2275E-01

.67285

SENSITIVITY
FACTOR
2.1190E-03
-3.3966E-01
-2.6778E-01

NEW FAILURE
POINT

.5160E+01
.2630E+03
.2805E+03
.0665E+00
.0000E+00
.9191E+02
.2799E+02
.1430E+02
.3899E+02

MNWERRFRLODDON

NEW FAILURE
POINT

.5020E+01
.2033E+03
.2684E+03
.0815E+00
.0000E+00
.9204E+02
.3877E+02
.1994E+02
.4557E+02

MNWRERPUNDVUND

NEW FAILURE
POINT

.5014E+01
.2274E+03
.2680E+03
.1175E+00
.0000E+00
.9190E+02
.4000E+02
.2116E+02
.4352E+02

NN WRRFRPOODNDOUN

NEW FAILURE
POINT
2.4991E+01
9.2385E+03
2.2668E+03



O o0 Jo U

.1175E+00
.0000E+00
.9190E+02
.4000E+02
.2116E+02
.4352E+02

DN WR B Wn
RN TN

BETA CALCULATED

ITERATION NO. = 5

VARIABLE
X(1)

WoOo~JaUxWwWwNER

FAILURE
POINT

.4991E+01
.2385E+03
.2668E+03
.1349E+00
.0000E+00
.9175E+02
.4084E+02
.2263E+02
.4147E+02

DO WRERFPOUODOND
PR WNERE B NN

BETA CALCULATED

ITERATION NO. = 6

VARIABLE
X(1)

FAILURE
POINT

.4971E+01
.2491E+03
.2657E+03
.1495E+00
.0000E+00
.9163E+02
.4150E+02
.2418E+02
.3947E+02

NN WRRPONDON
R PP WNDE NN

BETA CALCULATED

ITERATICN NO. = 7

VARIABLE
X(1)

WOk WPk

FAILURE
POINT

.4951E+01
.2587E+03
.2646E+03
.1625E+00
.0000E+00
.9152E+02
.4213E+02
.2567E+02
.3751E+02

NNOWREUINDWYN
PR W R BN

BETA CALCULATED

.5000E+00
.0000E+00
.0712E+02
.8669E+02
.5241E+02
.7149E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0711E+02
.8680E+02
.5195E+02
.7209E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0710E+02
.8689E+02
.5145E+02
.7266E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0709E+02
.8697E+02
.5096E+02
.7319E+02

Table 5.15. (Continued)

NN DNOOWN

IN ITERATION

EQUIV.
MEAN

NNNDOOO & B

IN ITERATION

EQUIV.
MEAN

DNDNDNWOWOUE R

IN ITERATION

EQUIV.
MEAN

NN WOO U

IN ITERATION

.4000E-01
.0000E+00
.5892E+00
.3771E+01
.2061E+01
.4291E+01

NO. 4 =

EQUTIV.
SsD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.5815E+00
.3830E+01
.2207E+01
.4087E+01

NO. 5 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.5754E+00
.3876E+01
.2362E+01
.3887E+01

NO. 6 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.5702E+00
.3920E+01
.2511E+01
.3692E+01

NO. 7 =

-2.0751E-01
0.0000E+00
2.8289E-01
3.4036E-01

-5.6169E-01

-5.0842E-01

5.66623

SENSITIVITY
FACTOR
6.8217E-03
-3.4412E-01
-2.6357E-01
-2.1226E-01
0.0000E+0Q0
2.8513E-01
3.3548E-01
-5.7397E-01
-4.9367E-01

5.66623

SENSITIVITY
FACTOR
1.1421E-02
-3.4812E-01
-2.5930E-01
-2.1653E-01
0.0000E+00
2.8708E-01
3.3083E-01
-5.8576E-01
-4.7915E-01

5.66623

SENSITIVITY
FACTOR
1.5823E-02
-3.5174E-01
-2.5508E-01
-2.2049E-01
0.0000E+00
2.8879E-01
3.2632E-01
-5.9681E-01
-4.6506E-01

5.65917

.1349E+00
.0000E+00
.9175E+02
.4084E+02
.2263E+02
.4147E+02

DWW RO,

NEW FAILURE
POINT

.4971E+01
.2491E+03
.2657E+03
.1495E+00
.0000E+00
.9163E+02
.4150E+02
.2418E+02
.3947E+02

DD WREPONDYON

NEW FAILURE
POINT

.4951E+01
.2587E+03
.2646E+03
.1625E+00 -
.0000E+00
.9152E+02
.4213E+02
.2567E+02
.3751E+02

DN WERPEPUDOUND

NEW FAILURE
POINT

.4933E+01
.2663E+03
.2635E+03
.1738E+00
.0000E+00
.9145E+02
.4280E+02
.2699E+02
.3555E+02

MDNWRE RO OND



ITERATION NO. = 8

VARIABLE
X(i)

W oo Ww

FAILURE
POINT

.4933E+01
.2663E+03
.2635E+03
.1738E+00
.0000E+00
.9145E+02
.4280E+02
.2699E+02
.3555E+02

MNNWERERFROUNDWLVUND

PR WNERE®DNDON

BETA CALCULATED

ITERATION NO. = 9

VARIABLE
X(i)

Wo-Joulbd W

FAILURE
POINT

.4915E+01
.2740E+03
.2625E+03
.1848E+00
.0000E+00
.9137E+02
3.4338E+02
2.2830E+02
2.3378E+02

RO OUND

PR WNDRERNDOODND

BETA CALCULATED

ITERATION NO. = 10

VARIABLE
X(1)

WO~ WN P

FAILURE
POINT

.4899E+01
.2808E+03
.2615E+03
.1948E+00
.0000E+00
.9130E+02
.4393E+02
.2948E+02
.3214E+02

NN WKRPFPUOUMNMDON

PR WNKNEB®DNDODN

BETA CALCULATED

ITERATION NO. = 11

VARIABLE
X(i)

Ul W

FAILURE
POINT
2.4884E+01
9.2868E+03
2.2606E+03
5.2039E+00
1.0000E+00

=N ooN

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0708E+02
.8706E+02
.5052E+02
.7372E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0708E+02
.B714E+02
.5008E+02
.7417E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0707E+02
.8721E+02
.4967E+02
.7459E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00

Table 5.15. (Continued)

EQUIV.
MEAN

NN WOU BRI

IN ITERATION

EQUIV.
MEAN

DNV R

IN ITERATION

EQUIV.
MEAN

DN WOWO U R

IN ITERATION

EQUIV.
MEAN

[N E, B -S|

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.5665E+00
.3967E+01
.2643E+01
.3496E+01

NO. 8 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.5626E+00
.4007E+01
.2773E+01
.3320E+01

NO. 9 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.5592E+00
.4046E+01
.2891E+01
.3156E+01

NO.10 =

EQUIV.
sD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00

SENSITIVITY
FACTOR
1.9920E-02
-3.5498E-01
-2.5103E-01
-2.2408E-01
0.0000E+00
2.9023E-01
3.2205E-01
-6.0694E-01
-4 .5171E-01

5.65917

SENSITIVITY
FACTOR
2.3755E-02
-3.5784E-01
-2.4714E-01
~-2.2738E-01
0.0000E+00
2.9148E-01
3.1799E-01
-6.1613E-01
-4.3922E-01

5.65917

SENSITIVITY
FACTOR
2.7263E-02
-3.6035E-01
-2.4350E-01
-2.3035E-01
0.0000E+00
2.9255E-01
3.1421E-01
-6.2435E-01
-4.2771E-01

5.65917

SENSITIVITY
FACTOR
3.0425E-02
-3.6251E-01
-2.4014E-01
-2.3299E-01
0.0000E+00

NEW FAILURE
POINT

.4915E+01
.2740E+03
.2625E+03
.1848E+00
.0000E+00
.9137E+02
.4338E+02
.2830E+02
.3378E+02

MNWREFRPOINDOND

NEW FAILURE
POINT

.4899E+01
.2808E+03
.2615E+03
.1948E+00
.0000E+00
.9130E+02
.4393E+02
.2948E+02
.3214E+02

NN WRRPUIEND WOWN

NEW FAILURE
POINT

.4884E+01
.2868E+03
.2606E+03
.2039E+00
.0000E+00
.9125E+02
.4445E+02
.3055E+02
.3064E+02

MO WRRPROIDON

NEW FAILURE
POINT

.4871E+01
.2911E+03
.2597E+03
.2113E+00
.0000E+00

RPN O



wooJdo

1.9125E+02
3.4445E+02
2.3055E+02
2.3064E+02

PR WwN

BETA CALCULATED

ITERATION NO. = 12

VARIABLE
X(1i)

WO U W

FATLURE
POINT

.4871E+01
.2911E+03
.2597E+03
.2113E+00
.0000E+00
.9121E+02
.4496E+02
.3141E+02
.2923E+02

NN WERRFPUONDWOUND

PR WNDFE RN

BETA CALCULATED

ITERATION NO. = 13

VARIABLE
X (1)

Wo~JToammbd WPk

BETA FROM BASIC DEFINITION

BETA THROUGH ITERATION

PROBABILITY OF FAILURE

FAILURE
POINT

.4859E+01
.2954E+03
.2590E+03
.2182E+00
-0000E+00
.9118E+02
.4538E+02
.3223E+02
.2804E+02

MNWERE PN OUN

PR W R NN

BETA CALCULATED

Table 5.15. (Continued)

.0707E+02
.8727E+02
.4930E+02
.7495E+02

.5563E+00
.4082E+01
.2998E+01
.3006E+01

N DN O

IN ITERATION NO.1ll =

EQUIV.
MEAN

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0706E+02
.8733E+02
.4899E+02
.7529E+02

EQUIV.
SD
.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.5548E+00
.4118E+01
.3084E+01
.2866E+01

DO OULER R

IN ITERATION NO.12 =

EQUIV.
MEAN

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0706E+02
.8738E+02
.4870E+02
.7557E+02

EQUIV.
SD
.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.5529E+00
.4147E+01
.3165E+01
.2747E+01

NN NDWO U R

IN ITERATION NO.13 =

5.65335

5.65335

0.78674D-08

-- PARTIAL SAFETY FACTORS --

VARIABLE

LCoOoJoaul bWk

e e

PSF
.0061
.1034
.0265
.1609
.0000
.0882
.1309
.4301
.2468

2.9344E-01
3.1074E-01
-6.3160E-01
-4.1727E-01

5.65335

SENSITIVITY
FACTOR
3.3166E-02
-3.6434E-01
-2.3718E-01
-2.3525E-01
0.0000E+00
2.9413E-01
3.0771E-01
-6.3784E-01
-4.0807E-01

5.65335

SENSITIVITY
FACTOR
3.5580E-02
-3.6587E-01
-2.3453E-01
-2.3721E-01
0.0000E+00
12.9472E-01
3.0501E-01
-6.4319E-01
-4.0002E-01

5.65335

1.9121E+02
3.4496E+02
2.3141E+02
2.2923E+02

NEW FAILURE
POINT

.4859E+01
.2954E+03
.2590E+03
.2182E+00
.0000E+00
.9118E+02
.4538E+02
.3223E+02
.2804E+02

NNDWRERERLRODMDOUN

NEW FAILURE
POINT

.4849E+01
.2991E+03
.2583E+03
.2242E+00
.0000E+00
.9115E+02
.4575E+02
.3293E+02
.2701E+02

MM WRRPRPRUODDNDODN



Table 5.16. Reliability Index Calculation with 10% COYV for Longitudinal and

Hoop Stresses Ignoring Model Uncertainty Factor (RCC)

ITERATION NO. = 1
VARIABLE FAILURE
X(1) POINT
1 2.5000E+01
2 8.4275E+03
3 2.2000E+03
4 4 .5000E+00
5 1.0000E+00
6 2.0800E+02
7 3.9100E+02
8 1.6288E+02
9 1.8207E+02

R PR WNDERE NN

BETA CALCULATED

ITERATION NO. = 2

VARIABLE
X(1)

YoJauUld WP

FAILURE
POINT

.4300E+01
.2554E+03
.2012E+03
.0417E+00
.0000E+00
.9602E+02
.8127E+02
.3464E+02
.4736E+02

MNP P UDNDON

PR WNREPE&NDOND

BETA CALCULATED

ITERATION NO. = 3

VARIABLE
X(i)

WoJaukd WP

FATLURE
POINT

.4294E+01
.1556E+03
.2010E+03
.9567E+00
.0000E+00
.9671E+02
.9956E+02
.5471E+02
.4765E+02

DN RPN YN

PRPWNDEREB_NDMDOODN

BETA CALCULATED

ITERATION NO. = 4
VARIABLE FAILURE
X(i) POINT
1 2.4256E+01
2 9.2085E+03
3 2.2010E+03

[o o2 V]

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0774E+02
.9004E+02
.6207E+02
.8116E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0740E+02
.7323E+02
.4782E+02
.7032E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0744E+02
.7863E+02
.3956E+02
.7023E+02

EQUIV.
MEAN

R R DEFEOU R

IN ITERATION

EQUIV.
MEAN

NP VWO U R

IN ITERATION

EQUIV.
MEAN

DNV O VLRI

IN ITERATION

EQUIV.

MEAN
.5000E+01 7
.4275E+03 4
.2000E+03 4

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.0394E+01
.7337E+01
.6247E+01
.8162E+01

No. 1 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.7951E+00
.9665E+01
.3406E+01
.4675E+01

NO. 2 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.8292E+00
.0944E+01
.5408E+01
.4703E+01

NO. 3 =

EQUIV.
sD

.5000E-01
.2138E+02
.4000E+01

SENSITIVITY
FACTOR
1.2471E-01
-2.6237E-01
-3.7196E-03
-1.3394E-01
0.0000E+00
1.5052E-01
5.3135E-01
-5.9645E-01
-4.8673E-01

7.48879

SENSITIVITY
FACTOR
1.3256E-01
-2.4317E-01
-3.1021E-03
-1.1902E-01
0.0000E+00
1.5369E-01
5.2722E-01
-6.4268E-01
-4.4102E-01

7.10582

SENSITIVITY
FACTOR
1.4179E-01
-2.6478E-01
-3.3631E-03
-1.3310E-01
0.0000E+00
1.6566E-01
4.9272E-01
-7.0580E-01
-3.5169E-01

7.00011

SENSITIVITY
FACTOR
1.5018E-01
-2.8016E-01
-3.4830E-03

NEW FAILURE
POINT

.4300E+01
.2554E+03
.2012E+03
.0417E+00
.0000E+00
.9602E+02
.8127E+02
.3464E+02
.4736E+02

SO ST S R S I S B Ve I 6

NEW FAILURE
POINT

.4294E+01
.1556E+03
.2010E+03
.9567E+00
.0000E+00
.9671E+02
.9956E+02
.5471E+02
.4765E+02

NN R RN WOUN

NEW FAILURE
POINT

.4256E+01
.2085E+03
.2010E+03
.0031E+00
.0000E+00
.9604E+02
.0639E+02
.6509E+02
.3105E+02

MDNWRPERPRODMDOND

NEW FAILURE
POINT
2.4224E+01
9.2408E+03
2.2011E+03



W o ~Joy Ul i

.0031E+00
.0000E+00
.9604E+02
.0639E+02
.6509E+02
.3105E+02

NN WER R’
RN VRN

BETA CALCULATED

ITERATION NO. = 5

VARIABLE
X(1)

wWoJdJaul bk W

FAILURE
POINT

.4224E+01
.2408E+03
.2011E+03
.0416E+00
.0000E+00
.9545E+02
.1453E+02
.7421E+02
.1395E+02

MOV WERRPRPUOIDON
RPRPWNDEBMDON

BETA CALCULATED

ITERATION NO. = 6

VARIABLE
X(1)

WooOoJOUk WNE

FAILURE
POINT

.4208E+01
.2597E+03
.2011E+03
.0731E+00
.0000E+00
.9508E+02
.2163E+02
.8007E+02
.0186E+02

NNDWRERELONDOVN
PRWRDE DN

BETA CALCULATED

ITERATION NO. = 7

VARIABLE
X(1)

W oAU WD

FAILURE
POINT

.4199E+01
.2710E+03
.2011E+03
.0969E+00
.0000E+00
.9483E+02
.2599E+02
.8289E+02
.9560E+02

P NWRRPUNDWLWND
PR WNDERE&DNDON

BETA CALCULATED

.5000E+00
.0000E+00
.0740E+02
.8035E+02
.3466E+02
.7485E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0737E+02
.8221E+02
.3001E+02
.7836E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0735E+02
.8366E+02
.2687E+02
.8003E+02

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0733E+02
.8447E+02
.2531E+02
.8061E+02

Table 5.16. (Continued)

NN DNOOWU

IN ITERATION

EQUIV.
MEAN

NMDNNDOOUE R

IN ITERATION

EQUIV.
MEAN

DN OOUE R

IN ITERATION

EQUIV.
MEAN

NN WOU R

IN ITERATION

.4000E-01
.0000E+00
.7961E+00
.1421E+01
.6443E+01
.3048E+01

NO. 4 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.7666E+00
.1990E+01
.7353E+01
.1342E+01

NO. 5 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.7478E+00
.2487E+01
.7937E+01
.0136E+01

NO. 6 =

EQUIV.
SD

.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.7357E+00
.2792E+01
.8219E+01
.9512E+01

NO. 7 =

-1.4559E-01
0.0000E+00
1.7708E-01
4.4600E-01

~7.6606E-01

-2.4623E-01

6.88936

SENSITIVITY
FACTOR
1.5473E-01
-2.8923E-01
-3.5330E-03
-1.5543E-01
0.0000E+00
1.8431E-01
4.0347E-01
-8.0342E-01
-1.6122E-01

6.82813

SENSITIVITY
FACTOR
1.5678E-01
-2.9393E-01
-3.5474E-03
-1.6231E-01
0.0000E+00
1.8847E-01
3.7656E-01
-8.2003E-01
-1.1358E-01

6.81026

SENSITIVITY
FACTOR
1.5783E-01
-2.9649E-01
-3.5520E-03
-1.6655E-01
0.0000E+00
1.9088E-01
3.6307E-01
-8.2621E-01
-9.2530E-02

6.81026

.0416E+00
.0000E+00
.9545E+02
.1453E+02
.7421E+02
.1395E+02

NN WERE PO

NEW FAILURE
POINT

.4208E+01
.2597E+03
.2011E+03
.0731E+00
.0000E+00
.9508E+02
.2163E+02
.8007E+02
.0186E+02

MDD WRERE ROV

NEW FAILURE
POINT

.4199E+01
.2710E+03
.2011E+03
.0969E+00
.0000E+00
.9483E+02
.2599E+02
.8289E+02
.9560E+02

PNWRRPODMDON

NEW FAILURE
POINT

.4194E+01
.2783E+03
.2011E+03
.1125E+00
.0000E+00
.9468E+02
.2812E+02
.8409E+02
.9290E+02

RPNMWERRPRONDWOUND



ITERATION NO. = 8

VARIABLE FAILURE
X(1) POINT
.4194E+01
.2783E+03
.2011E+03
.1125E+00
.0000E+00
.9468E+02
.2812E+02
.8409E+02
.9290E+02

WOV WN R
RPNMWRRPUONDWLN
PR WNHNEBE RMDOND

BETA CALCULATED

BETA FROM BASIC DEFINITION =

BETA THROUGH ITERATION

PROBABILITY OF FAILURE

Table 5.16. (Continued)

EQUIV.
MEAN

.5000E+01
.4275E+03
.2000E+03
.5000E+00
.0000E+00
.0732E+02
.8485E+02
.2464E+02
.8079E+02

EQUIV.
SD
.5000E-01
.2138E+02
.4000E+01
.4000E-01
.0000E+00
.7277E+00
.2940E+01
.8339E+01
.9242E+01

NN WOU &R

IN ITERATION NO. 8 =

6.81026

6.81026

0.48710D-11

-- PARTTAL SAFETY FACTORS --

VARIABLE

woJaauk WwWwbhPRE

PR RERRPERRRE

PSF
.0334
.1014
.0005
.1380
.0000
.0689
.1881
.7468
.0535

SENSITIVITY
FACTCR
1.5841E-01
-2.9785E-01
-3.5536E-03
-1.6886E-01
0.0000E+00
1.9222E-01
3.5691E-01
-8.2842E-01
-8.4024E-02

6.81026

NEW FAILURE

PNWRPODDON

POINT

.4191E+01
.2822E+03
.2011E+03
.1210E+00
.0000E+00
.9459E+02
.2909E+02
.8452E+02
.9181E+02
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Fig. 5.4. Contour Plot of Reliability Index Variation According to API Code
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Fig. 5.6. Contour Plot of Reliability Index Variation According to RCC Code
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Fig. 5.8. Contour Plot of Reliability Index Ignoring Model Uncertainty Factor (RCC)
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Fig. 5.10. Contour Plot of Reliability Index Ignoring Model Uncertainty Factor (API)



CHAPTER 6

FINITE ELEMENT
ANALYSIS OF STIFFENED
CYLINDERS SIMILAR TO

TLP COLUMNS



6.1 INTRODUCTION

In Chapter 3 and mainly in Chapter 4 I have idealised a TLP as a 3-D space frame with
joint elements to find structural and motion responses. In fact, a TLP is a continuum
structure with large diameter columns and rectangular or circular pontoons. A
modelling with plate, shell and/or brick elements would be more appropriate for TLPs
rather than using only 3-D beam elements. But a Finite Element (FE) analysis involving
plate, shell and similar higher order elements is often complex and time consuming,
both to set up and run. A program such as DCATLP might play an important role in
reducing the complexities in the FE analysis. This reduction in computation is possible
by defining boundary loads with suitable support conditions in a local analysis from the
internal resisting forces calculated by DCATLP in elements of TLP members. This will
avoid the necessity of a global model with higher order elements. In addition, I am
essentially converting a dynamic problem into a static one. This is done by replacing
the time varying environmental loading from the problem by load effects in TLP
members.

To illustrate this point, we may consider the load effect values in Table 5.1 for
analysing a part of one ISSC TLP column after modelling it with shell elements. A
local analysis of the ISSC TLP columns with the load effects from Table 5.1 would
demonstrate that a ‘seamless integration’ of hydrodynamic and structural aspects in
TLP design is possible. However, it is difficult to compare the results of such local FE
analysis simply because there is no experimental data or similar information available
for the ISSC TLP. But in the context of structural design of TLPs, research with only
beam and joint elements may be regarded as incomplete because it may not capture the
continuum characteristics of TLP structures. It was therefore decided to analyse three
orthogonally stiffened cylinders in LUSAS which are very similar to TLP columns.
Attention is primarily focused on column members because they can contribute as
much as 70% of the platform displacement (see Chapter 1). The cylinder models
mentioned above were tested in a joint project of Conoco, Inc. and American Bureau
of Shipping [6.15]. At that time, Conoco was mainly interested in improving Jolliet
column design from the experimental results obtained from that joint project.

This chapter also deals with the finite element modelling of a ring only stiffened
cylinder under external pressure. The experimental results are available from the study
of Seleim et al [6.14]. This is included here because the author was interested in
understanding some aspects of shell buckling with a relatively simple problem. The ring
only stiffened cylinder modelling has given the author more background to analyse
orthogonally stiffened cylinders under combined loads.

6-1



It is important to emphasise once again that the main aim is to develop computational
tools or utilise well established software to find new routes which can help a TLP
designer in taking decisions without the need for understanding the complex nature of
underlying hydrodynamic and structural phenomena. The work presented, therefore in
this chapter concentrates on identifying acceptable external loads on cylindrical
structures, typical in TLPs, through FE modelling. Buckling patterns and associated
failure modes do not come under the aims of this study.

6.2 SHELL BUCKLING

Buckling is a mysterious phenomenon that transforms objects with symmetrical beauty
into junk. Bushnell [6.6] believes that most of the failures did not occur because of a
lack of analysis capability. There were computer programs that, given appropriate
input, would yield accurate predictions. But the structures failed because very few had
sufficient familiarity with buckling phenomena to identify proper numerical tests that
would warn of impending disaster.

To understand shell buckling, it is important to know the difference between
membrane and bending stiffness. The membrane stiffness of a thin shell is in general,
several orders of magnitude greater than the bending stiffhess. In fact, it can absorb a
great deal of membrane strain energy without deforming too much. It must deform
much more in order to absorb an equivalent amount of bending strain energy. If the
shell is loaded in such a way that most of its strain energy is in the form of membrane
compression and if there is a way that this stored-up membrane energy can be
converted into bending energy, the shell may fail rather dramatically in a process called
'buckling', as it exchanges its membrane energy for bending energy. Very large
deflections are generally required for this type of strain energy conversion.

6.3 RING STIFFENED CYLINDERS UNDER EXTERNAL PRESSURE

Seleim et al [6.14] carried out buckling experiments with ten ring only stiffened
cylinders machined from aluminium alloy. Their objective was to see the change in
buckling behaviour as the stiffening pattern on an otherwise constant shell progresses
from many equally spaced weak rings to a few heavy rings. In other words, the size,
spacing and number of rings were varied so that the weight of all ten models remained
constant at 6.57 kg. All the models had the same internal diameter of 254 mm, overall
length of 920 mm and wall thickness of 2 mm. The test specimens were machined from
1 inch thick aluminium tubes to reduce the initial geometric imperfections. Stiffened
shells may have rings placed either externally or internally depending on their function
in practical applications. The models in the work of Seleim et al [6.14] utilised exterior
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rings for convenience and ease of machining. Out of ten models, two (i.e. Model 3 and
10) were identical. They were built with a special interest to see whether the
experimental results could be reproduced closely. The author has selected the
geometry of their Model 3 or 10 to gain experience in the eigenvalue buckling
problems.

6.4 EIGENVALUE BUCKLING ANALYSIS

Eigenvalue buckling analysis is a technique that can be applied to relatively ‘stiff’
structures to estimate the maximum load that can be supported prior to structural
instability or collapse. The basic assumptions for this type of analysis are that the linear
stiffness matrix does not change prior to buckling and that the stress stiffness matrix is
simply a multiple of its initial value. Accordingly, the technique can only be used to
predict the load level at which a structure becomes unstable, provided the pre-buckling
displacements have negligible influence on the structural response,

It is beyond the scope of this thesis to discuss the theoretical background of eigenvalue
_buckling analysis. However, the governing equation is given below:

(K] + (Ao} [Ko Di@y} = 0 6.1)

where {}»b} are the eigenvalues which are used as multipliers to evaluate the buckling
loads and {(Db} are the eigenvectors which contain the associated buckling mode
shapes. In most structural problems the lowest mode (i.e. the mode shape
corresponding to the smallest eigenvalue) is the only one of interest. Hence, the critical
buckling load is calculated by multiplying the smallest eigenvalue from {A, } with the

initially applied load vector.

6.4.1 Subspace Iteration Technique

LUSAS [6.11] as well as ABAQUS [6.2] use the subspace iteration technique for
eigenvalue buckling analysis. It is simple to extract several modes simultaneously,
although the lowest mode might be of interest. Efficient evaluation of the lowest
eigenvalues and corresponding eigenvectors is achieved by performing simultaneous
inverse iteration using a set of iteration vectors [6.3], [6.4]. The method is actually a
projection of the problem matrices onto the subspace formed by the iteration vectors.
This produces a reduced eigen-problem which can be solved using Jacobi iteration.
The eigenvectors of the reduced problem are then transformed back to the full space to
form new iteration vectors. The process is repeated until the iteration vectors converge
on the lowest eigenvectors of the full problem.
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6.4.2 Sturm Sequence Check

The subspace algorithm is very stable but does not necessarily converge to the lowest
eigenvalues. Therefore, the Sturm sequence check has been incorporated in LUSAS.
This is an extremely stable procedure [6.11] which indicates the number of eigenvalues
below a given eigenvalue. It is utilised to test for missing values, i.e. if p eigenvalues
have been found and the Sturm sequence check indicates that r>p eigenvalues exist
below the highest eigenvalue, (r-p) eigenvalues have been missed. In that case, the
analysis must be repeated with a different number of starting iteration vectors and/or
different convergence tolerance.

6.5 FINITE ELEMENT EXPERIMENTS WITH LUSAS

LUSAS finite element system is equipped with a powerful Graphical User Interface
(GUI) known as MYSTRO. MYSTRO can be used as pre-processing and post-
processing interactive system. The finite element solver, LUSAS accepts data input
through a datafile which is based on a series of self descriptive data sections. The data
input is flexible and completely free-format. Powerful data generation facilities are
available in MYSTRO to reduce the time spent preparing data to a minimum. LUSAS
also performs a pre-analysis data check to diagnose and warn of erroneous or
improbable data before a full analysis is undertaken. A superelement facility also exists
in LUSAS which allows large finite element models to be divided into smaller, more
manageable components which are then added together to form the complete
structure.

The superelement facility is not utilised in this study. Rather, the author was primarily
concerned to ensure adequate swap space so that a large finite element model can be
analysed in one run. LUSAS creates three scratch files (i.e. problem, frontal and shape)
during an analysis. These scratch files may be very large in size depending on the
problem type. Some of the models discussed later in this chapter require more than 700
Megabytes of scratch space to be analysed. To avoid any hardware limitation, a
SPARC 514 computer is used in this study which is equipped with a scratch disk of 1.6
GB size. The author is grateful to the Glasgow Marine Technology Centre for giving
him access to this rare facility.

6.5.1 QSLS Elements

The LUSAS element library contains over 100 element types, enabling a wide range of
engineering applications to be efficiently modelled. For modelling the ring stiffened
cylinder [6.14] two types of shell elements are used in this study. QSL8 (8-noded



Quadrilateral Semi-Loof) is a thin doubly curved isoparametric element formed by
applying Kirchhoff constraints to a three dimensional degenerated thick shell elements.
QSL8 can accommodate varying thickness and anisotropic and composite material
properties. The formulation takes account of both membrane and flexural
deformations. Transverse shear deformations are excluded as required by thin shell
theory.

The application of symmetry and/or anti-symmetry is very important in reducing the
problem size. Let us consider a Cartesian co-ordinate system of X, Y and Z axes for a
FE problem with three translational and three rotational degrees of freedom per node.
The symmetry about a plane where X=constant would imply restraining the translation
along X and rotations about Y and Z. But the in-plane degrees of freedom (i.e.
rotation about X and translations along Y and Z) should be kept free. The anti-
symmetric boundary conditions are just opposite [6.1]. The in-plane degrees of
freedom are restrained and out-of-plane degrees of freedom are kept free. This is a
general principle to be followed in applying symmetric boundary conditions. But it
requires three translational and three rotational degrees of freedom per node.

QSLS8 elements have only three translational degrees of freedom at corner nodes. The
midside nodes include two loof rotations besides three translations. There are example
problems with QSL8 in Ref. [6.12] where symmetric boundary conditions have been
employed. However, QSLS is not used in this study to utilise symmetry for avoiding
any unforeseeable problem with boundary conditions.

6.5.2 QTSS8 Elements

QTS8 (8-noded Quadrilateral Thick Shell) belongs to a family of thick shell elements in
the LUSAS element library for the analysis of arbitrarily curved shell geometries,
including multiple branched junctions. QTS8 elements can account for varying
thickness. The formulation of QTS8 takes account of membrane, shear and flexural
deformations. One interesting property of QTS8 is that it can be used to model thin
shells as well. To model thin shell, QTS8 uses an incompatible strain field to define
transverse shear. The assumed strain field prevents the ‘shear locking’ when the
elements are thin.

It is advised in Ref. [6.10] to use 5 degrees of freedom for QTS8 elements, wherever
possible, while dealing with smooth shell surface. But 6 degrees of freedom relating to
global axes (i.e. three translations and three rotations) can be enforced using a data
section called ‘Nodal Freedom’. This option is essential to model symmetric sections
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with the boundary conditions discussed in Section 6.5.1. However, enforcing 6 nodal
freedoms in QTS8 elements might cause singularities if appropriate rotations are not
restrained. This topic is discussed later with examples.

6.6 NUMERICAL AND EXPERIMENTAL RESULTS ON RING
ONLY STIFFENED CYLINDERS UNDER EXTERNAL PRESSURE

As indicated earlier, Model 3 and 10 were identical in the experiments of Seleim et al
[6.14]. Their Model 3 failed at 2.837 MPa with three circumferential waves extending
over the entire length of the cylinder. Although Model 10 was identical, its
experimental buckling pressure differs by 6% from the results of Model 3. Model 10
failed at 3.124 MPa.

A major problem in experimental buckling analyses is to estimate the ideal critical
buckling pressure of the perfect structure using experimental data obtained from a
geometrically imperfect structure. Seleim et al [6.14] have used the Southwell method
to estimate the ideal critical buckling pressure from their experimental data because the
method is consistent and easy to apply.

Table 6.1. Experimental Results [6.14] and Analytical Predictions [6.13] in MPa

Models [6.14] Experiment Southwell Plot | ABAQUS [6.13]
3 2.837 2.963 2914
10 3124 [ 3171 - . 2914

Table 6.1 includes analytical predictions of Morandi [6.13] using ABAQUS. He has
tried both 4 and 8-noded shell elements. His results show that there is no difference in
the critical buckling pressure prediction if the mesh is refined while using 8-noded shell
elements (known as S8R in ABAQUS element library).

6.6.1 Numerical Results from LUSAS

Four FE models are created in LUSAS to compare results presented in Table 6.1. The
numerical models are named after the elements used. QSL8_F and QTS8 F are the full
or complete models (‘F’ in their names stands for ‘Full’) of the aluminium cylinder
[6.14], as shown in Fig. 6.1. From Fig. 6.1 it would be quite easy to visualise the actual
configuration of the cylinder. As discussed before, symmetric boundary conditions are
used only with QTS8 elements. QTS8 S1 and QTS8_S2 are sections of the aluminium
cylinder where symmetry is applied.
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One difficulty with the eigenvalue buckling analysis is that several eigenvalues might be
clustered near the critical load [6.6]. In some cases, it might be required to judge
whether the calculated mode shape is at all feasible. In the subspace iteration method,
it is simple to extract several eigenpairs simultaneously. It was therefore decided to
find the lowest four eigenvectors and associated eigenvalues for QSL8 F and
QTS8 F. The first (i.e. the lowest one) and second buckling mode shapes extracted for
both QTS8_F and QSL8 F are identical and shown in Fig. 6.2. The first and second
mode shapes are identical too but they have a phase difference along the
circumference. Actually the second mode shape can be found by rotating the first mode
shape about the cylinder axis. Fig. 6.2 does not show any hidden surface of the cylinder
so that three circumferencial waves can be viewed clearly. The circumferencial waves
are found over the entire length of the cylinder. The critical buckling load calculated
for QSL8_F is 2.595 MPa. The buckling load for QTS8_F is 3.223 MPa which is
significantly different from that of QSL8 F, although there is no difference in terms of
mesh discretisation. This in fact shows the influence of element type selection in a FE
analysis.

In the context of engineering design the mode shapes above the lowest one are not
important. However, it might be interesting to view the higher mode shapes and
associated axial and circumferencial waves. The third mode shape of QSL8_F in Fig.

6.3 shows four circumferencial waves over the length of the cylinder. The fourth one in |
Fig. 6.4 shows the changes along the length. Figs. 6.3 and 6.4 are included here to
show the global deformation of QSL8 F. - | - -

QSL8 F and QTS8 F had an important role in identifying the minimum number of
circumferencial waves occurring over the length of the cylinder. Since the minimum
number is three, theoretically, —]15 of the cylinder can be now modelled with symmetry
on one side and anti-symmetry on the other side (see [6.13]). But the lowest buckling
mode shape of such a small model may not be the desirable one in all cases. A different
mode shape might occur depending on the nature of the finite element used and its
sensitivity to the end-effects. Therefore, it was decided to model 1/3 of the cylinder
with symmetry 'on both sides. Please note that computational time and storage
requirements are unimportant in this study since a high speed multi-processor SPARC
514 machine with a large scratch disk is used.

The mesh of QTS8_S1 is shown in Fig. 6.5. Fig. 6.6 presents the symmetric boundary
conditions in QTS8_S1. The singularity problem with QTS8 elements has been



mentioned in Section 6.5.2. To avoid that, six nodal freedoms are enforced to only
those nodes where boundary conditions are required. The symmetry conditions in Fig.
6.6 do not match with the global axes. So a local co-ordinate system was defined in
MYSTRO which was applied on two sides of the section (i.e. QTS8 S1) so that
appropriate boundary conditions can take place on both sides. The arrows in Fig. 6.6
indicate that the degrees of freedom in those directions are restrained.

The first and lowest buckling mode shape found for QTS8_S1 is the one we are
looking for. It is shown in Fig. 6.7. So far as the mesh discretisation is concerned,
there is no difference among QSL8_F, QTS8_F and QTS8_S1. Naturally no difference
is expected in the results of QTS8_S1 from those of QTS8_F. The critical buckling
load found for QTS8_S1 is almost identical to that of QTS8 F. In other words, it
indicates that the symmetric boundary conditions imposed in QTS8_S1 are working all
right.

With one-dimensionally discretised models, convergence with increasing nodal point
density is not too important because one can generally afford to provide more than
enough nodes to be on the safe side. With two-dimensionally discretised models such
as the aluminium cylinder in this study, limitations of budget for computer runs and
limitations of computer core and auxiliary mass storage capacity often dictate the use
of models with rather sparse nodal point distributions. The quality of the solutions is
questionable because the sparsely discretised models behave differently from the actual
continuum and the size or even the sign of the error is rarely known [6.6].

In the light of the above, it is necessary to refine the mesh of QTS8_S1 to see if there
is any appreciable change in the results. Since there is no practical limitation regarding
computer runs and storage space, as mentioned before, QTS8_S2 is made four times
larger than QTS8_S1 in size. This is done by dividing each element in QTS8_S1 into
four for QTS8_S2 (Fig. 6.8). In other words, the element aspect ratio is identical in
QTS8_S1 and QTS8_S2. Please note that the element aspect ratio here refers to the
ratio of the element length and width. However, quadruple nodal density could not
affect the results and the critical buckling load found for QTS8 S2 is almost identical
to that of QTS8_S1. This is not surprising because similar results were found by
Morandi [6.13] while using ABAQUS. The general conclusion is that the particular
cylinder geometry under consideration is not sensitive to mesh discretisation. We shall
see later that this is not the case with orthogonally stiffened cylinders from
Conoco/ABS experiments.
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Fig. 6.9 presents the Von Mises equivalent stress distribution contour on QTS8_S2. It
is difficult to understand the contour plots unless they are in colour. To avoid problems
as far as possible, 600 dpi greyscale printing technology is used for the contour plots in
this chapter. As observed in the experiments [6.14], higher stresses are found at mid-
bay location (see Fig. 6.9). The first (i.e. lowest) buckling mode shape of QTS8 S2 is
essentially similar to that in Fig. 6.7.

Table 6.2. Buckling Loads of LUSAS Models for the Aluminium Cylinder [6.14]

FE Model No. of No. of No. of Buckling
Name Nodes Elements Equations Load (MPa)
QSL8 F 6288 2064 27216 2.59450
QTS8 F 6288 2064 32880 3.22317
QTS8 Sl 2186 688 11659 3.22307
QTS8 S2 8496 2752 44132 3.24585

Table 6.2 summarises the four models. The critical buckling loads in Table 6.2 refer to
the lowest mode shape only. The buckling loads are shown up to six significant digits
to indicate that the difference in results is really small for QTS8 models. QSL8_F has
under-estimated the buckling load but QTS8 models performed well being very close
to the experimental collapse pressure.

6.7 ORTHOGONALLY = STIFFENED  CYLINDERS '~ UNDER = =
COMBINED LOADING

A series of 66 large scale steel cylinders were tested to failure to develop data for limit
state buckling formulations in a test program jointly administered by Conoco and ABS
[6.15]. The tests were essentially grouped into 14 basic geometries. Each geometry
group of four or more cylinders was subjected to four basic loading conditions ranging
from axial compression alone to external pressure alone. The geometry group 2-2' is
selected from their study for FE analysis in LUSAS. Various FE models are created in
LUSAS for this geometry group depending on the loading type and mesh
discretisation. In order to distinguish them, each model is named based on its purpose
and properties. The original code [6.15] designating the applied load on the geometry
group 2-2 is shown in Table 6.3.

The problem of buckling of thin monocoque cylindrical shells under axial compression
has received far more attention than most problems in structural mechanics because of
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the extra-ordinary discrepancy between test and theory which remained unexplained
for so many years. The design recommendation of Brush and Almroth [6.5] for
cylinders subjected to axial compression is around 20% of the theoretical buckling
stress, based on the distribution of test data. The discrepancy arises from the extreme
sensitivity of the critical load to initial geometric imperfections.

Table 6.3. Different Loading on Four Models in Geometry Group 2-2 [6.15]

Models Loading
2-2A Axial compression alone, Ng =0

2-2B External hydrostatic pressure, N, = 0.5 Ng

2-2C External radial pressure, N, =0
2-2D Combined loading, N, = 1.8 Ng

However, ring and stringer stiffened cylinders are not that imperfection sensitive like
monocoque cylindrical shells [6.6]. But Model 2-2A is not included in this study
because it would be essential to model its initial imperfections. Incorporation of
imperfections and residual stresses in non-linear FE analysis does not fall within the
objectives of the present study. All four models in group 2-2 were stress relieved. So
the question of residual stress disappears from the problem. Three other models (i.e. 2-
2B, 2-2C and 2-2D) are considered here for analytical modelling without any initial
imperfection. The main assumption is that external pressure would trigger the buckling
and consequently the milder nature of imperfection sensitivity of orthogonally stiffened

cylinders can be ignored.

It can be proved that hydrostatic pressure on a circular cylinder (closed end) creates
axial stress which is 50% of the hoop stress. Therefore, the combined loading on 2-2B
was called hydrostatic pressure loading in the original test. Otherwise, 2-2B and 2-2D
are in the same category with different proportion of axial compression and external
radial pressure.

6.8 FE MODELLING IN MYSTRO

We have discussed before that powerful data generation facilities are available in
MYSTRO to reduce the time spent preparing data to a minimum. The first phase of
model preparation in MYSTRO is very similar to creating drawings in CAD packages
by defining points, lines, surfaces and volumes. In the second phase, different
properties such as thickness, elastic/plastic modulus etc. are assigned to the features
(i.e. points, lines, surfaces and volumes). The mesh can be defined by the user or s/he
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can rely on MYSTRO to discretise the geometry. After defining the external loading
and the type of analysis the user may 'ask' MYSTRO to tabulate the model as a datafile
so that the FE solver can start the analysis.

MYSTRO is a fully interactive system and the user may communicate with MYSTRO
in four different ways: ’

1)  Selecting actions from the menu bar

2)  Selecting actions from the menu panel

3) Entering commands in the command window
4)  Replaying a command file

The author particularly preferred the option of replaying a command file in MYSTRO.
MYSTRO contains a parametric command language facility based on the syntax of the
C language, for use in command files. Besides this parametric language, it is possible
to capture valid MYSTRO commands from a session and these commands can be used
to form a command file for future use. This facility can help the user to generate similar
but slightly different complex models in just a few minutes! An example of a command
file to illustrate different activities in MYSTRO is given later.

6.9 MESH DISCRETISATION

Four FE models are created for each cylinder, i.e. 2-2B, 2-2C and 2-2D. It is essential
to distinguish them clearly so that they can be understood without any confusion.
Initial imperfections are not considered in this study. But mean thicknesses of shell,
rings and stringers are used which are slightly different for each cylinder. Besides
ignoring initial imperfections, there is another important simplification. From material
tests, it was found [6.15] that steel used in 2-2B, 2-2C and 2-2D are orthotropic in
nature. But Young's moduli in longitudinal and transverse directions are very close for
each one of them. Therefore in LUSAS, the FE models are defined isotropic with an
average of Young's moduli in longitudinal and transverse directions for each cylinder.
However, please note that this average Young's modulus used is different for 2-2B, 2-
2C and 2-2D.

As mentioned before, 2-2B, 2-2C and 2-2D belong to the same geometry group with
identical radius and bay lengths. In theory, thicknesses were supposed to be identical
too. But in practice, the mean values were slightly different. This leads to a situation
where the same FE mesh can be used for each cylinder with different material
properties and thicknesses. A general mesh study is carried out with four different
types of mesh for each cylinder. The mesh types are ‘F’, ‘S1’, ‘S2’ and ‘S3’. ‘F’
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indicates the full cylinder but ‘S1°, ‘S2’ and ‘S3’ stand for three different symmetric
sections. When simply F_2-2 is mentioned, it would imply the mesh of F_2-2B, F 2-
2C and F_2-2D as well. However, the model F_2-2B would refer to the mesh type ‘F’
with material and geometric properties of the cylinder 2-2B. The author expects that
this terminology will not create any confusion.

Fig. 6.11 presents a typical panel of F_2-2 with the shell in between two stringers. 14
surfaces are defined in MYSTRO where no. 12-14 are for the stringer at side, no. 1-8
for end and middle ring portions and no. 9-11 for middle and end bay shell plates. The
dotted lines in Fig. 6.11 shows the mesh discretisation for the type ‘F’. The full
cylinder model with coarse mesh had an important purpose. F_2-2B, F_2-2C and F_2-
2D are used to observe the global deformation shape in the eigenvalue buckling
analysis.

It has been observed by many researchers that the performance depends on the element
aspect ratio (i.e. element length to width) where plate and shell elements are involved.
As a general guideline, Catley [6.7] suggested to keep the aspect ratio below 2.5. In
many cases best performance is observed when the elements are almost square in
dimension although it may not be feasible in many places since the computational
efforts would increase dramatically. It is worth noting that Ref. [6.11] does not
mention any scope of improvement in performance regarding QTS8 element size.
However, the author was interested in a mesh study with a general guideline of Catley
[6.7] and Hinton [6.9].

Table 6.4. Mesh Divisions in one panel of S1_2-2, S2_2-2 and S3_2-2

Division of Shell, Rings and Stringer in a Panel | S1_2-2 | S2_2-2 | S3_2-2
Shell along circumference 3 4 6
Shell/stringer in middle bay along cylinder length 5 8 14
Shell/stringer in end bays along cylinder length 4 6 10
Width of stringer 2 2 2

The three cylinders under study in 2-2 geometry group had 18 panels. For symmetric
FE sections three panels are used. The reason is discussed later in Section 6.10. Each
panel in symmetric sections (i.e. mesh type ‘S1’ etc.) is slightly different from the panel
with 14 surfaces in Fig. 6.11. For appropriate boundary conditions, the stringer is
placed just at the middle of cylindrical shell as shown in Fig. 6.12. Physically we are
defining a panel with the stringer at the middle instead of placing it at the side. The
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panel in Fig. 6.12 requires 25 surfaces for defining all components. The definition of
one panel is enough because MYSTRO can generate any other identical panel by
copying the original with a suitable transformation dataset.

Table 6.4 provides information on how the mesh types ‘S1’, ‘S2’ and ‘S3’ are
generated from the panel in Fig. 6.12. The type ‘S1’ is quite close to the full mesh, ‘F’.
The element aspect ratios in S1_2-2 are shown in Table 6.5a. Please note that the
length of QTS8 elements in Tables 6.5 refers to the longer dimension which might be
straight or curved. S2_2-2 is a relatively fine mesh. But the aspect ratio of nearly equal
to 1.0 is achieved in S3_2-2 at the cost of increasing number of elements dramatically.
This rise in element number may or may not create any significant difference in
performance as we shall see later. Figs. 6.13-6.15 provide visual presentation of the
three mesh types.

Table 6.5a. Element Aspect Ratios in S1_2-2

Surface No. Total | Length | Width |Aspect Ratio| Elements
10, 24 2 45.72 33.30 1.37 30
9,23, 11,25 4 4043 | 33.30 1.21 48
1, 15,3,17,4, 18,5, 19 8 33.30 15.72 2.12 48
2, 16, 6, 20, 7, 21, 8, 22 8 33.30 15.72 2.12 24
13 1 45.72 15.72 291 10
12, 14 2 4043 | 1572 2.57 16
Total No. of Elements/Panel 176

Table 6.5b. Element Aspect Ratios in S2_2-2

Surface No. Total | Length | Width |Aspect Ratio| Elements
10, 24 2 28.58 2498 1.14 64
9,23,11,25 4 26.96 2498 1.08 96
1,15,3,17,4,18, 5, 19 8 2498 15.72 1.59 64
2,16, 6,20,7,21,8,22 8 24.98 15.72 1.59 32
13 1 28.58 15.72 1.82 16
12, 14 2 26.96 15.72 1.72 24
Total No. of Elements/Panel ' 296
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Table 6.5c. Element Aspect Ratios in S3_2-2

Surface No. Total | Length | Width |Aspect Ratio| Elements
10, 24 2 16.33 16.65 1.02 168
9,23,11,25 4 16.17 16.65 1.03 240
1,15,3,17,4,18, 5, 19 8 16.65 15.72 1.06 96
2,16,6,20,7,21,8, 22 8 16.65 15.72 1.06 48
13 1 16.33 15.72 1.04 28
12, 14 2 16.17 15.72 1.03 40
Total No. of Elements/Panel 620

6.10 EIGENVALUE BUCKLING RESULTS OF FE MODELS FOR
ORTHOGONALLY STIFFENED CYLINDERS

The 'F' type mesh was created to understand the nature of global deformation. For the
ring stiffened aluminium cylinder, we have seen that the number of circumferencial
waves in the lowest mode shape would determine the size of the symmetric sections
(i.e. type ‘S1’ etc.). For ring and stringer stiffened cylinders, circumferencial waves
tend to occur within consecutive stringers. Fig. 6.16 is an ideal example. There is a
special technique to plot such a figure in MYSTRO by combining a model file with the
corresponding result files. The facility offers a 'feature-wise' selection for drawing
undeformed and deformed mesh. An area of interest in the mesh can be selected
through this facility. This way the user gains more control when element and node
the rings to indicate clearly the circumferencial waves between stringers. Please note
that there is an exaggeration factor involved in drawing the deformed mesh. Similar
deformation patterns are observed in the case of F_2-2D under combined loading as
shown in Fig. 6.17. Clearly, the size of the symmetric sections can be made
independent of the circumferencial wave number since deformations are found locally
distributed between stringers. It was decided to consider three panels in the mesh type
'S1','S2' and 'S3".

6.10.1 Actual Findings in Conoco/ABS Experiments [6.15]

Before presenting the results from LUSAS, actual experimental results are briefly
discussed in this section. 2-2B, 2-2C and 2-2D were 45 inches diameter cylinders of
21.6 inches length. In each cylinder, two middle rings were placed 9.0 inches apart.
But the length of both end bays was 6.3 inches. The design thickness of shell and
stringers was 14 ga. (i.e. 0.0747”). The cylinders were typical buckling models.
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In actual experiments, deformation started at low pressures in individual panels in
either an alternating in-out or a reverse bending action [6.15]. This later transformed
into a bay instability mode where the shell and stringers simultaneously bowed in two
or three panel wide waves. Considerable load and deformation increases generally
ensued prior to reaching the maximum condition. All three cylinders failed in the
middle bays.

In the experiments, initial instability loads and maximum loads were recorded. The
maximum load was the one that the cylinder could sustain. This was characterised by a
decrease in load caused by the continuing deflection of the cylinder. Generally this was
a gradual fall-off in load for the pressure loaded cases. However, the initial instability
load was not so uniquely defined. It was considered to be the load where one of the
following first occurred:

a)  Audible or distinct ‘snap’ to new position at any shell panel.

b)  Sudden tripping of a stringer(s).

c) Significant departure from linearity in the axial shortening curves.

d) Abrupt change or significant deflection in the incremental radial
movement curves.

e) Sudden severe flaking or other signs of inception of more rapid
movement.

The magnitudes of initial buckling loads for 2-2B, 2-2C and 2-2D were recorded in .
Ref. [6.15] but not the specific reasons behind those records. The buckling histories
mainly give accounts of deformations occurred within initial instability and maximum
loads. It is worth noting that a number of buckles took place before reaching the
maximum loads in all three cases. Table 6.6 reproduces the actual experimental results:

Table 6.6 Experimental Buckling Results of 2-2B, 2-2C and 2-2D

Cylinder Initial Instability Maximum Load
Name Axial (kips) | Pressure (psi) | Axial (kips) | Pressure (psi)
2-2B 75.4 47.0 145.7 91.2
2-2C 0.0 63.2 0.0 110.1
2-2D 223.3 39.0 286.8 50.1
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6.10.2 Eigenvalue Buckling Results from LUSAS

Before comparing the results obtained from LUSAS, the buckling loads are normalised
for quick reference and understanding. In each case, the maximum load is normalised
to a load factor of 10. Please note that the ratio between axial compression load and
radial pressure was maintained in all cases throughout the experiments. There is a
purpose behind setting the maximum load in each case to a load factor of 10. In a non-
linear analysis, as discussed later, that could help in visualising the load steps, starting
load etc.

Table 6.7. Eigenvalue Buckling Predictions Compared with Experimental
Results

Cylinder 2-2B:

Finite Element Models Experimental Loads

Eigenvalue | F_2-2B | S1 2-2B | S2_ 2-2B | S3 2-2B | Instability | Maximum

Buckling 5.109 5.309 6.488 7.327 5.175 10

Cylinder 2-2C:

Finite Element Models Experimental Loads

Eigenvalue | F_2-2C | S1_2-2C | S2_2-2C | $3_2-2C | Instability | Maximum

Buckling 4.636 4.724 5.900 6.692 5.74 10

Cylinder 2-2D:

Finite Element Models Experimental Loads

Eigenvalue F 2-2D | S1_2-2D | S2_2-2D | S3_2-2D | Instability | Maximum

Buckling 7.224 7.650 9.175 10.280 7.786 10

Table 6.7 compares computerised analytical predictions with actual experimental
results. Unlike the ring stiffened aluminium cylinder in Section 6.6.1, the results
depend very much on the mesh discretisation. The buckling mode shapes such as the
one in Fig. 6.18 clearly show that the deformations mainly occur in the middle bay. It is
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important to note that the eigenvalue buckling analysis results should be compared
with the initial instability loads recorded in the experiments. This is because an
eigenvalue buckling analysis is essentially a linear analysis based on the initial shape of
the structure. It is valid when the pre-buckling displacements have negligible influence
on the structural response. The analytical predictions in Table 6.7 should not be
correlated with the maximum loads attained in the experiments after a number of

buckles and substantial deformations.

In the light of the above, the mesh type ‘S1’ has performed well in combined loading
cases whereas S2 2-2C is very close to the corresponding initial instability load. The
fine mesh type ‘S3’ is over-estimating the buckling load in all cases when compared to
the experimental instability loads. Increasing the nodal point density might cause a
softening action, allowing the mesh to deform smoothly and that could raise the
estimate of the buckling load. Fig 6.19 presents the subspace iteration results for all
four FE models of 2-2C. The convergence was practically achieved in first five

iterations although the analyses were carried up to a stable position.

225
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Fig. 6.19. Convergence in Subspace Iteration for FE Models of 2-2C

In multi-axial situations, the concept of an ‘equivalent’ stress and strain is used. A
popular effective stress measure is the Von Mises equivalent stress which provides a
yield surface in the form of a circular cylinder in principal stress space. For principal
stresses falling inside the yield surface the behaviour is elastic and when stresses reach
the yield surface plasticity begins. The average yield stress for the steel used in 2-2B,
2-2C and 2-2D is around 380 MPa. The Von Mises equivalent stress (i.e. SE in
LUSAS) contour plots in Figs. 6.20-6.22 show that the maximum buckling stresses are
appreciably lower than their corresponding yield stress values. They also reflect that

the experimental cylinders were typical buckling models. However, please note that
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there is no material non-linearity involved in the eigenvalue buckling analysis. The
equivalent stress contour plots were very similar for all 12 FE models showing
maximum stresses occurring mainly in the middle bays. The mesh type ‘S3’ is only
selected in Figs. 6.20-6.22 to avoid repetitions of similar figures. Another reason is
that the contour plots are better on fine meshes.

6.11 GEOMETRICALLY AND MATERIALLY NON-LINEAR
ANALYSIS

We have already discussed that the three cylinders under study had strong links with
typical TLP column structures. The ASTM A606 hot rolled steel used for these
cylinders was selected on the basis that it is representative of a 50 ksi yield strength
steel plate. Please note that 50 ksi steel plates were used later in the fabrication of the
Jolliet TLWP. This material exhibits a slightly rounded stress strain curve with a sharp
yield plateau. The eigenvalue analysis results have already indicated that the buckling
stresses are significantly lower than the material yield stress. Therefore the slightly
rounded stress strain curve is simplified to a bi-linear curve (i.e. elastic and perfectly
plastic) for non-linear computational modelling. In fact, geometric non-linearity is the
important issue for these buckling problems, not material non-linearity. It has been
mentioned before that the initial imperfectioné are ignored in this study for simplicity
and milder sensitivity of stringer stiffened [6.6] cylinders. However, it is very important
to include geometric non-linearity even if the analysis starts with the perfect structure
because the stiffness matrices can then be formed based on the deformed shape in
different load steps.

6.11.1 Non-linear Analysis Controls in LUSAS

A LUSAS datafile has several data sections depending on the nature of the problem.
There are 42 parameters in the ‘Nonlinear Control’ section although all of them may
not be necessary in most of the problems. The required parameters are to be specified
by the user to guide the solution procedure. There is another way to modify the
computational procedure by specifying relevant option number in the ‘Options’ data
section. LUSAS offers around 250 options to guide the FE solver to meet the
requirements in especial situations. |

The theoretical background behind the line search method, the arc length method etc.
in non-linear analyses is mathematically rigorous and complex. The lack of clear
understanding might lead the user to select a wrong or unnecessary parameter/option
in a LUSAS analysis.
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The load levels in LUSAS can be controlled in a number of ways. With the constant
load level incremental and iterative procedure, the load is applied in specified fixed
increments and the chosen iterative algorithm is utilised to obtain convergence of the
solution at each load level. The loading remains constant in the iteration process. The
constant load level methods fail when the solution reaches the ‘limit’ points. These are
the points where either displacement or load reversals occur, resulting in a singular or
near singular stiffness matrix.

One of the two arc length algorithms implemented in LUSAS follows the one
proposed by Crisfield [6.8]. The salient characteristic of arc length methods is that the
load level does not remain constant during each load increment. The load level is
modified during the iteration procedure so that convergence near limit points may be
achieved. A further benefit of the arc length constraint is in stabilising the iterative
process. This is of particular importance when using the Modified Newton iteration.
The arc length methods may therefore improve the efficiency of the solution, even
when no limit points are involved.

6.11.2 Practical Difficulties

The main aim of carrying out non-linear analyses in this chapter was to study the
structural behaviour after the initiation of buckling. It is always advisable to use the arc
length control near structural collapse so that the load level can be automatically
adjusted when limit points are encountered. The author started his non-linear analyses
with the arc length control option but it ended off with a real frustrating experience. .
The arc length algorithms in LUSAS are guided by the minimum pivot occurring in the
structure. When the minimum pivot calculated becomes negative at some load level, it
indicates the existence of a bifurcation point. At a bifurcation point on the solution
path, may proceed along several paths, one stable and the others unstable.

It is worth noting that the initial instability loads found in the experiments with 2-2B
and 2-2C were 52% and 57% of the maximum loads attained (see Table 6.7).
Therefore one should not be surprised to find a number of bifurcation points on the
solution paths of the FE models under consideration. The problem with the arc length
solution starts when the first bifurcation point is encountered. The solution oscillates
about this point with no further progress being made. The output is a jagged load
deflection curve.

The author does not have well-founded experience in this type of numerical problems.
He decided to avoid the arc length control since he was interested to go beyond the
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initiation of buckling. The constant load level procedure was the second alternative. All
the results presented in the next section come from the constant load level non-linear
analyses. One immediate consequence of avoiding the arc length control is that the
solution procedure has to be ‘re-started’ several times with a modified incremental-
iterative scheme to capture the structural response beyond the initiation of buckling.

Very recently, it has been discovered by the author that the solution difficulty with the
arc length procedure in LUSAS near a bifurcation point can be tackled by using one of
those 250 options mentioned earlier. The actual problem lies in the selection of the
correct root of a quadratic equation (see Ref. [6.8]) where one root will take the
solution forward and the other backward! Option 164 allows the solution to continue
on the fundamental path and overcomes any oscillation near a bifurcation point. This is
done by controlling the arc length procedure by the current stiffness parameter instead
of the minimum pivot. The current stiffness parameter is a scalar quantity designed to
characterise the overall structural stiffness at various stages of a non-linear solution.

The author will continue working on this problem. However, no such result using
Option 164 together with the arc length procedure is presented in this thesis.

6.11.3 Numerical Results

MYSTRO contains a parametric command language facility based on the syntax of the
C language. Table 6.8 presents a typical command file ‘replayed’ in MYSTRO to
create a datafile called nl_sl1_b.dat. It is the non-linear analysis datafile of the FE
model, S1_2-2B. The command file in Table 6.8 has a number of comment cards
starting with ‘. They are included to illustrate each and every step involved in
developing a computational model in a GUI like MYSTRO. The non-linear control
section in the datafile or in the restart file is subsequently modified depending on the
nature of the solution path.

The output from a non-linear analysis can be several times larger than what can be
extracted from a linear analysis. Fig. 6.23 shows the locations of some sampling points
(the word ‘sampling’ is not used in any statistical sense) on S1_2-2B and S1_2-2D
under combined loading. The node numbers on S1_2-2C under external pressure are
slightly different but the mesh configuration is identical. Please note that some points
are specifically chosen on the stringers and rings in Fig. 6.23 to compare the nature of
load deflection and stress strain curves at these points with those on the shell plate.

Only the mesh type ‘S1’ is used in the non-linear analysis because of the problems
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discussed in Section 6.11.2. It is of course possible to do similar analysis with the other
mesh types ‘S2’ and ‘S3’. They are avoided mainly because several attempts are
required to complete one problem with the constant load level procedure. Moreover,
the fine mesh type ‘S3’ was not very helpful in the eigenvalue buckling analysis and
‘S2’ is quite close to ‘S1°. Therefore, it is expected that the conclusions drawn from
the non-linear analyses of ‘S1’ mesh would not be seriously affected if further
computations are carried out with ‘S2’ and ‘S3’.

Figs. 6.24-6.28 present the results of analysing S1_2-2B. The solution failed to
converge at the 13th. load increment. The maximum load factor attained is 5.4 which is
very close to the eigenvalue result (i.e. 5.3) of S1_2-2B. In actual experiments with the
cylinder 2-2B, initial instability was recorded at a load factor of 5.175. Please note that
the computational models and the experimental structures are never identical. From a
designer’s view point, the initial instability is very important because the actual
structure should be safeguarded from any type of instability. However, the FE model
failed to show the post-buckling behaviour observed in the experiment. Nevertheless, it
produced quite reasonable results so far as the design of similar structure is concerned.
At least one can spot the load level from where the structure starts becoming unstable.
The load displacement plots at nodes 1324 and 761 in the middle bay are identical
because of the axisymmetric shell buckling. The number 11 and 12 in Figs. 6.24 and
6.25 refer to the load increment steps. It is interesting to note that unstable nature of
displacement can be noticed even in nodes on stringers and rings. The stress strain
curves in Figs. 6.26 and 6.27 also present the initiation of unstable structural
behaviour. . . v

Similar set of results from the non-linear analysis of S1_2-2D is presented in Figs.
6.29-6.34. The analysis failed to converge at the 9th. load increment. The maximum
load factor attained is 8.2 which is close to the eigenvalue result (i.e. 7.65) of S1_2-
2D. In actual experiments with the cylinder 2-2D, initial instability was recorded at a
load factor of 7.786. Still we could not reach the experimental maximum load factor of
10. It might be because of the constant load level procedure used in the analysis which
usually fails to follow the solution path near structural collapse. The equivalent loads
are never shown in any figure in this chapter because the pressure load would cover
the entire drawing and it would be difficult to examine anything else. However, the
displacement contour plot in Fig. 6.34 demands some explanation based on the
assignment of loading. The equivalent axial compression load is assigned to the bottom
ring. To be precise, the line of action of the axial compression coincides with the
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curved line joining the shell and the bottom ring. The top ring is fixed. In view of this
boundary condition, the displacement pattern can now be understood quite clearly.

The node numbering on S1 _2-2C is slightly different but the mesh discretisation is
identical to that of S1_2-2B and S1_2-2D. Nodes 959, 1319, 806 and 1099 are in the
same position on the mesh as nodes 957, 1324, 800 and 1104 in Fig. 6.23 respectively.
The nature of load displacement curves are quite interesting. Nodes on the shell plate
(i.e. 806 and 1319) are showing a displacement reversal although the stress values do
not change appreciably at these points. However, there are nodes where the resultant
displacements are larger than those at 806 and 1319 (see Fig. 6.39). The analysis failed
to converge at the 17th. load increment. The maximum load factor attained is 8.21. In
actual experiments with the cylinder 2-2C, initial instability was recorded at a load
factor of 5.74. This is the only one model where the analysis could go beyond the
initial instability. But please note that there is no axial compression present in 2-2C.
The equivalent stress values in Fig. 6.40 are much higher than others discussed before.
This might be due to the fact that the analysis could go quite far beyond the initial
instability.

6.12 CONCLUSIONS

There are references on non-linear FE analysis where the readers are discouraged to
take attempts to solve numerical problems if they are not well acquainted with the
theoretical background. But the author has learnt something different. He thinks that it
is extremely difficult to understand the theories alone unless someone works with the -
numerical problems.

The main objective was to carry out a detail FE analysis of a part of a TLP structure
with the help of the results from a 3-D beam element based global analysis. Although
the ISSC TLP structure is not analysed in this chapter since no experimental data is
available, it is still possible to generate computational models for any TLP column
similar to the cylinders considered here. In fact, the command files already created can
be used to analyse other cylindrical structures with slight modifications.

The computerised analytical predictions presented are in good agreement with the
experimental results. LUSAS is a general-purpose FE package. But it could adequately
handle the buckling problems and the results can be used in design to avoid structural
instabilities.
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Table 6.8. A MYSTRO Command File Illustrating Different Steps in Non-linear
FE Modelling of Orthogonally Stiffened Cylinders

1'S1' type mesh of 2-2B, 176 elements per panel

! Defining transformation datasets

DEFINE TRANSFORMATION TRANSLATION ITSET=1 X=0 Y=161.73 Z=0
DEFINE TRANSFORMATION TRANSLATION ITSET=2 X=0 Y=390.33 Z=0
DEFINE TRANSFORMATION TRANSLATION ITSET=3 X=0 Y=552.06 Z=0
DEFINE TRANSFORMATION XZ_ANGLE ITSET=4 THETA=10 X0=0 Y0=0 Z0=0
DEFINE TRANSFORMATION TRANSLATION ITSET=5 X=0 Y=228.60 Z=0
DEFINE TRANSFORMATION XZ_ANGLE ITSET=6 THETA=20 X0=0 Y0=0 Z0=0

! Tolerance

SET TOLERANCE MERGE MGTOL= 3.00000

SET TOLERANCE EQUIVALENCE EQTOL= 3.00000
SET LABEL POINTS

SET LABEL LINES

SET LABEL SURFACES

! Defining points, lines and surfaces

DEFINE POINT PN=1 X=572.48 Y=0 Z=0
DEFINE POINT PN=2 X=541.02 Y=0 Z=0
DEFINE POINT PN=3 X=525.78 Y=0 Z=0

DEFINE LINE ARC_MINOR BY_SWEEPING LN=1 PN=1 ITSET=4
DEFINE LINE ARC_MINOR BY_SWEEPING LN=2 PN=2 ITSET=4
DEFINE LINE ARC_MINOR BY_SWEEPING LN=3 PN=3 ITSET=4

DEFINE SURFACE BY_JOINING SN=1 FN1=L1 FN2=L2
DEFINE SURFACE BY_JOINING SN=2 FN1=L2 FN2=L3

COPY SURFACE SN=1 SNINC=* NTIMES=1 ITSET=1
COPY SURFACE SN=1 SNINC=* NTIMES=1 ITSET=2 -
COPY SURFACE SN=1 SNINC=* NTIMES=1 ITSET=3
COPY SURFACE SN=2 SNINC=* NTIMES=1 ITSET=1
COPY SURFACE SN=2 SNINC=* NTIMES=1 ITSET=2
COPY SURFACE SN=2 SNINC=* NTIMES=1 ITSET=3

ERASE

TRANSFORM ROTATE ALPHA=45 GAMMA=-110

DRAW POINT PN=ACTIVE COLOUR=100.000.000 SYMBOL=1 SIZE=5.0

DRAW LINE LN=ACTIVE COLOUR=100.100.000 LTYPE=0

DRAW SURFACE SN=ACTIVE COLOUR=000.100.000 LTYPE=0

DRAW SURFACE AXES SN=ACTIVE VECMAX=6.0 SIZE=5.0 COLOUR=000.100.000

DEFINE SURFACE CYLINDER BY_JOINING SN=* FN1=L1 FN2=L8
DEFINE SURFACE CYLINDER BY_JOINING SN=* FN1=L8 FN2=L12
DEFINE SURFACE CYLINDER BY_JOINING SN=* FN1=L12 FN2=L16
DEFINE SURFACE BY_POINTS SN=* PN=6;4,12;14

DEFINE SURFACE BY_POINTS SN=* PN=14;12;18;20

DEFINE SURFACE BY_POINTS SN=* PN=20;18;24;26

COPY SURFACE SN=I1T11 SNINC=* NTIMES=1 ITSET=4

ERASE
DRAW SURFACE SN=ACTIVE COLOUR=000.100.000 LTYPE=0



DRAW SURFACE AXES SN=ACTIVE VECMAX=6.0 SIZE=5.0 COLOUR=000.100.100
FILE PAUSE

! Mesh discretisation

DEFINE MESH BY NAME IMSH=* FEATYP=Surface LNAME=qts8 MSHTYP=3 NDIVX=2
ggli'vnzl*::i‘IESH BY_NAME IMSH=* FEATYP=Surface LNAME=qts8 MSHTYP=3 NDIVX=1
IISHE?ZII?VII?I(];?\/IESH BY_NAME IMSH=* FEATYP=Surface LNAME=qts8 MSHTYP=3 NDIVX=4
SIEDIII?VIIPJ(];?\/[ESH BY_NAME IMSH=* FEATYP=Surface LNAME=qts8 MSHTYP=3 NDIVX=5
ggIITVII\\I(E?iAESH BY_NAME IMSH=* FEATYP=Surface LNAME=qts8 MSHTYP=3 NDIVX=2
ggl{'%édESH BY_NAME IMSH=* FEATYP=Surface LNAME=qts8 MSHTYP=3 NDIVX=2
NDIVY=

DEFINE EQUIVALENCE IEQV=* EQTOL=3.0

ASSIGN EQUIVALENCE FEATYP=Point PN=ALL IEQV=1
ASSIGN EQUIVALENCE FEATYP=Line LN=ALL IEQV=1
ASSIGN EQUIVALENCE FEATYP=Surface SN=ALL IEQV=1

! Assigning mesh to the surfaces

ASSIGN MESH FEATYP=Surface SN=1;3;4,5 IMSH=1
ASSIGN MESH FEATYP=Surface SN=2;6;7;8 IMSH=2
ASSIGN MESH FEATYP=Surface SN=9;11 IMSH=3
ASSIGN MESH FEATYP=Surface SN=10 IMSH=4
ASSIGN MESH FEATYP=Surface SN=12:14 IMSH=5
ASSIGN MESH FEATYP=Surface SN=13 IMSH=6

ASSIGN MESH FEATYP=Surface SN=15;17;18;19 IMSH=1
ASSIGN MESH FEATYP=Surface SN=16;20;21;22 IMSH=2
ASSIGN MESH FEATYP=Surface SN=23;25 IMSH=3
ASSIGN MESH FEATYP=Surface SN=24 IMSH=4

ERASE

DRAW MESH COLOUR=100.100.100 LTYPE=0

FILE PAUSE

! Thickness of shell, stringers and rings

! IGMP=1 for shell and IGMP=3 for stringer

DEFINE GEOMETRY IGMP=1 LGTPF=7 E=0 T=1.96088
DEFINE GEOMETRY IGMP=2 LGTPF=7 E=0 T=3.4163
DEFINE GEOMETRY IGMP=3 LGTPF=7 E=0 T=1.93802

ASSIGN GEOMETRY FEATYP=Surface SN=1;2;5;8 IGMP=2
ASSIGN GEOMETRY FEATYP=Surface SN=3;4,6,7;9T11 IGMP=1
ASSIGN GEOMETRY FEATYP=Surface SN=12;13;14 IGMP=3

ASSIGN GEOMETRY FEATYP=Surface SN=15;16;19;22 IGMP=2
ASSIGN GEOMETRY FEATYP=Surface SN=17;18;20;21;23T25 IGMP=1

! Non-linear material
DEFINE MATERIAL IMAT=1 MATTYP=1 LPTPF=1 E=209566 NU=0.3
ASSIGN MATERIAL FEATYP=Surface SN=ALL IMAT=1

DEFINE MATERIAL IMAT=2 MATTYP=2 LPTPF=72 HF=0.0 SIGYO=365.46
ASSIGN MATERIAL_PLASTIC FEATYP=Surface SN=ALL IPLAS=2



DEFINE MATERIAL IMAT=3 MATTYP=3 LPTPF=70 CI=0 LI=1
ASSIGN MATERIAL_TENSION FEATYP=Surface SN=ALL ITENS=3

! Support conditions, fixed =

! Bottom ring

DEFINE SUPPORTS ISUP=1 U=1 V=1 W=1 THX=0 THY=0 THZ=0
ASSIGN SUPPORT FEATYP=Surface SN=5;8;19;22 ISUP=1 LCID=1

! Top ring under load
DEFINE SUPPORTS ISUP=2 U=1 V=0 W=1 THX=0 THY=0 THZ=0
ASSIGN SUPPORT FEATYP=Surface SN=1;2;15;16 ISUP=2 LCID=1

ERASE
DRAW POINT PN=ACTIVE COLOUR=100.000.000 SYMBOL=1 SIZE=5.0
DRAW LINE LN=ACTIVE COLOUR=100.100.000 LTYPE=0

! Axial Compression

DEFINE LOADING ILDG=1 LTPF="Concentrated Load" PY=292.044
ASSIGN LOADING FEATYP=Line LN=1;50 ILDG=1 LCID=1 FACTOR=1.0
DEFINE LOADING ILDG=2 LTPF="Concentrated Load" PY=-292.044
ASSIGN LOADING FEATYP=Point PN=1;4 ILDG=2 LCID=1 FACTOR=1.0

! External pressure

DEFINE LOADING ILDG=3 LTPF="Uniformly Dist. Load" WZ=-0.06288

ASSIGN LOADING FEATYP=Surface SN=9;10;11 ILDG=3 LCID=1 FACTOR=1.0
ASSIGN LOADING FEATYP=Surface SN=23;24;25 ILDG=3 LCID=1 FACTOR=1.0

DRAW LOADING ILDG=ALL VECMAX=6.0 VECMIN=0.0 SIZE=5.0 COLOUR=000.100.100

! Copying the first panel to generate other two panels
COPY SURFACE SN=ALL SNINC=* NTIMES=2 ITSET=6

! Adjusting load at point number 1 :
ASSIGN LOADING FEATYP=Point PN=1 ILDG-'2 LCID—l FACTO

! Defining local co-ordinates for symmetric support conditions

DEFINE LOCAL_COORDINATE CARTESIAN XZ_ANGLE LCN=* THETA=60
ASSIGN LOCAL_COORDINATE FEATYP=Line ...
LN=253;257;285;261;273;289;265;277;293;269;281 LCN=1

! Symmetric support conditions

! Top ring side under load

DEFINE SUPPORTS ISUP=3 U=1 V=0 W=1 THX=1 THY=1 THZ=0
ASSIGN SUPPORT FEATYP=Line LN=4;6 ISUP=3 LCID=1
ASSIGN SUPPORT FEATYP=Line LN=253;257 ISUP=3 LCID=1

! Side shell and middle rings with x and y freedom

DEFINE SUPPORTS ISUP=4 U=0 V=0 W=1 THX=1 THY=1 THZ=0

ASSIGN SUPPORT FEATYP=Line LN=32;10;22;34;14;26;36;18;30 ISUP=4 LCID=1
ASSIGN SUPPORT FEATYP=Line LN=285;261;273;289;277;265;293;269;281 ...
ISUP=4 LCID=1

! Bottom ring side- fixed

DEFINE SUPPORTS ISUP=5 U=1 V=1 W=1 THX=1 THY=1 THZ=0
ASSIGN SUPPORT FEATYP=Line LN=30;18 ISUP=5 LCID=1
ASSIGN SUPPORT FEATYP=Line LN=269;281 ISUP=5 LCID=1



ERASE

DRAW MESH COLOUR=100.100.100 LTYPE=0

DRAW SUPPORT ISUP=ALL VECMAX=6.0 SIZE=5.0 COLOUR=020.100.050

DRAW LOADING ILDG=ALL VECMAX=6.0 VECMIN=0.0 SIZE=5.0 COLOUR=000.100.100

! Total Lagrangian geometric non-linearity
SET OPTIONS 87

! Non-linear control section to start with
DEFINE CONTROL ICTRL=1 ITYPE1=1 ITYPE2=0 SLAMDA=0.2 ISURFC=0 ITD=4
TLAMDX=15 MAXINC=15 INCPLT=1
ASSIGN CONTROL ICTRL=1 LCID=1

! Creating the datafile
TABULATE nl_s1_b
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CHAPTER 7

CONCLUSIONS
AND
FUTURE WORK




7.1 GENERAL

For almost all ship hull forms, prescriptive rules exist from major classification
societies. These empirical formula based rules have served for decades to define
minimum requirements for the structural design of ships. There have been classic
examples of structural failure when new ship designs fell outside the scope of the
experience on which such prescriptive rules were based. But for TLP structures, such
an experience base does not exist at all. TLPs designed to date are for quite different
missions and therefore have different dimensions and other features. It is essential
therefore to start analyses using engineering first principles.

The following section will summarise what the author has learnt through his research
work detailed in earlier chapters. He started his work without any theoretical or
practical experience with TLPs. It was also necessary for him to learn how to plan
various stages of a long-term research work. One obvious choice was to proceed from
the simplest computational methods. It was found that simple hand calculations
demonstrated by other researchers could be of great help in understanding the global
behaviour of TLP structures.

The research was aimed at setting up an integrated design track for TLPs. In practice,
various groups of people are involved in designing and constructing TLPs and similar
structures. Sometimes they might share as little as one or two vital pieces of
information (e.g. the maximum stress or load value) to tie up their work. But an
integrated design process would share more information among hydrodynamics,
structural‘ehgiﬁeering and associated reliabilityv aspects. One poésible solution is to
create a common database of information. An interactive database might be difficult to
set up at first, but that can certainly improve the situation. However, different stages
of the design process have to programmed such that the developed modules can read
from or write to the common database.

Another objective was to explore new and existing avenues where attention can be
gradually shifted from the ocean environment to final strength checking and reliability
aspects.

7.2 MAIN CONCLUSIONS

In earlier chapters, some immediate conclusions have been drawn to point out the
results of the computational efforts involved. But this section will discuss the main
conclusions separately without any technical details.

7-1



(a) Importance of Numerical Modelling

While going through a number of references, the author has noticed that the readers
are often discouraged to take attempts to solve numerical problems if they are not well
acquainted with the theoretical background. This is particularly true when non-linear
FE analyses are involved. But the author has a different view point in this respect. He
thinks that it is extremely difficult to understand the theories alone unless someone
works with the numerical problems.

(b) Equivalent Loads in the Ocean Environment

Even today, apart from concentrated and uniformly distributed loads, only a few
standard types can be handled adequately by general purpose finite element software.
The author has tried to combine some existing computational methods and techniques
of structural mechanics to simplify the task of transferring complicated member loads
to the corresponding nodes of beam elements. In the process, some closed-form
expressions are formulated which can be very helpful to anyone who does not want to
get into the complexity of the interaction of waves with the structure. The added
advantage is that the closed-form expressions are analytically integrated and simplified.
So there is no need for any numerical integration which is usually computationally
expensive. The beam elements are not subdivided if the closed-form expressions are
used and thereby the computer run time and storage requirements can be considerably
decreased.

(c) Equivalent Loads for Arbitrarily Oriented Beams in Space

In the case of a beam, arbitrarily oriented in space, equivalent loads can only be found
through numerical integration. But the computation procedure proposed in Chapter 2
will achieve a reasonable solution depending on the size and number of divisions along
the element length. The method can also deal with any other form of member loads in
addition to forces from ocean waves. It can be easily programmed and stored as a
separate module which can be utilised later in the main analysis.

(d) Dynamic or Quasi-Static ?

It is important to remember that compliant offshore structures like TLPs are inertia
dominated and any attempt to analyse them quasi-statically might produce erroneous
answers unless platform inertia forces are properly adjusted with external
environmental forces. Patel et al [7.2] have found that typical inertia forces can be 15
times greater than the tether forces for a TLP in 120 m of water. The author has
gained similar experience while developing DCATLP.



(e) Rigid Body Response Calculations

One useful feature of rigid body response programs such as RBRA is that they can
quickly and efficiently generate force and response RAOs. The RAOs can be utilised in
frequency domain analysis with sea spectra to calculate response statistics. However, a
rigid body response program is not quite helpful in structural design. Maximum
magnitudes of the environmental and platform inertia forces can be transferred to a
separate space frame model with various simplifications and assumptions [7.5] for
structural analysis. In fact, DCATLP has been developed to give answers to these
problems.

() Dynamic Coupled Analysis

DCATLP can execute a large set of time varying load cases on a TLP. It works with
all kinds of forces (i.e. static, quasi-static, dynamic) at any instant of time. It also
calculates the internal forces in TLP components under the action of time varying
environmental, inertia, damping and restoring forces. This automatic, elaborate,
element-by-element calculation is extremely difficult if not impossible, if the structural
calculations have to depend on separate hydrodynamic analysis.

(g) Tether Stiffness

One important conclusion in this study is about the spring models of tethers. The ideal
horizontal spring stiffness, can provide reasonable estimates of the platform surge or
sway response but tethers do not behave totally like springs in the vertical direction,
Their behaviour in the vertical direction can only be understood from a hull-tether
coupled analysis.

(h) Damping

The importance of damping has been demonstrated in this work. For steady state
response calculation in time domain, damping in the system is essential. Otherwise the
free vibration part in the transient state of response will not die out in the course of
time. This may create confusion if the results are compared with frequency domain
calculations.

(i) Practical Applications

Various modules of the programs developed in this research work have been checked
and verified by a general purpose FE software called LUSAS. The configurations of
company specific TLPs in service are avoided in this work to comply with the
academic license of LUSAS. However, the analysis procedure set out for Model_2 of
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the ISSC TLP has been followed recently [7.3] to calculate natural frequencies and
forced response of the Snorre TLP. The results found are in good agreement with the
experimental results.

Program RBRA has been successfully used in a research work [7.4] for modelling
multi-variate environmental data. In fact, RBRA is a collection of subroutines which
can be easily linked to a different program to do some useful analysis with sea spectra.

However, DCATLP still remains an academic exercise. It was important for the author
to get some feed back from industries. It is worth noting that a detailed report on
DCATLP [7.1] has been reviewed and appreciated by experts in Conoco and Shell.

(j) Analysis of TLP columns

TLPs are column stabilised structures. The columns may contribute 70% of the
platform displacement. In general, TLP columns are constructed of large cross-section
thin stiffened shells which will always fail by inelastic buckling at applied stress levels
lower than the yield stress, often appreciably lower. In such cases a working stress
basis for design is clearly inappropriate and is potentially unconservative. Therefore it
was necessary to verify the proposed design of the ISSC TLP columns through
deterministic as well as probabilistic checks. Similar column structure design can be
verified quickly if the step-by-step computation procedure detailed in Chapter 5 is
followed.

The modelling uncertainty factor dominated quite strongly in the demonstrations in
Chapter 5 to obtain the failure probabilities at the expense of more 'physical' variables
such as dimensions and material properties. While formulating a performance function
from an interaction equation, care must be taken to include model uncertainty
factor(s). Otherwise, the significance of other design variables might be lost. If the
correlation coefficients among variables are taken into account, improved solutions
can be achieved.

(I) Local FE Analysis

It has been widely recognised that component structures can only be assessed using 3-
D and 2-D finite element analysis techniques on a routine basis. The main objective in
Chapter 6 was to carry out a detail FE analysis of a part of a TLP structure with the
help of the results from a 3-D beam element based global analysis. The application of
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the subspace iteration technique used in the eigenvalue buckling analysis is found to be
easy and straight-forward. It is helpful to get an initial ‘feel’ for the structure.
However, the buckling load calculated in this process might vary with the mesh
discretisation in some cases as seen in Chapter 6. It would be therefore a wise decision
to verify a column design through rigorous non-linear FE analysis.

7.3 USEFUL FEATURES OF THIS RESEARCH WORK

The author would like to close this thesis with the hope that it may provide one corner
stone in the hydro-structural analysis and its application to the design of TLPs in the
future. A few useful features of this research work that the author would like to claim
as his contributions are noted below for quick reference:

(a) Offset Calculation

There are simplified formulae available in several publications for estimating offset and
set-down of a TLP under the action of quasi-static environmental forces. But in most
cases, a few factors are ignored to keep these formulae simple and straight-forward. In
Section 4.3.3, an offset calculation method is proposed which accounts for set-down,
tether inclination angle, change in tether tension and the stretch in tethers as well. This
method is expected to be useful in future.

(b) Closed-form Expressions for Equivalent Nodal Loads

Analytical diffraction forces from the MacCamy and Fuchs' theory and inertia and drag
forces from the Morison equation have been separately integrated with the shape
functions of the Bernoulli-Euler beam to generate closed-form expressions in Chapter
2 for equivalent nodal loads, suitable for beam element based FE analyses. The general
step-by-step procedure for similar calculations with member loads which do not follow
any standard pattern in the case of an arbitrarily oriented beam in space can be useful
too.

(c) Hydro-Structural Analysis

The ultimate aim of developing DCATLP is to provide calculation methods and
computational tools for a 'seamless integration' of hydrodynamic and structural aspects
in a TLP design. The author is not aware of the existence of any other program like
DCATLP or similar calculation procedures available in the public domain.

(d) Failure Probability from Internal Resisting Forces



A step-by-step calculation procedure is presented in Chapter 5 to find failure
probabilities of TLP column structures after assigning appropriate coefficients of
variation to the strength and load variables. The calculation of longitudinal and hoop
stresses from maximum axial compression, torsion, shear forces, bending moments and
hydrodynamic pressure is also shown. This component reliability analysis procedure
might be useful to provide information as criteria for decision making in the design
stages.

(e) From Global Dynamic Analysis to Non-linear Local Analysis

The internal resisting forces in TLP members calculated by a hydro-structural analysis
program can be carefully used to define boundary loads with suitable support
conditions in a local FE analysis. The local analysis would be of general nature without
any especial characteristics of TLPs. This way a general purpose FE software can be
introduced in a TLP design.

7.4 FUTURE WORK

(a) Irregular and Random Waves

It is not difficult to improve the capabilities of DCATLP. It can work with irregular
and random waves without much modifications. The environmental loading module
can calculate forces from a number of regular waves and superimpose them together
to form the right-hand-side external load vector. A random wave signal can be
separated into a number of regular wave components through FFT (Fast Fourier
Transformation). Standard FFT routines are available in various subroutine libraries
(e.g. NAG library from The Numerical Algorithms Group Ltd. [7.6] ). It is expected
that DCATLP could take site data into account in the immediate future extension.

(b) Correlation Coefficients in the Reliability Based Design

The selection of appropriate correlation coefficients among design variables in a TLP
column design is difficult. But BCCNNV can be used as a ‘black box' once the
correlation coefficients are ready. This is an important future work to see the influence
of the model uncertainty factor when it is correlated to other design variables.

(¢) Geometrically and Materially Non-linear Buckling Analysis

This is one of the most difficult areas in the structural analysis. The attempts taken
with the help of LUSAS in Chapter 6 can be certainly improved if the arc length
control is implemented in the analysis. Perhaps it will provide more information on
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post-buckling deformations. The author is interested in pursuing these studies in
future.
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