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Notation

Table 1: Operators and symbols and their meanings.

Operators and 
Symbols

P r{ ) Means “Probability o f’.

E(.) Means “Expected value of’.

VarQ Means “Variance of*.

Cov (.) Means “Covariance of’.

M ,N  and L Point processes M, N  and L .

* , - u Observed input at time t — u (i.e., at lag u).

%t-u “Unobservable” input at time t — u (i.e., at lag u).

y, Observed output at time t .

ii Summation of from i=l to i = k.

kn ■*,
1=1 Product of Sj from i= l to i = k .

*0 Standard Normal cumulative distribution function.

z i Chi square random variable with degrees of 
freedom “w ”.



Yt Time elapsed since the time o f the last output spike 
at any given time t .

C l Minimum of the output inter-spike intervals.

Table 2: Parameters for different functions and their corresponding estimates.

Function Parameter Estimate

Counting measure that counts the number 
o f events in the interval (0, t ]. N(t)

Mean intensity function of point process 
N . P

N
a

P
N

Cross-intensity function between point 
processes N  and M  at lag v . m (v)  

NM
m (v)  

NM

Auto-spectrum of point process M  at 
frequency X . f  wMM f MM

Cross-spectrum between two point 
processes N  and M  at frequency X . f  WNM f NM

Ordinary coherence function between two 
point processes N  and M  at frequency 
X.

R (X)  
NM

R W f X )  
NM

?

Partial coherence function of order 1 
between two point processes N  and M  
after removing the effects of point process 
L.

R (Xj  
NM.L

2

RN M . L T̂ Xj

2

Multiple coherence function between an 
output point process N  and input 
processes M  and L.

R (X) 
N.ML

2
R Wf X j  

N.ML

2

vii



Phase-spectrum function between point 
processes N  and M  at frequency X . NM <t> (P)(X) 

NM 1 7

The time delay between two point 
processes N  and M . T AT
The likelihood function for parameter 0 
and data y . b(i: y) k (h  y)
The natural log of the likelihood function 
for parameter 0 and data y . Hi; y) 1(0; y)

Membrane potential on the trigger zone of 
the neurone at time t . u, A

u,
Linear predictor o f the model at any given 
time t . nt

A
I t

Conditional probability o f neurone firing 
at any given time t . Pt

A
Pt

Empirical probability o f neurone firing at 
any given value o f the linear predictor rjt . P(m) P(m)
Deviance function for parameter 6  and 
data y. D(0; y) D(0; y)

Link function.
H(P,) H(Pt)

Inverse of the link function.

H~‘(m)
Summation function at lag u .

k) k)
Carry-over effect function at lag w .

k} k)
Recovery function at lag a where

va Va
Summation function for the first observed 
input at lag u . (l a «} h au}



Summation function for the second 
observed input at lag u . h a «}

Carry-over effect function for the first 
observed input at lag w. { ycw} bM
Carry-over effect function for the second 
observed input at lag w . {.2cw} {2Cw}

Summation function for the 
“unobservable” input at lag u . w
Carry-over effect function for the 
“unobservable” input at lag w.



Abstract

The main aim of this thesis is to introduce and develop a very powerful 

statistical technique, maximum likelihood estimation, to show how best this 

approach can be used in analysing neuronal spike train data. We then compare 

some o f the likelihood results with those obtained via stochastic point processes 

techniques which will highlight the advantages o f using the likelihood 

approach.

Chapter 1 is aimed to give the physiological background and to provide 

a brief description of some aspects of neurophysiology which are relevant to 

the discussions that follow throughout this thesis. A brief description o f the 

neuromuscular control system is followed by a more detailed one o f the 

structure and operation of one of its components, the muscle spindle. Some 

basic statistics and a brief summary of a real data set obtained from a 

mammalian muscle spindle are also presented. The last part o f this introductory 

chapter describes the simulation procedure used to generate the data sets for 

this thesis.

x



Chapter 2 presents some brief historical notes o f point process theory, 

followed by a definition of point process and some o f the standard assumptions. 

The final part o f this chapter is a review of the stochastic point processes 

techniques in both time and frequency domains followed by a demonstration of 

the uses o f the square root o f the cross intensity function, the ordinary 

coherence and the phase function with two simple examples from simulated 

neuronal spike train data.

In chapter 3 we introduce the maximum likelihood estimation procedure 

as an alternative technique to the point process techniques used in the analysis 

of neuronal spike train data followed by a definition o f the likelihood function 

and the maximum likelihood estimator (m.l.e.). An analytic likelihood model is 

introduced. The model is based on two underlying processes, the linear 

summation o f the effects o f the input spike train on the membrane potential and 

a recovery process, which, among other things, represents intrinsic properties 

of the neurone. The link function, the log likelihood for binomial data and a 

computational procedure are also discussed. The analysis o f deviance, which 

highlights the difficulty in the goodness of fit assessment for models used to 

analyse binary data, is discussed. A linearisation technique for estimating non­

linear parameters, which is used to estimate the non-linear parameters in the 

case o f an exponentially decaying threshold, is introduced. In the final part of 

this chapter the summation, recovery and threshold functions are estimated 

using the same two sets o f data considered in chapter 2, where a comparison of 

the summation function with the corresponding cross intensity function in each 

example indicates that the cross intensity function is underestimating the 

underlying excitatory effects of a synaptic input and may be misleading.

We start chapter 4 with a discussion o f certain issues concerning the 

likelihood approach, in particular an assessment o f goodness o f fit. We 

introduce a method of checking the validity o f the model based on a graphical



comparison between estimated and corresponding theoretical probabilities. We 

follow this with a discussion of the choice o f link function. The second part of 

this chapter then applies the likelihood procedure to some simulated data sets. 

We start the analysis with a spontaneous discharge data set using three different 

link functions. This is a case where only threshold and recovery functions can 

be estimated, and also where the traditional stochastic point process techniques 

do not provide an analogous measure for the spontaneous behaviour o f the cell. 

This gives the likelihood approach a further advantage over time and frequency 

domain analyses. Also we consider the case o f a single input and single output 

neuronal spike train data set, where we introduce the idea of a carry-over effect 

of the synaptic inputs on the firing of a neurone. The likelihood approach is 

able, to some extent, to separate aspects o f the relationship between spike trains 

through the threshold, recovery, summation and carry over effect functions and 

such ability and flexibility are not provided by other techniques. The 

demonstrations again suggest that the cross intensity function is difficult to 

interpret and may be misleading and underestimate the underlying excitatory 

and inhibitory effects o f a synaptic input. In each case the improvement o f the 

model is assessed at each stage of complexity by constructing a table of 

deviances. A sufficient reduction in deviance when proceeding to higher levels 

of complexity reflects a significant improvement in the model.

In chapter 5 we extend the application of the likelihood procedure by 

taking advantage of its flexibility in the cases of one and two observed inputs 

and a single observed output of neuronal spike train data both in the absence 

and presence of “unobservable” inputs. This is to show that the approach is 

sufficiently flexible, and it may further be extended in principle to the case of 

an arbitrary number o f neurone inputs. We start the analyses with one 

simulated data set with one observed (spike train) input and one “unobservable” 

(continuous) input, and one observed (spike train) output followed by two



examples where two observed spike train inputs and one “unobservable” input,

and one observed output have been considered. The two observed inputs are

uncorrelated with each other in the first set o f data and correlated with each

other in the second set of data. The likelihood approach again shows the ability

to separate the aspects o f the relationships between spike trains. The

demonstrations again suggest that the square root o f the cross intensity function

is underestimating the underlying excitatory effects o f a synaptic input

compared to the corresponding summation function. In the second part o f this

chapter we have discussed a real set o f data obtained from a mammalian muscle 
spindle where the relationships between the two fusimotor y  and y  inputs

and each of the sensory la and II outputs are investigated.

As a final chapter of this thesis, chapter 6 presents a summary and 

general conclusion o f the present work and also indicates some possible areas 

in which the work of this thesis may be extended.



Chapter 1

1 Neurophvsological Background

1.1 Introduction

Neurophysiology is a branch o f science that concerned with how the 

elements of the nervous system function and how they communicate with each 

other. The function of the nervous system at all levels is seen to involve 

chemical mechanisms, electrical mechanisms and physical arrangements.

The goals of neurophysiologists range from understanding the properties 

of neurone to the heroic: how to explain things like memory, emotion, learning, 

sleep, expectation, behaviour, etc. At a less ambitious level neurophysiologists 

are concerned with how a single nerve cell responds to stimuli, transmits 

information and changes with alterations o f the environment. The main aim of 

this introductory chapter is to give the necessary background and also to 

provide brief descriptions of some aspects o f neurophysiology which are 

relevant to the discussions that follow throughout this thesis.
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Many biological systems have the important feature that under normal 

operating conditions they are acted upon by several inputs simultaneously, and 

in response may give rise to several outputs. This common feature o f biological 

systems plays a crucial role in its function. The field of neurophysiology 

provides many examples o f such systems where continuous signals 

(e.g. change in muscle length) can interact with neuronal signals to produce 

other neuronal signals. These neuronal signals consists o f a series o f spikes 

known as a spike-train (they are referred to as spikes because of their relatively 

short duration which is about 1 msec and fixed amplitudes), and can be 

represented as a series of isolated events by considering the spike-train as a 

point-process. Any element o f the neuromuscular system which is acted upon 

or generates spike-trains can then be considered as a point-process system. One 

obvious example of such a system is the muscle spindle. The muscle spindle is 

an important component of the neuromuscular system which is thought to 

provide information to the other parts o f the nervous system that is important in 

the control of movement and maintenance of posture. During the course o f a 

movement the muscle spindle is acted upon by a continuous change in length, 

which occurs as a consequence of the movement. In addition to the length 

change, the output activity from the spindle is further modified by several point 

process inputs that are initiated within the central nervous system.

The spike trains o f the central nervous system reveal a certain degree of 

randomness associated with its activity. Moreover, it has been recognised by 

many statisticians that the field of neurophysiology provides a rich source of 

problems and data relating to stochastic process systems (Brillinger, 1975a; 

Brillinger et al, 1976; Feinberg, 1974; Sampath and Srinivasan, 1977). First we 

present a brief description o f the neuromuscular control system followed by a 

more detailed one of the structure and operating o f one o f its components, the 

muscle spindle. Secondly we provide a brief summary o f the basic data sets
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which will be used as experimental material throughout the subsequent 

chapters.

1.2 Neuromuscular Control System

The neuromuscular control system may be thought o f as all those parts 

of the nervous and muscular systems concerned with the initiation and control 

of movement and maintenance of posture. Anatomically and functionally this 

system has further been divided into the central nervous system and the 

peripheral nervous system.

1.2.1 Central Nervous System (Brain)

The central nervous system consists o f the brain and the spinal cord. The 

human brain contains a very complicated network o f perhaps as many as ten 

billion highly specialised cells called neurones (or nerve cells) which are the 

basic building blocks o f an animal's central communication system.

Fig. 1.2.1 illustrates a sample o f four kinds of neurones with different 

shapes and sizes.

The nerve cells may be considered as input-output systems of a 

particular structure having important functions. The nerve cells are not isolated, 

but communicate in a very characteristic way using both chemical and 

electrical mechanisms. The output voltage from a neurone is a pulse that travels 

along a neurone's output fibre. It is o f near constant shape, and its generation 

depends on broad variety of non-linear phenomena.

It is pertinent to discuss both structure and function of these cells, 

because in biology often die two seem directly related. Fig. 1.2.2 illustrates
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BIPOLAR CELL
FROM RETINA MITRAL CELL FROM 

OLFACTORY BULB
PYRAMIDAL CELL 
FROM CORTEX

DENDRITE

CELL
BODY

ODYMOTOR NEURON FROM 
SPINAL CORD /

DENDRITE *1

AXON
AXON

Fig.1.2.1 Shapes and sizes of four selected neurones.

The motor neurone was dissected from a mammalian spinal cord, the bipolar cell is from the 

retina o f a dog, the pyramidal cell from the cortex o f a  mouse, and the mitral cell from the 

olfactory bulb (a relay station in the pathway concerned with smell) o f a  cat 

(after Kuffler and Nicholls, 1976).
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a schematic diagram of small network of three neurones. Although there are 

many kinds of neurones with structural and functional differences, the basic 

components of a neurone can be identified as follows:

a. The Axon

The axon is the element that links the neurone to a neighbouring 

neurone. Normally a cell gives rise to a single axon but this axon may give off 

side branches and characteristically divides up into a number of smaller 

branches just before terminating. The internal and external fluids of the axon 

are composed mainly of ionised potassium chloride and sodium chloride, with 

the concentration of potassium ions inside the axon much higher than that 

outside. This results in a movement of the potassium ions to the outside, and 

hence an electric field which opposes the chemical field. Equilibrium is 

attained when the two forces are nearly equal, resulting in a potential difference 

across the membrane, the inside being more negative. This negative potential 

compared to the surrounding fluid is called the resting potential. If an ionic 

change occurs that causes the inside of the axon to be more negative, it is called 

hyper-polarisation, otherwise it is called depolarisation. If the depolarisation is 

so large that the membrane potential exceeds a certain value, called the 

threshold, then a spike will occur and propagates along the axon. The direction 

of propagation is usually away from the neurone cell body. Once the wave­

form or what is called the action potential has been generated, the region of 

stimulation cannot be excited for a short time thereafter, and this property is 

referred to as refractoriness.
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b. The Synapse

The synapses are the points at which the neurones are interconnected 

with each other, and they are of particular importance, since at these points the 

information flows from one cell into another, and interactions between 

neurones take place. The terminal end o f an axon broadens into a bulge called 

the bouton and lies adjacent to the cell membrane or dendrites o f the cell body 

of another neurone cell. The bouton has small packets called vesicles which 

contain a chemical known as the transmitter, the type o f transmitter depends on 

the kind of junction. Fig. 1.2.3 illustrates the various regions and points of 

contact between one neurone and three other neurones. When an action 

potential arrives at the bouton, a transmitter is released and its molecules 

modify the permeability o f the membrane of the next neurone to different ions. 

If the resulting change is positive it is called an excitatory post-synaptic 

potential (EPSP), otherwise it is called an inhibitory post-synaptic potential 

(IPSP).

The post synaptic potentials are induced at several points along the 

soma, which is due to successive arrivals of action potentials, the resulting 

membrane potential may be the linear sum of the individual potentials. As in 

the axon, recovery effects keep taking place in the absence o f inputs, i.e. the 

membrane is leaky. The neurone tends to fire when the integrative effect 

exceeds the threshold.

c. The Soma

The soma is the cell body of the neurone which is about 30 - 100 micra 

across. The cell bodies are clustered in certain areas in the brain while other 

regions consist of axons running from one group o f neurones to another. In 

these regions large numbers o f closely packed axons run parallel to form
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Axo-dendritic synapse
Axons

Axo-somatic synapse 
Nucleus 

Soma

Fig 1.2.2 Schematic diagram showing a small network of three neurones, 

and the points o f connection “synapses” (after Amjad, 1989).



Chapter 1 Physiological Background 8

Apical denorites

Excitatory 
terminal fiber 
of an axon

Inhibitory 
terminal 
fiber of 
an axon

■Nucleus i « ... .'Cell body 
Perikaryon'

Basal
dendritesAxon-----

(initial
segment)

Axon
hillock

Node of flanvier-------pt
Myelin sheath------  •.

V
Axon-

fPresynaotic
terminalTerminal

Synaptic 
/  deft

Dendrite •Postsynaptic
oendnte

Fig.1.2.3 The various regions and points of contact between one neurone “at the top” and 

three other neurones “at the bottom” (after Kandel, Schwartz and 1655611,1991).
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structures called fibre tracks. Similar tracks run outside the brain to muscles 

where they are referred to as nerves.

Like the axon, the soma also has the property of decreased excitability 

following the generation of an action potential. In the case o f an alpha- 

motoneurone this property is known as the after hyper polarisation, and it is 

thought to play an important role in the control o f repetitive firing events and in 

characterising the function o f the alpha-motoneurone.

d. The Dendrites

The dendrites are hair-like extensions projected from the cell body 

(soma) which are about 200 to 300 micra long. Along with the other 

components o f the neurone, the dendrites play an important role o f producing 

the spike activity o f the cell. Fig. 1.2.4 is an example o f one o f the most 

common types of neurone in the mammalian nervous system, the multipolar 

cell called the Purkinje cell which is characterised by its rich and extensive 

dendritic tree. The figure also illustrates the connection between the cell bodies 

of several Purkinje cells and the dendrites o f one basket cell.

1.2.2 Peripheral Nervous System

At the level o f the spinal cord, the peripheral nervous system is arranged 

in a sequence of identically organised repeating segmental layers called 

segmental levels o f the spinal cord. Fig. 1.3. la  illustrates some of the pathways 

connecting a muscle spindle to one segmental level in the spinal cord. It also 

outlines one of these segmental levels along with the other components which 

form the peripheral neuromuscular system at this level.
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Cell body

Dendrites
Axon

Fig.1.2.4 a) Purkinje cell o f  the cerebellum with an axon and many dendritic 

processes (after Kuffler andNicholls, 1976).

b) Schematic diagram showing the connection between one basket cell “B ” and the cell 

bodies o f  several Purkinje cells “A ” (after Cajal, 1955).
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There are several classes o f nerve cells which lie within the spinal cord 

in groups called nuclei some of which may contain as many as 2000 cells. One 

group is the alpha-motoneurones whose axons innervats the load-bearing, or 

extrafiisal muscle fibres responsible for generating forces or changes o f length. 

The axons o f the alpha-motoneurones normally conduct nerve impulses from 

the cell body to the extrafiisal muscle fibres. The cell bodies o f the alpha- 

motoneurones have diameters ranging from 25 to 100 micra and the axons are 

from 8 to 20 micra in diameter. The axons conduct nerve impulses which travel 

at velocities in the range 50 to 120 m/sec. from the bodies to the extrafiisal 

muscle fibres. A neurone cell can generate propagated impulses repetitively to 

produce a train of spikes with mean frequency which may vary from one pulse 

every few seconds to several hundred pulses per second. Once the axon of an 

alpha-motoneurone reaches a muscle, it divides into a number o f fine branches, 

which end on specialised areas o f the extrafiisal muscle called the motor end 

plate. When a nerve impulse reaches the junction between the axon and the 

muscle fibre, a sequence o f electro-chemical events occurs which leads to the 

contraction o f the muscle fibres. Each terminal branch of the alpha- 

motoneurones innervats a single extrafiisal fibre o f one muscle, and all o f the 

extrafiisal fibres innervated by one alpha-motoneurone lie within the same 

muscle. The alpha-motoneurone together with all the extrafiisal fibres that it 

may innervate are called a motor unit, the function of a particular muscle is 

closely related to the number of motor units and their sizes within that muscle.

Associated with the extrafiisal muscle fibres and the tendons which 

attach the muscles to bone are a number of physiological transducers called 

muscle receptors, which are very sensitive to imposed length changes or force 

acting on the parent muscle. The nerves attached to these receptors called 

sensory nerves normally transmit pulse-coded information in the form o f spike 

trains to the groups o f nerve cells lying within the spinal cord. After entering
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the spinal cord each sensory axon divides into a number of branches which 

make synaptic-contact with a large number of nerve cells over several 

segmental levels o f the spinal cord. Each cell within the spinal cord receives 

input information from a large number o f sensory axons from different 

receptors in the same muscle as well as from the receptors attached to different 

muscles. The train o f action potentials along the axon releases a sequence of 

electro-chemical events, which occur at the point o f contact synapses, then 

modify the on-going activity of these inter-related cells. An introduction to the 

organisation o f the spinal cord can be found in Shepherd (1974) and a detailed 

review of this along with the properties o f the spinal cord and its 

interconnections is given in Burke and Rudomin (1977).

1.3 The Transmission of Information

One way the information is transmitted through the dendrites and axon 

is via changes in electrical activity. An abrupt pulse-like change in the 

membrane potential is usually called a nerve impulse or action potential. The 

nerve impulse is approximately 100 mV in amplitude and 1 msec in duration. 

Because of this relatively short duration impulses are often referred to as spikes 

or spike trains. Spikes are propagated along the axon with a velocity which 

depends partly on the axon's diameter. Fig. 1.3. lb summarises the sequence of 

signals that produces a reflex action. A neurone cell can generate propagated 

impulses repetitively to produce a train of spikes. When a pulse reaches the 

synapse it provokes the release of a transmitter substance which alters the 

permeability o f the dendrites o f the next cell to certain ions. The resulting flow  

of ions generates a small electric current which moves down the dendrites to 

the soma. If the synapse is excitatory the probability o f spike activity o f the 

second cell is increased, if  inhibitory it is decreased.
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1.4 The Muscle Spindle

One class o f muscle receptors with particular importance is the muscle 

spindle, which is thought to have a critical role in initiating and controlling 

movements and maintaining posture. The muscle spindle is a transducer which 

responds to length changes imposed on the parent muscle. Most skeletal 

muscles contain a number of muscle spindles lying in parallel with the 

extrafiisal fibres. These spindle fibres are much shorter than the extrafiisal 

fibres and are partially surrounded by a fluid-filled capsule of connective 

tissue. These intrafusal fibres have been divided into three different types, 

namely, the dynamic nuclear-bag fibres (D bl), the static nuclear-bag fibres 

(Sb2), and the nuclear-chain fibres (C).

The properties o f the three types o f intrafusal fibres are different, and 

hence they might respond distinctly to length change imposed on the parent 

muscle (Bessou and Pages, 1975; Boyd, 1980). The effects o f the imposed 

length changes on the intrafusal muscle fibres are transmitted to the spinal cord 

by the two types o f sensory axons closely associated with the muscle spindle. 

These are the primary or group la, and the secondary or group II axons, each 

spindle having one primary and several secondary axons associated with it. 

Action potentials in primary sensory axons have a conduction velocity in the 

range 72 to 120 m/sec, whereas in the secondary sensory axons it is in the 

range 24 to 72 m/sec.

The sensory axons from the muscle spindle generate action-potentials at 

a constant rate, when the parent muscle is held at a fixed length, and this 

constant rate depends upon the muscle length (Matthews and Stein, 1969). The 

rate, however, is increased with an increase in the muscle length. Each muscle 

spindle is innervated by a single la sensory axon, but may have several group II 

axons. The changes in activity in the la sensory axon in part reflect the 

responses to imposed length changes in all the three types o f intrafusal fibres,
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whereas the activity in the II sensory axons reflects, mainly, changes in the 

muscle-chain fibres. It has been shown that the la and II sensory axons project 

largely to different groups of cells within the spinal cord and therefore may be 

associated with quite different functions (Johansson, 1981).

In addition to la and II sensory axons, the intrafusal muscle fibres are 

innervated by the axons of a group of cells lying within the spinal cord in the 

neighbourhood of the alpha-motoneurones. These cells have cell bodies smaller 

than those of the alpha-motoneurones. These motoneurones generate impulses 

at a velocity ranging from 10 to 50 m/sec. These gamma motoneurones 

innervate only the intrafusal fibres. Each gamma motoneurone may innervate 

intrafusal fibres lying in different muscle spindles within the same muscle. 

These motoneurones have been further divided into two broad categories, the 

gamma dynamic and gamma static axons (Matthews, 1962; Emonet-Denand et 

al, 1977). The gamma dynamic axons innervate the dynamic nuclear bag fibres, 

whereas the gamma static axons innervate either the nuclear chain fibres or the 

static nuclear-bag fibres, or both (Boyd, 1980; Matthews, 1981). A single 

muscle spindle may be innervated by as many as six fusimotor neurones. 

Fig. 1.4.1 summarises the main features o f the muscle spindle. Fig. 1.4. la  is a 

schematic diagram of the sensory and motor innervation of the muscle spindle. 

Fig. 1.4. lb is a naive description of the normal innervation of the muscle 

spindle.
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1.5 Basic Data Sets and Recording Procedures

The example data sets shown in this chapter were obtained mainly from 

a muscle lying within the tenuissimus muscle in the hind limb o f anaesthetised 

adult cats by isolating a muscle spindle within the parent muscle and dissecting 

the selected fusimotor nerves from the spinal cord and the primary and sensory 

nerves to the spinal cord. The parent muscle was clamped in a muscle puller to 

keep the muscle length under control during the recording.

The recording technique used here is what is called recording in which 

fine silver wire electrodes insulated except for the tip were attached to the cut 

nerve endings and the fusimotor ending stimulated with voltage pulses. This 

sequence of pulses o f the primary and secondary responses was recorded to 

form the data sets.

1.5.1 Discharges of the la and II Sensory Axons in Different Conditions

The la and II sensory axons o f the muscle spindle in the absence of any

fusimotor activity may still be able to generate nerve impulses at nearly

constant rate depending on the given length at which the parent muscle is held

(Matthews, and Stein, 1969). The rate, however, is increased when the 
fusimotor axon inputs y  and y  are applied. The discharge activity of the

sensory axons when no fusimotor inputs are applied is referred to as the 

spontaneous discharge of the spindle.

Fig. 1.5.1 is an example which illustrates the output point process 

activity (discharge) obtained from the la and II sensory axons of the muscle 

spindle. Fig. 1.5.la  is the inter-spike interval histogram { h - 1 msec) o f the II 

spontaneous discharge. Fig. 1.5. lb is the inter-spike interval histogram 

(h = l  msec) o f the la spontaneous discharge.
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Fig. 1.5.2 represents the la and II discharge when the fusimotor axon 
inputs y  and y  b are applied. Fig. 1.5.2a represents the inter-spike interval

histogram (h = 1 msec) o f the II discharge in the presence o f both fusimotor 
axon inputs y  Q and y  b whereas Fig. 1.5.2b represents the inter-spike interval

histogram (/*=1 msec) of the la discharge in the presence o f both fusimotor 
axon inputs y  and y  .

The la and II sensory axons discharges may be considerably affected when the 
parent muscle is acted upon by both fusimotor axon inputs y  and y  .

Fig. 1.5.2a and Fig. 1.5.2b are examples which illustrate how the output point 

process activity (discharge) of a muscle spindle is affected by the two kinds of 

inputs when compared to those of the corresponding spontaneous discharge 

shown in Fig. 1.5.la and Fig. 1.5.lb respectively when the muscle spindle is 

assumed to receive no input effects.
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1.6 Simulation Procedure

Attempts to understand the nervous system and how it performs various 

tasks require a biological, physical and computational framework in which to 

develop mathematical models describing how the nervous system, or some 

parts o f it, carry out certain operations. In the last decade, with the remarkable 

increase in computer power, simulation models o f neurones that incorporate as 

much anatomical and biophysical detail as available have been set down. These 

mathematical models have been derived from electrical circuits representing the 

main features used by the nerve cell for electrical signalling. In these models, 

all of the important functional properties o f the neurone are represented by an 

electrical circuit called an ‘Equivalent circuit” consisting only of conductances, 

batteries, and capacitors so that the behaviour o f these models matches as many 

real features and as much of the behaviour of the neurone as possible, and can 

simulate the processes that are used by neurones for signalling (Hodgkin and 

Huxley, 1952 and Getting, 1989).

In this study we used realistic models of neurone to provide the data sets 

for analysis.

In the simulations 60 second records of repetitive firing have been 

generated (see appendix “A’), with the firing times of the input and output 

spike times recorded as the quantities available for analysis (Halliday, 1994). 

These record lengths are similar to those used in experimental studies. At each 

step of the simulation, parameters were chosen so that the behaviour of the 

model matched comparable experimental data. Once parameters were chosen 

they could not vary at subsequent steps. This procedure helped to ensure that 

the final set o f parameters matched experimental data at the cellular and 

synaptic levels. Appendix (A) illustrates a full description o f the model and its 

electrical equivalent circuit.
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2 Review o f Stochastic Point Processes Techniques

2.1 Introduction

Neurophysiology is an area where both ordinary time series and point 

processes may play an important role. The study o f the behaviour o f small 

networks of neurones is needed to determine the strength o f association 

between component neurones, or an assessment of the timing relations between 

them.

The short duration of an action potential or spike compared with the 

random intervals between successive pulses provides the basis for considering 

the spike train as a realisation of a point process along a line. This process is 

described fully by an ordered sequence o f the realised times

. . . . T _ 3  ^  T _ 2 ^  T _ j ^  T 0 ^  I  j ^  *^2 ^  ^ 3 • • • •

of occurrence of the spikes (Cox and Lewis 1966).

The main object of this chapter is to review some existing techniques 

applied to the study of neuronal networks, namely time and frequency domain
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analyses. Such approaches involve both point process and time series methods. 

The reason for presenting these (already) existing techniques is to demonstrate 

their points o f weakness and their limitations, if  any. It has been recognised that 

in some situations, the results obtained by using these techniques are difficult to 

explain and interpret, and in some other situations are found to give results 

which are inconsistent with the underlying biological concepts and 

interpretations. This is on the one hand, and on the other it is important to 

highlight the necessity to introduce other alternative techniques, such as the one 

we are about to introduce and discuss throughout this thesis, namely the 

likelihood approach, in which some extra information could be provided. Also 

other physiological behaviour o f the nerve cell can be studied more precisely, 

for instance the recovery process o f the cell, an estimate o f the firing 

probability at any given time and the general effect o f the inputs on subsequent 

outputs. Another reason for presenting this chapter is to provide the basis 

needed for comparison between these techniques and the likelihood technique.

A wide variety of examples o f point processes are discussed in 

Lewis (1972a); and Snyler (1975) and more recently in Brillinger (1978a); Cox 

and Isham (1980); and Daley (1988).

2.2 Brief History of Point Processes

A stochastic point process is defined as a random non-negative integer­

valued measure. In practice this gives the times o f occurrence o f the events. 

Examples o f stochastic point processes are vast : queues, neuronal electrical 

activity, heartbeats, radio-activity, seismology, population growth and many 

others. For more details see Lewis (1972).

The frequency domain analysis o f signals is thought to have been 

introduced as early as the middle o f the 17th century when Isaac Newton 

decomposed a light signal into separate components by passing the light
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through a glass prism. The earliest study of point processes was begun by 

Graunt, (1620-1674) when constructing life tables in the study o f populations, 

such tables correspond to the superposition of many independent point 

processes each with a single point at the time of death o f an individual. For an 

early history see Westgaard (1968).

The Poisson point process was introduced early in the 18th century with 

the discovery of the Poisson distribution credited to DeMoivre in 1718 and then 

to the French mathematician and physicist Simeon Denis Poisson (1781-1840) 

who published it in 1837. Another era for Poisson point processes started when 

Boltzman in 1868 introduced the expression exp(-p t )  for the probability of no

events in an interval o f length t . Bateman (1910) in the analysis o f radio-active 

problems noticed that the number o f particles recorded in fixed time intervals 

satisfies a simple set o f differential equations, and the solution o f those 

equations were Poisson probabilities Height (1967). Erlang (1909) made 

extensive use of such processes in the study o f traffic systems, then to 

telephone systems to determine the optimal number o f circuits and also the 

study o f queuing systems with input-output point processes corresponding to 

times of arrival and departure of customers. The latter was further developed by 

Khinchine et al (Bhat, 1969). For a historical review, see Height (1967).

Another class o f point process is the renewal process, in which the 

intervals between successive events are independently distributed. Substantial 

developments o f point processes took place in the late 1930's by physicists in 

the study of the decay of radio-activity.

More recently point process analysis techniques have been used in the 

fields of seismology and neurophysiology; in particular the study of the 

behaviour of small networks of neurones. Such processes have been found 

useful in assessing the degree of association between neuronal signals and in 

the estimation of biologically meaningful parameters; more details can be
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found in Amjad (1989); Brillinger (1988); Halliday (1986); and Rosenberg et al 

(1989).

2.3 The Basic Assumptions and Notation

A realisation (or a sample) o f a point process may be represented by a 

counting measure denoted as

N ( t ) =  # | T j  ; 0 < T j < t  

where #{.} indicates the number o f events in the interval (0, f] and {tj J the set

of spike times in the sample. Before defining the different parameters o f point 

process it is relevant to introduce differential increments of the process N  

defined as

dN(t)  = N(t ,  t + d t ] ,  

giving the number of events in a small interval (t, t + d t ]  o f duration d t .

2.3.1 Stationaritv

The point process Na (a = 1, 2, ..., k)  is said to be first order stationary 

if  the probability distribution of the number of events N(t, t + h ]  is same as 

that o f the number of events N(t + t, t + h  + r] V t, t, and h > 0 ,  and it is

said to be second order stationary (or weakly stationary) if  the joint probability 

distribution of the number of events N(t, t + hj\ and N ( t+ h 2, t+ h 3] is the

same as that of the number of events N(t + r, t+hj + r] and

N ( t+ h 2 + t, t+ h 3 + r]. The point process Na is said to be completely

stationary (strong stationarity) if  the joint probability distribution of the number 

of events in any arbitrary number of intervals is invariant under translation.
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2.3.2 Orderliness

A point process Na is said to be orderly if  the probability o f two or

more events occurring in the interval (t, t + h )  tends to zero as h - > 0 .  This

avoids the occurrence of more than one event in small intervals, in other words 

that the points o f the process Na do not occur simultaneously.

2.3.3 Strong Mixing

We say that a point process satisfies a (strong) mixing condition if  

events of the same process well-separated in time are independent. This 

condition can also be applied to the case o f multivariate point processes by 

assuming that events o f one point process separated in time by a distance v 

from the events o f the other point process become independent for large values 

of v . More details can be found in Cox and Lewis (1972); Srinivasan (1974); 

Brillinger (1975b); and Cox and Isham (1980).

2.4 Stochastic Point Process Parameters

The field o f neurophysiology provides a rich source o f data which can 

be analysed within the framework of point process theory. This theory consists 

of two parallel approaches, namely, the time domain approach and the 

frequency domain approach. These two approaches are mathematically 

equivalent and are assumed to represent the data equivalently and also to 

contain the same information about the process under investigation 

(Tukey 1978; and Koopmans 1983). But since the volume o f data is finite, 

mathematical equivalence does not imply equivalent representation. Therefore 

it is valuable to have both analyses, which illustrate different aspects o f the 

process.



Chapter 2_____Review of Stochastic Point Processes Techniques 27

The main aim of this section is to introduce and define certain 

parameters of point processes in both domains and without any details of 

properties or estimation procedures. Further details o f the estimation 

procedures, properties and computational procedures with applications can be 

found in Rigas (1983); Halliday (1986); and Amjad (1989).

2.4.1 Parameters in the Time Domain

It will be assumed that the assumptions o f first order stationarity, 

orderliness and (strong) mixing hold in this section.

(a) The Univariate Point Process

The mean intensity of the process N  is defined as

where the mathematical expectation £{.} denotes the averaging operator of a 

random variable.

The product density of order 2 for a stationary point process measures 

the intensity with which events separated by v time units occur, and is given by

P  = lim Pr^N event in (/, t + ‘ i i  / h
N  h ->  0

(2.4.1)

and since the process is orderly, we have

P = E {  dN(t)  } /  dt
N

(2.4.2)

N  event in [t,  t + h A  and
(2.4.3)

Nevent in ( t+ v ,  f + v + Zi^yj /  ^
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and since the process is orderly, we have

p  (v)  = E {dN (t+v)dN (t ) }  /  dvdt  ; v * 0 .   (2.4.4)

Under the (strong) mixing condition, we have

Urn P (v)  = P P  =|"p 1 .  (2.4.5)
v ^ o o  NN' N  N  L n ]

This leads to another function called the second-order cumulant function, given 

by

q (v) = P ( v ) - P  P   (2.4.6)
NN NN N  N

which has the property that it tends to zero as v increases, i.e.

Um g ™ / vJ = 0 -  (2-4-7)v — > oo N N

A conditional auto-intensity function is defined as

m (v)  = E { d N ( t+ v ) \  dN(f) = l  } /  d v ; v * 0   (2.4.8)

and may be interpreted as

m ( v ) =  lim P r{N  event in(t  + v, t + v + h] IN  event at t) /  h ..... (2.4.9)
N N { h - > 0  1 V Jl *

or, in terms of expected values as

m (v)  = E l d N ( t + v )  | dN(t)  = l \ / d v
m   (2.4.10)

= P ( v ) / P  ; v * 0  
NN N
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and under the (strong) mixing condition, we have

lim m (v)  = P .  (2.4.11)
v->oo NN N

(b) The Bivariate Point Process

Let ¥(*) = { M ( t \  N(t)}  be a real-valued first order stationary bivariate

point process which satisfies the assumptions of orderliness and (strong)
mixing, then the second-order cross-product density at lag v, P (v) ,  is

NM

defined as

^Nm (v)~  Pr{M event in ( t , t  + hj]and
hj,h2 -*0   (2.4.12)

N event in (t + v, t + v + h2]} / h j h 2 

or, in terms of expected values

PNM  = E {d N( t + / d v d t  .....*2 4 '13^

Under the assumption of a (strong) mixing condition, and as v becomes large, 

increments o f the process become independent, i.e.

lim P (v)  = P P  .  (2.4.14)
V-+O0 NM N  M

This leads to another function called the second-order cumulant function, 

given by

q (v) = P ( v ) - P  P   (2.4.15)
NM NM N  M

which has the property that it tends to zero as v increases, i.e.
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lim =  (2.4.16)
v —> oo N M

The cross-intensity function is the traditional method that has been a 

widely used means for assessing the timing relations between processes. It is 

also thought to be a good way of characterising the nature of the association 

between the processes, i.e., the effects o f one process on the other are

excitatory or inhibitory (Amjad, 1989). The cross-intensity function denoted by
m (v)  is defined as

NM

P (v)

m « i / v ) w  •  ( Z 4 1 7 )NM P
M

Under the assumption of a (strong) mixing condition, and as v becomes large, 

it also follows that,

lim m (v)  = P  .  (2.4.18)
v —> oo NM N

The cross-intensity function, m (v)  can be estimated as
NM

J  ff l (v )
m (v)  = —^ .......... .....(2.4.19)

NM  y h M (T )

where

J NM(T)( v ) = # { ( sk> rj ) : v - ( h / 2 ) < r j - s k < v  + ( h / 2 ) } ..... (2.4.20)

/ k = l, 2 M ( T )  and j  = 1, 2, N(T),

and h is a binwidth. The symbol #{W}  denotes the number o f events in set 

W , jry |  and } are the observed times of the events o f the processes N

and M  respectively, and N (T )  and M ( T )  are the number of events of 

processes N  and M  occurring in time interval (0, T), respectively.
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The variables J  ^ ( v )  given by expression (2.4.20) are
NM

asymptotically independent Poisson random variables (Brillinger, 1976a) with 

mean

(hT) p , n / v)  as r - x » .
NM

This implies, for large T, that

Now, for small h and large T , the estimate given in expression (2.4.21) will be 

approximately normal (Brillinger, 1976a), i .e . ,

The variance of m (v)  may be stabilised by applying a square root
NM

transformation (Kendall & Stuart, 1983), and the distribution o f the square root 

of the estimated cross-intensity function will take the form,

An approximate confidence interval for the cross-intensity function estimated 

using (2.4.23) at a given lag value v under the hypothesis that the two 

processes are independent can then easily be constructed, with an approximate 

95% confidence interval is given by

*  ( y ) ---------- -— Po\(hT)P  (VH
NM h T P  LV ’ NM  J 

M
(2.4.21)

where Po[ X 1 denotes a Poisson random variable with mean X .

(2.4.22)

f a ~  N  ( 'mN M < v >)

1/2 1
(2.4.23)
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2.4.2 Parameters in the Frequency Domain

It has been mentioned earlier that both time and frequency domain 

analyses are in some sense mathematically equivalent procedures. The use of 

the frequency domain has been emphasised (Amjad, 1989) because it reveals 

more features about the process and might give better understanding to 

physiologists. But it is valuable, however, to have both analyses.

(a) The Univariate Point Process

Suppose N(t)  is a first order stationary point process satisfying the
conditions o f orderliness and (strong) mixing. Let P  be the mean rate of

N
process N . Further, suppose that the second order cumulant function Q - ^ ( v)  

as defined in (2.4.6) exists (Amjad, 1989) and satisfies the condition

! q (v)  
NN

dv < oo.  (2.4.25)

Then the power spectrum of the point process N  is defined as

/ . „ . W =  + -z~ [ exp(-iXv) q (v)  dv ; - c o < A < o o  ..... (2.4.26)
NN 2n 2n J NN— 00

and may be interpreted as reflecting the power in each frequency X o f the 

process (Brillinger et al, 1976).

Using the condition given in equation (2.4.25) the limiting behaviour o f the 

power spectrum of the point process takes the form
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(b) The Bivariate Point Process

Let ¥ (* ) = {M(t),  N(t)}  be a first order stationary bivariate point

process which satisfies the conditions of (strong) mixing and orderliness.
Suppose the cross-cumulant function, q (v), exists and has the form as

NM

given in equation (2.4.15) above. Then the cross-spectrum between the two
point processes at frequency X denoted by /  (A) is defined as

NM

A n . / ^  = T ~ J exP(~iXv) ‘} , n J v) dv -  (2.4.28)NM 2n NM
—  00

which can be written as a complex-valued function of the form

f m J X> = [Re + P m / M / ^   (2.4.29)NM NM NM

where Re f  (X)  and Im f  (X)  are the real and imaginary parts of 
NM NM

f  (X)  respectively.
NM

The cross-spectrum between the two point processes at frequency X ,
/  (X) , may be interpreted as measuring the association of the processes

NM

N  and Af at frequency X (Brillinger et al, 1976), i.e.

/  W  = 0NM

indicates no relationship at frequency X . Also it has the property that
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Further details can be found in Cox and Lewis (1966); Brillinger et al (1976); 

Amjad (1989); and Rosenberg et al (1989).

R (X)  
NM  7

The coherence, 

frequency X can be defined as

between two point processes N  and M  at

R (X) 
NM

f  (X)  NM
f  (X) f  (X) 

NN MM

.(2.4.32)

and hence it is a normalised cross-spectrum which provides an absolute 

measure of association and it can be easily shown to be bounded by 0 and 1, 

i.e.

0 < R (X)  
NM

where the value R (X) 
N M ' 7

= 0 indicates no association between the two

R (X)  
NM 7

= 1 corresponds toprocesses N  and M  at frequency X , whereas

perfect linear association at frequency X .

Using the respective estimates of expression (2.4.32) above, an estimate 

of the coherence may be obtained as

R (V(A )  
NM

f NM

f  M W f  M WNN MM

 (2.4.33)

whereas an approximate 95% confidence interval for the coherence at
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frequency X may given as

± 1.96 ■!
Rm , m m 1 - RNMm ( V

( L / 2 )

1/2

.(2.4.34)

where L is the number of disjoint periodogram sections from records of 

duration T .

The phase-spectrum defined as the argument o f the cross-spectrum is 

given by

=  to ” _ i
 (2.4.35)

assuming that /  (X)  and /  (X)  are non-zero. The phase-spectrum may
NN MM

be used to assess the timing relations between the processes N  and M .

Suppose that (s^, r^) represent the spike times for the bivariate process

{ M ( t \  N(t)} ,  then the cross-spectrum between N  and M  is given by

/  (X )=  lim ------
J NM '  T-+oo 2x T X exp(-i Xsk)  YsexP(i X r j )

v k J
 (2.4.36)

If process N  is a lagged version of process M  with lag x , i.e.,
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then the cross-spectrum can be written as

1 '  ^
/  (X )=  lim--------

NM '  T-* * 2 n T
f ) (£ e x p ( - i  X(rk + x)) ^ exp( i  X rj )
' k '  \  j

= exp(-i Xx) .....(2.4.37)
M M

which implies that

= - * r .  .....(2.4.38)NM

where expression (2.4.38) above shows that in the case o f a pure delay, the
phase ^ (X) is a. linear function o f frequency X with - r  being the slope

NM

of the line.

The application o f expression (2.4.38) is useful for the large number of 

cases where the relation between two spike-trains can be assumed to be

dominated by a delay which may be estimated as the slope o f the least squares

line fitted to the estimated phase curve. Whenever there is a delay, the 

coherence between input and output processes is not constant, and 

consequently a weighted least squares procedure can be used to estimate the 

delay and its standard error (Rosenberg et al, 1989).

Let (j> (T)(Xi) = <j>i be the estimated phase evaluated at discrete
NM

frequencies of the form Xi = 2m /  T ;i = 1, 2, ..., n,  we define a regression 

model through the origin of the following form

<t>i = M

where p  = - r  , and e t are approximately normally distributed with mean zero



Chapter 2_____Review of Stochastic Point Processes Techniques 37

j
and variance <r,, and covariance crjy where

o' tj = 0 for j *  j .

and

where L is the number of disjoint periodogram sections from records of 

duration T .

The weighted least squares estimate of P  is given by

which is an unbiased estimate o f /?, and an estimate o f its variance is given by

A plausible choice for the weights is to take wf as (e.g. Weisberg, 1985, p85)

where

n -  1

-l
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Applying standard regression theory, an approximate 95 % confidence interval 

for the delay is then
*\l-1/2

- p  ± 1.96 Jvar

or

- p  ± 1.96 ....(2.4.39)

(c) The Multivariate Point Process

Let ^ (t) = N(t),L(t)} be a first order stationary multivariate

point process which satisfies the conditions o f (strong) mixing and orderliness. 

The partial coherence of order 1 between two processes N  and M  after 

removing the linear effects o f the third process L may be defined as;

R ( X ) - R  (X )R  (X)  
N M ' y NL I MR (X)  

NM.L y

which satisfies the property that it is bounded by 0 and 1, i.e.

" 2" • 2~
1 - R W NL

1 - R WLM  7

 (2.4.40)

0 < R (X)  
NM.L

<>1

and with zero corresponding to the situation where the relation between the 

processes N  and M  is entirely accounted for by taking into account their 

individual dependencies on process L .
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The multiple coherence at frequency X between an output point process 

N  and input processes M  and L may be defined as;

...(2.4.41)
2 2 2 2'

R (X) 
N.ML 7

5̂ R (X) 
NL

+ R (X) 
NM.L

41 - R (A)NL 7
>

which satisfies the property that it is bounded by 0 and 1, i.e.

0 < R (X) 
N.ML 7 < 1 ,

also giving an interpretation of R (X) 
N.ML ' 7

as a measure of the linear

predictability o f the point process N  from the other two processes M  and L 

(Brillinger, 1975b; and Jenkins and Watt, 1968).
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2.5 Applications

We now demonstrate some o f the above-mentioned procedures with two 

simple examples using both time and frequency domain measures from 

simulated neuronal spike train data generated by a conductance based neuronal 

model (Halliday, 1994). For more simulation details see chapter 1, section 1.6, 

and further details are present in appendix (A).

Fig.2.5.1a and b are the inter-spike interval histograms o f the input and 

of the output, respectively, and suggest approximately an exponential 

distribution (i.e. a Poisson process) o f the input and normal distribution o f the 

output process. Fig.2.5.1c represents the square root o f the estimated cross­

intensity function as a time domain measure o f the association between the two 

processes and suggests that an excitatory effect o f an input spike lasts about 

four msec, and then followed by a significant decrease in the probability o f an 

output spike from 5-15 msec. The latter seems to indicate an inhibitory effect 

centred at around 10 msec. No such inhibition was present in the simulation 

and this behaviour complicates the interpretation o f the cross-intensity function 

and gives an indication that it may lead to misleading results.

Fig.2.5.2a, b correspond to the estimates of coherence and phase, 

respectively, obtained from the same data. Both estimates have been plotted 

against the frequencies in the form (1000 J/R) Hz, with R=1024, J=l,2,..., over 

the range 0-250 Hz. The dotted line in Fig.2.5.2a at each frequency represents 

the upper 95% confidence interval o f the null distribution under the hypothesis 

of the processes being independent at that frequency. Fig.2.5.2a gives clear 

evidence that both processes are coupled over the range of about 0-100 Hz.
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(a)Inter Spike Interval Histogram
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Fig.2.5.1 a) and b) Input and output inter-spike interval histograms, respectively.

c) Square root o f the estimated cross-intensity function. The horizontal solid line represents the corresponding 

square root o f the estimated output mean rate whereas the dotted lines below and above this line give

an approximate 95% confidence interval for the square root of the estimated cross intensity under the 

hypothesis that the two processes are independent.
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F ig .2 .5 .2  Illustration of the Coherence and Phase.

a) Estimate of the ordinary coherence; the dotted line represents the upper limit of the 95% confidence 

interval (marginal) for the coherence under the hypothesis that the two processes are independent.

b) Estimate of the phase.
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Fig.2.5.2b gives a clear indication that the estimate o f the phase can be 

approximated by a straight line over a range o f frequencies at which the 

estimated coherence is significant, and thus that a pure time delay is present.

The procedures mentioned above have been applied to another set of 

simulated neuronal spike train data similar to the previous one except that in 

these data the input is approximately normally distributed.

Fig.2.5.3a, b are the inter-spike interval histograms o f the input and 

output, respectively, and suggest that both have very approximately a Normal 

distribution structure. Fig.2.5.3c represents the square root o f the estimated 

cross- intensity function and suggests an excitatory effect o f an input spike 

lasting about 3 msec, followed by a significant decrease in the probability o f an 

output spike from about 4 - 1 2  msec, and then followed by another excitatory 

effect from about 1 6 - 2 1  msec, and that may suggest a possible periodic 

response of the output associated with the input. No such feature was present in 

the simulation, and that again seems to complicate the interpretation o f the 

estimated cross-intensity function and put a question mark on its performance.

Fig.2.5.4a, b correspond to the estimates o f coherence and phase, 

respectively, obtained from the same data set. The coherence indicates clearly 

that the two processes are strongly associated with each other over the range of 

0-200 Hz. Fig.2.5.4b represents the estimated phase which shows that the 

estimate can be approximated by a straight line over a range o f frequencies at 

which the estimated coherence is apparently significant, and thus that a pure 

delay is present.
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(a)Inter Spike Interval Histogram
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Fig.2.5.3 a) and b) Input and output inter-spike interval histograms, respectively.

c) Square root o f the estimated cross-intensity function. The horizontal solid line represents the corresponding 

square root o f the estimated output mean rate whereas the dotted lines below and above this line give an

approximate 95% confidence interval for the square root o f the estimated cross intensity under the hypothesis 

that the two processes are independent.
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F ig -2 .5 .4  Illustration of the Coherence and Phase.

a) Estimate of the ordinary coherence, the dotted line represents the upper limit of the 95% confidence interval 

(marginal) for the coherence under the hypothesis that the two processes are independent.

b) Estimate of the phase.
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2 .6  Conclusion

From the two sets o f data we have seen, it is clear that the square root of 

the estimated cross-intensity function as a time domain measure o f the 

association between the two processes need not be very helpful, and may 

indeed be very misleading and fail to reflect the actual properties o f the 

simulation. It is presumably combining information about direct synaptic 

effects and intrinsic membrane properties, in other words, it seems to combine 

input information and internal cell recovery information in a way which makes 

it very difficult to interpret and as a consequence o f that it may produce 

misleading results. This leads us to investigate an alternative approach based on 

likelihood which will be introduced in chapter 3.



Chapter 3

3 The Likelihood Approach

3.1 Introduction

One of the two most general methods of statistical estimation so far 

known is the method of maximum likelihood (the other being the method of 

least squares). The method of maximum likelihood was initially formulated by 

C. F. Gauss but as a general method o f estimation was first introduced by 

R. A. Fisher and later on developed by him in a series o f papers. The historical 

development o f linear models dealing with maximum likelihood and least 

squares from Gauss and Legendre to Fisher has previously been sketched 

(McCullagh and Nelder, 1992). For further historical information concerning 

the development of probability and statistics in general up to the beginning of 

the twentieth century, see the book by Stigler (1986). We start now by defining 

the likelihood function.

3.2 Likelihood Function

The likelihood function of n random variables X i , X i , . . . , X n is defined to 

be (proportional to) the joint probability density o f the n random variables, say,
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f x 1,x2 x„(xi> x2 > ■■■> xn> (D-> which is considered to be a'function of 

unknown parameters, 0. In particular, if  X l% X 2, X n is a random sample of 

size n from a population with density function f x  (x; 0 ) ,  then the likelihood 

function denoted by l0 (6; x) , is their joint density function; given by

b(& x) = l0 = f ( xl : 0 - f ( x2> 0  ■•■f(xn' 0  = n f ( xU 0 -
i= l

3.3 Maximum Likelihood Estimatorf M. L. E.)

The principle o f maximum likelihood estimation consists in finding an 

estimator for the parameters 0  which maximises l0 for variations in the
A A

parameter. Thus if  there exists a function 6 -  9(xlt x2, xn)  of the sample
A

values which maximises l0 for variations in the parameter 0 ,  then 0  is to be 

taken as an estimator of 0.  And 0  is usually called the Maximum Likelihood
A

Estimator (M.L.E.). Thus 0  is the solution if  any o f

^ -  = 0 and, d l ° < 0   (3.3.1)
dOt dOidOj

where / * j ; i , j  = 1, 2,.... k.

The first o f the two equations given in (3.3.1) above can be rewritten as

- ^ 2 -  = 0 => d l °g l° = 0  ; i = l  , 2 , . . . ,  k  (3.3.2)
Io d0i dOi

a form which is much more convenient from a practical point o f view. 

Equations (3.3.2), are usually referred to as the likelihood equations. One 

reference to the general properties o f maximum likelihood estimation is the 

book by C. R. Rao (1973).
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3.4 Likelihood Analysis of Spike Trains

3.4.1 Introduction

The study o f the interrelationships within a network of neurones given 

the individual occurrence times (firing times) has long been o f concern (Bryant 

et al, 1973; Knox et al, 1977; Brillinger et al, 1976; and Borisyuk et al, 1985).

It is known that either a neurone is firing spontaneously or that it is 

firing under the influence o f other neighbouring neurones. Suppose that the 

firing times of the neurones present are available. A conceptual model that may 

reflect the main aspects o f neurone firing behaviour based on likelihood can 

then be constructed and studied both theoretically and empirically. This type of 

model will then enable maximum likelihood estimates of internal quantities to 

be calculated, such as the post-synaptic potentials o f the measured influencing 

neurones, the membrane potentials, the absolute threshold and the recovery 

process o f the neurone, and may also be able to estimate the effects of 

unobservable neurones on the firing of others. The power o f a likelihood 

approach is that it allows direct biological interpretation o f the results obtained, 

it is a highly flexible approach in that it allows spontaneous firing and it also 

extends to the case of an arbitrary number o f neurones. Approximate 

expressions for standard errors of the estimates are always available.

Many stochastic models have been set down to specify the firing of a 

neurone and to assess the interrelations of firing within moderate sized 

networks of neurones, but most of these models have only been used 

extensively theoretically. More details and reviews o f these models can be 

found in Holden (1976); Knight (1972); and more recently Brillinger 

(1988 and 1992). The only occasion where a specific data set has been used is 

in Brillinger and Segundo (1979).

Throughout this thesis, the likelihood approach will be discussed and 

investigated in much greater depth both theoretically and empirically and
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applied to many different neuronal spike train and muscle spindle data sets, 

simulated as well as real, each with different features, in order to demonstrate 

the informative results the approach can provide. Furthermore, we are 

introducing new ideas suggested by physiologists on the basis that these may 

have an important role in describing the firing process o f a neurone. For 

example, one can add the effects o f “unobservable” neurones that influence the 

firing of a particular neurone or a term that allows an exponentially decaying 

neurone threshold. The flexibility of being able to add new terms to our model 

shows another advantage o f the likelihood approach. The results obtained via 

likelihood can therefore provide a realistic basis and background and so be 

helpful to the physiologists who may then better understand the processes 

involved.

3.4.2 An Analytic Model

The construction of a mechanistic model o f the processes governing the 

firing of a neurone needs an understanding of some o f the biological concepts 

involved. One process by which one neurone influences the firing of a second 

has been described with more detail in chapter 1.

The biological process may be put into an analytic form and may described 

formally as follows. Let us consider, for simplicity, the spike trains o f two 

neurones (it may then extend to the case o f an arbitrary number o f neurones) X  

and Y which are described by counting measures X(t) and Y(t) , respectively. 

The number of spikes o f the neurone X  that occur in the time interval (0, f] is 

given by X(t),  and that of the neurone Y is given by Y(t). These are 

analogous to the counting measure N(t)  defined in section (2.3). Now,

suppose we are interested in the firing o f neurone Y . Suppose that the neurone 

X  fired at time x . Let a(t -  r) represent its effect on the potential at time t on
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the trigger zone (axon regions which have the lowest threshold for generating

an action potential) o f the neurone Y . For simplicity, let its evolution be

assumed linear (although there may however be non-linear effects present).

References suggesting this assumption is reasonable are given in Stevens

(1968); Langmoen and Anderson (1983), and more recently; Brillinger (1988). 

The quantities {a ( . , will be called the summation function, which represents

the effects o f a neurone X  (input) on the firing of a neurone Y (output), and

describes the course that the potential would follow after a current impulse.

The linearity assumption implies that the effects o f current pulses at different 

times are additive. Let y(t)  denote the time elapsed at time t since the neurone

Y last fired. At this point, let us assume that only inputs occurring after the 

previous output have any effect, then the membrane potential U(t) at its trigger

zone may be represented as

HO
U(t)  = J a(u) x(t -  u) d u .  (3.4.1)

0

The neurone Y  tends to fire when the post-synaptic potential at its 

trigger zone exceeds an extant level called threshold. Now, let &(t) denote the

threshold potential level at the trigger zone at time t and assume that it has the 

form

0{t) = 0 \ t ) + s ( t )   (3.4.2)

with s(t) the noise, which includes contributions of unmeasured neurones that 

influence the firing of neurone T, and 0*{t) some function o f t , representing 

the underlying form of the threshold at time t .

There is some experimental evidence validating the Gaussian 

assumption for e(t) given in Holden (1976). Two simple forms for 0*(t) are
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0*(t) = 0o (3.4.3)

or,

0*(O = 00 + nexp{-*' H O } »' & > 0 (3.4.4)

where 0*{t) as given in (3.4.3) leads to the assumption o f an absolute constant

threshold level, whereas that in (3.4.4) leads to the assumption o f an 

exponentially decaying threshold. This is discussed more fully in the chapters 

that follow.

Furthermore, let Cl(t) represent the history o f a particular process,

i.e. those variables determined up to and including time t that are necessary to 

describe the evolution o f the process. For a process -  w), we may write

In this approach, it will be convenient for computational purposes, specifically 

in determining the maximum likelihood estimates via standard statistical 

packages such as GENSTAT or GLIM, to discretise the point processes and 

record their values only at discrete times t ( t  = 0, ±h, ±2h , ....). If a small

sampling interval o f length h is selected (i.e., to prevent the occurrence of 

multiple events in small intervals), then the process will take only the values 0  

or 1 (see section 2.3.2).

Thus, for a sampling interval o f length h, with h suitably small the point 

process Y{t) can be replaced by a discrete 0-1 valued series Yt , such that

Q ( t )  = { x ( t  - u ) ; w < f } . (3.4.5)

1 ; i f  there is an event in (f, t+h J,
0 ; otherwise.
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The discrete approximation o f equation (3.4.1) may be written as

Yt ~ l
Ut = I .  a  x   (3.4.6)

u = 0

where the set o f coefficients { au } make up the summation function which

represents the effects o f the neurone X (input) on the potential at time (t -  u)

on the trigger zone of the neurone Y (output). Similarly, equations 

(3.4.2; 3.4.3 and 3.4.4) may appear in their discrete approximation form as

0 t = 0 *  + s t .................. (3.4.7)

0 *  = B0 .................. (3.4.8)

0 *  = G0 + p e x p { - X y ,} .  .................. (3.4.9)

time

Fig.3.4.1

a) A segment of a neuronal spike train.

b) Neuronal spike train representation as a zero-one valued series.



Chapter 3 The Likelihood Approach 54

Now, the conditional probability o f the neurone Y firing is given, for h small, 

by

Pt = P r {  Yt = 1 \ Q t }

= Prl  Ur crosses 0r fo r  some r in (/, t + h \ £ it J

s Pr {  U, £ 0, \nt }

= Pri U, > 0*t + e t | nt 1 

= P ri  s t < .U ,  -  0*t | Pit |

= F { U, -  & ,  |/2 ,}   (3.4.10)

where F(.) denotes the cumulative distribution fimction of the noise e t .

Output spike train L—  r t ----------->

Injiut spike train 4------------ U —►

/ LUlie -r

>-u

Fig.3.4.2 Diagrammatic representation of the timing convention used for the interval y  t

between an output spike and the time / ,  U is the interval (starting after the time of the last 

output spike) between an input spike and time t .



Chapter 3 The Likelihood Approach 55

Now, we may write

Pr[Yt = l \ f i t ) = Pt and P r [ Y , = 0  \n,) = l - P t  (3.4.11)

for the probabilities of “success” (or firing) and “failure” (or not firing), 

respectively. Thus the binomial distribution arises naturally and the probability 

density function of the response variable Yt is given by

Pr{Y, = y , )  = P,y' ( l - P , / - y> : y , = 0 , l .   (3.4.12)

The likelihood function can be written in the form

 (3.4. i3)
t

which can then be maximised.

We also add a recovery term, Vt , to Ut , to allow for spontaneous firings

of the neurone and to describe the intrinsic membrane properties o f the cell. 

We shall see later that Vt plays a further role in our model. It seems natural to 

see if  a polynomial form for Vt is adequate.

V t =
i e , ( r t - e i - i f ; r,zSi  + it=l  (3.4.14)

0 ; r t Z C l + 1

where y t denotes the time elapsed since the time o f the last output spike and 

£ l  denotes the minimum of the output inter-spike intervals. We force the 

recovery function to be zero for y  t < + 1  because there will be no output

data for smaller values o f y  t . The potential at the trigger zone is reset

immediately after the neurone fires and then may rise steadily again on its own 

without any influence by other neurones. This behaviour suggests adding the
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term, Vf9 known as the recovery function. References presenting similar

analytic models for neurone firing include Johannesma (1968); Knox (1974); 

and Brillinger (1987).

3.5 Mathematical and Statistical Methodology

3.5.1 Link Function

It is sometimes important to transform data to achieve a specified 

purpose such as stability o f the variance or symmetry. There is a large body of 

literature concerning transformations for binomial random variables. 

Throughout this thesis we consider the two most widely used transformations, 

namely, the logistic and probit transformations. Such transformations are called 

link functions and will be discussed in the section. More detailed discussions 

concerning these transformations can be found in McCullagh and Nelder 

(1992).

To consider the relationship between the response probability, Pt , and 

the xtj  are the values of k variables indicating the presence or absence o f an

input effect, it is convenient to construct a formal model to describe the effect 
on Pt o f changes in xtJ- so that the behaviour o f the model should be consistent

with physical, biological and mathematical laws. One way to investigate this 

relationship is through the linear combination, usually called the linear 

predictor
k

Vt = l L xt j P j  : -<*><%«*>   (3.5.1)
j=J

where f i j  ( j  = 7, 2, 3, ..., k) ,  are the k unknown parameters to be estimated. 

To consider Pt as a linear combination of the form given in equation (3.5.1) 

above would inevitably contradict probability laws which require 0  <> Pf < 1 

and therefore a convenient transformation that maps the unit interval into the
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whole real line (-<*>, qo)  is then needed. This leads to the idea o f a link 

function, H () , such that

k
H (pt) = Vt = f i j  : t = 0> ± h , ±2h,...  (3.5(3.5.2)

where H(Pt ) is assumed to be a monotonic and differentiable function. Thus

V j=l
(3.53)

where H  ^(.) is the inverse o f the link function.

The probit link function is one such example commonly used in practice, 

so that we obtain

where 0 (.) is the normal cumulative distribution function.

k
The identity link function, Pt = rjt = P j  » not usually be

1=1
suitable since equal increments of the explanatory variables xtj  would imply 

equal increments in Pt , which would not always be realistic throughout the 

range of Pt , and indeed lead to values outside its valid range. Cox (1970) has

considered other possible link functions, in particular the logistic function,

H(Pt ) = Vt = 0 ~ J (/>,)

or,

Pt = H - \ n t ) = v t)
f t .  \k

= H xt j P j (3.5.4)
\ j = l  J
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where

H(pt) = Vt = l°g

P t =

or,

= exp̂ lt) f (l+expiVi ))

= exP\ 2 > *  P i  I /\  j=i
1 + exp

W

2>r Pj\  j=l
.(3.5.5)

J)

so that equal increments in an explanatoiy variable produce equal increments in 

the log-odds ratio and the range o f T]t is ( - c o , co).

In fact each distribution has a special link function for which there exists 
a sufficient statistic equal in dimension to /? for the linear predictor rjt . These

special link functions are called canonical link functions. In our case with a 

binomial distribution the logistic link function is the canonical link, because the 

log-likelihood depends only on the response variable Y  through a linear

combination X  Y which forms a sufficient statistic for the unknown 

parameter /?, as will be seen shortly in section (3.5.2). The logistic link

function also has the advantage o f having unique estimates for the parameters 

(Wedderbum 1976 and Haberman 1977). This ensures that the standard 

statistical packages such as GENSTAT or GLIM will always be able to produce 

suitable parameter estimates and this may not be true for link functions other 

than the canonical link. We therefore will invariably investigate the logistic link 

function first, but will look to examine others if  that link function seems in 

some way inadequate. Cox notes that the logistic and probit links usually 

produce similar results in practice.
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3.5.2 Log Likelihood for Binomial Data

Consider the probability density function o f the response variable, Yt ; 

t = 0, ±h, ±2h, ±3h,.... given in equation (3.4.12). The likelihood function 

may be written in the form

k {  P ; z) = n P t ‘ 0 -  P t ) ‘ ~y '  (3-5-6)
t

where P_ = {Pf }  and J  = {> 7}; t = 0, ±h, ±2h, ±3h, ......

However, it is easier mathematically to work with the natural logarithm of Iq . 

The log-likelihood is then

/(P ; z)= >°Se n P ?' 0  ~  p t ) I~y ‘
t

=Z [yt l° s , P t + i!~yt) ioge (i-p,) ]

=Zt
f  Pt 'Iy , log, t
I i - p, )

+ log, ( 1 - P , )  (3.5.7)

This equation can be expressed as a function o f the unknown parameters 
P j  ( j  = l, 2, 3, ..., k)  through the linear relationship between the response

probability Pt and the explanatory variables xtj  ( t  = 0, ±h, ±2h, ... 

; j  = 1, 2 , 3, ..., k).  This relationship takes the form

H(Pt ) = P j  ; t =  0, ±h, ±2h, ±3h, ...

Now, in order to derive the likelihood equations required for estimating the 
unknown parameters, we first set down the derivative o f the function /( P; y)

given in equation (3.5.7), with respect to Pt as
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By using the chain rule, we have

d l  = £ ] _  d j\_  = y t - P t d P t
d p s 7 # p t d p s , p t ( i - p t )  d p s ■

d  P
Also it is convenient to write -----— in the form

# P s

d  Pt _  d  Pt d  T)t 
d  P s d  tj, d  P s

d P ,  d
d  T), d  p s

0 P ,  ..
d  ijt

2 1*  tj P j

ltS'

The derivative o f the log-likelihood with respect to p s then takes the form

d  I _  y t d P t
d p s y P t ( l - P t )  d r i t

 (3.5.8)

Now

d 2 I

d P r  d P s  d Pr \ d p

d \

y t - P t  # P f
xts

d P r \ t P f O - P t )  d  Vt )

= I
t

(yt -Pt)
l

d P r

1

3 P t
Pt ( l - P , j  d  %

t S > +

xts - T 7 r ( y t - pt )pt ( l - p t ) d r , t d  p r

The first term vanishes on taking expectations while the second reduces to
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d 2 l

d p r dP i
= -z 0 P ,t ,  PPt

XtS

= -z d P t x ts x tr

since
d P t d P t

■tr-
d  P r  0  1],

The Fisher information for ft is given by

- E d  21

0  Pr P Pi
= z d P , x ts x tr

in the matrix notation this can be represented as

-  E d  21

0  Pr & Pi

where F  is a diagonal matrix of weights and has the form

F  = diag « d P t y
P , { i - P , )  (3-5.9)

Let us consider the case of the linear logistic model given by

tit = log Pt
I - p , )

or,

Pt = exp( t j t )  /  ( l  + e x p ( 77, ) ) .
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Substituting into the log-likelihood equation given in (3.5.7), we have

i(£;y)='L'LytXtjPj-'Liog[i+exp('Zxtl/3J)]   (3.5.10)
t }  t j

It has been mentioned earlier that the logistic link function is also the 

canonical link for the binomial distribution. Because the log-likelihood function 

given in (3.5.10) above depends on the response variable Y only through the

linear combination X  Y this forms a sufficient statistic for the unknown 

parameters f t .

3.5.3 Computational Procedure

We turn our attention now to the technique used to find the maximum 
likelihood estimates o f the unknown parameters P  in the linear predictor 7jt

for a given data set. In the case o f linear logistic models mentioned above, the 

derivative given in equation (3.5.8) becomes

4 j -  = Z ( y t - pt) *ts>
v  P s  t

or in its matrix form

= X t ( Y - P ) .  
d p  —

Also the diagonal matrix of weights F  given in (3.5.9) reduces for the case of 

the logistic model to

F = d ia g {p ,  ( l - P t ) }.
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We use the general Newton-Raphson procedure to estimate the unknown 
parameters p .  We define the adjusted dependent variable Q,  with components,

qt ( t - 0 ,  ±h, ±2h, ±3h,... .) as

<lt =  Vt + {y< -  P i)

= Vt + ( y t - P t )

d  rjt

d P t \p ,= P ,  

1

The maximum likelihood estimates satisfy the equation

or,

rri a. fwi
X 1 F X p  = X 1 F Q

p  = ( X TF X ) ~ I x t f q  (3.5.11)

The procedure underlying the iteration is as follows, beginning with 

starting values say Pf0* = ( y t + 1 / 2 ) / 2  (McCullagh and Nelder,

1992) to calculate r f p  the initial estimate for rjt as

rj(t0 ) = loge
' p(0)

1 -P ,(0);

then evaluating the initial values qj0’ and for the adjusted dependent 

variable qt and the quadratic weights F ,  respectively, where

)

F (0) = diag{pf0)( ] - p t( 0 ) .

p { 0)[ l  -  p f 0))
►, and
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Calculate , the improved estimate for ft as follows

t f 1* = ( X t F (0) X f 1 X T F (0) q[0) 

then form new estimates r j p  , P P \  17̂ and F ^  from fi as follows

~(1)
m

<$> = P f1)( l  - Pt0 ) )

and

F (1> =  diag{Pt(1)( l  -  Pt(I) .

Repeat until changes in deviance in successive iterations are sufficiently small.

Since the response variable Yt can only take the values 0 or 1, the 

starting values = ( y t + l / 2 ) / 2  given above, can take either 1/4 for

Yt = 0 or 3/4 for Yt = 1 and these are reasonable initial estimates for the

probabilities and may reduce the number of iterations substantially. Another 

advantage of p/ 0  ̂ is that it suggests a simple starting procedure by using the

data themselves to get the iteration under way.
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3.5.4 The Analysis of Deviance

In this section let us consider the general case where Yt is binomally 

distributed with index mt and parameter Pt . Consider the log-likelihood

/ ( P; >;) = S  [ y t  loSe Pt + ( ™ , - y t )  ioge ( i - p , ) ] .  
t

The maximum achievable value of the log-likelihood for all T observations is 

obtained when P  is a vector of T parameters (i.e., the model contains as many

parameters as there are data points), in other words the maximum achievable 

value is attained at the point P_ = ( y t /  mt ). Suppose the maximum value for 

the model under test, M q, is attained at P.  The comparison o f observed to

predicted values is based on the difference between log likelihoods for the two 

maximum values, P  and _P given by the following expression

D ( t  y ) = - 2 \ l ( £ y ) - l ( P ; y ) ]

>• + (m, - y , ) log,.2 L y t loge-
* ' 
y t_  V

A

t f t .

m , - y t

ttif -nifFf J

 (3.5.12)

A
The statistic, D (P ; y ) , in equation (3.5.12) is usually called the deviance 

(or the residual deviance) for the model M q . The deviance for binomial models

behaves in much the same way as the residual sum o f squares in ordinary linear 

models (Hosmer and Lemeshow, 1989).

The case we are considering is to analyse neuronal data where y t is 

either zero or one and mt = 1 . Substituting in (3.5.12), the deviance function

will take the form

D ( P ;  y ) =  2 £  loge( y ,  / Pt )  +  { l - y t ) loge { ( l - y , ) / (1 - Pt )}]
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—  * L  [y, l°g* { £  / ( M ) } + a * .  0 - p , h

y , lo g t ( y , ) - ( l - y , ) l o g e( l - y , j \  

= -2S [ y ,  loge{Pt / ( l - P , ) }  + log, ( 1 - P , j \

since

y t  loge (y,)  = ( l - y t ) l o g e( l - y t )  =  0 ;for y t = 0 or 1

and

log' { p ,/(7 -P ,) }  = fit = H xg Pj-
j=l

Thus

D(P; y )  = - 2 / } T X TY - 2 ^ l o g e ( l - P t )
t

=  -  2 ? X T P - 2 Y l1oge ( l - P t )
t

= - 2 ( X f i ) TP - 2 ' £ l o g e ( l - P t )
t

= - 2 j } T P - 2 ' £ l o g e ( l - P t )   (3.5.13)
t

since X T Y = X T P is the maximum likelihood equation. The deviance 

function as shown in (3.5.13) above compared with that shown in (3.5.12) is
A

clearly a function of /? alone and does not depend on Y.  In other words, given
A A AP , D(P\ y)  has a conditional distribution which depends only on p  and thus 

cannot be used to test goodness of fit (McCullagh and Nelder, 1992).
A A

Furthermore for D(P; y )  to be approximately independent o f p  and therefore
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2distributed proportional to a X(T-k)  random variable requires the following 

assumptions

a) lim mt —> <x> } and in fact lim mt Pt ( 1 -  Pt )  —> oo and,
Vf vr

b) The sample size T is large.
A

This approximate independence is essential for D(P; y )  to be considered as a

goodness o f fit statistic. If sample size T is relatively small or the number of 

binomial trials mt = 1 , the approximation no longer holds and hence deviance

cannot be used to assess the goodness of fit. An alternative way to test the 

goodness o f fit is discussed in chapter 4.

The deviance in our case (i.e. with mt = 1) is still useful to compare two

nested models to test whether the addition o f a further term significantly 

improves the fit. To make this clear, let M q represent the model under test and,

M i  the model with an additional term. The reduction in deviance

D ( P 0; y )  -  D(P_t ; y )  =  - 2 [ l ( P 0; y )  -  l (P , ;  y ) ] ,

is distributed approximately like Z(l) random variable under the assumptions

that the observations are distributed independently according to the binomial 

distribution and the sample size T is large (neuronal spike train data usually 

have very large sample sizes), see McCullagh andNelder (1992).

The x 2 approximation is therefore usually quite adequate for 

differences in deviances even though it is inadequate for the deviances 

themselves (Hosmer and Lemeshow, 1989). For the purpose of comparing 

nested models, the deviance is a useful measure and deviance tables will be 

demonstrated in our application sections as a part o f the analysis throughout 

this thesis.
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3.5.5 Linearisation Technique for Estimating Non-Linear Parameters

One example where non-linear parameters arise is in the case of

modelling the threshold. It is necessary to involve non-linear parameters to

describe the threshold accurately. For example an exponentially decaying 

function of the form Og+p exp (~ X y t )  , sometimes has the advantage of

making a substantial reduction in the order of the polynomial, Vt , given in 

(3.4.14) necessary to model the recovery function. We will see this in 

subsequent chapters.

If we consider a function of an explanatory variable x , such as 

/ ( x ; X) = exp ( - X x ) ,  this is an acceptable variable in a linear predictor, tj9

given in (3.5.1) provided that X is known since one simply uses the value of 

exp ( - X x )  in place of x in the model matrix. But if  X is to be estimated from

the data, then non-linearity arises. Here we describe a fitting procedure by 

linearisation which allows us to obtain approximate estimates o f the non-linear 

parameters in the linear predictor described in section (3.5.1) above. Consider 

the term 8  j f (x ;  X) to be added to the linear predictor, with 8 j  (linear) and

X (non-linear) unknown parameters to be estimated. For an initial value 

X(0), f(x;  X) can be expanded as

f (x; X) = f (x; X(0>) + (X -  X(0))  [ df(x; X) /  d X \x ^ 0).

Then,

S , f (x ;  X) s  8 , f (x ;  X<0))  + 8 ,  (X  -  X(0>)  [ df(x; X)  /  dX \x ^o>

or,
d j f x ;  X)  = S 2 z2 + S 2 z2

T  (3.5.14)
=  s  z .

We replace the term 8 j f ( x ; X) by two linear terms, 8 jz j  and 8 2z2 , where
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Z! = f(x; X(0> ) , z2  = [ df(x; X) /  dX \x = x(0) and S 2 = 8 } ( X -  X(0>).

The iteration procedure can be described simply as follows. Use the starting 

value (say Af0 ^= 1/2 ) to calculate starting values and z ^  for zj

and Z2 , respectively, using the expressions for zj  and Z2 given above.

Now, since all quantities appearing on the right o f (3.5.14) above are linear and 

computed using the starting value regress = ( z ^ , z ^ )  on X

(McCullagh and Nelder, 1992) to give new estimates 8 ^  and 8 ^  for the

parameters 8 j  and 8 2 , respectively. Calculate X ^ \  the improved estimate for

X as

%<» =  x<°> + X L  .
5 (, l)

Use X(I) to calculate new values z ^  and z ^  for z1 and Z2 , as follows

Z1 = f f c  r f1*) and

z 2 = [ X) I dX]x = xa)

Repeat until changes in deviance in successive iterations become sufficiently 

small. Description of a fitting technique by linearisation can be found in Box 

and Tidwell (1962).

This linearisation fitting technique is noted here because most o f the 

standard statistical packages such as GENSTAT or GLIM, which are quite 

suitable for analysing neuronal spike train data, are generally constrained to be 

linear models packages only. Using the technique described above we will be 

able to adopt those packages to estimate all the parameters in the model 

including those which are non-linear. Results obtained by this procedure can be 

seen at the end o f this chapter and in the chapters that follow.
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3.6 Application

We now turn to applications o f the likelihood method discussed above. 

First we show how the likelihood approach can be used effectively in analysing 

neuronal spike train data. This method allows us to estimate internal quantities, 

such as the summation function which represents the effects o f the input on the 

output, the absolute threshold and the recovery process o f the neurone. 

Secondly, we will be able to compare the results obtained via likelihood with 

those obtained by the other approaches discussed in chapter 2 ; for this purpose 

the same two sets o f simulated data considered in the time domain and 

frequency domain given in that chapter have been used. The simulation details 

are given in chapter 1 (section 1.6) and further details are given in appendix 

(A).

The spike trains in the first illustration were replaced by zero-one valued 

series taking a sampling interval, h, of 1 msec. This led to time series of 

approximately 60000 points. The unknown parameters were estimated by 

maximising the likelihood given in (3.5.10), employing the logistic link 

function given in (3.5.5). Fig. 3.6.1 illustrates the deviance table and 

suggests that both the summation function and the recovery and 

(exponentially decaying) threshold functions separately lead to a large 

reduction in deviance and a model with both leads to a further large reduction 

in deviance. Both functions contribute information about the process, and so 

the full model with both functions is required. Further explanation o f various 

features will follow in chapter 4.

Fig.3.6.3a represents the estimated summation function, { aw} 

(and estimated ± two standard error lines plotted around 0 ), as a measure of

the effects o f the input on the output, and suggests that the duration of an 

excitatory input is about 7 msec, i.e., \ au } ; u = 0, 1, ..., 7, are statistically
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significant. We keep adding new parameters into the summation function until 

they stop being statistically significant. The square root o f the estimated cross­

intensity function given in Fig.2.5.1c applied to the same set o f data, suggests

(l)The null model

Deviance: 20255

Recovery Functions

Deviance: 17927

(2)Threshold and (3)Summation Function

Deviance: 18120

(4)Threshold, Recovery and

Summation Functions

Deviance: 15559

Fig.3.6.1 Diagrammatic representation of the deviance table.

(1) Represents the null model.

(2) A model with only the recovery and (exponentially decaying) threshold functions.

(3) A model with only the summation function.

(4) The full model, i.e., a model with both the summation function and the recovery and 

(exponentially decaying) threshold functions.
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an excitatory effect lasting about 4 msec only, then seems to indicate an 

inhibition at around 10 msec and that contradicts the way the data was 

simulated, since there was no such inhibition present in the simulation. 

Furthermore, the significant duration of the estimated summation function 

compared with that o f the square root o f the cross-intensity function given in 

Fig.2.5.1c corresponds better with the structure o f the neuronal model used in 

the simulation in which the half-width o f the estimated excitatory post synaptic 

potential (EPSP) was about 9.8 msec as shown in Fig.3.6.2.

The recovery and threshold functions taken together (Fig.3.6.3b) 

indicate that the probability o f an output spike is very small up to about 

40 msec after the previous output spike, but then it increases rapidly. Using an 

exponential instead o f a constant threshold reduced the order k  o f the 

polynomial used in the recovery function, Vt given in (3.4.14), from order 3 to 

order 1, since | ; / > 2 are not statistically significant. It also improved the

fit o f the model a little, since it has slightly larger reduction in deviance.

EPSP

-60

Half width of EPSP

- 6 6

& -68

-70
40 500 10 20 30

Fig.3.6.2 Illustration of the excitatory posts>naptic potential (EPSP).
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(a)

2

l

0.5

0

0 2.5 5 7.5 10 12.5 15 17.5
Lag u(msec)

(b)

8

do•H
o S
§h.

0
0 10 20 30 40 50 60 70

lag(msec)

Fig.3.6.3

a) Estimated summation function, the dotted lines provide ± 1.96 standard error limits plotted around zero.

b) Estimated recovery (lower curve) and threshold (upper curve) functions, the dotted lines present the ± two 

standard error limits plotted around each curve.
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The likelihood procedure was then applied to another set o f simulated 

neuronal spike train data with known features. The spike trains were replaced 

by zero-one valued series taking a sampling interval, h, o f 2 msec. This led to a 

0-1 valued series o f approximately 30000 points. The unknown parameters 

were again estimated by maximising the likelihood given in (3.5.10), 

employing the logistic link function given in (3.5.5). Fig. 3.6.4 illustrates the 

deviance table. A model with a summation function alone leads to a large 

reduction in the deviance and a model with recovery and threshold functions 

reduces the deviance but not as much. This suggests that the data are 

input-dominated, the summation function is very informative compared to the 

recovery function. A full model with summation, recovery and threshold 

functions leads to a further worthwhile reduction in deviance and therefore is 

the best model.

The estimated summation function given in Fig.3.6.6a is similar to the 

one shown in Fig. 3.6.3a above, except that the excitatory effect o f an input 

lasts much longer, about 16 msec, though declining steadily after about 3 msec 

and again the significant duration o f the estimated summation function 

compared with that o f the cross-intensity function given in (2.5.3c) corresponds 

better with the structure of the neuronal model in which the half-width of the 

estimated excitatory post synaptic potential (EPSP) was about 19.5 msec as 

shown in Fig.3.6.5 below.

In this example, the minimum output inter-spike interval is 6  msec 

(i.e., £ i  = 6  msec) and the order of the polynomial recovery function needed is 

one (i.e. k - l ), since j#, j ; / £ 2  are not statistically significant. We force

the recovery function to be zero for y  t <, + 1  (as given in 3.4.14) ,because

there were no output data for smaller values o f y t . A constant threshold as

well as an exponentially decaying threshold were tried. The order of the
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(l)The null model

Deviance: 11870

Recovery Functions

Deviance: 10127

(2)Threshold and (3)Summation Function

Deviance: 4863

(4)ThreshoId, Recovery and

Summation Functions

Deviance: 4193

Fig.3.6.4 Diagrammatic representation of the deviance table.

(1) Represents the null model.

(2) A model with only the recovery and (constant) threshold functions.

(3) A model with only the summation function.

(4) The hill model, i.e., a model with both the summation function and the recovery and 

(constant) threshold functions.
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Estimated EPSP

-52

Half width of EPSP

-56

-58

-60
10 20 30 40

Time (msec)

Fig.3.6.5 Illustration o f the excitatory postsynaptic potential (EPSP).

polynomial recovery function needed for both models is one and because we 

wish always to minimise the number of unknown parameters in our model, 

the choice for a constant threshold in this example was assisted in this.

Fig.3.6.6b shows the recovery and threshold (constant) functions 

together. These are similar to those shown in Fig.3.6.3b, except that the 

threshold is constant in this case and the recovery function starts a little later. 

The probability of an output spike is very small up to about 25 msec after the 

previous output spike, but then increases rapidly, whereas the square root o f the 

estimated cross-intensity function, by contrast, shown in Fig.2.5.3c, suggests a 

possible periodic response which was not present in the simulation. 

Furthermore, the square root of the cross intensity suggests that the duration of 

an excitatory effect is much shorter than that suggested by the estimated 

summation function, and again the cross-intensity approach significantly 

underestimates the duration of the underlying excitatory effects o f a synaptic 

input.
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(a)

12.5

10

ao•H

2.5

-2.5
0 5 10 15 20

Lag u(msec)
(b)

25

20

S15

J! 10

10 30 4020

lag(msec)

Fig.3.6.6

a) Estimated summation function, the dotted lines provide ± two standard error limits plotted around zero.

b) Estimated recovery (lower curve) and threshold (upper curve) functions, the dotted lines present the ±two 

standard error limits plotted around each curve.
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3.7 Conclusion

The two demonstrations discussed above, both suggest that the square 

root o f the estimated cross-intensity function is difficult to interpret and may be 

misleading, and that may be because it is combining information about synaptic 

effects and intrinsic membrane properties, and underestimating the underlying 

excitatory effects o f a synaptic input. Consequently, it is a poor method of 

addressing the inter-relationships between processes. The likelihood approach, 

by contrast, is able to explore separately two aspects o f the relationship 

between spike trains in a much better way than the cross-intensity function.

Assuming that the inputs are all present in the model, the recovery and 

threshold functions taken together appear to describe the time course of 

intrinsic membrane properties, whereas the estimated summation function 

characterises a direct relationship between an input to and output from a 

neurone. All the results discussed above suggest that the likelihood approach 

does not produce misleading results in the way that the cross-intensity function 

does. However, there are further results and discussions in subsequent chapters 

which will clarify these conclusions.



Chapter 4

4 Likelihood Applications to Spontaneous Firing and to Single 
Input-Output Data

4.1 Introduction

The aims of the present chapter can be summarised by two main points. 

First to show how best the likelihood approach can be used in analysing 

neuronal spike train data by applying it to many simulated data sets, each with 

different and known features, to ensure that the technique is capable of 

reflecting those features and therefore to have the confidence to apply it to real 

data sets. This will highlight the advantages of using the likelihood approach 

that are mentioned earlier in chapter 3. Further we discuss a number of issues 

concerning the approach, such as the assessment o f the goodness o f fit, the 

modelling of threshold and the choice between link functions. Secondly to 

compare some o f the likelihood results with those obtained via stochastic point 

processes techniques reviewed in chapter 2 .
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We start with a discussion concerning the assessment o f the goodness of 

fit procedure for the adequacy o f the model and the relevance o f the link 

function we introduced in chapter 3 when discussing the analysis o f deviance.

4.2 The Goodness of Fit Procedure

The assessment of the goodness o f fit o f models based on the binomial 

distribution with a number of trials mt = 1 is a problem which needs a great

deal o f care as we have seen in the analysis o f deviance given in the previous 

chapter (section 3.5.4).

In these circumstances, we cannot rely on the deviance statistic as an 

absolute measure of goodness of fit (McCullagh and Nelder, 1992). It is 

necessary to look for alternative model checking procedures. For example, one 

may look at deviance tables which are based on differences between the 

deviances of two nested models since these differences are approximately
j

proportional to a % random variable. As a general rule, we will choose the 

simplest model (i.e. the model with the smallest number o f parameters) that 

adequately describes the data.

One way to check the validity of a model has been suggested by 

Brillinger (1988). This is based on a graphical comparison between an 

estimated probability, P ( r j ) , and its corresponding theoretical probability, 

P(rf), when both are plotted against selected values o f the linear predictor of 

the model, rj . Let rjt be the estimated linear predictor value o f the model at 

any given time t , where rjt represents the estimated membrane potential o f the 

cell. Then for any given linear predictor value, //, and small h,  the estimated
A

probability o f firing, P ( r j ) , can be defined as the ratio o f the number o f firings 

at any given time t in the small interval (r j - h , r j+ h ) , and the total number of 

possible firings in this small interval (Brillinger, 1988), i.e.,
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2  # {if = 1 with r j - h < r j t <rj + h}

P(71) =  ~u-----7— z-------75-  (4-2.1)2^# { t with 7 j -h < 7 j t <rj + hj 
t

where # { .} indicates the number o f events in the small interval 

(rj-h, rj+h) . To select a linear predictor value, rj, we divide the range o f the 

estimated linear predictor values obtained from the model into a number of 

small bins (usually of equal width). The centre value of each bin is considered 

as one selected linear predictor value, 7 , at which the probability o f firing,
a

P ( tj) ,  is to be calculated. For any other selected values of tj outside the 

above mentioned range, the denominator of expression (4.2.1) will be zero and 

therefore the empirical probability cannot be calculated.

Now for any given linear predictor value, rj, the theoretical probability, 

P(rj), is defined as

P (t j )  = I T 1 ( i t)   (4.2.2)

where H ~  ( )  denotes the inverse o f the relevant link function 

(see next section for the most commonly used link functions).

It is reasonable to estimate also the standard error limits for the 

estimated probability. This makes the graphical comparison between the 

estimated probabilities and their corresponding theoretical probabilities at any 

selected values of the linear predictor of the model, 7 , easier. Since neuronal

spike train data are usually o f a very large sample sizes, then for any given 

linear predictor value, 7  and small h, the estimated standard error for the
a

theoretical probability denoted by E.S .E(P( tj))  can be defined as

E.S.E(P(jj)) = 1 P W d - r W   (4 .2 .3)
2 #  { t with r j - h < r j t <rj + h}
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The approximate 95% standard error limits about the estimated probability, are 

defined as

The validity of the model and the relevance of the link function

values (i.e., the width o f the range of the linear predictor values which enables

informative the model is). This method of checking the validity o f the model 

along with the difference in deviances will be used throughout this study as a 

model choice criterion. It still needs to be developed however (see chapter 6).

4.3 Choice of Link Function

In the previous chapter we have introduced the idea o f a link function 

and we have utilised three link functions which are widely used in practice. 

These are the logistic link function, the probit link function and the 

complementary log-log link function, see for example Cox (1970); McCullagh 

and Nelder (1992). Suppose that tj is any given value o f the linear predictor of

the model. These three link functions are defined as

(i) the logistic link function given by

where the probability o f firing at any given value of the linear predictor o f the 

model, 77, is obtained by taking the inverse of the link function as

P ( t j )  ± 1.96 E.S.E(P(tj)). (4.2.4)

depend on both the closeness o f the estimated probabilities to their 

corresponding theoretical probabilities and the range o f the linear predictor

larger values for predicted probabilities to be achieved, indicates how

(4.3.1a)

(4.3.1b)
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(ii) the probit link function given by

H (P)  = t j  = O ' 1 (P ) ...... (4.3.2a)

where 0 (.) is the standard normal cumulative distribution function.

The inverse of the link function is given by

P( t j )  = =<D(V)  (4.3.2b)

(iii) the complementary log-log link function given by

H ( p )  = t j  = loge ( -  loge ( l - P ) )  .......(4.3.3a)

and the inverse of the link function is given by

P ( tj)  = H~I( t j )  = 1 -  e x p [ - e x p ( T j ) ]  ...... (4.3.3b)

In this section we attempt to find methods to enable us to choose 

between these link functions. We invariably start with the logistic link function 

for two primary reasons (i) it is the canonical link function for the binomial 

distribution as we have shown in section (3.5.1), and (ii) from the mathematical 

point o f view, it is an extremely flexible and easily used function as we have 

noticed in the derivation of the log-likelihood function given in section (3.5.2).

Fig.4.3.1 provides a graphical comparison o f these three link functions 

when plotted against selected values of the linear predictor f] over the range

( - 6 ,  6).  This is one means of studying their differences for values of the

linear predictor. The figure shows that the logistic and probit link functions 

have some symmetry in the sense that

H (P)  = -  H ( l  -  P).
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We have utilised these two link functions with over 50 different data 

sets, simulated as well as real, and we have noted that the two link functions 

usually produce similar results with similar physiological interpretations so that 

it is often difficult to discriminate between them. Cox (1970) and McCullagh 

and Nelder (1992) came to the same conclusion. The complementary log-log 

link function possesses no such symmetrical feature and as P approaches 1, it 

approaches infinity much more slowly than the other two link functions and 

becomes very close to the logistic link function for rj less than - 2 . It is

therefore often easier to discriminate between it and the other two. However, 

we have yet to find a data set for which it is the best link function.

0 . 8

o0.4

0 . 2

a #

6- 6 -4 -2 0 2 4
Linear Predictor

Fig.4.3.1 A  graphical comparison of three link functions, the solid line represents the

logistic link function, the dotted line (................) represents the probit link function and the

complementary log-log link function is represented by the dotted line ( ----------------).

It is reasonable to start with the logistic link function since its the 

canonical link for the binomial distribution (see section (3.5.1)) and if  this link
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function seems in some way inadequate, then to try the probit link* function and 

then if  necessary to investigate the complementary log-log link function.

In the next section we illustrate the choice of link function and the 

goodness of fit assessment by an example using spontaneous data.

4.4 Analysis of Spontaneous Discharge Data

The firing of a neurone is a signal-like discharge that may be considered 

as a common language with which neurones are able to communicate and 

exchange information with each other in order to carry out different tasks.

It is known that neurones fire mainly as a result o f an external stimulus 

such as the influence of other neighbouring neurones. Another common feature 

that many neurones seem to have, however, is spontaneous behaviour where the 

neurone fires on its own without any external influence imposed by other 

neurones. This spontaneous behaviour occurs when an action potential rises 

steadily on its own irrespective of the influences of other neurones. When that 

potential becomes close to or exceeds an extant level called a threshold, the cell 

tends to fire. For more details see chapter 1.

In this section we investigate the application of the maximum likelihood 

approach to spontaneous neural spike train data where the nerve cell is assumed 

to receive no observed input and gives rise to a single observed output. In this 

case, we are able only to estimate the threshold and recovery functions and are 

unable to compare with other approaches since there are no analogous 

measures obtained using the traditional point process techniques.

No inputs
Spontaneous firing model

Output spikes

Fig.4.4.1 Spontaneous firing model with no input and a single output.
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The object o f this section is to apply the likelihood estimation technique 

described in chapter 3 to spontaneous discharge data in order to get more 

insight into the processes involved and to investigate some intrinsic membrane 

properties o f the cell from which the spontaneous discharges have been 

generated. Further we wish to apply the goodness o f fit procedure we have 

discussed earlier in the chapter and examine the choice of link function.

The simulated spontaneous discharge neuronal spike train data have 

been generated by using a conductance based neuronal model 

(Halliday, 1994) which has been described in chapter 1 (section 1.6) and 

discussed with more detail in appendix (A).

The number of spontaneous spikes observed in this illustration was 

1620. The spike train was replaced by a zero-one valued series taking a 

sampling interval, h 9 o f 1 msec. This led to a zero-one valued series of 

approximately 60000 points. The unknown parameters used to estimate the 

recovery and threshold functions were estimated by maximising the likelihood 

equation given in (3.5.7), employing the logistic, probit and complementary 

log-log link functions. In the actual computations it seemed simplest to first 

create a data file via a FORTRAN program and then to process that file via the 

GENSTAT statistical package. A GENSTAT program is given in appendix (B).

Fig.4.4.2 represents the inter-spike interval histogram of the spontaneous 

discharges, and suggests that the interval between firings is very approximately 

normally distributed centred around 36 msec with a minimum interval of 

23 msec and a maximum interval of 59 msec between firings.
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Fig.4.4.2 The inter-spike interval histogram of the spontaneous discharges.

Fig.4.4.3a represents the estimated recoveiy function (lower curve) and

threshold (upper solid line) and their estimated ±tw o standard error limits

(dotted lines). The estimates were obtained by employing the logistic link 

function given in (4.3.1b). Let Vt represent a polynomial recovery function of

order k at any given time t , and given by

y, -
h i  ( r , - S i - i f  ; r t * S i + i  . . . . .
i=l   (4-4.1)

0 ; y t z  C1 + l

where y t denotes the time elapsed since the time of the last output spike and 

£  I denotes the minimum of the output inter-spike intervals. In this example 

=23 msec and the order of the polynomial recovery function needed is a
a

cubic (i.e. k = 3 ), since 0\ ; i > 4  are not statistically significant. We force the 

recovery function to be zero for y t < + 1  (as given in (4.4.1) above),

because there were no output data for smaller values of y  t .
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(a)Logistic Link
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F ig .4 .4 .3  Illustration o f  the estim ated recovery and threshold functions o f  the  logistic model.

(a) represents the estimated recovery (lower solid line) and threshold (upper solid line) functions and the 

estimated ±  tw o  standard error limits (dotted lines) plotted around each function.

(b) represent the empirical (dots) and theoretical (smooth curve) probabilities corresponding to the model given 

in (a) plotted against selected linear predictor values, Tj. The vertical bars are the approximate 95%

confidence intervals for the theoretical probabilities.
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A constant threshold was used and no improvements were found 

with an exponential threshold neither in the simplicity of the model 

(i.e ., the number of parameters in the model and in particular those needed in 

the recovery function) nor in the reduction in deviance.

The estimated recovery function which starts at 24 msec indicates that 

the probability o f an output spike is very small up to about 30 msec after the 

previous output spike, but then it increases rapidly and it is approximately 

constant between 40 and 50 msec. Note also that the recovery function is badly 

estimated after about 50 msec as the standard error limits get wider due to the 

lack of output data as can be seen from the output inter-spike interval histogram 

given in Fig.4.4.2.

Fig.4.4.3b illustrates the empirical and theoretical probabilities 

corresponding to the logistic model given in Fig.4.4.3a and suggests a good fit 

for the logistic model, since the confidence intervals about each o f the 

empirical probabilities are seen to contain the corresponding theoretical 

probabilities except for values of the linear predictor near -0 .8 .

Fig.4.4.4a and Fig.4.4.5a correspond to Fig.4.4.3a and represent the 

estimated recovery and threshold functions and their estimated ± 1.96 standard 

error limits plotted around each function, obtained by employing the probit and 

complementary log-log link functions given in expressions 4.3.2a and 4.3.3a, 

respectively. Again no improvements were found with an exponential 

threshold and the order of the polynomial recovery function needed in each 

case is a cubic (i.e. k = 3). The two figures reveal similar interpretations as 

those revealed by the logistic link function in Fig.4.4.3a where the probability 

o f an output spike is very small up to about 30 msec after the previous output 

spike, but then it increases rapidly and it is approximately constant between
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(a) Probit Link
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Fig.4.4.4 Illustration of the estimated recovery and threshold functions o f the probit model.

(a) represents the estimated recovery (lower solid line) and threshold (upper solid line) functions and the 

estimated ±  tw o standard error limits (dotted lines) plotted around each function.

(b) represent the empirical (dots) and theoretical (smooth curve) probabilities corresponding to the model given 

in (a) plotted against selected linear predictor values, Tj. The vertical bars are the approximate 95%

confidence intervals for the theoretical probabilities.
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(a)Complementary Link
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Fig.4.4.5 Illustration o f the estimated recovery and threshold functions o f the complementary model.

(a) represents the estimated recovery (lower solid line) and threshold (upper solid line) functions and the 

estimated ±  tw o standard error limits (dotted lines) plotted around each function.

(b) represent the empirical (dots) and theoretical (smooth curve) probabilities corresponding to the model given 

in (a) plotted against selected linear predictor values, T]. The vertical bars are the approximate 95%

confidence intervals for the theoretical probabilities.
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40 and 50 msec. Again the standard error limits for each o f the two recovery 

functions get wider after about 50 msec due to the lack o f output data.

There are scale differences for the threshold parameters between 

different link functions. However, these are not physiologically meaningful 

parameters and in fact what is physiologically meaningful is not the parameters 

in the recovery and threshold functions themselves but the difference between 

these two functions (i.e., the more the estimated recovery function approaches 

its corresponding estimated threshold, the higher is the probability o f an output 

spike). Further explanations concerning the physiological interpretation o f the 

recovery and threshold functions in different circumstances will be discussed in 

detail in chapter 5.

The goodness o f fit plot given in Fig.4.4.4b corresponds to the probit 

model given in Fig.4.4.4a and suggests a good fit for the model, since the 

confidence intervals about each of the empirical probabilities (dots) are all seen 

to contain the corresponding theoretical probabilities whereas the goodness of 

fit plot for the complementary log-log model given in Fig.4.4.5b suggests that 

the fit is not adequate for values o f the linear predictor near -1  compared to 

the goodness o f fit plots o f both the probit and logistic models. The probit 

model seems superior to the logistic one particularly because it takes the range 

of the linear predictor further than that of the logistic model. This enables 

larger values for predicted probabilities to be achieved. The probit model also 

fits better for values of the linear predictor above —1 2 .

The deviance table illustrated in Fig.4.4.6 below shows that the 

deviances for all three models are very similar with a slightly greater reduction 

in deviance for the probit model. We would therefore choose the probit model, 

both because o f the deviance table and because of our analysis o f the goodness 

of fit plot.
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(l)The null model.

Deviance: 14898

(2)The probit model.

Deviance: 9363.

(3)The logit model. 

Deviance: 9383.

(4)The c.log-log model. 

Deviance: 9386.

Fig.4.4.6 Diagrammatic representation of the deviance table.

(1) represents the null model. (2), (3) and (4) represent the threshold and recovery functions for 

the probit, logistic and complementary log-log models respectively.

4.5 Analysis of Single Input-Single Output Data

This section deals with the case where the nerve cell is assumed to 

receive one observed input and give rise to a single observed output. In this 

case, we are able to estimate threshold, recovery and summation functions and 

we will be able to compare results obtained via the likelihood approach with 

those obtained via the traditional stochastic point process techniques.

— Input spikes Nerve cell ' — Output spikes

Fig.4.5 A model with observed single input and single output.



Chapter 4 Likelihood Applications to Spontaneous Firing and to Single Input-Output Data 94

We apply the likelihood approach to estimate the summation function, 

the recovery function and threshold using both real and simulated data sets with 

excitatory and inhibitory input effects. Then we compare some o f the likelihood 

results with those obtained via time domain and frequency domain techniques.

4.5.1 Summation Function. Recovery Function and Threshold

We start by investigating the effects o f a single neurone X  (as input) on 

the membrane potential at the trigger zone of a neighbouring neurone Y 

(as output), described by counting measures X(t) and Y{t) respectively. These 

are analogous to the counting measure N(t)  defined in section (2.3). The

function which represents the effects o f a neurone X  as input on the firing of 

a neurone Y as output is called the summation function, a ( )  which has been

described in detail in the previous chapter (section 3.4.2).

The neurone may further tend to fire spontaneously on its own when

there are no external effects applied to the cell, as described earlier in this

chapter and in chapter 1. The firing may be as a result o f both internal and

external effects combined together. For further explanation see chapter 5. The

function representing these spontaneous effects at a given time t is, as 

previously, called the recovery function and is denoted by V{ . The membrane

potential at its trigger zone at any given time t , U t , may be given in its 

approximate discrete form by

r t ~i
Ut  = V ,+  £  auxf _ u  (4.5.1)

u = 0

where the set o f coefficients {au } make up the discretised summation function
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and the term Vt represents the polynomial recovery function o f order k , i.e.

V, - 1=1

0 Yt  ^  £ i  + i

....(4.5.2)

y t denotes the time elapsed since the time of the last output spike and £ j

denotes the minimum of the output inter-spike intervals. The recovery function 

given in (4.5.2) is forced to be zero for y t < £ i + 1, as explained in (4.4). For

further details see chapter 3 (section 3.2.2). The linear predictor of the model, 

ijt , representing the difference between the membrane potential and the

threshold may be given by

rjt  =  U t -  0 O  (4.5.3)

where 0 q represents the constant threshold. We could also use an exponential 

threshold as we will see shortly in section (4.5.2).

Brillinger and Segundo (1979) and Brillinger (1988 and 1992) 

considered related models. However, these models were limited to a constant 

threshold, used only a probit link function, and only fitted recovery 

(and threshold) and summation functions in the absence of any other 

unmeasured inputs. Moreover, only one real data set was used. These 

limitations o f their work heavily affect their interpretations as we will see 

shortly in the subsequent sections of this chapter and also in chapter 5.
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Input spike train
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Fig.4.5.1 Diagrammatic representation of the timing convention used for the interval 

between an output spike and the time t at which the probability of firing Pf is to be

estimated. U is the interval (starting after the last output spike) between an input spike and 

time t , v is the interval between an input spike and time t , and w  is the interval between any 

input spike occurring prior to the previous output spike and the time of the previous output 

spike.

(a) Real Data with an Excitatory Input

In this section we analyse a real set o f data obtained from a muscle 

spindle lying within the tenuissimus muscle in the hind limb of deeply 

anaesthetised cats where the fiisimotor axons were stimulated with voltage 

pulses. The inputs and the resulting response from the spindle in the form of 

sequences o f pulses were recorded. For further detail see chapter 1 o f this 

thesis, Halliday et al (1988), Rosenberg et al (1989) and Amjad (1989).
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The numbers of spikes observed in this real data set were 1768 for the 

input and 450 for the output. The spike trains were replaced for a small 

interval, h, o f length 1 msec by a zero-one valued series o f approximately 

60000 points.

The inter-spike intervals between the input firings are centred around 

40-45 msec with minimum and maximum intervals o f about 15 and 95 msec, 

respectively, whereas the inter-spike intervals between the output firings are 

centred around 125-130 msec with minimum and maximum intervals o f about 

94 and 350 msec, respectively.

The unknown parameters were estimated by maximum likelihood, 

employing the logistic link function given in (4.3.1a). The membrane potential, 

threshold and linear predictor are the same as those given in (4.5.1 - 4.5.3).

Fig.4.5.2a represents the estimated summation function and shows 

effects from inputs are only significant in affecting the output to any great 

extent around 8 msec later. We may note that in this case, the cross-intensity 

function given in Fig.4.5.4a is almost identical to the summation function. This 

may be due to the reason that there was no sign o f any carry-over input effects 

(see section 4.6) or due to the very weak input effects on the output, since the 

reduction in deviance when the summation function is fitted alone is a very 

small one as can be seen from the deviance table given in Fig.4.5.3. It may be a 

combination of the two. This is one of the few cases where the cross intensity 

function might still be a meaningful measure.

The minimum of the output inter-spike intervals, , is 94 msec and the

order o f the polynomial recovery function needed is a cubic (i.e. k = 3 ), since 

I#, | ; / > 4  are not statistically significant. We force the recovery function to

be zero for y t < ^  + 1 , because there were no output data for smaller values 

of Yt-
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The estimated recovery function given in Fig.4.5.2b which starts at 95 

msec is well-estimated out to about 150 msec, and although the recovery 

function is rising steadily and it is approximately constant after about 

135 msec, it remains far below threshold at 150 msec. These weak input and 

spontaneous effects on the firing of the output suggests that there must be some 

other unmeasured inputs present. Indeed, about 77% o f the variation remained 

unexplained as we will see shortly when investigating the deviance table. 

However, the involvement o f the unmeasured inputs and some other interesting 

results will be discussed in detail in chapter 5 when we take into account all the 

input information available. The dotted lines provide ± two standard error 

limits plotted around zero for the coefficients o f the summation function and 

plotted around each solid curve for the recovery and threshold functions.

The goodness o f fit plot given in Fig.4.5.2c indicates that only very 

small probabilities can be predicted which reflects the large unexplained 

variability. And the confidence intervals are wide.

A constant threshold was used and no improvements were found with 

an exponential threshold. The deviance table given in Fig.4.5.3 indicates that 

the recovery function is much more informative compared to the summation 

function, since it reduces the deviance by 1126 when fitted alone and a 

reduction of only 83 when fitting the summation function alone, however, a 

model with both functions reduces the deviance by 1199 (i.e., almost the same 

reduction as the sum of the reductions, 1209, when both functions are fitted 

separately). This suggests that the information contained in the recovery 

function is both greater and largely orthogonal to that contained in the 

summation function. The table also indicates that the data is largely dominated
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Fig.4.5.2 a) Estimated summation function, b) Estimated recovery and threshold (upper solid line) 

functions. The dotted lines give ±  two standard error limits plotted about zero in (a) for the summation 

function and plotted around each function in (b) for the threshold and recovery functions, c) The goodness of 

fit plot with empirical (dots) and theoretical (smooth curve) probabilities plotted against selected values for the 

linear predictor, the vertical bars give ±  two standard error limits for the theoretical probabilities.
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Deviance: 5300

The null model

Summation Function

Deviance: 5217

Threshold and Recovery 
Functions

Deviance: 4174

Threshold, Recovery and Summation Functions

Deviance: 4101

Fig.4.5.3 Diagram m atic representation o f  the deviance table.

by some other sources of variation (e.g., unmeasured inputs) since the amount 

of variation explained by the hill model is only about 23%.

Fig.4.5.4a, b and c correspond to the estimates o f the square root o f the 

cross-intensity function, coherence and phase, respectively. The coherence plot 

suggests that the two processes are not associated with each other over any 

range o f frequencies. The estimated phase suggests that there is no simple delay 

present. The likelihood approach through its threshold, recovery and 

summation functions and the deviance table provides more information than 

that provided by the time domain and frequency domain approaches.

(b) Simulated Data with an Inhibitory Postsvnaptic Input

This is an example where the firing o f one neurone input decreases 

(or inhibits) the spike activity of the second neurone output. This leads to the 

inhibitory post-synaptic potential (IPSP) as explained earlier in chapter 1. The 

data were again simulated by using a conductance based neuronal model using 

an inhibitory input (Halliday, 1994).
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Fig.4.5.4 a) Estimate of the square root of the cross-intensity function, b) Estimate of the ordinary

coherence, c) Estimate of the phase. The dotted line in the coherence plot represents the upper limit of the 95%

confidence interval for the coherence under the hypothesis that the two processes are independent. The dotted

lines in the cross-intensity plot represent approximate 95% confidence intervals under the hypothesis that the 

two processes are independent plotted around -yJPy •
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The numbers of spikes observed were 2997 for the input and 1400 for 

the output. The spike trains were replaced, for small intervals h of 

length 1 msec by a 0-1  valued series o f approximately 60000 points 

(records of approximately 60 seconds). The summation, threshold and recovery 

functions were again estimated by maximum likelihood, employing the 

canonical link function, whereas the square root of the cross-intensity function, 

the coherence and phase were estimated by stochastic point processes 

techniques.

The inter-spike intervals between the input firings given in Fig.4.5.5a 

suggest approximately an exponential distribution (i.e. a Poisson process) with 

a maximum interval between firings of 120 msec whereas the inter-spike 

intervals between the output firings given in Fig.4.5.5b suggest very 

approximately a normal distribution centred around 45 msec with minimum and 

maximum intervals o f 24 and 75 msec, respectively.

Fig.4.5.6a, b and c correspond to the estimates of the square root o f the 

cross-intensity function, coherence and phase, respectively. The coherence plot 

(Fig.4.5.6b) indicates clearly that the two processes are associated with each 

other over the range of about 0-18 Hz. The estimated phase given in Fig.4.5.6c 

shows that, over the range of frequencies at which the coherence is significant, 

the output process is delayed, on average, by an about 1.6 msec with an 

approximate 95% confidence interval for the delay of (0.81, 2.39) msec. The 

delay suggested by the phase seems to be consistent with the location of the 

peak in the estimated cross intensity function. However, Fig.4.5.6c might also 

be considered as not demonstrating the existence of a simple delay at all.

Fig.4.5.7a, b and c correspond to the estimates o f the summation 

function, recovery and threshold functions and the goodness o f fit plot, 

respectively. We see that while the square root o f the cross intensity function
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Fig.4.5.5

(a) The inter-spike interval histogram between the input firings.

(b) The inter-spike interval histogram between the output firings.
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Fig.4.5.6 a) Estimated Square root of the cross-intensity function. The dotted lines represent approximate

95% confidence intervals for the square root o f the cross-intensity function under the hypothesis that the 

two processes are independent plotted around ^ P y  * Estimate of the ordinary coherence, the dotted line

represents the upper limit of the 95% confidence interval for the coherence under the hypothesis that the two 

processes are independent, c) Estimate of the phase.
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given in Fig.4.5.6a indicates that the inhibitoiy effects o f an input last only

about 8 msec, in contrast, the summation function given in Fig.4.5.7a reveals 

effects lasting 35 msec, i.e., {au} ; u = 0, 1 , 3 5 ,  are statistically

significant. We keep adding new parameters into the summation function until 

they stop being statistically significant. The summation function seems more 

consistent with the way by which the data have been simulated since its 

significant duration compared to the duration of the square root o f the cross­

intensity function corresponds closely with the 39 msec half-width o f the 

estimated inhibitory post-synaptic potential (Fig.4.5.8) used as the synaptic 

input to the neuronal model used for the simulations. It appears that the square 

root o f the cross-intensity function underestimates the underlying inhibitory 

effects o f a synaptic input and combines information about direct synaptic 

effects and intrinsic membrane properties whereas the likelihood approach 

seems to be more capable of separating these two effects providing all the input 

information is presented in the model. Otherwise it appears that the recovery 

function along with the intrinsic membrane properties o f the cell also reflects 

some of the unmeasured input effects. Consequently, the square root of the 

cross-intensity function in this case is an inadequate method for addressing the 

inter-relationships between the two processes.

The recovery and threshold functions (Fig.4.5.7b) are well estimated to 

about 60 msec (and we note very few intervals between output spikes are 

longer). The probability o f an output spike occurring after 25 msec increases 

rapidly so that it is unlikely that output spikes are separated by much more than 

50 msec, and this corresponds well with Fig.4.5.5b.

The goodness of fit plot given in Fig.4.5.7c indicates that only relatively 

small probabilities can be predicted since the model can only predict for 

linear predictor values less than zero and also the confidence intervals
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Fig.4 .5 .7  a) Estimated summation function, b) Estimated recovery and threshold (upper solid line) 

functions. The dotted lines give ±  two standard error limits plotted about zero in (a) for the summation 

function and plotted around each function in (b) for the threshold and recovery functions, c) The goodness of 

fit plot with empirical (dots) and theoretical (smooth curve) probabilities plotted against selected values for the 

linear predictor, the vertical bars give ±  two standard error limits for the theoretical probabilities.
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near zero are wider. However, the goodness o f fit plot seems satisfactory in the 

sense that the confidence intervals about each of the empirical probabilities are 

seen to contain the corresponding theoretical probabilities. A logistic link 

function was used and in terms of the goodness o f fit test it was superior to 

probit or complementary models.

The distance between the two vertical arrows in Fig.4.5.8 measures the 

half-width o f the estimated inhibitory postsynaptic potential (IPSP).

Estimated IPSP

-60

-60.2

d -60.6

-60.8

-61
250200100 150500

Time (msec)

Fig.4.5.8 Illustration o f the inhibitory postsynaptic potential(IPSP).

Fig.4.5.9 illustrates the table of deviances and shows that a model with 

only recovery and threshold functions leads to a greater reduction in deviance 

than a model with only a summation function. A model with recovery, 

threshold and summation functions leads to a further reasonable reduction in 

deviance. Evidently the information contained in the recovery and threshold
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functions is almost orthogonal to that contained in the summation function 

because the sum of the two reductions in deviance when both functions are 

fitted separately, 5071, is quite similar to the reduction in deviance, 4870, when 

both functions are fitted together.

Deviance: 13289

The null model

Summation Function

Deviance: 11998

Threshold and Recovery Functions

Deviance: 9509

Threshold, Recovery and Summation Functions

Deviance: 8419

Fig.4.5.9 Diagrammatic representation of the deviance table.

Furthermore, suppose we use the likelihood approach to fit only the 

cross-intensity function, i.e.
°° *

Uf ~ ^t—v
v=0

where the set o f coefficients |a * | represents the cross-intensity function. Here 

we take into account not only the time of the previous output spike ( y t ) as in

the summation function, but consider all previous input spikes (i.e., because 

that is how the cross intensity function is traditionally calculated).

Fig.4.5.10a gives the estimated cross-intensity function (estimated via 

the likelihood function). The residual deviance for this model is 12847; a 

reduction of only 442 from the null model (i.e., a reduction of about 3.33%), 

providing still further evidence that the cross-intensity function in general has
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very poor explanatory power. The goodness o f fit plot for a model containing 

only the cross-intensity function (shown in Fig.4.5.10b) indicates that the fit is 

a very poor one compared with that for the threshold, recovery and summation 

functions shown in Fig.4.5.7c. This can be seen both from the very small values 

of the predicted probabilities, P (r j)<  0 .15 , (i.e., the short range of the linear

predictor values) and from the departure of the predicted probabilities from the 

theoretical curve for values o f the linear predictor less than -4 .7  and above 

- 3 .
(a)Cross Intensity Function

-1

- 2

-3
u

20 300 10

Lag v(msec) 
(to)

0.15

•H

i! 0.075
Sio£ 0.05 n«
0.025

3 -2.54.5 3.56 5.5 5 4
Linear Predictor

Fig.4.5.10 a) The cross-intensity function estimated via likelihood. The dotted lines 

give ± two standard error limits for the cross-intensity functions plotted about zero.

b) The goodness of fit plot corresponds to the model given in a).
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We can provide a formal F-test based on the change in the deviance and 

the degrees o f freedom under the hypothesis that there is no significant 

improvement made by adding new terms. The calculated and tabulated F-values 

are given by:

_  {change in deviance /  change in degrees o f  freedom} 
calculated deviance o f  the new model /  its degrees o f  freedom  

_  {change in deviance /  (mj -  m2) }  
deviance o f  the new model /  m2

and

Ftabulated = Fmj -m2, m2 ; q

where mj and m2 are the degrees of freedom for the old and new models

respectively, whereas q is the significance level. The F-test suggests that, the

hypothesis that there is no significant effect in adding the threshold and

recovery functions to the null model is rejected at any significance level since 
the tabulated F-value (i.e., Ftabulated = Fm]_ m 2m 2;q = F3 „ . 0 999 =  5.42)

is much smaller than the calculated F-value (i.e., Fcalculated =7949.8). 

Similarly, and for the same reasons, we reject the hypothesis that there is no 

significant effect in adding the summation function to the null model. The test 

also rejected both of the hypotheses o f not adding the threshold and recovery 

functions to a model with only a summation function and that o f not adding the 

summation function to a model with only threshold and recovery functions. We 

do not explicitly provide these F-tests subsequently in the thesis, but they can 

easily be derived from the deviance table.
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4.5.2 Recovery Function Choice and Threshold Modelling

The recovery function is intended to describe the intrinsic membrane 

properties o f the cell and to allow for spontaneous firing. However, we shall 

see in chapter 5 that it detects other features also. It is modelled as a 

polynomial o f order k in (y  t ~C i ~l)-> where y t denotes the time elapsed at

time t since the time o f the last output spike and £ i  denotes the minimum of 

the output inter-spike intervals.

The order k of the polynomial recovery function depends on the 

function form that is used in modelling the threshold which may take either a 

constant or an exponentially decaying form. If Ut represents the membrane

potential on the trigger zone of the cell at time t , we have 

Y t - 1
u t = Vt + I  a u xt - u   <4-5-4)

u = 0

where the set o f coefficients {au } make up the discretised summation function 

and the term Vt represents the polynomial recovery function of order k , i.e.

„  ; r , * C i  + iV, = j i=1  (4.5.5)

0 ; y t <> C i + 1

y  i denotes the time elapsed since the time of the last output spike and ^ /

denotes the minimum of the output inter-spike intervals. The recovery function 

given in (4.5.5) is forced to be zero for, y t < + 7 as explained in (4.4). The

linear predictor of the model, rjt , representing the difference between the 

membrane potential and the threshold may be given by

i)t  = U,-(e0 + n  e x p { - Z y , } ) ..(4.5.6)
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where the term (Oq + / /  exp{—A in (4.5.6) represents the threshold

(decaying exponentially). We naturally wish to minimise the number of 

unknown parameters involved in rjt and particularly in Vt , and an appropriate

choice for the threshold assists in this.

From a practical point of view, it is easier to start with a model of the 

simplest threshold form, i.e., a model with a constant threshold as given in

(4.5.3), then to check the order k (i.e., the number of statistically significant 

parameters) required for the recovery function. If this order is high (say k >  3 )  

then we may try a model with an exponentially decaying threshold as given in 

(4.5.6) above. The model which requires the smaller number o f parameters for 

an adequate fit (among models with similar deviances) is the model we are 

usually going to choose.

To amplify the above discussion, we demonstrate the threshold 

modelling and recovery function choice by an example, applying maximum 

likelihood techniques and then comparing the results obtained for the final 

model with those obtained via stochastic point processes techniques.

The simulated data set demonstrated here consists o f a 0-1 valued series 

of approximately 60000 sampling points. The unknown parameters used in the 

summation, threshold and recovery functions were estimated by maximising the 

likelihood equation given in (3.5.7). The probit link function given in (4.3.2a) 

was used and in terms o f the reduction in deviance, the goodness o f fit test and 

taking the range of the linear predictor a little further, was superior to a logistic 

model.

The number o f spikes observed were 3029 and 1410 for the input and 

the output, respectively. The inter-spike intervals between the input firings 

suggest approximately an exponential distribution (i.e., a Poisson process) with 

minimum and maximum intervals o f 1 msec and 168 msec, respectively,
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whereas the inter-spike intervals between the output firings suggest a skewed 

distribution centred around 41 msec with minimum and maximum intervals of 

5 msec and 236 msec, respectively.

(a) A Model with a Constant Threshold

The set of data has been used to fit a model with a constant threshold, 

recovery function and summation function, employing the probit link function, 

ie .,

pt = ® (n ,)  = ® ( u t -  d 0)

where 0 (.) is the standard normal cumulative distribution function and the 

terms rjt , U t and 0 O, are as defined in expressions (4.5.1), (4.5.2) and (4.5.3).

Fig.4.5.11a represents the estimated summation function and estimated

95% standard error limits plotted about 0 and suggests that the effective

duration of an excitatory input on the output is about 11 msec, i.e., 

{pu \ u  = 0, 1, ..., 77, are statistically significant. The order o f the

polynomial recovery function needed is a cubic (i.e. Jc = 3), since j#, j ; / > 4
are not statistically significant. The constant threshold (upper solid line) and 

(cubic) recovery (lower solid curve) functions given in Fig.4.5.11b indicate that 

the probability of having an output spike spontaneously is relatively small as 

can be seen both from the comparatively small reduction in deviance when the 

recovery function is added, and from the wide distance between the recovery 

function and the threshold over the whole range of the intervals between output 

spikes. Another point to notice here is that the recovery function is badly 

estimated at intervals greater than 75 msec because very few intervals between 

output spikes are this long.

The goodness of fit plot given in Fig.4.5.11c indicates that only 

relatively small probabilities can be predicted and also the confidence intervals
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Fig.4.5.11 a) Estimated summation function, b) Estimated recovery and threshold (upper solid line) 

functions. The dotted lines give ±  two standard error limits plotted about zero in (a) for the summation 

function and plotted around each function in (b) for the threshold and recovery functions, c) The goodness of 

fit plot with empirical (dots) and theoretical (smooth curve) probabilities plotted against selected values for the 

linear predictor, the vertical bars give ±  two standard error limits for the theoretical probabilities.
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near zero are wider. However, the goodness o f fit plot seems satisfactory in the 

sense that the confidence intervals about each o f the empirical probabilities are 

seen to contain the corresponding theoretical probabilities.

(b) A Model with an Exponentially Decaying Threshold

We may use an exponential instead of a constant threshold in the model 

along with a recovery function, Vt , and a summation function, i.e. setting

P, =  <D(/7, )  = <f( U , - ( d 0 + H e x p { - X y , } )  )

where 0 (.) is the standard normal cumulative distribution function and the 

terms rjt , Ut and [Oq + fj, exp { - A  / t } ) ,  are as defined in expressions

(4.5.4), (4.5.5) and (4.5.6). This reduced the order k o f the polynomial needed 

for the recovery function, Vt , from order 3 to order 1, since j ; i >  2  were

not statistically significant. It also improved the fit o f the model a little since it 

produced a slightly larger reduction in deviance than a model with a constant 

threshold as we will see shortly from the deviance table, although both models 

had the same number o f parameters (i.e., both in terms o f the threshold and 

recovery functions and because the summation function lengths were identical). 

Furthermore, the parameters in the threshold and recovery functions are not 

physiologically meaningfixl parameters and we cannot give them any direct 

interpretation. But the significant thing we are looking at is in fact the 

difference between these two functions (i.e., the more the recovery function 

approaches the threshold, the higher the probability o f an output spike).

The summation function given in Fig.4.5.12a was almost identical to 

that given in Fig.4.5.11a above and both are with the same number of
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parameters. This suggests that, in this example, the change in the threshold and 

recovery functions has very little effect on the summation function behaviour. 

This is good, as it suggests that the effect o f the single input is largely 

contained in the summation function, and not in the recovery function.

The exponential threshold (upper solid curve) and (first order) recovery

(lower solid line) functions given in Fig.4.5.12b suggest a similar interpretation

as in the constant threshold model except that the recovery function in this case

is well estimated (though very small in effect) over the entire range of intervals

because the linear parameter is well estimated, whereas the cubic term in

(4.5.5) leads to greater variability for large values of y t . Again we have a

satisfactory goodness of fit plot (Fig.4.5.12c), very similar to Fig.4.5.11c, 

which makes distinguishing between the two models using this type of 

goodness o f fit plot very difficult.

The table o f deviances given in Fig.4.5.13 suggests that a model with the 

summation function alone leads to a modest reduction in the deviance. A model 

with an exponentially decaying threshold and first order polynomial recovery 

function alone leads to a slightly larger reduction in the deviance than that with 

a constant threshold and third order polynomial recovery function, but not as 

much as the reduction made by the summation function. The largest reduction 

in deviance has been achieved with a model with an exponential threshold, first 

order recovery function and summation function and it seems to be the best 

model, although only marginally better than that with the constant threshold, 

cubic recovery function and summation function, since the deviances are 

similar.

The square root o f the estimated cross-intensity function as a time 

domain measure of the degree o f association between the two processes given 

in Fig.4.5.14a indicates an excitatory input effect lasting about 6  msec only. 

This duration is shorter than that suggests by the estimated summation function
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Fig.4.5.12 a) Estimated summation function, b) Estimated recovery and threshold (upper solid curve) 

functions. The dotted lines give ±  two standard error limits plotted about zero in (a) for the summation 

function and plotted around each function in (b) for the threshold and recovery functions, c) The goodness of 

fit plot with empirical (dots) and theoretical (smooth curve) probabilities plotted against selected values for the 

linear predictor, the vertical bars give ±  two standard error limits for the theoretical probabilities.



Chapter 4 Likelihood Applications to Spontaneous Firing and to Single Input-Output Data 118

which is about 11 msec (Fig.4.5.12a). This is another example where the square 

root o f the estimated cross-intensity function significantly underestimates the 

duration of the underlying excitatory effects o f a synaptic input. Furthermore, 

the residual deviance when we use the likelihood approach to estimate the 

cross-intensity function (as explained in section 4.5 .1-b) is 12320; a reduction 

of only 1044 from the null model (i.e., a reduction o f about 7.8%), indicating 

that the cross intensity function has poor explanatory power compared to the 

summation function, where the reduction in deviance is 1617.

Deviance: 13364

The null model

Summation function

Deviance: 11747

Exponential threshold and 
Recovery functions

Deviance: 12758

Constant threshold and 
Recovery functions

Deviance: 12909

Constant threshold, Recovery 
and Summation functions

Deviance: 11367

Exponential threshold, Recovery 
and Summation functions

Deviance: 11256

Fig.4.5.13 Diagrammatic representation o f the deviance table.

The estimated coherence (Fig.4.5.14b) gives clear evidence that the two 

processes are significantly coupled over the range of frequencies o f about 

(0, 90) Hz. The estimated phase given in Fig.4.5.14c shows that, over the range 

of frequencies at which coherence is significant, the output process is delayed,
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Fig.4.5.14 a) Estimated square root of the cross-intensity function. The dotted lines represent approximate

95% confidence intervals for the square root of the cross-intensity function under the hypothesis that the two 

processes are independent plotted around ^ P y  • Estimate of the ordinary coherence, the dotted line

represents the upper limit of the 95% confidence interval for the coherence under the hypothesis that the two 

processes are independent, c) Estimate of the phase.
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on the average, by about 2.55 msec with a 95% confidence interval, for the 

delay, of (2.4, 2.7) msec. The value for the delay suggested by the phase seems 

to be consistent with the peak at 2  msec in the square root o f the estimated 

cross intensity function. In this particular example the peak in the summation 

function is centred about 2.5 msec. This is also close to the value for the delay 

estimated from the phase. In this example the data set is input dominated, and 

the delay appears as the dominant feature. This is not always the case, as we 

will see in subsequent examples.

4.6 Carry-over Effect Function (COE)

The effects o f an input on the output have been discussed both 

physiologically in chapter 1, and statistically earlier in this chapter. The 

likelihood characterises these effects in a more informative way through the 

summation function, recovery and threshold functions compared to the time 

domain through the square root o f the cross intensity function. But these effects 

have been considered only for those input spikes occurring after the time since 

the last output spike occurred, ignoring those occurring before the time o f the 

previous output spike. This physical constraint assumes that each input spike 

only contributes to the firing o f the next output spike, then remains without any 

significant effect on any subsequent output firing. These input postsynaptic 

effects are estimated by the summation function as we have seen before.

From the physiological point o f view, it is important however to 

investigate these input postsynaptic effects (at lag w as shown in Fig.4.5.1) to 

check if  they still have any significant effects after the subsequent output firing 

or if  they just die away immediately after the next output spike has been 

produced.
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The input postsynaptic effects therefore, can be divided into two types 

of effect. First is the effect o f those occurring at times after the time of the last 

output spike (at lag u as shown in Fig.4.5.1). This type o f effect has been 

represented by the summation function as we discussed earlier. Second is the 

effect at any given time t on the output of those input spikes occurring at times 

prior to the time of the previous output spike (at lag w as shown in Fig.4.5.1). 

This type o f effect is termed a carry-over effect and the function quantifying 

these effects is called the cany-over effect function (COE) and takes the form

Cf = £  Cw xt - W   (4-6 1 )
W Z y t

where y  t is the time elapsed at time t since the time o f the last output spike 

and the set o f coefficients {cw j make up the carry-over effect function.

This capability of separating out the input postsynaptic effects into two 

components shows clearly the flexibility o f the maximum likelihood approach 

which gives the likelihood one further advantage. The time domain and 

frequency domain approaches reviewed in chapter 2  seem entirely incapable o f 

separating out the two types of input postsynaptic effects and therefore do not 

provide an analogous measure for the carry-over effects o f a synaptic input. 

This gives the likelihood approach an advantage and superiority over the time 

domain and frequency domain approaches.

We demonstrate the above by an example where input carry-over effects 

are apparently present. We apply maximum likelihood to the set o f data, to 

estimate the threshold, recovery, summation and the carry-over effect 

functions. Also we compare the likelihood results with those obtained via 

stochastic point process techniques.
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The simulated data set demonstrated here consists o f a 0-1 valued series 

of approximately 60000 sampling points. The unknown parameters used in the 

estimate o f the threshold, recovery, summation and the carry-over effect 

functions were estimated by maximising the likelihood equation given in 

(3.5.10), employing the logistic link function given in (4.3.1a), since it was 

superior to the probit link function in terms o f the reduction in deviance, the 

goodness of fit test and taking the range o f the linear predictor a little further. 

The linear predictor of the model, rjt , representing the difference between the

membrane potential and the threshold is given by

//, = U t -  Q0 ...... (4.6.2)

where 6 q represents the constant threshold and the term U t represents the 

membrane potential on the trigger zone of the cell at any given time t , and may 

be given in its approximate discrete form by

Y , - 1
Ut  = Vt + Z  au xt - u  + ^  Cw xt - W...... ...... (4-6 ’3)

u = 0 yv>r t

y t is the time elapsed at time t since the time of the last output spike, the two 

sets o f coefficients and make up the carry-over effect and

summation functions respectively and the term Vt , as previously defined,

represents the polynomial recovery function o f order k .

The number of spikes observed were 2991 and 4345 for the input and 

the output, respectively. The inter-spike intervals between the input firings 

suggest approximately an exponential distribution (i.e., a Poisson process) with 

minimum and maximum intervals o f 1 msec and 120  msec, respectively,

whereas the inter-spike intervals between the output firings suggest

approximately a normal distribution centred around 18 msec with minimum and
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maximum intervals o f 2 msec and 41 msec, respectively. A GENSTAT printout 

o f the results obtained for this data set is illustrated in appendix (C).

The summation function given in Fig.4.6.1a reveals an excitatory effect 

of an input lasting about 13 msec. Also we have an evident carry-over effect as 

shown in Fig.4.6.1b, lasting from about 2 msec to 20 msec. It is a relatively 

small effect, as can be seen both from the comparatively small reduction in 

deviance from a model with only summation, threshold and recovery functions 

to a model when a carry-over effect function is added, and from the fact that 

the parameters of the summation function tend to be much more statistically 

significant. Nonetheless it is a real effect, and the appropriate F-test for its 

inclusion in the model was significant. The threshold and recovery functions 

(Fig.4.6.1c) are well estimated to about 35 msec (and we note very few  

intervals between output spikes are any longer) and suggest that the probability 

of an output spike is small up to about 10 msec after the previous output spike, 

but then increases rapidly. The chance of crossing the threshold is substantial 

after about 2 0  msec.

The goodness of fit plot given in Fig.4.6.2 seems very reasonable and 

indicates that, in this particular example, large probabilities can be predicted by 

the likelihood model. The model takes the range of the linear predictor to about

1.6 which reflects the relatively large explained variability by the model 

compared to that in previous examples. And the confidence intervals are 

reasonably narrow.

Fig.4.6.3 illustrates the deviance table and shows that both summation 

function and recovery function when fitted separately lead to a moderate 

reduction in the deviance whereas a model with both functions fitted together 

leads to a much larger reduction in the deviance. Adding the carry-over effect 

function to a model with the summation function alone or to a model with both 

recovery and summation functions makes a relatively small difference.
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Fig.4.6.2 The goodness of fit plot with empirical (dots) and theoretical (smooth curve) 

probabilities plotted against selected values for the linear predictor, the vertical bars present the 

± two standard error limits for the theoretical probabilities.

i f

Deviance: 31181

The null model

Recovery Function

Deviance: 26958

Summation Function

Deviance: 26205

Recovery and Summation Functions

Deviance: 20583

Summation and Carry-over Effect Functions

Deviance: 25609

Recovery, Summation and Carry-over Effect Functions

Deviance: 18706

Fig.4.6.3 Diagrammatic representation o f the deviance table.
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The square root o f the estimated cross-intensity function given in 

Fig.4.6.4a indicates an excitatory effect o f an input lasting about 5 msec only. 

As in most previous examples, the square root o f the estimated cross-intensity 

function provides little o f the information available in the 4 components 

(threshold, recovery, summation and carry-over effect functions) o f the 

likelihood model. The estimate o f the cross-intensity function using the 

likelihood approach (as explained in section 4.5 .1-b) providing the evidence 

that the cross-intensity function has very poor explanatory power as the 

residual deviance obtained from the likelihood is 29359; a reduction of only 

about 5.8 %, whereas the residual deviance obtained using the summation 

function model is 26205.

Fig.4.6.4b gives the estimated coherence and suggests that the two 

processes are strongly coupled over the range o f frequencies o f about 

(0, 75) Hz. The estimated phase given in Fig.4.6.4c shows that, over the range 

of frequencies at which coherence is significant, the output process is delayed, 

on the average, by 1.87 msec with a 95% confidence interval, for the delay, of 

(1.76,1.98) msec. The value for the delay suggested by the phase is moderately 

close to the peak in the square root o f the estimated cross intensity function. In 

this example the peak in the summation function is centred about 3 msec. This 

differs from the estimated time of the peak in the cross intensity function and 

from the value of the delay estimated from the phase. Unlike the previous 

example, this data set is not input dominated and there is a lack o f agreement 

between the summation function and the cross intensity function. The situation 

seems to be more complicated than what is suggested by the phase and the 

cross intensity function, and it seems that perhaps summarising this in a single 

number and calling it a “delay” may not always be appropriate.
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Fig.4.6.4 a) Estimated square root of the cross-intensity function. The dotted lines represent approximate
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processes are independent plotted around iJ-Py • h) Estimate of the ordinary coherence, the dotted line
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4.7 Conclusion

In this chapter the likelihood estimation procedure has been applied to 

various different neuronal spike train data sets, and there are many interesting 

features to which we draw attention. The main features can be summarised in 

the following points. First is the analysis o f a spontaneous discharge data set 

(section 4.4), the case where we are only able to estimate the threshold and 

recovery functions. Here stochastic point process techniques do not provide an 

analogous measure of the spontaneous behaviour o f the cell, so that the 

likelihood approach has a total advantage over time and frequency domain 

analyses. Second is the analysis o f single input and single output neuronal spike 

train data sets, and we introduced the idea o f a carry-over effect (COE) of the 

synaptic inputs on the firing of a neurone and we have estimated the carry-over 

effect function which quantifies these effects. As in the analysis o f the 

spontaneous discharge data, the time and frequency domains do not provide an 

analogous measure of the carry-over effect o f the synaptic inputs which again 

gives the likelihood approach the advantage over the stochastic point process 

techniques. Also these demonstrations suggest again that the square root o f the 

cross intensity function is difficult to interpret and may be misleading and 

underestimating the underlying excitatory and inhibitory effects o f a synaptic 

input. Furthermore, the cross intensity function seems to reduce the residual 

deviance less than the summation function. Therefore, the cross intensity 

approach is a poor method of investigating the association between processes. 

The likelihood approach is able to separate the aspects o f the relationship 

between spike trains through the threshold, recovery, summation and carry over 

effect functions and such is not provided by stochastic point process 

techniques.



Chapter 5

5 Likelihood Applications to Multiple Input and Single Output Data

5.1 Introduction

The usefulness o f the likelihood approach in analysing neural spike train 

data with a single input and a single output, discussed in the previous chapter, 

leads to a further consideration o f a wide range o f questions relating to more 

realistic situations when we extend the use o f the likelihood approach to the 

case of neural spike train data with two inputs and a single output. We may also 

include a continuous input representing an ‘Unobservable” input which can be 

used in the simulation as a stimulus to match comparable experimental data. 

Thus we use this continuous input to simulate the effects o f all other 

unmeasured or unmeasurable inputs. This extension will give the likelihood 

model the ability to achieve greater insight into the processes involved, and to 

reflect major features of the cell. This will be seen from the very substantial 

reduction in the deviance as the model receives more input information.

The main aim of this chapter is to extend the application o f the 

likelihood approach to the above case. This is to show that the approach is
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sufficiently flexible, and it may further be extended in principle to the case of 

an arbitrary number o f neurone inputs. Another target o f this chapter is again to 

compare the results obtained using likelihood with those obtained using 

stochastic point process techniques.

We demonstrate the application of the maximum likelihood approach in 

this chapter with three simulated sets o f data. For the first set o f data we have 

one observed (spike train) input and one ‘Unobservable” input, and one 

observed output whereas two observed (spike train) inputs and one 

‘Unobservable” input and one observed output are presented in the other two 

sets o f data. The demonstration will also include a set o f real spike train data 

recorded from the muscle spindle. The simulation was done again by using a 

conductance based neuronal model using an excitatory input. To increase the 

output firing rate in order to match comparable experimental data, a continuous 

input representing a population o f ‘Unobservable” inputs has been used to 

stimulate the cell (Halliday, 1994). The real data were obtained from a muscle 

spindle lying within the tenuissimus muscle in the hind limb o f a deeply 

anaesthetised cat. More details o f the recording procedure will be illustrated in 

the chapter.

The general application o f the likelihood methods to the case of more 

than one input is the same as that in the case o f single input discussed in 

chapter 4. But it has some computational implications (i.e., it requires more 

computational space and computational time than the case o f a single observed 

input). For this computational reason the data sets used in this chapter have 

been either regrouped with binwidth two (i.e., h = 2 msec) in the cases where 

the data then remains as a 0-1 valued series (i.e., maintains the 0-1 property 

required for the binomial distribution) or have been split up into two or more 

disjoint segments if  the 0-1 property cannot be maintained. In this latter case,
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the individual likelihood estimates for each segment were averaged to obtain 

the final estimates.

We start the demonstration with simulated data with one observed 

(spike train) input and one ‘Unobservable” input, and one observed output. 

Then we discuss the case of two observed spike train inputs and one 

“unobservable” input, and one observed output.

5.2 Analysis of Simulated Neuronal Spike Train Data

5.2.1 “Unobservable” Effect Function (UOEf

It is known that nerve cells are not isolated but rather interconnected 

with each other. The firing o f nerve cells mostly depends on the influence 

imposed by a large number o f neighbouring neurones (as many as 2000 

neurones).

From the computational point o f view, it seems possible only to 

investigate the behaviour o f a very small number o f neurones within a moderate 

sized network o f neurones and therefore the effects o f a large number of 

neurones on the firing o f a particular neurone will not be available. We refer to 

them as ‘Unobservable” (or unmeasured) inputs. This is more obvious in real 

experimental situations where the signals o f neurones can only be recorded 

simultaneously from a small number of cells. In simulations, however, this is a 

less difficult problem, since the model used to simulate an artificial observed 

neuronal spike train data can also provide simulated synaptic data from a 

population of ‘Unobservable” inputs by using a non-zero mean normal 

distribution. These ‘Unobservable” inputs are used as a stimulus to the cell to 

increase its firing rate as well as to mimic the behaviour of real cells. For more 

details see Liischer (1990) and Halliday (1994), also see section (1.6) and 

appendix (A) o f this thesis.
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Thus we can use the likelihood approach to analyse a set o f simulated 

data which contains along with the observed input and output spike train data, 

a continuous input z t which is discretised over small intervals o f length

1 msec. This has been scaled such that z t takes on values between 0 and 1 and 

represents the ‘Unobservable” inputs (Halliday, 1994). A model with a single 

input and output together with ‘Unobservable” inputs may be represented 

diagramatically as follows

The simulated data set demonstrated here consisted o f a 0-1 valued

series o f approximately 60000 points for each o f the observed input and output,

along with 60000 points for the continuous input which represents the

‘Unobservable” inputs. For computational purposes the data were split up into

three disjoint segments each of 19960 points and the individual maximum

likelihood estimates for each segment were averaged to obtain the final 

estimates. The linear predictor o f the model, r\ t , will take the same form as in

(4.6.2) and the membrane potential on the trigger zone o f the cell at any given 

time t may be given in its approximate discrete form by

Unobservable ) input and

observed ( | | | | | ) input and output

Y t - 1
Ut = Vt +  I  au xt - u w t — w

u = 0 w > Yt
(5.2.1)

Y t - 1 
+ E  bu zt _ u + E  zw * t - w

u = 0 w > Yf
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where y t is the time elapsed at time t since the time o f die last output spike, 

the two sets o f coefficients {cw} represent the summation and

carry-over effect functions for the observed input, respectively, whereas the 

two sets o f coefficients {&„}, {c/w} represent the summation and carry-over

effect functions for the ‘Unobservable” input, respectively. The term Vt , as 

defined earlier, represents the polynomial recovery function o f order k .

The numbers of spikes observed were 2398 and 2991 for the observed 

input and output, respectively. The inter-spike intervals between the input 

firings suggest approximately an exponential distribution (a Poisson process) 

with minimum and maximum intervals o f 1 msec and 135 msec respectively, 

whereas the inter-spike intervals between the output firings suggest a skewed 

distribution with a mode around 24 msec and with minimum and maximum 

intervals o f 9 msec (i.e. 9 msec) and 51 msec, respectively.

0 50 100 150 200 250
time (msec)

Fig.5.2.1 The lower set of spikes represents the times of the observed input to the neurone, 

the middle trace provides a stretch of continuous input to the neurone and the upper set of 

spikes gives the corresponding times at which the neurone fired (the observed output times).
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The fitting was done for both probit and logistic link functions, and was 

found to be better for the logistic model. Both constant and exponentially- 

decaying thresholds were tried. Although the constant threshold model 

increased the number of parameters needed for the recovery function 

(i.e., a cubic recovery function with constant threshold and linear recovery 

function with exponentially-decaying threshold), the number of parameters 

needed for each model was the same. Both models reduced the deviance by a 

very similar amount (i.e., a model with constant threshold reduced the deviance 

by 4581 and a model with exponentially-decaying threshold reduced the 

deviance by 4578). The constant threshold model was chosen, arbitrarily.

Fig.5.2.2a and Fig.5.2.3a represent the two estimated summation 
functions, \au} and for the observed and ‘Unobservable” inputs

respectively, and suggest that, while the summation function for the observed

inputs (Summation Function)i reveals an excitatory effect lasting about

26 msec, the summation function for the ‘Unobservable” inputs

(Summation Function)2 shows longer excitatory effects lasting about 34 msec.

The ‘Unobservable” inputs also seem to have larger effects than the observed

inputs as can be seen both from the reduction in deviance (Fig.5.2.4) when the

two summation functions are fitted separately, and from the fact that the 
estimated coefficients, f°r the ‘Unobservable” summation function are

much more statistically significant at any given lag than the estimated 

coefficients, [au} for the observed summation function.

Carry-over effects for the observed as well as for the ‘Unobservable” 

inputs are present. Fig.5.2.2b represents the estimated carry-over effect 

function for the observed inputs (COE)i and suggests excitatory effects lasting 

from about 16 to 27 msec. The estimated carry-over effect function for the 

‘Unobservable” inputs (COE)2 as given in Fig.5.2.3b suggests excitatory effects
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Fig.5.2.2 a) Estimated summation function for the observable input, b) Estimated carry-over effect function 

for the observable input, c) Estimated recovery (lower curve) and threshold (upper solid line) functions. The 

dotted lines give ±  two standard error limits plotted about zero in (a) and (b) for the summation and the 

corresponding COE functions and plotted around each function in (c) for the threshold and recovery functions.
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Fig.5.2.3 a) Estimated summation function for the “unobservable” input, b) Estimated carry-over effect 

function for the "‘unobservable” input. The horizontal dotted lines in (a) and (b) give ±  two standard error 

limits plotted about zero for the summation and the corresponding COE functions for the “unobservable” 

input, c) The goodness of fit plot for the full model.
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lasting from about 18 to 25 msec. But each o f the two carry-over effect 

functions has a relatively small effect compared to their corresponding 

summation functions, as can be seen both from the comparatively small 

reduction in deviance from models with only summation functions to models 

with both summation and carry-over effect functions, and from the fact that the 

parameters o f the two summation functions tend to be much more statistically 

significant than those o f the corresponding carry-over effect functions. 

However, these can clearly be considered as real effects, and this was 

confirmed by F-tests on the deviances.

The threshold and recovery functions are well-estimated up to about 42 

msec as shown in Fig.5.2.2c and suggest that the probability o f an output spike 

is small up to about 20 msec, but it then increases rapidly and the chance of an 

output spike becomes quite large after about 30 msec.

The deviance table given in Fig.5.2.4 illustrates the sequential fitting o f 

a set o f successively more complex models in the most complete situation 

available to us; namely one where ‘bnobservable“ inputs can be taken into 

consideration. There are many interesting features to which we draw attention. 

The first is that the unobservable inputs explain more of the variability than 

either the summation function or the recovery function when fitted alone; 

although each of them is sufficiently informative to be worth fitting. This is a 

feature of the way in which the data have been simulated. The second is that 

fitting all five components (as given in 5.2.1) reduces the deviance from 20111 

(the initial model) to 6708; a reduction of about 67% and the best we have so 

far been able to achieve. The goodness of fit test (Fig.5.2.3c) corresponding to 

the final model reveals that the fit o f the model is very satisfactory. It is 

possible to use values of the linear predictor much larger than we have been 

able to in previous data sets because more input information was available to us 

in this case. This leads to circumstances where the probability o f an output
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spike is very large. The third is to note some of the various effects o f adding the 

recovery function to a previous model. Adding it to the null model reduces the 

deviance by 4581. Adding it to the ‘Unobservable” inputs reduces the deviance 

by only 176. Adding it to the summation function reduces the deviance by 

4103. This requires careful interpretation. Evidently the information contained 

in the recovery function is largely orthogonal to that contained in the 

summation function because the two reductions in deviance, 4581 and 4103, 

are quite similar. However the recovery function contains almost no extra 

information to that contained in the ‘Unobservable” inputs, as the additional 

reduction in deviance is very small. Evidently the recovery function ‘fexplains” 

part o f the effects of the ‘Unobservable” inputs if  these latter are not (or cannot 

be) modelled. We shall need to be very careful therefore not to give the 

recovery function a physiological interpretation which may not be meaningful. 

It seems therefore in general that, unless all inputs are modelled, the recovery 

function will contain some input information.

The square root o f the estimated cross-intensity function (estimated by 

the stochastic point process techniques) given in Fig.5.2.5b indicates an 

excitatory effect of an input lasting about 5 msec only. This duration is very 

short compared with the 26 msec duration of an excitatory effect suggested by 

the summation function for the observed inputs (Summation Function)i given in 

Fig.5.2.2a. As in previous examples, the square root o f the cross-intensity 

function seems to underestimate the underlying excitatory effects o f a synaptic 

input and provides little or none of the information available in the likelihood 

model with all five components (as given in 5.2.1).

Fig.5.2.5a gives the estimated cross-intensity function (estimated via the 

likelihood function as described in section 4.5 .1-b). The residual deviance for 

this model is 19720; a reduction o f only 391 from the null model, providing
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Null model

Deviance=20111

(Summation Function)* Recovery Function (Summation Function)*

Observed Inputs Unobserved Inputs

Deviance=17669 Deviance=15530 Deviance=12875

(Summation Function)* (Summation Function)*

+ (COE)* + Recovery Function

Deviance=17223 Deviance=13566 ̂ Z
(Summation Function)i 

+ (Summation Function)* 

Deviance=8897

(Summation Function)* (Summation Function)*

+ Recovery Function + (COE)*

Deviance=12699 Deviance=12704X z
(Summation Function)* +(COE)i (Summation Function)*

+ Recovery Function + (COE)* + Recovery Function

Deviance=13274 Deviance=12632

(Summation Function )i+(COE)i + 

(Summation Function)* + (COE)2  

Deviance=7331

I
(Summation Function)* +(COE)i + 

(Summation Function^ -KCOE)* +

Recovery Function 

Deviance=6708

Fig.5.2.4 Diagrammatic representation of the deviance table.
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Fig.5 .2 .5  a) The cross-intensity function estimated via likelihood, b) The square root of the cross-intensity 

function estimated via the point process approach. The dotted lines in a) and b) give ±  two standard error 

limits for the cross-intensity functions plotted about zero in (a) and about the square root of estimated output 

mean rate in (b). c) The goodness of fit plot corresponds to the model given in a).
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still further evidence that the cross-intensity function in general has very poor 

explanatory power.

The goodness o f fit plot for a model containing only the cross-intensity 

function (shown in Fig.5.2.5c) indicates that the fit is a very poor one compared 

with that for the five components model shown in Fig.5.2.3c. This can be seen 

both from the relatively small values of the predicted probabilities
As.

( P ( j j )<  0.2), (i.e., the short range of the linear predictor values) and from the 

departure of the predicted probabilities from the theoretical curve for values of 

the linear predictor near -1.5.

Fig.5.2.6a and b correspond to the estimates o f the coherence and phase, 

respectively. The coherence plot (Fig.5.2.6a) indicates clearly that the two 

processes are associated with each other over the range o f about 0-28 Hz. The 

estimated phase given in Fig.5.2.6b shows that, over the range o f frequencies at 

which coherence is significant, the output process is delayed, on the average, 

by an amount 1.20 msec with a 95% confidence interval, for the delay, of 

(0.90, 1.50) msec. The average value of the delay suggested by the phase seems 

to be consistent with the 1 msec peak in the square root o f the estimated cross 

intensity function. In this example the peak in the summation function is 

centred about 5 msec which is considerably different from both the peak in the 

cross intensity function and from the average value o f the delay estimated from 

the phase. This lack of agreement of detecting similar estimates for the delay 

between the likelihood and point process techniques may be due to the fact that 

this data set is not input dominated and in such a case the delay may not be the 

dominant feature, or even particularly meaningful as a single parameter.

Next we demonstrate with two simulated sets o f data each with two 

observed spike train inputs and one “unobservable” input, and one observed
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Fig.5.2.6 Illustration o f the ordinary coherence and phase.

a) Estimate of the ordinary coherence. The dotted line represents the upper limit of the 95 % confidence 

interval for the coherence under the hypothesis that the two processes are independent.

b) Estimate of the phase. The diagonal dotted line represents the weighted least squares line over the range of 

frequencies at which the corresponding coherence is significant.
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output. The two observed spike train inputs behave independently in the first 

example and are correlated in the second. In both cases, they excite the 

occurrence of the output spikes, whether in the absence or presence of 

“unobservable” input. The aim of this demonstration is to see how the 

likelihood techniques treat these two types o f data set compared to the 

stochastic point process techniques.

5.2.2 Two Uncorrelated Spike Train Inputs

The neuronal network demonstrated in this section is illustrated in 

Fig.5.2.7 where the two spike train inputs to the neurone are denoted by j X

and 2 X  the spike train output is denoted by Y whereas Z denotes the

“unobservable” input that can be added to simulate the effects due to all other 

unmeasured synaptic inputs. A diagrammatic representation o f the first 500 

msec segment of the two spike train inputs and the spike train output and also a 

stretch of the corresponding “unobservable” input are shown in Fig.5.2.8.

Unobservable ) input, two

observed ( | | | | | ) inputs and 

one observed ( | | | | | ) output 

model.

Fig.5.2.7 Diagrammatic representation o f a  neuronal network in which two independent 

observed inputs excite the occurrence o f an output in the present o f a  continuous input.

The simulated data set demonstrated here consists o f a 0-1 valued series 

of approximately 60000 points for each o f the two spike train inputs and the
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Fig.5.2.8 A segment of the first 500 msec of the data. The lower two sets of spikes represent 

the times for each of the two observed inputs to the neurone, the solid curve provides a stretch 

of a continuous input to the neurone and the upper set of spikes represents the corresponding 

times at which the neurone fired (i.e., the times of the observed output).

output with the “unobservable” input present to represent all other unmeasured 

inputs. The numbers of spikes observed were 3111 and 3039 for the first ( j X )

and second ( 2 X )  inputs respectively, whereas the number of spikes observed 

for the output (Y) was 1605. The two spike train inputs were driven by 

independent Poisson processes.

For computational purposes (i.e., to get more computational space and 

time) the data were regrouped with binwidth two (i.e. h = 2 msec). The data 

remained as a 0-1 valued series (i.e. maintained the 0-1 property required for 

the binomial distribution). All the illustrated figures in this demonstration are 

given in the original data scale o f 1 msec.

We start by using the stochastic point process techniques, where the 

square root o f the cross-intensity function, the ordinary and partial coherences
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and the phase were all estimated. Then we apply the likelihood techniques to 

our data to see what extra information it can produce.

Fig.5.2.9a and Fig.5.2.9b represent the square roots o f the estimated 

cross-intensity functions between the output Y and each of the inputs j X  and 

2 X ,  respectively. The horizontal dotted lines in each figure represent

approximate 95 %  confidence intervals for the square root o f the cross-intensity 

functions, under the hypothesis o f inputs ] X  and 2 X  each being independent

of the output Y, plotted around the square root o f the estimated output mean 

rate (horizontal solid line). Each of the two functions suggest excitatory 

synaptic input effects lasting about 6 msec.

Fig.5.2.10b represents the estimated ordinary coherence between the 

first input \ X  and the output Y and suggests a relatively weak coupling. The

estimated ordinary coherence between the second input 2 X  and the output Y

(Fig.5.2.10c) also indicates a relatively weak coupling similar to that shown in 

Fig.5.2.10b. These weak couplings might give the impression that the output is 

not mainly driven by the effects o f the two observed inputs but is also driven by 

the effects o f all other “unobservable” inputs or perhaps as a combination of 

the two types of input as we will investigate shortly. The estimated ordinary 

coherence between the two inputs j X  and 2 X  as shown in Fig.5.2.10a

indicates that the two inputs are not associated with each other over the whole 

range of frequencies. This feature also can be seen from a direct comparison 

between the two figures (Fig.5.2.11a and b) illustrating the estimated partial 

coherences between the output and each input after removing the effect o f the 

other input and those (Fig.5.2.10b and c) of the ordinary coherences between 

the output and each input. The two figures Fig.5.2.10b and Fig.5.2.11a and the 

two figures Fig.5.2.10c and Fig.5.2.11b o f the ordinary and partial coherences
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Square Root of the Estimated Cross Intensity Function
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Fig.5.2.9 Estimated square root of the cross-intensity function between the output Y and

a) the first input j X  b) the second input 2 ^ •  The horizontal dotted lines in (a) and (b) represent

approximate 95 % confidence intervals for the estimated square roots of the cross-intensity functions under the 

hypothesis that the two processes are independent, plotted around the square root of the estimated output mean 

rate (horizontal solid line).
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are almost identical to each other which suggests that the two observed inputs 

act independently to affect the occurrence o f the output spikes. The horizontal 

dotted line in the coherence figures represents the upper limit o f the 

approximate 95% confidence intervals for the coherence under the hypothesis 

that the two processes have zero coherence.

The estimated phase between the first observed input j X  and the output

Y given in Fig.5.2.12a suggests that there is no simple delay present. Similarly, 

there is no simple delay present between the second observed input 2 %  and

the output Y as suggested by the estimated phase given in Fig.5.2.12b. Each 

phase figure cannot be represented by a straight line.

Fig.5.2.13a represents the estimated partial phase between the first 

observed input j X  and the output Y after removing the linear effects o f the

second observed input 2 X  whereas Fig.5.2.13b represents the estimated partial

phase between the second observed input 2 Y  and the output Y after removing

the linear effects o f the first observed input j  X . As in the estimated phase

figures given in Fig.5.2.12a and b, the estimated partial phase figures suggest 

that there is no simple delay present between the output and each input after 

removing the linear effects of the other input.

The figures of the estimated phase (Fig.5.2.12a and Fig.5.2.12b) 

between the output and each input are almost identical to the figures of their 

corresponding estimated partial phase (Fig.5.2.13a and Fig.5.2.13b) between 

the output and each input after removing the linear effects o f the other input. 

This suggests that the two observed inputs act almost independently to affect 

the occurrence of the output spikes. This seems to be in agreement with the 

ordinary and partial coherences discussed earlier.
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Fig.5.2.10 Estimated ordinary coherences between

a) the two observed inputs j  X  and 2 X  b) the output Y and the first input j  X , and c) the output Y and the 

second input 2 X  ■ The dotted lines correspond to the upper limit of the 95% confidence intervals for the

coherence under the hypothesis of zero coherence.
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Fig.5.2.12 illustration of the phase functions.

a) Estimated phase between the output Y and the first observed input y X .
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Fig.5.2.13 illustration of the partial phase functions.

a) Estimated partial phase between the output Y and the first observed input after removing the linear effects 

of the second input, b) Estimated partial phase between the output Y and the second observed input after 

removing the linear effects of the first input.
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We next apply the likelihood procedure to the same set o f data and our 

aim is to compare some o f its results such as the significant durations of the 

summation functions with those of their corresponding cross intensity 

functions. In order to find how much explanatory power the cross intensity 

functions have, we again use the likelihood procedure to estimate them. Also 

we see if  the likelihood procedure (through the table o f deviances) can detect 

features similar to those revealed by the ordinary and partial coherences and 

phase.

The maximum likelihood estimation technique has been applied to

the same set o f simulated data, employing the canonical link function 

(as given in 4.3.1a-b). The membrane potential, Ut , on the trigger zone at time

t is o f the form

Y t -1
Uf  = V( + X  l a u l x t - u  +  X l cw l x t -w

u -0  w^Y t
Y t - 1

+ X  2 a u 2x t - u  +  2 cw 2x t - w  ..... (5.2.3)
u=0 w>Yt

Yt-1
X  bu z t - u  +  X  Zf -w

u -0  w>Yt

where y  t is the time elapsed since the time of the last output spike, the sets of

coefficients {7aw} and {, cw} ; / = 1,2 represent the summation and carry-over

effect functions for the two observed inputs respectively, the summation and

carry-over effect functions for the “unobservable” input are represented by the 

two sets of coefficients {bu } and {dw } respectively and the term Vt represents
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the polynomial recovery function o f order k , i.e.

1 0 / ( / t - C i - V *  ; r t >  C i + 1
t = i i=l

f k

(5.2.4)

0 ; y t < G j + l .

The recovery function given in (5.2.4) is forced to be zero for y t < + 1, as

explained earlier in chapter 4. The linear predictor o f the model, rjt ,

representing the difference between the membrane potential and the threshold 

may be given by

where the term O q  in (5.2.5) represents the constant threshold, which the 

deviance table showed was superior to the exponential threshold model.

Fig.5.2.14a, b and c represent the estimated (Summation Function)i, 

{ j d u }; estimated (Summation Function)2, { 2 ^w} ; for the first and second 

observed inputs respectively, and the estimated (Summation Function)3, J,

for the “unobservable” input. The figures suggest that the summation functions

for the two observed inputs reveal excitatory effects lasting about 20 msec for

the first input and about 22 msec for the second input and the (Summation

Function)3 for the “unobservable” input shows longer effects lasting about 28

msec. The “unobservable” input is also seen to have much larger effects than

the two observed inputs as can be seen both from the reduction in deviance

(Fig.5.2.18) when the three summation functions are fitted separately, and from 
the fact that the coefficients, for the “unobservable” input seem to be

statistically more significant at any given lag than either of the two sets of 

coefficients, [ t du } ;i = 1,2 for the observed inputs.

tjt = ut - e 0 (5.2.5)
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Fig.5.2.14 a) Estimated summation function for the first observed input y X . b) Estimated

summation function { 2 ^  } f°r the second observed input 2 X . c) Estimated summation function | bu J for

the ‘"unobservable” input Z. The horizontal dotted lines give ±  two standard error limits plotted about zero 

for the summation functions.
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The significant durations o f the summation functions for the two 

observed inputs given in Fig.5.2.14a and b are much longer than the 6 msec 

significant durations of each of the two corresponding cross-intensity functions 

as shown in Fig.5.2.9a and b. The two cross-intensity functions seem to 

underestimate the underlying excitatory effects of a synaptic input and provide 

little or none o f the information available in the likelihood model with all seven 

components (as given in 5.2.3). Furthermore, suppose we use the likelihood 

approach to fit only the cross-intensity functions for the two observed inputs, as 

explained in (5.2.2). The residual deviance for this model is 11711; a reduction 

of only 811 from the null model (i.e., the variation explained by the two cross­

intensity functions when fitted together is only 6.48 %), providing still further 

evidence that the cross-intensity function in general has very poor explanatory 

power, whereas the residual deviance for a model with the two summation 

functions is 11070.

Evident carry-over effects for each of the two observed inputs and for 

the “unobservable” input are shown in Fig.5.2.15a, b and c respectively, and 

suggest that while the estimated carry-over effect function (COE)3 for the 

“unobservable” input (Fig.5.2.15c) suggests an excitatory effect lasting from 

about 1 to 23 msec, the estimated carry-over effect functions (COE)i and 

(COE)2 suggest excitatory effects lasting from about 6 to 14 msec for the first 

input and about 4 to 18 msec for the second input as shown in Fig.5.2.15a and 

b respectively. These latter two excitatory input effects are smaller in 

magnitude than the estimated carry-over effect function (COE)3 for the 

“unobservable” input as can be seen from the smaller reduction in deviance 

they made compared to that for the “unobservable” input. However, they can 

clearly be considered as real effects, and this was confirmed by F-tests.
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Fis.5 .2 .15  a) Estimated carrv-over effect function { l cw }  for the first observed input j  X . b) Estimated 

carry-over effect function { 2 ^ }  f°r the second observed input 2 ^  ■ c) Estimated carry-over effect 

function | d w |  for the “unobservable” input Z. The horizontal dotted lines give ±  two standard error limits

plotted about zero for the carry-over effect functions.
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The threshold and recovery functions given in Fig.5.2.16a suggest that 

the probability o f an output spike occurring spontaneously is very small over 

the whole range o f intervals (as the recovery function remains far below 

threshold over the whole range o f intervals). This also suggests that the 

recovery function has almost no effect on the production o f output spikes in the 

presence o f the “unobservable” inputs. The order o f the recovery function is 3 

(cubic recovery function) when fitted either alone or with the summation 

functions (and carry over effect functions) for the observed inputs. But in the 

presence of the “unobservable” inputs the order is reduced from 3 to 1 

(linear recovery function), i.e., the numbers o f statistically significant 

parameters involved in the recovery function in the absence and presence of the 

“unobserved” inputs are 3 and 1 respectively. This change in the order of the 

recovery function, in the absence and presence of the “unobserved” inputs, also 

affects its role in accelerating the output firing. This can also be seen clearly 

from the deviance table (as we will discuss shortly), which suggests again that 

the recovery function is acting as a proxy for unmeasured inputs when these 

latter are not (or cannot be) modelled. The recovery function reflects the 

intrinsic properties o f the cell only in the case where all inputs are present in 

the model. If any unmeasured inputs are not (or cannot be) present in the 

model, we cannot give the recovery function this intrinsic physiological 

interpretation.

The goodness o f fit plot given in Fig.5.2.16b seems very reasonable and 

indicates that, in this particular example, high probabilities can be predicted by 

the likelihood model, this is because all the available input information is 

included. The model takes the range of the linear predictor to above 1.7 which 

reflects the large explained variability by the model. And the confidence 

intervals are reasonably narrow.
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Fig.5.2.16 illustration of the threshold and recovery functions and the goodness o f fit plot.

a) Estimated recovery (lower curve) and threshold (upper solid line) functions. The dotted lines give ±  two 

standard error limits plotted around each function for the threshold and recovery functions.

b) The goodness of fit plot with empirical (dots) and theoretical (smooth curve) probabilities plotted against 

selected values for the linear predictor, the vertical bars present the ± two standard error limits for the 

theoretical probabilities.
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Fig.5.2.17a and b represent the estimated (Summation Function)i and

the estimated (Summation Function^ for the first and second observed inputs

respectively, when each function is estimated in the presence of its

corresponding carry-over effect function and the recovery function only

(i.e., in the absence of the other observed input and the “unobservable” input).

Fig.5.2.17c represents the estimated (Summation Function)3 for the

“unobservable” input when estimated in the presence o f the carry-over effect

function (COE)3 and the recovery function only (i.e., in the absence o f the two

observed inputs). The figures suggest that these summation functions reveal

excitatory effects lasting about 16 msec for the first input, about 14 msec for

the second input and about 21 msec for the “unobservable” input. Comparing

these summation functions with those given in Fig.5.2.14a, b and c, when the

summation functions (and their corresponding carry-over effect functions) for

the two observed and the “unobservable” inputs and the recovery function are

estimated together (i.e., the full model as given in 5.2.3 - 5.2.5) reveals that

every summation function seems to extend its significant duration (i.e., from 16 

to 20 msec for the input j X ; 14 to 22 for the input 2%  and from 21 to 26 for

the “unobservable” input Z). They also seem to shift the position of their peaks 

from 2 msec to 4 msec for each of the observed inputs and from 0 msec to 

2 msec for the “unobservable” input. Also in the case o f the full model 

(i.e., when all functions are present) there is a much larger reduction in 

deviance.
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Fig.5 .2 .17 a) Estimated summation function for the input j X  in the absence of the input 2 X  and the 

‘hnobservable” input Z. b) Estimated summation function for the mput 2 X  in the absence of the input j  X

and the ‘Unobservable” input Z. c) Estimated summation function for the ‘Unobservable” input Z in the 

absence of both observed inputs j  X  and 2 ^  ■ The horizontal dotted lines give ±  two standard error limits

plotted about zero for the summation functions.
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The changes in the shape, the position o f the peak and the significant 

duration are due to the fact that the estimates o f each summation function 

coefficient (when estimated in the presence o f its corresponding carry-over 

effect function and the recovery function only) are statistically biased estimates 

because all the available variability has not been taken into account and they 

become statistically unbiased estimates only as we consider all the available 

variability (i.e., as represented in the final model) where the reduction in 

deviance is much larger as we reach the final model compared to all previous 

models.

The deviance table given in Fig.5.2.18 illustrates the sequential fitting of 

a set o f successively more complex models in the situation o f two observed 

inputs and one observed output and also where “unobservable” inputs can be 

taken into consideration. The table reveals the following interesting features,

(1) fitting all seven components reduces the deviance from 12522 

(the initial model) to 2860; a reduction of about 77.2 %  which is very 

substantial compared to previous examples.

(2) fitting a model with only the summation functions (and their 

corresponding carry-over effect functions) for the two observed inputs and 

a recovery function reduces the deviance from 12522 (the initial model) 

to 10759; a reduction of 1763. But a larger reduction in deviance is 

achieved as we move from a model with only the summation function 

(and the corresponding carry-over effect function) for the “unobservable” input 

to the full model which reduces the deviance from 6986 to 2860; a reduction 

of 4126. Despite the fact that these two reductions in deviance 

(i.e., 1763 and 4126) represent the effects o f the two observed inputs and the 

recovery process in the absence and the presence of the “unobservable” input
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effects respectively, they are quite different, i.e., the effects o f the two observed 

inputs and the recovery process seem to explain a larger amount of the 

variability in the presence o f the “unobservable” input than they do in its 

absence. One reason for this dramatic change in deviance might be due to the 

fact that the estimates o f the summation function coefficients are statistically 

biased estimates in the first case where all the available variability has not been 

taken into account and they become statistically unbiased estimates as we reach 

the final model where all the available information is utilised.

(3) fitting a model with only a recovery function makes very little 

reduction in deviance. This gives the impression that the set o f data is input 

dominated. The recovery function contains almost no extra information to that 

contained in each of the summation functions and their corresponding 

carry-over effect functions for observed and “unobservable” inputs as can be 

seen when the recovery function is added to other models.

(4) evidently the information contained in the summation function and 

its corresponding carry-over effect function for the first observed input is 

largely orthogonal to that contained in the summation function and its 

corresponding carry-over effect function for the second observed input because 

these two summation functions and their corresponding carry-over effect 

functions when added separately to the null model reduce the deviance by 1002 

and 941 respectively. But when added together to the null model, they reduce 

the deviance by 1750 which is quite similar to the sum of the reductions when 

each summation function and its corresponding carry-over effect function is 

fitted alone. This orthogonal feature between the two observed inputs gives the 

impression that the two inputs are acting almost independently to excite the 

firing of the neurone, and this seems to be consistent with the coherence figures 

shown in Fig.5.2.10a, b and c which also reveal the same sorts o f orthogonal
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feature (i.e., the two observed input processes are uncorrelated with each other) 

as we discussed earlier.

(5) the “unobservable” inputs in this set o f data seem to explain more of 

the variability than the recovery, threshold and the summation functions for the 

two observed inputs when all those functions are fitted together; although each 

of them is sufficiently informative to be worth fitting. This is a feature o f the 

way in which the data have been simulated, however, this is to be expected 

since the “unobservable” inputs contain all the other unmeasured inputs.

(6) the information contained in the carry-over effect functions is very 

small compared to their corresponding summation functions as can be seen 

from the small reduction in deviance in every case where a carry-over effect 

function is added to a previous model. This is again a feature of the way in 

which the data in this example have been simulated. However, F-tests 

demonstrated that each carry-over effect function was statistically significant, 

and worth adding to the model.

5.2.3 Two Correlated Spike Train Inputs

In the previous section we discussed the case o f two spike train observed 

inputs and one “unobservable” input where these two observed inputs are 

uncorrelated (i.e. they act independently to excite the neurone to produce an 

output spike). The present section deals with the case o f two spike train 

observed inputs and one “unobservable” input where the two observed inputs 

are correlated with each other. The aim is again to apply the likelihood 

technique and to compare it with time domain and frequency domain 

techniques, and to see if  the known features o f the simulation are reflected in 

the likelihood analysis.
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The schematic diagram o f the neuronal network demonstrated in this

section is illustrated in Fig.5.2.19 where the two spike train inputs to the 

neurone are denoted by j X  and 2 X ,  the spike train output is denoted by Y

and Z denotes the “unobservable” input that is added to represent the effects 

due to all other unmeasured synaptic inputs.

Unobservable input, two

observed ( | | | | | ) inputs and 

one observed ( | | | | | ) output 

model.

Fig.5.2.19 Diagrammatic representation of a neuronal network in which two dependent 

observed inputs excite the occurrence of an output in the presence of “unobservable” inputs.

The simulated data set demonstrated in this section is again a 0-1 valued

series o f approximately 60000 points for each o f the two spike train inputs and

the output. It also includes a continuous input representing all other

“unobservable” inputs. The numbers o f spikes observed were 3431 and 3410 

for the first ( j X )  and second ( 2 X )  inputs respectively, whereas the number of

spikes observed for the output (Y) was 1731.

As in the previous section, the data set was regrouped with binwidth two 

(i.e., h — 2 msec) where it remained as a 0-1 valued series (i.e. maintained the 

0-1 property required for the binomial distribution). For comparison purposes, 

the square root of the cross-intensity function, the ordinary and partial 

coherences and phases were also estimated. All the illustrated figures in this 

demonstration are given in the original data scale o f 1 msec.



Chapter 5 Likelihood Applications to Multiple Input and Single Output Data 166

Square Root of the Estimated Cross Intensity Function

0.34

0.32

0.3

''0.28

0.26

0.24

0 . 2 2

0 5 2510 15 20

0.36

0.34

0.32

~  0.3

0.28

0.26

0.24

0 . 2 2
15 200 5 10

Lag v(msec)

Fig.5.2.20 Estimated square root o f the cross-intensity function between the output Y and

a) the first input j X  and b) the second input 2 Y .  The horizontal dotted lines in (a) and (b) represent

approximate 95 % confidence intervals for the estimated square roots of the cross-intensity functions under the 

hypothesis that the two processes are independent, plotted around the square root of the estimated output mean 

rate (horizontal solid line).
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Fig.5.2.20a and Fig.5.2.20b represent the square roots o f the estimated 

cross-intensity functions between the output Y and each o f the inputs j X

and 2 X ,  respectively. Both cross intensity functions suggest excitatory synaptic 

input effects lasting about 6 msec.

The estimated ordinary coherence between the first input j X  and the

output Y illustrated in Fig.5.2.2lb suggests that the first input and the output

are weakly coupled over the range of frequencies o f about (0 to 75) Hz and the 

estimated ordinary coherence between the second input 2 Y  and the output Y

illustrated in Fig.5.2.21c also indicates a weak coupling over the range of 

frequencies o f about (0 to 75) Hz similar to that shown in Fig.5.2.21b.

The estimated ordinary coherence between the two inputs j X  and 2 Y  

as shown in Fig.5.2.21a indicates that the two inputs are well-coupled with 

each other over the range o f frequencies o f about (0 to 85) Hz. This

dependence can also be seen from a direct comparison between the estimated 

partial coherence between the output and the first input j X  after removing the 

effect o f the second input 2 X  (Fig.5.2.22a) and the estimated ordinary 

coherence between the output and the first input j X  (Fig.5.2 .2lb) and also a

comparison between the estimated partial coherence between the output and the 

second input 2 Y  after removing the effect o f the first input j X  (Fig.5.2.22b)

and the estimated ordinary coherence between the output and the second input 

2 X  (Fig.5.2.21c). Here, removing the effect of one input significantly effects

the coupling between the output and the other input which suggests that the two 

observed inputs act dependency to affect the occurrence o f the output spikes. 

Indeed, both partial coherences are virtually statistically non significant, and 

that suggests that given one input, the other adds little to our ability to predict 

the output.
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Fig.5.2.21 Estimated ordinary coherence between

a) the two observed inputs j  X  and 2 X , b) the output Y and the first input j  X  and c) the output Y and the 

second input 2 X  • The dotted lines correspond to the upper limit of the 95% confidence intervals for the

coherence under the hypothesis of zero coherence.
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Fig.5.2.22 Estimated partial coherence between the output Y and

a) the first input j  X  after removing the effect of the second input 2 X  and b) the second input 2 X  after 

removing the effect of the first input j X . The dotted lines correspond to the upper limit of the 95%

confidence intervals for the coherence under the hypothesis of zero partial coherence.
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The estimated phase between the first observed input j X  and the output 

Y given in Fig.5.2.23a suggests that there is no simple delay present in the data.

Similarly, there is no simple delay present between the second observed input 

2 X  and the output Y as given in Fig.5.2.23b (i.e., each phase figure cannot be

represented by a straight line).

Fig.5.2.24a and b represent the estimated partial phase between each 

observed input and the output Y after removing the linear effects o f the other 

observed input. As in the estimated phase plots given in Fig.5.2.23a and b, the 

estimated partial phase figures suggest also that there is no feature such as 

a simple delay present.
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Fig.5.2.23 illustration of the phase functions.

a) Estimated phase between the output Y and the first observed input y X .

b) Estimated phase between the output Y and the second observed input 2 X  ■
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Fig.5.2.24 illustration o f the partial phase functions.

Estimated partial phase between a) the output Y and the first observed input after removing the effects of the 

second input and b) the output Y and the second observed input after removing the effects of the first input.
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The maximum likelihood estimation technique has been applied to the

same set o f simulated data. The logistic link function was used and found to be

superior to the probit link both in terms of the goodness o f fit and also the 

reduction in deviance. The membrane potential JJty the polynomial recovery

function of order k , V t , and the linear predictor of the model rjt are the same 

as (5.2.3 - 5.2.5) given in the previous section, respectively. As in the previous 

section and for the same reasons, the threshold is modelled as a constant.

Fig.5.2.25a, b and c represent the estimated (Summation Function)i, 

{ i du},  the estimated (Summation Function)^ { } ,  for the first and second 

observed inputs respectively, and the estimated (Summation Function^, j£u J,

for the “unobservable” input. The figures suggest that the summation functions

for the two observed inputs reveal excitatory effects lasting about 20 msec for

the first input and about 16 msec for the second input and the estimated

(Summation Function)3 for the “unobservable” input suggests excitatory effects

lasting about 22 msec. As in the previous section and for the same reasons, the

“unobservable” inputs suggest larger effects than either o f the two observed

inputs as can be seen both from the reduction in deviance (Fig.5.2.28) when the

three summation functions are fitted separately, and from the fact that the 
coefficients, f°r the “unobservable” input are statistically more

significant at a given lag than either of the two sets of coefficients, { 1au } and 

{ 2au } for the first and second observed inputs respectively.

The significant durations for each of the two summation functions for 

the observed inputs given in Fig.5.2.25a and b above are much longer than the 

6 msec significant durations of the corresponding cross-intensity functions as 

shown in Fig.5.2.20a and b. This suggests the same conclusion as in the 

previous example (section 5.2.2), that the square root o f the cross-intensity 

function is underestimating the synaptic input effects. The cross intensity
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Fig.5.2.25 a) Estimated summation function j  for the first observed input j X .  b) Estimated 

summation function { 2 &u } ôr the second observed input 2 X . c) Estimated summation function jz?w j for

the ‘Vmobservable” input Z. The horizontal dotted lines give ±  two standard error limits plotted about zero 

for the summation functions.
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functions for the two observed inputs were estimated via the likelihood 

approach, as in the previous example (see also section 5.2.1). The residual 

deviance for this model is 12369; a reduction o f only 866 from the null model 

(i.e., the variation explained by the two cross-intensity functions when fitted 

together is only 6.5 %), providing still further evidence that the cross-intensity 

function in general has very poor explanatory power, whereas the reduction for 

a model involving the two summation functions was 1696.

Fig.5.2.26a, b and c represent the carry-over effect functions for the first 

and second observed inputs and the “unobservable” input respectively, and 

suggest that while the estimated carry-over effect function (COE)3 for the 

“unobservable” input (Fig.5.2.26c) suggests excitatory effects lasting from 

about 1 to 17 msec, the estimated carry-over effect functions (COE)i and 

(COE)2 suggest excitatory effects which seem to be much smaller in statistical 

significance. This can be seen also from the reduction in deviance as we will 

see shortly.

The threshold and recovery functions for the full model given in 

Fig.5.2.27a suggest that the probability o f an output spike occurring 

spontaneously is very small over the whole range of intervals (as the recovery 

function remains far below threshold over the whole range of intervals). Adding 

the recovery function to other models seems to have very little effect as we will 

see shortly from the table of deviances which indicates clearly that the recovery 

function is almost negligible.

The goodness o f fit plot shown in Fig.5.2.27b suggests that the fit of the 

seven component model is satisfactory.
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F ig .5 .2.26 a) Estimated carry-over effect function { l cw } for the first observed input j  X . b) Estimated 

carry-over effect function { 2 ^ }  f°r second observed input 2 X  ■ c) Estimated carry-over effect 

function for the ‘bnobservable” input Z. The horizontal dotted lines give ±  two standard error limits

plotted about zero for the carry-over effect functions.
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Fig.5.2.27 illustration of the threshold and recovery functions and the goodness of fit plot.

a) Estimated recovery (lower curve) and threshold (upper solid line) functions. The dotted lines give ±  two 

standard error limits plotted around each function for the threshold and recovery functions.

b) The goodness of fit plot with empirical (dots) and theoretical (smooth curve) probabilities plotted against 

selected values for the linear predictor, the vertical bars present the ± two standard error limits for the 

theoretical probabilities.
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The deviance table given in Fig.5.2.28 illustrates the sequential fitting o f 

a set o f successively more complex models and reveals the following 

interesting features,

(1) fitting all seven components reduces the deviance from 13235 

(the initial model) to 3335; a reduction of about 75 % which is a substantial 

reduction.

(2) as we have seen in the previous example, fitting a model with only 

the summation functions (and their corresponding carry-over effect functions) 

for the two observed inputs and a recovery function reduces the deviance from 

13235 (the initial model) to 11284; a reduction o f 1951. But a larger reduction 

in deviance is achieved as we move from a model with only the summation 

function (and the corresponding carry-over effect function) for the 

“unobservable” input to the frill model which reduces the deviance from 7541 

to 3335; a reduction o f 4206. Both of these reductions in deviance 

(i.e., 1951 and 4206) represent the effects o f the two observed inputs and the 

recovery process in the absence and the presence o f the “unobservable” input 

effects respectively. They are quite different, i.e., the effects o f the two 

observed inputs and the recovery process seem to explain a larger amount of 

the variability in the presence of the “unobservable” input than they do in the 

absence of the “unobservable” input. The reason for this change in deviance, 

as we mentioned earlier in the previous analysis, might be due to the fact that 

the estimates of the summation function coefficients are statistically biased 

estimates in the first case where all the available variability has not been taken 

into account and they become statistically unbiased estimates as we reach the 

final model where all the available inputs are included.

(3) fitting a model with only a recovery function makes very little 

reduction in deviance. Adding a recovery function to other models seems to
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provide almost no extra information to that contained in each o f the summation 

functions and their corresponding carry-over effect functions for both observed 

and “unobservable” inputs. This gives the impression that the set o f data is an 

input dominated one (i.e., the cell fires as a result o f the excitatory synaptic 

input effects rather than spontaneously).

(4) in the previous section we noticed from the deviance table that 

the amounts of information contained in each o f the summation functions 

(and their corresponding carry-over effect functions) for the two observed 

inputs were largely orthogonal to each other. But in the case we are discussing 

now, the two summation functions (and their corresponding cany-over effect 

functions) for the two observed inputs seem to share information (i.e., the 

amounts o f information contained in each o f the two summation functions 

overlap), since the two summation functions and their corresponding carry-over 

effect functions when added separately to the null model reduce the deviance 

by 1562 and 1299 respectively. But when added together to the null model, 

they reduce the deviance by only 1906 which is much smaller than the sum of 

the reductions (2861) when they are fitted separately. This feature, unlike the 

previous example, gives the impression that the two inputs act dependently to 

excite the firing of the neurone, and this seems to be consistent with the 

coherence shown in Fig.5.2.21a which also reveals that the two observed input 

processes are well-correlated with each other. Also it seems in agreement with 

the conclusions made when we compared the figures o f the estimated 

coherence and phase with the figures o f their corresponding partial coherence 

and partial phase which suggested also that the two observed inputs seem to act 

dependently to affect the occurrence o f the output spikes.



Chapter 5 Likelihood Applications to Multiple Input and Single Output Data 181

(5) in this example and as in the previous section, the “unobservable” 

inputs again seem to explain much more o f the variability (about 43 %), more 

than the recovery, threshold functions and the summation functions for the two 

observed inputs when all fitted together (about 15 %), although each of them is 

sufficiently informative to be worth fitting. This is again a feature o f the 

simulation procedure used to simulate the data set in this example and is 

anyway to be expected since the “unobservable” inputs contain all the other 

unmeasured inputs.

(6) all the three carry-over effect functions seem to contain very little 

information compared to their corresponding summation functions as can be 

seen from a negligible reduction in deviance every time a carry-over effect 

function is added to a previous model. But each carry-over effect function was 

statistically significant and worth adding to the model, and this was verified 

using F-tests. The conclusions given in (5) and (6) above seem to be consistent 

with the way in which the data have been simulated.
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5.3 Real Data Set Obtained From Mammalian Muscle Spindle -

In the previous two sections we discussed the application of likelihood 

techniques to simulated data in the case of two spike train inputs and one 

output in the presence o f an “unobservable” input representing all other 

unmeasured inputs. In this section we turn our attention to the application of 

likelihood methods to a real set o f data in the case o f two inputs and one output 

(see Fig.5.3.1 below) obtained from a muscle spindle (see section 1.4 of 

chapter 1) lying within the tenuissimus muscle in the hind limb o f a deeply 

anaesthetised cat. The fusimotor axons were stimulated with voltage pulses, 

and the resulting primary (la) and secondary (II) responses in the form of 

sequences o f pulses from the spindle were recorded. For further detail 

concerning the recording technique used, see chapter 1 o f this thesis, Halliday 

et al (1988), Rosenberg et al (1989) and Amjad (1989).

The data set demonstrated here consists o f a 0-1 valued series of

approximately 50000 points for each o f the two inputs and the output. The 
numbers of spikes observed were 3180 and 1524 for the fusimotor axons y

and y  inputs respectively, whereas the number o f spikes observed for the 

primary (la) and secondary (II) outputs were 1164 and 1728 respectively.

nY

Fig.5.3.1 Diagrammatic representation of a muscle spindle with two observed fusimotor 

axon inputs, y  and y  , and the two primary (la) and secondary (II) outputs.0 b
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Using the maximum likelihood estimation technique the threshold,

recovery, summation and carry-over effect functions for each o f the outputs

separately were estimated. For computational purposes the data have been split

up into two disjoint segments o f 24950 points and the individual maximum

likelihood estimates for each segment were averaged to obtain the final

estimates. Using the stochastic point process techniques reviewed in chapter 2

the square root o f the cross-intensity function, the ordinary and partial

coherences and phase were also estimated. The analysis was done in two stages

where we consider both inputs and only one output in each stage. The

possibility o f considering both outputs together (i.e., two input and two output

likelihood model) where very useful results might be obtained remains as a

possible area in which this work may be extended (see chapter 6). We start 
with the two observed fusimotor axon inputs, y  and y  , and the secondary

(II) output.

5.3.1 The Two Fusimotor Inputs and the Secondary (TO Output

We start with the stochastic point process techniques. Fig.5.3.2a and b

represent the two square roots o f the estimated cross-intensity functions 
between the secondary (II) output and each of the inputs y  and y  ,

respectively. The square root o f the estimated cross-intensity function 
corresponding to the first input y  suggests an excitatory synaptic input effect

lasting from about 13 to 21 msec whereas the square root o f the estimated 
cross-intensity function between the output and the input y  suggests very

small excitatory effects o f synaptic input but these effects are almost negligible.
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Square Root of the Estimated Cross Intensity Function
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Fig.5.3.2 a) Estimated square root of the cross-intensity function between the secondary (II) output and the 

input y  . b) Estimated square root of the cross-intensity function between the secondary (II) output and the

input y  . The horizontal dotted lines in (a) and (b) represent approximate 95 % confidence intervals for theb

estimated square roots of the cross-intensity functions under the hypothesis that the two processes are 

independent, plotted around the square root of the estimated output mean rate (horizontal solid line).
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Fig.5.3.3b represents the estimated ordinary coherence between the first 
input y  0 and the secondary (II) output and suggests that the two processes are

well coupled over the range of frequencies o f 0 to about 25 Hz. The estimated 
ordinary coherence between the second input y  b and the output (Fig.5.3.3c)

indicates a weaker coupling over the range of frequencies o f 0 to about 12 Hz. 
The estimated ordinary coherence between the first input y  and the second

input y  t is shown in Fig.5.3.3a and indicates that the two inputs are not

correlated with each other over the whole range of frequencies. This feature can 

also be seen from a direct comparison between the two figures (Fig.5.3.4a-b) of 

the estimated partial coherences between the output and each input after 

removing the effect o f the other input and those o f the ordinary coherences 

between the output and each input given in Fig.5.3.3b and Fig.5.3.3c. In each 

case, the ordinary and partial coherences are quite similar to each other. This 

suggests that the two inputs act almost independently to affect the occurrence 

of the output spikes.

Fig.5.3.5a represents the estimated partial phase between the first 
observed fusimotor axon input, y  Q, and the secondary (II) output after

removing the linear effects o f the second observed fusimotor axon input, y  ■.

The weighted least squares line (dotted) fitted to the partial phase curve over 

the range o f frequencies where the corresponding partial coherence (Fig.5.3.4a) 

is significantly different from zero shows that, the output process is delayed, on 

the average, by an amount 18.15 msec with a 95% confidence interval, for the 

delay, o f (16.46, 19.84) msec. The value o f the delay suggested by the partial 

phase seems to be consistent with the 17 msec peak in the corresponding square 

root of the estimated cross intensity function (Fig.5.3.2a).
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Fig.5.3.3 Estimated ordinary coherence between

a) the two inputs Y and Y , b) the secondary (Q) output and the input y  and c) the secondary (II)O b  0
output and the input y  . The dotted lines correspond to the upper limit of the 95% confidence intervals for

b

the coherence under the hypothesis of zero coherence.
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Fig.5.3.4 Estimated partial coherence between the secondary (II) output and

a) the first input y  after removing the effect of the second input y  and b) the second input y  after
0 b b

removing the effect of the first input y  . The dotted lines correspond to the upper limit of the 95% 

confidence intervals for the coherence under the hypothesis of zero partial coherence.
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The estimated partial phase between the second observed fusimotor axon 
input, y . > and die secondary (II) output after removing the linear effects o f the

first input is presented in Fig.5.3.5b. The estimated slope of the weighted least 

squares line (dotted) over the range of frequencies at which the corresponding 

partial coherence (Fig.5.3.4b) is significantly different from zero shows that, 

the output process is delayed, on the average, by an amount 20.16 msec with a 

95% confidence interval, for the delay, of (13.06, 27.26) msec. The value of the 

delay suggested by the partial phase again seems to be consistent with the 19 

msec peak in the corresponding square root of the estimated cross intensity 

function (Fig.5.3.2b).

In this real data the peaks in the two summation functions are centred 
about 24 msec and 22 msec for the first ( y o ) and second ( y b ) inputs

respectively. These differ from the estimated times of the peaks in the 

corresponding cross intensity functions and from the two values of the delay 

estimated from the partial phase. As can be seen from the deviance table 

(Fig.5.3.8), this data set is not input dominated. This lack of agreement suggests 

that the delay may not be the most appropriate description and the situation is 

more complicated than what is suggested by the partial phase and the cross 

intensity function. Again it seems that perhaps summarising this in a single 

number and calling it a “delay” may not always be sensible.



Chapter 5 Likelihood Applications to Multiple Input and Single Output Data 189

(a)

>>

-1

w - 2

-3
30 40 50 600 10 20

(b)

-3
50 6030 4010 200

Frequency(Hz)

Fig.5.3.5 Estimated partial phase between the secondary (II) output and

a) the first input y  after removing the effect of the second input y  . and b) the second input y  . after
0 b b

removing the effect of the first input y  Q . The slopes of the fitted weighted least squares lines (dotted) 

correspond to the estimated time delays.
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The maximum likelihood estimation technique has been applied to the

same set o f muscle spindle real data. The logistic link function was used and

found to be superior to the probit link both in terms of the goodness of fit and 

also the reduction in deviance. The membrane potential, U t , the polynomial

recovery function of order k , Vt , and the linear predictor of the model tjt are

the same as (5.2.3 - 5.2.5) given in section (5.2.2) respectively, except in this 

real set o f data the “unobservable” inputs are not available to us.

Fig.5.3.6a and b represent the estimated (Summation Function^, { ;dw}, 

and the estimated (Summation Function^, { 2au }, for the first ( /  ) and second 

( y b) inputs respectively. The figures suggest that, while the summation

function for the first input reveals an excitatory effect lasting from about 13 to

29 msec, the summation function for the second input suggests an excitatory

effect lasting from about 18 to 22 msec, but these effects are relatively weaker 
and also shorter compared to those for the first input /  Q.

The significant duration of the summation function for the first input 

(Fig.5.3.6a) is also longer than that for the corresponding cross intensity 

function as illustrated in Fig.5.3.2a. This suggests again that the square root of 

the cross-intensity function underestimates the synaptic input effects. The 

significant duration of the summation function for the second input (Fig.5.3.6b) 

however is quite similar to that for the corresponding cross intensity function as 

shown in Fig.5.3.2b.

The threshold and recovery functions are well estimated over the whole 

range of intervals (as given in Fig.5.3.6c) and indicate that the probability of an 

output spike is very small up to about 20 msec after the previous output spike, 

but it then increases rapidly and the chance of an output spike becomes quite 

large after about 40 msec. As we have seen in the figure the recovery function
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Fig.5 .3 .6  a) Estimated summation function { j  a u J for the first input y  . b) Estimated summation 

function { 2 ^ 11}  ôr second observed input y  . c) Estimated threshold and recovery functions. The

dotted lines give ±  two standard error limits plotted about zero in (a) and (b) for the summation functions and 

plotted around each function in (c) for the threshold and recovery functions.
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is forced to be zero for intervals less than the minimum of the output inter-spike 

intervals £j ,  because there will be no output data available at those

corresponding intervals.

Fig.5.3.7a and b represent the carry-over effect functions for the first 

and second inputs. The estimated carry-over effect function (COE)i for the first 

input suggests excitatory effects lasting from about 21 to 56 msec whereas the 

estimated carry-over effect function (COE)2 for the second input suggest 

excitatory effects lasting from about 26 to 54 msec.

The goodness of fit plot given in Fig.5.3.7c seems reasonable in the 

sense that the confidence interval about each of the empirical probabilities 

(dots) are all seen to contain the corresponding theoretical probabilities and the 

confidence intervals are reasonably narrow. As the unexplained variability by 

the model is relatively large compared to that in previous examples where the 

“unobservable” inputs were also considered, the model takes the range of the 

linear predictor only to values near zero. This affects the ability o f the model to 

predict higher probabilities.

The deviance table given in Fig.5.3.8 reveals the following interesting 

features,

(1) the recovery and threshold functions taken together explain more of 

the variability (about 24.84 %) than the summation functions for the two 

observed inputs when both are fitted together (about 15.04 %  o f the 

variability). This suggests that the output spikes are produced mainly by the 

effects o f other unmeasured inputs or by spontaneous activity or a combination 

of the two, since the recovery function can demonstrate the intrinsic properties 

of the cell as well as the effects due to any unmeasured inputs if  these latter are 

not modelled (as we have discussed earlier in sections 4.7 and 5.2).
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Fig.5.3.7 illustration of the two carry-over effect functions and goodness of fit plot, 

a) Estimated carry-over effect function { l cw } for the fusimotor input y  . b) Estimated carry-over effect 

function } for the fusimotor input y  . The dotted lines in a) and b) give ±  two standard error limits

plotted about zero for the summation functions, c) The goodness of fit plot.
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(2) fitting all five components reduces the deviance from 14992 

(the initial model) to 9303; a reduction of about 38 % and the reason for this 

relatively small reduction in deviance when using the full model compared to 

the previous three simulated examples given in sections 5.2.1-5.2.3 is the fact 

that in this real data set the “unobservable” inputs are not available to us.

(3) fitting a model with only (Summation Function)2 for the second 
“ y  ” input makes only a small reduction in deviance (a reduction of 467)

whereas a model with only (Summation Function)i for the first “ y  ” input

makes a larger reduction in deviance (a reduction of 1984). But a model with 

both functions leads to a total reduction in deviance of 2255. This suggests that 

the amounts o f information contained in each of the summation functions are 

largely orthogonal to each other, in other words the two inputs are acting 

largely independently to excite the firing of the neurone. This seems consistent 

with the coherence figure shown in Fig.5.3.3a which indicates that the two 

observed input processes are uncorrelated with each other.

Now, suppose we use the likelihood approach to fit only the two cross- 

intensity functions, i.e.

00 * 00 *
U f  =  X  l a v l x t - v  **■ S  2a v 2 * t-v  /c  o

v -0  v=0 .........y j . t .v )

where the two sets o f coefficients | / av j ; i = l, 2 represent the cross-

intensity functions between the secondary (II) output and each of the fusimotor 
axon inputs, y  Q and y   ̂ respectively. As we explained earlier in section

(5.2.1), we take into our account not only the time o f the previous output spike

( y t ) as in the summation function, but we consider all previous input spikes,

i.e., consider all the input postsynaptic effects at lag v as shown in Fig.4.5.1.
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Null model

Deviance=14992

(Summation Function^ Recovery Function (Summation Function)]

For y  Inputs For y  Inputs
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\  /
(Summation Function^

+ (Summation Function^ 

Deviance=12737

(Summation Function)] (Summation Function)]
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Deviance=l 1214 Deviance=14429 ̂ z
(Summation Function)] +(COE)i (Summation Function)]

+ Recovery Function + (COE)i + Recovery Function

Deviance=9778 Deviance**10960

(Summation Function )i+(COE)i + 

(Summation Function)] + (COE)2 

Deviance=12437I
(Summation Function)i +(COE)i + 
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Fig.5.3.8 Diagrammatic representation of the deviance table.
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Fig.5.3.9a and Fig.5.3.9b represent the estimated cross-intensity

functions (estimated via the likelihood function) between the secondary (II) 
output and each of the fusimotor axon inputs, y  0 and y   ̂ respectively. The

residual deviance for this model is 14804; a reduction of only 188 

(i.e., a reduction of only about 1.25 %) from the null model, providing still 

further evidence that the cross-intensity function in general has very poor 

explanatory power. The two summation functions and their corresponding 

carry-over effect functions seem to be much more better than the two cross 

intensity functions they reduce the deviance by 2255, and so they are more 

informative and reliable.
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Fig.5.3.9 The two cross intensity functions estimated via likelihood.

a) Estimated cross intensity function between the secondary (II) output and the input y  0 • b) Estimated cross-

intensity function between the secondary (II) output and the input Y . The horizontal dotted lines in (a) andb

(b) give ±  two standard error limits about zero for the cross-intensity functions.
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5.3.2 The Two Fusimotor Inputs and the Primary (Ta) Output

In this section we discuss the effects o f the two fusimotor Inputs y  Q and 

y  b on the primary (la) output. As in the previous section we start first with the

stochastic point process techniques, then use the likelihood technique and as in 

the previous examples we compare some results o f the two approaches.

Fig.5.3.10a and b represent the square roots of the two estimated cross- 
intensity functions between the primary (la) output and each o f the inputs y

and y  b respectively. The cross-intensity function for the fusimotor input y

suggests excitatory synaptic input effects lasting from about 11 to 19 msec and

the cross-intensity function between the primary (la) output and the fusimotor 
input y  b suggests excitatory synaptic input effects lasting from about 9 to

23 msec.

Fig.5.3.11a represents the estimated ordinary coherence between the 
fusimotor input y  Q and the primary (la) output and suggests that the two

processes are weakly coupled over the range of frequencies o f 0 to about 28 Hz 
and the estimated ordinary coherence between the other fusimotor input y .b

and the primary (la) output (Fig.5.3.11b) indicates also a weak coupling over 

the range of frequencies of 0 to about 42 Hz.

The similarity of the two estimated partial coherences between the 

primary (la) output and each fusimotor input after removing the effect o f the 

other input (Fig.5.3.12a and Fig.5.3.12b) and those of the ordinary coherences 

between the primary (la) output and each fusimotor input (Fig.5.3.11a and 

Fig.5.3.11b) suggests that the two inputs are again acting almost independently 

in affecting the occurrence of the primary (la) output spikes.
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Fig .5 .3 .10  a) Estimated square root of the cross-intensity function between the primary (la) output and the 

input y  Q . b) Estimated square root of the cross-intensity function between the primary (la) output and the

input y  . The horizontal dotted lines in (a) and (b) represent approximate 95 % confidence intervals for the
b

estimated square roots of the cross-intensity functions under the hypothesis that the two processes are 

independent, plotted around the square root of the estimated output mean rate (horizontal solid line).
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Fig.5.3.11 Estimated ordinary coherence between

a) the primary (la) output and the first fusimotor input y  Q and b) the primary (la) output and the second 

fusimotor input y  . The dotted lines correspond to the upper limit of the 95% confidence intervals for theb

coherence under the hypothesis of zero coherence.
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Fig.5.3.12 a) Estimated partial coherence between the primary (la) output and the first fusimotor input y Q 

after removing the effect of the second input y  . b) Estimated partial coherence between the primary (la)

output and the second fusimotor input y after removing the effect of the first input/ . The dotted linesb 0

correspond to the upper limit of the 95% confidence intervals for the partial coherence under the hypothesis of

zero partial coherence.
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Fig.5.3.13a represents the estimated partial phase between the first 
observed fusimotor axon input, y  , and the primary (la) output after removing

the linear effects o f the second observed fusimotor axon input, y  t . The

weighted least squares line (dotted) fitted to the partial phase curve over the 

range of frequencies at which the corresponding partial coherence (Fig.5.3.12a) 

is significantly different from zero shows that, the output process is delayed, on 

the average, by an amount 14.70 msec with a 95% confidence interval, for the 

delay, of (14.09, 15.30) msec. The value of the delay suggested by the partial 

phase again seems to be consistent with the 15 msec peak in the corresponding 

square root of the estimated cross intensity function (Fig.5.3.10a).

Fig.5.3.13b represents the estimated partial phase between the second 
observed fusimotor axon input, y  , and the primary (la) output after removing

the linear effects o f the first input. The estimated slope of the weighted least 

squares line (dotted) over the range of frequencies at which the corresponding 

partial coherence (Fig.5.3.12b) is significantly different from zero shows that, 

the output process is delayed, on the average, by an amount 14.45 msec with a 

95% confidence interval, for the delay, of (13.89, 15.00) msec. The value of the 

delay suggested by the partial phase again seems to be consistent with the 13 

msec peak in the corresponding square root of the estimated cross intensity 

function (Fig.5.3.10b).

As in the previous section, the peaks in the two summation functions are 
centred about 16 msec and 17 msec for the first (y  ) and second (y  ) inputs

respectively. These differ from the estimated times of the peaks in the 

corresponding cross intensity functions and from the two values of the delay 

estimated from the partial phase. This is again might be due to the fact that the 

data set is not input dominated (as can be seen from the deviance table
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Fig.5.3.13 Estimated partial phase between the primary (la) output and

a) the first input y  after removing the effect of the second input y  and b) the second input y  after0 b o
removing the effect of the first input y  Q . The slopes of the fitted weighted least squares lines (dotted) 

correspond to the estimated time delays.
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given in Fig.5.3.16). The lack of agreement between the summation function 

and the point process techniques of detecting similar values for the delay 

suggests again that the delay may not be the most relevant description. The 

situation seems to be more complicated than what is suggested by the partial 

phase and the cross intensity function.

We now turn our attention to the applications of the likelihood method 

to the same set of muscle spindle real data where the structure o f the likelihood 

model is the similar as previously described in section (5.3.1). The logistic link 

function was again used since it found to be superior to the probit link in terms 

of the goodness of fit, in taking the range of the linear predictor a little further 

and also from the greater reduction in deviance.

Fig.5.3.14a represents the estimated (Summation Function)i, { j au},  for 

the first fusimotor input y  and suggests an excitatory effect lasting from 

about 11 to 29 msec whereas the estimated (Summation Function)2> { } ,  for 

the second fusimotor input y  (Fig.5.3.14b) suggests an excitatory effect

lasting from about 9 to 25 msec.

The two summation functions for the first and second fusimotor inputs 

(Fig.5.3.14a and b) have a longer significant duration than their corresponding 

cross intensity functions (Fig.5.3.10a and b). As in the previous example, the 

difference in duration suggests again that the square root of the cross-intensity 

function underestimates the synaptic input effects for each of the fusimotor 

inputs, (as we will see shortly from the residual deviance for the cross intensity 

functions when estimated using the likelihood approach).

The threshold and recovery functions given in Fig.5.3.14c suggest that 

the probability of an output spike occurring spontaneously is very small over 

the whole range of intervals after the previous output spike as the recovery 

function remains far below threshold over the whole range of intervals.
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Fig.5.3.14 a) Estimated summation function j  a u for the first input y  . b) Estimated summation function 

2& u for the second observed input y  . c) Estimated threshold and recovery functions. The horizontal dotted

lines give ±  two standard error limits plotted about zero for the summation functions in a) and b) and around 

each function in c).



Chapter 5 Likelihood Applications to Multiple Input and Single Output Data 206

Fig.5.3.15a and b represent the cany-over effect functions for the first 

and second fusimotor inputs respectively. The estimated carry-over effect 

function (COE)i for the first fusimotor input suggests excitatory effects lasting 

from about 12 to 30 msec whereas the estimated carry-over effect function 

(COE)2 for the second fusimotor input suggests excitatory effects lasting from 

about 11 to 33 msec. But both carry-over effects are relatively small compared 

to their corresponding summation functions.

The goodness of fit plot given in Fig.5.3.15c seems reasonable but not as 

good as that given in Fig.5.3.7c when analysing the effects of the two fusimotor 

inputs on the secondary (II) output, in the sense that the range of the linear 

predictor is shorter and the confidence intervals are wider and also from the 

smaller reduction in deviance. The model, in this example, takes the range of 

the linear predictor up to around -7 .7 . The model cannot predict high 

probabilities of an output which reflects the large unexplained variability in the 

model.

The deviance table given in Fig.5.3.16 illustrates the sequential fitting of 

a set of successively more complex models and reveals the following 

interesting features,

(1) the recovery and threshold functions taken together explain very 

little of the variability (about 5.1 %). The two summation functions fitted 

together explain about 11.12 % of the variability whereas fitting them 

separately explains about 6.64 %  for the first input and about 5.2 %  for the 

second input. These small reductions in the deviance give the impression that 

the output spikes are not produced only by the influence of the two observed 

inputs or by an intrinsic cell property, but produced mainly by some other 

unmeasured inputs.
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Fig.5.3.15 illustration of the two carry-over effect functions and goodness o f fit plot, 

a) Estimated carry-over effect function j  cw for the first fusimotor input y  . b) Estimated carry-over effect 

function 2 for the second fusimotor input y  . The horizontal dotted lines in (a) and (b) give ±  two

standard error limits plotted about zero for the summation functions c) The goodness of fit plot.
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(2) fitting all five components reduces the deviance from 11026 

(the initial model) to 9249; a reduction of only about 16.12 % and the reason 

for this small reduction in deviance when using the full model, as in the 

previous section, is the fact that the ‘bnobservable” inputs are not included 

since they are not available to us in this real experimental situation.

(3) as we have seen in (1) above, fitting a model with both summation 

functions leads to a reduction in deviance of 1226 which is very similar to the 

sum of the reductions in deviance when each summation function is fitted 

separately (a reduction of 732 and 570 for the first and second input summation 

functions respectively). This suggests that the amounts of information 

contained in each of the summation functions are largely orthogonal to each 

other, i.e., the two inputs act almost independently to excite the firing of the 

neurone. This seems consistent with the coherence and phase figures we have 

seen earlier.

(4) in this example both carry-over effect functions seem to contain very 

little information compared to their corresponding summation functions as can 

be seen from a small reduction in deviance every time a carry-over effect 

function is added to a previous model. But the adding of the carry-over effect 

functions was verified using F-tests.

Suppose we use the likelihood approach, as explained in the previous 

section, to fit a model with only the two cross-intensity functions.

Fig.5.3.17a and Fig.5.3.17b represent the estimated cross-intensity

functions (estimated via the likelihood function) between the primary (la) 
output and each of the fusimotor axon inputs, y  q and y   ̂ respectively. The

residual deviance for this model is 9944; a reduction of 1082 (i.e., a reduction 

of about 9.81 %) from the null model, providing still further evidence that the 

cross-intensity function in general has poor explanatory power, although in this
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Fig.5.3.16 Diagrammatic representation of the deviance table.



Chapter 5 Likelihood Applications to Multiple Input and Single Output Data 210

Estimated via Likelihood

ao■H

■H
ndciaaM
u

- 0 . 2

0 5 10 15 20 25 30

Estimated via Likelihood

1.25

0.75

3 0.25

-0.25

0 5 10 15 20 25 30
Lag v(msec)

Fig.5.3.17 The two cross intensity functions estimated via likelihood.

a) Estimated cross intensity function between the primary (la) output and the input y  . b) Estimated cross­

intensity function between the primary (la) output and the input Y . The horizontal dotted lines in (a) and (b)b

give ±  two standard error limits about zero for the cross-intensity functions.
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example, the two cross-intensity functions are only slightly less informative 

than the two summation functions (which reduce the deviance by 1226).

We now use the frequency domain technique to discuss the effects of the 

two fusimotor inputs on the coupling between the two outputs. The reason of 

presenting this analysis at the end of this chapter is due to the fact that the 

likelihood method has not been yet developed to the case of multiple output 

(see chapter 6).

Fig.5.3.18a represents the estimated ordinary coherence between the

primary (la) and secondary (II) outputs and suggests that the two outputs are

coupled over the range of frequencies of about 0 to 18 Hz. Fig.5.3.18b and c

represent the estimated partial coherences between the primary (la) and

secondary (II) outputs after removing the effect o f each fusimotor input. They 
suggest that removing the effect of the first fusimotor input y  (Fig.5.3.18b)

significantly weakens the coupling between the two outputs whereas the partial

coherence between the two outputs after removing the effect o f the second 
fusimotor input y   ̂ (Fig.5.3.18b) remains almost identical to the ordinary

coherence between the two outputs (Fig.5.3.18a). This weakening in coupling

between the two outputs when removing the effect of the first fusimotor input 
y  may be due to the fact that the coupling between each of the two outputs

and the first fusimotor input y  is stronger (as given in Fig.5.3.3b and

Fig.5.3.11a) than that between each of the two outputs and the second 
fusimotor input y   ̂ (as given in Fig.5.3.3c and Fig.5.3.11b). A similar

conclusion can also be drawn from the two deviance tables.
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Fig.5.3.18 a) Estimated ordinary coherence between the primary (la) and the secondary (II) outputs.

Estimated partial coherence between the primary (la) and the secondary (II) outputs, b) after removing the

effect of the input Y and c) after removing the effect of the input Y  . The dotted lines correspond to theo b

upper limit of the 95% confidence intervals for the coherence under the hypothesis of zero coherence.
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5.4 Conclusion

In this chapter the maximum likelihood approach has been applied to 

three simulated sets of data and also to a real neuronal spike train data set. 

There are many interesting features to which we draw attention. First is the 

analysis of the first set of data with one observed (spike train) input and one 

“unobservable” input, and one observed output where summation and carry­

over effect functions for the “unobservable” inputs can be estimated. In this 

case we have noticed that the “unobservable” inputs explained more of the 

variability than either the summation function or the recovery function 

(for the observed inputs) when fitted alone. The deviance table in the latter case 

shows that the recovery function contains almost no extra information to that 

contained in the “unobservable” inputs which gives the impression that the 

recovery function “explains” part of the effects of the unmeasured inputs. 

There is an evident warning not to try to give the recovery function a 

physiological interpretation in any circumstance where there are unmeasured 

inputs. The summation function by contrast seem to have clear physiological 

interpretations in every case. Second is the analysis of two simulated sets of 

data each with two observed (spike train) inputs and one “unobservable” input, 

and one observed output where the two observed inputs are uncorrelated with 

each other in the first set of data and correlated in the second set of data. The 

demonstrations shows again that the likelihood is a very flexible approach and 

has the ability to separate the aspects of the relationship between spike trains 

through the threshold, recovery, summation (and carry over effect) functions 

for each of the two observed inputs and for the “unobservable” input and no 

such ability is provided by the traditional stochastic point process techniques. 

Also the analyses suggest that the square root of the cross intensity function is 

again a poor method of investigating the association between processes since it 

is regularly underestimating the underlying excitatory effects of a synaptic
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input. The reduction in deviance for a model with only the cross intensity

function (when estimated via likelihood) from the null model is very small,

providing still further evidence that the cross-intensity function in general has

very poor explanatory power. The third point to notice here is that the

likelihood approach suggests similar features, i.e., whether the inputs act

dependently or independently to affect the output spikes, to those revealed by

the ordinary and partial coherences as we have seen in sections 5.2 and 5.3.

Finally we have the case of real muscle spindle data where we investigated the 
relationships between the two fusimotor y  and y  inputs and each of the

sensory la and II outputs. Again similar features to those mentioned in the two 

simulated cases have been noticed here except in this real experiment the 

“unobservable” inputs cannot be taken into consideration. The likelihood 

approach still needs to be developed to include the case of two or more outputs.



Chapter 6

6. General Conclusions and Further W ork

6.1 General Conclusions

In general terms, the work described in this thesis shows that the 

maximum likelihood approach is a very powerful estimation procedure 

which can be used effectively to analyse neuronal spike train data. 

Throughout the course of this thesis, the likelihood approach has been 

applied to many simulated as well as real data sets, and very useful results 

have been obtained. The main interesting features of these results to which 

we draw attention can be summarised as follows:

•  The approach shows great flexibility. The recovery (and threshold) 

functions, when all inputs can be measured, represent intrinsic properties 

of the neurone and no analogous measure is available using the 

traditional stochastic point process techniques. However, the parameters 

in the recovery and threshold functions are not physiologically 

meaningful parameters and we cannot give them any direct 

interpretation. The meaningful feature in fact is the difference between
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the estimated values of these two functions (i.e., the rate at which the 

recovery function approaches threshold is the significant and 

physiologically meaningful thing we are looking at).

•  The linear summation of the effects o f the input spike train on the 

membrane potential have been further separated into the effects o f input 

spikes occurring at times after the time of the last output spike, i.e., at 

lag u as shown in Fig.4.5.1 and the effects o f input spikes occurring at 

times prior to the time of the previous output spike, i.e., at lag w  as 

shown in Fig.4.5.1. These two types of input effect are measured by the 

summation function and its corresponding carry-over effect function 

respectively. Again the time and . frequency domain analyses do not 

provide analogous measures of the carry-over effect o f the synaptic 

inputs. Unlike the parameters in the threshold and recovery functions, 

the estimated durations of the summation function (or the carry-over 

effect) are interpretable and physiologically meaningful.

•  The analyses of most data sets we have looked at during the 

preparation of this thesis, suggest that the square root of the cross 

intensity function as a time domain measure of the degree of 

associations between two processes usually underestimates the 

underlying excitatory and inhibitory effects of a synaptic input. In some 

cases it may further produce results that contradict the way in which the 

data have been simulated, e.g., it shows an inhibition or periodic 

behaviour where there are no such features present in the simulation. 

The summation function, by contrast, provides an alternative measure 

which seems to be more informative and reliable in terms of reduction in 

deviance. Also it seems to be more consistent with the way in which the 

data are simulated, i.e., it reflects features which are present in the 

simulation. The only case where the cross intensity function still could
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be a useful measure is the case where the effects on the neurone cell are 

dominated by a single input with no significant carry-over effect and 

also if  there is a negligible recovery function as in chapter 5.

• Unlike the cross-intensity approach, the likelihood procedure also 

allows for continuous “unobservable” inputs to be involved in the 

analyses, and both summation and carry-over effect functions for the 

“unobservable” inputs can be estimated.

• In the case where “unobservable” inputs are taken into consideration, 

the deviance table sometimes shows that the recovery function contains 

almost no extra information to that contained in the “ unobservable” 

inputs. This gives the impression that the recovery function may explain 

both intrinsic properties of the neurone as well as part o f the effects of 

unmeasured inputs if  these latter cannot be modelled. This will 

invariably be the case for real data.

•  The likelihood model can be extended to the case of two observed 

inputs and one observed output and where “ unobservable” inputs can 

also be taken into consideration. This gives the approach some more 

explanatory power.

• The likelihood approach through the table o f deviances, in most data 

sets we have looked at in this thesis, suggests similar features, 

i.e., whether the inputs act dependently or independently to affect the 

output spikes, to those revealed by the ordinary and partial coherences.

• The simulations have provided useful insights into the interpretation 

of experimental results, and advances in the physiological field 

emphasise the development of the simulation to match experimental data 

as much as possible.

• Although it is a very computationally intensive and time consuming 

procedure compared to both the cross intensity and Fourier approaches
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(which are equally rapid in terms o f computational time), die likelihood 

approach shows numerous advantages which make it a very powerful 

tool for analysing neuronal spike train data where a considerable amount 

of extra information about the processes involved can be obtained.

•  The value of the delay suggested by the phase seems usually 

consistent with the peak in the square root o f the estimated cross 

intensity function. This is expected as the two approaches are 

mathematically equivalent and therefore reveal similar results. The 

location of the peak in the summation function is usually larger than the 

location of the peak in the cross intensity function and the value o f the 

delay estimated from the phase (unless the summation and cross 

intensity functions are not very different in those circumstances 

mentioned earlier). This lack of agreement between the likelihood and 

the point process techniques may be due to the fact that some data sets 

are not input dominated and the delay may not be the dominant feature 

or even a relevant one. In this case the situation is more complicated 

than what is suggested by the phase and the cross intensity function, and 

it seems that summarising this in a single number and calling it a “delay” 

may not always be appropriate.

•  The recently proposed maximum likelihood approach to the analysis 

of neuronal spike train data by Brillinger, see Brillinger and Segundo 

(1979) and Brillinger (1988 and 1992), is limited to a constant threshold, 

used only a probit link function, and only fitted recovery (and threshold) 

and summation functions in the absence of unmeasured inputs. Also the 

procedure was applied only to a single real data set. However, in this 

thesis we not only extended this previous work but also developed a 

variety of functional forms for the summation and recovery processes, 

considering different link functions. We fit a model with both functions
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together in the presence and absence of a continuous “unobservable” 

input representing any unmeasured input. This enables us, as mentioned 

earlier, to recognise the cases in which the recovery function is purely 

reflecting the intrinsic properties of the neurone. Our main contributions 

in this present work are not only the application of this approach to as 

many as 50 different simulated as well as real data sets and comparing 

results obtained via likelihood with those obtained via stochastic point 

process techniques and the extension and the development of existing 

work, but also we introduced a variety of new functional forms of the 

likelihood model, such as:

a) The carry-over effect function which is seen to provide a measure of 

any carry-over effects that occur after an output spike.

b) Constructing a table of deviances through which the improvement of 

the hierarchy of forms of the model can be assessed at each stage of 

complexity. A significant reduction in deviance in proceeding to 

higher levels of complexity reflects an improvement in the model. 

Also formal F-tests based on the change in the deviance and the 

degrees of freedom, to justify the adding of new terms to our model, 

can easily be derived from the deviance tables. Again no such 

deviance tables can be obtained using the traditional stochastic point 

process techniques.

c) Considering two types of threshold, the constant and the 

exponentially decaying threshold forms. The choice between the two 

types of threshold forms can be assessed by their reduction of 

deviance as well as the reduction of the number of parameters used in 

the corresponding recovery function.

d) The estimate of the cross intensity function via the likelihood 

approach where its adequacy as a representation of the underlying
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processes is assessed in terms of a reduction of deviance. The very 

small reduction in deviance for a model with only the cross intensity 

function from the null model, compared to that for the summation 

function, provides still further evidence that the cross-intensity 

function in general has very poor explanatory power.
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6.2 Further Work

There are many situations and related questions which have arisen 

during the course of the present work which are not fully understood and 

still require further investigation. The development and application of 

likelihood estimation procedures to more realistic situations has led to areas 

of possible future work. The following list sets out some possible areas in 

which the work of this thesis may be extended:

0 The application of the likelihood model should not be limited to a 

single input - single output and two inputs - single output cases but it 

should be extended further to a multiple input - multiple output cases.

0 The likelihood model should be extended to include, along with linear 

input effects, quadratic effects of synaptic inputs which will represent 

interactive effects within and between individual input processes. The 

interactive effects could be estimated within each individual input by a 

likelihood model of the form (6.2.1) and that between different inputs by 

a model of the form (6.2.2). Assuming that the membrane potential at the 

trigger zone of a neurone at any given time t is denoted by Ut , then the

two suggested likelihood models are of the form

U,

and

U,

Y t - i  
Vt + £  au x,_u

u = 0

Y t - l Y t - l  *
+ Z Z ' xt- u x ' ; u*uu, u t-u

 (6.2.1)

u = 0 u = 0

Y t ~ l  Y t ~ l
Vt + £  j a u ]Xf_u + £  2au 2xt—u

u - 0  u = 0

Y t - l Y t - l  .
+ £  £  a , , x t_u 2x > ; u *  u

u, u t-u

...(6 .2 .2)

u = 0 u = 0
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where y t is the time elapsed at time t since the time of the last output 

spike, the term Vt represents the polynomial recovery function of order 

k, the two sets of coefficients {aw}, |a*u u> j given in (6.2.1) represent

the summation function and the quadratic effects within the input, 

respectively, whereas the sets o f coefficients {2au\  given in

(6.2.2) represent the summation functions for the first and second inputs 

respectively and the set of coefficients ja* ui j given in (6.2.2)

represents the quadratic effects between the two inputs.

0 In chapter 4 we have introduced a goodness of fit assessment 

procedure for testing the validity o f the model and the adequacy of the 

link function. But this procedure is partially based on visual comparisons 

between empirical and corresponding theoretical probabilities and is to 

some extent an informal procedure. A formal test would be very useful 

to have.

0 The application of the likelihood approach to the mammalian muscle

spindle data discussed in chapter 5 (section 5.3) discussed the 
relationships between the two fusimotor y  and y  inputs and each of

the sensory la and II outputs. This investigation could be extended to 

include the case of considering both outputs together or it could be 

extended to include the effect of a length change of the muscle spindle 

under different conditions of other stimuli, on the sensory discharges 

from the same muscle spindle. This length change of the muscle spindle, 

as a continuous input to the cell, could be included in our model in the 

same way the unmeasured inputs have been included.
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Appendix (A)

Simulation Description

The reconstruction of a single neurone is represented by conductance 

based neurone simulations (Getting, 1989 and recently Halliday, 1994) by 

assuming an ionic transmembrane current to flow through channels with a 

linear instantaneous current voltage obeying Ohm’s law (Hille, 1984). Fig.l 

shows the equivalent electrical circuit used to represent a single neurone.

For each cell, the intracellular membrane potential is described by

= - I t a f c O O  -  £  I^ n (V m .t)  -  Z  4 p ( V m,t)  -  I ext ( t )  (1)
a t  j= l  i= l

where Vm represents the membrane potential at time t, Cm is the cell capacitance 

and Rin the cell input resistance. Iieak(Vm) is the passive leakage current, Fsyn(Vm,t) is
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I leak syn

Sahp ( 08syn ( 0

leak

syn

F lg .l Equivalent electrical circuit for a single neurone, including the time-dependent 

conductance changes gsyn(0  an^ 8ahp(0  > and i=l,2,...,k and a single leakage

conductance, gieak , in series with a constant battery ( )  through which the passive ionic 

current flows. The cell capacitance is represented by O n  •

current due to the f 1 pre-synaptic spike, with the summation over the total number 

of pre-synaptic spikes, n. The afterhyperpolarization (AHP) current due to the i 

post-synaptic spike is ^ (V ^ t) , with the summation over the total number of post- 

synaptic spikes, k. I^ t) is a time dependent external current applied to the cell 

which is used to simulate a population of unobserved inputs responsible for 

spontaneous background firing. In practice this is achieved by using a non-zero 

mean normal distribution to simulate synaptic noise (Ltischer, 1990).

The cell leakage current is estimated as 1 ^ (V m) =  (V m - Vr)/Rm, where V r is 

the resting value of the membrane threshold. The synaptic current at time t  due to 

a single pre-synaptic spike at time 0 is estimated as Isyn(Vm,t) =  gsyn(t) (V m - Vsyn), 

where gsyn(t) is the time dependent conductance change associated with the opening 

of the ionic channels and is the equilibrium potential for the ionic current. The 

AHP current due to a single post-synaptic spike at time 0 is estimated as
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IahP(Vm,t) =  gahP(t) (V m - VahP), where gahP(t) is the time dependent conductance 

change associated with the opening of the ionic channels and VahP is the 

equilibrium potential for the ionic current. Each pre-synaptic input spike activates 

one extra term in the synaptic summation in equation (1), which lasts for the 

duration of the particular synaptic time dependent conductance change gsyn(t) for 

that input. Similarly, each post-synaptic spike activates one extra term in the 

afterhyperpolarization summation in equation (1), which lasts for the duration of 

the particular afterhyperpolarization time dependent conductance change gahP(t) for 

that cell.

The voltage, V m, is compared with the threshold voltage, Vth, at each time 

step to determine if an action potential has occurred. A time varying threshold is 

incorporated into the simulation; this allows point neurone simulations to duplicate 

a wide range of repetitive firing characteristics (Getting, 1989). The threshold is 

specified by three variables, the asymptotic level, 0oo, the level to which the 

threshold is elevated after each output spike, 0 o , and the decay time constant, 

xe, through which the threshold decays to the asymptotic level.

A further simplification used in some simulations is the representation of 

a neurone as an integrate-and-fire device, where the membrane threshold is 

reset to the resting value, Vr, after each output spike. In this case terms 

involving IahP(Vm,t) are omitted from equation (1).

The selection of simulation parameters is done in sequence, and at each 

stage parameters are selected so that the behaviour of the simulation matches 

experimental observations for the type of cell being simulated. Firstly passive 

parameters are selected, cell membrane (input resistance), R™, and time constant, 

Tm, are chosen, where Tm = Rm Cm. This determines the cell capacitance, Cm. 

Secondly the cell resting potential, Vr, and threshold parameters, 0*,, 0o and xe, are 

chosen. These determine the rheobase current required for repetitive firing of the 

cell. If AHP currents are included, the time course of the AHP can be adjusted
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under constant current stimulus by altering the conductance function gahP(t). The 

characteristics of a single Excitatory Post Synaptic Potential (EPSP), or a single 

Inhibitory Post Synaptic Potential (IPSP) from rest can be adjusted by altering the 

conductance gsyn(t), and the equilibrium potential The resulting EPSP or IPSP 

can be characterised by rise time, half width and magnitude. EPSP, IPSP and AHP 

conductances are modelled by the conductance function:

gsyn(t) =  gahp(t) =  A {(t/xa) exp(-t/xa)},

(Rail, 1967) requiring the choice of a scaling factor, A, and a time constant, xa. 

Once these have been determined the firing rates for pre-synaptic inputs have to be 

chosen. Selecting an appropriate mean firing rate for the input, along with any 

applied external current, Icxt(t), determines the mean output firing rate of the 

simulation, and can be adjusted to give the desired output rate for each cell.
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Appendix (B)

A GENSTAT Program

There follows a GENSTAT program for analysing a set of data in the 

case of two inputs and their corresponding carry-over effects, and a single 

output. Let the linear predictor of the model, rjt , representing the difference

between the membrane potential on the trigger zone ( Ut ) and the constant 

threshold (Oq), be of the form

Y t - 1

V t ~  V f  S  l a u l X t ~ U  ■*" X  l ^ w  l x t - w  
u - 0  w > y  *
v ,  (2)Yt~l

+  X  2a u 2x t-u  ^ 2 cw 2x t-w ~@0 
u~0 w>Yf

where y t is the time elapsed since the time of the last output spike, the sets of 

coefficients { /Qu} and {jCw} ; i = 1,2 represent the summation and cany-over 

effect functions for the two observed inputs respectively, and the term Vt 

represents the polynomial recovery function of order k , i.e.

V, = ; r , * £ i + i  
i= l   (3 )

P  : Y t ^  £ i  + 1
£  j is the minimum of the output inter-spike intervals (see chapter 3 and 4).

Assume that there exist three data files called ‘NERVE1.DAT”

‘NERVE2.DAT” and ‘NERVE3.DAT”. The data file ‘NERVE1.DAT”

represents the first set of inputs A[1...10] and their corresponding carry-over

effect CA[1...15] which contain a matrix made up of 25 parallel vectors 

(A[1...10] to represent the first input at lag u,  j x t_u ; u = l ,  2 10 and

CA[1...15] to represent the carry-over effect for the first input at 

lag w , j x t_w ; w = l,  2 15 as in the model form given in (2) above).
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Similarly the second set of inputs B[1...8] and their corresponding carry-over 

effect CB[1...20]) are represented by the data file ‘NERVE2.DAT” 

(i.e., B[1...8] to represent the second input at lag u f 2x t-u> u = l ,  2 8

and CB[1...20] to represent the carry-over effect for the second input at lag w , 

2x t - w » w = l, 2 ,..., 20 as given in (2) above). The third data file

‘NERVE3.DAT”represents the two vectors Y and Z[l] where Y represents the 

output discharges (i.e. Y = yt ) and Z[l] = (y t -  - 7 )  which is used in the

recovery function as given in (3).

VARIATE [NVAL=30000] Y, Z[l], VI 

VARIATE [NVAL=30000] A[1...10], CA[10...15]

VARIATE [NVAL=30000] B[1...8], CB[1...20]

“Remark 1: NVAL is the total number of points or sample size of the data 

set and VI is the total number of binomial trials which is always 1 since the 

process will take only the values 0 or 1, i.e., yt= l if  there is an event and 

yt=0 otherwise."

CALCULATE V l= l

"Remark 2: NERVE1.DAT is a binary data file of 25 parallel columns and 

30000 rows for the 10 inputs A[1...10] and their corresponding carry-over 

effect CA[1...15] respectively."

OPENNAM E-NERVE1.DAT’; CHANNEL=2; FILETYPE= INPUT 

READ [CHANNEL=2;END=*] A[ ], CA[ ]

"Remark 3: NERVE2.DAT is a binary data file of 28 parallel columns and 

30000 rows for the 8 inputs B[1...8] and their corresponding carry-over 

effect CB[1...20] respectively."
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OPEN NAME=fNERVE2.DAT1; CHANNEL=3; FILETYPE= INPUT 

READ [CHANNEL=3;END=*] B[ ],CB[ ]

OPEN NAME='NERVE3.DAT'; CHANNEL=4; FILETYPE= INPUT 

READ [CHANNEL=4;END=*] Y,Z[1]

CLOSE CHANNEL=2,3, 4 

CALCULATE Z[2]=Z[1]**2 

CALCULATE Z[3]=Z[1]**3

“Remark 4: the distribution is binomial with VI trials. We use the logistic 

link function."

MODEL [DIST=BINOMIAL;LINK=LOGIT] Y; NBINOMIAL=Vl 

FIT [PRINT=E] Z[ ], A[ ], CA[ ], B[ ], CB[ ]

"Remark 5: VC1 denotes the variance covariance matrix needed for 

calculating the standard errors for the recovery function, D1 denotes the 

deviance and LP1 denotes the linear predictor."

RKEEP VCOVAR=VCl; DEVLANCE=D1; LINEARP=LP1

PRINT STRUCTURE=D1

PRINT STRUCTURE=VC1; DECIMALS=12

OPEN NAME=’LINPR.DAT'; CHANNEL=4; FILETYPE=OUTPUT

PRINT [CHANNEL=4 ;IPRINT=*] STRUCTURE=Y, LP1; /

DECIMALS=5

STOP

END
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Appendix (C)

A GENSTAT Printout

In this section we give a list of a GENSTAT printout of the results when 

analysing the set of simulated data that we discussed earlier in chapter four 

(section 4.6) when introducing the idea of the carry-over effect function (COE). 

A GENSTAT printout of the results as given by the package, without making 

any changes to it, is of the form

Genstat 5 Release 2.2 (80386 based DOS PCs) 21-Mar-1995 09:49:45 

Copyright 1990, Lawes Agricultural Trust (Rothamsted Experimental Station)

1 VARIATE [NVAL=60000] V, Z[l]

2 OPEN NAME=,Z502.DAT'; CHANNEL=3; FILETYPE=INPUT

3 READ [CHANNEL=3;END=*J Z[l]

Identifier Minimum Mean Maximum Values Missing 

Z[l] 0.000 7.503 38.000 60000 0 Skew

4 CLOSE CHANNELS

5 CALCULATE V=1

6 VARIATE [NVAL=4345] A1 [1...6]

7 OPEN NAME='A1.DAT'; CHANNEL=2; FILETYPE=INPUT

8 READ [CHANNEL=2;END=*] Al[1...6]

Identifier Minimum Mean Maximum Values; Mis

Al[l] 16 30239 59995 4345 0

Al[2] 16 39712 59994 4345 0

Al[3] 28 42114 59995 4345 0

Al[4] 29 46992 59905 4345 0 Skew

Al[5] 30 51057 59906 4345 0 Skew

Al[6] 31 54024 59907 4345 0 Skew

9 CALCULATE Y = EXPAND(A1 [1]; 60000)

10 CALCULATE A[0] = EXPAND(A1[2]; 60000)

11 CALCULATE A[l] = EXPAND(A1[3]; 60000)

12 CALCULATE A[2] = EXPAND(A1[4]; 60000)

13 CALCULATE A[3] = EXPAND(A1[5]; 60000)

14 CALCULATE A[4] = EXPAND(A1 [6J; 60000)
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15 VARIATE [NVAL=611] A1[1...5J

16 OPEN NAME=IA2.DAT'; CHANNEL=3; FILETYPE=INPUT

17 READ [CHANNEL=3;END=*] Al[1...5]

Identifier Minimum Mean Maximum Values Missing

A l[l] 32 30333 59908 611 0

Al[2] 33 37886 59909 611 0

Al[3] 536 44133 59910 611 0

Al[4] 1421 49113 59911 611 0 Skew

Al[5] 1422 53536 59912 611 0 Skew

18 CALCULATE A[5] = EXPAND(A1[1]; 60000)

19 CALCULATE A[6] = EXPAND(A1[2]; 60000)

20 CALCULATE A[7] = EXPAND(A1 [3]; 60000)

21 CALCULATE A[8] = EXPAND(A1[4]; 60000)

22 CALCULATE A[9] = EXPAND(A1[5]; 60000)

23 VARIATE [NVAL=81] A1 [1...5]

24 OPEN NAME=*A3.DAT'; CHANNELS; FILETYPE=INPUT

25 READ [CHANNEL=4;END=*] Al[1...5]

Identifier Minimum Mean Maximum Values Missing

A l[l] 1434 29568 59913 81 0

Al[2] 5121 45345 59891 81 0

Al[3] 6815 50614 56248 81 0 Skew

Al[4] 6816 53059 56249 81 0 Skew

Al[5] 36925 54817 55393 81 0 Skew

26 CALCULATE A[10] = EXPAND(A1[1]; 60000)

27 CALCULATE A [ll] = EXPAND(A1[2]; 60000)

28 CALCULATE A[12] = EXPAND(A1[3]; 60000)

29 CALCULATE A[13] = EXPAND(A1[4]; 60000)

30 CALCULATE A[14] = EXPAND(A1[5]; 60000)

31 CLOSE CHANNEL=2,3,4

32 VARIATE [NVAL=2522] A1 [1...5]

33 OPEN NAM E-Cl.DAT’; CHANNELS; FILETYPE=INPUT

34 READ [CHANNEL=2;END=*] A1 [1...5]

Identifier Minimum Mean Maximum Values Missing 

A l[l] 17 53310 59881 2522 0 Skew

Al[2] 18 44914 59996 2522 0

Al[3] 19 38008 59997 2522 0
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Al[4] 20 33160 59998 2522 0

A1[5J 21 30542 59999 2522 0

35 CALCULATE C[l] = EXPAND(A1[1]; 60000)

36 CALCULATE C[2] = EXPAND(A1 [2]; 60000)

37 CALCULATE C[3J = EXPAND(A1 [3]; 60000)

38 CALCULATE C[4J = EXPAND(A1[4]; 60000)

39 CALCULATE C[5] = EXPAND(A1[5]; 60000)

40 VARIATE [NVAL=2949] Al[1...5]

41 OPEN NAME=,C2.DAT’; CHANNEL=3; FILETYPE=INPUT

42 READ [CHANNEL=3;END=*] A1 [1...5]

Identifier Minimum Mean Maximum Values Missing

A l[l] 22 33425 60000 2949 0

Al[2] 23 32353 59936 2949 0

Al[3] 24 31452 59937 2949 0

Al[4] 25 30849 59938 2949 0

A1[5J 26 30548 59939 2949 0

43 CALCULATE C[6] = EXPAND(A1[1]; 60000)

44 CALCULATE C[7J = EXPAND(A1 [2]; 60000)

45 CALCULATE C[8] = EXPAND(A1 [3]; 60000)

46 CALCULATE C[9] = EXPAND(A1 [4]; 60000)

47 CALCULATE C[10] = EXPAND(A1[5]; 60000)

48 VARIATE [NVAL=2987] Al[1...5]

49 OPEN NAME='C3.DAT'; CHANNELS; FILETYPE=INPUT

50 READ [CHANNEL=4;END=*] Al[1...5]

Identifier Minimum Mean Maximum Values Missing

A l[l] 27 30675 59940 2987 0

Al[2] 28 30598 59941 2987 0

Al[3] 29 30556 59942 2987 0

Al[4] 30 30524 59943 2987 0

Al[5] 31 30518 59944 2987 0

51 CALCULATE C [ll] = EXPAND(A1[1]; 60000)

52 CALCULATE C[12] = EXPAND(A1[2]; 60000)

53 CALCULATE C[13] = EXPAND(A1[3]; 60000)

54 CALCULATE C[14] = EXPAND(A1[4]; 60000)

55 CALCULATE C[15] = EXPAND(A1 [5]; 60000)



Appendices 233

56 CLOSE CHANNEL-2,3,4

57 VARIATE [NVAL=2990J Al[1...5]

58 OPEN NAME- C4.DAT*; CHANNEL=2; FILETYPE=INPUT

59 READ [CHANNEL=2;END=*] Al[1...5]

Identifier Minimum Mean Maximum Values Missing

A1 [1] 32 30541 59945 2990 0

Al[2] 33 30540 59946 2990 0

Al[3] 34 30541 59947 2990 0

Al[4] 35 30540 59948 2990 0

Al[5] 36 30541 59949 2990 0

60 CALCULATE C[16] = EXPAND(A1[I]; 60000)

61 CALCULATE C[17] = EXPAND(A1[2]; 60000)

62 CALCULATE C[18] = EXPAND(A1[3]; 60000)

63 CALCULATE C[19] = EXPAND(A1[4]; 60000)

64 CALCULATE C[20] = EXPAND(A1[5]; 60000)

65 VARIATE [NVAL=2990] A1 [1...5]

66 OPEN NAME='C5.DAT'; CHANNEL=3; FILETYPE=INPUT

67 READ [CHANNEL=3;END=*] A1 [1...5]

entifier Minimum Mean Maximum Values

A l[l] 37 30542 59950 2990 0

Al[2] 38 30543 59951 2990 0

Al[3] 39 30544 59952 2990 0

Al[4] 40 30545 59953 2990 0

Al[5] 41 30546 59954 2990 0

68 CALCULATE C[21] = EXPAND(A1[1]; 60000)

69 CALCULATE C[22] = EXPAND(A1[2]; 60000)

70 CALCULATE C[23] = EXPAND(A1[3]; 60000)

71 CALCULATE C[24] = EXPAND(A1[4]; 60000)

72 CALCULATE C[25] = EXPAND(A1[5]; 60000)

73 CLOSE CHANNEL=2,3

74 CALCULATE Z[2]= Z[l]**2

75 CALCULATE Z[3]= Z[l]**3

76 MODEL [DIST=BIN;LINK=LOGIT] Y;NBIN=V
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77 FIT [PRINT=E] Z[ J, A[ ], C[ ]

estimate s.error t

Constant -15.035 0.321 -46.87

Z[l] 1.6259 0.0575 28.28

Z[2] -0.06487 0.00343 -18.94

Z[3] 0.00088 0.000065 13.56

A [01 0.7879 0.0730 10.79

A[l] 2.6667 0.0654 40.75

A [2] 3.7277 0.0801 46.51

A[3J 4.2869 0.0964 44.46

A [4] 4.002 0.111 36.09

A [5] 3.731 0.125 29.80

A [6] 3.439 0.139 24.82

A [7] 3.161 0.151 20.94

A [8] 3.161 0.165 19.19

A [9] 2.548 0.208 12.28

A[10] 2.196 0.249 8.83

A[ll] 2.555 0.315 8.11

A[12] 1.396 0.484 2.89

A[13] 2.368 0.593 3.99

A[14] 1.581 0.922 1.71

C[ 1] 1.052 0.890 1.18

C[2] 1.617 0.359 4.50

C[3] 1.636 0.250 6.56

C[4] 2.639 0.191 13.79

C[5] 2.668 0.175 15.25

C[61 2.631 0.155 17.00

C[7] 2.438 0.136 17.87

C[8] 2.280 0.124 18.33

C[9] 1.887 0.119 15.89

C[10] 2.224 0.102 21.79

C [ll] 1.714 0.101 17.05

C[12] 1.4456 0.0958 15.09

C[13] 1.1690 0.0925 12.64

C[14] 0.8562 0.0935 9.16
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C[15] 0.5807 0.0928 6.26

C[16] 0.6310 0.0872 7.23

C[17] 0.4159 0.0887 4.69

C[18] 0.2055 0.0904 2.27

C[19] 0.4368 0.0844 5.17

C[20] 0.3059 0.0871 3.51

C[21] 0.1483 0.0895 1.66

C[22] 0.1085 0.0894 1.21

C[23] 0.1425 0.0878 1.62

C[24] -0.0553 0.0914 -0.60

C[25] 0.0195 0.0881 0.22

78 RKEEP VC0VAR=VC1;DEVIANCE=D;LINEARP=LP1

79 PRINT STRUCTURE=Deviance

Deviance

18706

80 PRINT STRUCTURE=Vcov; DECIMALS=12

Vcov

Constant 0.1029E+00 

Z[l] -0.1753E-01 0.3306E-02 

Z[2] 0.9457E-03 -0.1917E-03 0.1173E-04

Z[3] -0.1601E-04 0.3422E-05 -0.2186E-06 0.4231E-08

81 STOP

82 END.
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