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Sum mary

Hepatitis C Vims (HCV) core protein is believed to form the viral nucleocapsid. 

However, numerous reports suggest it can also modulate diverse cellular processes. 

It is possible that at least some of these pleiotropic effects are exerted through the 

interaction of core protein with a range of host cellular factors, including a putative 

RNA helicase of the DEAD-box family termed DDX3.

The main aims of this study were to i) characterise DDX3, in terms of its basic 

properties and normal role in cellular metabolism, and ii) investigate the interaction 

of DDX3 with core protein and determine any influence of this association on HCV 

replication/pathogenesis. A number of anti-DDX3 immunological reagents were 

already available for study of the endogenous DDX3 protein, as well as various 

truncated or mutated forms of the protein that were subsequently cloned and 

expressed in a variety of systems. Core protein was produced using recombinant 

vaccinia vims (rVV) due to the lack of an efficient cell culture system for HCV. To 

allow comparisons with natural infection of permissive cells with this hepatotropic 

vims, studies were usually limited to human hepatocyte-derived cell lines, while 

core protein was generally expressed along with the HCV glycoproteins (E1-E2), as 

it would be in vivo, to ensure proper processing of core. Recombinant baculovimses 

(rbacs) carrying the DDX3- and core-coding sequences were generated for further 

examination of these proteins.

Since little was generally known about DDX3, initial studies concentrated on its 

fundamental characteristics, including investigations into expression of its mRNA 

transcript and protein in human hepatocytes and other mammalian cell lines. The 

DDX3 mRNA transcript was also studied in a wide range of human tissues. These 

analyses strongly suggest that DDX3 is a ubiquitous and highly conserved cellular 

protein. Consistent with previous reports regarding the DDX3/core interaction, 

expression of core protein in hepatocytes led to a marked redistribution of 

endogenous or over-expressed DDX3. This redistribution of DDX3 in the presence 

of core also occurred in the recently described HCV sub-genomic replicon- 

expressing cell lines. These observations indicate that core protein aberrantly 

sequesters a ubiquitous, highly conserved cellular protein, likely dismpting its
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potentially crucial function. Intriguingly, further studies suggested that core protein 

directly or indirectly modifies DDX3. An anti-DDX3 polyclonal antibody (PAb) 

specifically detected DDX3 in insect cell extracts previously infected with rbac 

expressing the protein, and detected the endogenous DDX3 in human hepatocytes; 

co-expression of rbacs expressing core (or core-El-E2) and DDX3 in insect cells, or 

infection of human hepatocytes with rVV expressing core-El-E2 led to the 

appearance of a higher molecular weight isoform of DDX3. This provides further 

evidence that the DDX3/core interaction is genuine, and possibly emphasises its 

significance in terms of HCV pathogenesis.

Several insights into DDX3 and its interaction with core protein were given by 

expression of DDX3 mutants from mammalian expression plasmids. Of particular 

interest was a mutant containing a single amino acid change within the DEAD-box, 

a motif that is highly conserved amongst members of the large family of known and 

putative RNA helicases to which DDX3 belongs. This mutant showed a very 

distinct subcellular distribution compared with the wild-type protein, although it 

retained its ability to interact with core. In collaboration with others, it was shown 

that this DDX3 mutant was enzymatically incapacitated, consistent with the 

involvement of the DEAD-box in ATP hydrolysis. These data suggest important 

features regarding DDX3 and its interaction with core: i) the functional capabilities 

of DDX3 are linked to its subcellular localisation; ii) the normal distribution of 

DDX3 is irrelevant for its association with core, possibly indicating that their 

interaction occurs prior to subcellular targeting of DDX3; iii) the enzymatic 

competence of DDX3 is not essential for its interaction with core. A putative 

nuclear export signal (NES) was also identified in DDX3 by comparison with its 

Xenopus laevis homologue. ANES-DDX3, lacking the N-terminal 21 amino acids of 

the protein, was cloned and expressed by plasmid in hepatocytes as before. 

However, although this protein appeared to be more concentrated in the nuclear 

periplasm, accumulation of the protein within the nucleus itself was not detected. 

This could suggest that the putative NES of DDX3 is not functional in vivo, or that 

more than one mechanism governs its nucleocytoplasmic transport. Consistent with 

the latter hypothesis, subcellular fractionation of hepatocyte cell extracts revealed a 

small quantity of DDX3 protein in the nucleus.



An insight into DDX3 itself was given by a detailed analyses of anti-DDX3 

monoclonal antibody (MAb) reactivities to the full-length/truncated bacterially- 

expressed protein and the endogenous protein in hepatocyte cell extracts. Although 

the majority of MAbs bound bacterially-expressed DDX3 (and various deletion 

mutants used to map antibody epitopes), only two such antibodies were capable of 

detecting full-length DDX3 in hepatocytes. Analyses of the protein sequence of 

DDX3 indicated that a plausible reason for this anomaly could be extensive 

glycosylation and/or phosphorylation within an epitope bound by many of the anti- 

DDX3 MAbs. The biochemical properties of bacterially-expressed DDX3 were also 

examined. The protein was shown to dose-dependently hydrolyse dATP. This 

dATPase activity was stimulated by total RNA from hepatocytes, implying that a 

specific RNA activator exists within cells. RNA helicase activity was not detected 

for DDX3 expressed in this manner, in contrast to the HCV NS3 helicase cloned as 

a positive control. This could relate to the potentially inadequate post-translational 

processing of DDX3 as implied by the antibody binding data. Alternatively, it could 

suggest that a cellular co-factor is required for helicase activity of DDX3, as shown 

for many other such proteins.

In terms of the actual function of DDX3, a role in translation was studied in greatest 

detail due to a strong link of DDX3 homologues with this process. A novel assay 

based on the reported HCV 5-noncoding region (NCR)-mediated translational block 

in insect cells was developed to test the possible role of DDX3 in translation of the 

HCV sequences. DDX3 did indeed remove the 5NCR-mediated block in this 

system, suggesting it may have a role in HCV replication. However, DDX3 actually 

downregulated HCV 5NCR-mediated translation in a plasmid-based reporter assay 

in human hepatocytes. This could be due to disruption of the normal balance of 

endogenous DDX3 and its cellular partners by plasmid-expressed DDX3. 

Interestingly, core protein was able by itself to modulate translational activity in the 

insect cell-based assay, while other proteins tested such as the HCV NS3 helicase 

had no effect. Core protein also markedly upregulated HCV 5 NCR-mediated 

translation in hepatocytes, suggesting the viral nucleocapsid protein can modulate 

production of itself and other HCV proteins.



In conclusion, the data presented suggest that core may subvert the normal role of 

DDX3, thus disrupting cellular processes, and/or that DDX3 is targeted by core to 

carry out some function required in HCV replication, such as unwinding the 

secondary structure in the viral genome allowing translation, replication and/or 

packaging of RNA into viral particles.
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1 .1  C linical Features o f H C V  Infection

1.1. 1 Brief History o f  Non-A, Non-B Hepatitis and Discovery o f  Hepatitis C Virus

The hypothesis that hepatitis was not a single disease, and that very distinct viruses 

could be responsible for quite similar disease processes, was not proven 

unequivocally until almost halfway through the twentieth century. Moreover, it did 

not become clear until the 1970s, when specific diagnostic tests were developed for 

identifying infection with hepatitis A virus (HAV) and hepatitis B virus (HBV), that 

most cases of hepatitis following transfusion of blood or blood products were not 

aetiologically linked with these viruses (Bradley, 1999). The main agent responsible 

for this so-called post-transfusion non-A, non-B hepatitis (NANBH), a form of 

hepatitis that was separate from the disease caused by viruses already identified 

(Alter et al, 1975; Prince et al., 1974), was also virus-like in nature (Bradley, 1999). 

However, unlike HAV and HBV, the agent responsible for NANBH proved to be 

elusive and remained undetectable by even the most sensitive serologic tests 

available at the time.

Following years of struggle to isolate the agent, modem techniques of molecular 

cloning and phage display aided the discovery in 1989 of a novel RNA vims, termed 

hepatitis C vims (HCV), which was associated with NANBH (Choo et al., 1989). 

Currently, HCV is the major cause of chronic hepatitis, with an estimated 

prevalence of 170 million chronic carriers world-wide (Lavanchy et al., 1999). Most 

importantly, the vims, unlike other known RNA vimses, causes a persistent 

infection in the majority of infected individuals that can lead to cirrhosis of the liver 

and hepatocellular carcinoma (HCC) (Houghton, 1996; Saito et al., 1990; 

Shimotohno, 2000). This fact, coupled with its world-wide prevalence, highlights 

HCV as a major human pathogen.

1.1. 2 Classification

Comparative analyses of the genomes of several HCV strains have indicated the 

vims is a member of the Flaviviridae (Choo et al., 1989, 1991; Kato et al., 1990; 

Takamizawa et al., 1991), which comprises the flaviviruses and the pestiviruses



(Rice, 1996). Although there is no significant overall sequence homology of HCV to 

other members of this family, alignment of the genomes of representative members 

of each genus revealed regions of sequence similarity and a comparable genomic 

organisation (Miller and Purcell, 1990). Members of the Flaviviridae possess a 

positive-sense single-stranded (ss) RNA genome containing a single open reading 

frame (ORF), which produces a long polyprotein incorporating viral structural 

proteins at the N-terminus, followed by the nonstructural proteins which are 

presumed to function in viral replication (Fig. 1; Reed and Rice, 1999). Specifically, 

the HCV ORF encodes a polyprotein of around 3010 amino acid residues (Choo et 

a l , 1991), a comparable size to that of flaviviruses, such as yellow fever virus 

(YFV; -3460 aa), and pestiviruses, such as bovine viral diarrhoea virus (BVDV; 

-3960 aa), in agreement with its designation as a member of the Flaviviridae (Rice, 

1996). Based on additional similarity in the RNA sequence (Bukh et al., 1992; Han 

et al., 1991), and regarding secondary structures in the 5'-non-coding region (NCR) 

(Brown et al.t 1992), HCV appears to be more closely related to the pestiviruses 

than the flaviviruses. Furthermore, while flavivirus 5'NCRs are thought to bind 

ribosomes via 5'-cap structures, analogous to that of most eukaryotic mRNAs (see 

section 1.3.3), to initiate translation (Rice, 1996), both HCV and pestivirus 5'NCRs 

appear to act as internal ribosome entry sites (IRESs; see section 1.3.1) which direct 

the cap-independent translation of the HCV ORF (Fig. 1; Poole et al., 1995; 

Tsukiyama-Kohara et al., 1992). However, although there are similarities with both 

flavi- and pestivirus genera, significant differences between members of both genera 

and HCV recently led to proposal of a third genus, hepacivirus, for HCV (Robertson 

et al., 1998). In fact, HCV appears to be more closely related to a group of recently 

cloned unclassified viruses, termed the GB agents (Leary et al., 1996; Linnen et al., 

1996; Muerhoff et al., 1995; Simons et al., 1995a, 1995b).

An important feature of HCV replication is the rapid generation of virus variants 

(Gomez et a l , 1999), an attribute that is presumably responsible for the wide 

variability of HCV sequences isolated from infected individuals. Indeed, based on 

the variation of a small region of the genome, HCV has been classified into six 

major genotypes which differ by up to 30% (Simmonds et a l , 1995), and 5 smaller
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Figure 1: Comparison of representative members from each genus of 
the Flaviviridae. Although each virus genome possesses a similar 
organisation of their ORFs, and the resulting polyprotein is of 
comparable length, HCV is more closely related to the pestiviruses than 
the flaviviruses due in part to the structure and mechanism of 
translation from the 5'NCR. Sizes and structures of the non-coding 
genomic termini are very rough approximations (adapted from 
Bartenschlager, 1999).
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although many people are already infected with transfused blood contaminated with 

the agent prior to such screening procedures. Although HCV RNA has been found 

in seminal fluid, sexual transmission is not common (Thomas, 1999). In contrast, 

mother-to-baby transmission has been well-documented - however, while some 

studies suggest that infection takes place during birth or within a few weeks of birth 

(Ohto et a l , 1994), others have indicated transplacental infection occurs during 

pregnancy (Weiner et a l , 1993).

1.1. 4 Clinical Manifestations and Natural History o f  HCV Infection

Acute infection with HCV is generally not associated with clinical disease, with 

only -25% of patients exhibiting clinical symptoms such as jaundice (Houghton, 

1996). While rapid, fulminant liver failure has been associated with acute HCV 

infection in Japan (Yoshiba et al., 1994), it is not common elsewhere. HCV 

infection becomes chronic in about 75% of patients, as demonstrated by persistence 

of viral RNA in serum (Shimotohno, 2000). Chronically infected individuals exhibit 

a slow course of disease development, with most patients exhibiting normal liver 

histology and no apparent signs of illness ten years post-infection (Lavanchy et a l , 

1999). Cirrhosis of the liver occurs in less than 20% of chronically infected HCV 

patients, usually in the second or third decade following infection (Yano et a l, 

1996). This pathological feature is due to a response of the liver to injury or death of 

some of its cells by production of intertwining strands of fibrous tissue between 

which are pockets of regenerating cells. Complications include portal hypertension, 

ascites (accumulation of fluid in the peritoneal cavity causing abdominal swelling), 

hepatic encephalopathy, and hepatocellular carcinoma (HCC). In fact, a direct link 

between HCV and HCC is not as clear as for HBV, and many cases of HCV- 

associated HCC may be related to cirrhosis (Idilman et a l, 1998). Crucially, 

however, development of HCC occurs in as many as 10% o f infected individuals - 

since there are an estimated 170 million infected individuals world-wide, around 17 

million infected individuals are at risk for HCV-associated HCC. Indeed, globally, 

there are 0.5-1.2 million new cases of HCC confirmed each year (Idilman et a l,

1998). The magnitude of this current and potential cancer burden presents an 

impetus to understand the mechanisms of HCV pathogenesis, including
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immunological responses to the virus (see section 1.1.6), and development of 

therapeutic and/or antiviral strategies (see section 1.1.7). Further complications of 

HCV pathogenesis include host immune-mediated disorders (see section 1.1.6) and, 

occasionally, encephalomyelitis and other syndromes associated with the central 

nervous system (CNS) (see below; Radkowski et al., 2002).

1.1. 5 Sites o f  Viral Replication and Viral Dynamics

HCV nonstructural proteins and RNA have been detected in the livers of both

infected patients and experimentally infected chimpanzees (Blight and Gowans,

1995), confirming the hepatotropic nature of the virus. In addition to liver cells,

there is strong evidence that HCV can infect peripheral blood mononuclear cells

(PBMCs) (Bartenschlager and Lohmann, 2000). This is thought to be responsible

for detection of viral replication in the CNS and reports of HCV-associated

pathologies in these tissues (see above; Radkowski et al., 2002). Analyses of viral

dynamics during treatment of infected patients with IFN-a suggest a virion half-life
1

of 3-5 hours, and clearance/production rate of 10 particles per day (Neumann et 

al., 1998; Ramratnam et al., 1999; Zeuzem et a l,  1998). Assuming around 10% of 

hepatocytes in the liver are infected, and there are approximately 2 x 1011 such cells, 

this corresponds to a virion production rate of ~50 particles per day per cell 

(Neumann et al., 1998).

1.1. 6 Immune Response

One of the key features of HCV is its propensity to cause chronic infections despite 

the presence of specific cellular and humoral immunity targeted against the virus 

(Battegay et al., 1995; Chien et al., 1993; Koziel et al., 1993; Lai and Ware, 1999). 

Indeed, although immunisation with envelope glycoproteins has been linked with 

partial protection against homologous challenge in chimpanzees (Choo et al., 1994), 

HCV infection itself does not appear to elicit protective immunity against re

infection with homologous or heterologous strains of the virus (Okamoto et al., 

1994). Interestingly, comparison of the protein sequence of many HCV isolates has 

revealed two highly variable regions, the first of which is located in the N-terminus
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of the E2 envelope glycoprotein and designated hypervariable region 1 (HVR-1) 

(see section 1.2.4.2; Dubuisson, 1999). A second HVR is found within one of the 

nonstructural proteins, and may determine response to antiviral therapy with 

interferon (see sections 1.1.7 and 1.2.5.5). Although it is possible that variation 

within the HVR-1 of E2 allows differential cell/tissue tropism of HCV (Smith, 

1999), it is proposed that E2 variants, likely arising by random mutation and 

subsequent selection against the pressure of the antibody response, may be a critical 

mechanism of viral persistence (Farci et al., 1994, 1996; Houghton, 1996; Kato et 

al., 1993; Shimizu et al., 1996; Weiner et al., 1992). In fact, while antibody 

responses directed against the capsid protein and a nonstructural protein have been 

detected in the acute phase of infection (Chang et al., 1999; Hosein et al., 1991), the 

HVR-1 domain is currently one of only a small number of defined targets for 

neutralising antibodies (Hijikata et al., 1991a; Kato et al., 1993; Sherlock, 1999; 

Weiner et al., 1991, 1992). Supporting the notion that that HCV pathogenesis is at 

least partially immunologically-mediated, an HCV-specific cytotoxic T-lymphocyte 

(CTL) response has been detected in hepatic infiltrates and the circulatory system of 

patients chronically infected with HCV (Kita et a l, 1993). Hepatocyte death via this 

mechanism is consistent with studies of immunosuppressed HCV-infected 

individuals who exhibited high HCV viral loads, yet no liver damage (Chazouilleres 

and Wright, 1995).

While the main site of viral replication is thought to be hepatocytes, there is strong 

evidence that HCV can infect PBMCs both in vivo and in experimentally infected B- 

and T-cell lines (section 1.1.5; Bartenschlager and Lohmann, 2000). This may 

account for the numerous immunological disorders associated with chronic HCV 

infection, in particular type I and II cryoglobulinaemia which is observed in over 

50% of HCV patients (Esteban et al., 1993). Evidence has also been accumulating 

to suggest that the HCV capsid protein can alter immune responses to the virus by 

interaction with key mediators of these responses (see section 1.9.6; Lai and Ware, 

1999), and can modulate antigen presentation of viral products (Large et al., 1999). 

However, a recent report suggests neither this core protein, nor the envelope 

glycoproteins, are able to suppress intrahepatic immune responses in transgenic
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mice (Sun et al., 2001). A broad account of host immune system modulation by core 

protein is presented in section 1.8.2.

1.1. 7 Therapy o f Hepatitis C

Therapeutic strategies for chronic HCV infection are rapidly evolving. The present 

treatments for HCV infection are a-interferon (IFN-a) in combination with the 

nucleoside analogue ribavarin, or, more recently, a modified (pegylated) form of 

IFN-a (Glue et al., 2000; Hu et al., 2001; Reddy et al., 2001). However, response 

rates with these treatment regimens are at best reasonable - 60-80% of patients 

either do not respond or relapse after cessation of treatment (Theodore and Fried, 

1999). In some cases though, the efficacy of treatment for a particular patient may 

be predicted by analysis of the viral genomic RNA sequence (see section 1.2.5.5; 

Neumann et al., 1998). Further development of anti-HCV therapeutics has been 

hampered by the lack of a valid small animal model, as described in the following 

section.

1.1. 8 Animal Models

It was demonstrated in the 1970s that HCV, at that time known as the NANBH 

agent, could be transmitted to chimpanzees after intravenous administration of 

human inocula (Bradley, 1999). In fact, this species represents the only validated 

and reproducible animal model for the disease caused by HCV. However, due to the 

endangered status of chimpanzees and the variable course that infection with HCV 

takes in this animal model, the development of a more practicable small animal 

model is essential for the study of this virus. It has been suggested that since a 

recently discovered virus, GBV-B, is highly related to HCV and can infect tamarins, 

GBV-B infection of tamarins could be used as a surrogate animal model for HCV 

infection of humans (Bukh et al., 1999). However, there have been few studies 

comparing individual polyprotein cleavage products from each virus. A recent 

advance that may alleviate the need for chimpanzees as an animal model and negate 

the need for a surrogate animal model is the production of transgenic mice with 

humanised livers (Mercer et al., 2001). Following inoculation with serum from
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HCV-infected individuals, mice with these chimeric human livers showed initial 

increases in viral loads of almost 2000-fold (Mercer et a l, 2001). This system could 

potentially allow development of HCV vaccines and/or further anti-HCV 

therapeutics.

1. 2 Molecular Properties of HCV

1.2. 1 Virus Morphology

Due to the inability to isolate sufficient quantities of virus from infected individuals 

and the lack of an efficient cell culture system, classical virological methods have 

been somewhat redundant in the study of the molecular properties of HCV. 

Nevertheless, preliminary filtration analysis suggested the diameter of the NANBH 

agent was between 30 and 60 nm (He et al., 1987). Furthermore, the presence of a 

lipid envelope was inferred from abrogated infectivity of chloroform-treated inocula 

(Feinstone et al., 1983). These initial data suggested the agent was a small, 

enveloped virus. In agreement with these data, electron microscopic (EM) studies on 

plasma samples containing particularly high HCV RNA titres with specific 

monoclonal and polyclonal antibodies (MAbs and PAbs, respectively) directed 

against the putative viral envelope proteins, allowed visualisation of spheroidal 

particles of diameter 60 to 70 nm (Fig. 3a; Kaito et al., 1994; Prince et al., 1996). 

Prominent (6-8 nm) spikes were observed on the surface of the virus particles, 

which probably represent viral attachment/cell fusion proteins embedded in the 

host-derived virion lipid membrane (Grakoui et al., 1993a). The recent description 

of HCV virus-like particles (VLPs) expressed via recombinant baculovirus in insect 

cells (Baumert et al., 1998) represents a valuable approach in the study of many 

aspects of the HCV structural proteins, owing to the difficulties described above. 

Such VLPs have morphological, biophysical and antigenic properties analogous to 

those putative virions isolated from HCV-infected individuals (Fig. 3b; Baumert et 

al., 1998; Owsianka et al., 2001; Wellnitz et al., 2002). Since HCV structural 

proteins are presumed to be presented in a native, virion-like conformation, these 

VLPs also provide a potential vaccine candidate (Baumert et al., 1999). However,
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Figure 3: Morphology of HCV virions and virus-like particles (VLPs) 
as viewed by EM. (A) Virions and putative defective interfering 
particles isolated from HCV-infected individuals. Top panel: 60-70 nm 
virions. Lower panel: 30-40 nm putative defective interfering particles 
(taken from Prince et al., 1996). (B) HCV VLPs isolated from insect 
cells infected with recombinant baculovirus carrying the HCV structural 
coding region. Inset: VLPs stained with an MAb directed against the E2 
envelope glycoprotein and anti-mouse IgG conjugated to 5 nm gold 
particles. Bar represents 200 nm (taken from Owsianka et al., 2001)



the system is not without its flaws, and virions are found in intracellular vesicles late 

in infection and are not secreted (Bartenschlager and Lohmann, 2000).

1.2. 2 Putative HCV Receptors

The first step in any virus replication cycle is the attachment of the viral particle to 

the host cell, for which a specific cell surface receptor is required. Two cell surface 

molecules have been suggested as potential HCV receptors: i) CD81, a member of 

the tetraspanin family that has been shown to interact with the E2 glycoprotein, an 

HCV-encoded protein that would be expected to play at least some role in cellular 

entry of HCV (see sections 1.2.4.2 and 1.5.1), as well as virus particles in vitro 

(Pileri et al., 1998); ii) the low density lipoprotein receptor (LDLR), which is 

thought to be a target of as yet undefined components of the viral envelope that may 

have incorporated LDLs or very low density lipoproteins (VLDLs) following 

budding from host cellular membranes (Agnello et al., 1999; Monazahian et al.,

1999).

The significance of the interaction of HCV with CD81 has been studied in detail. 

Binding of HCV E2 to CD81 is mediated by the large extracellular loop of the cell 

surface molecule (Higginbottom et al., 2000; Flint et al., 1999; Chan-Fook et al., 

2000; Patel et al., 2000; Petracca et al., 2000), and a crystal structure for this region 

has been resolved (Kitadokoro et al., 2001). Binding of E2 to CD81 appears to have 

a co-stimulatory effect on T-cell activation (Wack et al., 2001). However, 

expression of CD81 is not restricted to cells susceptible to infection with HCV, and 

it is not sufficient in vitro to permit virus infection (Meola et al., 2000), suggesting 

the importance of other factors.

The role of the LDLR has attracted less attention and as a result has not been as 

well-characterised as CD81 at the molecular level. The rational basis for this route 

of entry was the observation that HCV particles are associated with p-lipoproteins, 

believed to be recognised and endocytosed via the LDLR (Thomssen et al., 1992). 

Using in situ hybridisation to determine HCV RNA-positive cells, a direct 

correlation between the cell surface expression of LDLR and the number of infected
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cells was seen (Agnello et a l, 1999). Furthermore, HCV does not bind COS-7 cells 

unless they have been transfected with plasmid containing the LDLR-coding 

sequence (Monazahian et al., 1999) and anti-LDLR antibodies appear to 

significantly block HCV entry (Agnello et al, 1999). Nevertheless, whether 

interaction of HCV with CD81 or LDLR leads to a productive infection remains to 

be determined.

1.2. 3 General Features o f  the HCV Genome

Since study of HCV is currently hampered by difficulties in establishing in vitro and 

in vivo models of viral replication, knowledge of the events following liberation of 

HCV genomic RNA into the cell has been restricted. However, significant progress 

in understanding the molecular biology of the virus has been made by expression of 

cloned viral cDNAs in a variety of systems. HCV possesses a positive-sense ssRNA 

genome of approximately 9.6 kb, encoding a long polyprotein (section 1.1.2). 

Following infection of target cells, the HCV ORF is translated into a single 

polyprotein of 3010-3033 aa, depending on the strain (Choo et al., 1991; Kato et al., 

1990; Okamoto et al., 1991; Takamizawa et al., 1991), and subsequently processed 

by both viral and cellular proteases (Major and Feinstone, 1997). The genomic 

termini are not translated. Translation of the HCV ORF occurs via an IRES in the 

5'NCR (Fukushi et al., 1997; Reynolds et al., 1995), and both NCRs may play 

important roles in replication and packaging of HCV RNA (Reed and Rice, 1999; 

Friebe et al., 2001).

The major HCV structural proteins are core protein and two envelope glycoproteins, 

termed El and E2, and are located at the N-terminus of the polyprotein (Fig. 4; 

Bartenschlager, 1999; Clarke, 1997; Houghton, 1996). A further protein, designated 

p7, is generated by cleavage at the junction of E2 and the nonstructural proteins, 

although its function is currently unclear (Lin et al., 1994a; Mizushima et al., 1994; 

Selby et al., 1994). The remaining polyprotein is cleaved by HCV-encoded 

proteases to produce four major nonstructural proteins termed NS2, NS3, NS4 and 

NS5 - two of these proteins (NS4 and NS5) undergo further processing to produce 

smaller polypeptides called NS4A, NS4B, NS5A and NS5B (Fig. 4; Bartenschlager,

22



Structural Non-structural 3 * o

t4» 4* 4 4
0 1
U I I
22/19 31-35 70

RNA-bindlng 
capsid constituent 

Lymph p rec. binding

Envelope
glycoproteins

23

o  MelaSoCys 
proteinase

f -  v -  
©

E2 r-Q. 2 3 4A 4B

70

N83 proteinase 
cofactor 

Serine ffTPase/

27

proteinase helicase 

Inhibition of PKA srgneKing

5A

56/50

5B

66

Interferon resistance RNA-dependent
RNA polymerase

Figure 4: General features o f the HCV genome, polyprotein processing 
and properties o f individual cleavage products. 5' and 3'NCRs flank the 
HCV ORF, which generates a single polyprotein with structural 
proteins (capsid protein C or core, envelope glycoproteins El and E2, 
and p7) grouped at the N-terminus followed by the nonstructural 
proteins (NS2-5B). Cleavage sites for host cell signalase ( * ), the 
NS2-3 proteinase ( 0  ), the NS3/4A proteinase ( JJ ), and an unknown 
cellular proteinase (▼) are highlighted. Approximate molecular weights 
(in kDa) and properties of each protein are indicated (taken from 
Bartenschlager, 1999).



1999; Clarke, 1997; Houghton; 1996). A homologue of NS1, a protein of unknown 

function present in flavivirus and pestivirus genomes, is not present in HCV (Rice,

1996). Most of the HCV nonstructural proteins have enzymatic activity that are 

critical for viral replication or are co-factors for such enzymes, although NS4B and 

NS5A have no well-defined functions as yet (Rosenberg, 2001). The HCV 

polyprotein cleavage products are individually described in the following sections.

1.2. 4 HCV Structural Proteins

1.2.4. 1 Core

The general properties, putative pathogenic roles, and interactions of core protein 

are discussed in detail in sections 1.7 to 1.9.

1.2.4. 2 E l and E2

El and E2 are released from the viral polyprotein by host cell signal peptidases and 

are heavily glycosylated (Miyamura and Matsuura, 1993). The addition of these 

carbohydrate moieties slows the migration of El and E2 in polyacrylamide gels so 

that they appear to have larger molecular weights than those predicted based on 

protein sequence alone (-30-35 and 70 kDa, respectively) (Reed and Rice, 1999). 

Both El and E2 contain C-terminal hydrophobic domains that appear to be inserted 

in the ER, while the remainder is translocated into the ER lumen (Reed and Rice, 

1999). El has been shown to associate via its C-terminus with core protein (see 

section 1.9.3; Lo et al. 1996), while E2 associates with NS2 (Matsuura et al., 1994; 

Selby et al., 1994). Although these interactions may play important roles during 

HCV infection, the interaction between El and E2 themselves has been given most 

attention since this interaction is likely to be critical in viral morphogenesis. Native 

E1-E2 complexes appear to be held together by non-covalent interactions 

(Deleersnyder et al., 1997; Dubuisson et al., 1994; Matsuura et al., 1994; Ralston et 

al., 1993), although heterogenous disulphide-linked aggregates have also been 

observed (Dubuisson et al., 1994; Grakoui et al., 1993a). E2 is apparently required 

for proper folding of El (Michelak et al., 1997), and contains a C-terminal 

transmembrane domain that is thought to be an ER-retention signal (Cocquerel et
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al., 1998). This domain is presumably masked during assembly of viral particles 

allowing egress through the secretory pathway (Reed and Rice, 1999). The N- 

terminal region of E2 exhibits a high degree of variability, representing the most 

variable region of the HCV genome (section 1.1.6). E2 has also been shown to 

inhibit the activity of double-stranded RNA-activated protein kinase R (PKR), 

possibly due to the presence of a sequence in E2 that is similar to that of an 

autophosphorylation site in PKR (Taylor et al, 1999), though a detailed mechanism 

is currently unclear (Taylor et al, 2001). This may nevertheless be important as a 

further strategy to evade the host antiviral response. Possible receptors for virion- 

associated E2, cell-surface molecules CD81 and the low density lipoprotein receptor 

(LDLR), have been implicated in cell attachment and/or entry of HCV (section 

1.2.2; Agnello et al., 1999; Monazahian et a l, 1999; Pileri et al. 1998). However, 

the role of El should not be ignored - indeed, both HCV glycoproteins appear to be 

required in an HCV cell-fusion assay (Matsuura et al., 2001; Takikawa et al, 2000). 

Further discussion of the role of the HCV glycoproteins in virus attachment/entry is 

presented in section 1.5.1 as part of an overview of the viral replication cycle.

1.2.4. 3 p7

Although the cleavage events at the core/El and E1/E2 junctions occur rapidly 

during or immediately after translation, processing is delayed at the E2-p7-NS2 

junctions, while it is incomplete at the E2-p7 junction, resulting in the generation of 

fully processed E2 and uncleaved E2-p7 (Lin et al., 1994a; Mizushima et al., 1994; 

Selby et al., 1994). The significance of fully cleaved p7 and E2-p7 regarding HCV 

virion morphogenesis or other functions pertinent to the viral replicative cycle are as 

yet undetermined. Interestingly, a comparable inefficient cleavage is seen at a 

similar position in pestiviruses BVDV and classical swine fever virus (CSFV), 

although analyses of these virions suggest neither p7 nor E2-p7 are critical structural 

components (Elbers et al., 1996). Nevertheless, it has yet to be confirmed that HCV 

p7 and E2-p7 follow this trend.
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1.2.5 HCV Nonstructural Proteins

1.2.5. 1 NS2

NS2 is a hydrophobic protein with an apparent molecular weight of 23 kDa (Reed 

and Rice, 1999). Although NS2 is dispensable in HCV sub-genomic replicon- 

expressing cell lines (see section 1.6.2; Lohmann et al., 1999a), it is apparently 

required in vivo (Kolykhalov et al., 2000). Some studies suggest NS2 is a 

transmembrane protein with its C-terminus protruding into the lumen of the ER and 

its N-terminus in the cytosol (Santolini et al. 1995) - however, these data do not 

correlate with the presence of a putative signal sequence at the p7/NS2 junction 

(Grakoui et al., 1993c; Mizushima et al., 1994). The exact function of NS2 in the 

viral replication cycle is unclear, although unexpected proteinase activity, in 

conjunction with the N-terminus of NS3, has been attributed to the C-terminus of 

the protein, mediating cleavage at the NS2/NS3 junction (Grakoui et al., 1993c; 

Hijikata et al., 1993). Cleavage at this site is stimulated by zinc and inhibited by 

metal chelators such as EDTA, suggesting NS2 is a metalloprotease (Grakoui et al., 

1993c; Hijikata et al., 1993). However, the conserved motifs and structure of active 

centre are more consistent with that of a cysteine protease (Gorbalenya and Snijder, 

1996; Reed and Rice, 1999). NS2 does not appear to influence downstream cleavage 

events, since mutations which abolish activity of the NS2-3 protease have little or 

no effect on further processing of the HCV polyprotein (Grakoui et al., 1993c; 

Hijikata et al., 1993).

1.2.5. 2 NS3

NS3 is a moderately hydrophilic protein of around 70 kDa (Reed and Rice, 1999). It 

has been shown to be essential, both in HCV sub-genomic replicon-expressing cell 

lines (Lohmann et al., 1999a), and in vivo (Kolykhalov et al., 2000). Consistent with 

these data, NS3 shows high sequence conservation (> 80%) amongst HCV strains 

(Kwong et al., 1999). The protein is a multi-functional enzyme that consists of a 

serine proteinase domain in the N-terminal 181 aa (Bartenschlager, 1999; Grakoui et 

al., 1993c), and a nucleic acid-stimulated nucleotide triphosphatase (NTPase)/RNA 

helicase domain in the C-terminal 450 aa (D’Souza et al. 1995; Gwack et al. 1996;
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Kwong et al., 1999). Although one group has suggested internal processing of the 

NS3 protein occurs in insect and mammalian cells (Shoji et al., 1998), there is little 

evidence to suggest that the serine proteinase and helicase domains are separated by 

further processing (DeFranscesco and Steinktihler, 1999). Nevertheless, it is unclear 

whether the two distinct enzymes residing in the HCV NS3 protein are linked 

because of a functional interdependence between the two domains, or have evolved 

fortuitously (Kwong et al., 1999). The structure of the full-length NS3 protein in 

complex with one of its reputed co-factors, NS4A (see section 1.2.5.3), has been 

solved. These data suggest a tight association of the enzyme with the co-factor (Yao 

et al., 1999). The HCV NS3 helicase is one of the most studied viral RNA helicases. 

When compared with all others characterised so far, observations suggest that this 

enzyme is unique, acting in a 3' -> 5' direction (Tai et al., 1996) and it is able to 

unwind RNA-RNA as well as DNA-DNA duplexes and RNA/DNA heteroduplexes 

in vitro (Gwack et al., 1996, 1997; Tai et al., 1996; Wardell et al., 1999). Related 

viruses, including pestiviruses such as BVDV, and flaviviruses such as YFV and 

West Nile virus (WNV), encode a similar RNA helicase in their homologous NS3 

proteins (Warrener and Collett, 1995; Warrener et al., 1993; Wengler and Wengler,

1991), suggesting that the NS3 helicase plays an important role in the viral 

replication cycle (Kadare and Haenni, 1997; Miller and Purcell, 1990). However, 

the actual role of the NS3 helicase in the viral replication cycle or pathogenesis is 

currently unknown. It is possible that the NS3 helicase acts to unwind 

complimentary negative-stranded replication intermediates and positive-stranded 

genomic RNA prior to packaging (Kwong et al., 1999). There is also a possibility 

that the NS3 protein is involved in unwinding highly stable secondary structures in 

the HCV genome, such as the IRES within the 5'NCR, the 3'X region (see section

1.4.1), or clusters of unusually conserved RNA sequence which may represent 

conserved stem-loops in the ORF (see section 1.7.4; Han and Houghton, 1992; 

Walewski et a l, 2001). This function presumably would allow more efficient access 

of the viral replicase complex to HCV genomic RNA. The interaction of the NS3 

protein with the 3'NCR (see section 1.4.3; Baneijee and Dasgupta, 2001) could be 

viewed as adding credibility to either hypothesis, if this interaction merely serves to 

orientate the helicase prior to processive unwinding of complimentary strands, or
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scanning of the genome for stable secondary structures. The recently elucidated 

crystal structure of the HCV helicase suggests it consists of three distinct structural 

domains separated by clefts in the protein, forming a Y-shaped structure (Fig. 5; 

Cho etal., 1998; Yao etal., 1997).

The NS3 protein is also implicated in modulation of cellular processes. Expression 

of NS3 in NIH3T3 cells led to cellular transformation and, when inoculated into 

nude mice, the NS3-transfected cells caused tumourigenesis (Sakamuro et al., 

1995). These results correlate with a specific interaction and inhibition of the 

catalytic subunit of cAMP-dependent protein kinase A (PKA C-subunit) (Aoubala et 

al., 2001; Borowski et al., 1996, 1997), a molecule closely linked with cellular 

signal transduction (Francis and Corbin, 1994).

1.2.5. 3 NS4A

NS4A is a hydrophobic protein of ~8 kDa (Reed and Rice, 1999) which acts in 

conjunction with NS3 as a co-factor in its proteinase activity (section 1.2.5.2). 

NS4A is required for efficient processing at the NS3/4A, 4A/4B, and 4B/5A sites, 

while stimulating cleavage at the NS5A/5B site (Bartenschlager et al., 1994; Failla 

et al., 1994; Lin et al., 1994b; Tanji et al., 1994). NS4A may also anchor NS3, and 

perhaps other members of the replication complex, to cellular membranes via its N- 

terminal hydrophobic domain (Hijikata et al., 1993; Kim et al., 1996). The protein 

interacts directly with NS5A and regulates its phosphorylation by a cellular kinase 

(see section 1.2.5.5; Asabe et al., 1997; Tanji et a l, 1995), although the relevance of 

this function is currently unclear (Bartenschlager and Lohmann, 2000).

1.2.5. 4 NS4B

NS4B is a hydrophobic protein of approximately 30 kDa (Reed and Rice, 1999). 

Kinetic studies of HCV polyprotein cleavage show that the last cleavage event 

releases NS4B from NS5A (Bartenschlager et al., 1994). While it is known that 

NS4B is ER-associated and complexed with other HCV nonstructural proteins in
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transfected cells, its function in the HCV replication cycle is currently unknown 

(Hugle et al., 2001; Lin et al., 1997).

1.2.5. 5 NS5A

NS5 is proteolytically processed by the NS3/4A proteinase to produce the mature 

proteins NS5A (p56/p58 depending on phosphorylation) and NS5B (p65). Both are 

localised in nuclear periplasmic membranes suggesting they may be components of 

a membrane-bound replication complex (Hwang et a l,  1997). Phosphorylation of 

NS5A is mediated by an as yet undetermined cellular kinase (Ide et al., 1997; Reed 

et al., 1997; Tanji et a l,  1995). The function of NS5A is currently unclear, but may 

act as a regulator of replication by analogy with phosphoproteins from other RNA 

viruses (Bartenschlager and Lohmann, 2000, Kapoor et al., 1995; Reed et a l, 1998). 

Nevertheless, a role for NS5A in disruption of antiviral resistance has been 

suggested by reports of NS5A-mediated inactivation of interferon (IFN)-induced 

protein kinase (PKR) (Gale et al., 1997, 1998). This is potentially a major 

mechanism of immune avoidance by HCV since PKR is a critical factor in the host 

response to IFN through its phosphorylation of the a-subunit of eukaryotic initiation 

factor 2 (eIF2a) (Goodbum et al., 2000). Interestingly, analyses of HCV RNA 

isolated from patients undergoing IFN therapy suggested the presence of a cluster of 

mutations in the C-terminal half of NS5A (Enomoto et a l, 1995), in addition to the 

HVR-1 (section 1.3.4.2). This was mapped further to aa 2209 to 2248 in this region, 

and designated the interferon sensitivity-determining region (ISDR; Enomoto et al., 

1995, 1996). Additional analyses by independent groups suggest ISDR sequences 

may affect the response to IFN treatment, but they do not seem to have a general 

predictive value in determining the outcome of IFN treatment (Pawlotsky et al., 

1998; Reed and Rice, 1999). NS5A has also recently been shown to associate with 

lipoproteins at the surface of storage sites for such proteins where HCV core protein 

is also found (Shi et al., 2002).
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1.2.5. 6 NS5B

NS5B was first recognised as the putative viral polymerase due to the presence of a 

conserved motifs characteristic of all known RdRps (Lohmann et al., 1997; Reed 

and Rice, 1999). Accordingly, NS5B has been shown to copy full-length HCV 

genomic RNA (Oh et al., 1999). Although there is no significant in vitro specificity 

(Behrens et al., 1996; Lohmann et al, 1997), it appears that the HCV 3'X and 

poly(U)/polypyrimidine regions of the 3'NCR, and high concentrations of GTP, can 

stimulate primer-dependent synthesis (Lohmann et al., 1999b; Luo, 1999). It is 

presumed that transcription initiation via NS5B, in co-operation with other virally 

encoded and host proteins, occurs at both genomic termini using positive- and 

negative-stranded viral RNAs as templates (Rosenberg, 2001). Interestingly, 

however, NS5B appears to only bind stable stem-loops structures in its own coding 

region in vitro, together with a small portion of a poorly conserved variable region 

in the 3'NCR which may confer genotype specificity, and not the 5'NCR or the 

remainder of the 3'NCR (Cheng et al., 1999). NS5B co-factors, in addition to the 

localisation of the replication complex in specific subcellular compartments, are 

presumed to confer added specificity for NS5B on HCV RNA (Rosenberg, 2001). In 

fact, several HCV nonstructural proteins can be co-immunoprecipitated with NS5B 

antibodies, implicating NS3, NS4A, and NS5A in the replication process (Ishido et 

al., 1998).

1.3 The 5' Non-coding Region

1.3. 1 General Properties

The HCV genome is flanked by untranslated 5' and 3' termini (section 1.2.3). These 

NCRs are presumed to contain the signals necessary for initiation and termination of 

viral replication (Rosenberg, 2001). The 5'NCR has been shown to be capable of 

forming extensive secondary structures (Fig. 6; Brown et al., 1992) - this highly 

ordered structure acts as an IRES, that initiates translation of the HCV ORF (Hellen 

and Pestova, 1999). This mechanism of translation initiation was previously 

documented for picomaviruses (Jackson et al., 1990) and some eukaryotic mRNAs 

(Hellen and Pestova, 1999), though it is distinct from most eukaryotic mRNAs that
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initiate translation via 5'-cap structures and ribosomal scanning (see section 1.3.3). 

The 5'NCR is the most conserved region of the entire genome, indicative of its 

importance in the HCV replication cycle.

1.3. 2 Structure/function Studies

The HCV 5'NCR is typically 341 nts in length, although an additional sequence of 8 

nts has been reported by one group (Trowbridge and Gowans, 1998). The IRES is 

contained within an approximately 300 nt region immediately upstream of the 

initiation codon. The secondary structure in the 5'NCR is not only conserved 

amongst HCV genotypes, but also in GBV-B and pestiviruses (Reed and Rice,

1999). In fact, the HCV IRES can substitute for that of BVDV (Frolov et al., 1998) 

as well as poliovirus (Lu and Wimmer, 1996). Similar features amongst some 

members of the Flaviviridae include a large stem loop (III), a pseudo-knot near the 

initiation codon, and, in HCV and GBV-B, a smaller stem-loop (IV) which contains 

the initiation codon (Fig. 6; Honda et al., 1996a). Nuclear magnetic resonance 

(NMR) and EM methods have allowed partial visualisation of this organisation of 

the HCV IRES (Beales et al., 2001; Lukavsky et al., 2000). IRES activity seems to 

require the entire 5'NCR, with the possible exception of stem-loop I (Honda et al., 

1996b; Reynolds et al., 1995; Rijnbrand et al., 1995; Tsukiyama-Kohara et al.,

1992). While some studies suggest the requirement of a small portion of the core

coding sequence for full IRES activity (Honda et al., 1996b; Lu and Wimmer, 1996; 

Reynolds et al., 1995), others indicate the core-coding sequence can down-regulate 

translation (see section 1.3.5; Wang et al., 2000). However, whether the core-coding 

sequence is a real component of the IRES, or whether it serves merely to prevent 

unfavourable base-pairings of the IRES with downstream sequences which disturb 

its secondary structure, is not clear. HCV IRES activity appears to be cell cycle 

dependent, since expression of a reporter gene under its translational control was 

found to be greatest in mitotic and lowest in quiescent (Go) hepatocytes (Honda et 

al., 2000). This has been confirmed in the recently described HCV sub-genomic 

replicon-expressing cell lines (see section 1.6.2; Lohmann et al., 1999a; 

Pietschmann et al., 2001). Further studies in such cell lines have shown that 

sequences upstream of the IRES in the 5'NCR are required for replication (Friebe et
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al., 2001), suggesting that the 5'NCR plays a role in the replication cycle of HCV 

other than that of translation of the viral polyprotein.

1.3. 3 Translation o f Eukaryotic mRNAs

In contrast to IRES-mediated translation, initiation of translation of most eukaryotic 

mRNAs is dependent on the modified m7G 5'-terminal ‘cap’. A step-wise model for 

this process has been proposed (Fig. 7; Merrick, 1992), and is presented here for 

comparison with IRES-mediated translation and for future reference: i) a 43S 

complex forms by binding of eIF3 and an eIF2-GTP-Met-tRNA complex to the 40S 

ribosomal subunit; ii) eIF4F binds the capped 5'-end of the mRNA and, together 

with eIF4A and eIF4B unwinds inherent secondary structure in this region to create 

a binding site for the 43 S complex; iii) the 43 S complex scans downstream of the 

5'-end and forms a stable 48S complex at the first AUG codon - at this point, eIF5 

stimulates GTP hydrolysis, elFs are released, and the initiator Met-tRNA is left in 

the P site of the 40S subunit; iv) the 60S ribosomal subunit then joins the 40S 

subunit to permit synthesis of the polypeptide.

1.3. 4 Interaction o f  elFs and Other Cellular Factors with the HCV 5 NCR

Unlike most eukaryotic mRNAs (see above) and the IRESs of picomaviruses such 

as encephalomyocarditis virus (EMCV), the HCV IRES does not appear to interact 

with, or functionally require, many of the canonical elFs (Pestova et al., 1998). 

Nevertheless, translation is enhanced by a specific interaction of eIF3 with stem- 

loop III (Sizova et al., 1998), and there is a functional requirement for two of the 

subunits of eIF2 (eIF2x and eIF2Bx) in a cellular context (Kruger et al., 2000). A 

specific interaction of the IRES with the 40S ribosomal subunit has been reported, 

which is thought to drive formation of the ternary complex to initiate protein 

synthesis in a manner akin to that described above (Kieft et al., 2001). The 

accumulating evidence suggests HCV translation initiation occurs via a unique 

mechanism that has many features in common with prokaryotic translation, with the 

IRES functionally analogous to the Shine-Delgamo sequence (Pestova et al, 1998). 

This conserved stretch of six nucleotides base pairs with the 16S rRNA in the

31



60
S 

ri
bo

so
m

al
 s

ub
un

it

X1)

C)U~

<u o
'B g

V '5bJ  <u

<L>

<3

C/5
0)Du,

O

m
RN

A
) 

to 
cr

ea
te 

a 
bi

nd
in

g 
sit

e 
for

 
the

 
43

S 
co

m
pl

ex
; 

iii)
 

the
 

43
S 

co
m

pl
ex

 
sc

an
s 

do
w

ns
tre

am
 

of 
the

 
5'-

en
d 

an
d 

fo
rm

s 
a 

sta
bl

e 
48

S 
co

m
pl

ex
 

at 
the

 
fir

st 
AU

G 
co

do
n 

- 
at 

thi
s 

po
in

t, 
eIF

5 
st

im
ul

at
es

 
GT

P 
hy

dr
ol

ys
is

, 
elF

s 
ar

e 
re

le
as

ed
, 

an
d 

the
 

in
iti

at
or

 
M

et-
tR

NA
 

is 
left

 
in 

the
 

P 
sit

e 
of 

the
 

40
S 

su
bu

ni
t; 

iv)
 

the
 

60
S 

rib
os

om
al

 
su

bu
ni

t 
th

en
 

jo
in

s 
the

 
40

S 
su

bu
ni

t 
to 

pe
rm

it 
sy

nt
he

sis
 

of 
the

 
po

ly
pe

pt
id

e 
(a

da
pt

ed
 

fro
m 

A
lb

er
ts 

et 
a

l1
99

4)
.



bacterial small ribosomal subunit, thereby correctly positioning the initiator AUG in 

the ribosome (Alberts et al., 1994). It is possible that the redundancy of several elFs 

regarding HCV IRES translation reflects its complex structure, which may induce 

conformational changes in the 40S ribosomal subunit to align the P site with the 

initiation codon (Rosenberg, 2001). Interestingly, three-dimensional structures of 

the IRES in complex with the 43 S particle suggest binding induces a significant 

conformational change in the secondary structure of the IRES itself (Kieft et al, 

1999; Spahn et al., 2001).

Other cellular proteins that have been shown to specifically interact with the 5'NCR 

include polypyrimidine tract binding protein (PTB) (Ali and Siddiqui, 1995), 

heterogenous nuclear protein L (hnRNP L) (Hahm et al., 1998), the La autoantigen 

(Ali and Siddiqui, 1997), and ribosomal protein S5 (Fukushi et a l, 2001). 

Interaction of these proteins with the 5'NCR is likely to occur in a complex, and 

may have effects on translation and/or replication of the HCV genome (Reed and 

Rice, 1999). The possible requirements of cellular factors for IRES activity may 

explain the dependence on the cell cycle (section 1.3.2; Honda et al., 2000; 

Pietschmann et al., 2001), since the abundance of these proteins may alter in 

different points in the cell cycle. Nevertheless, the extent to which these proteins 

alter translation and/or replication, if indeed at all, will require testing in a currently 

unavailable cell culture system for HCV. Interestingly, the HCV 5'NCR is not 

functional in insect cells (Wang et a l, 1997). This is not due to a block in 

transcription of recombinant baculoviruses containing the HCV IRES, possibly 

suggesting that specific cellular factors are lacking in insect cells that mediate 

translation initiation from the HCV IRES in mammalian cell systems (Wang et al.,

1997).

1.3. 5 Effect o f Core Protein or its Coding-sequence on IRES Activity

A specific interaction of core protein with the 5'-end of the HCV genome has been

I reported (see section 1.9.1; Fan et al., 1999; Shimoike et al., 1999), which was

I further shown in one such study to suppress translation of HCV coding sequences

! (Shimoike et al., 1999). This effect was dose-dependent and specific to the IRES of!
!
| 32i



HCV, since modulation of translation by core protein following substitution of the 

HCV IRES for the EMCV IRES in the reporter constructs used was not seen. These 

data could suggest that the specific interaction of core protein with the 5'NCR is the 

signal to switch from translation/replication to virion assembly, or it could indicate 

an involvement in the establishment and/or maintenance of viral persistence. 

However, other studies have suggested that it is the core-coding sequence that can 

modulate IRES activity (Rijnbrand et al., 2001; Wang et al., 2000). Thus, the actual 

role of core protein in HCV IRES-mediated translation is currently unclear. A PTB- 

binding site has also been discovered at the 3'-end of the core-coding sequence - this 

strongly inhibited HCV 5'NCR-mediated translation in a reporter assay, but the 

effect could be relieved by addition of the 3'X region to the 3'end of the reporter 

constructs (Ito and Lai, 1999).

1. 4 The 3' Non-coding Region

1.4. 1 General Properties

Although the first full-length clone of the HCV genome contained a poly(A) tail at 

its 3'-terminus (Han et al., 1991), this was probably an artifact attributable to the 

methods used in isolation of HCV RNA (Reed and Rice, 1999). It was only 

relatively recently that alternative techniques indicated the 3' terminus of HCV is a 

tripartite structure composed of a poorly conserved ~40 nt sequence termed the 

variable region, a poly(U)/polypyrimidine tract of widely varying length, and a 

highly conserved 98 nt sequence known as the 3'X or X-tail, which has been shown 

to form a highly stable elaborate stem-loop structure (Fig. 8; Blight and Rice, 1997, 

Kolykhalov et al., 1996; Tanaka et al., 1995; Yamada et al., 1996). The highly 

conserved nature of the 3'X suggests it may play a crucial role in the production of 

negative-sense RNA intermediates, as previously shown for many positive-strand 

viruses (Reed and Rice, 1999). This hypothesis is supported by the inability of HCV 

RNAs lacking the 3'X to replicate in chimpanzees (Foms et al., 2000; Kolykhalov et 

al., 2000; Yanagi et al., 1999), although some low level replication has been 

observed with HCV RNAs that terminate with poly(A) or within the
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Figure 8: Predicted secondary structure of the HCV 3'NCR. Computer- 
assisted folding analysis suggests a tripartite structure, consisting of a 
poorly conserved sequence termed the variable region, a poly(U) tract 
of varying length (commonly interspersed with polypyrimidine 
stretches, although not shown above), and a highly conserved 98 nt 
sequence known as the 3'X tail (designated X region above) which 
forms three energetically stable stem-loop structures (taken from Ito 
and Lai, 1997)



poly(U)/pyrimidine tract in Huh-7 (Yoo et al., 1995) and HepG2 human hepatocyte 

cell lines (Dash et al., 1997).

1.4. 2 Cellular Factors Binding to 3 'NCR

In addition to its interaction with the 5'NCR, a specific interaction of the 3'NCR 

with PTB has been reported, with possible effects on replication (Ito and Lai et al., 

1997; Tsuchihara et al., 1997). Binding of PTB to the 3'NCR has also been 

implicated in low level stimulation of HCV or EMCV IRES activity, suggesting 

cross-talk between the genomic terminii (Ito et al., 1998a). A ribosomal protein 

(L22) has been reported to specifically interact with the 3'X tail (Wood et al., 2001). 

Evidence is accumulating for diverse extra-ribosomal roles for this group of 

proteins. However, like PTB, this protein appears to enhance translation from the 

5'NCR (Wood et al., 2001), further highlighting possible cross-talk between the two 

NCRs. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), La, hnRNP C, and 

other unidentified cellular proteins have also been shown to interact with the 3'NCR 

(Luo, 1999; Petrik et al, 1999; Spangberg et al, 1999). As for all RNA-protein and 

protein-protein interactions regarding HCV, the actual role of the interactions of the 

above proteins with the 3'NCR in the HCV replication cycle awaits development of 

an efficient cell culture system for the virus.

1.4. 3 Interaction o f HCV NS3 Helicase with 3 NCR

Recently, a specific interaction of the HCV NS3 protein with the 3'-termini of both 

positive- and negative-stranded HCV RNA has been demonstrated (Baneijee and 

Dasgupta, 2001), suggesting a role for the HCV helicase in replication of both HCV 

genomic RNA and negative-stranded intermediates. Using UV cross-linking, an 

interaction of full-length NS3 or the helicase domain alone with radiolabelled 

negative-stranded HCV 3'NCR RNA that could be competitively inhibited by 

homologous, but not heterologous, unlabelled RNA probes was shown (Baneijee 

and Dasgupta, 2001). The region required for interaction with negative sense HCV 

RNA appeared to be a predicted stem-loop at the extreme 3'-end. NS3 seemed to 

have a less specific binding site on positive-sense HCV 3'NCR RNAs, requiring the
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entire region for binding. Nevertheless, a lack of binding of HCV 5'NCR in the 

positive or negative orientation (Baneijee and Dasgupta, 2001) confirmed the 

specificity of the interaction of the NS3 helicase domain with the 3'NCR in both 

orientations. Since other regions of the HCV genome were not tested in this study, it 

is not clear whether sequences in the HCV ORF are also specifically recognised by 

NS3.

1. 5 HCV Replication Cycle

Due to the lack of a convenient and reproducible animal model (section 1.1.8) and 

difficulties in establishing an efficient cell culture system for HCV, the current 

model of the HCV replicative cycle is based primarily on analogies with related 

viruses, studies of the properties of HCV RNA in various systems, and 

characterisation of recombinant HCV proteins (Bartenschlager and Lohmann, 2000). 

Using this restricted information, for the most part described previously (sections 

1.2 to 1.4), a concise account of the HCV replication cycle, shown schematically in 

Fig. 9, is as follows: i) attachment and entry of the virus, allowing liberation of the 

genomic RNA; ii) translation from the IRES at the 5' end of this genomic RNA and 

polyprotein processing; iii) formation of a replicase complex associated with 

intracellular membranes and synthesis of minus-strand RNA intermediate, prior to 

production of new positive-strand genomic RNA for further use as a template or for 

packaging into virions; iv) virion release from the infected cell. Each step in the 

replication cycle of HCV is considered briefly in the following sections.

1.5. 1 Virus Attachment and Entry

Current theories regarding HCV receptors are presented in section 1.2.2. While the 

exact nature of the HCV receptor is yet to be determined, there is a general 

consensus that E2 mediates viral attachment to the host cell, since E2-specific 

antisera can block binding to cells (Farci et al., 1996; Rosa et a l , 1996; Zibert et al., 

1995). The role of El in viral attachment/entry is less clear, although the presence of 

a putative El fusion peptide, a stretch of hydrophobic residues displaying
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Figure 9: Putative model for the HCV replication cycle. Following 
attachment and entry to the cell, positive-sense (+) genomic ssRNA is 
liberated into the cytoplasm and translated. The resulting polyprotein is 
processed by host cell and viral proteinases. A membrane-bound 
replicase complex composed of NS3-5B generates negative-sense 
replication intermediates (-) which serve as the template for production 
of more genomic RNA. This is either used to generate more negative- 
sense RNA, or is encapsidated by core protein. Nucleocapsids are 
enveloped by budding into the ER lumen, prior to egress via the 
secretory pathway (taken from Bartenschlager and Lohmann, 2000)



similarities to paramyxovirus and flavivirus sequences, suggests El could be 

involved in membrane fusion (Flint et al., 1999).

1.5. 2 Translation and Processing o f the Viral Polyprotein

Following liberation of the viral genome into the cell, the RNA is translated directly 

via the IRES (section 1.3.1; Tsukiyama-Kohara et al., 1992; Wang et al., 1993). 

Since mutagenesis or insertion of AUG initiator codons upstream from the authentic 

HCV polyprotein start site have little effect on translation, ribosomes appear to bind 

in close proximity to this site with little or no scanning (Reynolds et al., 1996; 

Rijnbrand et a l, 1996). The polyprotein is believed to be translated at the rough ER 

and cleaved co- and post-translationally by host cell and viral proteases (section 

1.2.3; Major and Feinstone, 1997).

1.5. 3 Replication o f  HCV Genomic RNA

As determined using co-immunoprecipitation by several groups, most or all of the 

HCV nonstructural proteins form a replicase complex that is associated with 

intracellular membranes (section 1.2.5.6; Hijikata et al., 1993; Ishido et al., 1998; 

Lin et al., 1997; Rice, 1996). It is likely that this complex also contains cellular 

proteins (sections 1.3.4 and 1.4.2). Formation of such replication complexes 

presumably allows production of viral proteins in a distinct compartment and tight 

coupling of their functions, and is a feature of many plus-stranded RNA viruses 

(Bolten et al., 1998; Westaway et al., 1997). HCV replicates through a negative- 

strand intermediate, as shown by strand-specific RT-PCR (Lanford et al., 1994; 

Reed and Rice, 1999). The NS5B RdRp is clearly a key player in replication of 

HCV RNA, but its mechanism of action and specificity are not precisely understood 

(section 1.2.5.6). Although many reports have suggested that NS5B can utilise and 

bind virtually any RNA, or indeed DNA (Rosenberg, 2001), studies using gel 

mobility shift and competition assays indicate that there is preferential binding to 

nucleotides at the 3'-end of the NS5B-coding sequence (section 1.2.5.6; Cheng et 

al., 1999). Recently, conserved complementary cyclisation sequences in the 

genomic termini of certain flaviviruses that are essential for RNA replication have
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been discovered (Khromykh et al., 2001). By analogy with these viruses, HCV may 

possess similar sequences that are required for replication. These sequences could 

be present at the extreme genomic terminii of the HCV genome - indeed, deletion of 

the sequences at the extreme 5'-end abolishes replication in the HCV sub-genomic 

replicon expressing cell lines (section 1.3.2; Friebe et a l , 2001), and the 3'X tail is 

required in vivo for HCV replication (section 1.4.1).

1.5. 4 Virion Assembly and Release

In the absence of systems allowing sufficient production of HCV virions, it is 

difficult to study viral morphogenesis. One potential approach to overcome this is 

the demonstration of virus-like particles (VLPs) that are produced in insect cells, as 

described in section 1.2.1. Other evidence suggests core protein initiates particle 

formation through a specific interaction at the 5'-end of the HCV genome and 

suppression of translation from the IRES (section 1.3.5; Shimoike et al., 1999), 

although an independent report is not in agreement with these data (Wang et al.,

2000). If this is correct, it provides a model of selective packaging of positive-sense 

HCV RNA and suggests a mechanism by which the virus switches from 

translation/replication to assembly of viral particles (section 1.3.5; Shimoike et al.,

1999). The oligomerisation of core protein, a property anticipated for a protein 

forming the nucleocapsid, has been well-characterised although no consensus has 

been reached on the precise domains involved (see section 1.9.2; Matsumoto et al., 

1996a; Nolandt et al., 1997; Yan et al., 1998). In terms of virus egress, the 

demonstration of actual retention of El and E2 in the ER (Cocquerel et al., 1999; 

Duvet et al., 1998) indicates that viral nucleocapsids acquire their envelope by 

budding through ER membranes and are exported via the constitutive secretory 

pathway (Bartenschlager and Lohmann, 2000). Consistent with this hypothesis, 

complex N-linked glycans have been found on the surface of partially purified virus 

particles, suggesting virion release via the Golgi (Sato et al., 1993).
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1. 6 Im portant A dvances in M olecular H C V  R esearch

The investigation of HCV receptors (section 1.2.2) and studies with mouse models 

with chimeric human livers (section 1.1.8) are significant advances with a view to 

relieving the cancer burden represented by HCV. Two further important recent 

advances in the molecular biology of HCV are presented below.

1.6. 1 HCV Infectious Clones

One of the pitfalls of working with HCV-derived cDNAs in expression systems is 

that it is possible that they are derived from defective genomes. A large number of 

quasispecies exist within HCV-infected individuals (section 1.1.2; G6mez et al.,

1999), and it is likely that not all of these are able to elicit a persistent hepatitis. 

Recently, reports of the first clones of HCV which resulted in viral replication 

following direct intrahepatic injection of in vitro transcribed RNA, were published 

(Kolykhalov et al., 1997; Yanagi et al., 1997). This demonstrated use of the first 

infectious molecular clones of HCV. These clones represent genomes that contain 

all the information necessary for the assembly of functionally intact, infectious virus 

particles that can elicit a persistent hepatitis and lead to HCV-associated 

pathologies. Following these reports of infectious clones of HCV genotype la  

strains, HCV genotype lb and 2a infectious clones were generated (Hong et al., 

1999; Yanagi et al., 1998, 1999). Interestingly, a chimeric genotype la-2b clone, 

comprising the structural genes of a genotype la  strain in a 2a background was not 

viable (Yanagi et al., 1999), indicating there are complex relationships between the 

structural and nonstructural proteins encoded by the HCV ORF. Nevertheless, the 

demonstration of HCV infectious clones has not only increased confidence in the 

use of cDNAs from such clones in expression systems, but has also allowed 

mutational analyses of HCV genomic RNAs that can be tested in vivo. Inactivation 

of the key virally-encoded enzymes (section 1.2.5; NS2-3 and NS3-4A proteinases, 

NS3 NTPase/helicase, NS5B RdRp), and subsequent injection of the RNA into 

chimpanzees has confirmed their essential role in viral replication since these clones 

are non-viable while the parental strain causes disease (Kolykhalov et al., 2000). 

Furthermore, detailed in vivo analysis of the 3'NCR using this approach suggests 

that the 3'X, the conserved 98 nt stretch at the extreme 3' end of the genome, and
i
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the upstream poly(U)/polypyrimidine tract are essential for infectivity, while the 5' 

end of the variable region is not (Foms et al., 2000; Kolykhalov et al., 2000; Yanagi 

etal., 1999).

1.6. 2 HCV Sub-genomic Replicon-expressing Cell Lines

While there have been reports of low level and intermittent replication of the entire 

HCV genome in human hepatocyte and T-cell lines (Dash et al., 1997; Sugiyama et 

al., 1997; Yoo et al., 1995), the development of HCV sub-genomic replicon- 

expressing cell lines (Lohmann et al., 1999a) paves the way for a robust cell culture 

system that allows stable, high level replication of HCV RNA. This approach 

permits introduction of a well-defined HCV RNA, and the opportunity to 

manipulate such RNAs with a view to performing a detailed molecular analysis of 

viral processes. This has previously been successful for several positive-sense RNA 

viruses (Boyer and Haenni, 1994). The first generation HCV sub-genomic replicons 

consisted of a bi-cistronic RNA containing the HCV 5'NCR fused to the neomycin 

phosphotransferase (neo) gene for G418 selection in the human hepatoma cell line 

Huh-7, followed by the EMCV IRES that drives expression of the nonstructural 

region (Fig. 10; Lohmann et al., 1999a). Quantitation of replicon RNA following 

direct transfection into cells suggested 1000-5000 RNA molecules per cell, a figure 

that is several orders of magnitude over infection systems (Blight and Gowans,

1995). Interestingly, NS2 was not required for replication in this system (section

1.2.5.1), suggesting it plays a non-essential role in the viral replication cycle, 

although replication was discemibly inhibited in its absence. The HCV structural 

region was omitted since high level expression of HCV structural proteins could be 

cytotoxic (Moradpour et al., 1998), and structural proteins are not required for 

replication of many positive-sense RNA viruses, including flavi- and pestiviruses 

(Behrens et al., 1998; Khromykh and Westaway, 1997). Replication in the absence 

of structural genes indicates that the ability to couple replication to virus particle 

assembly is not essential for HCV (Rosenberg, 2001).

During propagation of Huh-7 cell lines stably expressing HCV sub-genomic 

replicons, a series of mutations were identified throughout the nonstructural region
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Figure 10: Establishment of HCV sub-genomic replicon-expressing 
cell lines. Constructs carrying the HCV sequences as shown (either 
NS2-5B or NS3-5B), together with the neomycin phosphotransferase 
gene (neo) and the EMCV IRES (E-I), were generated. A small portion 
of the core-coding sequence was included since there is some evidence 
that this region is part of the IRES. In vitro translated RNA was 
transfected into Huh-7 cells - those supporting replication of the neo 
gene within the sub-genomic replicon RNA developed resistance to 
G418. Only these cells formed colonies, while untransfected cells and 
those that did not support replication of the replicon RNA were 
eliminated (taken from Bartenschlager and Lohmann, 2000).



following extraction of RNA from Huh-7 cells and direct sequencing, some of 

which conferred greatly increased replication efficiency when transfected back into 

cells (Blight et al., 2000; Lohmann et al., 2001). Construction of one such adapted 

HCV sub-genomic replicon containing the luciferase gene instead of neo has 

facilitated transient transfection studies of replication (Krieger et al., 2001). 

Interestingly, only sub-genomic replicons derived from a genotype lb isolate of 

HCV that has not yet been shown to be infectious in chimpanzees were able to 

replicate, while those derived from the H77 strain, an infectious clone of HCV 

(section 1.7.1), were not able to establish G418-resistant colonies (Blight et al.,

2000). Furthermore, it appeared that Huh-7 is the only cell line that supports HCV 

RNA replication in this manner (Lohmann et al., 1999a). These data make Huh-7 

cells the cell line of choice for HCV research in general, as there appears to be 

factors present in these cells that allows replication of HCV RNAs. Consistent with 

previous studies suggesting the HCV IRES is cell-cycle regulated (Honda et al.,

2000), HCV sub-genomic replicon RNA levels correlated with the cell cycle 

(section 1.3.2; Pietschmann et al., 2001). The localisation of nonstructural proteins 

produced in this system concur with the localisation of those expressed transiently 

in mammalian cells (Bartenschlager et al., 1994; Grakoui et al., 1993a; Selby et al.,

1993). These data suggest that the HCV sub-genomic replicon-expressing cell lines 

are a good system to study HCV, since at least some aspects of HCV replication are 

reproduced. Recently, full-length HCV genomic RNA replicons have been 

generated (Pietschmann et al., 2002), which permit investigation of aspects of the 

structural proteins of HCV, including virion morphogenesis, and detailed analyses 

of individual structural region products, such as core protein. This HCV-encoded 

protein will be discussed in detail in the following sections.

1. 7 Properties of Core Protein and Its Coding Sequence

1.7. 1 Maturation o f Core Protein

Core protein lies at the extreme N-terminus of the polyprotein encoded by the HCV 

ORF, and is generated via cleavage by host cell proteases (Grakoui et al., 1993a; 

Hijikata et al., 1991b; Selby et al., 1993). Cleavage events are believed to take place
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at two sites in the core protein of all HCV strains (Fig. 4, section 1.2.3; 

McLauchlan, 2000), except perhaps the HCV-1 strain (see below; Lo et al., 1994,

1995). Since the N-terminal residue of El is HCV aa 192, one such cleavage event 

in the vast majority of HCV strains is believed to take place at aa 191 (Hijikata et 

al., 1991b). Consistent with the requirements of signal peptidase cleavage sites 

(Martoglio and Dobberstein, 1998), mutation at aa 189 and 191 (-3 and -1 relative to 

aa 192) abolishes this cleavage event (Hussy et al., 1996). Based on mass 

spectrometry measurements of core protein expressed in insect cells, the other 

cleavage event is believed to take place somewhere between aa 179 and 182 (Hussy 

et al., 1996). However, others have placed this cleavage event at approximately aa 

172-174 (Liu et al., 1997; Lo et al., 1995; Santolini et al., 1994) on the basis of 

observed electrophoretic mobilities of mature core protein and various truncations. 

Cleavage at these two sites is not interdependent, since p21 can be generated under 

conditions where the cleavage event at aa 191/192 does not occur (Hussy et al.,

1996). There is some confusion surrounding the exact nomenclature for the resulting 

digestion products, which have been named according to their apparent molecular 

weights on polyacylamide gels. These digestion products have been designated p21 

and p i9, respectively (Hussy et al., 1996; Lo et al., 1994, 1995), but will be denoted 

p23 and p21 here and in following sections in accordance with recent publications 

(McLauchlan, 2000; Yasui et al., 1998). Both p23 and p21 are generated by in vitro 

translation in the presence of microsomal membranes (Hussy et al., 1996; Sanotolini 

et al., 1994), suggesting membrane-associated proteases direct cleavage at these 

sites. The extreme C-terminus of p23 is highly hydrophobic and is known to act as a 

signal sequence which directs El to the ER lumen (see section 1.8.2; Santolini et 

al., 1994). If processing of core is consistent with other ER-bound proteins, 

cleavage to generate p23 is mediated on the luminal side of the ER by the cellular 

signal peptidase complex (Martoglio and Dobberstein, 1998). Further cleavage to 

generate the mature p21 product would then be mediated by a cellular signal peptide 

peptidase. While p23 has been detected following expression in mammalian cells, 

truncated p21 core is the major product identified in such studies (Lo et al., 1995; 

Santolini et al., 1994). Although one study of detergent-stripped virions isolated 

from infected individuals detected a core protein of approximately 26 kDa
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(Takahashi et al., 1992), core protein of identical molecular weight to p21 has been 

isolated in sera from infected individuals (Yasui et al., 1998) and HCV VLPs 

(section 1.2.1; Baumert et a l, 1998; Owsianka et a l,  2001; Wellnitz et a l, 2002), 

indicating this form is indeed the mature and stable form that acts as the viral 

nucleocapsid.

A cleavage event at around aa 151, so far only determined in the HCV-1 strain, the 

first molecular clone of HCV (Choo et al., 1989), gives rise to a product termed pi 6 

(Lo et al., 1994, 1995). In contrast to p23 and p21, generation of p i6 does not 

require the presence of membranes. However, while p l6  is the predominant form 

produced by in vitro translation or transfection in mammalian cells of the core 

sequences alone, fusion of the HCV-1 El coding sequence downstream of the core

coding sequence, generated p23 and p21 (Lo et al., 1994, 1995). Thus, it appears 

that pi 6 core is of no actual in vivo significance.

1.7. 2 Features o f  the Protein Sequence

Core protein is highly conserved in different strains among the six main HCV 

genotypes (Bukh et al., 1994; Cha et a l, 1992). Indeed, the core-coding sequence is 

the most conserved region of the entire HCV ORF, suggesting the protein plays a 

critical role in the viral replication cycle. On the basis of hydrophobicity and aa 

content, core protein has been divided into three distinct regions (Hope and 

McLauchlan, 2000). The N-terminal aa 1-122 contains a large proportion of basic 

residues (23.8% in HCV strain H77c), mainly consisting of arginine with a few 

lysine residues. Such basic patches may be responsible for the reported interaction 

of core with nucleic acid (see section 1.9.1; Santolini et a l, 1994). This N-terminal 

region also contains a putative DNA binding motif (SPRG) at aa 99-102 (Bukh et 

al., 1994) and putative nuclear localisation signals (NLSs) (Chang et a l, 1994). 

Two short but distinct hydrophobic regions reside in this region. A second domain 

(aa 123-174) is characterised by a much lower content of basic residues (5.9%), but 

is generally more hydrophobic than the N-terminal region. The third domain (aa 

175-191) at the extreme C-terminus of the unprocessed protein is highly 

hydrophobic and is involved in ER-targeting of El (Santolini et al., 1994). Analysis
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of the protein sequence of core also suggests there are several potential recognition 

sites for protein kinases A and C (Kemp and Pearson, 1990), and it is possible that 

this protein exhibits different properties through the phosphorylation and 

dephosphorylation process (Hunter and Karin, 1992). Studies indicate the main core 

phosphorylation sites are Ser-53, -99 and -116 (Shih et al., 1995). The main features 

of the core protein sequence, as described above, are summarised in Fig. 11.

1.7. 3 Subcellular Localisation

Unfortunately, studies of the localisation of core protein in biopsy samples from 

HCV-infected individuals have been hampered by the apparently low abundance of 

the protein in infected cells, and the low proportion of cells which appear to express 

the protein (McLauchlan, 2000). However, in biopsy samples with sufficient 

quantities of core for detection, the protein exhibited a predominantly cytoplasmic, 

granular localisation (Gonzalez-Peralta et al., 1994; Yap et al., 1994). A more 

defined localisation has been elucidated in cell lines transiently or stably transfected 

with constructs containing the core-coding sequence, or infected with recombinant 

viruses containing the same sequence. EM studies have suggested the granular 

structures to which core protein binds as lipid droplets (Moradpour et al., 1996; 

Barba et al., 1997). This association has been confirmed by indirect 

immunofluorescence (Hope and McLauchlan, 2000; Shi et al., 2002). Studies have 

also suggested that core localises in much lower quantities to the cytoplasmic side of 

the ER (Harada et al., 1991; Santolini et al., 1994; Selby et al., 1993; Suzuki et al., 

1995). In contrast, although the in vivo relevance of the p l6  core species has not 

been confirmed (section 1.7.1), it appears to localise to the nucleus or at the nuclear 

membrane (Lo et a l 1994b), suggesting it plays a different biological role to p23 

and p21. Interestingly, a nuclear form of the p21 core species has also been detected, 

albeit in low amounts. This nuclear species appears to be conformationally-distinct 

to the cytoplasmic form since specific monoclonal antibodies can discriminate 

between the two core species (Yasui et al., 1998). Other groups have also detected 

core in low abundance in the nucleus (Chang et al., 1994; Liu et al., 1997; Ravaggi 

et al., 1994; Shih et al., 1993; Suzuki et al., 1995).
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1.7. 4 Ribosomal Frameshift in Core-coding Sequence

Recently, doubt has been cast over whether HCV does indeed possess a single ORF 

encoding one large polyprotein as detailed previously (section 1.2.3). Two groups 

have independently reported that an alternative reading frame, possibly generated by 

ribosomal frameshifting, is present in the core-coding sequence (Walewski et al., 

2001; Xu et al., 2001). A rational basis for the presence of alternate reading frames 

using analysis of sites of marked suppression of synonymous variability in the HCV 

ORF was used in one study (Fig. 12; Walewski et al., 2001), and unusual features of 

the identified region have previously been reported (Ina et al., 1994; Smith and 

Simmonds, 1997). The newly discovered HCV-encoded protein was termed ARFP 

for ‘alternate reading frame protein’ (Walewski et al., 2001), or F for 'frameshift' 

(Xu et al., 2001); the term F protein is retained here for clarity. In both studies, 

specific antibodies to the F protein were demonstrated in the sera of a small but 

significant proportion of HCV infected individuals, but not uninfected individuals, 

ascribing possible in vivo relevance during HCV infection to the alternative reading 

frame (Walewski et al., 2001; Xu et al., 2001). The F protein is predicted to be 

between ~124 and 160 aa in length, depending on the genotype, and is highly basic. 

A similar overlapping ORF has been observed in the related GBV-B (Bukh et al., 

1999), suggesting that this protein has been conserved due to a crucial role in the 

HCV replication cycle (Xu et al., 2001).

1.7. 5 The Structural Role o f  Core Protein

The highly basic nature of HCV core protein and its similarity to the core protein of 

other Flaviviridae members indicates that the protein is probably the nucleocapsid 

component of the HCV virion (Houghton, 1996). The demonstration of ribosome 

and RNA binding (Santolini et a l, 1994) is in agreement with the potential role of 

the core protein as the virion component involved in RNA packaging and viral 

assembly, even although explicit demonstration of the capsid-forming ability of core 

protein in mammalian cells has not been achieved. This is largely because, 

following expression of the HCV structural region or the full-length HCV ORF in 

such cells, no virus particles or too few to analyse are generated. In addition, 

detection of virus particles is a rare event in both human and chimpanzee livers

44



-200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Nucleotides in HCV RNA (AF011751)

Figure 12: Marked suppression of synonymous variability in distinct 
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ORF in the +1 reading frame (denoted by a solid bar) of the H77c 
infectious clone of HCV (taken from Walewski et al., 2001)
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infected with HCV (section 1.2.1). Nevertheless, formation of nucleocapsids with 

core protein expressed in E. coli have been observed by EM (Kunkel et a l , 2001), 

and particles with the physicochemical, morphological and antigenic properties of 

naked core-derived nucleocapsids are apparently present in the serum of infected 

individuals (Maillard et a l , 2001).

The ability of core protein to multimerise, crucial in capsid assembly, has been 

extensively studied (Matsumoto et a l, 1996a; Nolandt et a l, 1997; Yan et a l, 

1998). Core also interacts with the El glycoprotein (Lo et a l,  1996) which may 

facilitate maturation of the HCV virion. The reported interaction of core protein 

with intracellular membranes (Santolini et a l, 1994) may also play a role in 

facilitating assembly and/or budding of the virus, as previously shown for both 

flavivirus and pestivirus genera (Rice, 1996). The interactions of core presented 

above that are relevant to its role as the viral capsid protein are described in more 

detail in section 1.9.

1. 8 Possible Pathogenic Roles of Core Protein

While it is accepted that core protein forms the viral nucleocapsid (see above), 

several studies have also implicated the protein in many aspects of HCV 

pathogenesis. It therefore appears that HCV core is pleiotropic in nature, exerting 

varied effects on cellular metabolism. These effects broadly fall into the categories 

presented in the following sections: interference in cell signalling, immune 

avoidance, effects on cell transformation, interference in gene transcription, and 

effects on lipid metabolism.

1.8. 1 Interference in Cell Signalling

A number of studies suggest core protein can modulate apoptosis, as shown for gene 

products encoded by an array of other viruses (O’Brien, 1998). Apoptosis is often 

referred to as programmed cell death, and by definition is an orderly process by 

which a cell dies through a series of morphological changes that include cell 

shrinkage, blebbing of the plasma membrane, chromatin condensation and,
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eventually, cell fragmentation into apoptotic bodies that are subsequently 

phagocytosed (Vaux and Strasser, 1996; White, 1996). In addition to its role in 

embryonic development and tissue homeostasis in adults, the process of apoptosis 

has protective responsibilities, eliminating cells that could prove harmful if they 

were to survive, for example those which have received a significant genetic insult 

via chemicals or irradiation, or virus-infected cells. Since HCV core protein is the 

first protein produced after infection of target cells, it may play a role in delaying 

apoptosis before the cell is able to mount a sufficient antiviral defence (Chen et a l ,

1997). Accordingly, core protein has been proposed to alter normal cellular 

apoptosis via three members of the tumour necrosis factor receptor (TNFR) 

superfamily (Ware et al., 1995); these are Fas, TNFR-1 and LT-pR, as shown 

schematically in Fig. 13. Initial studies into modulation of apoptosis by core protein 

suggested it could sensitise cells to the Fay-mediated arm (Ruggieri et al., 1997), 

although a more recent study suggests core protein may have opposing effects in the 

same hepatocyte cell line to the first study (Marusawa et a l, 1999). A possible 

reason for the discrepancy between the two reports is the different techniques used 

to induce Fay-mediated apoptosis (anti-Fay antibody alone, or anti-Fay antibody 

plus cyclohexamide, a protein synthesis inhibitor that is required in some cell types 

to induce apoptosis), and the constitutive or transient expression of core in the cell 

lines. Sensitisation of cells by core to Fay-mediated apoptosis was proposed to be 

due to downstream effector modulation since altered levels of cell surface Fas 

antigen was not seen (Ruggieri et al., 1997), although a direct interaction between 

Fas and core has recently been reported (see section 1.9.6.3; Hahn et al., 2000).

As previously found with studies of the effect of core on Fay-mediated apoptosis, 

the effect of core on TNF-a-mediated apoptosis is somewhat confusing. Although 

initial studies suggested core protein, constitutively-expressed in Huh-7, HepG2 and 

HeLa cells, had no significant effect on cytotoxicity induced by TNF-a in the 

presence of cyclohexamide (Chen et al., 1997), a subsequent report observed 

enhanced TNF-mediated apoptosis in a similar range of cell types in the presence of 

the RNA synthesis inhibitor actinomycin D (Zhu et al., 1998). Two additional 

reports suggest core protein can inhibit TNF-a-mediated apoptosis in MCF-7 cells,

46



Ligand binding

TNF-R1

TRAF2

LT-pR

FADD

'-vvv

FADD

Caspase 8

Effector
caspases

TRAF2, 3, 5

IkB/ JNK/
NF-kB c-Jun

/  \

1
Apoptosis

cascade cascade

Effector
caspases

Apoptosis

1

Apoptosis

Figure 13: TNFR superfamily members and associated signaling 
proteins that are targeted by core protein. The signals from members 
o f this superfamily are transduced by two major mechanisms: via a 
death domain (DD) (Fas, TNFR-1) or TNFR-associated factors 
(TRAFs) (LT-pR). Abbreviations: FADD/TRADD, Fas/TNFR- 
associated DD proteins; DED, death effector domain; RIP, receptor- 
interacting protein (taken from McLauchlan, 2000).



which are derived from a mammary carcinoma tissue (Beidler et al., 1995; 

Marasawa et al., 1999; Ray et al., 1998). However, recent reports indicate MCF-7 

cells lack caspase-3, an effector protease crucial in induction of apoptosis (Li et a l, 

1997; Janicke et a l,  1998), suggesting that these cells die via an alternative form of 

programmed cell death. Consistent with the effect of core protein on Fas-mediated 

apoptosis (see above), core did not alter levels of cell surface TNFR-1 (Zhu et a l,

1998). Less is known about the modulation of the LT-pR pathway. Core moderately 

increases LT-pR-mediated cell death in HeLa, but not Huh-7 or HepG2 cell lines 

(Chen et a l, 1997). However, the relationship of core protein with a modulation 

these particular apoptotic pathways gained credence from the demonstration of core 

protein binding to the cytoplasmic domains of both the tumour necrosis factor 

receptor 1 (TNFR-1) (Zhu et a l, 1998) and the lymphotoxin-p receptor (LT-PR) 

(Chen et al., 1997; Matsumoto et al., 1997), as discussed in sections 1.9.6.1 and 

1.9.6.2.

1.8. 2 Immune Avoidance

Intriguingly, HCV persists despite the presence of virus-specific circulating 

antibody and CTLs (section 1.1.6). Indeed, T-cell responses in HCV infection are 

thought to play a role in pathology as well as clearance of virally infected cells. One 

possible reason for this immune avoidance could be that the T-cell response is 

insufficient to clear the virus. However, it is more likely that viral gene products 

modulate the immune system, as has been described for a wide variety of other 

viruses (Goodling, 1992). The interaction of core protein with members of the 

TNFR family (see above, and sections 1.9.6.1 and 1.9.6.2) could play a crucial role 

in this aspect of HCV pathogenesis. An association of core with LT-pR, which 

directs the development of peripheral lymphoid tissue and also functions in the 

formation of germinal centres during immune responses (Crowe et a l, 1994; 

Matsumoto et a l, 1996b), may be of particular relevance. Additional studies suggest 

expression of core protein by recombinant vaccinia virus in mice markedly 

decreases the CTL response, resulting in increased virulence of this virus compared 

to the wild type (Large et a l, 1999). Consistent with reports of an impaired 

allostimulation of peripheral blood cells recovered from HCV-infected patients
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(Kanto et al., 1999), infection of dentritic cells with a recombinant adenovirus 

expressing core, El and E2 reduced stimulation of allogenic T-cells and release of 

interleukin (IL)-12 (Hiasa et al., 1998). Major histocompatability complex (MHC) II 

molecules at the cell surface are apparently not affected by either core alone in mice, 

or core in the context of El and E2 in dendritic cells (Hiasa et al., 1998; Large et al.,

1999). Over-produced non-enveloped nucleocapsids formed by core in the serum of 

HCV-infected individuals could contribute to the immunopathological effects of 

HCV (section 1.7.5; Maillard et al., 2001). In contrast to this possible immune 

avoidance of HCV mediated by core protein, a further study with transgenic mice 

expressing core together with the HCV envelope glycoproteins indicated no 

apparent modulation of the intrahepatic immune response to a hepatotropic 

adenovirus (Sun et al., 2001).

1.8. 3 Effect on Cell Transformation

Although multiple factors probably contribute to HCV-associated HCCs, the most 

compelling viral candidate oncoprotein is core protein. Hepatocarcinogenesis 

involves alterations in the combined action of proto-oncogenes, growth factors, and 

tumour suppressor genes (Rogler and Chisari, 1992), and core protein has been 

shown to modulate all of these elements. Initial studies indicated it interacts with 

cellular proto-oncogenes at the transcriptional level (see section 1.8.4; Ray et al., 

1995). This may lead to promotion of cell proliferation, thereby disrupting normal 

hepatocyte growth. The pathogenesis of hepatocellular tissue damage mediated by 

HCV, therefore, may partly be due to deregulation of normal hepatocyte growth by 

core protein. Furthermore, since TNF-a has been specifically implicated in liver 

damage, actual damage to liver tissue may also be caused indirectly by the 

interaction of core protein with TNFR-1 (see section 1.9.6.2; Zhu et al., 1998). Core 

protein can transform primary rat embryo fibroblasts in co-operation with the H-ras 

or c-myc oncogene (Ray et al., 1996), implicating it as a co-factor in the 

development of HCC. An independent report failed to reproduce this effect of 

core/H-ras in the same cell line (Chang et al., 1998), although it may have been due 

to differential localisation of the core species observed - a predominantly nuclear 

localisation of p l6  core produced by HCV-l-derived sequences (section 1.7.3; Lo et
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al., 1995) seen in the study by Ray et a l (1996), as opposed to a mainly cytoplasmic 

abundance of p21 core seen with HCV-K- and HCV-RH-derived sequences, as 

observed by Chang et a l (1998). A more recent report involving transfection of the 

core-coding sequence alone into primary hepatocytes resulted in an immortalised 

phenotype (Ray et a l , 2000). Core protein could potentially exert its effects on the 

regulation of cell growth through its suppressive effect on the promoter activity of 

p53 (Ray et a l, 1997), a pivotal factor in cellular transformation, although core has 

also been shown to activate p53 through direct physical interaction (see section 

1.9.6.4; Lu et a l, 1999). The most compelling evidence that core protein can induce 

HCC comes from studies of transgenic mice expressing the protein (Moriya et a l,

1998). By 16-19 months, 25-30% of mice developed HCC that correlated with 

higher levels of core protein in tumourous than non-tumourous tissue. However, the 

same histopathological changes were not observed by several independent groups 

using a similar approach (Kawamura et a l, 1997; Pasquinelli et a l, 1997; Wakita et 

a l, 1998).

1.8. 4 Interference in Gene Transcription

The presence of conserved nuclear localisation signals and a DNA binding motif in 

HCV core protein (section 1.7.2), in addition to the visualisation of certain forms of 

the protein in the nucleus (section 1.7.3), suggests a further functional role as a gene 

regulatory protein. Actual evidence of this property was first indicated by the 

apparent inhibition of gene expression and replication of HBV in Huh-7 cells (Shih 

et al., 1993). A dramatic reduction of ~ 14-fold in the amount of encapsidated HBV 

RNA was observed, suggesting that the documented ability of HCV to interfere with 

HBV replication in vivo (Bradley et a l, 1983; Fong et a l,  1991; Liaw et a l, 1991; 

Sheen et a l,  1992) is not primarily a general effect of competition between the two 

viruses, but rather is largely due to core protein. A separate study reported the ability 

of core to interfere in expression of co-infecting genomes of human 

immunodeficiency viruses (HIVs) through a downregulation of transcription of the 

HIV-1 long terminal repeat (LTR) (Srinvas et a l, 1996). The importance of this is 

not known, although interactions between these two viruses in super-infection may 

be important (Giovannini et a l, 1990). Using reporter gene assays, core protein has
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been shown to increase expression from the simian virus 40 (SV40) early promoter 

and Rous sarcoma virus (RSV) LTR (Ray et al., 1995). In terms of cellular gene 

expression, core suppresses the promoters c-fos and p21WAF (Ray et al., 1995,1998). 

On the other hand, it has been shown to activate c-myc (Ray et al., 1995).

The effect of core on modulation of expression and function of the nuclear 

transcription factor NF-kB and related proteins has been studied in some detail. The 

involvement of these proteins in the expression of numerous cytokines and acute 

phase proteins supports a co-ordinating role in both apoptosis and the inflammatory 

response (Fig. 14; Ghosh et al., 1998). NF-kB proteins are held in an inactive state 

by inhibitory IkB proteins in the cytosol. Following induction, for example by 

stimulation of certain TNFR superfamily members, these inhibitory proteins are 

targeted for degradation, revealing a nuclear localisation signal on NF-kB proteins 

that allows their translocation to the nucleus to modulate gene transcription of 

specific factors (Fig. 14). However, as before regarding the interference of core 

protein on cell signalling (section 1.8.1), the reports concerning disruption of this 

process by core protein are somewhat conflicting. This is further complicated by the 

ability of NF-kB proteins to enhance or suppress apoptosis, depending on cell type 

and the stimulus used (Lin et al., 1999). The DNA-binding activity of NF-kB 

following induction can be both enhanced (Yoshida et al., 2001; You et al., 1999a) 

and reduced (Shrivastava et a l,  1998) by core protein. The nuclear expression of 

one NF-kB protein, RelA, is not affected by core protein in Huh-7, HepG2, or HeLa 

cells (You et al., 1999a; Zhu et al., 1998), although there is a slight reduction in 

BC10ME cells (Zhu et al., 1998). Following induction with TNF-a or LT-alp2, 

expression of RelA is elevated in Huh-7 cells expressing core protein (You et al., 

1999a), while it is unchanged in HepG2 and HeLa cells (You et a l ,  1999a; Zhu et 

al., 1998). There is also some evidence for a modulation of IkB degradation in the 

presence of core protein (Shrivastava et al., 1998; Yoshida et al., 2001; You et a l,  

1999a).
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1.8.5 Effect on Lipid Metabolism

In addition to these potentially disruptive effects of core protein on cellular 

processes, there is evidence to suggest the characteristic lipid accumulation, or 

‘steatosis’, commonly seen in patients with chronic HCV infection (Lefkowitch et 

al., 1993; Scheuer et al., 1992), is due to a direct or indirect effect of core protein on 

lipid metabolism. Core was shown to associate with the surface of lipid droplets in 

the cytoplasm of infected cells (Barba et al., 1997). Indeed, it has been shown to 

interact directly with apolipoprotein All (Sabile et al., 1999), and displace a further 

lipid droplet-associated protein, adipophilin (Hope et al., 2000). Moreover, an in 

vivo study has demonstrated that expression of core protein in transgenic mice 

resulted in hepatic steatosis after ~2 months (Moriya et al., 1997), prior to 

development of HCC in some cases (section 1.8.3; Moriya et al., 1998).

1. 9 Interactions of Core Protein with Host or Viral Factors

Although the exact role core protein plays in the molecular pathogenesis of HCV is 

still unclear, it appears that this protein is vitally important both as a viral structural 

protein involved in RNA packaging and virion assembly (section 1.7.5) and as a 

modulator of normal cellular function and host defence in infected cells (section 

1.8). The exact mechanism for the functional versatility of core protein could be due 

to its ability to bind directly to nucleic acid and/or its ability to physically interact 

with cellular proteins, as described in detail in the following sections.

1.9. 1 Interaction o f Core Protein with DNA and RNA

Analysis of the core protein sequence suggests the presence of a putative DNA 

binding motif (SPRG) at aa 99-102 and a large number of basic residues that may 

also be involved in binding nucleic acid (section 1.7.2). While actual DNA binding 

activity has been demonstrated for core protein (Santolini et al., 1994), and this 

could influence gene transcription (section 1.8.4), a direct link of this property to 

HCV pathogenesis has not yet been made. The ability of core to bind RNA is not 

disputed - however, the specificity of RNA binding is a contentious issue. Initial 

studies using North-Western analyses revealed an interaction of core with HCV
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genomic RNA, although core could also bind HBV RNA (Santolini et al., 1994). 

However, the interaction of core protein with HBV RNA could be specific, since 

binding of this RNA by core is proposed to be a mechanism used by HCV to 

suppress replication of the HBV genome (section 1.8.4; Shih et al., 1993). Further 

studies testing the interaction of core protein with the entire HCV genome suggested 

a specificity for viral sense RNA in a large portion of the genome at the 5'-end 

(Shimoike et a l, 1999). Interestingly, this interaction was coupled with a 

suppression of translation, suggesting that core protein may be involved in the 

switch between translation/replication and virion assembly (section 1.3.5). Studies 

with HCV VLPs produced in insect cells (section 1.2.1) also suggest a selective 

encapsidation of HCV genomic RNAs (Baumert et a l, 1998). A more recent study 

redefines this interaction to include highly structured RNAs, rather than a specific 

interaction with the 5'NCR alone (Kunkel et al., 2001). However, these studies were 

performed with truncated bacterially-expressed core rather than HCV VLPs, and the 

results are in direct contrast to gel mobility shift assays detailing specific binding of 

recombinant core protein to in vitro transcribed HCV 5'NCR RNA but not other 

structured RNAs (Fan et al., 1999).

1.9. 2 Interaction o f Core Protein with Itself

In addition to binding HCV RNA, core protein would be anticipated to interact with 

itself, forming homo-oligomers, in its role as the viral capsid protein (section 1.7.5). 

Accordingly, three independent studies using the yeast two-hybrid system, originally 

described by Chien et al. (1991), confirmed this hypothesis (Matsumoto et al., 

1996a; Nolandt et al., 1997; Yan et al., 1998). However, there is apparently no 

consensus on the actual domains that are involved in self-interaction of core protein. 

The first study suggested a region within the hydrophilic N-terminus of core (aa 36- 

91) was responsible for homo-oligomerisation, although since interaction of this 

region with core aa 1-115 was relatively weak, other domains within the N-terminal 

region were believed to contribute to the homotypic interaction of core (Matsumoto 

et al., 1996a). The interacting domains were comprehensively mapped by Nolandt et 

al. (1997). This study indicated a tryptophan-rich sequence (aa 82-102) was the 

main homotypic interaction domain, although residues in the hydrophobic C-
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terminus were also partly implicated in the process. The most recent study indicates 

that a C-terminal series of leucine or hydrophobic residues arranged in heptad 

repeats are responsible for self-association of core (Yan et al., 1998).

1.9. 3 Interaction with Other HCV-encodedProteins

Several investigators have looked for the anticipated interaction of core with HCV 

envelope glycoproteins, due to the implication of this association for virion 

morphogenesis. However, co-immunoprecipitation of core with El and E2 has not 

been readily detected, possibly owing to the highly insoluble nature of the protein, 

and the fact that the protein is mainly membrane-bound when extracted from cells 

(Matsumoto et al., 1996a; Moradpour et al., 1996; Santolini et al., 1994). 

Nevertheless, one group has shown that an anti-core antibody is able to co

precipitate El in the presence of core in mammalian cells (Lo et al., 1996). E2 could 

not be co-precipitated with core, although core may interact indirectly with E2 

through E l, since El associates with E2 (section 1.2.4.2; Dubuisson and Rice, 1996; 

Grakoui et al., 1993b; Matsuura et al., 1994; Ralston et al., 1993). So far, direct 

interactions of core with other components of the virus have not been reported, 

though co-localisation of core with NS5A has recently been shown (section 1.2.5.5).

1.9. 4 Association with Ribosomes and ER Membranes

An unexpected sedimentation pattern of core protein expressed by in vitro 

translation suggested it may associate with the 60S ribosomal subunit (Santolini et 

al., 1994). This property could facilitate uncoating of the HCV virion, as previously 

described for the core protein of alphavirus (Wengler et al., 1992). However, the 

observed phenomenon is probably due to the interaction with RNA (section 1.9.1), 

since the association was abrogated by treatment with RNase, and the domain 

involved in RNA binding was important for the interaction with ribosomes 

(Santolini et al., 1994). The in vivo relevance of these data is also somewhat 

doubtful, since ribosome binding was not seen when core protein was expressed via 

plasmid in cell lines (Santolini et al., 1994).
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A more convincing association of core protein with intracellular membranes has 

been elucidated. Core protein requires the presence of such membranes for proper 

maturation (section 1.7.1; Santolini et al., 1994), and sedimentation patterns 

correlated with a close relationship of mature core with the ER. Chemical treatment 

of core translated in the presence of membranes suggested it was an integral 

membrane protein (Santolini et al., 1994). This contrasts, however, with EM and 

indirect immunofluorescence studies that indicate core protein is mainly present on 

the surface of lipid droplets (section 1.7.3), as emphasised in the following section, 

in addition to a much lower quantity at the ER (section 1.7.3).

1.9. 5 Association with Lipid Droplets

EM and immunofluorescence studies have suggested an association of core with 

lipid droplets (see above, and section 1.7.3), which are cellular storage 

compartments for various forms of lipids used for membrane formation and as 

energy stores (Londos et al., 1999; Murphy and Vance, 1999). Attachment of core to 

these structures may be indirectly mediated by an interaction with apolipoprotein 

All (see section 1.9.6.8; Barba et al., 1997; Sabile et al., 1999), a component of 

high-density lipoproteins. Furthermore, it has been shown that core protein displaces 

a second lipid-droplet associated protein, termed adipophilin, in tissue culture cells 

(section 1.8.5; Hope et al., 2000). The precise role of the attachment of core to lipid 

droplets is currently unclear, but it may upset normal lipid metabolism in the cell, 

aiding subversion of cell processes. Truncation of core abrogates binding to lipid 

droplets, typically leading to nuclear accumulation of these species (Liu et al., 1997; 

Marusawa et al., 1999; Moradpour et al., 1996; Suzuki et al., 1995). In fact, the 

precise domain required for association with lipid droplets resides in the second 

domain of core (section 1.7.2), a region that is unique when compared with related 

pesti- and flavivirus core protein sequences (Hope and McLauchlan, 2000).

1.9. 6 Interaction o f Core Protein with Host Cellular Factors

A number of studies detailing interaction of core with a variety of cellular proteins 

have been reported. These interactions have largely been identified by yeast two-
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hybrid screening of human (liver-derived) cDNA libraries (Chien et al., 1991), and 

confirmed by co-localisation in mammalian cell lines and/or in vitro methods. 

Furthermore, an assortment of functional assays have often been employed to assess 

the significance of these interactions with core protein for HCV pathogenesis. 

However, it should be noted that due to the lack of an efficient cell culture system 

for HCV, these interactions, and indeed their in vivo significance, are as yet 

unconfirmed. For reference, the region of core protein that interacts with each of the 

host cell factors described below is shown schematically in Fig. 15.

1.9.6. 1 Lymphotoxin-fl Receptor (LT-pR)

As outlined previously (sections 1.8.1 and 1.8.2), two independent reports suggest 

core protein interacts with the cytoplasmic tail of LT-0R (Chen et al., 1997; 

Matsumoto et al., 1997), with possible significance for modulation of cellular 

signalling and the immune response to HCV. The interacting domains of the two 

proteins were mapped to aa 36-91 (Matsumoto et al., 1997) or, in contrast, aa 1-40 

(Chen et al., 1997) of core protein (Fig. 15), and aa 338-395 of LT-PR (Matsumoto 

et al., 1997). Since this region on LT-pR is also the target of TRAF-3, a putative 

signalling molecule for a variety of receptors in the TNFR family (Fig. 13, section 

1.8.1; Baker and Reddy, 1996), binding of core protein to this receptor may prevent 

binding by TRAF-3 and possibly other cellular factors. To test for an effect of core 

on LT-pR-mediated signalling, cell viability following challenge with LT-p in the 

presence and absence of core protein was monitored. The cytotoxic effect of LT-p 

was indeed potentiated in HeLa cells stably expressing core protein, although LT-P 

was not able to exert a cytotoxic effect, even at high concentrations, with or without 

core protein in human hepatoma cell lines Huh-7 or HepG2 (Chen et al., 1997). Co

localisation of core and LT-pR in cell lines was not reported in either study, 

although core protein has been shown to associate with the cytoplasmic side of the 

ER (Santolini et al., 1994) where the cytoplasmic tail of LT-pR may be exposed 

prior to translocation to the cell surface (Matsumoto et al., 1997).
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1.9.6. 2 Tumour Necrosis Factor Receptor-1 (TNFR-1)

Since core protein was shown to interact with the cytoplasmic tail of the LT-pR (see 

above), a possible association of core with TNFR-1, the prototype TNFR family 

member that is highly related to LT-pR (Beutler and van Huffel, 1994), was 

investigated. In vitro protein-protein binding assays suggested core and the 

cytoplasmic tail of TNFR-1 proteins do indeed interact (Zhu et al., 1998), while the 

extracellular domain of TNFR-1 and the cytoplasmic tail of another member of the 

TNFR family (CD40; Baker and Reddy, 1996) were not able to bind core in the 

same assay. Interestingly, the interacting domain on TNFR-1 was mapped to aa 345- 

407 at the C-terminus of the 426 aa full-length protein (Zhu et al., 1998) which 

corresponds to the death domain (Fig. 13, section 1.8.1) that is required for cell 

death signalling (Tartaglia et al., 1993). It is well established that several cellular 

proteins which are components of the TNFR-1-mediated signalling complex bind 

directly or in close proximity to this domain. These proteins include RIP and TRAF- 

2 which are responsible for TNF-induced JNK or NF-kB activation (Fig. 13, section 

1.8.1; Liu et al., 1996), and FADD and TRADD which can induce apoptosis (Fig. 

13, section 1.8.1; Chinnaiyan et al., 1995). Therefore, the interaction between core 

and this domain on TNFR-1 may disrupt these interactions, resulting in altered 

TNFR-1 signalling. Furthermore, since TNF is one of the major mediators of cell 

death in chronic liver diseases (Gonzalez-Amaro et al., 1994; Hussain et al., 1994), 

this interaction could be significant for HCV-associated cirrhosis (section 1.8.3). 

Consistent with this hypothesis, core protein sensitised three separate cell lines to 

TNF-induced cell death (Zhu et al., 1998), although these data are in direct 

contradiction to a previous report (Chen et al., 1997). Furthermore, an indepednent 

group has specifically been unable to show an in vitro interaction of core and 

TNFR-1 (Hahn et al., 2000).

1.9.6. 3 TNFR Family Member Fas

An interaction with the cytoplasmic region of Fas has been demonstrated by in vitro 

methods (Hahn et al., 2000) following studies that suggested core could sensitise 

cells to Fay-mediated apoptosis (section 1.8.1; Ruggieri et al., 1997; Hahn et al.,
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2000). This study, when considered with those studies presented above detailing 

interactions of core protein with other members of the TNFR superfamily, strongly 

suggests that signalling via these receptors is a prime target for core protein and may 

be a major mechanism of HCV pathogenesis.

1.9.6. 4 Tumour Suppressor Protein p53

An interaction with this crucial factor in cellular transformation was discovered 

following studies that suggested core protein could suppress hepatocellular growth 

via alteration of p53 gene expression (Lu et a l , 1999; Ray et a l , 1997). The 

interaction was confirmed by in vitro protein-protein binding assays, as well as co- 

immunoprecipitation from transfected cell lines (Lu et a l, 1999). The peturbation of 

p53 by direct physical interaction may have important consequences for HCV 

pathogenesis and development of HCC. Subsequent studies have indicated core 

protein enhances the function of p53 by increasing its DNA-binding affinity and 

ability to regulate transcription (Otsuka et a l, 2000).

1.9.6. 5 Heterogenous Nuclear Ribonucleoprotein K  (hnRNP K)

Core protein has been shown by Hsieh et a l (1998) to associate with hnRNP K and 

alter its cellular function. Since hnRNP K is known to bind both DNA and RNA 

(Takimoto et al., 1993) and shuttles between the nucleus and the cytoplasm 

(Buchenau et al., 1997; Michael, 1997), it is believed to participate in the processing 

and transport of pre-mRNAs (Dreyfuss et a l, 1993). The protein may also be a 

transcriptional regulator, since it stimulates the c-myc promoter in vitro (Takimoto 

et a l, 1993). The functional significance of its interaction with core was implied by 

partial reversal of the reported suppression by hnRNP K of the human thymidine 

kinase promoter (Alter et al., 1992) in the presence of core protein (Hseih et al.,

1998). This suggests core protein may alter gene expression (section 1.8.4) through 

interaction with host cellular factors. The interacting domains on the two proteins 

were mapped to aa 25-91 of core (Fig. 15), a hydrophilic area near the N-terminus, 

and aa 250-392 of hnRNP K, which contains three proline-rich domains critical for 

the interaction of this protein with its cellular partners (Bomsztyk et a l, 1997).
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These factors include transcriptional activators and repressors (Denisenko et al., 

1996; Michelotti et al., 1996), and tyrosine kinases involved in signal transduction 

(Kai et al., 1997; Taylor and Shalloway, 1994; Weng et al., 1994).

1.9.6. 6 Leucine-zipper Protein (LZIP)

Consistent with the study described above, which suggests that the observed effects 

of core protein on gene expression are mediated by interaction with cellular factors 

(Hseih et al., 1998), core has been shown to interact with a novel bZIP-like 

transcription factor (Jin et al., 2000). This protein, designated LZIP, activates cyclic- 

AMP responsive element (CRE)-dependent transcription and appears to modulate 

cell proliferation (Jin et al., 2000). The specificity of the core/LZIP interaction was 

verified in yeast, indicating core binds LZIP, but not related proteins such as CREB, 

ATF4, c-Jun, or c-Fos (Jin et al., 2000). The significance of the interaction in terms 

of HCV pathogenesis was revealed by the apparent effects of core protein on LZIP 

localisation and function. Core aberrantly sequesters LZIP in the cytoplasm and 

apparently inactivates it, leading to effects on cellular transformation. While LZIP 

expressed via plasmid was detected in HeLa cells by specific MAbs in the nucleus, a 

substantial quantity of LZIP relocated to the cytoplasm in cells expressing core 

protein (Jin et al., 2000). Core appeared to inhibit the putative cellular function of 

LZIP, since increasing the amount of core-expressing plasmid led to decreasing 

LZIP-mediated reporter gene activity in hepatocytes (Jin et al., 2000). Interestingly, 

consistent with the ability of retroviral bZIP-like proteins such as v-Jun and v-Fos to 

transform cells (Maki et al., 1987; Motohashi et al., 1997; Nishizawa et al., 1987), 

loss of LZIP function as a result of core protein expression correlated with cellular 

transformation (Jin et al., 2000).

1.9.6. 7 Epsilon Isoform o f 14-3-3 Protein (14-3-3e)

Further insight into the oncogenic potential of core protein is suggested by its 

reported interaction with 14-3-3e (Aoki et al., 2000). This protein belongs to a 

family of cellular factors known to associate with components of several signal 

transduction pathways which may play an organisational role in mitogenic pathways
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(Aitken, 1996; Morrison, 1994). The functional relevance of the interaction between 

14-3-3 e and core protein to HCV pathogenesis was confirmed by the activation by 

14-3-3 e of the Raf-1 kinase in the presence of core (Aoki et a l,  2000). Raf-1 kinase 

is believed to be a central component of the mitogen-activated (MAP) kinase 

pathway in mammalian cells (Howe et al., 1992; Kyriakis et al., 1992; Morrison and 

Cutler, 1997), and is associated with HCCs in humans (Ito et al., 1998b). The 

interacting domains of the two proteins were further mapped in yeast to aa 49-97 of 

the full-length 191 aa core protein (Fig. 15), and aa 165-234 of the full-length 255 

aa 14-3-3e protein (Aoki et al., 2000). Consistent with a previous report that 14-3-3 

proteins bind cellular partners via phosphorylated serine residues (Yaffe et al., 

1997), mutation of a serine residue in core likely to be phosphorylated by PKA 

and/or PKC (Ser-53) (section 1.7.2; Shih et al., 1995) within the interacting domain 

abolished its binding to 14-3-3 protein (Aoki et al., 2000).

1.9.6. 8 Apolipoprotein A ll (ApoAII)

As described previously (section 1.8.5), core protein may be directly responsible for 

the characteristic lipid degeneration, or ‘steatosis’, seen in patients with chronic 

HCV infection due to effects of this protein on lipid metabolism (Barba et a l, 1997; 

Moriya et a l, 1997). Further evidence for this is the strong co-localisation of core 

protein with apoAII (Barba et al., 1997). Two independent HepG2 cell lines stably- 

expressing the HCV ORF from core to NS3 were used to show co-localisation of 

core with lipid droplets in the cytoplasm and endogenous apoAII at the surface of 

these droplets, in contrast to a lack of co-localisation of core with endogenous 

apoAI, a related lipid droplet-associated factor (Barba et al., 1997). Consistent with 

these results, core was subsequently shown to directly interact with apoAII (Sabile 

et a l, 1999). Mapping of the region on core required for interaction with apoAII 

suggested a unique role, in terms of the association of core with cellular factors, for 

the extreme C-terminus of the protein (Fig. 15).
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1.9.6. 9 Putative RNA Helicase (DDX3)

Finally, three independent reports have shown core protein interacts with a human 

cellular putative RNA helicase belonging to the DEAD-box family (Mamiya and 

Worman, 1999; Owsianka and Patel, 1999; You et al., 1999b), a group of proteins 

so named due to the presence of a highly conserved motif (D-E-A-D) that is 

involved in ATP hydrolysis. Proteins of this family participate in many cellular 

processes, such as ribosome biogenesis and translation (see section 1.12; Anderson 

and Parker, 1996; Chuang et al., 1997; Schmid and Linder, 1992). As such, an 

interaction of core protein with this putative RNA helicase could influence 

expression of the HCV polyprotein. In fact, functional studies have suggested a 

possible role of the protein in translation, although the assays have been carried out 

in artificial systems outwith mammalian cells (Mamiya and Worman, 1999), or with 

non-specific substrates distinct from HCV genomic sequences (You et al., 1999b). 

Furthermore, there is disagreement as to whether core protein enhances or reduces 

the putative function of this cellular protein. The protein has been designated CAP- 

Rf for ‘core-associated protein-RNA helicase full-length’ (You et al., 1999b), and 

DBX (Mamiya and Worman, 1999), which is in fact a previously reported cellular 

factor to which the protein is closely related (Lahn and Page, 1997), but the 

HUGO/GDB Nomenclature Committee approved name for this DEAD-box putative 

RNA helicase is DDX3 (Chung et al., 1995; Owsianka and Patel, 1999), and will be 

referred to as such here and in following sections. Evidence suggests that this 

protein is highly conserved among eukaryotes, with homologues in mice (mDEAD3 

and PL 10; Gee and Conboy, 1994; Leroy et a l 1989), Xenopus laevis (An3; 

Gururajan et al., 1991), and yeast (Dedlp; Jamieson et al., 1991). In fact, mouse 

PL 10 (95% identity with DDX3 at aa level) can interact with core in yeast, although 

Dedlp was sufficiently diverse (65% aa identity) to not interact (Mamiya and 

Worman, 1999). DDX3 also appears to be ubiquitous in human tissues (Chung et 

al., 1995). This high degree of conservation and its ubiquitous cellular presence 

suggests that DDX3 has an essential role in some aspect of RNA metabolism.

The interacting domains of the two proteins were mapped to aa 1-59 (Owsianka and 

Patel, 1999) or 1-40 (You et al., 1999b) of core protein (Fig. 15), and aa 553-622
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(Owsianka and Patel, 1999) or 473-611 (You et al., 1999b) of the full-length 662 aa 

DDX3. Interestingly, the interacting domain on DDX3 contains a short ‘RS’-like 

domain which appear to be important in protein-protein interactions between 

splicing factors (Fu, 1995; Kohtz et al., 1994; Wu and Maniatis, 1993). These basic 

domains, rich in arginine and serine residues, have been shown to be critical for 

protein-protein interactions between Drosophila splicing factors Sxl (Bell et al., 

1991; Inoue et al., 1990) and Tra (Li and Bingham, 1991), and between mammalian 

splicing factors ASF/SF2 (Ge et al., 1991; Krainer et al., 1991), SC-35 (Fu and 

Maniatis, 1992; Fu et al., 1992) and their cellular co-factors. Most proteins 

containing RS domains are believed to participate in and regulate pre-mRNA 

splicing (You et al., 1999b). However, the RS domain of DDX3 is considerably 

shorter (seven SR or RS dipeptides) (Owsianka and Patel, 1999) than RS domains 

of many other splicing factors (Fu, 1995).

While investigation of the subcellular localisation of DDX3 potentially represents 

an important insight into the function of this protein, reports regarding this aspect 

are inconsistent, if not wholly confusing. Indeed, the reported localisation of DDX3 

ranges from a diffuse cytoplasmic staining of HeLa or COS-7 cells transfected with 

mammalian expression plasmid expressing c-wyc-tagged DDX3 (Mamiya and 

Worman, 1999), and a similar punctate staining of the cytoplasm of over-expressed 

FLAG-tagged DDX3 in Huh-7 cells (You et al., 1999b), to apparent staining of 

nuclear speckles with some cytoplasmic distribution in HeLa cells expressing 

endogenous DDX3 detected by a specific PAb (Owsianka and Patel, 1999). A 

nuclear localisation for over-expressed DDX3 was supported by subcellular 

fractionation of cell lines transiently expressing the protein from a plasmid followed 

by immunoblotting (You et al., 1999b). However, only HeLa cells were tested and, 

more importantly, these results directly contradict with the author’s 

immunofluorescence data (see above; You et al., 1999b). Regardless of the original 

localisation of DDX3, the protein co-localised with core around what is presumably 

lipid droplets, given previous studies of the cellular distribution of core (section 

1.7.3; Barba et al., 1997; Hope and McLauchlan, 2000) in COS-7, HeLa, or Huh-7 

cell lines (Mamiya and Worman, 1999; Owsianka and Patel, 1999; You et al.,
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1999b). Using truncated core constructs lacking the hydrophobic domain, some co

localisation with DDX3 in the nucleus was seen (You et al., 1999b), suggestive of 

core protein carrying DDX3 into the nucleus due to differential targeting of 

truncated core (section 1.7.3). Some slight co-localisation of DDX3 and core in the 

nucleus when transfected with a full-length core protein-expressing construct was 

seen (You et al., 1999b), although others did not observe this effect (Owsianka and 

Patel, 1999).

As briefly described above, functional assays suggested DDX3 was involved in 

translation (Mamiya and Worman, 1999; You et al., 1999b). Since Saccharomyces 

cerevisiae has a DDX3 homologue which is required for translation initiation 

(Chuang et al., 1997) and is therefore essential for cell growth, the ability of DDX3, 

mouse PL 10 or Dedlp supplied in trans to rescue a lethal Dedlp-deletion mutant 

was tested. Consistent with previous data for PL 10 (Chuang et al., 1997), all three 

proteins could rescue the functionally crippled yeast (Mamiya and Worman, 1999). 

In agreement with data presented above suggesting DDX3 and PL 10 but not Dedlp 

could interact with core protein in yeast, co-expression of full-length core protein 

(aa 1-191) severely inhibited rescue of Dedlp-deletion mutant yeast by DDX3 or 

PL 10, but not Dedlp itself. Core protein aa 1-123 did not significantly inhibit the 

growth of the DDX3 or PLIO-complemented mutant yeast (Mamiya and Worman,

1999), presumably because this truncated form of core is targeted to the nucleus 

(section 1.7.3; Lo et al., 1995). DDX3 was also shown to upregulate translation 

from a reporter plasmid in transfected Huh-7 cells (You et al., 1999b). However, 

possible effects at the transcriptional level were not investigated. Nevertheless, core 

protein (aa 1-122) increased the level of reporter an astonishing 34-fold above that 

of DDX3 alone. Once again, however, since only truncated (nuclear-targeted) core 

constructs were used in transfections the actual in vivo significance of this effect is 

unclear. In terms of the enzymatic properties of DDX3, nucleoside triphosphate 

(NTP) hydrolysis by DDX3 expressed as a histidine-tagged fusion protein has been 

investigated biochemically (You et al., 1999b). DDX3 expressed in this manner was 

able to hydrolyse all radiolabelled NTP or deoxy-NTPs (dNTPs), although it 

appeared to preferentially hydrolyse dATP. More insight into the DDX3-core
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interaction was given by the apparent stimulation of ATP- or dATPase activity of 

DDX3 by, albeit, truncated forms of core protein produced in E. coli as GST-fusion 

proteins (You et al., 1999b). While core protein aa 1-101 and aa 1-122 alone did not 

hydrolyse radiolabelled ATP or dATPs, these truncated forms were able to stimulate 

both ATPase and dATPase activity of DDX3. Interestingly, while many DDX3 

homologues in other organisms have been shown to possess ATP-dependent RNA 

helicase activity (Chuang et al., 1997; Gururajan and Weeks, 1997; Liang et al., 

1994), and the presence of conserved motifs associated with known RNA helicases 

(see section 1.10.6), an actual ability to unwind standard artificial RNA or DNA 

substrates was not observed (You et al., 1999b). It is possible, therefore that DDX3 

requires a specific RNA or cellular co-factor to stimulate enzymatic activity, as has 

been shown for E. coli DbpA or yeast Slt22, and eIF4A or E. coli RhlB, respectively 

(see section 1.10.7).

The preceding data makes it reasonable to suggest that the core-DDX3 interaction is 

responsible for some of the effects of core on host gene expression (section 1.8.4). 

DDX3 may also be aberrantly sequestered in a particular subcellular compartment to 

co-operate with core in some aspect of the viral replication cycle (section 1.5), such 

as packaging of the viral genome or translation of the HCV ORF. Due to seemingly 

ubiquitous nature of DDX3 (Chung et al., 1995), and the altered localisation of this 

protein in the presence of core (Mamiya and Worman, 1999; Owsianka and Patel, 

1999; You et al., 1999b), it is likely that this interaction plays some part in 

subversion of the host cell following infection with HCV. However, while previous 

functional studies suggested that DDX3 had some role in translation (Mamiya and 

Worman, 1999; You et al., 1999b), the exact role of DDX3 in cellular metabolism is 

presently unknown. It is crucial to establish this function for DDX3 to understand 

the significance of its interaction with core protein. Prior to characterising DDX3 

and its interaction with core protein experimentally, an understanding of the normal 

role of RNA helicases in cellular metabolism is important. This group of proteins 

will be discussed in the following sections.

63



1 . 1 0  Features o f  R N A  H elicases

1.10. 1 General Characteristics

Helicases are proteins that mediate the NTP-dependent unwinding of nucleic acid 

duplexes, a necessary prerequisite for basic genetic processes such as gene 

expression and genome replication (Gorbalenya and Koonin, 1993). Specifically, 

RNA helicases catalyse the unwinding of base-paired regions in RNA-RNA, or 

RNA-DNA hybrids, although they may also unwind DNA-DNA duplexes. They are 

ubiquitous proteins, found in all cellular organisms and in many viral genomes 

(Linder and Daugeron, 2000), and have a pivotal role in all processes involving 

RNA such as transcription, splicing, translation, ribosomal biogenesis, RNA 

transport, and RNA turnover (Anderson and Parker, 1996; Chuang et a l , 1997; de la 

Cruz et a l , 1999; Schmid and Linder, 1992; Schroder et a l , 1990; Schwer, 2001). 

Some are also implicated in cellular processes such as spermatogenesis, 

embryogenesis, and cell growth and division, since they are expressed in a 

developmentally regulated way (Schmid and Linder, 1992). The wide range of 

processes described above is likely to require specific rearrangements of particular 

RNA structures or RNA-protein complexes by a range of proteins working on 

different substrates and in distinct subcellular locations. RNA helicases are part of a 

larger group of proteins, the RNA chaperones, which assure correct folding and 

maintain specific secondary and tertiary structures of RNAs in their informational, 

structural and even catalytic roles (Caprara and Nilsen, 2000; de la Cruz et al.,

1999). A diverse array of RNA helicases has evolved in all living organisms to meet 

the needs of the cell. Indeed, the sheer number of known and putative RNA 

helicases in mammalian genomes strongly implies that modulation and control of 

RNA secondary structure and RNA-protein interactions is one of the major 

preoccupations for a cell.

1.10. 2 Designation o f Helicases into Three Superfamilies and Two Smaller 

Families.

Comparative analysis of the protein sequence of putative and known helicases has 

allowed accurate delineation of conserved motifs and patterns. Two of the helicase-
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specific ‘signatures’, termed the ATPase or Walker A and B motifs, are shared by 

all helicases, and indeed a wide variety of other NTP-hydrolysing enzymes (Schulz, 

1992; Walker et al., 1982). Additional motifs are likely to play an essential role in 

helicase activity and associated processes, specifically those involved in catalysis 

and substrate/ligand binding (Gorbalenya and Koonin, 1993). Three vast 

superfamilies and two smaller families have been described on the basis of sequence 

similarity (Fig. 16; Gorbalenya and Koonin, 1993), and several clearly defined 

families exist within each superfamily. As yet, proteins that possess helicase activity 

but do not fall into one of these groups, as described below, have not been 

identified.

1.10. 3 SF1 and SF2

The majority of putative and known helicases belong to the superfamilies SF1 

(Gorbalenya et al., 1988a, 1988b; Hodgeman, 1988) and SF2 (Gorbalenya et al., 

1989; Lain et al., 1989; Linder et al., 1989), containing over 50 and 100 proteins, 

respectively (Hall and Matson, 1999). Proteins of both these superfamilies contain 

seven conserved aa motifs, whose sequences and structural arrangements are, by and 

large, very similar (Gorbalenya et al.9 1993). This similarity possibly suggests that 

proteins in SF1 and SF2 might have evolved from a common ancestor (Gorbalenya 

et al., 1989). The conserved motifs are distributed in a domain of between 

approximately 200 and 700 residues.

1.10. 4 SF3

SF3 appears to consist entirely of putative and known helicases of small DNA and 

RNA viruses (Gorbalenya et al., 1990). The exception to this rule is an RNA 

helicase encoded by human herpesvirus 6 (HHV-6), a large DNA virus, although the 

gene responsible is likely to have been acquired via recombination with a parvovirus 

(Thomson et al., 1991). Proteins in this superfamily contain just three conserved 

motifs, including the ATPase A and B motifs necessary for ATP binding and 

hydrolysis, tightly organised in a short -100 aa stretch.
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Figure 16: Designation of helicases into three superfamilies and two 
smaller families. Groups of helicases are expressed as circles, with 
their diameters roughly proportional to the number of proteins in 
each group (taken from Gorbalenya and Koonin, 1993)



1.10. 5 F4 and F5

The remaining helicases which do not fall into SF1/SF2 or SF3 may be grouped into 

two further unrelated families termed F4 and F5 (Gorbalenya and Koonin, 1993). F4 

contains the bacterial DnaB helicase and a small number of related proteins which 

are all functionally and physically associated with DNA primases. These proteins 

contain five distinct conserved motifs, including ATPase A and B (Ilyina et al., 

1992). So far, only bacterial and bacteriophage members of this family have been 

reported (Gorbalenya and Koonin, 1993). F5 contains the bacterial transcription 

termination factor Rho, a DNA-RNA helicase (Brennan et al., 1987), and groups of 

proton-translocating ATPases that are highly related to this protein (Gorbalenya and 

Koonin, 1993). This provides the first evidence of an evolutionary relationship 

between a helicase and non-helicase ATPases.

1.10. 6 Analysis o f Specific Conserved Motifs.

Although found in all superfamilies, most RNA helicases are of the SF2 family and 

can be further classified on the basis of particular consensus sequences within the 

conserved motifs (Fig. 17). The first domain (motif I; AxxGxGKT using the aa one 

letter code, x represents any aa), the ATPase A domain, participates in ATP binding 

by direct association with the p- and y-phosphates of the molecule (Kadare and 

Haenni, 1997; Rozen et al., 1990; Walker et al., 1982). The fourth domain (motif II; 

DEAD), the DEAD-box or ATPase B domain, participates in ATP binding and/or 

ATP hydrolysis (Gorbalenya et al., 1989; Linder et al., 1989; Walker et al., 1982; 

Wasserman and Steitz, 1991). As one of the most conserved motifs, this gives rise 

to the designation of many RNA helicases as members of the DEAD-box family 

(Gorbalenya et a l , 1989). Mutations in either the ATPase A or B sites dramatically 

affect the ATPase and helicase activities of eIF4A (Pause and Sonenberg, 1992) and 

vaccinia virus nucleoside triphosphate phosphodehydrolase (NPH-II) (Gross and 

Schuman, 1995). Variations in the DEAD-box and in other motifs give rise to 

distinct subsets of RNA helicases - the DExH-box proteins are highlighted in Fig. 

17. The fifth domain (motif III; SAT), adjacent to the DEAD-box, is essential for 

RNA unwinding and is believed to couple ATP hydrolysis to RNA unwinding 

(Pause and Sonenberg, 1992). The eighth domain (motif VI; HRIGRxxR) forms part
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of a larger basic patch and is involved in RNA binding and ATP hydrolysis (Pause 

and Sonenberg, 1992). This motif, together with motifs I and II are the most 

conserved throughout SF1 and SF2 helicases (Kadare and Haenni, 1997), pointing 

to their crucial role in the functional coherence of these proteins. Motifs la, IV and 

V await detailed analysis to delineate their functions. Interestingly, sequence 

comparisons of several DEAD-box proteins reveals that the central conserved 

region is flanked by diverse N- and C-terminal extensions (Fig. 17). It is proposed 

that these diverse extensions govern nucleic acid substrate specificity, interactions 

with cellular co-factors, and subcellular targeting of the individual proteins (Schmid 

and Linder, 1992; Wang and Guthrie, 1998).

1.10. 7 Experimental Analysis o f  RNA Helicase Activity.

Unwinding of RNA substrates is typically assayed by constructing duplex RNAs 

with single-stranded overhangs that allow binding of protein to the nucleic acid, and 

visualisation of the duplex and monomeric products by electrophoretic separation 

(Fig. 18; Venkatesan et al.9 1982; Matson et al., 1983). The shorter of the two RNA 

species is usually radiolabelled, in order to increase electrophoretic separation 

between the displaced ssRNA and the unwound duplex. The polarity of the single

stranded overhangs allows helicases to be classified as those which translocate in a 

5' -> 3' or 3' -> 5' direction (Lohman and Bjomson, 1996). Using the above 

approach, a rapidly growing number of putative RNA helicases from different 

organisms ranging from E. coli and viruses to humans have been identified.

Proteins containing the previously described conserved motifs (section 1.10.6) are 

commonly called RNA helicases on the basis of sequence similarity to known DNA 

and RNA helicases (Gorbalenya and Koonin, 1993), and because they take part in 

processes that are expected to involve unwinding of RNA (Schmid and Linder, 

1992). However, although there are growing numbers of putative RNA helicases, in 

vitro activity has been shown for only a few cellular proteins, notably elFA (Pause 

and Sonenberg, 1992; Rozen et al., 1990; Jaramillo et al., 1991), p68 (Hirling et al., 

1989), X. laevis An3 (Gururajan and Weeks, 1997), and Drosophila Vasa (Liang et 

al., 1994). Discussion regarding An3 and Vasa, which are DDX3 homologues, is
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Figure 18: Schematic representation of an RNA helicase assay. 
Unwinding of RNA substrates by a protein under investigation is 
typically assayed by constructing radiolabelled duplex RNAs (DS) 
with single-stranded overhangs. Visualisation of the duplex RNA and 
any monomeric products (SS) unwound by the protein is achieved by 
electrophoretic separation (depicted by large rectangle) and detection 
of the radiolabelled RNAs (taken from Gururajan and Weeks, 1997).



presented in section 1.13. Viral helicases with confirmed NTP-dependent RNA 

helicase activity include simian virus 40 (SV40) large T antigen (Scheffiier et al., 

1989) vaccinia virus NPH-II (Shuman, 1992), and the NS3 protein of HCV, BVDV 

and YFV (section 1.2.5.2; Jin and Peterson, 1995; Kim et al., 1995; Warrener and 

Collet, 1995). A possible reason for the lack of demonstrable helicase activity for a 

large number of putative helicases is believed to be at least partly due to the 

requirement of such proteins for cellular (or viral) co-factors (Linder and Daugeron, 

2000). Characterised examples of DNA and RNA helicases which require such 

accessory proteins include the requirement of eIF4A for eIF4B (Rozen et al., 1990), 

the association of E. coli UvrA with UvrB necessary for UvrB-mediated helicase 

activity (Oh and Grossman, 1987), and the herpesvirus UL52/UL5 interaction that is 

necessary for helicase activity of UL5 (Dodson and Lehman, 1991). Furthermore, 

several RNA helicases have been shown to require a specific stimulatory RNA 

sequence for ATPase or helicase activity. Examples of this include the enzymatic 

stimulation of E. coli DbpA and yeast Slt22 proteins in the presence of the peptidyl 

transfer centre of 23 S rRNA (Diges and Uhlenbeck, 2001; Fuller-Pace et al., 1993), 

and U2/U6 small nuclear RNA (Xu et al., 1996), respectively.

1.11 Mechanism of Helicase Activity

Despite detailed kinetic and structural analysis of several helicase proteins for which 

actual helicase activity has been reported, a complete understanding of how ATP 

binding and hydrolysis are coupled to unwinding of a double-stranded nucleic acid 

substrate is not available at present (Lohman and Bjomson, 1996). Indeed, RNA 

helicases were originally presumed to be unlike DNA helicases in their action, and 

proposed to only unwind short duplexes of RNA (de la Cruz et al., 1999), which 

gained credence from studies with eIF4A (Rogers et al., 1999). However, viral 

helicases, which may have to unwind long stretches of genomic RNA with extensive 

secondary structure were postulated to have a different mechanism (Lorsch and 

Herschlag, 1998). Accordingly, evidence of a processive mode of action for an RNA 

helicase has been reported (Jankowsky et al., 2000). Vaccinia virus NPH-II, a 

DExH-box RNA helicase of the SFII family that is essential to the replication cycle 

of this DNA virus, was demonstrated to be a highly processive 3' -» 5' helicase. The
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step size was found to be ~6 bp, comparable to that of the DNA helicase UvrD (Ali 

and Lohman, 1997). This suggests that RNA helicases may be more similar to DNA 

helicases than originally thought, with the differences between them residing in their 

cellular partners and their substrates (Linder and Daugeron, 2000).

1.11. 1 Visualisation o f  Unwinding Activity by a DEAD-box RNA Helicase.

While the biochemical demonstration of an RNA helicase migrating in a step-wise 

fashion along an RNA substrate without dissociating from it (Jankowsky et a l, 

2000) was an important advance, the precise mode of action of RNA unwinding was 

still unclear. Actual visualisation of RNA duplex melting by E. coli DbpA (Henn et 

al., 2001) has provided valuable insight into this aspect of helicase function. The 

enzymatic activity of this protein, a well-characterised RNA helicase and 

homologue of human cellular p68 (Gorbalenya and Koonin, 1988), has been shown 

to be significantly stimulated in the presence of 23 S rRNA (Diges and Uhlenbeck, 

2001; Fuller-Pace et al., 1993). Furthermore, since this stimulation is abolished in 

the presence of intact ribosomal particles, it has been implicated in ribosomal 

biogenesis (Tsu and Uhlenbeck, 1998). Visualisation of this RNA helicase ‘caught 

in the act’ of unwinding a stretch of RNA has been made possible by atomic force 

microscopy (Henn et a l, 2001). In the absence of protein or ATP, the 480 bp non

specific dsRNA substrate was seen as worm-like structures (Fig. 19a). Although 

ATPase activity, and hence helicase activity, is stimulated by the peptidyl centre of 

23 S rRNA, DbpA is apparently non-specific in its ability to unwind RNA in vitro 

(Henn et al., 2001). Upon incubation of the RNA with DbpA in the absence of ATP, 

the protein, detected as globular structures, was seen to bind specifically to one end 

of the duplex RNA (Fig. 19b). In the presence of ATP, the protein was seen to 

translocate along the dsRNA, yielding Y-shaped structures (Fig. 19c). Some DbpA 

was observed at the origin of unwinding, and it is possible this serves to prevent the 

ssRNA strands from reannealing (Henn et al., 2001). These images provide further 

evidence of that RNA helicases are bona fide ATP-dependent proteins capable of 

processively unwinding long stretches of RNA.
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Duplex RNA Duplex RNA Duplex RNA
+DbpA + DbpA +ATP

Figure 19: Visualisation of a DEAD-box RNA helicase unwinding a 
large RNA duplex. Atomic force microscopic images of protein and 
RNA at the single molecular level are shown: (A) in the absence of 
protein or ATP, the dsRNA substrate was seen as worm-like structures; 
(B) upon incubation of this RNA with E. coli DbpA in the absence of 
ATP, the protein, detected as globular structures, was seen to bind 
specifically to one end of the duplex RNA; (C) in the presence of ATP, 
the protein was seen to translocate along the dsRNA, yielding Y-shaped 
structures (taken from Henn et al., 2001).



1 .1 2  Functional C lassification o f  R N A  H elicases

Although experimental demonstration of helicase activity has not always been 

possible, recent functional analyses of various RNA helicases has given new 

insights into to these proteins, and indeed verified their significance in most cellular 

metabolic processes involving RNA. With the advent of the S. cerevisiae genome 

sequence, it has been possible to estimate, on the basis of sequence homology, the 

minimum number of putative RNA helicases encoded by a eukaryotic cell (de la 

Cruz et a l , 1999). Thus, S. cerevisiae contains 39 SFII known and putative RNA 

helicases comprising 26 DEAD-box and 13 DExH-box proteins. Two further 

proteins of the SFI family, Upflp and Senlp, are also implicated in RNA 

metabolism. Studies in S. cerevisiae suggest it contains several RNA helicases that 

have homologues in mammalian cells which, in some instances, are real orthologues 

(de la Cruz et a l , 1999). However, there are some cases of putative mammalian 

RNA helicases without clear homologues in S. cerevisiae, probably representing 

proteins that are involved in processes not required in this lower eukaryote (Lee et 

a l , 1998). Analyses of the S. cerevisiae genome and a reverse genetics approach to 

determine the role of putative RNA helicases in cellular metabolism have been 

enhanced by comprehensive studies of protein-protein interactions in this organism 

(Uetz et a l , 2000). This technique has allowed delineation of protein complexes 

involved in RNA metabolic and other processes (Schwikowski et al., 2000; Uetz et 

a l , 2000).

Following the course of eukaryotic gene expression, processes believed to directly 

involve RNA helicases include transcription, pre-mRNA splicing, ribosomal 

biogenesis, RNA export, translation, and RNA decay (de la Cruz et a l , 1999). As 

yet, while there have been extensive studies of DNA helicases in transcription 

(Guzder et a l , 1994; Pazin and Kadonaga, 1997), there have been no clear reports 

of a yeast RNA helicase involved this process, although one such protein, Dhhlp, 

has been shown to interact with Pop2p (Hata et a l , 1998), a component of the 

multi-subunit transcriptional regulator complex CCR4. The involvement of RNA 

helicases in the remaining aspects of eukaryotic gene expression are presented 

below, and summarised schematically in Fig. 20.
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1.12. 1 Pre-mRNA Splicing

Following transcription, pre-mRNA molecules are capped at the 5'-end, processed at 

the 3'end and undergo intron removal (Alberts et a l , 1994). Excision of introns is 

achieved by two separate trans-esterification reactions. The spliceosome, a large 

protein and small nuclear RNA (snRNA) complex, mediates these reactions, 

including the formation and stabilisation or dissociation of RNA-protein and RNA- 

RNA interactions (de la Cruz et al., 1999). RNA helicases are likely the driving 

force behind the extensive structural rearrangements that are required, conferring 

speed and accuracy (Staley and Guthrie, 1998). Eight RNA helicases have been 

implicated in the process of pre-mRNA splicing in yeast (Staley and Guthrie, 1998). 

DEAD-box proteins Prp5p and Prp28, and DExH-box protein Brr2p, are thought to 

mediate assembly or release of the different components of the complex (Fig. 20; 

Chen et al., 2001; Raghunathan and Guthrie, 1998; Staley and Guthrie, 1999). Two 

DEAH-box proteins, Prp2p and Prpl6p, are involved in the first and second 

transesterification steps, respectively. Two further proteins of this family, Prp22p 

and Prp43p, are essential for release of the spliced mRNA and dissolution of the 

spliceosome complex, respectively (Wagner et a l, 1998). Based on sequence 

homology, three additional Prp22p-like DEAH-box proteins, a sub-set of helicases 

that have so far only been implicated in pre-mRNA splicing, are linked with this 

cellular process (de la Cruz et a l, 1999).

1.12. 2 Ribosome biogenesis

Synthesis of ribosomes in yeast involves the assembly of around 80 different 

proteins and four rRNAs (de la Cruz et al., 1999). A single precursor (35S pre- 

mRNA) is used to generate three of these rRNAs (18S, 25S and 5.8S rRNAs) (Fig. 

20). Maturation of the 35S pre-mRNA requires ordered processing involving many 

proteins and small nucleolar RNAs (snoRNAs) (Venema and Tollervey, 1995). The 

majority of these snoRNAs function as guides for the various required reactions via 

direct base-pairing to rRNA sequences. So far 14 putative RNA helicases have been 

implicated in ribosome synthesis, in three distinct aspects: i) establishment and/or 

dissociation of snoRNA-pre-rRNA base-pairing - specifically, Roklp is linked with 

the snRNA snRlO and its partner Garlp, a snoRNP protein, while Dbp4p is linked
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with snoRNA U14 (Liang et al., 1997; Venema et al., 1997); ii) facilitation of the 

activities of the endo- and exo-nucleases required to process the pre-rRNA - for 

example, Dbp3p is believed to unwind a highly structured region of a particular pre- 

mRNA region (Weaver et a l, 1997); iii) recruitment, rearrangement, or dissociation 

of trans-acting factors and ribosomal proteins in formation of the ribosome - 

depletion of DEAD-box proteins Dbp6p and Dbp9p results in abortive assembly of 

ribosomes (Kressler et al., 1998; Daugeron et al., 2001), while accumulation of pre- 

ribosomal particles is seen following depletion of DEAD-box protein Spb4p (de la 

Cruz et al., 1998).

1.12. 3 Processing o f  Other RNAs

Around one-fifth of pre-tRNAs in S. cerevisiae contain a single intron that must be 

removed. Although not part of the pre-tRNA splicing machinery, Senlp, a putative 

DNA-RNA helicase of the SFI family, is implicated indirectly in this removal 

process since mutations in the gene coding for this protein lead to increased levels 

of pre-tRNAs (de la Cruz et al., 1999).

1.12. 4 RNA Export

Following processing in the nucleus, mature mRNAs, in the form of RNPs, together 

with tRNAs and ribosomes, are exported to the cytoplasm via the nuclear pore 

complex (NPC). RNA helicases could be envisioned as being involved in proper 

packaging or structuring of RNPs for efficient transit through the NPC, and 

reassembly of these packaged structures into functional units when in the cytoplasm 

(Fig. 20; de la Cruz et al., 1999). Two independent reports suggest the RNA 

helicase Dbp5p/Rat8p, which accumulates around the nuclear envelope on the 

cytoplasmic side, is involved in mRNA export since functional inactivation of the 

protein leads to the accumulation of poly(A)+ RNA, and mutations can be lethal 

when combined with nucleoporin or RNA transport factor mutants (Snay-Hodge et 

al., 1998; Tseng etal., 1998).
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1.12. 5 Translation

Eukaryotic translation is preceded by the recruitment of the 40S ribosomal subunit 

by elFs to the 5'-end of mRNA (Fig. 7, section 1.3.3; Alberts et al.> 1994; Kozak, 

1999; Pain, 1996). The 40S ribosomal subunit scans the mRNA for the initiator 

codon, where the 60S subunit joins prior to commencement of translation. The 

human cellular DEAD-box RNA helicase eIF4A is presumed to unwind the 

extensive secondary structure in the 5'NCR of mRNA, which would normally 

significantly decrease translational efficiency (Rozen et al., 1990). The yeast 

homologue of eIF4A, Tifl/2p is required for translation in vivo and in vitro (Fig. 20; 

de la Cruz et al., 1999; Schmid and Linder, 1991). Indeed, Tifl/2p is even required 

for translation of mRNAs in which ribosomal scanning probably does not occur 

(Blum et a l , 1992). A further protein, Dedlp, another DEAD-box RNA helicase, is 

also essential for translation (Chuang et a l , 1997; de la Cruz et a l , 1997). Although 

the functions of Tifl/2p and Dedlp overlap, they are not redundant (de la Cruz et 

a l , 1999). In contrast, Dbplp, which shares 72% identity with Dedlp, is a  multi

copy suppressor of the DED1-null mutant, suggesting the function of these two 

proteins is redundant (de la Cruz et a l , 1997; Jamieson and Beggs, 1991). 

Interestingly, Dedlp and Tifl/2p have been shown to interact directly with each 

other in the yeast two-hybrid system (Uetz et a l , 2000), although further analyses 

are required to confirm this association. DDX3, a human cellular protein that is the 

focus of this thesis, can functionally support otherwise lethal mutants in the dedl 

gene (section 1.9.6.9; Mamiya and Worman, 1999), suggesting DDX3 could be 

involved in translation initiation, possibly in concert with eIF4A. So far, RNA 

helicases have not been implicated in the translational elongation process in S. 

cerevisiae, since it is generally accepted that the translating ribosome can unwind 

secondary structures within the mRNA itself (de la Cruz et a l , 1999). In contrast, 

during termination of translation, the SFI helicase Upflp may interact with 

translation release factors (eRFs), although it does not appear to be required directly 

for this process (Czaplinski et a l , 1998).
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1.12. 6 RNA Decay

Regulated expression of genes and removal of defective RNA molecules requires 

complex turnover systems. In S. cerevisiae, mRNAs are rapidly degraded by 5' —» 3' 

or 3' -> 5' exonucleolytic processing following shortening of their poly(A) tails and 

decapping. RNA helicases have so far only been implicated in 3' -» 5' exonuclease 

activity, a process that requires components of the exosome complex, Ski3p, Ski8p, 

and the putative RNA helicase Ski2p (Fig. 20; Anderson and Parker, 1998). An 

additional RNA turnover pathway, non-sense-mediated decay (NMD), promotes 

rapid degradation of mRNAs that contain a premature termination codon that could 

give rise to incomplete and potentially harmful proteins (Ruiz-Echevarria et a l ,

1996). The Upflp protein that is involved in translation termination is essential for 

this pathway as part of a complex that detects aberrant mRNAs (He et al., 1997). A 

further RNA helicase Dbp2p is possibly associated with this process due to its 

interaction with Upflp (He and Jacobson, 1995).

1.13 Current Knowledge on DDX3 and its Cellular Homologues in Other 

Organisms

The motifs that characterise the DEAD-box family of RNA helicases (Fig. 17, 

section 1.10.6; Pause and Sonenberg, 1993) are perfectly conserved from human 

DDX3 to its homologue in yeast, Dedlp. Interestingly, DDX3 homologues DBX, 

DBY, PL10, An3, and Vasa are all germ cell-specific, or developmentally-regulated 

(You et al., 1999b), suggesting they function in a tissue-specific or developmental 

manner. However, DDX3 is an apparently ubiquitous cellular protein and it is not 

known if it is developmentally regulated (Chung et al., 1995). Nevertheless, the 

presence of DDX3 in different human tissues suggest it plays an essential role in 

cellular metabolism. Current understanding of DDX3 and its homologues is 

presented below. Much of the data on DDX3 itself has been presented in section 

1.9.6.9. Similarly, many features of Dedlp have been noted previously (section 

1.12.5).
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1.13. 1 DDX3

The human DDX3 gene is encoded on the X chromosome between bands p i 1.3 and 

p i 1.23 (Fig. 21; Park et al., 1998). A Y chromosomal counterpart (DDXY) was also 

mapped (Park et al., 1998), and was found at the same locus as DBY (see below; 

Lahn and Page, 1997). It is possible the X and Y forms of DDX3 are functionally 

interchangeable (Lahn and Page, 1997; Watanabe et a l, 1993). Analysis of the 

organisation of the DDX3 gene suggests it consists of 17 exons that span 

approximately 16 kb (Kim et al., 2001), and possess a similar organisation to that of 

human DBY.

Enzymatic characterisation of DDX3 suggests its NTP/dNTPase activity is markedly 

inhibited by all synthetic polynucleotides, particularly poly(G) RNA (You et al., 

1999b). This effect is distinct from most other RNA helicases, which are in fact 

stimulated by polynucleotides (Fuller and Pace, 1994; Lee and Hurwitz, 1992; 

Schmid and Linder, 1992). A notable exception is the DDX3 homologue, X. laevis 

An3 (see section 1.13.4), which is inhibited (~ 10-fold) by an apparently non-specific 

RNA that is a known substrate for helicase activity, possibly indicating the ssRNA 

generated can interfere with ATPase activity of the protein (Gururajan and Weeks,

1997). Reported knowledge on DDX3 and its interaction with core protein (section 

1.9.6.9) suggests that DDX3 is involved in cellular translation, but can be inhibited 

or enhanced in this cellular function by core protein, depending on the experimental 

conditions (Mamiya and Worman, 1999; You et a l, 1999b).

1.13. 2 DBX and DBY

DBX and its Y-chromosome counterpart DBY are ubiquitous proteins, suggesting 

essential ‘house-keeping’ roles in cellular metabolism (Lahn and Page, 1997). It is 

proposed that DBX and DBY, and other such proteins with homologues on the X 

and Y chromosome are functionally interchangeable (section 1.13.1), despite 

significant divergence of their genes’ nucleotide sequences (Lahn and Page, 1997; 

Watanabe et al., 1993). There is little published data on DBX, while there is some 

interest in DBY due to a possible role in spermatogenesis. DBY is frequently 

deleted in male infertile patients leading to severe spermatogenic damage that
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Figure 21: Location of DDX3 gene on the human X chromosome. The 
NCBI LocusLink resource was used to specifically locate DDX3 in the 
human genome. The DDX3 gene maps to the p moiety of the X 
chromosome at position 11.3-11.23 (Xpl 1.3-pl 1.23) (LocusLink is at 
http://www.ncbi.nlm.nih.gov/LocusLink)

http://www.ncbi.nlm.nih.gov/LocusLink


significantly reduces or abolishes production of germ cells (Foresta et al., 2000). 

Interestingly, full-length DBY transcripts are ubiquitously expressed, while a 

truncated form is apparently only produced in the testis (Foresta et al., 2000).

1.13. 3 Mouse PL10 and mDEAD3

PL 10 is encoded by a transcript that is male germ cell-specific, and shows homology 

to the murine form of eIF4A (Leroy et al., 1989). Expression of the PL 10 transcript 

is developmentally regulated during the meitoic and haploid stages of 

spermatogenesis (Leroy et al., 1989). The cellular and temporal specificity of 

expression in germ cells suggests a specific regulatory role for PL 10 during 

spermatogenesis.

The gene encoding mDEAD3 was identified using PCR techniques during a search 

for DEAD-box proteins expressed in mouse erythroleukaemia cells (MEL) (Gee and 

Conboy, 1994). The encoded protein is 95% identical at the aa level to PL10, 

although it is not clear whether the functions of PL 10 and mDEAD3 are non- 

redundant.

1.13. 4 Xenopus/ffli

The mRNA encoding An3 protein was identified in a search for such RNAs that 

localise to specific parts of unfertilised X. laevis oocytes (Rebagliati et al., 1985). 

An3 is expressed throughout oogenesis and embryogenesis (Rebagliati et al., 1985; 

Gururajan et al., 1994), and is also present in most adult tissues (Gururajan et al., 

1991). Recently, the protein has been shown to be exported from the nucleus by the 

soluble nuclear export factor CRM1 (Askjaer et al., 1999). The protein also 

apparently shuttles back to the nucleus via an unidentified nuclear import pathway, 

or possibly via the same system which may be reversible under certain conditions 

(Askjaer et al., 1999). In vitro ATPase and RNA helicase activity has been 

demonstrated for the protein. The ATPase activity is stimulated ~6-fold by RNA 

from X. laevis oocytes, while synthetic RNAs have no effect, suggesting a specific 

activator of An3 enzymatic activity could exist in the cellular context (Askjaer et al.,
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2000). Not surprisingly, mutations in the DEAD-box of An3, a motif that is 

essential for ATP hydrolysis (section 1.10.6), reduces the rate of ATP hydrolysis by 

approximately 6-fold and abolishes RNA helicase activity (Askjaer et a l , 2000). 

Interestingly, however, the same mutation appeared to affect its rate of export from 

the nucleus, suggesting that this process is coupled to the enzymatic activity of An3 

(Askjaer et a l , 2000).

1.13. 5 Drosophila Vasa

The D. melanogaster gene vasa encodes a DEAD-box protein with in vitro ATP- 

dependent helicase activity (Liang et a l, 1994). The vasa protein seems to regulate 

the translation of multiple downstream genes. Consistent with this hypothesis, vasa 

interacts with a Drosophila homologue of eIF2 (Carrera et a l, 2000). It is an 

essential component of germ plasm, a poorly characterised nucleoprotein complex 

that is required for germ cell differentiation (Saffman and Lasko, 1999), and 

analysis of a null mutant that removes the entire vasa coding region leads to female 

sterility with severe defects in oogenesis (Styhler et a l,  1998). Further functional 

studies suggested the protein was not only essential during this process of 

gametogenesis in the adult, but also for specification of the germ cell lineage during 

embryogenesis (Castrillon et al., 2000). Vasa localises during D. melanogaster 

oogenesis to the posterior of the oocytes, the site of germ cell formation, and strong 

cytoplasmic staining is seen exclusively in germ cells during embryogenesis in both 

the male and female of the species (Lasko and Ashbumer, 1990). A human 

orthologue of the Drosophila vasa gene has recently been identified (Castrillon et 

a l, 2000). The protein is specifically expressed in germs cells as in D. 

melanogaster.

1.13. 6 Yeast Dedlp

The S. cerevisiae DED1 gene was isolated as a suppressor of a yeast pre-mRNA 

splicing mutant (prp8-l) (Jamieson et a l, 1991). However, Dedlp is predominantly 

cytoplasmic, conflicting with a role in pre-mRNA splicing (Chuang et a l,  1997). 

Indeed, analyses of its suppressor activity and of synthetic lethal interactions with
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translation initiation mutants indicated that the Dedlp protein was involved in 

translation initiation, and not pre-mRNA splicing (Chuang et a l,  1997; de la Cruz et 

al., 1997). Furthermore, immunodepletion of the protein from an in vitro translation 

system abolished translation activity (Chuang et al., 1997). As noted previously 

(section 1.12.5), genetic analyses suggest that Dedlp and yeast eIF4A play 

independent roles in this process, while preliminary assays indicate the two proteins 

interact (Uetz et al., 2000). An interaction with the yeast form of the cap-binding 

protein eIF4E was also reported (Uetz et a l , 2000), consistent with genetic analyses 

(de la Cruz et al., 1997), further implicating Dedlp in translation initiation. In 

agreement with the presence of conserved motifs associated with RNA helicases in 

Dedlp (Jamieson et al., 1991), the protein has RNA-dependent ATPase and ATP- 

dependent RNA helicase activities (lost et al., 1999). This property is reliant on the 

integrity of the DEAD-box, with an E —» A mutation in this motif being lethal in 

vivo and inactive in enzymatic assays in vitro. As noted previously (1.9.6.9), mouse 

PL 10 can functionally substitute for Dedlp in vivo (Chuang et al., 1997; Mamiya 

and Worman, 1999). DDX3 appears to rescue the same lethal mutation (Mamiya 

and Worman, 1999), suggesting that the function of Dedlp has been evolutionarily 

conserved from yeast to mice and humans (Chuang et a l , 1997). Intriguingly, 

Dedlp has also been implicated in selective translation of an mRNA from a virus 

possessing a segmented genome that replicates in S. cerevisiae (Noueiry et al., 

2000). Using the previously reported ability of brome mosaic virus (BMV), a 

positive-strand RNA virus with a segmented genome, to replicate in yeast (Janda 

and Ahlquist, 1993), it was found that a mutation in the DED1 gene that did not 

affect yeast growth specifically inhibited translation of one such RNA segment 

(Noiery et al., 2000).

1.14 Aims of the Study

Since little is known about DDX3, the major aim of this project was to characterise 

the protein, in terms of its fundamental properties and function in a normal cellular 

context, and determine any modification of these aspects in the presence of HCV 

core protein. Endogenous DDX3 from various cell lines, and that expressed by 

plasmid vectors or recombinant virus, were studied using a panel of previously
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generated MAbs and PAbs or anti-tag antibodies (see Appendix I) as appropriate. 

Since preliminary studies on DDX3 and its cellular homologues from other 

organisms suggested functions in translation (section 1.13), this role for DDX3 was 

studied in greatest detail. Due to the lack of an efficient cell culture system for 

HCV, core protein was supplied by recombinant vaccinia or baculovirus, generally 

along with the HCV glycoproteins to ensure proper processing of core.

79



Materials and Methods



2 .1  B acterial Strains

Strain Phenotype

TGI E. coli F' traD36 lacqA(lacZ)M15proA+B+/supE

A(hsdM-mcrB)5 (r{mk McrB') thiu A(lac-proAB) 

BL21 (Amersham) E. coli B F" ompT hsdS (rs’, me") gal

2. 2 Vectors

pGEX-6P-3 

pGEX-2T 

pcDNA 3.1/Zeo(+) 

pZeoSV2 (+) 

pET-2 la

pBluescript SK (+)

Amersham

Amersham

Invitrogen

Invitrogen

Novagen

Stratagene

2. 3 Chemicals

All chemicals were purchased from Sigma (Poole, UK) or BDH (Poole, UK), unless 

otherwise stated.

2. 4 Radiochemicals

[a32P]-CTP, -dCTP, -ATP, dATP, and [y32P]-dATP were purchased from NEN 

(Boston, MA, USA), with specific activities of 10 pCi/pl each. [14C]- 

chloramphenicol and [ S]-L-methionine were obtained from Amersham with 

specific activities of 0.05 and 10 pCi/pl, respectively.

2. 5 Antibodies

A comprehensive list of monoclonal antibodies (MAbs) and polyclonal antisera 

(PAbs) is presented in Appendix I. Anti-DDX3 MAbs and PAbs, the anti-HCV core 

PAb, and the MAb raised against the HCV E2 glycoprotein were generously
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provided by Dr A. Owsianka, MRC Virology Unit, Glasgow. The PAb directed 

against the HCV NS3 protease domain was a kind gift from Dr M. Harris, 

University of Leeds. The MAb directed against SC-35, and the PAb raised against 

U1A were supplied by Dr A. Lamond, University of Dundee. Commercial 

antibodies were employed to detect cellular tubulin (Sigma) and ATF-2 (Santa Cruz 

Biotechnology). The anti-histidine-tag MAb RGS-His (QLAGEN) was used to detect 

histidine-tagged fusion proteins containing the epitope MRGS(H)6.

2 .6  cDNA Clones

A complete list of constructs used in this study is presented in Appendix II. A full- 

length DDX3 cDNA was cloned using RT-PCR by Dr A. Owsianka (Owsianka and 

Patel, 1999). Plasmids expressing DDX3 C-terminal truncations fused to glutathione 

S-transferase (GST) (Owsianka and Patel, 1999), and the core-El-E2 mammalian 

expression plasmid were generated by Dr A. Patel. The full-length cDNA clone of 

HCV strain H77c was generously supplied by Dr J. Bukh (Yanagi et al., 1997). 

Plasmids pcDNA3.1/Zeo(+)-5CC and -5CC3 were provided by Dr J. Wood (Wood 

et al., 2001). The DDX3 DEAD-box mutant mammalian expression construct was 

made available by Drs P. Askjaer and J. Kjems (University of Aarhus, Denmark). 

The bacterial expression vector containing Xenopus laevis An3 cDNA (pET-21a- 

An3) was provided by Dr D. Weeks (National Institute of Child Health and Human 

Development, Bethesda, MD, USA). pAcCL29.1 was supplied by Dr I. Jones 

(Livingstone and Jones, 1994). All other constructs were generated by standard 

cloning techniques (Maniatis et a l, 1989), and are described where appropriate.

2 .7  Cells

Laboratory stocks of human hepatoma cell lines Huh-7 and HepG2, a human 

epitheloid carcinoma cell line (HeLa), an African Green Monkey cell line (COS-7), 

a Baby Hamster Kidney cell line (BHK-21), and a Spodoptera frugiperda insect cell 

line (Sf21) were used. H9-13 cells, containing selectable self-replicating HCV sub- 

genomic RNAs, and its parental (naive) cell line Huh-7 (N), were a kind gift from 

Dr R. Bartenschlager (Lohmann et a l, 1999a).
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2. 8 C ell C ulture G row th M edia

All cell culture media and reagents were purchased from Invitrogen (Paisley, UK) 

unless otherwise stated. For propagation of Huh-7, Huh-7 (N), HepG2, COS-7 and 

HeLa cell lines, Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 

10% foetal calf serum (FCS), 1% non-essential amino acids, 10 mM glutamine, and 

100 units/ml penicillin-streptomycin was used. This medium was further 

supplemented with 500 pg/ml G-418 disulphate (Duchefa, Haalem, The 

Netherlands) for propagation of the H9-13 cell line. BHK-21 cells were grown in 

Glasgow Modified Eagle’s Medium (GMEM) supplemented with 10% new-born 

calf serum (NCS), 5% tryptose-phosphate, 1.5% non-essential amino acids, 0.3% 

sodium bicarbonate, 20 mM glutamine, and 100 units/ml penicillin/streptomycin. 

The Sf21 cell line was grown in TC-100 medium supplemented with 10% FCS and 

100 units/ml penicillin/streptomycin.

2. 9 Storage of Cell Lines

Confluent monolayers of cell lines grown in 175 cm2 tissue culture flasks were 

harvested, resuspended in 10 ml cell storage medium (normal growth media 

supplemented with 25% FCS and 10% DMSO), and aliquoted into 1.5 ml screw- 

capped tubes. The tubes were stored overnight in a protective box at -70°C and 

subsequently transferred to -180°C for long-term storage.

2.10 Propagation of Hybridoma Cell lines

Hybidoma cell lines were cultured in DMEM supplemented with 10% FCS, 4% 

hypoxanthine aminopterin (HAT), 0.1% Gentamycin, and 10 mM glutamine (HAT 

medium).

2.11 Bacterial Culture Media

Bacterial strains carrying the pZeoSV2 (+) plasmid were cultured in Low Salt Luria 

broth (LB) (0.5% NaCl, 1% Tryptone, 0.5% yeast extract) containing 25 pg/ml 

Zeocin (Invitrogen). All other plasmids were propagated in bacterial strains grown 

in normal LB (1% NaCl, 1% tryptone, 0.5% yeast extract) or 2YT (0.5% NaCl,
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1.6% tryptone, 1% yeast extract) containing the appropriate antibiotic for selection 

(typically ampicillin, 100 pg/ml). Colonies carrying the pZeoSV2 (+) plasmid were 

grown on Low Salt LB containing 1.5% agar and 25 pg/ml Zeocin in 90 mm 

diameter dishes. All other bacterial colonies were grown on LB containing 1.5% 

agar containing the appropriate antibiotic in 90 mm diameter dishes.

2.12 Standard Solutions

PBS

PBSG 

PBST 

10 x TBE

SDS-PAGE Running Buffer 

Towbin’s Blotting Buffer

2.13 Manipulation of DNA

2.13. 1 Small Scale Purification o f DNA

A modified alkaline lysis method was used for routine isolation of plasmid DNA. 

Briefly, 1 ml of LB or 2YT medium containing the appropriate antibiotic was 

inoculated with a single fresh bacterial colony (2-3 mm) and incubated at 37°C for 

5-16 hours with shaking (200 rpm). 200 pi of culture was transferred to a 1.5 ml 

microfuge tube and mixed by gentle inversion with 200 pi alkaline lysis buffer 

(200 mM NaOH, 1% SDS). To this, 200 pi neutralisation buffer (3 M potassium 

acetate, pH 5.5) was added prior to centrifugation at high speed (12,000 x g) to 

pellet cellular debris. The supernatants were transferred to a fresh 1.5 ml microfuge 

tube containing 0.5 ml isopropanol, mixed, and centrifuged at high speed to recover 

the precipitated DNA. The DNA pellet was washed briefly in 75% ethanol, air-dried 

and resuspended in 30 pi dH20 containing 10 pg/pl RNase A (Sigma).

170 mM NaCl, 3.4 mM KC1,10 mM 

Na2HP04, 1.8 mM KH2P 0 4 (pH 7.2).

PBS containing 10% glycerol

PBS containing 0.05% Tween-20

1.25 M Tris, 0.4 M Boric acid, 27 mM EDTA

25 mM Tris, 192 mM glycine, 0.1% SDS

25 mM Tris, 192 mM glycine, 20% methanol

(pH 8.3)
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2.13. 2 Medium Scale Purification o f DNA

The Quick Flow Midi Kit (Hybaid) was used for routine production of large 

amounts (250-750 pg) of high quality plasmid DNA from 100 ml cultures.

2.13. 3 Large Scale Purification o f DNA

The QIAprep Mega Kit (QIAGEN) was used for production of milligram quantities 

of plasmid DNA from 1 L cultures.

2.14 Quantitation of Nucleic Acid Concentration

DNA or RNA samples were diluted 1:50, 1:250, and 1:500 in 100 pi dFfeO and 

optical density (OD) readings taken at 260 nm and 280 nm. The concentration of 

nucleic acid in a sample is proportional to the absorbency at 260 nm - an OD of 1 

corresponds to approximately 50 pg/ml for double-stranded DNA and 40 pg/ml for 

RNA (Maniatis et al., 1989). Contamination by protein and other substances was 

assessed by calculating the ratio OD260/OD280. Pure preparations of DNA and RNA 

have OD260/OD280 ratios of 1.8 and 2.0, respectively (Maniatis et al., 1989). If 

necessary, significant contamination was eradicated by further precipitation.

2.15 PEG-Precipitation of Miniprep DNA

DNA produced by the modified alkaline lysis method (section 2.13.1) was purified 

further as required by precipitation with polyethylene glycol (PEG). The DNA in 

solution was mixed with PEG-NaCl to a final concentration of 7.5% PEG and 0.4 M 

NaCl and chilled on ice for 1 hour. The precipitated DNA was recovered by 

centrifugation at high speed (12,000 x g, 15 minutes). The resulting pellet was 

washed with 75% ethanol and resuspended in 20 pi dH20. This purified DNA was 

of sufficient quality for sequencing and transfection into mammalian cells.

2.16 Sequencing

DNA sequences were obtained by cycle sequencing using the ABI Prism BigDye 

Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems, Perkin-
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Elmer Corporation) and running the reactions on an ABI Prism automated 

sequencer. Sequencing was carried out by Ms L. Taylor (Institute of Virology, 

University of Glasgow) and Dr G. Riboldi-Tunicliffe (Molecular Biology Support 

Unit, University of Glasgow).

2.17 Oligonucleotides

High purity salt-free (HPSF) purified oligonucleotides were purchased from MWG 

Biotech (Ebersberg, Germany).

2.18 Polymerase Chain Reaction (PCR)-Mediated Amplification of cDNAs

PCR (Mullis et a l , 1986) was performed using a PTC-200 Peltier Thermal Cycler 

(MJ Research). Depending on the application, Taq (Invitrogen), Pwo (Roche), or 

High Fidelity (Roche) polymerases were used according to the manufacturer’s 

instructions in conjunction with specific primers to amplify cDNAs of interest. A 

standard PCR programme is presented below.

Denaturation

Annealing

Elongation

Termination

Termination

95 °C 5 mins 

95 °C l mi n  

55 °C 1 min 

7 2 °C l mi n  

72 °C 10 mins

- 30 cycles

2.19 Digestion of DNA with Restriction Endonucleases

Restriction endonucleases were purchased from Roche or New England Biolabs 

(NEB) and used according to the manufacturer’s instructions.

2. 20 Nucleotide/Enzyme Removal from Digests and PCR Fragments

The QIAquick Nucleotide Removal Kit (QIAGEN) was used to remove 

nucleotides/enzymes prior to subsequent experimental procedures.
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2. 21 Modification of Restriction Fragments

DNA polymerase 1 (Klenow ffagement), T4 DNA polymerase, and Mung Bean 

nuclease were purchased from NEB and used according to the manufacturer’s 

instructions.

2. 22 Electrophoretic Separation and Isolation of Restriction Fragments

DNA was resolved by horizontal electrophoresis in gels containing 0.7-1.5% 

agarose and run in 0.5 x TBE containing 1 pg/ml ethidium bromide. DNA samples 

were mixed with 0.1 volumes of 10 x DNA loading buffer (0.5 x TBE, 5% glycerol, 

coloured with bromophenol blue), loaded onto a gel and run at 100 V until the dye 

front had migrated close to the edge of the gel. Restriction analysis was performed 

using a BioRad Gel Doc 2000 imager with Quantity One software (BioRad). 

Alternatively, restriction fragments to be used in further applications were visualised 

using a long-wave UV light box (to minimise UV exposure), manually cut from the 

gel using a clean scalpel, and recovered using the QIAquick Gel Extraction Kit 

(QIAGEN).

2. 23 Production of DNA Size Markers

10 pg of purified bacteriophage X DNA (NEB) was digested for 16 hours at 60°C 

with Ry/EII in a 50 pi reaction volume. The reaction was mixed with 40 pi dK^O 

and 10 pi 10 x DNA loading buffer. 10 pi of the digested DNA (1 pg) was run on 

each agarose gel as DNA size markers. The resulting fragments of the X/BstEll 

digest were, in bp, 8454, 7242, 6369, 5689, 4822, 4324, 3675, 2323, 1929, 1391, 

1264, 702, 224 and 117.

2. 24 Ligation of Isolated DNA fragments to Expression Vectors

Standard ligation reactions were carried out using T4 DNA ligase (Invitrogen) 

according to the maunfacturer’s instructions. Overhanging and blunt-ended DNA 

fragments were ligated for 16 hours at 25°C and 16°C, respectively. The ligated 

DNA was precipitated by addition of 0.1 volumes 3 M sodium acetate (pH 5.1) and
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2.5 volumes of ethanol and chilling at -20°C for 5 hours. Precipitated DNA was 

recovered by centrifugation, washed with 75% ethanol, resuspended in 5 pi dt^O, 

and used to transform electrocompetent E. coli strains (see section 2.26).

2. 25 Production of Electrocompetent Bacteria

10 ml 2YT inoculated with a single fresh E. coli TGI or BL21 bacterial colony (1-2 

mm) was grown for 16 hours at 37°C with shaking (200 rpm). The culture was 

transferred to 800 ml of 2YT media pre-heated to 37°C, and grown for 

approximately 3 hours until the OD600 reached 0.6-0.8. The culture was chilled on 

ice for 15-30 minutes and pelleted (5,000 x g , 5  minutes, 4°C) in pre-chilled 250 ml 

centrifuge tubes. The pellet was sequentially resuspended in 1 L and 500 ml of ice- 

cold dH20 following recovery as before. The pellet was then resuspended in 20 ml 

ice-cold 10% glycerol, recovered as before, and finally resuspended in 1 ml ice-cold 

10% glycerol. 60 pi aliquots of this were either kept on ice and used directly in 

transformations, or snap-frozen in liquid nitrogen and stored at -70°C. The frozen 

aliquots were stable for at least two months.

2. 26 Transformation of Electrocompetent E. coli with Plasmid DNA

2 pi of plasmid DNA precipitated as described in section 2.24 was electroporated 

(1.6 kV, 25 pF) using a BioRad Gene-Pulser II into one 60 pi aliquot of an 

electrocompetent E. coli strain. The bacteria were immediately resuspended in 1 ml 

2YT or Low Salt LB and incubated for 1 hour at 37°C with shaking (200 rpm). The 

bacterial suspension was plated out on LB/agar or Low Salt LB/agar plates 

containing the appropriate antibiotic and incubated at 37°C for 16 hours.

2. 27 Northern Blot Analysis

Northern blotting (Alwine et al.y 1977; Alwine et al., 1979) is the transfer of 

electrophoretically separated RNAs from a gel to positively charged membranes for 

subsequent fixation and hybridisation with a specific probe. Following extraction 

and purification of the RNA under investigation, Northern blot analysis typically
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constitutes electrophoresis of the RNA, transfer of the RNA to a membrane, 

immobilisation of the RNA on the membrane, and subsequent hybridisation of a 

labelled probe and analysis of the hybridisation events.

2.27. 1 Extraction o f  Cellular and Viral RNA from Cell Lines

Total RNA from cell lines (or cells infected with recombinant virus) in cell culture 

dishes (diameter 35 mm) was prepared using Trizol LS Reagent (Invitrogen), 

employing basic precautions throughout to prevent contamination by exogenous 

RNases. Briefly, following removal of cell culture medium, 375 pi of Trizol was 

pipetted onto the cell monolayer and incubated at room temperature (RT, 18-25°C) 

for 5 minutes. The cell lysate was passed through a pipette several times to produce 

a homogenous suspension, and transferred to a 1.5 ml microfuge tube. 100 pi 

chloroform was added and the tubes were vigourously shaken by hand for 15 

seconds. Following incubation at RT for 15 minutes, the samples were centrifuged 

(12,000 x g, 15 minutes, 4 °C). The upper aqueous layer was transferred to a fresh 

microfuge tube, mixed with 250 pi isopropanol, and incubated at RT for 10 minutes. 

The precipitated RNA was collected by centrifugation as above. RNA pellets were 

washed with 70% ethanol, collected by centrifugation (7,500 x g, 5 minutes, 4°C) 

and briefly air-dried. The extracted RNA was resuspended in 30 pi (IH2O and stored 

at -70°C prior to experimental procedures.

2.27. 2 Electrophoretic Separation o f  RNA

A  method for fractionation of RNA by size adapted from those described previously 

(Goldberg, 1980; Lehrach et al., 1977) was used. For electrophoresis i n a l 2 x 8 x 1 

cm gel, 0.7-1.2g agarose was dissolved in 20 ml 5 x MOPS buffer (200 mM MOPS- 

HC1, pH 7.0, 2.5 mM EDTA, 25 mM sodium acetate) and 62 ml dH2 0  by heating in 

a microwave. After cooling to 60°C, 18 ml 37% deionised formaldehyde was added 

to the molten agarose mixture. The gel was poured and allowed to set for 1 hour. 

RNA samples (10-40 pg total RNA) in CIH2O were denaturated by mixing with 3 

volumes of formaldehyde load dye (Ambion) and heating at 55°C for 15 minutes. 

While the samples were cooling on ice, the gel was pre-run at 100 V for 10 minutes
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in 1 x MOPS buffer. Samples were loaded onto the gel and electrophoresis was 

allowed to proceed at 100 V until the dye front had migrated at least half-way 

through the gel. The running buffer was changed once during this time to prevent 

over-heating of the gel.

2.27. 3 Capillary Blotting

Fractionated RNA was transferred to positively-charged nylon membranes (Hybond- 

N, Amersham) in a standard capillary transfer set-up (Maniatis et al., 1989). Briefly, 

a stack of absorbent material, such as paper towelling, was used to draw the transfer 

buffer (20 x SSC; 3 M NaCl, 0.3 M sodium citrate) from a reservoir, up through the 

gel and finally into the stack of paper towels. As the buffer continued to move 

upward, the RNA was transferred out of the gel and trapped on positively-charged 

filter membranes. Prior to transfer, the membrane was submerged in dK^O and then 

20 x SSC before being gently overlaid onto the gel.

2.27. 4 UV Cross-Linking o f  RNA to Membranes

Fractionated RNA was immobilised on Hybond-N membranes using a UV 

Stratalinker 1800 (Stratagene) set to autocrosslink (120 mJ/cm2).

2.27. 5 Hybridisation o f Probes to RNA Immobilised on Membranes

10 ml hybridisation buffer (Rapid-Hyb Buffer, Stratagene, or ExpressHyb, 

Clontech) was warmed to 65°C. 0.1 mg of Herring Sperm DNA (Sigma) which had 

previously been boiled for 5 minutes and then chilled on ice was added to the 

hybridisation buffer and mixed. 5 ml of this solution was transferred to a 

hybridisation tube. Hybond-N membrane containing immobilised fractionated RNA 

to be probed was added to the hybridisation tube. The membrane was pre-hybridised 

at 65°C with constant rotation for 1 hour. During this time the probe solution was 

prepared: 5 x 106 cpm of 32P-labelled probe (prepared as will be described in section 

2.28) was mixed with 30 pg COT1-DNA (Roche), 150 pg Herring Sperm DNA, 50 

pi 20 x SSC and dH20  to a final volume of 200 pi. The probe solution was boiled

90



for 5 minutes and then heated at 68°C for 30 minutes. This solution was mixed with 

the remaining 5 ml of hybridisation buffer. The pre-hybridisation buffer was 

discarded before the probe solution in hybridisation buffer was added directly into 

the hybridisation tube. Hybridisation was allowed to proceed for 2-16 hours at 65°C. 

The hybridisation solution was discarded and replaced with 200 ml of wash solution 

1 (2 x SSC, 1% SDS). The blot was washed in this solution 4 x 20 minutes with 

continuous rotation at 65°C. The blot was washed a further two times in wash 

solution 2 (0.1 x SSC, 0.5% SDS) at 55°C. The stringency of the wash steps was 

altered as required.

2.27. 6 Analysis o f Hybridisation Events

The membrane was wrapped in cling-film prior to subsequent procedures. The
'i'y

approximate intensity of emitted radiation from hybridised P-labelled probe was 

determined using a Geiger-Mueller tube. Depending on this rough value, 

membranes were exposed to a phosphorimager screen for 1 hour to 3 days. 

Hybridisation events were visualised using a Bio-Rad Molecular Imager FX with 

Quantity One software (Bio-Rad).

2. 28 Random Primer Labelling

Specific radiolabelled probes were produced using the Prime It II Random Primer 

Labelling kit (Stratgene). The system relies on the ability of random 

oligonucleotides to anneal at multiple sites along the length of a DNA template, 

forming a substrate for the Klenow fragment of DNA polymerase I. 25 ng of DNA 

template (PCR product or restriction fragment representing the region to be targeted 

by the probe) in 24 pi dH20  was mixed with 10 pi random oligonucleotide primers 

(27 OD units/ml). The mixture was boiled for 5 minutes, before mixing with 10 pi 5 

x dCTP buffer (containing 0.1 mM dATP, dGTP and dTTP), 5 pi [a32P]-dCTP (10 

pCi/pl), and 5 units Exo(-) Klenow (3'-exonuclease-deficient mutant). The reaction 

was incubated at 37°C for 10-30 minutes. 2 pi stop mix (0.5 M EDTA, pH 8.0) was 

then added before removal of unincorporated nucleotides using a QIAquick 

Nucleotide Removal column (QIAGEN).
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2. 29 Production of GST-fusion Proteins

GST-fusion proteins were produced according to the Amersham protocol following 

cloning of the relevant cDNA in frame with the GST-coding sequence in the pGEX- 

6P-3 vector. Briefly, an overnight culture inoculated with a fresh BL21 bacterial 

colony (transformed with the relevant plasmid) and supplemented with ampicillin 

(100 pg/ml) was diluted 1:10 in fresh medium containing the antibiotic and grown 

at 37°C to mid-log phase (A6oo= 0.6-1.0). Expression of the GST-fusion protein was 

induced by addition of isopropyl-P-D-thiolgalactoside (IPTG) to a final 

concentration of 0.5-1.0 mM. Cells were allowed to grow for an additional 5 hours 

and then pelleted by centrifugation (6,000 x g ,  5 minutes, 4°C). Bacterial pellets 

were resuspended in 10 mis PBSG (section 2.12). Cells were lysed by sonication 

using a Branson 450 Sonifier on continuous low power (setting 3) for 2 minutes. 

Triton X-100 (Sigma) was added to a final concentration of 1% to aid solubilisation 

of proteins and samples were incubated at 4°C for 30 minutes with rotation. Extracts 

were centrifuged (10,000 x g, 10 minutes, 4°C) to remove cellular debris. 400 pi 

slurry containing 50% glutathione linked to agarose beads in PBSG was added to 

the supernatant following transfer to a 15 ml polypropylene tube, and mixed for 1 

hour at 4°C. GST-fusion protein bound to glutathione-agarose was collected by 

centrifugation (500 x g, 5 minutes, 4°C). The supernatant was decanted and 

sedimented agarose beads were washed with PBSG three times. For elution of 

protein from the beads, 100-200 pi glutathione elution buffer (50 mM Tris-HCl, 10 

mM reduced glutathione, pH 8.0) in PBSG was added and mixed for 20 minutes at 

4°C. The elution process was repeated a further 3 times. Eluted GST-fusion protein 

was stored at -70°C.

2. 30 Determination of Protein Concentration

Samples and standards were mixed with the Coomassie Plus Protein Assay Reagent 

(Pierce) according to the manufacturer’s instructions. Protein concentration was 

determined using a Helios a  (Unicam) spectrophotometer.
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2. 31 Fractionation of Proteins by SDS-PAGE

Proteins were separated according to the method of Laemmli et a l (1970) using 

Mini-Protean II apparatus (Bio-Rad). Samples (typically 10-20 pg total protein) 

were mixed with 0.33 volumes of 3 x SDS-PAGE denaturing buffer (200 mM Tris- 

HC1, pH 6.7, 0.5% SDS, 0.7% p-mercaptoethanol, 10% glycerol) and boiled for 2 

minutes prior to loading. Gels containing 8-12.5% polyacrylamide depending on the 

molecular weight of the protein under investigation were run at 120 V until the dye 

front reached the bottom of the gel. Protein size markers (Rainbow Markers, 

Amersham) were run alongside protein samples in SDS-PAGE denaturing buffer. 

Fractionated proteins were analysed by Western blotting (see below) or 

fluorography (see section 2.46), or by staining directly with 0.1% Coomassie 

brilliant blue (Bio-Rad) in fix (50% methanol, 7% acetic acid) for 30 minutes 

followed by repeated destaining (10% methanol, 7% acetic acid).

2. 32 Western Blotting

Proteins separated by SDS-PAGE were electrophoretically transferred (90 V, 1 

hour, 4°C) to nitrocellulose membranes (Hybond ECL, Amersham) essentially as 

described by Towbin et a l (1979) using Bio-Rad Gel Blotting apparatus. Following 

transfer, membranes were immersed in PBST containing 5% non-fat milk powder 

(Marvel) for 30 minutes to block non-specific binding of antibody. Membranes were 

then washed 3 x 15 minutes in PBST and incubated with the relevant primary 

antibody or antisera appropriately diluted in PBST containing 1% bovine serum 

albumin (BSA) for 1-2 hours. Membranes were washed as before to remove any 

unbound primary antibody/antisera and incubated with appropriately diluted 

secondary antibody conjugated to horse radish peroxidase (HRP). Membranes were 

washed as before and developed by addition of enhanced chemiluminescence (ECL) 

reagents (Amersham). Binding of antibody to fractionated proteins was visualised 

by autoradiography using Kodak X-OMAT film and a Konica SRX-101-A film 

processor.
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2. 33 Enzyme-linked Immunosorbent Assay (ELISA)

An ELISA-based method was used to determine direct binding of MAbs to GST- 

fusion proteins. Wells in a 96-well plate (Immulon II, Dynex Technologies) were 

coated with 0.1 mg protein and a series of 3-fold dilutions thereof in PBS, and 

incubated at 4°C for 16 hours. Non-specific antibody binding sites were blocked by 

addition of 100 pi 2% Marvel in PBST. MAb supernatants were diluted in PBS 5- 

fold, added directly to the plates, and incubated at RT for 2 hours. The plates were 

washed four times with PBST. An anti-mouse IgG-HRP conjugate (Sigma) diluted 

1:1000 in PBST was added to each well and incubated for a further 2 hours at RT. 

100 pi TMB (3,3',5,5'-tetra methylbenzidine) complete developing solution (Sigma) 

was added and reactions were allowed to proceed for up to 30 minutes. Reactions 

were stopped by addition of 100 pi 0.5 M H2SO4, and OD600 determined using an 

Opsys MR plate reader (Dynex Technologies).

2. 34 Production of Lipofection Reagent

A lipofection reagent for transfection of cell lines with DNA was produced 

essentially as described by Rose et al. (1991). 10 mg of phospatidyl ethanolamine 

dioleoyl in 1 ml CHCI3 (Sigma) was added to 4 mg of dimethyl dioctadecyl 

ammonium bromide (Sigma) and vortexed briefly. The chloroform was evaporated 

from the mixture under a light stream of liquid nitrogen leaving a white precipitate. 

The precipitate was resuspended by adding 10 ml dP^O and vortexing continuously 

for 5 minutes. The milky solution was clarified by sonication using a Branson 450 

Sonifier on continuous low power (setting 3) for 15 minutes or until the solution had 

sufficiently cleared. The lipofection reagent was transferred to 1.5 ml screw-capped 

tubes in 1 ml aliquots and stored at 4°C.

2. 35 Transfection of Mammalian Cell Lines

Mammalian cell lines grown to a confluency of approximately 50% were transfected 

in 24-well dishes (diameter of wells 16 mm) employing standard lipofection 

protocols. Briefly, 1 pg plasmid DNA was mixed with 50 pi of Optimem-1 

(Invitrogen), and subsequently mixed with 50 pi Optimem-1 containing 6 pi
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lipofection reagent (see above). After incubation at RT for 15 minutes, 150 pi 

Optimem-1 was added and the mixture was immediately pipetted onto monolayers 

pre-washed with Optimem-1. Cells were incubated for 5 hours at 37°C, following 

which 250 pi of normal medium containing 20% FCS was added and returned to the 

incubator for 16 hours. Cells were replenished with fresh medium and grown for a 

further 24-48 hours before analysis for protein expression by Western blotting (as 

described in section 2.32) or other methods (see section 2.42). The volumes 

indicated above were scaled-up relative to the diameter of the cell culture dishes 

employed.

2. 36 Generation of Constitutively Expressing Ceil Lines

Approximately 70-80% confluent monolayers of Huh-7 cells in 60 mm dishes were 

transfected as described above with appropriate plasmid containing the gene of 

interest and a selectable marker applicable to mammalian cell lines. Fresh medium 

was added to the cells 24 hours post-transfection. After a further 24 hours, the cells 

were washed with versene, trypsinised, and resuspended in 50 ml fresh media. 5 ml 

of this was plated out on ten 60 mm dishes and incubated at 37°C for 16 hours. The 

existing media was then replaced with medium containing the appropriate antibiotic. 

Fresh medium containing antibiotic was added to the transfected cells every 4-5 

days until clearly separated colonies appeared. Suitably sized colonies (2-3 mm) 

were picked and transferred using a pipette to 24-well dishes containing fresh 

medium. The colonies were grown to confluency and transferred to small (25 cm ) 

and then to medium (80 cm2) tissue culture flasks. Cell lines were subsequently 

stored as described in section 2.9. Expression of the appropriate mRNA or protein 

product was evaluated by Northern or Western blotting, respectively.

2. 37 Generation of Recombinant Baculoviruses

2.37. 1 Background

Recombinant baculoviruses (rbacs) have become widely used as vectors to express 

heterologous genes of interest in Sf21 or other insect cell lines. The heterologous 

gene is placed under control of the strong polyhedrin promoter of the Autographa
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California nuclear polyhedrosis virus (AcNPV) and is often abundantly expressed 

during the late stages of infection. For the most part, the recombinant proteins are 

processed, modified, and targeted to their appropriate cellular locations where they 

are functionally analogous to their authentic counterparts (King and Possee, 1992).

2.37. 2 General Overview o f the Protocol

Since AcNPV has a large (130 kb) genome with multiple recognition sites for 

restriction endonucleases, rbacs were constructed in two steps. First, the 

heterologous gene of interest was cloned in frame with the polyhedrin promoter in 

the pAcCL29.1 transfer vector (Livingstone and Jones, 1989) flanked by 

baculovirus DNA derived from a non-essential locus. Second, the plasmid was 

introduced into Sf21 cells along with wild-type viral genomic DNA. Wild type 

baculovirus DNA was linearised with Bsu36l at a unique site located near the target 

site for insertion of the foreign gene and treated with calf intestinal phosphatase 

(CIP) to improve the fraction of recombinant progeny virus. The restriction 

endonuclease was subsequently inactivated by heating the reaction to 80°C for 20 

minutes. 1 pg of this DNA plus 2-5 pg plasmid DNA consisting of the gene of 

interest in transfer vector pAcCL29.1 was transfected into Sf21 cells (as will be 

described in section 2.39) grown in 35 mm dishes to a confluency of approximately 

50%. Following incubation of transfected cells at 28°C for 72 hours, the medium 

was collected and plaque purified as below.

2.37.3 Plaque Purification o f  Rbacs

35 mm dishes seeded with 1 x 106 Sf21 cells were infected with 10-fold serial 

dilutions (10' 1 to lO'4) of the virus to be purified in 100 pi normal medium (TC- 

100). Infections were allowed to proceed for 1 hour with occasional gentle agitation. 

The inoculum was removed and the cell monolayer was covered with molten 

agarose as follows. 0.75 mis 3% low melting point agarose (Invitrogen), previously 

melted and cooled to 30°C, was mixed with 0.75 mis normal medium warmed to 

30°C and gently overlayed onto the monolayer. The agarose mixture was allowed to 

set, and 1.5 mis normal medium was subsequently added to prevent drying of the

96



agarose layer. Following incubation at 28°C for 72 hours, plaques formed by virus 

infection were visualised by addition of 0.5 ml normal medium containing 0.02% 

neutral-red stain and incubation at 28°C for 6-24 hours. The medium was decanted 

and several agarose plugs at the site of well-separated plaques were picked using a 

sterile Pasteur pipette and transferred to individual 300 pi aliquots of normal 

medium. Cells in each agarose plug were lysed by repeated freezing and thawing, 

before briefly sonicating (Sonibath, Kerry Ultrasonics). 100 pi of this preparation 

and 4-fold dilutions thereof were used to infect Sf21 cells in 35 mm dishes as above, 

and each virus plaque purified once more.

2.37. 4 Production o f High Titre Rbacs

10 pi plaque-purified virus preparation was used to infect 1 x 106 Sf21 cells in a 35 

mm dish and incubated at 28°C for 72 hours. Expression of the recombinant protein 

was confirmed by Western blotting (section 2.32) of the infected cell extracts with 

relevant MAbs or PAbs. A further 10 pi plaque-purified virus preparation was then 

used to infect a separate 35 mm dish containing 1 x 106 Sf21 cells. The infection 

was allowed to proceed at 28°C until most of the cells had detached from the culture 

dish. 100 pi of the medium was used to inoculate 2 x 106 Sf21 cells in a small tissue 

culture flask (25 cm2). Again, the infection was allowed to proceed until most of the 

cells had detached. 1 ml of the medium containing virus was stored at -70°C as a 

seed stock. The remainder was used to inoculate roller bottles (2 L) containing Sf21 

cells to prepare a high titre stock. Following incubation at 28°C for 72 hours, the 

medium containing large amounts of recombinant virus was decanted and clarified 

by centrifugation (3,000 x g, 10 minutes, 4°C). Virus was subsequently pelleted by 

centrifugation (12,000 x g, 2 hours, 4°C) and resuspended in 2 ml normal medium. 

Rbacs generated using the above protocols were titrated as follows. 35 mm dishes 

seeded with 1 x 106 Sf21 cells were infected with 10-fold serial dilutions (1 O'4 to 10' 

12) of the virus to be purified in a 100 pi inoculum. The monolayer was overlaid 

with agarose, and stained as before after incubation for 72 hours at 28°C. The 

number of plaques on two separate plates was counted and used to calculate the 

virus titre.
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2. 38 Infection of Sf21 Cells with High Titre Rbacs

Sf21 cells were seeded in 35 mm dishes to reach 70-80% confluency following 

overnight incubation at 28°C. Appropriate dilutions of virus were prepared in 100 pi 

TC-100 medium to give an m.o.i. of 0.5 to 5 and then gently overlaid onto the cell 

monolayer. The infected cells on 35 mm dishes were incubated at 28°C with 

frequent shaking. After 1 hour, 3 ml TC-100 medium was added to the monolayers. 

Infections were allowed to proceed for 48-72 hours following which the cells were 

washed with PBS, harvested, and resuspended in appropriate buffer for Western 

blotting (section 2.32) or other applications (see section 2.42).

2. 39 Transfection of Sf21 Cells

Sf21 cells were transfected essentially as described in section 2.35 for mammalian 

cells using the lipofection reagent except that Optimem-1 was adjusted to pH 5.8- 

6.0 with concentrated HC1 (10 ml Optimem-1 plus 26.5 pi HC1).

To look for transient expression of heterologous genes from the pAcCL29.1 transfer 

vector directly, Sf21 cells were infected with the wild-type baculovirus PAK6 at an 

m.o.i. of 5 for 1 hour at 28°C to supply the necessary factors for transcription from 

the baculovirus polyhedrin promoter and expression of protein. The infected cells 

were then transfected as above with the pAcCL29.1 vector containing the 

heterologous gene and incubated at 28°C for 48-72 hours.

2. 40 Production of High Titre Recombinant Vaccinia Virus

Recombinant vaccinia viruses (rVVs) used in these studies were previously 

generated by Dr A. Patel (Owsianka and Patel 1999; Owsianka et al.y 2001) (see 

Appendix III). To generate a high titre stock of these viruses, BHK-21 or Huh-7 

cells grown in ten roller bottles to a confluency of approximately 80-90% were 

infected at a multiplicity of infection (m.o.i.) of 0.01 in 40 ml low serum medium 

(140 ml Eagle’s A medium plus 20 ml Eagle’s B, 20 ml tryptose/phosphate, and 5 

ml new-born calf serum). Roller bottles infused with 5% CO2 were incubated at 

37°C with constant gentle agitation until complete cytopathic effect (c.p.e.) was
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achieved (usually 3 to 5 days). The infected cells were recovered by centrifugation 

(3,000 x g, 15 minutes) and resuspended in 8 ml Tris buffer (10 mM Tris-HCl, pH 

9.0). The cells were lysed on ice using a Dounce homogeniser (50 strokes) and cell 

debris pelleted (2,000 x g, 10 minutes, 4°C). Trypsin was added to the supernatant 

to a final concentration of 250 ug/ml and incubated at 37°C for 30 minutes with 

frequent shaking. Tris buffer was added to 36 ml final volume and 18 ml of this 

preparation was overlayed on an equal volume of 36% sucrose in Tris buffer in each 

of two centrifuge tubes. Virus particles were pelleted by centrifugation at 12,000 x g  

(80 minutes, 4°C) using an AH629 rotor (Sorvall). The pellet was resuspended in 2 

ml 1 mM Tris-HCl (pH 9.0) and stored at -70°C.

2. 41 Titration of rW s

10-fold dilutions (10 '1 to 10' 12) of virus preparation in a 100 pi inoculum were 

plated onto sub-confluent monolayers of Huh-7 or BHK-21 cells in 35 mm dishes. 

Following incubation at 37°C for 1 hour, cell culture medium containing 1.5% 

carboxymethyl cellulose was added. The cells were incubated for 3 days at 37°C, the 

medium decanted, stained with Giemsa stain for 2 hours at RT, gently washed with 

tap water and allowed to dry. The plaques were counted and used to calculate the 

virus titre.

2. 42 CAT Assay

Following transfection, cells were washed with PBS and harvested by scraping. The 

total cell extract was resuspended in 100 pi 250 mM Tris-HCl (pH 7.8) and lysed by 

repeated freezing and thawing, before briefly sonicating to produce a homogenous 

solution. Cell debris was pelleted by centrifugation and the supernatant was assayed 

for CAT activity essentially as described by Seed and Sheen (1988). Briefly, equal 

total protein concentrations of cell extract were transferred to a 1.5 ml microfuge 

tube and the required amount of 250 mM Tris-HCl (pH 7.8) to give 25 pi final 

volume was added. The cell extract was mixed with 14 pi dH2 0 , 1 pg acetyl- 

coenzyme A (Sigma), and 0.5 pi 0.05 pCi/pl [I4C]-chloramphenicol. A modified 

form (l-deoxy[dichloroacetyl-l-14C]-chloramphenicol) of the standard radiolabelled
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substrate (dichloroacetyl-l,2-[14C]-chloramphenicol) was often used, particularly for 

quantitation of CAT activity, since this form only gave one product in the presence 

of CAT protein. After incubation for 30 minutes in a 37°C water-bath, the organic 

phase was extracted with 200 pi ethyl acetate (Sigma) by vigorous shaking and 

centrifugation. The sample was subsequently vacuum-dried, resuspended in 20 pi 

ethyl acetate, spotted onto thin-layer chromatography (TLC) plates (Merck) and 

separated by TLC in 100 ml solvent consisting of 95% CHCI3 and 5% methanol. 

The dried plates were covered with ScreenGuard film (Bio-Rad), and exposed to a 

phosphorimager screen for 16 hours. CAT activity was quantitated as before 

(section 2.27.6).

2. 43 In vitro Transcription and Translation

The bacteriophage T7 or T3 RNA polymerase-driven Riboprobe Kit (Promega) was 

used according to the manufacturer’s instructions to produce RNA run-off 

transcripts from linearised DNA constructs containing the appropriate promoter. 

The Rabbit Reticulocyte Lysate System (Promega) was used to translate in vitro 

transcribed RNA. Briefly, 1-2 pg RNA produced by in vitro transcription was 

denatured by heating at 65°C for 3 minutes in a total volume of 10.8 pi dK^O and 

then cooled on ice. The RNA was mixed with 33 pi reticulocyte lysate, 1 pi of 1 

mM amino acid mixture lacking methionine, 2 pi [35S]-L-methionine (10 pCi/pl), 

40 units RNasin, and 2.2 pi of 2.5 mM KC1. Reactions were incubated at 30°C for 

90 minutes and then stored at -20°C prior to subsequent experimental procedures. 

To visualise in vitro translated products, 5 pi of the reaction was mixed with SDS- 

PAGE denaturing buffer, boiled for 2 minutes, loaded onto a gel containing an 

appropriate concentration of polyacrylamide, and analysed by fluorgraphy (see 

section 2.46).

2. 44 Indirect Confocal Immunofluorescence Microscopy

Cells on 13 mm glass coverslips in 24-well dishes were washed with PBS and fixed 

in ice-cold methanol for 10 minutes. The cells on coverslips were washed briefly 

with PBST (x 4). The cells were then permeabilised in 1 ml ice-cold acetone for 2
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minutes, and washed with PBST a further 4 times. Coverslips were overlaid (cell- 

side down) onto 20 pi of the appropriate primary antibody diluted in PBST and 

incubated at RT for 45 minutes. The coverslips were washed (4 x PBST) and 

subsequently overlaid onto 20 pi of the appropriate conjugated secondary antibody 

prepared in PBST for 45 minutes. The coverslips were washed as above, then briefly 

dipped in dHhO and overlaid onto 20 pi Citifluor fluorescence enhancing reagent 

(UKC Chemical Laboratories, Cantebury, UK) before sealing with clear nail 

varnish. Confocal analysis was performed using a Zeiss Laser Scanning Microscope 

with LSM510 software (Zeiss).

2. 45 Subcellular Fractionation

The method of Lee and Green (1990) was essentially followed for separation of 

nuclear and cytoplasmic fractions of cell lysates. Cells were seeded in 35 mm dishes 

to reach a confluency of 70-80% after 16 hours, washed with PBS, harvested by 

scraping, and pelleted by centrifugation (2,000 x g , 5 minutes, 4°C). The pellet was 

resuspended in 0.5 ml PBS and recovered as before. The cells were subsequently 

resuspended in 0.5 ml buffer A (10 mM Hepes pH 7.9, 1.5 mM MgCL, 10 mM KC1, 

1 mM DTT, 1 x Protease inhibitor cocktail solution (Roche), 0.2 mM EDTA) and 

allowed to swell on ice for 15 minutes. Cells were lysed by 8 strokes in a 1 ml 

Dounce homogeniser. 0.25 ml of the total cellular lysate was stored at -70°C. The 

remaining lysate was pelleted (12,000 x g, 20 seconds). The supernatant containing 

the soluble cytoplasmic fraction was stored at -70°C. The pellet containing the 

nuclear fraction was resuspended in 0.25 ml buffer B (20 mM Hepes pH 7.9, 1.5 

mM MgCL, 0.6 M KC1, 1 mM DTT, 1 x Protease inhibitor cocktail solution, 0.2 

mM EDTA, 25% glycerol) and incubated at 4°C with continuous agitation to break 

open the intact nuclei. The nuclear debris was pelleted by centrifugation at high 

speed (5 minutes, 4°C). The supernatant containing the nuclear fraction was stored 

at -70°C.
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2. 46 In vitro Protein-protein Interactions (GST-puIIdowns)

A small aliquot of GST-fusion protein (previously captured on glutathione-agarose 

beads - section 2.29) was analysed by SDS-PAGE to evaluate the purity, quality and 

level of protein expression. The remaining captured protein was washed with 

binding buffer (40 mM Hepes pH 7.5, 100 mM KC1, 0.1% Nonidet P-40, 20 mM P- 

mercaptoethanol, 1 x Protease inhibitor cocktail solution). Approximately 5 pg of 

GST-fusion protein bound to glutathione-agarose beads was then resuspended in 1 

ml binding buffer. 20 pi of [35S]-L-methionine-labelled core protein produced as 

described in section 2.43 was added and binding was allowed to proceed for 2 hours 

at 4°C with continuous rotation. The beads were washed in binding buffer (3 x) to 

remove unbound radiolabelled core protein. The remaining binding buffer was 

removed and replaced with 0.33 volumes 3 x SDS-PAGE denaturing buffer. The 

presence of bound core protein was determined by SDS-PAGE followed by 

fluorography. Briefly, the polyacylamide gel was soaked in fix solution (50% 

methanol, 7% acetic acid) and incubated at RT for 1 hour with gentle agitation. The 

solution was removed and replaced with a small volume of EN HANCE (NEN) and 

incubated as before. The enhancer solution was disposed of carefully before addition 

of dH20  and incubation at RT for 30 minutes. The gel was dried and subjected to 

autoradiography as before (section 2.32).

2. 47 dATPase Assay

Hydrolysis of nucelotides was detected using a classical method based on 

visualisation of its breakdown products by TLC. Radiolabelled [a-32P]-NTP or 

-dNTP is incubated with the protein under investigation in appropriate buffer. 

Radiolabelled breakdown products are subsequently separated by TLC and detected 

by exposure to a phosphorimager screen. The assay conditions described by You et 

al., (1999b) were essentially followed. Briefly, 2pl ATPase buffer (250 mM Tris- 

HCl, pH 7.4, 5 mM NaCl, 12.5 mM MgCl2) was mixed with 0.1 pi [a-32P]-dATP (1 

pCi), the purified protein under investigation in a range of concentrations (typically 

10‘7 to 1 pg) and dH20  to a final volume of 10 pi. The reactions were incubated at 

37°C for 30 minutes. 1 pi of 20 mM EDTA was then added to stop the reaction, and
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2 pi of the reaction was spotted onto a TLC plate (Polygram Cel 300 PEI/UV254, 

Merck). The reaction products were separated by TLC in phosphate buffer (0.5 M 

potassium phosphate pH 3.5), and the plate was air-dried then exposed to a 

phosphorimager screen.

2. 48 Helicase Assay

An overview of the helicase assay has been described previously (Fig. 18, section 

1.10.7). Preparation of the duplex RNA used as a substrate in helicase assays is 

described in section 4.2.14. Helicase activity was assayed essentially as described by 

Gururajan and Weeks (1997) using a dsRNA substrate of specific activity 2 x 107 

cpm/pg mixed with 2 pi helicase buffer (4% glycerol, 75 mM KC1, 40 units RNasin, 

1 mM ATP), the protein under investigation in a range of concentrations (typically 

0.01-10 pg), and dH20  to a final volume of 20 pi. Following incubation at 37°C for 

20 minutes, 3 pi loading buffer (50% glycerol, 2% SDS, 20 mM EDTA, 0.5% 

bromophenol blue) was added to stop the reaction. The reactions were run directly 

on 15% urea gels (Sequagel, National Diagnostics). Duplex RNA substrate 

incubated without protein at 37°C for 20 minutes, and single stranded RNA 

denatured by heating duplex RNA for 5 minutes at 90°C were run in parallel as 

controls. The gel was run until the dye front migrated two-thirds down the gel, dried 

on 1 mm Whatman filter paper and exposed to a phosphorimager screen.
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C H A P T E R  T H R E E :

Investigation into Expression of DDX3 mRNA and Protein, and 

Preliminary Studies on the Interaction of DDX3 with 

Hepatitis C Virus Core Protein

i



3.1 Introduction

Three independent reports have suggested DDX3 interacts with HCV core protein 

(section 1.9.6.9; Mamiya and Worman, 1999; Owsianka and Patel 1999; You et al., 

1999b). DDX3 is a human cellular protein that bears all of the conserved motifs 

associated with the DEAD-box RNA helicase family (sections 1.9.6.9 and 1.10.6). 

However, before any attempt can be made to understand the importance of the 

interaction between core and this putative RNA helicase, it is necessary to 

investigate the role of DDX3 in a normal, uninfected cell. To this end, this chapter 

initially focuses on the fundamental properties of cellular DDX3, namely expression 

of its mRNA and protein, to form a basis for further investigation of the protein and 

its interaction with core. The presence or absence of DDX3 mRNA in a variety of 

cell lines was established by Northern blotting using extracted total RNA. The 

expression of DDX3 mRNA was also determined using a commercially available 

dot-blot kit, produced using poly(A)+ RNA extracted from a wide range of adult 

human and foetal tissues. Since the DDX3 sequence contains a central conserved 

region similar to all DEAD-box RNA helicases (Fig. 17, section 1.10.6; see 

Appendix IV), a radiolabelled probe directed against the coding seqeunce for the 

variable N-terminus of the protein was employed in both cases. In order to study 

endogenous cellular DDX3, two separate polyclonal antisera (PAbs) and a panel of 

monoclonal antibodies (MAbs) raised against the protein, generated by Dr A. 

Owsianka (see Appendix I), were used. One such anti-DDX3 MAb, previously 

shown to detect DDX3 in HeLa total cell extracts (Owsianka and Patel, 

unpublished), was used to initially characterise i) expression of DDX3 protein by 

Western blotting and ii) its subcellular localisation by indirect confocal 

immunofluorescence microscopy in a range of mammalian cell lines. A full study of 

the subcellular localisation of DDX3 using the entire panel of anti-DDX3 MAbs is 

presented in Chapter Four. The anti-DDX3 antibodies are fully characterised here in 

terms of their reactivities in Western blots and ELIS As to epitope-tagged DDX3 

proteins produced in E. coli and endogenous DDX3 in human hepatocytes. 

Glutathione S-transferase (GST)-DDX3 fusion proteins previously used to delineate 

the domain of DDX3 interacting with core (Owsianka and Patel, 1999) were used to 

roughly map binding of anti-DDX3 MAbs to the C-terminal portion of DDX3 (aa
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409-662 of the 662 aa full-length protein). A series of deletion mutants were 

generated to map antibodies which bound the full-length protein but not this C- 

terminal fragment of DDX3. Epitope-mapped anti-DDX3 antibodies were 

subsequently tested for their reactivity with human hepatocyte cell extracts.

Finally, the interaction between DDX3 and core was investigated by in vitro binding 

assays, and attempts were made to further delineate the domain of DDX3 that 

interacted with core protein. Co-localisation of the two proteins was studied by 

indirect immunofluorescence in hepatocytes expressing core protein and the HCV 

glycoproteins (El and E2) as supplied by recombinant vaccinia virus (rVV). This 

allowed expression of core in in a similar manner as it would be found during 

natural HCV infection of permissive cells, albeit without the nonstructural proteins. 

Co-localisation of DDX3 with core protein (again expressed by rVV carrying the 

entire HCV structural region) was further investigated in hepatocytes containing 

self-replicating HCV sub-genomic RNA, generously donated by Dr R. Bartensclager 

(Lohmann et al., 1999a).

3. 2 Results

3.2. 1 Detection o f DDX3 mRNA Transcripts in a Range o f Cell Lines

The existence of DDX3 mRNA transcripts in a range of mammalian and non

mammalian cell lines was established by Northern blotting with total RNA extracted 

from such cell lines. Two different hepatocyte cell lines derived from human 

hepatomas (Huh-7 (N) and HepG2) were used in these studies since HCV is a 

hepatotropic virus. A further cell line derived from a different human tissue (HeLa) 

was used to determine any anomalies between expression in hepatocytes and in cell 

lines derived from other human tissues. Two further non-human mammalian cell 

lines (COS-7 and BHK-21) and one non-mammalian cell line (Sf21) were used to 

determine mRNA expression of DDX3 homologues in other organisms. Use of this 

range of cell lines extends the study of You et al. (1999b), suggesting that DDX3 

mRNA is present in Huh-7, HepG2 and HeLa cells. DDX3 mRNA (or mRNA 

transcripts for its homologues) was detected using a specific P-labelled probe,
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generated as described in section 2.28 using nt 1-624 of the DDX3-coding sequence 

as a template (see Appendix IV). This region was chosen primarily because DDX3, 

like other known and putative RNA helicases, possesses a conserved central region 

containing domains critical for enzyme activity and divergent N- and C-termini 

believed to determine cellular localisation and substrate specificity (Fig. 17, section 

1.10.6; Schmid and Linder, 1992; Wang and Guthrie, 1998). Total cellular RNA 

was extracted from the cell lines under investigation and equal quantities of total 

RNA were electrophoretically fractionated by size in a denaturing gel. The RNA 

was capillary blotted onto positively-charged membranes and immobilised by UV- 

cross-linking. To confirm the integrity of the extracted RNA, the same RNA 

samples were fractionated on a separate gel and stained with ethidium bromide. 

Visualisation of this gel under UV light showed the abundant 28s and 18s rRNAs in 

all samples (Fig. 22a), confirming that the extracted RNA was of sufficient quality 

for Northern blotting. Consistent with a previous report (Wang et al., 1997), 18s 

rRNA in Sf21 total cellular RNA extracts was significantly more abundant than 28s 

rRNA (lane 6). Northern blot analysis allowed detection of a DDX3 mRNA 

transcript (~5 kb in size as judged by aligning the blot with rRNA bands as shown in 

Fig. 22a) in Huh-7 (N), HepG2 and HeLa cells (Fig. 22b, lanes 1-3), in agreement 

with previous studies (Chung et a l , 1995; You et al., 1999b). The size of the 

mRNA transcript as compared with a DDX3 cDNA of around 2 kb (see Appendix 

IV) suggests the mRNA transcript has long 5'- and/or 3'-untranslated regions. 

Although abundance of DDX3 transcripts was low, DDX3 mRNA was detected in 

all mammalian cell lines tested (Fig. 22b, lanes 1-5), but not in Sf21 cells (lane 6), 

the only non-mammalian cell line tested. The presence of DDX3 transcripts was 

particularly low in total RNA extracted from COS-7 cells (lane 4), although the 

RNA extracted from this cell line appeared to be of poorer quality than the RNA 

extracted from the other cell lines (Fig. 22a, lane 4). Nevertheless, these data 

indicate that a DDX3 mRNA transcript is present in a wide range of mammalian 

cells.
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3.2. 2 Detection ofDDX3 mRNA in a Range o f Human Tissues

A commercially available poly(A)+ RNA dot-blot kit (Human RNA Master Blot, 

Clontech) was used to determine the relative abundance and tissue-specificity of 

DDX3 mRNA. The Master Blot consists of poly(A)+ RNA immobilised as an array 

of spots on a positively-charged membrane, the mRNA having been isolated from 

different human tissues. The same probe which specifically detected DDX3 

transcripts in fractionated total RNA from a range of mammalian cell lines (Fig. 

22b, lanes 1-5) was used. Analysis of hybridisation events with this probe (under the 

same conditions of stringency) to the Master Blot indicated that DDX3 transcripts 

are expressed in all adult and foetal tissues tested (Fig. 23a). For reference, the 

position of all RNA samples on the Human RNA Master Blot is presented 

diagramatically in Fig. 25. The DDX3 probe did not hybridise to any of the control 

DNA or RNA samples (Fig. 23a, positions H1-H8). Although DDX3 mRNA was 

found in all tissues, distinct differences in its expression in different tissues was 

qualitatively evident. A P-labelled ubiquitin probe (produced as described in 

section 2.28 using a cDNA provided in the Human RNA Master Blot kit as a 

template) was used as a control to determine the expression of a ubiquitously- 

expressed cellular mRNA. The blot was submerged in boiling 0.5% SDS in dH20 to 

strip DDX3 probe, exposed to a phosphorimager screen overnight to check stripping 

was effective (data not shown), and re-probed for ubiquitin mRNA. Hybridisation of 

this control probe indicates that the level of ubiquitin mRNA is largely the same 

across the range of tissues (Fig. 23b), suggesting the amounts of RNA in each dot 

had been successfully normalised. This level of ubiquitin mRNA is expected to be 

approximately 2% of the total mRNA extracted from each tissue (Clontech). 

Quantitative analysis of this data (Fig. 24a) confirmed that the level of ubiquitin 

mRNA was consistent between tissues. The level of DDX3 expression was 

quantitated as before and correlated with ubiquitin levels. While DDX3 expression 

in tissues originating from the central nervous system (Fig. 24b, A1-B6) was 

proportional to the levels of ubiquitin mRNA expression in the same tissues (Fig. 

24a, A1-B6), it is clear that DDX3 mRNA was expressed at much lower levels in 

the spinal cord than ubiquitin (Figs 24a and 24b, B7). However, most striking is the 

abundance of DDX3 mRNA in placental tissue - while ubiquitin levels were high in
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Figure 23a: Expression o f DDX3 mRNA in a range of adult human 
and foetal tissues. A 32P-labelled probe derived from DDX3 nt 1-624 
(see Appendix IV) was hybridised to Human RNA Master Blot 
(Clontech), a poly(A)4 RNA dot-blot for simultaneous quantitation of 
mRNA expression in different adult human and foetal tissues.
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Figure 23b: Expression o f ubiquitin mRNA in a range o f human and 
foetal tissues. Human RNA Master Blot analysed for the presence o f 
DDX3 mRNA as in Fig. 23a was stripped and re-probed with a 32P- 
labelled probe derived from human ubiquitin cDNA (Clontech).
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this sample (Fig. 24a, F4), levels of DDX3 mRNA (Fig. 24b, F4) were far higher 

than in all of the other samples. In fact, expression in placenta was two or three-fold 

higher than most other tissues. This may be consistent with the possibility that 

DDX3, like its homologues in other organisms (section 1.13), is a developmentally- 

regulated protein. Levels of DDX3 mRNA appeared to be significantly lower in 

other tissues relative to the ubiquitin control - ubiquitin mRNA expression in the 

lung and tranchea (Fig. 24b, F2 and F3) are among the highest seen, whereas DDX3 

mRNA expression in these tissues is lower than on average (Fig. 24a, F2 and F3). 

On the other hand, expression of DDX3 mRNA in foetal tissues (Fig. 24b, G1-G7) 

is directly proportional to expression of ubiquitin mRNA (Fig. 24a, G1-G7). This 

does not necessarily provide contradictory evidence for the hypothesis that DDX3 is 

a developmentally-regulated, since the RNA that was probed was not extracted from 

different developmental stages.

3.2. 3 Detection o f  Endogenous DDX3 Protein in a Range o f  Cell Lines by Western 

Blotting

To establish the presence of DDX3 protein in cell lines derived from human tissues, 

and to assess the existence and expression of its homologues in other organisms, 

total cell extracts from a range of mammalian and non-mammalian cell lines were 

probed with an anti-DDX3 MAb by Western blotting. The MAb, AO 196, had 

previously been shown to specifically detect DDX3 in HeLa total protein extracts 

(Owsianka and Patel, unpublished). The relevant cell lines were seeded in 35 mm 

dishes with the aim that they reached a confluency of approximately 80% following 

incubation at 37°C for 16 hours. Total cell extracts were prepared, fractionated by 

SDS-PAGE and electrophoretically transferred to ECL membranes (section 2.32), 

and probed with MAb AO 196. Similarly, Huh-7 (N) cells infected with a 

recombinant vaccinia virus, rVV-DDX3 (which expresses the full-length DDX3 

protein), were analysed in parallel. Consistent with Northern blot analysis of total 

cellular RNA extracted from the same range of mammalian and non-mammalian 

cell types (Fig. 22), DDX3 protein was detected in Huh-7 (N), HepG2, HeLa, COS- 

7 and BHK-21 cell extracts (Fig. 26, lanes 1-5) but not in Sf21 cell extracts (lane 6). 

As expected, the endogenously-expressed DDX3 co-migrated with that expressed by
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Huh-7 HepG2 HeLa Cos7 BHK SI21
(N) 21

Huh-7 (N)/ 
rVVDDX3

Figure 26: Detection of endogenous DDX3 protein in a range of 
mammalian cell lines and one non-mammalian cell line as shown. 
Total cell extracts (20 pg) were fractionated by SDS-PAGE (8%) and 
immunoblotted with anti-DDX3 MAb A0196 (lanes 1-6). Total cell 
extract (10 pg) from Huh-7 (N) cells infected with rVV-DDX3 was run 
in parallel as a positive control (lane 7).



rVV-DDX3 (lane 7), and had an apparent molecular weight similar to the previously 

reported molecular weight of 73 kDa (Owsianka and Patel, 1999; You et al., 

1999b). These data also provide strong evidence that there are two separate but 

closely related forms of DDX3 - the anti-DDX3 MAb AO 196 detected two distinct 

bands resolved by SDS-PAGE (Fig. 26). This implies either that DDX3 is 

differentially modified by translational and/or post-translational mechanisms, or the 

DDX3 mRNA is differentially spliced, or closely related sequences encoding 

different isoforms of DDX3 exist. The latter hypothesis is consistent with the 

existence of DDX3 on the X chromosome in addition to a Y chromosome 

counterpart (section 1.13.1; Chung et a l , 1995; Lahn and Page, 1997), although 

Northern blot analysis of total RNA from a range of mammalian cell lines did not 

reveal multiple RNA species (Fig. 22b; section 3.2.1). The apparent differences in 

the level of expression of the protein in different cell types does not necessarily 

indicate that DDX3 expression is highest in Huh-7 (N) and HeLa cells. However, 

the low abundance of DDX3 in HepG2 cells (lane 2) is in agreement with a previous 

study (You et al., 1999b), possibly suggesting variation in expression or stability of 

the protein in different hepatocyte cell lineages. In contrast to the earlier report (You 

et al., 1999b), however, low amounts of DDX3 mRNA in total RNA extracted from 

HepG2 cells were not observed (Fig. 22b, lane 2; section 3.2.1). A full investigation 

into recognition of DDX3, and various truncated forms of the protein, expressed as 

GST-fusion proteins, and cellular DDX3 expressed in the Huh-7 (N) hepatocyte cell 

line by Western blotting with the full panel of anti-DDX3 antibodies will be 

presented later in this chapter (sections 3.2.11 to 3.2.18).

3.2. 4 Detection o f  Endogenous DDX3 Protein in a Range o f  Mammalian Cell 

Lines by Indirect Confocal Immunofluorescence Microscopy

Following confirmation by Western blotting that DDX3 protein is expressed in a 

range of mammalian cell lines, its subcellular localisation in the same cells was 

investigated by indirect immunofluorescence. Again, the anti-DDX3 MAb AO 196 

was used. Binding of the antibody to endogenous DDX3 was ascertained using an 

anti-mouse IgG-fluorescein isothiocyanate (FITC) secondary antibody conjugate. 

Consistent with the Northern blot analyses (Figs 22b and 23a; sections 3.2.1 and
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3.2.2) and the Western blotting data (see above), staining for DDX3 was detected in 

all mammalian cell lines tested (Fig. 27). DDX3 did not appear to be expressed at 

high levels, but in all cell types DDX3 localised primarily in the cytoplasm. In 

general, a diffuse staining of the cytoplasm was detected, with some punctate 

staining also seen (Fig. 27). Within the cytoplasm there was some evidence that 

DDX3 accumulates in distinct areas, possibly in areas of cell-cell contact (Figs 27c 

and 27e). However, there was some staining of the nucleus, particularly evident in 

HeLa cells (Fig. 27c). This may represent a cross-reaction with another protein, 

although previous reports have suggested DDX3 is present in the nucleus (Owsianka 

and Patel, 1999; You et al., 1999b). While these data only portray binding by one 

anti-DDX3 MAb, a full study of the endogenous protein as well as DDX3 expressed 

by a plasmid-based vector using the full panel of MAbs by indirect confocal 

inmmunofluorescence microscopy will be presented in Chapter Four.

3.2. 5 Generation o f  DDX3 Anti-sense Cell Lines

In order to investigate the role of DDX3 in cellular processes, a useful reagent 

would be a cell line, preferably of human origin, lacking DDX3. Such a cell line 

would allow us to perform proper genetic and biochemical analyses to delineate the 

function of DDX3 in normal cells. These analyses would include establishing any 

effects of removing DDX3 from the cell, and examining how its absence might 

affect core protein expression supplied via plasmid or rVV. However, as shown in 

Figs 22 to 27, DDX3 is a ubiquitously expressed and highly conserved protein, and 

as such it may be difficult to generate such a cell line lacking DDX3. Nevertheless, 

an attempt was made to generate hepatocyte cell lines constitutively expressing anti

sense DDX3 constructs to effectively prevent expression of cellular DDX3 by direct 

annealing to its mRNA transcript. The pGEX-6P-3-DDX3 construct (Owsianka and 

Patel, 1999) was digested with BamRl and BstYl (DDX3 nt 1-220; see Appendix 

IV) and blunt-ended. This restriction fragment was sub-cloned into pZeoSV2 (+). 

The resulting constructs, pDDX3-AS and pDDX3-S (Fig. 28a), containing DDX3 nt 

1-220 in the anti-sense (3' -> 5') or sense (5' -» 3') orientation, respectively, were 

used to transfect Huh-7 cells and ultimately generate antibiotic-resistant cell lines 

(as described in section 2.36). The pZeoSV2 (+) plasmid confers resistance to the
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Figure 27: Detection o f endogenous DDX3 protein in human cell lines, 
and DDX3 homologues in non-human mammalian cell lines. Cells 
were grown to a confluency of 70-80%, fixed, and probed with anti- 
DDX3 MAb AO 196. Binding o f antibody was visualised using anti
mouse IgG-FITC conjugate and confocal microscopy. (A) Huh-7 (N) 
cells; (B) HepG2; (C) HeLa; (D) COS-7; (E) BHK-21.



antibiotic Zeocin, and antibiotic-resistant colonies were isolated and tested for 

DDX3 expression by Western blotting, immunofluorescence and Northern blot 

analysis. Over 60 independent Zeocin-resistant colonies were screened for the 

presence of DDX3. For Western blotting, cells were harvested from 24-well dishes, 

fractionated by SDS-PAGE and immunoblotted with anti-DDX3 MAb AO 196 - a 

selection of cell lines tested as such is shown in Fig. 28b. However, detection of a 

protein of the same molecular weight as DDX3 that co-migrated with that produced 

by the rVV-DDX3-infected cells run in parallel as a control implied that DDX3 was 

still present within the antibiotic-resistant hepatocytes. Large amounts of DDX3 

protein presumably masked the existence of DDX3 as a doublet that was observed 

previously (Fig. 26). Consistent with these results, the anti-sense construct was 

apparently not detected by Northern blot analysis using an in W/ro-transcribed 

DDX3 sense 32P-labelled probe (data not shown). The likely explanation for this 

could be that hepatocytes in which the Zeocin resistance gene has integrated into the 

host chromosome are viable, whilst cells containing this gene in addition to the 

DDX3 anti-sense region are not. This is consistent with a role for DDX3 in essential 

cellular processes, as suggested by the ubiquitous presence of its mRNA in human 

tissue and the high degree of conservation of DDX3 mRNA and protein in a range 

of distantly related mammalian cell types (Figs 22-25; sections 3.2.1-3.2.4). 

However, it is also possible that too few colonies were screened to isolate a cellular 

clone that lacked DDX3.

3.2. 6 Co-localisation o f Endogenous DDX3 with Core Protein in Hepatocytes

Studies by Owsianka and Patel (1999) using anti-DDX3 PAbs to detect DDX3 

demonstrated co-localisation of the protein and core in HeLa cells. Here, the 

previous work was expanded to include hepatocytes, primarily because HCV is a 

hepatotropic virus. Huh-7 (N) cells were used to investigate the putative interaction 

of core and DDX3 since: i) these cells have previously been shown to support albeit 

inefficient replication of HCV itself (Yoo et al., 1995), and ii) it is as yet the only 

cell line shown to permit replication of HCV sub-genomic replicon RNA (Lohmann 

et al., 1999a; Rosenberg, 2001). Cells were seeded in 24-well tissue culture dishes 

containing coverslips such that confluency reached approximately 70% prior to
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Figure 28: Generation o f DDX3 anti-sense cell lines. (A) Constructs 
used to produce DDX3 anti-sense and sense (control) cell lines. DDX3 
nt numbers for the antisense (pDDX3-AS) and sense (pDDX3-S) 
constructs in the pZeoSV2 (+) vector (Invitrogen) are shown. (B) Total 
cell extracts from each Zeocin resistant cell line previously transfected 
with pDDX3-AS (lanes 1-10) or pDDX3-S (lanes 11-12) were 
fractionated by SDS-PAGE (9%) and immunoblotted with anti-DDX3 
MAb A0196. Total cell extract from Huh-7 cells infected with rVV- 
DDX3 was run in parallel as a positive control (lane 13).



infection with rVV-C-El-E2 (expressing HCV core-El-E2; see Appendix III). 

Following overnight incubation in normal medium the cells on coverslips were 

washed, fixed, permeabilised, and investigated by double immunofluorescent 

labelling and confocal microscopy. Endogenous DDX3 was detected using anti- 

DDX3 MAb AO 196 and an anti-mouse FITC-conjugated secondary antibody, while 

core protein was detected using an anti-core rabbit PAb (R525; see Appendix I) and 

an anti-rabbit Cy5-conjugated secondary antibody. In uninfected cells, consistent 

with the immunofluorescence data presented earlier in this chapter (Fig. 27), DDX3 

was located mainly in the cytoplasm with some punctuate staining (Fig. 29). Core 

protein expressed by rVV in the context of the HCV glycoproteins El and E2 

appeared to localise in globular structures in the perinuclear cytoplasm (Fig. 29), a 

pattern of staining that is entirely consistent with the reported association of core 

protein with lipid droplets (section 1.7.3; Barba et al., 1997; Hope and McLauchlan, 

2000; Moradpour et al., 1996). The normal localisation of DDX3 as described 

above was manifestly disrupted in cells expressing core protein, and anti-DDX3 

MAb AO 196 now gave strong staining of globular structures that mimicked the 

localisation of core protein (Fig. 29). Merging of the two images indicated strong 

co-localisation between DDX3 and core protein (Fig. 29). Huh-7 (N) cells infected 

with rVV-El-E2 (expressing E1-E2 alone; see Appendix III) were used as a further 

control - consistent with Owsianka and Patel (1999), DDX3 did not re-localise in 

the presence of the HCV glycoproteins alone (data not shown).

3.2. 7 Characterisation o f HCV Sub-genomic Replicon-expressing Cell Lines

To further substantiate the hypothesis that core protein binds to DDX3 during 

natural infection with HCV, the localisation of the two proteins was investigated in 

the H9-13 HCV sub-genomic replicon-expressing cell line. Although the H9-13 cell 

line has previously been characterised (Lohmann et al., 1999a), the presence of 

HCV NS3 protein in these cells was used to verify indirectly that they were indeed 

expressing HCV sub-genomic RNA prior to further experimental procedures. Huh-7 

(N) cell extracts, representing the parental cell line from which the H9-13 cell line 

was produced, were also tested in parallel as an appropriate control. As shown in 

Fig. 30, an anti-HCV NS3 protease PAb (see Appendix I) detected a single band in
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Figure 29: Co-localisation o f DDX3 with core protein in hepatocytes. 
Huh-7 (N) cells were infected at an m.o.i. o f 0.5 with rVV-C-El-E2. 
Following incubation at 37°C for 16 hours, cells were fixed and then 
probed with anti-DDX3 MAb AO 196 and anti-core PAb R525. Bound 
antibodies were detected by anti-mouse IgG-FITC and anti-rabbit IgG- 
Cy5 conjugates.



H9-13 cell extracts at the expected molecular weight for the full-length NS3 protein 

(72 kDa), in addition to a further non-specific band seen in both cell lines. While a 

previous report suggested that internal processing of the NS3 protein occurs in 

insect and mammalian cells (Shoji et al., 1998), many other groups have not 

detected this (DeFranscesco and Steinkuhler, 1999). Accordingly, lower molecular 

weight bands were not seen (Fig. 30). Detection of the 72 kDa band corresponding 

to full-length NS3 protein by PAbs raised against the protein in H9-13 but not Huh- 

7 (N) cell extracts suggested that the HCV sub-genomic replicon was likely present 

in the H9-13 cell line. The blot was stripped and re-probed with anti-DDX3 MAb 

AO 196 to confirm equal amounts of Huh-7 (N) and H9-13 cell extracts had been 

fractionated (data not shown).

To unequivocally demonstrate the presence of the HCV sub-genomic replicon RNA 

in the H9-13 cell line, total RNA from these cells was extracted and subjected to 

Northern blot analysis as described in section 2.27. Total RNA from the Huh-7 (N) 

cell line was extracted in parallel as a control. Following transfer of the RNA to 

positively-charged Hybond-N membranes (Amersham), the RNA was probed for the 

presence of replicon RNA using a 32P-labelled probe derived from an AgeVApaLX 

restriction fragment of pCV-5CC (see Appendix II) corresponding to HCV nt 155- 

336 within the 5'NCR (see Appendix IV). The probe was generated as described in 

section 2.28. Although an HCV genotype lb strain was used to generate the sub- 

genomic replicon cDNA (Lohmann et a l , 1999a) and the radiolabelled probe 

described above originated from a genotype la  strain, the high degree of 

conservation of the HCV 5'NCR was expected to allow detection of replicon RNA 

with this probe. Indeed, a clear band was seen in fractionated total RNA from the 

H9-13 cell line (Fig. 31a). In addition, extensive break-down products were 

visualised in H9-13 RNA-containing tracks. However, no hybridisation to 

fractionated RNA from the Huh-7 (N) cell line was seen (Fig. 31a). The possibility 

that the presence of the HCV sub-genomic replicon RNA in the H9-13 cell line 

represents integration of the replicon into the host chromosome has been ruled out 

previously (Lohmann et al., 1999a). To verify that RNA from the Huh-7 (N) cell
•yy

line was present, the blot was stripped and re-probed with a P-labelled probe
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Figure 30: Expression of HCV NS3 protein in the H9-13 cell line. 5, 
10 and 20 pg total cell extracts from Huh-7 (N) and H9-13 cell lines 
were separated by SDS-PAGE (10%) and immunoblotted with an 
anti-HCV NS3 protease PAb.
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originating from ubiquitin cDNA used previously (Fig. 23b; section 3.2.2). A clear 

band was seen in all lanes confirming the integrity of RNA from both H9-13 and 

Huh-7 (N) cell lines (Fig. 31b). This also suggested that hybridisation of the 5'NCR 

probe to many breakdown products in Fig. 31a was not due to poor quality RNA 

samples, as the ubiquitin probe bound exclusively to a single transcript on the same 

blot (Fig. 31b).

3.2. 8 Co-localisation o f  Endogenous DDX3 with Core Protein in HCV Sub- 

genomic Replicon-expressing Cell Lines

Due to the lack of an efficient cell culture system for HCV, it is not clear whether 

core protein interacts with DDX3 in HCV-infected cells. Therefore, the DDX3/core 

interaction was further investigated by infecting the H9-13 cell line, which closely 

mimics replication of HCV genomic RNA and expresses all HCV nonstructural 

proteins, with rVV-C-El-E2 expressing the HCV structural proteins. Since DDX3 is 

an RNA binding protein (P. Askjaer and J. Kjems, personal communication), it may 

have an altered localisation in cells expressing the HCV sub-genomic replicon at 

high levels, thereby affecting its interaction with core. Similarly, in the presence of 

HCV RNA containing the 5'NCR, which may or may not be a specific target for 

encapsidation by core protein (section 1.9.1), core may also show a distinct 

subcellular localisation that has implications for its interaction with DDX3. As 

before for Huh-7 (N) cells (section 3.2.6), the H9-13 cell line was seeded in 24-well 

tissue culture dishes containing coverslips such that confluency reached 

approximately 70% prior to infection with rVV expressing core-El-E2. Following 

overnight incubation in normal medium containing 500 pg/ml G-418, the coverslips 

were washed, fixed, and permeabilised. Endogenous DDX3 was subsequently 

detected using anti-DDX3 MAb AO 196 and an anti-mouse FITC-conjugated 

secondary antibody, while core protein was detected by anti-core rabbit PAb R525 

and an anti-rabbit Cy5-conjugated secondary antibody. In contrast to the above 

hypotheses for relocalisation of DDX3 and core in the presence of HCV sub- 

genomic RNA, extensive investigation of DDX3 and core protein in the H9-13 cell 

line suggested that the proteins did not re-localise in these cells when compared 

with their expression in the Huh-7 (N) cell line (Figs 32 and 29, respectively).
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Figure 32: Co-localisation of DDX3 with core protein in the H9-13 
cell line. H9-13 cells were infected at an m.o.i. o f 0.5 with rVV-C- 
E1-E2. Following incubation at 37°C for 16 hours, cells were fixed 
and then probed with anti-DDX3 MAb AO 196 and anti-core PAb 
R525. Bound antibodies were detected by anti-mouse IgG-FITC and 
anti-rabbit IgG-Cy5 conjugates.



Furthermore, in H9-13 cells infected with rVV-C-El-E2, DDX3 re-localised to what 

appeared to be similar globular structures in the perinuclear cytoplasm, with normal 

DDX3 staining disappearing (Fig. 32). Merging of the two images confirmed that 

DDX3 co-localises with core protein in the context of the HCV glycoproteins in 

hepatocytes expressing HCV sub-genomic replicon RNA and all HCV nonstructural 

proteins (Fig. 32).

3.2. 9 Delineation o f the DDX3-core Interacting Domain

It is known that the N-terminal 1-59 aa of core protein interact with the C-terminal 

409-662 aa of DDX3 (section 1.9.6.9; Owsianka and Patel, 1999), and it has been 

postulated that a short ‘RS’-like domain in DDX3 is responsible for this interaction 

(Owsianka and Patel, 1999; You et al., 1999b). These domains are believed to be 

responsible for a number of protein-protein interactions primarily in splicing factors 

(section 1.9.6.9; Kohtz et al. 1994; Wu and Maniatis, 1993). To ascertain whether 

this region was involved in binding of DDX3 to core protein, GST-fusion proteins 

consisting of DDX3 lacking the RS domain (GST-ARS), or the DDX3 RS domain 

alone (GST-RS), were cloned. DDX3 cDNA in the pGEX-6P-3 vector (see 

Appendix II) was used as a template to generate the appropriate PCR products. 

Specific primers (see Appendix V) were used to amplify the 150 nt region encoding 

the RS domain (aa 582-632; see Appendix IV), and delete this domain (by blunt-end 

cloning of two separate PCR products flanking the RS domain) to produce the ARS 

clone, prior to cloning into pGEX-6P-3. As controls, GST-fusion proteins 

previously used in a similar GST-pulldown assay (Owsianka and Patel, 1999) 

consisting of regions of DDX3 which were i) able to bind core protein (full-length 

DDX3 aa 1-662 and DDX3 aa 409-622) or ii) unable to bind core protein (DDX3 aa 

409-473) were used in parallel as controls. Schematic diagrams of all constructs 

involved in this study, and expression of all the resulting GST-fusion proteins, are 

shown in Figs 33a and b, respectively. To test whether these proteins could interact 

with core protein, a similar GST-pulldown assay to that previously described 

(section 2.46; Owsianka and Patel, 1999) was employed. HCV core protein was 

translated in vitro and radiolabelled with [35S]-Methionine as described in section 

2.43 using the Rabbit Reticulocyte Lysate System (Promega). The relevant construct
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for in vitro transcription of core prior to translation is shown in Fig. 33c. In vitro 

translated core protein, in addition to luciferase protein (produced in the same 

manner as a control), are shown in Fig. 33d. Both proteins migrated as bands at their 

expected molecular weights (21 and 69 kDa, respectively). In addition to the 21 kDa 

in vitro translated core protein, several higher molecular weight species were seen 

(Fig. 33d). The identities of these proteins are unknown, although they are unlikely 

to be oligomers of full-length core protein due to their apparent molecular weights. 

The GST-fusion proteins bound to glutathione-agarose beads were mixed with 

[35S]-Met-labelled core protein for 2 hours at 4°C, washed, and fractionated by SDS- 

PAGE. Core protein that had bound to DDX3-derived proteins was detected by 

fluorography (section 2.46). As can be seen in Fig. 33e, the positive (full-length 

DDX3 aa 1-662 and DDX3 aa 409-622) and negative (DDX3 aa 409-473) controls 

both behaved as expected. Unexpectedly, however, both the DDX3-RS and DDX3- 

ARS GST-fusion proteins appeared to bind radiolabelled core protein. This result 

was consistently seen in subsequent binding assays. Therefore, since the constructs 

used to produce the RS and ARS GST-fusion proteins were fully sequenced, it could 

be concluded that core protein does indeed bind the RS domain, but in the context 

of the full-length protein the RS domain is not essential for binding to core protein. 

Alternatively, there may be two or more distinct core-binding regions on DDX3.

3.2. 10 Isotype o f  All DDX3 Antibodies

Prior to full characterisation of anti-DDX3 MAbs, the isotype of all DDX3 MAbs 

was determined using Mouse Monoclonal Antibody Isotyping Reagents (Sigma) in 

an ELISA-based assay. The results are shown in Table 1. Isotyping was carried out 

by Dr R. Clayton.

Antibody Isotype Antibody Isotype

A 02 IgM A 088 IgGl
AO10 IgGl A0158 IgGl
A 022 IgGl AO 166 IgM
A 034 IgM A0171 IgGl
A 035 IgM AO 190 IgGl
A043 IgGl AO 194 IgM
A 049 IgGl AO 196 IgGl
A 073 IgM AO 199 IgGl
A 086 IgM A0215 IgM

Table 1: Isotype of all anti-DDX3 MAbs.
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Figure 33: Delineation o f the DDX3/core interacting domain. 
(A) Constructs in the pGEX-6P-3 vector used to produce GST- 
fusion proteins for pull-down assay. DDX3 aa numbers are 
shown. The GST-coding sequence is not drawn to scale. (B) 
SDS-PAGE (10%) of the resulting GST-fusion proteins (5 pg) 
purified from E. coli, together with size markers (M - Rainbow 
Markers, Amersham) stained with Coomassie brilliant blue.
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Figure 33 (cont.): Delineation o f the DDX3/core interacting 
domain. (C) The full-length core-coding sequence preceded by 
the EMCV IRES (E-I) in the pTMl vector (pTMl-core; 
Owsianka and Patel, 1999) was used to in vitro transcribe HCV 
core RNA. The RNA was subseqeuntly used to in vitro translate 
core protein (aa 1-191) using the Rabbit Reticulocyte Lysate 
System (Promega). (D) SDS-PAGE (12.5%) followed by 
fluorgraphy (section 2.46) o f in vitro translated [35S]-Met- 
labelled core protein and luciferase control. (E) Binding of 
[35S]-Met-labelled core protein to truncated GST-DDX3 and 
GST-DDX3 deletion mutants as shown in Fig. 33b.



3.2. 11 Binding o f MAbs to Free GST Protein

In characterising the anti-DDX3 MAbs and PAbs, it was initially necessary to 

establish whether any of the antibodies were binding to GST protein alone since the 

panel of anti-DDX3 MAbs, as well as PAb R648, had been raised against full-length 

DDX3 expressed in E. coli as a GST-fusion protein, while PAb R438 was raised 

against a GST-fusion protein consisting of the C-terminal 253 aa of DDX3, to which 

core protein was previously found to interact with in a yeast two-hybrid assay 

(Owsianka and Patel, 1999). Empty pGEX-6P-3 vector was transformed into E. coli 

and used to produce GST protein. The protein was purified and eluted from 

glutathione-agarose beads as described previously. Fig. 34a shows sequentially 

eluted purified GST protein after fractionation by SDS-PAGE and staining with 

Coomassie brilliant blue. 50 pg of purified GST protein was fractionated on two 

preparative SDS-PAGE gels and electrophoretically transferred to ECL membranes. 

The membranes were cut into strips and each probed with a separate anti-DDX3 

MAb or PAb. In addition, a separate strip from each gel was probed with an anti- 

GST PAb as a positive control. A major band was detected by the anti-GST PAb at 

the expected molecular weight of 26 kDa, in addition to less pronounced but distinct 

bands at approximately 19, 55 and 60 kDa (Fig. 34b, lanes 11 and 22) which 

correlated with bands seen by direct staining with Coomassie brilliant blue. Both 

anti-DDX3 PAbs bound free GST protein (lanes 10 and 21), perhaps unsurprisingly 

since PAb epitopes would be expected across all exposed areas of the entire fusion 

protein. PAb R648 detected identical bands to the anti-GST PAb, while R438 

appeared to specifically bind GST alone. However, on longer exposures weak 

binding by R438 to the minor bands detected by the anti-GST PAb and R648 was 

revealed (data not shown). MAb AO 199 also strongly bound GST alone. This MAb 

therefore represents a reagent that could be useful in the specific detection of GST 

and GST-fusion proteins. There appeared to be weak binding by most of the other 

antibodies, likely due to non-specific protein-protein binding since large amounts of 

purified GST had been loaded on the gel. Of these antibodies, MAbs A02 and 

A035 appeared to have stronger affinity for free GST than the other antibodies. 

MAb A034 also weakly bound GST, and gave a characteristic but unexplained
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Figure 34a: Expression of GST protein. SDS-PAGE (10%) of 
bacterially-expressed GST purified by affinity chromatography 
on glutathione-agarose beads, and sequentially eluted using 
glutathione (section 2.29). 200 pi glutathione elution buffer was 
added to the beads, mixed for 20 minutes at 4°C, and protein 
recovered by centrifugation. 5 pi of each elution was loaded 
onto the gel.
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Figure 34b: Reactivity o f anti-DDX3 MAbs and PAbs to free GST 
protein by Western blotting. 50 pg protein was fractionated on each 
SDS-PAGE preparative gel (12.5%) and transferred to ECL 
membranes. The membranes were cut into strips and each one 
probed with a separate anti-DDX3 MAb (lanes 1-9 and 12-20) or 
PAb (lanes 10 and 21). An anti-GST PAb was used as a positive 
control (lanes 11 and 22).



speckled pattern which was consistently seen with this antibody in Western blots of 

purified GST-fusion proteins and cell extracts.

3.2. 12 Expression and Purification o f  GST-DDX3 and GST-DDX3C Fusion 

Proteins

Both full-length and truncated DDX3 (coding for the C-terminal 253 aa of the 

protein) sequences cloned in frame with the GST-coding sequence were available 

(Appendix II; Owsianka and Patel, 1999). These constructs were used to express 

and purify the full-length (aa 1-662; GST-DDX3) and C-terminal portion (aa 409- 

662; GST-DDX3C) of DDX3 as GST-fusion proteins from E. coli in order to i) 

show binding of the panel of MAbs and PAbs to full-length DDX3 and ii) divide 

those recognising the full-length protein into those with epitopes in the N- or C- 

terminal regions of the protein. The constructs used are shown schematically in Fig. 

35. The resulting proteins expressed in E. coli were eluted from glutathione-agarose 

beads, fractionated by SDS-PAGE, and stained with Coomassie blue. A single band 

corresponding to full-length DDX3 (expected molecular weight 73 kDa) fused to the 

26 kDa GST moiety at approximately 99 kDa was seen in tracks containing purified 

GST-DDX3 (Fig. 35b, lanes 1-3). This single band contrasts with the doublet 

detected when mammalian cell extracts were immunoblotted with anti-DDX3 MAb 

AO 196 (Fig. 26; section 3.2.3). This could be due to the lack of a second cellular 

isoform of the protein (as described in section 3.2.3), but could also suggest a lack 

of post-translational processing of the GST-DDX3 protein in the bacterial system. A 

distinct pattern of what are apparently breakdown products of GST-DDX3 were 

consistently seen even in the presence of a high concentration of protease inhibitors 

(Fig. 35b, lanes 1-3). The GST-DDX3C fusion protein was expressed as a triplet 

(Fig. 35b, lanes 4-6) , with a major product running at the expected molecular 

weight of 53 kDa, in addition to two further slightly smaller products. A single 

breakdown product of approximately 32 kDa was seen, which is too large to be free 

GST protein. This may suggest that sequences within the N-terminus of DDX3 are 

responsible for the large number of breakdown products detected with GST-DDX3 

expressed in a bacterial system. Nevertheless, both proteins appear to have been 

purified to a satisfactory extent for subsequent experimental procedures.
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Figure 35: GST-DDX3 and -DDX3C proteins. (A) Schematic 
representation of the constructs in the pGEX-6P-3 (DDX3) or pGEX- 
2T (DDX3C) vector. Expression o f the fusion proteins was under the 
under control of an inducible promoter (Piac). (B) Bacterially- 
expressed GST-DDX3 (lanes 1-3) and GST-DDX3C (lanes 4-6) were 
purified by affinity chromatography on glutathione-agarose beads, 
and the bound protein eluted using glutathione (section 2.29). 1, 5 
and 10 pg of purified protein was fractionated by SDS-PAGE (9%) 
and stained with Coomassie brilliant blue.



3.2. 13 Binding o f  MAbs to GST-DDX3

The same method employed to detect binding of the panel of antibodies to free GST 

protein was used to verify that the anti-DDX3 MAbs and PAbs could detect full- 

length DDX3 expressed as a GST-fusion protein (GST-DDX3). As before, 50 pg 

purified protein was fractionated on two preparative SDS-PAGE gels and 

electrophoretically transferred to ECL membranes. The membranes were cut into 

strips and each probed with a separate anti-DDX3 MAb or PAb. As shown in Fig. 

36a, the majority of the antibodies recognised GST-DDX3 at the expected 

molecular weight of 99 kDa. Interestingly, while most of the antibodies appeared to 

have distinct patterns of affinities for different breakdown products of DDX3, only 

MAb AO 190 recognised the 99 kDa full-length product alone. Antibodies A088 

and AO 194 did not detect DDX3 expressed as a GST-fusion protein by Western 

blotting. Instead, A088 appeared to exclusively bind a protein at a molecular weight 

of approximately 32 kDa, while AO 194 did not appear to react with any fractionated 

proteins in the purified preparation of GST-DDX3. The identity of the 32 kDa 

protein is unknown.

3.2. 14 Binding o f  MAbs to GST-DDX3C

As a preliminary test prior to more exact epitope mapping of the panel of MAbs, the 

antibodies were tested for their ability to bind the C-terminal 253 aa of DDX3 

expressed as a GST-fusion protein (GST-DDX3C). This fragment of DDX3 was 

initially identified as an interacting partner to HCV core protein in a yeast two- 

hybrid screening of a human (liver-derived) cDNA library (Owsianka and Patel, 

1999). 50 pg purified GST-DDX3C as shown previously (Fig. 35b) was fractionated 

on a preparative gel and blotted to ECL membranes as before. The membranes were 

cut into strips and each one probed with a separate anti-DDX3 MAb or PAb. MAb 

A0194 that was unable to detect GST-DDX3 (Fig. 36a; section 3.2.13) and anti- 

GST MAb AO 199 (Fig. 34b; section 3.2.11) were used as negative and positive 

controls, respectively. These antibodies reacted as expected (Fig. 36b, lanes 16 and 

18). In addition to the PAbs which would likely bind GST-DDX3C, not least 

because they also bind GST alone (Fig. 34b; section 3.2.11), the majority of the 

MAbs bound to this fusion protein (Fig. 36b). Only MAbs A02, 35, 166 and 196
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Figure 36a: Reactivity of anti-DDX3 MAbs and PAbs to GST- 
DDX3 by Western blotting. 50 pg protein was fractionated on 
each SDS-PAGE preparative gel (8%) and transferred to ECL 
membranes. The membranes were cut into strips and each one 
probed with a separate anti-DDX3 MAb (lanes 1 -9 and 12-20) or 
PAb (lanes 10-11 and 21-22).
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did not bind the truncated DDX3 GST-fusion protein (lanes 1, 5, 13, and 17, 

respectively), suggesting their epitopes lie within the N-terminal aa 1-408 of DDX3.

3.2. 15 Epitope Mapping o f  MAbs Using Deletion Mutants within DDX3C

An ELISA-based method was employed to roughly determine the epitopes of the 

MAbs binding the C-terminal 253 aa of DDX3. PAbs R438 and R648 were not 

tested by this method as both were shown to recognise GST alone (Fig. 34b; section 

3.2.11). Various deletions had been made within this C-terminal region and cloned 

in frame with the GST-coding seqeunce in pGEX-2T (Owsianka and Patel, 1999). 

The constructs are shown schematically in Fig. 37, and the resulting GST-fusion 

proteins expressed in E. coli are shown in Fig. 38. As described in detail previously 

(section 2.33), diluted purified protein was bound to a 96-well plate (Immulon II, 

Dynex Technologies) by incubation at 4°C for 16 hours. Antibody supernatants were 

diluted in PBST and incubated with the protein for 2 hours. Unbound antibody was 

washed away, while that which had bound the protein was detected by anti-mouse 

IgG-HRP conjugated secondary antibody followed by visualisation with TMB 

developing solution. OD450 was determined using an Opsys MR plate reader (Dynex 

Technologies). AO 199 which was shown previously to specifically bind free GST 

protein was used as a positive control - binding data for this antibody indicated 

strong affinity for all of the GST-fusion proteins as expected, although only weak 

binding was seen to the DDX3 409-622 GST-fusion protein (data not shown) 

indicating this protein was possibly too dilute even though expression levels of this 

protein were reasonable (Fig. 38a, lanes 1-2). Binding of the antibodies to the 

various deletion mutants was used to deduce the epitope of the anti-DDX3 MAbs. 

The majority of the antibodies previously shown to bind GST-DDX3C (Fig. 36b; 

section 3.2.14) recognised an epitope within aa 409-473 (Fig. 39). One exception to 

this was AO 190 - this antibody possessed an epitope within aa 474-552 (Fig. 39). 

The epitope of A034, however, was unclear since this antibody recognised epitopes 

in both 409-473 and 474-662 regions of the protein (Fig. 39). These results were 

confirmed by Western blotting with the same GST-fusion proteins used in the 

ELISA (data not shown).
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Figure 38: Expression of DDX3C deletion mutants from constructs 
shown in Fig. 37 as GST-fusion proteins. The bacterially-expressed 
fusion proteins were purified by affinity chromatography on 
glutathione-agarose beads, and the bound protein eluted using 
glutathione (section 2.29). 10 pi o f purified protein as indicated from 
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Figure 39 - see following pages: Binding of anti-DDX3 MAbs to 
GST-DDX3C deletion mutants. The following pages present the 
binding data generated by ELISA for each of the anti-DDX3 MAbs 
shown previously to bind GST-DDX3C. Three-fold serial dilutions of 
the proteins shown in Fig. 38 were bound to 96-well Immulon II 
ELISA dishes and probed with MAb supernatants diluted 1:5 in 
PBST. Unbound antibody was washed away, while that which had 
bound protein was detected by anti-mouse IgG-HRP conjugated 
secondary antibody followed by visualisation with TMB developing 
solution. OD450 was determined using an Opsys MR plate reader 
(Dynex Technologies).
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3.2. 16 Production o f  DDX3 Mutants to Map MAbs with N-terminal Epitopes

To roughly map the epitopes of the remaining anti-DDX3 MAbs which did not 

interact with the C-terminal 253 aa of DDX3, a series of deletions were made from 

the C-terminus of the protein. pGEX-6P-3-DDX3 (see Appendix II) was cut with 

the relevant restriction enzyme as shown in Fig. 40a in a double digest with EcoKL, 

a unique restriction site in the pGEX-6P-3 multi-cloning site downstream of the 

DDX3-coding sequence. The resulting vector plus DDX3 sequence containing 

deletions from the 3'-end of the coding seqeunce was blunt ended with T4 DNA 

polymerase and/or DNA polymerase I (Klenow fragment) depending on the 

overhangs produced by the restriction enzymes, and re-ligated. The resulting N- 

terminal DDX3 mutants were expressed in E. coli, purified on glutathione-agarose 

beads, and eluted (section 2.29). The purified proteins were fractionated by SDS- 

PAGE along with GST-DDX3 (aa 1-662) and visualised by direct staining with 

Coomassie brilliant blue (Fig. 40b).

3.2. 17 Reactivity o f  Anti-DDX3 MAbs to the N-terminus ofDDX3 by Western 

Blotting

Each of the MAbs which bound GST-DDX3 but did not bind GST-DDX3C or GST 

alone were tested by Western blotting with the GST-DDX3 N-terminal fusion 

proteins described above. It was previously shown that none of these antibodies 

bound free GST protein with high affinity (Fig. 34b; section 3.2.11). Full-length 

DDX3 expressed as a GST-fusion protein (GST-DDX3) was used as a positive 

control; all of the antibodies used in this study interacted with the full-length protein 

as expected (Fig. 4 la-4 Id, lane 5). By detecting binding to N-terminal DDX3 

mutants expressed as GST-fusion proteins it was possible to deduce the epitope of 

the MAbs. Antibodies A02 and A035 possessed epitopes within DDX3 aa 143- 

208, whereas antibodies AO 166 and AO 196 had epitopes within the extreme N- 

terminal aa 1-142 of DDX3. None of the antibodies bound to epitopes within aa 

209-472, possibly suggesting epitopes in this region are not exposed, at least when 

DDX3 is bacterially-expressed as a GST-fusion protein. The epitopes of all anti- 

DDX3 MAbs are summarised in Appendix I. A detailed analysis of the precise 

regions recognised will be performed in future.
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Figure 40: Cloning and expression of DDX3 deletion mutants used 
to map epitopes o f anti-DDX3 MAbs binding the N-terminus. (A) 
Constructs used: restriction sites within the DDX3-coding sequence 
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PAGE (10%) of 5 pg GST-DDX3 deletion mutants (lanes 1-4) and 
full-length (aa 1-662) GST-DDX3 (lane 5) expressed in and 
purified from E. coli. Proteins were visualised by staining with 
Coomassie brilliant blue.
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(C), or AO 196 (D).



3.2. 18 Reactivity o f  Anti-DDX3 MAbs and PAbs to Endogenous DDX3 in 

Hepatocyte Cell Extracts

Although all of the anti-DDX3 MAbs excluding AO 194 and AO 199 specifically 

bound bacterially-produced full-length DDX3 expressed as a GST-fusion protein, it 

was important for future studies of DDX3 to verify that these antibodies could 

recognise the endogenous DDX3 expressed within mammalian cells. To this end, 50 

pg Huh-7 (N) total cell extract was fractionated on a preparative SDS-PAGE gel, 

blotted to ECL membranes, and probed with each anti-DDX3 MAb or PAb in 

parallel by Western blotting. Both R438 and R648 PAbs recognised endogenous 

DDX3 expressed in Huh-7 (N) cell extracts (Fig. 42; lanes 9 and 19, respectively). 

Binding of A034 to hepatocyte cell extracts was not shown due to the very strong 

binding to numerous protein bands with a range of molecular weights, suggesting 

that the protein was non-specifically reacting with several proteins. Surprisingly, 

only two of the remaining MAbs (AO 166 and AO 196) recognised a distinct band 

corresponding to full-length DDX3 in cell extracts from this cell line (Fig. 42, lanes 

12 and 16). As shown previously (Fig. 26; section 3.2.3), anti-DDX3 MAb AO 196 

detected a doublet in Huh-7 (N) cell extracts at the expected molecular weight of 

approximately 73 kDa (Fig. 42, lane 16) - the larger of the two isoforms of DDX3 is 

in greater abundance in this Western blot. AO 166 also recognised the doublet at 

approximately 73 kDa (lane 12). In addition, this antibody detected a further protein 

of molecular weight 46 kDa. MAbs A02 and A035 exclusively bound what is 

apparently the same 46 kDa protein (lanes 1 and 4, respectively). Binding to 

proteins in the range of 70-80 kDa was not seen with these antibodies. It is possible 

this protein represents a truncated form of DDX3. Interestingly, AO 166 has a 

different epitope to both A02 and A035, but still apparently recognises the 46 kDa 

protein. Nevertheless, it appears that while the majority of the panel of MAbs 

recognise DDX3 expressed as a GST-fusion protein (the antigen used to generate 

the antibodies) and not GST alone, all but two of the antibodies do not recognise 

endogenous full-length DDX3 expressed in a hepatocyte cell line. In summary, these 

data show that only two anti-DDX3 MAbs, in addition to the PAbs, are able to 

specifically detect the endogenously-expressed DDX3 protein, in addition to DDX3 

as a bacterially-expressed fusion protein in both Western blotting and
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Figure 42: Reactivity of anti-DDX3 MAbs and PAbs to endogenous 
DDX3 in Huh-7 (N) cell extracts by Western blotting. 50 jag total cell 
protein extract was fractionated on each preparative SDS-PAGE gel 
(8%) and transferred to ECL membranes. The membranes were cut 
into strips and each one probed with a separate anti-DDX3 MAb 
(lanes 1-8 and 10-18) or PAb (lanes 9 and 19).



immunofluorescence. These antibodies are also capable of immunoprecipitating 

DDX3 from hepatocytes (Owsianka and Patel, unpublished).

3. 3 Discussion

An investigation presented here into the expression of DDX3 mRNA and protein 

suggests it is a highly conserved and ubiquitous cellular factor, possibly indicating 

its involvement in essential processes within the cell. A DDX3-specific probe 

(derived from a region of DDX3 that codes for the variable N-terminus of the 

protein in order to detect the mRNA transcript encoding DDX3 only, rather than 

every mRNA coding for the central conserved domain), was used in Northern blot 

analyses. DDX3 mRNA was detected in total extracted RNA from a range of 

mammalian cell lines and in poly(A)+ RNA from many diverse human tissues. 

Similarly, an anti-DDX3 MAb directed against the extreme N-terminal 1-142 aa of 

the protein was able to specifically detect a protein at the expected molecular weight 

in all mammalian cell lines tested by Western blotting. The same antibody detected 

a diffuse staining of the cytoplasm in the same range of mammalian cell lines by 

indirect immunofluorescence. If the above data are taken as suggestive of a protein 

that is indispensable for normal cellular function, this could explain why generation 

of DDX3 anti-sense cell lines was not possible. The apparently lethal effect of 

removing DDX3 from the cellular context is consistent with the requirement of the 

yeast homologue of DDX3 (Dedlp) in an essential cellular process, as determined 

by genetic knockout assays (section 1.13.6; Chuang et al., 1997).

Endogenous DDX3 was shown to co-localise with core protein expressed in the 

context of the other HCV structural proteins in hepatocytes, consistent with previous 

studies in this cell type or other mammalian cell lines with over-expressed DDX3 

(Mamiya and Worman, 1999; You et al., 1999b), or endogenous DDX3 detected by 

specific PAbs in HeLa cells (Owsianka and Patel, 1999). The same co-localisation 

was seen in the HCV sub-genomic replicon expressing cell line H9-13, providing 

the first evidence that the interaction between the two proteins occurs in an 

experimental situation that is as close to natural infection as possible in the absence 

of an efficient cell culture system for HCV. However, the exact domain of DDX3
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which interacts with core protein remains elusive. While an ‘RS-like’ region at the 

C-terminus of the protein could specifically pull-down in v/7ro-translated core 

protein, the full-length protein lacking this domain also bound core protein. This 

suggests that although core protein can bind the RS domain of DDX3 (or vice 

versa), it is not the only domain essential for such binding. It is possible that the 

DDX3 ‘RS’-like domain may be involved in protein-protein interactions within the 

cell, but with regard to its interaction with core protein the RS domain is not 

absolutely required; other region(s) of DDX3 may also be involved.

MAbs and PAbs raised against full-length or truncated DDX3 expressed as a GST- 

fusion proteins were characterised here in terms of their epitopes on DDX3. The 

majority of antibodies bound the bacterially-expressed full-length protein, and their 

epitopes were mapped further using truncated forms of DDX3, again expressed as 

GST-fusion proteins. However, only two anti-DDX3 MAbs (AO 166 and AO 196), 

in addition to both PAbs (R438 and R648), were capable of recognising cellular 

DDX3 in hepatocyte cell extracts (Fig. 42; section 3.2.18). It is unlikely that the 

reason for this is due to the presence of DDX3 as part of a cellular complex or due 

to conformational anomalies that would conceal potential epitopes, since these 

complexes and any folding should be disrupted by the denaturing conditions of 

SDS-PAGE. It is therefore possible that DDX3 undergoes extensive post- 

translational modifications in mammalian cells, which may obscure potential 

epitopes that are available in bacterially-expressed DDX3. Indeed, analysis of the 

protein sequence indicates DDX3 possesses two N-linked glycosylation sites within 

the 409-473 region of DDX3 (see Appendix IV), an epitope on bacterially-expressed 

DDX3 bound by many of the MAbs (see Appendix I, Fig. 88). Numerous casein 

kinase II and protein kinase C phosphorylation sites are also predicted in this region 

(data not shown). The importance of a putative truncated form of DDX3 detected by 

three anti-DDX3 MAbs in hepatocyte cell extracts is unclear at this stage, although 

since neither of the anti-DDX3 PAbs are able to detect this form it may well be that 

this is a distinct cellular factor. Indeed, the archetypal and most-studied DEAD-box 

RNA helicase eIF4A (Linder et a l , 1989; Rogers et a l , 2001), which shares 

homology with a small portion of the epitope of both A 02 and A035 (see Appendix
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IV, Fig. 88), also has a molecular weight of approximately 46 kDa (Lorsch and 

Herschlag, 1998).

Having established that i) DDX3 is a highly conserved and ubiquitous cellular 

protein and ii) it interacts with core protein in a currently available assay mimicking 

an HCV cell culture system, further investigation of DDX3 is now required to 

determine its normal cellular function, and any modulation of this function by core 

protein.



C H A P T E R  F O U R :

Subcellular Localisation and Biochemical Properties of DDX3



4 .1  Introduction

An detailed understanding of the localisation of DDX3 within human hepatocytes is 

critical in establishing the normal cellular function of DDX3, and in determining the 

significance of its interaction with HCV core protein. To achieve this, the full panel 

of MAbs raised against DDX3, characterised previously by Western blotting, were 

tested for their ability to recognise the endogenous protein in a hepatocyte cell line 

by indirect confocal immunofluorescence microscopy. These studies were also 

performed in the presence of the HCV structural proteins (supplied by rVV-C-El- 

E2) to assess the effect of core protein on the localisation of cellular DDX3 as 

detected by these antibodies. The subcellular localisation of a putative truncated 

form of DDX3, detected in hepatocyte total cell extracts by Western blotting with 

anti-DDX3 MAbs A02 and A035 (Fig. 42; section 3.2.18), was also investigated. 

To gain further insight into DDX3 and its normal cellular function, the full-length 

protein and a homologous protein from a different organism (Xenopus laevis An3; 

section 1.13.4) as a control were expressed from a plasmid construct transfected into 

the Huh-7 (N) cell line. As valuable tools to determine the role of specific domains 

in localisation of DDX3, mutated or truncated forms of this protein were similarly 

expressed (by generation of the appropriate plasmid constructs followed by 

transfection into hepatocytes) and investigated in detail. One such mutant lacking a 

leucine-rich putative nuclear export signal (NES), identified in DDX3 following 

reports of a functional NES inX. laevis An3 (Askjaer et al., 1999), was investigated. 

Subcellular fractionation of mammalian cell lines into cytoplasmic and nuclear 

extracts was also carried out to investigate this potentially important aspect of 

DDX3 by Western blotting with anti-DDX3 MAbs. The localisation in cells of 

DDX3 carrying a mutation within the DEAD-box (section 1.10.6), a protein which 

shows a markedly diminished ability to hydrolyse ATP relative to the wild-type 

DDX3 (P. Askjaer and J. Kjems, personal communication), is also studied here. The 

ability of all the plasmid-expressed DDX3 proteins to interact with core protein 

expressed by rVV-C-El-E2 in hepatocytes was tested to gain further insight into the 

DDX3/core interaction.
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The biochemical properties of bacterially-expressed DDX3 are also investigated 

here. RNA helicases, and indeed all helicases, are believed to utilise the energy 

derived from the hydrolysis of ATP or other nucleotides to drive mechanical 

movement of bound nucleic acid (section 1.10.1). To investigate hydrolysis of 

nucleotides by purified GST-DDX3, the protein was incubated with radiolabelled 

dATP and breakdown products separated by thin-layer chromatography. To 

investigate helicase activity, GST-DDX3 was incubated with a radiolabelled non

specific double-stranded (ds) RNA substrate produced by in vitro transcription. The 

dsRNA and any unwound single-stranded (ss) RNA species were separated by 

PAGE. As an appropriate positive control in the dATPase and helicase enzymatic 

assays described above, the helicase domain of the HCV NS3 protein (section 

1.2.5.2) was cloned and expressed as a GST-fusion protein.

4. 2 Results

4.2. 1 Further Investigation into Subcellular Localisation o f  Endogenous DDX3 by 

Indirect Confocal Immunofluorescence Microscopy

While initial studies indicated that all the anti-DDX3 MAbs and PAbs recognised 

DDX3 expressed as a GST-fusion protein (Fig. 36a; section 3.2.13), apparently only 

two MAbs (AO 166 and AO 196) from a panel of 18 such antibodies, in addition to 

both PAbs, detected full-length cellular DDX3 in human hepatocyte cell extracts by 

Western blotting (Fig. 42; section 3.2.18). Indeed, AO 196 appeared to be the only 

anti-DDX3 MAb that detected a single band at the expected molecular weight of 

full-length DDX3 in hepatocytes cell extracts. Immunofluorescence studies of 

DDX3 detected by anti-DDX3 MAb AO 196 in mammalian cells suggested a diffuse 

localisation within the cytoplasm, with some punctate staining (Figs 27 and 29; 

sections 3.2.4 and 3.2.6). This immunofluorescence assay allowed detection of 

DDX3 in its native conformation, as opposed to a denatured form by Western 

immunoblotting, and is expanded here to include the entire panel of anti-DDX3 

antibodies. The antibodies were tested in parallel with MAb AO 196 for their ability 

to recognise endogenous DDX3 in the Huh-7 (N) cell line. As controls, antibodies 

raised against the cytoplasmically localised P-subunit of tubulin and the nuclear-
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targeted splicing factor SC-35 were used (see Appendix I). Huh-7 (N) cells were 

seeded on coverslips with the aim to reach 70-80% confluency following 16 hours at 

37°C. Cells were then fixed, permeabilised and probed with the appropriate 

antibody as described previously (section 2.44). As expected, tubulin localised 

exclusively in the cytoplasm, either in intricate networks or in the vicinity of the cell 

membrane (Fig. 43a) representing part of the cellular cytoskeletal system (Alberts et 

al., 1994). On the other hand, SC-35 was abundant in nuclear speckles (Fig. 43b), 

consistent with previous reports (Spector, 1996). Detection of SC-35 with this 

specific MAb confirms that the method of fixation and permeabilisation allows 

access of antibody to the nuclear compartment. In addition, appropriate binding by 

both anti-P-tubulin and anti-SC-35 antibodies verified that the methods used for 

sample preparation and detection were suitable for this study. However, consistent 

with the Western blotting data, where the full panel of anti-DDX3 antibodies was 

tested against the cellular form of the protein in the same hepatocyte cell line (Fig. 

42; section 3.2.18), only 2 of the MAbs (AO 166, in addition to the positive control 

AO 196) detected a cellular protein in the Huh-7 (N) cell line which was likely to be 

DDX3. Both antibodies exhibited a diffuse cytoplasmic staining (Fig. 44). Although 

AO 166 detected a protein with weak affinity at 46 kDa in Western blots of 

hepatocyte cell extracts (Fig. 42; section 3.2.18), this antibody did not appear to 

have a different pattern of staining of hepatocytes relative to that seen with AO 196 

(Fig. 44). Potentially, detection of the 46 kDa putative truncated form of DDX3 by 

AO 166 could be masked by the diffuse staining of the cytoplasm corresponding to 

the full-length DDX3 protein. Indeed, MAbs A02 and A035, both of which 

specifically detected the 46 kDa band with stronger affinity than AO 166 in 

hepatocyte cell extracts (Fig. 42; section 3.2.18), showed a distinct punctate pattern 

of staining in the cytoplasm of a small proportion of cells (Fig. 45). The fact that so 

few cells in the population contained this putative truncated form of DDX3 suggests 

its expression may be cell-cycle related. Interestingly, both A02 and A035 MAbs 

detect the same epitope containing a small portion of the central conserved domain 

of DDX3 (aa 143-208; Fig. 41a and b), and are the only antibodies within the panel 

generated that recognise this region. This could indicate that the protein is a related 

cellular factor, although neither of the two anti-DDX3 PAbs detect this protein in
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Figure 43: Detection of (3-tubulin and SC-35 in hepatocytes by 
specific MAbs. Huh-7 (N) cells grown on coverslips were fixed and 
then probed with appropriately diluted primary antibody (panel A: 
anti-P-tubulin, panel B: anti-SC-35) followed by anti-mouse IgG- 
FITC conjugated antibody.



II

Figure 44: Detection o f DDX3 in hepatocytes by MAbs A0166 and 
AO 196. Huh-7 (N) cells grown on coverslips were fixed and then 
probed with appropriately diluted primary antibody (panel A: A O I66, 
panel B: A0196) followed by anti-mouse IgG-FITC conjugated 
antibody.



B

Figure 45: Detection of a putative truncated form of DDX3 in 
hepatocytes by MAbs A 02 and A035. Huh-7 (N) cells grown on 
coverslips were fixed and then probed with appropriately diluted 
primary antibody (panel A: A 02, panel B: A035) followed by anti
mouse IgG-FITC conjugated antibody.



Figure 46: Detection of unknown cellular factors by MAbs A034 
and AO190 in hepatocytes. Huh-7 (N) cells grown on coverslips were 
fixed and then probed with appropriately diluted primary antibody 
(panel A: A034, panel B: AO190) followed by anti-mouse IgG-FITC 
conjugated antibody.



Figure 47: Detection of DDX3 in hepatocytes by specific PAbs R438 
and R648. Huh-7 (N) cells grown on coverslips were fixed and then 
probed with appropriately diluted primary antibodies (panel A: R438, 
panel B: R648) followed by anti-rabbit IgG-Cy5 conjugated antibody.



hepatocyte cell extracts (Fig. 42; section 3.2.18). As shown in Fig. 46a, A034 

showed staining for protein(s) that were unlikely to be DDX3, due to the pattern of 

staining which suggested an association of the cellular factor detected with the 

cytoskeletal network. Moreover, this antibody previously showed strong affinity for 

many proteins with a wide range of molecular weights in Huh-7 (N) extracts 

(section 3.2.18). AO 190 appeared to recognise a protein which may or may not be 

DDX3 that was located in varying amounts within the perinuclear cytoplasm, tightly 

associated with the nucleus (Fig 46b). This antibody bound full-length DDX3 

expressed as a GST-fusion protein, but was the only MAb not to bind any of fusion 

protein breakdown products (Fig. 36a; section 3.2.13). AO 190 was also unique in its 

ability to bind to the DDX3 epitope aa 474-552 (Fig. 39; section 3.2.15). However, 

this MAb did not detect DDX3 in hepatocyte cell extracts by Western blotting (Fig. 

42; section 3.2.18). The pattern of staining of the Huh-7 (N) cell line by anti-DDX3 

PAbs R438 and R648 (Fig. 47) is similar to that of anti-DDX3 MAbs AO 166 and 

AO 196 (Fig. 44). Since only these four antibodies/antisera detect a protein 

corresponding to full-length DDX3 in Huh-7 (N) cell extracts (Fig. 42; section 

3.2.18), these data add weight to the theory that only these antibodies are able to 

detect cellular DDX3 in its full-length form.

4.2. 2 Further Investigation o f  DDX3 Co-localising with Core Protein

Previously, it was shown that the anti-DDX3 MAb AO 196 could detect DDX3 co- 

localising with core protein in cells infected with rVV-C-El-E2 (Fig. 29; section 

3.2.6). The ability of the remaining MAbs to detect cellular DDX3 co-localising 

with core protein detected by anti-core PAb R525 (see Appendix I) in hepatocytes 

by indirect confocal immunofluorescence microscopy was investigated in parallel 

with MAb AO 196. Anti-DDX3 PAbs R438 and R648 have previously been shown 

to detect DDX3 co-localising with core protein (Owsianka and Patel, 1999; 

unpublished). MAbs specific for cellular p-tubulin and SC-35 (see above) were used 

in conjunction with the anti-core PAb to probe Huh-7 (N) cells to confirm the 

specificity of anti-DDX3 MAbs for DDX3 bound to core protein, and determine any 

gross cellular changes induced by infection with vaccinia virus. Both proteins 

retained their original locations in the presence of core protein and the HCV
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glycoproteins (Figs 48a and b), although changes in localisation of p-tubulin, 

possibly attributable to infection with vaccinia virus, were seen. In contrast, MAbs 

AO 166 and the positive control AO 196 were able to detect DDX3 co-localising 

with core protein (Figs 48c and d, respectively). The cellular factor bound by MAbs 

A02 and A035 (Figs 48e and 48f, respectively), likely to be the same 46 kDa 

protein as determined by Western blotting using Huh-7 (N) total cell extracts, did 

not appear to re-localise in the presence of core protein and/or vaccinia virus. This is 

perhaps unsurprising, given that this protein could potentially be a truncated form of 

DDX3 that lacks the core protein-interacting domain. However, it is possible that 

staining for core protein masked detection of this protein by MAbs A02 and A035. 

Proteins detected by A034 and AO 190 did not alter localisation in the presence of 

core protein (Figs 48g and 48h, respectively), even although AO 190 detected a 

protein in a similar subcellular domain as core protein (Fig. 46b; section 4.2.1).

4.2. 3 Comparative Analysis o f Protein Expression in Huh-7 (N) and H9-13 Cell 

Lines

Relative to its localisation in the Huh-7 (N) cell line, DDX3 detected by MAb 

AO 196 does not appear to re-localise in the HCV sub-genomic replicon-expressing 

cell line H9-13 (Fig. 32; section 3.2.8). The remaining MAbs were tested in parallel 

with AO 196 for their reactivities in H9-13 cells to verify this original result, since 

DDX3 is an RNA-binding protein (P. Askjaer, personal communication), and may 

alter localisation in the presence of large amounts of HCV RNA. Consistent with 

the AO 196 binding data, DDX3 detected by AO 166 did not re-localise in H9-13 

cells (data not shown). However, whereas A 02 and A035 detect a very distinct 

punctate staining in a small proportion of the population of Huh-7 (N) cells (Fig. 45; 

section 4.2.1), both antibodies detected the same pattern of staining in the majority 

of H9-13 cells. The data for A02 only is presented in Fig. 49. This suggests 

expression of this protein is upregulated or switched-on in the presence of the HCV 

replicon RNA and/or HCV nonstructural proteins. The apparent ubiquitous 

expression of the 46 kDa protein in H9-13 but not Huh-7 (N) cells could also be 

attributable to a clonal effect. In other words, a cell expressing the protein that 

allowed replication of the HCV sub-genomic replicon RNA gave rise to the H9-13

132



Figure 48a: Localisation of SC-35 in the presence o f HCV 
structural proteins in hepatocytes. Huh-7 (N) cells grown on 
coverslips were infected at m.o.i. o f 0.5 with rVV-C-El-E2, fixed, 
and then probed with anti-SC-35 MAb/anti-core PAb R525 in 
combination followed by anti-mouse IgG-FITC/anti-rabbit IgG- 
Cy5 conjugated antibodies.



Figure 48b: Localisation of p-tubulin in the presence o f HCV 
structural proteins in hepatocytes. Huh-7 (N) cells grown on 
coverslips were infected at m.o.i. o f 0.5 with rVV-C-El-E2, fixed, 
and then probed with anti-p-tubulin/anti-core PAb R525 followed 
by anti-mouse IgG-FITC and anti-rabbit IgG-Cy5 conjugated 
antibodies.



Figure 48c: Localisation of DDX3 in the presence of HCV 
structural proteins by MAb AO 166 in hepatocytes. Huh-7 (N) cells 
were infected at m.o.i. o f 0.5 with rVV-C-El-E2, fixed, and then 
probed with appropriately diluted AO 166/anti-core PAb R525 in 
combination, followed by anti-mouse IgG-FITC and anti-rabbit 
IgG-Cy5 conjugated antibodies.



Figure 48d: Localisation of DDX3 in the presence of HCV 
structural proteins by MAb AO 196 in hepatocytes. Huh-7 (N) cells 
were infected at m.o.i. of 0.5 with rVV-C-El-E2, fixed, and then 
probed with appropriately diluted A0196/anti-core PAb R525 in 
combination, followed by anti-mouse IgG-FITC and anti-rabbit 
IgG-Cy5 conjugated antibodies.
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Figure 48e: Localisation o f putative truncated form o f DDX3 in 
the presence o f HCV structural proteins by MAb A 02. Huh-7 (N) 
cells were infected at m.o.i. o f 0.5 with rVV-C-El-E2, fixed, and 
then probed with appropriately diluted A02/anti-core PAb R525 in 
combination, followed by anti-mouse IgG-FITC and anti-rabbit 
IgG-Cy5 conjugated antibodies.



Figure 48f: Localisation o f a putative truncated form of DDX3 in 
the presence of HCV structural proteins by MAb A035 in 
hepatocytes. Huh-7 (N) cells were infected at m.o.i. o f 0.5 with 
rVV-C-El-E2, fixed, and then probed with appropriately diluted 
A035/anti-core PAb R525 in combination, followed by anti-mouse 
IgG-FITC and anti-rabbit IgG-Cy5 conjugated antibodies.



Figure 48g: Localisation of unknown cellular factor(s) in the 
presence o f HCV structural proteins by MAb A034 in hepatocytes. 
Huh-7 (N) cells were infected at m.o.i. of 0.5 with rVV-C-El-E2, 
fixed, and then probed with appropriately diluted MAb A034/anti
core PAb R525 in combination, followed by anti-mouse IgG-FITC 
and anti-rabbit IgG-Cy5 conjugated antibodies.
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Figure 48h: Localisation of unknown cellular factor(s) in the 
presence of HCV structural proteins by MAb AO190 in 
hepatocytes. Huh-7 (N) cells were infected at m.o.i. o f 0.5 with 
rVV-C-El-E2, fixed, and then probed with appropriately diluted 
A190/anti-core PAb R525 in combination, followed by anti-mouse 
IgG-FITC and anti-rabbit IgG-Cy5 conjugated antibodies.
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cell line. Expression of this protein may therefore have implications for HCV 

replication, although its presence may simply be coincidental. Regardless, any 

upregulation of expression of this protein was not qualitatively detectable by 

Western blotting - total cell extracts from Huh-7 (N) and H9-13 cells were probed in 

parallel using A 02 and appeared to show the same level of expression of this 46 

kDa protein (Fig. 49c). Consistent with previous immunofluorescence studies in the 

Huh-7 (N) cell line (section 4.2.1), none of the remaining MAbs recognised proteins 

in the H9-13 cell line (data not shown).

4.2. 4 Expression o f DDX3 and X. laevis An3 from a Mammalian Expression 

Construct

In order to study DDX3 in more detail, particularly with a view to subsequent 

rational mutagenesis/deletion analysis of DDX3, constructs were generated to allow 

expression of the protein in mammalian cells (see Appendix II for a full list of 

DDX3 constructs generated here and in following sections). The pZeoSV2 (+) 

mammalian expression vector (Fig. 28a; section 3.2.5) was used for expression of 

DDX3. This vector contains SV40 and bacteriophage T7 RNA polymerase promoter 

sites allowing high level expression in mammalian cells, particularly when T7 RNA 

polymerase is supplied in trans. Transfections with pZeoSV2 (+) constructs were 

preceded by mock-infection or infection with rVV expressing T7 RNA polymerase 

(vTF7.3, see Appendix III; Fuerst et al., 1986) to increase transfection efficiency 

and expression levels. DDX3 cDNA was sub-cloned from the pGEX-6P-3-DDX3 

construct and transferred to the BamYU. site downstream from SV40 and T7 

promoters in the pZeoSV2 (+) vector (Fig. 28a; section 3.2.5) to produce pDDX3. 

An oligonucleotide linker was used to insert the seqeunce encoding MRGS(H)6 

immediately preceeding and in frame with the full-length DDX3 cDNA. This 

histidine-tagged version of DDX3 (p6h-DDX3) was cloned as an appropriate 

control to differentiate between endogenous DDX3 and DDX3 expressed from the 

plasmid, and to verify results obtained with anti-DDX3 MAbs or PAbs. As a control 

in the investigation of the localisation of DDX3 expressed by a plasmid-based 

vector in the presence of vTF7.3, cDNA encoding the X. laevis An3 protein (section 

1.13.4), a protein which shares 86% similarity with DDX3, was amplified from
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Figure 49: Detection o f a putative truncated form of DDX3 or a 
related cellular factor by MAb A 02 in Huh-7 (N) and H9-13 cells. 
Confocal images of A 02 reactivity in (A) Huh-7 (N) and (B) H9-13 
cell lines. (C) Total cell extracts from Huh-7 (N) and H913 cell lines 
at the protein concentration shown were fractionated by SDS-PAGE 
(10%) and immunoblotted with A02.



pET-21a-An3 (see Appendix II) with and without histidine-tag by PCR using 

specific primers and transferred to pZeoSV2 (+) to make pAn3 and p6h-An3 

constructs. Following sequencing of the new constructs with appropriate primers, 

recombinant protein expression in transfected cell extracts was confirmed by 

Western blotting the extracts with anti-DDX3 MAb AO 196 (Fig. 50a). DDX3 

expressed from construct pDDX3 or p6h-DDX3 had the same molecular weight and 

was apparently processed in a similar manner to endogenous DDX3 in Huh-7 (N) 

cells detected by AO 196 (Fig. 50a, lanes 1 and 3). In addition, infection of cells with 

vTF7.3 had no discernible effect on expression of DDX3, and cross-reaction of anti- 

DDX3 MAb AO 196 with vaccinia virus proteins did not occur (lanes 1-3 and 5). 

Previous results indicated that recombinant An3 expressed in E. coli via the pET- 

21a-An3 construct was sufficiently similar to DDX3 to be detected by both anti- 

DDX3 MAbs AO 166 and AO 196 (data not shown). Expression from either pAn3 or 

p6h-An3 construct gave rise to a product detected by AO 196 of the expected 

molecular weight of 77 kDa (lane 4 and 6), although protein expressed from pAn3 

gave an slightly altered banding pattern. Expression from constructs p6h-DDX3 and 

p6h-An3, each containing a histidine-tag, was confirmed using the RGS-His MAb 

(QIAGEN) (Fig. 50b, lanes 5 and 6). This antibody recognises the epitope 

MRGS(H)6 (section 2.5). Expression from these constructs detected by the RGS-His 

MAb was similar to expression of endogenous DDX3 and expression of DDX3 or 

An3 by plasmid lacking the histidine-tag (Fig. 50b).

4.2. 5 Investigation into the Subcellular Localisation ofDDX3 and An3 Expressed 

Via Mammalian Expression Construct by Indirect Confocal Immunofluorescence 

Microscopy.

Following confirmation that introduction of either DDX3 or An3 (with or without 

histidine-tag) expression constructs into Huh-7 (N) cells led to production of the 

appropriate protein, their localisation was studied by indirect confocal 

immunofluorescence microscopy. Huh-7 (N) cells grown to a confluency of 80-90% 

on coverslips were infected with vTF7.3 at an m.o.i. of 5 for 1 hour prior to 

transfection (as described in section 2.35) with the relevant construct (1 pg). The 

cells were washed, fixed and permeabilised as described in section 2.44. The
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Figure 50: Detection of DDX3, An3 and their histidine-tagged 
counterparts expressed by plasmid in hepatocytes. Huh-7 (N) cells 
were either mock-transfected (lanes 1 and 2), or transfected with the 
constructs as indicated, following mock-infection (lane 1) or 
infection with vTF7.3 at m.o.i o f 5 (lanes 2-6). At 16 hours post
transfection, cells were washed, harvested and 20 pg total protein 
subjected to SDS-PAGE (8%) followed by Western immunoblotting 
with (A) anti-DDX3 MAb AO 196 or (B) anti-histidine tag MAb 
RGS-His.



localisation of DDX3 or An3 was determined using either anti-DDX3 MAb AO 196, 

which would be expected to detect recombinant DDX3 or An3 in addition to 

cellular DDX3, or the RGS-His antibody, which should allow detection of the 

recombinant 6h-DDX3 or 6h-An3 alone. Consistent with a previous report of 

punctate cytoplasmic staining for over-expressed DDX3 in Huh-7 cells (You et al., 

1999b), DDX3 expressed via mammalian expression construct either with or 

without histidine-tag detected by MAbs AO 196 or RGS-His was consistently found 

in distinct ring-like structures distributed throughout the cytoplasm together with 

some diffuse staining of the cytoplasm (Figs 51a and 51c). In contrast, An3 was 

located in the perinuclear cytoplasm, although ring-like structures similar to those 

seen with the DDX3 expression construct were present (Figs 50b and 50d). This 

localisation of An3 is consistent with a role in intracellular shuttling (Askjaer et al., 

1999). In both cases, the RGS-His antibody did not detect anything above 

background levels of cellular auto-fluorescence when the histidine-tag was not 

present (data not shown). The fact that An3 has a different localisation to its 

homologue DDX3 expressed from the pZeoSV2 (+) vector suggests it is unlikely 

that the localisation of DDX3 is an artifact of the expression system used. 

Furthermore, neither AO 196 nor RGS-His antibodies detected extra bands, relative 

to the expression of endogenous protein detected by AO 196, in Western blots when 

cell extracts from cells infected with vTF7.3 were examined (Fig. 50; section 4.2.4). 

Most importantly, the localisation of DDX3 expressed by plasmid described here 

occurred without vTF7.3 infection (Fig. 51e), although expression levels were 

consistently low.

To test whether plasmid-expressed (exogenous) DDX3 (and An3) interact with 

HCV core, cells were co-infected with vTF7.3 and rVV-C-El-E2 (m.o.i = 0.5 each), 

and transfected with the relevant construct. As expected, 6h-DDX3 detected by the 

RGS-His antibody co-localised with core protein expressed by rVV-C-El-E2 (Fig. 

52a). Furthermore, 6h-An3 expressed and detected in the same manner also co

localised with core protein (Fig. 52b), presumably due to the high degree of 

similarity between the proteins. Co-localisation of recombinant An3 with core 

protein had no discernible effects on the localisation of core.
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Figure 51: Localisation of DDX3, An3, and their histidine-tagged 
counterparts expressed by plasmid in hepatocytes. Huh-7 (N) cells on 
coverslips were mock-infected (E) or infected with vTF7.3 (m.o.i. = 5) 
(A to D) prior to transfection with the plasmids (1 pg) as shown. The 
cells were fixed at 16 hours post-transfection and probed with either 
MAb AO 196 or RGS-His as indicated. Bound antibodies were 
visualised with anti-mouse IgG-FITC conjugated antibody.



Figure 52a: Co-localisation of histidine-tagged DDX3 expressed 
by plasmid with core protein. Huh-7 (N) cells were infected with 
rVV-C-El-E2 and vTF7.3 (m.o.i. = 0.5 each) for 1 hour and 
subsequently transfected with p6h-DDX3 construct (1 pg). 16 
hours post-transfection, cells were fixed and then probed with 
appropriately diluted MAb RGS-His/anti-core PAb R525 in 
combination, followed by anti-mouse IgG-FITC/anti-rabbit IgG- 
Cy5 conjugated antibodies.



Figure 52b: Co-localisation o f histidine-tagged An3 expressed by 
plasmid with core protein. Huh-7 (N) cells were infected with rVV- 
C-E1-E2 and vTF7.3 (m.o.i. = 0.5 each) for 1 hour and 
subsequently transfected with p6h-An3 construct (1 pg). 16 hours 
post-transfection, cells were fixed and then probed with 
appropriately diluted MAb RGS-His/anti-core PAb R525 in 
combination, followed by anti-mouse IgG-FITC/anti-rabbit IgG- 
Cy5 conjugated antibodies.



4.2. 6 Identification o f  a Nuclear Export Signal at the N-terminus o f  DDX2

Analysis of the protein sequence of DDX3 suggested the protein contains all of the 

conserved motifs of a member of the DEAD-box family of RNA helicases, and a 

putative RS domain (section 1.9.6.9; Owsianka and Patel, 1999; You et al., 1999b). 

Following reports of a nuclear export signal (NES) at the extreme N-terminus of X  

laevis An3 that participates in its nucleocytoplasmic shuttling (Askjaer et al., 1999), 

a similar sequence was searched for in DDX3. Consistent with the idea that DDX3 

and its homologues are highly related, a putative NES was detected. This NES is 

itself highly related to other proteins that are known to be recognised by CRM1 

(Fig. 53a) - a soluble, saturable factor that mediates export of such proteins from the 

nucleus (Fomerod et al., 1997; Fukada et al., 1997; Stade et al., 1997). CRM1 

binding of its cargo via the leucine-rich NES is stabilised by cooperative binding of 

the small GTPase Ran in its GTP-bound form (Fig. 53b; Askjaer et a l , 1998; 

Fomerod et al., 1997; Weis, 1998). The associated GTPase-activating protein 

RanGAP (termed RanGAPl in vertebrates and Rnalp in yeast) promotes GTP 

hydrolysis, while the nucleotide exchange factor RanGEF (termed RCC1 in 

vertebrates) promotes RanGDP to RanGTP exchange. A steep RanGTP-RanGDP 

gradient is predicted across the nuclear envelope, since RanGAPl is found in the 

cytoplasm whereas RCC1 is chromatin bound and present only in the nucleus 

(Gorlich et al., 1996). Based on the RanGTP dependent NES-CRM1 interaction, 

this implies that NES binding to CRM1 is stable in the nucleus and unstable in the 

cytoplasm, suggesting a mechanism for the unidirectional transport of NES- 

containing proteins, possibly together with bound RNAs (Fig. 53b; Fomerod et al., 

1997). The putative NES in the DDX3 protein sequence (Fig. 53a) may indicate it is 

one such protein that uses the above pathway to be actively transported from the 

nucleus. This mechanism is exemplified by HIV-1 Rev protein that uses its NES to 

export genomic and subgenomic HIV-1 mRNAs from the nucleus (Pollard and 

Malim, 1998).

Following the identification of such an NES in DDX3, binding of CRM1 to the 

protein was determined in vitro by collaboration with P. Askjaer and J. Kjems 

(University of Aarhus, Denmark) using the pGEX-6P-3-DDX3 construct described
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Figure 53b: Modulation o f CRM 1-dependent nuclear-cytoplasmic 
transport by the small GTPase, Ran. CRM1 binding of its cargo via 
the leucine-rich NES is stabilised by cooperative binding of Ran
GTP. A steep RanGTP-RanGDP gradient is predicted across the 
nuclear envelop; based on the RanGTP dependent NES-CRM1 
interaction, this implies that NES binding to CRM1 is stable in the 
nucleus and unstable in the cytoplasm, suggesting a mechanism for 
the unidirectional transport o f NES-containing proteins, possibly 
together with bound RNAs (taken from Clarke and Zhang, 2001)



previously (Fig. 35a; section 3.2.12) to supply the protein in the same assay 

originally described for An3 (Askjaer et al., 1999). Accordingly, DDX3 bound 

CRM1 in a RanGTP dependent manner (P. Askjaer and J. Kjems, personal 

communication). DDX3 did not bind CRM1 in the presence of RanGDP, consistent 

with the model described above. The following sections describe an investigation 

into the functionality of the putative NES of DDX3 by using i) an 

immunofluorsecence assay similar to that described in section 4.2.5, and ii) 

subcellular ffactionaction of cell lines and Western blotting for DDX3 to delineate 

the cellular compartment(s) in which the protein is found.

4.2. 7 Cloning and Expression o f DDX3 Lacking a Leucine-rich Putative Nuclear 

Export Signal in Hepatocytes

It was postulated that removing the putative NES of DDX3 would lead to 

accumulation of DDX3 in the nucleus. To investigate this, appropriate primers were 

designed (see Appendix V) to amplify DDX3 cDNA without the putative NES- 

coding sequence (nt 1-63 of the full-length DDX3 sequence - see Appendix IV). The 

PCR products were transferred to the pZeoSV2 (+) mammalian expression construct 

(Fig. 28a, section 3.2.5), with and without a histidine-tag, to produce pANES-DDX3 

and p6h-ANES-DDX3. The resulting constructs contained the DDX3-coding 

sequence from nt 64 to the stop codon. Following sequencing of the constructs with 

suitable primers, expression from the new constructs was confirmed by Western 

blotting transfected cell extracts as described in section 4.2.4. ANES-DDX3 with or 

without the histidine-tag migrated slighlty below the wild-type protein, as would be 

expected for such a deletion mutant lacking the N-terminal 21 aa, and was processed 

in a similar manner to endogenous DDX3 in Huh-7 (N) cells and over-expressed 

DDX3 containing the NES expressed from the same vector when detected by anti- 

DDX3 MAb AO 196 (Fig. 54a, lanes 3-6). Expression from all constructs containing 

the histidine-tag was confirmed using the RGS-His MAb (Fig. 54b). Expression 

from the p6h-ANES-DDX3 construct detected by MAb RGS-His was similar to 

expression of endogenous DDX3 detected by AO 196, and was indistinguishable 

from DDX3 or ANES lacking the histidine-tag.
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Figure 54: Detection o f ANES-DDX3 protein expressed by plasmid 
in hepatocytes. Huh-7 (N) cells were either mock-transfected (lanes 1 
and 2), or transfected with the constructs as shown following mock- 
infection (lane 1) or infection with vTF7.3 at m.o.i of 5 (lanes 2-6). 
At 16 hours post-transfection, cells were washed, harvested and 20 
pg total protein subjected to SDS-PAGE (8%) followed by Western 
immunoblotting with (A) MAb AO 196 or (B) MAb RGS-His.



4.2. 8 Intracellular Distribution o f DDX3 Lacking the Putative NES

To investigate the subcellular localisation of DDX3 lacking the putative NES, the 

relevant constructs were transfected into Huh-7 (N) cells grown on coverslips in 24- 

well dishes. All four constructs carrying the wild-type DDX3 or ANES-DDX3, with 

and without the histidine-tag, were tested in parallel. As before, infection with 

vTF7.3 (m.o.i. = 5) preceded introduction of these constructs into cells to increase 

transfection efficiency and expression levels. The localisation of the expressed 

proteins was determined using either anti-DDX3 MAb AO 196 or MAb RGS-His. 

Although AO 196 possesses an epitope in the N-terminal 1-142 aa of DDX3, it was 

able to detect ANES-DDX3 in cell extracts previously transfected by Western 

blotting (Fig. 54a; section 4.2.7), suggesting its epitope does not lie within the N- 

terminal 1-21 aa. This antibody was therefore considered suitable to detect 

transfected DDX3 lacking the putative NES and the wild-type protein in this study. 

As before, the RGS-His antibody was employed to detect expressed proteins 

containing histidine-tags in order to distinguish the proteins expressed via plasmid 

from endogenous DDX3 within the hepatocytes. Nevertheless, it was found that the 

localisation of ANES protein either with or without histidine-tag was not markedly 

different from that of the wild-type protein (Fig. 55) when both were expressed in 

parallel by plasmid. The same distinct ring-like structures were seen, with no 

apparent accumulation of ANES-DDX3 in the nucleus. However, it appeared that 

while the ring-like structures formed by DDX3 were randomly distributed 

throughout the cytoplasm, such structures formed by ANES-DDX3 were in greater 

concentration in the perinuclear cytoplasm (Fig. 55). This suggests that this N- 

terminal sequence is required for the specific localisation of wild-type DDX3. 

Interestingly, although an NES sequence is present at the extreme N-terminus of 

An3 (Fig. 53a), it showed a similar localisation to ANES-DDX3. Nonetheless, these 

data suggest that although DDX3 can bind CRM1 in vitro (P. Askjaer and J. Kjems, 

personal communication), the putative NES of DDX3 is seemingly not functional as 

an NES in cultured hepatocytes. Use of the RGS-His antibody in parallel with anti- 

DDX3 MAb AO 196 confirmed this localisation of ANES-DDX3 (Fig. 55). Further 

investigation of ANES-DDX3 is required in other cell types and with other anti- 

DDX3 MAbs and PAbs to verify these results. Indeed, these data might imply that
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Figure 55: Localisation of DDX3, ANES-DDX3 and their histidine- 
tagged counterparts expressed by plasmid in hepatocytes. Huh-7 (N) 
cells on coverslips were infected with vTF7.3 prior to transfection 
with the plasmids (1 pg) as shown, then fixed and probed with either 
anti-DDX3 MAb AO 196 or anti-histidine tag MAb RGS-His as 
indicated. Bound antibodies were visualised with anti-mouse IgG- 
FITC conjugated antibody.



MAb AO 196 does not detect a conformationally distinct nuclear form of DDX3. It 

is also entirely possible that DDX3 simply does not localise to the nucleus at all.

It has been previously shown that a potent antifungal antibiotic, leptomycin B 

(LMB), can inhibit CRM 1-mediated export of proteins such as HIV-1 Rev by 

directly binding CRM1 (Fomerod et al., 1997; Fukada et al., 1997) and covalently 

modifiying cysteine residues in its conserved region (Kudo et a l , 1999). To confirm 

the above results, LMB (Sigma) was tested for possible effects on the localisation of 

DDX3 due to inhibition of CRM1. Huh-7 (N) cells were seeded on coverslips, 

infected with vTF7.3 (m.o.i. = 5), and transfected as before (section 4.2.5). 16 hours 

post-transfection, the cell culture medium was removed, and fresh medium, or 

medium containing LMB at a concentration of 200 nM, a concentration which has 

been shown to inhibit CRM 1-mediated nucleocytoplasmic transport (Koffa et al., 

2001), was added. The cells were incubated at 37°C for a further 4 hours. Consistent 

with the localisation of ANES-DDX3, LMB appeared to have no effect on the 

distribution of endogenous or over-expressed DDX3 in Huh-7 (N), HeLa, or COS-7 

cell lines (data not shown). However, it is essential to confirm the results of the 

LMB assay using an appropriate positive control such as the HIV-1 Rev protein 

(section 4.2.6; Pollard and Malim, 1998) expressed in the same manner.

To test whether the putative NES of DDX3 was of any importance for the 

interaction with core protein, the same experiment as described in section 4.2.5, 

detailing an investigation of the co-localisation of DDX3 and An3 with core, was 

performed. As before, ANES-DDX3 was found in uninfected cells throughout the 

cytoplasm, with a greater concentration around the nucleus (Fig. 56). Core protein 

expressed via rVV-C-El-E2 was also localised as before to structures likely to be 

lipid droplets. ANES-DDX3 strongly co-localised with core protein (Fig. 56), 

suggesting the putative NES is not involved in the interaction of DDX3 with core 

protein.
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Figure 56: Co-localisation o f histidine-tagged ANES-DDX3 
expressed by plasmid with core protein. Huh-7 (N) cells were 
infected with rV V -C-El-E2 and vTF7.3 (m.o.i. = 0.5 each) for 1 
hour and subsequently transfected with p6h-ANES-DDX3 
construct (1 pg). 16 hours post-transfection, cells were fixed and 
then probed with appropriately diluted MAb RGS-His/anti-core 
PAb R525 in combination, followed by anti-mouse IgG-FITC/anti- 
rabbit IgG-Cy5 conjugated antibodies.



4.2. 9 Subcellular Fractionation ofHepatocyte and Non-hepatocyte Cell Lines

The localisation of DDX3 and ANES-DDX3 within cells was further investigated by 

subcellular fractionation of two separate cell lines followed by Western blotting to 

detect DDX3. A human hepatoma cell line (Huh-7) and a further mammalian cell 

line (COS-7) were tested in parallel. Each cell line was transfected with either 

pDDX3 or pANES-DDX3 mammalian expression plasmid. Following 16 hours 

post-transfection, cells were lysed and total, cytoplasmic and nuclear fractions 

prepared as described in Materials and Methods (section 2.45). Equal amounts of 

protein from such fractions were analysed by Western blotting for DDX3 with MAb 

AO 196. As expected, this antibody detected DDX3 abundantly in total and 

cytoplasmic extracts of both Huh-7 (Fig. 57a, lanes 1 and 3) and COS-7 (lanes 7 and 

9) cells. Interestingly, a small quantity of DDX3 protein was detected in Huh-7 

nuclear extracts (lane 2), suggesting that DDX3 is present in the nucleus of 

hepatocytes. Furthermore, a slightly larger amount of DDX3 protein was found in 

COS-7 nuclear extracts (lane 8), although some cytoplasmic fraction may have 

contaminated the COS-7 nuclear extract (see below). The MAb used here would 

detect both the plasmid-expressed ANES-DDX3 as well as the endogenous full- 

length DDX3. However, the fact that there was no discernible increase of ANES- 

DDX3 (or endogenous DDX3) in the nucleus of cells transfected with pANES- 

DDX3 indicates that ANES protein is not localised to the nucleus (Fig. 57a, lanes 5 

and 11). This is in keeping with the confocal microscopy data shown above (Fig. 

55). As controls to confirm fractionation had occurred such that cytoplasmic 

proteins had not leached into the nuclear fraction or vice versa, anti-ATF-2 and anti- 

P-tubulin antibodies were used to probe the same samples. These antibodies were 

chosen since the transcription factor ATF-2 is exclusively nuclear (Alonso et al., 

1996; Beier et al., 1999), while the p-subunit of tubulin is a purely cytoplasmic 

protein (Fig. 43a; Alberts et al., 1994). Appropriate compartmentalisation of Huh-7 

nuclear extracts was confirmed by the exclusive presence of ATF-2 in total and 

nuclear cell extracts (Fig. 57b, lanes 1, 2, 4 and 5). A small quantity of ATF-2 was 

found in COS-7 cytoplasmic extracts (lanes 9 and 12), although the vast majority of 

this cellular factor was to be found in total and nuclear extracts (lanes 7, 8, 10 and

11). Potential leakage of cytoplasmic cellular factors into nuclear extracts was not
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Figure 57: Subcellular fractionation o f  mammalian cell lines. Huh-7 or 
COS-7 cells in 6-well dishes were transfected with pZeoSV2 (+) vector 
carrying either full-length DDX3 (pDDX3) or ANES-DDX3 (pANES- 
DDX3) coding seqeunces as shown. Total (T), nuclear (N), and 
cytoplasmic (C) extracts were prepared, fractionated by SDS-PAGE 
(10%), and Western immunoblotted with (A) MAb AO 196 for DDX3, as 
well as (B) anti-ATF2 or (C) anti-p-tubulin to confirm appropriate 
fractionation had occured.



found with fractionated Huh-7 cells, since P-tubulin was not detected in nuclear 

extracts (Fig. 57c, lanes 2 and 5) but was abundant in total and cytoplasmic extracts 

(lanes 1,3-4 and 6). However, a small amount of cytoplasmic extract had apparently 

leaked into the COS-7 nuclear extract transfected with the pDDX3 expression 

construct (lane 8), which could explain the increased level of DDX3 in the nucleus 

of this cell line (Fig. 57a, lane 8). In contrast, P-tubulin was not detected in nuclear 

extracts previously transfected with pANES-DDX3 expression construct. These data 

show that DDX3 is present in the nucleus of Huh-7 cells, and confirm previously 

published reports of such a nuclear form of DDX3 in mammalian cells (Owsianka 

and Patel, 1999; You et a l, 1999b).

4.2. 10 Analysis o f  DEAD-box (E —>Q) Mutant o f  DDX3

A mutation within the DEAD-box (ATPase B domain; Fig. 17, section 1.10.6) of 

the X. laevis DDX3 homologue An3 protein (changing Glutamic acid —» Glutamine, 

E -> Q) was previously reported to exhibit a 6-fold decrease in dATPase activity 

(Askjaer et al., 2000). In collaboration with P. Askjaer and J. Kjems (University of 

Aarhus, Denmark), using the pGEX-6P-3-DDX3 construct as a template (Fig. 35a; 

section 3.2.12), the same mutation was introduced into the DDX3-coding sequence 

by site-directed mutagenesis (see Appendix II). As for An3 protein, a marked 

decrease in dATPase activity relative to the wild-type protein was observed (P. 

Askjaer and J. Kjems, personal communication). This provides further evidence that 

the DDX3 protein expressed in this manner does indeed possess dATPase 

enzymatic activity. Interestingly, the An3 DEAD-box (E -» Q) mutant also 

exhibited an altered nuclear export rate compared with the wild-type protein (Askaer 

et al., 1999). By analogy with this DDX3 homologue, the expression and 

localisation of the DDX3 DEAD-box (E -> Q) mutant in hepatocytes was 

investigated. The DDX3-EQ clone was generated by P. Askjaer (see Appendix II) 

using the pZeoSV2 (+)-DDX3 construct described in section 4.2.4. A histidine- 

tagged version of the original DDX3-EQ clone was generated to allow 

differentiation from the endogenous protein. This construct was made by restriction 

digestion with Ncol (in DDX3) and EcoRI (in the MCS of the vector) of the 

pZeoSV2 (+)-DDX3-EQ clone, to produce a -600 bp fragment containing the
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Figure 58: Detection of a DDX3 DEAD-box mutant (DDX3-EQ) 
expressed by plasmid in hepatocytes. Huh-7 (N) cells were either 
mock-transfected (lanes 1 and 2), or transfected with the constructs as 
shown following mock-infection (lane 1) or infection with vTF7.3 at 
m.o.i o f 5 (lanes 2 to 6). At 16 hours post-transfection, cells were 
washed, harvested and 20 pg total protein subjected to SDS-PAGE 
(8%) followed by Western immunoblotting with A) MAb AO 196 or 
B) MAb RGS-His.



sequence coding for the E -» Q mutation, and inserting this into NcoVEcoRl cut 6h- 

DDX3 mammalian expression construct (described in section 4.2.4). To confirm 

expression, the relevant constructs were transfected into the Huh-7 (N) cell line 

following infection with vTF7.3, and total cell extracts prepared. Total cell extracts 

were prepared from mock-transfected Huh-7 (N) cells following mock-infection or 

infection with vTF7.3 (m.o.i. = 5) to act as controls. As before, the cell extracts 

were probed either with anti-DDX3 MAb AO 196 or with the anti-histidine-tag MAb 

RGS-His. There was no indication of any gross effects on expression or processing 

of DDX3 containing the DEAD-box mutation (Fig. 58).

4.2. 11 Localisation o f  DDX3-EQ Mutant Compared with Wild-type DDX3 by 

Indirect Confocal Immunofluorescence Microscopy in Hepatocytes

Following confirmation of expression from the DDX3-EQ constructs, their 

localisation in hepatocytes was investigated in parallel with constructs containing 

wild-type DDX3 cDNA. The plasmids were transfected into Huh-7 (N) cells grown 

on coverslips, and subsequently probed with either anti-DDX3 MAb AO 196 or anti

histidine tag MAb RGS-His as before. Intriguingly, the DDX3-EQ mutant had a 

quite different distribution to the wild-type protein as detected by AO 196 (Fig. 59). 

While wild-type DDX3 formed or localised to distinct ring-like structures and gave 

a small amount of diffuse staining as before, DDX3-EQ was located in greater 

amounts diffusely throughout the cytoplasm in addition to forming or coating 

globular structures randomly distributed in the cytoplasm (Fig. 59). This altered 

localisation was confirmed by detection of histidine-tagged DDX3 and DDX3-EQ 

with MAb RGS-His (Fig. 59). This antibody did not exhibit any staining of Huh-7 

(N) cells transfected with constructs lacking the histidine-tag (data not shown).

Interestingly, the DDX3 DEAD-box mutant detected by this antibody was still able 

to co-localise with core protein expressed by rVV-C-El-E2. While the same diffuse 

distribution of 6h-DDX3-EQ described above was detected with RGS-His antibody 

in Huh-7 (N) cells, in infected cells expressing core protein at lipid droplets in the 

perinuclear cytoplasm, 6h-DDX3-EQ was seen to strongly co-localise with core 

(Fig. 60). These data reveal two important details about DDX3, and its interaction
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Figure 59: Localisation of DDX3, DDX3-EQ, or their respective 
histidine-tagged counterparts expressed by plasmid in hepatocytes. 
Huh-7 (N) cells on coverslips were infected with vTF7.3 (m.o.i. = 
5)prior to transfection with the plasmids as shown, then fixed 
following expression for 16 hours, and probed using either anti- 
DDX3 MAb AO 196 or anti-histidine tag MAb RGS-His as indicated. 
Bound antibodies were visualised with anti-mouse IgG-FITC 
conjugated antibody.
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Figure 60: Co-localisation of histidine-tagged DDX3-EQ fusion 
protein expressed via plasmid with core protein. Huh-7 (N) cells on 
coverslips were infected at m.o.i. o f 0.5 with rVV-C-El-E2, 
transfected with p6h-DDX3-EQ, fixed and then probed with 
appropriately diluted anti-histidine tag MAb RGS-His and anti- 
HCV core PAb R525 in combination. Bound antibodies were 
visualised with anti-mouse IgG-FITC and anti-rabbit IgG-Cy5 
conjugated antibodies.



with core protein. First of all, the altered localisation of DDX3-EQ relative to the 

wild-type protein suggests that the enzymatic activity of DDX3 is linked to its 

subcellular localisation. The DDX3-EQ protein contained a single amino acid 

change relative to the wild-type protein - this not only greatly diminished dATPase 

activity (P. Askjaer and J. Kjems, personal communication) and hence would also 

be expected to be non-functional in terms of RNA helicase activity as a 

consequence, but also had a discernible effect on the subcellular location of DDX3. 

Secondly, in view of the fact that the DDX3-EQ protein apparently co-localises with 

core protein, it seems that neither the original subcellular location of DDX3 nor its 

functional competence are essential for its interaction with core protein. This 

implies that the interaction between DDX3 and core occurs co- or post- 

translationally, and not following targeting of DDX3 to its normal cellular location. 

Indeed, the reported localisation of core protein at the ER (Selby et al., 1993), albeit 

in small quantities, may allow core protein to hijack DDX3 immediately following 

or during post-translational processing.

The following sections describe an investigation into the enzymatic properties of 

DDX3, which may reveal information regarding the function of DDX3 and any 

modulation of this by core protein.

4.2. 12 Cloning and Expression o f  the HCV NS3 Helicase Domain as GST-fusion 

Protein for use in Enzymatic Assays

HCV encodes a well-characterised ATP-dependent RNA helicase, located in the C- 

terminal two-thirds of the NS3 protein (section 1.2.5.2; Gwack et al. 1996; Kim et 

al., 1995, 1997; Yao et al., 1997). To use as a positive control in the biochemical 

assays described below, the RNA helicase domain of NS3 from a genotype la  

infectious clone of HCV (H77c; Yanagi et al., 1997) was amplified by PCR with 

specific primers (see Appendix V) and cloned into pGEX-6P-3. The resulting 

construct contained an initiating ATG codon followed by nt 3915 to 5312 of H77c 

(see Appendix IV), and encodes a protein consisting of the entire HCV NS3 helicase 

domain. The construct was used to express the NS3 helicase domain as a GST- 

fusion protein in E. coli. As before, GST-NS3 helicase was purified by affinity
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chromatography on glutathione-agarose beads, and the bound protein eluted using 

glutathione (section 2.29). 5 pg of the purified protein eluted from beads, together 

with 5 pg purified GST-DDX3 expressed in parallel, was fractionated by SDS- 

PAGE and visualised by staining with Coomassie brilliant blue (Fig. 61). GST-NS3 

helicase was expressed as doublet at approximately the expected molecular weight 

of 78 kDa, taking the 26 kDa GST moiety into account (Fig. 61, lane 1). As before 

(Fig. 35b; section 3.2.12), GST-DDX3 was detected at approximately 99 kDa (lane 

2).

4.2. 13 dATPase Activity o f GST-NS3 Helicase Domain and GST-DDX3 Fusion 

Proteins

The classical method of detecting hydrolysis of dATP and other nucleotides was 

used to determine dATPase activity of the NS3 helicase domain expressed as a 

GST-fusion protein, prior to investigating this property of DDX3 expressed in the 

same manner. A description of the assay and the method itself is found in section 

2.47. A series of 10-fold dilutions of purified GST-NS3 helicase domain protein 

were mixed with reaction buffer and [a32P]-labelled dATP. As a control, free GST 

protein was tested in parallel. Reactions were allowed to proceed for 30 minutes, 

and subsequently fractionated by thin-layer chromatography (TLC). dATP 

breakdown products, namely dADP and dAMP, were visualised by exposure to a 

phosphorimager screen. While GST alone at a concentration of 1 pg, or no protein 

at all, did not hydrolyse dATP above background levels (Fig. 62a, lanes 1 and 2, 

respectively), GST-NS3 helicase domain at a concentration of 0.01 pg or above was 

able to fully hydrolyse all of the available radiolabelled dATP (lanes 8-10). In fact, 

dATPase activity for GST-NS3 helicase domain was detectable at a concentration of 

10'3 pg (lane 7). However, apparently only dADP was resolved with no other dATP 

breakdown products visible.

The same assay was used to determine dATPase activity of full-length DDX3 

protein expressed as a GST-fusion protein. 1.5 pg of free GST protein and GST- 

NS3 helicase were assayed separately for dATPase activity in parallel with a series 

of 2-fold dilutions of GST-DDX3. As before, free GST protein or no protein did not
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hydrolyse the substrate (Fig. 62b, lanes 1 and 2, respectively), while the positive 

control (GST-NS3 helicase) was able to hydrolyse all of the substrate at the same 

concentration (lane 9). Analogous to the positive control protein, GST-DDX3 was 

able to hydrolyse dATP in a ‘dose-dependent’ manner. However, consistent with 

previous reports (You et al., 1999b), GST-DDX3 was only capable of hydrolysing 

approximately 50% of the substrate even when 1.5 pg of purified protein was added 

to the reaction (lane 8). This suggests that DDX3 is a less active protein than the 

NS3 helicase protein in terms of enzymatic properties when both are expressed as 

GST-fusion proteins. As discussed previously (section 4.2.10), it has been shown 

that GST-DDX3 containing a single amino acid change from Glu to Gin in the 

DEAD-box (DEAD -» DQAD) significantly decreases dATPase activity (P. Askjaer 

and J. Kjems, personal communication), thus confirming the functionality of dATP 

hydrolysis by the DDX3 GST-fusion protein in vitro. In direct contrast to a previous 

report suggesting a marked stimulation of DDX3 ATPase and dATPase activity by 

bacterially-expressed truncated core protein (aa 1-101, and 1-122) (section 1.9.6.9; 

You et al., 1999b), full-length core (aa 1-191) expressed in the same manner had no 

effect on the dATPase activity of DDX3 (data not shown).

4.2. 14 Development o f  an RNA Helicase Assay: Production o f  a Double-stranded 

RNA Substrate

Unwinding of RNA substrates is typically assayed by constructing duplex RNAs 

with single-stranded overhangs, required to allow binding of protein onto the 

nucleic acid, and visualising the duplex and monomeric products by electrophoretic 

separation (Fig. 18; section 1.10.7). The protein under analysis is mixed with the 

dsRNA substrate in appropriate buffer and incubated at 37°C. The reaction is 

stopped with EDTA and run on 15% urea gels. The shorter of the two RNA species 

is usually radiolabelled, in order to increase electrophoretic separation between the 

displaced ssRNA and the unwound duplex. The above method was used to 

investigate the ability of GST-DDX3 to unwind a dsRNA substrate, following 

confirmation of its ability to hydrolyse dATP (Fig. 62b; section 4.2.13). To this end, 

a non-specific dsRNA substrate was generated by in vitro transcription of linearised 

pBluescript SK (+) (Stratagene) DNA templates followed by annealing of the two
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transcripts. The vector map for pBluescript SK (+), including location of the 

promoters and key restriction endonuclease sites, is shown (Fig. 63a). As described 

previously (section 1.10.7), RNA helicases may have a preference for 5' and 3' 

overhangs, thus conferring directionality of the enzyme. The duplex RNA substrate 

(Fig. 63b) was designed to possess both 5' and 3' overhangs, since it was not known 

whether DDX3 had a preference for either formation of duplex RNA. To generate 

the 233 nt top strand, pBluescript SK (+) was linearised with PvuII and the RNA 

transcribed from a bacteriophage T3 RNA polymerase promoter site. The 93 nt 

bottom strand was synthesised from a bacteriophage T7 RNA polymerase promoter 

site following linearisation of the vector with Sacl. This RNA was radiolabelled 

during in vitro transcription with [a32P]-CTP to allow discrimination between ds 

and ssRNA. The 93 nt bottom strand is complimentary to a section near the 5' end 

of the 233 nt top strand, thus generating a duplex RNA substrate that possesses 5' 

and 3' single-stranded overhangs. Each RNA transcript was gel purified as follows. 

The in vitro transcibed RNA was run on a 15% urea gel (Sequagel, National 

Diagnostics) and excised from the gel under UV light. The gel pieces were finely 

cut and transferred to a 1.5 ml microfuge tube. One gel volume of TE buffer (10 

mM Tris-HCl pH 8.0, 1 mM EDTA) containing 0.5% SDS was added and the tubes 

incubated at 37°C for 16 hours. Gel pieces were pelleted by centrifugation (12, 000 

x g, 5 minutes) and the supernatant consisting of the RNA transcript in buffer was 

transferred to a fresh tube. The RNA was phenol-chloroform extracted and 

precipitated with 0.5 volumes 7.5 M ammonium acetate and 2.5 volumes ethanol. 

The RNA recovered by centrifugation (12,000 x g, 15 minutes) was washed with 

75% ethanol, centrifuged as before, and resuspended in 100 pi dH20. 

Complimentary RNA transcripts were annealed by mixing equal volumes of gel 

purified RNA in annealing buffer (10 mM Hepes-KOH, pH7.6, 1 M NaCl, 2 mM 

EDTA, 1% SDS), and then boiling for 5 minutes and cooling to 65°C for 30 

minutes. The mixture was stored at room temperature (18-25°C) prior to subsequent 

experimental procedures.
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Figure 63: Production o f dsRNA substrate for use in helicase assays.
(A) Schematic diagram of pBluescript SK (+) showing T3 and T7 
promoter sites, and the relevant restriction endonuclease sites 
(marked with arrow) (taken from Stratagene website). (B) Schematic 
diagram of the resulting dsRNA substrate with nt numbers o f the 
promoter (pT3 and pT7) and restriction sites used.



4.2. 15 Helicase Activity o f  GST-NS3 Helicase Domain and GST-DDX3 Fusion 

Protein

The HCV NS3 helicase domain expressed as a GST-fusion protein, previously 

shown to possess dATPase activity (Fig. 62a; section 4.2.12), was tested for its 

ability to unwind the dsRNA substrate described above. The helicase assay 

methodology is found in section 2.48. As with ATPase assays, two negative control 

reactions were used in assays for helicase activity - one reaction lacking any protein 

and the other containing free GST protein. As a control, dsRNA was denatured by 

heating the duplex RNA for 5 minutes at 90°C to produce single-stranded (ss) RNA. 

As can be seen in Fig. 64, this produced a band visibly lower relative to the negative 

control reactions (lanes 1 and 2-3, respectively). A range of concentrations of GST- 

NS3 helicase from 0.01 to 10 pg were tested for the ability to produce ssRNA of 

similar size to that produced by heat denaturation of duplex RNA. GST-NS3 

helicase was able to unwind a small proportion of the dsRNA substrate at a 

concentration of 2 pg (Fig. 64a, lane 7). Increasing the amount to 5 pg yielded 

approximately 50% ssRNA (lane 8), while doubling this almost completely 

converted the dsRNA to its monomeric form (lane 9). This ‘dose-dependent’ ability 

of GST-NS3 helicase protein to unwind the non-specific duplex RNA substrate 

confirmed that appropriate methodology had been employed. Furthermore, as has 

been shown for proteins such the X. laevis An3 protein (Gururajan and Weeks, 

1997), RNA helicase activity was apparently not affected by fusion of the HCV NS3 

helicase domain to GST.

DDX3 expressed as a GST-fusion protein was tested in parallel with the GST-NS3 

helicase protein in the same manner as described above. While GST-NS3 helicase 

could unwind the non-specific dsRNA substrate with 5' and 3' overhangs (see 

above), GST-DDX3 was consistently unable to unwind the same substrate (Fig. 64b, 

lanes 4-9) even at a concentration of 10 pg (lane 9). It is unlikely that the GST- 

moiety is inhibiting helicase activity of DDX3, since the HCV NS3 helicase (see 

above) and the X  laevis An3 protein (Gururajan and Weeks, 1997), have been 

shown to possess helicase activity when expressed as GST-fusion proteins. Thus, 

the reason for this lack of activity for DDX3 is currently unclear. This observation
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Figure 64: RNA helicase activity of HCV NS3 helicase (A) and DDX3
(B) expressed as GST-fusion proteins. Duplex RNA substrate was either 
heated at 90°C for 5 minutes (lane 1), or incubated at 37°C for 20 
minutes in the absence of any protein (lane 2), or in the presence o f 10 
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concentrations indicated (lanes 4-9). The reactions were separated on a 
15% urea gel (SequaGel, National Diagnostics) and visualised using a 
phosphorimager.



has been independently reported by You et al., (1999b), who used bacterially- 

expressed histidine-tagged DDX3 and a different non-specific RNA substrate that 

had previously been used to show activity of other RNA helicases. One possibility 

that DDX3 requres a cellular co-factor or a specific RNA substrate for helicase 

activity. Interestingly, although RNA helicases such as the HCV NS3 protein have 

been well characterised in their ability to unwind a variety of RNA substrates 

(section 1.2.5.2), the majority of mammalian putative helicases have not been 

shown to possess helicase activity when assayed in vitro (section 1.10.7). A 

common reason cited for this lack of activity is that the protein under investigation 

may require a specific cellular co-factor or a specific RNA ligand, as demonstrated 

for a number of helicases (section 1.10.7). It is not clear at this stage whether this is 

the case for DDX3. Indeed, the lack of helicase activity for DDX3 may be consistent 

with the lower dATPase activity of this protein relative to the NS3 helicase, 

suggesting that the amount of enzymatically active DDX3 protein used was not 

sufficient to give detectable activity.

4. 3 Discussion

The subcellular localisation of DDX3, an important factor in determining the 

function of the protein, has been studied in detail in the preceding chapter using the 

full range of anti-DDX3 MAbs. However, their reactivity in an immunofluorescence 

assay was largely consistent with detection of cellular DDX3 by Western blotting 

with the same panel of antibodies in Huh-7 (N) total cell extracts (Fig. 42; section 

3.2.18), and co-localisation studies of DDX3 detected by MAb AO 196 with core 

protein (Fig. 29; section 3.2.6). AO 166 was the only MAb, in addition to AO 196, to 

detect what is presumably the endogenous full-length protein. Although MAb 

AO 166 was previously shown to detect a putative truncated form of DDX3 in 

hepatocyte cell extracts (Fig. 42; section 3.2.18), it showed a similar pattern of 

immunofluorescent staining to MAb AO 196. This antibody was also able to detect 

DDX3 strongly co-localising with core protein. Interestingly, the putative truncated 

form of DDX3 detected by anti-DDX3 MAbs A02 and A035 showed a different 

subcellular localisation, suggesting it has a different role in the cell. However, if a 

hypothesis that this form represents the N-terminal half of DDX3 is correct, it is
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perhaps not surprising that it did not detect DDX3 co-localising with with core 

protein, since the domain interacting with core resides in the C-terminus of DDX3. 

Re-localisation of other proteins in H9-13 cells was also studied - specific MAbs 

raised against ribosomal protein L22, the interferon-inducible protein kinase PKR, 

and poly-pyrimidine tract binding protein (PTB) were used to probe Huh-7 (N) and 

H9-13 cells in parallel. Localisation of these proteins in H9-13 cells was 

investigated following their implication in HCV pathogenesis or replication (Ali and 

Siddiqui, 1995; Ito and Lai, 1997; Taylor et al., 1999, 2001; Wood et al., 2001) but 

no consistent differences in localisation were detected (data not shown). 

Furthermore, cellular factors bound by A034 and AO 190 did not re-localise in H9- 

13 cells (data not shown). These data suggest that the localisation of the studied 

cellular factors is apparently unaffected by the presence of HCV sub-genomic 

replicon RNA and HCV nonstructural proteins.

To gain further insight into DDX3 and its normal cellular function, the full-length 

protein, in addition to a homologous protein from a different organism as a control 

(X laevis An3), was expressed from a plasmid construct in the Huh-7 (N) cell line. 

As a valuable tool to determine the role of specific domains in localisation of 

DDX3, mutated or truncated forms of this protein were similarly expressed and 

investigated in detail. Full-length DDX3 protein expressed in this manner localised 

to or formed distinct ring-like structures which varied in size, in addition to showing 

some diffuse staining of the cytoplasm. However, while these data are consistent 

with an independent report of an exclusively cytoplasmic localisation for DDX3 by 

immunofluorescence (Mamiya and Worman, 1999; You et al., 1999b), they 

contradict a previous report detailing a nuclear localisation for the same protein 

(Owsianka and Patel, 1999). This may be due to the use of different anti-DDX3 

antibodies used by the authors. As a control, cDNA coding for the X. laevis (African 

clawed frog) An3 protein, which is approximately 86% identical in protein sequence 

to DDX3 (Owsianka and Patel, 1999), was cloned into the same expression vector 

and used to transfect Huh-7 (N) cells. Over-expressed X  laevis An3 protein had a 

somewhat different localisation to DDX3 and was predominantly found in the 

perinuclear cytoplasm, concurrent with its role in intracellular shuttling (Askjaer et 

al., 2000). However, like DDX3 expressed from a plasmid, An3 was not found in
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the nucleus, but was able to co-localise with core protein. This is presumably due to 

the high degree of identity between the two proteins at the aa level (Owsianka and 

Patel, 1999).

DDX3 was shown to possess a nuclear export signal (NES), and was subsequently 

shown to bind CRM1 in a RanGTP-dependent manner in vitro (P. Askjaer and J. 

Kjems, personal communication). Further studies investigated the possibility that 

removing the putative NES of DDX3 would lead to accumulation of DDX3 in the 

nucleus. This would suggest that DDX3 is not only partially localised in the nucleus, 

suggestive of protein involved in intracellular shuttling or a protein with a dual 

cellular role, but that export from the nucleus is rapid (or entry into the nucleus is 

rare) if previous immunofluorescence studies were correct. However, deletion of 

this region in the extreme N-terminus of the protein did not lead to accumulation of 

DDX3 in the nucleus of hepatocytes when expressed by plasmid. This truncated 

protein (ANES-DDX3) appeared to have a subcellular localisation analogous to the 

wild-type protein containing the putative NES, although ANES-DDX3 protein was 

more inclined to accumulate in the perinuclear cytoplasm than wild-type DDX3. In 

agreement with these data, treatment of cells with an antibiotic known to block 

leucine-rich NES-mediated export of endogenous cellular and exogenous viral 

proteins (LMB) had no effect on the apparent exclusively cytoplasmic localisation 

of DDX3 (data not shown). However, consistent with previous reports (Owsianka 

and Patel, 1999; You et al., 1999b), subcellular fractionation experiments indicated 

a small quantity of DDX3 protein in the nucleus. This could suggest that DDX3 has 

a dual role in the cell. For example, DDX3 may be involved in cellular translation in 

the cytoplasm and pre-mRNA splicing in the nucleus. Alternatively, it may indicate 

the protein is involved in nucleocytoplasmic transport of cellular factors and/or 

RNAs. These possibilities regarding the function of DDX3 will be investigated in 

the following chapter. The nuclear form of DDX3 may also have implications for its 

interaction with core protein - core may exploit its interaction with this cellular 

protein to enter the nucleus, where it has been detected by several investigators 

(section 1.7.3). The localisation in hepatocytes of DDX3 carrying a mutation within 

the DEAD-box, a protein which shows a markedly diminished ability to hydrolyse 

dATP relative to the wild-type DDX3 (P. Askjaer and J. Kjems, personal
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communication), was also studied. This protein did not localise to or form ring-like 

structures, but was distributed diffusely throughout the cytoplasm with some 

staining of globular structures. Western blotting of cell extracts previously 

transfected with the appropriate constructs indicated that the altered localisation of 

the DEAD-box mutant was not due to targeting of this functionally crippled protein 

for degradation. It therefore appears that this single amino acid change which greatly 

diminishes dATPase activity, and in all probability RNA helicase activity as a 

consequence, has a discernible effect on subcellular localisation as well. This 

implies that the enzymatic activity of DDX3 is linked to its subcellular targeting. 

Nevertheless, the DDX3 DEAD-box mutant maintained its ability to co-localise 

with core protein. Thus, neither the original subcellular location of DDX3 nor its 

enzymatic activity are apparently critical for its interaction with core protein. It is 

possible that since the DEAD-box motif of DDX3 is presumably in the active site of 

the protein (section 1.10.6), mutations in this area could potentially cause gross 

changes in conformation of the protein, which may have effects on cellular targeting 

of DDX3.

The biochemical properties of DDX3 were also investigated in this chapter. RNA 

helicases, and indeed all helicases, are believed to utilise the energy derived from 

the hydrolysis of ATP or other nucleotides to drive mechanical movement of bound 

RNA or DNA (section 1.10.1). To confirm that bacterially-expressed GST-DDX3 

fusion protein was enzymatically active, it was assayed for its ability to hydrolyse an 

[a-32P]-labelled dATP substrate. Free GST protein purified in parallel was 

employed as a negative control. The helicase domain of HCV NS3 (section 1.2.5.2) 

was cloned and expressed in the same manner as DDX3 to be used as an appropriate 

positive control in all enzymatic assays. GST-DDX3 hydrolysed ATP in a ‘dose- 

dependent’ manner, while free GST protein was not able to hydrolyse ATP. The 

NS3 helicase domain exhibited the same ‘dose-dependent’ hydrolysis of dTP, but 

appeared to be a more active protein in this hydrolysis. Thus it appears that (in the 

absence of cellular co-factors), per pg of protein, the HCV NS3 helicase domain 

purified as a GST-fusion protein is more efficient at hydrolysing dATP than DDX3 

expressed by the same approach. Enzymatic breakdown of other nucleotide 

substrates by DDX3 have been investigated (You et al., 1999b). DDX3 was able to

151



hydrolyse all NTPs, albeit at around half the activity of dNTPs. Of these, dATP 

appeared to be hydrolysed at a higher rate (You et al., 1999b). Interestingly, it has 

also been reported that both DDX3 ATPase and dATPase activity is stimulated by 

HCV core protein (section 1.9.6.9; You et al., 1999b). However, repeated attempts 

to emulate these results did not reveal the same effect (data not shown). It therefore 

appears that the two truncated core GST-fusion proteins (lacking aa 102-191 or 123- 

191) used by You et al. (1999b) are able to exert this effect, although the full-length 

core protein (aa 1-191) used here are unable to do so. While the aa 1-191 protein is 

not the mature form of core, it is detectable in mammalian cells (section 1.7.1), 

whereas the truncated forms have no relevance with regard to core protein expressed 

in vivo. Both DDX3 and NS3 helicase domain GST-fusion proteins were 

subsequently tested for their ability to unwind a non-specific double-stranded (ds) 

RNA substrate. While 10 pg GST-NS3 helicase domain protein was capable of 

unwinding approximately all of the dsRNA substrate, GST-DDX3 was consistently 

unable to unwind the substrate with the methodology used. Consistent with the lack 

of effect of core protein on dATPase activity of DDX3, helicase activity was not 

detected on addition of core protein to the reaction (data not shown). The reason for 

this lack of activity is unclear, although it is possible DDX3 may require a specific 

RNA sequence or a cellular co-factor to stimulate its helicase activity (section 

1.10.7). On the other hand, the apparently inefficient hydrolysis of dATP by DDX3, 

relative to the NS3 helicase, may be consistent with its inability to unwind the 

duplex RNA substrate. This could be due to a poor yield of enzymatically active, 

properly folded and processed DDX3 from the bacterial system. Attempts were 

made to purify histidine-tagged DDX3 expressed by p6h-DDX3 (section 4.2.4) from 

mammalian cells, but sufficiently purified protein was not readily obtainable.

Valuable insights into DDX3 and its interaction with core protein have been given 

by the studies presented here. In the following chapter, functional assays for DDX3 

in cell culture systems are described, while modulation of any effects of DDX3 in 

such assays by core protein is investigated to build on current knowledge of DDX3 

and its interaction with core.
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C H A P T E R  F I V E :

Functional Characterisation of DDX3 and its 

Interaction with Core Protein



5 .1  Introduction

Previously, DDX3 has been shown to bind HCV core protein in vitro (Fig. 33e; 

section 3.2.9) and to co-localise with this viral protein in a hepatocyte cell line also 

expressing HCV sub-genomic replicon RNA and HCV nonstructural proteins (Fig. 

32; section 3.2.8). This co-localisation, which may be a result of redistribution of 

DDX3 in the presence of core protein, or may occur during post-translational 

modification of DDX3 in the ER, is not dependent on the presence of a putative 

NES (Fig. 56; section 4.2.8), or on the subcellular targeting or enzymatic function of 

DDX3 (Fig. 60; section 4.2.11). However, these studies have not ascertained 

whether the DDX3/core interaction is having discernible effects on expression or 

processing of DDX3, or indeed on core protein, in cell culture systems. To this end, 

the possibility that the HCV protein in some way modifies DDX3, or vice versa, 

was investigated. The full-length coding sequence for each protein were used to 

generate recombinant baculoviruses (rbacs), and expression of both proteins in the 

Sf21 insect cell line, either singly or in combination, was examined by Western 

blotting using specific MAbs and PAbs. The effect of expressing core protein on 

endogenous DDX3 was also investigated in a human hepatocyte cell line. Huh-7 (N) 

cells were infected with rVV-C-El-E2, and their expression analysed as before by 

Western blotting.

However, these assays still do not delineate a possible role of DDX3 in replication 

or pathogenesis of HCV. Previous reports point to a role of DDX3 in translation in 

systems unrelated to HCV, or with non-specific substrates (Mamiya and Worman, 

1999; You et al., 1999b). These assays are described in some detail in section 

1.9.6.9. Briefly, DDX3 was shown to i) rescue yeast cells containing an otherwise 

lethal mutation in its homologue Dedlp (Mamiya and Worman, 1999), a protein that 

is implicated in translation initiation (section 1.13.6), and ii) upregulate translation 

from a transfected reporter plasmid in Huh-7 cells (You et al., 1999b). In both cases 

core protein modulated the observed effects - it was able to reverse the rescue of 

Dedlp mutant yeast expressing DDX3 (Mamiya and Worman, 1999), and, 

seemingly in contrast, markedly increased the level of reporter activity in 

hepatocytes (You et al., 1999b). Here, DDX3 was investigated for its ability to
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specifically alter translation of the HCV genome by alleviating a previously reported 

translational block of rbacs carrying the HCV 5'NCR in insect cells (section 1.3.4; 

Wang et al., 1997). The possible effect of DDX3 on HCV 5'NCR-mediated 

translation was also examined in a transient-transfection assay in human 

hepatocytes. The effect of DDX3 expressed by plasmid, and co-expressed with core 

protein, on transiently-expressed CAT reporter gene in hepatocytes was also 

investigated, in view of the results of You et al. (1999b) (see above).

RNA helicases may be grouped into categories based on their function (section 1.12; 

de la Cruz et al., 1999). These categories include translation, pre-mRNA splicing 

and RNA nucleocytoplasmic export. Although previous reports (Mamiya and 

Worman, 1999; You et al., 1999b) necessitated that the role of DDX3 in translation 

was studied in greatest detail, attempts were also made to allocate DDX3 to other 

functional categories in which putative and known RNA helicases may be placed. 

Following identification of an 'RS'-like domain in the protein seqeunce of DDX3 

(Owsianka and Patel, 1999; You et al., 1999b) that is potentially invovled in protei- 

protein interactions with splicing factors (section 1.9.6.9), and subcellular 

fractionation experiments that suggested a small amount of DDX3 is present in the 

nucleus (Fig. 57a; section 4.2.9), the presence of the protein in purified spliceosome 

complexes was investigated. Such complexes were generously provided by Dr A. 

Lamond (University of Dundee). By analogy with the X. laevis DDX3 homologue 

An3 (Askjaer et al., 2000), the effect of Huh-7 total RNA (and synthetic poly(A) 

RNA as a control) on dATPase activity of DDX3 was also examined. The presence 

of a specific RNA activator could have implications for the substrate specificity and 

therefore function of DDX3. For example, a specific upregulation of DDX3 

dATPase activity by a subset of cellular RNA such as tRNA may implicate the 

protein in processing and/or export of these RNAs.

155



5. 2 R esults

5.2. 1 Generation and Expression o f DDX3 and Core Protein-expressing Rbacs

To further investigate expression of DDX3 and the functional significance of its 

interaction with core protein, coding sequences for both proteins were transferred to 

the pAcCL29.1 transfer vector (Fig. 65a; Livingstone and Jones, 1994) and used to 

generate appropriate rbacs (see Appendix III for a comprehensive list). The 

pAcCL29.1-DDX3 construct, generated by Dr A. Patel by transfer of DDX3 cDNA 

from pGEX-6P-3-DDX3 to the transfer vector, was used to create rbac-DDX3. This 

rbac is expected to produce full-length (aa 1-662) DDX3 protein and is shown 

schematically in Fig. 65b. HCV strain H77c in the pGEM 9zf(-) vector (pCV-H77c; 

Yanagi et al., 1997) was used as a template to amplify the full-length HCV core

coding sequence (Appendix IV) using specific primers (see Appendix V). Since 

there is no stop codon following the core-coding sequence in the HCV ORF, a stop 

codon was engineered to immediately follow the coding sequence ensuring only 

full-length 191 aa core protein and its processed form were expressed. The rbac 

expressing full-length core protein was named rbac-C (Fig. 65b). Expression of 

DDX3 and core protein by rbacs-DDX3 and -C, respectively, in Sf21 cells is shown 

in Fig. 66 . Consistent with previous data (Fig. 26; section 3.2.3), anti-DDX3 MAb 

AO 196 did not detect any proteins in Sf21 total cell extracts by Western blotting 

(Fig. 66a, lane 1). Similarly, Sf21 cells infected with wild-type baculovirus were 

negative for DDX3 when tested with MAb AO 196 (lane 2). However, in Sf21 cells 

infected with rbac-DDX3, protein of approximate molecular weight 73 kDa was 

detected using anti-DDX3 MAb AO 196 (lane 3). Two closely migrating proteins 

were observed on shorter exposures (data not shown) similar to the two closely 

running proteins detected by the same antibody in human hepatocytes and other 

mammalian cell lines (Fig. 26; section 3.2.3). This pattern of expression by rbac 

suggests that the doublet band expressed in hepatocytes is more likely due to a 

property inherent in the protein rather than the presence of cellular isoforms 

produced from separate chromosomes as discussed previously (section 3.2.3). 

Nevertheless, this implies that processing of DDX3 expressed by rbac in insect cells 

is similar to that of endogenous DDX3 in human hepatocytes.
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Figure 65: The baculovirus transfer vector used to generate rbacs. (A) 
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pAcCL29 apart from the addition of further unique restriction sites at 
the BamHl site, was used in generation o f all rbacs in these studies. 
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(ORI), and baculovirus expression signals are indicated (taken from 
Livingstone and Jones, 1994). (B) Schematic diagram of rbacs-DDX3 
and -C, carrying the full-length (aa 1-662 and 1-191, respectively) 
DDX3 and HCV core coding sequences, with expression driven by 
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Expression of core protein was investigated using anti-core PAb R525. This antisera 

was raised against HCV strain H77c full-length core (see Appendix I). PAb R525 

showed weak affinity for proteins in mock-infected and wt-infected cell extracts 

(Fig. 66b, lanes 1-2). However, core protein similar to that described in other reports 

regarding its expression in insect cells (Wang et al., 1997), with a major protein 

product detectable at 21 kDa, in addition to a smaller product at approximately 17 

kDa, was detected in Sf21 cell extracts previously infected with rbac-C (Fig. 66b, 

lane 3). Both these products have previously been reported in mammalian cells 

(sections 1.7.1 and 1.7.4), suggesting core protein produced by rbac-C is 

appropriately processed in Sf21 cells. Thus, detection of DDX3 and core protein 

expressed by their respective rbacs in insect cells by Western blotting with specific 

antibodies, indicate that both proteins are processed in a similar manner to that seen 

in mammalian cells.

5.2. 2 Co-expression ofDDX3 and Core Protein in Sf21 Cells

As detailed previously, core protein has been shown to interact with a multitude of 

cellular factors, and the resultant effects on the functions of some of these host cell 

proteins have been described (section 1.9.6). Given the multiple effects that these 

interactions could have on host cellular processes, it is plausible that core directly or 

indirectly modifies cellular proteins. However, there are currently no published 

reports of physical modification of cellular factors with which core has been shown 

to interact. To look for possible effects of core protein on targeting of DDX3 for 

degradation or modification of its post-translational processing, or indeed vice 

versa, both proteins were expressed by rbac in Sf21 cells either singly or in 

combination and their expression analysed by Western blotting. Here, DDX3 

protein was detected by the previously characterised R438 PAb (sections 3.2.13, 

3.2.14, and 3.2.18; Owsianka and Patel, 1999) raised against GST-DDX3C protein 

(section 3.2.12; aa 409-662). This PAb detects DDX3 expressed as a GST-fusion 

protein (Fig. 36a; section 3.2.13), and more importantly, detects endogenous DDX3 

in hepatocyte and non-hepatocyte cell lines (Fig. 42; section 3.2.18). Consistent with 

previous data using anti-DDX3 MAb A0196 (Fig. 66a; section 5.2.1), PAb R438 

did not react with any cellular factors in mock-infected or wild-type infected Sf21
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other rbacs (lanes 3-7). Following incubation at 28°C for 72 hours, 
cell extracts were prepared, fractionated by SDS-PAGE, and 
immunoblotted with (A) anti-DDX3 MAb AO 196 or (B) anti-core 
PAb R525.



cell extracts (Fig. 67a, lanes 1 and 2). However, R438 was able to detect a protein 

corresponding to the molecular weight for DDX3 in Sf21 cell extracts previously 

infected with rbac-DDX3 (lane 3). The closely migrating DDX3 species are better 

resolved here since the gel was run further than normal. Intriguingly, co-expression 

of core protein with DDX3 led to the appearance of a further band above the doublet 

of DDX3 (Fig. 67a, lane 5). This band is unlikely to be DDX3 bound to core protein 

as this protein-protein interaction would be disrupted by the denaturing conditions 

of SDS-PAGE. The same effect was seen when core protein was expressed in the 

context of HCV glycoproteins El and E2, as it would be during natural infection (A. 

Patel, unpublished). To rule out the possibility that this extra band is produced as a 

result of co-expression of rbac-DDX3 with another baculovirus, rbac-DDX3 was co

infected with the wild-type baculovirus. There was apparently no effect of co

expressing wt baculovirus proteins on DDX3 expression (Fig. 67a, lane 7). 

Similarly, co-infection of S£21 cells with rbac-DDX3 and other rbacs did not 

generate the extra higher molecular weight DDX3 band (data not shown). 

Potentially, this altered expression of DDX3 represents modified processing of 

DDX3 in the presence of core protein. Expression of the core protein in Sf21 cells 

infected with rbac-C or co-infected with rbacs-C and -DDX3 was confirmed with 

anti-core PAb R525 (Fig 67b). There were apparently no effects of DDX3 on the 

expression of core protein as detected by this antisera. The above data implicate 

HCV core in modification of a human cellular protein.

5.2. 3 Effect o f Core Protein Expression on DDX3 in Hepatocytes

To determine whether the higher molecular weight isoform of DDX3 is produced in 

the presence of HCV core in human hepatocytes, Huh-7 cells were infected with the 

previously described rVV-C-El-E2 (section 3.2.6; see Appendix III). As controls, 

Huh-7 cells were either mock-infected, or infected with rVV expressing El and E2 

alone (rVV-El-E2). Following infection, cell extracts were prepared and analysed 

by Western blotting. As above, endogenous DDX3 was detected by anti-DDX3 PAb 

R438. In mock-infected cells, DDX3 was again detected as a doublet (Fig. 68a, lane 

1). While infection of cells with rVV-El-E2 did not alter the banding pattern of 

DDX3 as detected by R438 (lane 2), infection of cells with rVV-C-El-E2 gave rise
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to a third band above the doublet (lane 3), consistent with the results seen in insect 

cells following co-infection of DDX3 and core-expressing rbacs. Expression of core 

protein was confirmed by probing the same cell extracts with anti-core PAb R525 

(Fig. 68b). Further investigation into the mechanism by which core protein exerts 

this effect on DDX3 is required to fully understand the significance of the observed 

result, but it is a further indication that the DDX3/core interaction is genuine.

5.2. 4 Effect o f Core Protein Expression on DDX3 mRNA

As part of a comprehensive investigation of the effect of core protein on DDX3, 

possible modification of DDX3 mRNA in the presence of core protein or its coding 

sequence was investigated by Northern blot analysis. Huh-7 (N) or H9-13 cells were 

mock-infected, or infected with rVV-El-E2 or with rVV-C-El-E2. Following 

incubation at 37°C for 16 hours, cells were washed, total RNA prepared, and 

analysed by Northern blotting using a 32P-labelled probe directed against nt 1-624 of 

the DDX3 coding sequence (previously described in section 3.2.1). As shown in 

Fig. 69a, expression of core in the context of HCV glycoproteins El and E2 had no 

effect on expression of DDX3 mRNA in either Huh-7 (N) cells (lane 3), or in H9-13 

cells (lane 7) previously shown to contain self-replicating HCV sub-genomic RNA 

and nonstructural proteins (Figs 30 and 31; section 3.2.7). This indicated that the 

effect of core on the banding pattern of DDX3 detected in Western blots with anti- 

DDX3 PAb R438 (Figs 67 and 68; see above) was not occurring at the RNA level. 

However, it appeared that, for unknown reasons, infection of cells with rVV-El-E2 

reduced amount of DDX3 mRNA (Fig. 69a; lanes 4 and 8). The significance of this 

effect is unclear at this time. To confirm the integrity of the extracted RNA and 

verify that equal amounts of RNA were loaded, a 32P-labelled probe originating 

from cellular ubiquitin cDNA (section 3.2.2) was hybridised to the same membrane 

following stripping. Accordingly, concurrent levels of ubiquitin mRNA expression 

in each extract previously infected with a wild-type VV (Western Reserve, WR) or 

rVV were detected by this probe (Fig. 69b, lanes 2-4 and 6-8). The apparent 

decrease in DDX3 and ubiquitin mRNA levels in these samples relative to the 

mock-infected samples (lanes 1 and 5) may be due to down-regulation of cellular 

transcription in the presence of vaccinia virus, or alternatively reflects the lower
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fraction of mRNA coding for cellular proteins in total RNA extracted from cells 

expressing high levels of rVV-derived mRNA.

5.2. 5 Generation o f  Rbacs for Investigation o f  HCV 5 'NCR-mediated Translation 

in Insect Cells

A  previous report suggested that the HCV 5'NCR is not functional in S£21 cells 

(section 1.3.4; Wang et al., 1997). While rbacs carrying the core-coding sequence 

alone produced core protein of the expected molecular weight, rbacs containing the 

HCV 5'NCR fused to core protein did not. The reason for this phenomenon was not 

a lack of transcription from the 5'NCR-core rbac, as the appropriate transcript was 

produced in large amounts and could be translated in vitro (Wang et al., 1997). A 

speculative reason for the block in translation is that viral or cellular protein(s) are 

lacking in insect cells which allow translation of 5'NCR-containing rVVs or 

transfected plasmid constructs or RNAs in mammalian cells. If true, this could be 

exploited as a novel system to investigate the effect of supplying recombinant 

proteins in trans on HCV 5'NCR-mediated translation. DDX3 could be one of the 

factors lacking in insect cells that leads to the HCV 5'NCR-mediated block in 

translation. Preliminary data suggested a closely related homologue of DDX3 was 

not present in insect cells (Figs 22b and 26; sections 3.2.1 and 3.2.3), and the 

protein has already been implicated in translation using yeast and mammalian cell 

assays (section 1.9.6.9; Mamiya and Worman, 1999; You et al., 1999b).

To investigate this system, primarily with a view to exploiting it as a functional 

assay for DDX3, a number of rbacs were generated. Core protein produced from a 

5'NCR-core containing rbac was used as a reporter to determine whether DDX3 

could relieve the translational block. If DDX3 expressed by rbac has an effect on 

translation from the HCV 5'NCR, core protein will be produced and may be 

detected by Western blotting using specific antibodies. Further rbacs containing the 

bacterial chloramphenicol acetyl-transferase (CAT)-coding seqeunce as a reporter 

gene were generated to investigate the effect of core protein supplied in trans on 

translation from the 5'NCR, in the presence and absence of DDX3. CAT protein
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levels were determined by qualitative or quantitative measurements of CAT activtiy 

using [14C]-labelled chloramphenicol (section 2.42). Rbac-DDX3 and rbac-C, 

previously described in section 5.2.1, were used to supply the proteins under 

investigation. Schematic diagrams of the rbacs containing HCV sequences used in 

this study are shown in Fig. 70. HCV strain H77c, a genotype la  infectious clone 

(Yanagi et al., 1997), was used to construct these rbacs in pAcCL29.1. The HCV nt 

numbers (corresponding to the sequence presented in Appendix IV) and the 

expected transcript of each rbac are shown in Table 2. In all cases the full-length 

H77c 5'NCR and coding sequences were used. Similarly, rbacs as indicated in Table 

2 carried the the full-length H77c 3'NCR, fused immediately downstream of the 

CAT-coding sequence.

Rbac HCV Strain H77c 
Nucleotide Number

Expected Transcript/ 
Product

C 342-915 core

CC 342-915 core-CAT

5C 1-915 5'NCR-core

5C3 1-915, 9375-9599 5'NCR-core-3'NCR

5CC 1-915 5 'NCR-core-C AT

5CC3 1-915, 9375-9599 5 'N CR-core-C AT-3 'NCR

Table 2: HCV nucleotide numbers and expected transcripts 
produced by rbacs used to determine role of DDX3 and core 
protein in HCV 5'NCR-mediated translation.

Rbac-C contains full-length (aa 1-191) core protein followed by a stop codon at aa 

192, as described in section 5.2.1. Rbac-5C contains the 5'NCR followed by full- 

length core-coding sequence placed downstream of the baculovirus promoter. Rbac- 

5C3 is identical to rbac-5C, except for the addition of the 3'NCR placed 

downstream from the core-coding sequence. Rbacs-CC, -5CC and -5CC3 were 

produced by fusing the CAT gene in frame with the relevant HCV sequences. All
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rbacs were amplified and purified by standard protocols (section 2.37) to produce 

high titre stocks (~1010 pfu ml'1). These stocks were used to infect ~2xl06 Sf21 cells 

at m.o.i of 0.5 per virus. Increasing m.o.i. was found to give only slight 

experimental variations (data not shown). Following incubation at 28°C for 72 

hours, cells were harvested and tested for expression of appropriate proteins by 

Western blotting using anti-core PAb R525. Sf21 cells were either mock-infected or 

infected with the wild type baculovirus (wt) or with rbacs. As expected, rbac-C 

produced the core protein of approximately 21 kDa in infected cells (Fig. 71a, lane 

7). Furthermore, rbac-CC expressed a core-CAT fusion product most of which was 

cleaved into the individual core and CAT products (lane 8). The molecular weight 

of the cleaved core was identical to that produced by rbac-C (lane 8) indicating that 

the cleavage takes place at the authentic signal peptidase cleavage site within core. 

The presence of the cleaved CAT product in rbac-CC infected cells was confirmed 

using an anti-CAT PAb (Fig. 71b, lane 8). In contrast, rbacs-5C, -5C3, -5CC, and 

-5CC3, all of which carry the HCV IRES, failed to synthesise detectable levels of 

core or core-CAT fusion product in infected cells (Figs 71a and b, lanes 3-6), 

consistent with the previous report suggesting that the HCV IRES is non-functional 

in Sf21 cells (Wang et al., 1997). However, rbac-5CC produced a small amount of 

what appeared to be CAT protein as detected by the anti-CAT PAb (Fig. 71b, lanes 

5) suggesting the translational block, at least regarding this rbac, is leaky. PAb R525 

may require a larger amount of its target protein to allow detection by Western 

blotting.

5.2. 6 Further Investigation o f  an Apparent Block in HCV 5 'NCR-mediated 

Translation in Insect Cells

Although the HCV 5'NCR is functionally inoperative in Sf21 cells, it is known to be 

active in mammalian cell lines (for example, Honda et al., 2000). To further confirm 

the results of Wang et al. (1997) (section 5.2.5), production of core protein from 

mammalian expression constructs with and without the 5'NCR fused upstream of 

the core-coding sequence (generated by J. Wood; see Appendix II) in two separate 

cell lines was compared with expression of rbacs-5C and -C in Sf21 cells. Huh-7 

and COS-7 cell lines were either mock-transfected, or transfected with a DNA
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construct in pcDNA 3.1/Zeo(+) containing the core-coding sequence (pcDNA-C), or 

transfected with a similar construct carrying the 5'NCR upstream of core (pcDNA- 

5C) (Fig. 72a). While mock-transfected Huh-7 or COS-7 cells were negative when 

probed with anti-core PAb R525 by Western blotting (Fig. 72b and c, lane 1), core 

protein of the expected molecular weight (~21 kDa) was detected in cells 

transfected with plasmid pcDNA-C (lane 2). Similarly, transfection of Huh-7 or 

COS-7 cells with pcDNA-5C also led to the production of core protein (lane 3). 

Interestingly, the level of translation in Huh-7 cells from the 5'NCR-containing 

construct was far greater than that without the 5'NCR (Fig. 72b, lanes 2 and 3, 

respectively), whereas this trend was reversed in COS-7 cells (Fig. 72c). This 

suggests there is a hepatocyte-specific upregulation of translation in the presence of 

the 5'NCR. It is also possible that this phenomenon is cell-cycle related (Honda et 

al., 2000). Nevertheless, as described previously (section 5.2.5), infection of Sf21 

cells with rbacs carrying the HCV 5'NCR fused to the core-coding sequence did not 

produce detectable levels of core protein, while infection of Sf21 cells with rbac 

lacking the 5'NCR but containing the core coding sequence produced core (Figs 72b 

and c, lanes 5 and 6).

To confirm the reported finding that this lack of core protein was not due to lack of 

transcription from the 5'NCR-core virus (Wang et al., 1997), RNA was extracted 

from Sf21 cells infected with the same rbacs, and the presence of 5'NCR-containing 

transcripts was verified. As shown in Fig. 73, a 32P-labelled probe derived from an 

AgeVApcAA restriction fragment of pCV-5CC (see Appendix II) corresponding to 

HCV nt 155-336 within the 5'NCR (see Appendix IV) detected a transcript from 

Sf21 cells infected with the 5'NCR-core virus, but not from Sf21 cells infected with 

the wild-type baculovirus. Thus, although appropriate transcripts are generated, the 

HCV IRES is not able to drive translation of downstream sequences in insect cells.
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Figure 73: Confirmation of 5'NCR-core transcript expression by 
rbac-5C. Sf21 cells were mock-infected (lane 1), or infected at m.o.i. 
o f 0.5 with rbac-5C (lane 2) or rbac-C (lane 3). Following incubation 
at 28°C for 72 hours, total RNA was extracted from cells and 
subjected to Northern blot analysis using a 32P-labelled probe derived 
from a 5'NCR AgellApalA restriction fragment (nt 155-336 of HCV 
strain H77c; see Appendix IV).



5.2. 7 Western Blotting o f Mock-infected and Rbac-DDX3 Infected Sf21 Cell 

Extracts Probed with a Panel o f  DDX3 MAbs

It was hypothesised that since a closely related DDX3 homologue may not be 

present in insect cells (Figs 22b and 26; sections 3.2.1 and 3.2.3), a lack of this 

cellular factor may be responsible for the block in HCV 5'NCR-mediated translation 

in insect cells. To verify that Sf21 cells lack a closely related homologue of DDX3, 

the full panel of anti-DDX3 MAbs and PAbs were used to probe mock-infected 

Sf21 cell extracts. Sf21 cell extracts previously infected with rbac-DDX3 were 

probed with the same panel of antibodies as a positive control to determine whether 

any of the MAbs or PAbs could detect DDX3 expressed by rbac-DDX3. As shown 

in Fig. 74a, none of the MAbs tested detect a DDX3 homologue in S£21 cell 

extracts. Interestingly, however, both A02 and A035 detected a 46 kDa protein in 

Sf21 total cell extracts (lanes 1 and 5), the same size as the putative truncated form 

of DDX3 detected by the same MAbs in Huh-7 (N) total cell extracts (Fig. 42; 

section 3.2.18). Anti-DDX3 PAb R648 detected a band at approximately the correct 

molecular weight for DDX3, but it had high backgorund (Fig. 74a, lane 9). In 

agreement with previous data (Fig. 67a; section 5.2.2), PAb R438 did not detect a 

DDX3 homologue in Sf21 cell extracts (lane 19). These data indicate that a closely 

related homologue of DDX3 does not exist in Sf21 cells. As would be expected 

given previous results (Figs 42 and 66a; sections 3.2.18 and 5.2.1), anti-DDX3 

MAbs AO 166 and AO 196, and both PAbs (R438 and R648), detected DDX3 

expressed in Sf21 cells by rbac-DDX3 (Fig. 74b, lanes 9, 12, 18 and 19, 

respectively). In addition, MAbs A02 and A035 were also able to detect DDX3 

expressed by rbac (lanes 1 and 5), although they did not interact with endogenously- 

expressed full-length DDX3 in hepatocyte cell extracts (Fig. 42; section 3.2.18). 

AO 190, which did not detect DDX3 by Western blotting with hepatocyte cell 

extracts (Fig. 42; section 3.2.18), showed affinity for a protein of the same 

molecular weight as DDX3 produced by rbac-DDX3 (Fig. 74b, lane 15). In fact, on 

closer inspection of lower exposure blots, this antibody seemingly only detected a 

protein as a single band of molecular weight intermediate between the doublet 

detected by MAbs AO 166 or AO 196 (data not shown). A034 appeared to detect a 

protein of slightly lower molecular weight than DDX3 in both mock-infected Sf21
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cells and Sf21 cells infected with rbac-DDX3 (Figs 74a and b, lane 4). MAb AO 193 

also very weakly interacted with two closely migrating bands in rbac-DDX3- 

infected S£21 cell extracts, although this was of slightly lower molecular weight to 

that detected by the other MAbs described above.

5.2. 8 Effect o f  DDX3 on HCV 5 'NCR-mediated Translation in Insect Cells

Following confirmation that Sf21 cells lack a closely related homologue of DDX3 

as determined by Western blotting, the possible effect of DDX3 on IRES-mediated 

translation of HCV core was investigated. Sf21 cells were either mock-infected, 

infected with wild-type baculovirus, or with rbac-C, -5C, or -5C3 either alone or 

together with rbac-DDX3. Following incubation at 28°C for 72 hours, cell extracts 

were prepared and analysed for DDX3 or HCV core protein synthesis by Western 

blotting using anti-DDX3 MAb AO 196 and anti-core PAb R525, respectively. As 

before, the antibodies failed to recognise DDX3 or core in mock- and wild-type- 

infected Sf21 cells (Figs 75a and b, lanes 1 and 2). In rbac-DDX3 or rbac-C infected 

cells, DDX3 and core protein were detected by AO 196 (Fig. 75a, lane 4) and R525 

(Fig. 75b, lane 3), respectively, as shown previously (Figs 66a and 66b; section 

5.2.1). Furthermore, no detectable levels of core protein were seen in Sf21 cells 

infected with rbac-5C and -5C3 (Fig. 75b, lanes 5 and 6) as before (Fig. 71a; section 

5.2.5). Interestingly, however, both of these rbacs synthesised a small quantity of 

core in cells co-infected with rbac-DDX3 (Fig. 75b, lanes 9 and 10). Seemingly less 

core protein was produced in the presence of the 3'NCR (lane 11). These results 

indicate that DDX3 expressed by rbac is able to slightly relieve the block in IRES- 

mediated translation of core in insect cells. A role for DDX3 in HCV IRES- 

mediated translation would be consistent with the findings of others that it can 

rescue yeast cells with a lethal mutation in its homologue dedl gene (section 

1.9.6.9; Mamiya and Worman, 1999) which is known to be involved in translational 

initiation (1.13.6; Chuang et al., 1997).
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Figure 75: Effect of DDX3 on translation from HCV 5'NCR- 
carrying rbacs. Sf21 cells were mock-infected (lane 1), infected with 
wild-type baculovirus (wt; lane 2), or with rbacs either singly (lanes 
3-6) or in combination with rbac-DDX3 (lanes 7-10) as shown. 
Following incubation at 28°C for 72 hours, cell extracts were 
prepared, fractionated by SDS-PAGE, and immunoblotted with MAb 
(A) anti-DDX3 MAb A0196 or (B) anti-core PAb R525.



5.2. 9 Effect o f  DDX3 on Transcription o f  HCV 5 NCR-containing Rbacs

To determine whether the effect of DDX3 on translation of the 5'NCR-containing 

rbacs was due to increased transcription, total RNA from mock-infected Sf21 cells 

or cells previously infected with wild-type baculovirus or with rbac-DDX3, -5C, or 

-5C together with rbac-DDX3, was extracted and investigated by Northern blot 

analysis. Each sample containing 10 pg total RNA was fractionated and subjected to 

Northern blotting as before using a 32P-labelled probe derived from an AgeUApaLX 

restriction fragment within the 5'NCR (section 3.2.7). This probe was able to detect 

5'NCR-core transcripts in total RNA from rbac-5C singly-infected cells (Fig. 76a, 

lane 4), but not in total RNA from mock-infected (lane 1), wt-infected (lane 2) or 

rbac-DDX3-infected (lane 3) Sf21 cells. Crucially, there was no apparent increase in 

5'NCR-core transcripts in total RNA extracted from Sf21 cells co-infected with 

rbac-5C and rbac-DDX3 (lane 5). In fact, qualitative analysis of 5'NCR-containing 

RNA transcripts produced from rbac-5C infected cells suggested an slight decrease 

in the presence of DDX3 transcripts, although this could be consistent with 

competition of co-infecting rbacs for cellular machinery needed for viral processes. 

The same total RNA samples were subjected to Northern blot analysis with a P- 

labelled probe originating from nt 1-624 of the DDX3 coding sequence described 

previously (section 3.2.1) to confirm expression of DDX3 mRNA from rbac-DDX3. 

This probe was able to detect DDX3 mRNA at similar levels in total RNA samples 

expected to express this transcript (Fig. 76b, lanes 3 and 5), but did not detect 

transcripts in any of the other samples (lanes 1, 2 and 4). These data confirm that the 

effect of DDX3 on translation of HCV 5'NCR-containing rbacs does not occur at 

the transcriptional level.

5.2. 10 Effect o f Core Protein on HCV 5 'NCR-mediated Translation in Insect Cells

To test the possible effect of core protein on IRES-dependent translation, rbacs 

described previously (Fig. 70; section 5.2.5) carrying HCV 5'NCR linked core-CAT 

fusion protein-encoding sequences both in the presence and absence of 3'NCR were 

used. Sf21 cells were either infected singly with rbac-5C, -5C3, -5CC, -5CC3 or -C, 

or co-infected with these viruses and rbac-C. Following incubation at 28°C for 72
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Figure 76: Effect of DDX3 expression on transcription from HCV 
5'NCR-carrying rbacs in insect cells. Sf21 cells were mock-infected 
(lane 1), or infected with wild-type baculovirus (wt, lane 2), or with 
rbacs either singly (lanes 3-4) or in combination with rbac-DDX3 
(lane 5) as shown. Total RNA was extracted following incubation at 
28°C for 72 hours, fractionated, and analysed by Northern blotting 
using 32P-labelled probes derived from (A) a -180 nt HCV 5'NCR 
AgeMApalA restriction fragement or (B) DDX3 nt 1-624.



hours, cell extracts were prepared and their total protein concentration determined. 

Each extract containing 25 pg total protein was assayed for CAT activity using 

[14C]-labelled chloramphenicol as described (section 2.42). Acetylated products 

were visualised and quantitated as described in section 2.27.6. No significant CAT 

activity was seen in Sf21 cells infected, either singly with rbac-5C, -5C3, or -C, or 

in combination with these rbacs and rbac-C (Fig. 77), not surprisingly as these 

viruses lack the CAT-coding sequence. However, both rbac-5CC and rbac-5CC3 

also failed to produce CAT activity that was above background levels (Fig. 77), 

which is consistent with the non-functionality of HCV 5'NCR-mediated translation 

in the insect cell system. In contrast, upon co-infection of Sf21 cells with rbac-C and 

rbac-5CC, there was a 3.2-fold increase in the levels of CAT activity (Fig. 77) 

indicating that HCV core (or its coding sequence) alone can activate IRES-mediated 

translation in Sf21 cells. Interestingly, only a small increase in the levels of CAT 

was seen in cells co-infected with rbac-C and rbac-5CC3 (Fig. 77), indicating that 

the 3'NCR may downregulate this effect of core protein (or its RNA) on HCV 

IRES-mediated translation. To confirm these data, the CAT assay samples as above 

were subjected to Western immunoblotting using anti-core PAb R525 or an anti- 

CAT PAb. As before, rbac-C produced the core protein of approximately 21 kDa in 

infected cells (Fig. 78a, lane 7) and rbac-CC expressed a core-CAT fusion product 

most of which was cleaved into the individual core and CAT products (lane 8). In 

contrast, rbacs-5C, -5C3, -5CC, and -5CC3, all of which carry the HCV IRES, failed 

to synthesise detectable levels of core or core-CAT fusion product in infected cells 

(Fig. 78a, lanes 3-6), although rbac-5CC produced a small amount of what appears 

to be CAT protein as detected by PAb anti-CAT (Fig. 78b, lane 5). These data (Figs 

78a and 78b, lanes 1-8) have been presented elsewhere (Fig. 71; section 5.2.5), but 

are presented here for reference. Co-infection of the rbacs as above with rbac-C 

produced core protein of the expected molecular weight at similar levels in all 

samples (Fig. 78a, lanes 9-13). Consistent with the CAT assay (Fig. 77; section 

5.2.9), cleaved CAT protein was detected by the anti-CAT PAb at increased levels 

in rbac-5CC and rbac-C co-infected cells compared to rbac-5CC infected cells (Fig. 

78b, lane 11). A small amount of CAT protein was also detected in Sf cells co- 

infected with rbac-5CC3 and rbac-C (lane 12).
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bars). Following incubation at 28°C for 72 hours, cell extracts were 
prepared and 25 pg of each extract was assayed for CAT activity. 
CAT activity was quantitated using a Bio-Rad Molecular Imager FX 
with Quantity One software (Bio-Rad).
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Extracts from infected Sf21 cells used in Fig. 77 were fractionated by 
SDS-PAGE (12.5%) and Western immunoblotted using (A) anti-core 
PAb R525 or (B) anti-CAT PAb.



The effect of core protein or its coding sequence on translation from rbac-5CC was 

titrated by increasing the m.o.i. (from 0.05 to 5) of rbac-C while keeping that of the 

rbac-5CC reporter baculovirus constant (at m.o.i. = 0.5). The core expressing rbac 

had a ‘dose-dependent’ effect on translation from rbac-5CC (Fig. 79a and b, lanes 5- 

8). Since core protein is expressed as a part of a polyprotein that is cleaved into 

discrete products during HCV infection, its effect in the context of HCV 

glycoproteins El and E2 on HCV 5'NCR-mediated translation in S£21 cells was 

investigated. As before (Fig. 77), core protein expressed in this manner had a similar 

ability to drive production of the reporter as when expressed in isolation (Fig. 80, 

lanes 7-10).

To determine whether DDX3 and core protein could act synergistically to increase 

IRES activity, rbac-DDX3 was co-infected with rbac-C, and rbac-5CC or -5CC3 

with the relevant controls. However, DDX3 was consistently unable to alter CAT 

activity relative to that of rbac-5CC or -5CC3 co-infected with rbac-C alone (data 

not shown).

5.2. 11 Effect o f  Core Protein on Transcription o f  HCV 5 'NCR-containing 

Sequences

Core protein has been reported to have effects on cellular and viral promoters 

(section 1.8.4). To rule the possibility that core protein was simply upregulating 

transcription from the baculovirus polyhedrin promoter to increase translation, RNA 

was extracted from Sf21 cells infected with appropriate rbacs and investigated by 

Northern blot analysis. Total RNA from S£21 cells co-infected with rbac-C and 

rbac-5C or -5C3, together with the relevant controls as described in section 5.2.9, 

was extracted. Each sample containing 10 pg total RNA was fractionated and 

probed in the same manner as before (section 5.2.9), with expression of mRNA 

from 5'NCR-containing rbacs determined using a radiolabelled probe derived from 

an AgellApalA fragment of the HCV 5'NCR. This probe was able to detect 5'NCR- 

core transcripts in total RNA from rbac-5C singly-infected cells (Fig. 81a, lane 4), 

but not in total RNA from mock-infected (lane 1), wt-infected (lane 2) or rbac-C 

infected (lane 3) Sf21 cells. Importantly, there was no apparent increase in 5'NCR-
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Figure 79: Titration of effect of core protein on HCV 5'NCR- 
mediated translation in insect cells. (A) Sf21 cells were mock- 
infected (lane 1), infected at m.o.i. of 0.5 with wild-type baculovirus 
(wt, lane 2), or with rbacs at the same m.o.i. either singly (lanes 3-4) 
or in combination (lanes 5-8, increasing m.o.i. o f rbac-C from 0.005 
to 5) as shown. Cell extracts were prepared following incubation at 
28°C for 72 hours, quantitated in terms of protein concentration and 
assayed for CAT activity. (B) Quantitation o f CAT activity of 
samples shown in (A).
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E2 on HCV 5'NCR-mediated translation. Sf21 cells were infected at 
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rbacs either singly (lanes 2-6) or in combination (lanes 7-10) as 
shown. Cell extracts were prepared following incubation at 28°C for 
72 hours, quantitated in terms o f protein concentration, and assayed 
for CAT activity.



core transcripts in total RNA extracted from Sf21 cells co-infected with rbac-5C and 

rbac-C (lane 5). In fact, the quantity of transcripts from rbac-5C infected cells 

markedly decreased in the presence of core protein. The same total RNA samples 

were used to confirm expression of core mRNA from rbac-C. A radiolabelled probe 

originating from a ~200 bp XhollClal restriction ffagement of pcDNA-C-El-E2 (see 

Appendix II) was employed to detect core mRNA produced by this rbac. This probe 

was able to detect core mRNA at similar levels in total RNA extracted from Sf21 

cells singly infected with rbac-C (Fig. 81b, lane 3), or co-infected with rbac-5C 

(lane 5). This probe was also able to detect the 5'NCR-core transcript (lane 4). 

However, the transcript produced by rbac-5C was only detected at low levels when 

cells were co-infected with rbac-C (lane 5). Therefore, for unknown reasons, it 

appears that the high levels of core protein indicated by the level of transcription 

from this rbac is inhibiting the normally high level transcription from the 5'NCR- 

containing rbac. A possible reason for this is dual infection of Sf cells (section

5.2.9), although the level of transcription from rbac-C did not decrease in the 

presence of rbac-5C (lane 5). Nevertheless, these data do not suggest that the effect 

of core protein on HCV 5'NCR-mediated translation is due to upregulation of 

transcription from 5'NCR-containing rbacs.

5.2. 12 Effect o f Other HCV Proteins on HCV 5 'NCR-mediated Translation in 

Insect Cells

To rule out the possibility that mere expression of recombinant proteins, particularly 

RNA binding proteins like DDX3 and core protein, are having effects on translation 

from 5'NCR-containing rbacs, other proteins were tested for their ability to relieve 

the HCV 5'NCR-mediated translational block observed in insect cells. To this end, 

the HCV NS3 RNA helicase (section 1.2.5.2), was tested in the same assay. 

Although its function in HCV pathogenesis is unclear (section 1.2.5.2), it would not 

be unreasonable to suggest that this protein could influence translation by 

unwinding RNA secondary structures in the HCV genome. The recently reported 

interaction of NS3 with the 3'NCR (section 1.4.3; Baneijee and Dasgupta, 2001), 

could also alter translation, due to cross-talk between the NCRs (section 1.4.2). The 

coding sequence for the NS3 helicase domain which had been cloned and expressed
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Figure 81: Effect of core protein on transcription from HCV 5'NCR- 
containing sequences. SfZl cells were mock-infected (lane 1), 
infected with wild-type baculovirus (wt, lane 2), or infected with 
rbacs either singly (lanes 3 and 4) or in combination with rbac-C 
(lane 5) as shown. Following incubation at 28°C for 72 hours, total 
RNA was extracted, fractionated, and analysed by Northern blotting 
using 32P-labelled probes derived from (A) a -180  bp HCV 5'NCR 
Age\/ApaL\ restriction fragement or (B) a -200 bp HCV core 
Xhol/Clal restriction fragement.



previously (Fig. 61; section 4.2.12), and shown to possess ATPase and RNA 

helicase activity (Figs 62a and 64a; sections 4.2.13 and 4.2.15), was transferred 

from the pGEX-6P-3-NS3 helicase plasmid to pAcCL29.1 (Fig. 65a) immediately 

downstream of the baculovirus polyhedrin promoter. The resulting construct 

(pAcNS3) was used directly to transfect Sf21 cells in order to determine its effect on 

5'NCR-mediated translation. As a positive control, pAcCL29.1 transfer vector 

containing full-length core cDNA that was used to generate rbac-C (pAcC) was 

transfected in parallel. A further positive control plasmid containing core-CAT 

coding sequences alone that was used to generate rbac-CC (pAcCC) was used. To 

express proteins from these constructs, Sf21 cells were infected with baculovirus 

(wt or recombinant) prior to mock-transfection, or transfection with pAcNS3, pAcC, 

or pAcCC plasmid as described (section 2.39). Infection with wild-type or 

recombinant baculovirus supplied the required transcription factors and other 

baculovirus proteins necessary for efficient expression from the polyhedrin 

promoter in the plasmid DNA constructs. To determine the role of these proteins in 

HCV 5'NCR-mediated translation, Sf21 cells were infected with either rbac-5CC or 

-5CC3, and then mock-transfected or transfected with the appropriate construct. As 

shown in Fig. 82a, wt-infected cells that were subsequently mock-transfected did 

not have any CAT activity (lane 1). In contrast, cells infected with wt baculovirus 

and then transfected with pAcCL29.1 vector containing the core-CAT fusion 

(pAcCC) gave high level CAT activity (lane 2). As expected, cells infected with wt 

baculovirus and then transfected with pAcNS3 (lane 3) or pAcC (lane 4), or cells 

infected with rbac-5CC or -5CC3 did not give detectable levels of CAT activity. 

However, infection of Sf21 cells with wt baculovirus followed by transfection with 

pAcNS3 also did not give detectable CAT activity (lanes 7 and 8), thus confirming 

that the effect of DDX3 and core protein is specific in this system. To verify that 

proteins expressed by plasmid in insect cells could relieve the HCV 5'NCR- 

mediated translational block, cells were infected with rbac-5CC or -5CC3 and then 

transfected with pAcC. Consistent with the previous data (Fig. 77; section 5.2.10), 

core protein expressed in this manner gave a detectable level of CAT activity from 

rbac-5CC3 (lanes 9 and 10). Co-transfection of pNS3 and pC following infection 

with rbac-5CC or -5CC3 did not alter CAT activity relative to that without pAcNS3

170



co
ns

tru
ct

 
_ 

co
ns

tr
uc

t
1 2 3 4 5 6 7 8 9 10 11 12

wt wt wt wt 5CC 5CC3 5CC 5CC3 5CC 5CC3 5CC 5CC3 
pAcCC + - - .
pAcNS3 - -  + - -  - + + _ _ +  +
pAcC - - - + - - - - + +  + +

k l)a

66

46 

30

wt/rbac
wt wt wt wt 5CC 5CC3 5CC 5CC3 5CC 5CC3 5CC 5CC3

pAcCC - + .  - - .................................................................
pAcNS3 - - +  - - . + + .  + +
pAcC - _ _ . _  + + + +

Figure 82: Effect of HCV NS3 helicase on 5'NCR-mediated 
translation in insect cells. (A) Lanes 1-4: Sf21 cells were infected 
with wild-type baculovirus (wt) and then mock-transfected (lane 1) or 
transfected with pAcCL29.1-CC (pAcCC, lane 2), -NS3 (pAcNS3, 
lane 3), or -C (pAcC, lane 4). Lanes 5-12: Cells were infected with 
rbac-5CC or -5CC3, and mock-transfected (lanes 5 and 6), or 
transfected with constructs as shown (lanes 7-12). (B) CAT assay 
samples as in (A) were fractionated by SDS-PAGE (10%) and 
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(lanes 11 and 12), suggesting that the NS3 helicase has no effect on the ability of 

core protein to alter HCV 5'NCR-mediated translation. The presence of NS3 

helicase protein in the appropriate samples was determined by fractionating the 

same samples used for CAT assay as above by SDS-PAGE and immunoblotting 

with an anti-NS3 PAb (raised against the full-length NS3 protein) (see Appendix I). 

Protein of the expected molecular weight of 51 kDa for the NS3 helicase domain 

was detected in all samples expected to contain the protein (Fig. 82b, lanes 3, 7, 8, 

11, and 12). A further construct containing the HCV El and E2 coding sequence 

was tested in the same manner described above as an additional control. Expression 

of these HCV glycoproteins apparently did not have any effects on translation from 

the HCV 5'NCR in this system (data not shown).

5.2. 13 Effect o f  DDX3 and Core Protein on HCV 5 'NCR-mediated Translation in 

Mammalian Cells

While the results described in the preceding sections suggest that DDX3 and core 

protein, but not the HCV NS3 helicase or E1-E2, can relieve a translational block in 

5'NCR-containing rbacs, the actual significance of these effects have not been 

validated in mammalian cells. To investigate this, two previously reported 

constructs, pCV-5CC and pCV-5CC3 (Wood et al., 2001; see Appendix II) driven 

by a T7 promoter alone, carrying the HCV 5'NCR linked to full-length core fused 

in-frame to CAT, or these sequences followed by the 3'NCR, were used as reporter 

plasmids (Fig. 83a). Use of these plasmids allowed generation of 5'NCR-containing 

transcripts without extra nucleotides at the 5'-end. Two further constructs generated 

by Dr A. Patel in the mammalian expression vector pcDNA3.1+/Zeo (Invitrogen), 

each carrying HCV or DDX3 sequences downstream from a composite 

CMV/bacteriophage T7 promoter (Pcmw h) (Fig. 83b) were used (see Appendix II). 

These plasmids, expressing core-El-E2, or E1-E2 alone, or DDX3 (pcDNA-C-El- 

E2, pcDNA-El-E2 or pcDNA-DDX3, respectively), were used to supply 

appropriate proteins in transfected cells. Prior to transfection with these DNA 

constructs, Huh-7 cells were infected with vTF7.3 expressing the bacteriophage T7 

RNA polymerase (Fuerst et al., 1986; see Appendix III) for 1 hour at m.o.i = 5. The 

infected cells were then transfected with 3 pg pCV-5CC or pCV-5CC3 and 1.5 pg
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control pcDNA 3.1/Zeo(+) vector to gauge the normal level of IRES activity from 

each construct in hepatocytes, or co-transfected with 3 pg of either reporter plasmid 

and 1.5 pg of mammalian expression plasmid in the pcDNA 3.1/Zeo(+) background. 

All transfections were carried out in triplicate. Following incubation at 37°C for 24 

hours, cell extracts were prepared and each sample containing 25 pg total protein 

was assayed for CAT activity as described (section 2.42). CAT activity was 

produced in Huh-7 cells transfected with pCV-5CC or 5CC3 and empty pcDNA 

vector alone, since the HCV IRES is functional in hepatocytes when introduced into 

cells in this manner as shown previously (Fig. 72b; section 5.2.6). This level of CAT 

activity was arbitrarily set at 100% IRES activity. However, while DDX3 appeared 

to be able to relieve the block in IRES-mediated translation of core in insect cells 

(Fig. 75; section 5.2.8), it did not upregulate CAT activity of either 5CC or 5CC3 

constructs (Fig. 84a), indicating that it might not increase IRES activity as originally 

expected. In fact, IRES activity was consistently inhibited by the presence of DDX3. 

The reason for the anomaly between results in Sf21 and Huh-7 cells is unclear. 

However, the mammalian cell assay relies on expression of DDX3 over and above 

that of normal levels of the endogenous protein, whereas insect cells do not express 

a closely-related DDX3 homologue. It is therefore possible that the normal balance 

of DDX3 and its cellular partners is disrupted in transfected hepatocytes which may 

account for the observed effect. As shown in Fig. 84b, core protein was able to 

markedly increase IRES activity in the mammalian cell assay described above, in 

addition to its effects in the insect cell-based system (Fig. 77; section 5.2.10). As 

before, the CAT activity of Huh-7 cells transfected with pCV-5CC or 5CC3 and 

empty pcDNA vector was arbitrarily set at 100% IRES activity. Co-transfection of 

pCV-5CC or -5CC3 with E1-E2 mammalian expression construct served as an 

appropriate control to elucidate any modulation of CAT activity by core protein. 

Cells co-transfected with pCV-5CC and pcDNA-El-E2 produced a similar amount 

of CAT activity indicating that E1-E2 has no effect on IRES-mediated translation, 

although for unknown reasons with the 3'NCR present there was a down-regulation 

of IRES activity. In contrast, there was a 5-fold increase in CAT activity in cells co

transfected with pcDNA-5CC and pcDNA-C-El-E2 (Fig. 84b). Interestingly, little 

effect on CAT activity was seen in cells co-transfected with pcDNA-5CC3 and
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pcDNA-C-El-E2 or pcDNA-El-E2, consistent with previous data (Fig. 77; section 

5.2.10) suggesting the 3'NCR modulates the effect of core protein on HCV 5'NCR- 

mediated translation in the insect cell system. To confirm the presence of proteins 

expressed by pcDNA-C-El-E2 or -E1-E2, CAT assay samples used as above were 

fractionated by SDS-PAGE and immunoblotted with a mixed antibody preparation 

of anti-E2 MAb AP33 and anti-El PAb R528 (see Appendix I). As a positive 

control, rVV-El-E2-infected Huh-7 total cell extracts were fractionated and probed 

in parallel. As shown in Fig. 84c, El and E2 expressed from pcDNA-C-El-E2 

(lanes 2 and 5) or -E1-E2 (lanes 3 and 6) were found at similar levels and processed 

appropriately as E1-E2 expressed via rVV (lane 7), but not detected in samples 

previously transfected with empty pcDNA vector (lanes 1 and 4).

5.2. 14 Effect o f  DDX3 and Core Protein on Translation o f  CAT Gene from a 

Standard Expression Plasmid

A previous report suggested that core protein could markedly upregulate translation 

of a reporter gene from a CMV promoter in the presence of DDX3 in Huh-7 cells 

(section 1.9.6.9; You et al., 1999b). To investigate this phenomenon, particularly 

with a view to using truncated or mutated DDX3 expression constructs, the 

mammalian expression plasmid pcDNA 3.1/Zeo(+) carrying the CAT gene 

(pcDNA-CAT; Appendix II) was transfected into Huh-7 cells either alone, or with 

plasmids (described previously, section 5.2.13) expressing either DDX3, HCV core- 

E1-E2, or both. Core-El-E2 sequences from two different HCV strains - Glasgow 

(gla), kindly provided by Dr M. McElwee and Professor R. Elliot (University of 

Glasgow), and H77c, kindly provided by Dr J. Bukh (Yanagi et al., 1997), were 

tested to determine any strain-specific differences. As controls, cells were either 

mock-transfected, or transfected with all mammalian expression plasmids under 

investigation except the CAT reporter plasmid. As expected, these samples were all 

negative when assayed for CAT activity (Fig. 85, lanes 1-6). Consistent with the 

previous data (Fig. 84a; section 5.2.13), over-expression of DDX3 qualitatively 

down-regulated translation from the CAT plasmid (lane 8) compared to that from 

the CAT plasmid alone (lane 7). This indicates that the effect of this protein on 

5'NCR mediated constructs in Huh-7 cells (Fig. 84a; section 5.2.13) was not
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Figure 85: Effect of DDX3 and core protein on translation of 
transiently expressed CAT reporter gene. Huh-7 cells were either 
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were prepared and assaye for CAT activity. Core-El-E2 seqeunces 
from two different HCV strains were used - gla, Glasgow strain; H77, 
H77c infectious clone (Yanagi et al., 1997).



specific. Core-El-E2 from either strain of HCV used did not have any effect on 

translation from the reporter plasmid (Fig. 85, lanes 7, 9 and 10). In contrast to 

previous data (section 1.9.6.9; You et al., 1999b), co-expression of DDX3 and core 

protein did not upregulate translation from the CAT plasmid (lanes 11 and 12). In 

fact, the level of CAT activity was slightly lower than that of CAT plasmid alone. 

The reason for this inconsistency is not clear, although the study presented here used 

full-length core protein together with the HCV glycoproteins, whereas the other 

report (You et al., 1999b) used only truncated core which may have a distinct 

localisation (section 1.7.3) and hence could have unusual properties in a cellular 

context.

5.2. 15 Effect o f RNA on dATPase Activity o f  GST-DDX3 Fusion Protein

It has previously been shown that the dATPase activity of the X. laevis An3 protein, 

a homologue of DDX3, is specifically stimulated by RNA from X. laevis oocytes 

(Askjaer et al., 2000). Synthetic poly(U) RNA did not have any effect on dATPase 

activity, suggesting the existence of a specific RNA activator which is recognised by 

the protein. By analogy with this protein and other RNA helicases, such as DbpA 

which is specifically stimulated by 23s rRNA (section 1.10.7), it was postulated that 

a specific sequence in total RNA extracted from Huh-7 cells could stimulate 

dATPase activity of DDX3. As a control, synthetic poly(A) RNA (Sigma) was 

tested in parallel. As in previous dATPase assays (Fig. 62; section 4.2.13), GST- 

NS3 helicase protein was tested as a positive control for the dATPase assay. 2 pg of 

purified GST-NS3 helicase protein was able to convert all dATP to dADP (Fig. 86a, 

lane 8). Consistent with previous reports (You et al., 1999b), relative to the 

dATPase activity of 2 pg GST-DDX3 without RNA (lane 1), the same amount of 

protein plus poly(A) RNA at a concentration of 0.02 and 0.2 pg (Fig. 86a, lanes 2 

and 3; Fig. 86b) exhibited a lower percentage conversion of dATP to dADP. This 

suggests that poly(A) RNA can inhibit dATPase activity of DDX3, although other 

synthetic polynucleotides have also been shown to inhibit NTP- or dNTPase of 

DDX3 expressed in E. coli (You et al., 1999b). At higher concentrations of poly(A) 

RNA (2 pg), however, this inhibition was not evident (Fig. 86a, lane 4; Fig. 86b). 

Consistent with the previous reports of X. laevis An3 (see above), total RNA
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extracted from Huh-7 cells at a concentration of 0.02, 0.2 or 2 jag stimulated 

dATPase activity of DDX3 (Fig. 86a, lanes 5-7; Fig. 86b). This stimulation allowed 

hydrolysis of the dATP substrate by DDX3 to a level similar to that of the NS3 

helicase control (lanes 5-7 and 8, respectively). dATPase activity was not stimulated 

or inhibited by poly(A) RNA or total RNA extracted from Huh-7 cells without GST- 

DDX3 protein (data not shown). It would be interesting to test whether this RNA 

could stimulate helicase activity of DDX3, since it is possible that the low level of 

dATPase activity of the protein, relative to the NS3 helicase, is responsible for its 

apparent inability to unwind a non-specific RNA duplex (Fig. 62b; section 4.2.15). 

The ability of certain RNAs to bind DDX3 and stimulate dATPase activity has been 

investigated (P. Askjaer and J. Kjems, personal communication). However, as yet, 

no particular RNA sequence or secondary structure that bound DDX3 has been 

shown to stimulate dATPase activity.

5.2. 16 Investigation into the Presence o f DDX3 in Purified Spliceosome 

Complexes

Previous data suggested that DDX3 was mainly located in the cytoplasm of 

hepatocytes (Figs 27, 44 and 51; sections 3.2.4, 4.2.1 and 4.2.5), with a small 

amount detected in the nucleus by subcellular fractionation (Fig. 57a; section 4.2.9) 

consistent with other reports of a nuclear form of DDX3 (Owsianka and Patel, 1999; 

You et al., 1999b). These data, together with the presence of an 'RS-like' domain 

that may be involved in protein-protein interactions between splicing factors 

(Owsianka and Patel, 1999; You et al., 1999b), could suggest DDX3 has a role in 

pre-mRNA splicing. To determine directly whether DDX3 was part of the 

spliceosome, a large nucleoprotein complex believed to contain many DEAD-box 

RNA helicases that participate in pre-mRNA splicing (Hamm and Lamond, 1998), 

purified spliceosome (kindly provided by Dr A. Lamond, University of Dundee) was 

probed for DDX3 protein. As with anti-DDX3 MAb A0196 (Fig. 57a; section

4.2.9), anti-DDX3 PAb R648 detected DDX3 abundantly in total cell extracts and at 

low levels in nuclear extracts (Fig. 87a, lanes 2 and 3, respectively). However, a 

corresponding band in fractionated purified spliceosome complex was not seen (lane 

1). To confirm that spliceosome complex was indeed present, a PAb directed against
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U1 A, a protein that should be present in this purified complex (Hamm and Lamond, 

1998) was used in parallel with R648. Accordingly, U1A was detected at high levels 

in total cell extracts (Fig. 87b, lane 2), and at low levels in nuclear extracts and at 

barely detectable levels in purified spliceosome complex (lanes 3 and 1, 

respectively). Although the protein concentration of the purified spliceosome 

complex appeared to be low, these data suggest that DDX3 is not part of the 

spliceosome, but do not directly rule out the possibility that this protein is indirectly 

involved in this process.

5 .3  Discussion

Functional aspects of DDX3 and its interaction with core protein were investigated 

in the preceding chapter. Initially, the possibility that core in some way modifies 

DDX3, or vice versa, as detected in Western blots using specific MAbs and PAbs, 

was investigated. The full-length coding sequences for each protein were used to 

generate rbacs, and their expression in an insect cell line, either singly or in 

combination, was analysed. This was further examined in a human hepatocyte cell 

line by infection with rVV-C-El-E2. Core protein expressed by this rVV was found 

in a subcellular localisation that fitted with previous reports (section 1.7.3) by 

indirect confocal immunofluorescence microscopy (for example: Fig. 29; section 

3.2.6). The results suggested core protein physically modifies the processing of 

DDX3 in vivo, and would be consistent with a prevention of normal transit through 

the ER following an interaction with core protein (discussed in section 4.3). If 

accurate, these data suggest a novel mechanism by which this viral protein can 

subvert host cellular processes by modifying a highly conserved and ubiquitous 

house-keeping protein (Figs 22-28; sections 3.2.1-3.2.5). Further investigation into 

the mechanism by which core protein exerts this effect on DDX3 is required. 

Studies with anti-DDX3 MAbs that possibly detect the higher molecular weight 

isoform may allow delineation of the region of DDX3 that is modified by core. If 

this isoform of DDX3 is generated by direct or indirect phosphorylation in the 

presence of core protein, it may be possible to immunoprecipitate this modified 

species and detect phophorylated residues with commerically available antibodies. 

Northern blotting of core-El-E2 expressing hepatocytes with DDX3-specific probes
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suggested it is unlikely that core alters expression/splicing of DDX3 mRNA to 

modify this protein, although the technique may not allow detection of subtle 

differences in mRNA transcripts.

The actual function of DDX3 in relation to replication or pathogenesis of HCV is 

unclear. Previous reports pointed to a role of DDX3 in translation in systems 

unrelated to HCV, or with non-specific substrates (section 1.9.6.9; Mamiya and 

Worman, 1999; You et al., 1999b). Here, DDX3 was implicated in specifically 

altering translation of the HCV genome since it appears to alleviate a previously 

reported translational block of rbacs carrying the HCV 5'NCR in Sf21 cells (section 

1.3.4; Wang et al., 1997). The effect of DDX3 in upregulating HCV IRES-mediated 

translation would be in agreement with the findings of others that it can rescue yeast 

cells with a lethal mutation in its homologue dedl gene (section 1.9.6.9; Mamiya 

and Worman, 1999), which is required for translational initiation in yeast (section 

1.13.6; Chuang et al., 1997). Nevertheless, the effect of DDX3 on HCV 5'NCR- 

mediated translation was not consistent with a similar hepatocyte-based transfection 

assay, making the role of this protein in translation of the HCV genome unclear. It is 

possible, however, that the over-expression of DDX3 in this system may disrupt the 

normal balance of DDX3 and could aberrantly sequester its cellular partners, thus 

crippling cellular DDX3.

In direct contrast to an earlier study (section 1.9.6.9; You et al., 1999b), DDX3 was 

unable to upregulate transiently-expressed CAT reporter gene when expressed by 

plasmid. Neither was there any significant modulation of CAT activity when CAT 

plasmid was co-transfected with DDX3- and core-El-E2-expressing plasmids. A 

possible reason for this anomaly could be that core protein in this study was 

expressed along with El and E2, as it would be during natural infection of target 

cells with HCV, while the previous study used core protein on its own (You et al. 

1999b). Furthermore, the previous study did not use full-length core protein - in 

fact, the most complete core-expressing construct used lacks an entire 69 aa stretch 

of the 191 aa full-length protein. Taken together, these data suggest that core protein 

on its own, or more likely truncated forms of core, can potentially exert this effect in
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conjunction with DDX3, but there is no actual in vivo significance in terms of HCV 

infection.

Although previous reports (section 1.9.6.9; Mamiya and Worman, 1999; You et al., 

1999b) and preliminary data dictated that the role of DDX3 in translation was 

studied in greatest detail, attempts were also made to allocate DDX3 to other 

functional categories in which putative and known RNA helicases may be placed 

(Fig. 20; section 1.12; de la Cruz et al., 1999), including pre-mRNA splicing and 

RNA export. Following subcellular fractionation experiments that suggested the 

localisation of a small amount of DDX3 in the nucleus (Fig. 57a; section 4.2.9), and 

previously reported analysis suggesting the presence of a short 'RS-like' domain that 

could be involved in protein-protein interactions between splicing factors, the 

presence of the protein in purified spliceosome complexes was investigated. 

However, the protein was apparently not present in such complexes, suggesting it is 

not directly involved in this process. By analogy with the X  laevis DDX3 

homologue An3 that is specifically stimulated by total RNA from X  laevis oocytes 

(Askjaer et al., 2000), the effect of Huh-7 total RNA and synthetic poly(A) RNA on 

dATPase activity of DDX3 was examined. Consistent with the An3 data, dATPase 

activity of DDX3 was stimulated by total RNA from Huh-7 cells. Furthermore, 

dATPase activity of DDX3 was inhibited by synthetic poly(A) RNA, consistent with 

the results of You et al. (1999b) suggesting that synthetic RNAs can inhibit NTPase 

and dNTPase activity of DDX3. The effect of Huh-7 RNA on dATPase activity of 

DDX3 may suggest that a specific activator of this protein exists in hepatocytes. 

However, an in vitro assay involving binding of random RNAs to GST-DDX3 

captured on glutathione-agarose beads and subsequent removal and sequencing of 

the bound RNAs, suggested that RNAs bound to DDX3 had no similarites in terms 

of sequence or secondary structure and were not able to stimulate dATPase activity 

(P. Askjaer and J. Kjems, personal communication).

The same assay used to determine a role for DDX3 in translation of the HCV 

genome unexpectedly suggested core protein could affect the HCV 5'NCR-mediated 

translational inhibition. In contrast to DDX3, core protein also upregulated IRES
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activity in hepatocytes. While there have been conflicting reports about the possible 

role of core protein or core protein-coding sequence in HCV translational regulation 

(section 1.3.5; Shimoike et a/., 1999; Wang et al., 2000), the evidence presented 

here strongly suggests that core protein can elevate IRES activity, thus enhancing 

translation of the HCV genome. There is also an indication that the 3'NCR 

modulates translation from the 5'NCR in this assay, in agreement with previously 

reported ‘cross-talk’ between the NCRs, thought to be mediated by cellular proteins 

(section 1.4.2). DDX3 apparently has no effect on the ability of core protein to 

increase IRES activity in the Huh-7 cell assay, although this requires further 

investigation.
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C H A P T E R  S I X :  

Conclusions



6 .1  Properties o f  DD X3

The following sections draw together and discuss the data presented here, as well as 

published information, regarding the properties of DDX3 at both the RNA and 

protein level.

6.1. 1 DDX3 Gene Structure and mRNA

DDX3 is encoded on the human X chromosome at position pi 1.3-11.23 (Fig. 21; 

Park et al., 1998), and its gene structure contains 17 exons spanning around 16 kb 

(section 1.13.1; Kim et a l , 2001). These exons are presumably spliced to produce 

the mature DDX3 mRNA of around 5.3 kb (Fig. 22b; section 3.2.1; Chung et al., 

1995). Since DDX3 cDNA is approximately 2 kb (see Appendix IV), this suggests 

the existence of a long poly(A) tail and/or extensive untranslated regions at the 5'- 

and 3'-ends of the mRNA. Extending the studies of Chung et a l , (1995), Northern 

blotting analysis with DDX3-specific probes indicated the presence of a single 

mRNA transcript in a range of cell types, representing human hepatocyte and non- 

hepatocyte human cell types, as well as other mammalian cells (Fig. 22b; section 

3.2.1). Interestingly, a Y chromosomal counterpart of DDX3 (termed DDXY) has 

been found (Lahn and Page, 1997). The presence of a Y chromosomal counterpart 

could indicate DDX3 has a highly related functionally interchangeable cellular 

homologue, as shown for related proteins on the X and Y chromosomes (Lahn and 

Page, 1997). However, since only one transcript was detected by Northern blotting 

either i) mRNA transcripts for DDX3 and DDXY are of very similar or identical 

size which prevents their resolution by gel electrophoresis or ii) their nucleotide 

sequence is sufficiently diverse to prevent detection with a DDX3-specific probe. 

DDX3 mRNA was subsequently detected in a diverse array of adult human and 

foetal tissues (Fig. 23a; section 3.2.2). Although expression was low relative to the 

ubiquitin control (Fig. 23b, section 3.2.2), and expression fluctuated moderately 

between different tissues, the ubiquitous presence of DDX3 strongly implies it is an 

essential cellular protein. This could very well be the main factor that prevented 

isolation of cell lines lacking DDX3 (Fig. 28; section 3.2.5), although this is 

difficult to confirm. HCV core protein expressed along with glycoproteins El and 

E2 had no effect on expression of DDX3 mRNA in Huh-7 cells, or the H9-13 HCV
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sub-genomic replicon-expressing cell line (Fig. 69; section 5.2.4), suggesting that 

the previously reported effect of core on the function of DDX3 (Mamiya and 

Worman, 1999; You et al., 1999b) is not occuring at the RNA level.

6.1. 2 DDX3 Protein

Endogenous DDX3 protein and that over-expressed in a variety of systems was 

generally found as a doublet (particularly evident in Figs 26 and 68; sections 3.2.3 

and 5.2.3), possibly reflecting the presence of a similar but not identical Y- 

chromosomal counterpart that may be functionally interchangeable with DDX3 (see 

above; Lahn and Page, 1997). Its Y-chromosomal counterpart, DDXY, is just two aa 

shorter than DDX3 (Lahn and Page, 1997), making it unlikely that this difference 

alone is responsible for the difference in size. However, the pattern of expression by 

rbac-DDX3 in insect cells (Fig. 67; section 5.2.2) suggested that the doublet 

detected in hepatocyte cell extracts was more likely due to a property inherent in the 

protein rather than the presence of cellular isoforms produced from separate 

chromosomes. Interestingly, a third species is detected by an anti-DDX3 PAb in cell 

extracts expressing core protein. However, it is not clear how this isoform is 

generated. Specifically, is not obvious whether it represents an inhibition of 

complete proteolytic processing or increased phosphorylation and/or other 

modifications. The presence of the third isoform of DDX3 does not affect 

expression of the two closely migrating bands seen in uninfected cells (Figs 67 and 

68; sections 5.2.2 and 5.2.3). Further assays, for example those allowing 

visualisation of phosphorylation states of DDX3 (section 5.3), could provide the key 

to this intriguing effect that may have important implications for the DDX3/core 

interaction and its significance regarding cellular and viral processes.

Analysis of the protein sequence of DDX3 suggested it contains several highly 

conserved motifs, notably those characteristic of known RNA helicases (section 

1.9.6.9; Owsianka and Patel, 1999), and a putative nuclear export signal (NES) (Fig. 

53a; section 4.2.6; see below) that binds CRM1 in vitro in a RanGTP dependent 

manner (P. Askjaer and J. Kjems, communication). A short 'RS-like' domain, 

believed to mediate protein-protein interactions in splicing factors (section 1.9.6.9),
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was previously identified in the domain involved in core binding (Owsianka and 

Patel, 1999; You et al., 1999b). In vitro GST-pulldown assays suggested core 

protein does indeed bind the 'RS-like' domain of DDX3 (or vice versa), but in the 

context of the full-length protein, this domain was not essential for binding to core 

protein (Fig. 33e; section 3.2.9). Nevertheless, specific binding of the 'RS-like' 

domain alone by core protein could imply that other cellular factors possessing 

similar domains can bind, or more likely are targeted by, core protein. Whether 

these interactions occur in vivo remains to be determined. This could, however, 

represent another mechanism for disruption of cellular processes by core protein 

(section 1.8).

6.1. 3 Insight into DDX3 Structure from Antibody Binding Data

For unknown reasons, only antibodies directed against the N-terminal ~200 aa of 

DDX3, as judged by reactivities with bacterially-expressed GST-DDX3 deletion 

mutants (Figs 35-41; sections 3.2.13-3.2.17), are able to detect discrete proteins in 

hepatocyte cell extracts by Western blotting (Fig. 42; section 3.2.18) and by indirect 

immunofluorescence (Figs 44 and 45; section 4.2.1). All antibodies directed against 

the remainder of the protein do not appear to recognise distinct protein factors in 

hepatocytes (Fig. 42; section 3.2.18). In theory, extensive post-translational 

modification occuring at the C-terminus may provide a rational explanation for 

antibody binding in mammalian versus bacterial systems. Indeed, analysis of the 

DDX3 protein seqeunce predicted two N-linked glycosylation sites in close 

proximity within the 409-473 region (see Appendix IV), an epitope bound by many 

of the antibodies recognising bacterially expressed DDX3 (see Appendix I, Fig. 88). 

A high proportion of putative casein kinase-II and protein kinase C phosphorylation 

sites are also found in this region (data not shown). Interestingly, two of the anti- 

DDX3 MAbs (A02 and A035) detect a 46 kDa protein by Western blotting (Fig. 

42; section 3.2.18). This protein shows a quite distinct localisation to that of the 

full-length protein (Fig. 45; section 4.2.1). DBY, a protein that shows 93% 

homology to DDX3 (section 1.13.2), apparently shares a similar property. Full- 

length mRNA encoding DBY is ubiquitously expressed in human tissues, while a 

truncated form is solely produced in the testis (Foresta et a l, 2000). Due to the
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inferred importance of DBY in spermatogenesis - DBY is frequently deleted in male 

infertile patients leading to severe spermatogenic damage that significantly reduces 

or abolishes production of germ cells (section 1.13.2; Foresta et al., 2000) - a 

truncated form of the protein may be crucial in this process. However, Northern 

blotting analyses did not suggest the presence of a second shorter DDX3 mRNA 

transcript in any of the mammalian cell lines tested (Fig. 22b; section 3.2.1), 

indicating the putative truncated form might arise due to proteolytic processing of 

full-length DDX3. Interestingly, the localisation of the endogenous 46 kDa protein 

was similar to that of DDX3 expressed by plasmid constructs (Figs 51, 55 and 59; 

sections 4.2.5, 4.2.8 and 4.2.11). Conflicting with the above hypothesis, a 46 kDa 

band was also detected by MAbs A02 and A035 in mock-infected Sf21 cells (Fig. 

74; section 5.2.7), which do not appear to possess a closely-related DDX3 

homologue (Figs 22b and 26; sections 3.2.1 and 3.2.3). It is therefore possible that 

this represents a related cellular factor.

6.1. 4 Enzymatic Properties

Even though the motifs critical in ATP-dependent RNA helicase activity are 

perfectly conserved from S. cerevisiae Dedlp to DDX3 (section 1.13), and this 

human cellular protein possesses dATPase activity (Fig. 62b; section 4.2.13; You et 

a l, 1999b), DDX3 is apparently unable to unwind random RNA duplexes (Fig. 64b; 

section 4.2.15; You et a l, 1999b). This could simply be due to the low dATPase 

activity of DDX3, relative to the HCV NS3 helicase used here a positive control 

(Fig. 62a; section 4.2.13). In fact, while 0.01 pg NS3 helicase completely 

hydrolysed the radiolabelled dATP substrate (Fig. 62a; section 4.2.13), DDX3 was 

unable to do so even at a concentration of 1.5 or 2.0 pg (Fig. 62b; section 4.2.13). 

Although the dATPase activity of DDX3 was moderately stimulated by total RNA 

from Huh-7 cells (Fig. 86a and b; 5.2.15), the functional importance of this 

observation for helicase activity, and its interaction with core protein, has not yet 

been determined. Interestingly, this property is similar to that seen with DDX3 

homologues Dedlp (lost et a l , 1999) and An3 (Askjaer et a l, 1999), but is in stark 

contrast to most other known RNA helicases, such as eIF4A that is more efficiently 

stimulated by synthetic homopolymeric RNA than cellular substrates such as human
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globin mRNA (Abramson et al., 1987). Another possible reason for the lack of 

helicase activity is that DDX3 may require a cellular co-factor for enzymatic 

activity, which could confer specificity of the protein on a particular substrate 

(section 1.10.7). A search for cellular co-factors of DDX3 by a library screening 

approach may well reveal a protein that is essential for DDX3 RNA helicase activity 

in vivo. This search could also provide clues to the specific subcellular localisation 

and function of DDX3. If the protein is part of a cellular complex, for example the 

translation initiation complex, these factors could be isolated using this approach.

6. 2 Significance of the DDX3/core Interaction in Cellular and Viral Processes

The aberrant sequestration of DDX3 at lipid droplets by HCV core protein in human 

hepatocytes or other mammalian cells (Fig. 29; section 3.2.6; Mamiya and Worman, 

1999; Owsianka and Patel, 1999; You et al., 1999b), and in HCV sub-genomic 

replicon-expressing hepatocyte cell lines (Fig. 32; section 3.2.8), could suggest 

DDX3 is being ‘hijacked’ by core to perform a function relevant to the replication 

cycle of HCV. Indeed, DDX3 apparently removes the previously reported HCV 

5'NCR-mediated translational block in insect cells (Wang et a l, 1997) (Fig. 75; 

section 5.2.8) consistent with the observed effect of DDX3 on translation in yeast 

(Mamiya and Worman, 1999), and on non-HCV related substrates in mammalian 

cells (You et a l,  1999b) (section 1.9.6.9). Since core protein is not present at 

detectable levels in insect cells infected with rbacs carrying the HCV 5'NCR 

followed by the core-coding sequence (Fig. 71a; section 5.2.5), it is possible that 

high levels of 5'NCR-core transcripts negate the need for redirection of DDX3 by 

core protein in this system. Alternatively, translation in this system may be ‘leaky’ 

allowing low, but undetectable, levels of core to be produced. Indeed, a low level of 

CAT protein was detected in rbac-5CC-infected insect cell extracts (Fig. 71b; 

section 5.2.5). Since the effect of DDX3 on 5'NCR-mediated translation in insect 

cells is subtle, this could suggest that other mammalian cell factors are required for 

full IRES activity in this insect cell system. The implication of DDX3 in cellular 

translation, and possible diversion of this role to meet the needs of HCV, is also in 

agreement with the essential role of Dedlp, the yeast homologue of DDX3, in 

translation initiation (section 1.13.6; Chuang et a l, 1997) and the apparent
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specificity of Dedlp for certain viral mRNAs (section 1.13.6; Noueiry et al., 2000). 

Although the HCV IRES does not require many of the canonical elFs (section 

1.3.4), DDX3 may be involved in or be required for full IRES activity. A non

specific effect on RNA stability due to the RNA-binding properties of DDX3 (P. 

Askjaer and J. Kjems, personal communication) seemed unlikely to be responsible 

for such activity, since the HCV NS3 helicase does not have any effect in this 

system (Fig. 82; section 5.2.12).

However, a similar effect to that seen in insect cells of exogenously-expressed 

DDX3 on HCV IRES activity was not seen in mammalian cells (Fig. 84a; section 

5.2.13), making the actual relevance of the effect in terms of natural infection with 

HCV unclear. Indeed, DDX3 over-expressed by plasmid appeared to actually 

suppress translation from the HCV IRES in the hepatocyte-based system. This was 

consistent with a moderate downregulation of translation in a reporter gene assay 

(Fig. 85; section 5.2.14), although this did not involve HCV-derived sequences. The 

reason for the disparity between the insect and mammalian cell-based systems is 

unclear. However, one difference between the insect and mammalian systems is that 

endogenous DDX3 is already present in hepatocytes. Expression by plasmid over 

and above that of the normal levels of DDX3 may disrupt a fine balance, for 

example with possible co-factors, of this protein in hepatocytes leading to the 

observed effect. This issue cannot be resolved until a human heptocyte cell line 

lacking DDX3 becomes available. Nevertheless, the strong co-localisation of core 

protein, expressed as part of the entire structural region of the HCV polyprotein, 

with DDX3 in hepatocyte-based cell lines containing self-replicating HCV sub- 

genomic RNA (Fig. 32; section 3.2.8) implied that the DDX3/core interaction is 

indeed of actual in vivo significance during natural HCV infection. In this co

localisation study, most viral components involved in virion morphogenesis and the 

replicative cycle of HCV were present. Moreover, owing to the ubiquitous nature of 

DDX3 (Figs 22-27; sections 3.2.1-3.2.4; Chung et al., 1995), and its conservation 

from yeast to man (section 1.13), the abnormal localisation of the protein in the 

presence of core most likely removes it from an essential cellular function, 

representing an additional mechanism of HCV core-mediated subversion of the host 

cell (section 1.8).
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These studies, although currently unclear, and previous reports detailing a role for 

DDX3 in translation (section 1.9.6.9; Mamiya and Worman, 1999; You et al., 

1999b), do not exclude a role for the protein in other cellular processes involving 

RNA helicases (section 1.12), such as pre-mRNA splicing, ribosome biogenesis 

(including processing of rRNAs and recruitment/rearrangement of ribosomal 

proteins in formation of the ribosome), processing of tRNAs, and RNA 

nucleocytoplasmic export. However, if DDX3 is indeed targeted by core protein to 

perform a function relevant to HCV, it is improbable that it is involved in pre- 

mRNA splicing, since HCV genomic RNA is not spliced. Consistent with this 

presumption, DDX3 did not appear to be present in purified spliceosome complexes 

(Fig. 87; section 5.2.16), although the positive control antibody (anti-UlA) detected 

only very small amounts of its target antigen, suggesting the concentration of the 

purified complexes was low. While the HCV replicase complex is situated in the 

cytoplasm (Fig. 9; section 1.5.3), a role for DDX3 in RNA/protein 

nucleocytoplasmic transport is possibly advantageous for HCV due to the reputed 

presence of core protein in the nucleus (section 1.7.3), which may mediate the 

effects of core on cellular transcription (section 1.8.4). It is possible that core protein 

uses DDX3 as a means to shuttle between the nucleus and the cytoplasm. The 

importance of such transport in the normal cellular function of DDX3, whether 

relevant for HCV or not, seemed plausible due to identification of a putative nuclear 

export signal (NES) (Fig. 53a; section 4.2.6). However, although the putative NES 

of DDX3 binds the soluble nuclear export factor CRM1 in a RanGTP-dependent 

manner in vitro (P. Askjaer and J. Kjems, personal communication), removal of this 

sequence did not cause accumulation in the nucleus of hepatocytes transfected with 

a DDX3 construct lacking the NES (Fig. 56; 4.2.8), possibly suggesting it is not 

functional in vivo. A good control that was not available to be tested by P. Askjaer 

and J. Kjems in the in vitro protein-protein binding assays was ANES-DDX3 

expressed as a GST-fusion protein. This would rule out the possibility that DDX3 

non-specifically interacts with CRM1. Nevertheless, the apparent lack of activity of 

the DDX3 NES in a cellular context could be similar to that of Epstein-Barr virus 

(EBV) nuclear antigen 1 (EBNA1). Although this protein contains a putative NES, 

it does not interact with CRM1 in yeast two-hybrid assays, nor does it shuttle to the
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cytoplasm in heterokaryon analyses (Fischer et al., 1999). Thus, the presence of a 

putative NES recognised by CRM1 appears to be redundant in this viral protein and 

the present data suggests this could well be the case for DDX3. Interestingly, 

however, ANES-DDX3 protein showed a slightly altered cellular distribution 

compared with the wild-type protein when expressed by plasmid in hepatocytes 

(Fig. 55; section 4.2.8), and appeared to subtly modify the distribution of core 

protein (Fig. 56; section 4.2.8), although these aspects also require further 

investigation.

Although indirect immunofluorescence studies suggested DDX3 was an almost 

exclusively cytoplasmic protein (Fig. 27; section 3.2.4; Mamiya and Worman, 

1999), subcellular fractionation of mammalian cell extracts did indeed indicate a 

nuclear form of DDX3 exists (Fig. 57; section 4.2.9). Such a nuclear form was 

previously detected using the same approach (You et al., 1999b), although it was 

not detected here in the same abundance as indicated in this report. Nevertheless, 

this result could imply DDX3 has a dual role in the cell, owing to two very distinct 

subcellular localisations, or that nucleocytoplasmic transport (by a pathway other 

than via CRM1) is important for its normal cellular function. Detailed studies of the 

endogenous DDX3 protein are required to confirm this result, since only transfected 

DDX3 cell extracts were probed (containing endogenous DDX3 as well as that 

expressed by plasmid).

6.2. 1 Insight into the Nature o f  the DDX3/core Interaction Using DDX3 Mutants 

and Co-expression Studies

It was interesting to note that a DDX3 mutant (DDX3-EQ) that was found to be 

enzymatically incapacitated (P. Askjaer and J. Kjems, personal communication) also 

showed a distinct localisation in relation to the wild-type protein (Fig. 59; section 

4.2.11). The altered localisation is not due to targeting of DDX3-EQ for degradation 

(Fig. 58; section 4.2.10). This strongly implies that the functional capabilities of 

DDX3 are linked to its subcellular localisation. Since the altered distribution of the 

DDX3-EQ mutant was found to be irrelevant for its interaction with core protein 

(Fig. 60; section 4.2.11), it is likely that the DDX3/core interaction occurs prior to
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targeting of DDX3 to its normal subcellular localisation. This could be related to the 

reported presence of core protein, albeit in low amounts, at the ER (section 1.7.3). It 

is also feasible that the interaction occurs as DDX3 is being translated, since the 

domain responsible for interaction with core is found near the C-terminus of the 

protein (Fig. 33e; section 3.2.9; Owsianka and Patel, 1999; You et a l , 1999b). 

However, the question remains as to why core protein maintains its ability to 

interact with an energetically-redundant DDX3 mutant protein. It will be interesting 

to test whether this DDX3 mutant interferes with viral processes when an HCV- 

permissive cell culture system becomes available.

The identification of possible modified processing of DDX3 attributable to core 

protein, indicated by the presence of a higher molecular weight isoform of DDX3, in 

both insect and mammalian cell-based co-expression studies (Figs 67-68; sections 

5.2.2-5.2.3), is in agreement with the above hypothesis. This indicates that the 

interaction with core protein occurs before DDX3 can be properly processed. 

Alternatively, it could indicate the interaction with core causes DDX3 to undergo 

further post-translational modifications. Nevertheless, the DDX3 isoform that is 

induced by core protein is in fact the first indication that core is able to modify a 

cellular protein with which it interacts. Other studies describing the interaction of 

core protein with host cell factors (section 1.9) have failed to reveal any 

modification of the individual proteins, although aberrant sequestration of the 

targeted proteins and alteration of their functions is commonly reported. Further 

studies are needed to determine the actual mechanism of this modification in the 

presence of core protein. It is unlikely that the higher molecular weight isoform 

represents core bound to DDX3, since this heterodimer would be denatured by SDS- 

PAGE. Furthermore, the effect is not due to copious quantities of the HCV 

glycoproteins at the ER, since the higher molecular weight DDX3 species is not 

seen when El and E2 alone are expressed in hepatocytes (Fig. 68; section 5.2.3). It 

also appears that the effect is not due to modification of DDX3 mRNA by core 

protein or its coding sequence (Fig. 69; section 5.2.4), as mentioned briefly above. 

Whatever the mechanism, the alteration of endogenous DDX3 by core in 

hepatocytes attaches additional credence to the actual biological significance of their 

interaction, particularly in view of three independent reports isolating DDX3 as an
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interacting partner of core protein (section 1.9.6.9; Mamiya and Worman, 1999; 

Owsianka and Patel, 1999; You et al., 1999b).

6.3 Effect of Core Protein on IRES Activity

Intriguingly, core protein was able to remove the HCV 5'NCR-mediated 

translational block in insect cells (Fig. 77 and 80; section 5.2.10), and also markedly 

upregulated IRES activity of a transfected reporter constructs driven by the HCV 

5'NCR in human hepatocytes (Fig. 84b; section 5.2.13). In both cases, full-length 

core protein in the context of the HCV glycoproteins was able to mediate the effect, 

while El and E2 had little or no influence on translation (Figs 80 and 84b; sections 

5.2.10 and 5.2.13). The observed differences between the experimental findings 

presented here and the previous reports of an apparent suppression by core protein 

(Shimoike et al., 1999) or its coding sequence (Wang et al., 2000) (section 1.3.5) 

could be due to a number of experimental disparities. Genotype sequence variations 

might give rise to differences in phosphorylation or proteolytic processing of core 

protein that could affect its function - the study by Wang et al., (2000) used a HCV 

genotype lb infectious clone (Beard et a l, 1999), in contrast to the genotoype la  

infectious clone used here (H77c; Yanagi et a l, 1997; see Appendix IV) and by 

Shimoike et a l, (1999). In addition, unlike those used in previous studies (Shimoike 

et al., 1999; Wang et al., 2000), all constructs carrying HCV 5'NCR used here are 

expected to express transcripts initiating from the first nucleotide of the viral 

genome, thus negating possible effect of heterologous sequences on IRES structure 

and/or its activity. Furthermore, the published studies have neglected to use core 

protein in its entirety to ensure proper processing and/or core protein in the context 

of the HCV glycoproteins, as it would be expressed during natural infection. The 

use of core protein together with El and E2 counteracts any possible effects of core 

protein in isolation. Finally, although frameshifting the core-coding sequence 

suggested that core protein itself is not responsible for an observed suppression of 

translation (Wang et al., 2000), the situation is unclear following two independent 

reports of an actual ffameshift site within the core-coding sequence used by HCV 

(section 1.7.4; Walewski et a l , 2001; Xu et al., 2001), giving rise to a product (the 

F protein) with an as yet undetermined function. It is entirely possible that the F
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protein has some effect on translation of the HCV ORF, which could be responsible 

for the observations of Wang et al. (2000) that a frameshifted core-coding seqeunce 

suppresses translation from the HCV IRES. Although the effect observed here was 

not due to effects at the transcriptional level in the insect cell system (Fig. 81; 

section 5.2.11), this possibility needs to be investigated in the hepatocyte-based 

system. However, if  anything, core protein expressed by rbac in Sf21 cells appears 

to downregulate transcription or stability of the 5'NCR-core RNA generated by 

rbac-5C, while showing a discernible upregulation of translation (Figs 77 and 79-81; 

sections 5.2.10 and 5.2.11).

Interestingly, addition of the authentic 3'NCR at the 3'-end of the reporter constructs 

led to only a moderate effect of core on HCV 5'NCR-mediated translation. This 

effect was consistent in both insect and mammalian cell-based assays (Figs 77 and 

84b; sections 5.2.10 and 5.2.13). However, the reason for this is currently unclear. It 

is possible, given recent insight into the HCV ORF (section 1.7.4; Walewski et a l , 

2001; Xu et al., 2001), that HCV generates two separate genomic RNAs, one of 

which is a shortened form that lacks the 3'NCR. Indeed, many positive-strand RNA 

viruses synthesise subgenomic RNAs (Miller and Koev, 2000) and RNA analysis 

performed by Walewski et a l , (2001) suggests unusual features at the 3'-end of the 

E2-coding sequence (Fig. 12; section 1.7.4). This may represent a ribosomal 

ffameshift site, or a stable stem loop, marking the end of a shortened HCV ORF that 

lacks the nonstructural region and the 3'NCR. Such a shortened form could allow 

cellular resources to be directed towards high level production of HCV structural 

proteins in a late stage of infection to generate large amounts of virions prior to 

egress from the cell. In this case, in the absence of the 3'NCR, core protein may be 

involved in a feedback loop to generate more viral particles by upregulating IRES 

activity. Nevertheless, the effect of core protein on HCV 5'NCR-mediated 

translation is clearly not fully elucidated. Indeed, until an efficient cell culture 

system for HCV is available, these results, or indeed previous studies, and various 

hypotheses put forward here and by others, cannot be validated in vivo.
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APPENDIX I:

Monoclonal and Polyclonal Antibodies

Antibodies used in the preceding studies are shown below. Although anti-DDX3 

antibodies were generated by Dr A. Owsianka, detailed characterisation was 

undertaken as part of these studies. A summary of the epitopes bound by anti-DDX3 

MAbs A02 to A0215 is shown schematically in Fig. 88 on the following page.

Antibody Name Type Raised in Source

Anti-DDX3 A 02 to A0215 Monoclonal Mouse A. Owsianka

Anti-DDX3 R438 and R648 Polyclonal Rabbit A. Owsianka

Anti-HCV core R525 Polyclonal Rabbit

(Owsianka and Patei, 1999)

A. Owsianka

Anti-HCV El R528 Polyclonal Rabbit A. Patel

Anti-HCV E2 AP33 Monoclonal Mouse A. Patel

Anti-HCV NS3 Anti-NS3 Polyclonal Sheep

(Owsianka et al., 2000)

A. Patel

Anti-HCV NS3 Protease Anti-NS3 Polyclonal Sheep M. Harris, Leeds

Anti-SC-35 Anti-SC-35 Monoclonal Mouse

(Aoubala et al., 2001)

A. Lamond, Dundee

(Fortes et al., 1995)

Anti-UIA Anti-UIA Polyclonal Rabbit A. Lamond, Dundee

Anti-CAT Anti-CAT Polyclonal Rabbit J. McLauchlan, Glasgow

Anti-histidine-tag RGS-His Monoclonal Mouse QIAGEN

Anti-GST Anti-GST Polyclonal Rabbit A.Patel

Anti-P-tubulin Anti-P-tubulin Monoclonal Mouse Sigma

Anti-ATF-2 Anti-ATF-2 Polyclonal Rabbit Santa Cruz Biotech
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APPENDIX II: 

Plasmid Constructs

Constructs used in the preceding studies are shown below. DDX3 aa numbers relate 

to the sequence reported by Owsianka and Patel (1999) (see Appendix IV). The 

HCV infectious clone H77c (Yanagi et al.y 1997; see Appendix IV) was used in 

generation of HCV constructs unless otherwise stated. Constructs generated by the 

author are denoted ‘MJS’.

Construct Vector Source

pDDX3-AS pZeoSV2 (+) A. Patel

pDDX3-S pZeoSV2 (+) A. Patel

GST-DDX3 (1-662) pGEX-6P-3 A. Owsianka

GST-DDX3C (409-662) pGEX-2T A. Owsianka

GST-DDX3 409-622 pGEX-2T A. Patel

GST-DDX3-623-662 pGEX-2T A. Patel

GST-DDX3-409-473 pGEX-2T A. Patel

GST-DDX3-474-662 pGEX-2T A. Patel

GST-DDX3-409-552 pGEX-2T A. Patel

GST-DDX3-553-662 pGEX-2T A. Patel

GST-RS pGEX-6P-3 MJS

GST-ARS pGEX-6P-3 MJS

GST-DDX3-1-142 pGEX-6P-3 MJS

GST-DDX3-1-208 pGEX-6P-3 MJS

GST-DDX3-1-282 pGEX-6P-3 MJS

GST-DDX3 1-472 pGEX-6P-3 MJS

GST-NS3 Helicase pGEX-6P-3 MJS

6h-An3 pET-2 la D. Weeks

pDDX3 pZeoSV2 (+) MJS

p6h-DDX3 pZeoSV2 (+) MJS

pDDX3-EQ pZeoSV2 (+) P. Askjaer

p6h-DDX3-EQ pZeoSV2 (+) MJS

pANES-DDX3 pZeoSV2 (+) MJS

p6h-ANES-DDX3 pZeoSV2 (+) MJS

pAn3 pZeoSV2 (+) MJS

p6h-An3 pZeoSV2 (+) MJS

Reference

Owsianka and Patel (1999)
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Construct Vector Source Reference

pTMl-core pTMl A. Patel Owsianka and Patel (1999)

pcDNA-C-El-E2 pcDNA 3.1/Zeo(+) A. Patel -

pcDNA-C-El-E2 (Gla) pcDNA 3.1/Zeo(+) A. Patel -

pcDNA-El-E2 pcDNA 3.1/Zeo(+) A. Patel -

pcDNA-DDX3 pcDNA 3.1/Zeo(+) A. Patel -

pCV-H77c pGEM 9zf(-) J. Bukh Yanagi et al. (1997)

pCV-5CC pGEM 9zf(-) J. Wood Wood et al. (2001)

pCV-5CC3 pGEM 9zf(-) J. Wood 11

pcDNA-CAT pcDNA 3.1/Zeo(+) A. Patel -

pcDNA-C pcDNA 3.1/Zeo(+) J. Wood -

pcDNA-5C pcDNA 3.1/Zeo(+) J. Wood -

pAc-DDX3 pAcCL29.1 A. Patel -

pAcC pAcCL29.1 MJS -

pAcCC pAcCL29.1 MJS -

pAcNS3 pAcCL29.1 MJS -

pAcC-El-E2 pAcCL29.1 MJS Owsianka et al., 2000

pAcEl-E2 pAcCL29.1 J. Wood -

pAcDDX3 pAcCL29.1 A. Patel -

pAc5C pAcCL29.1 A. Patel -

pAc5C3 pAcCL29.1 A. Patel -

pAc5CC pAcCL29.1 MJS -

pAc5CC3 pAcCL29.1 MJS -
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APPENDIX III: 

Recombinant Viruses

Recombinant baculoviruses (rbacs) used in the preceding studies are shown below. 

All cDNAs were transferred to the pAcCL29.1 vector (Fig. 65a; Livingstone and 

Jones, 1994) prior to generation of each virus. DDX3 nt numbers relate to the 

sequence reported by Owsianka and Patel (1999) (see Appendix IV). HCV nt 

numbers relate to the genotype la  infectious clone, H77c (Yangi et al., 1997; see 

Appendix IV). Rbacs produced by the author are denoted ‘MJS’.

rbac Expected 
Transcript (nt)

Expected 
Product (ad)

Source

DDX3 DDX3 1-1989 DDX3 1-662 MJS

C HCV 342-915 Core 1-191 MJS

CC HCV 342-915-CAT Core 1-191-CAT MJS

5C HCV 1-915 Core 1-191 A. Patel

5C3 HCV 1-915, 9375-9599 Core 1-191 A. Patel

5CC HCV 1-915-CAT Core 1-191-CAT MJS

5CC3 HCV 1-915-CAT-HCV 9375-9599 Core 1-191-CAT MJS

C-E1-E2 HCV 342-2576 Core-El-E2 (1-746) A. Patel
(Owsianka et al., 2000)

E1-E2 HCV 916-2576 E1-E2 (192-746) J. Wood

Recombinant vaccinia viruses (rVVs) used in the preceding studies are shown

below.

r W Expected Expected Source
Transcript (nt) Product

DDX3 DDX3 (1-1989) DDX3 (1-662) A. Patel

C-E1-E2 HCV (342-2579) Core-El-E2 (1-746) A. Patel

E1-E2 HCV (916-2579) E1-E2 (192-746) A. Patel

vTF7.3 - T7 RNA polymerase B. Moss
(Fuerst et al., 1986)
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APPENDIX IV: 

Sequences

Full-length DDX3 (Owsianka and Patel, 1999; accession no. AF061337) and HCV 

sequences (5'NCR-core-El-E2, NS3 helicase, and 3'NCR) from HCV strain H77c 

(Yanagi et al., 1997; accession no. AF011751) used in the preceding studies are 

shown below. Features of the protein/nucleotide seqeunces and restriction sites used 

in cloning procedures are highlighted.

DDX3

P u t a t i v e  NES
M S H V A V E N A L G L D Q Q F 1 6

ATG AG'T CAT GTG GCA GTG GAA AAT GCG 
P u t a t i v e  N - l i n k e d

CTC GGG CTG GAC CAG 
G l y c o s y l a t i o n  S i t e s

CAG TTT 48

A G L D L N S S D N Q S G G S T 32
GCT GGC CTA GAC CTG AAC TCT TCA GAT AAT CAG AGT GGA GGA AGT ACA 9 6

A S K G R Y I P P H L R N R E A 48
GCC AGC AAA GGG CGC TAT ATT CCT CCT CAT TTA AGG AAC CGA GAA GCT 1 4 4

T K G F Y D K D S S G W S S S K 64
ACT AAA GGT TTC TAC GAT AAA GAC AGT TCA 

B s t Y I
GGG TGG AGT TCT AGC AAA 1 9 2

D K D A Y S S F G S R S D S R G 8 0
GAT AAG GAT GCG TAT AGC AGT TTT GGA TCT CGT AGT GAT TCA AGA GGG 2 4 0

K S S F F S D R G S G S R G R F 96
AAG TCT AGC TTC TTC AGT GAT CGT GGA AGT GGA TCA AGG GGA AGG TTT 2 8 8

D D R G R S D Y D G I G S R G D 1 1 2
GAT GAT CGT GGA CGG AGT GAT TAC GAT GGC ATT GGC AGC CGT GGT GAC 3 3 6

R S G F G K F E R G G N S R W C 1 2 8
AGA AGT GGC TTT GGC AAA TTT GAA CGT GGT GGA AAC AGT CGC TGG 

D r a l l l
TGT 3 8 4

D K S D E D D W S K P L P P S E 1 4 4
GAC AAA TCA GAT GAA GAT GAT TGG TCA AAA CCA CTC CCA CCA AGT GAA 4 3 2

R L E Q E L F S G G N T G I N F 1 6 0
CGC TTG GAA CAG GAA CTC TTT TCT GGA GGC AAC ACT GGG ATT AAT TTT 4 8 0

E K Y D D I P V E A T G N N C P 1 7 6
GAG AAA TAC GAT GAC ATT CCA GTT GAG GCA ACA GGC AAC AAC TGT CCT 5 2 8

P H I E S F S D V E M G E I I M 1 9 2
CCA CAT ATT 

—>
GAA AGT TTC 

e I F 4 A - l i k e
AGT GAT GTT GAG ATG GGA GAA ATT ATC ATG 5 7 6

G N I E L T R Y T R P T P V Q K 2 0 8
GGA AAC 

S p h I
ATT GAG CTT ACT CGT TAT ACT CGC CCA ACT CCA GTG CAA AAG 62 4

H A I P I I K E K R D L M A C A 2 2 4
CAT GCT ATT CCT ATT ATC AAA GAG AAA AGA GAC TTG ATG GCT TGT GCC 6 7 2

228



Motif I 
Q T G

(ATPase A)
S G K T A A F L L P I L S 2 4 0

CAA ACA GGG TCT GGA AAA ACT GCA GCA TTT CTG TTG CCC ATC TTG AGT 7 2 0

Q I Y S D G P G E A L
Putative Tyrosine Kinase 
R A M K E 256

CAG ATT TAT TCA GAT GGT CCA GGC GAG GCT TTG AGG GCC ATG AAG GAA 768
P h o s p h o r y l a t i o n  

N G R Y
S i t e  

G R R K Q Y P I S L V L 272
AAT GGA AGG TAT GGG CGC CGC AAA CAA TAC CCA ATC TCC TTG GTA TTA 816

A P T
Motif 

R E
la

L A V
B g l l l

Q I Y E
P u t a t i v e

E A R
cAMP/cGMP  

K 2 8 8
GCA CCA ACG AGA GAG TTG GCA GTA CAG ATC TAC GAG GAA GCC AGA AAA 8 6 4
P h o s p h o r y l a t i o n  

F S Y R
S i t e  

S R V R P C V V Y G G A 3 0 4
TTT TCA TAC CGA TCT AGA GTT CGT CCT TGC GTG GTT TAT GGT GGT GCC 912

D I G Q Q I R D L E R G C H L L 3 2 0
GAT ATT GGT CAG CAG ATT CGA GAC TTG GAA CGT GGA TGC CAT TTG TTA 9 6 0

V A T P G R L V D M M E
Putative 

R G K
Tyrosine 

I  3 3 6
GTA GCC ACT CCA GGA CGT CTA GTG GAT ATG ATG GAA AGA GGA AAG ATT 1 0 0 8
K i n a s e  1 

G L
P h o s p h o r y l a t i o n  S i t e  

D F C K Y L V
MotifII (ATPase B)

L D E A D R M 3 5 2
GGA TTA GAC TTT TGC AAA TAC TTG GTG TTA GAT GAA GCT GAT CGG ATG 1 0 5 6

L D M G F E P Q I R R I V E Q D 3 6 8
TTG GAT ATG GGG TTT GAG CCT CAG ATT CGT AGA ATA GTC GAA CAA GAT 1 1 0 4

T M P P K G V R H T M M F
Motif : 
S A

III
T 3 8 4

ACT ATG CCT CCA AAG GGT GTC CGC CAC ACT ATG ATG TTT AGT GCT ACT 1 1 5 2

F P K E I Q M L A R D F L D E Y 4 0 0
TTT CCT AAG GAA ATA CAG ATG CTG GCT CGT GAT TTC TTA GAT GAA TAT 1 2 0 0

I F L A V G R V
P u t a t i v e  N - l i n k e d  G l y c o s y l a t i o n  

G S T S E N I T
S i t e

4 1 6
ATC TTC TTG GCT GTA GGA AGA GTT GGC TCT ACC TCT GAA AAC ATC ACA 1 2 4 8

Q K V V W V E E S D K R S F L L 4 3 2
CAG AAA GTA GTT TGG GTG GAA GAA TCA GAC AAA CGG TCA TTT CTG CTT 1 2 9 6

P u t a t i v e
D L L

N - l i n k e d  G l y c o s y l a t i o n  S i t e  
N A T G K D S L T

Motif IV 
L V F V 4 4 8

GAC CTC CTA AAT GCA ACA GGC AAG GAT TCA CTG ACC TTA GTG TTT GTG 1 3 4 4

E T K K G A D S L E D F L Y H E 4 6 4
GAG ACC AAA AAG GGT GCA GAT TCT CTG GAG GAT TTC TTA TAC CAT GAA 1 3 9 2

G Y A C T S I
Ncol

H G D R S Q R D R 4 8 0
GGA TAC GCA TGT ACC AGC ATC CAT GGA GAC CGT TCT CAG AGG GAT AGA 1 4 4 0

E E A L H Q F R S G K S P I L V 4 9 6
GAA GAG GCC CTT CAC CAG TTC CGC TCA GGA AAA AGC CCA ATT TTA GTG 1 4 8 8

A T A V A A
Motif V 
R G L D I S N V K H 5 1 2

GCT ACA GCA GTA GCA GCA AGA GGA CTG GAC ATT TCA AAT GTG AAA CAT 1 5 3 6

V I N F D L P S D I E E Y V H R 5 2 8
GTT ATC AAT TTT GAC TTG CCA AGT GAT ATT GAA GAA TAT GTA CAT CGT 1 5 8 4

I G R
Motif VI 

T G R V G N L G L A T S F 5 4 4
ATT GGT CGT ACG GGA CGT GTA GGA AAC CTT GGC CTG GCA ACC TCA TTC 1 6 3 2

P u t a t i v e  N - l i n k e d  G l y c o s y l a t i o n  S i t e  
F N E R N I N I T K D L L D L L  5 6 0  

TTT AAC GAG AGG AAC ATA AAT ATT ACT AAG GAT TTG TTG GAT CTT CTT 1 6 8 0
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e I F 4 A - l i k e  < —

V E A K Q E V P S W L E N M A Y 5 7 6
GTT GAA GCT AAA CAA GAA GTG CCG TCT TGG TTA GAA AAC ATG GCT TAT 1 7 2 8

'RS-- l i k e '  D o m a i n
E H H Y K G S S R G R S K S S R 5 9 2

GAA CAC CAC TAC AAG GGT AGC AGT CGT GGA CGT TCT AAG AGT AGC AGA 1 7 7 6

F S G G F G A R D Y R Q S S G A 6 0 8
TTT AGT GGA GGG TTT GGT GCC AGA GAC TAC CGA CAA AGT AGC GGT GCC 1 8 2 4

S S S S F S S S R A S S S R S G 6 2 4
AGC AGT TCC AGC TTC AGC AGC AGC CGC GCA AGC AGC AGC CGC AGT GGC 1 8 7 2

G G G H G S S R G F G G G G Y G 6 4 0
GGA GGT GGC CAC GGT AGC AGC AGA GGA TTT GGT GGA GGT GGC TAT GGA 1 9 2 0

G F Y N S D G Y G G N Y N S Q G 6 5 6
GGC TTT TAC AAC AGT GAT GGA TAT GGA GGA AAT TAT AAC TCC CAG GGG 1 9 6 8

V D W W G N - 6 6 2
GTT GAC TGG TGG GGT AAC TGA 1 9 8 9

HCV 5 NCR-corc-El-E2

GCCAGCCCCCTGATGGGGGCGACACTCCACCATGAATCACTCCCCTGTGAGGAACTACTGTCTTC 65

ACGCAGAAAGCGTCTAGCCATGGCGTTAGTATGAGTGTCGTGCAGCCTCCAGGACCCCCCCTCCC 13 0
A g e  I

GGGAGAGCCATAGTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGTCCTT 1 9 5

TCTTGGATAAACCCGCTCAATGCCTGGAGATTTGGGCGTGCCCCCGCAAGACTGCTAGCCGAGTA 2 60

GTGTTGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCGGGAGGTC 3 2 5
—► c o r e

A p a L I M S T N P K P Q R K T K 1 2  
TCGTAGACCGTGCACC ATG AGC ACG AAT CCT AAA CCT CAA AGA AAA ACC AAA 37  7

D D X 3 - I n t e r a c t i n g  D o m a i n  
R N T N R R P Q D V K F P G G G 2 8  

CGT AAC ACC AAC CGT CGC CCA CAG GAC GTC AAG TTC CCG GGT GGC GGT 4 2 5

Q I V G G V Y L L P R R G P R L 4 4  
CAG ATC GTT GGT GGA GTT TAC TTG TTG CCG CGC AGG GGC CCT AGA TTG 4 7 3

X h o l
G V R A T R K T S E R S Q P R G  60  

GGT GTG CGC GCG ACG AGG AAG ACT TCC GAG CGG TCG CAA CCT CGA GGT 5 2 1

R R Q P I P K A R R P E G R T W 7 6  
AGA CGT CAG CCT ATC CCC AAG GCA CGT CGG CCC GAG GGC AGG ACC TGG 5 6 9

A Q P G Y P W P L Y G N E G C G 9 2  
GCT CAG CCC GGG TAC CCT TGG CCC CTC TAT GGC AAT GAG GGT TGC GGG 6 1 7  

Putative DNA Binding Domain 
W A G W L L S P R G S  R P S W G  1 0 8  

TGG GCG GGA TGG CTC CTG TCT CCC CGT GGC TCT CGG CCT AGC TGG GGC 6 6 5
C l a l

P T D P R R R S R N L G K V I D  1 2 4  
CCC ACA GAC CCC CGG CGT AGG TCG CGC AAT TTG GGT AAG GTC ATC GAT 7 1 3
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T L T C G F A D L M G Y I P L V 1 4 0
ACC CTT ACG TGC GGC TTC GCC GAC CTC ATG GGG TAC ATA CCG CTC GTC 7 6 1

G A P L G G A A R A L A H G V R 1 5 6
GGC GCC CCT CTT GGA GGC GCT GCC AGG GCC CTG GCG CAT GGC GTC CGG 8 0 9

V L E D G V N Y A T G N L P G C 1 7 2
GTT CTG GAA GAC GGC GTG AAC TAT GCA ACA GGG AAC CTT CCT GGT TGC 8 5 7

E l S i g n a l S e q u e n c e
S F S I F L L A L L S C L T V P 1 8 8

TCT TTC TCT ATC TTC CTT CTG GCC CTG CTC TCT TGC CTG ACT GTG CCC 9 0 5
-> El

A S A Y Q V R N S S G L Y H V T 2 0 4
GCT TCA GCC TAC CAA GTG CGC AAT TCC TCG GGG CTT TAC CAT GTC ACC 9 5 3

N D C P N S S I V Y E A A D A I 2 2 0
AAT GAT TGC CCT AAC TCG AGT ATT GTG TAC GAG GCG GCC GAT GCC ATC 1 0 0 1

L H T P G C V P C V R E G N A S 2 3 6
CTG CAC ACT CCG GGG TGT GTC CCT TGC GTT CGC GAG GGT AAC GCC TCG 1 0 4 9

R C W V A V T P T V A T R D G K 2 5 2
AGG TGT TGG GTG GCG GTG ACC CCC ACG GTG GCC ACC AGG GAC GGC AAA 1 0 9 7

L P T T Q L R R H I D L L V G S 2 6 8
CTC CCC ACA ACG CAG CTT CGA 

P r e d i c t e d
CGT CAT ATC GAT CTG CTT 
T r a n s m e m b r a n e  R e g i o n

GTC GGG AGC 1 1 4 5

A T L C S A L Y V G D L C G S V 2 8 4
GCC ACC CTC TGC TCG GCC CTC TAC GTG GGG GAC CTG TGC GGG TCT GTC 1 1 9 3

F L V G Q L F T F S P R R H W T 3 0 0
TTT CTT GTT GGT CAA CTG TTT ACC TTC TCT CCC AGG CGC CAC TGG ACG 1 2 4 1

T Q D C N C S I Y P G H I T G H 3 1 6
ACG CAA GAC TGC AAT TGT TCT ATC TAT CCC GGC CAT ATA ACG GGT CAT 1 2 8 9

R M A W D M M M N W S P T A A L 3 3 2
CGC ATG GCA TGG GAT ATG ATG ATG AAC TGG TCC CCT ACG GCA GCG TTG 1 3 3 7

V V A Q L L R I P Q A I M D M I 3 4 8
GTG GTA GCT CAG 

P r e d i c t e d
CTG CTC CGG ATC CCA CAA 
T r a n s m e m b r a n e  R e g i o n

GCC ATC ATG GAC ATG ATC 1 3 8 5

A G A H W G V L A G I A Y F S M 3 6 4
GCT GGT GCT CAC TGG GGA GTC CTG GCG GGC ATA GCG TAT TTC TCC ATG 1 4 3 3

V G N W A K V L V V L L L F A G 3 8 0
GTG GGG AAC TGG 

—►
GCG

E2
AAG GTC CTG GTA GTG

HVR-
CTG

-1
CTG CTA TTT GCC GGC 1 4 8 1

V D A E T H V T G G N A G R T T 3 9 6
GTC GAC GCG GAA ACC CAC GTC ACC GGG GGA AAT GCC GGC CGC ACC ACG 1 5 2 9

A G L V G L L T P G A K Q N I Q 4 1 2
GCT GGG CTT GTT GGT CTC CTT ACA CCA GGC GCC AAG CAG AAC ATC CAA 1 5 7 7

L I N T N G S W H I N S T A L N 4 2 8
CTG ATC AAC ACC AAC GGC AGT TGG CAC ATC AAT AGC ACG GCC TTG AAT 1 6 2 5

C N E S L N T G W L A G L F Y Q 4 4 4
TGC AAT GAA AGC CTT AAC ACC GGC TGG TTA GCA GGG CTC TTC TAT CAA 1 6 7 3

H K F N S S G C P E R L A S C R 4 6 0
CAC AAA TTC AAC TCT TCA GGC TGT CCT GAG AGG TTG GCC AGC TGC CGA 1 7 2 1

R L T D F A Q G W G P I S Y A N 4 7 6
CGC CTT ACC GAT TTT GCC CAG GGC TGG GGT CCT ATC AGT TAT GCC AAC 1 7 6 9
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G s G L D E R P Y C W H Y P P R 4 9 2
GGA AGC GGC CTC GAC GAA CGC CCC TAC TGC TGG CAC TAC CCT CCA AGA 1 8 1 7

P C G I V P A K S V C G P V Y C 5 0 8
CCT TGT GGC ATT GTG CCC GCA AAG AGC GTG TGT GGC CCG GTA TAT TGC 1 8 6 5

F T P S P V V V G T T D R S G A 5 2 4
TTC ACT CCC AGC CCC GTG GTG GTG GGA ACG ACC GAC AGG TCG GGC GCG 1 9 1 3

P T Y S W G A N D T D V F V L N 5 4 0
CCT ACC TAC AGC TGG GGT GCA AAT GAT ACG GAT GTC TTC GTC CTT AAC 1 9 6 1

N T R P P L G N W F G C T W M N 5 5 6
AAC ACC AGG CCA CCG CTG GGC AAT TGG TTC GGT TGT ACC TGG ATG AAC 2 0 0 9

S T G F T K V C G A P P C V I G 5 7 2
TCA ACT GGA TTC ACC AAA GTG TGC GGA GCG CCC CCT TGT GTC ATC GGA 2 0 5 7

G V G N N T L L C P T D C F R K 5 8 8
GGG GTG GGC AAC AAC ACC TTG CTC TGC CCC ACT GAT TGC TTC CGC AAA 2 1 0 5

H P E A T Y S R C G S G P W I T 6 0 4
CAT CCG GAA GCC ACA TAC TCT CGG TGC GGC TCC GGT CCC TGG ATT ACA 2 1 5 3

P R C M V D Y P Y R L W H Y P C 6 2 0
CCC AGG TGC ATG GTC GAC TAC CCG TAT AGG CTT TGG CAC TAT CCT TGT 2 2 0 1

T I N Y T I F K V R M Y V G G V 6 3 6
ACC ATC AAT TAC ACC ATA TTC AAA GTC AGG ATG TAC GTG GGA GGG GTC 2 2 4 9

E H R L E A A C N W T R G E R C 6 5 2
GAG CAC AGG CTG GAA GCG GCC TGC AAC TGG ACG CGG GGC GAA CGC TGT 2 2 9 7

D L E D R D R S E L S P L L L S 6 6 8
GAT CTG GAA GAC AGG GAC AGG TCC GAG CTC AGC CCG TTG CTG CTG TCC 2 3 4 5

T T Q W Q V L P C S F T T L P A 6 8 4
ACC ACA CAG TGG CAG GTC CTT CCG TGT TCT TTC ACG ACC CTG CCA GCC 2 3 9 3

L S T G L I H L H Q N I V D V Q 7 0 0
TTG TCC ACC GGC CTC ATC CAC CTC CAC CAG AAC ATT GTG GAC GTG CAG 2 4 4 1

Y L Y G V G S S I A S W A I K W 7 1 6
TAC TTG TAC GGG GTA GGG TCA AGC ATC GCG TCC TGG GCC ATT AAG TGG 2 4 8 9

P r e d i c t e d  T r a n s m e m b r a n e  R e g i o n
E Y V V L L F L L L A D A R V C 7 3 2

GAG TAC GTC GTT CTC CTG TTC CTT CTG CTT GCA GAC GCG CGC GTC TGC 2 5 3 7

S C L W M M L L I S Q A E A 7 4 6
TCC TGC TTG TGG ATG ATG TTA CTC ATA TCC CAA GCG GAG GCG 2 5 7 6

HCV NS3 Helicase

A V D F I 1 1 9 6
GCG GTG GAC TTT ATC 3 9 2 9

P V E N L G T T M R S P V F T D 1 2 1 2
CCT GTG GAG AAC CTA GGG ACA ACC ATG AGA TCC CCG GTG TTC ACG GAC 3 9 7 7

N S S P P A V P Q S F Q V A H L 1 2 2 8
AAC TCC TCT CCA CCA GCA GTG CCC CAG AGC TTC CAG GTG GCC CAC CTG 4 0 2 5
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M o t i f  I  ( A T P a s e  A)
H A P T G S G K S T K V P A A Y 1 2 4 4

CAT GCT CCC ACC GGC AGC GGT AAG AGC ACC AAG GTC CCG GCT GCG TAC 4 0 7 3

A A Q G Y K V L V L N P S V A A 1 2 6 0
GCA GCC CAG GGC TAC AAG GTG TTG GTG CTC AAC CCC TCT GTT GCT GCA 4 1 2 1

T L G F G A Y M S K A H G V D P 1 2 7 6
ACG CTG GGC TTT GGT GCT TAC ATG TCC AAG GCC CAT GGG GTT GAT CCT 4 1 6 9

N I R T G V R T I T T G S P I T 1 2 9 2
AAT ATC AGG ACC GGG GTG AGA ACA ATT ACC ACT GGC AGC CCC ATC ACG 4 2 1 7

Y S T Y G K F L A D G G C S G G 1 3 0 8
TAC TCC ACC TAC GGC AAG TTC CTT 

M o t i f
GCC
I I

GAC GGC GGG 
( A T P a s e  B )

TGC TCA GGA GGT 4 2 6 5

A Y D I I I C D E C H S T D A T 1 3 2 4
GCT TAT GAC ATA ATA ATT TGT GAC GAG TGC CAC TCC ACG GAT GCC ACA 4 3 1 3

S I L G I G T V L D Q A E T A G 1 3 4 0
TCC ATC TTG GGC ATC GGC ACT GTC CTT 

M o t i f  :
GAC

I I I
CAA GCA GAG ACT GCG GGG 4 3 6 1

A R L V V L A T A T P P G S V T 1 3 5 6
GCG AGA CTG GTT GTG CTC GCC ACT GCT ACC CCT CCG GGC TCC GTC ACT 4 4 0 9

V S H P N I E E V A L S T T G E 1 3 7 2
GTG TCC CAT CCT AAC ATC GAG GAG GTT GCT CTG TCC ACC ACC GGA GAG 4 4 5 7

I P F Y G K A I P L E V I K G G 1 3 8 8
ATC CCC TTT TAC GGC AAG GCT ATC CCC CTC GAG GTG ATC AAG GGG GGA 4 5 0 5

R H L I F C H S K K K C D E L A 1 4 0 4
AGA CAT CTC ATC TTC TGC CAC TCA AAG AAG AAG TGC GAC GAG CTC GCC 4 5 5 3

A K L V A L G I N A V A Y Y R G 1 4 2 0
GCG AAG CTG GTC GCA TTG GGC ATC AAT GCC GTG GCC TAC TAC CGC GGT 4 6 0 1

L D V S V I P T S G D V V V V S 1 4 3 6
CTT GAC GTG TCT GTC ATC CCG ACC AGC GGC GAT GTT GTC GTC GTG TCG 4 6 4 9

T D A L M T G F T G D F D S V I 1 4 5 2
ACC GAT GCT CTC ATG ACT GGC TTT ACC GGC GAC TTC GAC TCT GTG ATA 4 6 9 7

D C N T C V T Q T V D F S L D P 1 4 6 8
GAC TGC AAC ACG TGT GTC ACT CAG ACA GTC GAT TTC AGC CTT GAC CCT 4 7 4 5

T F T I E T T T L P Q D A V S R 1 4 8 4
ACC TTT ACC ATT GAG ACA 

M o t i f  I V
ACC ACG CTC CCC CAG GAT GCT GTC TCC AGG 4 7 9 3

T Q R R G R T G R G K P G I Y R 1 5 0 0
ACT CAA CGC CGG GGC AGG ACT GGC AGG GGG AAG CCA GGC ATC TAT AGA 4 8 4 1

F V A P G E R P S G M F D S S V 1 5 1 6
TTT GTG GCA CCG GGG GAG CGC CCC TCC GGC ATG TTC GAC TCG TCC GTC 4 8 8 9

L C E C Y D A G C A W Y E L T P 1 5 3 2
CTC TGT GAG TGC TAT GAC GCG GGC TGT GCT TGG TAT GAG CTC ACG CCC 4 9 3 7

A E T T V R L R A Y M N T P G L 1 5 4 8
GCC GAG ACT ACA GTT AGG CTA CGA GCG TAC ATG AAC ACC CCG GGG CTT 4 9 8 5

P V C Q D H L E F W E G V F T G 1 5 6 4
CCC GTG TGC CAG GAC CAT CTT GAA TTT TGG GAG GGC GTC TTT ACG GGC 5 0 3 3
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L T H I  D A H F L S Q T K Q S G  1 5 8 0  
CTC ACT CAT ATA GAT GCC CAC TTT TTA TCC CAG ACA AAG CAG AGT GGG 5 0 8 1

E N F P Y L V A Y Q A T V C A R  1 5 9 6  
GAG AAC TTT CCT TAC CTG GTA GCG TAC CAA GCC ACC GTG TGC GCT AGG 5 1 2  9

A Q A P P P S W D Q M W K C L I  1 6 1 2  
GCT CAA GCC CCT CCC CCA TCG TGG GAC CAG ATG TGG AAG TGT TTG ATC 5 1 7 7

R L K P T L H G P T P L L Y R L  1 6 2 8  
CGC CTT AAA CCC ACC CTC CAT GGG CCA ACA CCC CTG CTA TAC AGA CTG 5 2 2 5

G A V Q N E V T L T H P I T K Y  1 6 4 4  
GGC GCT GTT CAG AAT GAA GTC ACC CTG ACG CAC CCA ATC ACC AAA TAC 5 2 7  3

I M T C M S A D L E V V T  1 6 5 1
ATC ATG ACA TGC ATG TCG GCC GAC CTG GAG GTC GTC ACG 5 3 1 2

HCV 3'NCR

-► Poly(U/C)Tract

3 0 1 1
9 4 1 0

T TT C C T G T T T T T T T T T T T T T T T T T T 9 4 7 5
—> 3'X Region

TTTCCTTTCTTTTTCCCTTCTTTAATGGTGGCTCCATCTTAGCCCTAGTCACGGCTAGCTGTGAA 9 5 4 0

AGGTCCGTGAGCCGCATGACTGCAGAGAGTGCTGATACTGGCCTCTCTGCAGATCATGT 9 5 9 9
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APPENDIX V: 

Oligonucleotides

Oligonucleotides used to generate particular cDNAs for insertion into appropriate 

plasmid vectors are shown below. The HCV infectious clone H77c (Yanagi et al., 

1997; Appendix IV) was used in generation of constructs carrying HCV sequences. 

DDX3 nt numbers relate to the sequence reported by Owsianka and Patel (1999) 

(Appendix IV).

GST-NS3 helicase

Smal Sail BamHl HCV nt 3915

H77A 5'- CCC GGG TCG ACG ACG GAT CCA TGG CGG TGG ACT TTA TCC CTG TGG 

AGA ACC TAG GGA CAA CCA TGA GA -3'

Pstl Kpnl Notl Hindlll

H77B 5'- CTG CAG GTA CCG CGG CCG CAA GCT TCG TGA CGA CCT CCA GGT CGG 

CCG ACA TGC ATG TCA TGA TGT ATT T -3'

Cloned into pGEX-6P-3 (in frame with the GST-coding sequence) using BamUl 
and Notl sites.

pAcC_________________________________________________________________

BamHl Kozak -> HCV nt 342 
core A 5'- CAG GGA TCC GCC ACC ATG AGC ACG AAT CCT AAA -3'

core B 5'- CTG TCT AGA CTA GGC TGA AGC GGG CAC -3'
Xbal

Cloned into pAcCL29.1 (in frame with the baculovirus polyhedrin promoter) using 
BamHl and Xbal sites.
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GST-RS

BamH\ —> DDX3 nt 1744 

DDX1 5'- CTG GGA TCC GGT AGC AGT CGT GGA CGT -3' 

Xhol

DDX2 5'- TCC GAA TTC TCA TCT GCT GCT ACC GTG GCC -3'

Cloned into pGEX-6P-3 using B am H l and X h o l sites.

GST-ARS

Ncol (DDX3 nt 1413)

DDX3 5'- CAT CCA TGG AGA CCG TTC TCA GAG GGA T -3'

DDX4 5'- CTT GTA GTG GTG TTC ATA -3'

DDX3 nt 1997 

DDX5 5 '-GGA TTT GGT GGA GGT GGC-3'

EcoKl

DDX6 5'- TCC GAA TTC TCA GTT ACC CCA CCA GTC -3'

PCR product generated using DDX3/DDX4 cut with N c o l. PCR product generated 

using DDX5/DDX6 cut with E co R l. Cloned into N c o l/E c o R l  cut pGST-DDX3 

carrying the full-length DDX3 sequence.

PANES-DDX3

H indiII Kozak -» DDX3 nt 139

MJS 3 5’- CCC AAG CTT GCC ACC ATG AAC TCT TCA GAT AAT -3’ 

BglU

MJS 6 5 ’- CTC GTA GAT CTG TAC TGC CAA CTC TCT CGT -3’

PCR product cut with H in d iII and B g lll. pDDX3 cut with B g lII and X h o l. Ligated to 

H in d llV X h o l cut pZeoSV2 (+).
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