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ABSTRACT

The thesis describes the results of non-destructive tests carried out on eleven 

orthogonally reinforced concrete sandwich panels, for the determination o f their 

dynamic characteristics. The objective of the present investigation was to 

determine through the dynamic response, the structural integrity o f the sandwich 

panels. The main dynamic characteristic of the panels under consideration was 

their natural frequency. The test specimens had nominal dimensions of 175mm by 

1800mm by 2400mm, consisting of two concrete leaves, which were 100mm and 

50mm thick, respectively. The two leaves were separated from each other through 

a 25mm thick insulation layer o f expanded polystyrene. The test specimens were 

similar to the one's used in the construction industry for the construction o f large 

panel system dwellings erected in the late 1960s and early 1970s. The eleven 

specimens were different from each other in the type of constraint and connection 

present between the two leaves, and varied from a complete concrete connection 

around the perimeter to none at all. In addition to this connection around the 

perimeter, the two leaves were also connected to each other through a system of 

reinforcement ties, which varied from a minimum of one to a maximum of eight. 

For all test specimens, the 100mm thick concrete leaf was simply supported along 

the top and bottom 1800mm edge. Dynamic loads were imparted through either a 

sinusoidal vibrator or through the impact of a hammer blow. In addition to these 

dynamic loads the specimens were also subjected to an in-plane compressive load 

of 500kN, distributed uniformly along the 100mm thick concrete leaf.

The main objective of the research was the establishment of damage location in a 

panel, through changes occurring in the natural frequencies. These changes in the



natural frequencies were used to distinguish between the various structural 

differences in the panels. A numerical analysis was performed for all panels, 

through the finite element package, FLASH, to predict the natural frequencies and 

determine the expected mode shapes for the first six modes.

It is shown that it is possible to determine the natural frequencies o f the sandwich 

panels under investigation, when subjected to dynamic excitation through the 

means o f a hammer blow. It is further concluded that, it is possible to determine 

through changes in natural frequencies, any major structural changes occurring in 

the panels, without resorting to the more cumbersome experimental determination 

of the mode shapes. At the same time it was established that for distinguishing 

between minor structural changes occurring in the panels, the natural frequencies 

alone, are not a good enough measure, as they are too closely spaced for the 

successive modes and are extremely difficult to distinguish form each other.
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NOTATION

A A A Constant

c Constant

C Viscous damping constant

Cc Critical damping constant

Ec Young's modulus of elasticity of concrete

f Natural frequency

k Stiffness

m Mass

J W >0 Exciting force

r Frequency ratio

T Period

t Time

X ^ st Amplitude

X Displacement

X Velocity

X Acceleration

a Phase angle

8 „ Static deflection

Y Viscous damping parameter

X,XV%2 Frequency Parameters

V Poisson's ratio

0 , 0  , o '3 rr Circular natural frequency
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INTRODUCTION

"Things fa ll apart; the centre cannot hold;

Mere anarchy is loosed upon the world"

Yeats, W. B. referred to the whole of society. We, as engineers only hold 

responsibility for the integrity of our infrastructure. Since May the 16th, 1968, and 

the catastrophic collapse of the comer flats in the Ronan Point estate, Newham, 

East London our procedures and judgement have been called into question for 

allowing the proliferation of structures built from prefabricated components. Were 

the quality control procedures adequate? Were the processes for the manufacture 

and erection sound? Questions which have still not been fully answered. On going 

research has identified a number of defects detrimental to the performance of the 

structure. One component shown to be flawed in recent times has been the 

concrete cladding panels of large panel system dwellings. Cladding has been an 

integral part of a structure for decades. Until recently its usage was limited to 

architectural design and aesthetic appeal, and contribution towards insulation. 

Nowadays, the structural contribution of cladding is being more readily 

recognised. Researchers have shown it's utility and importance in structural 

integrity through its contribution towards stiffening and bracing of the structure. 

Materials o f all kinds, ranging from natural to artificial and man made, have been 

utilised for cladding purposes. The use of cladding on prefabricated systems was 

particularly fashionable, as it provided an eye pleasing facade in addition to 

serving as an efficient insulation against the vagaries of weather.

For reasons of economy and efficiency the use of industrial methods for the 

construction of buildings has been in vogue for about three decades now. It
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received a big boost in the 1960's in Britain, when the government decided to 

promote these methods of construction to expand the house building industry, in 

order to meet the high targets of 500,000 new houses each year. The method most 

commonly adopted to meet this extremely high rate of growth was the use of 

system-built, large-panel, multi-storey buildings. In essence, it consisted of precast 

panels designed as floor and wall units and these were then assembled on site, with 

in-situ concrete joints to form the structural unit. The wall units consisted of two 

panels: the inner panel being the load bearing one, and the external panel, 

separated from the internal panel by an insulating layer, clad with a decorative 

finish. The two leaves (panels) of the wall unit were held together through a 

specified number o f ties, located within the panel at the time of casting. The 

connection between the precast external wall and the floor unit was such that loads 

were transmitted through the load bearing elements only, which in this case was 

the internal leaf.

The reasoning behind the use of such a system was the need for mass production 

whilst achieving optimal use of site labour, without sacrificing standards, by 

fabricating high quality panel units in precasting yards. Thus, based upon the need 

for mass production, during the period 1966-72, many such system-built, large- 

panel structures were erected in Great Britain, as well as other parts of the world.

It has been only in the recent past that attention has been drawn towards the 

structural safety of such structures. In particular to the connection of the cladding 

of the external units on to the inner load bearing leaf. In 1983 and 1984 the 

Scottish Development Department advised all owners o f high rise buildings in 

Scotland of possible defects in these types of structures. What necessitated such a 

warning was the reported failure of a few such panels. In 1979 and 1984 incidents
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were reported of concrete cladding units becoming detached from multi-storey, 

system-built structures in Birmingham and Glasgow. Similar incidents were also 

reported in parts of the United States of America, such as New York and Chicago.

Once the fact was established that the cladding on such structures is a hazard, 

remedial measures were taken or at least considered advisable. The methods 

employed mainly consisted of re-bolting the outer cladding leaf to the inner load 

bearing leaf in a variety of ways [1, 2, 3, 6]. Little consideration was given or time 

spent on determining the causes of failure, or for that matter identifying the panels 

which might be structurally unsafe, primarily because techniques had not been 

developed by means of which unsafe panels could be economically and accurately 

identified.

1.1 CLADDING PANEL FABRICATION

As was mentioned above, a large number of system-built, large-panel, multi-storey 

buildings were constructed during the latter part of the 1960's. This industrial 

boom prompted many construction companies to move towards this form of 

construction. Records of construction indicate that over 160,000 dwellings have so 

far been constructed in Great Britain using large panel systems [2, 3]. The details 

o f the number of multi-storey buildings of over four storeys can be found in Fig. 

1.1.

The most commonly built wall panel in the pre-fabricating yards consisted of an 

inner leaf, which was connected to the external leaf through a system of ties. The 

external leaf and inner leaf were separated from each other by an insulating layer,
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which was either polystyrene or cork. The inner leaf was the load bearing element 

in this assembly, and the structural loads were transmitted through it only. The 

main features of a precast sandwich panel are as detailed in Fig. 1.2 [4, 5]. Both 

the leaves are connected around the perimeter but for the structural connection 

between the two concrete leaves, goal-post ties of either delta-bronze or stainless 

steel were used. In certain cases ties of mild steel or phosphor bronze have also 

been used. The panels are cast face up. The load bearing leaf is cast first, with its 

required mesh of reinforcement and then the insulating layer o f either polystyrene 

or cork is placed on top of that. Now the connecting ties are forced through the 

insulating layer into the still wet concrete below. Finally, the top or outer leaf is 

cast , with the mesh of reinforcement for the leaf being incorporated during 

casting. Panels of this type, that is, the sandwich panel for large panel system 

dwellings, especially for structures higher than four storeys, were built by many 

prefabricating companies, such as Bison, Reema, Wates, Jespersen, to name a few. 

As the basic structural and construction details of most of these panels were quite 

similar, the constructional details of a few types o f large panel systems built by 

Reema is given below.

1.1.1 REEMA LARGE PANEL SYSTEM DWELLINGS

The Reema companies first housing contracts started in 1948. Three-storey flats 

were introduced in 1956 and multi-storey flats in 1958. A large number of Reema 

large panel system dwellings were built in the 1960s and early 1970s. As with 

most other systems, those produced by Reema were based upon large storey height 

precast reinforced concrete panels. The edge details of the panels and floor units 

forming cavities which are filled with in-situ concrete, producing a structure whose 

continuity is provided by reinforcement embedded in these joints. Reema produced
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three basic systems, which were evolved and developed over a period of years, 

although with passage of time additions and variations have been made to these. 

The constructional details of these systems are given herein.

HOLLOW  PANEL SYSTEMS

This system was used throughout the late 1940s, 1950s and early 1960s to build 

houses and flats up to four storeys high, although it is possible to use it for taller 

buildings (Fig. 1.4). The system comprises hollow panels having inner and outer 

leaves joined by vertical ribs. When this system was developed for multi-store 

dwellings (above four storeys), vertical steel reinforcement was bolted together to 

form a continuous load bearing structure. In later two-storey housing, it was the 

practice to form a solid head to the panels incorporating reinforcement as 

necessary and providing a tie in the columns, thus decreasing the quantity o f in- 

situ concrete used. Initially, precast reinforced concrete beams were used to 

support a timber board floor, but later timber joists supported by joist hangers were 

used for compartment floors in flats.

The external wall panels o f this system are made of a 225mm cavity construction 

comprising 37.5mm outer skin, 25mm inner skin and 162.5mm cavity. The panel 

is cast in dense concrete with right angle webs. The panels were unreinforced 

except for incorporation of steel lifting hooks, handling mesh, and steel 

reinforcement around window openings. The external finishes of the panels were 

mainly factory applied, such as, natural exposed aggregate using Derbyshire spar, 

pink limestone, grey or green Cornish granite, honey-coloured Cotswold stone, 

glass and china surfacing materials, stripped concrete and painted surfaces. These 

types of systems were mainly used for low rise buildings.
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CONCLAD SYSTEMS

Reema introduced this system (sometime also known as Ribbed, Waffle or 

Coffered panel system) in the mid-1960s in response to the improved thermal 

insulation standards required by the 1965 Building Regulations. It was developed 

from the Hollow Panel system, and the two were used concurrently: Conclad for 

dwellings and Hollow Panel for public buildings. The Conclad system (Fig. 1.5, 

1.6) comprises concrete external panels, strengthened by ribs on the inner face. 

Steel reinforcement protrudes into the cast-in-situ concrete panel (not present in 

the Hollow Panel system). The wall is dry lined with polystyrene-backed 

plasterboard, or with ordinary plasterboard that has foil-backed building paper 

behind it, secured with galvanised clout nails to preservative-treated softwood 

battens cast integral with the concrete ribs. Floors may consist o f timber joists or 

concrete units supported by joist hangers, or hollow precast concrete floor panels.

The external wall panels consist of 175mm thick load bearing panels comprising 

50mm concrete external skin with 125mm cavities and ribs. These were internally 

lined with 12.5mm polystyrene/9.5mm plasterboard laminate nailed to 50mm x 

25mm tanalised battens cast into units. The external finishes were o f either 

exposed aggregate or fair-faced concrete.

SANDWICH PANEL SYSTEM

This system was mainly used on buildings up to five storeys high where extra 

strength was required, as it is more expensive than the Conclad cladding panels but 

with similar thermal insulation properties. It consists of two concrete leaves 

connected by a regular system of ties, the intervening space being filled with 

expanded polystyrene (Fig. 1.7). Inner leaves of panels are of different thicknesses 

for load bearing or non-load bearing use. The external wall panels are normally
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175mm comprising at base a panel of 75mm load bearing concrete inner skin, 

25mm grade-one polystyrene, and 75mm concrete outer skin, while at the top of 

the panel there is a 50mm inner skin, 25mm polystyrene and 100mm outer skin.

OR

200mm concrete panel comprising a 100mm load bearing concrete inner skin, 

25mm polystyrene and 75mm concrete outer skin connected with phosphor bronze 

ties.

OR

300mm concrete panel, comprising at base of panel a 200mm load bearing 

concrete inner skin, 25mm polystyrene and 75mm outer skin, while at the top of 

the panel, 175mm inner skin, 25mm polystyrene and 100mm outer skin.

Windows in all three cases are cast in. The external finish of the panel is mainly 

Quartzag with white cement. The system can be used for low, medium or high rise 

buildings.

CONTRAD SYSTEM

This system was introduced in 1969 to meet the demand for a system which 

combined the speed, standards and economy of industrialised building with the 

choice of traditional finishes and flexibility of planning of traditional low-rise 

housing. The whole system is based upon a 300mm planning grid and has a 2.6m 

floor-to-floor height. The Contrad system (Fig. 1.8) uses precast reinforced 

concrete comer units, L-shaped in plan, to form the inner leaf o f low-rise crosswall 

houses. The external leaf o f the gables is of brickwork, while prefabricated timber 

panel units fill in the front and rear walls.
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The external panels of the system consists of the 89mm thick load bearing concrete 

internal skin to gable walls and separating wall ends, lined with 13mm fibreboard 

and skin coat plaster. Additionally a 61mm cavity and 112mm thick external skin 

of facing brickwork or reconstructed stone. The system is mainly used for low rise 

buildings.

1.2 DEFECTS IN CLADDING PANELS

In 1987 the BRE published the results of an investigation carried out on " The 

Structural Adequacy and Durability of Large Panel System Dwellings " [2]. The 

report investigated the possible causes of deterioration leading to failure o f large 

panel system dwellings. Their findings on the precast wall panels are listed below:

1. " The precast panels themselves had generally been manufactured as 

specified, but in some cases the position of the reinforcement and occasionally the 

thickness of the 'skins' of sandwich panels were found to be incorrect. The 

consistency and accuracy of spacing of the reinforcement in the panels was often 

poor. In particular, low concrete cover to the reinforcement at edges of 

components and around window openings was found, which had given rise to local 

cracking and spalling due to the corrosion of the reinforcement as a result o f the 

carbonation of the concrete ".

2. " In a few sandwich panels, lateral displacement o f the insulating layer 

during panel manufacture had produced uneven thickness of concrete skins which 

effected adversely both the concrete cover to the panel reinforcement and the 

length of embedment of the ties between the skins ".
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3. " The most widely reported defect in the construction of sandwich panels

concerned the ties between the two skins of sandwich panels. Both the number of 

ties per panel and the material of manufacture were found to be at variance with 

the original specifications and on occasions differed from one building to another 

on the same site

As can be seen from the findings of the investigation carried out by the BRE, the 

single most crucial defect in the manufacture of these sandwich wall panels is the 

connection between the two skins, that is the load bearing leaf and the outer 

cladding leaf with the decorative finish, which could lead to a detachment. The 

investigation suggests that it is only the variance from the original structural design 

which has resulted in the problem. Details o f a few of these faults can be found in 

Figs. 1.9 to 1.14.

At the same time I. A. Macleod et. al. published a report on the guidance of 

security of cladding on large panel concrete construction [6]. This report was 

prepared to provide guidance to structural engineers involved in appraisals o f or 

remedial works to large panel concrete buildings o f two or more storeys, it 

concentrates on the problems of cladding mainly because of the significance of this 

on safety. It includes a description of the panels, the defects in panels, possible 

testing methods and the remedial measures. The cross-section o f the main 

sandwich panel investigated can be found in Fig. 1.15.

The most significant defects reported by I. A. Macleod et. al. were observed in 

ties, relating to either deterioration or positioning. Ties of four materials were 

identified-mild steel, phosphor bronze, manganese bronze and stainless steel. Out 

o f these ties the manganese bronze ties were observed to have the greatest

10



deterioration, because of stress corrosion cracking due to the ties coming in contact 

with water, which acted as an electrolyte. This effect being enhanced in panels 

where cork based insulation was used. The positioning of ties was identified as 

another major defect. This related to either poor orientation, improper embedment, 

or poor bond.

Another defect observed and identified was the movement of the outer leaf due to 

inadequate structural connections between inner leaves and floors causing 

movement of the cladding. The deterioration of concrete, being another significant 

defect affecting the structural adequacy of the panels. This could be either due to 

carbonation o f concrete, leading to corrosion of reinforcement with consequent 

cracking and spalling, cracking at comers, unrepaired cracks possibly during 

handling and erection, again leading to spalling and detachment due to water 

penetration, frost action etc.. Finally, exposed aggregate detachment has occurred 

frequently which can be attributable to weathering, inappropriate choice of type or 

shape of material or the workmanship when the panels were constructed.

The findings reported by Macleod et. al. were similar to the investigations carried 

out by the BRE and the importance of all these defects lies in the fact that they are 

all progressive. Some of the more commonly employed methods for investigating 

the cladding panels of large panel systems used were:

1. Eddy C urren t Technology: This is useful in location of ties and may also

establish within limits the material of ties, as well as determining the distance 

from the surface. The method has its drawbacks because of interference that 

can be caused by foil-backed insulation board or close proximity o f mesh 

reinforcement.
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2. Sonic M ethods: Very limited success was achieved through such techniques.

3. Radiography: A method that can be used quite successfully although the 

attendant regulations and other difficulties such as to use specialist 

contractors, evacuate property, locate approximate position of ties may prove 

onerous. It can be a most valuable tool for identifying accurately the location 

of ties prior to coring.

4. Coring: Provided that ties can be accurately located, useful information can 

be obtained by coring through both leaves of the panel, so that a complete 

section with the ties is removed. Extremely useful information such as quality 

o f concrete, type of tie, positioning etc. can be determined. Important to 

secure panels prior to coring.

5. Optical P robe: Provided that the insulation can be removed, for example by 

using acetone in the case of polystyrene, the optical probe can be extremely 

useful in observing the interior of the panel and establishing conditions and 

location of ties. It might be quite important to replace the insulation as it 

probably plays a useful structural role.

6. Direct In ternal Observation: Investigation of ties at window openings with 

the window frames removed is a useful way of establishing the location and 

condition of ties.

7. Direct External Observation: Such techniques are useful for detecting 

vertical and out-of-plane movements, but due to irregularities in joint widths 

at time of construction periodic inspections are necessary to establish any 

movement in a particular panel. The approach is quite useful in conjunction 

with other tests.

8. Total or Partial Removal of O uter Leaf: Used on certain occasions but 

subject to difficulties including disturbance to tenants, high cost and the
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practical problems of removal without disruption of the structure and 

satisfactory reinstatement.

Macleod et. al. in their report recommend that wherever manganese bronze ties are 

identified the panel should be secured by additional fixings. For concrete it is 

recommended that suitable surface coatings may reduce the rate o f carbonation 

and therefore increase the period before corrosion of reinforcement occurs. 

Alternative solutions include the complete over-cladding of the block, as this 

would not only eliminate water penetration problems but also remove the danger 

o f detachment o f aggregate and parts of the panel. O f course, it is necessary to 

ensure that the original panels were adequately tied. Secondly rendering on top of 

existing cladding or removal of the outer panel with subsequent replacement o f an 

alternative.

Green [1] has also described some of the possible defects in precast large panel 

structures, such as poor tie orientation and lesser number of ties than specified 

used. The paper describes the possibility of remedial measures through the use of 

repinning bolts. Three possible repinning techniques have been recommended, 

which are; cantilever bolt, located horizontally and fixed by expansion sleeves to 

the inner and outer leaves, with the load transfer taking place by bending and shear 

in the cantilever; use o f a large diameter metal dowel, located at 10 degrees to the 

horizontal and fixed with cementitious grout (Fig. 1.16). Load transfer to the main 

panel being through shear in the dowel; and the third method involved the inclined 

tie expansion fixing, which was achieved by inclining the axis o f the bolt at 45 

degrees to the plane of the panel. Tests carried out on the third type indicated 

towards the efficiency of the system. The work described, shows the possibility of 

fairly inexpensive remedial measures for the large panel systems.
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Green [1] and Macleod et. al. [6] also observed the following defects in the large 

panel systems:

1. When manufacturing these precast large panel systems, not enough care 

was given to the placement of ties. Because of this a large number of panels were 

fabricated with ties which were poorly oriented, the details o f these can be found 

in Fig. 1.3. This poor orientation resulted in improper connection between the two 

leaves o f the panel and the ties were unable to sustain the cyclic load to which the 

panel was subjected.

2. Also, it was observed that the rapid curing methods used for the concrete, 

during fabrication of the panels in the manufacturing yard, resulted in poor bond 

between concrete and the ties. This once again contributed towards the ties not 

being able to sustain the applied loads.

3. Another defect that came to light was the corrosion of the ties, which 

contributed towards the failure of these ties. Under aggressive environmental 

conditions the cracking of the concrete exposed the ties to aggressive corroding 

agents, which led to a reduction of their strength.

4. Finally it was also observed (as in the BRE investigation) that panels 

contained a lesser number of ties, than specified by the original design. Most 

panels were designed with about twenty ties for 8.5 square meters o f surface area, 

but a large number of panels contained a lesser number of ties.

These investigations highlighted the general structural damage that has occurred in 

the panels with passage of time and has also identified the variance in construction
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from the original design of the wall panels. The possibility of detachment of the 

cladding leaf because of the inaccurate number of goal-post ties being used, was 

seemingly the most crucial structural damage as identified by these surveys, and 

the aim of this study was to look into this problem area. The practicalities of 

invasive testing methods applied to occupied buildings render them undesirable. 

Clearly an assessment of the integrity of cladding is needed through non

destructive techniques.

1.3 NON-DESTRUCTIVE TESTING

In the preceeding article a few of the non-destructive testing techniques applied for 

determining the defects in large panel systems have been highlighted. The present 

article deals with a few other possible methods that can be employed for similar 

purposes. The term "non-destructive testing" is used as a general name given to all 

test methods which permit testing or inspection of material without impairing its 

future usefulness. From an industrial viewpoint, the purpose of non-destructive 

testing is to determine whether a material or part will satisfactorily perform its 

intended function. The primary purpose of a non-destructive inspection is to 

determine the existing state or quality of a material, with a view to acceptance or 

rejection. By use of non-destructive testing methods and techniques it has been 

possible to decrease the factor of ignorance about material without decreasing the 

factor o f safety in the finished product. The use of non-destructive testing has been 

and is being recognised as a means of meeting demands for better products, 

reduced cost and increased production.
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The art and science of non-destructive testing are very old. Nearly every form of 

energy has been utilised in non-destructive testing. Likewise nearly every property 

of the materials to be inspected has been made the basis for some method and 

technique of non-destructive testing. These can be broadly divided into the 

following groups:

Visual Acoustic

Pressure and leak Magnetic

Penetrant Electrical and electrostatic

Thermal Electromagnetic induction

Radiography Miscellaneous

The details o f these various groups and the different methods of testing can be 

found in many standard texts such as [30, 31], in this chapter for the sake of 

completeness a few of the more commonly used methods are described.

1.3.1 VISUAL TESTING

Visual inspection is probably the most widely used of all the non-destructive tests. 

It is simple, easy to apply, quickly carried out, and usually low in cost. Because of 

this simplicity in use it should never be ignored and even though a specimen is to 

be inspected using other non-destructive testing methods it should be given a good 

visual examination. The basic principle used in visual non-destructive tests is to 

illuminate the test specimen with light, usually in the visible region. The specimen 

is then examined with the eye or by light sensitive devices. As in the case of all 

non-destructive tests, proper application and correct interpretation of the results are 

essential to their usefulness and success.
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1.3.2 PRESSURE AND LEAK TESTING

In pressure and leak testing, defects are revealed by the flow of gas or liquid into 

or through the defects. The simplest and most commonly used pressure test is a 

hydrostatic test. In this test the pressure within the test object (hollow) is made 

greater than the external pressure. The hydrostatic pressure should be applied 

gradually and the test pressures to be used are often stipulated in codes or 

specifications. In addition to the hydrostatic test, the other forms of pressure and 

leak testing are the bubble test, and the halogen leak test.

1.3.3 LIQUID PENETRANT INSPECTION

Penetrant inspection is a non-destructive testing method that can be used for the 

detection of surface discontinuities or flaws which extend to the surface of the test 

specimen. The use of penetrants may be considered as an extension o f visual 

inspection. Very few discontinuities are revealed by penetrants that cannot be 

found by experienced visual inspectors. Penetrants, however, delineate a 

discontinuity to a much greater extent, making the inspection much less dependant 

on the human element. Thus, making the method more adaptable to production 

testing by increasing the general reliability and speed of inspection.

1.3.4 THERM AL METHODS

The basic principle utilised in thermal tests is to apply heat to the test specimen 

and to measure or observe the resulting temperature distribution. Flaws alter the 

temperature distribution on or in the specimen. The heat may be applied by direct 

thermal contact with a heat source, by electrical current heating, by induction 

heating or by infrared heat sources. The resulting temperature distribution may be 

detected by use o f temperature indicating substances.
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1.3.5 RADIOGRAPHY

Radiography is a method of non-destructive testing which uses X-ray or gamma 

radiation. In order to distinguish this type of radiation from other types o f radiation 

such as visible sound and light, X-rays and gamma rays are sometimes referred to 

as "penetrating radiation". Radiography is one of the oldest non-destructive tests, 

having been used since the early 1920s. Today it is one of the most widely used of 

all non-destructive tests. The basic principle being that the intensity of the 

penetrating radiation is modified by passage through material and by defects in the 

material.

1.3.6 ULTRASONICS

Ultrasonic techniques are finding increased uses and importance in the field of 

non-destructive testing. Striking a specimen and listening for the characteristic 

"ring" has been used as a means of detecting flaws. The ringing note emitted by a 

steel (or concrete) specimen containing a crack is dull and harsh compared with 

the note emitted by an identical "good" specimen. This "ringing" technique will 

detect only gross defects. With the development of reliable methods for generating 

and detecting ultrasonic waves, small defects can now be found. This is simply due 

to the fact that the wavelength of ultrasonic waves is approximately equal to the 

size o f the defects to be found. The method is extremely effective for metals 

especially, as most metals because of their good properties readily transmit 

ultrasonic vibrations. If  discontinuities exist, a measurable scattering or reflection 

will occur because of the acoustic mismatch. Vibrational waves which have a 

frequency above the hearing range of the normal ear are called "ultrasonic" waves. 

Because of their short wavelength, ultrasonic waves travel essentially in a straight 

line. It is this property which makes ultrasonic waves so useful for locating 

defects. Several different techniques have been used in ultrasonic testing such as:
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pulse echo, transmission, resonance, frequency modulation, and acoustic image. A 

couple of these are explained herein.

PULSE E C H O : In the pulse echo technique a pulsed ultrasonic beam is sent

through the couplant into the specimen. At the opposite face, the beam is reflected 

and the echo picked up by a transducer. The transmitting transducer can serve as 

the receiving transducer, or a separate transducer can be used. A discontinuity or 

flaw in the specimen will also send back an echo. The time intervals that elapse 

between the initial pulse and the arrival of the echoes are measured. In the echo 

pattern a flaw can be recognised by the relative position and amplitude of its echo. 

There may also be a number of multiple reflections displayed in the echo pattern. 

The resolution of this technique depends on the duration of the ultrasonic pulses. 

The shorter the duration of the pulse, the thinner the specimen that can be 

successfully tested.

RESONANCE: In the resonance technique of ultrasonic testing a tuneable

variable frequency continuous wave oscillator is used to drive a transducer. The 

oscillator is turned through its tuning range. If  the specimen has thickness resonant 

frequencies within the tuning range of the oscillator, the specimen will vibrate in 

resonance. When resonance occurs, there is an increase in the energy drawn by the 

transducer. This increased energy can be indicated by a suitable instrument. 

Thickness resonance occurs whenever the thickness of the specimen is equal to an 

integral number of half wavelengths of the ultrasonic wave.

1.3.7 EDDY CURRENT

Eddy current techniques can be used to inspect electrically conducting specimens 

for defects, irregularities in structure and variations, in composition. Applications
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of eddy current testing include metal sorting, detection of cracks, voids and 

inclusions, measurement of plate or tubing thickness. Eddy current tests are most 

effective for locating irregularities near the surface of the specimen, the method 

works on the basic principle of when a coil carrying alternating current is brought 

near a metal specimen, eddy currents are induced in the metal by electromagnetic 

induction. The magnitude of the induced eddy currents depend upon the magnitude 

and frequency of the alternating current; the electrical conductivity, magnetic 

permeability and shape of the specimen; the relative position of coil and specimen; 

and the presence of discontinuities or inhomogeneities in the specimen. The eddy 

currents induced in the metal set up a magnetic field which opposes the original 

magnetic field. The impedance of the exciting coil or any pickup coil in close 

proximity to the specimen is affected by the presence of the induced eddy currents. 

The path of the eddy currents is distorted by the presence of a defect or other 

inhomogenieties. The apparent impedance of the coil is changed by the presence of 

a defect. This change in impedance can be measured and used to give an indication 

of the defects present.

1.3.8 DYNAMIC TESTING

Dynamic testing involves the striking of a specimen and monitoring the response. 

The way in which a specimen is struck determines whether the fundamental, a 

harmonic, an over-tone or a combination of frequencies is produced. Every 

specimen has certain characteristic frequencies at which it can be made to vibrate. 

These frequencies are functions of the size, shape, mass, elastic properties, and 

mode of vibration produced in the specimen. Several methods o f starting 

vibrations can be used, such as impact by a hammer blow, mehanical coupling of 

the specimen to a subsidiary vibrator or the electromagnetic method for magnetic 

materials.
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More recently the application of dynamic testing of structures has been rapidly 

expanding to incorporate more areas, and researchers have been trying to take 

advantage of this method to predict damages and deterioration that may be 

occurring in them. The following article aims towards highlighting the works of 

different researchers who have successfully applied the method of dynamic testing 

to determine the natural frequencies and the associated mode shapes o f various 

civil engineering structures.

1.3 REVIEW OF LITERATURE

Use o f different non-destructive tests for determination of structural adequacy and 

defects present have been present for years. But it has been only in the recent past 

that use of dynamic testing is gaining importance, although this has been used for 

the monitoring of offshore rigs for quite sometime as shown by Kenley and Dodds 

[7] and Loland [8]. The dynamic testing of an offshore platform mainly consists o f 

measuring the natural frequencies of the structure above the waterline by means of 

accelerometers, while subjected to a wind and wave loading. The natural 

frequencies o f the structure are mainly dependant upon the mass, stiffness and 

geometry of the structure. Any deterioration in the structure, such as change in 

stiffness or mass is recognised through the change in natural frequency and the 

nature and location of damage can be identified through them as well as the 

associated mode shapes.

Various methods have been employed for non-destructive testing of structures and 

materials, with the coin tap method being one of them. Peter Cawley [9] has 

described the results of using a high frequency version of the coin-tap method of
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non-destructive testing. The technique involves the tapping the structure with a 

very light striker of mass typically below lg  and monitoring the sound produced 

by the tap. Cawley has shown how this approach is better suited on structures 

fabricated from metals or un-reinforced plastics as reported in his earlier work [10, 

11, 12]. The coin-tap method being one of the oldest methods of non-destructive 

testing and is regularly used for testing laminated structures, honeycomb 

constructions and bonded joints. The test requires an operator to tap each point o f 

the structure to be inspected with a coin and to listen to the resulting sound 

radiated by the structure. It is found that defective regions sound "dead", and can 

therefore be identified. Cawley carried out tests on three 10mm thick aluminium 

sheets with flat-bottomed holes of different depths (Fig. 1.17). A 5.5mm diameter 

steel ball (mass 0.68g) was rolled down a perspex chute, which was angled at 

about twenty degrees to the vertical, from a height of approximately 70mm. The 

resulting sounds were captured by a digital oscilloscope, which was then passed 

through a micro computer to give a measure of the sound produced by the impact. 

From these investigations Cawley concluded that the results on the aluminium 

panels show that the high frequency version of the coin-tap test, which uses a light 

striker in order to excite the membrane resonances of the layer above a defect, is 

significantly more sensitive than the standard version, particularly for the detection 

of the deeper defects.

Use of non-destructive testing techniques on cladding panels, for determination of 

defects have been regularly applied, but very little evidence is available on the use 

o f dynamics on such panels. Response measurements on glass cladding panels 

have been reported by Craig and Goodno [13] who have presented results of 

dynamic response tests carried out on glass cladding panels (Fig. 1.18a). Tests were 

performed on full scale test fixtures capable of supporting a 4.9m x 2.5m section
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of cladding (Fig. 1.18b). The rear of the fixture being sealed tight around six large

1.4 meters square pistons, which were driven by servo controlled hydraulic 

actuators to produce fluctuating pneumatic pressures of up to 1.2 kPa amplitude, 

and 20 Hz frequency about mean pressures up to 2.4 kPa. The cladding panel 

attached to the fixture consisted of a single storey section including mullions, 

muntins, spandrel framing, glazing materials, and four double-pane vision lights as 

obtained from the fabricator. For these tests the strain gauge and linear variable 

differential transformer (LVDT) was used for the dynamic response 

measurements, with the strain gauges being relatively inexpensive and simple to 

use being employed as the primary dynamic response transducers. With the 

primary objective o f the dynamic response testing being to determine the basic 

modal characteristics the excitation was through the use o f band-limited random 

and transient forcing functions which excited all the modes of interest 

concurrently. This was done through a closed-loop servo controlled hydraulic 

system to produce time varying pneumatic pressures across the test window with 

the simultaneous application of an impulse applied by hand using a large mallet. 

The authors demonstrated the success o f the approach through the good 

comparisons achieved between the measured frequencies and the predicted ones. 

Also reported was the significance of the detection of primed modes, in which the 

two glass panes o f the panel moved in opposite directions.

Present day developments in the use of computers for structural design and 

analysis have impressed upon the need for greater knowledge o f material 

properties and the actual behaviour of structures. These can only be obtained by 

carrying out tests, either static or dynamic on the as-built structures. Experience 

has shown how much more expensive tests using static loads can be, where as 

applications of dynamic loads, especially transient, can be a fairly simple exercise.
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It should be mentioned here though that the collection and processing of the 

response data is a lot more complicated and requires a great deal of skill and 

experience if errors are to be avoided. A lot of standard texts explaining the details 

of modal testing and the extraction of different modal parameters are available [35, 

36, 37, 38]. The success of such an approach is mainly dependant upon the 

accuracy of being able to excite the specimen in a particular mode. Either steady- 

state forces, such as produced by sinusoidal vibrators or transient forces, such as 

the impact o f a hammer blow, can be used for determining the modal 

characteristics of a specimen. The success of using transient forces for extracting 

the natural frequencies and modal shapes of various reinforced concrete structures, 

have been shown by quite a few authors.

Maguire and Severn [14] have demonstrated how hammer testing can be 

successfully applied to assess the dynamic properties of prototype structures. Tests 

were performed on three different structures: 1) a 65m concrete chimney in Bristol 

(Fig. 1.19); 2) elevated piled tanks at Redcar (Fig. 1.20); 3) bridge beams at 

Basingstoke (Fig. 1.21). For case (1), the chimneys had a mass of 1,440,000 kg, 

and hammer tests were conducted in still conditions and ambient vibration (wind) 

tests were carried out on windy days. The response was measured through the use 

of accelerometers, and the first three cantilever type modes were observed. The 

second case consisted of hammer tests conducted on two elevated piled tanks at 

Redcar. The tanks had a mass of 860,000 kg and 5,510,000 kg respectively. Two 

modes of vibration were measured through the response observed from eight 

accelerometer locations. Tests were also carried out on four simply supported 

precast post-tensioned concrete bridge beams at Basingstoke. Each of the beams 

weighed approximately forty tons and effectively spanned 27.6m. For these beams 

the first three modes of vibration for the undamaged state were determined.

24



Maguire and Severn demonstrated that given sensitive instrumentation, hammer 

testing is able to determine the structural dynamic characteristics of various 

structures and that hammer testing can provide a quick and accurate method of 

assessing as built structural dynamic properties

Pavic, Williams and Waldron [15] have presented the development o f a finite 

element model for a post-tensioned concrete floor and compared results obtained 

from it to results obtained from a field test. The field tests were carried out on the 

new Wycombe Entertainment Centre car park, located in the centre o f High 

Wycombe, U. K.. The bay was 12.05m long by 7.3m wide with a slab thickness of 

210 mm. Prestressed band beams of 665mm width and 650mm depth ran along the 

column lines in the longer direction (Fig. 1.22). The slabs were tested for their 

dynamic properties by inducing vibrations in the slab through the means o f an 

instrumented 5.4 kg hammer, and the response was measured with an 

accelerometer. The tests were carried out by dividing the test bay into a 5 x 5 grid 

of equally spaced points. The accelerometer was attached to a single grid point on 

the floor and the hammer was successively moved from point to point, with the 

floor being impacted at each location. The analysis was performed via a spectrum 

analyser and the transfer function and phase together with the coherence between 

the two signals at each grid point was determined. The first five natural 

frequencies were determined in this manner, and the results obtained from the 

finite element model showing a fair comparison with them (Fig. 1.23). Pavic, 

Williams and Waldron have also demonstrated how the static and dynamic 

analysis o f post-tensioned slabs require different assumptions. It was further 

observed that closely spaced modes made for extremely difficult observation from 

the field tests.
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Brownjohn, Dumanoglu and Taylor [16] have showed how the dynamic 

characteristics of a 50m span pedestrian suspension footbridge (Fig. 1.24) can be 

experimentally determined through hammer impacts and excitation by pedestrians. 

They demonstrated how adequate descriptions of vibration characteristics of 

flexible structures can be obtained without artificial forcing. Their investigations 

have indicated the success of determining the various modes (such as vertical, 

lateral and torsional) through simple vibration methods. The testing equipment 

used included accelerometers located at the end points of the deck cross-beams, 

corresponding to nodal points in the analytical model. The exciting equipment 

consisted of a 13 lb. sledgehammer instrumented with a force crystal, in addition 

to ambient excitation from pedestrians. Signals were recorded on a four channel 

FM tape recorder and converted to the frequency domain by a two channel signal 

processor. The testing consisted of initially determining/estimating the likely 

natural frequencies of the bridge in vertical, torsional and lateral vibration, when 

under the influence of force input by the pedestrians. Once the likely natural 

frequencies were established, the response was measured through transient 

excitation provided by a hammer blow. The experimental results were compared to 

the analytical ones, and showed a fair comparison (Fig. 1.25), with the model 

under predicting by generally less then ten percent. The possible sources o f error 

suggested by the authors mainly point towards the lower stiffness used in the 

analytical model because of improper restraint conditions; the contribution o f the 

asphalt towards the stiffness not being taken into account; and the value o f the 

Young's modulus of concrete being uncertain. The major problems encountered 

during testing and analysis of data included problems associated with amplifiers 

and cabling used with accelerometers. Modes closely spaced were difficult to 

identify and distinguish from each other. The major conclusions drawn were that 

the dynamic characteristics of relatively small bridges could be determined as long
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as proper instrumentation was used, and that the comparisons with the numerical 

model would be viable as long as structural detail is included.

Hearn and Testa [17] have reported the non-destructive inspection of structures by 

modal analysis of vibration response. They studied the dependence of natural 

frequencies and modal damping coefficients on deterioration in structures, and 

have shown how the magnitude of change in natural frequencies is a function of 

the severity and of the location of deterioration in structures. Tests were performed 

to explore the effect of damage on modal parameters, on a four member welded 

steel frame (Fig. 1.26) which was subjected to cyclic loading, and modal 

parameters were monitored as progressive damage occurs by fatigue cracking, and 

on wire ropes under constant tension are damaged by transverse sawcuts and 

changes in the modal parameters are measured. The authors have demonstrated 

how the changes in natural frequencies provides a quantitative locator o f damage 

for the welded frame, whereas for the wire ropes (which are insensitive to changes 

in natural frequencies), modal damping is used as a damage indicator. 

Comparisons between the experimental and the analytical results, derived from a 

perturbration o f the equation of motion demonstrated how measurement of 

changes in mode shapes due to damage is not necessarily required for modal 

analysis inspection.

The problem of detecting a structural fault on the basis o f measured dynamic 

characteristics can be regarded as one of pattern recognition. Measured data from 

the possible damaged states o f a structural assembly, such as a sandwich panel, 

must be distinguishable from each other as well as from the undamaged system. 

Classical techniques have been applied to the problem of fault detection for quite 

some time as shown by Cawley and Adams [18], and more recently Sammam,
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Biswas and Pandey [19]. In recent times, NEURAL networks have established 

themselves as an extremely powerful tool in identifying damage location. A 

number of authors have adopted this approach quite successfully and achieved 

fairly good comparisons with experimental results. Worden, Ball and Tomlinson

[20] have shown how a neural network can be trained to report the position o f a 

fault in a framework structure. With their work, based upon that o f Kudva et. al.

[21], they have demonstrated how a network trained on data from finite element 

simulation of the structure can successfully locate faults in the framework itself. 

The experimental structure used was an essentially two-dimensional cantilever 

latticework, mounted rigidly to a support at one end with its major axis horizontal 

and minor axis vertical and measuring approximately lm  x 0.25m. The lattice 

comprised of 19 members, arranged into four equally-sized, cross-braced square 

bays. Each member being made from 25.4cm x 6.4mm aluminium strip. Strain 

gauges were used for measuring the response and were located at the mid-spans of 

all members and on both sides. The strains being measured under a constant 

preload and three additional loads applied to each pin joint. Similar data sets were 

obtained by removing each of the members successively in turn. The results were 

then compared with results obtained from a finite element simulation of the 

framework established using the package LUSAS. The authors demonstrated from 

their results that the comparisons between measured strains and the predicted ones 

showed excellent agreement.

Worden and Tomlinson [22] have also shown how neural networks can be trained 

to locate the damage in a structure through predictions obtained from a finite 

element simulation, when considering features such as the first and second mode 

shapes of structures such as a cantilever beam and plate. The authors using 

dynamic test data as features, and considering mode shapes rather than
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frequencies, as in their opinion they are more prone to suffer local changes in the 

presence of localised damage. The beam used was made of aluminium and had 

dimensions of 920mm x 50mm x 12.5mm, and the first five natural frequencies 

and mode shapes were obtained. The experimental and predicted results were 

again shown to be in good agreement. Similar results were achieved for the 

aluminium cantilevered plate having dimensions o f 300mm x 200mm x 2.5mm. 

Although, the applications of Neural networks are still limited and not fully 

explored in the field of civil engineering, especially in damage location, more and 

more researchers are showing its usefulness as a fairly powerful tool.

A few other researchers have studied the effect o f defects on the dynamic 

characteristics of simply supported reinforced concrete beams. Tourk [23] studied 

the effect of the presence and propagation of cracks in concrete, on the dynamic 

response. Tests were performed on nine reinforced concrete beams having 

dimensions of 1300mm x 50mm x 75mm. The beams were subjected to static third 

point loading in addition to dynamic loads applied through a magnetic vibrator at 

mid-span. Tourk found that natural frequencies decreased exponentially and the 

damping ratios increased with the increase in the static load. The experimental 

results did not compare well with the analytical results and this was put down to 

the incorrect idealisation of the analytical model. Sim [24] used the same 

experimental set-up but, improved the analytical model by remodelling the cracks 

in the finite element model. It was found that the natural frequencies decreased as 

the cracks increased and a better agreement between the experimental and 

analytical results was achieved. Hashim [25] using a similar set-up but different 

excitation forces tested eight singly and doubly reinforced concrete beams. His 

results showed that static loading affected damping and also that the natural 

frequencies decreased as the beams approached failure. Tan [26] examined under,
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balanced and over reinforced concrete beams. The test set-ups were similar to the 

ones used by Tourk, Sim and Hashim, but instead of applying steady state 

vibration, impact tests were carried out. The results indicated good relationship 

between the experimental and predicted values. Priosulistyo [27] investigated the 

dynamic response of reinforced concrete beams as they were loaded to failure (Fig. 

1.27). the beams investigated had built-in defects of cracks and partially unbonded 

reinforcement. The test specimens were subjected to static and steady state 

vibration loads. Priosulistyo concluded that the defects present in the reinforced 

concrete beams could be identified from the changes in the dynamic characteristics 

if  proper digital signal was used.

Signal processing plays a significant and important part in correctly determining 

the dynamic parameters. It includes the problems of digitising data, Fourier 

transformation and filter designs. These subjects are covered extensively in many 

standard texts [28, 29, 30, 31] and shall not be discussed here.

1.5 SCOPE OF PRESENT INVESTIGATION

The present research was aimed towards the development o f non-destructive 

experimental techniques which would enable the engineers to determine the 

structural integrity of a particular panel and at the same time allow them to locate 

and detect the type of structural damage present in the panel. To achieve this aim, 

it was decided to use the dynamic properties of the panels, as it was perceived that 

the changes occurring in the natural frequencies, depending upon the structural 

variances, would give an indication of the extent of damage present. The research 

was aimed towards initially developing a numerical model based upon a typical, 

undamaged panel and obtaining the results of its dynamic characteristics, such as
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the natural frequencies and the associated modal shapes. These properties were 

then to be compared to similar results obtained for panels having different extent 

of damage and varying number of goal-post ties and the pattern recognition 

established. Once these variations in the natural frequencies and the modal shapes 

had been identified, they were to be used as the basis of the experimental models 

and varified through experimental procedures.

As the primary objective of the research was the development o f a workable 

experimental model which could be applied with efficiency and economy to in-situ 

panels, full-scale experimental models were opted for. The complications 

associated with the dynamic testing of panels o f this size and stiffness were given 

due consideration. Recent developments in the field of dynamic testing of 

reinforced concrete structures certainly leads us to recognize the relative 

attractiveness, in ease o f application and success in determining the dynamic 

characteristics of these structures through simple non-destructive tests, which can 

be used to predict with a fair degree of certainty the damage present in them .

The thesis describes the results of the present investigation, carried out on the 

dynamic characteristics of precast wall panels and, the success o f the approach 

towards the development of a relatively simple procedure for determining damage 

location in such panels. The panels investigated were similar to the sandwich panel 

system described earlier (article 1.1). It is divided into two basic parts: numerical 

and experimental.

Chapter 2 gives an insight into the basics of dynamic analysis and discusses the 

various approaches for determining the dynamical response of a structure with a
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single degree of freedom. It also gives details of the properties and the numerical 

analysis of the wall cladding panels under investigation.

Chapter 3 contains the results o f the numerical analysis. The models were analysed 

for their natural frequencies for the first six modal shapes through the finite 

element program FLASH [34]. The numerical models were analysed for these 

dynamic characteristics for different material properties, with the variable being 

mass, Young's modulus of elasticity and Poisson's ratio. The results of the analyses 

are presented in tabular and graphical form.

Chapter 4 gives details o f the experimental program and the test specimens in 

addition to explaining briefly modal testing techniques. Finally, the experimental 

results as well as the comparison between them and the numerical models and the 

conclusions drawn are presented in chapters 5 to 7.
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.■ • o.fv• “• < - f VA r y h y t .’.•

W a t e r  p e n e t r a t i o n
r e s u l t s  i n  c o r r o s i o n

e x c e s s i v e  ( o r  
p e n e t r a t i o n

i n a d e q u a t e )

Fig. 1.3: Possible causes of failure of ties.

35



B

3 1 ”jf ' :  ji i t i r  " _ — — —

(a) External wall unit.

F ib re b o a rd  lin in g

U p p e r  s to r e v  P a n e l to  ta k e
p a n e l  f lo o r  u n it

o n  to p  e d g e

S te e l re in fo rc e m e n t  
to  v e r tic a l |O int

S te e l r e in fo rc e m e n t  
to  rin g  b e a m In -situ  c o n c r e te  

r in g  b e a m

.  P r e c a s t  c o n c r e te  
w a ll u n i ts

C a s te l la t io n  in  to p  
o f  H o llo w  P a n e l
w all u n it

P r e c a s t  r e in fo rc e d  
c o n c r e te  f lo o r  
b e a m  u n it

(b) Construction of in-situ concrete c) Construction of joint between floor 
ring beam. unit and wall unit.

Fig. 1.4: Details of the Hollow Panel System.

36



c o n c r e te  f lo o r  u n its
Lifting h o o p  g ro u te d

P re c a s t re in fo rc e d

L ev e llin g  n u ts

L ifting  h o o p

S te e l  tie  b a r s  to  
in -s itu  c o n c r e te  jo in ts

_ P re c a s t r e in fo rc e d  c o n c r e te  
c ro s s w a ll  u n it

F o a m e d  
c o n c r e te  fill

(a) Constructional details of the system.

S te e l  s ta p le  tv m g  
p ro je c t in g  s te e l 
r e in f o r c e m e n t  lo o p s

P re c a s t  re in fo rc e d  
c o n c re te  w all u n its

In -s itu  c o n c re te  
c o lu m n

In s i tu  c o n c re te  fill 
to  d o w e lle d  jo in t

T im b e r  f lo o r  jo is ts  
o n  s te e l  h a n g e r s  
( f lo o rs  c a n  s p a n  
f ro n t to  r e a r l

(b) Constructional joints in the system. 
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Fig. 1.9: Diagonal cracking originating from corner of window opening.

Fig. 1.10: Failure of factory repair to panel (Bison).



Fig. 1.11: Missing dry pack; support provided by levelling bolts.

Fig. 1.12: Spalling of concrete associated with reinforcement corrosion.



Fig. 1.13: Rain penetration through cracking at window opening.

Fig. 1.14: Omission of bolts from connection plates.
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Fig. 1.15: Typical cross-section through cladding panels

Fig. 1.16: Various repinning approaches.
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Fig. 1.18: Glass cladding panels investigated by Craig and Goodno.
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Fig. 1.20: Elevated piled tanks at Redcar (dimensions in mm).
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Fig.- 1.23: The first three measured and calculated mode shapes.
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mode identifier nodes type/svmmetrv fth/Hz fexp/Hz damping (%)
VI 1 V-A 0.885 1.053 2.68
V2 0 V-S 1.226 1.227 0.50
V3 2 V-S 1.874 2.127 0.84
V4 3 V-A 3.094 3.330 0.27
V5 4 V-S 4.759 4.910 0.28
V6 5 V-A 8.780 6.850 0.29

LI 0 L-S 2.220 1.690 1.00
L2 1 L-A - 6.980 0.70

T1 0 T-S 3.239 3.560' 0.84’
T2 1 T-A 3.865 4.780 0.50
T3 2 T-S 5.409 7.340’ -

Fig. 1.25: Comparison of measured and theoretical modes.
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Fig. 1.26: Welded steel frame investigated by Hearn and Testa.
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Fig. 1.27: Experimental set-up for flexural loading.
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NUMERICAL ANALYSIS

2.1 INTRODUCTION

Although the dynamic response of a practical structure will be complex, it is 

necessary to begin a study of the dynamical behaviour of structures by considering 

the fundamental vibrations of simple systems. The complexity o f a dynamical 

system is dependant upon the number of degrees of freedom possessed by the 

system. This number is equal to the number of independent co-ordinates required 

to specify completely the displacement of the system, such as a rigid body 

constrained to move in the XY-plane would possess three degrees of freedom. The 

displacement o f an elastic body has to be specified at each point by using a 

continuous equation, and has an infinite number of degrees of freedom. In a 

dynamical problem the number of modes of vibration is equal to the number of 

degrees of freedom, thus the simplest structure would have only one degree of 

freedom and hence one mode of vibration. To understand the mechanics of 

dynamics, a single degree of freedom structure is explained below.

Fig. 2.1 shows the usual representation of a system with one degree of freedom. It 

consists o f a mass 'm' constrained to move in the X-direction by friction less 

guides and restrained by the spring of stiffness 'k'. It is further assumed that the 

mass of the spring is negligible compared with 'm'. In such a system the 

displacement is specified completely by 'x', the displacement o f the mass, and the 

system has therefore one degree of freedom.
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There are several types of excitations to which structures may be subjected. In Fig.

2.1 a force P(t) is applied to the mass; this force is a function of time. There are, 

generally speaking, three main types of this exciting force:

(i) Harmonic forces, such as P(t)= Posinmt orP(t)= cco2 sineat. A force which is 

periodic but not harmonic can be expressed as a sum of harmonic terms, using 

fourier series, and for a linear system the total response can be obtained by 

superposing the individual responses from each harmonic component of the 

force.

(ii) Transient or aperiodic forces: usually these are forces which are applied 

suddenly or for a short period of time. Simple examples illustrating the two are 

shown in Fig. 2.2.

(iii) Random forces: the force P(t) cannot be specified as a known function of 

time, but can be described only in statistical terms. Forces due to gusts o f wind 

forms an example of this type of excitation.

2.2 GENERAL EQUATION OF MOTION

The general equation of motion for any structure is derived by considering the 

forces acting on the m ass'm ' of Fig. 2.1 at any tim e't'. If  the displacement o f the 

mass, 'x', is measured from the position of static equilibrium, then the equation of 

motion is

m x +  cx + kx -  P( t )  [2.1]
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where,

c  is the damping coefficient, 

k is the spring constant, 

x = d 2xld t2 and x = dx / dt

The above equation relates to a single degree-of-ffeedom system subjected to a 

disturbing force. If  no disturbing force is applied to the system, but the mass is 

subjected to an initial displacement or velocity, free vibrations will occur, which 

will gradually die out due to the damping present in the system, and the equation 

of vibration will be given as

mx + cx + kx = 0 [2.2]

which has the solution of the form

x = ylexp(A/) [2.3]

provided that

m )} +cX + k = 0 [2.4]

that is

x — £-± [(_£_)2_±p«
2m 2m' m [2.5]

If  (ic/2m)2>k/m , the two roots of equation [2.5] are real, and the complete solution 

of the equation [2.2] is given by

x = A] exp(X1t) + ^ 2  exp(X2t) [2.6]
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and with X,and X2 real and negative it represents a gradual creeping back of the 

m ass'm ', towards the equilibrium position. For this to occur the damping must be 

considerably greater than that existing in practice. On the other hand, if 

(c/2m)2<(k/m), the roots of the equation [2.5] are complex and the solution of the 

equation [2.2] can be written as

the constants A{ and A2 being determined from the initial conditions, usually the 

values of x  and x at r = 0. Two cases that should be considered are those with 

undamped vibrations and damped vibrations.

Free undamped vibrations (c = 0)

For this case the solution of equation [2.2] takes the form

x = exp(— — *)(4 sin ©7 + A2 cosco 7) [2.7]

where,

[2 .8]

x = Ax sino)nt + A2 cos©,/ [2.9]

where
©„ = him

The above equation can also be expressed as

x = ylsin(©M̂+ a) [2.10]
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where

A =(T,2 + A22)m and tana = A2/A]

The above equation is plotted out in Fig. 2.3, and from the equation and the figure

(anT = 2n and /  = \!T

where, ©„ is the circular natural frequency of the system, with ©„ being measured 

in radians per second if the natural frequency /  is in hertz and a  is the phase 

angle.

Free damped vibration

The damping ratio is defined as y = d c c, i.e. the ratio of the actual damping 

constant to the critical damping value, where critical damping value is the value of 

the damping coefficient at the changeover from the "creeping" motion to the 

damped vibration and

cc = 2 m a n

Thus, the solution of equation [2.6] for this case can be written as

x = A exp(-yco nt) sin(co 't + a) [2.11]

which is presented in Fig. 2.4. In practice and y is small (<0.2). In

structures the value of y depends on the material and on the type of connections at 

the joints ( looseness increases the damping ). For practical values of damping the
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frequency of the damped vibrations is approximately equal to the natural 

frequency of free vibrations of the system.

2.3 RESPONSE TO HARMONIC EXCITATION

The response of the systems with one degree-of-freedom ( Fig. 2.1 ) to a harmonic 

applied force is now considered, i. e., P(t)= P0 coso t  in Fig. 2.1, P0 is a constant 

and 0/271 is the frequency of the applied force. Then from equation [2.1] the 

relevant equation of motion will be

mx + cx + kx = PQ cosco  ̂ [2.12]

The complete solution of the above equation consists of the complimentary 

function and particular integral, and can be expressed as

x = exp(-ycoM0(4 sin© V + A2 cos©’t)
F,0cos(©/-a) [2-13]

. + •
[ (k -m (0 2)2+c2d)2]112

As for previous cases, the constants Al and A2 are determined from the initial 

conditions. Physically, the complete response is the sum of the starting transient 

(the complementary function), which decreases exponentially with time, and the 

steady-state response ( the particular integral). If  the vibrations during the first few 

cycles are o f interest, the above equation has to be investigated, but in most 

problems only the response after the starting transient has died away is required. 

The steady state response is given by the equation

P0 cos(fflf -  a)
[(k-m(o2)2+cWr
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with

i  c-itana = ---------  [2.15]
k - m o

Now, if X  is the amplitude of the steady forced vibration, i. e., x = X c o s ( (o t -a ) ,  

and X st = P0/k , the displacement for a static force P0, then, replacing cc = 2£/co„, 

y = c/cc and r = ©/©„,

X  1
x„ [ ( l - r 2)2+(2yr)2],/2

[2.16]

and

tana = - ^ y  [2.17]
l - r  1 1

In the above equation the angle a  is the phase angle by which the response lags 

behind the applied force. The ratio XIXst is known as the ( dynamic ) 

magnification factor or gain. The above equations express the magnification factor 

and the phase angle in terms of the frequency ratio r  and the damping factor y , 

and are interpreted graphically in Figs. 2.5 and 2.6. These figures illustrate the 

phenomenon of "resonance"- that when the frequency of the applied force equals 

the natural frequency, the amplitude of forced vibration is large for practical values 

o f damping.

2.4 ENERGY EXPRESSIONS

For any vibrating system, energy, equal to the work done by the applied force, is 

supplied to the system. Energy is dissipated by the damping mechanism and is
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stored as kinetic energy and potential energy. Thus from the principle of 

conservation of energy,

(work done by the applied force) - (energy dissipated by damping)

= increase in kinetic energy and potential energy

For free undamped vibrations, there is no applied force and no energy is dissipated 

by damping, thus the sum of the kinetic energy and potential energy is a constant.

If x = yf©Mcos(a)Mf+ a ), and noting that the total energy is a constant, only if  the 

coefficients o f the terms in sin2(cowr+ a) and cos2(co„/ + a) are equal,

Similarly, applying the energy principle to one complete cycle o f steady state 

forced vibrations, the work done by the applied force, PQ cosco/, is P0cos(atdx. The 

limits of integration corresponding to one complete cycle, are t = 0, and t = 271/co. 

Thus, the work done by the applied force per cycle

—m x2 + — k(x  + § . ) 2 ~ m g { jc + 5 . )  = C  
2 2 st st

[2.18]

rearranging and noting that kbst = mg,

—m x2 + — kx2 = C 
2 2

[2.19]

—mA2(£>2 = —kA2, or 00 \ - k f m  
2 2

[2.20]

(dPQX  JcoscotsinCcof - a ) d t
[2.21]

= nPnX  sin a
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And the energy dissipated per cycle

2 7 c /d )

J cxdx = |  cx2dt = ncX2(o [2.22]
0

Making use of equations [2.14] and [2.15] it can be seen that equations [2.21] and 

[2.22] are similar.

2.5 DETAILS OF NUMERICAL MODELS ANALYZED

The numerical analysis through the use of FLASH was carried out on eleven 

different numerical models, divided in three different batches depending upon the 

type of constraint conditions present between the two leaves of the sandwich 

panel. The criterion for selecting the various models was mainly dependant upon 

the actual wall panels used in pre-fabricated construction. All panels were analysed 

for their dynamic properties, such as the natural frequencies and their associated 

modal shapes.

Before going any further in the description of the models analysed, it is important 

to describe the finite element program used to carry out the dynamic analysis. The 

computer program FLASH (Finite eLement Analysis of SHells) calculates by the 

finite element method, homogeneous, linear-elastic: shells and plates in addition to 

folded-plate structures, slabs, space-frames, plane-frames and grillages, under 

static and dynamic loading, for first-order or second-order theory. Flash operates 

with flat triangular and quadrilateral elements as well as with straight prismatic 

beam elements. It allows for the analysis of four different types, which differ from
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one another in their static behaviour in a structural sense and is reflected in the 

kind of elements and number of degrees of freedom as shown in Figures 2.7 to 2.9. 

The input scheme for the program is included at the end in Appendix A, in 

addition to a typical input data file for the dynamic analysis of a sandwich panel, 

analysed as a plate structure.

Considering the structural members under investigation, reinforced concrete 

sandwich panels, it is possible to treat them as either plate bending elements or 

shell elements. Carrying out the analysis for the model as a shell rather than a 

plate, would result in an excessive amount of computer time, although the use o f 

shell elements does allow the flexibility of incorporating in-plane loads, which is 

not possible with the use of plate bending elements. The analysis carried out for 

the wall panels produced the natural frequencies of the panels and the associated 

mode shapes for the first six modes. The results were then used for modelling the 

test parameters. The wall panels were investigated for various possible boundary 

conditions and the different constraint conditions existing between the two plates 

of the sandwich panel. The details of these different models are explained in detail 

in the proceeding article.

2.6 NUMERICAL MODELS

The geometry and the structural and material properties of the models analysed 

were based upon the actual pre-fabricated panels used in construction. The basic 

panel investigated for its dynamic properties was a reinforced concrete sandwich 

panel having nominal dimensions of 1800mm width and 2400mm height. The two 

elements o f the sandwich panel were taken to be 50mm and 100mm thick
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respectively. The sandwich panels were analysed for various boundary support 

conditions and the constraints present between the two elements.

As already mentioned in the previous chapter, the basic panel under consideration, 

in its original condition, has the two elements connected around the periphery over 

a certain width in addition to being connected within the section at specified 

locations. In the precast panels under investigation, these connections are through 

the use of "goal post" ties, made out of delta or phosphor bronze, as already 

explained in the first chapter. The number of these connecting ties used per wall 

panel is specified by the designer, and depends upon the size of the panel. The 

program FLASH allows for the displacements and/or the rotations of one joint to 

be constrained together with that of another. This facility was used for modelling 

the connections between the two leaves o f the sandwich panel.

As has been discussed previously, in reality most of the panels in use rarely 

conform to the original specified design. Certain differences are present, either at 

the time of manufacture, which mainly relates to the use of an incorrect number of 

ties (generally fewer than required), or the panel undergoes some structural 

changes during its service life. The changes could occur under the influence of the 

applied loading or the aggressive environmental conditions to which the panels are 

likely to be subjected. These could produce peripheral cracking of the panels or 

affect the structural ties within the section, thus reducing the load transfer 

capability. The eleven wall panels analysed had 'built-in' variations in them based 

upon the possible defects and structural changes 1 ikely to occur in them. The 

structural details of the various panels analysed are given below.
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MODEL GK-1: The reinforced concrete sandwich panel was treated as a plate

bending element, with the two "leaves" being treated as separate plate bending 

elements, having three degrees of freedom associated with each node. Both skins 

were modelled independently as plates having overall geometric dimensions of 

1800mm width and 2400mm height, and were a 100mm and 50mm thick 

respectively. Both plates were discretized into a 200mm finite element mesh as 

shown in Fig. 2.10. For analysis of the two plates for their dynamic characteristics, 

the plates were modelled in the X-Y co-ordinate system and were placed side-by- 

side as indicated in Fig. 2.10. For modelling the connection between the two 

plates, the property of the program allowing the flexibility to constrain joints 

together was used. This particular model had joints constrained over a 200mm 

width around the perimeter on all four sides and this was the only structural 

connection present between the two plates. The support conditions for the model 

consisted of simply supporting the 100mm thick plate along the two 1800mm 

edges. Each of the models were analysed for their dynamic characteristics for 

varying material properties to carry out a parameteric study and observe the affect 

o f Ec,io and v on these characteristics.

MODEL GK-2: This model was similar to GK-1 in structural and geometric

properties. It was again treated as a plate element and the two plates had the same 

discretization as the first one in addition to having the same boundary support 

conditions, the difference in the two models was in the structural connection 

between the two plates. Unlike GK-1 this model in addition to having a connection 

between the two plates around the perimeter over a width of 200mm was also 

connected together at two central locations. The details of the model are presented 

in Fig. 2.11.
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MODEL GK-3: Once again the model being similar to the first two models.

The difference again being only between the structural connection present between 

the two plates. In addition to the connection around the perimeter, this model, the 

last in the first batch of three models, had four more joints constrained. The details 

of these are provided in Fig. 2.12.

MODEL GK-4: The second batch of numerical models were quite similar to

the three models analysed in the first batch, as far as the geometric properties of 

the panels were concerned. The similarities ended here. In this batch the models 

were modelled to simulate a crack along one of the edges as well as reducing the 

structural constraints present between the two plates. This was done to study the 

effect of reduction in stiffness of the panel on the natural frequencies and the 

modal shapes of the basic panel under investigation. The first model o f this batch 

had a mesh discretization of 200mm for most of the plate section, except for 

around the perimeter, where it was reduced to 50mm. This was done to allow the 

introduction of a structural constraint over a width of only 50mm around three 

edges of the perimeter thus, simulating a crack along one edge in addition to 

reducing the overall stiffness. The details of this mesh discretization can be found 

in Fig. 2.13. Model GK-4 had only this structural constraint present between the 

two plates .

MODEL GK-5: The second model in this batch had quite similar structural

and geometric properties as to the previous model. The difference for this model 

was, that like GK-2 this one also had an additional constraint in the centre to 

provide a stiffer structural connection between the two plates. Details o f the model 

can be found in Fig. 2.14.
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MODEL GK-6: Similar to GK-4 and GK-5 in overall geometric properties and

the structural constraints around the perimeter, but with additional constraints 

introduced within the section, which were similar to GK-3. The details o f the finite 

element mesh and the joint constraints are presented in Fig. 2.15.

MODEL GK-88. 87. 86. 85. 84: The five models analysed in the third batch had 

the same overall geometric dimensions of the first two batches. Unlike those 

numerical models, which had some form of structural connection around the 

perimeter, the ones in this batch were only structurally connected at certain 

discrete points. The first two batches were designed to study the effect of 

decreasing structural stiffness of the models, on the dynamic characteristics o f the 

sandwich panels under investigation. Continuing on the same principle, the 

numerical models in this batch were designed to have an even lower stiffness. This 

was achieved by eliminating the connection between the two concrete leaves 

around the perimeter. The first numerical model in this batch, GK-88, had eight 

point connections between the two leaves, the details of which can be seen from 

Fig. 2.16. The remaining models were all similar to this one, the only difference 

being in the number of point constraints present between the two leaves, which 

were reduced by one for each successive numerical model. The details o f these are 

presented in Figs. 2.17-2.20. The two concrete leaves were treated as plate bending 

elements and each plate consisted of 72 joints (Figs. 2.16-2.20). All models were 

simply supported along the top and bottom 1800mm edges of the 100mm thick 

plate. Each of the models was analysed for their dynamic characteristics for 

varying material properties and the effect of £ c,a> and v on these characteristics 

was studied.
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Fig. 2.1: Single-degree-of-freedom system.
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Fig. 2.2: Two examples of transient force excitation.

69



Fig. 2.3: Free undamped vibrations.
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Fig. 2.4: Free damped vibration.



de
gr

ee
s

6
r"

5

4

X

S 3

y - 0.2

2

0 0.5 1.0 1.5 2 0 2 5
r

Fig. 2.5: Response to forced vibration.
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Fig. 2.6: Variation of phase lag with frequency.
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In-plane structures and axisymmetric solids
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Rotation : Rz

Fig. 2.7: Global co-ordinates and inplane degrees of freedom.
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Fig. 2.8: Global co-ordinates and plate degrees of freedom.
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Fig. 2.9: Global co-ordinates and shell degrees of freedom.
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Fig. 2.10: Details of the mesh discretization of numerical model GK-1.
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Fig. 2.11: Details of the mesh discretization of numerical model GK-2.
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Fig. 2.12: Details of the mesh discretization of numerical model GK-3.
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Fig. 2.15: Details of the mesh discretization of numerical model GK-6.
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Fig. 2.16: Details of the mesh discretization of numerical model GK-88.
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Fig. 2.17: Details of the mesh discretization of numerical model GK-87.
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Fig. 2.18: Details of the mesh discretization of numerical model GK-86.

77



Q 1 8 2 7 3 6 4 5 5 4 6 3 7 2 8 1 9 0 9 9 1 0 8 1 1 7 1 2 6 1 3 5  1 4 4

8

7

2 6

'j

5 3
7 1 8 0 r

9 8
(

1 2 5  
4 - ■ 1 4 3

V j ----------- )  "

7 0 7 9

J

1 4 2

6
2 4 5 1

6 9 7 8 r
9 6

(
1 2 3

*4 - 1 4 1
----------- t ) t; )

6 8 7 7

V)

1 4 0

4 4 9
■\ 6 7 7 6

1 2 1
9- 1 3 9

3

)

6 6 7 5 1 3 8

2 6 5 7 4 1 3 7

1 6 4 7 3 13 6
1 0  1 9  2 8  3 7  4 6  5 5  8 2  9 1  1 0 0  1 0 9  1 1 8  1 2 7

Fig. 2.19: Details of the mesh discretization of numerical model GK-85.
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Fig. 2.20: Details of the mesh discretization of numerical model GK-84.
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RESULTS AND DISCUSSION OF 
THE NUMERICAL ANALYSIS

3.1 INTODUCTION

This chapter deals with the results of the numerical analysis performed on the 

models described in the previous chapter. The numerical models were analysed for 

their dynamic characteristics, with emphasis being placed mainly on the natural 

frequencies and their related modal shapes. All the models were analysed for the 

first six modal shapes, as the natural frequencies for this range would presumably 

be low enough to be measured relatively easily when performing the experimental 

work. The material properties used for obtaining these natural frequencies and the 

associated modal shapes were similar to the ones which were to be used later in 

the experimental program. In addition, a parameteric study of the numerical 

models was also carried out. For this analysis the material properties, such as, the 

Modulus o f Elasticity and the mass were varied over a certain range and the effect 

of these variations on the natural frequencies was studied.

In the present chapter a detailed analysis of the results is presented in graphical and 

tabular form and conclusions are drawn on the feasibility of using this approach 

experimentally to determine the structural integrity of the precast sandwich wall 

panels.

3.2 NUMERICAL MODELS GK-1,2,3

The details of the dynamic characteristics of the basic model for this first batch are 

presented in Table 3.1. The relationship between the natural frequencies for the six
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modes of the three numerical models are presented in Fig. 3.1. The corresponding 

modal shapes for the first six natural frequencies are also presented in Figs. 3.25- 

3.42. As can be observed from Table 3.1, there is effectively no difference in the 

first three natural frequencies of the models GK-1, 2, 3 in spite o f the additional 

constraints present in the numerical models GK-2, 3. These are also portrayed in 

the modal shapes and it can be seen that the first two modal shapes are identical 

apart from the magnitude of displacement (Figs. 3.25,26,31,32,37,38). The third 

modal shape for GK-3 is slightly different, which is to be expected, because of the 

placement of four additional constraints present in this model. As we move on to 

the higher modes, the differences between the natural frequencies become more 

noticeable (especially for the sixth mode) and this can be seen from the related 

modal shapes as well (Figs. 3.30,36,42). The higher modal shapes though, 

becoming more complicated, hence making it a lot more difficult to detect them 

experimentally.

The results for these models quite clearly indicate that the dynamic characteristics, 

especially the natural frequencies, are dominated by the stiffness of the connection 

between the two skins of the sandwich panel, around the perimeter. The additional 

constraints provided by introducing the extra connections between the two skins o f 

the panel have an insignificant effect on the natural frequencies, although the 

modal shapes do exhibit a change for the higher modes which is to be expected. It 

could be inferred from these results that although it is possible to detect, through 

experimental observations, the natural frequencies of the basic panel of this batch, 

it is likely to be extremely difficult to detect any minor structural changes 

occurring in the panel (such as the introduction of additional constraints and the 

resulting increased stiffness), because of the over-riding stiffness of the connection 

around the perimeter. On similar grounds, it would again be difficult to distinguish
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the three panels from each other, through experimental observations based upon 

the modal shapes. The first three modal shapes being effectively identical, and for 

the higher modes, the modal shapes being too complicated to be detected through 

experimental techniques.

The results of the parameteric study performed on this batch of numerical models 

are presented in Tables 3.2-3.4 and Figs. 3.3-3.8. The models were analysed for 

different values of the Modulus of Elasticity and mass, while the Poison's ratio and 

the boundary conditions were kept constant. The results are indicative of the trends 

that would be expected for the variables chosen, although it is observed that the 

natural frequencies for modes 4 and 5 are effectively the same for the different 

values o f the variables considered.

3.3 NUMERICAL MODELS GK-4, 5,6

The details o f the natural frequencies for the first six modes for the three numerical 

models in this batch are presented in Table 3.1. The corresponding modal shapes 

are given in Figs. 3.43-3.60. As can be seen from Table 3.1, the natural frequencies 

for the six modes analysed for this batch are somewhat lower than the 

corresponding one's for those of the previous batch. This slight decrease is to be 

expected, because of the lower stiffness of the numerical model, which had a stiff 

connection around only three edges along the perimeter over a 50mm width, as 

compared to one of 200mm width along all four edges for models GK-1, 2, 3. The 

results further indicate that although the natural frequencies for the first mode are 

similar, the remaining modes do show a greater difference, as compared to the first
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batch. Observing the modal shapes (Figs. 3.43-3.69) it can be seen that apart from 

the first mode, which is identical for all three models, the remaining modes are 

fairly distinct, although demonstrating complicated characteristics as we move on 

to the higher modes. These results are indicative of the fact that with the stiffness 

of the connection reduced around the perimeter, the effect of the additional 

constraints provided is enhanced. As with the first batch, the natural frequencies 

although are numerically different, but these are not significant enough to be easily 

detected through experimental observations. The results of the natural frequencies 

for the six modes are presented in Fig. 3.1.

The results of the parameteric study for this batch of models are presented in 

Tables 3.5-3.7 and Figs. 3.9-3.14. These models were again analysed for variables 

similar to the first three numerical models and were simply supported as before. As 

for the set of models, the results are quite predictable and it can be seen that the 

natural frequencies for modes 4 and 5 for GK-4 are fairly closely spaced and do 

not show any discernible influence of either the variation of the modulus of 

elasticity or the mass.

3.4 NUMERICAL MODELS GK-88, 87,86,85, 84

This batch of numerical models was quite different from the first two batches, in 

the fact that they had no connection present between the two skins of the panel 

around the perimeter. The only connections present were the varying number of 

point constraints between the two concrete leaves, as explained in detail in the 

previous chapter. The details of the numerical analysis for these five models are 

presented in Table 3.1 and Fig. 3.2. As can be observed from these values there is
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a greater percentage difference between the natural frequencies for the different 

models, although in this case as we get to the higher modes, the changes in the 

natural frequencies are much smaller, especially for models GK-86, 85, 84 where, 

for mode 4, 5 and 6, the difference is almost negligible. It can also be observed 

that the natural frequencies for this batch are in general much lower than those for 

the earlier batches. This clearly indicates that the connection between the two skins 

of the sandwich panel, and as a consequence the reduced stiffness, has a much 

more significant affect on the natural frequencies, while the stiff connection 

provided through the use of point constraints does not produce anywhere near the 

same stiffness. At the same time, the reduction of these constraints from eight to 

four has a greater effect on the natural frequencies. It must again be stated that 

although the percentage difference in these numerical values is reasonable, the 

change in magnitude is not all that discernible to be able to detect from 

experimental observations the structural changes that would be occurring in a 

panel through the loss o f a few constraints.

The modal shapes for the first six natural frequencies for the five numerical 

models are presented in Figs. 3.61-3.90. The modal shapes are once again as 

expected as the constraints are successively removed, with the higher modes again 

being quite complicated. As can be observed from these figures the third modal 

shape for GK-88, the fourth for GK-87 and the fifth for GK-86, 85, 84 are 

seemingly identical, but closer observation of the modal shapes will highlight 

distinct differences in the shapes as well as magnitude of deformation. Differences 

in the behaviour of the 100mm thick skin are detectable but for the 50mm thick 

skin the deformations seem quite similar. This once again reinforces the fact that it 

could be quite difficult to detect the differences between the sandwich panels 

through experimental observations.
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The results of the parameteric study are presented in Tables 3.8-3.12 and Figs. 

3.15-3.24. It can be observed from these values that once again as for the previous 

batches the fourth and the fifth mode for most models do not show much of a 

difference between the natural frequencies for corresponding values of either the 

modulus of elasticity or the mass.

3.5 CONCLUSIONS

The three batches of numerical models were designed to study what effect the 

major and minor structural changes occurring in the panel would have, on the 

natural frequencies for the different modes and the related modal shapes. The 

structural changes introduced in the different models were chosen, giving due 

consideration to the actual defects and inconsistencies that could be encountered in 

practice.

The results of the numerical analysis indicate that any major structural change 

occurring in the panel, such as the separation of the two skins along any number of 

edges, can be detected through the changes in the natural frequencies as well as the 

deformations of the panels for the different modes. As can be observed from the 

natural frequencies of the three batches o f numerical models (Table 3.1, Figs. 3.2, 

3.3), the variation between them is large enough, to lead to the conclusion that any 

significant structural change can be readily detected through the numerical change 

in the frequency value for the different modes, At the same time, the results 

indicate that within the three batches, the minor changes occurring do not show up 

clearly in the changes affected in the dynamic characteristics. Looking at the
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modal shapes for the various numerical models (Figs. 3.25-3.90), similar 

conclusions can be drawn. The modal shapes show a significant change as we 

compare the three batches, and as to be expected, the separation of the two skins 

around the perimeter have a significant effect on the deformation of the panels.

Consequently, the main conclusion that can be drawn from the results o f the 

numerical analysis, suggests that it should be possible to detect any major 

structural changes occurring in the panels, through the change in the dynamic 

characteristics, from experimental observations. However, it would be difficult to 

pick up the changes in the natural frequencies for minor structural changes as these 

are effectively indiscernible.
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|
O
s

o © i—H t“H H . H r-H

H CN
pq oo o rr CN in 00 CN <N Ĉ in
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EXCITATION TECHNIQUES AND 
EXPERIMENTAL PROGRAMME

This chapter deals with the various excitation techniques that can be employed for 

modal testing. An introduction is given into the methods of dynamic testing and 

the associated hardware that is required for performing a dynamic test. Also 

discussed are the details of the experimental program carried out during this 

present research. The experimental specimens are discussed and their geometric 

and material properties are described. Also included is a description o f panel 

casting and a description of the instrumentation used and the details o f the test set

up.

4.1 INTRODUCTION

The theoretical analysis of free and forced vibration of undamped and damped 

multi-degree of freedom systems requires the determination of mass, stiffness and 

the damping matrices, and from these the response can be obtained in terms of the 

modal parameters. To provide experimental validation of the theoretical models 

the inverse of this process has to be performed, that is, to deduce the matrices from 

the vibration. However, these quantities cannot be directly measured and have to 

be deduced from measurable quantities, such as the natural frequencies, dampings 

of the system and the mode shapes. Whenever a continuous structure is to be tested 

it is important to assume that it is composed of a finite number of degrees-of-
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freedom, then each of these can be examined individually, as each degree-of- 

freedom corresponds to a natural frequency and a mode shape.

As an example, consider a simple free-free beam ( Fig. 4.1 ), and consider it has 

anly the first three degrees-of-ffeedom. In order to determine the total vibration of 

the beam, it must be excited at some point and the resulting vibration measured at 

several points on the beam. If this time domain information is transferred to the 

frequency domain, the frequency response curves obtained at the three points 

would be as shown in Fig. 4.1. As can be observed, the sharp peaks ( resonances ) 

occur at the same frequency, independent o f where they are measured on the beam. 

The only difference, as we move from point to point, is the relative height o f the 

resonances. From such a response curve the magnitude of the frequency gives the 

magnitude of the mode shape, whilst the phase information ( not indicated ) gives 

the direction of the deflection.

Fig. 4.2 shows the frequency response curves obtained from several accelerometer 

locations on the beam. By connecting the peaks of the resonances of a given mode, 

and taking the phase into account, the mode shape at each resonance frequency can 

be traced out. Along the distance axis a combined frequency response curve is 

obtained, while the view along the frequency axis shows the three mode shapes, 

and is generally referred to as the modal domain view. Similar to any wave form 

that can be expressed as a sum of simple sine waves, a vibration can be represented 

as a sum of principal modes, and the total vibration envelope as a sum of the three 

modes can be seen in Fig. 4.2.

To determine the mode shapes, one can either excite the structures at the resonance 

frequencies and measure the structural deformation in each vibration mode, or they
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can be deduced from the frequency responses measured at various points on the 

structure. While normally sinusoidal excitation is used for the former method, 

wide band excitation can be used for the latter. These two methods can be further 

sub-divided into two categories:

i) single shaker techniques, and

ii) multiple shaker techniques, generally required for the 

excitation of larger structures.

The simplest and most commonly used technique is the "peak amplitude" method, 

in which the structure is excited by a sinusoidal force from a single shaker and the 

"response curves" of total amplitude, obtained at several points on the structure, 

are recorded as a function of frequency. The required information can then be 

extracted from these curves. This method has certain deficiencies, in that not 

enough is measured, and what is measured is displayed unsatisfactorily. An 

alternative method is to use the vector response plot (Kennedy and Pancu [43]) for 

estimation of damping and the natural frequencies. The mode shapes obtained with 

this method, using a single shaker, will generally, be better than those obtained 

with the peak amplitude method.

With the advent of the two channel real time FFT-analysers, measurement of 

response to wide band excitation signals ( in contrast to the traditional sinusoidal 

excitation ) has been made possible. In this particular method/technique, the 

frequency response function of a structure is measured at a single point, due to 

impulse excitation at various points on the structure, or the structure can be excited 

at a single point using various forms of wide band random signals, and the 

frequency response function measured at several points. The modal parameters can
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hen be extracted from the measured data in both the time and the frequency 

iomain.

Since the accuracy of the modal parameters depends on how precisely the 

frequency response function matrix can be measured, a great deal of consideration 

should be give to exciting the structure adequately, in order to maintain the 

vibration amplitudes as close as possible to the operating levels in all areas of 

interest. This is relatively easy in simple structures and individual components 

which can be excited evenly. However, in the case of larger structures and other 

large assemblies with numerous joints, vibration energy is quickly dissipated 

within the structure, producing widely different vibration amplitudes at various 

locations. Additionally, non-proportional damping, non-linear effects and closely 

spaced modes are often encountered in large structures, which not only impede the 

process of locating the frequencies at which to identify the modes, but also the 

mode shapes based on one exciter position may not agree with those based on 

another exciter position. Some of these difficulties can be eliminated through the 

use o f multi-point excitation, by which a larger amount of energy can be fed more 

uniformly into the structure than with the single point excitation.

The testing of large structures is generally carried out in two steps: In the first step 

the number o f modes and their resonant frequencies are roughly established using 

single shaker sweeps. The presence of modes are indicated by resonant phenomena 

and phase shifts in the response, and can sometimes be difficult to detect when 

modes have similar shapes and natural frequencies. Once the existence of a mode 

has been established, the second step involves isolation of the mode. This is 

achieved by distributing the available number of shakers around the structure, and 

adjusting the amplitudes of the mono-phase forces on the shakers, such that only
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the mode o f interest is dominantly excited in that particular frequency range. The 

structure thus responds predominantly in the principal mode as a single degree of 

freedom system, and the modal parameters can than be easily calculated. The 

accuracy of the results is governed by the number of shakers and their location.

4.2 SINGLE EXCITER TECHNIQUES

A dynamic test mainly involves quantitative measure of the effect o f a vibratory 

force on a structure. If the structure is linear and elastic and excited by a sinusoidal 

force, the resulting vibratory motion ( response ) is directly proportional to the 

exciting force and at the same frequency. Measurement of the exciting force and 

the resulting motion at a number of points over a range of frequencies would be 

sufficient to describe the vibratory behaviour of the structure.

Fig. 4.3 shows an instrumentation set-up used for obtaining a response curve in 

which the vibration exciter is fed with a certain amount o f power at a slowly 

changing frequency. Due to resonances in the test specimen and the vibration 

exciter, the power necessary to subject the test specimen to a constant force level 

will not, however, remain constant during the test, but will be a function of 

frequency. To keep the force level constant a servo-loop could be used, in which 

the output from the force transducer, mounted between the shaker and the 

specimen, is fed back to the exciter control via a preamplifier. The output from the 

accelerometer mounted on the specimen could be fed to an X-Y recorder which 

traces out a response curve as the frequency is scanned. The response should be 

measured at enough points on the structure to ensure that all modes will display
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their resonant characteristics in the response curve of at least one of the points (this 

is the most commonly used method of carrying out a resonance te s t).

Fig. 4.4 shows a typical point inertance curve plotted on linear scales of a free-free 

beam excited at a constant force, as shown. The first piece of information that can 

be extracted from an amplitude response curve is the natural frequencies of the 

specimen, which are usually identified as the frequencies where peaks are attained. 

It has been shown, however, (Bishop and Gladwell [44]) that theoretically the 

peaks do not occur exactly at the natural frequencies but at a frequency displaced 

slightly on one or the other side of them. This is partly due to the damping which 

couples the modes and partly due to the contribution from the other off-resonant 

modes at that frequency. The latter contribution will still be there, even if the 

damping does not couple the motion in the principal modes. However, if the 

system is lightly damped and the natural frequencies are widely spaced, these 

errors would be relatively small compared to the experimental errors involved in 

locating the peaks.

The second piece of information that can be extracted from a response curve is the 

amount o f damping in a particular mode. Damping is determined from the 

sharpness o f the peak ( Fig. 4.4b), and is normally measured in terms of the loss 

factor r\, given by

©o

where co0 is the natural frequency and ©, and co2 are frequencies on either side of 

the natural frequency where the peak amplitude is reduced by a factor of V2.
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4.3 MULTIPLE EXCITER TECHNIQUES

Since a structure, when excited, vibrates in several modes simultaneously, and thus 

causes difficulties in the analysis of the results, the unwanted modes have to be 

somehow eliminated. This can be achieved for simple structures by placing the 

exciters or pick-ups at nodal points of the unwanted modes, or by making use of 

the symmetrical and anti-symmetrical properties o f the mode shapes. In a complex 

structure, however, this is not always possible, and systematic methods have to be 

used for exciting the structure with multiple shakers and forcing them to vibrate in 

their principal modes. However, this requires rather sophisticated equipment both 

on the excitation side, as well as on the data acquisition side, on account of the 

large number of pick-ups, necessary for determining the mode shapes.

Fig. 4.5 shows an instrumentation set-up for testing of large structures using 

multiple shakers. The system is such, that it can be readily expanded to incorporate 

any number of shakers and accelerometer channels. All the equipment below the 

structure constitutes the excitation part of the system, while the instrumentation 

above the structure is used for data acquisition and further processing and analysis 

of the results.

For sinusoidal excitation of the structure, the principle of operation of this set-up is 

basically the same as that of Fig. 4.1. However, on account o f the multiplicity of 

shakers and accelerometers, automatic control of the system is imperative, 

although manual operation is possible. The fundamental requirement on the 

excitation side is the accurate control of the amplitude and the phase of the force, 

applied by each shaker to the test structure at a single frequency. On the data
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acquisition side, the acceleration signals have to be measured at several points on 

the structure.

EXPERIM ENTAL PROCEDURE

As mentioned earlier, the testing of large structures is carried out in two stages. In 

the first step the number of modes and their natural frequencies are roughly 

established using single shaker sweeps. The response should be monitored at 

several points to ensure that none of the modes is missed out in the frequency 

range o f interest. Once the existence of a mode has been established, the second 

step involves isolation ( tuning ) of the mode using multiple shakers. The test is 

started using a single shaker ( placed preferably at an anti-node of the mode to be 

excited ) with an arbitrary force, and the response from an accelerometer placed at 

the same shaker ( or an anti-node ) is fed back to the generator. The natural 

frequency o f the mode to be examined is now found by adjusting the frequency of 

the generator. Force levels on all the shakers are adjusted in a similar way. It will 

be found that as more and more forces are applied and adjusted, the more uniform 

in phase are the various points on the structure. Furthermore, the frequency at 

which the generator was initially set when the force to the first shaker was applied, 

would have drifted and approached the true natural frequency of the mode being 

excited. These trends give definite indications that a principal mode is being 

approached.

Once the correct phase distribution has been obtained, the rest o f the structure 

should be examined for mono-phase response. If the phase scatter around the 

structure is unacceptably large, repositioning of the shakers and/or monitoring
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points o f responses should be considered. With the correct force distribution 

established, a sinusoidal frequency sweep around the natural frequency is very 

useful in revealing the characteristics of the modes, such as damping.

4.4 VIBRATION INSTRUMENTS

This section deals with the various devices used in a dynamic test for studying the 

dynamic characteristics of a specimen. The three main devices required are the 

transducers (accelerometers), the frequency analysers and the tape recorder, the 

details and the function of each of these is explained below.

4.4.1 ACCELEROMETERS

The first vibration pickups producing an electrical output were rather bulky 

velocity sensitive devices. During the last decade or so there has been a marked 

move towards the use of acceleration sensitive transducers, called accelerometers. 

Reasons for this transfer of preference mainly being that accelerometers are 

generally much smaller physically than velocity pickups and that their frequency 

and dynamic ranges are significantly wider, even after integration to velocity. A 

wider dynamic and frequency range is a prime requirement o f the modem 

vibration pickup. An additional factor which underlines the benefits of 

accelerometers is the fact that an acceleration signal can be easily and validly 

integrated electronically to obtain velocity and displacement, whereas electronic
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differentiation used with velocity and displacement transducers is a more complex 

and dubious affair.

An accelerometer is an electromechanical transducer which produces at its output 

terminals, a voltage or charge that is proportional to the acceleration to which it is 

subjected. Piezoelectric accelerometers exhibit better all-round characteristics than 

any other type of vibration transducer and are more or less universally preferred 

for measurements covering a wide frequency range.

The heart o f the accelerometer is its piezoelectric elements which are usually made 

from an artificially polarised ferroelectric ceramic. These piezoelectric elements 

have the property of producing an electrical charge which is directly proportional 

to strain and thus the applied force when loaded either in tension, compression or 

shear. In practical accelerometer designs the piezoelectric elements are arranged so 

that they are loaded by a mass or masses and a preloading ring or spring. When 

subjected to vibration the masses exert a varying force on the piezoelectric 

elements which is directly proportional to the vibratory acceleration. For 

frequencies lying well under the resonant frequency of the assembly, the 

acceleration o f the masses will be the same as the acceleration of the base, and the 

output signal level will be proportional to the acceleration to which the 

accelerometer is subjected. The two most commonly used accelerometer 

configurations are the compression and the shear type which are shown in Fig. 4.6.

4.4.2 TAPE RECORDERS

It is often more convenient to record vibration signals on magnetic tape for later 

analysis in the laboratory rather than making on-the-spot frequency analysis in the
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iield. This is especially the case when analysing transient vibrations, shocks and 

continuous signals. By playing the tape at higher speed, very low frequency signals 

can be brought into the frequency range of ordinary frequency analysers and 

malysis time can also be reduced. Since the tape recorder is likely to be the most 

limiting factor in determining the dynamic range of the system, it is important to 

choose the parameter of recording ( acceleration or velocity) which has the flattest 

spectrum, regardless of which is to be used for final evaluation. Conversion 

between the parameters is straight forward once a narrow band spectral analysis 

tias been carried out. It is necessary and convenient to precede each input channel 

Df the tape recorder with a signal amplification device. A wide choice of high and 

low pass filters can be selected so that unwanted signals, noise, etc. can be 

prevented from influencing the measurements.

4.4.3 FREQUENCY ANALYZERS

Mainly two types of frequency analysers are used for frequency analysis of 

vibration signals. The two types most commonly used are the serial analysers and 

real-time analysers. The serial analysers may be synchronised with, and read out 

to, level or X-Y recorders. Real-time analysers provide analysis on all frequency 

bands simultaneously giving a virtually instantaneous graphical display of 

frequency spectra on a built-in screen or read out to a graphic recorder. As only the 

real time analysers were used in the frequency analysis, so we shall be limiting our 

discussion to them.

The most outstanding feature of a real-time frequency analyser is that it provides 

analysis in all frequency bands over their entire analysis range simultaneously.
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rhe most outstanding feature of a real-time frequency analyser is that it provides 

inalysis in all frequency bands over their entire analysis range simultaneously, 

"urthermore, as they give a virtually instantaneous graphical display of analysed 

jpectra, which is continuously updated, dynamic and spectral changes which occur 

vhen increasing vibration test levels can thus be seen as they actually happen. 

Similarly, the time saved in not having to wait for a level or X-Y recorder readout 

is considerable.

Eleal-time analysers are also particularly well suited for analysis of short duration 

signals, such as transient vibration shock. Readout and display o f analysed 

transient and shock spectra takes place practically at the very instant of capture. In 

addition, real-time analysers can store analysed spectra for alternate display with 

tater incoming data.

1.5 EXPERIMENTAL PROGRAMME

r h e  experimental programme consisted of the testing of eleven reinforced 

concrete, precast, sandwich wall panels. All panels had similar nominal 

dimensions, and were 1800mm wide by 2400mm high. The variations in the 

different specimens mainly concerned the type of structural connection and the 

constraints present between the inner load bearing skin and the outer cladding skin.

The test specimens were tested for their dynamic characteristics, principally their 

natural frequencies and associated modal shapes. The specimens were tested in an 

upright position, with the inner load bearing skin being subjected to an in-plane 

compressive load and being simply supported along the top and bottom edge. The
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was measured by means of piezo-electric transducers (accelerometers), which was 

stored on tape for permanent records. This was then passed through an FFT 

spectrum analyser to determine the frequency content. From this frequency content 

the natural frequencies related to the different modal shapes were detected. The 

details of the instrumentation and the experimental procedure are presented in 

articles 4.7 and 4.8.

4.6 TEST SPECIMENS

The basic specimen under investigation was a sandwich panel consisting of two 

skins of reinforced concrete. The inner load bearing concrete skin being 100mm 

thick and reinforced with 8mm diameter bars @ 200mm c/c both directions, while 

the outer cladding concrete skin was 50mm thick, and had a reinforcement mesh 

similar to the inner load bearing skin. The two concrete skins were separated from 

each other through a 25mm thick layer of polystyrene. The details o f this basic 

specimen are provided in Fig. 4.7.

The eleven experimental specimens tested for their dynamic characteristics were 

divided into three basic categories based upon the structural connection present 

between the inner load bearing skin and outer cladding skin. The structural and the 

constructional details of these specimens are explained herein.

4.6.1 TEST SPECIMENS GK-1, 2,3

The first batch considered for testing consisted of three specimens, the details of 

which can be seen in Figs. 4.8-4.10. The basic specimen in this category consisted
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of the basic sandwich panel as described above. Test specimen GK-1 had a 

structural connection between the two concrete skins all around the perimeter over 

a width of 200mm. The connection was such that in addition to the concrete 

providing continuity around the perimeter, the reinforcement mesh from both skins 

was extended through into each other (Figs. 4.8-4.10). This was the only structural 

connection present between the two concrete skins. For the test specimen GK-2, in 

addition to this connection , an additional constraint between the two concrete 

skins was provided at the central point. The test specimen GK-3 was again similar 

to the first two specimens in terms of the concrete perimeter connection but 

additionally, the specimen had four more points, located symmetrically within the 

specimen, which structurally connected the two concrete skins, and thus provided 

a stiffer constraint. The details of these specimens can be found in Table 4.1. As 

the same basic specimen GK-1 was used for the remaining two in this batch, the 

additional structural constraints were provided through two bolts for each 

constraint, which were locked into the two faces, thus providing restraint against 

compressive as well as tensile forces. A similar approach was used for the second 

batch of experimental specimens.

4.6.1.1 CASTING OPERATION

Details of the form work used can be seen in Fig 4.11. The casting operation 

initially consisted of casting the 100mm thick inner skin, with it s mesh of 

reinforcement placed mid depth. A pre-mix concrete o f 35MPa strength was used 

for all casting operations. Once the inner skin had been cast and vibrated using 

immersion vibrators, then on the still wet concrete, a 25mm thick sheet of 

polystyrene was placed, and then the 50mm thick cladding skin with it's mesh of
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reinforcement was cast on top of it. Finally, the face of the top skin was floated to 

give it a smooth surface. The specimen was eventually covered with wet hessian 

and a plastic sheet. It was cured in the mould for fourteen days before being lifted 

out and air cured until the time of testing. The details o f the casting operation are 

presented in Figs. 4.12 and 4.13.

4.6.2 TEST SPECIMENS GK-4, 5,6

Like the initial batch, the second one also consisted of three specimens. The 

geometric and reinforcement details of the three specimens is shown in Figs. 4.14- 

4.16. The basic specimen, being similar to GK-1, 2, 3, consisted of the same skins, 

reinforcement and polystyrene separation layer but had a concrete connection 

around three edges of the perimeter over a width of 50mm only, with one 2400mm 

edge remaining free. Test specimen GK-4, like GK-1, only had this connection 

between the two concrete "skins", as the structural connection. Similarly, as for 

specimens GK-2, 3, the test specimens GK-5, 6 in addition to the concrete being 

continuous over a width of 50mm around three edges of the perimeter, were 

further connected at one and four points respectively, through the use of steel 

bolts. The location of these was the same as for test specimens GK-2, 3. The 

details of these specimens can be found in Table 4.1 as well.

4.6.2.1 CASTING OPERATION

The details of the casting for these three specimens were identical to those for the 

test specimens GK-1, 2 ,3. Compared to the first three test specimens, in which 

case, the polystyrene sheet stopped 200mm short of the edge around all four edges,
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to enable continuity of concrete around the perimeter, in this case the polystyrene 

was extended up to 50mm of the edges on three sides and right up to the edge on 

one 2400mm side. Then the concrete cladding skin was cast on top of it, thus 

completing the casting operation of the sandwich panel having a concrete 

continuity over a width of 50mm around three edges of the perimeter. The 

specimens were cured in a manner similar to the first three and had similar 

material properties. Details of the casting operation can be seen from Figs. 4.17 

and 4.18.

4.6.3 TEST SPECIMENS GK-88,87, 86, 85, 84

The third and final batch of sandwich wall panels, consisted of five specimens. 

The sandwich wall panel again had overall dimensions o f 1800mm wide and 

2400mm high. The two skins of the sandwich panel were, as previously, 100mm 

and 50mm thick respectively. This batch of test specimens differed from the two 

previous batches, in that the two skins, did not have a separating layer of 

polystyrene between them. Also there was no continuity between the two skins, 

around the perimeter for this batch. The structural connection between the two 

skins was provided through a number of reinforcement "ties", varying from eight 

for GK-88 through to four for GK-84. The details for the placement of these ties as 

well as the cross-sectional and reinforcement details of these specimens are shown 

in Figs. 4.19 through 4.23.

4.6.3.1 CASTING OPERATION

The basic casting operation of these five test specimens was fairly similar to that of 

the previous two batches. The specimen was cast face-up, with the inner load
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bearing skin, 100mm thick, with it s mesh of reinforcement being cast first. Unlike 

the first two batches, there was no concrete continuation around the perimeter 

between the two skins. For specimen GK-88, the inner load bearing concrete skin 

was cast with the eight reinforcement ties placed at pre-determined locations as 

indicated in Fig. 4.19. These ties were to provide the only structural connection 

between the two skins. Once the inner load bearing skin had been cast it was 

allowed to harden and cure for some time. The concrete surface was then covered 

with a 100mm thick layer of sand, covered with a polythene sheet, and then the 

outer cladding skin with its mesh of reinforcement was cast. The eight connecting 

ties from the bottom concrete layer were embedded 30mm into the concrete o f the 

top layer. Both concrete layers were cast using a premix concrete of 35MPa 

strength. The specimen was further cured for seven days after which it was lifted 

out o f the form work and the sand allowed to flow out from between the two 

concrete layers. The same specimen was used for the remaining four specimens of 

this particular batch, with the connecting "ties" being cut off successively. The 

details of the casting operation can be seen in Figs. 4.24 and 4.25.

4.7 SPECIMEN PREPARATION, INSTRUMENTATION 
AND EXPERIMENTAL SET-UP

All eleven test specimens were tested in an upright position and were simply 

supported along the top and bottom 1800mm edge. The 100mm thick load bearing 

concrete skin was supported over a 100mm square, steel hollow box-section, to 

ensure that the applied in-plane loads were transferred through it alone (Fig. 

4.20).This was done to duplicate the actual site conditions, where only the inner
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panels would be subjected to any structural loads, except for the wind loads which 

acted upon the outer cladding. The surface instrumentation on the specimen 

consisted of Demec points placed along the width of the specimen on both faces, 

to measure the magnitude of the in-plane load. Piezoelectric accelerometers were 

also located on the surface at pre-determined locations, to measure the dynamic 

response of the test specimen. The details of the locations of these accelerometers 

as well as the Demec points are shown in Figs. 4.27-4.29, for all eleven test 

specimens.

Besides the instrumentation on the specimen surface, the test set-up involved the 

use o f excitation devices, recording instruments and an R.T.A. (real time analyser), 

the details of which have already been discussed.

The test set-up comprised of the sandwich panel being placed in a 10,000kN 

Universal Testing Machine as shown in Fig. 4.30. The panel was supported along 

one o f its 1800mm edges on a 100mm square, hollow box-section. A similar 

100mm square, hollow box-section was placed along the top 1800mm edge of the 

specimen as well (Fig. 4.30). The in-plane compressive loads were applied through 

the lowering down of the top platen of the Universal Testing Machine, to which a 

steel I-section was attached, to ensure the uniform application of the loads along 

the entire width of the test specimen.

The dynamic characteristics of the specimens were determined, when under the 

influenece of these in-plane compressive loads. The dynamic input was provided 

by two means. The first of these involved the use of an electro-magnetic sinusoidal 

vibrator, while the second approach was to excite the specimen was through the 

impact of a hammer blow.
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Fig. 4.30 also shows the assembly used for holding the vibrator alongside the wall 

panel, in such a position, so that the vibrations could be imparted to the wall panel 

at it's central point. This assembly, basically consisted of a steel section, on to 

which the vibrator and its supporting assembly were bolted, the steel section itself, 

was made to rest on the base plate of the testing rig, and was clamped rigidly on to 

the threaded columns of the testing machine at three locations. This was done to 

ensure that the natural frequencies of the steel section were much higher than the 

applied vibration frequencies, to eliminate resonance occurring between the 

vibrator and it's supporting assembly.

Two variations of the hammer were used initially. The first method consisted of 

using a hand held hammer and striking the specimen at pre-determined locations. 

The hammer had a plastic head and a contact area of 50mm2 The second approach 

was to attach the hammer onto the specimen and let it free fall as a pendulum 

through an arc of ninety degrees. The hammer was fabricated, insuring that the 

hammer head was similar to the one used initially. The hammer shank had a length 

o f 1.2 meters and was used with variable mass. The advantage of such an assembly 

was the controlled input of force used to excite the specimen. The details o f the 

arrangement are described in Fig. 4.31.

4.8 TESTING PROCEDURE

The experimentation itself, consisted of applying a 500kN in-plane compressive 

load to the specimen in conjunction with a vibratory load, through either the 

electro-magnetic sinusoidal vibrator or the impact of a hammer blow. When using
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the sinusoidal vibrator, the specimen was vibrated at different frequencies, while 

maintaining the location of the vibrator. In comparison the force of impact of the 

hammer blow was varied and different locations were chosen, the details of which 

can be found in Fig. 4.32. The response of the two concrete skins, obtained from 

the accelerometers located on both faces was permanently stored, for future 

analysis on a tape recorder. The accelerometers were attached to the surface of the 

panel through the use of threaded bolts. The location of the accelerometers can be 

seen from Figs. 4.28 and 4.29. The signals from these accelerometers were passed 

through a high impedance micro dot cable which was reduced to a low impedance 

cable by using a voltage amplifier, before being fed into the tape recorder. The 

reason for the impedance transfer was the longer length of cables required, and the 

necessity to reduce the loss of signal power.

As only a limited number of accelerometers were available to measure the 

response of the specimen, therefore they were moved around successively through 

their different locations until the response for every point was obtained and 

recorded for one impact location. This was achieved by first having the 

accelerometers at the five designated locations, such as A1-A5, and impacting at 

point II. Once the output from these five points was obtained, the accelerometers 

were then moved to positions B1-B5, while the point o f impact was kept at 

location II and the resulting response was observed. This process was repeated and 

the response from all accelerometer locations was obtained for the one impact 

location. A similar procedure was adopted for each of the pre-determined points of 

impact. Finally, these recordings of the accelerometer output signals were then 

passed through an attenuator and an amplifier and displayed on the real time 

analyser for their frequency content.
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Fig. 4.3: Instrum entation set-up for the peak amplitude method.
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Fig. 4.11: Details of the form work and reinforcement of test specimens.
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Fig. 4.12: Details of casting operation for GK-1, 2, 3.

Fig. 4.13: Details of casting operation for GK-1, 2, 3.
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Fig. 4.17: Details of the casting operation for GK-4, 5, 6
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Fig. 4.24: Details of the casting operation for GK-88.

Fig. 4.25: Details of the casting operation for GK-88.

221



Fig. 4.26: Loading arrangement for the test set-up.

Fig. 4.27: Location of demec points for all eleven test specimens.
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EXPERIMENTAL RESULTS

5.1 INTRODUCTION

In the previous chapter the details of the test specimens and the experimental set

up were given. Also described were the various methods used for the dynamic 

testing of structures and the procedures used for testing of the various experimental 

models in the investigation. This chapter mainly deals with the results obtained for 

the eleven experimental models. A discussion is presented on the various dynamic 

characteristics of the specimens as inferred from the experimental observations and 

an attempt is made to distinguish the structural differences present between them.

Before moving on to the experimental observations, it is worth while to briefly 

discuss the experimental procedure, especially the method of vibrating the 

specimens. As was explained in the previous chapter, two methods were employed 

to excite the specimens, (i) the mechanical sinusoidal vibrator and (ii) the hammer 

blow, with two variations of the hammer being used. The need to experiment with 

these two forms of exciting devices, was made necessary because of the large and 

extremely stiff nature of the sandwich wall panels. Complete excitation of the 

specimens was envisaged to be a fairly complicated problem at the begining of the 

experimental program and it was concluded that, to achieve the best results, a pilot 

series of tests using these various possibilities of excitation would be performed. 

Then, based upon the information obtained from these results, further 

investigations could be carried out. The following articles describe the advantages 

and disadvantages of the two approaches adopted for imparting vibrations to the 

test specimens.
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5.1.1 MECHANICAL VIBRATOR

The likelihood of analysing the experimental dynamic response, being a relatively 

simpler task, if one can impart controlled sinusoidal vibrations at a particular 

frequency, is quite strong. With this understanding, this was the first form of 

exciter that was used for obtaining the dynamic characteristics of the specimens. 

This approach had a certain number of limitations, such as the limited amount of 

energy imparted to the specimen and the point of impact. While using the electro

magnetic vibrator it was observed that the energy induced to the specimens 

through the use of only one vibrator was not sufficient to get the specimen 

vibrating in any one particular mode. This might only have been possible through 

the application of a multi-vibrator system, but due to the problems associated with 

this approach (highlighted in the previous chapter) and the limited resources 

available, this method was ruled out. Secondly, because of the way the vibrator 

was supported alongside the specimen, it was quite difficult and cumbersome to 

alter the location of the point of impact, which once again produced a severe 

limitation on the experimental set-up. Considering these two draw backs when 

using the electro-magnetic sinusoidal vibrator, after a series o f trial runs it was 

decided to shelve this approach as the results being obtained were clearly not 

exhibiting much and it was decided to solely concentrate on impacts to the 

specimen through the use of hammer blows.

5.1.2 HAMMER BLOWS

Producing vibrations in structures by the use of hammer blows has been quite 

extensively used and the results obtained have indicated towards the success of 

this approach. It has been shown by various authors (as indicated in chapter 1) that
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the transient input from hammer impacts is quite capable of vibrating the specimen 

in its different modal shapes. Investigations have also been carried out on the 

effects that different hammer heads might have on the observed response, and 

although they do not produce vastly different results, they certainly tend to have 

some effect on the natural frequencies. For determining the dynamic 

characteristics in the present study, plastic headed hammers were used. The main 

advantage of using a hammer is in the simplicity of use. One can have absolute 

flexibility as to the location of impact points as well as having control over the 

force o f impact and consequently knowing the energy imparted to the specimen, 

which can be later on used for determining the relative magnitudes o f deformations 

for all transducer locations. This is generally achieved by locating an impedance 

head in the tip of the hammer, which measures the force imparted through the 

hammer head. As the main purpose of the present study was to determine the 

possibility of detecting the natural frequencies of the sandwich panels for the 

various modal shapes, as well as to be able to determine through the changes in 

these natural frequencies the structural changes in the panel thus, the relative 

magnitudes of the various transducer responses were not considered that important 

and the hammers used were not fitted with impedance heads in the tips. This 

approach had its drawbacks though, in that it made it impossible to use the 

response obtained from the transducers to plot out the modal shapes of the 

specimen as the relative displacements were not measured.

As has already been mentioned through the preceding chapters, two types of 

hammer blows were used, and the response of the specimens from the transducers 

was obtained from the various accelerometer locations. For the first series of 

experiments the hammer was attached to the specimen. The hammer was allowed 

to free-fall under it s own weight through an arc of ninety degrees. The fall was
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kept constant, but the weight of the hammer head was a variable and could be 

increased by the addition of weights. The hammer arm was supported on an almost 

friction less pin and held in place through the use of a locking assembly as shown 

in Fig. 4.31 of the previous chapter. The entire assembly was bolted on to the 

specimen and held in place by four bolts. Once the hammer had struck the 

specimen, falling through the pre-set arc, as it bounced off the specimen surface it 

was held back so as to eliminate any subsequent impacts.

While performing tests in this manner, a number of complications were 

encountered. The first one was that as the hammer struck the specimen surface, 

additional impacts were passed on to the specimen at the location of the supporting 

assembly of the hammer, and despite the fact that efforts were made to dampen 

this effect by using spring bolts, the effectiveness of this approach was not one 

hundred percent, and as a consequence the response of the specimen showed 

extremely complex wave forms, and made for extremely difficult analysis o f the 

observations. Secondly, the same problem as encountered with the mechanical 

vibrator o f conveniently changing the points of impact was also present, thus it 

was once again limited to basically one impact point.

It was found out through trial experimentation that these difficulties and 

discrepancies could be eliminated, simply by using a hand held hammer. Because 

the hammer was not controlled in the force of impact and once again as impedance 

heads were not used, there was no sure way of controlling the amount of energy 

being imparted to the specimen, but through trial and error, it was fairly simple to 

determine the approximate force of impact required to impart enough energy to the 

specimen, to excite the various dynamic modes.
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Keeping all of the above mentioned discrepancies, regarding the different possible 

forms of excitation and after going through preliminary rounds of investigation, it 

was decided to just use the mode of excitation through the use o f a hand held 

hammer for the controlled testing of all specimens. The results of these tests with 

the conclusions drawn are presented in the proceeding articles.

5.2 EXPERIMENTAL MODELS GK-1 & GK-4

Tests were performed on these two specimens for the determination of their 

structural characteristics through the identification of the dynamic properties. The 

dynamic properties that we were mainly concerned with, were the natural 

frequencies o f the different mode shapes and the differences that would show up in 

the response frequencies for detecting the distinctions between various specimens. 

Before carrying out a discussion of the experimental results obtained, let us just 

remind ourselves once more about the main structural differences present between 

experimental models GK-1 and GK-4. Both specimens, if we recall, were of the 

same geometric properties as well as the reinforcement details for both leaves of 

the sandwich panels. The major differences in these sandwich wall panels related 

to the structural constraints present between the two leaves. Where as, panel GK-1 

was modelled to have a complete connection between the two leaves around the 

perimeter, extending over a width of 200mm, panel GK-4 had a connection only 

around three edges and over a width of 50mm only. The one remaining edge of the 

panel was left without any structural connection, this was done to simulate the 

situation of a crack between the two leaves. Also, the width over which the 

concrete was structurally connected was reduced. This was done to reduce the 

stiffness of this panel compared to GK-1. The main reasoning behind introducing
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these changes between the two specimens was to reduce the structural connection 

and as a consequence reduce the stiffness, which would lead to a change in the 

natural frequencies, hence enabling us to determine the structural differences in the 

panels through them.

Fig. 5.1 gives the natural frequencies for the various modal shapes of the two 

panels, GK-1 and GK-4, as observed from the experimental response obtained 

from the different transducer locations. As was described earlier, the transducers 

(accelerometers) which were used for measuring the response of the two leaves of 

the sandwich panel were located at various points. The observed natural 

frequencies for the two specimens were seen to be fairly similar for these different 

accelerometers, with obviously different magnitudes, as would be expected, 

depending upon the location of the transducer and the dominant mode of 

excitation. As the excitation of the specimens was through the use of a hammer 

blow, producing a transient force, there was no way in which to ensure the 

excitation of one particular mode. As a result, the frequency response showed 

peaks corresponding to a number of natural frequencies. The difficulties 

encountered in such a mode of testing, were obviously, in separating the various 

modes of excitation and in trying to realise from the observed spectrum the actual 

modes of the specimen and the different reflected waves which would be induced 

in the specimen.

As can be seen from Fig. 5.1, the observed natural frequencies of specimens GK-1 

and GK-4 are fairly close together for the first couple of modes, as is to be 

expected because of the type of deformations occurring in the panels for these 

particular modes. But as we move on towards the higher modes, they show a 

reasonably large difference. This result once again is what one would expect, as
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the greater stiffness of specimen GK-1, would result in larger natural frequencies 

in comparison to the less stiffer specimen GK-4. These results are also confirmed 

by the numerical models.

The results from these two specimens suggested that from the frequency response 

spectrum, it is possible to differentiate between the two specimens and be said with 

a fair degree of certainty as to which is the stiffer of the two specimens. This can 

lead to the conclusion that, because of the fact that its behaviour indicates a stiffer 

response, it should contain relatively more structural constraints between the two 

leaves o f the panel. The trends observed from the experimental response of these 

two specimens definitely indicated, that from the dynamic response of sandwich 

panels one can comment with a fair degree of certainty as to which of the panels is 

structurally more sound than the other.

Once it had been established, through the experimental results of test specimens 

GK-1 and GK-4, that it was possible to distinguish between the stiffness o f the 

connection around the perimeter between the two leaves, it was decided to go one 

step further and test specimens GK-2,3,5,6 and to try and differentiate between the 

reinforcement constraints present between the two leaves. The dynamic response 

of specimens GK-2 and GK-3 was very similar to the one obtained for GK-1. The 

results for these two specimens indicated that it was not possible from the obtained 

response for the various accelerometer locations, to distinguish between the natural 

frequencies of the two specimens which was visibly identical to each other as well 

as to that of GK-1. Similar observations were made from the tests carried out on 

specimens GK-5, 6, which produced a response similar to GK-4. Such a result was 

obtained in spite of the fact that these two specimens had one and four additional 

constraints present, respectively. Considering, that changes in the natural
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frequencies were observed, when the constraint conditions around the perimeter 

between the two leaves were altered, it is safe to conclude that the concrete 

constraint around the edges is the one dominant structural change (from the 

different parameters considered in the present study) which greatly effects the 

dynamic response of the sandwich panel. Thus, if any structural variations 

concerned with altering the concrete connection around the perimeter, such as 

additional cracks are introduced into such a panel, they would be more readily 

distinguishable from the frequency response spectrum, in terms of changes in 

natural frequencies. On the other hand the minor variations in the natural 

frequencies which would be taking place through increasing or reducing the 

number o f reinforcement ties, which are structurally connecting the two leaves of 

the sandwich panel, would be extremely difficult to detect.

Such a result is somewhat to be expected as the introduction of a stiffer constraint 

around the perimeter would tend to have a greater effect on the overall mass of the 

specimen and, as a consequence, the natural frequencies would show relatively 

greater change. On the other hand the introduction of additional reinforcement ties 

would not have that great an effect on the structures mass and, following on the 

same principle as before, would tend to show a much lower variation in the natural 

frequencies. One must remember, that although the natural frequencies o f the 

various modal shapes may not vary that much with the introduction of additional 

reinforcement ties, it would invariably have a much significant influence on the 

modal shapes corresponding to these natural frequencies. These changes in the 

modal shapes can possibly be detected through the response spectrums, if a fairly 

detailed set-up is used, and the magnitudes of deformations at a reasonable number 

of transducer locations are measured. Then on plotting these out, one can obtain a 

fairly close match of the modal shape of the specimen for one particular natural
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frequency. This would of course require, that the specimen is basically vibrated in 

one particular modal shape, which in itself can be a fairly complicated problem for 

such a stiff structure. Unfortunately, in the present research, the main interest was 

the development of a fairly simple approach to determine the structural integrity, 

or in other words, damage location, through the detection of changes in natural 

frequencies. Therefore the magnitudes of the response from the different 

transducer locations were not measured.

5.3 EXPERIMENTAL MODELS GK-88,87, 86, 85,84

Although similar to test specimens GK-1 and GK-4 in their geometric and 

reinforcement properties, these specimen were principally different in the type of 

constraint present between the two leaves of the sandwich panels. Where as the 

specimens GK-1 and GK-4 had some form of concrete connection around the 

perimeter, the specimens in this batch were singularly connected through a certain 

fixed number of reinforcement ties varying from eight in GK-88 to four in GK-84. 

Once it was shown, through the analysis of specimens GK-1, 2, 3, 4, 5, 6 that the 

connection around the perimeter tended to over shadow any effect the 

reinforcement ties could possibly have on the experimentally observed natural 

frequencies, it was logical to try and study, solely the effect that the reduction of 

ties might have on the dynamic response of the test panels. Based upon this, the 

specimens in this batch were modelled with only the reinforcement ties, 

structurally connecting the two leaves of the sandwich panel. The test set-up was 

the same as before, with the boundary support conditions and the in-plane loading 

on the load bearing leaf being kept as before. The input of the dynamic force was
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as for the previous batches, a transient force and imparted to the specimen through 

the use o f a hand held hammer.

The experimentally observed response of the five specimens in this batch, plotted 

out in terms of the natural frequencies for the various mode shapes are presented in 

Fig. 5.2. As can be seen from this figure the observed natural frequencies of 

experimental models GK-84 and GK-85 (containing four and five reinforcement 

ties, respectively) are very close together and from this response it is exceedingly 

difficult to detect any structural change within the two sandwich panels. As the 

number of constraining ties is increased to six, seven and eight for specimens GK- 

86, 87 and 88 respectively, the observed natural frequencies do tend to show a 

slightly greater change. The models tend to exhibit a stiffer response and the 

magnitude of the natural frequencies increased with increase in the number of 

constraints. This trend is again very similar to what one would expect, as the 

increasing number of ties would by and large increase the stiffness of the specimen 

and thus increase the natural frequency for a particular modal shape. It can also be 

observed from Fig. 5.2, that the differences in natural frequencies for the lower 

modal shapes are more difficult to detect, for example, for the first modal shape, 

the natural frequencies vary from 0.4 hertz for the least stiff specimen GK-84 to 

0.5 hertz, for the most stiff specimen GK-88. This is synonymous with the trends 

observed for the previous batches. Additionally, the problems encountered in 

analysing the results and trying to differentiate between the various specimens, to 

determine their structural differences were very similar to the one's faced for the 

previous two batches. Figs. 5.3-5.6 give typical response spectrums of the various 

test specimen, as obtained from the spectrum analyser.
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In conclusion one can say from the experimentally observed response for this 

batch, that with the approach adopted for determining the structural damage 

through their dynamic response, it is possible to distinguish between the various 

panels, and state with a fair amount of certainty, as to which of the panels is 

structurally more sound. But at the same time the results do not give any indication 

as to the overall structural integrity of the panel, neither is it possible to detect the 

actual structural damage that might have occurred in the panel.
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0 .40 ACC: 2. GK-1

AMP.
INST

0
0 NATURAL FREQUENCY, (hertz) 25.0000

Fig. 5.3: Frequency reponse spectrum for specimen GK-1.

0 .40
ACC: B. GK-4

0
0 NATURAL FREQUENCY, (hertz) 25.0000

Fig. 5.4: Frequency reponse spectrum for specimen GK-4.
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0 .40 [fC C 2E. SK-87

0

Fig. 5.5: Frequency reponse spectrum for specimen GK-87.

0 .40

AMP.
INST

0
NATURAL FREQUENCY, (hertz)0 25.0000

Fig. 5.6: Frequency reponse spectrum for specimen GK-86.
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0.40
mCC 4E. GK-85

AMP.
INST

0 NATURAL FREQUENCY, (hertz) 25.0000

Fig. 5.7: Frequency reponse spectrum for specimen GK-85.

0.40

AMP.
INST

NATURAL FREQUENCY, (hertz)0 25.0000

Fig. 5.8: Frequency reponse spectrum for specimen GK-84.
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COMPARISON BETWEEN 
NUMERICAL AND EXPERIMENTAL RESULTS

6.1 INTRODUCTION

Chapters 2 to 4 described the details of the numerical and experimental models, as 

well as discussing in detail the results of the analysis and the observed dynamic 

response, whereas the previous chapter discussed the results obtained from the 

dynamic testing of the test specimens. This chapter deals with the comparison 

between the numerical and experimental models. The results obtained for the 

various experimental models are compared to the results obtained from the twin 

numerical models. Comparisons are made between the observed and the 

calculated/predicted natural frequencies, as this was the main characteristic being 

experimentally detected. Each model is dealt with individually and based upon the 

results conclusions are drawn.

6.2 SPECIMEN GK-1

Fig. 6.1 displays the natural frequencies of GK-1 for the first six modal shapes as 

obtained from the results of the numerical analysis and observed from the 

experimental response. As can be seen from the figure, the observed natural 

frequencies for the first three modal shapes compare well with the numerical 

model. For the higher modes though, it can be seen that the experimental model 

exhibits a much stiffer response than the numerical model. This being a trend 

which was observed for nearly all specimens. The tendency of the observed
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response to be stiffer for the higher modes could possibly be due to the way the 

experimental model was supported and restrained at the edges. The numerical 

model was analysed as a plate bending element and being simply supported along 

the top and bottom edges, with the in-plane loading on the inner 100mm thick 

concrete leaf not having any effect on the natural frequencies of the various modal 

shapes. In contrast to this, the experimental model was clamped along the top and 

bottom edge, by the application of a compressive load through a 100mm square 

hollow steel box-section, which might have introduced a boundary support 

condition, somewhat different to that of the numerical model. Obviously, it is quite 

difficult to predict with any degree of confidence the magnitude of error that this 

might induce, but it is safe to assume that it will have contributed to an extent. The 

second possible source of discrepancy, could solely lie in the observed responses. 

Taking a look at the frequencies obtained from the numerical models, it can be 

observed that some of them (e. g. modes 3 and 4) lie very close together. Now, 

because of the fact that during the experimental phase the specimens were excited 

through a transient input, rather than at one controlled frequency, there is a very 

strong likelihood that the natural frequencies which are in close proximity of each 

other, overlap and through the experimental response they are only observed as 

one. This could lead to inaccurate conclusions and comparisons which are often 

misleading. This is possibly the one single source of error which has the greatest 

contribution towards the discrepancy between the observed responses and the 

calculated values.

The fact that the layer of polystyrene was not modelled while performing the 

numerical analysis, is another possible source of error, as is the observation that, 

the observed response could have the two leaves of the panels vibrating 

independently and in their own modes in addition to a combined mode. This would
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again complicate the observed response and make it quite difficult to isolate them, 

leading to somewhat different results from the numerical model.

6.3 SPECIMEN GK-4

In contrast to specimen GK-1, this model exhibited an observed response, almost 

identical to the results obtained from the numerical analysis. Fig. 6.2 presents the 

results o f the observed and calculated natural frequencies for the various modal 

shapes. Unlike, all other specimens tested, which showed a much stiffer observed 

response than the calculated one, specimen GK-4 was the complete opposite. For 

this case the numerical model exhibited a slightly stiffer response. As the test 

conditions for the experimental model were identical to those for GK-1 as well as 

all other models, it would be fair to assume, that the possible sources of 

discrepancies and errors would be similar and have the same effect on the results, 

as described for specimen GK-1. Quite surprisingly, contrary to this, they show no 

such effect in this particular case, and the observed response matches extremely 

well with the numerical model. The numerical model showing such good 

comparisons in this case could be due to the relatively low stiff structural 

connection between the two leaves. The constraints used between the two leavesof 

the panel for the numerical model possibly, do not duplicate the stiffness o f the 

experimental specimens and, hence generally calculate frequencies which are 

lower than the observed ones. With the repeatability of the observed response 

being assured, it is fair to conclude that for panel GK-4 which is structurally 

damaged quite extensively, it is possible to predict as well as observe the natural 

frequencies for the various modal shapes. Thus, it is fair to suggest that it might be 

possible to extend this conclusion to other similar panels.
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6.4 SPECIMENS GK-88, 87, 86,85, 84

Figs. 6.3-6.7 show the comparisons between the experimentally observed response 

and the numerically calculated results for the natural frequencies of the first six 

modal shapes for specimens GK-88 to GK-84. The one obvious observation that 

can be drawn from the presented results is the similarity between these five 

specimens in this batch and specimen GK-1. The experimentally observed 

response showing the specimens to be behaving a lot stiffer then the predictions 

obtained from the numerical models. The disparity between the two results being a 

lot more pronounced than for specimen GK-1. As we move from GK-88, that is 

the specimen with eight constraints present between the two leaves, to specimen 

GK-84, one with only four constraints, it can be observed that the relative 

difference between the two responses decreases (Figs. 6.3-6.7). The differences 

still being large enough though, to make any absolutely valid comparisons 

impossible.

Most o f the discussion made for specimen GK-1, would apply to these specimens, 

and even at the risk of repetition it is appropriate and pertinent to make some o f the 

observations again. A fairly significant observation was that the experimental 

response of the five specimens in this group, especially GK-88, 87 and 86, was 

closer to specimen GK-1 than GK-4, while the numerical results, by all accounts 

indicate a response which should be more like that of GK-4, at least in terms o f the 

natural frequencies. Taking a look at the numerically obtained values of the natural 

frequencies, for these five specimens, it can be seen that they are very close to 

each other, making it extremely difficult to observe the changes through them, as 

they would again have a tendency of overlapping and being exhibited as one. This
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complicates the problem and the one probable way around it is to try and vibrate 

the specimen at one of its natural frequencies only, and observe the corresponding 

response. Understandably, the problem with such an approach is that, if  the 

structural details of the specimen are unknown, then, how does one determine the 

exciting frequency? As mentioned earlier, predictably the problems associated 

with trying to vibrate a reinforced concrete panel of this size and the 

correspondingly high stiffness are quite a few. The parameteric study carried out 

on the numerical models, once again did not show a good comparison with the 

observed response.

Quite a few questions were left unanswered by the experimentally observed 

response of these five specimens. These five test specimens were modelled, once 

the results o f the previous six test specimens had shown that it was quite difficult 

to detect, the influence of a few additional constraints on the dynamic 

characteristics, mainly the natural frequencies, for specimens which had some 

form of concrete connection, around the perimeter between the two leaves. The 

results o f this batch quite clearly indicated the possibility o f distinguishing 

between the different specimens with varying number of constraints but, at the sme 

time the observed response showed the specimens to be a lot stiffer then what the 

numerical model predicted.
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CONCLUSIONS

Tests were carried out on eleven full-scale, reinforced concrete, sandwich wall 

cladding panels. The panels had nominal geometric dimensions o f 2400mm x 

1800mm, and the two leaves of the panels, that is, the inner load bearing leaf and 

the outer cladding leaf were a 100mm and 50mm thick, respectively. The 

specimens were reinforced with 8mm diameter bars @ 200mm centre-to-centre in 

both directions, for both leaves of the panel. For all test specimens a pre-mix 

concrete o f 35MPa strength was used. Three principal variations of the specimens 

were cast. These were dependant upon the type of structural connection present 

between the two leaves which varied from a fairly stiff connection all around the 

perimeter to absolutely no concrete connection between the two leaves, with only a 

limited and pre-determined number of reinforcement ties providing the structural 

constraint between them. The presence or absence of the insulation layer of 

polystyrene was the other main difference between the different specimens. The 

structural and constructional details of these specimens can be found in chapters 4 

and 5.

All eleven specimens, in the present research, were analysed for their dynamic 

characteristics. The numerical analysis for the dynamic properties was carried out 

through the use of the finite element program, FLASH. The program allows for a 

great deal o f applications for both static and dynamic loading, as detailed in 

chapter 2. All models were analysed for their natural frequencies for the first six 

modal shapes which were also obtained. Plate bending elements were used for the 

analysis, as savings achieved in terms of computer time far outweighed any
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numerical advantage, that could be gained by using shell elements. The results, 

thus obtained, were used as a basis for the experimental program.

The experimental program consisted of testing the eleven specimens for their 

dynamic characteristics, mainly their natural frequencies. The specimens were 

simply supported along the top and bottom edge and subjected to an in-plane 

compressive loading of 500kN, distributed uniformly along the 100mm thick, 

inner load bearing concrete leaf, in addition to a dynamic force. The dynamic force 

was applied to the reinforced concrete sandwich panel through the impact o f a 

hammer blow. The response of the specimen from both leaves, under the influence 

of the applied loading, was measured at various locations through the use of 

accelerometers. The response was then analysed through the use o f a spectrum 

analyser and the natural frequencies determined. From these observed natural 

frequencies, an attempt was made to distinguish between the various test 

specimens and detect the structural differences present between them. After 

establishing the distinction between the various experimental specimens, based 

upon the observed response, comparisons were made with the numerical results. 

The conclusions drawn are presented below.

1. The results of the numerical analysis showed that it was possible to detect 

the differences in the natural frequencies, between the two specimens GK-1 and 

GK-4, which had different degrees of constraint between the two leaves around the 

perimeter. The natural frequencies for these specimens, showed enough difference 

between them for the various modal shapes, to make experimental detection 

possible. In contrast to this, specimens similar to these in terms of the edge 

constraints (GK-2, 3 and GK-5, 6, respectively), but having additional structural 

constraints, through the use of reinforcement ties, did not exhibit enough
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difference in the natural frequencies, between the different modal shapes, thus 

making it somewhat difficult for experimental observation.

2. Numerical models GK-88, 87, 86, 85, 84, had only reinforcement ties 

present between the two leaves, as the structural constraints, and ranging from 

eight in GK-88 to four in GK-84. The natural frequencies obtained from the 

analysis did not show a great deal of difference between the successive modal 

shapes, but were enough to allow distinction between the different models. 

Additionally, the modal shapes of all models were distinct from each other, 

making the experimental detection of the structural differences between them a 

distinct possibility which might be worth investigating.

3. The experimental observations of specimen GK-1 showed a fair comparison 

with results achieved from the numerical analysis, for at least the first three modal 

shapes. For the higher mode shapes, the experimental model exhibited a much 

stiffer response compared to the predicted one. Similar trends were observed for 

specimens GK-2, 3 and, compounding the problem even more, was the fact that 

from the observed response it was not possible to distinguish between them and 

specimen GK-1. Consequently, it was not possible to determine the structural 

differences between them, through the observance of the natural frequencies.

4. The dynamic response of test specimen GK-4 compared extremely 

favourably with the natural frequencies obtained from the numerical analysis. This 

being the only specimen, in the present research, which did not exhibit an 

experimental response that indicated the specimen was a lot stiffer than that of the 

numerical analysis. As was the case with test specimens GK-2, 3, the results of 

specimens GK-5, 6 being very similar to GK-4. The results again demonstrated the
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limitations of using only the observed natural frequencies for determining the 

structural differences present between the individual specimens and at the same 

time detecting the damage locations.

5. The experimentally observed response of the natural frequencies for the 

various modal shapes, for specimens GK-88, 87, 86, 85, 84 compared favourably 

with each other. The specimens with the greater number of reinforcement ties 

(used for the structural constraint) between the two leaves, showing a stiffer 

response, compared to those with a lesser number of these reinforcement ties. In 

spite o f this observation, the results did not compare too well with the numerical 

predictions , with the observed response indicating much stiffer elements.

6. From the results obtained by analysing the experimentally observed 

dynamic characteristics of the eleven test specimens, it can be ascertained with a 

fair degree of confidence, that although it is possible to differentiate between the 

various specimens (different from each other in terms of the type of the structural 

connection and the degree of stiffness) through the natural frequencies, it is not 

easy to assess the type or location of damage. In other words, it is not possible to 

determine the structural differences present between the different specimens from 

only measuring and detecting their natural frequencies. Another fairly important 

observation made during the experimental program was the fact, that the test 

specimens which had any form of concrete connection present between the two 

leaves, did not show any substantial difference between the natural frequencies 

even when additional structural constraints, in the form of reinforcement ties were 

introduced. This suggests that the connection around the perimeter tends to 

dominate and overshadow the effect that these other constraints may have on the 

response of the specimen.
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Based upon the above mentioned conclusions, it is fair to say that although it is 

quite possible to determine the relative difference in stiffness, between the various 

reinforced concrete sandwich cladding panels-tested during the present research, 

through observing their natural frequencies, it is quite difficult to make any valid 

comparisons between the experimentally observed response and the predicted 

numerical values.

FUTURE WORK

The aim o f the present research was to develop a fairly simple, non-destructive 

experimental procedure, based upon the dynamic characteristics o f the specimen, 

which would give an indication to the structural integrity o f the panel in question. 

For this reason, it was a requirement to make the testing program as uncomplicated 

as possible. The results of the tests indicated a relative success, in that, it was 

shown that through a relatively simple approach it was possible to determine the 

dynamic characteristics of the panels and make a distinction between the various 

structural panels. At the same time it exposed quite a few limitations o f the 

adopted approach. The main flaw being, the difficulty in detecting the actual 

structural differences in the sandwich panels. This being, to a certain extent, a pilot 

series in this sort of research at the University of Glasgow, the author feels that the 

lessons learnt could be put to good use in avoiding future pitfalls in furthering the 

research work and coming up with a more workable experimental approach. A few 

points worth mentioning to this effect are:

1. It might be feasible, to initially work with a scaled down specimen, rather 

then a full-scale model. This would reduce the stiffness of the specimen, thus
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making it relatively simple to vibrate it in one particular mode, through the use o f a 

sinusoidal vibrator. This could lead to the elimination of the experimental error 

induced in observing the natural frequencies which are quite close to each other 

and have a tendency of overlapping, when transient forces are used. Furthermore, 

the use o f scaled down models would allow for better control over the boundary 

support conditions, which would certainly reduce experimental error and make for 

better comparisons with the numerically analysed characteristics.

2. For better understanding of the dynamic characteristics o f the reinforced 

concrete sandwich wall cladding panels and their behaviour, when subjected to a 

dynamic force, it is probably quite important to be able to plot out the 

experimentally observed modal shapes. This can only be achieved through having 

a controlled input force and having a fairly large number of transducer locations. 

These experimentally observed modal shapes would give a fairly good indication 

of the type of structural constraint present between the two leaves. Once this 

deeper understanding of the dynamic behaviour of the panels has been established 

it might be possible to comment with a greater degree of confidence on the 

possible structural damage in a panel.

3. As a last word, because of the problems allied to the dynamic testing of 

reinforced concrete and the inherent problems of trying to get the specimens 

vibrating in a particular mode, it is probably quite difficult to say with any great 

amount o f conviction as to how successful such an approach would eventually 

prove to be. But with sufficient experimental knowledge and enough data to 

determine the possible dynamic characteristics, there is no reason not to believe in 

the applicability of such an approach.
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FLASH INPUT SCHF.MF.

TYPICAL FLASH INPUT FILE

BEGIN
GK-3, SIMPLY SUPPORTED 
PLATE 260 216 2 E D 6
MATRIX 13 10 JOINT 1 1 13 COORD 0. PLUS 0. 0.2 AND 0.2 / 
FACTORS 1.1.1.1.1.1.1.1. 1.1.1.1. AND 1.1.1. /
1.1.1.1.1.1.
MATRIX 13 10 JOINT 131 1 13 COORD 2. PLUS 0. 0.2 AND 0.2 / 
FACTORS 1. 1.1.1.1.1.1. 1.1.1.1.1. AND 1. 1.1. /
1. 1.1.1.1.1.

ISOTROPIC 3.0E7 0.17 0.1 TYPE 1
ISOTROPIC 3.0E7 0.17 0.05 TYPE 2
MASS 2.4E3 TYPE 1 2 
*
MATRIX 12 9 ELEMENT 1 JOINTS 14 15 2 1 TYPE 1 11 12 
MATRIX 12 9 ELEMENT 109 JOINTS 144 145 132 131 TYPE 2 11 12

NFF1 T118S 13 
N F F 13 T 130 S 13 
C S C TO JT. 1 O P 1 O J 131 
C S C TO JT. 2 O P 1 O J 132 
C S C TO JT. 3 O P 1 O J 133 
C S C TO JT. 4 O P 1 O J 134 
C S C TO JT. 5 O P 1 O J 135 
C S C TO JT. 6 O P 1 O J 136 
C S C TO JT. 7 O P 1 O J 137 
C S C TO JT. 8 O P 1 O J 138 
CSC TO JT. 9 O P 1 O J 139 
C S C TO JT. 10 O P 1 O J 140 
C S C TO JT. 11 O P 1 O J 141 
C S C TO JT. 12 O P 1 O J 142 
C S C TO JT. 13 O P 1 O J 143 
C S C TO JT. 14 O P 1 O J 144 
C S C TO JT. 15 O P 1 O J 145 
C S C TO JT. 16 O P 1 O J 146 
C S C TO JT. 17 O P 1 O J 147 
C S C TO JT. 18 O P 1 O J 148 
C S C TO JT. 19 O P 1 O J 149 
C S C TO JT. 20 O P 1 O J 150 
C S C TO JT. 21 O P 1 O J 151 
C S C TO JT. 22 O P 1 O J 152 
C S C TO JT. 23 O P 1 O J 153 
C S C TO JT. 24 O P 1 O J 154 
C S C TO JT. 25 O P 1 O J 155 
C S C TO JT. 26 O P 1 O J 156
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C S C TO JT. 27 O P 1 O J 157 
C S C TO JT. 28 O P 1 O J 158 
C S C TO JT. 38 O P 1 O J 168 
C S C TO JT. 39 O P 1 O J 169 
C S C TO JT. 40 O P 1 O J 170 
C S C TO JT. 41 O P 1 O J 171 
C S C TO JT. 51 O P 1 O J 181 
C S C TO JT. 52 O P 1 O J 182 
C S C TO JT. 53 O P 1 O J 183 
C S C TO JT. 54 O P 1 O J 184 
C S C TO JT. 64 O P 1 O J 194 
C S C TO JT. 65 O P 1 O J 195 
C S C TO JT. 66 O P 1 O J 196 
C S C TO JT. 67 O P 1 O J 197 
C S C TO JT. 77 O P 1 O J 207 
C S C TO JT. 78 O P 1 O J 208 
C S C TO JT. 79 O P 1 O J 209 
C S C TO JT. 80 O P 1 O J 210 
C S C TO JT. 90 O P 1 O J 220 
C S C TO JT. 91 O P 1 O J 221 
C S C TO JT. 92 O P 1 O J 222 
C S C TO JT. 93 O P 1 O J 223 
C S C TO JT. 103 O P 1 O J 233 
CSC TO JT. 104 O P 1 O J 234 
C S C TO JT. 105 O P 1 O J 235 
C S C TO JT. 106 O P 1 O J 236 
C S C TO JT. 107 O P 1 O J 237 
C S C TO JT. 108 O P 1 O J 238 
C S C TO JT. 109 O P 1 O J 239 
C S C TO JT. 110 O P 1 O J 240 
C S C TO JT. I ll  O P 1 O J 241 
C S C TO JT. 112 O P 1 O J 242 
C S C TO JT. 113 O P 1 O J 243 
C S C TO JT. 114 O P 1 O J 244 
C S C TO JT. 115 O P 1 O J 245 
C S C TO JT. 116 O P 1 O J 246 
C S C TO JT. 117 O P 1 O J 247 
C S C TO JT. 118 O P 1 O J 248 
C S C TO JT. 119 O P 1 O J 249 
C S C TO JT. 120 O P 1 O J 250 
C S C TO JT. 121 O P 1 O J 251 
C S C TO JT. 122 O P 1 O J 252 
C S C TO JT. 123 O P 1 O J 253 
C S C TO JT. 124 O P 1 O J 254 
C S C TO JT. 125 O P 1 O J 255 
C S C TO JT. 126 O P 1 O J 256 
C S C TO JT. 127 O P 1 O J 257 
C S C TO JT. 128 O P 1 O J 258 
C S C TO JT. 129 O P 1 O J 259 
C S C TO JT. 130 O P 1 O J 260 
C S C TO JT. 44 O P 1 O J 174 
C S C TO JT. 48 O P 1 O J 178 
C S C TO JT. 83 O P 1 O J 213 
C S C TO JT. 87 O P 1 O J 217



FT,ASH INPUT SCHF.MF.

*
*
OPTIMIZATION
*

LOADCASE DYNAMIC LOADING
D E N E 6 P 6
*

LOADCASE 1 D P 6
*

D E 1 Z V 1.5 3.8 3.8 E 
D E 2 Z V 1.5 3.8 3.8 E 
D E 3 Z V 1.5 3.8 3.8 E 
D E 4 Z V 1.5 3.8 3.8 E 
D E 5 Z V 1.5 3.8 3.8 E
D E 6 Z V 1.5 3.8 3.8 E
*
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FLASH INPUT SCHEME

PROGRATTI CONTROL
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APPENDIX A

BEfln CROSS SECTION PROPERTIES
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APPENDIX A

BOUNDARY CONDITIONS, WAS5 MATRIX, CONSTRAINTS
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