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Abstract

Projection-based program analysis techniques are remarkable for their ability to give 
highly detailed and useful information not obtainable by other methods. The first 
proposed projection-based analysis techniques were those of Wadler and Hughes for 
strictness analysis, and Launchbury for binding-time analysis; both techniques are 
restricted to analysis of first-order monomorphic languages. Hughes and Launchbury 
generalised the strictness analysis technique, and Launchbury the binding-time analy
sis technique, to handle polymorphic languages, again restricted to first order. Other 
than  a general approach to higher-order analysis suggested by Hughes, and an ad hoc 
implementation of higher-order binding-time analysis by Mogensen, neither of which 
had any formal notion of correctness, there has been no successful generalisation to 
higher-order analysis.

We present a complete redevelopment of monomorphic projection-based program 
analysis from first principles, starting by considering the analysis of functions (rather 
than programs) to establish bounds on the intrinsic power of projection-based anal
ysis, showing also th a t projection-based analysis can capture interesting term ination 
properties. The development of program analysis proceeds in two distinct steps: 
first for first-order, then higher order. Throughout we m aintain a rigorous notion of 
correctness and prove th a t our techniques satisfy their correctness conditions.

Our higher-order strictness analysis technique is able to capture various so-called data- 
structure-strictness properties such as head strictness—the fact th a t a function may 
be safely assumed to evaluate the head of every cons cell in a list for which it evaluates 
the cons cell. Our technique, and H unt’s PER-based technique (originally proposed 
at about the same time as ours), are the first techniques of any kind to  capture such 
properties a t higher order. Both the first-order and higher-order techniques are the 
first projection-based techniques to capture joint strictness properties—for example, 
the fact th a t a function may be safely assumed to evaluate at least one of several 
arguments. The first-order binding-time analysis technique is essentially the same as 
Launchbury’s; the higher-order technique is the first such formally-based higher-order 
generalisation. Ours are the first projection-based term ination analysis techniques, 
and are the first techniques of any kind tha t are able to detect term ination properties 
such as head termination—the fact th a t term ination of a cons cell implies term ination 
of the head.

A notable feature of the development is the method by which the first-order analysis 
semantics are generalised to higher-order: except for the fixed-point constant the 
higher-order semantics are all instances of a higher-order semantics param eterised by 
the constants defining the various first-order semantics.
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C hapter 1 

Introduction

This thesis presents new techniques for strictness analysis, termination analysis, and 
binding-time analysis for higher-order monomorphically-typed non-strict functional 
languages. Our concept of strictness is sufficiently broad th a t strictness analysis 

subsumes liveness analysis. The analysis techniques are developed in a common 
framework using projections as the basic abstract values.

We s ta rt by considering the analysis of functions (rather than programs) using projec
tions, establishing results on the intrinsic power of projection-based analysis, thereby 
establishing bounds on what could be hoped to be achieved by projection-based pro
gram analysis. Additionally, we demonstrate some properties of the analyses th a t 
are not only theoretically interesting but practically useful in th a t they enable more 
efficient implementation of program analysis techniques based on them.

Program  analysis is developed in two stages: first for first-order programs, then higher 

order. This gives a neat factorisation of the development of the higher-order tech
niques, allowing much of the machinery to be developed in the considerably simpler 

setting of first-order analysis.

Besides laying a theoretical foundation for the analysis techniques there were three 
further goals of this work. First, there should be formal statem ents of what it means 
for the results of program analysis to be correct, and some proof th a t the techniques 
produce correct results. These statem ents take the form of logical relations between 

standard and analysis semantics; proving correctness requires little more than  cleri
cal work because the analysis techniques are, in effect, derived from the correctness 
conditions. Second, there should be some indication of how strong the analysis tech

niques are; for strictness analysis a t least we can give a definite answer. Third, the 
development of the analysis techniques should be reasoned and methodical; here the 

reader will have to judge for himself.

1
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1.1 Overview

The remainder of this chapter serves to  describe how earlier work has led up to  ours; 

comparable or ‘com peting’ work will be discussed retrospectively. C hapter 2  reviews 

the m athem atics on which our work is based: elem entary domain theory including 

the construction of recursively-defined domains and recursively-defined predicates. 
C hapter 3 develops the theory of projection-based analysis of functions. C hapter 4 

defines the source language and its standard semantics. Chapter 5 develops the first- 
order analysis techniques. Chapter 6  develops the higher-order analysis techniques. 
C hapter 7 concludes.

1.2 Program Analysis

The myriad proposed techniques for program analysis do not appear to  adm it to 
any simple and precise taxonomic classification, but to give some perspective it is 
useful to identify three general approaches. A language normally has associated 

some standard type system and type inference (sometimes called the (standard) static 
semantics, which for the purpose of this discussion includes ‘no type system ’ and 
‘no type inference’), denotational semantics, and operational semantics (embodying 
the execution or reduction strategy), each of which assigns standard behaviours or 
properties to  programs. An analysis technique is typically based on a non-standard 
version of the static, denotational, or operational semantics, from which standard 
behaviour or properties may be inferred. We give an example of each. A classic 

example of a non-standard denotational semantics (or non-standard interpretation) is 

the rule of signs for arithmetic: the non-standard semantics maps numerals to their 

signs and arithm etic operations to corresponding operations on signs. An example 
of a  non-standard type system is W adler’s linear type system, which may be used to 
infer operational behaviour for the purpose of update analysis for functional languages 
[Wad90]. Non-standard operational semantics typically simulate some aspect of the 

reduction process, in practice with some simplification to  avoid infinite reduction. For 

example, peephole optim isation of assembly- or machine-level code typically simulates 
usage of registers and stacks.

Analysis techniques based on non-standard denotational semantics may be classified 

according to the attributes of the source language (or a ttributes of the source language 

on which they rely), in particular whether the source language is first order or higher 
order; whether it is untyped, monomorphically typed, or (Hindley-Milner [Mil78])
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polymorphically typed; and whether it provides only so-called fla t d a ta  types (such 

as integers, characters, and booleans) or non-flat da ta  types (such as lists and trees).

Our work falls precisely in the category of non-standard interpretation. Unless stated 
otherwise, all analysis techniques mentioned are by non-standard interpretation.

1.3 Strictness Analysis

In its simplest form strictness analysis seeks to determine whether a function / ,  de

noted by some programming-language expression f , is strict, th a t is, if /  _L =  _L. 
(Throughout this thesis we use the typewriter font, e.g. “f ” , to denote syntactic ob

jects, and italics, e.g. “/ ” ? to denote semantic objects.) The motivation for such analy

sis is based on a correspondence between the operational behaviour of expressions and 
the semantic values they denote. Again taking the simplest case, the correspondence 
is th a t precisely those expressions whose evaluation fails to  term inate have value X. 
Then if /  X =  X we may deduce th a t non-term ination of the argument of f  implies 
non-term ination of the application of f  to its argument, hence th a t the argum ent may 

be safely evaluated before or in parallel with f  w ithout introducing non-term ination 
where it would not have occurred otherwise. This is often expressed by the state

ment “/  (or f) requires (or demands) its argum ent,” meaning th a t for the result 
to be defined (terminate) it is necessary th a t the argument be defined (term inate). 
Thus strictness analysis enables safe modification of evaluation order. Independent of 
whether the implementation is parallel or serial, Peyton Jones and Parta in  [PJP94] 
describe three distinct compile-time optimisations enabled by strictness analysis: the 
elimination of creation, update, and garbage collection of closures; the m anipulation 
of unboxed rather than boxed values; and the elimination of redundant evaluations.

Though it has long been ‘known’ th a t if an expression denotes a strict function then it 
is safe to evaluate its argument first or in parallel (e.g. [Myc81]), Burn claims [Bur90b] 
to  be the first to prove it in his thesis [Bur87b]. The point is, to formally justify the 
safety of modification of evaluation order based on semantic analysis requires a  for
mal operational model with a formal relation to the semantic model. For example, 
Lester [Les89] provides these models, their correspondence, and proofs of safety for 

changes in evaluation order based on strictness information for a state-of-the-art im
plem entation technology for lazy functional languages (the G-machine); Burn and 
Le Metayer [BM92] consider the problem for a “simple-minded” compiler for lazy 
functional languages. In this thesis operational concepts are introduced for intuitive 
purposes only; we are only formal about (denotational) semantics, making standard
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assumptions (described as needed) about the operational model and its relation to 
the semantics.

The notion of strictness and the corresponding operational deductions can be gen

eralised. If f  denotes /  and /  is a function on pairs such th a t /  (x, _L) =  _L for all 

x  we say th a t /  is strict in in the second component of its argument (or its second 
argument, thinking of the curried version of / ) ,  the operational conclusion being th a t 

it is safe to  evaluate the second argument early. If /  (_L, _L) =  _L the operational 
conclusion is th a t the two arguments may be safely evaluated in parallel until one or 
the other term inates, before or in parallel with evaluation of f . In this case /  is said 
to be jointly strict in its two arguments; the classic example of a function with joint 
strictness properties is cond ( b, x , y)  = if  b then x else ?/, which is jointly strict in 
x  and y. If /  is a function on lists such th a t the result of /  is undefined when its 

argument is a partial or infinite list /  is said to be tail strict; for example, the usual 
length function on lists is tail strict. Operationally, if f  denotes a tail-strict function 
it is safe to evaluate the entire spine of its argument before *or in parallel with f .

A particularly im portant form of strictness is head strictness. Operationally, a func
tion on lists is head strict if, whenever it evaluates a cons cell, it is certain to  evaluate 
the head field of the cons cell. Define function H  on lists by 

H E  =  JL ,

H []  = [ ] ,
H  (_L : xs) =  _L ,

H  (x : xs) = x : (H  xs), x  ^  _L ,

where [] denotes the empty list and infix : denotes the cons operation. Then H  is 

the identity on finite, partial, and infinite lists not containing bottom  elements, but 
truncates other lists at their first bottom  element. For example,

H  (1 : 2 : 3 : J_ : 5 : []) =  1 : 2 : 3 : _L .

Semantically, function /  is head strict if /  =  /  o H. For example, a function th a t
searches a list from its beginning, element by element, for a particular value will be
head strict. Head strictness is im portant because in practice many functions have 
this property and its detection would appear to enable a compile-time optimisation: 

arguments of head-strict functions need not delay (build closures for) head elements. 
Head strictness is also im portant because it is a special case (for lists of atomic values) 
of the strictness property of any function th a t performs a depth-first traversal of a 
da ta  structure. In turn, depth-first traversal is a common pattern of com putation; it 
is precisely th a t of the output driver for real-world functional languages, as well as 
being fundam ental to the implementation of many graph algorithms [KL94].
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Our last general observation is tha t none of the strictness properties described are 

decidable: determining any of them is reducible to the halting problem. Thus for any 
algorithm  (term inating procedure) for determining strictness properties of programs 

there is always some notion of safe approximation; for simple strictness an analyser 
will typically return either ‘definitely s tric t’ or ‘unknown’, rather than  ‘definitely 
s tric t’ or ‘definitely not s tric t’, where ‘unknown’ safely approximates all possibilities.

Liveness analysis [ASU8 6 ] seeks to determine which expressions are dead—definitely 
do not contribute to  the final result of a computation, and which are live—possibly 

contribute to the final result. Liveness analysis enables dead code elimination— 
not generating code for expressions whose values do not contribute to  the final re

sult. Considering functions, in the simplest case liveness analysis seeks to determine 
whether a function definitely does not require its argument, or possibly requires its 

argument; contrast with simple strictness analysis which seeks to determine whether 
a function definitely requires its argument, or possibly requires its argument. The 
concept of liveness can be generalised to the determ ination of which parts of a func
tion ’s argument are not required given th a t given th a t parts of the result are not 
required.

If we wanted to  be more precise we could consistently distinguish strictness properties 
(definite demands) from liveness properties (definite absence of demands), but as is 
common these will be lumped together as strictness properties; beyond this section 
there will be no further explicit mention of liveness properties or analysis.

Compile-time optim isation is not the only use for strictness and liveness analyses. 
W adler [Wad8 8 ] and Sands [San90a, San90b, San90c] dem onstrate th a t strictness in

formation is useful in analysing the time complexity of programs. Roughly, strictness 
information is used to determine lower bounds and liveness information upper bounds; 
Sands [San90c] gives a good overview. Launchbury [Lau90a] shows th a t strictness in
formation is useful in inductive proofs tha t programs satisfy certain properties.

1.3.1 Earlier work

Following we give a brief overview of the strictness analysis techniques leading 
up to  ours. We assume the source language to  be (sugared) lam bda calculus 
with constants, for which the reduction strategy is normal-order reduction to weak 
head norm al form (W HNF), th a t is, non-strict or lazy (non-strict with sharing) 

functional languages. Complete development of these concepts may be found in 
[Bar90, Abr89, Ong8 8 , PJ87]. This restriction adm its most (if not all) real-world
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lazy purely-function languages, including M iranda1 [Tur85, Tur8 6 ], Orwell [Wad85], 
Lazy ML [Aug84, AJ89], Concurrent Clean [NS+91, SN+91], and Haskell [HPW92].

The first strictness analysis technique for non-strict functional languages was pro
posed by Mycroft [Myc81]. His non-standard interpretation is restricted to  first-order 

monomorphic languages with flat domains, using the two-point non-standard domain 
{_L,T} to  distinguish two degrees of definedness at each base type, _L representing 
standard _L and T  representing all standard values.

Burn, Hankin, and Abramsky [BHA8 6 ] generalised Mycroft’s technique to  higher or
der. More than th a t, they provided a general framework for abstract interpretation— 
a restricted form of non-standard interpretation—which does not fix the particular 

choice of abstract domains (an excellent overview is given in [AH87b]). In this frame
work W adler [Wad87] introduced the now well-known and closely examined (e.g. 
[NN92]) so-called “four-point” abstract list domain; more precisely, he introduced 
double-lifting as an abstract list domain constructor. Given abstract list element 

domain D, the abstract list domain comprised _L, representing the completely un
defined list; lift _L, all partial and infinite lists; and for each v € D  element lift2 v, 
representing all partial and infinite lists, and all finite lists for which the least ab
stract representation of the list elements is v , yielding four points when D  is M ycroft’s 

two-point domain. This innovation made possible the detection of tail strictness and 
head-and-tail strictness: /  is tail strict if it maps every list represented by lift _L to 
_L, and head-and-tail strict if it maps every list represented by lift2 _L to  ±  (further 

examples of analysis are given in [DW91]). Wadler suggests th a t the construction gen
eralises to other recursive d a ta  types; Jensen [Jen92], and to a lesser degree Seward 
[Sew94], develop this further.

Unfortunately, W adler’s construction couldn’t capture head strictness. At the time 
suspicion was growing th a t head strictness was not a property th a t could be captured 
in the BHA framework regardless of the choice of abstract domains, prompting further 

exploration outside the BHA framework. (This impossibility was shown much later 
by Kamin [Kam92].)

The key to  detecting properties such as head strictness was the use of objects th a t 

represented degrees of required or demanded evaluation of expressions, and the re
flection in the analysis techniques themselves th a t such demands naturally propagate 
backward, th a t is, from the root of an expression to the leaves. The first such technique 
was proposed by Johnson [Joh81]. Two demands were distinguished: evaluation to  

W HNF and unknown. The technique was defined for higher-order polymorphically-

1 Miranda is a trademark of Research Software, Ltd.
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typed languages and was implemented as part of the Lazy ML compiler, giving en
couraging results on the practical value of strictness analysis: the compiler with the 
strictness analyser could compile itself faster than the compiler without could compile 

itself; in two senses strictness analysis more than paid for its cost.

W ray’s strictness analysis technique [Wra85, FW 8 6 ] introduced two more demands: 
no demand and unsatisfiable demand. There demands take the form of non-standard 
types and analysis is by type inference. This appears to be the first strictness analysis 

technique based on non-standard typing (later m ethods based on non-standard typing 
include Kuo and M ishra’s [KM89], Leung and M ishra’s [LM91], and Jensen’s [Jen91, 

Jen92]). W ray’s technique is also interesting because the algorithm for type inference 
uses both forward (from leaves of expression to root) and backward information flow 
expressed in a functional style of implementing attribu te  grammars later described 

by Johnson [Joh87]. An earlier version of this technique was implemented as part of 
the Ponder compiler [Fai85, FW 8 6 ], giving significant speedup [Fai85].

Hughes [Hug85] encoded demands as contexts—idempotent functions approxim at
ing the identity. He introduced a context for evaluating the entire spine of a list, 
and described a strictness-analysis technique for a first-order monomorphically-typed 
language.

Burn [Bur87a, Bur87b, Bur91a, Bur91b, Bur91c] introduced evaluation transformers 

to  encode four demands: unknown, evaluation to WHNF, evaluation of the spihe 

of a  list, and evaluation of every element of a list to WHNF (necessarily including 
evaluation of the spine). He used the results of BHA strictness analysis using W adler’s 
four-point abstract domain to  formally justify the backward propagation of evaluation 
transformers. The technique is applicable to higher-order monomorphically-typed 
languages.

Hughes [Hug87a] introduced the head-strictness context corresponding to  the function 

H . He also suggested an approach to analysis of higher-order languages, and hypothe
sised a technique for polymorphic languages using polymorphic contexts. In [Hug87b] 

he took a different approach: there contexts are abstractions of continuations.

Hall and Wise [HW87] gave an analysis technique using strictness patterns to encode 
demands. The emphasis of their work was on discovering regular patterns of compu

ta tion , for example, not ju s t head strictness—strictness in every head—but strictness 
in every second head, and so on. Strictness patterns, like contexts, are idempotent.

W adler and Hughes [WH87] formalised contexts as domain projections, precisely those 

functions which, like contexts, are idempotent and approximate the identity, such as
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the function H . They presented a projection-based analysis technique for first-order 
monomorphic languages th a t could not only detect such properties as head strictness, 
but had a formal safety condition for the results of analysis, putting the work on a 
much more sound theoretical footing than the earlier work. Wadler and Hughes’ 
work is very much the starting point for ours: we will reformulate (an analog of) 

their analysis technique from first principles, and generalise it to higher order.

W ith  the incorporation of ‘no dem and’, strictness analysis effectively subsumes live

ness analysis. Nielson and Nielson [NN89, Nie89] gave a liveness analysis technique 

and showed how it enables compile-time optimisation. Jones and Le Metayer [JM89] 
gave a liveness analysis technique (which they called necessity analysis) designed to 
enable reuse of dynamically allocated storage without intervention by the garbage 
collector—so-called compile-time garbage collection.

In the area of strictness analysis theory has tended to lead practice. P art of the reason 

is simply th a t strictness analysis is an extra: it is not an essential part of the com
pilation process. A more fundamental reason is th a t though information provided by 
more sophisticated techniques, such as the presence of head or tail strictness, seems as 
though it ought to be practically exploitable, in reality it is not always clear how to do 

so. Burn [Bur90a] considers the problem of using the results of projection-based anal
ysis in compilation, but for a limited class of projections not including H; in [Bur91b] 
he makes clear th a t his evaluation transformer model cannot encode H . Recently 
Hall [Hal94] has been investigating how to make effective practical use of such strict
ness information, with real-world measurements of change in performance; Howe and 

Burn [HB94] and Burn and Finne [BF93] have experimented with evaluation trans
formers in state-of-the-art implementations (the Spineless Tagless G-Machine and the 
Spineless G-Machine, respectively) with some good results.

W here practice has led theory is in the analysis of polymorphic languages. Many of the 
analysis techniques proposed and implemented for polymorphic languages appear to 
apply equally to  untyped languages, th a t is, they make no essential use of polymorphic 

type information; of those already mentioned these include Johnson’s [Joh81], Hughes’ 
[Hug85], and W ray’s [Wra85, FW 8 6 ]. The first true polymorphic technique—one 
th a t made essential use of polymorphic type information—is Abramsky’s [Abr85]. 
He defines a property of a polymorphically-typed expression to be polymorphically 
invariant if th a t property holds for all monotyped instances of the expression, or 

none. He shows th a t strictness as determined by a particular analysis technique for 
a higher-order monomorphic language is polymorphically invariant. Abramsky and 

Jensen [AJ91] strengthen the result by showing semantic (technique-independent)
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polymorphic invariance of strictness for a polymorphic higher-order language. Though 
this allows the strictness of a polymorphic function to be determined at any convenient 
instance, in actual program analysis it may still be necessary to perform strictness 
analysis at more than  one instance (e.g. as illustrated by Baraki [Bar93]). W hat would 
be ideal is a way of determining, or a t least safely approximating, strictness properties 
a t all higher instances from those of the simplest. Hughes [Hug89] shows how this may 
be done for first-order polymorphic functions; Baraki and Hughes [BH90] and Baraki 

[Bar91, Bar93] extend this to higher order. Seward [Sew93] successfully employed 
B araki’s theory in a strictness analyser, making possible reasonably good analysis of 
instances of polymorphic functions practically impossible to* analyse directly.

We have mentioned strictness analysis techniques based on non-standard typing and 
non-standard denotational semantics; it is worth pointing out th a t there exists a 

m ethod based on a non-standard operational semantics. Nocker [Noc93] describes 

a strictness analyser based on abstract reduction [vE+93] which is implemented in 
the Concurrent Clean compiler, giving significant improvement in performance. The 
technique, as described and implemented, is limited to determining simple strictness, 
ta il strictness, and head-and-tail strictness in each argument.

1.4 Termination Analysis

Like strictness analysis, the nominal goal of term ination analysis is to determine 

when it is safe to evaluate an expression before it is actually required. If a function’s 
argum ent is certain to term inate then it is safe to evaluate it before or in parallel 
w ith the function, regardless of whether the function actually requires its argument. 
In practical term s there is the danger tha t the function would never evaluate its 
argum ent and th a t the cost of evaluating it exceeds the savings (in tim e or space) 
of passing it unevaluated. In practice, term ination analysis may be combined with 
an operation count analysis which determines an upper bound on the number of 
operations required to evaluate an expression, so tha t only arguments th a t require a 

small number of operations to evaluate are passed by value.

Term ination analysis might be even more useful in a parallel implementation with 

speculative evaluation. Typically, a speculative evaluation process is initiated when 
processors are not needed for m andatory evaluation, and there is some mechanism 
for changing the status of a speculative process: it may be upgraded to a m andatory 

process, or stopped or killed if its processor(s) become needed for m andatory evalua
tion. Making this bookkeeping efficient is one of the m ajor problems in implementing
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speculative evaluation [Mat94]. However, when speculative processes are known to 

term inate this mechanism is no longer necessary (though it may still be desirable).

Term ination analysis has received little attention compared to strictness analysis, 
partly  because it tends to  give poor results. Very briefly, the problem is th a t to 
show th a t a program term inates often requires an inductive proof, and non-standard 

interpretations are not theorem provers. For example, to show th a t the usual factorial 
function on natural numbers term inates requires numerical induction; showing th a t 

the usual length function on lists term inates for finite lists requires induction on list 

structure. Though our analysis techniques do not incorporate any notion of inductive 

proof (as does e.g. Holst’s quasi-termination analysis technique [Hol91]), they cjo 
break new ground: they yield potentially useful forms of information not previously 

available, for example, head term ination: the property of a list-valued expression th a t 
if a cons cell term inates then so does its head. Ours are also the first projection-based 
term ination analysis techniques.

1.4.1 Earlier work

Mycroft [Myc81] proposed the first term ination analysis technique for non-strict func

tional languages. Just as for his strictness analysis the technique is restricted to 
monomorphically-typed first-order languages with flat domains. He uses the same 
two-point abstract domain {_L,T} for each base type, this time with T  representing 
definite term ination (all values except _L), and _L representing possible term ination 
(all values).

!

For those strictness analysis techniques in the BHA framework there are correspond
ing term ination analysis techniques (this is implicit in [Abr90]); M ycroft’s analysis 
techniques form such a pair. Hence there is an implicit generalisation of the term ina
tion analysis to higher order with arbitrary abstract domains. Then, for example, the 
interpretation of W adler’s abstract list domain, given abstract list-element domain 

D , would contain elements denoting possible term ination, term ination of evaluation 

to W HNF, and for each d E D  term ination of evaluation of the entire spine of the list 
with term ination property d for all of the list elements.

Young [You89] implemented term ination analysis in conjunction with an operation- 
count analysis as part of an optimising compiler for the non-strict functional language 
ALFL, dem onstrating genuine run-time improvement. The technique is applicable 
to higher-order untyped languages and is restricted to determining term ination in  
evaluation to WHNF.
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Hartel [Har91] uses a simple kind of term ination analysis in the FAST compiler to 
justify speculative evaluation, again just to WHNF; implicit in the analysis technique 

is a lim itation to detecting expressions th a t require a small number of operations to 
reduce.

1.5 Binding-tim e Analysis

The goal of partial evaluation is to evaluate a program with only part of its input 
d a ta—the static part—to yield a residual program th a t requires only the remaining— 

or dynamic—part of its input at run time, so optimising the program by specialising 
it to  the static da ta  and thereby performing once and for all evaluation of the static 
part of the input.

Partial evaluation is a rich field with a large volume of associated literature, but this 

is not our interest here; Jones, Gomard, and Sestoff [JGS93] provide an up-to-date 
view of the subject. Rather, we are concerned with a particular problem of partial 
evaluation known as binding-time analysis. Binding-time analysis seeks to determine 

what part of a function’s (or program ’s) output is static (determined) given th a t some 
part of the input is static; this information can be used to guide the partial-evaluation 
process.

For a simple example, consider the function swap (x, y) =  (y, x). The entire result of 
swap is static when the entire argument is static, the second component of the result 

is static  when the first component of the argument is static, and all of the result is 
dynamic when all of the argument is dynamic. For binding-time analysis dynamic is 
a safe approximation of static.

Binding-time analysis is not essential to the partial-evaluation process, but Bondorf, 

Jones, Mogensen, and Sestoff [BJ+89] argue th a t it is essential for good partial eval
uation, and binding-time analysis is performed by the current state-of-the-art partial 

evaluators A-mix [GJ91, Go92], Similix [BD91], and Schism [Con8 8 , Con93]. We con
sider only the central problem of binding-time analysis and not how the results of 
analysis might be used (in particular, how a program might be annotated with the 
results of analysis).

1.5.1 Earlier work

There is a strong sense in which binding-time analysis and strictness analysis are 
dual problems, as shown by Launchbury [Lau91b] and shown later, and it seems to
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be the case th a t for each proposed technique for binding-time analysis there exists an 

analogous technique for strictness analysis, and vice versa.

Jones, Sestoff, and Sondergaard [JSS85] described the first binding-time analysis tech
nique using non-standard denotational semantics. They used a two-point abstract 
domain a t each base type, one point representing static and the other representing 
unknown; their method is roughly analogous to M ycroft’s. It is not hard to  gener
alise their m ethod in the same way th a t the higher-order BHA technique generalises 
M ycroft’s: for example, using W adler’s abstract-list type constructor, given abstract 

domain D  for the list-element type, we may take _L to mean unknown or dynamic, 

lift J_ to mean determined up to WHNF, and for each d G D  value lift2 d to mean 
th a t the entire spine of a list is static with all of the list elements having staticness 

property d.

Mogensen [Mog8 8 ] generalised the technique to recursive data  types using grammars 
to represent patterns of staticness; in this respect his treatm ent is similar to Hall’s 

use of strictness patterns. Bondorf [Bon89] extended Mogensen’s technique to richer 
abstract domains.

Launchbury [Lau8 8 ] hit upon the idea of using projections to encode degrees of static
ness. In his thesis he gives analysis techniques for first-order monomorphically-typed 
and polymorphically-typed languages, which were implemented as part of working 
partial evaluators [Lau91b]. His monomorphic analysis technique is the starting point 
for our work, and like W adler and Hughes’ strictness analysis technique will be refor
m ulated from first principles, and generalised to  higher order.

As an aside we note th a t binding-time analysis techniques based on non-standard 
typing also exist: Schmidt’s [Sch8 8 ] and Nielson and Nielson’s [NN8 8 a, NN8 8 b] tech
niques are based on a form of type inference, Jensen briefly discusses this approach 
[Jen92], and the binding-time analysis in A-mix is by type inference [Go92]. There 
does not seem to be any reason th a t non-standard reduction could not be used to 
perform binding-time analysis but we do not know of any such analysis technique.



C hapter 2 

D om ains, Functions, P rojections, 
and P red icates

This chapter reviews some m athem atical concepts and notation used in this thesis: 
elementary domain theory including the construction of recursively-defined domains, 

and the construction of recursively-defined predicates. The domain theory is entirely 

standard, following [DP90, GS90, Sch8 6 ], The development of the construction of 
recursively-defined predicates is a translation of the development in [MS76] in terms 
of a  universal domain to an analogous development in terms of domains constructed 
from prim itive domains in the style of [Sch8 6 ]. This chapter may safely be skipped by 
readers familiar with elementary domain theory and unconcerned about the details 

of guaranteeing well-definedness of recursively-defined predicates.

2.1 Domains

A partially  ordered set, or poset, is a set S  with a binary relation C which is reflexive, 
antisym m etric, and transitive. W hen x  C y we will say th a t x  is less than (or below 
or approximates or less defined than) y , or th a t y is greater (or above or more defined) 
than  x. We will write x  C y  to mean x  Q y  and x  /  y, and say th a t x  is strictly less 
than y . W hen x  C y  or y  C x  we say th a t x  and y are comparable, otherwise they are 
incomparable.

A subset M  C S  of a poset S  is consistent if there is an upper bound for M  in S , 
and directed if for every finite subset X  C M  there is an upper bound for X  in M . 

A poset S  is pointed if it has a least element J_, and complete if it is pointed and 

every directed subset M  C S  has a least upper bound (lub) U M  in S. A subset of 

S  in which every pair of elements is comparable is called a chain, typically written

13
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{rro, x \, X2 , . . .},  or just {aq}. W hen i < j  implies X{ C xj the chain is ascending; when 

i <  j  implies x f- □  Xj it is descending. Clearly every ascending chain is directed.

Let 5  be a complete poset. An element x  E S  is finite  (or compact) if, whenever M  
is a directed subset of S  and x  C U M , there is a point y £ M  such th a t x  C y. 

Let K( S )  denote the set of finite elements of S'. If for every a; £ S, the set M  =  
{y  £ K( S )  | y C x}  is directed and \_\M = x, then S is algebraic (or continuous). If 
S  is algebraic and K( S )  is countable (hence u-algebraic), then S  is a domain.

A poset S  is bounded complete (or consistently complete) if S  has a least element and 
every bounded subset has a least upper bound. A Scott domain is a bounded-complete 
domain. An u-algebraic complete lattice is a Scott domain in which every subset has 
a least upper bound. Since all domains in this thesis are Scott domains, “domain” 

always means “Scott domain” ; similarly “complete lattice” will always mean Uu- 
algebraic complete lattice.” The symbols U, V , and W  always denote domains. A 
complete lattice is a domain, and adding a new top element—an element strictly 

greater than  all others—to a domain yields a complete lattice.

In a  domain, every non-empty set has a greatest lower bound (gib), and in a complete 
lattice, every set has a  lub and gib. Reversing the ordering in a complete lattice 
(‘turning the lattice upside down’) yields a complete lattice.

2.2 M onotonicity, Continuity, and Inclusivity

Let /  be a function from U to V. Then /  is monotonic if x  C y  implies /  x  C /  y, 
or equivalently /  (U X )  □  1J(/ X ); inclusive if /  (U X )  C (J( /  A ); and continuous if 

is both  monotonic and inclusive, th a t is /  (U X )  =  U ( /  A ); for all directed A C  U. 
Intuitively, for a function to be monotonic means th a t increasing the information in 
its argument can only increase information in its result; to be inclusive means th a t it 

cannot ‘generate information from nowhere’ a t a  limit.

Let the domain Truth of tru th  values be { True, False], with True C False. Logical-or 

(V) in this domain is gib, logical-and (A) is lub, and so on; we use the logical operators 

and domain operators interchangeably. A predicate is any function (not necessarily 
monotonic or continuous) from some S  into Truth, and say th a t the predicate is on 
S. An n-ary relation R  may be converted into an n-ary predicate P  by defining 

P {x i , . . .  , x n) =  True iff (aq, . . .  , x n) £ R; similarly a predicate may be converted 
into a relation, and we will be slightly sloppy and say (for example) th a t values are 

related by a predicate when the predicate maps the tuple of those values to True.
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For a predicate to be inclusive (or directed complete, or admissible) implies th a t if it 

holds at every value in a chain then it also holds a t the limit. Continuous functions 
are inclusive, but in general continuity is too restrictive: equality on a domain with 

infinite elements is inclusive but not continuous. Inclusivity may be thought of as 
safe behaviour for a predicate, even though the predictable behaviour of continuous 
functions a t lim it points may be lacking—an inclusive predicate may hold a t the limit 
of approximations th a t do not hold, e.g. equality.

The inclusive predicates on a given domain form a complete lattice with elements 

ordered pointwise, and lub in this lattice is defined pointwise; we use to construct 

the domain of inclusive functions, so U A  Truth is the complete lattice of inclusive 

predicates on U. The composition of an inclusive function with a continuous function 
(in either order) is always inclusive; in particular, when /  in continuous and p  is an 
inclusive predicate then p o f  is an inclusive predicate. W hen describing relations 
between predicates, we will use the boolean operators promoted pointwise to operate 
on functions.

Continuous functions, regarded as relations between their arguments and results, 
thence as predicates, are also inclusive. The relational compositions /  op  and po  / “ *, 
regarded as a predicate, of inclusive predicate p  and continuous function /  regarded 
as relations, are inclusive.

We will say th a t an n-ary predicate is jointly inclusive in a given subset of its argu
ments if it is inclusive in those arguments regarded as a tuple. For example, P (x , y, z) 
is jointly inclusive in x  and y if for all chains {(aq, yf) \ i > 0} with lim it ( x ^ ,  y ^ )  and 
fixed 2  we have P ( x OC), y ^ ,  z) C LL>o-P(aq, yi, z). We note th a t inclusivity in individual 
arguments does not imply joint inclusivity; a counterexample is the binary predicate 
defined like equality for finite arguments but returns False when either argument is 
infinite. However, joint inclusivity in some set of arguments does imply inclusivity in 

each argument in th a t set.

Following we give a set of constraints sufficient to  guarantee th a t a logical assertion 

is inclusive in a free variable.
I

Proposition 2.1 (adapted from [Sch86])
A logical assertion P(x)  is inclusive in x  if it can be expressed in the form

Vwi € U i , . . . , u m E Um . A"=i (VjL i Qij)

for m , n , p  >  0 , where Qi j  is either a predicate using only the as free identifiers, 
or an expression of the form E \ □  E<i, where E \ and E 2 involve only continuous 
functions, constants, function application, and x  and the Ui as free identifiers. □
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We note the absence of negation and existential quantification. Hence for example 
if P i and P 2 are inclusive we may not conclude th a t P i => P2 is inclusive: for a 
counterexample suppose th a t P2 is false for every element of a chain and its limit, 

and Pi is false for every element of the chain but true at the limit.

M ultiary predicates defined in this way will be jointly inclusive in every subset of 

their arguments; this follows from the fact th a t projection from tuples is continuous.

2.3 Projections and Embeddings

A projection is a continuous idempotent function th a t approximates the identity. The 
set of all projections on a given domain, ordered by the usual function ordering, forms 
a complete lattice with the identity ID  as the greatest element and the constant 
bottom  function B O T  as the least. Since the gib of a set of projections in the 
dom ain of continuous functions is not necessarily a projection, the gib in the lattice 

of projections is defined to be the greatest projection approximating every element of 
the set—this projection necessarily approximates the gib in the continuous function 

space. A projection is finitary  if its image is a domain. The set of finitary projections 
on any domain U also forms a complete lattice, and will be denoted by \U\ .  All 
projections in this thesis are finitary. The symbols a , /?, 7 , and 5 will always denote 
projections.

A retraction pair comprises two continuous functions /  €  U -» V  and g 6  V  —» U, 
abbreviated ( / ,  g) £ U £>• V , such th a t g o /  =  idu and /  o g C idy.  From these two 

conditions it is follows th a t /  0 g is a projection, /  is an injection, g is surjection, /  
determines g and vice versa (a retraction pair is a special case of a Galois connection, 

in which the condition go f  =  idu is weakened to go f  □  idu),  f  and g both distribute 
over U and n , and the range f ( U)  is a subdomain of V  isomorphic to U. It is usual to 
call g a  projection, since its range is a domain isomorphic to  the range of the projection 

f og ,  and retraction pairs are also called embedding/projection pairs. In this sense, any 
function is a  projection so long as there exists a corresponding embedding; similarly, 
any function is an embedding so long as there is a corresponding projection. We use 
the term  projection in this sense exactly when the argument and result domains are 
not the same domain. W hen f o g  = idy  we say th a t /  and g are isomorphisms; when 

such /  and g exist we write U = V  and say th a t U and V  are isomorphic; given 
for all u £ U we say th a t u and /  u are equal up to isomorphism.
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2.4 Domain Construction

We construct domains from primitive domains and various domain constructors. The 
required domain constructors are lifting, sum, product, smash product, and various 

function space constructors.

The n-ary product S\ x . . .  x S n of posets 5;, 1 <  i <  n, is the poset consisting of tuples 
( $ ! , . . . ,  sn) where Si £ Si, with the ordering defined coordinatewise. We take unary 
product to be the identity, th a t is, we do not differentiate between s and the one-tuple 

(s). Nullary product is taken to be 1, the identity (up to isomorphism) of x .1 For 

n > 1 and i such th a t 1 <  i <  n the function 7q £ (S\ x . . .  x S n) —> Si is defined by 
7Ti (s1?. . . ,  sn) =  Si. W hen each Si is a domain, then so is the product, and each 7r,■ is a 

projection with corresponding embedding th a t maps each s to (_L,. . . ,  _L, s, X , . . . ,  _L), 
where s appears as the i th element of the tuple.

Given a poset S , the lifted set S± is defined to be {X} U ({0} x S) where X is a new 

element which is not a pair, with ordering X C ( 0 , s )  for all s, and for all s and t we 
have (0,s) C (0,£) iff s C t. W hen 5  is a countable set of incomparable elements, 
5j_ is a fla t domain; we require three primitive domains constructed in this way: the 
one-point domain 1 =  (}± =  {X}, the domain of booleans Bool = {true, false}L, 
and the domain of integers In t = Zj_. (For readability we will use the more standard 
notation for the values in Bool, namely X, tt, and jff.) The function lift from S  to S± 

is defined by lift s = (0, s), and the function drop from S± to S  by drop X =  X and 
drop (0, s) = s. W hen 5  is a domain S± is a domain and lift and drop form a Galois 

connection. Henceforth we will denote each non-bottom element (0 , s) of S± by lift s.

W hen U and V  are domains, the set U V  of continuous functions from U to V  
is a domain, with elements ordered pointwise, th a t is, /  C g iff for all x  we have 
f  x  U g x. Lub and gib are also defined pointwise. (Unfortunately, the symbol -* is 
overloaded: even when R  and S  are not domains we write R  —> S  to mean some kindi
of mapping from R  to S  to  be specified in context.)

The n-ary smash product S \ <g). . .  <g> S n of pointed posets Si is the pointed poset

{X} U {(si, • • •, sn) | S{ £ Si, ^  X, 1 ^  i ti }  ,

where X is a new least element th a t is not a tuple. The ordering on tuples is coordi
natewise. There is a surjection smash taking ordinary product into smash product,

1 This is a slight abuse of the terminology since • x 1 is not a continuous function in our framework 
(though it is in [MS76]); what we mean is that U and C7 x 1 are isomorphic.
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defined by

smash £ (Si x . . .  x Sn) -¥ (Si ® . . .  ® Sn) ,

smash ( s i , . . . ,  sn) =  _L, if S{ =  _L for some z ,

smash ( s i , . . . , s n) = ( s i , . . . , s n), otherw ise.

The injection unsmash is defined by

unsmash £  (Si <8>. . .  <8> Sn) —> (Si x . . .  x Sn) ,

unsmash _L =  (_L,. . . ,  _L) ,

unsmash ( s i , . . . , s n) = ( s i , . . . , s n) .

W hen the S,- are domains, then their smash product is also a domain, unsmash and
smash comprise a retraction pair, and domains (Si x . . .  x Sn)j_ and (Si)j_<g).. .<8 >(Sn)j_ 
are isomorphic. Unary smash product is taken to  be the identity. Nullary smash 
product is taken to be lj_, the identity (up to isomorphism) of <g>.

The n-ary (coalesced) sum U\ ® . . .  © Un of domains U{ is the domain

{_!_} U {(z, u) | 1 <  z <  n, u £ U{, u ^ l }

where _L is a new element th a t is not a pair, with _L C (i,u) for all i and u , and 

(z, u) C (j, v) iff* i = j  and u C v. For each i there are continuous functions ini and 
outi defined by

ini £  —¥ (Ui ® Un) ,

ini JL =  _L ,

im u =  (z, u), if u ^  _L ,

and

outi ^  ( U\ ® . . .  ® Un) —> Ui ,

outi -h =  1 ,

outi ( j , u)  = -L, if i ^  j  ,

outi ( j t u) =  u -> if i = j  -

Then zn̂  and outi comprise a retraction pair for each z.

For each of the domain operators there is a corresponding operator on functions. For 

/  £ U —► V  define

f i  e  uL -> v i ,

k  -l =  ± ,
k  (lift v) = lift ( f  v ) .

Let f  £ Ui -> Vi for 1 <  i < n. Define

k  x • • • x f n £ (Ui x . . .  x Un) -> (Vi x . . .  x Vn) ,

(/l x . . .  X fn) (tti, . . . , Un)  = (/i Ui, . . . , fn Un ) .
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Define f\ <g> . . .  <g> f n =  smash o (fx x . . .  X fn) o unsmash. Then ® . . .  <g> (f n)± is

equal to  (/i x . . .  x / n)j_ up to isomorphism.

For sum, define

/l ® . . . ® fn £  ( U\ ® . . . 0  Un) —> ( Vi 0  . . . 0  Vn) ,

(/l © • • • © fn) -L =  -L ,

(/i © . . .  © fn) (*, v) =  ini (ft v) .

This slight asymmetry in the definitions of functions on sums will be pervasive: since 
ini J- =  inj _L for all i and j ,  pattern-m atching is done on ±  and pairs (i, u); since

Ax. ( i , x)  is not total, reinjection into the sum is done with ini.

For f  £  U V  and g £  T  -» W  define

f ^ g  £ ( V ^  T) -> ( [ / - >  W ) ,

( f  -> g) h = g o h o  f  .

2.5 Recursively Defined Domains

Domains may be recursively defined; such domains are sometimes called reflexive. 
Let a domain expression F ( X )  be an expression built using 1 , Int, domain construc
tors, and the domain-valued variable X .  Then F  has an obvious interpretation as a
mapping from domains to domains, and for F  built using the domain constructors 
used in this thesis (possibly with some given restrictions) there is always a  domain
U such th a t U is isomorphic to  F(U) .  Such domains are defined by the inverse lim it

construction of Scott [Sco76]; we briefly outline the elements of this construction as 
described by Schmidt [Sch8 6 ].

Given domain expression F, domains Uq and Vo, and retraction pair (4>q, ^o) £ Uq 4-> 
Vo, define Ui =  F %(Uo) and V{ = F*(Vo) for * >  0 (by convention F° is taken to 
be the identity). By giving an alternative interpretation of the symbols comprising 
F  (defined in Section 2.5.4), we define the retraction pairs (0 ;,^ j) , i > 0, where 

(<fo+i, V’t+i) =  F(4>i,ipi), and (</>;, ^ )  £ Ui £> Vi. By arranging th a t U\ =  Vo we have 
(<f>i,ipi) £ Ui £¥ Ui+ 1 for all i. The pair

({Ui  | i >  0 }, {(<f>i,ipi) £ U{ Ui+ 1 | i >  0 })

is a retraction sequence, and its inverse limit is the set of infinite tuples

Uoo -  {(a*), a;i, • • •) I Xi £ Ui, Xi = fa xi+h i > 0}

with ordering x C.Uoo y iff ( ^  x) □{/. (m y) for all i > 0 , th a t is, with elements

ordered coordinatewise just as for finite products. The essential result is th a t
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Uoo =  F(Uoo). One nice feature of this construction is the representation of infinite 
elements by infinite tuples of finite elements, which makes clear that infinite elements 
are determined by their finite approximations. Slightly informally, we will say UQ0 is 

the limit of the sequence { Ui}, and that U^ is a solution of the equation X  =  F(X) ,  
since applications of the isomorphism map and its inverse are left implicit.

In our development the starting domain Uq will always either be 1, in which case 
(0o,0o) is (Aa:._L, A:r._L), or lj_, in which case each Ui will be (isomorphic to) Vj_ for 

some V,  and (0o,0o) is ((Az.-L)_l, (Ax.±)j_) (up to isomorphism).

To describe the solution of a set of mutually recursive domain equations 

Ui =  F1(Uu . . . 1Un) ,

Un =  Fn(Uu . . . , U n) ,

(where the domain equations have been generalised to allow more than one variable), 
we construct n retraction sequences

({Ui j  | j  >  0}, { (0 ij,0 ,-j) G Uij <-► Uij+i | j  >  0}), 1 < i < n

in parallel, where the Uifi and (0;o,0io) are given, Uij+i =  F i ( U i j , . . . ,  Unj ) ,  and

( 0 i , 1, 0 ij+ i) =  i r*((0t1i ,0 t , i ) , . .. ,(0t,n,0*ln)) are appropriately defined retraction 
pairs. We may conveniently think of the tuple of inverse limits as comprising a 
solution of the single equation

( U\ , ,  Un) =  (F \( U\, . . . ,  Un) , . . . ,  Fn( U\, . . . ,  Un)) .

The retraction pairs in a retraction sequence may be composed to yield new retraction
pairs. Let

({Ui  | i >  0}, { (0 i,0 i)  € Ui f* Ui+1 | i >  0}) 

be a retraction sequence with inverse limit U0OJ and define 

@mn ^ U-m  ̂ Un ,

@mn — 0n ® 0n—1 O . . .  O (f)m , 771 <  n ,

@mn 0m ® 0m+i o . . .  o 0^, na >  n ,
@mn — idum m — n .

Then 6mn is an embedding with corresponding projection 9nm for m <  n. Next we
generalise to allow m or n to be oo. Recalling that the elements of U^ are infinite
tuples we have

9moo € Um y Uqq

9moo ^•(^mo(^), ^ral(^), 9m2(x), . . .  )
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and

^oom ^  Uoo  ̂ Urn,

9 oom — TTm •

Then (9moo,0ocm) is a retraction pair, and 9 ^ oo =  Lh>o(#ioo 0 #ooi) is the identity on
U o o .

Next we show th a t the domain operators are in a sense continuous. We consider the 
particular case of —>. Let

({Ui  | i >  0 }, e U ^  Ui+i | i >  0 })

be a retraction sequence with inverse limit U o o ,  and similarly for Define

W i  =  U i - >  V i  ,

=  ^ y  _> j

T  =  0 F ^  •

Then ({ Wi | * >  0}, ^  ^  H  Wi+i | « >  0}) is a retraction sequence
with inverse lim it U^ —>• Vqq. The essential fact required to show this is th a t for 

emn =  enm “ > ®mn th a t u t> o(^»  0 0 ™i) is the identity on -► V^, as follows.

=  Ui>0( ( ^  -> 0 ^ )  o ( 9 ^  ->• 0 ^ ) )

=  u ;>o(0Fc ° 0 H i )  -+  Ui>0(9go o e ^ i )  [-> continuous]

=  idu^ -> idVoo 
=  .

Analogous results hold for the other domain operators.

2.5.1 Defining continuous functions

For each element x =  (rco, x \ , . . . )  of Uoo we have X{ =  9ooi We will call {xi | i > 0} 

a fam ily o f approximations of x. The limit Lh>o(0ioo xi) is j ust another way of de
scribing x. Slightly abusing the terminology we will call x  the lim it of the family of 
approximations.

Next we consider particular instances of families of approximations and their limits: 
continuous functions with argument and /o r result domains th a t are inverse lim its of 

retraction sequences.
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Let /  G Uoo ~> V  be a continuous function. Then /  determines a tuple ( /o ,/ i , . . . )  of 
continuous functions which is an element of the inverse limit of the retraction sequence

( { U i - > V \ i >  0} ,

{(tpi —* idy)  G (Ui —>• V) <->■ ->• V) | z >  0}) ,

where the (0 *,^*) are the retraction pairs from the retraction sequence defining 
Uoo, and f i = f  o 0 ioo (and therefore fi =  /;+i o </>*) for each i. Conversely, a func
tion /  G Uoo —> V is uniquely determined by the family of approximating func
tions fc €  Ui V,  where fa =  / i+1 o </>*, by taking /  =  U<>o(/< o 6 ^ ) .  The condition 

fi = fi+i 0 <j>i guarantees th a t {/o o ^ooo?/i 0 0«>ij. . .} is an ascending chain and so has a 
lub which is a continuous function—it may also be thought of as guaranteeing th a t the 

approximations agree a t common arguments. In this case /  is said to be the mediat

ing morphism  of the family of approximations. Clearly families of approximations are 
in one-to-one correspondence with the continuous functions. Analogous results hold 

when the result domain, or both the argument and result domain, are the inverse limit 
of a  retraction sequences. The form of the definition of a recursively-defined function 
often dictates whether we choose as its definition the mediating morphism of a family 
of approximations, or the least upper bound of an ascending chain. As we will see, the 

former approach is useful when the definition of the argument and /o r result domain 
is parallel to th a t of the function definition, such th a t each approximating function 
is defined on the corresponding approximating domain (s).

2.5.2 Defining inclusive predicates

The intended relation between values in various semantics will be defined in term s 
of type structure, and recursively-defined types will give rise to  recursively-defined 
predicates. To show th a t such predicates are well defined and inclusive requires 
an appropriate theory which is described following. The source of this m aterial is 
C hapter 2  of [MS76], wherein domains are generated by projecting out of a universal 
domain. Here the results are recast (hopefully much more understandably) in term s 

of domain construction as described in [Sch8 6 ]. Chapter 13 of [Sto77] has a gentle 
introduction by way of example to the more general development in [MS76], again 

in term s of a universal domain. A category-theoretic development may be found in 
[Nie89].

In the following, the symbols p and q always denote predicates.

It is often useful to define inclusive predicates recursively. For discussion we will take 
a recursive definition to  be an equation of the form f  = F( f )  and call F  the defin
ing functional. For defining continuous functions, typically F  is itself a continuous
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function and /  is taken to be some fixed point of F. W hen F  is continuous, for 

any continuous vq such th a t vq □  F(v0) the sequence {F°(vo),  i r l (uo), F 2 (vq), . . .} is 

ascending and U;>o F l (vo) is well defined and is the least fixed point of F  greater 
than  Vo. Unfortunately, recursive definitions of inclusive predicates will typically 

have defining functionals tha t, like the predicates themselves, are not monotonic and 
therefore not continuous; hence such functionals cannot be assumed to have least 
fixed points, or any fixed points a t all. Following, we give an example to highlight 
the source (for us) of difficulty and motivate its solution.

2.5.3 A simple recursively-defined predicate

Anticipating later development we give yet another interpretation of the symbols 
originally defined as domain operators, and subsequently as operators on functions, 
this tim e as operators on binary predicates (that is, predicates on pairs). At this 
point we adopt the diacritical convention of [MS76], wherein corresponding or related 

objects (typically domains or domain elements) from two different semantics are given 
the same base name, e.g. x, and differentiated by acute and grave accents, e.g. x and 

x. A pair (x , x) of such objects may be abbreviated x.

Let p € (U  x U) -V Truth. Then

p± £  (Ui x U±) A  Truth ,

P± (-L, JL) =  True ,

Pl {lift x, _L) =  False ,

p± (_L, lift y) =  False ,

pL (lift x , lift y ) =  p(x , y )  .

Let Pi £ (Ui x  Ui) A  Truth for 1 <  i <  n. The product of these predicates relates 
corresponding elements of each of its arguments.

Pi ® ® pn e  ( ( U\ ® . . .  Un) x ( U\ 0  . . .  ® Un)) Truth ,

(pi <8>. . .  ® pn) (x, x) = (pi x . . .  x pn) (unsmash x, unsmash x) .

where

Pi X . . .  x  Pn £ ((Ui x  . . .  x  Un) x  (Ui x  . . .  x  Un)) A  Truth ,

(Pl X . . .  X Pn) ( ( f i , . . . , f n), ( a ? i , . . . , 4 ) )  =  Piix^Xi)  A . . .  A p n(xn,Xn) . 

Then (p i)i ® . . .  (S> (pn)± is equal to (p\ x  . . .  x pn)± up to isomorphism.

The n-ary coalesced predicate sum can hold only when the arguments come from the
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same summand or are both bottom .

Pi 0  . . .  ® pn G ((Ui ® . . .  © Un) x (Ui © • • • © Un)) —> Truth ,

(pi © . . .  © Pn) (-L, JL) =  True ,

(pi © . . .  ©Pn) ( - M M ) )  - F a l s e ,
(pi © . . .  ©Pn) ( (M) , -L)  =  False ,

(Pi © • • • © Pn) ((*, x), (j, x)) =  False, if i ±  j  ,

( p i © . . . © P n )  ( i h x ) , ( j , x ) )  = Pi(x,x),  if i = j  .

For q G ( V  x V)  -V Truth the predicate p —► q holds on ( / , g) if the results of /  and 

g are related by q whenever the arguments are related by p.

p - > q  G {(U -> V)  X (U -4 F )) 4  Truth ,

(p-> q ) f  = Vx.p(x) => q(f  x, f  x) .

All of these operators map inclusive predicates to inclusive predicates.

Our simple example involves defining equality on pairs of values from domains built 
from the various domain operators and primitive domains, assuming equality already
defined on the primitive domains. If we interpret the symbols 1 and In t  as equality

predicates on the corresponding primitive domains then any expression involving the 

domain operators and the primitive sets can also be interpreted as a  predicate on 
pairs of elements from the corresponding domain, and this predicate is the equality 
predicate. For example, In t <g) In t interpreted as a predicate is equality on (In t 0  

In t) x (In t®  In t) interpreted as a domain. Now we try  to extend the idea to recursive 
dom ain equations. Our example will involve the equation

X  =  X  In t .

W ith the right-hand side interpreted as a domain expression with free variable X , 
given a starting  domain Uq this equation has a least solution greater than  Uq under 

a suitable ordering for domains. Similarly, if the right-hand side is interpreted as 
an expression involving continuous functions (given some interpretation of In t as a 
continuous function) this equation has a least solution which is a continuous function. 

We might hope th a t the interpretation of the equation as a predicate would define the 
appropriate equality predicate, perhaps as its least fixed point. The corresponding 

functional is

F{p)  =  A/  . Vz . p(x)  => ( /  x) = Int ( f  x) .

It is not hard to  see th a t equality is a fixed point of this equation, and in fact th a t it 
is the least fixed point, but we require a general theory about the existence of such 

fixed points.
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The least predicate p0 on I  x I  is Af.T ru e , which relates every pair of functions. 

Let pi+i =  P(p;) for i >  0. Then

pi =  X f . VJ . ( /  z) - in t {f x) ,

so pi requires its arguments to  be the same constant function, which is stronger than 
equality. Continuing, P2 requires th a t its arguments map the same constant functions 
to the same values, which is weaker than equality. It is now clear th a t P  is not 
monotonic. The operators •j. ,  x , and © are monotonic on predicates; the problem 

is th a t -4 is not monotonic in its first argument. Though U ^oP^Po) is well defined
(since the inclusive predicates on X  form a complete lattice), {po?Pi?P2 ? • ■ •} is not a
chain and it is not clear th a t its lub is a fixed point of P ; it is certainly not the least 

fixed point since equality on X  is strictly less than p i .

Recall th a t the essential properties of the family of approximations ft G Ui -4 V  of 
a continuous function are th a t each ft is continuous, and fa =  fi+1 o </>im The second 
condition may be thought of as requiring fa and f {+ 1 to agree at common arguments; it 

also guarantees th a t {/o o O ^qJi o  9 ^  i , . . .} is a chain and so has a  lub which is a  con
tinuous function. Now consider a set of inclusive predicates Pi G P* -V Truth. Just as 

for continuous functions, let us require th a t any pair agree a t common arguments, th a t 
is, th a t pi =  pi+ 1 o <f>i, plus the extra condition th a t pj+i =>- pi o -0 ,-. This extra condi
tion guarantees, in the absence of monotonicity of the p;, th a t {po o O^q, pi o . . .} 
is chain and therefore has a limit which is necessarily an inclusive predicate. These 
two conditions are usually given as pi =4- pi+i o and pt+i =4 pi o ^  for all i, since

Pi+i => Pi ° i> i  

=> Pi+i 0 <t>i => Pi o ipi O (f>i

&  Pi+1 Pi ,

which together with pi =>• pi+ 1 o fa implies p* =  pi+ 1 o

The foregoing is summarised by the following statem ent, which is embodied in Propo
sitions 2.5.2 and 2.5.3 of [MS76].

Proposition  2.2
Let G be a mapping of domains to domains, H  a mapping of retraction pairs 

to retraction pairs, and P  a mapping from predicates to predicates, and suppose 

starting  values Uq, (</>o,^o)j Po? and for all « > 0  the definitions Pi+i =  G(Ui ), 
((f>i+ u ipi+1) =  H(<f>i,^i), and pi+1 = P (p i), such tha t ((f>i,il)i) £ U i++ Ui+ 1 is a re
traction pair and pi G Ui Truth is an inclusive predicate with pi =4 p^+i o <j>i and 
Pi+ 1 =4 pi o 'ipi. Then p0Q =  l_lj>o (pi o 6 ^ )  is inclusive and is the least fixed point of 
P  greater than po o O^o- n
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Given such a set of pi with limit p ^ ,  two useful consequences are th a t Pi = Poo 0  @ioo 
(the lim it agrees with the approximations at common arguments) and p ^  =4 pi o 9^ ,  

for all i.

Returning to the example, we use Proposition 2.2*to show the existence of a least 
fixed point of the defining functional. Rather than  having separate names G , H , 
and P  for the various mappings as in the statem ent above, we use instead a single 

(syntactic) entity F  for which we have various interpretations to yield the mappings. 
Typically we are interested in relating values from two different domains U and U,

s \
as usual this is accomplished by defining a predicate on U x U. Nonetheless it will

be convenient to pretend th a t these two domains are built separately, in parallel, and
✓ \

hence we define two versions F  and F  of the functions mapping domains to domains 
and retraction pairs to retraction pairs. This is really ju st a syntactic convenience to 
avoid building and decomposing various products.

Let the functions mapping domains to domains be 

F(U)  = F(U)  = U-+ In t ,

with

Uq = Uq = 1 , »

Ui+i = Ui+i — F(Ui),  i >  0 .

Let the functions mapping retraction pairs to retraction pairs be

F{4>^) = H*,*) = W - / 0  & Xf . f of i
with

0o =  0o =  Az._L ,

00 =  00 =  Az.l ,
(0i+l,0 i+ l)  =  (0 i+ l,0 i+l) =  F((fi, 0 i), i >  0 ,  

and the function mapping predicates to predicates be 

F(p) =  A/  . V2 . p(x) =*• ( /  x) -  (f  x) ,

with
Pi e  (Ui x Ui) A  Truth ,

Po =  Ax. True ,

Pi+i =  F(pi),  i > 0 .
/ \

The goal is to show th a t for all i th a t pi is inclusive, and pi =4 p»+i o ( ^  x (pi) and
s \

Pi+i => pi o ( ^  x -0i). F irst we observe th a t po is trivially inclusive, and —> maps 
inclusive predicates to inclusive predicates, hence by induction on i we have th a t pi is 

inclusive for all i. The la tter two conditions are proven together, again by induction 
on i.
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C ase  i — 0. For the first part,
s \

Po => Pl 0 (00 X 00)
<£> Xf. True

x \
=» Pl 0 (00 X 00) [defn po]

<£> Pl 0 (00 '< 0 0 ) [defn =4>]

o Pi(Ax.± , X x.l.) [defn 0 o,

& Po =* (-L =  1 ) [defn pi]

True .

For the second part,
x  \

Pl => Po ° (00 X 00)
^  pi => A/. True o (0O x 0 O) [defn po] 

<£+ True .

Case i =  n +  1. Let (=)int denote the (prefix) equality predicate on In t  x In t. Let 
/  be fixed. Then

P n+l(7)

&  Pn =* (=)/«t 0 ( /  x / )  [defn pB+1]

^  Pn O (0n  X 0 n) =* ( = ) /Bt 0 ( /  X 7 ) O ( 0 n X 0n ) [0n X 0 n is  Onto]

=» pn+i => (= ) /nt O ( /  x 7) O (0„ X 0B) [I.H.2]

^  Pn+1 ^  ( =  ) Int 0 ((<++1 / )  X (</Wi / ) )  [defn <f>„+1, <t>n+1]
{Pn+2 ° (<pn+i x 4 +i))(7 ) [defn p„+2]

where I.H.2 stands for second part of the induction hypothesis pn+i =$> pn o (0 n x 0 n). 
Since 7 was arbitrarily chosen, we conclude that pn+i => pn+2 o (0n+i x 0n+i). For

x \
the second half, writing I.H.l for the first part pn =$■ pn+\ o (0n x 0B) of the induction 
hypothesis,

Pn+2 (7)
&  Pn+i => (=)int 0 ( /  x 7) [defn pn+2]

pn+i o (0B X 0B) =* ( = ) /Bt O ( /  X 7) 0 (0n X 0B)

=> Pn =>• ( =  )/nt O ( /  X 7) O (0 n X 0 B) [I.H .l]

&  Pn=> (=  )lnt O ((0 n+l / )  X (0 B+1 / ) )  [defn 0n+1, 0n+J

^  (Pn+1 © (0 n+1 X 0 n+l))(7 ) [deftl pn+1]

So Pn+2 => Pn+1 o (0 B+i x 0 B+i). We conclude that LL>o(pi o (9^  x 9^ ) )  is the least 
fixed point greater than Arc. True of F  interpreted as a functional on predicates, and 

is therefore its least fixed point.

It is instructive to compare the predicates p* o (9^  x 9^ )  with those generated in 
the first attempt to find a fixed point of F—call them p /. For example, the predicates
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Po 0 (#ooO x #ooo) and Po' are the same, relating all argument pairs. However, as shown, 
Pi requires its arguments to agree at every pair of values, th a t is, be the same constant 
function, while pi o O^i requires it arguments to agree only at the pair (i_, _L).

An im portant observation is th a t if we can show tha t some value satisfies some fixed 
point of F  then it certainly satisfies the least fixed point, since the least fixed point 
is the one th a t holds for the largest set of arguments. More generally, if some value 

satisfies some fixed point greater th a t a particular fixed point p then it satisfies the 
least fixed greater than p.

In summary, we have proven th a t the equation X  = X  -» In t , interpreted as a predi
cate equation, has a least fixed point which is a predicate on the the least fixed point 
of the equation interpreted as a domain equation. This approach is too low-level for 
our purposes: we would like to show at once th a t a whole class of such predicates is 
well defined. A step in this direction would be to show the analogous result holds for 
every equation of the form X  = F ( X )  when F  is built from 1, Int, *i, x , ®, ©, and -*• 
(subject to  a restriction on <g> given later). We require predicates other than  equality 
predicates, in fact predicates between dissimilar domains. We give a more general 

result th a t requires only th a t the construction of the domains be ‘sufficiently parallel’, 
and an appropriate, similarly parallel construction of the corresponding predicate.

2.5.4 A more general approach

Interpretations of the symbols -j_, x , <g), ©, and —> as operators on domains, functions, 
and predicates have already been given. Interpretations as operators on retraction 

pairs have been alluded to  but not defined; those definitions are given following. ;

Let {fi,gi) G Ui «-»■ Vi for 1 <  i <  n. Then

G u± ^ v ± ,

(/>$) j. = Ul ,9l )

(fu9i ) X • . X {fn, 9n) € {Ui x . .. x Un0 {Vi x . . .

if i ,9i) X • • X {fn, 9n) — ( A x . . • X fn, 91 X • • • X 9n)

(fu9i ) © • • © (/», 9 n) € ( 0 i © . . . ©  uv.) *+ ( V i 0 . . .

(fu9i ) (8 ) • • © (/n? 9n) — (A © ■ • • © /n? 9\ © • • • © 9n)

(Ju9i) © • • © (/n, 9n) £ ( t / i ® . . . ©  un0  +* ( V i © . . .

{fu9i) © • • ©  {fn j 9n) ~ ( A © . . • © fn-, 9\ © . . . © Qn)
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(f i ,9i) {12,92) £ (U\ —» U2) (Vi —> V2) ,

(fi,9i) —► (/2, #2) =  (91 —> /2, fi ~> 92) •

Defined this way, all of the operators map retraction pairs to retraction pairs. (This is 
subject to a condition on 0 .  Since U 1 — 1 there is in general no embedding from U 

to U 0  V when V  is 1; hence we require that arguments of the domain operator 0  not 
be isomorphic to 1, and arguments of the retraction operator 0  not be the constant 
bottom function. This condition will always be met in our domain constructions and 
we will not mention it further.) If F(X)  is a domain expression built from these
operators and U and V  are domains with {(f), ip) G U V a retraction pair, then (by
induction on the structure of F), F {(f), ip) G F{U) F{V)  is a retraction pair.

Let a predictor tuple be a tuple of operators (P, D, D, R, R), each having the same
/

arity n >  0, where P  maps n-tuples of inclusive predicates to inclusive predicates, D 
and D map n-tuples of domains to domains, and R and R map n-tuples of retraction 
pairs to retraction pairs, satisfying the following properties. For all domains Ui, Vi, 
1 < i  < n ,  and retraction pairs

(<Pi,fa) G Ui<A Vi, 1 < i < n ,
(fa, fa) G Ui O  Vi, 1 <  i <  n ,

we have (fa ip) G U V and (fa ip) G U *->• V, where

(faIp) =  R{{(fi, Ipl), • • • 5 (̂ Pn, iftn)) ,

(<P,fa) -^((01, *01)) • • • 1 (0m P̂n)) ,
U =  D(Uu . . . , U n) ,

u = b(uu . . . ,un) ,
V =  D (V u . . . , V n) ,
V =  D{Vu . . . , V n) .

Further, for all inclusive predicates

Pi £ {Ui x Ui) A- Truth, 1 <  i <  n ,

Qi £ (Vi x Vi) fa Truth, 1 <  i <  n , 

we have

p G (U x U) fa Truth ,
q G ( V x F) fa Truth ,

where p =  P{p \ , . . .  ,pn) and q =  P(qi, . . . , q n). Finally, assuming that p{ =$> q{ 0 (fa x
V / \ / H / V
fa) and qi => pi o (fa x fa) for 1 <  i <  n we have p => qo {(px fa) and q => p o  (ip x ip).
Then, if Fd (X)  is a domain expression built from the various D,  expression Fd (X)

/  \  /  

is the the same with each D  replaced by the corresponding D,  expression Fr (X)
the same with each D  replaced by the corresponding R, and similarly for
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and finally Fp(X) the same with each D replaced by the corresponding P,  then by
/  \  \  \

induction on the structure of F  we have that (Fp, Fp, Fp, Fr , Fr) is a predictor tuple. 
Then for starting domains Do, Do, retraction pairs (fa, fa), (fa, fa),  and predicate 

Po such that

Po £ (Do x Do) —> Truth ,

Po => EP(p0) 0 (fa x 0O) ,

Fp (po) => Po ° (V>o x -0o) , 

by induction on i,

Pi G (Di x Di) fa Truth ,
s \

Pi => pi+1 o (fa x <̂ ) ,

Pi+1 => Pi 0 ( ^  X ^ j ) ,

where p{ =  F>(p0), D f =  F lp ( b 0), D { =  Fj>(D0), (<&,^i) =  F lR(fa,fa) ,  and (<k,^t-) =  
F lR(fa ,fa),  for i >  0. Hence

LJi>0(Pt o (9ooi X 900i )) € (Ui>oDj[)(Do) x \Ji>oFp (bo)) fa Truth

is an inclusive predicate and is the least fixed point of Fp.

Next we define a set of predictor tuples to cover our needs. The base cases introduce 
primitive domains already equipped with inclusive predicates.

Proposition  2.3
• ■ y ' • •  • / ' ' \ iGiven domains E  and E  and inclusive predicate q G (E x E) —>■ Truth the following 

defines a predictor tuple.

p (v) = 9 )

D ( X )  =  E  ,

D ( X )  = E  ,
s

F(4>,‘fa) =  (id£,idg) ,

R(fafa) =  (idfridj.) .

Verification is trivial. □

Examples include

(Xp.Xx.True, XD.l,  XD.l ,  X(<f>,'ip).(idi,idi), X(<p, ip).(idi, idfa) ,

which introduces the pair of one-point domains with the constant True predicate on 
it, and

(Xp.(=)int , XD.Int, XD.Int, X(fafa).(idInt, idInt), X(faip).(idInt, idInt)) , 

which introduces the pair of integer domains with the equal predicate between then. 

Next we introduce the ‘building’ predictor tuples.
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P ro p o sitio n  2.4
The following are all predictor tuples:

(*_L» ’L ,  \L, \L, U.) 5

( 0 ,0 ,0 ,® ,® )  ,
( x , x , x , x , x )  ,

(®, ®, ®, ®, ®) ,

(“ ►> “ “ *> -A ) 5

where 0 ,  x, and ® may be nullary, unary, or multiary.

P ro o f
Verifying that these are predictor tuples is actually very simple; the only interesting 
case is —►. We will do the verification for -j. and

We consider (*j_, -±, *_l, *_l, \l) first. Assuming p and q are inclusive predicates such that

(4 J ) e u » v ,

{4,4)  € U ^ V  ,

p 6  (U  x U) Truth ,

q €  ( V  X V) L  Truth ,

p =*► qo{<£x<f>) ,

q =>• p o ('ijj X ip) , 

we need to show
/ \

Pl =* g L ° ( 4 x  <j>±) , 
f t  Pl  o (ip± X Vt) •

Verification is trivial.

Next we consider Assuming

{4>iAi) e  U i ^  Vi, i =  1,2 ,

^  ^  Vi,  ̂ — 1?^ ,

Pi G (f/i x i/i) A  Truth, * =  1, 2 ,  

ft £ (/» x Vi) A  Truth, i =  l , 2 ,
✓ >

P* => ft 0 (<Pi X <&), * =  1,2 ,
✓ \

qi => Pi o (^i x V><), * =  1,2 , 

we need to show that

{Pl ~A P2 ) ^  (#1 -A  f t )  0 ((^1 -A 4>2) X (t/Ji -4  ^ 2)) ,

(?l -A ft) =* (pi -> P2 ) o ((0i -> ^ 2) X (<fo -4 ^ 2)) •
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We show the first half.

( P l - AP 2 ){f)
&  VS . pi(x) => p2(f  x, f  x) [defn -4]

=> VS . p i (fa x, fa x) p2( f  (fa x), f  (fa x)) [fa, fa functions]

=> VS . qi{S) => p2(f  (fa x), f  (fa x)) [qi =>• pi  o (fa x fa)]

VS . qi(S) q2(fa {f (fa x)),  fa  ( f  (fa  S))) \p2 ^  q2 o (fa  X fa)]
VS . ft(S) q2((fa  -4 fa) f  x, (fa  -4 fa) f  x) [defn -4]

^  (ft ~A f t )( /)  0 ((̂ "l -4 fa) X (fa -4 - fa ))(/)

By symmetry the second half holds (p and q and 0 and ip swap roles, thus the other 
two assumptions are used). □

We make the final observation that there is nothing special about the predicates being 
binary—it is simply that we will require binary predicates constructed in this way.



C hapter 3

A n alysing  Functions w ith  
P rojection s

We consider four kinds of analysis: strictness analysis, binding-time analysis, termi
nation analysis, and what we call security analysis. We start with an overview, then 
consider each in more depth.

Backward Strictness Analysis. Projections may be used to specify upper and 
lower bounds on the definedness of values—a semantic interpretation, and upper and 
lower bounds on the degree of evaluation of expressions—an operational interpreta
tion. Though it is possible to formalise the operational interpretation [Bur90a], in 
this thesis we will treat it only as an informal source of intuition. We give three 
examples. Let f  denote /  G U —> V  such that f  — f  o BOT .  This equation makes 
clear that /  requires no information from its argument, that is, the argument may be 
completely undefined; operationally this says that any argument of f  need never be 
evaluated: if evaluation of an application of f  requires evaluation of the argument, 
evaluation of the argument may safely diverge or return a dummy value. Here we say 
that /  is B O T  strict.

As another example, let swap denote swap, a function on pairs, such that swap (x,y)  =  

(y, x).  Define projections F S T  and SND  by F S T  =  ID  x B O T , and SND =  B O T  x 
ID. Then SND o swap = swap o F S T , indicating that if the second component of the 
result of swap need not be defined, then the first component of its argument need 
not be defined. Operationally, if the second component of the result of swap will 

not be evaluated then the first component of any argument of swap need never be 
evaluated. Here we say that swap is F S T  strict in an SND-strict context. In the 
previous example, we could have said that /  was B O T  strict in an ID-strict context.

33
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In both examples, projections only specified upper bounds on required definedness (by 
discarding unnecessary information) and therefore only upper bounds on evaluation.

We have already described the characterisation of head strictness using the projection 
H. The projection H  specifies both upper and lower bounds on definedness, though 
in a conditional way: if the head of any cons cell is not defined, then the tail need
not be defined either, and if a cons cell is defined, then the head must be as well.

As shown in [WH87], by defining the projection ST R  on every lifted domain Uj_ by 

S T R  _L =  J- ,

S T R  (lift J_) =  ±  ,

S T R  (lift v ) =  lift v, if v ^  _L ,

we have that /  is strict if and only if S T R  o f_ C f_ o STR . Projection ST R  specifies a 
lower bound on definedness—must not be _L—and a lower bound on evaluation—must 
evaluate to WHNF.

Last we show that tail strictness can be captured using projections. Define projection 
T  on lists to map all partial and infinite lists to _L and act as the identity on finite 
lists. Then /  is tail strict if / i  =  /± o (7j_ o STR).

In projection-based backward strictness analysis, the central problem is, given 7  and 
/ ,  to find 8  such that 7 0 /  =  7 o /  o 8 , or equivalently, 7 0  f  \Z f  o 8 . This inequality 
is the safety condition (for / ,  7, and 8 ). We may always take 8  to be ID, but this tells 

nothing about /:  smaller 8 is more informative. The analysis is ‘backward’ because 
information flow is from result to argument, the reverse of evaluation or application.

Forward Binding-tim e Analysis. Launchbury [Lau88] hit upon the idea of using 
projections to encode the presence or absence of data. In the simplest case, a projec

tion used for this purpose acts as the constant _L function (signifying no information) 
on that part of the data domain for which the data is unknown (dynamic), and acts 

as the identity on that part for which it is known (static). We give a simple example. 
Let swap denote swap as before, and suppose that the first component of its argument 
pair is static, which is encoded by F ST . Then the second component of the result is 
determined, encoded by SN D , and we have SND  o swap =  swap o F ST . Determining 
precisely what part of the output is determined is in general not computable, hence 

the goal is, given 8 and / ,  to determine 7  such that 7 o /  C /  o 8. This may be read as 
stating that if J’s worth of the input is known, then at least 7 ’s worth of the output is 
determined. Launchbury [Lau91a] showed that this safety condition satisfies, and in a 
sense which he formalises, is equivalent to the correctness condition for binding-time 
analysis in the general framework of Jones [Jon88].
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It is also possible to obtain strictness information by reversing the direction of analy

sis, that is, given S and / ,  to determine 7 such that 7 o / C / o < 5 ; o n  the face of it the 
safety condition has no obvious directional bias [Lau91b] but Hughes and Launch

bury have suggested that for projection-based program analysis that the backward 
direction is intrinsically the more powerful [HL91].

Forward Termination Analysis. Let us reverse the inequality in the safety con
dition. The liveness condition1 (for / ,  7, and 6) is 7 o /  □  /  o 8. Then, for example, 
we have S T R  0 f± □  jfj_ 0 ST R  iff x ^  J_ implies /  x ^  _L. If f  denotes / ,  then in op
erational terms this means that if the argument of f  terminates, then so does the 

application of f  to its argument. Turning this around, we have /  x =  _L implies 
x — _L; if the application does not terminate, then neither does the argument.

Next suppose that f  denotes / ,  and H  o f  □  /  o ID. Then for any application f  e, 

if evaluation of a cons node of the result terminates, the evaluation of the head is 
certain to terminate, so if evaluation of a cons node is ever forced, the head may be 
safely evaluated as well. Here H  captures the head-termination property.

If f  denotes /  and (ST R  o Ti) o /_l □  fj_ o ID, then evaluation of the spine of any 
application of f  is guaranteed to terminate; we will call this the tail termination 

property.

Finally, suppose B O T  o /  □  /  0 ID  and f  denotes / .  This means that applications 
of f  always fail to terminate; if B O T  o /  □  /  o B O T  then failure of the argument to 
terminate implies failure of the application to terminate (that is, /  is strict).

The natural direction for termination analysis seems to be forward: we know in ad
vance the termination properties of the primitive constants and we wish to determine 

how far an expression can be evaluated without risking divergence. Thus for forward 
termination analysis the goal is, given /  and <5, to determine as small a 7 as possible 
such that 7 o /  □  /  o <5.

Backward Security Analysis. Reversing the inequality in the correctness condi
tion for strictness analysis gives the correctness condition for termination analysis; 
what kind of analysis has as its correctness condition the result of reversing the in
equality in the correctness condition for binding-time analysis? It seems to be the 

following: if we are certain that parts of the input are unknown, then we can show

1The meaning of “liveness” here is distinct from its meaning in Chapter 1 in connection with 
liveness analysis. Hereafter we use the term only in the new sense.
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that certain parts of the output are unknowable; in the other direction, if we re

quire certain parts of the output to be unknowable without supplying dynamic data, 
we may determine a sufficient (ideally least) amount of information to exclude from 
the input during partial evaluation. For example, if we were to partially evaluate 
a program that produces some sensitive information, we might want to know what 
information to exclude from the static data at partial-evaluation time so that the 
sensitive information is not revealed until some particular input is given. Similarly, if 
we wish to guarantee that input and output are correctly interleaved, but otherwise 
provide as much information as possible at partial-evaluation time, it might be useful 
to know what is the least information that can be excluded from the the static input. 

Thus the goal of projection-based backward security analysis is, given /  and 7, to 
determine the greatest 5 that satisfies the liveness condition 7 0  /  □  f  0  6 . Since 
backward security analysis has no demonstrated practical use, except for a brief con
sideration of finding projections S satisfying the liveness condition (Section 3.4), it 
will not be developed further.

The safety and liveness conditions are so named because of their similarity to the 
safety and liveness conditions of My croft’s [Myc81] strictness and termination analysis 
techniques (these conditions are nicely summarised in [Abr90]). There superscript #  
denotes the abstraction maps for strictness analysis, and superscript b the abstraction 
maps for termination analysis; the safety condition is

( /  x)*  C f *  X *  ,

and the liveness condition is

( /  =! f b ■

Recall that | U | denotes the complete lattice of finitary projections on domain U . If for 

all of the projection-based analyses we take the the abstraction map for the argument 
domain to be 5 € | U |, for functions /  £ U -¥ V  the identity (or the restriction of 
/  to the range of | U |), and for the result domain 7 G | V  |, we get Mycroft’s safety 

and liveness conditions. Our case differs in that we are interested in more than one 
abstraction of arguments and results, and that their interdependence depends on / .  
Hence we take for each analysis the information to be recorded, the ‘abstraction’ of / ,  
to be the appropriate map between | U | and | V |. Thus the abstraction of /  for each 
analysis is a projection transformer—a function from projections to projections. Any 
projection transformer r  such that 7 o /  IZ /  o (r 7) for all 7 will be called a backward 

strictness abstraction (BSA) of / ,  and this inequality is the backward safety condition 
for t  and / .  Similarly, any r  such that (r J) 0 /  C f o S  for all S is a forward strictness
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abstraction (FSA) of /;  this inequality is the forward safety condition for r  and / .  

Any t  such that ( r  5) o /  □  /  o 8  for all 6  is a forward termination abstraction (FTA) 
of /;  and such that 7 0 /  □  /  0 (7 7) for all 7 is a backward termination abstraction 

(BTA) of / .  For uniformity all of these inequalities will henceforth be called safety 
conditions (rather than liveness conditions for the latter two).

Next we consider each of these analysis techniques in more depth, the strictness 
abstractions first, then the termination abstractions. We observe that all of the 
safety and liveness conditions are (jointly) inclusive in all of their identifiers, and 

that continuous projection transformers (between given projection domains) form a 
complete lattice. All functions to be analysed are assumed continuous.

3.1 Backward Strictness Abstraction

For backward strictness abstraction, smaller is better. We start with some negative 

results, showing ‘how well we can’t do’, then show what we can do.

N o least BSA s. In general, a function has no minimal BSA. Before showing this 
it is useful to develop some technical results.

Proposition 3.1
If g and h are monotonic, g C zd, h U id , and g then g o h ,  h o  g \z g. □ 

Proposition 3.2
If g and h are monotonic and approximate the identity, and 7  0 /  E f o g  and 
7 0 /  Q f  o h, then 7 0 / C / o / i o g .

P roof
Composing 7 with both sides of the inequality 7 0 / C / 0 5  gives 7 0  /  E 7 0 / 0 5  
since 7 is idempotent. Composing each side of the inequality 7 0 /  C /  o h with g 
gives J o f o g C . f o h o g .  Transitivity of C gives j o f u f o h o g .  □

For all c, d G U with d C c define 7cd to be the greatest projection that maps c to d, 
that is,

7  cd. £  1 ^ 1 ’

7  d  x = x n  d, i f z C c ,

7 cd x = x , otherwise .

Then %d is the largest monotonic function approximating the identity th a t maps c 
to d.



C H A P T E R  3. A N A L Y SIN G  FUNCTIONS W IT H  PROJECTIONS 38

Proposition  3.3
For all projections 5 and values c and d with d C c the composition 6  o j cd o 5 is a 
projection; if 6  c g  d then 8  o j cd o 8  IZ <5.

P roof
Let <5, c, and d be fixed with d C c. Let v be any value and let v' be 5 v. If v' g  c 
then v’ is a fixed point of 7cd as well as of 8. If v’ C c then (8 o 7crf) v1 approximates 
d and so is a fixed point of 7cd as well as of <L Hence the elements of the image of 
 ̂0 led, 0 8  are fixed points of both 8  and 7^, hence of 8  o 7cd 0 8 . If 8  c g  d then d Cl c, 

so 7 cd IZ id and 8  g  i cd, so 8  0  ^ cd 0 <5IZ 8 by Proposition 3.1. □

Proposition  3.4
If 7  0  /  U f  0 ^1 an(f 1  0  f  U f  0 82 and g  82 then there is a projection £3 IZ 
satisfying 7  ° /  C /  ° 8 3 .

P roof
If 61 g  82 then there is some c such that £1 c g  ($2 c. Let d =  82 c, so 82 ^  7cd and 
7cd IZ id and 7 0 /  C / o  7crf. By Propositions 3.2 and 3.3 the composition <$1 o 7cd 0 8\ 
is a projection satisfying 7 0 /  C /  0 £1 0 7^  0 5i. Since c g  d it must be that 
<̂i 2  7cd? and since 7c<f IZ id , by Proposition 3.1 we have o ^cd o <$1 iz . □

Now we define a function that has no least or minimal BSA. Let 2 =  {_L,T} with 

I C T ,  and 00 be the least solution of U =  U± so that 00 =  { lift1 _L | i >  0} U {T }, 
where lift1 ±  Cl T for all i. Then 00 is a complete lattice with a single infinite element 
T. The dual ooa is a complete lattice resulting from the reversing of the ordering in 
00, so its top element is l . 9 and its bottom element is T 9. (Interestingly, oo9 has no 
infinite elements despite having infinite depth.) Let /  G oo9 —> 2 be the continuous 
function defined by /  T 9 =  _L and /  x  =  T otherwise. Let 8  be any projection 
such that ID  0 /  IZ /  0 8 , let c be any fixed point of <5 other than T 5 and d be any 
value strictly less than c other than T 9. Then ID o f  Z /  o j cd and <5 g  7cd, so by 

Proposition 3.4 there is a projection strictly less than 8 satisfying the safety condition.

Leastness and equality. Even when a least BSA exists, it may not map projections 
to pointwise-least, or even pointwise-minimal, functions. (In other words, when 8 is 
the least projection such th a t 7 0 /  C f  0 8  there may be a function g strictly less th a t 
8  lacking idempotence, continuity, or monotonicity such th a t 7 0  /  C  /  op.) Consider
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parallel or, defined by

por G Bool —> Bool ,

por (_L, _L) =  J_ ,
por (± , f f )  =  _L ,

por (ff, _L) =  _L ,

por (ff ,ff)  =  ff  ,
por (tt, y) =  tt ,

por (x, tt) =  tt .

The least projection 8 such that ID o por C por o 8 acts as the identity on (tt, t t ). 

The function por maps (tt, tt) and the two strictly smaller values (tt, _L) and (_L, tt) 
to tt, but 8 cannot map (tt, tt) to either (_L, tt) or (tt, J_), since if 8 mapped (tt, tt) 
to (_L, tt) monotonicity of <5 would require that (tt,A.) be mapped to (_L, JL), which 
would violate the safety condition (the other case is symmetrical).

Finally, though it is possible to choose 8 small enough to get equality in the safety 

condition in the last two examples, this is not generally possible. For example, let 
/  G 3 -* 3 , and 7, 8 G | 3 |, where 3 =  {_L, 0, T} with _L C 0 IZ T, and

/  -L =  _L , 7 -L =  -L, 5 _L =  _L,

/  0 =  J- , 7 0 = 0 , 5 0 = 0 ,
/  T =  T , 7  T =  0 , 5 T =  T .

Then 8 is the least projection such that 7  o /  C /  o 8, but

( 7 0 / )  _L =  _L, ( f  0 8) ±  =  ±  ,
(7 ° / )  0 =  _L , ( /  o 8) 0 =  _L ,

(7 0 / )  T =  0 , ( /  0 5) T =  T ,

that is, 7  0 /  7̂  /  0 8.

For por there are two pointwise minimal functions g satisfying ID 0 por C por 0 g; 
both are idempotent but not monotonic. Next we show that if there is a minimal 
monotonic function approximating the identity that satisfies the safety condition then 
it is the least monotonic function satisfying the safety condition and is a projection.

C ontinuity . The continuous extension of a monotonic function /  is the unique 
continuous function that agrees with /  at finite values; the continuous extension of /  
approximates / .

P ro p o sitio n  3.5
If g is a minimal monotonic function approximating the identity such that 80 f  C f o g  

then g is a projection and is the least monotonic function satisfying the inequality.
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P roof
Let g be a minimal monotonic function approximating the identity such that 80 f  C 
f o g .  Let g' be the continuous extension of g. Since the predicate {80 f )  x  C (fog')  x  

is inclusive in x, and g is minimal, it must be that g =  g1. By Proposition 3.2 we have 
7 0 / C / o g o g ;  since g is minimal g must be idempotent. Suppose g were not least. 
Then there would be some values c and d with d C c such that 7 o /  C /  o j cd and 
g g  7cd. Then 7 0 / C / o ^ o  7cd o g by Proposition 3.2, and g o 7cd o g C g contrary 
to the supposition that g is minimal. □

P rop o sitio n  3.6
If r  is a minimal BSA of /  then t is the least BSA of /  and is continuous.

Proo.f 1
That minimality implies leastness follows from Proposition 3.4 . That leastness implies 
monotonicity also follows from Proposition 3.4. Monotonicity and minimality imply 

continuity by inclusivity of the safety condition. □

Henceforth we consider only continuous BSAs.

O rdering. For f\  C / 2 and r2 a BSA of / 2, there does not necessarily exist a BSA 
T\ of fi  such that r\ C t2, nor for t\ a BSA of f \  does there necessarily exist a BSA 
t 2 of / 2 such that t 2 C t \ .  In particular, when least BSAs exist there is no order 
guaranteed between them. For example, consider all of the monotonic functions from 
2 to 2, defined by

bot _l_ =  _L , id _L =  _L , top ±  =  T ,

hot T =  JL , id T =  T , top T =  T .

There are only two projections on 2, namely ID and BOT.  The least BSAs of bot and 
top are the same, the function that maps both ID and B O T  to B O T , and the least 
BSA of id is the identity. Here id C top but there is no BSA of id that approximates 
A a..BOT\ also, bot C id and again there is no BSA of id that approximates A a.BOT.
Thus when least BSAs exist the mapping to them may not be monotonic. (In Sec
tion 3.1.2 we will define an order on functions such that the mapping is monotonic.)

N on -m on oton icity . It is this non-monotonicity that gives backward strictness ab
straction its unusual power. To make this clear we review some concepts from the 

BHA framework for abstract interpretation. A property on a domain is characterised 
by the set of domain elements that satisfies it, so a property may be regarded as 

just a subset of a domain. In the BHA framework properties (abstract values) must
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be Scott-closed sets—non-empty downward-closed sets which contain lubs for all di

rected subsets. The property of function /  that /  =  f o , BOT ,  and the head-strictness 
property /  =  /  o iif, are not downward closed. Kamin [Kam92] gives a different ap
proach to identifying properties that cannot be captured in the BHA framework, 
based on the fact that abstraction maps—the maps from standard domains to ab
stract domains—must be monotonic. He calls a property P  on U monotonic abstract 
if there exists a finite domain V  (the abstract domain) and monotonic function (the 
abstraction map) from U to V  such that there is a partitioning of V  into two parts 

such that all elements with property P  are mapped into one part, and all elements 
that do not have property P  are mapped into the other part. He shows that head 

strictness is not a monotonic abstract property, thereby showing that head strictness 
cannot be captured in the BHA framework.

R estriction o f projection transformer domains. The next two propositions 

show that we may reasonably restrict the space of projection transformers used for 
backward strictness abstraction.

Proposition 3.7
If t is a BSA of a function / ,  then there is a strict BSA P  of /  such that P  C r. 

P roof
For all /  we have B O T  o /  C /  o B O T . Define P B O T  = B O T , and P 8  = r  8  if 
5 7̂  B O T , then P  □  r  and P  is continuous since r  is. □

Corollary 3.8
The least BSA of a function (if it exists) is strict. □

If 7i 0 f  Q f  ° 8 1 and 72 o /  C /  o 82, then certainly 71 o /  C /  o (Si U <S2) and 72 o /  C
/  0 (<$1 U 62). Since lub on projections is pointwise, we have (71U 72) o f  C /  o (^  U <S2) .
Now if r  is some BSA of /  that maps 71 to and 72 to <S2, then monotonicity of r 

requires that r  (81 U 82) be greater than 71 U 72. In this sense we can do no better 
than taking r (71 U 72) =  <$i U 82. The following elaborates.

A projection transformer r  is distributive if for all sets of projections X  we have 
T (U^O =  L-K̂  X)  (this property is sometimes called linearity). Distributivity is a 
strictly stronger requirement than continuity since the set X  need not be directed. 
Now define for each finite value c the characteristic projection 7c for c as

7C a: =  c, if c LI x ,

7C x =  X, if c 2  x .
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Recall that K(U)  is the set of finite elements of domain U. Given domain U the set 
{ 7 u I u £ K(U) ,  u 7̂  -L} is the U-basis of | U |; every element of | U | is the lub of some 
subset of the U-basis, and no element of the U-basis is the lub of any subset not con
taining that element. (The lub of the empty subset of a lattice is its least element, here 

B O T , which is not in the U-basis.) In fact, 7  =  U{7 u I 7  u =  u, u G K(U) ,  u ^  _L}—  
this shows that a projection is determined by its finite non-bottom fixed points. 

Clearly every strict distributive r  G | U | -4 | V  | is determined by its behaviour on 
the U-basis of | U |.

Proposition  3.9
If r is a BSA of /  then /  has a distributive BSA less than r.

P roof
Let r  be a BSA of /  G U —> V,  and let P  be the distributive projection transformer 
that agrees with r at B O T  and on the U-basis of | V  |. Continuity of r requires that 
P  C t . Let X  be any subset of the U-basis for | P  | . Then

V7 C X  . 7  o /  C /  o [p  7)

=> V7 € A . 7 0 / C / 0  U(r/ X)

=> { \_ \X )o f  C /  ° U(t' X)  [lub pointwise]

(U X )  o /  C /  o (r' (U X))  [defn P]

Since every projection is the lub of some subset of the U-basis, P  is a BSA of / .  □

Corollary 3.10
The least BSA of a function (if it exists) is distributive. □

The distributive projection transformers form a complete lattice, including the con
stant ID and B O T  functions, but this lattice is not a sublattice of the projection 
transformers because the pointwise gib of two distributive projection transformers 

may not be distributive. (The situation is analogous to the projections forming a 
complete lattice that is not a sublattice of the continuous functions.) Hence (in the 

context of backward strictness abstraction) we define T\ 17 t<i to be the greatest dis
tributive projection transformer approximating their gib in the lattice of continuous 
projection transformers. When least BSAs are known to exist and T\ and r2 are BSAs 
of / ,  then the pointwise gib r of T\ and r2 is a BSA of /;  by Proposition 3.9 there 
is a distributive P  approximating r that is a BSA of r, and T\ n  r2 by definition is 
approximated by r7, hence t\ n r2 is a BSA of / .  Finally, by Corollary 3.10 a least 
BSA of /  (if it exists) is distributive, so restriction to the distributive projection 
transformers doesn’t exclude the ‘important’ ones. This is partially summarised by 
the following.
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Proposition 3.11
If the pointwise gib of T\ and r2 is a BSA of / ,  then so is T\ n t 2. □

The strict distributive projection transformers form a complete sublattice of the dis
tributive projection transformers. This has important implications for practical anal
ysis in which the projection domains are finite since we need only record the value of 
a projection transformer at the U-basis of its argument domain. This also effectively 
reduces the space of projection transformers under consideration. Henceforth, we will 
consider only strict distributive BSAs.

A bstract com position. Next we state compositional properties of BSAs. 

Proposition  3.12
If T \ and t 2 are (strict/distributive) BSAs of f \  and / 2 respectively, then t 2 o  t \  is a 
(strict/distributive) BSA of f\ o /2. □

We take backward-strictness abstract composition to be reverse composition, and 
define o B  to be abstract composition, that is, T \ o b  r2 =  r2 o 7i; abstract composition, 
like ordinary composition, is associative. In general it is not the case that abstract 
composition preserves leastness as the following example shows. Define

lub £  ( 2 x 2 )  —̂ 2 ,
lub (x ,y)  =  x U y .

There are seven projections on 2 x 2; their U-basis comprises ID x B O T , B O T  x /D , 
and 7 ( t , t ) -  The least BSA of lub maps BO T  to BO T  x B O T  and ID to ID x ID. 
The least BSA of \ (x ,y ) . (x ,  T) 6 (2 x 2) —> (2 x 2) is determined by the mappings

7 ( t , t )  1 ID x B O T  ,
ID x B O T  ID x B O T  ,

B O T x ID ^  B O T x BO T .

Reverse composition of corresponding least BSAs gives a BSA of lub o A(x,y).(x,  T) 
that maps B O T  to B O T x BO T  and ID to ID x BOT.  However, the least BSA of 
this function maps ID to B O T  x  BOT.

Least BSA s. One way to guarantee the existence of least BSAs is to restrict the 
choice of functions’ argument domains. This is developed following. First we need 
some technical results.

Burn [Bur90a] calls those projections that map each argument either to itself or _L 
smash projections. In general if and 82 are projections it is not the case that o 82
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is a projection, since the composition may not be idempotent. When and 82 are 
smash projections, their composition is idempotent and hence is a projection.

Proposition 3.13
If 81 is a smash projection and 82 any projection then <$1 0 82 is a projection equal to 

£1 n 82. Thus for 7 o /  C /  0 and 7 o /  C /  o 82 and at least one of <5i and 82 a 
smash projection we have 7 o /  C /  o (<$1 FI <$2).

The first part is trivial; the second part then follows from Proposition 3.2. □

Proposition 3.14
If U is finite then /  G U -4 V  has a least BSA.

This follows from Proposition 3.4 and the fact that a function with a finite argument 
domain cannot have an infinite strictly-decreasing sequence of BSAs. □

Next we consider functions from domains defined as inverse limits of a restricted class 
of retraction sequences. Let

( { U i \ i >  0}, {(&,v>i) e  Ui +> Ui+1 | » >  0})

be a retraction sequence with inverse limit U^, such that each Ui is finite, and the 
image of each <pi is downward closed (intuitively, fa maps U{ into the ‘bottom part’ 
of Ui+i, without creating any ‘holes’). Let 6 C/oo —► V be any continuous function 
and 7  be a projection on V.  Each element E Ui —> V  of the canonical family of 
approximations of /<*, has a least BSA r,- mapping 7  to some <5*. Just as the /,• agree 
at common arguments, that is, /,• =  /,■+1 0 </>,-, so each 8{ must agree at common 
arguments, that is, 8{ =  5(-+i o this is a consequence of the images of the (pi being 
downward closed. Thus the 8{ form a family of approximations of a projection 

similarly the T{ form a family of approximations. Further, since each 8{ is least, so is 
8oo. We conclude that /  has a least BSA that is determined by the canonical family 
of approximations comprising the t*«.

For the various entities defined as above, the sequence {/; 0 9^ }  is ascending; the 

sequence {(rt- 0 (9^  0loo)) -4 idv } is ascending; each element of the second is the 
least BSA of the corresponding element of the first, and the limit of the second is 

the least BSA of the limit of the first. In contrast, as shown for bot, id, and top in 
2 —> 2, the corresponding result does not hold for an arbitrary increasing sequence of 
functions on such domains.

Proposition  3.15
If {fi}  is an increasing sequence of functions and r,- is a BSA of /,• for each i , then 

U{'Ti} is a BSA of U { /J .
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P roof
If {tj} is increasing then the result follows from the fact that the safety condition 

is (jointly) inclusive in r and / .  If { r j  is not increasing, let the sequence {t/}  be 

defined by Tq =  r0, and r[+l =  r\ U ri+1. Then U{r/}  =  U{'71} 5 an<l T[ is a BSA of /,• 
for all i. □

It is interesting to note that we can define (a domain isomorphic to) oo9 as the least 
fixed point of D =  D T, where -T on domains adds a new top element. Each embedding 
fa maps the bottom element to the bottom element; for all other elements, the top 
element to the top element, next-to-top element to the next-to-top element, and so 
on. Each projection ipi does the reverse, and in addition maps the next-to-bottom  
element to the bottom element. Note that the image of each fa for i >  2 is not 
downward closed since it does not include the next-to-bottom element. (It is helpful 
to observe that each fa is like strictified lift, and each ipi is like drop.)

The retraction sequences defined by domain equations using the primitive domains 
and the various domain operators discussed in Chapter 2 have the property just 
described.2 This will be important when we later analyse functions denoted by expres
sions in programming languages, since the domains involved will all be constructed in 
this way. In particular, when T\ and r2 are incomparable BSAs of a denoted function 
/ ,  perhaps determined by different means, we may safely conclude that t\ n 7*2 is also 
a BSA of / ,  strictly better than either T\ or 72.

(As an aside, we believe that a sufficient condition for every function in U —> V to 

have a least BSA is that every element u €  U have a complete minimal cover— a 

set of elements S  such that u \Z s for all s G S  (cover), for all v  □  u there is some 

s € S  such that s C d  (complete), and for all s, t G S  we have s Q t  implies s =  t 
(minimal). In oo9 the bottom element has no complete minimal cover.)

3.1.1 Analysis of lifted functions

Even when a strict function has a least (most informative) BSA, that the function 
is strict may not be determinable from this BSA. Thus a BSA of a function is an 

abstraction in the sense that it may not contain all of the information in the function. 
To see this, consider again bot, id, and top in 2 —)• 2. The least BSAs of bot and top 

are the same, the constant B O T  function, and bot is strict and top is not. Further, 

so long as the result domain is not 1, no single BSA can determine that any function

2 To make this work for Int we must define it using recursion, e.g. Int — 1±_ © Int © lj_, since Int 
is not finite.
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is strict, since any BSA of any function is a BSA of every constant function. This 
example also shows th a t the least BSA (or set of all BSAs) of a function sometimes 

determines th a t function (here id) and sometimes does not (here bot and top).

Recall that /  is strict if and only if S T R  o f_ C f± o STR . Put another way, a function 
/  is strict if and only if there is a BSA r  of /j_ such that r  STR  C ST R  (define 
r B O T  =  B O T , r  a  =  ST R  if a  C S T R  and a  ^  B O T , and t  a  =  ID otherwise). For 
any function / ,  the function f±_ is strict and bottom reflecting. For all domains U and 

V, the operator *j_ is an isomorphism from the domain of continuous functions U —>• V 

to the domain U± ^  V± of continuous, strict, bottom-reflecting functions. Though 

the function f± contains no more information than / ,  projections on the argument and 

result domains of /j_, and hence a BSA for / i ,  may contain more information than 
those for /  since the projections on the lifted domains have the additional degree 
of freedom to map values to the new bottom element. Intuitively, a value that is 
mapped to the new bottom element may be thought of as ‘not sufficiently defined’, 
or ‘unacceptable’. Projections on lifted domains may then be regarded as specifying 
lower bounds on the definedness of values in the corresponding unlifted domain, and 
thus lower bounds on the degree of evaluation of expressions that take values in the 

unlifted domains. For example, STR  € | Z7j_ | maps lift 1  (which corresponds to 1  in 
U) to _L, indicating that _L in U is not an acceptable value. If expression f  denotes 
function / ,  then S T R  o f± o ST R  may be interpreted as “if the result of /  must 
be more defined than _L, then the argument of /  must be more defined than _L,” that 
is, /  is strict. This is another example of a direct operational reading of projections: 
S T R  may be thought of as specifying evaluation of (the syntactic construct denoting) 
its argument.

The BSAs of a function /j_ can reveal more than just simple strictness in / .  On a 
given domain, the smash projections form a complete sublattice of the projections 
th a t includes ID  and BOT.

Proposition 3.16
Given strict bottom-reflecting function /  and projection 7 there is a least smash 
projection S such th a t 7 0 /  C /  0 <5. If 7 is a smash projection we have 7 o /  =  /  o S.

P roof
We can describe S exactly. Let S  be the set of values th a t 7  maps to ± , and let T  
be the inverse image of /  of th a t part of the range of /  in S.  Then S maps precisely 

those elements in the downward closure of T  to ± . □

Proposition  3.17
Every strict bottom-reflecting function is determined by its least BSA with range in
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the smash projections.

P roof
We show that for strict bottom-reflecting /  and g with least BSAs 77 and rg with 
range in the smash projections that /  ^  g implies 77 7̂  rg. Suppose /  ^  g. Define 

NOKc by

NOKc x =  _L, if x C c ,

NOKc x =  x y otherwise .

Then NOKc is always a smash projection. Choose x such that f  x ^  g x. Now

Tf N O Ky x) x =  _L; if rg NOKy x) x ^  _L then 77 and rg are shown to differ. If
rg N O Ky  x) x =  ±  then it must be that g x c  /  x, then rg NOK(g x) x =  J_, and
Tf NOK{g x) x 1 ,  so Tf and rg are shown to differ. □

Evidently, a strict bottom-reflecting function is determined by its least BSA with 
both domain and range in the smash projections.

Corollary 3.18
Every BSA of strict bottom-reflecting function /  is approximated by a BSA that 
determines / .  Hence /  is determined by its least BSA if it exists. □

A simple consequence is that if /  is strict and r is any BSA of /j_, then there is a 
BSA t' of fj_ such that r' C t  and t' STR  C STR.

Henceforth, when we wish to determine strictness properties of some function /  we 
will find BSAs of f± rather than of / .

Projections on lifted dom ains. Besides ID, B O T , and STR, there is one further 
projection ABS  defined on every lifted domain:

ABS  _L =  _L ,

ABS  (lift v) =  lift _L .

Operationally, ABS  discards its argument: it maps all values corresponding to those 
in the unlifted domain—those of the form lift v—to the value lift _L corresponding 

to _L in the unlifted domain, indicating that no information is required. Then for 
example, we have ABS o f± C f± o ABS  for all / .

So long as U differs from the one-point domain, projections ID, ABS, STR, and B O T  
on U±_ are all distinct and form a lattice in which ABS  and STR are incomparable. 
All other projections lie between ID and ABS  or between STR  and BOT.  In fact, 
there is an isomorphism between the lattice of projections between ID and ABS  and 
the projections between STR  and BOT.  This isomorphism maps each projection
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between STR  and BO T  to its least upper bound with A B S ; its inverse maps each 

projection between ID and ABS  to its greatest lower bound with STR. Further, every 
projection in | C/j_ | between ID and ABS  is of the form 71 with 7 6  \U\ .  Hence every 
projection in \U±\ is either of the form 71 or 71 n STR.  (A revealing observation is 

that | | is isomorphic to \ U\  x 2 , where (7, _L) and (7, lift _L) in the latter domain
correspond to tj_ n STR and 7 l in the former, respectively.) To get the effect of lifting 

a projection and taking the gib with STR  we introduce the operator defined by

7± -L = - L ,

7 i {lift -L) =  -L ,
7± (lift v) =  lift (7 v), if 7 v 7  ̂ _L .

Then 7± =  7 l n STR , and 7 l =  7 l U ABS.  Further, we have STR =  ID± and 
ABS =  BOT±; together with the facts (B O T u)l — BOTu± and (IDu)±_ =  IDux we 

could dispense with the special names STR  and ABS.

Operationally, projections of the form 7 l—those below STR—specify evaluation ( “7 ’s 
worth”), and projections of the form tj_—those above ABS—specify that if  evaluation 
is ever demanded, 7 ’s worth will be performed. (Again, this is formalised in [Bur90a].) 
The notion of “7 ’s worth” will be elaborated later. Hence projections of the form 7 l 
will be called eager since they demand evaluation, while those of the form will be 
called lazy since they don’t. Note that the smash projections are all eager.

T he & op eration . Though abstract composition does not preserve leastness, it 

does preserve leastness with respect to smash projections. Following this is made 
precise; first we define a new operation &; on projections:

(7 &; 5) x =  _L, if 7 x  = ±  or 8  x  = J_ ,

(7 & S) x  =  (7 U S) x , otherwise .

Thus & is like U except that if either of its arguments maps some value to _L, then
so does its result, hence h  approximates U. It is easy to show that &, is continuous,
associative, commutative, idempotent, and distributes over U (but not vice versa). 
The least projection B O T  is a zero of &: since BO T  & 7 =  B O T  for all 7. On lifted 

domains the identity for &; is BOT±.  For smash projections & coincides with n, and 

for lazy projections h  coincides with U.

Proposition 3.19
Given projection 7 G | U± | there is a least smash projection j s and least lazy projec
tion 7 Z such that 7 =  7 s fl y l, hence 7 s x =  X iff 7 x =  _L.
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P roof
D e f in e  j s  =  7  &  ID± =  7  h  ( B O T ±  LI ID±) =  7  U ( 7  &  I D j J ,  s o  i f  7  is  l a z y  7 s =  /D j_ , 

a n d  i f  7  is  e a g e r  7 s =  7  &  ZDj_- D e f in e  7* =  7  U B O T ± .  □

Proposition 3.20
T h e  p r o j e c t i o n  8  is  l e a s t  s u c h  t h a t  7  o C  jfr_ o <5 i f f  is  t h e  l e a s t  s m a s h  p r o j e c t i o n  

s u c h  t h a t  7 s 0 jfj_ C  f± 0 a n d  <5* is  a  l e a s t  l a z y  p r o j e c t i o n  s u c h  t h a t  7 ' ° A  E A o < 5‘ .

T h e  k e y  f a c t s  a r e  t h a t  7 0  /j_ C  / ±  o <5S if f  7 s o / ±  C  f± o 8 s, a n d  7  o f± C  o 8 l if f

V  0 k  E  k  °  5' □
W e  w i l l  s a y  t h a t  a  BSA r  o f  /j. i s  l e a s t  w i t h  r e s p e c t  t o  s m a s h  p r o j e c t i o n s  i f  f o r  a l l  7 
a n d  8  =  ( r  j ) s  t h e  p r o j e c t i o n  8  is  t h e  l e a s t  s m a s h  p r o j e c t i o n  s u c h  t h a t  7 0  f ± C  f ± o 8 . 

Proposition 3.16 shows that every lifted function has a BSA that is least with respect 
t o  s m a s h  p r o j e c t i o n s .

Proposition 3.21
A b s t r a c t  c o m p o s i t i o n  p r e s e r v e s  l e a s t n e s s  w i t h  r e s p e c t  t o  s m a s h  p r o j e c t i o n s ,  s o  t h e  

a b s t r a c t  c o m p o s i t i o n  o f  s u c h  B S A s  o f  s t r i c t  b o t t o m - r e f l e c t i n g  f u n c t i o n s  d e t e r m i n e s  

t h e i r  c o m p o s i t i o n .  □

W e  h a v e  n o t e d  t h a t  f o r  e v e r y  /  w e  h a v e  B O T  0 /  C  /  o B O T ; o b v io u s ly  B O T  is  t h e  

l e a s t  p r o j e c t i o n  t h a t  c a n  a p p e a r  o n  t h e  r i g h t - h a n d  s id e .  A ls o ,  A B S  0 f± C  f± 0 A B S ; 

t h i s  f o l lo w s  f r o m  t h e  f a c t  t h a t  7 0  /  C /  o 8  i f f  7 l  o /j_ Q f ± o 8±] h e r e  A B S  is  t h e  l e a s t  

p r o j e c t i o n  t h a t  c a n  a p p e a r  o n  t h e  r i g h t - h a n d  s id e .  T h i s  s u g g e s t s  t h a t  i n  a d d i t i o n  t o  

r e q u i r i n g  e v e r y  B S A  t o  b e  s t r i c t  a n d  d i s t r i b u t i v e ,  w e  r e q u i r e  B S A s  o f  l i f t e d  f u n c t i o n s  

t o  m a p  A B S  t o  A B S.  I n  [ W H 87] a n  o p e r a t o r  “g u a r d ” is  d e f in e d  t o  f a c i l i t a t e  t h e  

d e f i n i t i o n  o f  p r o j e c t i o n  t r a n s f o r m e r s ,  in  e s s e n c e  t o  g u a r a n t e e  t h a t  e v e r y  B S A  r  is  

s t r i c t ,  m a p s  A B S  t o  A B S ,  a n d  i f  r  7 1  =  t h e n  r  7 1  =  8  U A B S.  G iv e n  t h e  f i r s t  

tw o  p r o p e r t i e s ,  t h e  t h i r d  p r o p e r t y  is  j u s t  a  s p e c i a l  c a s e  o f  d i s t r i b u t i v i t y .  H e r e  w e  w i l l  

s a y  t h a t  a  p r o j e c t i o n  t r a n s f o r m e r  h a s  t h e  guard property i f  i t  is  s t r i c t ,  m a p s  A B S  t o  

A B S ,  a n d  is  d i s t r i b u t i v e .  T h e  p r o j e c t i o n  t r a n s f o r m e r s  w i t h  t h e  g u a r d  p r o p e r t y  f o r m  

a  c o m p l e t e  l a t t i c e .  T h e  f o l lo w in g  p a r t i a l l y  s u m m a r i s e s .

Proposition  3.22
G iv e n  a n y  B S A  o f  a  l i f t e d  f u n c t i o n  /j_ , t h e r e  is  a  s m a l l e r  B S A  w i t h  t h e  g u a r d  p r o p e r t y .  

H e n c e ,  t h e  l e a s t  B S A  o f  / l ,  i f  i t  e x i s t s ,  h a s  t h e  g u a r d  p r o p e r t y ,  a n d  e v e r y  B S A  o f  f ±  

is  a p p r o x i m a t e d  b y  a  B S A  w i t h  t h e  g u a r d  p r o p e r t y  t h a t  d e t e r m i n e s  / .  □

T h e  f o l lo w in g  s t a t e s  c o m p o s i t i o n a l  p r o p e r t i e s  o f  B S A s  o f  l i f t e d  f u n c t i o n s .

Proposition  3.23
I f  r \  a n d  72 h a v e  t h e  g u a r d  p r o p e r ty ,  t h e n  s o  h a s  T \  o b  r 2 . □
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I n  s u m m a r y ,  f o r  c o n t i n u o u s  f u n c t i o n s  i t  is  s e n s ib le  t o  r e s t r i c t  a t t e n t i o n  t o  c o n t in u o u s ,  

s t r i c t ,  d i s t r i b u t i v e  B S A s ,  a n d  f o r  l i f t e d  f u n c t i o n s  t o  t h o s e  w i t h  t h e  g u a r d  p r o p e r ty .

H e n c e f o r t h ,  w h e n  w e  w is h  t o  d e t e r m i n e  s t r i c t n e s s  p r o p e r t i e s  o f  s o m e  f u n c t i o n  /  G 

U —> V  w e  w i l l  f in d  B S A s  t  G | Vj_ | A  | U]_ | o f  /j_ G U± ^  V±, w h e r e  A  c o n s t r u c t s  

t h e  l a t t i c e  o f  p r o j e c t i o n  t r a n s f o r m e r s  w i t h  t h e  g u a r d  p r o p e r ty .  I n  p r a c t i c a l  t e r m s  

t h i s  m e a n s  t h a t  w e  n e e d  o n ly  r e c o r d  t h e  v a lu e  o f  a  B S A  a t  t h e  U - b a s i s  o f  i t s  e a g e r  

a r g u m e n t s .  A s  a  s im p le  e x a m p le  o f  t h e  p o t e n t i a l  s a v in g s ,  t h e r e  a r e  108 m o n o t o n i c  

p r o j e c t i o n  t r a n s f o r m e r s  f r o m  {ID±, /D j_ , BOT±, BOT±}  t o  i t s e l f ,  b u t  o n ly  f o u r  w i t h  

t h e  g u a r d  p r o p e r t y ,  d e t e r m i n e d  b y  t h e  m a p p i n g  o f  t h e  s in g l e  p r o j e c t i o n  IDj_.

3.1.2 Stability and backward analysis

T h o u g h  a n  a r b i t r a r y  c o n t in u o u s  f u n c t i o n  m a y  n o t  h a v e  a  l e a s t  B S A , t h e r e  is  a  c l a s s  

o f  f u n c t i o n s ,  t h e  stable f u n c t i o n s ,  f o r  w h ic h  l e a s t  B S A s  a lw a y s  e x i s t .  T h e  t h e o r y  o f  

s t a b i l i t y  w a s  d e v e lo p e d  b y  B e r r y  [ B e r78] in  a n  a t t e m p t  t o  e x t e n d  t h e  c h a r a c t e r i s a t i o n  

o f  sequential f u n c t i o n s  t o  i n c lu d e  h ig h e r  o r d e r  f u n c t i o n s .  A t  f i r s t  o r d e r  t h e  s t a b l e  

f u n c t i o n s  a r e  a  s u p e r s e t  o f  t h e  s e q u e n t i a l  f u n c t i o n s ,  a n d  t h i s  is  h y p o t h e s i s e d  t o  b e  

t h e  c a s e  a t  h i g h e r  o r d e r .  H u n t  w a s  t h e  f i r s t  t o  n o t e  t h a t  e v e r y  s t a b l e  f u n c t i o n  h a s  a  

l e a s t  B S A  [ H u n 90a ] . T h i s  s e c t i o n  r e c a p i t u l a t e s  a n d  e x t e n d s  h is  r e s u l t s :  H u n t  p r o v e d  

P r o p o s i t i o n  3.25, t h e  o t h e r  r e s u l t s  a r e  n e w .

D efinition
A  c o n t i n u o u s  f u n c t i o n  /  is  stable i f  f o r  a l l  x  a n d  y  s u c h  t h a t  y  C  /  x ,  t h e r e  e x i s t s  a  

l e a s t  v a l u e  M ( f ,  x ,  y )  C  x  s u c h  t h a t  y  C  /  { M ( f ,  x ,  y ) ) .

T h e  s i m p l e s t  f u n c t i o n  t h a t  is  c o n t in u o u s  b u t  n o t  s t a b l e  is  lub G (2 x  2) —> 2; t h e r e  is  

n o  l e a s t  v a l u e  t h a t  lub m a p s  t o  T .  H o w e v e r ,  p a r a l l e l - o r  is  r e g a r d e d  a s  t h e  a r c h e t y p 

ic a l  n o n - s t a b l e  f u n c t i o n ,  a n d  i t  p la y s  a n  i m p o r t a n t  r o le  in  t h e  d e v e lo p m e n t  o f  t h e  

t h e o r y  o f  s t a b i l i t y .  A n  e x a m p l e  ( d u e  t o  B e r r y )  o f  a  f u n c t i o n  t h a t  is  s t a b l e  b u t  n o t  

s e q u e n t i a l  is  t h e  l e a s t  m o n o t o n i c  f u n c t i o n  h s u c h  t h a t  h ( t t , f f , ± )  = h (X, t t , f f )  =  

h (ff ,  X, tt) =  tt. N o te  t h a t  h is  n o t  t h e  t h r e e - a r g u m e n t  a n a l o g  o f  p a r a l l e l - o r  ( w h ic h  

is  n o t  s t a b l e ) ,  s in c e  h ( f f , t t ,± .)  =  X. C u r i e n  [C u r8 6 ]  s t a t e s  t h a t  t h e  s t a b l e  f u n c 

t i o n s  a r e  i n t e r m e d i a t e  b e t w e e n  t h e  c o n t in u o u s  f u n c t i o n s  a n d  t h e  f u n c t i o n s  d e n o t e d  

b y  h i s  concrete data structures, w h ic h  s e e m i n g ly  c h a r a c t e r i s e  p r e c i s e ly  t h e  s e q u e n t i a l  

f u n c t i o n s .

F o l lo w in g  is  a  w e l l - k n o w n  a n d  u s e f u l  c o n s e q u e n c e  o f  t h e  d e f in i t i o n  o f  s t a b i l i t y .  

Proposition 3.24
G iv e n  s t a b l e  / ,  f o r  a l l  x \ ,  x< i s u c h  t h a t  t h e r e  e x i s t s  y  s u c h  t h a t  a q ,  a q  C  y  ( t h a t  is ,
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X \  a n d  0C2 a r e  c o n s i s t e n t ) ,  w e  h a v e  /  (27  n  £ 2 ) =  ( /  3 7 )  f l  ( /  £ 2 ) .

P roof
We have ( f  x 1) n ( /  x^) Q f  y (monotonicity of / ) ,  so there is a least x' C y  such 

that ( /  27) n ( /  X2) E /  x'. Since 27, X2 E y it must be that x' C i i ,  X2 and hence 

x> E n X2, so /  (£1 n X2) 3  ( /  ^1) n ( /  372). However, /  (27 n 372) E /  arl9 /  372, so 

/  (27 n X2) E ( /  £1) n ( /  X2). We conclude that /  (27 n X2) =  ( /  27) !”1 ( /  2:2). □

Proposition 3.25
E v e r y  s t a b l e  f u n c t i o n  h a s  a  l e a s t  B S A  t h a t  m a p s  p r o j e c t i o n s  t o  f u n c t i o n s  t h a t  a r e  

p o i n t w i s e  l e a s t .

P roof
G iv e n  p r o j e c t i o n  7  a n d  s t a b l e  /  t h e r e  is  a  p o in tw i s e - l e a s t  f u n c t i o n  g  s u c h  t h a t  7  o 

/  C  /  0 g .  W e  n e e d  o n ly  s h o w  t h a t  g  is  m o n o to n i c ,  t h e n  t h e  r e s u l t  fo l lo w s  f r o m  

P r o p o s i t i o n s  3.5 a n d  3 .6 . S u p p o s e  g  w e r e  n o t  m o n o to n i c ,  t h e n  f o r  s o m e  x \  C  #2  

w e  h a v e  g  x \  g  g  x 2 . N o w  7  ( /  x i )  C  /  ( g  X i )  a n d  7  ( /  x i )  C  /  ( g  x 2 ) ,  s o  

7  ( /  ^ 1 )  E  /  ( 9  x i ) n /  ( g  x 2 )  =  f  ( g  o c i O g  x 2 )  s in c e  /  is  s t a b l e ,  b u t  ( g  x ^ g  x 2) C  g  x u  

c o n t r a r y  t o  g  b e i n g  l e a s t .  □

W e  w r i t e  | /  | t o  d e n o t e  t h e  l e a s t  B S A  o f  / .  W h e n  /  i s  s t a b l e  w e  g e t  a  s t r o n g e r  

c o m p o s i t i o n  p r o p e r t y .

Proposition  3.26
F o r  s t a b l e  f u n c t i o n s ,  a b s t r a c t  c o m p o s i t i o n  p r e s e r v e s  l e a s t n e s s ,  t h a t  i s ,  w h e n  f \  a n d  

/2  a r e  s t a b l e  w e  h a v e  | f i  0 f 2  | =  | / 1 1 o B  | f 2  | . I f  /1  i s  s t a b l e  w i t h  l e a s t  B S A  T \  a n d  

/2  i s  c o n t i n u o u s  w i t h  l e a s t  B S A  72 t h e n  T \  o b  T 2  is  t h e  l e a s t  B S A  o f  f \  o  f 2 .

N o t e  t h a t  t h i s  d o e s  n o t  in  g e n e r a l  h o ld  t h e  o t h e r  w a y  a r o u n d ,  t h a t  i s ,  72 o B  r \  m a y  

n o t  b e  t h e  l e a s t  B S A  o f  /2  o / x ( a n  e x a m p le  is  l u b  o  X(x, y).(x, T )  g iv e n  e a r l i e r ) .  □

R e c a l l  t h a t  t h e  m a p p i n g  o f  f u n c t i o n s  t o  t h e i r  l e a s t  B S A s  ( w h e n  t h e y  e x i s t )  is  n o t  

m o n o t o n i c  i n  t h e  s t a n d a r d  o r d e r in g ;  i t  is  h o w e v e r  m o n o t o n i c  in  t h e  s t a b l e  o r d e r in g .

D efinition
F o r  s t a b l e  /  a n d  g t h e  s t a b l e  o r d e r in g  C s is  d e f in e d  b y  /  C s g i f f  /  C  g a n d  f o r  a l l  r ,  

V ,  i f  V  E  /  x  t h e n  M ( f , x , y )  =  M(g,  x, y) .

T h u s  t h e  s t a b l e  o r d e r i n g  ( v ie w e d  a s  a  r e l a t i o n  o n  s t a b l e  f u n c t i o n s )  i s  a  s u b s e t  o f  

t h e  s t a n d a r d  o r d e r in g .  T h e  s e t  o f  s t a b l e  f u n c t i o n s  b e t w e e n  tw o  d o m a i n s  f o r m s  a  

d o m a i n  u n d e r  t h e  s t a b l e  o r d e r in g ,  w i t h  l u b  a n d  g ib  d e f in e d  p o in tw i s e  j u s t  a s  f o r  

c o n t i n u o u s  f u n c t i o n s .  I n  p a r t i c u l a r ,  a  s e q u e n c e  o f  f u n c t i o n s  t h a t  is  a s c e n d in g  in  t h e
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s t a b l e  o r d e r i n g  is  a s c e n d in g  in  t h e  s t a n d a r d  o r d e r in g ,  t h e  l u b  o f  t h e  s e q u e n c e  is  s t a b l e  

a n d  is  t h e  s a m e  a s  i t s  l u b  i n  t h e  s p a c e  o f  c o n t in u o u s  f u n c t i o n s .

I t  is  w o r t h  g e t t i n g  a n  i n t u i t i v e  u n d e r s t a n d i n g  o f  t h e  s t a b l e  o r d e r in g .  I f  /  C s p ,  t h e n  

g  m a y  g iv e  m o r e  i n f o r m a t i o n  t h a n  /  f o r  t h e  s a m e  a r g u m e n t ,  b u t  g  r e q u i r e s  t h e  s a m e  

l e a s t  a m o u n t  o f  i n f o r m a t i o n  M ( f , x , y )  b e lo w  x  t o  p r o d u c e  t h e  i n f o r m a t i o n  in  y .  T h u s  

b o t  C s i d  a n d  b o t  I I S t o p , b u t  i d  g s t o p  b e c a u s e  i d  r e q u i r e s  s t r i c t l y  m o r e  i n f o r m a t i o n  

f r o m  i t s  a r g u m e n t  t o  p r o d u c e  T  t h a n  d o e s  t o p .  I n  t h e  s t a b l e  o r d e r in g  i d  a n d  t o p  a r e  

i n c o m p a r a b l e .  T h i s  e m p h a s i s e s  t h a t  t h e  e x i s t e n c e  o f  t h e  l u b  o f  tw o  s t a b l e  f u n c t i o n s  in  

t h e  s t a n d a r d  o r d e r i n g  d o e s  n o t  im p l y  t h e  e x i s t e n c e  o f  t h e  l u b  in  t h e  s t a b l e  o r d e r in g .  

I n d e e d ,  a r b i t r a r y  l u b s  a r e  a  p r im e  s o u r c e  o f  p a r a l l e l  ( n o n - s e q u e n t i a l )  f u n c t i o n s .

T h e  o p e r a t i o n s  x ,  ® , © , -±, c u r r y in g ,  a n d  u n c u r r y i n g ,  a n d  c o m p o s i t i o n  a r e  s t a b l e  

a n d  m a p  s t a b l e  f u n c t i o n s  t o  s t a b l e  f u n c t i o n s .  T h e  f u n c t i o n s  s m a s h , u n s m a s h , m t-, 

o u t i , l i f t , a n d  d r o p  a r e  a l l  s t a b l e ,  els a r e  c o n s t a n t  f u n c t i o n s ,  i d e n t i t y ,  g ib ,  a n d  t h e  

u s u a l  a r i t h m e t i c ,  b o o l e a n ,  a n d  c o m p a r i s o n  o p e r a t i o n s .

Proposition 3.27
F o r  a l l  s t a b l e  f u n c t i o n s  /  a n d  g , w e  h a v e  t h a t  /  C s g  im p l ie s  | /  | C  | g  | .

P roof
L e t  f , g € U - * V  b e  s t a b l e  f u n c t i o n s  w i t h  /  C s g ,  a n d  l e t  7  G | V  |.  T h e n  b y  t h e  d e f 

i n i t i o n  o f  C s w e  h a v e  /  C  g  a n d  f o r  a l l  x  w e  h a v e  M ( / ,  x ,  7  ( /  a;)) =  M ( g , z ,  7  ( /  x ) ) .  

N o w  s in c e  /  C  g  w e  h a v e  7  ( /  x )  C  7  ( g  x ) ,  s o  t h a t  M ( / ,  £ , 7  ( f  x ) )  C  M ( g , x ,  7  ( g  x ) ) ,  

s in c e  M  is  m o n o t o n i c  in  i t s  t h i r d  a r g u m e n t .  S in c e  M ( f , x ,  7  ( /  a;)) =  | / 1 7  x ,  a n d  

s i m i l a r l y  f o r  g , w e  h a v e  t h a t  /  C s g  im p l i e s  | /  | C  | g  |. □

Proposition  3.28
I f  { f i }  i s  d i r e c t e d  in  t h e  s t a b l e  o r d e r in g ,  t h e n  U { | /* |}  =  | U { /« }  I *

P roof
B y  P r o p o s i t i o n  3.27 w e  h a v e  | /,• | C  | U { f i }  | f o r  a l l «, s o  U { | f i  |}  C  | U { f i }  |- O n  t h e  

o t h e r  h a n d ,  i t  is  c l e a r  f r o m  t h e  s a f e ty  c o n d i t i o n  t h a t  U { | f i  | } is  a  B S A  o f  /,■ f o r  a l l  

z, h e n c e  b y  in c l u s i v i t y  ( o f  t h e  s a f e ty  c o n d i t i o n  in  / )  | U { / i }  | E  U { | f i  | } , h e n c e  t h e  

r e s u l t .  □

T h u s  t h e  m a p p i n g  o f  s t a b l e  f u n c t i o n s  t o  t h e i r  l e a s t  B S A s  is  c o n t in u o u s  in  t h e  s t a b l e  

o r d e r i n g .  I n  o t h e r  w o r d s  t h e  p r e d i c a t e  P ( / ,  r )  t h a t  a s s e r t s  t h a t  r  is  t h e  l e a s t  B S A  o f  

s t a b l e  /  is  in c lu s iv e  i n  t h e  s t a b l e  o r d e r i n g  o n  / .

W e  m i g h t  a s k  w h e t h e r  t h e r e  is  s o m e  o r d e r in g  Q  o n  a r b i t r a r y  c o n t i n u o u s  f u n c t i o n s  

t h a t  m a k e s  t h e  p r o p e r t y  7  o /  C  /  0 ( r  7 )  o f  /  S c o t t  c lo s e d .  I n  f a c t  t h e r e  is ,  a n d  i t  is  

s i m i l a r  in  s p i r i t  t o  t h e  s t a b l e  o r d e r in g .
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Definition
L e t  t h e  o r d e r i n g  Q  o n  c o n t in u o u s  f u n c t i o n s  b e  d e f in e  b y  /  C ;  g  i f  /  C  g  a n d  f o r  a l l  

x  a n d  y  w i t h  y  C  /  x ,  t h a t  x '  C  x  a n d  y U g x '  im p l ie s  y  □  /  x ' .

Proposition 3.29
I f  /  E* 9  a n d  r  is  a  B S A  o f  g  t h e n  t  i s  a  B S A  o f  / .

P roof
S u p p o s e  7 0 g  n .  g o 5 . L e t  x  b e  f ix e d ,  a n d  l e t  y  =  ( 7 0 g )  x  a n d  x ( =  5  x .  N o w  y  Q  g  x '  

s o  y C . f x '  s in c e  /  E i  g .  A ls o ,  ( 7 0 / )  x  E  ( 7 0 g )  x  s in c e  /  C  p ,  s o  ( 7 0 / )  x  E  ( / o 5) x ,  

a s  r e q u i r e d .  □

I f  { /,•}  is  t h e  c a n o n i c a l  f a m i ly  o f  a p p r o x i m a t i o n s  o f  a  f u n c t i o n  d e f in e d  o n  t h e  r e s t r i c t e d  

c l a s s  o f  d o m a i n s  g iv e n  b e f o r e ,  w e  h a v e  t h a t  {/,• o ^ , - }  is  i n c r e a s i n g  in  t h e  E i  o r d e r in g ,

f i 0 & o o i  E i  | I{ f i 0 ^ooi} f ° r  a l l  ® ( w h e r e  LI h e r e  is  in  t h e  s t a n d a r d  o r d e r in g ) ,  e a c h  / t-o

has a least BSA r,-, the sequence {r ;} is ascending and =  !_!{?*} is the least BSA
O f/o o  =  | j { / i ° 0 o o t } -

L a s t ly ,  w e  o b s e r v e  t h a t  o n  t h e  s t a b l e  f u n c t i o n s  E t  c o in c id e s  w i t h  C s .

( W e  c o n j e c t u r e  g e n e r a l  l i m i t  p r o p e r t i e s  f o r  Q  l ik e  t h o s e  f o r  C s : i f  {/*•} is  i n c r e a s i n g  in  

t h e  C t- o r d e r i n g  t h e n  f i  E* U { / i }  f o r  a l l  i  ( w h e r e  U  a g a i n  is  in  t h e  s t a n d a r d  o r d e r i n g ) ,  

a n d  i f  { f i }  is  a s c e n d in g  in  t h e  E* o r d e r in g  a n d  e a c h  / t- h a s  l e a s t  B S A  7<, t h e n  { r ,}  is  

a s c e n d i n g  a n d  =  U { t i}  is  t h e  l e a s t  B S A  o f  /<*) =  [_!{/»}• W e  d o  n o t  p u r s u e  t h i s  

f u r t h e r  s in c e  i t  is  n o t  c l e a r ly  o f  u s e :  in  p a r t i c u l a r ,  r e c u r s iv e  f u n c t i o n  d e f in i t i o n s  d o  

n o t  n e c e s s a r i l y  g iv e  r i s e  t o  c h a in s  o f  a p p r o x i m a t i o n s  a s c e n d in g  in  t h i s  o r d e r in g . )

Proposition  3.30
I f  r  h a s  t h e  g u a r d  p r o p e r t y  t h e n  r  i s  d e t e r m i n e d  b y  t h e  s e t  o f  s t a b l e  l i f t e d  f u n c t i o n s  

o f  w h ic h  i t  is  a  B S A ,  a n d  t h i s  s e t  is  S c o t t  c lo s e d  in  t h e  s t a b l e  o r d e r in g .

Proof
L e t  T i,7 2  G I Vj_ | | U ±  | w i t h  r \  ^  r 2 . T h e n  V  ^  1 , a n d  f o r  s o m e  f in i t e  v  G V ,

v  ^  X ,  i t  m u s t  b e  t h a t  t x ( 7 ^  ±  r 2  (7 ^ )1 . L e t  6 1  =  n  (7 ^ )1  a n d  S 2  =  r 2  ( 7 ^ )1 .  F o r  

s o m e  f i n i t e  # 0  i t  m u s t  b e  t h a t  $1 i o  /  <̂ 2 ^ 0 i s o  ^ 0  /  -L; w i t h o u t  lo s s  o f  g e n e r a l i t y  

a s s u m e  t h a t  <$i x 0 2  S 2  x 0 , s o  S 2  x 0 7^ -L- L e t  g  G U ±  V ±  b e  d e f in e d  b y

g  x  =  l i f t  v ,  i f  x  □  S 2  x o

g  x  =  l i f t  X ,  i f  x  2  d 2  X q , x  ^  ±

g  x  =  A .  i f  a: =  _L .

T h e n  g  i s  a  s t a b l e  l i f t e d  f u n c t i o n  a n d  r 2  i s  a  B S A  o f  g .  N o w  (7 ^ )1  ( g  £ 0 ) =  l i f t  v , b u t  

g  (5i x q )  E  l i f t  -L b e c a u s e  <5i  xq  7^ S 2  x q , s o  t \  is  n o t  a  B S A  o f  g .  W e  c o n c lu d e  t h a t
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e v e r y  p r o j e c t i o n  t r a n s f o r m e r  r  w i t h  t h e  g u a r d  p r o p e r t y  is  t h e  lu b  o f  t h e  l e a s t  B S A s  

o f  t h e  l i f t e d  s t a b l e  f u n c t i o n s  o f  w h ic h  i t  is  a  B S A . T h a t  t h i s  s e t  o f  f u n c t i o n s  is  S c o t t  

c lo s e d  t h e n  f o l lo w s  f r o m  P r o p o s i t i o n s  3.27 a n d  3.28. □

T h u s  a  p r o j e c t i o n  t r a n s f o r m e r  w i t h  t h e  g u a r d  p r o p e r t y  w h ic h  is  n o t  t h e  l e a s t  B S A  o f  

a n y  c o n t i n u o u s  f u n c t i o n  is  d e t e r m i n e d  b y  t h e  s e t  o f  s t a b l e  l i f t e d  f u n c t i o n s  o f  w h ic h  

i t  is  a  B S A . A  s im p le  e x a m p l e  is  t h e  p r o j e c t i o n  t r a n s f o r m e r  in  | 1 ±  | —> | lj_ | t h a t  

m a p s  S T R  t o  ID, w h ic h  is  t h e  l u b  o f  t h e  l e a s t  B S A  o f  t h e  i d e n t i t y  ( w h ic h  m a p s  S T R  

t o  STR )  a n d  t h e  l i f t e d  c o n s t a n t  t o p  f u n c t i o n  ( w h ic h  m a p s  S T R  t o  A B S).

P r o p o s i t i o n  3.31
S u p p o s e  F  m a p s  l i f t e d  c o n t in u o u s  f u n c t i o n s  t o  l i f t e d  c o n t in u o u s  f u n c t i o n s  s u c h  t h a t  

s t a b l e  f u n c t i o n s  a r e  m a p p e d  t o  s t a b l e  f u n c t i o n s .  I f  T  m a p s  p r o j e c t i o n  t r a n s f o r m e r s  

w i t h  t h e  g u a r d  p r o p e r t y  t o  p r o j e c t i o n  t r a n s f o r m e r s  w i t h  t h e  g u a r d  p r o p e r t y ,  is  d i s 

t r i b u t i v e ,  a n d  m a p s  t h e  l e a s t  B S A  o f  e v e r y  s t a b l e  f u n c t i o n  /  t o  t h e  l e a s t  B S A  o f  

F( f ) ,  t h e n  T  is  t h e  l e a s t  f u n c t i o n  s u c h  t h a t  i f  r  is  a n y  B S A  o f  a n y  f u n c t i o n  /  t h e n  

T ( r )  is  a  B S A  o f  F( f ) .

P r o o f

L e t  r  h a v e  t h e  g u a r d  p r o p e r t y  a n d  l e t  S  b e  t h e  s e t  o f  l i f t e d  s t a b l e  f u n c t i o n s  o f  w h ic h  

t  i s  a  B S A . T h e n  T ( r )  m u s t  b e  a t  l e a s t  a s  l a r g e  a s  U /e s  I F ( f )  I- N o w

U/es i n / )  I 
=  U/ 65 T ( I / I )  [ \ F ( f ) \ = T ( \ f \ ) }

=  m j / e s l / l )  [ T  d i s t r i b u t i v e ]

=  T( t )  [ P r o p o s i t i o n  3.30] .

H e n c e  T  is  l e a s t .  □

W e  m i g h t  h a v e  h o p e d  t o  b e  a b l e  t o  d e f in e  a b s t r a c t  c o m p o s i t i o n  t o  p r e s e r v e  l e a s t n e s s ;  

i t  i s  a  s im p le  c o r o l l a r y  t h a t  t h i s  is  n o t  p o s s ib le .

C o r o l l a r y  3.32
A b s t r a c t  c o m p o s i t i o n  o B  i s  t h e  l e a s t  f u n c t i o n  s u c h  t h a t  i f  T \  a n d  r 2  h a v e  t h e  g u a r d  

p r o p e r t y  a n d  a r e  B S A s  o f  l i f t e d  f u n c t i o n s  f \  a n d  f 2 r e s p e c t iv e ly ,  t h e n  t \  ob  t 2 is  a  

B S A  o f  / i  o / 2 . □

3.1.3 Functions of several arguments

We write ( / i , . . . ,  /„ ) to mean A x . ( f i  x , . . . , f n x) ,  and « / i , . . . ,  f n)) to  mean smash o 
( f i ,  • • •, /n); both preserve stability. Given BSAs of the lifted functions /,-, 1 <  * <  n, 
we will need to find a BSA of ( ( / i , . . . ,  f n)). This is developed following.
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T h e  U - b a s i s  f o r  t h e  p r o j e c t i o n s  o n  a  s m a s h  p r o d u c t  d o m a i n  is  a  s u b s e t  o f  t h e  p r o j e c 

t i o n s  t h a t  c a n  b e  e x p r e s s e d  a s  s m a s h  p r o d u c t s .

Proposition  3.33
F o r  a l l  a  G | U i  ®  . . .  ®  U n  |, w e  h a v e  a  =  U { ^ i  ®  ••• ®  o t n  C  o;}.

P roof
R e c a l l  t h a t  a  p r o j e c t i o n  is  d e t e r m i n e d  b y  i t s  f in i t e  n o n - b o t t o m  f ix e d  p o i n t s .  F o r  

a n y  f i n i t e  n o n - b o t t o m  c  t h e r e  is  a  l e a s t  p r o j e c t i o n  t h a t  h a s  c  a s  a  f ix e d  p o i n t — i t  is  

t h e  c h a r a c t e r i s t i c  p r o j e c t i o n  7 C ( in  f a c t  c  i s  i t s  o n ly  n o n - b o t t o m  f ix e d  p o i n t ) .  F o r  

n o t a t i o n a l  s i m p l i c i t y  w e  w i l l  c o n s id e r  t h e  b i n a r y  c a s e .  L e t  a  6  | U  <£> V  | a n d  (w , v )  b e  

a  f i n i t e  f ix e d  p o i n t  o f  a .  I t  is  s im p le  t o  v e r i f y  t h a t  7 (U)V) =  7«  <8> 7 V, f r o m  w h ic h  t h e  

r e s u l t  fo l lo w s .  □

T h u s  d i s t r i b u t i v e  p r o j e c t i o n  t r a n s f o r m e r s  f r o m  p r o j e c t i o n s  o n  s m a s h  p r o d u c t  d o m a i n s  

a r e  d e t e r m i n e d  b y  t h e i r  b e h a v i o u r  o n  a r g u m e n t s  e x p r e s s ib le  a s  s m a s h  p r o d u c t s .  U s e  o f  

s m a s h  p r o d u c t  is  c r u c ia l ;  t h e  c o r r e s p o n d i n g  r e s u l t  d o e s  n o t  h o ld  f o r  o r d i n a r y  p r o d u c t .

Proposition 3.34
I f  /  i s  s t r i c t  a n d  b o t t o m  r e f l e c t in g  a n d  i f  f o r  s o m e  x  a n d  7  w e  h a v e  7  ( /  x )  —  _L t h e n  

/  h a s  a  B S A  r  s u c h  t h a t  r  a  x  =  _L.

T h i s  f o l lo w s  d i r e c t l y  f r o m  P r o p o s i t i o n  3.16 □

Proposition  3.35
I f  T {  i s  a  ( l e a s t )  B S A  o f  A  f o r  1 <  i  <  n  t h e n  a  ( l e a s t )  B S A  o f  ( / 1 , . . . ,  f n )  m a p s  

a i  x  . . .  x  a n  t o  ( t i  0 1 )  U . . .  U ( r n a n ) .  □

Proposition  3.36
I f  T {  i s  a  ( l e a s t )  B S A  o f  s t r i c t  a n d  b o t t o m - r e f l e c t i n g  f i  f o r  1 <  i  <  n  t h e n  { ( / 1 , . . . ,  f n ) )  

h a s  ( l e a s t )  B S A

A a  . U { ( r i <*i) &  • • • &  K  a « )  I <*1 ®  . . .  ®  <*n C  a }  .

A s  a  s p e c i a l  c a s e  t h i s  m a p s  o t \  0  . . .  (g> a n  t o  ( t \  « i )  &  . . .  &; ( r n a n ).

P roof
W e  n e e d  o n ly  s h o w  t h a t  (71 a i )  &; . . .  8 z  ( r n a n ) is  ( l e a s t )  s u c h  t h a t  ( a i  ®  ®  o n ) o

(( /i>  • • • 5 f n ) )  Q  ( ( /1 ,  • • • ,  f n ) )  0 ( ( n  a i )  &  . . .  &  ( r n a n ) ) .  W e  s h o w  l e a s t n e s s  f o r  t h e  

b i n a r y  c a s e .  L e t  x , « i ,  a 2 , r i ,  a n d  r 2 b e  f ix e d  a n d  f a  =  t \  a i  a n d  f a  =  a 2 .

I f  ( a i  ®  a 2 )  ( ( ( / i , / 2 »  x )  =  J_ t h e n  e i t h e r  « i  ( /1  x )  =  _L o r  o 2 U 2  x )  =  _L, s o  b y

P r o p o s i t i o n  3.34 e i t h e r  T \  x  =  ±  o r  r 2  a 2  x  =  ± ,  h e n c e  ( ( t i  O i)  &  ( r 2 a 2 ) )  x  =  _L.

I f  (<*! ®  a 2) ( ( { / i , / 2 »  1 )  ^  J -  t h e n  ( a j  ®  a 2) { ( / b / 2 ) )  ® =  ( a !  ( /1  1 ) ,  a 2  ( f 2  x ) ) ,  s o  

( ( r i « i ) & ( /T2 <^2)) x  =  ( ( r ]  a ! ) U ( r 2 o 2))  x ,  a n d  t h e  r e s u l t  fo l lo w s  f r o m  P r o p o s i t i o n  3 .35. 

□
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L a s t ly ,  w e  lo o k  m o r e  c lo s e ly  a t  A  p r o j e c t i o n  t r a n s f o r m e r  r  i s  n - distributive i f  f o r  

a l l  s e t s  o f  p r o j e c t i o n s  X  w e  h a v e  | ~ \ ( r  X )  =  r  (|~~ |X ).

Proposition 3.37
I f  7 i ,  72 a r e  p r o j e c t i o n s ,  <$i, 8 2  a r e  s m a s h  p r o j e c t i o n s ,  a n d  / 1 ,  /2  a r e  s t r i c t  b o t t o m -  

r e f l e c t i n g  f u n c t i o n s  s u c h  t h a t  71 o /  C  /  °  (5i  a n d  72 o /  □  /  o 8 2 ,  t h e n  (71 n  72) o /  C  

/  o ( ^ i  n  8 2 ) ,  a n d  n  8 2  is  l e a s t  i f  £1 a n d  8 2  a r e .

T h e  p r o o f  d i f f e r s  o n ly  s l i g h t l y  f r o m  t h e  p r o o f  o f  P r o p o s i t i o n  3.16. □

I n  t h i s  s e n s e  t h e  l e a s t  B S A  o f  a  s t r i c t  b o t t o m - r e f l e c t i n g  f u n c t i o n  is  n - d i s t r i b u t i v e  w i t h  

r e s p e c t  t o  s m a s h  p r o j e c t i o n s  ( r e c a l l  t h a t  g ib  f o r  s m a s h  p r o j e c t i o n s  is  p o in tw i s e ) .

Proposition 3.38
F o r  p r o j e c t i o n s  o n  l i f t e d  d o m a i n s  t h e  o p e r a t o r  h  m a y  b e  e x p r e s s e d  in  t e r m s  o f  U a n d  

n  a s  fo l lo w s .

71 &  72 =  ( 7 ,  u 7 ^ ) n ( 7 ;  n 7 | )  .

□
A  p r o j e c t i o n  t r a n s f o r m e r  r  is  h-distributive i f  f o r  a l l  s e t s  o f  p r o j e c t i o n s  X  w e  h a v e  

r  ( S z X )  =  & ( t  X ) .  F o l lo w in g  w e  s h o w  t h a t  i f  a  B S A  is  l e a s t  t h e n  i t  is  ^ - d i s t r i b u t i v e .  

T h i s  is  n o  s u r p r i s e  i n  v ie w  o f  t h e  f a c t s  t h a t  l e a s t  p r o j e c t i o n  t r a n s f o r m e r s  a r e  U - 

d i s t r i b u t i v e  w i t h  r e s p e c t  t o  l a z y  p r o j e c t i o n s  a n d  U - a n d  f l - d i s t r i b u t i v e  w i t h  r e s p e c t  t o  

s m a s h  p r o j e c t i o n s ,  a n d  t h a t  &; is  l u b  f o r  l a z y  p r o j e c t i o n s  a n d  g ib  f o r  s m a s h  p r o j e c t i o n s .

Proposition 3.39
I f  r  i s  t h e  l e a s t  B S A  o f  a  l i f t e d  f u n c t i o n  t h e n  r  is  ^ - d i s t r i b u t i v e .

P roof
S u p p o s e  t h a t  <$i a n d  82 a r e  l e a s t  s u c h  t h a t  7 i 0 A  E  / l  0 a n d  72 o  f± C  f± o  82. T h e n  

w e  n e e d  o n ly  s h o w  t h a t  <$1 &  8 2  i s  l e a s t  s u c h  t h a t  (71 &  71) o f ± C  f ± o (£1 &  £ 2 ). N o w  

8[ a n d  82 a r e  l e a s t  s u c h  t h a t  7*  0 f± C  0 a n d  7 !  0 f L C  f L 0 8%, a n d  8[ a n d  8l2 a r e  

l e a s t  s u c h  t h a t  7} o f± C  f ± 0 8[ a n d  j l2 o fL C  f L 0 8l2 , b y  P r o p o s i t i o n  3.20. H e n c e  b y  

C o r o l l a r y  3.10 w e  h a v e  t h a t  8[ U Sl2 is  l e a s t  s u c h  t h a t  (7} U 7 2 ) 0 f L C  f± o (J* U 8l2), 

a n d  b y  P r o p o s i t i o n  3.37 <SJ n  82 is  l e a s t  s u c h  t h a t  (7® n  7 | )  0 f ± □  f L 0 (<$f n  <5| ) .  S in c e  

7 i  &  7 2  — (7 } LI 72 ) n  (7® f i  7 | ) a n d  ^  &  8 2 =  U 8 l2 )  n  (<5J n  (JJ), t h e  r e s u l t  fo l lo w s  

f r o m  P r o p o s i t i o n  3.20. □

I f  a  d i s t r i b u t i v e  p r o j e c t i o n  t r a n s f o r m e r  is  ^ - d i s t r i b u t i v e  o n  t h e  L l-b a s is  o f  i t s  a r g u m e n t  

d o m a i n ,  t h e n  i t  is  ^ - d i s t r i b u t i v e  e v e r y w h e r e ;  t h e  k e y  f a c t  is  t h a t  &  d i s t r i b u t e s  o v e r  

U . A s  w e  w i l l  s h o w  l a t e r ,  t h e  ^ - d i s t r i b u t i v e  p r o j e c t i o n  t r a n s f o r m e r s  ( w i th  o r  w i t h o u t  

t h e  g u a r d  p r o p e r t y )  d o  n o t  in  g e n e r a l  f o r m  a  l a t t i c e .  S t i l l ,  a s  t h e  f o l lo w in g  s h o w s  t h e  

f a c t  t h a t  l e a s t  B S A s  a r e  ^ - d i s t r i b u t i v e  is  u s e fu l .
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P r o p o s i t i o n  3.40
I f  r  h a s  t h e  g u a r d  p r o p e r t y  t h e n  r  ( 7  S z  5) □  ( r  7 )  S z  ( r  8 ) .

P r o o f

L e t  S  b e  t h e  s e t  o f  s t a b l e  f u n c t i o n s  o f  w h ic h  r  is  a  B S A , a n d  l e t  X  =  { | /  | | f  E  S }

s o  t h a t  t  =  \ J X  a n d  e a c h  e l e m e n t  o f  X  is  ^ - d i s t r i b u t i v e .  T h e n

T ( 7  &  5)

=  U r e X  t  ( 7  &  8 )

= Lire* {{r 7) & (r 6))
C  U r 6 *  U r ,GX ( ( r  7 )  &  ( P  6 ) )

=  { U t € X  t  7 )  k  (U r € *  r  <5)

=  ( t  7) & ( t  8) ,

a s  r e q u i r e d .  □

T h i s  is  n o t  s u r p r i s i n g  s in c e  f o r  7  a n d  8  b o t h  l a z y  w e  g e t  e q u a l i t y ,  a n d  f o r  7  a n d  8

b o t h  s m a s h  p r o j e c t i o n s  t h e  r e s u l t  fo l lo w s  f r o m  t h e  m o n o t o n i c i t y  o f  r .

W e  c o n c lu d e  w i t h  a  b r i e f  s u m m a r y .  A  f u n c t i o n  m a y  n o t  h a v e  a  l e a s t  B S A , b u t  l e a s t  

B S A s  a r e  g u a r a n t e e d  t o  e x i s t  f o r  s t a b l e  f u n c t i o n s ,  a n d  f o r  f u n c t i o n s  w i t h  a r g u m e n t  

d o m a i n s  c o n s t r u c t e d  u s in g  t h e  p r i m i t i v e  d o m a i n  1 a n d  d o m a i n  c o n s t r u c t o r s  -j_, x ,  

0 ,  0 ,  a n d  r e c u r s i o n .  A  f u n c t i o n  m a y  n o t  b e  d e t e r m i n e d  b y  i t s  l e a s t  B S A  ( w h e n  

i t  e x i s t s ) ,  b u t  e v e r y  s t r i c t  b o t t o m - r e f l e c t i n g  f u n c t i o n  is  d e t e r m i n e d  b y  i t s  l e a s t  B S A , 

h e n c e  s o  a r e  l i f t e d  f u n c t i o n s .  L e a s t  B S A s  o f  s t a b l e  f u n c t i o n s  m a p  p r o j e c t i o n s  t o  

p o i n t w i s e  l e a s t  p r o j e c t i o n s ,  a n d  f o r  B S A s  o f  s t a b l e  f u n c t i o n s  a b s t r a c t  c o m p o s i t i o n  

p r e s e r v e s  l e a s t n e s s .

3.2 Forward Strictness Abstraction

F o r  f o r w a r d  s t r i c t n e s s  a b s t r a c t i o n ,  g r e a t e r  i s  b e t t e r .

P r o p o s i t i o n  3.41
Every function has a greatest FSA, and it is monotonic.

P r o o f

L e t  /  a n d  8  b e  f ix e d .  L e t  X  b e  t h e  s e t  o f  p r o j e c t i o n s  7  s u c h  t h a t  7 0 /  C  f o 8 .  T h e  s e t  

X  is not empty (it always contains BOT),  and it is directed (since 71 0 /  C /  0 8 and 
72 0 /  U  f  0 8  im p l i e s  (71 U 7 2 ) o /  C  /  o 8 ) . S in c e  t h e  s a f e ty  c o n d i t i o n  is  i n c lu s iv e  in  

7  w e  h a v e  (U  X )  0  f  C  /  °  8 .  W e  c o n c lu d e  t h a t  /  h a s  a  g r e a t e s t  F S A ,  a n d  i t  is  c l e a r ly  

m o n o t o n i c .  □
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T h e  g r e a t e s t  F S A  o f  a  f u n c t i o n  m a y  n o t  b e  c o n t in u o u s ;  c e r t a i n l y  t h e  c o n t in u o u s  

e x t e n s i o n  o f  a  g r e a t e s t  F S A  is  s a fe .  F o r  p r a c t i c a l  a n a l y s i s  in  w h ic h  t h e  p r o j e c t i o n  

d o m a i n s  a r e  f i n i t e  t h i s  d i s t i n c t i o n  d i s a p p e a r s .

A s  t h e  f o l lo w in g  s h o w s ,  g iv e n  /  a n d  S  w e  c a n n o t  in  g e n e r a l  h o p e  t o  c h o o s e  7  l a r g e  

e n o u g h  t o  g e t  e q u a l i t y  i n s t e a d  o f  i n e q u a l i t y  in  t h e  s a f e ty  c o n d i t i o n .  L e t

f  G Bool —̂ (2 x  2) ,

/  - L  =  ( X , X )  ,

/  tt =  ( T , T )  ,

f  f f  =  ( X ,  T)  .

The greatest FSA of /  maps 7 ^ to B O T  x B O T  and (B O T  x B O T ) ( /  f f )  =
(JL,_L) c  (-L, T) =  /  (7 ff f f ) .  This example also shows th a t the greatest FSA 

may map projections to functions th a t are not pointwise greatest, even on the image 
of / .  Last, it shows th a t the greatest FSA is not U-distributive: 7 tt is m apped to 

7 (t,t)  LI (ID x B O T )  (this projection maps (JL, T) to (J_, JL) and acts as the identity 
otherwise), 7 tt U 7 gr =  ZD, and the greatest FSA of /  maps ID  to ID.

N e x t  w e  s t a t e  a  c o m p o s i t i o n a l  p r o p e r t y  f o r  F S A s .

Proposition 3.42
I f  T \  a n d  72 a r e  F S A s  o f  f \  a n d  / 2 r e s p e c t i v e ly ,  t h e n  T \  o r 2 is  a  F S A  o f  R  o f2. □

T h u s  f o r w a r d - s t r i c t n e s s  a b s t r a c t  c o m p o s i t i o n  is  t a k e n  t o  b e  o r d i n a r y  c o m p o s i t i o n .  

C o m p o s i t i o n  o f  F S A s  d o e s  n o t  in  g e n e r a l  p r e s e r v e  g r e a t e s t n e s s — t h i s  i s  n o t  s u r p r i s i n g  

s in c e  t h e  g r e a t e s t  F S A  o f  a  f u n c t i o n  /  m a y  n o t  m a p  p r o j e c t i o n s  t o  f u n c t i o n s  t h a t  a r e  

p o i n t w i s e  g r e a t e s t  o n  t h e  r a n g e  o f  / .

W e  o b s e r v e  t h a t  ID o f  \Z f  o ID  f o r  a l l  / .  H e n c e  t h e  g r e a t e s t  F S A  o f  a n y  f u n c t i o n  

m a p s  ID  t o  ID.

L e t  u s  r e s t r i c t  a t t e n t i o n  t o  t h o s e  f u n c t i o n s  /  f o r  w h ic h  l e a s t  B S A s  e x i s t .  I f  7 i  ° / E  

f  o  S i  a n d  72  o /  C  /  o S 2  t h e n  (71 n  72) o /  □  /  o S i  a n d  ( 7 !  n  72) o /  C  /  o S 2 , h e n c e  

(71 n  72) o /  C  /  o (<5i n  <52) . M o n o t o n i c i t y  o f  a n y  F S A  r  o f  /  r e q u i r e s  r  (<$1 f l  S 2 )  C  

( t  £1) n  ( r  S 2 ) ,  s o  w e  c a n  d o  n o  b e t t e r  t h a n  t o  t a k e  r  ( S i  n  S 2 )  =  ( r  $ i )  f l  ( r  S 2 ) .

Proposition  3.43
Function /  has a least BSA iff the greatest FSA of /  is n-distributive.

P roof
I f  /  h a s  a  l e a s t  B S A ,  s h o w in g  t h a t  t h e  g r e a t e s t  F S A  o f  /  is  n - d i s t r i b u t i v e  is  a  s im p le  

g e n e r a l i s a t i o n  o f  t h e  p r e v io u s  d i s c u s s io n  t o  s e t s  o f  p r o j e c t i o n s  r a t h e r  t h a n  p a i r s .  I n  

t h e  o t h e r  d i r e c t i o n ,  s u p p o s e  t h e  g r e a t e s t  F S A  r  o f  /  is  n - d i s t r i b u t i v e ,  l e t  7  b e  f ix e d ,
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a n d  l e t  X  b e  t h e  s e t  o f  a l l  p r o j e c t i o n s  6  s u c h  t h a t  7 0  /  C  /  0 S .  T h e n  r  m u s t  m a p  

e v e r y  e l e m e n t  o f  X  t o  s o m e  p r o j e c t i o n  g r e a t e r  t h a n  |~ ]X , s o  7  Cl |~~|(t X )  =  r  ( [~ |^ 0 - 

E v id e n t ly ,  \ ~ \ X  i s  t h e  l e a s t  p r o j e c t i o n  s u c h  t h a t  7 0  /  C  /  0 s in c e  l e a s t  s u c h

p r o j e c t i o n s  e x i s t  f o r  e a c h  7  i t  m u s t  b e  t h a t  /  h a s  a  l e a s t  B S A . □

R e c a l l  w e  h a v e  g iv e n  o n e  e x a m p le  o f  a  f u n c t i o n  /  €  o o 9  — > 2  t h a t  d id  n o t  h a v e  a  

l e a s t  B S A . B y  t h e  p r e v io u s  p r o p o s i t i o n  t h e  g r e a t e s t  F S A  o f  /  is  n o t  n - d i s t r i b u t i v e ;  

i t  is  i n t e r e s t i n g  t o  s h o w  t h i s  d i r e c t ly .  T h e  g r e a t e s t  F S A  t  o f  f  m a p s  e v e r y  b o t t o m -  

r e f l e c t i n g  p r o j e c t i o n  t o  ID  a n d  e v e r y  o t h e r  p r o j e c t i o n  t o  B O T .  D e f in e

ODD £  | ood |

ODD T 9 =  T d

ODD ( l if t2i Jl)9 = ( l if t2* 1 ± ) 9

ODD ( l if t2* 1 _L)a =  {l if t2* 1 ± ) d

E V E N  e  | oo9 |

E V E N  T 9 = T 9

E V E N  {l if t2i A. ) 9  =  {lif t21 ± ) 9

E V E N  { l i f t2* 1 _L) 5 =  { l if t2* 2 _L)a

T h e n  r  ODD = r  E V E N  =  ID, b u t  ODDUEVEN  =  B O T ,  s o  r  is  n o t  n - d i s t r i b u t i v e .  

T h o u g h  r  i s  m o n o t o n i c  i t  is  n o t  c o n t in u o u s :  t h e  s e q u e n c e  { N O R ^ i  j_)a | i >  0} is  

i n c r e a s i n g  a n d  r  m a p s  e v e r y  e l e m e n t  o f  t h i s  s e q u e n c e  t o  B O T ,  b u t  t h e  l i m i t  o f  t h i s  

s e q u e n c e  is  ID w h ic h  r  m a p s  t o  ID.

W h e n  l e a s t  B S A s  a r e  k n o w n  t o  e x i s t  w e  m a y  t a k e  a d v a n t a g e  o f  n - d i s t r i b u t i v i t y .  T h e  

s e t  o f  7 c d  s u c h  t h a t  c is  f i n i t e  a n d  d is  i m m e d i a t e l y  b e lo w  c  ( t h a t  is ,  s u c h  t h a t  t h e r e  

d o e s  n o t  e x i s t  d' s u c h  t h a t  d c  d! c  c ; t h i s  is  w e l l - d e f in e d  s in c e  c is  f in i te )  f o r m  a  

n -basis  f o r  | U  |: e v e r y  e l e m e n t  o f  | U  \ i s  t h e  g ib  o f  s o m e  s u b s e t  o f  t h e  n - b a s i s ,  a n d  n o  

e l e m e n t  o f  t h e  n - b a s i s  is  t h e  g ib  o f  a n y  s e t  t h a t  d o e s  n o t  c o n t a i n  i t .  ( T h e  g ib  o f  t h e  

e m p t y  s u b s e t  o f  a  l a t t i c e  is  i t s  g r e a t e s t  e l e m e n t ,  h e r e  ID, w h ic h  is  n o t  in  t h e  n - b a s i s . )  

H e n c e  t h e  b e h a v i o u r  o f  a  n - d i s t r i b u t i v e  p r o j e c t i o n  t r a n s f o r m e r  t h a t  m a p s  ID  t o  ID is  

d e t e r m i n e d  b y  i t s  b e h a v i o u r  o n  t h e  n - b a s i s  o f  i t s  a r g u m e n t  d o m a in .  I n  a n y  c a s e  t h e  

n - d i s t r i b u t i v e  e x t e n s i o n  o f  a n y  F S A  r  o f  / — t h e  n - d i s t r i b u t i v e  p r o j e c t i o n  t r a n s f o r m e r  

t h a t  a g r e e s  w i t h  r  o n  t h e  n - b a s i s — is  a  F S A  o f  / .

T h e  n - d i s t r i b u t i v e  m o n o t o n i c  p r o j e c t i o n  t r a n s f o r m e r s  f o r m  a  c o m p le t e  l a t t i c e  t h a t  is  

n o t  i n  g e n e r a l  a  s u b l a t t i c e  o f  t h e  m o n o t o n i c  p r o j e c t i o n  t r a n s f o r m e r s .  I n  t h e  l a t t i c e  o f  

n - d i s t r i b u t i v e  p r o j e c t i o n  t r a n s f o r m e r s  g ib  is  d e f in e d  p o in tw is e ;  t \  U t 2 is  d e f in e d  t o  b e  

t h e  l e a s t  n - d i s t r i b u t i v e  p r o j e c t i o n  t r a n s f o r m e r  g r e a t e r  t h a n  t h e  p o in tw i s e  l u b .  W h e n  

g r e a t e s t  F S A s  a r e  n - d i s t r i b u t i v e  a n d  T \  a n d  72 a r e  F S A s  o f  / ,  t h e i r  p o in tw i s e  l u b ,
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h e n c e  t \  U 72, is  a  F S A  o f  / .  T h e  s a m e  h o ld s  f o r  n - d i s t r i b u t i v e  m o n o t o n i c  p r o j e c t i o n  

t r a n s f o r m e r s  t h a t  m a p  ID t o  ID. W e  u s e  ->  t o  c o n s t r u c t  t h e  s p a c e  o f  n - d i s t r i b u t i v e  

p r o j e c t i o n  t r a n s f o r m e r s  t h a t  m a p  ID t o  ID ’, t h i s  s p a c e  is  c lo s e d  u n d e r  c o m p o s i t i o n .

W e  c a n  n o w  n e a t l y  c h a r a c t e r i s e  t h e  g r e a t e s t  F S A  r  o f  a  f u n c t i o n  f  £ U -» V, i t  is

t  a = n { 7 w  I v = f  u, v' = f  (a u), u £ U} .

F o r  b i n d i n g - t i m e  a n a ly s i s ,  u n l ik e  s t r i c t n e s s  a n a ly s i s ,  w e  d o  n o t  r e q u i r e  a n a l y s i s  o f  

l i f t e d  f u n c t i o n s .  F o r  t h i s  r e a s o n ,  a n d  b e c a u s e  t h e  a n a ly s i s  is  f o r w a r d ,  t h e  t r e a t m e n t  

o f  f u n c t i o n s  o f  m u l t i p l e  a r g u m e n t s  is  m u c h  s im p le r :  i f  r t- is  a  ( g r e a t e s t )  F S A  o f  / ;  f o r  

1 <  i <  n ,  t h e n  a  ( g r e a t e s t )  F S A  o f  ( / 1 , . . . ,  f n) is  X a . ( r i  a )  x  ... x  ( r n a ) .

3.2.1 Relating forward and backward strictness abstraction

W e  n o w  b r ie f ly  r e l a t e  f o r w a r d  a n d  b a c k w a r d  s t r i c t n e s s  a b s t r a c t i o n  t o  t h e  t h e o r y  o f  

r e v e r s a l  a n d  r e l a t i o n a l  r e v e r s a l  o f  a b s t r a c t  i n t e r p r e t a t i o n s  [H L 92b , H L 92c].

I f  P  is  a n y  F S A  o f  /  t h e n  a n y  r  s u c h  t h a t  P  o r  □  id is  a  B S A  o f  / ,  a n d  r  is  a  reversal 
o f  P. S im i la r ly ,  i f  r  is  a n y  B S A  o f  /  t h e n  a n y  P  s u c h  t h a t  r  o / C  id is  a  F S A  o f  

/ ,  a n d  P  is  a  r e v e r s a l  o f  r .  W h e n  /  h a s  a  l e a s t  B S A  r  a n d  g r e a t e s t  F S A  P  w e  h a v e  

P  o r  □  id a n d  r  o p  C  id ; t h e n  r  a n d  P  f o r m  a  G a lo i s  c o n n e c t io n ,  e a c h  is  a  r e v e r s a l  

o f  t h e  o t h e r ,  a n d  b y  v i r t u e  o f  b e i n g  a  G a lo i s  c o n n e c t io n  e a c h  d e t e r m i n e s  t h e  o t h e r ,  r  

m u s t  m a p  B O T  t o  B O T  a n d  P  m u s t  m a p  ID  t o  ID.

S in c e  l e a s t  B S A s  a r e  n o t  g u a r a n t e e d  t o  e x i s t  w e  m a y  r e s o r t  t o  relational reversal: 

w e  r e l a t e  a  s e t  o f  B S A s  t o  e a c h  F S A .  T h e  r e l a t i o n a l  r e v e r s a l  o f  F S A  P  i s  t h e  s e t  o f  

a l l  r  s u c h  t h a t  P  o r  □  id; a g a i n  t h i s  s e t  c o n t a i n s  t h e  s a m e  i n f o r m a t i o n  a s  r ,  a n d  

e a c h  d e t e r m i n e s  t h e  o t h e r .  F o r  e x a m p le ,  r e f e r r i n g  a g a i n  t o  /  G ood 2 f o r  w h ic h  n o  

l e a s t  B S A  e x i s t s ,  t h e  g r e a t e s t  F S A  m a p s  B O T  t o  B O T  a n d  ID  t o  ID; i t s  r e l a t i o n a l  

r e v e r s a l  c o n t a i n s  p r e c i s e ly  t h e  B S A s  o f  / .

W e r e  w e  t o  r e s t r i c t  a t t e n t i o n  t o  s t r i c t  b o t t o m - r e f l e c t i n g  f u n c t i o n s  a n d  p r o j e c t i o n  

t r a n s f o r m e r s  f r o m  s m a s h  p r o j e c t i o n s  t o  s m a s h  p r o j e c t i o n s  o n ly  s im p le  r e v e r s a l  w o u ld  

n e e d  t o  b e  c o n s id e r e d  s in c e  l e a s t  B S A s  a n d  g r e a t e s t  F S A s  w o u ld  a lw a y s  e x i s t .  H o w 

e v e r ,  m a n y  o f  t h e  i n t e r e s t i n g  p r o j e c t i o n s ,  s u c h  a s  H, a r e  n o t  s m a s h  p r o j e c t i o n s .

T h e  t h e o r y  o f  r e l a t i o n a l  r e v e r s a l  in  [H L 92c] is  r e s t r i c t e d  t o  f in i t e  l a t t i c e s ,  t h o u g h  

t h e i r  t r e a t m e n t  w o u ld  a p p e a r  t o  e x t e n d  s m o o t h l y  t o  i n f in i t e  l a t t i c e s ;  c o n t i n u i t y  is  n o t  

r e q u i r e d ,  o n ly  m o n o to n i c i t y .  I n  t h e  f i n i t e  c a s e  t h e  c o m p o n e n t s  o f  a  G a lo i s  c o n n e c t io n  

a r e  g u a r a n t e e d  t o  d i s t r i b u t e  o v e r  g ib  a n d  l u b  r e s p e c t i v e ly ;  o u r  c o r r e s p o n d i n g  r e s u l t  

c o n t a i n s  t h e  e s s e n c e  o f  t h e  p r o o f  f o r  i n f in i t e  d o m a in s .  S in c e  w e  a r e  w o r k in g  in  t h e
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m o r e  g e n e r a l  s e t t i n g ,  w e  w i l l  p r o v e  s o m e  m o r e  ( i n s t a n c e s )  o f  t h e s e  r e s u l t s  f r o m  f i r s t  

p r in c i p l e s .

Proposition 3.44
T h e  g r e a t e s t  F S A  o f  a  f u n c t i o n  is  d e t e r m i n e d  b y  i t s  B S A s .

P roof
F i r s t  w e  o b s e r v e  t h a t  7 0 / C / o J i f f  t h e r e  e x i s t s  a  c o n t in u o u s  B S A  r  s u c h  t h a t  

5 = r  7  ( d e f in e  r  a  t o  b e  S i f  a  C 7  a n d  ID o th e r w i s e ) .  S e c o n d ,  i f  X  i s  t h e  s e t  o f  

p r o j e c t i o n s  7  s u c h  t h a t  7  0 /  C  /  o 5, t h e n  a s  s h o w n  in  t h e  p r o o f  o f  P r o p o s i t i o n  3.41, 
t h e  g r e a t e s t  f o r w a r d  a b s t r a c t i o n  o f  /  m a p s  <5 t o  U  X . □

Proposition 3.45
T h e  s e t  o f  B S A s  o f  a  f u n c t i o n  is  d e t e r m i n e d  b y  i t s  g r e a t e s t  F S A .

P roof
L e t  t '  b e  t h e  g r e a t e s t  F S A  o f  a  f u n c t i o n  / .  T h e n  t h e  p r o j e c t i o n  t r a n s f o r m e r  r  i s  a  

B S A  o f  /  i f f  t '  o t  □  id. □

H e n c e  t h e  g r e a t e s t  F S A  o f  a  f u n c t i o n  c o n t a i n s  t h e  s a m e  i n f o r m a t i o n  a s  i t s  s e t  o f  

B S A s .

Proposition 3.46
E v e r y  s t r i c t  b o t t o m - r e f l e c t i n g  f u n c t i o n  is  d e t e r m i n e d  b y  i t s  g r e a t e s t  F S A .

P roof
L e t  f  G U  — > V  b e  c o n t in u o u s ,  s t r i c t ,  a n d  b o t t o m  r e f le c t in g ,  a n d  l e t  r  b e  t h e  g r e a t e s t  

F S A  o f  / .  I t  is  n o t  h a r d  t o  s e e  t h a t  f o r  x  G U ,  i t  m u s t  b e  t h a t  r  N O K x  =  N O K { j  x y  

S in c e  N O K c  d e t e r m i n e s  c , i t  is  s t r a i g h t f o r w a r d  t o  r e c o n s t r u c t  /  f r o m  r. □

W e  o b s e r v e  t h a t  f o r  s t r i c t  b o t t o m - r e f l e c t i n g  f u n c t i o n s  a n d  s m a s h  p r o j e c t i o n s ,  w e  c a n  

g e t  e q u a l i t y  i n  t h e  s a f e ty  c o n d i t i o n  in  t h e  b a c k w a r d  d i r e c t i o n  b u t  n o t  t h e  f o r w a r d  

d i r e c t i o n ;  t h i s  a s y m m e t r y  is  a  c o n s e q u e n c e  o f  f u n c t i o n s  b e i n g  m a n y - t o - o n e .

Proposition 3.47
E v e r y  s t r i c t  b o t t o m - r e f l e c t i n g  f u n c t i o n  is  d e t e r m i n e d  b y  i t s  B S A s .

P roof
T h a t  a  s t r i c t  b o t t o m - r e f l e c t i n g  f u n c t i o n  is  d e t e r m i n e d  b y  i t s  B S A s  f o l lo w s  f r o m  t h e  

f a c t  t h a t  a  f u n c t i o n  i s  d e t e r m i n e d  b y  i t s  g r e a t e s t  F S A ,  w h ic h  is  i n  t u r n  d e t e r m i n e d  

b y  i t s  B S A s .  □

H e n c e  e v e r y  s t r i c t  b o t t o m - r e f l e c t i n g  f u n c t i o n  is  d e t e r m i n e d  b y  i t s  l e a s t  B S A ,  i f  i t  

e x i s t s .  W e  h a v e  p r o v e n  t h i s  d i r e c t l y  b e f o r e ;  t h e  p o i n t  h e r e  is  t h a t  w e  c a n  d o  s o  

i n d i r e c t l y ,  b y  p r o v in g  t h e  c o r r e s p o n d i n g  r e s u l t  f o r  f o r w a r d  a n a ly s i s ,  t h e n  a p p e a l i n g  

t o  t h e  t h e o r y  o f  r e v e r s a l  o f  a b s t r a c t  i n t e r p r e t a t i o n .
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3.3 Forward Termination Abstraction

R e c a l l  t h e  n o m i n a l  g o a l  is ,  g iv e n  /  a n d  8 , t o  f in d  7  s u c h  t h a t  7 0  /  □  f  0  8 .  W e  

m a y  a lw a y s  t a k e  7  t o  b e  ID, s o  e v e r y  f u n c t i o n  h a s  a  F T A ,  b u t  t h i s  is  c o m p le t e ly  

u n i n f o r m a t i v e — s m a l l e r  is  b e t t e r .  I n  g e n e r a l  a  f u n c t i o n  d o e s  n o t  h a v e  a  l e a s t  F T A  o r  

e v e n  m i n i m a l  F T A .  F o r  e x a m p le ,  f o r  /  G 1 — > 0 0  w i t h  /  _L =  T ,  t h e r e  is  n o  l e a s t  

o r  m i n i m a l  p r o j e c t i o n  t h a t  a c t s  a s  t h e  i d e n t i t y  o n  T  a n d  h e n c e  n o  l e a s t  o r  m i n i m a l  

F T A  o f  / .  M o r e  g e n e r a l l y  t h e r e  is  n o  l e a s t  o r  m i n i m a l  p r o j e c t i o n  t h a t  a c t s  a s  t h e  

i d e n t i t y  o n  a n y  in f in i t e  e l e m e n t  ( h e n c e  c h a r a c t e r i s t i c  p r o j e c t i o n s  a r e  d e f in e d  o n ly  f o r  

f i n i t e  v a lu e s ) .

E v e n  w h e n  l e a s t  7  e x i s t s  s u c h  t h a t  7  o /  □  /  o 8 ,  i n  g e n e r a l  7  is  n o t  p o in tw i s e  l e a s t ,  

o r  e v e n  p o in tw i s e  l e a s t  o n  t h e  im a g e  o f  / .

W h e n  a  l e a s t  F T A  e x i s t s  i t  is  n o t  i n  g e n e r a l  U - d i s t r i b u t iv e ,  f o r  e x a m p le ,  d e f in e  

g i b  e  (2  x  2 )  - >  2  , 

g i b  x  y  =  x  n  y  .

T h e  l e a s t  F T A  o f  g i b  m a p s  ID x B O T  a n d  B O T  x ID t o  B O T , b u t  t h e i r  l u b ,  w h ic h  

is  ID, t o  ID.

P e r h a p s  s u r p r i s in g ly ,  l e a s t  F T A s  a r e  n o t  n - d i s t r i b u t i v e  e i t h e r ,  e v e n  f o r  f i n i t e  d o m a in s .  

C o n s i d e r  l u b  £  (2 x 2) —» 2. I t s  l e a s t  F T A  m a p s  ID  x B O T  a n d  B O T  x ID  t o  ID, 
b u t  t h e i r  g ib  B O T  x  B O T  t o  B O T.

Proposition 3.48
I f  T \  a n d  72 a r e  F T A s  o f  f \  a n d  /2  r e s p e c t iv e ly ,  t h e n  o 7-2 is  a  F T A  o f  f r  o f 2 . □

C o m p o s i t i o n  d o e s  n o t  in  g e n e r a l  p r e s e r v e  l e a s t n e s s .

3.3.1 Analysis of lifted functions

S in c e  w e  a r e  i n t e r e s t e d  in  d e t e r m i n i n g  lo w e r  b o u n d s  o n  e v a l u a t i o n  w e  w i l l  a n a ly s e  

l i f t e d  f u n c t i o n s .

Proposition 3.49
E v e r y  f u n c t i o n  /  is  d e t e r m i n e d  b y  t h e  F T A s  o f  f ± .

J u s t  a s  f o r  f o r w a r d  a n d  b a c k w a r d  s t r i c t n e s s  a b s t r a c t i o n ,  t h e r e  a r e  tw o  w a y s  t o  d o  

t h i s .  T h e  e a s i e r  w a y  w o u ld  b e  t o  r e l a t e  f o r w a r d  a n d  b a c k w a r d  t e r m i n a t i o n  a b s t r a c t i o n  

and show the simple reconstruction of /1 from its greatest BTA—in the backward 
d i r e c t i o n  t h i s  is  e a s y  b e c a u s e  w e  c a n  g e t  e q u a l i t y  in  t h e  s a f e ty  c o n d i t i o n  u s in g  s m a s h
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p r o j e c t i o n s .  ( N o t e  t h a t  t h o u g h  /  m a y  n o t  h a v e  a  B T A , /j_ a lw a y s  h a s . )  T h e  m o r e  

c o m p le x  d i r e c t  m e t h o d  r e q u i r e s  a n  a r g u m e n t  l ik e  t h a t  in  P r o p o s i t i o n  3.17. □

Just as for backward strictness abstraction, abstract composition for strict bottom - 

reflecting functions preserves leastness with respect to  smash projections.

Proposition  3.50
E v e r y  F T A  o f  a  l i f t e d  f u n c t i o n  is  b o t t o m  r e f le c t in g .  □

Proposition 3.51
E v e r y  F T A  o f  a  l i f t e d  f u n c t i o n  is  a p p r o x i m a t e d  b y  a  s t r i c t  F T A .  □

W e  w i l l  h e n c e f o r t h  r e s t r i c t  a t t e n t i o n  t o  s t r i c t  c o n t in u o u s  b o t t o m - r e f l e c t i n g  F T A s  o f  

l i f t e d  f u n c t i o n s .

I f  a  f u n c t i o n  is  s t r i c t  a n d  i t s  a r g u m e n t  m i g h t  n o t  t e r m i n a t e ,  a p p l i c a t i o n  o f  t h e  f u n c t i o n  

t o  t h e  a r g u m e n t  m i g h t  n o t  t e r m i n a t e .  T h i s  is  e m b o d ie d  in  t h e  fo l lo w in g .

Proposition  3.52
E v e r y  F T A  o f  a  l i f t e d  s t r i c t  f u n c t i o n  is  a p p r o x i m a t e d  b y  a n  F T A  t h a t  m a p s  B O T ±  

t o  B O T ] _  a n d  is  d i s t r i b u t i v e  w i t h  r e s p e c t  t o  B O T ± .  □

F o r  f u n c t i o n s  o f  m u l t i p l e  a r g u m e n t s  w e  h a v e  t h e  f o l lo w in g .

Proposition  3.53
F o r  s t r i c t  b o t t o m - r e f l e c t i n g  f u n c t i o n  /,• w i t h  ( l e a s t )  F T A  t* f o r  1 <  i  <  n  a  ( l e a s t )  

F T A  o f  { { f l , . . . ,  f n ) )  i s  A a .(T !  a )  <g>. . .  ®  ( t „  a ) .  □

3.4 Backward Termination Abstraction

I n  g e n e r a l  t h e r e  is  n o  8  s a t i s f y i n g  7  0 /  □  /  o 8 ,  f o r  e x a m p le ,  w h e n  7  is  B O T  a n d  

/  i s  a n y  n o n - b o t t o m  c o n s t a n t  f u n c t i o n .  E v e n  w h e n  s o l u t i o n s  e x i s t  t h e r e  m a y  b e  n o  

g r e a t e s t  s o l u t i o n ,  f o r  e x a m p le ,  i f  /  is  a n y  o f  t h e  u s u a l  b i n a r y  o p e r a t i o n s  o n  In t  a n d  w e  

r e q u i r e  t h a t  t h e  r e s u l t  n o t  b e  d e f in e d ,  t h e r e  a r e  m a n y  m a x i m a l  p r o j e c t i o n s  8  s a t i s f y i n g  

B O T  o  /  □  /  o 8 — f o r  e x a m p le ,  o n e  m a p s  t h e  f i r s t  c o m p o n e n t  t o  _L, a n o t h e r  m a p s  

p a i r s  (x , y ) o f  e v e n  n u m b e r s  t o  ( x , ± )  a n d  a l l  o t h e r  p a i r s  t o  (JL,?/). G e n e r a l i s i n g ,  

s u p p o s e  sum  s u m s  t h e  e l e m e n t s  o f  a  l i s t ,  a n d  t h e  r e s u l t  o f  sum  is  r e q u i r e d  t o  b e  

u n d e f in e d .  T h e n  w e  h a v e  t h e  c h o ic e  o f  m a p p i n g  a n y  e l e m e n t  o r  t h e  t e r m i n a t i n g  [] o f  

t h e  l i s t  t o  _L. I n  g e n e r a l ,  e v e r y  p r o j e c t i o n  <5 m e e t i n g  t h e  s a f e ty  c o n d i t i o n  is  b o u n d e d  

a b o v e  b y  a  m a x i m a l  p r o j e c t i o n  m e e t i n g  t h e  s a f e ty  c o n d i t i o n  s in c e  l u b  o n  p r o j e c t i o n s  

is  p o in tw i s e  a n d  t h e  s a f e ty  c o n d i t i o n  is  in c lu s iv e  in  J .  H e n c e  t h e  s e t  o f  m a x i m a l  

e l e m e n t s  s a t i s f y i n g  t h e  s a f e ty  c o n d i t i o n  is  c o m p le t e .
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I t  a p p e a r s  t h a t  t o  m a k e  e f f e c t iv e  p r o j e c t i o n - b a s e d  a n a ly s i s  o f  t h i s  k in d  w e  w o u ld  h a v e  

t o  m o v e  t o  a  r e l a t i o n a l  a n a ly s i s ,  c o n s id e r in g  s e t s  o f  p r o j e c t i o n s  r a t h e r  t h a n  i n d i v i d u a l  

p r o j e c t i o n s .  L e t  S  b e  a  s e t  o f  p r o j e c t i o n s  o n  t h e  r e s u l t  o f  s o m e  f u n c t i o n ,  a n y  o n e  o f  

w h ic h  r e m o v e s  a  s u f f i c ie n t  a m o u n t  o f  i n f o r m a t i o n  ( to  g u a r a n t e e  t h a t  e a c h  a r g u m e n t  

is  m a p p e d  t o  s o m e  v a lu e  le s s  t h a n  s o m e  v a lu e  in  a  g iv e n  s e t ,  f o r  e x a m p le ,  m a p p i n g  

f u l ly - d e f in e d  l i s t s  t o  p a r t i a l l y - d e f i n e d  l i s t s ) .  T h e n  t h e  s e t  T  o f  p r o j e c t i o n s  o n  t h e  

a r g u m e n t  s h o u l d  h a v e  t h e  t h e  p r o p e r t y  t h a t  f o r  e v e r y  5  E  T  t h e r e  e x i s t s  s o m e  7  €  S' 

s u c h  t h a t  7 o /  □  /  o t h a t  is ,  e a c h  e l e m e n t  o f  T  r e m o v e s  a  s u f f i c ie n t  a m o u n t  o f  

i n f o r m a t i o n  t o  g u a r a n t e e  t h a t  s o m e  p a r t i c u l a r  p a r t  o f  t h e  o u t p u t  is  n o t  p r o d u c e d .  

T h e  s e t s  S  a n d  T  m a y  b e  t a k e n  t o  b e  d o w n w a r d - c lo s e d  a n d  a r e  c h a r a c t e r i s e d  b y  

t h e i r  m a x i m a l  e l e m e n t s ,  h e n c e  a n  a p p r o p r i a t e  d o m a i n  o f  s e t s  o f  p r o j e c t i o n s  is  t h e  

H o a r e  ( lo w e r )  p o w e r d o m a in  o f  p r o j e c t i o n s .

A s  a n  a s id e ,  i t  is  i n t e r e s t i n g  t o  n o t e  t h a t  W a d l e r ’s  4- p o i n t  d o m a i n  2 ± ±  f o r  l i s t s  a p p e a r s  

t o  g iv e  a  s t a r t i n g  p o i n t  f o r  s u c h  a  r e l a t i o n a l  a n a ly s i s .  F o r  sum  t o  b e  g u a r a n t e e d  t o  n o t  

p r o d u c e  i t s  r e s u l t  t h e  a p p r o p r i a t e  ‘a b s t r a c t ’ p r o j e c t i o n  ( s e t  o f  p r o j e c t i o n s )  is  p r e c i s e ly  

t h e  o n e  t h a t  m a p s  lift2 T  t o  lift2 _L a n d  a c t s  a s  t h e  i d e n t i t y  o n  lift _L a n d  JL.

W i t h o u t  c e r t a i n t y  t h a t  s e c u r i t y  a n a l y s i s  is  o f  r e a l  p r a c t i c a l  u s e  w e  c h o o s e  t o  d r o p  

i t  a t  t h i s  p o i n t ,  w i t h  t h e  a s s e r t i o n  t h a t  t h e  s u b s e q u e n t  d e v e lo p m e n t  c o u l d  b e  m a d e  

r e l a t i o n a l  w i t h o u t  t o o  m u c h  e f f o r t .

3.5 Discussion and Related Work

W e  h a v e  s h o w n  t h a t  a t  l e a s t  s o m e  p r o p e r t i e s  o f  f u n c t i o n s  t h a t  c a n  b e  c a p t u r e d  w i t h  

p r o j e c t i o n  a n a l y s i s  c a n n o t  b e  c a p t u r e d  in  t h e  B H A  f r a m e w o r k ,  b u t  t h i s  d o e s  n o t  

a n s w e r  t h e  m o r e  g e n e r a l  q u e s t i o n  o f  w h a t  t h e  r e l a t i o n s h i p  is  b e t w e e n  t h e  p r o p e r t i e s  

t h a t  c a n  b e  c a p t u r e d  in  e a c h  s y s t e m .  A  r e f in e m e n t  o f  t h i s  q u e s t i o n  is  w h a t  p r o p e r t i e s  

c o u l d  a c t u a l l y  b e  d e t e c t e d  b y  a  p r o g r a m  a n a ly s i s  t e c h n iq u e  w i t h i n  e a c h  s y s t e m .

R e c a l l  t h a t  a b s t r a c t  v a lu e s  i n  t h e  B H A  f r a m e w o r k  a r e  S c o t t  c lo s e d  s e t s .  E v e r y  S c o t t  

c lo s e d  s u b s e t  S  o f  d o m a i n  D  c a n  b e  u n iq u e ly  r e p r e s e n te d  b y  a  s m a s h  p r o j e c t i o n :  

d e f in e  7 5  b y

7s € | D_l I ,

I s  (lift s) = _L, i f  s e  S  ,

7 s x =  z, otherwise .

A n  a b s t r a c t i o n  / #  o f  f u n c t i o n  /  c a n  s a f e ly  m a p  S  t o  T  i f f  0 f± E  f± 0 Is-  T h u s  

e v e r y  p r o p e r t y  t h a t  c a n  b e  c a p t u r e d  in  t h e  B H A  f r a m e w o r k  c a n  b e  c a p t u r e d  u s in g  

p r o j e c t i o n  a n a l y s i s  ( t h i s  is  a l s o  t h e  e s s e n c e  o f  B u r n ’s  a r g u m e n t  [ B u r90c ] ) .
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A  p r o b l e m  a r i s e s  f o r  h i g h e r - o r d e r  p r o j e c t i o n - b a s e d  p r o g r a m  a n a ly s i s :  t h o u g h  in  p r i n 

c i p l e  t h e r e  a r e  r e p r e s e n t a t i o n s  o f  a b s t r a c t  f u n c t i o n s  a s  p r o j e c t i o n s  t h e r e  d o e s  n o t  s e e m  

t o  b e  a n y  w a y  t o  g iv e  a  c o m p o s i t i o n a l  n o n - s t a n d a r d  s e m a n t i c s  t h a t  g iv e s  a  r e a s o n a b l e  

a n a l y s i s — t h i s  is  c o n s id e r e d  f u r t h e r  i n  S e c t io n  5.6 . A n o t h e r  o b s e r v a t io n  is  t h a t  i f  p r o 

j e c t i o n s  7  a n d  <5 a r e  r e g a r d e d  a s  t o t a l  r e l a t i o n s  ( o r  e q u iv a le n c e  r e l a t i o n s )  t h e n  7  —» S ,  

w h e r e  — > is  t h e  o p e r a t i o n  o n  r e l a t i o n s ,  is  n o t  in  g e n e r a l  a  t o t a l  ( o r  e q u iv a le n c e )  r e l a 

t i o n .  B u r n  a n d  H u n t  [B H 91] a r g u e  t h a t  t h i s  is  t h e  r e a s o n  t h a t  p r o j e c t i o n s  c a n n o t  b e  

u s e d  t o  c a p t u r e  p r o p e r t i e s  o f  h i g h e r - o r d e r  f u n c t i o n s  i n  a  n a t u r a l  w a y . H u n t  [ H u n 90b ] , 

a n d  H u n t  a n d  S a n d s  [H S 91], s o lv e  t h i s  p r o b l e m  b y  u s in g  p a r t i a l  e q u i v a l e n c e  r e l a t i o n s  

( P E R s )  a s  n o n - s t a n d a r d  v a lu e s ;  w e  w i l l  c o n s id e r  t h e i r  a n a ly s i s  t e c h n iq u e s  l a t e r .

W e  h a v e  o b s e r v e d  a n  i n t e r e s t i n g  p a r a l l e l  b e tw e e n  B H A  a b s t r a c t i o n  a n d  b a c k w a r d 

s t r i c t n e s s  a b s t r a c t i o n :  i n  t h e  f o r m e r  p r o p e r t i e s  a r e  S c o t t - c lo s e d  s e t s ;  i n  t h e  l a t t e r ,  

t h e  p r o j e c t i o n  t r a n s f o r m e r s  w i t h  t h e  g u a r d  p r o p e r t y  a r e  in  o n e - to - o n e  c o r r e s p o n 

d e n c e  w i t h  S c o t t - c lo s e d  s e t s  o f  s t a b l e  f u n c t i o n s .  I n  a  s e n s e ,  t h e  o n ly  d i f f e r e n c e  is  t h e  

o r d e r in g ;  s in c e  t h e  s t a b l e  o r d e r i n g  is  s t r o n g e r  t h a n  t h e  s t a n d a r d  o r d e r in g  i t  is  n o t  

s u r p r i s i n g  t h a t  s t r o n g e r  p r o p e r t i e s  c a n  b e  c h a r a c t e r i s e d ,  e .g .  h e a d  s t r i c t n e s s .

O n e  o t h e r  n o t a b l e  a t t e m p t  t o  g e n e r a l i s e  B H A  s t r i c t n e s s  a n a ly s i s  is  D y b j e r ’s  i n v e r s e  

i m a g e  a n a l y s i s  [ D y b 87]. B r ie f ly ,  h i s  a n a l y s i s  s e e k s  t o  d e t e r m i n e  t h e  s e t  o f  f u n c t i o n  

i n p u t s  t h a t  c o u l d  p r o d u c e  a  g iv e n  s e t  o f  o u t p u t s ;  i t  is  a  b a c k w a r d  a n a ly s i s .  T h e  

n o n - s t a n d a r d  v a lu e s  a r e  n o t  j u s t  a n y  s e t s  b u t  S c o t t  o p e n  ( u p w a r d  c lo s e d )  s e t s .  I t  

d o e s  n o t  a p p e a r  p o s s i b l e  t o  c a p t u r e  h e a d  s t r i c t n e s s  ( fo r  e x a m p le )  in  t h i s  f r a m e w o r k  

b e c a u s e  t h e  h e a d - s t r i c t  l i s t s  ( l i s t s  t h a t  d o  n o t  c o n t a i n  b o t t o m  e l e m e n ts )  d o  n o t  f o r m  a  

S c o t t  o p e n  s e t .  H e  a l s o  s u g g e s t s  t h a t  t h e  t e c h n iq u e  c o u ld  b e  r e a d i l y  m o d i f i e d  t o  g iv e  

a  t e r m i n a t i o n  a n a ly s i s ;  p r e s u m a b l y  i t  w o u ld  b e  u n a b l e  t o  c a p t u r e  s u c h  p r o p e r t i e s  a s  

h e a d  t e r m i n a t i o n  f o r  t h e  s a m e  r e a s o n .

B u r n  [ B u r92] h a s  a t t e m p t e d  t o  g iv e  s o m e  p e r s p e c t i v e  b y  c o n s id e r in g  j u s t  w h a t  p r o p 

e r t i e s  v a r io u s  a n a l y s i s  t e c h n i q u e s  c a n  m a n i p u l a t e .  T h i s  k in d  o f  w o r k  is  s t i l l  a t  a n  

e a r l y  s t a g e ;  m u c h  r e m a i n s  t o  b e  d o n e .
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T h e  s o u r c e  l a n g u a g e  is  a  s im p le ,  s t r o n g l y  t y p e d ,  m o n o m o r p h ic ,  f u n c t i o n a l  l a n g u a g e  

w i t h  n o n - s t r i c t  s e m a n t i c s .  I t  d i f f e r s  f r o m  p r e v io u s l y  m e n t i o n e d  r e a l - w o r ld  l a z y  f u n c 

t i o n a l  l a n g u a g e s  in  o n ly  o n e  e s s e n t i a l  w a y : i t  is  m o n o m o r p h ic  r a t h e r  t h a n  ( H in d le y -  

M i l n e r )  p o l y m o r p h i c .

T h e  r e s t r i c t i o n  t o  m o n o m o r p h i c  t y p i n g  is  e s s e n t i a l  b e c a u s e  t h e  a n a ly s i s  t e c h n iq u e s  

w e  d e v e lo p  r e q u i r e  e x a c t  t y p e  i n f o r m a t i o n .  T h i s  is  in  k e e p in g  w i t h  a  c o m m o n  p a t 

t e r n  o f  d e v e l o p m e n t  o f  p r o g r a m  a n a l y s i s  t e c h n iq u e s :  t e c h n iq u e s  a r e  i n v e n te d  f i r s t  f o r  

m o n o m o r p h i c  f i r s t - o r d e r  l a n g u a g e s ,  t h e n  g e n e r a l i s e d  ( u s u a l l y  i n d e p e n d e n t l y  a n d  i n 

c o m p a t i b l y )  t o  p o l y m o r p h i s m  a n d  h i g h e r  o r d e r ,  a n d  f in a l ly  t o  l a n g u a g e s  t h a t  a r e  b o t h  

p o l y m o r p h i c  a n d  h i g h e r  o r d e r ;  w e  v ie w  o u r  t e c h n iq u e s  a s  s t e p s  a l o n g  t h i s  p a t h .  A s  f o r  

i m p l e m e n t a t i o n ,  i t  is  p o s s i b l e  t o  t r a n s l a t e  a  p o l y m o r p h i c  p r o g r a m  t o  a  m o n o m o r p h i c  

o n e  b y  g e n e r a t i n g  i n s t a n c e s  o f  f u n c t i o n s  a t  e v e r y  r e q u i r e d  m o n o m o r p h ic  t y p e  ( t h e  

n u m b e r  o f  r e q u i r e d  i n s t a n c e s  is  f i n i t e  a n d  c a n  b e  s t a t i c a l l y  d e t e r m i n e d  f o r  H in d le y -  

M i l n e r  p o l y m o r p h i s m  [H o l83] ) ,  a n d  h e n c e  w e  c a n  r e g a r d  o u r  a n a l y s i s  a s  b e i n g  a p p l i 

c a b l e ,  i f  i n d i r e c t ly ,  t o  a  p o l y m o r p h i c  v e r s io n  o f  o u r  l a n g u a g e .  W h a t ’s  m o r e ,  f o r  t h e  

a n a l y s i s  t e c h n i q u e s  s e e m i n g ly  m o s t  c lo s e ly  r e l a t e d  t o  o u r s  t h e  m o n o m o r p h ic  v e r s io n s  

g iv e  m o r e  i n f o r m a t i o n  t h a n  t h e i r  p o l y m o r p h i c  c o u n t e r p a r t s :  f o r  s t r i c t n e s s  a n a l y s i s  

B u r n ,  H a n k i n ,  a n d  A b r a m s k y ’s  h i g h e r - o r d e r  m o n o m o r p h ic  f o r w a r d  a n a ly s i s  t e c h 

n i q u e  [B H A 8 6 ]  is  s t r o n g e r  t h a n  A b r a m s k y ’s  [ A b r85] o r  B a r a k i ’s  [ B a r93] p o l y m o r p h i c  

t e c h n i q u e s ,  a n d  W a d l e r  a n d  H u g h e s ’ f i r s t - o r d e r  m o n o m o r p h i c  b a c k w a r d  t e c h n i q u e  

[ W H 87] is  s t r o n g e r  t h a n  H u g h e s  a n d  L a u n c h b u r y ’s  p o l y m o r p h i c  t e c h n iq u e  [H L 92a]; 

f o r  b i n d i n g - t i m e  a n a l y s i s  L a u n c h b u r y ’s  m o n o m o r p h ic  t e c h n i q u e  is  s t r o n g e r  t h a n  t h e  

p o l y m o r p h i c  o n e  [ L a u 91a].

M o n o m o r p h i s m  a s id e ,  t h e  d i f f e r e n c e s  b e t w e e n  o u r  t o y  l a n g u a g e  a n d  r e a l  p r o g r a m m i n g
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l a n g u a g e s  a m o u n t  t o  a  l a c k  o f  s y n t a c t i c  s u g a r i n g  a n d  a  p a u c i t y  o f  p r e d e f in e d  ty p e s  

a n d  f u n c t i o n s .  W e  a d d r e s s  t h e s e  i s s u e s  in  t u r n .

S e m a n t i c a l l y ,  l a c k  o f  s y n t a c t i c  s u g a r  is  a  n o n - i s s u e .  O u r  l a n g u a g e  c o u l d  b e  r e g a r d e d  

a s  s im p l i f i c a t i o n  o f  H a s k e l l ’s  C o r e  l a n g u a g e  [ H P W 92], o r  t h e  C o r e  l a n g u a g e s  o f  P e y 

t o n  J o n e s  [ P J 87] o r  P e y t o n  J o n e s  a n d  L e s t e r  [ P J L 92], in  w h ic h  s u c h  s y n t a c t i c  f e a t u r e s  

s u c h  a s  H a s k e l l ’s  t y p e  c la s s e s ;  n e s t e d ,  g u a r d e d ,  s e q u e n t i a l ,  o v e r la p p in g ,  t a g g e d ,  d e 

f a u l t ,  a n d  i r r e f u t a b l e  p a t t e r n  m a tc h i n g ;  i f - e x p r e s s i o n s ;  a n d  l i s t  c o m p r e h e n s i o n s  o f  

v a r i o u s  k in d s  h a v e  b e e n  t r a n s f o r m e d  o u t .  I n  a  m o n o m o r p h ic  l a n g u a g e  l e t  a n d  w h e r e  

c a n  b e  t r a n s f o r m e d  i n t o  a p p l i c a t i o n  w i t h o u t  c h a n g in g  t h e  s e m a n t i c s ,  a s  c a n  l e t r e c  

a n d  w h e r e r e c  u s in g  a n  e x p l i c i t  l e a s t  f ix e d  p o i n t  c o n s t r u c t i o n .  T h e  s t r i c t  c o n s t r u c t o r s  

o f  L a z y  M L  c a n  b e  s i m u l a t e d  in  o u r  l a n g u a g e .

F i n a l l y ,  o u r  l a n g u a g e  p r o v id e s  o n ly  a  s in g l e  p r e d e f in e d  t y p e  I n t  t o  m o d e l  t h e  i n t e g e r s ,  

w i t h  a  s in g l e  o p e r a t i o n ,  a d d i t i o n .  F r o m  a  t h e o r e t i c a l  p o i n t  o f  v ie w  e v e n  t h e  p r o v i s io n  

o f  i n t e g e r s  is  u n n e c e s s a r y ,  s in c e  a n y  c o m p u t a b l e  f u n c t i o n  c a n  b e  e x p r e s s e d  in  t h e  

l a n g u a g e  w i t h o u t  p r o v id in g  t h e m  a s  p r i m i t i v e .  M o r e  p r a c t i c a l l y ,  w e  a c k n o w le d g e  t h a t  

w i t h o u t  i t  o u r  t y p e  s y s t e m  w o u ld  n o t  l ik e ly  a l lo w  a n  e f f ic ie n t  i m p l e m e n t a t i o n  o f  t h e  

i n t e g e r s  a n d  a s s o c i a t e d  o p e r a t i o n s ,  a n d  o u r  l a n g u a g e  w o u ld  p o o r l y  r e f le c t  r e a l - w o r ld  

p r a c t i c e .  W e  c l a i m  t h a t  i n t e g e r  a d d i t i o n  is  r e p r e s e n t a t i v e  in  i t s  s t r i c t n e s s  p r o p e r t i e s  

of arithmetic operators in general, and of the comparison operators as well. Similarly, 
w e  c l a i m  t h a t  t h e  a n a l y s i s  f o r  f l o a t in g  p o i n t  n u m b e r s  a n d  t h e i r  o p e r a t o r s  is  e s s e n t i a l l y  

t h e  s a m e  a s  f o r  i n t e g e r s .  C o m m o n ly  p r e d e f in e d  t y p e s  l ik e  b o o le a n s ,  c h a r a c t e r s ,  a n d  

l i s t s  a r e  e x p r e s s ib l e  i n  a  r e a s o n a b l e  w a y  in  o u r  t y p e  l a n g u a g e  a n d  s o  a r e  n o t  p r o v id e d  

a s  p r i m i t i v e .  A t  a  m o r e  f u n d a m e n t a l  le v e l ,  t h e  a n a ly s i s  t e c h n iq u e s  d e v e lo p e d  r e q u i r e  

o n ly  t h a t  p r e d e f in e d  f u n c t i o n s  b e  c o n t in u o u s ,  f o r  e x a m p le ,  t h e r e  w o u ld  b e  n o  d i f f i c u l ty  

i n  a d d i n g  a  p a r a l l e l  c o n s t r u c t  s u c h  a s  p a r a l l e l  c o n d i t i o n a l .

T h e  p r o v i s io n  o f  u n b o x e d  t y p e s  i n  H a s k e l l  is  a  g e n u in e  f e a t u r e  b e c a u s e  i t  i n t r o d u c e s  

s o - c a l l e d  u n p o i n t e d  d o m a i n s — r o u g h ly ,  d o m a i n s  w i t h o u t  a  b o t t o m  e l e m e n t .  W e  b e 

l ie v e  t h a t  i t  w o u ld  b e  a  s t r a i g h t f o r w a r d  m a t t e r  t o  e x t e n d  o u r  d e v e lo p m e n t  t o  h a n d l e  

u n b o x e d  ty p e s ;  t h i s  is  d i s c u s s e d  f u r t h e r  in  S e c t io n  4 .4 .5 .1

1For uniformity of development we will have some unboxed types—those that do not give rise to 
unpointed domains. Peyton Jones and Launchbury’s treatment provides unboxed primitive, sum, 
and product types; ours unboxed product and function types.
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4.1 Source Languages

W e  s t a r t  w i t h  t h e  l a n g u a g e  o f  ty p e s .  T h e  s y n t a c t i c  c l a s s e s  a r e

T G  T y p e  [T y p e s ]

A £  T N a m e  [ T y p e  N a m e s ]

c  £  C o n  [ C o n s t r u c to r s ]

D £  T D e f n s  [ T y p e  D e f in i t io n s ]

T h e  g r a m m a r  f o r  t y p e s  is

T : : =  A T y p e

I n t

( T i , . . . , T n )

Ci Ti  + . . .  + c n  T n 

T x # >  T2

[ T y p e  N a m e ]  

[ In te g e r ]

[ U n b o x e d  p r o d u c t ]  

[S u m ]

[ U n b o x e d  f u n c t io n ]

T h e  p r o d u c t  t y p e  m a y  b e  n u l l a r y ,  u n a r y ,  o r  m u l t i a r y .  N u l l a r y  p r o d u c t  ( )  p la y s  

a  s p e c i a l  r o le  a n d  w i l l  b e  c a l l e d  t h e  u n i t  t y p e .  A  u n a r y  p r o d u c t  ( T )  w i l l  in  a l l  

i n t e r p r e t a t i o n s  h a v e  t h e  s a m e  m e a n i n g  a s  T a n d  is  t a k e n  t o  b e  t h e  s a m e  t y p e ,  s o  

p a r e n t h e s e s  m a y  b e  u s e d  in  t h e  u s u a l  w a y  w i t h o u t  c o n f u s in g  a b s t r a c t  a n d  c o n c r e t e  

s y n t a x .  I n t e g e r  a n d  s u m  t y p e s  w i l l  b e  c a l l e d  b o x e d  t y p e s ,  a n d  p r o d u c t  a n d  f u n c t i o n  

t y p e s  u n b o x e d .

T h e  g r a m m a r  f o r  t y p e  d e f in i t i o n s  is

D : : =  Ai = T i ; . . .  ; An =  T n [ T y p e  D e f in i t io n s ]

A  s e t  o f  t y p e  d e f in i t i o n s  m u s t  b e  c lo s e d :  a n y  A a p p e a r i n g  in  t h e  d e f in i t i o n s  m u s t  b e  

d e f in e d  ( a p p e a r  t o  t h e  l e f t  o f  = ) e x a c t l y  o n c e ;  f u r t h e r m o r e ,  e a c h  c  m a y  a p p e a r  n o  

m o r e  t h a n  o n c e .

4.1.1 The lazy lambda calculus

T h e  s t a n d a r d  e x p r e s s io n  s e m a n t i c s  is  i n t e n d e d  t o  m o d e l  s o m e  o p e r a t i o n a l  s e m a n t i c s  in  

w h ic h  r e d u c t i o n  is  n o r m a l  o r d e r  t o  w e a k  h e a d  n o r m a l  f o r m  ( W H N F )  [ P J 87, O n g 8 8 ,  

A b r 89], w h ic h  m a y  o r  m a y  n o t  t e r m i n a t e .  F o r  a n  e x p r e s s io n  o f  b o x e d  t y p e  t h e  

s e m a n t i c s  is  i n t e n d e d  t o  g iv e  v a lu e  _L i f  i t  d o e s  n o t  r e d u c e  t o  W H N F ,  a n d  s o m e  v a lu e  

d i f f e r e n t  f r o m  _L o th e r w i s e .  T h i s  d e p a r t s  i n  a n  i m p o r t a n t  w a y  f r o m  t h e  m o r e  u s u a l  

m o d e l  o f  t h e  l a m b d a  c a l c u lu s  [ B a r90] in  t h a t  r e d u c t i o n  is  t o  W H N F  r a t h e r  t h a n  

h e a d  n o r m a l  f o r m  ( H N F ) .  I n  p a r t i c u l a r ,  e v e r y  l a m b d a  e x p r e s s io n  is  in  W H N F  e v e n  

t h o u g h  i t  m a y  n o t  h a v e  a  H N F ,  s o  o u r  s e m a n t i c s  s h o u ld  g iv e  a  n o n - b o t t o m  v a l u e
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t o  a  l a m b d a  e x p r e s s io n  e v e n  i f  i t  d e n o t e s  t h e  l e a s t  ( c o n s t a n t  b o t t o m )  f u n c t i o n .  A  

t h e o r y  o f  n o r m a l - o r d e r  r e d u c t i o n  t o  W H N F  in  t h e  s t r o n g l y - t y p e d  l a m b d a  c a l c u lu s  h a s  

b e e n  d e v e lo p e d  b y  A b r a m s k y  a n d  O n g  [ O n g 8 8 , A b r 89]; t h i s  s y s t e m  is  c a l l e d  t h e  l a z y  

l a m b d a  c a l c u l u s .  F o r  o u r  p u r p o s e s ,  t h e  s ig n i f i c a n t  f e a t u r e  o f  t h e  l a z y  l a m b d a  c a l c u lu s  

is  t h a t  e x p r e s s io n s  o f  f u n c t i o n  t y p e  t a k e  v a lu e s  f r o m  a  l i f t e d  f u n c t i o n  s p a c e  o f  t h e  

f o r m  ( U  V ) ± - T h e n  e x p r e s s io n s  o f  f u n c t i o n  t y p e  t h a t  d o  n o t  h a v e  a  W H N F  s h o u ld  

b e  a s s ig n e d  v a l u e  _L b y  t h e  s e m a n t i c s ;  a n y  e x p r e s s io n  o f  f u n c t i o n  t y p e  t h a t  d o e s  h a v e  

a  W H N F  s h o u l d  b e  a s s ig n e d  v a lu e  v a lu e  l i f t  f  f o r  s o m e  / .  T h o u g h  a n  e x p r e s s io n  o f  

f u n c t i o n  t y p e  h a s  a  d i f f e r e n t  v a lu e  d e p e n d i n g  o n  w h e t h e r  i t  d o e s  o r  d o e s  n o t  h a v e  a  

W H N F ,  w h e n  s u c h  a n  e x p r e s s io n  is  a p p l i e d ,  t h e  e x p r e s s io n  w i t h  n o  W H N F  ( v a lu e  

_L) s h o u l d  b e h a v e  j u s t  a s  a n  e x p r e s s io n  t h a t  d o e s  h a v e  a  W H N F  b u t  s t i l l  m a p s  e v e r y  

a r g u m e n t  t o  b o t t o m  ( v a lu e  l i f t  _L). T h u s  a p p l i c a t i o n  o f  a  l a z y  f u n c t i o n — a  v a l u e  f r o m  

a  l i f t e d  f u n c t i o n  s p a c e — in v o lv e s  d r o p p i n g  t h e  f u n c t i o n  ( in  e f f e c t ,  p r o j e c t i n g  b a c k  

i n t o  t h e  c o n v e n t io n a l  f u n c t i o n  d o m a i n ) ,  a n d  a p p l y i n g  t h e  r e s u l t  t o  t h e  a r g u m e n t .  A  

s im p l i f y in g  o b s e r v a t i o n  is  t h a t  l a z y  f u n c t i o n s  a r e  j u s t  o r d i n a r y  f u n c t i o n s  e m b e d d e d  

i n  t h e  s i m p l e s t  o f  l a z y  d a t a  s t r u c t u r e s ,  u n a r y  s u m ,  f o r  w h ic h  t h e  e m b e d d i n g  is  l i f t i n g .

T h e  u s e  o f  l i f t e d  f u n c t i o n  s p a c e s  h a s  i m p l i c a t i o n s  f o r  t h e  i n t e r p r e t a t i o n  o f  t h e  r e s u l t s  o f  

a n a l y s i s .  F o r  e x a m p le ,  t h e  f u n c t i o n  d e n o t e d  b y  \ x . \ y . x  w il l  n o t  b e  s t r i c t :  a r g u m e n t  

_L is  m a p p e d  n o t  t o  _L b u t  t o  l i f t  X ; t h i s  w i l l  b e  d i s c u s s e d  in  c o n t e x t .

T h e  s e m a n t i c s  o f  l a z y  f u n c t i o n a l  l a n g u a g e s  u s u a l l y  m a p  p r o d u c t  t y p e s  t o  l i f t e d  p r o d 

u c t  d o m a i n s  ( a  n o t a b l e  e x c e p t io n  is  M i r a n d a ) ;  in  t h e  C o r e  l a n g u a g e  o f  H a s k e l l ,  o r  

C o r e  o f  [ P J L 92], t h i s  is  m a d e  e x p l i c i t  s in c e  p r o d u c t  t y p e s  c a n  o n ly  b e  e x p r e s s e d  a s  a  

u n a r y  s u m  o f  t h e  f o r m  c  T i  . . .  T n . W e  w il l  d i s t i n g u i s h  l i f t e d  p r o d u c t s  f r o m  u n l i f t e d  

p r o d u c t s ;  m o r e  p r e c is e ly ,  w e  w i l l  t r e a t  s u m s  a n d  p r o d u c t s  i n d e p e n d e n t l y .  I n  o u r  l a n 

g u a g e  t h e  t y p e  w o u ld  b e  e x p r e s s e d  c  ( T i ,  . . .  , T n ) .  I n  c o n t r a s t ,  f u n c t i o n  t y p e s  a r e  

u s u a l l y  m a p p e d  t o  ( u n l i f t e d )  f u n c t i o n  d o m a in s .  T h e  r e a s o n  is  t h a t  w i t h o u t  a  p r o 

g r a m m i n g  l a n g u a g e  c o n s t r u c t  s u c h  a s  s e q  e i  e 2 , w h ic h  e v a lu a t e s  e i  t o  W H N F  b e f o r e  

r e t u r n i n g  e 2 , i t  is  n o t  p o s s i b l e  t o  d e t e c t  t h a t  f u n c t i o n s  c a n  b e  e v a l u a t e d  i n d e p e n 

d e n t l y  o f  b e i n g  a p p l i e d .  A t  s o m e  p o i n t ,  h o w e v e r ,  t h e  l i f t i n g  o f  f u n c t i o n  s p a c e s  m u s t  

b e  r e c o g n i s e d :  i f  a  f u n c t i o n ’s  a r g u m e n t  is  t o  b e  e v a l u a t e d  e a r l y  a n d  t h a t  a r g u m e n t  is  

o f  f u n c t i o n  t y p e  w e  m u s t  r e c o g n i s e  t h a t  i t  c a n  b e  e v a lu a t e d .  O u r  s t a n d a r d  s e m a n t i c s  

o f  t y p e s  w i l l  m a p  T i  # >  T 2 t o  a n  u n l i f t e d  f u n c t i o n  s p a c e ;  w e  w i l l  t a k e  T i  - >  T 2 t o  b e  

s h o r t h a n d  f o r  la m  ( T i  # >  T 2 ) ,  a  u n a r y  s u m  o f  u n b o x e d  f u n c t i o n  t y p e . 2 A  g r a m m a r

2Actually lam is a family of constructors indexed by Ti and T2; this is left implicit.
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S i m p l e S u m  =  s i n g l e  I n t

B o o l  =  t r u e  ( )  +  f a l s e  ( )

I n t L i s t  =  n i l  ( )  +  c o n s  ( I n t ,  I n t L i s t )

I n t L i s t L i s t  =  l n i l  ( )  +  I c o n s  ( I n t L i s t ,  I n t L i s t L i s t )

F u n L i s t  =  f n i l  ( )  +  f c o n s  ( I n t  - >  I n t ,  F u n L i s t )

F u n C h o i c e  =  l e f t  ( I n t  - >  I n t )  +  r i g h t  ( I n t  - >  I n t )

B o o l T r e e  =  l e a f  B o o l  +  n o d e  ( B o o l T r e e ,  B o o l T r e e )

F u n T r e e  =  f l e a f  ( I n t  - >  I n t )  +  f n o d e  ( F u n T r e e ,  F u n T r e e )

F u n T y p e  =  F u n T y p e  - >  I n t  - >  I n t

Figure 4.1: Example type definitions.

f o r  a  m o r e  c o n v e n t io n a l  l a n g u a g e  is

T : : =  A [ T y p e  N a m e ]

| ( T )  [ P a r e n th e s i s e d  T y p e ]

| I n t  [ In te g e r ]

I T i - >  T2 [ F u n c t io n ]

| S [S u m  o f  P r o d u c t s ]

S : : =  c i  ( T l t l , . . . , T i | 0 l ) + . . .  +  c n ( T „ , i , . . .  , T i )Gb ) [S u m  o f  P r o d u c t s ]

D : : =  Ai =  S i ;  . . .  ; k n  = S n [ T y p e  D e f in i t io n s ]

T h i s  i s  j u s t  a  r e s t r i c t i o n  o f  t h e  f i r s t  l a n g u a g e  t o  b o x e d  ty p e s ;  o u r  t h e o r y  is  d e v e lo p e d  

in  t e r m s  o f  t h e  f i r s t  l a n g u a g e  a n d  h e n c e  a p p l i e s  t o  a n y  s u b s e t .  F i g u r e  4 .1.1 d e f in e s  

s o m e  o f  t h e  t y p e s  t h a t  w i l l  b e  u s e d  in  l a t e r  e x a m p le s .

4.1.2 Expression language

T h i s  t i m e  w e  g iv e  a  m o r e  c o n v e n t io n a l  l a n g u a g e  f i r s t ,  t h e n  i t s  e m b e d d i n g  i n t o  t h e  

a c t u a l  s o u r c e  l a n g u a g e .  T h e  a d d i t i o n a l  s y n t a c t i c  c l a s s e s  r e q u i r e d  f o r  e x p r e s s io n s  a r e

e  G E x p r  [ E x p r e s s io n s ]

x  G V a r  [ V a r ia b le s ]

n  G N u m  [ N u m e r a ls ]
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The gram m ar for expressions is 

e  x

I n,

I ei + e2
| C ( © 1 j • • •  >

| c a s e  e o  o f

c i  ( x M ,  . . .  , x M l )  - >  e i

[ V a r ia b le ]

[ N u m e r a l]

[ In te g e r  a d d i t i o n ]  

[ S u m  c o n s t r u c t io n ]  

[S u m  d e c o m p o s i t io n ]

\ x : T . e  

e i  e 2 

s e q  e i  e 2 

f i x  e

, x n,an ) - >  e .

[ L a m b d a  a b s t r a c t i o n ]  

[ F u n c t io n  a p p l i c a t i o n ]  

[ S e q u e n t i a l  e v a lu a t io n ]  

[ F ix e d  p o in t ]

T o  k e e p  t h e  s e m a n t i c s  s im p le  w e  r e q u i r e  t h a t  in  a  c a s e  e x p r e s s io n  e v e r y  c o n s t r u c t o r  

i n  t h e  c o r r e s p o n d i n g  t y p e  d e f in i t i o n  a p p e a r  in  e x a c t l y  o n e  p a t t e r n .  U s u a l ly  w e  w i l l  

w r i t e  \ x . e  i n s t e a d  o f  \ x : T . e  w h e n  t h e  t y p e  is  c l e a r  f r o m  c o n t e x t .

A  c o m p l e t e  p r o g r a m  c o n s i s t s  o f  a  s e q u e n c e  o f  t y p e  d e c l a r a t i o n s  f o l lo w e d  b y  a n  e x 

p r e s s i o n .

p  E  P r o g  [ P r o g r a m s ]  

p  : : =  D ; e

W e  d o  n o t  r e q u i r e  t h a t  e  b e  c lo s e d ;  f o r  e x a m p le  e  m i g h t  h a v e  f r e e  v a r i a b l e s  s u c h  a s  

i n p u t ,  a  s t a n d a r d  o r  d e f a u l t  i n p u t  l i s t  o f  c h a r a c t e r s  ( a s  in  L a z y  M L  o r  M i r a n d a ) .  

F r e e  v a r i a b l e s  a r e  a s s u m e d  t o  b e  b o u n d  b y  a  g lo b a l  e n v i r o n m e n t .  T h i s  c o n c e p t  is  

i m p o r t a n t  t o  o u r  d e v e lo p m e n t :  i t  a l lo w s  e v e r y  e x p r e s s io n  t o  b e  t r e a t e d  in  t h e  s a m e  

w a y — c l o s e d  e x p r e s s io n s  a r e  n o t  s p e c i a l .
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We regard expressions in the conventional expression language as shorthand for ex

pressions in the actual source language defined by the following grammar.

L ik e  p r o d u c t  t y p e s ,  t u p l e s  m a y  b e  n u l l a r y ,  u n a r y ,  o r  m u l t i a r y .  S in c e  e  w i l l  h a v e  t h e  

s a m e  t y p e  a n d  d e n o t a t i o n  a s  ( e )  p a r e n t h e s e s  m a y  b e  u s e d  in  t h e  u s u a l  w a y . A s  b e f o r e ,  

in  a  c a s e  e x p r e s s io n  e v e r y  c o n s t r u c t o r  o f  t h e  s e l e c to r  t y p e  m u s t  g u a r d  a  b r a n c h ,  a n d  

\ # x . e  m a y  b e  w r i t t e n  i n s t e a d  o f  \ # x : T . e .

T r a n s l a t i o n  o f  t h e  c o n v e n t io n a l  l a n g u a g e  i n t o  t h e  s o u r c e  l a n g u a g e  w i l l  m a k e  e x p l i c i t  

a t  t h e  s y n t a c t i c  le v e l  t h e  b o x i n g  a n d  u n b o x i n g — t h e  e m b e d d i n g  i n t o  a n d  p r o j e c t i o n  

out of lifted spaces—of tuples and functions. In turn, this gives a simpler, more 
u n i f o r m ,  a n d  m o r e  g e n e r a l  d e v e lo p m e n t  o f  t h e  s e m a n t i c s .

T h e  c o n v e n t io n a l  c a s e  e x p r e s s io n

c a s e  eo  o f

c  ( x i , i ,  . . .  , x 1|fll)  - >  e i

C Ĉ l,l » • • • » ̂ l,ai ) — ̂  6n
is  s h o r t h a n d  f o r  

c a s e  eg  o f

c  x i  - >  l e t  ( x i fi ,  . . .  , x 1>ai) =  x i  i n  e i

c  x n - >  l e t  ( x Bji ,  . . .  , x 1)Gn) = x n i n  e n  .

Application ei e2 is translated to 

c a s e  e i  of

la m  f  - >  a p p #  f  e2  ,

e

n  *

e i  +  e 2 

( e i , . . . , e n )

l e t  ( x x ,  . . .  , x n )  =  e 0 i n  e i  

c <  e

c a s e  e 0 o f  C i  X i  - >  e ^  . . .  ; c n  x n  - >  e TO

\ # x : T . e

a p p #  e i  e 2

f i x #  e

x [Variable]

[Numeral]

[Integer addition] 

[Tuple construction] 
[Tuple decomposition] 

[Sum construction] 

[Sum decomposition] 

[Lambda abstraction] 

[Function application] 

[Fixed point]
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w h e r e  T i - >  T2 is  u n d e r s t o o d  t o  b e  la m  ( T i  #>  T 2 ) .  S e q u e n t i a l  e v a l u a t i o n  s e q  e i  e2 

i s  t r a n s l a t e d  t o

c a s e  e i  o f  c i  x i  - >  e 2 ; ; c n x n - >  e 2 ,

where ei has type ci Ti + . . .  + cn Tn. Lambda abstraction \x:T.e is translated 
t o  l a m  ( \ # x : T . e ) .  L a s t ,  f ix e d  p o i n t  f i x  e  is  t r a n s l a t e d  t o

c a s e  e  o f

la m  f  - >  f i x #  f  .

I n  a l l  c a s e s  w e  t a k e  t h e  v a r i a b l e s  i n t r o d u c e d  b y  t r a n s l a t i o n  t o  b e  f r e s h  s o  t h a t  t h e r e  

is  n o  n a m e  c a p t u r e .

R o u g h l y  s p e a k i n g ,  e v a l u a t i o n  is  f o r c e d  o n ly  b y  c a s e  a n d  + ;  i n  p a r t i c u l a r ,  p r o d u c t  

d e c o m p o s i t i o n  d o e s  n o t  f o rc e  e v a l u a t io n .

4.1.3 Typing

W e  w i l l  t y p i c a l l y  u s e  T, U, a n d  V t o  d e n o t e  t y p e s .  T h e  s y m b o l  T  d e n o t e s  a  s e t  o f

t y p i n g  a s s u m p t i o n s  o f  t h e  f o r m  x t- : T * .  T h e  t y p i n g  r u le s  a r e  g iv e n  f o l lo w in g .

T, x:T b  x:T 

r  b  n< : In t

r  h  e j  : I n t  T  b  e 2  : I n t  

r  b  ( e i  +  e 2 )  : I n t

T ,  x  : T i  b  e  : T 2

T  b  ( \ # x : T i . e )  : Tx # >  T 2 

T  b  e i  : T i  # >  T 2 T  b  e 2 : T i  

r b  ( a p p #  e i  e 2 )  : T 2 

T  b  e i  : T i  • • • T  b  e n  : T n  

T  b  ( e i , . . . , e n )  : ( T 1# . . . . T b )

r b  e 0 : ( T i ,  . . .  , T n )  T ,  x x : T i ,  . . . ,  x n  : T n  b  e x : U  

T  b  ( l e t  ( x i , . . . , x n )  = e 0 i n e i ) : U  

T  b  e  : T  f-
—— —-------- —  [ A  = ci Ti + . . .  + c„ T„]
T  b  ( c ;  e )  : A
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T  b  e 0 : A  T ,  x i  : T i  h  e *  : U  • • • T ,  x n  : T n  h  e n  : U

T  h  ( c a s e  e 0 o f  c i  x i  - >  e i ;  . . .  ; c n x n - >  e n ) : U  

[A = c i  T i  + . . .  +  c „  Tn ]

T  h  e  : T # >  T 

r  h  ( f i x #  e ) : T

4.2 Semantics

W e  w i l l  g iv e  a  n u m b e r  o f  t y p e  a n d  e x p r e s s io n  s e m a n t i c s  p a i r s  T  a n d  8 ,  t y p i c a l l y  

s u p e r s c r i p t e d  b y  t h e  n a m e  o f  t h e  s e m a n t i c s .  F o r  e x a m p le ,  S  is  t h e  n a m e  o f  t h e  

s t a n d a r d  s e m a n t i c s  a n d  t h e  tw o  s e m a n t i c  f u n c t i o n s  a r e  T 5 a n d  8 s .

4.2.1 Dom ain definitions

E a c h  s e m a n t i c  f u n c t i o n  T  m a p s  t y p e s  t o  d o m a i n  e n v i r o n m e n t s  t o  d o m a i n s ,  s o  

T  G T y p e  - *  D E n v  - *  D o r n  ,

D E n v  —  T N a m e  - >  D o m  ,

w h e r e  D o m  i s  t h e  c l a s s  o f  a l l  S c o t t  d o m a in s ;  w e  m a y  t a k e  i t  t o  b e  t h e  c a t e g o r y  o f  

S c o t t  d o m a i n s ,  t h o u g h  w e  w i l l  n o t  u s e  a n y  o f  t h e  c a t e g o r i c  s t r u c t u r e .  W e  u s e  C t o  

d e n o t e  a  t y p i c a l  d o m a i n  e n v i r o n m e n t ,  w h e n  n e c e s s a r y  s u p e r s c r i p t e d  w i t h  t h e  n a m e  

o f  t h e  s e m a n t i c s .

F o r  e a c h  s u c h  f u n c t i o n  t h e r e  is  a n  im p l i c i t l y  d e f in e d  f u n c t i o n  T d e f n s  m a p p i n g  t y p e  

d e f i n i t i o n s  t o  d o m a i n  e n v i r o n m e n t s ,  t h a t  is ,

T d e f n s  e  T D e f n s  ->  D E n v  .

T h e  f u n c t i o n  T d t ^ s  i s  d e f in e d  in  t e r m s  o f  T :  g iv e n  t y p e  d e f in i t i o n s  D e q u a l  t o  

Ai =  T i ; . . .  ; An =  T n , d e f in e

Ci =  (AC.[Ay ^  T I T , - ]  C | 1 <  j  <  n ] Y  Co ,

w h e r e

Co =  [A3 ^ r [ 0 ]  [] I 1 <  j  <  n] .

T h e n  C t [ A ]  is  t h e  i t h  c a n o n i c a l  a p p r o x i m a t i n g  d o m a i n  f o r  7^ ey j D ] [ A j .  w e  re_ 

g a r d  C a s  a  t u p l e  i n d e x e d  b y  t y p e  n a m e  t h e n  7^ - ^ l D ]  is  a  s o l u t i o n  o f  C =  [A,

T [ T i ]  C | 1 <  * <  n ]  a s  d e s c r i b e d  in  S e c t io n  2 .5 .) N o te  t h a t  t h e  i n i t i a l  a p p r o x i m a t i n g
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d o m a i n s — Co [ A ]  f o r  e a c h  A— a r e  t h e  i n t e r p r e t a t i o n  o f  t h e  u n i t  ty p e .  T h e  s u b s t i t u t i o n  

l e m m a  w il l  h o ld  f o r  a l l  s u c h  d e f in i t i o n s ,  t h a t  is ,  T [ T ]  £[A »->• T [ T > ] C] w i b  b e  e q u a l  

t o  T [ T [ T > / A ] ]  C w h e n  t h e r e  is  n o  v a r i a b l e  c a p t u r e .  A  u s e f u l  c o n s e q u e n c e  o f  t h e s e  

tw o  f a c t s  is  t h a t  01 A ]  c a n  a lw a y s  b e  e x p r e s s e d  b y  T [ T ]  [] f o r  s o m e  ( c lo s e d )  t y p e  T.

Even non-recursive type definitions give rise to retraction sequences; for example in 
the standard semantics the type definition I = In t  yields the retraction sequence

({1, In t , In t , In t , . . .},  {(Ax._L,Xx.l.), (id, id), (id, id), (id, id),  . . .}),

t h e  in v e r s e  l i m i t  o f  w h ic h  is  i s o m o r p h ic  t o  Int, b u t  p l a i n l y  n o t  i d e n t i c a l .  N o n e th e le s s ,  

w e  n o r m a l l y  t h i n k  o f  t h e  t y p e  d e f in i t i o n  a s  d e f in in g  I t o  b e  a  s y n o n y m  f o r  In t ,  
a n d  th e r e f o r e  t h i n k  o f  t h e  in v e r s e  l i m i t  o f  t h e  r e t r a c t i o n  s e q u e n c e  a s  b e i n g  s i m p l y  

Int. O n  t h e  o t h e r  h a n d ,  e v e r y  t y p e ,  w h e t h e r  r e c u r s iv e  o r  n o t ,  m a y  b e  t h o u g h t  o f  a s  

d e n o t i n g  t h e  in v e r s e  l i m i t  o f  s o m e  r e t r a c t i o n  s e q u e n c e ,  s im p ly  b y  g iv in g  t h e  t y p e  a  

n a m e  a n d  g e n e r a t i n g  t h e  a p p r o p r i a t e  t y p e  d e f in i t io n .  T h i s  p o i n t  o f  v ie w  m a k e s  c l e a r  

t h a t  n o n - r e c u r s iv e  t y p e s  a r e  s im p ly  s p e c i a l  c a s e s  o f  r e c u r s iv e  t y p e s .  T h e  f o r m e r  v ie w  

is  u s e f u l  w h e n  g iv in g  s e m a n t i c  d e f in i t io n s :  i t  w o u ld  b e  c o n f u s in g  t o  w r i t e  5 s o m e t i m e s  

a n d  ( ± ,  5 , 5 , . . . )  o t h e r s ,  a n d  e x p l i c i t l y  d e f in e  a n d  a p p l y  t h e  a p p r o p r i a t e  i s o m o r p h i s m  

m a p s .  T h e  l a t t e r  v ie w  is  p r e f e r a b l e  w h e n  p r o v in g  p r o p e r t i e s  o f  f u n c t i o n s  d e f in e d  in  

t e r m s  o f  t y p e  s t r u c t u r e ,  s in c e  w e  n e e d  o n ly  c o n s id e r  t h e  m o r e  g e n e r a l  c a s e .

O f t e n  w e  w i l l  t a k e  t h e  t y p e  d e f in i t i o n s  D a n d  t h e  c o r r e s p o n d i n g  d o m a i n  e n v i r o n m e n t  

T d e f n s l D 1 t o  b e  i m p l i c i t l y  f ix e d ,  in  w h ic h  c a s e  T |  T ]  is  s h o r t h a n d  f o r  T \  T ] (Tdefna\ D ] ) .  

T h e  s o le  r e f e r e n c e  t o  t h e  d o m a i n  e n v i r o n m e n t  is  a lw a y s  o f  t h e  f o r m  T [ A ]  £  =  C [ A ] .  

H e n c e  w e  m a y  e c o n o m is e  o n  s y n t a x  b y  e x c lu d in g  t h i s  c l a u s e  f r o m  t h e  d e f in i t i o n s  o f  7” , 

a n d  e x c lu d in g  e x p l i c i t  p a s s i n g  o f  t h e  d o m a i n  e n v i r o n m e n t  p a r a m e t e r .  F o r  e x a m p le ,  

i n  t h e  s t a n d a r d  s e m a n t i c s

r ^ T !  # >  t 2 ]  c  =  ( 7 * [ T i ]  C )  - *■ C 7^ [ T 2 ]  C )  ,

w h ic h  w e  a b b r e v i a t e

X s [ T j  # >  T 2 J  =  T S I T J  - >  T ^ J  .

4.2.2 Expression sem antics

For the purpose of generating programs we first fix a set D of type definitions. We 
then suppose a  supply of typed variables xt- E Var, i >  1, an infinite number a t each 

type. Since any given expression e contains only finitely many variables xt, 1 <  i < n, 
value environments p for e and all of its subexpressions need contain bindings only 
for some finite subset of these variables. It turns out to be very convenient to have
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v a l u e  e n v i r o n m e n t s  c o m e  f r o m  d o m a i n s  c o r r e s p o n d i n g  t o  p r o d u c t  t y p e s :  f o r  b in d i n g s  

o f  v a r i a b l e s  x ;  : Et-, 1 <  i  <  n  t h e  c o r r e s p o n d i n g  t y p e  is  ( E i , . . .  , E n ) ,  u s u a l l y  a b b r e 

v i a t e d  E— t h e  t y p e  o f  t h e  e n v i r o n m e n t .  T h e n  f o r  p  G 7~[ ( E i , . . .  , E n ) ]  e n v i r o n m e n t  

l o o k u p  p [  ] is  d e f in e d  t o  b e  s e k  p , w h e r e  s e k  i s  t h e  a p p r o p r i a t e  s e l e c to r  f u n c t i o n  fo r  

products, defined for each type semantics. This view allows the functionality of the 
e v a l u a t i o n  f u n c t i o n  S  t o  b e  m a d e  p r e c is e :  £  i s  a  f a m i ly  o f  f u n c t i o n s ,  i n d e x e d  b y  t h e  

t y p e  d e f in i t i o n s  D, t h e  t y p e  E o f  i t s  v a lu e  e n v i r o n m e n t  a r g u m e n t ,  a n d  t h e  t y p e  T «of 

t h e  p a r t i c u l a r  e x p r e s s io n  e  t o  b e  e v a l u a t e d .  T h e n

€  r I E l  C T W 0 ! )  - »  r [ T I  C W D 1) •

U s u a l l y  t h e  s u b s c r i p t s  o f  £  w i l l  b e  o m i t t e d .  V a lu e  e n v i r o n m e n t s  m a y  b e  s u p e r s c r i p t e d  

t h e  s a m e  a s  d o m a i n  e n v i r o n m e n t s  a n d  t h e  s e m a n t i c  f u n c t i o n s .

B y  e s c h e w in g  t h e  u s e  o f  a  u n iv e r s a l  d o m a i n ,  w e  a v o id  t h e  q u e s t i o n  o f  w h e t h e r  “t y p e d  

p r o g r a m s  c a n ’t  g o  w r o n g ” [Mil78]; i n s t e a d  t h e  r e l e v a n t  q u e s t i o n  is  w h e t h e r  e a c h  

e x p r e s s io n  s e m a n t i c s  £  is  w e l l  d e f in e d  f o r  w e l l - t y p e d  a r g u m e n t s ,  w h ic h  w e  a s s e r t  t o  

b e  t h e  c a s e .

4.2.3 A generic expression semantics

S in c e  s e v e r a l  d i f f e r e n t  e x p r e s s io n  s e m a n t i c s  w i l l  b e  g iv e n ,  i t  is  c o n v e n ie n t  t o  e x p r e s s
I

a l l  o f  t h e  s e m a n t i c s  a s  a  s in g l e  s c h e m a ,  o r  g e n e r i c  s e m a n t i c s ,  t h a t  is  p a r a m e t e r i s e d  

b y  a  s e t  o f  c o n s t a n t s  d e f in e d  f o r  e a c h  p a r t i c u l a r  s e m a n t i c s .  T h e s e  c o n s t a n t s  w i l l  b e  

s u p e r s c r i p t e d  w i t h  t h e  n a m e  o f  t h e  s e m a n t i c s .  T h e  g e n e r ic  s e m a n t i c s  is  d e f in e d  a s  

fo l lo w s .

£ [ x t ]  P  =  =  s e k  p  ,

£ [  O  ]  p  =  m k u n i t  p  ,

£ [ n « ]  p  =  m h i n t i  p  ,

£ [ e i  + e 2 ] p  =  p l u s  ( £ [ e i ]  p ,  £ [ e 2 ] p )  ,

£ [ ( e i .  . . .  , e „ ) J  p  =  t u p l e  ( £ [ e i ]  p ,  . . . ,  £ [ e n ] p )  [* >  1] ,

£ [ l e t  ( x i , . . . , x n ) = e 0 i n  e i ]  p

=  £ [ e 1 ]  p [ x i  i-> s e k  ( ^ [ e 0 ] p )  | 1 <  i  <  n ]  ,

^[c,* e ]  p =  inci ( £ [ e j  p) ,
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£ [  case e0 of ci xi -> e i ; . . .  ; cn xn -> en ] p

=  choose ( £ \ qq \ p,

£ [ e i ]  p[xi i-> outci ( £ [ e 0] p)],

£ [ e n ] p[xn outcn (£ [e 0] p)]) ,

£ [ \ # x .e ]  p = mkfun  (A z .£ [e ] p[x $], p) ,

£ [ app# ei e2] p =  apply ( £ [ e i ]  p) (£ [e 2J p) ,

£ [ f ix #  e ]  p =  ( / i io  apply) ( £ [ e ] p) .

Recall th a t p[ xt- J is short for sek p; environment update and extension is defined by

p[xi i->- v] =  tuple (sell p, . . . ,  sek-i  p, v, sefc+i p, . . . ,  seln p) .

Then the empty environment, denoted [], is the value of nullary tuple, which must 
be the identity (up to  isomorphism) of non-nullary tuple.

Now the boxing and unboxing of functions is explicit, for example,

£ [ \ x . e ]  p =  (inlam o mkfun) (A x .£[e] p[x i-> x], p)

and

£ [ e i  e2] p =  choose ( £ [ e i ]  p, (apply o outlam) ( £ [ e i j  p) (£ [ e 2] p)) .

For each expression semantics we need only define the constants mkunit, mkinti, plus, 
seli, tuple, inci, outci, choose, mkfun, apply, and fix, which we refer to as the defining 
constants for the expression semantics. Their generic functionality is as follows.

mkunit E T [  E] -> T [ 0 ]  , 

mkinti €  T [E ]  T [ l n t ]  ,

plus e  ( T [ l n t J  x T [ I n t ] )  ->• T [  In t  ] ,

tapfe € (T [T i.] x . . .  x T { T„]) T [ ( T i , . . . , T n) ] ,

sek G T [  (T i, . . .  ,Tn) ] —>■ T[T,-] ,

inci G T[T,-] —> T [ c i  Ti + . . .  + cn Tn ] ,

outci G T [C 1 T1 + . . .  + c n Tn ] —> T \ Ti] ,

choose G . . .  + cn Tn ] x T [T ]  x . . .  x T [T ])  T [ T ]  ,
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mkfun e ((T[Til ^  T[T2J) x T[E]) T [ Ti #> T2] , 

apply G T [ Ti #>T2] -> T[Ti] T[T2] , 

fix e (TITl T[tJ) -► T i l ]  •

Just like the evaluation function, each of these functions (except plus) is really a 

family of functions, indexed by a set of type definitions and one or more types, tuple 
additionally by its arity; this is only made explicit when necessary. The reason for 

making mkunit , mkinti, and mkfun functions of the environment is to be able to 
guarantee a dependence of S  on the environment a t every expression (note th a t all of 
the leaves of an expression are of the form x ,  ( ) , or n,'; the reason for the environment 
argument to mkfun will be explained shortly). In the standard semantics there is no 
special dependence on the environment and these constants ignore the environment 
argument, but this will not generally be the case.

Except for the fact th a t no case expression for selector of type In t  is provided, and 
a  single instance which is clearly noted, the treatm ent of In t  in our development will 
be entirely consistent with In t  being defined by the infinite sum

In t  = . . .  + n_i () + n0 0  + ni 0  + . . . .

Hence n* can be regarded as shorthand for n* ( ) , and mkinti equal to  innj o m kunit , 
where mn; is the corresponding injection function. Further, were In t  defined as a 
sum, ei + e2 could be expressed (at least in principle) as an infinite nested case 
expression, hence plus could be defined in terms of choose.

Factoring the semantics in this way has several benefits: proofs of certain relations 

between the various semantics may be factored in the same way so th a t the details of 
the proofs at the level of the generic part need be given only once; the presentation of 
each version of the semantics is made concise; special dependence on the environment 

(for mkunit , mkinti, and mkfun) is made clear; and the relationship between the 
semantics of boxing and unboxing, application, and fixed point is disentangled.

4.2.4 R elating expression semantics

To relate two semantics T and E T (where G and H are arbitrary) we will define 

a family of predicates

e (T5!T] (7&.ID]) x 7"[T] (7^ 101)) A Truth
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indexed by a set of type definitions D and a type T. These predicates will be called 

type predicates. We will require th a t the two semantics be logically related, as follows. 

Recall th a t for e : T with environment type E,

e 7 * lEl T®[T] (7&.ID]) ,

e r H[E] (TJ^JD]) 7"[T] (T T ^ m )  .

Then we will require th a t

(^D,E ^D,t) (̂ D,E,tI ® 1’ ^D,E,tI e 1) »

where —> is the operator on binary predicates defined in Section 2.5.2. Next we show 

th a t if the defining constants are similarly related then the semantics are so related.

Just as for the expression semantics the relations between the constants are defined
in term s of their functionality as given above, and the underlying type predicates. 

For example,

plus 6  ( T [ I n t J  x T [ I n t | )  -4 T [ I n t J  ,

and the required relation between plusG and plusH is

( 7?̂ *"* v  7?̂ *"*  ̂  ̂7?̂ *"*
V-^D.Int A  ■f *'D,Int/ 1r -r tD ,Int ■

For a more complicated example, consider

mkfun  €  ((7"[Ti] -+ T[T2]) x T[E]) -> T[Ti #> T2] .
/ *  I I

The required predicate between mkfun and mkfun  is

((-̂ D,Ti -̂ D,T2) X ^D,e) -̂ D,Ti#>T2 •

W hen we state  th a t some pair of semantics S G and S H or their defining constants are 
“related by R GH” or “correctly related” we mean specifically by these predicates.

Proposition 4.1
If the defining constants of a pair of expression semantics S G and S H are related by 

i?GH, then so are the semantics.

Sketch Proof
The proof is by simple structural induction on expressions. We give some details of 
two cases.

Case n2- : I n t .  By assumption, m k in tG and mkinti* are related by —>•
and £ [ n 2] =  mkinti, so £ G[n 2] is related to £ H[n 2] by the same predicate.
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C ase  \# x .e  : Ti #> T2 . The interesting point about this case is the requirement 

th a t if R Ge (pG,p H) and R Ĝ  (uG,u H) then R Gp  (pG[xt- i-> vG], pH[x,- uh]), where 
E' is type of the (possibly) extended environment. This follows from the definition 
of environment update and the fact th a t corresponding seli and tuple functions are 
correctly related. □

Defining expression semantics in terms of a set of constants and relating a pair of 
semantics by relating their defining constants is a standard technique; Abramsky 
gives a simpler example in the setting of BHA-style strictness analysis [Abr90], while 
Nielson gives a much more sophisticated framework—a two-level semantics—for doing 
this [Nie89].

4.3 Standard Semantics

4.3.1 Type semantics

As mentioned, the versions of the various functions defining the standard semantics 

are indicated by superscript S. The semantics of types is

T ^ [ l n t ]  =  Int  ,

( T i . . . .  »Tn ) ] =  ^ [ T j ]  X . . .  X 7 ^ [ T n ] ,

T ^ C !  Ti + . . .  + c n T „ ]  =  ( ^ [ T i D x  © . . .  © ( T ^ D x ,

r ^ T !  #> T2] =  T^fTx] -> T^[T2] .

Then 7 ^ [  O ] =  1 and T ^f Tx -> T2] =  (7^[T i ] —> 7 ^ [T 2 ])x. The standard seman-
tics of sum types is a coalesced sum of lifted domains rather than the more usual

separated sum (+) to make clear exactly where lifting occurs—separated sum is a 
generalisation of lifting (unary separated sum is isomorphic to lifting) and thus tends 

to  disguise lifting; coalesced sum does no lifting (unary coalesced sum is identity up 
to  isomorphism), and separated sum can be defined in term s of coalesced sum and 
lifting.

4.3.2 Expression semantics

The constants for the standard expression semantics are defined as follows.

In the standard semantics mkunit ignores the environment argument. 

mkunits / ? = ( ) .
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Recalling th a t In t  =  Zj_,

m kintf p = lift i .

Addition for Int is strict in both arguments,

pluss (1 , y) = 1  ,
pluss (z,-L) =  _L ,

pluss (lift re, lift y) =  lift (x +  y) .

Values of product type are ordinary tuples.

tuples (rci, . . . , xn) =  (rci,. . .  ,rcn) ,

self - 7 Ti .

Constructors lift their arguments and then inject into the appropriate sum. 

incf = in{ o lift ,

outcf = drop o outi .

Recalling th a t (z, v) £ U\ ® . . .  © Un is the image of non-bottom  v under zYij, we have

chooses (_L, rri,. . . ,  xn) =  _L ,

chooses ((z, v), X i, . . . ,  xn) =  x̂  .

In the standard semantics mkfun  ignores the environment argument.

mkfuns ( f , p)  = f  .

Application is ordinary application. 

applys /  =  /  •

The fixed-point constant is ordinary least fixed point, which we will denote by Ifp 

rather than  the more usual fix  to avoid confusion with the semantics-defining con
stants.

fixs =  Ifp .

4.3.3 Operational semantics

The standard (denotational) semantics is intended to  correspond to  an operational 
semantics modelling normal-order reduction. Ideally, we would define an operational 

semantics, give a congruence between the denotational and operational semantics 

(e.g. in the style of Lester [Les89]), and for the strictness and term ination analyses 
show th a t the modifications of evaluation order they enable preserve observational 

equivalence of programs. Such a treatm ent is beyond the scope of this thesis. Instead
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we give as a source of intuition and guide to the development a very informal account 
of the intended operational semantics and its relation to the standard semantics.

We acknowledge th a t our denotational semantics does not distinguish non-strict eval

uation from lazy evaluation (non-strict evaluation with sharing), but, as Burn shows 
[Bur90a], the difference is im portant when modifying evaluation order based on strict
ness information. (Burn’s observation is th a t if a function is head-strict and its 
argument is shared, then it may not be safe to modify the evaluation order of the 
argument in the seemingly natural way, th a t is, to  evaluate the head of each evaluated 
cons cell, since another function might not consume the list in a head-strict manner.) 

Launchbury’s natural semantics for lazy evaluation [Lau93] would probably be an 
appropriate operational semantics, precisely because it accurately models sharing.

As stated, the intended model of evaluation is normal-order reduction until weak 
head normal form is reached, but this does not completely describe our world view. 
In most real implementations, programs (top-level expressions) are not evaluated just 
to  WHNF, but as far as possible outside of lam bda expressions (expressions of the 
form \# x . e), with the (partial) result displayed as it is produced. For example, if the 
result of a program is a string of characters, the output driver attem pts to evaluate and 
display the entire string. In the special case of character strings, this is evaluation 

to  W HNF, and if the result is non-nil, evaluation and display of the head, then 
repeating the process with the tail until (if ever) the end of the list is reached. More 
generally, the output driver performs a depth-first traversal and display of the result 

of the program. This may be implicit, as in M iranda, or require explicit conversion 
to  character-string form first by a family of ‘show’ functions show_A for each type 
name A as in Lazy ML. This is an im portant consideration because the demand of 
the output driver can be accurately encoded by a projection, and we anticipate th a t 
this would be a starting point for backward strictness analysis.

A closely related implementation decision for which there seems to be no consensus is 

whether values of function type should be at all displayable. One solution is for the 
implementation to  write some special symbol, for example <f unct ion> in M iranda for 
values of function type. The Lazy ML solution is to disallow show_A for A containing 

->. We will hypothesise an output driver like th a t of M iranda th a t operates on any 
type; in particular treating expressions of function type correctly as a unary sum, 

printing the name lam of the constructor upon successful evaluation to WHNF. Pro
viding seq  in the language makes it possible to define in the language a function with 
the same demand on its argument as this output driver, and hence derive projections 
encoding the demand of the output driver a t any type in a systematic way.
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Intuitively this serves to explain why mkfun , like mkunit and mkinti, requires an 
environment argument: expressions of the form \# x .e  cannot be evaluated and so 

are like the leaf ( ) —this will become evident when we consider higher-order analysis.

4.3.4 Interpretation of projections

For domains arising from the standard semantics of types we are only interested in the 
interpretation of projections for binding-time analysis; for strictness and term ination 

analysis we work with lifted domains (in the sense of Chapter 3) and projections on 

them  as developed in the next section.

Roughly, we intend th a t a projection act as the identity on those parts of a value th a t 
are static, and map the dynamic parts to _L. Hence, ID  means ‘entirely s ta tic ’, B O T  
means ‘entirely dynam ic’, and B O T  x ID  means th a t the first components of pairs are 
dynamic and the second components static. The last example suggests a general goal: 
the interpretation of projections (insofar as possible) should be defined recursively in 

term s of type structure, th a t is, be compositional. We consider projections on a 
type-by-type basis, regarding In t  as a sum.

Case ( ) .  Since T ^  \ O ] =  1, there is only one projection for this type: here ID  =  
B O T , telling nothing; since values of type () cannot be evaluated it is not useful to 
regard them  as either static or dynamic.

Case ci Ti + . . .  + cn Tn. Recall

T, + . . .  + c„  Tn ] =  (T q T jJ x  © . . .  © (^ [T n D x  .

Every projection on this domain may be uniquely expressed in the form 71 0  . . .  © 7 n 
where 7 ,• E | (T ^ T ; ])j_ |, 1 <  * <  n. For each constructor c* define the projection 
transform er ct- by

ci € | T^[Tt ] | —> | T5! ci Ti + . . .  + cn Tn ] |

Ci ol — BOT±  0  . . .  0  BOT±  0  cq_ 0  BOT±  0  . . .  0  BOT±  ,

where a± appears in the i th position on the right-hand side. The interpretation of 
Ci a  is ‘if the argument is of the form incf v then the constructor is static and its 
argument has staticness described by a . ’
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Case (T i, . . .  ,Tn)* Recall

7 s ! (T,........ T„) ] =  T^lTj] x . . .  x .

As discussed in Section 3.1.3, not all projections on a product space can be expressed 

as a product of projections, nor as a lub or gib of products. The projections th a t 
can be expressed as products form a complete lattice, and such projections are inter
preted componentwise on their arguments. Projections th a t cannot be expressed as 
products are precisely those for which the mappings of components of the argument 
to corresponding components of the result are not independent. For example, the 
projection on 2 x 2 th a t maps (T, _L) to (_L, _L) and acts as the identity otherwise 
specifies th a t second components are static, but first components are static only if 
the second component is T .

Case Ti #> T2 . The precise interpretation of projections on domains corresponding 
to function types is considered later, but for the moment we take as given th a t it is 

not useful to assign a degree of staticness to an unboxed function, but th a t values of 
type Ti -> T2 can be static or dynamic by virtue of being of unary sum type.

4.4 Lifted Semantics

Given expression e the nominal goal is to  determine properties of £ s [ e ] ,  a function 
from value environments to values. This is potentially more informative than  the more 

usual approach of determining properties of functions denoted by expressions in a 
particular environment: more information is available from £ s [ e ] than  from £ s [ e ] p 
for any given p. Though this shift in perspective is essential to our development, 
the results may be used to obtain the corresponding information in the more usual 
perspective, as will be shown.

We have shown th a t no BSA of a function /  can determine even simple strictness in 

/ ,  bu t th a t there is always a BSA of /j_ th a t determines every property of / .  For 
term ination analysis it is also f± rather than /  th a t we wish to analyse. For these 
analyses it makes sense to find abstractions of (£s [e ] )± rather than  £ s [e ] .  We 

desire a compositional semantics like (£s [*])j_ th a t could subsequently be abstracted 
in some way to yield a compositional semantics th a t yields BSAs or FTAs. To get such 

a semantics would require lifting not ju st the domains corresponding to the types of 
the environment and the expression, but also lifting all of the domains corresponding 

to the types of all of its subexpressions. As observed in [WH87], the desired result (at 
first order, anyway) may be obtained by ‘lifting every dom ain.’ This generalises easily
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to  higher order, such th a t the result is a compositional, higher-order, lifted semantics. 

We define a type semantics T 5̂  and an expression semantics £ Sj- such th a t T^ 1 [ T ] 
is isomorphic to (7 ^ [T ])± for all T, and for all e:T with environment type E we have

£ sU e ]  € T^X[E ] 4  T M T ] ,

and £’Sj- [ e ]  is (£s [e J )± under the implied isomorphism between (7 ^ [E | —>• 7^[T])_l 
and T Sj-[E ] 7^-L[T ]. (Recall th a t as defined in Section 3.1.1, constructs the 

space of continuous, strict, bottom-reflecting functions.)

4.4.1 Type semantics

For all domains U the domains U ^  1 and 1 U are isomorphic to 1 . Just as for 
0 , to guarantee th a t domain equations involving are well-defined it is sufficient to 
guarantee th a t the argument domains are not isomorphic to  1 ; this will hold for all 

definitions in which is used.

The semantics of types is 

T Sx[In t ]  =  Int± ,

T H m  T J ]  =  7 s -1  [ T i ]  ®  . . .  ®  T S x [ T „ ]  ,

r M c !  Ti+ .. .  + c„ t„ ] =  ( ^ [ T i j  e ... e t M t , , ] ) !  ,

^ [ T i  # >  T 2 ]  =  ( T M T i ]  4  .

Then T M O ]  =  lj. since lj. is the identity of 0  up to isomorphism, and

T M T i -> T2] = (7^x[Ti] 4  TM T zIIlj.-

Proposition 4.2
For all types T and type definitions D, the domain 7-5-1-1T ] ( 7 ^ S[D]) is isomorphic

to (rq-rj (7 j ê [ D ] ) ) ± .

Sketch Proof
The essential fact is th a t -j_ on domains is continuous in the sense described in Sec

tion 2.5. Using the isomorphisms t/j_ 0  Vj_ =  (£/ x V)± and U± ^  Vf = (U -» V ), and 
the definitions of T 5 and T 5-1, it is a  simple structural induction on types to  show 
th a t for each type definition, each approximating domain in the lifted semantics is 

isomorphic to the lift of the corresponding domain in the standard semantics, hence 
for each type definition, and therefore every type, the result holds. The base case for 
a recursively-defined type is the interpretation of the unit type. □



C H A P T E R  4. SOURCE LANG U AGE AN D  STA N D A R D  SE M A N TIC S 86

There is a small notational difficulty to be resolved. For boxed type, the domain 
T ^ [ T ]  is of the form U± for some U , and lift _L denotes an element of this do
main. For product type T the corresponding domain is isomorphic to U±_ for some 
U, and it is not clear how the element equal to lift _L G U± under the isomorphism 

should be denoted w ithout knowing the subcomponents of T. For example, for pairs 
( lift J_, lift _L) would not be correct if either of the components were of product type. 

We solve this problem by slight abuse of the notation and allow lift _L to denote this 

element. Similarly we may write 7j_ and 7 1  to denote projections on domains corre
sponding to product types, and define them  as though they are on domains of the 

form U±.

4.4.2 Expression semantics

Let h be the implied isomorphism from (7 ^ [ T ])± to  7 [T ]. Then there are functions 
•j_/, lift!, and drop', implicitly indexed by type definitions D and type T, equal to  -j_, 

lift, and drop up to  isomorphism, respectively, defined by

lift' e  T ^ t ]  - 4  t M t ]  ,
lift' =  h o  lift ,

drop' £ TSj-[T] -> 7*[T] ,
drop' =  drop o h~l ,

and for /  G 7 ^ [T i]  -> T s [T2],

k> € T M T i] 4  7*412] ,
f r  -L =  -L , 
k '  (lift' x ) =  lift' ( f  x ) ,

Clearly we want £ Sj-[e ]  =  (^S[e ])±/. Now given two functions /  G U -» V  and 
g G U± —y V± we have g =  /j, iff /  and g are logically related by lift —> lift and g 
is strict; similarly £ Sj-[e ]  =  (£s [e ] )±, iff £ s[e ]  and ^ [ e ]  are logically related by 

lift1 ->• lift' and <fSj- [ e ]  is strict. Proposition 4.1 guarantees th a t if for the standard- 
and lifted-semantics versions of the constants the type relation a t each type is lift' 
then the same holds for the evaluation functions. We now claim th a t if all of the 
lifted-semantics versions of the constants are strict in every argument then so is 

£ Sj_|[e ]—this can be proven by a simple induction on the structure of e. In the Si 

semantics it is im portant th a t tha t mkunit and mkinti be functions of an environment 
to guarantee this strictness.

For each defining constant con with functionality of the form T [  Ti ] ->• T [  T2 ] we 

define cons± = (cons)L For constants with functionality of the form (T [T i ] x . . .  x
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T [ T n ] )  - > T [ T ]  w e  d e f in e  c o n s ±  =  ( c o n s ) l t  o  s m a s h ; t h i s  is  j u s t  a  g e n e r a l i s a t i o n  o f  

t h e  p r e v io u s  c a s e ,  g u a r a n t e e i n g  t h a t  c o n s ±  i s  s t r i c t  in  e v e r y  a r g u m e n t .  F in a l l y ,  f o r  

f i x s ±  €  ( T M T ]  — > 7 M T ] )  7"”S‘L[ T ]  t h e  a r g u m e n t  m u s t  b e  e i t h e r  t h e  c o n s t a n t

b o t t o m  f u n c t i o n  o r  s o m e  s t r i c t  b o t t o m - r e f l e c t i n g  f u n c t i o n  s in c e  i t  is  t h e  r e s u l t  o f

a p p l y s±-.

T h e  d e f in i t i o n s  a r e  d e t a i l e d  fo l lo w in g . W e  u s e  t h e  s y m b o l  A, p r o n o u n c e d  “s t r i c t  

l a m b d a , ” t o  s im p l i f y  d e f in i t i o n  o f  s t r i c t  f u n c t i o n s ;  A is  d e f in e d  b y

(A x . f  x )  _L =  _L ,

(A x . f  x )  v =  f  v, i f  v ±  _L .

T h e  l i f t e d  s e m a n t i c s  o f  t h e  u n i t  t y p e  is  lj_ , s o

m k u n i t Sj- =  A p . l i f t  () .

F o r  i n t e g e r s  t h e r e  is  o n e  m o r e  le v e l  o f  l i f t i n g  t h a n  in  t h e  s t a n d a r d  s e m a n t i c s ,  s o

m k i n t f x =  A p .  l i f t 2  i  .

T h e  c o n s t a n t  p l u s s ±  h a s  tw o  a r g u m e n t s ,  so

p l u s s ±  (_L, y )  =  _L ,

p l u s S j - ( z ,_ L )  =  J_ ,

p l u s s ±  ( l i f t  x , l i f t  y )  =  l i f t  (p l u s s  ( x , y ) )  .

T h e  t u p l e  c o n s t r u c t o r  g iv e s  a n  e l e m e n t  o f  a  s m a s h  p r o d u c t :

t u p l e s ±  =  s m a s h  ,

a n d  n u l l a r y  t u p l e s ±  is  l i f t  ( ) ,  t h e  i d e n t i t y  ( u p  t o  i s o m o r p h i s m )  o f  s m a s h .  A ls o ,

s e l { ±  =  7Ti o  u n s m a s h  .

T h e  s u m  c o n s t r u c t o r  g iv e s  a n  e l e m e n t  o f  a  l i f t e d  c o a le s c e d  s u m .  

i n c f - 1  ±  =  ±  ,

i n c ^ L  x  =  l i f t  ( i n i  x ) ,  i f  x  ^  _L ,

a n d

o u t c ^ J_ =  T  ,

o u t c ^ L  ( l i f t  A . )  =  T  ,

o u t c ^  ( l i f t  x )  =  o u L  ( d r o p  x ) ,  i f  x  =£ ±  .

T h e  f u n c t i o n  c h o o s e s ±  is  s t r i c t  in  e v e r y  a r g u m e n t ,  o th e r w i s e

c h o o s e Sj- ( l i f t  J_, . . . ,  x n )  =  l i f t  ±  ,

c h o o s e s ±  ( l i f t  («, v ) , x i ,  . . . ,  x n )  =  X i  .
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I n  t h e  l i f t e d  f u n c t i o n  s p a c e  v a lu e  _L a c t s  a s  t h e  c o n s t a n t  J_ f u n c t i o n  a n d  v a l u e  lift f  

a c t s  a s  / .  T h u s

applys± = drop .

T h e  f u n c t i o n  mkfuns± is  s t r i c t  in  b o t h  a r g u m e n t s ,  o th e r w i s e

mkfunSx (f , p ) = lift f  .

F in a l l y ,  t h e  a r g u m e n t  o f  fixSl- is  e i t h e r  t h e  c o n s t a n t  b o t t o m  f u n c t i o n  o r  s o m e  s t r i c t  

b o t t o m - r e f l e c t i n g  f u n c t i o n ,  so

f ix5j- _L =  _L ,

f ix s± f  = Lh> 0 /* (lift X), i f  /  ^  X .

T h e  d e f in i t i o n  m a y  b e  m a d e  t o t a l  b y  e x p r e s s in g  i t  a s  f ixSx f  =  1J Z>1 /*  ( lift _L). 

Proposition 4.3
F o r  a l l  e t h e  f u n c t i o n  £ Sa-[e ]  is  s t r i c t ,  a n d  £s [ e ]  is  r e l a t e d  t o  £ Sj-[e ]  b y  lift' lift'.
□

4.4.3 Operational interpretation of lifting

T h e r e  is  a n  i n t u i t i v e  o p e r a t i o n a l  i n t e r p r e t a t i o n  o f  t h e  e x t r a  le v e l  o f  l i f t i n g  in  t h e  

l i f t e d  s e m a n t i c s .  R e c a l l  t h a t  in  t h e  s t a n d a r d  s e m a n t i c s  l i f t i n g  a t  t h e  t o p  le v e l  ( fo r  

b o x e d  t y p e s )  d i s t i n g u i s h e s  b e tw e e n  e x p r e s s io n s  t h a t  d o  a n d  d o  n o t  h a v e  W H N F s .  

I n  a  s i m p l e - m i n d e d  i m p l e m e n t a t i o n  o f  a  l a z y  o r  n o n - s t r i c t  l a n g u a g e ,  a  p o t e n t i a l  

c o m p u t a t i o n — a  m e a n s  o f  p r o d u c i n g  a  v a lu e  i f  i t  is  d e m a n d e d — is  e m b o d i e d  b y  a  

c lo s u r e :  a  p o i n t e r  t o  a n  e x p r e s s io n .  ( P r o d u c t  t y p e s  g iv e  r i s e  t o  t u p l e s  o f  c lo s u r e s ;  

u n b o x e d  f u n c t i o n  t y p e s  t h e  c o r r e s p o n d i n g  e x p r e s s io n . )  T h e  v a lu e  a s s o c i a t e d  w i t h  a  

c lo s u r e  i n  t h e  standard s e m a n t i c s  is  j u s t  t h e  v a lu e  o f  t h e  e x p r e s s io n  p o i n t e d  t o .  T h e  

l i f t e d  s e m a n t i c s  e x p l i c i t l y  m o d e l s  t h e  p o i n t e r  w i t h  t h e  e x t r a  o u t e r  l i f t i n g .

E v a l u a t i n g  a  c l o s u r e  r e q u i r e s  d e r e f e r e n c in g  t h e  p o i n t e r ,  r e d u c in g  t h e  e x p r e s s io n ,  a n d  

r e p l a c i n g  t h e  e x p r e s s io n  w i t h  i t s  r e d u c e d  e q u i v a l e n t ,  e f f e c t iv e ly  r e t u r n i n g  t h e  p o i n t e r  

o f  a  s im p l i f i e d  c lo s u r e .  S e m a n t ic a l l y ,  d e r e f e r e n c in g  a  p o i n t e r  c o r r e s p o n d s  t o  t h e  o p 

e r a t i o n  drop. R e d u c t i o n  o f  t h e  e x p r e s s io n  f a i l s  t o  t e r m i n a t e  e x a c t l y  w h e n  i t s  v a l u e  is  

T  in  t h e  s t a n d a r d  s e m a n t i c s ,  t h a t  is ,  w h e n  t h e  v a lu e  o f  t h e  e x p r e s s io n  is  lift T  in  t h e  

l i f t e d  s e m a n t i c s ;  e v a l u a t i n g  t h e  c lo s u r e — d r o p p i n g  lift _L— y ie ld s  X ,  r e p r e s e n t i n g  n o n -  

t e r m i n a t i o n  a s  u s u a l .  R e t u r n i n g  a  p o i n t e r  t o  t h e  u p d a t e d  e x p r e s s io n  c o r r e s p o n d s  t o  

t h e  s e m a n t i c  o p e r a t i o n  lift , b u t  t h i s  o n ly  o c c u r s  i f  r e d u c t i o n  t e r m i n a t e s .  T h u s  t h e  s e 

m a n t i c  m o d e l  o f  e v a l u a t i o n  o f  a  c lo s u r e  is  a p p l i c a t i o n  o f  t h e  f u n c t i o n  (A x.lift x) o drop.
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I n  p a r t i a l  s u m m a r y ,  i n  t h e  l i f t e d  s e m a n t i c s ,  v a lu e  _L m o d e l s  n o n - t e r m i n a t i o n  ( o r  e r r o r )  

a s  u s u a l .  F o r  b o x e d  t y p e s  v a lu e  l i f t  _L m o d e l s  a  p o i n t e r  t o  a n  e x p r e s s io n  w i t h  n o  

W H N F ,  a n d  v a lu e s  a b o v e  l i f t  _L m o d e l  p o i n t e r s  t o  e x p r e s s io n s  t h a t  d o  h a v e  W H N F .  

F o r  p r o d u c t  t y p e s  t h e  i n t e r p r e t a t i o n  is  a p p l i e d  r e c u r s iv e ly  t o  t h e  t u p l e  c o m p o n e n t s .

4.4.4 Operational interpretation of projections

A  p r o j e c t i o n  m a p s  e v e r y  a r g u m e n t  t o  o n e  o f  i t s  f ix e d  p o i n t s ,  s o  a  p r o j e c t i o n  d e t e r m i n e s  

a n  e q u i v a le n c e  r e l a t i o n  o n  i t s  a r g u m e n t  d o m a i n ,  e a c h  e q u iv a le n c e  c l a s s  c o n s i s t i n g  o f  

t h o s e  v a lu e s  m a p p e d  t o  a  p a r t i c u l a r  f ix e d  p o i n t .  W e  m a y  t h i n k  o f  p r o j e c t i o n s  a s  

e q u i v a l e n c i n g  o p e r a t i o n a l  b e h a v i o u r  v i a  t h e  o p e r a t i o n a l  i n t e r p r e t a t i o n  o f  ( s e m a n t i c )  

v a lu e s  j u s t  d e s c r i b e d .  F o r  e x a m p le ,  t h e  o p e r a t i o n  o f  e v a l u a t i n g  a  c l o s u r e  w a s  s h o w n  

t o  b e  s e m a n t i c a l l y  e q u i v a l e n t  t o  (A x . l i f t  x )  o d r o p .  T h i s  f u n c t i o n  i s  t h e  p r o j e c t i o n  

Z D l ,  w h ic h  e q u a t e s  n o n - t e r m i n a t i o n  w i t h  a  c lo s u r e  t h a t  i f  e v a l u a t e d  w o u ld  f a i l  t o  

t e r m i n a t e ,  s in c e  v a lu e s  l i f t  _L a n d  _L a r e  in  t h e  s a m e  e q u iv a le n c e  c la s s ;  I D ±  e n c o d e s  

t h e  o p e r a t i o n a l  n o t i o n  o f  e v a l u a t i o n  t o  W H N F .  F o r  b a c k w a r d  s t r i c t n e s s  a n a l y s i s  

w e  t h i n k  o f  p r o j e c t i o n s  a s  e n c o d in g  d e m a n d s  f o r  e v a lu a t io n ;  f o r  f o r w a r d  t e r m i n a t i o n  

a b s t r a c t i o n  a s  e n c o d in g  a s s e r t i o n s  t h a t  e v a l u a t i o n  w i l l  t e r m i n a t e .

R e c a l l  t h a t  i f  f  d e n o t e s  /  t h e n  /  is  s t r i c t  i f f  ID^  o  f ±  C  f ±  o ID±, o r  e q u iv a le n t ly ,  

ID± o  f ±  =  IDsl  o /j_ o / D l .  G iv in g  o p e r a t i o n a l  i n t e r p r e t a t i o n s  t o  p r o j e c t i o n s  g iv e s  

a  d i r e c t  o p e r a t i o n a l  r e a d i n g  o f  s u c h  e q u a t io n s :  h e r e ,  r a t h e r  t h a n  f i r s t  d e d u c i n g  t h a t  

/  is  s t r i c t  a n d  f r o m  t h a t  a n  o p e r a t i o n a l  c o n c lu s io n ,  w e  c a n  r e a d  t h a t  i f  e v a l u a t i o n  

o f  a n  a p p l i c a t i o n  o f  f  is  d e m a n d e d  t h e n  e v a l u a t i o n  o f  i t s  a r g u m e n t  m a y  b e  s a f e ly  

d e m a n d e d .  .

F o r  t e r m i n a t i o n  a n a ly s i s ,  r e c a l l  t h a t  i f  f  d e n o t e s  /  a n d  I D ±  o f L  □  f L  o  Z D i ,  o r  

e q u i v a le n t ly ,  I D ±  o f L  o I D ±  =  /±  o Z D i ,  t h e n  i f  e v a l u a t i o n  o f  t h e  a r g u m e n t  o f  f  

t e r m i n a t e s  t h e n  s o  d o e s  e v a l u a t i o n  o f  t h e  a p p l i c a t i o n  o f  f .

N e x t  w e  c o n s id e r  t h e  o t h e r  t h r e e  b a s ic  p r o j e c t i o n s  I D ± ,  B O T L , a n d  B O T ± .  T h e  p r o 

j e c t i o n  I D ±  e q u i v a le n c e s  e v e r y  v a lu e  w i t h  i t s e l f  a n d  s o  t e l l s  n o t h i n g .  T h e  p r o j e c t i o n  

B O T x  e q u i v a le n c e s  a l l  c lo s u r e s  w i t h  t h e  c lo s u r e  t h a t  f a i l s  t o  t e r m i n a t e  i f  e v a l u a t e d ,  

i m p l y i n g  t h a t  i f  e v a l u a t i o n  is  e v e r  i n i t i a t e d  i t  m a y  i m m e d i a t e l y  d iv e r g e  o r  p r o d u c e  a n  

e r r o r .  F o r  b a c k w a r d  s t r i c t n e s s  a n a ly s i s  t h e  i n t e r p r e t a t i o n  is  t h a t  e v a l u a t i o n  is  n e v e r  

r e q u i r e d ,  f o r  f o r w a r d  t e r m i n a t i o n  a n a ly s i s  i t  e n c o d e s  g u a r a n t e e d  n o n - t e r m i n a t i o n .  I t  

is  u s e f u l  t o  t h i n k  o f  B O T ±  a s  m o d e l l i n g  t h e  o p e r a t i o n  o f  s e t t i n g  a  p o i n t e r  t o  a  s p e c i a l  

v a lu e  n u l l  t h a t  c a u s e s  d iv e r g e n c e  o r  a n  e r r o r  i f  d e r e f e r e n c e d .  T h e  p r o j e c t i o n  B O T ±  

e q u i v a le n c e s  e v e r y  v a l u e  w i t h  _L, s p e c i f y in g  a u t o m a t i c  d iv e r g e n c e  o r  e r r o r .  F o r  b a c k 

w a r d  s t r i c t n e s s  a n a l y s i s  i t  m a y  b e  t h o u g h t  o f  a s  s p e c i f y in g  u n s a t i s f i a b l e  d e m a n d  ( t h e
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i n t e r s e c t i o n  o f  n o  d e m a n d  a n d  d e m a n d  f o r  e v a l u a t i o n  t o  W H N F ) ;  f o r  f o r w a r d  t e r 

m i n a t i o n  a b s t r a c t i o n  a s  s p e c i f y in g  a n  i m p o s s ib l e  t e r m i n a t i o n  p r o p e r t y  ( t e r m i n a t i o n  

w i t h  v a lu e  _L).

N e x t  w e  c o n s id e r  t h e  i n t e r p r e t a t i o n  o f  p r o j e c t i o n s  b e t w e e n  B O T ±  a n d  I D ±  a n d  b e 

tw e e n  B O T ±  a n d  I D ± .  T h e  i n t e r p r e t a t i o n  is  d e f in e d  c o m p o s i t i o n a l l y  in  t e r m s  o f  t y p e  

s t r u c t u r e .  F o r  t h e  b o x e d  t y p e s  t h e  b a s i c  i n t e r p r e t a t i o n  is  a s  fo llo w s . A  p r o j e c t i o n  o f  

t h e  f o r m  7 ^  is  le s s  t h a n  I D ± ,  s o  y ±  m a p s  l i f t  _L t o  _L a n d  s o  s p e c i f ie s  e v a l u a t i o n  a t  

l e a s t  a s  f a r  a s  W H N F .  O n c e  t o  W H N F ,  7  t e l l s  w h a t  t o  d o  n e x t  ( h e n c e  “7 ’s  w o r t h ” ) . 

A  p r o j e c t i o n  o f  t h e  f o r m  y ±  m e a n s  i f  e v a l u a t i o n  is  e v e r  d e m a n d e d ,  a f t e r  r e a c h in g  

W H N F  a p p l y  t h e  i n t e r p r e t a t i o n  o f  7  t o  t h e  r e s u l t .

C ase  ci Ti + . . .  + cn Tn. R e c a l l  t h a t

T M c !  T j  +  . . .  +  C „  T „ ]  =  ( T M T l ]  e  . . .  ©  T M T n D x  •

N o w  e v e r y  p r o j e c t i o n  o n  a  d o m a i n  o f  t h e  f o r m  ( U i  ©  . . .  ©  U n ) j_ c a n  b e  e x p r e s s e d  a s  

e i t h e r  7 1  o r  7 ^  w h e r e  7  h a s  t h e  f o r m  71 ©  . . .  ©  7 „ .  I f  e v a l u a t i o n  t o  s o m e  W H N F  c ,• e 
o c c u r s ,  t h e  i n t e r p r e t a t i o n  o f  7,- is  a p p l i e d  t o  e.

For sum type Ci Ti + . . .  + cn Tn let the be the projection transformer defined by

Ci £ | 7 ^ x [T i] | -» | T ^ f c i  Ti + . . .  + cn Tn ] | ,

C {  7  =  ( B O T _ 1 © . . . © 7 © . . .  B C T ± ) ±  .

Then every eager element of |T Sx[c i Ti + . . .  + cn T„J | can be expressed in the 
form |Ji<Kn Ci 7 {. Operationally, C,- 7 i specifies evaluation to WHNF c,• e with the 
interpretation of 7 * on e.

A t  t h i s  p o i n t  i t  is  w o r t h  p e r f o r m in g  a  c o n s i s t e n c y  c h e c k  o n  t h e  tw o  i n t e r p r e t a t i o n s  o f  

p r o j e c t i o n s  f o r  s u m  t y p e s  g iv e n .  W e  h a v e  s t a t e d  t h a t  in  g e n e r a l  B O T ±  m e a n s  “s e t  

t h e  p o i n t e r  t o  n u / / , ” a n d  t h a t  ( B O T ±  ©  B O T ± ) ± _  m e a n s  “i f  e v e r  e v a l u a t e d  t o  W H N F ,  

d iv e r g e  f o r  a n y  r e s u l t . ” N o w  B O T ± _  =  { B O T ± ®  B O T ± )  1 ,  s o  t h e s e  i n t e r p r e t a t i o n s  

s h o u l d  b e  e q u i v a l e n t ,  a n d  in  f a c t  t h e y  a r e .

C ase  (T i, . . .  ,Tn) . F o r  p r o d u c t  t y p e s ,  p r o j e c t i o n s  o f  t h e  f o r m  71 ®  ®  y n  a r e

i n t e r p r e t e d  c o m p o n e n tw i s e  o n  t h e i r  a r g u m e n t s .  F o r  n u l l a r y  p r o d u c t s  t h e r e  a r e  n o  

c o m p o n e n t s  t o  e v a lu a t e :  t h e  s o le  e a g e r  p r o j e c t i o n  o n  lj_ , w h ic h  m a y  b e  d e n o t e d  b y  

e i t h e r  I D ±  o r  B O T ± ,  m a p s  e v e r y  v a lu e  t o  X ,  a n d  h e n c e  s p e c i f ie s  i m m e d i a t e  t e r m i 

n a t i o n  o r  e r r o r ;  t h e  s o le  l a z y  p r o j e c t i o n ,  w h ic h  m a y  b e  d e n o t e d  b y  I D ±  o r  B O T ± ,  

r e q u i r e s  n o t h i n g .
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F o r  p r o d u c t  t y p e  n o t  e v e r y  p r o j e c t i o n  is  o f  t h e  f o r m  7i<8>. . .® 7 „ .  W e  c l a im  t h a t  t h e r e  is  

n o  n a t u r a l  s e q u e n t i a l  i n t e r p r e t a t i o n  o f  p r o j e c t i o n s  o t h e r  t h a n  th o s e  o f  t h i s  f o r m ,  h e n c e  

f o r  t h e  p u r p o s e s  o f  s e q u e n t i a l  c o m p u t a t i o n  w e  t a k e  t h e  o p e r a t i o n a l  i n t e r p r e t a t i o n  o f  

a n y  p r o j e c t i o n  7  t o  b e  t h a t  o f  t h e  l e a s t  p r o j e c t i o n  o f  t h i s  f o r m  g r e a t e r  t h a n  7 .  W e  

c l a im  t h a t  e v e r y  p r o j e c t i o n  h a s  a  u n iq u e  p a r a l l e l  o p e r a t i o n a l  i n t e r p r e t a t i o n :  e v e r y  

p r o j e c t i o n  c a n  b e  e x p r e s s e d  a s  t h e  l u b  o f  a  s e t  o f  p r o j e c t i o n s  in  t h i s  f o r m ,  a n d  t h e  

o p e r a t i o n a l  i n t e r p r e t a t i o n  is  t h e  p a r a l l e l  e v a l u a t i o n  a c c o r d in g  t o  e a c h  e l e m e n t  o f  t h e  

s e t .  F o r  e x a m p le ,  t h e  p r o j e c t i o n  I D ± ® I D ±  s p e c i f ie s  e v a l u a t i o n  o f  t h e  f i r s t  c o m p o n e n t  

o f  i t s  a r g u m e n t  p a i r ,  w h i le  I D ±  ®  I D ±  s p e c i f ie s  e v a l u a t i o n  o f  t h e  s e c o n d .  T h e i r  l u b  

is  n o t  e x p r e s s ib l e  a s  a  s m a s h  p r o d u c t :  i t  s p e c i f ie s  p a r a l l e l  e v a l u a t i o n  u n t i l  o n e  o r  

t h e  o t h e r  o f  t h e  c o m p o n e n t s  r e a c h e s  W H N F ;  i t  is  t h e  l e a s t  p r o j e c t i o n  5 s u c h  t h a t  

Z D l 0 l u b ±  C  l u b ± _  0 S .  T h e  l e a s t  p r o j e c t i o n  g r e a t e r  t h a n  t h e i r  l u b  e x p r e s s ib l e  a s  a  

p r o d u c t  is  I D ±  <g) I D j _— t h e  id e n t i ty .

C a s e  T i # >  T2. R e c a l l  t h a t

t M t! #> t2] = 4  t M tsIIl .

F o r  u n b o x e d  f u n c t i o n s  t h e  o n ly  o p e r a t i o n a l  c h o ic e s  a r e  t o  d o  n o t h i n g  o r  u n c o n d i t i o n 

a l l y  d iv e r g e  o r  p r o d u c e  a n  e r r o r ,  s o  t h e  o p e r a t i o n a l  i n t e r p r e t a t i o n  o f  a l l  p r o j e c t i o n s  

o t h e r  t h a n  B O T 1  is  t h a t  o f  ZDj_. I n  t h i s  c o n t e x t  u n b o x e d  f u n c t i o n  t y p e s  a r e  t r e a t e d  

l ik e  t h e  u n i t  t y p e ,  o r  e q u iv a le n t ly ,  f u n c t i o n  s p a c e s  a r e  t r e a t e d  l ik e  t h e  o n e - p o i n t  d o 

m a i n .  T h e n  f o r  b o x e d  f u n c t i o n s  w i t h  v a lu e s  f r o m

t M ? !  - > t 2 ]  =  ( r M T i ]  4

t h e r e  a r e  f o u r  d i s t i n c t  o p e r a t i o n a l  i n t e r p r e t a t i o n s  o f  p r o j e c t i o n s ,  p r e c i s e l y  t h o s e  o f  

I D ± , ZDj_, B O T u  a n d  B O T ±

W e  w il l  a l t e r n a t e  b e t w e e n  tw o  n o t a t i o n s  f o r  p r o j e c t i o n s .  F o r  e x a m p le ,  f o r  p r o j e c t i o n s  

o n  7~s -L[ B o o l ]  w e  m a y  u s e  t h e  m o r e  r e a d a b l e  c o n s t r u c t o r  n o t a t i o n  TRUE  () f o r  

(BOT±  ©  D O T j J x ,  s i m i l a r l y  f o r  p r o j e c t i o n s  o n  7 ^ x [ I n t  ]  t h e  e x p r e s s io n  N {  () d e n o t e s  

t h e  l e a s t  p r o j e c t i o n  t h a t  a c t s  a s  t h e  i d e n t i t y  o n  l i f t 2 z; in  t h i s  c o n t e x t  () d e n o t e s  

BOT±. O n ly  in  t h e  c o n s t r u c t o r  n o t a t i o n  w i l l  w e  u s e  t h e  n a m e s  S T R  a n d  A B S ; 

f u r t h e r ,  f o l lo w in g  [ W H 87] w e  w i l l  u s e  F A I L  a s  a  s y n o n y m  f o r  BOT±. F in a l l y ,  f o r  

p r o j e c t i o n s  c o r r e s p o n d i n g  t o  n u l l a r y  c o n s t r u c t o r s  s u c h  a s  n i l ,  t r u e ,  f a l s e ,  a n d  n t- 

w e  m a y  o m i t  t h e  a r g u m e n t  ( ) .
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4.4.5 Unboxed types

T h i s  d i s c u s s io n  is  m o t i v a t e d  b y  P e y t o n  J o n e s  a n d  L a u n c h b u r y ’s  d e s c r i p t i o n  o f  u n 

b o x e d  t y p e s  [ P J L 91].

W e  h a v e  s h o w n  t h a t  I n t  m a y  b e  r e g a r d e d  a s  a n  in f in i t e  s u m  o f  n u l l a r y  p r o d u c t s .  

A n o t h e r  a p p r o a c h  t o  d e f in in g  t h e  i n t e g e r  t y p e  is  t o  p r o v id e  t h e  u n b o x e d  i n t e g e r  t y p e  

I n t #  a s  p r i m i t i v e  a n d  d e f in e  I n t  t o  t h e  t h e  u n a r y  s u m  i n t  I n t # ,  w h e r e  1

T ^ [ l n t # ]  =  Z

a n d

T 5-1 ! I n t # ]  =  Zj_ .

T h e n  e i  +  e2  w o u ld  b e  s h o r t  f o r  

c a s e  e i  o f

i n t  i #  - >  c a s e  e2  o f

i n t  j #  - >  i n t  ( i #  + #  j # )

w i t h  g e n e r ic  s e m a n t i c s  o f  e i  + #  e2 b e i n g

£ [ e i  +# e2] p = plus#  ( £ [ e i ]  p, £ [ e 2] p) ,

w i t h  p lu s # s o r d i n a r y  a d d i t i o n  o n  Z ,  a n d  p lu s# s± d e f in e d  l ik e  pluss . I n  t u r n ,  I n t #  is  

im a g i n e d  t o  b e  t h e  i n f in i t e  u n b o x e d  s u m

u n b o x e d  I n t #  = . . .  + n _ i  ( )  + no ( )  +  n i  ( )  +  . . .

w h e r e  f i n i t e  u n b o x e d  s u m  u n b o x e d  c i  T i +  . . .  +  c n Tn h a s  s t a n d a r d  s e m a n t i c s

^ [ u n b o x e d  c i  T i + . . .  + c n Tn ]  =  7^ [ T i ]  +  . . .  +  7^ [ T n ]  ,

w h e r e  +  is  c a t e g o r i c a l  s u m .  T h e  l i f t e d  s e m a n t i c s  w o u ld  b e

u n b o x e d  c x T i +  . . .  + c n Tn ]  =  T ^ f T i ]  ©  . . .  ©  T ^ f T n ]  .

T h e r e  is  n o  p r o b l e m  w i t h  e x t e n d i n g  o u r  t r e a t m e n t  t o  h a n d l e  g e n e r a l  u n b o x e d  t y p e s  

i n  t h e  l i f t e d  w o r ld  b e c a u s e  a l l  t y p e s  a r e  s t i l l  m a p p e d  t o  d o m a in s .  T h e  p r o b l e m  is  

t h a t  f o r  b i n d i n g - t i m e  a n a l y s i s  w e  w a n t  t o  w o r k  in  t h e  s t a n d a r d  w o r ld ,  a n d  t h e  u s e  o f  

c a t e g o r i c a l  s u m  y ie ld s  s t r u c t u r e s  m o r e  g e n e r a l  t h a n  d o m a i n s  ( n a m e ly  u n p o i n t e d  d o 

m a in s )  , a n d  t h e  t h e o r y  o f  C h a p t e r  2 a n d  C h a p t e r  3 w o u ld  h a v e  t o  b e  c o r r e s p o n d i n g l y  

g e n e r a l i s e d .
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F o r  b i n d i n g - t i m e  a n a l y s i s  t h e  a p p r o p r i a t e  s t a r t i n g  p o i n t  is  t h e  s t a n d a r d  e x p r e s s io n  

s e m a n t i c s — d o m a i n  a n d  f u n c t i o n  l i f t i n g  is  n o t  r e q u i r e d .  T h e  l i f t e d  s e m a n t i c s  Sj_ w a s  

d e v e lo p e d  s p e c i f i c a l l y  s o  t h a t  b a c k w a r d  s t r i c t n e s s  a b s t r a c t i o n  a n d  f o r w a r d  t e r m i n a 

t i o n  a b s t r a c t i o n  o f  £ Sj- [  e  ]  c o u l d  r e v e a l  t h e  d e s i r e d  s t r i c t n e s s  a n d  t e r m i n a t i o n  p r o p 

e r t i e s  o f  £ s [ e J ;  f o r  t h e s e  a n a ly s e s  t h e  s t a r t i n g  p o i n t  is  t h e  l i f t e d  s e m a n t i c s .  T h i s  

c h a p t e r  p r e s e n t s  n o n - s t a n d a r d  s e m a n t i c s  t h a t  y ie ld  t h e s e  a b s t r a c t i o n s .  T h e  a n a l y s i s  

t e c h n i q u e s  a r e  r e s t r i c t e d  t o  e x p r e s s io n s  ( a n d  f r e e - v a r ia b l e  e n v i r o n m e n t s )  o f  z e r o - o r d e r  

t y p e ,  t h a t  is ,  w i t h  t y p e  n o t  c o n t a i n i n g  # > . T w o  m e t h o d s  o f  h a n d l i n g  f i r s t - o r d e r  f u n c 

t i o n s  ( t h a t  is ,  f u n c t i o n s  b e t w e e n  d o m a i n s  c o r r e s p o n d i n g  t o  z e r o - o r d e r  t y p e s )  a r e  a l s o  

g iv e n .

T h o u g h  t h e  f i r s t - o r d e r  t e c h n iq u e s  d o  n o t  g e n e r a l i s e  d i r e c t l y  t o  h ig h e r  o r d e r ,  t h e  d e 

v e l o p m e n t  la y s  m u c h  o f  t h e  g r o u n d w o r k  f o r  t h e  h ig h e r - o r d e r  t e c h n i q u e s  d e s c r i b e d  in  

C h a p t e r  6 , p r o v i d i n g  a  b r i d g e  t o  u n d e r s t a n d i n g  t h e  m o r e  c o m p l i c a t e d  h i g h e r - o r d e r  

a n a l y s i s — a l l  o f  t h e  d e v e lo p m e n t  f o r  z e r o - o r d e r  a n a l y s i s  w i l l  c a r r y  o v e r  i n t o  t h e  d e v e l 

o p m e n t  f o r  h ig h e r - o r d e r .

A  t y p e  is  z e r o  o r d e r  i f  i t  d o e s  n o t  c o n t a i n  # > . A  v a lu e  is  z e r o  o r d e r  i f  i t  c o m e s  f r o m  a  

d o m a i n  c o r r e s p o n d i n g  t o  a  z e r o - o r d e r  t y p e .  A n  e x p r e s s io n  is  z e r o  o r d e r  i f  i t  a n d  a l l  

o f  i t s  s u b e x p r e s s i o n s  h a v e  z e r o - o r d e r  t y p e .  N e c e s s a r i ly ,  a  z e r o - o r d e r  e x p r e s s io n  d o e s  

n o t  c o n t a i n  t h e  f o r m s  \ # x .  e ,  f i x #  e ,  o r  a p p #  e i  e 2 , a n d  t h e  v a lu e s  o f  t h e  c o n s t a n t s  

mkfun , apply , a n d  fix n e e d  n o t  b e  c o n s id e r e d .  T h e  S  a n d  Sj_ t y p e  a n d  e x p r e s s io n  

s e m a n t i c s  a n d  d e f in i n g  c o n s t a n t s  r e s t r i c t e d  t o  z e r o - o r d e r  t y p e s  a n d  e x p r e s s io n s  w i l l  

b e  i n d i c a t e d  b y  So a n d  Sj_o r e s p e c t iv e ly .  I n  t h i s  c h a p t e r ,  u n l e s s  s p e c i f ie d  o th e r w i s e ,  

a l l  t y p e s  a n d  e x p r e s s io n s  a r e  z e r o  o r d e r .

93
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5.1 Abstracting Dependency on the Environment

W e  r e q u i r e  s e m a n t i c s  t h a t  y ie ld  b a c k w a r d  s t r i c t n e s s ,  f o r w a r d  s t r i c t n e s s ,  a n d  f o r w a r d -  

t e r m i n a t i o n  a b s t r a c t i o n s  o f  £ So[e ] .  W e  s t a r t  b y  d e f in in g  a n  i n t e r m e d i a t e  No s e m a n 

t i c s  t h a t  a b s t r a c t s  t h e  d e p e n d e n c y  o f  t h e  s t a n d a r d  v a lu e  o f  e  o n  t h e  e n v i r o n m e n t ,  

s u c h  t h a t  t h e  v a l u e  o f  e is  a  f u n c t i o n  f r o m  e n v i r o n m e n t s  t o  s t a n d a r d  v a lu e s .

L e t  e b e  a  ‘t o p - l e v e l ’ e x p r e s s io n ,  t h a t  is ,  o n e  t h a t  is  n o t  a  s u b e x p r e s s io n  o f  s o m e  

o t h e r  e x p r e s s io n ,  a n d  c a l l  t h e  e n v i r o n m e n t  in  w h ic h  i t  is  e v a l u a t e d  t h e  t o p - le v e l  o r  

global e n v i r o n m e n t .  T h e  f u n c t i o n  d e f in in g  t h e  d e p e n d e n c y  o f  t h e  v a lu e  o f  e o n  t h e  

g lo b a l  e n v i r o n m e n t  is  p r e c i s e l y  Ap.£So[ e ]  p, o r  j u s t  £ So[e ] .  H o w e v e r ,  t h e  v a lu e  o f  

e v e r y  s u b e x p r e s s i o n  o f  e d e p e n d s  o n  t h e  v a lu e  o f  a  local e n v i r o n m e n t  w h ic h  in  g e n e r a l  

d i f f e r s  f r o m  t h e  g lo b a l  e n v i r o n m e n t :  i t  m a y  c o n t a i n  n e w  b i n d i n g s  i n t r o d u c e d  b y  s u m  

a n d  t u p l e  d e c o m p o s i t i o n  ( a n d  a t  f i r s t  a n d  h i g h e r  o r d e r  b y  f u n c t i o n  a b s t r a c t i o n ) .  S t i l l ,  

e v e r y  l o c a l  e n v i r o n m e n t  is  a  f u n c t i o n  o f  t h e  g lo b a l  e n v i r o n m e n t ,  s o  t h e  v a lu e  o f  e v e r y  

s u b e x p r e s s i o n  is ,  i f  i n d i r e c t ly ,  a  f u n c t i o n  o f  t h e  g lo b a l  e n v i r o n m e n t .  T h e  N q s e m a n t i c s  

w i l l  a l lo w  u s  t o  m a k e  e x p l i c i t  t h e  d e p e n d e n c y  o f  t h e  v a l u e  o f  e v e r y  s u b e x p r e s s i o n  o n  

t h e  g lo b a l  e n v i r o n m e n t .

L e t  E g i b e  a  f ix e d  z e r o - o r d e r  t y p e ,  w h ic h  w e  m a y  c o n v e n ie n t ly  t h i n k  o f  a s  t h e  t y p e  

o f  g lo b a l  e n v i r o n m e n t s .  I n  t h e  No s e m a n t i c s  o f  z e r o - o r d e r  e x p r e s s io n s  d e f in e d  in  t h i s  

s e c t i o n ,  t h e  v a l u e  o f  a n  e x p r e s s io n  o f  t y p e  T is  a  f u n c t i o n  f r o m  s t a n d a r d  v a lu e s  in  

E g i J  t o  s t a n d a r d  v a lu e s  in  7~So[ T ] ,  s o  t h e  No s e m a n t i c s  o f  z e r o - o r d e r  t y p e s  is

7^ ° [ T ]  =  7 ^ ° [ E g i ]  - >  7 ^ ° [ T ]  .

T h e  t y p e  p r e d i c a t e  b e t w e e n  s t a n d a r d  a n d  No v a lu e s  a t  e a c h  t y p e  T is  p a r a m e t e r i s e d  

b y  a  g lo b a l  e n v i r o n m e n t  a  E  a n d  d e n o t e d  b y  7£ SoNo[ T ] ,  d e f in e d  b y

ftS°N°|[T j G (T^0[ T ] x 7^ ° [ T ] )  A  Truth ,
^ s ° n° [ T ] = (d = g a) .

F o r  e : T  w i t h  e n v i r o n m e n t  t y p e  E w e  h a v e  £ N° [ e ]  E  T ^ E j  T ^ T ] ,  t h a t  is ,

£ No[ e J  E  ( T 50 [  E g i ]  T ^ l E j )  ->  ( T 50 [  E g i ]  ->  7^ ° [ T ] )  ,

i n  o t h e r  w o r d s  £ N° [e ]  m a p s  f u n c t i o n s  f r o m  g lo b a l  e n v i r o n m e n t s  t o  l o c a l  e n v i r o n 

m e n t s  t o  f u n c t i o n s  f r o m  g lo b a l  e n v i r o n m e n t s  t o  s t a n d a r d  v a lu e s .  ( T h e  f a m i l i e s  o f  

f u n c t i o n s  T No, 7̂ ° N° a n d  £ No h a v e  t h e  g lo b a l  e n v i r o n m e n t  t y p e  a s  a n  a d d i t i o n a l  i m 

p l i c i t  t y p e  in d e x . )  L e t  p S o  r a n g e  o v e r  l o c a l  e n v i r o n m e n t s ,  a  o v e r  g lo b a l  e n v i r o n m e n t s ,  

a n d  p No o v e r  No e n v i r o n m e n t s ,  t h a t  is ,  f u n c t i o n s  f r o m  g lo b a l  e n v i r o n m e n t s  t o  l o c a l  

e n v i r o n m e n t s .  T h e  r e q u i r e d  r e l a t i o n  b e t w e e n  t h e  s e m a n t i c s  is  t h e n

Vcr . p So =  p No a  = >  (£So[e ]  p So) =  ( £ No[ e ]  p No) cr  .
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T h u s  f o r  f u n c t i o n s  p No f r o m  g lo b a l  e n v i r o n m e n t s  t o  lo c a l  e n v i r o n m e n t s  

V a  . £ So[ e ]  { p N o  a )  =  ( £ No[ e ]  p N o )  a  ,

s o  £ s ° [ e ]  o p N° =  £ No[ e ]  p N° . I n  p a r t i c u l a r ,  w h e n  p N° is  t h e  i d e n t i t y  f u n c t i o n  i d  t h e  

t y p e  E g i c o in c id e s  w i t h  E, a n d  £ So[ e ]  =  £ No[ e ]  i d .  ( I n tu i t iv e ly ,  i d  is  t h e  a p p r o p r i a t e  

e n v i r o n m e n t  f o r  t h e  to p - l e v e l  e x p r e s s io n — i t  j u s t  m a p s  t h e  g lo b a l  e n v i r o n m e n t  t o  

i t s e l f .  I n  g e n e r a l ,  s u b e x p r e s s io n s  a r e  e v a l u a t e d  in  a  d i f f e r e n t  e n v i r o n m e n t  t h a t  is  t h e  

a p p r o p r i a t e  t r a n s f o r m a t i o n  o f  t h e  g lo b a l  e n v i r o n m e n t ;  e x a m p le s  w i l l  b e  g iv e n .)

I t  is  s t r a i g h t f o r w a r d  t o  d e f in e  No c o n s t a n t s  c o r r e c t l y  r e l a t e d  t o  t h e  So c o n s t a n t s :  e a c h  

c o n s t a n t  c o n N °  is  d e f in e d  b y

c o n H °  ( f t , . . . ,  g n )  =  c o n S o  o  ( g u  . . . ,  g n )  .

T h i s  is  s p e l t  o u t  in  d e t a i l  f o l lo w in g .

T h e  c o n s t a n t  m k u n i t N o  is  a  c o n s t a n t  f u n c t i o n  o f  i t s  e n v i r o n m e n t  a r g u m e n t .  

m k u n i t N °  p  =  m k u n i t S o  o p

=  ( - M ) ) 0 p

=  A<7.0 .

N u m e r i c  c o n s t a n t s  a r e  s i m i l a r l y  i n d e p e n d e n t  o f  t h e i r  a r g u m e n t .  

m k i n t ^ 0 p  =  m k i n t f 0 o p

=  ( X a . l i f t  i )  o p  

=  X a . l i f t  i  .

E x p r e s s io n s  o f  i n t e g e r  t y p e  h a v e  v a lu e s  t h a t  y ie ld  i n t e g e r s  w h e n  a p p l i e d  t o  t h e  g lo b a l  

e n v i r o n m e n t .

p l u S N o  ( 0 1 ,0 2) =  P I U S S °  O <01? 02>

=  Aa . p l u s S o  (01 a , g 2  a )  .

T u p le  f o r m a t i o n  r e q u i r e s  p r o p a g a t i o n  o f  t h e  g lo b a l  e n v i r o n m e n t  t o  e a c h  o f  t h e  c o m 

p o n e n t s .

t u p l e N o  ( 0 1 , . . . ,  0n ) =  t u p l e S o  o  ( 0 1 , . . . ,  g n )

=  Act. (01 cr, . . . , g n  a )  .

V a lu e s  o f  p r o d u c t  t y p e  m u s t  b e  a p p l i e d  t o  a  g lo b a l  e n v i r o n m e n t  t o  y i e ld  a  t u p l e .

s e l ^ °  0  =  s e l f 0 o 0  .

T h e  d e f in i t i o n s  o f  t h e  o t h e r  c o n s t a n t s  fo l lo w  t h e  s a m e  p a t t e r n .  

i n C i 0 0  =  i n c f 0 o g  , 

o u t c f 0 0  =  o u t f 0 o  0  ,
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c h o o s e N °  ( g 0 , . . . , g n )  =  c h o o s e s °  o  { g o , . . . ,  g n )

=  X a . c h o o s e s °  ( g 0  a , . . . ,  g n  o )  .

P r o p o s i t i o n  5.1
T h e  s e m a n t i c s  E s °  a n d  £ N° a r e  r e l a t e d  b y  7£ SoN° . □

W e  g iv e  tw o  d e t a i l e d  e x a m p le s  t o  m a k e  t h e  i d e a  c l e a r .  H e r e  e l e m e n t s  o f  I n t  w i l l  b e  

w r i t t e n  w i t h o u t  e x p l i c i t  l i f t i n g ,  f o r  e x a m p le  1 i n s t e a d  o f  l i f t  1 , a n d  a d d i t i o n  f o r  I n t  

w il l  b e  w r i t t e n  +  i n s t e a d  o f  p l u s s . L e t  E g i  b e  ( I n t , I n t ) ,  a n d  p N° =  t t i  x  7r2 =  i d ,  s o  

t h a t  p No[ x i ]  =  7ri a n d  p N° [ x 2 ]  =  7 ^ . T h e n

£ No[ x i  + x 2 ] p No 

=  X a . T T i  a  +  7T2 a  

=  £ S o  [ x i  +  x 2 ] o p No 

=  £ So[ x i  +  x 2 ] , 

a s  r e q u i r e d .

F o r  t h e  s e c o n d  e x a m p le  l e t  E g i  b e  I n t ,  a n d  p No =  p No[ x i  ]  =  A a . a  +  6 . T h e n  

£ N° [ l e t  X2 = x i  +  4 i n  X2 + 5 ] p N°

=  ^ n ° [ x 2  + 5 ] p N°[x2  £ No[ x i  + 4 ]  p No]

=  £ n ° [ x 2 + 5 ]  p No[x2 i-> A < j.(£No[ x i ]  p No a )  +  ( £ N° [ 4 ]  p N° cr)]

=  £ No[ x 2 +  5 ]  p No[x2 A a . ( a  +  6 ) +  ((A cr.4) a ) ]

=  E n °  [  x 2 + 5 ]  p No [x2 > X a . a  +  6  +  4]

=  A c r.(£ No[ x 2 ] p No[x2 »-)• X a . a  +  6 +  4] a )  +  ( £ No[ 5 ]  p N° [x 2 • +  X a . a  +  4] a )

=  Acr.cr +  6  +  4 +  ((A cr.5) a )

=  X a . a  +  6  +  4 +  5 ,

w h ic h  is  e q u a l  t o  £ So[ l e t  x 2 =  Xi + 4  i n  X2 +  5 ]  o pNo, a s  r e q u i r e d .

Bearing in mind th a t £ N° [ e ] pN° =  Es° [ e ] o pN°, we require abstractions of ESo [ e ] 
for all e. This suggests the next step is to abstract the Nq semantics: for forward 
strictness we require a semantics EFo such th a t if r  is a FSA of pNo then £ Fo[ e ] r  is a 
FSA of £ N° [ e |  pNo, and hence of £ So[ e ]  o pNo. For backward strictness and forward 

term ination we want abstractions of £ Sj-°[ e ], and hence require a corresponding lifted 

version £ Nj-° of E1No. The N|_o semantics of types is 

t n x o [T] = g-s±o[Rgl ] 4  T M 1!  .

T h e n  T ^ T ]  =  T No[ T ]  f o r  a l l  T. A ls o

£ M e ]  €  ( 7 ^ “ [ E „ ]  4  7 ^ « [ E ] )  - 4  ( T ^ j- ° [ E 9 i ]  4  7 ^ “ [ T 1 )  ,

SO £ No [ e  ] a n d  £ Nj-° [  e  ]  c o m e  f r o m  i s o m o r p h ic  d o m a in s ;  t h e i r  r e s p e c t i v e  a r g u m e n t  a n d  

r e s u l t  d o m a i n s  a r e  i s o m o r p h ic ,  a n d  t h e y  a r e  e q u a l  u p  t o  t h e  im p l i e d  i s o m o r p h i s m .
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T h e  r e q u i r e d  r e l a t i o n  b e t w e e n  t h e  Sj_o a n d  Nj_o s e m a n t i c s  is  d e f in e d  a s  fo l lo w s .  

7^Si_0Nj_o|T |  e  ( 7 - S i 0 |T |  x  7”Nj'0| T I) 4  Truth ,

■7̂ SX0Ni0[T ] =  = g

G iv e n  a  G T 5-10[ E ^ i] ,  d  G 7 M t 1, a n d  g  G T 1̂ 0 [ T ] =  ^ [ E ^ ]  ->  T Sj- ° [ T ] ,  w e  

h a v e  g  =  h]_> f o r  s o m e  /i ,  a n d  7̂ j-°n-L0[[T ] ( d , g )  h o ld s  i f f  a  =  _L a n d  d  =  _L, o r  <r ^  _L 

a n d  d  ^  _L a n d  7 ? . ^ ° ,  ^ [ t ]  ( d r o p ' d , h ) .

T h e  Nj_o c o n s t a n t s  a r e  d e f in e d  in  t e r m s  o f  t h e  Sj_o c o n s t a n t s  e x a c t l y  a s  t h e  N q c o n s t a n t s  

is  d e f in e d  in  t e r m s  o f  t h e  So c o n s t a n t s :  f o r  e a c h  c o n s t a n t  c o n Nj-° w e  h a v e

c o n Nj-° ( p i , . . . ,  g n )  =  c o n Sj-° o { g u . . . , g n )

=  ( c o n So)j_# o smash o ( g 1 ? . . . ,  pn )

=  (con50)^  o ((0 i , . . . , 0„)> .

T h e  d e t a i l e d  d e f in i t i o n s  o f  t h e  Nj_o c o n s t a n t s  a r e  s i m i l a r  t o  t h o s e  g iv e n  f o r  t h e  No 

c o n s t a n t s .

P r o p o s i t i o n  5.2
T h e  Sj_o a n d  Nj_q d e f in in g  c o n s t a n t s ,  a n d  th e r e f o r e  t h e  s e m a n t i c  f u n c t i o n s  S  a n d  

£ Nj-°, a r e  r e l a t e d  b y  7£S-J-°N-L0. □

5.2 Strictness Analysis

W e  s t a r t  w i t h  a n  o v e r v ie w  o f  t h e  d e v e lo p m e n t .  F i r s t  t h e  N_lo s e m a n t i c s  is  a b s t r a c t e d  

t o  y ie ld  t h e  z e r o - o r d e r  b a c k w a r d  s t r i c t n e s s  s e m a n t i c s  Bq; t h e  Bo s e m a n t i c s  y ie ld s  

l e a s t  B S A s  a n d  th e r e f o r e  d e t e r m i n e s  t h e  So s e m a n t i c s .  W e  t h e n  d e f in e  a  f i r s t - o r d e r  

l a n g u a g e  a n d  i t s  s t a n d a r d  S i  a n d  l i f t e d  S n  s e m a n t i c s .  T h e  z e r o - o r d e r  s e m a n t i c s  Bo 

is  e x t e n d e d  t o  a  f i r s t - o r d e r  s e m a n t i c s  B i in  t h e  m a n n e r  o f  [ W H 87]; t h e  B i s e m a n t i c s  

s t i l l  y ie ld s  l e a s t  B S A s  a n d  s o  d e t e r m i n e s  t h e  f i r s t - o r d e r  s e m a n t i c s  S i .  N e x t  is  t h e  

f i r s t  a b s t r a c t i o n  s t e p  in  w h ic h  p r o j e c t i o n  d o m a i n s  a r e  r e s t r i c t e d  t o  t h e  ‘s e q u e n t i a l ’ 

p r o j e c t i o n s  o f  S e c t io n  4.4.4, i n d u c in g  a b s t r a c t  s e m a n t i c s  B^f a n d  B f . T h e  z e r o - o r d e r  

a b s t r a c t  s e m a n t i c s  B ^  s t i l l  d e t e r m i n e s  t h e  So s e m a n t i c s ,  b u t  t h e  B f  s e m a n t i c s  d o e s  

n o t  d e t e r m i n e  t h e  S i  s e m a n t i c s .  W e  t h e n  g iv e  a n  a l t e r n a t i v e  f i r s t - o r d e r  b a c k w a r d  

s t r i c t n e s s  s e m a n t i c s  B2 in  t h e  m a n n e r  o f  [D W 90]; i t s  a b s t r a c t i o n  B f  d o e s  d e t e r m i n e  

t h e  S i  s e m a n t i c s ,  s u g g e s t in g  t h a t  i t  is  t h e  ‘c o r r e c t ’ s e m a n t i c s  a t  f i r s t  o r d e r .  N e x t  c o m e s  

t h e  s e c o n d  a b s t r a c t i o n  s t e p  i n  w h ic h  f i n i t e  p r o j e c t i o n  d o m a i n s  a r e  c h o s e n  a t  e a c h  ty p e .  

T h i s  g iv e s  a  s u r p r i s i n g  r e s u l t :  w h e n  r e s t r i c t e d  t o  t h e s e  f i n i t e  p r o j e c t i o n  d o m a i n s  t h e  

Bq s e m a n t i c s  o f  c a s e  e x p r e s s io n s  g iv e s  r e s u l t s  t h a t  i n  g e n e r a l  a r e  i n c o m p a r a b l e  t o  ( t h e
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a n a l o g  o f )  t h e  s e m a n t i c s  o f  c a s e  g iv e n  in  [ W H 87]. W e  s h o w  h o w  t h e  tw o  s e m a n t i c s  

m a y  b e  c o m b in e d  t o  y ie ld  a  s e m a n t i c s  t h a t  is  s t r i c t l y  b e t t e r  t h a n  e i t h e r .

A s  s t a t e d ,  t h e  g o a l  is  t o  a b s t r a c t  t h e  Nj_o s e m a n t i c s  t o  y ie ld  t h e  z e r o - o r d e r  b a c k w a r d  

s t r i c t n e s s  s e m a n t i c s  Bq. W e  r e q u i r e  t h a t  i f  p Bo is  a  B S A  o f  p N ± 0  t h e n  £ Bo[ e |  p B °  b e  

a  B S A  o f  <fN±0[ e J  p N±0 a n d  h e n c e  o f  £ Sj- ° [ e J  o p Nj-°; in  p a r t i c u l a r ,  w h e n  p Nxo is  t h e  

i d e n t i t y  i t s  l e a s t  B S A  is  t h e  i d e n t i t y  A c*.a, a n d  £ B° [ e ]  (A a.c*) is  a  B S A  o f  £ Sxo[ e ] .

L e t  P r o j T  d e n o t e  t h e  l a t t i c e  o f  p r o j e c t i o n s  | T”5-10^ ]  |,  a n d  l e t  E g i b e  t h e  t y p e  o f  g lo b a l  

e n v i r o n m e n t s ,  a s  b e f o r e .  T h e n  T Bo[ T j  s h a l l  b e  t h e  d o m a i n  o f  B S A s  f o r  f u n c t i o n s  in  

T Nj-° [  T ] ,  s o

7 ^ ° [ T ]  =  P r o j T  4  P r o j Egl .

F o r  e : T  w i t h  e n v i r o n m e n t  t y p e  E w e  h a v e  £ Bo[ e ]  G T Bo[ E j  — > T Bo[ T ] ,  s o

£ Bo[ e J  G ( P r o j E 4  P r o j Eg{)  - >  ( P r o j T  4  P r o j E g l )  ,

s o  £ B° [ e ]  is  a  f u n c t i o n  f r o m  p r o j e c t i o n  t r a n s f o r m e r s  t o  p r o j e c t i o n  t r a n s f o r m e r s .

T h e  t y p e  p r e d i c a t e  b e t w e e n  v a lu e s  g  a n d  r  in  t h e  Nj_o a n d  B 0 s e m a n t i c s  r e q u i r e s  t h a t  

r  b e  a  B S A  o f  g ,  t h a t  is ,

ftN L 0B o [T ] G ( T ' M t ]  x  T Bo[ T ] )  4  T r u t h  ,

7^n±0b0 | T j  _  v 7  . 7 o g  C  g  o ( r  7 )  .

R e c a l l  t h a t  e a c h  Nj_o c o n s t a n t  c o n Nj-° is  d e f in e d  b y

c o n Nj-° ( ^ i , . . . , p „ )  =  { c o n s ° ) L , 0  ( ( g 1 , . . . , g n ) )  , 

a n d  i f  T {  is  a  ( l e a s t )  B S A  o f  g i  f o r  1 <  i  <  n  t h e n

A a .  |_ I { ( r  a i )  &  . . .  &  ( r n a n )  \ a \  ®  . . .  0  a n  C  c*} 

is  a  ( l e a s t )  B S A  o f  ( ( p i , . . . ,  g n ) ) .  H e n c e  e a c h  Bq c o n s t a n t  is  d e f in e d  b y  

c o n B o  ( r i , . . . ,  r n )

=  | ( c o n s ° ) ± , | o B  A a . U { ( ^ i  « i )  &  • • • &  ( t „  a n )  \ ®  . . .  0  a n  C  a }  .

W h e n  t h e  c o n s t a n t  h a s  a  s in g l e  a r g u m e n t  t h i s  s im p l i f ie s  t o  c o n B °  r  =  | ( c o n s°)±/1 o B  r .  

T h e  d e t a i l e d  d e f in i t i o n s  a r e  g iv e n  f o l lo w in g .

W e  i n t e n d  a l l  B S A s  r  t o  h a v e  t h e  g u a r d  p r o p e r ty ;  in  p a r t i c u l a r  t o  m a p  A B S  t o  A B S  

a n d  t o  b e  d i s t r i b u t i v e  w i t h  r e s p e c t  t o  A B S ,  t h a t  is  t h a t  r  7 l  =  t  ( B O T l  U 7 j J  =  

( r  B O T i )  LI ( t  7 1 )  =  B O T i  U ( r  7 1 ) .  W e  w il l  w r i t e  X a ± . f ( a )  t o  m e a n

( A a i . / ( a ) )  7 1  =  / ( 7 )  ,

( A a i . / ( a ) )  7 l  -  B O T i U f ^ )  .
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U s e  o f  t h i s  p a t t e r n - m a t c h i n g  l a m b d a  d e f in e s  p r o j e c t i o n  t r a n s f o r m e r s  t h a t  a r e  d i s 

t r i b u t i v e  w i t h  r e s p e c t  t o  A B S ,  m a p  A B S  t o  A B S  a n d  F A I L  t o  F A I L  w h e n  /  is  s t r i c t ,  

a n d  a r e  d i s t r i b u t i v e  w h e n  /  is  d i s t r i b u t i v e .  E q u iv a le n t ly ,  w e  m a y  w r i t e  /  ay. =  g ( a )  

t o  m e a n  t h a t  /  is  e q u a l  t o  Aa ± . g ( a ) .

F o r  v  G Vj_, v  7^ _L, a n d  g iv e n  d o m a i n  U ± ,  d e f in e  t h e  c h a r a c t e r i s t i c  p r o j e c t i o n  t r a n s 

f o r m e r  ( fo r  b a c k w a r d  s t r i c t n e s s  a b s t r a c t i o n )  A C C E P T V t o  b e  t h e  l e a s t  B S A  o f  t h e  

l i f t e d  c o n s t a n t  f u n c t i o n  X x . v  G U ±  4  V ± ,  d e f in e d  b y

A C C E P T v  e  | V i | 4  | U L  | ,

A C C E P T V o l  =  B O T l , i f  a ±  v  =  X  ,

A C C E P T v  a L  =  B O T u  i f  a x  v  ±  X  .

I n t u i t i v e ly ,  A C C E P T v  a c c e p t s  ( m a p s  t o  B O T ± _ )  a n y  p r o j e c t i o n  t h a t  a c c e p t s  v  ( t h a t  

is ,  d o e s  n o t  m a p  v  t o  _L), a n d  m a p s  a l l  o t h e r  p r o j e c t i o n s  t o  B O T ± .  T h e n  A C C E P T V 

m a p s  e v e r y  p r o j e c t i o n  le s s  t h a n  N O K v  t o  B O T ± ,  a n d  a l l  o t h e r  p r o j e c t i o n s  t o  B O T j _ .  

A ls o ,  f o r  a l l  f i n i t e  u  w e  h a v e  t h a t  A C C E P T V 7 u  i s  B O T ±  i f  u  C  v ,  a n d  B O T 1  

o th e r w i s e .  T h e n  A C C E P T v  d e t e r m i n e s  v  a n d  is  a  c o n t in u o u s  f u n c t i o n  o f  v .

T h e  l e a s t  B S A  o f  m k u n i t s ± 0  =  Ap . l i f t  () is  A C C E P T ^  q ,  so

m k u n i t B o  r  =  A C C E P T ^  q o b  t  

=  ( \ a ± B O T ± )  o B  t  .

F o r  i n t e g e r  c o n s t a n t s

m k i n t f 0 r  =  A C C E P T l i f t 2  . o B  r  .

T h e  o t h e r  u n a r y  c o n s t a n t s  a r e  d e f in e d  s im i la r ly .  T h e  l e a s t  B S A  o f  s e l f ± 0  is

| s e l f ^  | €  | ( T i ) L  | 4  | ( 7 i ) ±  ®  . . .  ®  ( T „ ) i  | ,

| self±01 ay. =  B O T i  ® . . .  ® B O T ±  ® ay. ® B O T i  ® . . .  ® B O T ±  ,

w h e r e  a ±  a p p e a r s  i n  t h e  i t h  p o s i t i o n  o n  t h e  r i g h t - h a n d  s id e .  T h e  l e a s t  B S A  o f  i n c f ± 0  

is

| i n c ^ °  I €  I ( ( T O x  ®  . . .  ®  ( T . K J x  I 4  I ( T i ) ±  | ;,

| m c f xo | (Q i 0  . . .  © a „ ) i  =  c m  .

T h e  l e a s t  B S A  o f  o u t f xo is

I o u t ? 1-0 | G | ( T i ) ±  | 4  | ( ( T \ ) i © . . . 0 ( T n ) i ) i  I ,

I o u t f ±01 a L  =  { B O T l  ©  . . .  ©  B O T l  0  o l  ©  B O T i  0  . . .  0  B O T j J i  ,

w h e r e  0 7  a p p e a r s  i n  t h e  i t h  p o s i t i o n  o n  t h e  r i g h t - h a n d  s id e .

R e c a l l  t h a t  TV* is  t h e  l e a s t  p r o j e c t i o n  t h a t  a c t s  a s  t h e  i d e n t i t y  o n  l i f t 2  i .  T h e  l e a s t

B S A  o f  ( p /u s So)± / is

| (p l u s So)L, | =  A a i .  U { N i  0  N j  | N i + j  C  0 7 }  .



C H A P T E R  5. F IRST-O RD ER A N A L Y SIS 100

C o m p o s i t i o n  a n d  s i m p l i f i c a t i o n  g iv e s

p l u s * 0 ( t i , t 2) =  A o y ..U { ( t i  N i )  k  ( r 2 N j )  | N i + j  C  a ± }  .

T h e  f u n c t i o n  ( t u p l e ^ ° ) L , i s  t h e  id e n t i t y ,  so

t u p l e * 0 ( t i , . . . ,  r n )  =  A a .  |J{(Ti a i )  k  . . .  k  ( r n a n )  \ c q  0 . . .  0  a n  C  a }  .

I t  is  n o t  h a r d  t o  s h o w  t h a t  t h e  l e a s t  B S A  o f  ( c h o o s e s ° ) ± i is  

| ( c h o o s e s ° )± / | c q

=  U i< i< n  ( ( C i  B O T l )  0  B O T ±  0  B O T l  0 a i ®  B O T l  0  . . .  0  B O T l )  , 

w h e r e  a ±  a p p e a r s  in  p o s i t i o n  i  +  1. I n tu i t i v e ly ,  t h i s  m e a n s  t h a t  t o  e v a l u a t e  a  c a s e  

e x p r e s s io n  in  e a g e r  c o n t e x t  o j . ,  t h e  s e l e c to r  m u s t  b e  e v a l u a t e d  t o  s o m e  W H N F  a n d  

t h e  c o r r e s p o n d i n g  b r a n c h  e v a l u a t e d  in  c o n t e x t  a ± ,  a n d  a l l  o t h e r  b r a n c h e s  i g n o r e d .  

T h u s

c h o o s e * 0 ( r 0 , . . . , r n ) =  A o l  • L h < i< n  (Oh) ( Q  B O T ± ) )  k  a ± ) )  .

I t  is  i n t e r e s t i n g  t o  c o n s id e r  w h a t  t h e  d e f in i t i o n  o f  p l u s * 0 w o u ld  b e  w e r e  I n t  d e f in e d  a s  

a n  i n f in i t e  s u m ,  a n d  p l u s S o  d e f in e d  in  t e r m s  o f  a  c a s e  e x p r e s s io n .  F r o m  t h e  d e f in i t i o n  

o f  c h o o s e * 0 w e  w o u ld  g e t

p l u s * 0 ( t i , t2 )

=  . U <ez U i e z  ( n  N i )  k  ( r 2 N j )  k  ( A C C E P T l i f t 2  ( .+  .} a j  .

N o w  A C C E P T \ i f t 2 î + -j c e ±  =  B O T ±  e x a c t l y  w h e n  N i + j  g  a ± .  R e c a l l i n g  t h a t  

B O T ±  &  7  =  B O T l  f o r  a l l  7 ,  i t  is  a  s im p le  s t e p  t o  s h o w  t h a t  t h e  tw o  d e f in i t i o n s  

a r e  e q u i v a l e n t .

P r o p o s i t i o n  5.3
T h e  s e m a n t i c  f u n c t i o n s  £ N-L0 a n d  S * °  a r e  c o r r e c t ly  r e l a t e d .  □

F o l lo w in g ,  w e  m a k e  u s e  o f  t h e  f a c t  t h a t  a p p l i c a t i o n  o f  t h e  N q d e f in in g  c o n s t a n t s  is  

c o m p o s i t i o n  w i t h  t h e  So d e f in in g  c o n s t a n t s .

P r o p o s i t i o n  5.4
F o r  a l l  e x p r e s s io n s  e  t h e  f u n c t i o n s  £ So[ e ]  a n d  £ Sj- ° [ e ]  a r e  s t a b l e .

P r o o f

R e c a l l  t h a t  £ So[ e ]  =  £ No[ e ]  i d ; a n d  £ N° [ e ]  i d  is  d e f in e d  e n t i r e l y  in  t e r m s  o f  t h e  

So c o n s t a n t s ,  i d , c o m p o s i t i o n ,  a n d  •); t h e  So c o n s t a n t s  a n d  i d  a r e  s t a b l e ;  a n d

c o m p o s i t i o n  a n d  ( * , . . . , • )  p r e s e r v e  s t a b i l i t y .  F o r  £ s±0[ e  ]  w e  n e e d  o n ly  o b s e r v e  t h a t  i t  

is  e q u a l  t o  £ So [ e  ]  u p  t o  i s o m o r p h i s m ;  a l t e r n a t i v e l y ,  t h a t  s m a s h  i s  s t a b l e  a n d  l i f t i n g  

p r e s e r v e s  s t a b i l i t y .  □
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Let 7"^° [ T ] be the restriction of 7~Nj-° [ T ] to stable functions, and let 7£NioBo [ T ] (g , r) 

assert th a t r  is the least BSA of g.

P ro p o s it io n  5.5
The functions £ Nj-0 and £ B° are related by 7£NJ-oB°.

P r o o f
Since £ Sj-° [ e ] is stable, £ Nj-° [ e ] g = £ Sxo [ e ] o g, and composition preserves stability, 

we have th a t £)Nj-° [ e ] maps stable functions to stable functions for all e. Next, £Bo [ e ] 
maps the least BSA of each stable function g to the least BSA of £Nj-0[e] g; this 
follows from the fact th a t the Bo constants preserve leastness. □

Thus the Bo semantics is optimal with respect to  least abstractions of stable functions. 
We can do better. Let D L S T  be the restriction of T̂ ,1̂-1-0Bo [ Ti ] —> t^n-l°Bo [[ T2 ] such 
th a t D L S T (F , T) asserts th a t F  maps stable functions to stable functions, T  is 
distributive, and T(r)  is the least BSA of F(g) when g is stable and r  is the least 
BSA of <7, hence, by Proposition 3.31, th a t T  is the least function related to F  by
7£NloBo[T i] 7fcN±oBo[T2] #

P ro p o s it io n  5.6
The functions ^ Nj-° [e | and £ B° [e ]  are related by D L ST  for all e.

P r o o f
We need only show th a t the Bo constants are distributive; this follows from the fact 
th a t all projection transformers, composition, and lub are distributive. □

In other words, £ B° [ e |  is the least function correctly related to  £ Nj-°[e] =  
Ag.£Sj-°|[e] o g, hence £ B° [e ]  r  = |£ Sj-°[e] | oB r . Since abstract composition pre
serves leastness when its first argument is the least BSA of a stable function, we have 
th a t for r  the least BSA of g , the projection transformer £ Bo[ e ]  r  is the least BSA 
of £ Nj-°[[e] g and therefore of £ s±0 [ e ]  o g , and in particular, when g is id its least 

BSA is Xa.a, and £ Bo[ e ]  (Xa.a) is the least BSA of £ Sj-°[e], and hence determines 
5So[e ].

If the language were extended with some parallel construct with an associated non
stable defining constant, the corresponding backward strictness semantics would be 
safe, optim al with respect to  smash projections, and distributive.

E x a m p le . Recall Bool = t r u e  () + f a l s e  () ; let b :B ool, x : I n t ,  and y : I n t  be

variables with corresponding type E of environments equal to  (B ool, I n t , I n t ) , with 
the values of b, x, and y in the first, second, and third positions, respectively. Let e 

stand for the expression
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case b of
true () -> x 
false () -> y .

The generic semantics £ [ e ]  p of this expression is choose (sell p, sel2 p, se/3 p). Let 
pBo be Act.a, the least BSA of the identity. Then

pB° [b ]  =  seli° pB° =  AqL.(cti 0  A B S  0  A BS)  ,

pBo[x J  =  sel%° pB° = Xa±.(ABS  0  c*i0  A B S)  ,

PB°Iy  1 — se 3̂ ° PB° =  Xa±.(ABS  0  A B S  0  ayj .

Then

£ B° [ e ] pBo
= Aa± . {{TRUE  0  A B S  0  ABS) & (ABS 0  « l  <0 ABS))

U {{FALSE 0  ABS 0  ABS) & (ABS 0  ABS 0  a j )

=  Aa^ • {TRUE  0  ay_ 0  ABS)  U {FALSE  0  ABS 0  a jJ  •

This is the least BSA of Ss±0 [ e ] .  It reveals th a t in context a± th a t b is certain to
be evaluated, and th a t if b is true then x is evaluated in context ot±, and if b is false
then y is evaluated in context a±.

Now let g =  A(6 , x, y).{b, x , x), tha t is, a  function from environments mapping the x 
component into both the x and y positions. The least BSA pB° of g±_ is given by

pBo[b ]  =  Aax.(aj. 0  ABS 0  ABS) , 

pBo[x ]  =  A qi.{ABS ® AB S)  , 

pBo[y ]  =  Aoll-{ABS ® A BS)  .

Then the least BSA of SSj-° [ e ] 0 gL is S B° [ e ] pBo, which is

AqL . ( TRUE  ABS) U {FALSE  0  0  ABS)

=  Aol . {STR  0  a± 0  A B S)  ,

indicating th a t in context a± the x component of the argument of SSj- ° [ e j o ^  is 
evaluated in context q^. In particular, this function is strict in the x component; this 
dem onstrates th a t S s±0 [ e ] is jointly strict in the x and y components of its argument.

E x a m p le . Let x : In t  be a  variable with corresponding type E of environments be 
In t .  The expression to be analysed is x + 1 . Let pBo be Aa.cn, the least BSA of the 

identity, then S Bo[x  + l ]  pBo maps, for example Ni to 1 for all *, the lub Uies ^ i  

(where S C Z) to  Lh€sA i_i, and in particular ST R  (the lub of all Ni) to STR.
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5.2.1 First approach to first-order analysis

The analysis technique given is only zero order rather than first order, since there is no 

mechanism for defining functions, or applying non-primitive functions. In this section 
we describe an approach to  first-order analysis like th a t of [WH87]. We have been 

careful to make the distinction between the zero order and first-order constructions 
for two reasons. First, the first-order syntax and semantics is most easily handled 
by moving outside (augmenting) the standard language. Second, the details of zero- 
order analysis will carry over directly into the higher-order development, unlike the 
first-order additions.

First we introduce the new syntactic class of function variables:

f  G FVar [Function variables],

and extend the zero-order expression language to the first-order language by adding 
the application form f  e. Since functions are not first class there are no expressions of 
function type, no notion of evaluating a function, and hence no need for the function- 
space lifting of the lazy lam bda calculus, so each function variable has an associated 
first-order unboxed function type, th a t is, a type of the form Ti #> T2 where Ti and 
T2 are both zero order.

In the following Gi indicates an arbitrary first-order semantics, which will be partially 
defined in terms of a zero-order semantics Go- For function variables f ;  : Tj #> U*, 
1 <  i <  n, we take function environments to be tuples from the domain

FEnvGl = 7 ^ 1[T i# > U i]  x . . .  x T ^ T n  #> Un ] .

As is usual, the first-order semantic functions will take as a separate argument a 
function environment, so for expression e of type T with environment type E and 
function environment from domain FEnvGl,

£ Gl[ e ]  G FEnvGl -» T ^°[E ] ->■ 7 ^ ° [T ] .

For all syntactic constructs other than f  e the semantics £ Gl is defined like £ Go except 
th a t the function environment must be passed along. The semantics of application is 
defined in term s of the constant applyGl by

£ Gl[ f  e ]  </> p = applyG1 </>[f] (£Gl[ e ]  <£/?),

where function-environment lookup is indexing, th a t is J =  7q </>.

The required relation between two first-order semantics £ Gl and £ Hl is, for expression 
e of type T with environment type E and function environment from domains FE nvGl
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and FE nvHl respectively,

(7^GiH i[Tl #> Ui] x . . .  X f t GlHl[Tn #> U„J) - 4

7̂ G°Ho[ E]

^ GoHo[T ] ,

where

7£GlHl[Ti #> T2] G (T^ 1 [Ti #> T2] x T Hl[Ti #> T2]) -4 Truth .

Now

applyG' e  T ^ T i  #> T2] -4 T ^ f T i ]  -4 7 ^ °[T 2] , 

and the required relation between applyGl and applyHl is 

f t GlHl[Ti #> T2] -4 7eGoHo[T i]  -4 f t G°Ho[T2]| .

As before, if all of the relevant defining constants are correctly related then so are the
r  n

semantics 8  1 and 8  1; if we have already shown tha t Go and Hq defining constants 
are correctly related then we need only define correctly related versions of apply.

Finally, we introduce a syntactic class of first-order function definitions:

F G FDefns [First-order function definitions]

F ::= f  i : Ti #> Ui 

f i  x = ei

f  n : Tto #> Un 

f n x -  en ,

where each e; is a first-order expression of type U; th a t may have free variable x of 
type Ti (we om it the typing rules for function definitions and application—they are 

straightforw ard). Given a function environment (j> we take such a set of equations to 
define a function environment mapping each f  * to the value 8 Gl [ e t-1 </>—a function 
from environments for e; (values of zero-order tuple type T* =  (El(i ,  . . .  ,Ei;0.)) to 
the value of (of zero-order type U;) in th a t environment; f i has type Tj #> Û . 
We define a function 8 ^ jns mapping function definitions F to value in the

corresponding environment domain FEnvGl. The required relation between two such 
functions £%Jn,  [ F ] and £%fna [ F ] is

7eGlHl[T 1 #> UiJ x . . .  x 7JGlHl[T„ #> Un ] .

Now we define the standard and lifted first-order semantics. The standard semantics 
of first-order types is

T ^ lT i  #> T2] =  T ^ i T i ]  -*■ T s'-[T2] ■
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The first-order lifted semantics S n  of first-order types differs from the higher-order 

lifted semantics S_l in th a t lifting of the function space is om itted ,1 so

T M T i #> T2] = 7"Sj-°[T i ] 4  TSj-°[T2] •

The Si semantics of application is ordinary application. 

applySl f  = f  .

The Si semantics of first-order function definitions is the usual least-fixed-point se

mantics.

£ % J . F] =  IfP (A* • 0, . . . .  £ s' [ e » l  *)) ■

The Sj_i versions are the same, with Sj_i replacing Si in the definitions.2

The value denoted by a function symbol f  in the backward strictness semantics is 
to  be a BSA of the value it denotes in the lifted semantics—we regard this as a 
characterising feature of Wadler and Hughes’ approach to first-order analysis. The 
No semantics is extended to the first-order Ni semantics in such a way th a t first-order 
function definitions denote the same functions as in the Si semantics, and so have the 
same BSAs. Thus

7 "* [T i #> T2 ] =  7 ^ ' [T, #> T2] ,

and

7iSlNl[T 1 #> T 2] (f,g)  =  {f = g) ,

and Ni application is composition:

applyHl f  x = f  o x .

(In the second approach to  first-order analysis described later, the corresponding 
operation will be ordinary application rather than composition.) It is trivial to  show 
th a t applySi and applyNl (and their lifted counterparts) are correctly related. The Ni 
semantics of a set F function definitions is

£ * 7n ,[F ] =  lfP (-W • (£ Nl[ e i l  <t> id, £ Nl[ e n ] 0  id)) .

The Nj_i version has the same definition except th a t Nj_i replaces Ni. Note th a t on 
the right-hand side the £ Nl[e j ]  0 are applied to id , the identity of composition. It 
is easy to show th a t the semantics S ^ ns and 8 4 ^  (and their lifted counterparts) are 
correctly related.

1 Omitting function-space lifting is just a convenience. If function space lifting were retained then 
X would act as the constant bottom function with least BSA the constant bottom function, so the 
space of corresponding BSAs—the projection transformers with the guard property—would have to 
be lifted as well.

2Notice that we do not require a special fixed point operator as we did for the S_l semantics.
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Next we define the semantics for first-order backward strictness analysis. The required 

relation between the Nj_i and Bi semantics at function types is ‘is a BSA of’, so

T^'lTi #> T2] =  |T^i0[T2] | 4  |T M T i J |,

and

f t NlBl[Ti #> T2] (g ,r) =  V 7  . J o g C g o ( r  7) .

Thus if 0S±1 and <f)Bl are function environments such th a t is a BSA of
] for all f ,  and pBl is a BSA of pN±1, then £ Bl[ e ]  <f)Bl pBl is a BSA of 

(£ Nxi[ e ]  /?Nxi, and hence of (£s±1[ e |  0 s-1-1) 0 pu±l. In particular, when pN-L1 

is the identity its least BSA is the identity Ac*.a, and £ Bl[ e ]  (f)Bl (Ac*.a) is a  BSA of 

5 s-1-1 [ e ] <̂Sxi.

Since Nj_i application is composition, Bi application is abstract composition: 

applyBl Ti r2 = TX oB r2 .

Then applyN±1 and applyBl are correctly related.

P ro p o s it io n  5.7
The semantic functions S N±1 and £ Bl are correctly related. □

Just as a t zero order we can do better.

P ro p o s it io n  5.8
Let <t>s±1 and </>Bl be function environments such th a t </>s±1[ f  ] is the least BSA of 
stable function 0 Bl| f  ] for each f . Then £ Bl[ e ]  <j)Bl is related to ^ ^ [ e ]  (f) ^ 1 by 
DLST.

The proof is the same as for Proposition 5.6, with an additional case for the application 
form. □

Again we could forgo stability and retain leastness with respect to smash projections.

Next we define S ^ jna. The least function in T ^ j T ]  is Ax.lift _L with least BSA the 
least function Aa±.BOT±  in T ^°[T ], and the least BSA of id is the identity Ac*.c*, so 

the semantics of function definitions F is

£defnslF 1 =  lfP • (£Bl[ e i 1 (Ac*.a), . . . ,  £ Bl[ e n ] <j) (Xa.a))) .

Each semantics defines the function environment as the lim it of an ascending chain. 
Let us denote the elements of these chains by <f>f 1 and for i >  0, with lim its (f)S±1 

and (j)Bl respectively, where

0 ? 1 =  W  • (£Bl [ e i ] 0 (Ac*.a), . . . ,  £ Bl[ en ] <j) (Xa.a ) ) ) 1 0 Bl 
where

0o‘ =  {\aL .BOTL , . . . , \ a ± . B O T k ) ,
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and

(/>•-“  =  (A0 . (5s-11 [ e i ] 0, . . . ,  £ S_L11en |  0 ))1 ^  

where

0 oxi =  (A®-lift • • •»Ax.lift -L) ,

Now 0o1 is correctly related to 0qx1 5 by Proposition 5.7 and induction 0f* is correctly 
related to  0fxi for all «, and by Proposition 3.15 the limits are correctly related.

P ro p o s it io n  5.9
The N_li and Bi semantics are correctly related. □

Just as for zero-order analysis this does not depend on stability, but stability gives 
stronger results.

P ro p o s it io n  5.10

If 0s 1 and </)s±1 map every function variable to a stable function, then for all e the 
functions 8 Sl [ e ] 0 Sl and £ s±1 [ e ] 0 S±1 are stable.

The proof is the same as th a t for Proposition 5.4, with an extra case for first-order 
function application. □

P ro p o s it io n  5.11

For all F  the function environment S^e/ns[ F ]  is the least environment th a t is correctly 
related to  5 ^ [ F ] .

P ro o f

Consider the approximating environments ju st defined: 0Q1 is the least value correctly 
related to  0q'lo; by Proposition 5.8 and induction 0f* is the least value correctly related 
to 0 ^ °  for all i\ the 0 $,J-° are increasing in the stable ordering (which follows from 

the fact th a t composition is monotonic in the stable ordering); the result follows from 
Proposition 3.28. □

Thus Sdefns yields least BSAs, and we conclude th a t the Bi semantics determines the 

Si semantics. In light of this, examples would not be very interesting until fidelity 
is lost by abstracting the projection domains. Nonetheless we give an example th a t 
is commonly used to highlight a weakness of backward strictness analysis, to  show 

th a t the loss of accuracy derives from the treatm ent of first-order functions and from 
abstracting the projection domains and is not inherent in the method itself.

Exam ple. Consider the functional abstraction of the case expression:
cond (b,x,y) = case b of

true () -> x 
false 0  -> y ,



C H A P T ER  5. F IRST-O RD ER A N A L Y SIS 108

where we write f  ( x i , . . . ,  xn) = e as convenient shorthand for

f  x = l e t  ( x i , . . . , x n) = x in  e ,

and rh s  for the right-hand side of the definition. Let condSjLl and condBl be the 

values of this definition in the S u  and Bi semantics, respectively, so

condBl = £ Bl[ r h s ]  [] (Xa.a) ,

which is exactly what was calculated before functional abstraction: condBl is the least 

BSA of conds±1.

5.2.2 Abstraction of projection domains

In non-standard interpretation in general there are two basic approaches to choosing 
the working set of abstract values for an implementation. The simpler, which we will 
adopt, is to fix in advance a finite set of abstract values a t each type. The other 
approach involves symbolic (algebraic) manipulation of representations of abstract 
values with approximation performed ‘on the fly’, as required by space and tim e con
siderations, typically guided by some heuristics. Such methods tend to be complex, 
and the nature of the approximations hard to predict. In some contexts these approx
imations may tend to be quite good, e.g. as show by Cousot and Cousot for abstract 
interpretation [CC91], Seward for term-rewriting [Sew94], and Nocker for abstract 
reduction [Noc93]. On the other hand, Hughes shows th a t in a context very similar 

to ours, seemingly natural approximations can lead to  very poor results [Hug85].

Choosing a particular finite abstract domain for a particular analysis technique is an 
engineering problem—a balance of tradeoffs. Though we would like the domains to 

be as large as possible to obtain high accuracy, the time complexity of analysis is 
typically exponential in the sizes of the domains chosen, suggesting th a t for practical 

purposes the domains should be as small as possible. Another consideration is of 
what information (here strictness information) is actually exploitable by a compiler. 
We will not explore these design spaces, which are research issues in their own right, 

instead we will appeal to tradition in the field and choose domains th a t appear to 

give potentially useful information. For backward strictness analysis our reference 
points are [WH87, KHL92]. For forward binding-time analysis we will be on more 
solid ground: the choice will be th a t of Launchbury [Lau91a] which has been shown 

to be of genuine practical use. For forward term ination analysis we will use the same 
domains as for backward strictness analysis since they appear to give potentially 

useful information in th a t context as well.
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The abstraction of full projection domains to finite abstract domains is performed 

in two steps. For backward strictness analysis we first identify for each type T those 
projections SProjT th a t have natural sequential interpretations in the sense described 

in Section 4.4.4; in essence this amounts to excluding projections on product domains 

th a t cannot be expressed as products of projections on the component domains. From 
each such set we choose a finite subset FProjT, which amounts to  restricting the 
projection domains for In t  and recursively-defined types. For backward strictness 
analysis there are two reasons for performing abstraction in two steps. First, SProj.r 
appears to  be the largest set from which we might reasonably choose a finite subset for 
analysing sequential languages.3 Second, it will allow us to pin down more precisely 
sources of inaccuracy.

For fixed type definitions D and each zero-order type T we define SProjT to  be the 

domain 7^Sj-° [[ T ] J)> where ^lefna is defined in terms of V s±0 ju st as Tdefns is
defined in term s of T , and V Sxo is defined as follows.

7> M ( ) ]  =  Proj0  = {BOT±, B O T ±)  ,

V s±0 [ I n t  ] =  Projlnt ,

. . .  ,T „ )] =  { a i ® . . . 0 a B | a, G 'PSxo[Ti]], 1 <  * <  n} ,

Ti + . . .  + cn T„]

=  U { K , a J  I a  — (Po 0  •. • ® Pn)-, Pi £ P Sj-0[Tj ], 1 <  i < n} .

The same set of projections would be defined for I n t  were In t  defined as an infinite 
sum; the set comprises the projections BOT±, Ni for all i G Z, and all possible lubs.

In Proj(Jlt >Tn) the gib of two projections expressible as smash products is compo

nentwise on their representation, e.g. (7! 0  72) n (5i 0  £2) = (71 n £1) 0  (72 n < y , and 
gib in SProjT coincides with gib in ProjT for all T. The preceding also holds for k, in
place of n. In contrast, in Proj(Tl>...>Tn) lub is not necessarily componentwise, even
when BOT±  is excluded. To see this, consider

((71 0 <5i) U (72® <fe)) K  v)

= (smash 0 x $i) 0 unsmash) {u,v)  U 

(smash 0 (72 x 62) 0  unsmash) (u ,v)

= smash (71 u, <5i v) U smash (72 w, 82 v) .

3This is assuming a sequential implementation without speculative evaluation, otherwise projec
tions that correspond to parallel evaluation might be useful; these could be conveniently be taken 
to be the Hoare powerdomain of FProjT.
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If, for example, only 71 maps its argument to _L, then lub is not componentwise. 
W h at’s more, in Proj (T Tn) the lub of two projections expressible as smash products 

may not be expressible as a smash product; for example

( I D l  0  I D l )  U ( I D l  0  I D J  ,

which is IDj_ on pairs, cannot be expressed as a smash product. Since SProj ̂  Tn> 
only contains projections th a t can be expressed as smash products, lub in SProjT 
will not in general be the same as lub in ProjT, and the former will not necessarily 
be a sublattice of the latter. However (since gib does coincide), for any 7  in ProjT 

there is a  least element of SProjT greater than 7 ; the lub of two elements of SProjT 
is the least element greater than  their lub in ProjT, and this lub is componentwise on 
smash products other than BOT±- (A helpful observation is th a t P Sxof (T i, . . .  ,Tn) ] 
is isomorphic to 'PSj-°[Ti J 0  . . .  0  'PSxo[Tn ]: the projection 71 0  . . .  0  7 n is equal to 
BO T±  exactly when 7 ; is BOT±  for some i . If we identify all such expressions with 
BOT±<g> . . .  0  BOT±  then lub is componentwise.) Then SProjT is a complete lattice 

for all T (this follows from the fact th a t gibs exist for all sets, including the empty set, 

for which the gib is ID). Further, SProjT always contains BOT±, BOT±, ID±, ID l, 
though these projections may not be distinct (e.g. for the unit type ( ) ,  or other types 
with the same interpretation (up to isomorphism), such as A given the type definition 
A=(A,A)—the same holds in ProjT).

For 7  G ProjT let 7 # be the least projection in SProjx greater than 7 . For every projec
tion transform er r  G ProjT —» Projy define t #  G SProjT —>• SProjv b y r # a  =  ( r  a ) # ; 
then r  approximates t #  a t common arguments and r#  is a safe abstraction of r .  To 
get a backward strictness semantics Bjf in these new domains (to which we will re;- 
fer generally as SProj) is simply a m atter of replacing each projection transformer 

| (cons°)±, | appearing in the definitions of the Bq constants by its abstraction in the 
new domains.

P ro p o s it io n  5.12
The abstraction #  is a semi-homomorphism of the semantics, th a t is 

(£Bo[ e ]  p)* C= £ B* [ e ]  p* .

This follows from the fact th a t £ Bo is a monotonic function of its defining constants. 
□

In other words, the Bjf semantics is a safe abstraction of the Bo semantics.

We need to  clarify the B^ semantics for case expressions of product type. A pro
jection in SProj(Ji T ) is lazy—above B O T ±—when every component is lazy, and
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B O T ± is BOT±  <8>. . .  ® BOT_l . The projection ID± is not in SProj(Tl >...>Tn) for n >  2; 
in P ro i(Tl Tn) it is

(TDx ® IDj_ ® IDl ® . . .  ® IDL)

U (ID± ® ID i ® I D i ® . . . ®  ID i)

U (ID± ® . . .  ® ID i  ® ID i  ® -f-Dx) •

For components of lifted type the projection corresponds to parallel evaluation of the
components until one of them reaches W HNF (for components of product type the

interpretation is applied recursively). Its abstraction in SProj(Tlt >Tn) is ID±. The 
eager version of a lazy projection on products is

((7 l)± ® • • . ® (7 n)±) n  id l

=  ( (7 lk  ® (7 2 )1  ® • . . ® (7n)l)U

((7i)x ® (7 2 k  ® . . • <S> (7 n)±)U

((7l)j. ® (7 2 )1  0  . . . ® (7nk) •

The abstraction of the right-hand side to S P ro j^   Tn) is ju st ((7 1 )1  ® . . .  ® (7 n)i)*
To avoid this approximation we exploit distributivity. For lazy arguments the relevant 
definitions may be expressed as follows.

choose** (to, . . . ,  rn) ((ai)L 0  . . .  ® (a„)±)

=  B O T ± U (U!<i<n (To (Q  B O T l ) k  (Ui<j<n (n  7;•)))) , 

where 7 j = (c ^ k  ® . . .  ® ( a ,-  1)1 ® (c ^ k  <8 > (a^+ ik  <S>. . .  ® (a n)j_.

The definitions of the other constants are textually the same except th a t Bjf every-
D#where replaces Bq. The definition of tuple*0 can be simplified to

tuple** ( ti , . . . ,  rn) (ai ® . . .  ® a n) = ( n  a  1) & . . .  & (rn a n) .

We repeat the last example in the abstract domains. Recall the expression e is
case b of

true () -> x 
false () -> y .

Let pB* be the identity function, so

pB? [ b ]  =  \ a i . ( a i ®  A B S  ® ABS) ,

/9b? [ x ]  =  \ a i . ( A B S  ® aA ® ABS) ,

PB* [ y ]  =  Aa i . ( A B S ® A B S ® a i )  , 

as before. Then
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=  Aol . ((TRUE  0  A B S  0  ABS) k  (A BS ABS))
U ((FALSE  0  A B S  0  ABS) k  (A BS  0  A B S  0  a j )

=  Aax . (TRUE  0  aj_ 0  A-B5) U (FALSE  0  ABS1 0  oyj

=  Actx . S T R  0  a i  ® a i  .

This is a  BSA of £ Sxo[ e ] .  It reveals tha t in context a± th a t b is certain to  be 
evaluated, and th a t if x or y is evaluated then it is evaluated in context a±. Notice 

this is weaker than  before because of the approximation introduced by abstract lub.

Now let g =  X(b, x, y).(b, x, x), th a t is, a function from environments mapping 
the x component into both the x and y positions. The least BSA pB* of g±_ is 

A(ab 0 a x 0  o y).(ob 0  (ax k  a y) 0  AB S),  so tha t

PB° [ b ]  =  Aax.(aj. 0  A B S  0  ABS)  , 

pB? [ x ]  =  \ a x . ( A B S ® a ± ® A B S )  , 
pB? [ y J  =  \ a k .(A B S  0 a i ®  AB S)  ,

as before. Then a BSA of £ s±0[ e is [ e ] pB* , which is \ a x .(STR®a±<S> A B S ) , 
indicating th a t in eager context o l ,  the x component of the argument of £ Sj-°[ e ] o g± 
is evaluated in context c*l. In particular, this function is strict in the x component; we 
are still able to dem onstrate th a t £ Sxo[ e ]  is jointly strict in the x and y components 
of its argument.

Inaccuracy has been introduced by the abstract lub operation of SProj , giving rise 

to two seemingly contradictory facts: lifted functions are not in general determined 
by their least BSAs in SProj, yet the abstract backward strictness semantics still 
determines the standard semantics; this is elaborated following.

P ro p o s it io n  5.13
If r  is the least BSA of j5_ then r #  may not determine / .

A simple counterexample is conds± 1 : the abstraction of its least BSA is Xa±.STR  0  

ot± <0 Oj_, which is also the abstraction of the least BSA of the function like 
conds±1 w ith the roles of the second and third arguments reversed, th a t is, 

conds±1 o ( \ ( x ,  y, z).(x, z , y))Li. □

P ro p o s it io n  5.14

For all v the projection transformer (ACCEPTV)& determines v.

This follows from the fact th a t all characteristic projections are in SProj. □
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P ro p o s it io n  5.15
For all zero-order expressions e, the function £ Sxo[ e ]  is determined by £ Bo [ e ] .

This follows from Proposition 5.14 and the fact tha t the B f semantics m aps charac
teristic projection transformers to least characteristic projection transformers, th a t 
is,

S B* [ e ] (ACCEPTp)# = (ACCEPT£^ [e] .

In turn, this follows from the fact th a t the abstract constants map characteristic 

projection transformers to least characteristic projection transformers, for example 
(m kintf°)*  (AC C EPT„)* = (m kin tf0 ACCEPTV)*. □

E x a m p le . Analysing the same expression again, let ps±0 =  (true,3,4) and pB* — 
(.ACCEPT ' SjJ #  Then

r

pB? [ b ]  =  A ax . ((ACCEPTtrue)* a j  ® A B S  ® A B S  = ( A C C E P T ^ ) #  ,

pB°# [x ]  =  Aa± . A B S  ® ((ACCEPT'3)* aA) ® A B S  = (ACCEPT^)*  ,

pBo# [ y ] =  AaA . A B S  ® A B S  ® ((ACCEPT^)*  a j  =  (ACCEPT.t )* ,

and

£ B° [e ]  p*t

=  Aax . ( ({ACCEPTtrue)* TRUE) ® A B S  ® A B S
& A B S  ® ((AC C EP T’3)* aL ) ® A B S)

U ( ((ACCEPTfalse)* TRUE) ® A B S  ® A B S

& A B S  ® A B S  ® ((ACCEPT4)* a j )

=  AaA . A B S  ® ((ACCEPT3)*  ay j ® AB5

=  (A C C E P T S*  .

So, lifted functions are not in general determined by their least BSAs in SProj, bu t 
the abstract Bq semantics determines the So semantics. This is possible because 
£ Bo [ e ] is not a projection transformer, but a function from projection transformers 
to projection transformers. In contrast, the Si semantics is not determined by the 
abstract first-order backward strictness semantics B f , as shown by the abstraction 
of conds±1. W h at’s more, the B f semantics does not in general yield least abstract 
BSAs, for example, for the identity defined by

id : Int #> Int
id x = cond (true (), x, i) ,

we have idBl S T R  = ID  . This suggests th a t a t first order the abstraction of functions 

is not ideal.
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5.2.3 Second approach to first-order analysis

Following we describe our approach to first-order analysis taken in [DW90].

One way of thinking about how information was lost in abstracting an expression to 

a function is th a t function environments were constructed by evaluating the function 
body in a single abstract environment, the identity, for example, we had

condBl = £ Bl[c a se  b of . . . ] [ ]  (Aa.a) .

We were able to determine the zero-order standard semantics from the Bq semantics 
by sampling a t every abstract environment (ACCEPTp) # . Where we ‘went wrong’ 

is the peculiar Ni semantics of function types, and the corresponding definition of 

application as composition. Let the new N2 semantics of first-order types instead be 
such th a t l\l2 application is ordinary application, so

T N2[ Ti #> T2J 

=  T ^ ° [T i] -> T ^ lT a ]

=  (T 5”[ E9i ] -> T ^ I T J )  (T^0[Eji]  -*• T s°[T 2 ]) ,

and

THl2|[Ti #> T2]
=  7 ttu,[T1] - f  T Nj-°[T2]
= ( ^ [ E j , ]  4  7^J-°[T1 ]) -► (TS-“ [E„] 4  7 M T 2]) .

Now the N2 and Nj_2 semantics of first-order functions will map functions of the 

(lifted) standard environment to functions of the (lifted) standard environment ju st 
as do £ N° [ e ]  and £ Nj-0 [ e ] .  The required relation between the Si and N2 semantics 
a t function types follows the same pattern: it is

7^siM2 [Ti #> t 2 j =  v<t . 7efoNo[T i] 7 ^ °N°[T2] ,

and similarly for T^-1-11̂-1-2! ! !  #> T2]. Then function environments (j)Sl and if)1*2 are 
correctly related if for all function variables f  and functions g we have </)Sl [ f  ] o g = 

0 N2 [ f  ] 9 - The semantics of first-order function application is ordinary application:

apply**2 f  x =  /  x  ,

and the same for apply**1-2.

Least fixed point was used to give the Si semantics of function definitions; the initial 
approximation of each function is Xx.-L which is correctly related to  the least value 
Ag.Az.T in the N2 semantics, so

1 = Vp W  • (£N2b i]  <t>, .... £N’[e„] 4>)) .
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and the same for Nj_2. It is not hard to show th a t the Si and N2 (and Sj_i and N_l2) 
semantics are correctly related.

The definition of the corresponding first-order backward strictness semantics B2 fol
lows the same pattern. If an expression (in a given environment) denotes a projection 

transformer, then a function variable should denote a function from projection trans

formers to projection transformers, just as does £ B° [e ] .  Thus

T B2[ t 1 #> t 2 ] =  t M t J  - y  T ^ ° [ t 2 ]

=  ( P r o j T l  4  P r o j EJ  - y  ( P r o j 4  P r o j EJ  ,

and

7£Nl2b2[ Ti #> t 2] =  ^ n-loB0[ T i] ^ n-loBo[T2] ,

and function application is ordinary application 

applyB2 /  x = f  x .

The required relation between l\lj_2 and B2 first-order functions is the same as th a t 
between £ Nj-° [ e ] and EBo |  e ] for e of type T2 with environment type T i. Then function 

environments <t)S±1, </>N±2, and </>B2 are correctly related if 4fi-11 is correctly related to 
</>Nj-2, and for all function symbols f  and any r  a BSA of any function g we have th a t 
0B2[ f  ] r  is a BSA of 0N±2[ f  ] g and therefore of ^ s±1[ f  ] 0 g.

Proposition 5.16
The semantic functions £ N i2 and £ 82 are correctly related. □

Stability allows a stronger result. Define IZNh B2 by

f t Nl2B2[Ti #> T2] =  f t NioBo[Ti] -> f t NioB°[T2l ■

Proposition 5.17
The functions £ N±2 [ e J and £ B2 [ e ] are related by

(7eNi 2B2 [T! #> Ui] x . . .  x f t Nl 2B2 [Tn #> Un J) ^ Ni 2B2[ E # > T ]

for all e : T w ith environment type E and function environments from

7”B2[Ti #> U]J x . . .  x 7 ^ 2 [Tn #>Un ] .

Better, £ Nj-2 [ e ] and £ B2 [ e ] are related by (D L S T  x . . .  x D LST) —> D L S T  for all e.

The proofs are the same as for Propositions 5.5 and 5.6 with an additional case for 

the application form. □

Last we define E ^ ns. For the Nj_2 semantics of function definitions the initial approx
im ation of each function is the least value Xg.Xx.lift _L; the least BSA of Xx.lift JL is
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Aa±.BOT±, and A t.A ol.B O T i is the least value in T ^ 2^ !  #> T2 ] for all Ti and T2 , 
so the B2 semantics of function definitions F is

£%n,m = Ifv (M ■ (£B2[ei] 4,)) .
P ro p o s it io n  5.18
The N12 and B2 semantics are correctly related. □

Again stability allows a stronger result.

Proposition 5.19
For all F the environments S ^ n9\ F ] and F ] are related by D L S T  x . . .  x D LST.  

Proof
Given F let </>f° and <pN±2 be the approximations of the function environments arising 

from the definitions, with limits 4>B2 and <f)N±2 respectively. Now <f>Q2 is the least value 
correctly related to <f>Q±2, by Proposition 5.17 and induction <̂>f2 is the least value 
correctly related to 4u±2. By inclusivity <f)B2 is correctly related to 0N±2. Moreover, 
(jp2 is the least value correctly related to ^ Nj-2: this follows from Proposition 3.28, the 
fact th a t lub for products is defined componentwise and lub for functions pointwise, 
and Proposition 3.31. □

It is clear th a t the B2 semantics determines the Si semantics. Again we could forgo 
stability and retain leastness with respect to smash projections.

E x a m p le . Let c o n d ? 2 and c o n d s ± l  be the functions denoted by the definition of 
cond in the B2 and S n  semantics, respectively. Then c o n d 62 (Aa.a) is the least BSA 
of c o n d s ± 1 .

Just as we could restrict the projection transformers to those with the guard 
property, so we may similarly restrict T ^ 2\L i  #> T2] to the distributive func

tions. Further, it is easy to show th a t for all function definitions F th a t 

£& »[F][f] {Xoi.ABS) =  X a.A B S  and £ ^ [ F ] [ f ]  (Aa±.BOT±) = Aa±.BOTL  
for each f, and £ Bo[e J  0 B2 (Ac*.ABS) =  Xa.A BS  and £ Bo[ e ]  ({P2 (Xa^.BOT^)  =  
Xa±.BOT±  for all e when </>B2[ f  J(Ac*.ABS) =  X a.A B S  and 0 B2[ f  }(Xaj^.BOTjJ = 

Xa±.BOT±  for each f, hence th a t we may further restrict T ^ 2 \L \  #> T2 I to  those 
functions th a t are strict and map Xa.A BS  to Xa.ABS.

Abstraction to  SProj to yield the abstract first-order semantics B f is induced in the 
natural way. Then, for example, c o n d B *  = ^^[rhsj, where rhs is the right-hand 
side of the definition of cond, hence c o n d B *  determines c o n d S l . More generally, the 

B f semantics, unlike the B f semantics, determines the Si semantics. The proof th a t
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R #  CS 2 determines £ 1 is the same as th a t for Proposition 5.15 with an additional case
B #  s

for the application form. To show tha t £d̂ ns determines we need the facts th a t 
#  on projection transformers is continuous and th a t ACCEPTV is continuous in v.

5.2.4 Finite projection domains

For each type T we choose a  finite sublattice FProjT of SProjT suitable for examples 
and implementation. Because of the treatm ent of recursively-defined types it is easier 

to give the definition of FProjT as a set of deduction rules rather than as a composi
tional semantics of types like P s±0. A projection 7 is in FProj 1 if 7 fproj T can be 
inferred by the rules given following.

This is the sole instance in which it is not appropriate to treat In t  as though it were 
an infinite sum. A correct treatm ent is given by regarding In t  as though it were the

unary sum in t  In t# . For primitive unboxed types there are projections B O T l and

BOT±, so

B O T l  fproj () , B O T l  fproj In t#  ,

B O T l  fproj () , B O T l  fproj In t#  .

The domains for product types are defined in terms of those of their component types
exactly as in the definition of V Sxo, th a t is, there are all of the projections th a t can 
be expressed as products of projections on the components.

7i fproj Ti ••• 7n fproj Tn

71 ® • • • ® 7n fproj ( T i , . . . , T n)

The domains of projections for sum types are similarly induced by the component
types.

7 1  fproj T i  ••• 7 n  fproj T n

( 7 1  © • • • © 7n ) ±  fproj c i  T i  + . . .  + c n  T n  

7 1  fproj T i  ••• 7 n fproj T n

( 7 1  ®  • • • 0  7 n ) i  fproj c i  T i  +  . . .  +  c n  T n

For recursively-defined types, roughly speaking, we choose only those projections
th a t act on each recursive instance of a da ta  structure of the same type in the same 

way. More precisely, given type definitions Ai = Tlf* . . .  ; An = Tn, which we will



C H A P T E R  5. F IRST-O RD ER A N A L Y SIS 118

write hi = Tj(A i, .  . . ,An), 1 <  i <  n, if by assuming 7 i fp ro j hi for 1 <  i < n we 

may deduce Pi(7 1 , . . .  , 7 „) fp ro j T^A i. . .  An) for 1 <  i <  n, then

F ( j u  • • • , 7 n ) . ( F i ( [ £ 0 T j _ l ] 7 i , . . . ,  [B0Tj .U]7n),

P n d B O T M T u  • • •» [BOT±U]'yn))

where each instance of [BOT±_U] is optional, is a tuple (71, . . .  , 7n) of projections such 

that 7i fproj hi for 1 < i < n.

It is a fact th a t FProjT is always a finite sublattice of SProjT for all T and for boxed 

types includes the projections BOT±, BOT±, ID7 , ID_\_.

In both approaches to first-order analysis, the non-standard value of each function 
definition is a first-order strict distributive function. As previously mentioned, for 

practical analysis this considerably reduces the sizes of the finite abstract domains 
and allows more compact representations of functions. There are additional bene
fits. Recall th a t given function definitions F, the non-standard function environments 

£de/nsl F] and £rfe/ns[F ] are defined to be limits of ascending chains {^ f1 | i > 0 } and 
{<t>f2 | * >  0 } 5 respectively, where the </>fx and 4>f2 are approximating function envi
ronments. Nielson and Nielson [NN91] show tha t in this context, the least k such th a t 

$ k1 = fit+i (or 0 k2 = $ + 1)1 f°r aM F ° f the same type, may be considerably smaller 
than could be assumed if the projection transformers (or functions from projection 
transformers to projection transformers) were assumed only to be monotonic.

E x a m p le . For In t  the abstract projection domain FProjInt is comprises BOT±, 
BOT±, ID± , and ID±. The U-basis of the eager elements consists of the single ele
ment ID±. There are, for example, four strict projection transformers from the eager 

projections in FProjInt to FProjInt, all of which have the guard property and are 
^-distributive.

E x am p le . For type T not involving In t  or recursion FProjT is the same as SProjT. 
For example, for type L i f t  = summand () the corresponding domain in the lifted 
semantics is isomorphic to lx± with four projections BOT±, BOT±, ID±, and ID±.
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E x a m p le . For Bool we have

(BOT±  © BOT±)± , (BOT±  © BOT±)j_ ,

(.B O T l © f l o r j i  , ( £ 0 7 i  © B O T i )jl ,

(B O T l © 5 0 T i ) i  , (BOTl  © £ 0 7 j . ) i  ,
(.B O T l © B O T l )l , (B O TmL © B O Ti)j. .

Translating this into the constructor notation, these are FAIL, TR U E , FA LSE, 5772, 
and their lazy counterparts. The U-basis of the eager projections comprises TRUE  
and FALSE. There are 125 monotonic projection transformers from the eager pro
jections in FProjBool to FProjBool (these are the ones with the weaker guard prop

erty of [WH87]), but only 64 from the U-basis of the eager projections to FProjBool, 
all of which have the guard property. Since TRUE Sz FALSE  =  FAIL, and for 
7 , £ G FProjBool we have 7  & 8  =  FAIL iff 7  =  TRUE  and S = FALSE  or vice versa, 
or one of 7  or <5 is FAIL. Thus there are 17 ^-distributive projection transform 
ers w ith the guard property (compared with 11 monotonic functions from Bool to 
Bool), but they do not form a lattice: for example, there is no upper bound of the
projection transformers determined by {TR U E  TRUE, FALSE  h* FALSE}  and
{T R U E  i-> FALSE, FALSE ^  TRUE}.

E x a m p le . For I n tL is t ,  each projection is defined by an expression of the form

//7 .[B 0T 1 U ]([50711U ] B 0 r L © (a  ® [BOTLUfr))^

where a  ranges over FProj Int. This gives 32 expressions denoting projections in 

FProjIntList, bu t many of these are redundant. Using the constructor notation, define

F IN  a  = w .N I L  U CONS {a ® 7 ) ,

IN F  a  = fi'y.CONS {a ® (A B S  U 7 )) , ■

FINF a  = iiy.NIL  U CONS (a <g> (A B S  U 7 )) .

All of the eager projections in FProjIntList are of the form F IN  a, INF a, or FINF a  
for a  in FProjInt. For a  ranging over A B S, ID, and S T R  these give nine distinct 

projections; for FAIL  we have FIN  FAIL =  INF FAIL  =  FAIL  and FINF FAIL = 
NIL, for a to ta l of 11 eager projections. Projections of the form FIN  a  demand finite 
lists, and demand a  of each list element. Similarly, projections of the form IN F  a  

dem and partial or infinite lists with at least one cons node, and a  of each list element 
for which the cons node is defined. Finally, those of the form FINF a  demand finite, 

partial, or infinite lists with a t least one defined cons or nil node, and o; of each 
list element for which the cons node is defined. Here ST R  is FINF ID ; the eager 

form of the projection encoding head strictness is FINF STR; the eager form the the
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projection encoding tail-strictness is FIN A B S , and the eager head-and-tail-strict 

projection is FIN  STR.

There is one set of expressions seemingly missing from the pattern, th a t is, those of the 

form ji'y.CONS (a  0  7 )—those th a t demand infinite lists. In fact, the value of such 
expressions is FAIL. This is reasonable: intuitively, demanding full evaluation of an 
infinite list (before producing any of the list) is equivalent to divergence; semantically, 

a function th a t maps infinite lists to non-bottom values but maps partial lists to 
bottom  is not continuous.

In to tal there are 22 projections in FProj lntList but the U-basis of the eager projections 
comprises only five of these, namely

NIL  ,

FIN  S T R  ,

FIN  A B S  ,

INF S T R  ,

INF A B S  .

There are 607420 monotonic projection transformers from the eager projections other 
than  FAIL to FProjlntList (again, these are the ones with the weaker guard property 

of [WH87]), of which only 50809 are distributive, th a t is, have the guard property.

E x am p le . The elements of FProjlntListList are of the same form as those for 

F P m j intList, except that a  may be any element of FProjlntList, giving 130 projections 
of which 16 comprise the U-basis of the eager elements.

E x am p le . Last we consider BoolTree. Each projection in FProjBoolTree is defined 
by an expression of the form

fi j . [BOT±U](a 0  {[BOT±U]7 0  ,

where a  ranges over FProjBool. All of the eager projections can be expressed by one 
of the forms

FF a  =  h j  . (LEAF a) U BRANCH (7 ® 7) ,

FI a =  m  . (LEAF a) U BRANCH ( 7 0  (ABSU-f))  ,

IF a  =  /i7  . (LEAF a) U BRANCH ({ABS U 7) 0  7) ,

II a  =  • (LEAF a) U BRANCH ((ABS  U 7) 0  (ABS  U 7)) ,

for a  ranging over FProjBool. For a  not equal to FAIL these give 28 distinct 
projections; for FAIL  we have FF FAIL = FI FAIL = IF  FAIL = FAIL , but
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I I  FAIL /  FAIL. Thus there are 30 eager projections, of which the following ten 

comprise the U-basis of the eager elements.

I I  FAIL ,

FF TRUE ,

IF  TRUE ,

F I  TRUE ,

FF FALSE ,

IF  FALSE ,

F I  FALSE ,

FF A B S  ,

IF  A B S  ,

F I  A B S  .

The projections FF S T R  demands evaluation of the entire tree and all of the leaves; 
the projection FF A B S  demands evaluation of the entire branch and leaf structure 
but none of the boolean values at the leaves. The projection F I ST R  corresponds to 
evaluation required by a depth-first search of the tree, left branch first. The projection 

A B S  U (II  STR)  encodes ‘leaf-value strictness’: when a leaf node is evaluated, so is 
the associated boolean value.

These abstract domains are rather large, and in particular FProj IntList is larger than  
the abstract domain proposed in [WH87] which does not contain projections of the 
form IN F a  for a  ^  FAIL. (Note INF  in [WH87] is FINF  here.) One way to  reduce 
the sizes of the domains is to  allow, other than FAIL , only those eager projections 
th a t accept all nullary constructors. This would make the treatm ent of In t  entirely 
consistent with its definition as a sum type: the projections on In t  would be the four 
basic ones, and the same for Bool. For I n tL is t  the eager projections would be the 

same as before, less INF STR , INF A B S ,  and INF ID, giving 16 projections, still 
including the four basic ones and the projections for head, tail, and head-and-tail 

strictness, in both eager and lazy forms, the U-basis of the eager elements compris
ing NIL, F IN  STR , F IN  A B S , FINF STR ,  and FINF A B S .  There are 6740 strict 

monotonic projection transformers from the eager projections to the full 16, of which 
2864 have the guard property. The abstract projection domain for BoolTree would 
then have 14 instead of 30 eager projections, of which the following seven would
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comprise the U-basis.

I I  FAIL ,

FF S T R  ,

F I  S T R  ,

IF  S T R  ,

FF A B S  ,

F I A B S  ,
IF  A B S  .

Next we give some examples of analysis in FProj, using the second approach to 
first-order analysis.

E x am p le . The function sum to produce the sum of an integer list is defined by

sum : IntList #> Int 
sum xs = case xs of

nil () -> 0
cons (y,ys) -> y + sum ys .

The generic semantics is

sum xs =  choose (sel\ xs,
mkintQ xs,

plus ((sell o outcons o sel\) xs,

apply sum ((selq o outcons o sell) ®*))) •

Then sum B2 (Xa.a) is determined by the mapping S T R  i-y FIN  ID. This is clearly 
not optimal, since the least BSA of sum s±1 is determined by S T R  F IN  STR ,  the 
result given by W adler and Hughes’ analysis.

E x am p le . The function o r is boolean or; it examines its second argument only if
the first is false.

or : (Bool,Bool) #> Bool 
or (x,y) = case x of

true 0  -> true ()
false 0  -> y .

The function df s returns the boolean or of all of the leaves of its argument tree.

dfs : BoolTree #> Bool 
dfs t = case t of

leaf b -> b
branch (l,r) -> or (dfs 1, dfs r)
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Then or&2 (Xa.a) is determined by the mappings

TRUE i-+ STR®  (TRUE U ABS) ,
FALSE FALSE ® FALSE ,

which is optimal, so ST.# h-> (STR  ® /T). Then d/sB2 (Ac*.a) is determined by the 
mappings

TRUE / /  STR  ,
FALSE / /  FALSE .

This too is suboptimal: the least BSA of dfs*±l is determined by 

TRUE »-> FI STR  ,
FALSE H- FF FALSE .

Exam ple.
interleave : (IntList,IntList) #> IntList 
interleave (xs,ys)

= case xs of
nil () ->

nil () 
cons (z,zs) -> 

case ys of
nil () -> nil 0
cons (t,ts) -> cons (z, cons (t, interleave (zs,ts)))

We seek the strictness properties of interleaveS± 1 o (Xx.(x, z ) ) _ l ,  that is, how 
interleaveS±1 behaves when its arguments are the same. The least BSA t  of 
(Aa:.(a;,a:))i. is A (a® (3). (a & (3), and interleave8 2  r is determined by the mappings

NIL H* NIL ,
FIN STR  i-) FIN ID ,
FIN ABS ^  FIN ABS  ,
INF STR INF ID ,
INF ABS  t-> INF ABS .

This is suboptimal at arguments FIN STR  and INF STR , for which FIN STR  and 
INF STR  would be optimal results.

In brief, we have defined a perfect backward-strictness semantics, abstracted to finite 
domains in a straightforward way, giving an analysis technique that in some cases is 
worse than Wadler and Hughes’. Following, we show how to improve our technique 
to give results strictly better than theirs.
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5.2.5 More on case expressions

When working in the full projection domains the Bi (and B2 ) semantics give strictly 
better results than that of [WH87], and we conjecture that the same holds when 
working in SProj. However, when working in FProj the results of the two methods 
become incomparable: it is because of the non-standard semantics of case expres
sions that the technique of [WH87] can give better results. In this section we derive 
an analog of the semantics of case expressions given in [WH87] and give examples 
showing how it can give results better, worse, and incomparable to our method. Since 
least BSAs always exist in the domains with which we are working we may safely de
fine the semantics to be the gib of the results of these two methods, yielding results 
strictly better than either.

We use an inequality to transform our semantics of case expressions to an analog 
of the semantics given in [WH87]. First we extend the definition of k  to projec
tion transformers: t\ k  t2 is defined to be the projection transformer with the guard 
property that agrees with Aa.(ri a) k  (r2 a) on the eager lub-basis of its argument 
domain (this is smaller than defining k  on projection transformers pointwise since 
the result may not be distributive).

Proposition 5.20
For all e, ri, and r2,

£ Bol e l (T1&CT2) C (£Bo[e ]  ri) k  (£Bo[e ]  r2) .

Sketch P roof
The proof is by induction on the structure of expressions using the definitions of 
the Bq constants. For each constant we need to show the corresponding result, for 
example, for chooseB° we show

chooseBo (to k  To1, T\ k  , t2 k  r2 )
C chooseB° ( to , t i , t 2) k  chooseB° {to ,T\ ,r2 ) .

Let a± be an eager element of the lub-basis of its domain, oq,i =  (Ci A B S),

A,i = T o  { C i  A B S ) ,  00,2 = T o  ( C 2 A B S ) ,  A ,2 =  Tg (C 2 A B S ) ,  a i  —  T \  a ± ,  A = r [  qjl, 
a 2 — t 2 qjl, and /?2 =  t'2 Then

chooseB° (tq k  to', T i k r i ,  t\ k  r2 )

=  (0:0,1 k  /?o,i k  01 k  A )  LJ (00,2 k  A ,2 k a 2 k  (32)

C ((00,1 k  01) U (00,2 k  01)) k  ((A,i &  A) U (A,2 &  A))
=  (chooseB° {to,Ti , t2) k  chooseB° (r0', T\ , r2 )) o^ , 

as required. □
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This allows us to split the information in the environment, giving for example

£ Bo[e ]  [xi ri, x2 i-> r2, x3 h* r3]
C ( £ B°[e ] [xx i—̂ T\, x2 •—y Xa.ABS, x3 i-)- Ac*. ABS]

& £ Bo[e ]  [xi i-> Xa.ABS, x2 r2, x3 h- r3]) .

for all e, rl5  r2, and r3, since Xa.ABS is the identity for k .  Intuitively, the & 
operation has been pulled from the ‘inside’ on the left-hand side to the ‘outside’ on 
the right-hand side, ‘unrelationalising’, and thereby weakening, the analysis.

Proposition 5.21
For all expressions e and projection transformers t\ and t2,

£BoI e l (ti ob t2) =  (£B°[ e | n) oB t2 , 

and as a special case, £ Bo[e ]  r = r o (£Bo[e ]  (Xa.a)).

This follows from the definition of oB and the fact that £ Bo[e ]  r is equal to 
I £ Sj-°[e ] | oB t . □

More generally, for each Bo constant conB° we have conB° (ti ob t, . . .  ,rn ob t) = 
conB° ( n , . . . ,  Tn) oB t , from which the last result could also be shown.

We now proceed with the transformation. From the definition of chooseB° we have 

£ Bo[case e0 of ci Xi -> ex; . . .  ; cn xn -> en] p a±
= Ui<i<n(7o (Q ABS) k  £ Bolei] p[xt outcf0 t0] a j  

where To = £ Bo [ eo ] p .

Let us consider just the i th subterm on the right-hand side, that is 

(r0 (Ci ABS)) k  (£Bo[ et-] p[x{ k-» outcf0 r0] ayj .

By Proposition 5.20 this approximates 

To (Ci ABS) 
k  £B° [e i | (Xa.ABS)[xi outcf0 r0] a±
k  £ Bo[e ,]  p[xi i-» Xa.ABS] a± .

We want to concentrate on the subterm 
r0 (Ci ABS) 

k  £ B° |e ;]  (Xa.ABS)[x{ i-» outcf0 To] a± .

Assume that environments for e* are ra-tuples with the value of Xi in the i th position. 
Then

(Xa.ABS)[xi h-» outcf0 tq]
= tupleBo (Xa.ABS , . . . ,  Xa.ABS, outcf0 To, Xa.ABS , Xa.ABS)
= (outcf0 t0) o tupleBo (Xa.ABS, . . . ,  Xa.ABS, Aa.a, Xa.ABS, Xa.ABS) 
= (outcf0 t0) o ((Xa.ABS)[xi i-» Ac*.ct]) ,
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so
£ B°[eiJ (\a.ABS)[xi »-»• outcf0 r0]

= £ B°[e{] (outcf0 ro) o ((Xa.ABS)[x.i Ao.q;])
= (outcf0 tq) o £ B°[ez-] ((Xa.ABS)[xi Aa.a]) .

Let OUTCi be the least BSA of outcf1-0, then OUTCi agrees with Ci for ea
ger arguments. Let 7  = £ B°[e ;| (Aa.ABS)[xi i-> Ac*.a] 0 7 . Now outcf0 t$ 7  is 
To (OUTCi 7 ), and we need to simplify

( t 0 ( Q ABS)) k  ( t 0 (OUTCi 7 )) .

Let us assume that p is the least BSA of some stable function, so tq and outcf0 tq 

are the least BSAs of some stable functions, hence have the guard property and are 
^-distributive (this will be relaxed shortly). Then the last expression becomes

t 0 ((Ci ABS) k  (OUTCi 7 )) .

If 7  is of the form then OUTCi 7  =  C* 7 , and in general (Ci <5i) k  (Ci 62) =
Ci ( £ 1  k  6 2 ), so the expression simplifies to t0 (Ci 7 ). If 7  is of the form p± then
OUTCi /5L = ABS  U (Ci /?J, and

(Ci ABS) k  (ABS U (Ci f lj)
= (Ci ABS) U (Ci pjJ 
= Q  /?j_ ,

since in general (Ci 5i) U (Ci 6 2 ) = Ci (<$i U £2 ). In either case the expression simpli
fies to tq (Ci 7 ). Putting this all together gives a new backward strictness semantics 
for case expressions:

£ Bo[case e0 of Ci xx -> ex; . . . ;  cn xn -> en] p
= Aa± . Ui<i<n ( ^B° [eo] P (Ci (^ [eiK A a.A S^ Ixi ^  Xa.a] q j )

k  £ Bo [ ei ] p[xi !->■ Aa.ABS] qi) .

This is the analog of the semantics for case given in [WH87]. The new semantics is 
correct for p the least BSA of a stable function; since every projection transformer 
with guard property is the lub of the least BSAs of some set of stable functions, both 
semantics are monotonic, and the first is distributive, it must be that this semantics 
safely approximations the first. We conjecture that the same holds in SProj, but in 
FProj the two semantics are incomparable: the second may produce better results 
than the first when recursive types are involved. We give two examples, one in which 
the first semantics is better, and one in which the second is better. Pairing the 
expressions from the two examples gives an expression for which the two semantics 
give incomparable results.
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Let SimpleSum = single Int, and variables b:Bool and x:Int. The expression to
be analysed is

case (single x) of
single y -> cond (b ,x ,y )  ,

where cond (b,x,y) is shorthand for a case expression. Let the environment for 
this expression have type (Bool, SimpleSum). In the full projection domains both 
backward strictness semantics give

£ B° [e J (Aa.a) = Aol.ST R  0  a i ,

as expected. The first semantics gives the same result in SProj but the second gives 
a poorer result. We have

£ Bo[e](Aa.a)
= Ao .̂ £ Bo[ single x] (Xa.a) (SINGLE (r a))

&;£B°[cond (b,x,y)J (Aa.a)[y i-> Xa.ABS]

= Xa±. ((TRU E  <g> AB S)  U (FALSE  ® a)) 
h  ((TRU E  ® a) U (FALSE  ® ABS)),

where r  = £ B°|[cond (b,x,y) ] ( \a .A B S ) \y  Aa.a]. In the full projection domains 
this simplifies to \a ± .S T R  ® « i, but in SProj it is Aa±.STR  ®

Next we consider an example for which the second semantics is better. Let 
xs:IntL ist and the environment contain a single entry for xs. The expression e 
to be analysed is

case xs of 
nil 0  -> nil ()
cons (z,zs) -> cons (z,zs) .

Then £ So [ e ] is the identity. Performing the calculations in FProj the second seman
tics gives

£ B° [ e ] (Xa.a) = Xa.a

as expected. The calculations for the first semantics are sketched following.

£ Bo[e ]  (Aa.a)

=  Aa .̂ ( £ Bo[x s] (Aa.a) NIL

&;£B°[n il  ( ) ]  (Aa.a) ajJ 
U ( £ Bo[x s] (Aa.a) (CONS A B S)

& £Bo[ le t  . . . ] (Aa.a)[ys i-> outconsB° (£Bo[x s] (Aa.a))] a±)
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= A«l. ( NIL
k  ACCEPT** ajJ 

U ( CONS ABS
&;£Bo[ le t  . .. J (Aa.a)[ys outconsB° (Aa.a)] a±)

Now
£ B° [ le t  . . . J (Aa.a)[ys outconsB° (Aa.a)] a 

= £ Bo[cons (z,zs)  |  [xs H-Aa.a,
z i-» seli° (outconsB° (Aa.a)), 
zs i->- self0 (outconsB° (Aa.a))].

The projection transformer self0 (outconsB° (Aa.a)) is the least BSA of self± 0  o 
outconss±0, and is equal to

A ax . CONS (o l 0  ABS) ,

and self0 (outconsB° (Aa.a)) is

Aax . CONS (ABS <g> a j  .

In FProj the approximation of these projection transformers is poor. The first is 
determined by

STR  1—̂ INF STR  , 

and the second by

NIL 1—̂ FAIL ,
FIN STR  F/A ID ,
F/A ABS  i-> F/A AFF ,
/AF FTF /AF ID ,
FVF AFF INF ABS  .

Then FB°[cons (z,zs)  ] [...] is determined by

NIL 1—̂ FAIL ,
FIN STR  /AF F7F & F/A ID = F/A ID ,
F/A AFF h* AFF & F/A ABS = FIN ABS  ,
/AF FFF 1—̂ /AF STR & INF ID = INF ID ,
INF ABS  i-> AFF & /AF ABS  = /AF AFF .

Putting this together we have FBo[e]  (Aa.a) is determined by the same mappings, 
except that NIL i-y NIL. In particular, for arguments FIN STR and INF STR  accu
racy has been lost.
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Since least BSAs always exist, we may safely combine these two semantics by taking 
their gib, yielding a semantics strictly better than either. In fact, the gib may be 
safely taken branch-wise between the two semantics, yielding 

£ bo | case e0 of cx Xi -> e i ; . . .  ; cn xn -> e„ ] p a±
= Ui<i<n ( ( £ B“[e0] p (Ci (£Bolei](\a.ABS)[xi Xa.a] q j )

& £ Bo[e;] p[xi i—̂ Xa.ABS] ayj 1

n ( £ B»|[eo] p(Ci ABS)
k  £ B°[e t-] p[xi i-> outcf0 Tq] ayj) .

This is better than simply taking the new semantics of case to be the lub of the first 
two, that is,

£ Bo[ case e0 of ci xi -> e i ; . . .  ; cn xn -> en ]
n £ Bo[ case e0 of ci Xi -> ex; . . .  ; cn xn -> en ],

since in general in a lattice (u\ n U2 ) U (v\ f~l V2 ) C (wi U Vi) I“1 (U2  U V2 ).

We repeat the examples involving sum, dfs, and interleave using the new semantics.

Example. Now sumB 2 (Aa.a) is determined by the mapping STR FIN STR , 
which is optimal.

Example. Now dfsB 2 (Aa.a) is determined by the mappings

TRUE ^  FI STR  ,
FALSE ^  FF FALSE , 

which is optimal.

Example. The result for interleave does not improve.

We make an observation regarding program transformation. If a case expression is 
transformed from

case e0 of ci xx -> ei; . . .  ; cn xn -> en

to

case e0 of cx xx -> ei[outCi e0 /x i]; . . . ;  c n  xn -> en[outcn e0 /x n] ,

before analysis, where outCj denotes the usual projection from the sum type, then 
the second case semantics of the transformed expression is the same as the first case 
semantics of both the original and transformed expressions. This follows from the
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facts tha t £ Bo[ e ]  (Xa.ABS)  is Xa.A BS  for all e in both semantics, e i[outc; e0 /x;] 
has no free occurrences of X;, and th a t the substitution lemma holds for the first 

semantics (in FProj), th a t is, £ B° [e ]  p[x t-» £ Bo[ e J ] p] is equal to  £TB° [ e[e * /x] J p 

for all e and e , (assuming no variable capture). Thus such a transform ation would 
nullify the benefit of combining the case  semantics. This also demonstrates th a t the 
substitution lemma does not hold for the second or combined semantics in FProj.

Before going on it is worth taking one last look at the transformation. In essence, we 
started with

[ e0 ] P (Ci A B S)  

k  £B°[ei] p[x, 1 -4 outcf0 t0] aL , 

and transformed to

£ Bo [e0] p ( C i  (^ [e j^ A o .A B S ^ x ,;  i-» Aa.a] ayj)

& £ Bo [e ;]  p[x; Xa.ABS] a i  .

This may be thought of as ‘unrelationalising’ the analysis with respect to variable 

x^ which as shown can improve analysis in FProj by avoiding bad approximations 
to  certain projection transformers. A natural question is whether this process can be 

carried any further, and if so, with any benefits. In other words, can the binding for 
not just Xi be ‘moved’ from the environment of the second instance of £ Bo[ e t ] to  the 

first, but all of the bindings so moved, yielding, for some p'

£ B° I eo] P ( C i  (£Bo [e i] P' a±))
& £ B° [e i]  [xi Xa.A B S  | 1 <  i < n] a± , 

which would then be equal to  just

£ Bo[e0] P ( C i  (<?Bo[ e, J p' a j )  .

The answer to both questions appears to be affirmative, but we leave this interesting 
topic for further research.

5.2.6 M ore on Wadler and H ughes’ technique

Roughly speaking, the basic abstract values in Wadler and Hughes’ analysis are pro
jections, and in ours they are projection transformers. The difference is reflected in 

the semantics th a t are abstracted: for theirs, the Sj_o semantics in which basic values 
are just (lifted) values; for ours, the Nj_q semantics in which basic values are functions 
from (lifted) values to (lifted) values. At zero-order their semantics shows how pro
jections propagate through values, while ours gives BSAs of functions. This difference 

is more than just notational as the following comparison of the treatm ent of products 
shows.
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It has been observed that projections on (smash) product domains cannot in general 
be represented by (smash) products of projections and hence there is an inherent loss 
of accuracy in backward analysis of products, wherein a projection on products must 
be (over-) approximated by a product of projections, that is, given a  E | U ® V | we 
choose a (preferably least) product ai ® a 2 such that a  (w, v) C smash  (au «, c*2 v) 
for all u and v. This loss of accuracy in inherent in the analysis technique given 
in [WH87] (in the semantics of cons). Our method avoids this approximation by 
working at the level of projection transformers: given expression (ei , 6 2 ), in the Nj_o 
semantics ei and e2 denote functions fi and S2 and the expression denotes (( / i , / 2 )), 
and from least BSAs of fi  and / 2  we may obtain a least BSA of ((/1 , / 2 )). Another 
way to see this is to observe that tupleB° (self0 r, sel%° r) is equal to r. It is only in 
abstracting to SProj that such approximations are introduced into our analyses.

This difference also manifests itself at first-order, where their abstract functions are 
projection transformers, and ours are functions from projection transformers to pro
jection transformers.

Another difference in the analysis techniques is that theirs is manifestly backward— 
projections clearly propagate backward. Ours is less easy to classify: the semantics 
is forward—projection transformers propagate forward, but basic values are BSAs 
which give ‘backward’ information. This is most clear where variables are bound: in 
function abstraction and le t  and case expressions.

There are at least three senses in which our analysis technique is relational where 
Wadler and Hughes’ is not. The first is the result of manipulating projection trans
formers instead of projections as just described. Second is in the semantics of case 
expressions as discussed. Third is in the treatment of functions of more than one 
argument: our analysis technique (using the first approach to first-order analysis) 
assigns to each function a single projection transformer; theirs assigns one for each 
argument and the result is their combination with k .  We give an analog of their 
approach in our framework. For binary function f with non-standard value f Bl the 
two functions would be

/ «  =  \ot.(sel?° f B' a) ® A B S  ,

/<2> =  X a.A B S  ® (sel%° / B‘ a) ,

then / (1) & /'2) 3  / Bl- One manifestation of our analysis technique being more re- 
lational than theirs was highlighted in the abstraction to SProj where our analysis 
of cond could detect joint strictness in the second and third arguments, while theirs 
could not. As shown in [DW91], by ‘un-relationalising’ our technique in this way, the 
improvement in computational complexity gained by considering abstract arguments
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independently (as also described by Hughes [Hug87a]) can be realised.

5.3 Binding-tim e Analysis

The nominal goal of binding-time analysis is, given / ,  to determine as large a r as 
possible such that ( t  8 ) o  f  C /  o 8  for all in terms of (zero-order) expression 
semantics, given e, to determine r such that (r <£) o £^°|[e] C £ ^ °[e ] o 8  for all 8 . 
The development of the zero-order binding-time analysis semantics Fo parallels that 
of the Bq semantics; because we are interested in abstractions of functions from the 
standard rather than lifted semantics we take the Nq semantics rather than the Nj_q 
semantics as the starting point. Since in general a function is not determined by its 
greatest FSA, and abstract composition does not preserve greatestness, there are no 
strong results corresponding to those for the backward strictness semantics: the Fo 
semantics will neither yield greatest FSAs nor determine the So semantics.

The binding-time semantics is essentially the same as Launchbury’s [Lau91a] if we 
take (the analog of) the first approach to first-order analysis described for strictness 
analysis, that is, abstract the Ni rather than the N2 semantics; our contribution 
here is its development from first principles in the same setting as the other analysis 
techniques, and in such a way as to facilitate the development of the semantics for 
higher-order binding-time analysis given in Chapter 6 .

We require that if pFo is a FSA of pNo then £ F° [ e ] pF° be a FSA of £ No [ e ] pNo and 
therefore of S s° [ e ] 0 pNo; in particular when pN° is the identity its greatest FSA is 
the identity Aa.a and £ F° [ e ]  (Aa.a) is a FSA of £ So[ e ] .

We intend all FSAs r to map ID to ID  and be n-distributive and so use the func-
• F • mtion space constructor —> to build the domains of FSAs of functions in T^° [ T ] and

T™ 1 [ T ]. In the context of binding-time analysis we take ProjT to be 17^° |  T ] | and
| /  | to be the greatest FSA of / .

Let Egi be the type of global environments, then

T Fo[ T] =  ProjEgl 4  ProjT .

For e:T  with environment type E we have £ F° [e ]  £ T f°[E] —► T ^H T ], so 

S ¥o{ e ] £  (ProjEg{ 4  ProjE) -> {ProjEgl 4  ProjT) ,

so £ Fo[e]  is a function from projection transformers to projection transformers.
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The type predicate between values g and r  in the No and Fq semantics requires th a t 
r  be a FSA of g , th a t is,

T̂ NoFo | t  ] (p, r)  = V8  . ( t  5) o g C. g o 5 .

Recall th a t each No constant conN° is defined by

conN° (p i,. . . ,  p„) =  conSo o (gu  . . . ,  pn) .

If T{ is a (greatest) FSA of $  for 1 <  i < n then \a .( ( r i  a) x . . .  x (rn a)) is a (great
est) FSA of ( p i , , pn); abstract composition is ordinary composition; hence each Fq 

constant is defined by

conF° (r1?. . . ,  rn) =  | cons° | o Aa.((ri a) x  . . .  x  (rn ck) )  .

W hen the constant has a single argument this simplifies to conF° r  =  | cons° | o r.
The detailed definitions are given following.

The greatest FSA of every constant function is A a. ID, so 

mkunitF° r  =  (Aa.ID)  o r  ,

m kin tf0 r  =  (Aa.ID)  o r  .

The other unary constants are defined similarly. The greatest FSA of self0 is

| self0 1 E | T\ x . . .  x  Tn | —> | Ti \ ,

| self0 1 a = U{^i | q i X . . . x q „ C q } .

The greatest FSA of incf0 = irii o lift is | incf0 \ = \ m, | o | lift | , where the greatest
FSAs of irii and lift are

| ifii | E | Ti | —y | T\ 0  . . .  ® Tn | ,

\irn\ a  = ID  © . . .  ® ID  ® a  © ID  ® . . .  © ID  ,

where a  appears in the i th position on the right-hand side, and

I Kft I e  m  4  I 2 1 1 ,
| lift | a  = aj_ ,

so

| incf0 1 E | Ti | -A | ( Ti)_l 0  . . .  © ( Tn)1 1 ,

| incf0 1 a  =  IDL © . . .  © ID± © © . . .  ® ID± .

The greatest FSA of outcf0 =  drop o outi is | outcf0 \ =  | drop | o | outi \, where the

greatest FSAs of drop and outi are

I drop | e  | 7 1 1 4  | T |  ,

| drop | a  =  drop o a  o lift ,
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so | drop | Ol — | drop | a?j_ =  a, and

| out{ | (E | T\ © . . .  0  Tn | —>• | T  | ,

| outi | (oi © . . .  ® a n) =  ai .

Then

| outcf0 | E | ( 7 i)j_ © . . .  © ( Tn)1 1 -> | Ti | ,

| outcf0 | (c*i © . . .  © ain) =  drop o ^ o  lift .

Given 6 , to satisfy 7  0 C p/wsSo 0 6 , for every pair (lift i, lift j )  on which 5
does not act as the identity 7  must map lift (i + j )  to _L. Recall th a t n* is the least

projection th a t acts as the identity on lift i. The greatest FSA of plusSo is

| plusSo | a  =  Ui$s ni> where S  = { i + j  | 7 m  it up j) % a}  .

Composition and simplification gives

plusF° ( t i , t 2) a  = ID , if t\ a  = ID  and r2 a  =  ID  ,
B O T , otherwise .

Since tupleSo is the identity we have

tupleF° ( ti , . . . ,  r n) a  = (71 a) x . . .  x (rn a) .

We will not a ttem pt to give a detailed definition of the greatest FSA of chooses° 
a t arbitrary arguments (as we did for plusSo) since the semantics only gives rise to 
arguments of the form a\  x . . .  x a n.

| chooses° | (a 0 x . . . x a B) =  B O T ,  if a 0 3  Ui<i<n (c% B O T ) ,

I | l<i<n otherwise .

Thus

chooseF° (tq, . . . ,  rn) a  =  B O T ,  if (r0 a) 2  (Ui<i<n ct- B O T ) ,

| | Ti <2 , otherwise .

P ro p o s it io n  5.22

The semantic functions £ N° and £ Po are correctly related. □

In the context of forward strictness abstraction we will write CON  to denote the 

greatest FSA of So constant cons°.

E x am p le . Let e stand for the the body of the boolean or function, th a t is,
case x of

true () -> true ()
fa lse  0  -> y
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with environment type (B ool,B ool) with the first component corresponding to vari
able x and the second to y. The generic semantics £ [ e ]  is

Xx . choose (sell x ? (intrue o mkunit) x, sel2 x) .

Let pFo be the identity, the greatest FSA of the identity, then we have selF° id =  

SELi o id = SEL{. Also (intrueFo o mkunitF°) id =  (A a.ID) o (A a.ID)  o id =  A a.ID, 
so

£ F°[e  J pFo =  c/moseF° (5JFL1? Xa.ID, SEL2) ,

which maps ID  x ID  to ID  and every other projection to B O T .  This is not optimal 

since false o £ So[ e ] C £ So[ e ] o (false x false). One reason for this lack of accuracy is 
th a t functions are not determined by their greatest FSAs; here A a.ID  is not ju st the 
greatest FSA of the constant true function but of every constant function.

5.3.1 First-order analysis

We develop the analog of the first approach to first-order analysis given for strictness 
analysis. The value denoted by a function symbol f  in the first-order forward binding
time semantics Fi is to be a FSA of the value it denotes in the Si semantics; the desired 
result' is obtained by abstracting the Ni semantics. The Fi semantics of first-order 
types is then

T*1! Ti #> T2] = Proj7t 4  Projl2 .

The required relation at function types is ‘is a FSA of’, so

T^NiFiJii #> t 2] (p ,r )  = V 5 . ( T 5 ) o g E : g o S .

Thus if (f)Sl and 0 Fl are function environments such th a t </>Fl [ f  ] is a FSA of <£Sl [ f  ]
for each f , and pFl is a FSA of pNl, then £ Fl [ e ] </>Fl pfl is a FSA of (£Nl [ e ] <f>Sl) pNl,

and hence of (£Sl[ e ]  </>Sl) o p Nl . In particular, when pNl is the identity its greatest 
FSA is the identity Act.a, and £ Fl[ e ]  <f)Fl (Xa.a) is a  FSA of £ Sl[ e ]  (j)Sl.

Application in Fi is abstract (ordinary) composition: 

applyFl Ti t 2 =  Tj o 72 , 

and applyNl and applyFl are correctly related.

Proposition 5.23
The semantic functions £ Nl and £ Fl are correctly related. □
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Next we give the semantics of a set of first-order function definitions. As before let 
(f̂ 1 be the i th approximation of the Ni semantics £dey j F ]  of function definitions F. 
Then ( ^ [ f  ] =  Ax.T, which has greatest FSA Xa.ID, for all f .  Let

<!>V = (A4> . (£Fl [ e i ] <t> (X a .a ),. . .  , £ Fl[ e n ] <f> (Xa.a ) ) ) 1 ^  
where

4 1 =  (Xa.ID , . . . ,  Xa.ID) .

By Proposition 5.23 and induction </>Fl[ f  ] is a FSA of ^ [ f  ] for all i and f .  The 

( f t1 form an ascending chain with a limit </>Nl, but the 0 Fl form a descending chain 
since Xa.ID  is the greatest projection transformer. We take the limit <f>?1 of the la tter 
chain to  be its gib, so

£defnslF 1 =  9fP (X<f> . (£ Fl[ e i ]  <t> (A a .a),. . .  , £ Fl[ e n ] <p (Xa.a))) ,

where gfp denotes greatest fixed point. Further, </>Fl maps each function variable f  
to a FSA of the standard value J for all f; this follows from inclusivity of the
safety condition, and the fact th a t <̂Fl[ f  ] is a FSA of 1 for all i since the </>f1 
are decreasing.

P ro p o s it io n  5.24
The Fi and Ni semantics are correctly related. □

E x a m p le . Recall the definition of the boolean or function.
or : (Bool.Bool) #> Bool 
or (x,y) = case x of

true () -> true ()
false () -> y

Then o rFl is maps ID  x ID  to ID  and all other projections to B O T .

E x a m p le . Define the length function for integer lists as follows.
length : IntList #> IntList 
length xs = case xs of

nil () -> 0
cons (z,zs) -> 1 + length zs

Define SPINE  by

SPINE a  =  fi'y.IDjL © (a  x 7 )±

=  jj.j.nil U (cons (a x 7 )) .

Then SPINE ID = ID. The projection SPINE B O T  acts as the identity on the 
spines (cons and nil nodes) of all lists but maps all heads to _L, specifying static 

spines and dynamic elements. The greatest FSA of the standard denotation sum Sl
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of sum maps SPINE ID  to ID  and all other projections to B O T , and the greatest 
FSA of length51 maps SPINE B O T  and all greater projections to ID, and all other 

projections to B O T .  The interesting point is th a t there are no projections th a t 

specify th a t a list is of a certain fixed length, for example nil does not specify a static
list of zero length, but th a t i f  a list is of zero length then it is static. Hence the
greatest FSAs of sumSl and lengthSl are not continuous. Analysis of the two function 

definitions gives optim al results, for example, the generic semantics of le n g th  is 

length =  \ x  . choose (x,

mkinto x ,

plus (mkinti x , apply dength ((sek o outcons) a:))) ,

so lengthFl is the greatest fixed point of

At . chooseF° (Aa.a:, Xa.ID , r  o SEL2 o OUTCONS) ,

which maps SPINE B O T  and all greater projections to ID, and all other projections
to DDT, so lengthFl is optimal. Analysis of sum is also optim al (it couldn’t be
otherwise since the optim al value is the least value in the relevant dom ain).

E x am p le . Define the tail function for lists by
tl : IntList #> IntList 
tl xs = case xs of

nil () -> tl xs
cons (y,ys) -> ys

Then the greatest FSA of tlSl is determined by the mappings 

nil B O T

cons a  i—̂ a
nil U (cons a) i-> a

but the result of analysis is suboptimal: tl?l maps projections of the form
nil U (cons a) to a , but those of the form cons a  to BO T.

The second approach to first-order analysis—abstraction of the N2 semantics—is anal

ogous to th a t for backward strictness analysis. Since we have no examples to contrast 
the two approaches, and since the second is a specialisation of the higher-order tech
nique developed later, we om it the details.

5.3.2 Abstraction of projection domains

The definition of chooseFo shows th a t if the projection on the value of a selector in a 
case expression does not encode staticness in all constructors, th a t is, is not greater
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than Ui<^<n Ci B O T  for selector of type Ci Ti + . . .  + cn Tn, the projection on the 
result of the case  expression is B O T ; this is one way of explaining the loss of ac
curacy in the last example. This is consistent with the definition of plus5° if In t  

is regarded as an infinite sum and ei + e2 as being defined by nested case expres
sions. Another revealing observation is th a t decomposition of products effectively 
approximates each projection on a product domain by the greatest approximating 

projection expressible as a product of projections on the component domains; unlike 

the analogous situation for backward strictness abstraction tupleF° (self° t ,  sel£° r) 

may strictly approximate r .  Excluding those projections on products th a t cannot 

be expressed as products of projections, and those projections on sums (other than 
B O T)  th a t do not encode staticness in all constructors, would arguably leave the 
largest set of projections from which we might reasonably choose a finite subset for 
im plem entation.

As before, abstraction of full projection domains to finite domains will be performed 

in two steps. For each type T the domain SProjT will be the full domain of projec
tions less those ju st described. Abstraction to finite domains requires only restricting 

projections for recursively-defined types. Our particular choice of finite projection 
domains will be the same as Launchbury’s [Lau91a].

For fixed type definitions D and each zero-order type T define SProjT to  be 

P So[T ] ('Pde/nsl^D with V So defined as follows.

7>S0 [ O ]  =  |7 ^ > [ 0 ] |  =  11 1 =  {ID} ,

^ So[ ( T i  T„) ] =  {o 1 x . . . x a n | a i e 7 ’s°[T i ], 1 <  i <  n} ,

pSofc! Ti + . . .  + c„ T„]

=  {B O T }  U {(ci «j) U . . .  U (cn a n) | <*i €  P So[T ,], 1 <  i <  n} .

Here it does not m atter whether we regard In t  as defined by an infinite sum or by 
in t  In t# , but formally we take the former view since we have no theory of projections 
on unpointed domains.

V So[ In t  ] =  {B O T , ID ) .

For all T the domain SProjT is a complete sublattice of ProjT containing ID  and B O T  
(though they may not be distinct).

For 7  G ProjT let 7 # be the greatest projection in SProjT less than  7 . For every projec
tion transform er r  G ProjT —> Projv define r * G SProjT —> SProjv by r#  a  = ( r  a )# ; 

then r#  is less than r  a t common arguments and r#  is a safe abstraction of r .  To 
get an abstract semantics Fjf in SProj is simply a m atter of replacing each projection
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transform er | con5° | appearing in the definitions of the Fq constants by its abstraction 

in the new domains.

P ro p o s it io n  5.25
The Fq* semantics safely abstracts the Fq semantics, th a t is 

(£ F° [ e ]  p)*  □  £ F? [ e ]  p* .

□

Abstraction of both versions of the first-order semantics is induced in the natural way, 
and the corresponding safety results hold. The results of analysis of or, sum, le n g th , 

and t l  in SProj are as before.

5.3.3 Finite projection domains

For each type T we choose a finite sublattice FProjT of SProj.r suitable for exam
ples and implementation. As before FProjT is defined by a set of deduction rules; 
projection 7  is in FProjT if 7  fp ro j T can be inferred by the rules given following.

There is only one projection for () .

ID fp ro j 0  .

For product types there are all of the projections tha t can be expressed as products 
of projections on the components.

7 x fp ro j Ti ••• 7 n fp ro j Tn

71 x ••• x 7 n fp ro j (T l, . . .  ,T J

Sums, like products, follow the pattern  of V So.

B O T  fp ro j ci Ti + . . .  + cn Tn ,

71 fp ro j Ti ••• 7 n fp ro j Tn 

(7 1 )1  © * '• © (7 n)± fp ro j Cl Tl + . . .  + cn Tn 

Again the treatm ent of In t  is consistent with either hypothetical definition.

B O T  fp ro j In t  , ID fp ro j In t  .

For recursively-defined types we choose only those projections th a t act on each re
cursive instance of a da ta  structure of the same type in the same way. Given 

Aj=T,-(Ai,. . . ,An), 1 <  i < n, if by assuming l i  fp ro j A i for 1 <  % <  n we may 

deduce P;(7 1 , ...,7 n) fp ro j Tt-(A i,. . .  ,An) for 1 < i < n, then

• • • , 7 n ) - ( F >i ( 7 i , . . . , 7 n ) , . . . ,  P n ( 7 i , . . .  , 7 n))
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is a tuple (7 1 , . . . ,  7 n) of projections such that 7 * fp ro j A i for 1 < i < n.

Then FProjT is a sublattice of SProjT, for all T, containing B O T  and ID.

E x am p le . The abstract projection domain FProjq is {ID}; its 11-basis is empty.

E x am p le . The domain FProjlnt is {B O T, ID}; its n-basis is {B O T }.

E x a m p le . The domain FProjBool is also {BO T, ID}.

E x am p le . For ( In t ,B o o l)  the abstract projection domain is {B O T  x B O T , ID  x 
B O T , B O T  x ID, ID  x ID}  with n-basis {ID  x B O T , B O T  x ID}.

E x am p le . For I n tL is t  the abstract projection domain comprises B O T  and two 
projections SPINE B O T  and SPINE ID; the n-basis is {B O T , SPINE B O T }.

E x am p le . The elements of FProjintLiatList are SPINE  (SPINE ID) which is ID, 
SPINE (SPINE B O T ), SPINE BOT, and BOT.

E x am p le . The elements of FProjBoolTree are BOT, B R A N C H  BOT, and 
B R A N C H  ID, where

B R A N C H  a  =  ® ( 7  x 7 )^ .

Then B R A N C H  ID  is ID  and B R A N C H  B O T  acts as the identity on the branch 
nodes of all trees but maps all leaves to ± .

Again, abstraction of the zero- and first-order semantics to  the finite projection do
mains is in the obvious way.

5.3.4 Examples of analysis

We give some examples of analysis in FProj.
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E x a m p le . Let o r be defined as before. In FProj we may express SEL{ by 
A(ai x . . .  x a n).ai. Then

or*1 = choose*0 (A(a x P).a,

{intrue*0 o mkunit*0) id ,

A(a x p).p) ,

which is determined by

B O T  x  ID ^  B O T  , 

ID  x B O T  i-4  B O T  ,

so we have B O T  x B O T  i-4 B O T  and ID  x ID i-4 ID. This reveals th a t the result of 
orSl is static if both of its arguments are static and dynamic otherwise. Note th a t this 
result is optim al in FProj, though as shown, analysis (of the body of the definition) 
in the full domain of projections is suboptimal.

E x a m p le . Let le n g th  be defined as before. Then length*1 is the greatest fixed 

point of

Ar . choose*0 (Aa.a, Xa.ID , r  o SEL2 o OUTCONS) ,

which is determined by

B O T  i-4 B O T  ,

SPINE B O T  i-4 ID  , 

which is optimal.

E x a m p le . Let append denote the function th a t appends two integer lists.

append : (IntList,IntList) #> IntList 
append (xs,ys) = case xs of

nil () -> ys
cons (z,zs) -> cons (z, append (zs,ys))

Then the generic semantics is 

Xx . choose {sell x -> 

seli x ,

incons {tuple {{sell 0 outcons o sell) x, 

apply append {tuple {{selo, o outcons o sell) x , 

sela x)))))
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Then appendFl is the greatest fixed point of 

At . chooseF° (SEL1, 

s e l 2, 
IN C O N Sf° o a a .((SE Ll o OUTCONS  o S E L J  a  x 

t  o Aa.((SEL2 o OUTCONS  o S E L J  a  x 
SEL2 a)))

which is determined by

(SPINE ID) x (SPINE BO T) ^  SPINE B O T  ,

(SPINE B O T )  x (SPINE ID) ^  SPINE B O T  ,

(SPINE ID) x B O T  B O T  ,

B O T  x (SPINE ID) B O T  ,

which is optimal.

Exam ple. Let reverse 1 denote the simple reverse function for lists.
reversel : IntList #> IntList 
reverse1 xs = case xs of

nil () -> nil ()
cons (y,ys) -> append (reversel ys,

cons (y, nil ())) .

Then reverselFl is the identity, which is optimal.

Exam ple. Let reverse2 denote the usual two-argument function to  reverse a list.
reverse2 : (IntList,IntList) #> IntList 
reverse2 (xs,ys) = case ys of

nil () -> xs
cons (z,zs) -> reverse2 (cons (z,xs), zs) .

Then reverse2Fl is A(a x (3).(a n  /?), which is optimal.

Exam ple. Let concat denote the function th a t concatenates a list of lists.

concat : IntListList #> IntListList 
concat xss = case xss of

lnil () -> nil ()
Icons (ys,yss) -> append (ys, concat yss) .

Then concatFl maps B O T  to B O T  and SPINE a  to a , which is optimal.

Recall the definition of dfs.
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dfs : BoolTree #> Bool 
dfs t = case t of

leaf () -> b
branch ( l ,r )  -> or ( d f s  1 , d f s  r) .

T h e n  d f s F l  i s  t h e  l e a s t  f u n c t i o n ,  w h ic h  is  o p t i m a l .

L e t  c o u n t  leaves d e n o t e  t h e  f u n c t i o n  t h a t  r e t u r n s  t h e  n u m b e r  o f  le a v e s  in  t r e e s  o f

t y p e  B o o l T r e e .

countleaves : BoolTree #> Int 
countleaves t = case t of

leaf () -> 1
branch (l,r) -> countleaves 1 + countleaves r .

T h e n  countleavesFl m a p s  B R A N C H  B O T  t o  ID a n d  B O T  t o  B O T , w h ic h  is  o p t i m a l .

5.4 Termination Analysis

R e c a l l  t h a t  t h e  n o m i n a l  g o a l  o f  t e r m i n a t i o n  a n a ly s i s  is ,  g iv e n  / ,  t o  d e t e r m i n e  a s  s m a l l  

r  a s  p o s s i b le  s u c h  t h a t  ( r  <5) o f ±  □  f L  o 8  f o r  a l l  <5; i n  t e r m s  o f  ( z e r o - o r d e r )  e x p r e s s io n  

s e m a n t i c s ,  g iv e n  e, t o  d e t e r m i n e  r  s u c h  t h a t  (t  8) o £ Sxo[ e ]  □  £ Sj-°[e] o 8 f o r  a l l  8. 

T h e  d e v e lo p m e n t  o f  t h e  z e r o - o r d e r  f o r w a r d  t e r m i n a t i o n  s e m a n t i c s  Lq is  p a r a l l e l  t o  t h a t  

f o r  t h e  B 0 s e m a n t ic s ;  t h e  s t a r t i n g  p o i n t  is  t h e  N_lo s e m a n t i c s .  S in c e  a  l i f t e d  f u n c t i o n  is  

n o t  in  g e n e r a l  d e t e r m i n e d  b y  a n y  s in g l e  F T A ,  l e a s t  F T A s  a r e  n o t  g u a r a n t e e d  t o  e x i s t ,  

a n d  a b s t r a c t  c o m p o s i t i o n  d o e s  n o t  p r e s e r v e  l e a s t n e s s ,  t h e  f i r s t - o r d e r  l_i s e m a n t i c s  w i l l

n o t  y ie ld  l e a s t  F T A s  o r  d e t e r m i n e  t h e  S i  s e m a n t i c s .  T h e  Lq a n d  L i s e m a n t i c s  a r e  t h e

s a m e  a s  t h a t  d e s c r ib e d  in  [ D a v 94].

T h e  t y p e  p r e d i c a t e  b e t w e e n  v a lu e s  g  a n d  r  in  t h e  Nj_o a n d  l_o s e m a n t i c s  r e q u i r e s  t h a t  

t  b e  a  F T A  o f  g ,  s o

T̂ NlqLo[ T] (^? r) =  V5 . ( t  (5) o g  □  g  o 8  .

H e n c e  w e  r e q u i r e  t h a t  i f  p L°  i s  a  F T A  o f  p Nj-° t h e n  £ Lo [  e  ]  p l °  b e  a  F T A  o f  £ Nj-° [  e  ]  p Nj-° 

a n d  h e n c e  o f  £ Sj-° [  e  ]  o p N±0; in  p a r t i c u l a r ,  w h e n  p u ± 0  is  t h e  i d e n t i t y  i t s  l e a s t  F T A  is  

t h e  i d e n t i t y  A a . a ,  a n d  £ Lo[ e ]  ( X a . a )  w i l l  b e  a  F T A  o f  £ ’S-L0[ e ] .

A l l  F T A s  o f  l i f t e d  f u n c t i o n s  w i l l  b e  s t r i c t ,  a n d  a r e  n e c e s s a r i l y  b o t t o m - r e f l e c t i n g ;  w e  

w i l l  u s e  A t o  f a c i l i t a t e  t h e i r  d e f in i t i o n  a n d  t o  c o n s t r u c t  t h e  p r o j e c t i o n  t r a n s f o r m e r  

d o m a i n s .  H e r e  ProjT i s  | T ^ l T ]  |.

L e t  E g i b e  t h e  t y p e  o f  g lo b a l  e n v i r o n m e n t s .  T h e n  

T Lo[T ] =  ProjEg[ 4  ProjT .
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F o r  e : T  w i t h  e n v i r o n m e n t  t y p e  E w e  h a v e  £ L° [ e ]  G 7”l ° [ E ]  — > T Lo[ T ] ,  t h a t  is

£ Lo[ e ]  G ( P r o j Egl 4  P r o j E )  ->  ( P r o j Egl 4  P r o j T) ,

a g a i n ,  a  f u n c t i o n  f r o m  p r o j e c t i o n  t r a n s f o r m e r s  t o  p r o j e c t i o n  t r a n s f o r m e r s .

R e c a l l  t h a t  e a c h  N lo  c o n s t a n t  c o n u ± 0  is  d e f in e d  b y

c o n N l -0 ( f t , . . . ,  g n )  =  ( c o n 5 ± 0 ) ± l  o ( ( g u . . . ,  g n ) )  .

I f  T {  is  a  ( l e a s t  w i t h  r e s p e c t  t o  s m a s h  p r o j e c t i o n s )  F T A  o f  g i  f o r  1 <  i  <  n  t h e n  

A o ; .( ( t i  a )  0  . . .  ®  ( r n o ) )  is  a  ( l e a s t  w i t h  r e s p e c t  t o  s m a s h  p r o j e c t i o n s )  F T A  o f  

((s i?  • • • > 9 n ) i)-> a n d  a b s t r a c t  c o m p o s i t i o n  is  o r d i n a r y  c o m p o s i t i o n  ( a n d  p r e s e r v e s  l e a s t -  

n e s s  w i t h  r e s p e c t  t o  s m a s h  p r o j e c t i o n s ) .  H e n c e  e a c h  Lo c o n s t a n t  is  d e f in e d  b y

c o n l °  ( r i , . . . ,  r n )  =  | ( c o n S o ) ± , | o A a . ( ( n  a )  0  . . .  0  ( r n a ) )  ,

w h e r e  in  t h e  c o n t e x t  o f  f o r w a r d  t e r m i n a t i o n  a n a ly s i s  | /  | is  t h e  l e a s t  F T A  o f  / .  D e 

t a i l e d  d e f in i t i o n s  o f  t h e  c o n s t a n t s  a r e  g iv e n  f o l lo w in g .

F o r  v  G Vj_, t / ^ 1 , a n d  v  f in i t e ,  a n d  g iv e n  d o m a i n  U ± ,  d e f in e  t h e  c h a r a c t e r i s t i c  

p r o j e c t i o n  t r a n s f o r m e r  ( fo r  f o r w a r d  t e r m i n a t i o n  a b s t r a c t i o n )  A C C E P T V t o  b e  t h e  

l e a s t  F T A  o f  t h e  l i f t e d  c o n s t a n t  f u n c t i o n  X x . v  G 4  V i d e f in e d  b y

A C C E P T „ 6 | H |  4  | V i |  ,

A C C E P T „ =  A « .7 „ .

T h e n  A C C E P T V i s  t h e  p r o j e c t i o n  t r a n s f o r m e r  t h a t  m a p s  p r o j e c t i o n s  o t h e r  t h a n  

B O T ±  t o  t h e  p r o j e c t i o n  y v  t h a t  s p e c i f ie s  t e r m i n a t i o n  w i t h  v a lu e  v , a n d  A C C E P T v  

d e t e r m i n e s  v .  T h e  l e a s t  F T A  o f  m k u n i t S j - °  =  X p . l i f t  () is  A C C E P T f t p .  q ,  s o

m k u n i t L°  r  =  A C C E P T l i f t  q o r  

=  ( \ a . B O T ± )  o r .

F o r  i n t e g e r  c o n s t a n t s ,

m k i n t \ °  t  =  A C C E P T Ĥ 2 * 0 t  

=  (A a . N i )  o  r  .

T h e  o t h e r  u n a r y  c o n s t a n t s  a r e  d e f in e d  s im i la r ly .  T h e  l e a s t  F T A  o f  s e l f ± 0  is

| s e l f ™  I €  I ( r j j .  ®  . . .  ®  ( T „ ) ±  I 4  I (T < )x  | ,
r

I s e l ^ 0 | a  =  |~~|{a i I « i  • • • <8> □  a }  .

T h e  l e a s t  F T A  o f  i n c f 10 is  C7,-. T h e  l e a s t  F T A  o f  o u t f ± 0  is

| o u t f ^  | G | ( ( T i U  ©  . . .  ©  ( T n ) ± ) ±  | 4  | ( T i ) ±  | ,

I o u t f ± 0  I ( « ! © . . . ©  a n ) ±  =  ( * i  .
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S in c e  ( t u p l e N ° ) L , is  t h e  i d e n t i t y  w e  h a v e

t u p l e 10  (7i , . . . ,  r B) =  A a . ( r i  a )  0  . . .  0  ( r n c*) .

W e  u s e  a  v a r i a n t  o f  t h e  c a s e  f u n c t i o n  in  w h ic h  t h e  g u a r d s  a r e  o f  t h e  f o r m  Uc*, a n d  

t h e  r e s u l t  o f  t h e  f u n c t i o n  is  t h e  l u b  o f  a l l  o f  t h e  i n s t a n c e s  o f  a l l  o f  t h e  b r a n c h e s  fo r  

w h ic h  t h e  p a t t e r n  c* a p p r o x i m a t e s  t h e  s e le c to r .  T h e  l e a s t  F T A  o f  { p l u s S o ) L , i s  t h e n

Ac* . c a s e  a  o f

U ( A B S ® ( 3 )  A B S

U ( p ® A B S )  -► A B S  

LI (A* ®  Nj) —y Ni+j  ,

s o

p l u s Lo (7 1 ,7 2 )  =  Ac* . c a s e  ( t i  a )  ®  (72 a )  o f

U ( A B S  0  /?) ->

L l( /? 0 A £ S )  A B S  

U (iVi 0  Nj)  —> A j+ j .

T h e  l e a s t  F T A  o f  ( c h o o s e s ° ) ± , is

Ac* . c a s e  a  o f

U ( B O T _ l  0  c*i 0  . . .  0  a n )  — > B O T ±

U ((C <  P )  0  a i  0  . . .  0  c*n ) c*t .

I n t u i t i v e l y ,  i f  t h e  s e l e c t o r  i n  a  c a s e  e x p r e s s io n  m a y  f a i l  t o  t e r m i n a t e ,  s o  m a y  t h e  

r e s u l t ,  o t h e r w i s e  t e r m i n a t i o n  is  d e t e r m i n e d  b y  a l l  p a t t e r n s  t h a t  c a n  m a t c h .  W e  h a v e

c h o o s e 10  ( tq ,  . . . ,  Tn )

=  Ac* . c a s e  ( ro  a )  0  . . .  0  ( r n a )  o f

U ( B O T ± _  0  c*i 0  . . .  0  a n ) —> B O T ±

U ( ( C i  P )  0  c*i 0  . . .  0  C*n ) - *  Q i  .

A g a i n  i t  is  s t r a i g h t f o r w a r d  t o  d e r iv e  t h e  d e f in i t i o n  o f  p l u s L°  f r o m  t h e  d e f in i t i o n  o f  

c h o o s e L° .

P r o p o s i t i o n  5.26
T h e  Nj_0 a n d  l_o s e m a n t i c s  a r e  c o r r e c t l y  r e l a t e d .  M o r e ,  i f  p Lo is  a  F T A  o f  p Nj-° t h a t  

i s  l e a s t  w i t h  r e s p e c t  t o  s m a s h  p r o j e c t i o n s  t h e n  £ Lo[ e ]  p Lo i s  a  F T A  o f  £ Nj-0[ e ]  p Nj-° 

t h a t  is  l e a s t  w i t h  r e s p e c t  t o  s m a s h  p r o j e c t i o n s .  □

E x a m p l e .  L e t  x : I n t  b e  a  v a r i a b l e  w i t h  c o r r e s p o n d i n g  t y p e  E o f  e n v i r o n m e n t s  e q u a l  

t o  I n t .  T h e  e x p r e s s io n  t o  b e  a n a l y s e d  is  x  + 1. L e t  p l °  b e  t h e  i d e n t i t y  f u n c t i o n  

A c* .a , t h e  l e a s t  F T A  o f  t h e  i d e n t i t y ,  s o  t h a t  p Lo[ x ]  =  Ac*.c*. L e t  t h e  p r o j e c t i o n
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0 K S  E  | T 5-1-0 [  I n t  ]  | f o r  S  C  Z  b e  d e f in e d  b y  0 K S  =  \ J i e s  s o  0 K S  s p e c i f ie s  

t e r m i n a t i o n  w i t h  s o m e  v a lu e  in  S .  T h e n  £ Lo[ x  + 1 ]  p Lo m a p s  O K s  t o  O K { i +1 | *€ s} ; 

in  p a r t i c u l a r  i t  m a p s  N i  t o  N i + 1 f o r  a l l  i  G Z, A B S  t o  A B S , S T R  ( w h ic h  is  O K z )  t o  

S T R , a n d  I D  t o  I D .

E x a m p l e .  L e t  t h e  e n v i r o n m e n t  p l °  b e  a s  in  t h e  l a s t  e x a m p le .  T h e n  

<fL° [ c o n s  ( 1 , c o n s  ( x ,  n i l  0 ) ) ] p Lo 

=  X a .  C O N S  { N i  0  C O N S  ( a  0  N I L ) )  .

T h i s  s h o w s  t h a t  w i t h  t h e  p o s s i b l e  e x c e p t io n  o f  t h e  s e c o n d  e l e m e n t  t h e  e n t i r e  s t r u c t u r e  

o f  t h e  l i s t  is  g u a r a n t e e d  t o  t e r m i n a t e ,  t h e  f i r s t  e l e m e n t  w i t h  v a l u e  1; t h e  s e c o n d  e l e m e n t  

h a s  t h e  t e r m i n a t i o n  p r o p e r t i e s  o f  x .

5.4.1 Abstraction

A b s t r a c t i o n  t o  S P r o j  o r  F P r o j  is  t h e  s a m e  a s  f o r  b a c k w a r d  s t r i c t n e s s  a n a l y s i s  e x c e p t  

t h a t  t h e  p r o j e c t i o n  t r a n s f o r m e r  d o m a in s  a r e  c o n s t r u c t e d  u s in g  i n s t e a d  o f  A .  W e  

c o n s id e r  tw o  e x a m p le s  in  F P r o j .

E x a m p l e .  R e p e a t i n g  t h e  l a s t  e x a m p le  g iv e s

£ L° [ c o n s  ( 1 , c o n s  ( x ,  n i l  ( ) ) ) ] p Lo =  X a . F I N  ( q U  STR) .

T h i s  s h o w s  t h a t  t h e  s p in e  o f  t h e  l i s t  t e r m i n a t e s ,  a n d  a l l  o f  t h e  e l e m e n t s  t e r m i n a t e  i f  

x  d o e s .

E x a m p l e .  L e t  b : B o o l ,  x : I n t ,  a n d  y : I n t  b e  v a r i a b l e s  w i t h  c o r r e s p o n d i n g  t y p e  E

o f  e n v i r o n m e n t s  e q u a l  t o  ( B o o l , I n t , I n t )  w i t h  t h e  v a lu e s  o f  b ,  x ,  a n d  y  i n  t h e  f i r s t ,

s e c o n d ,  a n d  t h i r d  p o s i t i o n s ,  r e s p e c t iv e ly .  L e t  e  s t a n d  f o r  t h e  e x p r e s s io n

case b of 
true () -> x 
false () -> y .

L e t  p Lo b e  t h e  i d e n t i t y  f u n c t i o n  A a .o ,  t h e  l e a s t  F T A  o f  t h e  i d e n t i t y .  T h e n  

p l o { b ]  =  A ( a b 0  a x  0  o y) .o ;b , 

p Lo[ x ]  =  A ( a b 0  a x 0  O L y ) . c t x  ,

P Lo[ y ]  =  A ( a b 0 a x 0 a y) . a y .
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T h e n

£ Lo[ e ]  p l °  =  A ( a b ®  a x  ®  a y )  . c a s e  o b o f

U A B S  - >  A B S  

U T R U E  —̂  c t x  

\AFALSE —  ̂ Oiy .

T h i s  r e v e a l s ,  f o r  e x a m p le ,  t h a t  f o r  x  a n d  y  w i t h  t e r m i n a t i o n  p r o p e r t i e s  a x  a n d  a y  

r e s p e c t i v e ly ,  i f  b  is  c e r t a i n  t o  t e r m i n a t e  w i t h  v a lu e  t r u e  t h e n  t h e  t e r m i n a t i o n  p r o p e r t y  

o f  t h e  w h o le  e x p r e s s io n  is  a x \ i f  b  is  c e r t a i n  t o  n o t  t e r m i n a t e  t h e n  t h e  w h o le  e x p r e s s io n  

is  c e r t a i n  n o t  t o  t e r m i n a t e ;  a n d  i f  b  is  c e r t a i n  t o  t e r m i n a t e  ( w i th  a n  u n k n o w n  v a lu e )  

t h e n  t h e  t e r m i n a t i o n  p r o p e r t y  o f  t h e  w h o le  e x p r e s s io n  in c lu d e s  t h e  p o s s i b i l i t i e s  f o r  

b o t h  x  a n d  y .

5.4.2 First-order analysis

F o r  f i r s t - o r d e r  a n a l y s i s  w e  m a y  a b s t r a c t  e i t h e r  t h e  Nj_i o r  Nj_2 s e m a n t i c s .  S in c e  t h e  

l a t t e r  y i e ld s  a  s p e c i a l i s a t i o n  o f  t h e  h i g h e r - o r d e r  a n a ly s i s  d e v e lo p e d  in  C h a p t e r  6 a n d  

w e  h a v e  n o  e x a m p l e s  t o  c o n t r a s t  t h e  tw o  a p p r o a c h e s  w e  c o n s id e r  o n ly  t h e  f o r m e r .

T h e  v a l u e  d e n o t e d  b y  a  f u n c t i o n  s y m b o l  f  i n  t h e  f i r s t - o r d e r  f o r w a r d  t e r m i n a t i o n  

s e m a n t i c s  L i s e m a n t i c s  is  t o  b e  a  F T A  o f  t h e  v a lu e  i t  d e n o t e s  in  t h e  S x i a n d  Nj_i 

s e m a n t i c s .  T h e  l_i s e m a n t i c s  o f  f i r s t - o r d e r  t y p e s  is  t h e n

T L l[ T i  # >  T 2 ] =  P r o j T i  4  P r o j T2 .

T h e  r e q u i r e d  r e l a t i o n  b e t w e e n  v a lu e s  g  a n d  t  i n  t h e  Nj_i a n d  L i s e m a n t i c s  is  t h a t  r  

b e  a  F T A  o f  g , s o

T ^ N L i U | i i  # >  t 2 ] ( p , r ) =  V 8  . ( r  5 ) o g D g o 5  .

T h u s ,  i f  0Nj-1 a n d  0Ll a r e  f u n c t i o n  e n v i r o n m e n t s  s u c h  t h a t  <j>L l  [  f  ]  is  a  F T A  o f  0N±1 [  f  ] 

f o r  e a c h  f ,  a n d  p l °  is  a  F T A  o f  p Nxo, w e  r e q u i r e  t h a t  £ Ll [ e ]  </>Ll p L° b e  a  F T A  o f  

((S1̂-1-1 [  e  ]  </>N±1) p Nj-° a n d  t h e r e f o r e  o f  (<fS±1 [  e  ]  0N xi) o p Nj-°. I n  p a r t i c u l a r ,  w h e n  p Nxo 

is  t h e  i d e n t i t y  o n  v a r i a b l e  e n v i r o n m e n t s ,  i t s  l e a s t  F T A  is  t h e  i d e n t i t y  A c t.a ,  a n d  

£ Ll [  e  ] 0 Ll ( A a .a )  m u s t  b e  a  F T A  o f  £ 5x1 [  e  ]  ^ N xi.

A p p l i c a t i o n  in  l_i is  a b s t r a c t  ( o r d in a r y )  c o m p o s i t i o n :

apply11 T\ r2 =  7i o r2 .

T h e n  a p p l y Nxi a n d  a p p l y L l  a r e  c o r r e c t l y  r e l a t e d .

Proposition 5.27
T h e  s e m a n t i c  f u n c t i o n s  £ Nxi a n d  £ L l  a r e  c o r r e c t l y  r e l a t e d .  F u r t h e r ,  i f  </>Nxi a n d  <f)L l
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are function environments such th a t 0 Nxi [ f  ] is a FTA of <f)Ll [ f  ] th a t is least with 
respect to  smash projections for each f , and pLo is a FTA of pN±0 th a t is least with 

respect to  smash projections, then £ Ll[e  J 0 Ll pl° is a FTA of (£s±1[ e ]  0Nxi) o pNj-° 
th a t is least with respect to smash projections. □

Next we give the l_i semantics of a set of first-order function definitions. This is not 
as straightforward as for the other semantics.

Let function definitions F be fixed and let 4!^X1, i >  0 be the approximations of the 
function environment 0Nxi given by the Nj_i semantics. Then ^ " “ [ f  ] =  Ax.lift _L 
for each f  with least FTA Aa.BO T±,  so we define the initial approximation of the Li 
function environment by ^ [ f  ] =  Xa.BOT±  for all f ,  which is least with respect to 
smash projections. Now A a.a is the least FTA of id, and we define the function F  

from function environments to function environments by

F <j) =  (£ Ll[ e i ]  <j) (Aa.a), . . . ,  £ Ll[e n ] 0  (Aa.a)) ,

and define 0 ^  = F % 0Q1 for i > 0. By Proposition 5.27 and induction 0J-1 is correctly 

related to  for all *, and is least with respect to smash projections. The prob
lem is th a t the sequence {0 j 1 } is not guaranteed to be monotonically increasing (or 
decreasing) so we cannot give a straightforward fixed-point semantics for We
give some examples. Consider 

one : () #> Int  
one ( ) = i .

Let onej-1 denote the i th value of function one in the sequence. Then 

one0 =  X a.A B S ,

one,-1 =  \a .N i ,  for i > 1 .

Though the sequence is not increasing a fixed point is reached after one step. Next
consider the simultaneous definitions

fa : () #> IntList
fa () = cons (1, fb ())

fb : () #> IntList
fb () = cons (1, fc ())

f c : 0  #> IntList
f c 0  = nil () .

Then

/«oLl =  k a .A B S  ,

fa \' =  Xa.CONS (N i ® A B S ) ,
/ 4 1 =  Xa.CONS  (Ni ® (CONS (Nx ® ABS))) , 

/ah1 =  Xa.CONS  (JVi ® (CONS (Nx ® NIL))), for i > 3 .
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So a fixed point is eventually reached. Next consider the constant function th a t

returns the infinite list of ones.
ones : O  #> IntList
ones () = cons (1, ones ()) .

We have

onesQ1 =  X a.A B S  ,

onesJ-1 =  Xa.CONS  (JVi ® AB S)  ,

ones!}1 = Xa.CONS {Nx <g> ( CONS  (JVi ® A 5S))) ,

and generally

onesp = Xa.{X(5.CONS{Nu  0))* A B S , i >  0 .

Every approxim ation is incomparable to every other and a fixed point is never reached.

Finally, consider the function zero  th a t returns zero for non-positive arguments,
zero x = case (x = 0) of 

t r u e  ( )  - >  0

false () -> zero (x + 1) .

Then

zeroQ1 = Xa.BOT±  ,

z e r o ^  = chooseL° ( t q , Aa.JVo, zero\x o t{) ,

where tq and t\ have the guard property, tq maps Nq to TRUE  and maps N{ for i 0 
to  F A L SE , and t\ maps Ni to N{+ 1 for all i. Then zero\l has the guard property and 
maps N -j  to Nq for 0 <  j  < i, and to A B S  otherwise. Again every approximation is 
incomparable to every other and a fixed point is never reached.

We give two closely related approaches to  solving this problem using widening and 

narrowing [CC91]. Recall th a t over-approximation is safe, and the domains of pro
jection transformers are complete lattices so lubs always exist. If we define f y 1' by

^ 0l' = ^O1 5

4> \\i = <t>\11 LJ for * >  1 ,

then the 0 ^ '  form an increasing sequence, each 0 ^ '  is a  safe approximation of 0 ^ ,  
and by inclusivity their lim it is correctly related to  0 N±1. Here the widening operator 
is U .4

4In the full projection domains our widening operator does not fully conform with the Cousots’ 
definition because it does not guarantee convergence in a finite number of steps, but it does when 
working with the finite projection domains.
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Repeating the examples we have 

oneLl = X a .A B S  U Ni ,

f a 1' = X a .A B S  U CONS  (JVi 0  (A B S  U (CONS (Nt 0  (A B S  U NIL))))) , 

onesLl =  Xa.A B S  U INF Ni ,

and zeroLl has the guard property, maps projections below LT>i N  other than  FAIL  
to A B S  and all other eager projections other than FAIL  to ID. In no case is absolute 
term ination determined, though for f a  and ones head term ination is determined.

We could leave it a t this, but following [CC91] we use the widening operator to define 
a new function wF th a t has the desired fixed point and safely approximates F:

wF (f> =  <f> U (F fa) .

Now wF  is greater than the identity so {wF 1 </> | i >  0} is increasing for all </>. We 

define £ ^ ,  by

£*efnsl*] = Ui>0 ^  <t>0 ■
In general this gives a greater (worse) result than the last solution, but gives the same 

results for the examples given. The advantage is tha t it allows an easy improvement 
of the result. Let fa-' be the least fixed point of wF greater than ^q1 , so fa-' is correctly 
related to  fa ±̂1. Then { F l fa-' | i >  0} is a  decreasing sequence, every element of which 
is correctly related to </>Nxi. (This is narrowing; here the narrowing operator is the 
identity.) W hen the depth of the projection transformer domain is finite the sequence 
must reach a fixed point in a finite number of steps. We consider the examples again, 

first in the full projection domains. Let F comprise the given definitions of one, fa , 
fb , fc , ones, and zero . Now let fa$ be and be F  fa for i > 0, so
the fa\ 1 form a decreasing sequence. Finally, let one\' be ^ ^ [ o n e ]  for i >  0, and 
similarly for the other functions. Then 

oneQ1 =  Xa.A B S  U N\ , 

one\' = X a .N i , for i >  1 .

Here the optim al solution is reached in one extra step. For fa ,

/ooLl =  X a.A B S  U CONS (Ni 0  (A B S  U (CONS (Ni 0  (A B S  U NIL))))) , 

fa \ '  = Xa.CONS (Ni 0  (A B S  U (CONS (Nx 0  (A B S  U NIL))))) ,

/ 4 1 =  Xa.CONS  (M  0  ( CONS (Nx 0  (A B S  U NIL)))) , 

fa ,lLl =  Xa.CONS (N\ 0  ( CONS (Nx 0  NIL))), for i > 3 .

So the optim al answer is reached in three extra steps. For ones, 

onesg1 = X a .A B S  U (INF  JVi) , 

ones\ 1 =  Xa.CONS (Nt ® (A B S  U (INF N ) ) )  , 

ones2Ll =  Xa.CONS  (JVi ® ( CONS  (JVi ® ABS))) ,
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and generally

ones ';1 = \a . ( \ (3 .C 0 N S (N l , /J) ) 4 (A B S  U (INF Ni)), i > 0 ,

so we can determine th a t any finite prefix of ones () terminates. We can determine 

that zero  terminates for any given non-positive argument.

Repeating the examples in FProj we get

oneLl =  Xa.Ni , 

f a Ll = Aa .F IN  S T R  ,

ones11 = Aa .IN F  S T R  .

Function zeroLl has the guard property and maps S T R  to ID; all four results are 
optimal.

Though the first approach gives a better widened result 0 Ll' than the second, there is 
no guarantee th a t the sequence { F % 0 Ll' | i > 0} is decreasing, though every element 
of the sequence will be correctly related to </>Nxi.

When working in FProj we define

£%n,m = rt>o Fi (Uj>0 wFi $ ) .

P ro p o s it io n  5.28
The Nj_i and Li semantics are correctly related. □

We give more examples in FProj.

E x a m p le . Define the identity on lists by

listid : IntList #> IntList 
listid xs = case xs of

nil () -> nil ()
cons (y,ys) -> cons (y, listid ys) .

Then

listidLl =  Aa . case a  of

UA B S  -> A B S

U NIL  -> NIL

U{CONS (7,5)) -> CONS (7, listidLl 8 )

Then listidLl has the guard property and is determined by

F IN  a  h- FINF a  , 

IN F a  i-> INF a  , 

for a  in FProj Int.
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E x a m p le . Let append be defined as before, then 

appendLl

— ® Q̂ ys) • case ĉ xs of
UABS  -> A B S  

LSNIL —̂ oiyS 

U(CONS (az ® a zs)) 

—► CONS (az 0  (appendLl (a Z3 0  a ys))) •

Then appendLl has the guard property, maps NIL  0  (3 to (3 for all /?, for a  ^  FAIL  

maps arguments as follows:

{{FIN a) 0  (FIN /3)) FINF (a U (3) ,

{{FIN a) 0  (INF (3)) FINF (a U (3) ,

((IN F a) 0  (F/JV /?)) FINF (a U (3) ,

((/JVF a) 0  (/ATF (3)) INF (a U (3) ,

for lazy first argument,

{{ABS  U Ol) 0  P) i-> A B S  U appendLl (%  0  (3) . 

and for all other arguments 

(a  0  (A B S  U f3±)) i-> appendLl (a  0  /3±) .

E x a m p le . Let r e v e r s e l  be defined as before, then reverselLl has the guard prop
erty, hence is determined by

reverselLl (FIN a) = FINF a  , 

reverselLl (INF a) =  IN F  a  .

We conclude with some informal observations. When working in the full projection 

domains, analysis will reveal term ination of a function only when it occurs in a number 
of steps bounded by some constant (in addition to how much evaluation might be 

required to evaluate the argum ents). Thus we can determine th a t one () term inates 
and th a t the entire structure of f a  () terminates, th a t any finite prefix of ones () 

term inates, and th a t zero  term inates for any given non-positive argument, but not 
th a t it term inates for all non-positive arguments—the la tter requires an inductive 
proof. In FProj, very roughly, this is further restricted to values th a t are not built 
up using recursion and do not depend on the particular values of integers. We believe 
th a t for an implementation this is exactly the information we would want to use: we 
do not want early evaluation of the entire spine of a list knowing only th a t it is finite,
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or to eagerly evaluate zero  - 1 0 0 0 0 0 0 0 ; the very limitations of the technique appear 
to obviate the need for operation count analysis.

We conjecture th a t in FProj the sequence { F % </>q1 | i >  0}, though not increasing, 
does reach a fixed point, th a t is, does not cycle—if so, the result could only be 

better than  by the method given. The following is an informal argument for why 
this should be so. Suppose th a t for the purpose of comparing the results of successive 
iterations th a t the relative ordering of eager and lazy projections in the result domains 
of projection transformers is reversed, then the results of successive iterations will be 
increasing: intuitively, better approximations of functions fail to term inate with a 
decreasing subset of the argument domain and have an increasing subset of the result 

domain as possible results.

5.5 Summary and Related Work

We have given non-standard interpretations for projection-based strictness, binding
time, and term ination analysis of a simple first-order non-strict monomorphic func
tional language. Following we consider each in the context of related work in the 
field.

S tr ic tn e s s  an a ly sis . We have reformulated an analog of Wadler and Hughes’ anal
ysis technique [WH87] and shown th a t before abstracting the projection domains our 

technique gives the best possible results. We have implemented a prototype strictness 
analyser using the second approach to first-order analysis [Dav89].

We have shown th a t it is possible to uniquely encode abstract values in the BHA 

framework for strictness analysis as projections, and we have shown th a t some of 
these properties (e.g. head-and-tail strictness) can be determined by program analysis. 
At first order with flat domains Neuberger and Mishra [NM92] show th a t projection- 

based backward strictness analysis, when restricted to  the projections ID, A B S , STR ,  
and B O T ,  is as strong as Mycroft’s analysis. A more general question is whether for 
any choice of finite abstract domains there is a finite abstract projection domain 
such th a t our technique always gives as informative results as BHA analysis; we 
suspect th a t this is true, and th a t the results regarding leastness with respect to 
smash projections would be useful in proving such an assertion.

Hughes and Launchbury [HL92a] have generalised Wadler and Hughes’ approach to 
polymorphic first-order languages using polymorphic projections with only a slight
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loss in accuracy. Kubiak [KHL92] has implemented, as part of the Haskell compiler, 
their technique for a first-order subset of the Haskell Core language.

Hughes argued [Hug87a, Hug87b] th a t backward strictness analysis is intrinsically 

more efficient than  forward analysis because it only considers independent strictness— 
strictness in individual arguments—and therefore cannot capture relational, or joint, 
strictness in two or more arguments. This is in fact an artefact of his and W adler’s 

analysis techniques; we have shown [DW90] th a t BHA-style strictness analysis can 
also be ‘un-relationalised’ to get more efficient but less accurate analysis techniques.

B in d in g - tim e  an a ly sis . Our first approach to first-order analysis is essentially a 
reform ulation of Launchbury’s monomorphic technique [Lau91a]. Launchbury also 
gave a polymorphic generalisation of the technique and an implementation of each as 
part of a partial evaluator. The generalisation to polymorphism, again using polymor
phic projections, is based on essentially the same theory as Hughes and Launchbury’s 
strictness analysis technique.

T e rm in a tio n  an a ly sis . Ours is the first projection-based term ination analysis 
technique. It is interesting because it can detect such properties as head term ination, 
which, to  be best of our knowledge, has not been captured by any other technique. It 
would be worthwhile to determine whether this technique can be generalised to poly
morphism in the same way as are the strictness and binding-time analysis techniques.

Again there is the question of whether any information th a t can be determined in 

the BHA framework can always be captured by our technique; again, we suspect th a t 
th is is true.

5.6 Higher order?

This section gives very informal and intuitive indications of why the first-order tech
niques don’t generalise directly to higher order, and the key to higher-order general
isation. The higher-order techniques are properly developed in Chapter 6 . Since the 
problems and their solutions are essentially the same for all of the analysis techniques 
we use binding-time analysis as the example since it involves simpler domains.

The problem boils down to finding a compositional semantics. Consider the expression 

(app# ( \# x .b) 1) where x : In t ,  b :Bool, and the environment has a single entry for 
b and is therefore of type Bool. Let Bool be T ^ B o o l] .  If the abstract value of an
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expression e is to be a FSA of £ s [ e ] ,  then the abstract values of ( \# x .b )  and 1 will
F Fcome from domains | Bool \ —> \ In t  -» Bool | and | Bool | —> \ In t  | , respectively. We 

expect the non-standard semantics to be compositional and so require a function apply 

th a t takes a value from each of these domains and returns a value from | Bool | —> 
\ Int \ .  There seems no obvious way to get the desired result. Our first working 
premise is th a t a t higher order, forward-strictness abstraction of £ s [ e ]  is the wrong 
abstraction.

A key observation is th a t evaluation is never performed inside a lam bda body— 
lam bda expressions \# x . e cannot be evaluated, only applied. For example, for the 

simple d a ta  structure lam ( \# x .b ) ,  evaluation can only proceed as far as WHNF, 

and there are only two distinguishable degrees of staticness. The projection domain 
| (In t —> Bool)jl | is vastly richer than necessary to specify two degrees of staticness— 
the projections ID  and B O T  are sufficient. Denotationally, evaluation to W HNF 
corresponds to  determ ination of the outermost lifting, which may be represented in 
the dom ain lj_; the two distinct projections on lj_ are ID  and B O T .  W hen values from
(In t —> Bool)j_ are to be applied, they are first dropped to yield a value in In t  —> Bool,
effectively ignoring the lifting. This suggests factorising the domain (In t  —> Bool)± 
into lj_ and In t  —> Bool; more generally, factorising domains into two parts: one to 
encode the evaluable, or data parts of values, and the other to encode the unevaluable 
but applicable, or forward parts of values.

There is an embedding of (In t  -» Bool)j_ into lj_ x (In t  -» Bool), defined by

emb _L =  (± , _L) ,

emb ( lift f )  =  (lift (), / )  ,

and hence an embedding of Bool -* (Int -> Bool)± into Bool -> (lj_ x (In t  ->• Bool)); 
the la tte r domain is isomorphic to

[Bool —> lj_) x (Bool —> (In t —> Bool)) .

Under the implied embedding and isomorphism the value 5 s [lam  \# x .b ]  becomes 
(A p.lift (), A/?.Ax.p[b|). We claim th a t it is a FSA of A p.lift () th a t we want; for 

example, its greatest FSA is A a. ID  which indicates th a t the result is static regardless 
of the staticness of the environment.

There is a further complication th a t the environment may contain higher-order values; 
looking ahead, our point of view is th a t staticness is an a ttribute of the data  part of 

a value, so the goal is to determine how the staticness of the da ta  part of £ s [ e ]  p 
depends on the staticness of the data  part of p. For strictness analysis we seek to 
determine how demand on the data  part of £ s [ e ]  p is propagated to demand on the
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d a ta  part of p; for term ination analysis, how the term ination properties of the data  
part of p affect the term ination properties of the data  part of £ s [ e ]  p. Our second 

working premise is th a t a factorisation of standard domains into data  and forward 
domains is in order, and th a t we are only interested in projections on data  domains.



C hapter 6 

H igher-O rder A nalysis

The higher-order analysis techniques are developed as follows. First we define the 
factorisation of standard domains, the embedding of standard domains into factored 
domains, and the projection back into the standard domains. To clearly separate the 
roles of the d a ta  and forward parts of values in the standard semantics, we define a 
factored semantics D such th a t the standard expression semantics S s is the homomor

phic image of SP under the projection from factored domains onto standard domains. 
Except for the constant fix  the D semantics is defined in terms of the So semantics in 
such a way th a t obtaining the higher-order intermediate and analysis semantics—the 
higher-order analogs of the Nq, N^o, Bq, Fq, and Lq semantics—amounts to replac
ing the So entities by their No, Nj_o, Bq, Fo, and Lo counterparts, respectively. More 
precisely, we define semantics th a t are parameterised by the zero-order entities and a 

constant fix.

6.1 Domain factorisation

Given type T with corresponding domain T  in the standard semantics, we wish to 
factor each value in T  into its da ta  and forward parts. To this end we define for 

each T a d a ta  domain D  and forward domain E , and functions data-i E T  —>■ D  and 

fu n T E T  —> F  to isolate the data  and forward parts of values, respectively. The 
d a ta  domain D  is constructed just like T  except th a t the one-point domain 1  replaces 
function spaces, and the function dataT is a projection that, roughly speaking, discards 
function components of da ta  structures by mapping them into 1 , and leaves everything 
else unchanged. The forward domain F  carries the information discarded by dataT. 

The factorisation function facT =  (dataT,funT) G T  —>■ (D X F)  is an embedding with 
corresponding projection unfacT, and D  x F  is therefore a factorisation of T .

157
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Recall th a t the zero-order type semantics T ^°, for all G (more precisely, for G ranging 

over the symbols S, Sj_, N, Nj_, B, F, and L) are defined only for integer, sum, and 
product types. They are extended to function types by

r Go[T! #> t 2j = t g°i o  ] .

The predicates 7£G°H° are similarly extended: 7£GoH°[Ti #> T2J is defined to be 
7£g°Ho[ () ] for all combinations of G and H for which 7£G°H° was defined.

To avoid a name clash later we will henceforth use Do as a replacement for the symbol 

So (and Dj_o as a replacement for Sj_0). The function T Do (formerly 7^°) maps, types 
to  standard data domains; T Do is exactly the same as 7 ^  except th a t function spaces 

are replaced by 1, so for zero-order types T the data  domain T Do[T ] is the same as 
the standard domain 7 s [T ]. For function type Ti -> T2 the standard domain is the 
lifted function space (7 ^ [ T i | —» but the data  domain comprises ju st the
outer lifting: it is 1±. Further examples are given in Figure 6.1.

Given type definitions D we define dataT to be D A T A \T \  (D ATAdejns\D \) ) where 
D ATA de^ 8 is defined in term s of DATA, and D A T A \T \  is defined compositionally in 

term s of the structure of T. For domain environment £s and function environment 77 

such th a t

r/[A] e  CS[A] ^  T j% jD j[A ]

for each type name A, the functionality of DATA  is such th a t

D A T A m  t, e  7”S[T ] Cs -» T Do[T ] (7 & .[D ])

for each type T. The function DATA  is defined following; it is just like the identity 
except th a t values from function spaces are mapped into 1 .

D A T A [ k ] r) =  »j[Aj ,

DATA  [ I n t ]  r] = idint ,

DATA[ CTi,. . .  ,Tn) ] r/ =  ( D A T A \ h \ V) x . . .  x (DATA[Tn] ij) ,

D A T A \c ,  Tj + . . .  + cn Tn ] rj 

= {DATA\Ti ] 7/)x 0  . . .  ® (DATAl  Tn ] »/)i ,

D A T A [ l i  #> T2J r) = Xx.Q .

Here DATA[ ( ) ]?/  =  A:r.±. Given type definitions D =  Ai = Ti; . . . ;  A„ = T„, define 

m = (A/j.fAj nr DATA{Ti \ r] \ 1 <  i < n])’ % ,



C H A P T E R  6. HIGHER-ORDER A N A L Y SIS 159

Bool = t r u e  0  + f a l s e  ()

T 5! B ool] =  1 ± © 1 X 

T D°[B oolJ =  1 x © 1 l 

7}D[ B oo1 ]  =  1 x 1

data Bod =  id 

M  Bool = Al-(().0)

I n tL is t  = n i l  () + cons ( I n t ,  I n tL is t )

T 5 [ I n t L i s t ]  =  f iX .l±  0  (Int x  X)j_

T Do[ I n t L i s t ]  =  f iX.  1± ® (Int X X)j_
7 J ° [ I n tL is t ]  =  f i X . l  x ( l x X )  ^  1 

data intList — id

/ “ " In tL is t  =  Aa:-(()> ( ( ) . ( ( ) .  • • • ) ) )  =  A * " L

FunChoice = l e f t  ( I n t  -> I n t )  + r ig h t  ( I n t  -> In t)

FunChoice ] =  (Int —> Int)i_L ® (Int —> I n t ) ^

T Do[FunChoice ] =  l i ± ® lj_±
7^d[FunChoice ] =  ((Int x 1) —» (Int x  1)) x ((Int x  1) —> (Int x  1))

fifffltflFunChoics \ x . C C L S G  X  o f

_L -> _L

(i, lift J_) -> (i, lift ())

( i ,  l ift2 } )  -4 ( j ,  lift2 ( ) )

/ “«FunChoic. =  Ax.(Av.(«, ()) O (oU^ x)o\ (v ,u) .V,
Xv.(v,  ()) o (out} x) o \ ( v , u).v)

F unL ist = f n i l  () + fcons ( I n t  -> I n t ,  F unL ist)

F u n L is t]  =  f i X . lj_ ® ((Int -¥ Int)± x  X)j_

T Do[F u n L is t]  =  f i X . lj. ® (lj_ x X)±_

7JD[F u n L is t]  =  /lX . 1 x (((Int x  1) —> (Int x  1)) x X )

data FunList =  . (Aar. () )j_ ® ((Ar.())^ x / )  j_

f U U FunList =  ^ / • ^ • ( ( ) ? ( ( M l n t - > I n t 0 7 r l  0  0 U k )  X ,  ( f  O 7T2 O O U t z )  x))

Figure 6 .1 : Examples of domain factorisation.
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w h e r e

770 =  [ k i ^ D A T A [ 0 ]  [] | 1 <  * <  n ] .

L e t  d a t a , i  =  ^ [ A ]  f o r  a n y  A. T h e n  d a t a { €  C f [ A l  -4 7 ^ na[ D j [ A ] ,  w h e r e  C f [ A ]  

is  t h e  i t h  c a n o n i c a l  a p p r o x i m a t i n g  d o m a i n  f o r  7^ IS[ D ] [  A ] .  A ls o ,  d a t a i  =  ( < $  — > 

i d )  d a t d i + i  w h e r e  $  is  t h e  c a n o n ic a l  e m b e d d in g  f r o m  Cf [ A ]  t o  C ?+ i|[A ], s o  t h e  d a t a i  

c o n s t i t u t e  t h e  f a m i ly  o f  a p p r o x i m a t i o n s  o f  ( a n d  th e r e f o r e  d e f in e )  Z M 7j4dey ^ |[ D ] [  A ] .

W e  g iv e  s o m e  e x a m p le s .  F o r  a l l  z e r o - o r d e r  t y p e s  T t h e  p r o j e c t i o n  d a t a T  is  t h e  i d e n t i t y .  

F o r  t y p e  T i - >  T2 w e  h a v e

_L =  _L ,

d a t a T i_> t2 ( l i f t  f )  =  l i f t  () .

T h e  p r o j e c t i o n  d a t a FunList p r e s e r v e s  t h e  s p in e  o f  i t s  l i s t  a r g u m e n t  a n d  t h e  l i f t i n g  o f  

t h e  l i s t  e l e m e n t s ,  a n d  d i s c a r d s  t h e  r e s t ,  s o

d a t a FunList ( l i f t  f  : _L : l i f t  ±  : [ ])  =  l i f t  () : _L : l i f t  () : [] ,

w h e r e  /  is  a n y  u n a r y  f u n c t i o n  o n  I n t .  F u r t h e r  e x a m p le s  a r e  g iv e n  in  F i g u r e  6 . 1.

T h e  n e x t  q u e s t i o n  is  h o w  t o  r e p r e s e n t  t h e  f o r w a r d  p a r t  o f  a  v a lu e .  C e r t a i n l y  a  v a lu e  

i t s e l f  c o n t a i n s  i t s  f o r w a r d  i n f o r m a t i o n ,  b u t  o u r  g o a l  is  f o r  t h e  d e s i g n a t e d  f o r w a r d  

p a r t  t o  c o n t a i n  e x a c t l y  t h a t  p a r t  o f  t h e  o r ig in a l  i n f o r m a t i o n  m i s s in g  f r o m  t h e  d a t a  

p a r t .  A  c o m p l e m e n t  o f  a  p r o j e c t i o n  7  is  a n y  p r o j e c t i o n  7  s u c h  t h a t  7  U 7  =  I D ,  

a n d  i f  7 ,  7  G | U  | t h e n  ( 7 , 7 )  is  a n  e m b e d d in g  o f  U  i n t o  7 ( U )  x  7 ( U ) .  I n  o t h e r  

w o r d s ,  a n y  i n f o r m a t i o n  r e m o v e d  b y  a  p r o j e c t i o n  is  r e t a i n e d  b y  i t s  c o m p le m e n t .  N o t

e v e r y  p r o j e c t i o n  h a s  a  l e a s t  c o m p l e m e n t — o n e  t h a t  r e t a i n s  a s  l i t t l e  i n f o r m a t i o n  a s

p o s s i b l e — b u t  i t  t u r n s  o u t  t h a t  t h o s e  o f  t h e  f o r m  d a t a T d o .  U n f o r t u n a t e l y ,  e v e n  l e a s t  

c o m p l e m e n t s  m a y  r e t a i n  r e d u n d a n t  i n f o r m a t i o n .  H e r e  t h e  p r o b l e m  a r i s e s  w h e n  t h e  

d e f in i n g  t y p e  T is  a  s u m  o f  t y p e s  c o n t a i n i n g  f u n c t i o n  t y p e s .  T o  b e  c o n c r e t e ,  r e c a l l
1

F u n C h o ic e  = l e f t  ( I n t  - >  I n t )  + r i g h t  ( I n t  - >  I n t )  ,

so

T 5 [ F u n C h o ic e  ] =  ( I n t  — > I n t ) ± ±  ®  ( I n t  - 4  I n t ) ± ±  ,

a n d

d a t o FunCho i c e ( T ^ [ F u n C h o i c e ] )  =  1±± ©  1±±  ,

d a t a Fun c h o i c e ( T s l F u n C h o ic e  ] )  =  ( I n t  I n t )  ©  ( I n t  — > I n t )  .

B o t h  datoFunChoice v  a n d  d a t a FunChoice v  m a y  c o n t a i n  i n f o r m a t i o n  a b o u t  w h ic h  s u m 

m a n d  v  b e l o n g s  t o ,  f o r  e x a m p l e  i f  v  =  i n i  ( l i f t 2  ( —) ) ,  w h e r e  ( —) is  u n a r y  n e g a t i o n  o n  

I n t , t h e n  d a t a F v n C h o i c e  v  =  i n i  ( l i f t 2  ( ) ) ,  a n d  dafapunchoice v  =  i n i  ( — ) •
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Another possibility is dependent sum decomposition (as described by Launchbury 
[Lau90b, Lau91a]). In brief, if T  =  T ^ T ]  then

T  = ^ 2  (dataj) - 1  {v} .
v  6  data-f[T)

Elements of the dependent sum are pairs, where the value v E d a ta ^ T )  of the first 
component of a  pair dictates the domain (data? ) - 1  {u} from which the second compo

nent comes. This will not serve our purposes because (roughly speaking) we will need 
to be able to m anipulate the da ta  and forward components independently, which will 

require knowing from what domain the second component comes w ithout knowing 
the value of the first.

The mapping funT of values to their function parts will be the least complement 
of dataT followed by an embedding. The embedding maps sums 7 \ © . . .  0  Tn into 
products T\ x . . .  x Tn, and for convenience of presentation, function spaces T\ —> 
T2 to spaces of function from factored values to factored values, tha t is, to  (D\ x 
Fi) -» (D 2 x F2 ) where D\ x F\ and D 2 x F2 are the factorisations of T\ and T2 , 
respectively. (Intuitively, mapping sums into products discards the information about 
which summands injected values belong to.)

At this point we define a type semantics parameterised by a zero-order type semantics. 
Given zero-order type semantics T^°  and type definitions D, define T G by

T ^ T ]  C =  ( T ^ lT ]  ( ^ [ D ] ) )  X (7JS[T] 0 ,

where T f  is defined by

7 ^ [  In t ]  =  1 ,

7 ^1  (T i T J ]  =  x . . .  x 7 ^ [T b ] ,

7 ^ I c ,  T, + . . .  + cn T„] =  7 f l T i ]  x . . .  x 7 f [ T n ] ,

7 ^ [T i #> T 2] =  T ^ lT t]  -> 7 ^ [T 2] .

Here is defined in terms of (as Tjetn3 is defined in term s of / ).

Now for T  =  T ^ T ] ,  the factors D  and F  of T  are T °° [T ] and T ^ fT ] respectively; 

7Jd[T ] is the the standard forward domain a t type T. Note th a t #> T2] is a
domain of functions from factored values to factored values, not forward values to 
forward values. For all zero-order types T the domain 7Jd [T ] is isomorphic to 1. 

For type Ti -> T2 the standard domain is (7 ^ [T i]  —>■ J)j_; the forward domain

lacks the lifting, it is T d[T i]  T d[T2 ]. Further examples are given in Figure 6.1.
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The definitions of funT and unfacT are interdependent and so are taken to be simul
taneous. Given type definitions D the function funT is defined to be F U N [T j rfr, and

the unfactorisation function unfacT is U N F A C \l \  77D, where rfo is determined by its
family of approximations {77;} defined by

r]t = (\n.[ki i y (F U N {T i] 77, UNFAC[Ti] 77) | 1 <  i < n]Y 770 ,

where

770 =  [A* (FUN[  () J [], U N FAC IO  ] []) | 1 <  * <  n] .

Here function environments map type names to pairs of functions, so FUN [A} 77 =  

I7?!A]) and UNFAC{k}  77 =  7T2 (77[Aj). Just as for other semantic functions we 
abbreviate by om itting the environment parameter. Then

F U N { T] €  7 * [T ] -!■ 7J°[T ] ,

F U N [ l n t ]  = \x . ( )  ,

F U N { ( .h  T „)] =  f t W l T j  x . . .  x F U N \Tn ] ,

F U N [c i  Th + . . .  + c„ Tn ] J. =  ( X , . . . ,X ,  X, X , . . . ,X )

F U N [c i  T, + . . .  + c„ T„] (i, lift v) =  ( X , . . . ,X ,  F IW [T (] v, X , . . . ,X )

[F£W [ T, ] v in the i th position] ,

F U N [ T !# > T 2] =  U N F A C l h } ^  {dataTl,F U N [ l 2]) ,

and

UN FAC lT]  e  7 "°lT ] -> T®[T] ,

IW E 4 C [In t]  (x ,()) =  x ,

U N F A C {(J i ,  . . .  ,T „ )]  ( / i , . . . , / n)) =  (vu . . . , v n)
where

Vi = UNFAC[Ti] (di,fi), 1 <  i < n  ,

U N F A C la  T, + . . .  + c„ T„I  ( X ,  ( / ! , . . . , / „ ) )  =  x  ,

U N FAC \ci  T! + . . .  + c„ T„] ((*, lift d), (/i, =  (»> lift «)
where

V = U NFAC[7i1 (< U ) ,

U N F A C ^  #> T2] ((),/) =  ({dataTl,F U N [h ] )  UNFAC{12\) f
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P ro p o s it io n  6.1
For all type definitions D and types T the pair

((ZMTj4[T] (Z M T A ^ jD ]) ,  F U N lT] %), U N F A C IH  %) 

is a retraction pair.

S k e tch  P r o o f

For each A with (fun^ unfac{) = 77* |  A ], and data^ the i th canonical approximation of 
datak, we have (by induction on z, with inner induction on the structure of types) 

th a t fac{ — (datai, fu n ^  and unfac{ form a retraction pair, with

{faci, unfaci) £  Cf[ A] ( 7 ^ ns[ D] [ A] X C?[A]) ,

where ( f  and fP are the i th canonical approximations of ^ ^ [ D ]  and 7^yns[D], 
respectively. The faci and unfaci form families of approximations. We have furii = 
(rfr? ip f) fu n i+ 1 , where <f>f is the canonical embedding of |  A ] into [ A ], and jpf 

is the canonical projection from Ci+i[ A ] to  £?[ A], so fac{ = ( $  (t/jf0 X V’?)) faCi+i, 
where tpf° is the canonical projection from C]+i[A] to C^°[A]. The details for unfaci 
are similar. Finally, we claim th a t facT and unfacT form a retraction pair for all T. The 
key fact required is th a t if {(/,-, # )  £ U{ Vi \ i > 0} is a family of approximations 
of ( / , g), and each (fi,gi) is a  retraction pair, then so is their limit. By induction on 
the structure of types we have th a t ((DATA[7]  [], F U N {Tj []), U N F A C [l}  []) is 
a retraction pair for all closed T. Since the initial approximations of these functions 
at recursive types is the interpretation of the unit type, and the substitution lemma 
holds for all three semantic functions, each approximation datai, furii, and unfaci can 
be expressed as D A T A \T* ] [], F U N { 1 > ] [], and U N F A C ll} ] [] for some T’ , hence 
the result. □

We give some examples. For any zero-order type T the forward domain is isomor

phic to 1  and funT is equal to A:r._L. For any function type Ti -> T2 the standard 
domain is (T ^ [T i] —> J)_l and fun T i_>T2 is fun Ti$>T2 0 drop; function fu n l i t> l2  is
an embedding of functions from standard values to  standard values to functions from 

factored values to factored values. Further examples are given in Figure 6.1. Note 
th a t sum types become products, so for FunL ist we have, for example,

/ “ " F u n L i s t  ( lif t  ( - )  ■■ lift  ±  : l ift  ( - )  : [ ] )

=  ( 0 :  ( / “ «In t#> In t ( ~ ) >

( 0 , ( - L ,

((), (fun Int#>Int ( ) ’

( 0 , ( x ,

-L )))))))) •
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For unfacT we have for example unfac0  ((), ()) =  (), unfacT i_>T2 (_L, / )  =  _L for all / ,  
and unfacT i_>T2 (lift (), / )  =  lift (unfacl2 o f  o /acTl).

The projection unfacT acts like the identity on the data  part of its argument and as a 
projection on the forward part, since for all da ta  values d and forward values /  with 
(<f, / ')  =  facT (anfacj (d , / ) )  we have d = d' and / '  C / .

6.1.1 D ata dependency

Given expression e : T with environment type E, consider the equation

(<*',/') = (facT o £ S| e ] o unfacE) ( d , f )  ,

where d' and f  are the da ta  and forward parts of the standard value of e for d 
and /  the data  and forward parts of the environment. In operational term s d and 

d ' represent the evaluable part of the argument and result, and from an operational 
point of view it is the mapping from d to d!—the data-dependency function—th a t we 

are primarily interested in: it describes how much of d will be demanded given some 
demand on d! (for strictness analysis), how much of d' will be determined given th a t 
a certain amount of d is determined (for binding-time analysis), and w hat parts of 
d ' will term inate given th a t certain parts of d term inate (for term ination analysis). 
Clearly d', and therefore the data-dependency function, is a function of / ,  which will 

be considered shortly. For zero-order expressions e, or more generally, expressions 
e of zero-order type and environment type, the data-dependency function is £ s [e J  
since for argument and result values each value and its da ta  part are the same. For 

a concrete example consider again lam ( \# x : I n t .b )  where the type of b and the 
environment is Bool. There is only one possible value of the forward part of the 
environment, namely (), and the data-dependency function is Ab.inlamDo (), which 
shows th a t the data  part of the value of the expression is defined regardless of whether 
b is defined. The greatest FSA of A b.inlamDo () is A a .L A M  ID , which we interpret 

to mean tha t the constructor is static regardless of the environment (ID  on 1 tells 
nothing). The least BSA of the lift of Ab.inlamD° (), th a t is of Ab.lift (inlawP0 ()), is 
X a .A B S , indicating th a t the environment is not required to evaluate the expression 
to WHNF. The least FTA of A b.lift (inlamP0 ()) is Xa.LAM  A B S,  indicating th a t 
regardless of the environment the expression is certain to term inate. This does not 
mean, for example, th a t

(L A M  Z D )o £ s [lam  \# x .b ]  C £ s [lam  \# x .b ] o  B O T

for binding-time analysis (note the functionality of L A M  ID  has changed). Our view 
is th a t we are not interested in strictness or term ination abstractions of the evaluation
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function, only of the data-dependency function; this is fundamental to  our approach.

The data-dependency function may be strongly dependent on the forward part of the 
environment. For example, let ap p to l be short for \g : In t-> T .g  1 for some type T, 
and let the environment type E be In t->T , containing a single entry for a variable f . 
Then the data-dependency function of a p p to l f  is

gj = dataT o £ s [ ap p to l f  ] o unfaclnt_>T o A d.(d ,/)

=  Xd.dataj ( /  (lift 1)) ,

where gj is param eterised by the forward part /  of the value associated with f . For 
strictness analysis we seek a BSA of (g/)±\ if we know nothing about /  we may 
safely take this BSA to be the lub, over all / ,  of the least BSA of (g/)±. This 
would still reveal th a t a p p to l is strict in its argument. Thus the dependency of the 
data-dependency function on the forward part of the argument will give flexibility in 
the use of the analysis semantics developed: it will be possible to determine (using 
Burn’s terminology) both “context free” and “context sensitive” information, th a t 
is, information valid across all arguments as well as more precise information when 
something is known about the argument or range of arguments. In other terms, 

this will allow the analysis semantics to form the basis of both monovariant and 
poly variant analysers /  specialises.

6.1.2 Factored semantics

• n cTo clarify some subtle points we define an expression semantics S  such th a t £  is 
the homomorphic image of £ D under the unfactorisation. Precisely, for expression 
e : T w ith environment type E we require

£ s [ e ] o unfacE = unfacT o £ D [ e |  ,

then

data? o £ s [ e ] o unfacE =  dataT o unfacT o £ D[ e ] ,

so

dataT o £ s [ e ] o unfacE =  iti o £ °  [ e ] , 

which implies

dataT o £ s [ e ]  o unfacE o \ d . ( d , f )  = 7Ti o £ D[ e ]  o \ d . ( d , f )  , 

so th a t £ d faithfully describes the data-dependency behaviour of £ s .
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Let 7£SD[T j be the continuous function unfacT regarded as a relation. Then the 
condition is

( f tSDl E ] - 4  7iSD[T ]) ( f s [ e ] ,  £ ° [ e ] )  ,

so we need to define D constants th a t are similarly related to the S constants. An 
easy way to do this would be to define £ D[ e ] to be facT o £ s [ e ] o unfacE; this could 
be done by similarly defining each D constant in terms of its S counterpart, yielding 

the smallest constants and expression semantics satisfying the relation. This will not 
do because we wish to express the D defining constants in terms of the Do constants 
in such a way th a t the defining constants (except fix) for the higher-order semantics 

<?G, for all G, are defined in terms of their zero-order counterparts in the same way; 
the resulting D constants will not be least.

The functionality of the Go constants, for all G, are implicitly extended to include 
function types Ti #> T2; in all respects function types are treated exactly like the unit 

type. The param eterised defining constants, except for mkfun , inci, outCi, choose, 
and f ix , are defined as follows.

mkunitG ( d , / )  =  (mkunitGo d, ()) , 

m kin tf ( d , f )  =  (m kin tf0 d, ()) ,

plusG ((di, ()), (dz, ())) =  (plusGo (di, g^), ()) ,

tupleG ( ( d i , / i ) , . . . ,  (dn, fn)) = (tupleGo (du . . . ,  dn), (fu . . .  , / n)) ,

self (d, / )  =  (self0 d, m f )  .

It is simple to verify th a t D instances of these defining constants are correctly related 
to their S counterparts.

Since the d a ta  domain for Ti #> T2 is the same as for ( ) , the da ta  component of the 
result of mkfunD is generated by mkunitD°.

mkfunG (h , ( d , f )) =  (mkunitGo d, h) ,

applyG ( d , / )  =  /  .

The interesting constant is chooseD. It could simply be defined by 

choose0  ((do J o ) , . . . ,  (dm J m)) = (chooseD° (do , . . . , d m),

choosef (d o ,/i ,...,/m ))  ,

where

choosef (_L, / i , . . . , / m) =  -L ,

choosef ( ( i , v ) J h . . . J m) = f  .
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It is clear th a t chooseD defined in this way is correctly related to chooses . However, a 
different form of the definition will be required to be able to define the other instances 

of choose in the same way. In view of this choose^ and choose^ are expressed as 
functions CHOOSEQ[ T] and CHOOSER[T ] of the result type T, defined by

C H 0 0 S E ° { 1 ]  ({d o ,fo ) , . . . , (d m, f m)) = {choose0* (d o ,.. . ,dm),

C H O O S E ^ T] ( d o , A ,...,/™ )) ,

where

C H O O S E ^ [ ln t ] { d , fu . . . , f m) = ( ) ,

C H O O S E ^  (T i . . . .  ,Tn) ] (d , fu  

=  (C H O O SE^ [T i] (rf, TTj A, f n ),

C H O O SE R  T„] {d, 7T„ A, An)) ,

CHOOSE0 [ d  T! + . . .  + c„ Tn ] (d ,A ,.. . , /m )

=  ( C i ? 0 0 5 ^ [ T 1] (d, 7T! A, . . . .  n  Am),

C £ T 0 0 5 ^ [T „ ]  (d, tt„ A , 5T„/™)) ,

C ffO O S ^  [Ti #> T2] ( d ,A , . . . , / m)
=  Ax . C iro O S £ G[T2J ((d,J_), h x ,  fm x) .

We need to show th a t the two definitions of chooseD are equal, th a t is, tha t 

C H O O SE °\1 \ (X, A, •••,/>») =  -L i

CffO05E,D[T ] ( ( . » ,  A, ••■■/«) =  fi ,
I

for all T. For finite types this may be shown by induction on type structure. For 
recursively-defined types the first equation holds by straightforward fixed-point in
duction; the problem with the second equation is th a t it does not in general hold for 
any finite approximation of CHOOSE^[Tj. It is not hard to see th a t the equation 
holds for all finite f i , and hence holds for infinite f  since CHOOSE®\T] is continuous, 
and equality is (jointly) inclusive in both arguments.

Recall tha t

unfacCl Tl + ... + Cn Tn (J_, ( / i , . . .  , / n)) =  JL ,

unfacCl Ti + ... + Cn Tn ((z, lift d), ( / i , . . . , / „ ) )  =  (*, lift (unfacT. (d,/<))) ,

so m cf may be defined to be the D instance of

incf ( d j )  = (incf0 d, (xu . . . 1xi- i j 1xi+ u . . . , x n))
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for any choice of the X{. Rather than choose arbitrary values we define the Xi in terms 
of a new family of constants botG° E T Go[T ], implicitly indexed by type T. (Later we
will show th a t botG° can be defined in terms of the other constants.) We take Xi to
be R O Tg[T? ], where B O T G is defined by

B o r G[T ] e  t ^ t ] ,

B O T g[ T] =  (&ofG°, B O T ^ T j)  ,

and

B O T g[T ] 6  7 ^ [ T ]  ,

B O T g[ I n t ]  =  () ,

B O TG[(T l l . . . ,T „ ) ]  =  (B 0 7 ’G[T1] , . . . , B 0 T G[Tn ]) ,

B 0 7 ’g[ c 1 T1 + . . .  + c n  T„] =  (B O T G[ T , ] , . . . , B O r G[T„]) ,

B O T GlT i  -> T2] =  Arc . B O Tg[T2J .

Here botD°, B O T D[T ], and B O T ^ l l ] are X for all T. We may write botG for 

B O Tg[T ] and botG for B O T g| t ]  when the type T is understood.

We define outcf  by

outcf (d j ) =  chooseG 
where

(d ' J ') =  (outcf0 d, 7u f )  .

The function chooseG is used here to make outcf  strict in its first argument.

Constant f ix s is least fixed point, and 7£sd [T ] (± , _L) for all T, so we take 

f ix D = Ifp .

Proposition 6.2
The S and D defining constants are correctly related, hence so are £ s and S D. □

We could leave it a t this, but it is possible to simplify ou tc f , and to simplify chooseG 
in special but useful cases. Recall th a t we do not actually require th a t the defining 
constants be related, only th a t the semantics be related.

We redefine outcf by

outcf ( d , / )  =  (outcf0 d , 7Ti f )  .

So defined outcf is not correctly related to outcf exactly when the constructor c is 
the innermost enclosing an unboxed function type: consider the simplest example
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lam (Ti #> T2 ). We have _L related to (_L, / )  by 7£SD[lam  (Ti #> T2 ) ] for all / ,  but 
outlams _L =  _L is related to (outlamD° _L, 7Ti / )  =  ( ( ) , / )  by 7£sd[Ti #> T2 ] only 

when /  is _L. The first definition gave a correctly related constant by using chooseD to 
make outcP strict in its first argument. Inspection of the generic expression semantics 
shows th a t this is redundant since constant outci only arises in the semantics of case 
expressions; there will always be an enclosing chooseD th a t is strict in the same value. 
We conclude th a t though the new definition of outcP is not correctly related to outcf , 
the £ s and 8 ° semantics are still correctly related.

Next we consider chooseG. W hen the result type is such th a t any instance of Ti #> T2 

is enclosed by a constructor, for example pp (Ti #> T2 ,T1 #> T2) (and in particular 
when Ti #> T2 appears only as Ti -> T2); or when all of the branches of chooseG have 

the same value (in particular as the result of translating seq  ei e2 or decomposing a 
unary sum, for example Ti -> T2), we define chooseG by

chooseG ( (d o ,/o ) ,(d i , / i ) , . . . ,(d i , / i ) )  =  (chooseG° (<fo,di), / 1) .

If do is not _L the two definitions give the same result. W hen do is _L we have

chooseD ((_L, rfi), / 1) =  (_L,/i) ,

and

(choose00 (_L, c?i), choosejD (_L, ) )  =  (-L,_L) .

For all such restricted types T and for all /  E 7Jd [T ] we have unfacT (_L, / )  =  _L. 

P ro p o s itio n  6.3
The semantic functions 8 s and 8 ° are correctly related. □

Finally, we give a general definition of botG°, botf, and botG in terms of f ixG: it is 
botG =  f ixG id, botG° =  7rx botG, and botj =  7r2 botG. Note th a t this is consistent with 
the earlier definitions of the D instances of these constants. Now all of the higher- 
order constants are defined in term s of the zero-order constants and fix. We have 

given the definition of botD° before f ix 0  because for other instances of f ixG it will be 
convenient to define the corresponding instance of botGo first.

In partial summary we give the semantics of the source languages directly.

£ G[x i] (d, f )  = self ( d j )  = (self0 d, 1r</ )  ,

8 Gl O j  (d , f ) =  (mkunitGo d, ()) ,

£ G[n ;] ( d , f )  =  (m kin tf0 d, ()) ,
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£ G[e i  + e2 ] p = (plusGo (di,cfc), ()) 
where

(di,Q) =  £ G[e ;]  p, i = 1,2 ,

5 G[ ( e i ,  . . .  ,e „ ) ]  p = (tuple00 ( d i , . . . , 4 ) ,  ( / i , . . .  [» >  1]

where

(d i j i )  = £ G[ e*J P, 1 <  * <  n ,

£ G[ l e t  ( x i , , xn) = e 0 i n e i ] p

=  <fG[ e i ]  p[x{ i-> self  (£G[ e 0] p) | 1 <  i < n] ,

£ g[ ct- e ]  p =  (inc f0 d , (&o£G, . . . ,  b o t f , f , &ofG, . . . ,  &ofG)) [ /  in i th position] 

where

(d ,/ )  =  £ G[ e ]  p ,

£ G[ case e0 of Ci Xj -> e i;  . . .  ; cn xn -> en ] p 

= chooseG (£G[eo] p,

£ G[ e i ]  p[xi h-> outcf (£G[ e 0] p)],

£ G[ e n ] p[xn i-> onfcG (£G[ e 0] p)])

where

outcf (d , f )  =  (outcf0 d , 7T; / )  ,

£ G[ \ # x .e ]  (d ,/ )  =  (mkunitGo d , A x.fG[ e ]  (d ,/)[x  :r]) ,

£ G[app# ei e2] p =  /  (£G[ e 2] p)

where

( d , / )  =  f G[ e x] p ,

£ G[ f ix #  e ]  p =  f ixG f  

where

( d , / )  =  £ G[ e ] p .

From these, and the simplifications given, we have the following.

£ G[ \ x . e ]  (d , f ) =  ((inlamGo o mkunitGo) d, A:z;.£G|[eJ (d ,/)[x  i-4 x]) ,

£ G[e i e2] p =  (chooseG° (d i,d3), /3) 

where

(d i,/i)  =  £ G[ e iJ  p 

(d3, /3) = / i  (£G[ e 2J p) ,
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£ G[s e q  ei e2] p =  (chooseG° (di, cfe,. . . ,  cfe), /2) 
where

{(k ji)  =  £ G[ e ; l p, i = 1 , 2  ,

£ G[ f i x  e ]  p =  (chooseG° A)

where

( 01, M  =  ^ G [ e ]  P 

(02, ^2) =  f ixG h  .

6.2 Data-dependency semantics

For all G, we have defined T 0 and all of the defining constants for S G except f ixG, 
but given no indication of how they should be related. We use the higher-order 
data-dependency semantics N as the motivating example.

Just as the N0 semantics abstracted the dependency of the standard value of every 
subexpression on the value of the environment, the N semantics will abstract the 
dependency of the data part of the standard value on the data part of the environment. 
The la tte r is a generalisation of the former since a t zero order a value and its da ta  

part are the same.

Let Egi be the type of global environments, and let e:T have environment type E. 
Let g be a  function from the data  parts of global environments to  the d a ta  parts of 
environments for e, so g G 7~d°[E5/] —)• T Do[E ] =  TtJ°[E ]. Let standard forward 
value /  G 7Jd [E ] be fixed, and let g' be defined by

s' e TD°[ES,] T^IT] = T ^ I T J , 
s' =  7Tio£D[e ]o A < 2 .(d ,/ )o ? .

By analogy with the relation between the Do and Nq semantics, we expect th a t for 
value h appropriately related to /  to have

(s',ft') =  £ N[eJ  (g,h)  ,

for some /i', so th a t when g is the identity g' is precisely the data-dependency function, 
th a t is,

g' =  7Ti 0 £ D[ e ]  0 \ d . ( d , f )  .

Next we make this relation precise.

Let (d, / )  G T ° [ T ]  and (g, h) G T ^ T ] .  Then (d, / )  is related to (g, h) if for a 
given da ta  part of a global environment a G T Do[E5/] we have d =  g a, th a t is
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^ d 0n ° |t i (d,g), and /  and h are logically related. Thus the relation is a function of 

type. Following we define the relation 1ZGH in terms of R GoHo for all combinations of 
G and H for which 7£GoHo has been defined.

For predicate environments £ and domain environments £G and £H such th a t for each 

type name A,

£[A] € (Cg[ a !  x CH[A]) 4  Truth ,

we will have

TJGHJT] £ e  ((7 'g [ t |  Cg) X (T hIT ] Ch)) 4  Truth

and

^ GH[T ] f  6  ( ( ^ [ T ]  CG) X (7 ? [T ]  Ch)) 4  Truth .

Define 77,GH by

R gh[ TI £ =  /f tGoHo[T ] x (7 ^ H[T ] £) .

Note th a t the type definitions D must be fixed because 7£GoH° is implicitly defined in 
term s of D. The logical part of the relation is

7^GH[ I n t  ] £ =  A/. True ,

f t GH[(T 1, . . . , T n) ] £  =  (7^ h[T i ]£ )  x . . .  x ( f tGH[Tn ]£ )  ,

7 ^ H[ Cl I ,  + . . .  + cn Tn ] £ =  ( f tGH[T i]£ )  x . . .  x (7 ^ H[Tn ] £ ) ,  

7eGH[T 1 #> T 2] £  =  (7^gh[ Tx] £) -> ( f tGH[T2] £) .

We define in term s of 77.GH. Let

£< =  (A£.[A< ^  7et [Tt ] £ | 1 <  z <  n])* £0 ,

where

£o =  [A ih 4 ^ t [ 0 ]  [] | l < i < n ]  .

Let pi = &[A] for i > 0, then pi E (£G x £t*) 4  Truth is a binary predicate on the i th 

canonical approximating domains for 7 ^  [ A ] and [ A ], and pi => pi+i o (<̂ f x 0 D  and 
p i+ 1 => pi o t y f  x 'ijjf), where ipf) E £G[ A] 44 Ci+i IA ] are the canonical retraction 

pairs in the inverse lim it construction of T ^ \ A] (and similarly for the H versions). 
Hence {pi | i > 0} is a family of approximating predicates with lim it A]
which is the least inclusive predicate greater than 7£GH[ () ] o (0^o x 0j^o).

Just as for the other semantic functions we write 7£gh[T ] and 7£gh[T ] as abbrevia

tions for 7lGH[T ] ( '^ Ge% [D ])  and 7 ^ h [T ] (RdefnslDl)> respectively.
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P ro p o s it io n  6.4
For all T the predicates 7£gh[T ]  and 7T.GH[T ] are inclusive when 7̂ GoHo[T ]  is.

This follows from the definition of these predicates in terms of the predictor tuples 
and recursion as developed in Section 2.5.2. □

Like the relation between Dq and Nq values the relation between D and N values (and 
therefore S and N values) is parameterised by a value o; as before this is indicated by 

subscript, so

f t ° N[T ] =  ^ oNo[T ]  x 7 ^ [ T ]  ,

and each instance of 7c and 7?Pn in the definition has the same subscript, so a 
is effectively global over the definition. Then the relation 7 ^ n[T ] between S and N 
values is the relational composition of 77sd[T ] and 77£n[T]|; this relation is inclusive 
since 7£sd [T ] is the continuous function unfacT regarded as a relation.

6.2.1 Semantics of expressions 

P ro p o s it io n  6.5

If the constants defining zero-order expression semantics S Go and £ H° are related by 
1ZG°"°, and f ixG and fix"  are related by R G", then S G is related to S "  by IZG".

P r o o f
We need to show th a t the higher-order constants other than  fix  are related by R G". 
For constants m kunit, mkinti, outCi, tuple, sel, mkfun , and apply verification is simple. 
The interesting cases are inci because it is defined in terms of f ix , and choose because 
it is recursively defined. Recall

inc f ( d , f )  =  (incGo d , (bot£ , . . . ,  bot£, h, bo tf , . . . ,  bot£)) ,

and botG =  7r2 (f ixG id), and similarly for the H versions. Now fix  E (7~[T] —>

T lT ] )  —> T [ T ] ,  and (id, id) satisfies 7£gh[T ] —> 7£gh[ T |,  so (f ixG id, f ixH id) 
satisfies 7£gh[T ], so (7t2 (fixG id), 7r2 (fix" id)) satisfies 77 |h [T ]. The remaining 
verification is simple.

For choose we need to show th a t (CHOOSEG[ l i  ], C H O O SE "\Ti J) satisfies 

( f tGH[To] x 7£gh[ T i] x . . .  x 77.gh[ Ti.J) ^ gh[ T i ] ,

which holds if ( CHOOSER[ Tx ], CHOOSE" |  Tx ]) satisfies 

(P  x Q x . . .  x Q) Q
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where P  is 7£gh[To] and Q is 7£gh[T i] . This predicate is equal to

Ui>0 ((-  ̂  ̂ Q   ̂  ̂ Q )  ̂ ®  ̂ ® o o i )  ?

where 0 ^  =  0£^ x 0 j^ and the 0 ^  and 0 ^  are the canonical projections in the

inverse lim it construction of ^ [ T i ]  and 7 ^ [T i] ,  respectively, and g? is the i th 

canonical approximation of Q. In fact (CHOOSER[T i], CHOOSE^[ Ti ]) satisfies 
the much stronger condition

U i > 0  ( ( - ^  ^  Qi ^  ^  Qi )   ̂ Qi)  ® ( ( ^  ^  ^ o o i • • • X  0 o o i )   ̂@ooi) i

which can be shown by induction on the structure of Ti. □

Finally we need to  define f ixN. Now botD° — _L, and we define botN° to be Arr._L so 

th a t ^ oNo[T ] (botD° , botH°) holds for all T and <7, and botN =  _L. So, like f ix D we 
define f ix N to be least fixed point.

Proposition 6.6
The D and N semantics are correctly related. □

6.2.2 Implications of the relation

Let e:T with environment type E and global environment type Egi. W riting out the 
required relation between £ D[e ]  and £ N[e ]  gives

v<7 . n ™ [ E ]  ((d j ) , ( g , h )) =► 7e?N[T ] (£D[e ]  (d ,/ ) ,  £ N[e ]  (g,h))  ,

which is equivalent to

V<7 . (d = g <7 A rc°N[E j ( f , h) )  =>■ (d' = g' <7 A W gJ[T] ( f ' ,h ') )  ,

where (d ', / ')  =  £ D[eJ (d, / )  and (g',hr) =  £ N[e]  (g ,h ). Suppose th a t /  and h are 
related by ^ ^ [ E ]  for all da ta  parts of global environments o E 7”d°[E5/]. Then 

for all functions g E 7"^° [ E ] from the data  parts of global environments to the d a ta  
parts of local environments we have

V<7 . 7e£N[E ] ((g o , / ) ,  (p, h)) .

Then it must be th a t £ D[ e ]  (g a, / )  is related to £ N[ e |  (g,h) by 7?£N[[Tj for all 
cr; in particular for (g \ h ') =  £ Nf e ]  (Aa.cr,h) it must be th a t g' =  dataT o £ s [ e ]  o 
unfacE o Ad.(d, / ) ,  th a t is, is the desired data-dependency function.

Let a  value v E T 6 [T ] in a given semantics G be denotable if there exists a closed 
expression e such th a t v =  <fG[ e ] []. There is no trouble finding such h for denotable 

values: empty environments []s =  ((),()) and []N =  (Acr.Q, ()) are related by 7£|N[ O ]
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for all a, so for all e:T  with (d, f )  =  £ D[ e ]  [] and (g,h) = £ N[e J  [] we have (d , f ) 
related to (g , h) by 77.|N[T j, hence /  related to h by for all a.

Before giving a general mapping of each /  to such h we give some simple examples. 
For zero-order types /  and h necessarily come from domains isomorphic to 1. For first- 
order types h is X(g, u ) .( f  o g, _L) where argument u is necessarily _L from a domain 
isomorphic to 1; more generally for type T i~ > ...-> T to, where the are zero-order 

types, h is

X(gu u).(Xa.lift (),

X(g2 ,u).(Xa.lift (),

\ ( g n- U u).( \a .li f t  (),

K 9 n ,u ) .( f  o gn o . . . o  gu  _L)). . .) )  , 

where all of the arguments u come from domains isomorphic to 1.

Now we define the general mapping of each value /  G 7Jd [T ] to a value h G ^ [ T ]  
related by 7 \ ^ [ T ]  for all <r, and more generally, from values (d, / )  G T d[T ] to values 
{g, h) G T ^ T ]  related by 7££n[T ] for all a. To make this work we ‘strengthen the 
hypothesis’—we give a mapping of such (d, / )  to such (g , h) satisfying the stronger 
property 7£+sn[T ], where 7£+SN is the +SoNq instance of 7£GH, defined by

f t +s°N°[T ] (d,g)  = Va . d = g a  .

At each type T we define two pairs of functions E M  and PR, and EM$ and PR$, such 
th a t for rj a function from type names to pairs of functions with

»?[a ] g Cd[ a ] cn[ a ] ,

for each type name A, we have

( E M [ t ]  n , p p [ t ]  n) e  (T d[ t ]  Cd) ♦+ (T n[ t ]  Cn) ,

and

( P M ,[ t ]  r,, PRx [ t ] n) e  (7^d [ t ]  f ° )  ♦+ (7[n [ t ]  Cn) •

for all T. We take PM, [ A ] j] =  n,  (r;[A]) and P P , [ A ] 17 =  7r2 (i?[A]). Eliding the 

function environment as usual define

E M [ T] ( d j )  =  (Aa .d, EMt [ T ] f ) ,

P P [T ]  (g,h)  = ( g L ,  P P ,[T ]  h) ,

and

P M ,[ I n t i  =  *()•() ,
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EMt [ ( T l  . . . , T n ) ]  =  S M t l T j ]  X  . . .  X  EMt l  T „ ]  ,

. . .  + c „ T „ ]  =  £ A f t [ T i ]  x  . . .  x  B M t [ T „ J ,

S M j [ T i - >  T 2 ]  =  P P [ T i ]  — > E M \ T 2 ]  ,

a n d

P P j  [ I n t ]  =  A ( ) . ( )  ,

P i J t [ ( T i .............. T „ ) ]  =  P P } ^ ]  x . . .  X  P P t [ T „ ] ,

P P , [ C l  T i  +  . . .  +  c „  T j  =  P P [ T i ]  X  . . .  X  P P [ T „ ]  ,

P P t l T ! ^ ^ ]  =  EM [ T j ]  - 4  P P [ T 2 ] ,

G i v e n  t y p e  d e f i n i t i o n s  D ,  e n v i r o n m e n t  i s  d e t e r m i n e d  b y  i t s  f a m i l y  o f  a p p r o x i m a t i o n s

{ 77* } ,  d e f i n e d  b y

r]i =  ( \r].[(EMt [Ti ]  77, 77)  | 1  <  i <  n ] ) ’  770 ,

w h e r e

770 =  l(EMt [ G ]  [ ] ,  PRtl  ( ) 1  [ ] )  | 1  <  * <  n ]  .

P r o p o s i t i o n  6 . 7

T h e  p a i r s  (EM [ T ]  77̂ ,  [ T ]  %) a n d  (EM^lTj  77^  P R j [ T ]  rfo) a r e  r e t r a c t i o n  p a i r s ,

a n d  7 £ ° n [ T ]  £ d  ( v , E M [ T ]  rft v )  f o r  a l l  v a n d  <7 , a n d  £ D ( / ,  EMt [ T ]  rft f )

f o r  a l l  /  a n d  <7, w h e r e  f D =  T ^ J D ] .

S k e t c h  P r o o f

T h e  p r o o f  t h a t  t h e  p a i r s  o f  f u n c t i o n s  f o r m  r e t r a c t i o n  p a i r s  i s  s i m i l a r  t o  t h e  p r o o f  

t h a t  facT a n d  unfacT f o r m  a  r e t r a c t i o n  p a i r .  T o  s h o w  t h e  r e l a t i o n  b e t w e e n  /  a n d  

EM \\ T ]  ttd  / ,  a n d  b e t w e e n  v a n d  EM [1]  rfo v, w e  o b s e r v e  t h a t  f o r  a l l  i a n d  T  t h a t  

E M ^ T ]  r]{ i s  e q u a l  t o  EM$[ T *  ]  [ ]  f o r  s o m e  T *  ( a n d  s i m i l a r l y  f o r  EM , PR$ , a n d  P i 2 ) ,  

a n d  t h e  r e s u l t  h o l d s  f o r  a l l  c l o s e d  t y p e s  T * .  □

6.2.3 Examples

W e  g i v e  s o m e  e x a m p l e s  o f  c a l c u l a t i o n s  u s i n g  t h e  N  s e m a n t i c s .

E x a m p l e .  G i v e n  z e r o - o r d e r  e x p r e s s i o n  e : T  w i t h  z e r o - o r d e r  e n v i r o n m e n t  t y p e  E ,  

f u n c t i o n  g £  T ^ ° [ E j ,  f o r

( < / , ( ) )  =  P N [ e ]  (g ,0)  ,

w e  h a v e  g' =  £ N o [  e  ]  g , s o  t h e  N q  s e m a n t i c s  i s  j u s t  a  s p e c i a l  c a s e  o f  t h e  N  s e m a n t i c s .
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Exam ple. F i r s t - o r d e r  f u n c t i o n  d e f i n i t i o n  f  x = e i s  r e w r i t t e n  a s  f i x  ( \ f  . \ x .e )  
w i t h  t h e  i m p l i c i t  t r a n s l a t i o n  o f  f i r s t - o r d e r  a p p l i c a t i o n  f o r m  f  e t o  t h e  h i g h e r - o r d e r  

a p p l i c a t i o n  f o r m  f  e. L e t

(g,h)  =  £ N[ f i x  ( \ f  . \ x .e )  ] [] .

T h e n  g = Xa.lift (), w h i c h  i n d i c a t e s  t h a t  t h i s  e x p r e s s i o n  h a s  W H N F  r e g a r d l e s s  o f  t h e  

e n v i r o n m e n t ,  a n d  f u n c t i o n  h c a n  b e  e x p r e s s e d  i n  t h e  f o r m  X(g,()). (h'  g, ()) w h e r e  

f u n c t i o n  h' i s  t h e  v a l u e  o f  t h e  f u n c t i o n  d e f i n i t i o n  i n  t h e  N 2  s e m a n t i c s .  T h i s  g e n e r a l i s e s  

i n  a  s t r a i g h t f o r w a r d  w a y  t o  s e t s  o f  f i r s t - o r d e r  f u n c t i o n  d e f i n i t i o n s :  g i v e n

f i  : Ti #> Ui 

f 1 x = ei

f n : Tn #> Un

I-n ^ — 
l e t  e b e  t h e  e x p r e s s i o n

f i x  ( \ f . l e t  ( f i , . . . , f n) = f  in  ( e i , . . . f en))

t h e n  f o r  (g, h) = £ N| e ]  [] t h e  f u n c t i o n  g i s  lift ()) a n d  h i s  a  t u p l e

( / i i , . . . ,  hn) o f  f u n c t i o n s  l i k e  h ab o v e .  W e  c o n c l u d e  t h a t  t h e  N 2 s e m a n t i c s  i s  a  s p e c i a l

c a s e  o f  t h e  N  s e m a n t i c s .

Exam ple. W e  g i v e  t w o  e x a m p l e s  i n v o l v i n g  chooseN . F o r  c l a r i t y  l i f t i n g  o f  i n t e g e r s  

i s  i m p l i c i t  a n d  + / n * i s  w r i t t e n  + .  L e t  e b e  t h e  e x p r e s s i o n  

\x . case b of
true u -> x + 1 
false u -> x + 2

w i t h  e n v i r o n m e n t  t y p e  Bool. T h e n  £ N[ e ]  [b i->- ( # & ,  ( ) ) ]  i s  

(Aa.lift (),

M & , ( ) )  • choose^  ( ( 0 6 , ( ) ) ,

{(Xy.y +  1) 0 & ,()),

{(Xy.y +  2) o gx, ()))) .

T h e  f i r s t  c o m p o n e n t  i n d i c a t e s  t h a t  e h a s  W H N F  i n  a l l  e n v i r o n m e n t s .  T h e  s e c o n d  

c o m p o n e n t  i s

X(gx, ()) . (Act . case gb a of
±  -> _L

(1? v) ->• (Ay.y +  l ) o ^ x
(2,v) -y (Xy.y +  2) 0 gX)

0) •
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To contrast, let e now be
case b of

true () -> \x.x+l
false () -> \x.x+2

then £ N[ e ]  [b i-» (#&,())] is

choose^t _>lnt ((gb, ()),
(Xa.lift (), X(gx, ()).((Xy.y 4-1) o gxi ()))

(Xa.lift (), X(gx,()). ((Xy.y +  2) o gxi ())))

=  (chooseN° (gb, Xa.lift (), Xa.lift ()),

C H O O SE R  I n t - > I n t ]  (gh,

M & > ( ) M ( a M  +  1 ) ° 0 x , ( ) ) ,

A(^x,()).((Ay.?/ +  2) o g x, ()))) ,

the first component of which is 

Act . case gb a of 

_L -> ±

(1, v) -» lift ()

(2,«) -> lift () ,

indicating th a t the expression has W HNF if variable b is defined; the second compo
nent is the same as before. This shows th a t the expressions are operationally different 
if simply evaluated, but equivalent if applied.

Exam ple. Here we show the N value of a closed expression denoting a list of func

tions.

£ N[fc o n s  ( \x .x + l ,  fcons (\x .x + 2 , f n i l  ( ) ) ) ] [ ]

=  (\<r . lift () : lift () : [],

( 0 ,  ( M s ,  0 )  • ( (Ax.z  +  1) o g,  ()),

( 0 , ( M s > 0 )  • ( ( A x . z  +  2 ) o g,  ( ) ) ,

( 0 ,  ( X ,

-L )))))))

6.2.4 Lifted data-dependency semantics

The N semantics yields the data-dependency functions, and for binding-time analysis 

it is forward strictness abstractions of these functions th a t we require. For strictness 
analysis and term ination analysis, however, we require abstractions of the lifts of the 
data-dependency functions.
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T h e r e  i s  l i t t l e  t o  b e  g a i n e d  b y  r e p e a t i n g  t h e  e n t i r e  d e v e l o p m e n t  o f  d o m a i n  f a c t o r i s a t i o n  

a n d  t h e  f a c t o r e d  s e m a n t i c s  i n  ‘ l i f t e d ’ f o r m ;  w e  g i v e  t h e  i m p o r t a n t  p o i n t s .  R e c a l l  

T M t ]  “  ( 7 ^ l T ] ) x  f o r  all T :  i n  e f f e c t  v a l u e s  f r o m  t h e  l i f t e d  s e m a n t i c s  h a v e  o n e  

m o r e  o u t e r m o s t  l i f t i n g  t h a n  t h e i r  c o u n t e r p a r t s  i n  t h e  s t a n d a r d  s e m a n t i c s ,  s o  t h e  

d a t a  d o m a i n  T Dj-° [  T  ]  f o r  t y p e  T  c o r r e s p o n d i n g  t o  t h e  l i f t e d  s e m a n t i c s  T s± s h o u l d  

b e  i s o m o r p h i c  t o  (T Do[T |)j_ , w h i c h  i s  t h e  c a s e .  T h u s  t h e  d a t a  d o m a i n s  f o r  t h e  l i f t e d  

s e m a n t i c s  e n c o d e  t h e  e x t r a  l e v e l  o f  l i f t i n g ,  a n d  f o r  e : T  w i t h  e n v i r o n m e n t  t y p e  E  t h e  

d a t a - d e p e n d e n c y  f u n c t i o n  c o m e s  f r o m  T Dj-°[E] T Dj-°[T], t h a t  i s ,  f r o m  T N i-0 | [ T j .

N o t  o n l y  i s  T Nj-°[T] i s o m o r p h i c  t o  T ^ T ] ,  a n d  t h e  N q  a n d  N j_ o  c o n s t a n t s  ( a n d  

h e n c e  £ N o a n d  £ N j- ° )  e q u a l  u p  t o  i s o m o r p h i s m ,  b u t  t h e i r  r e s p e c t i v e  a r g u m e n t  a n d  

r e s u l t  d o m a i n s  a r e  i s o m o r p h i c  a s  w e l l .  T h e  s a m e  h o l d s  a t  h i g h e r  o r d e r :  T ^ T ]  i s  

i s o m o r p h i c  t o  T n [T ] f o r  a l l  T ,  a n d  b y  d e f i n i n g  fixN± t o  b e  l e a s t  f i x e d  p o i n t ,  t h e  N  

a n d  N _ l c o n s t a n t s  ( a n d  h e n c e  £ N a n d  £ N j- )  a r e  e q u a l  u p  t o  i s o m o r p h i s m ,  a n d  t h e i r  

r e s p e c t i v e  a r g u m e n t  a n d  r e s u l t  d o m a i n s  a r e  a l s o  i s o m o r p h i c .  T h e  i s o m o r p h i s m  f r o m  

T ^ T J  t o  T 'M t J  i s  i n d u c e d  b y  t h e  i s o m o r p h i s m  f r o m  T ^ T ]  t o  T n-L0[T ] — t h e  

m a p p i n g  o f  d a t a - d e p e n d e n c y  f u n c t i o n s  g t o  t h e i r  l i f t s  gL>.

6.3 Strictness Analysis

W e  n e e d  o n l y  d e f i n e  fix3. R e c a l l  t h a t  botN±0 i s  A x.lift  J _ ,  t h e  l e a s t  v a l u e  i n  T ^ l T ]  

a t  e a c h  T .  W e  d e f i n e  botB° t o  b e  \a±.BOT±,  t h e  l e a s t  B S A  o f  botN±0 a n d  t h e  l e a s t  

e l e m e n t  i n  T ^ 0 ^ ]  a t  e a c h  T .  H e n c e  botB, l i k e  botNj-, i s  t h e  l e a s t  v a l u e  i n  i t s  d o m a i n ,  

a n d  w e  t a k e  fixB t o  b e  l e a s t  f i x e d  p o i n t .

Proposition 6.8
T h e  N j_  a n d  B  s e m a n t i c s  a r e  c o r r e c t l y  r e l a t e d .  □

F o r  e v e r y  N j_  v a l u e  t h e r e  i s  a l w a y s  a  r e l a t e d  B  v a l u e ,  n a m e l y  t h e  t o p  v a l u e .  B e t t e r ,  

t h e r e  i s  a l w a y s  a  l e a s t  r e l a t e d  B  v a l u e ;  t h e  e s s e n t i a l  f a c t s  a r e  t h a t  t h e  d a t a - d e p e n d e n c y  

( f i r s t )  c o m p o n e n t s  o f  N _ l v a l u e s  h a v e  l e a s t  B S A s ,  g i b  i s  c o m p o n e n t w i s e  f o r  p r o d u c t s ,  

a n d  g i b  i s  p o i n t w i s e  f o r  f u n c t i o n s .  S i n c e  t h e  m a p p i n g  o f  N j l  v a l u e s  t o  l e a s t  r e l a t e d  B  

v a l u e s  i s  n o t  i n  g e n e r a l  m o n o t o n i c ,  i t  i s  n o t  c l e a r  t h a t  t h e  l e a s t  v a l u e  i n  ^ [ T i  # >  T 2  ]  

c o r r e c t l y  r e l a t e d  t o  a  g i v e n  v a l u e  i n  7 ^  [  T i  # >  T 2  ]  i s  p o i n t w i s e  l e a s t  b e c a u s e  v a l u e s  

i n  ^ [ T i  # >  T 2 ]  a r e  n e c e s s a r i l y  m o n o t o n i c .

A t  z e r o  o r d e r  w e  s h o w e d  f i r s t  t h a t  f o r  a l l  e t h a t  £ B o [  e ]  r  i s  t h e  l e a s t  v a l u e  c o r r e c t l y  

r e l a t e d  t o  ( t h a t  i s ,  i s  t h e  l e a s t  B S A  o f )  £ Nj-°[e J g w h e n  r  i s  t h e  l e a s t  v a l u e  c o r r e c t l y  

r e l a t e d  t o  ( i s  t h e  l e a s t  B S A  o f )  s t a b l e  f u n c t i o n  g. U s i n g  t h i s  r e s u l t  w e  w e r e  a b l e  t o
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s h o w  a  s t r o n g e r  s e c o n d  r e s u l t ,  t h a t  £ B ° [ e J  i s  t h e  p o i n t w i s e  l e a s t  f u n c t i o n  c o r r e c t l y  

r e l a t e d  t o  £ N j- [ e ] .  W e  s h o w  a  s t r a i g h t f o r w a r d  g e n e r a l i s a t i o n  o f  t h e  f i r s t  r e s u l t  t o  

h i g h e r  o r d e r ,  b u t  d o  n o t  a t t e m p t  t o  g i v e  a  g e n e r a l i s a t i o n  o f  t h e  s e c o n d .

L e t  T Ni °  [  T  ]  b e  T N±0 [  T  ]  r e s t r i c t e d  t o  s t a b l e  f u n c t i o n s ,  a n d  T N^- b e  t h e  N ^ 0  i n s t a n c e  

o f  T ^ . L e t  C  o n  [  T  ]  b e  t h e  s t a n d a r d  o r d e r i n g  a n d  C s +  b e  t h e  o r d e r i n g  i n d u c e d  

b y  t a k i n g  t h e  o r d e r i n g  o n  s t a b l e  f u n c t i o n  s p a c e s  t o  b e  t h e  s t a b l e  o r d e r i n g .  T h e n  C 8 +  

i s  s t r o n g e r  t h a n  t h e  s t a n d a r d  o r d e r i n g ,  c h a i n s  a s c e n d i n g  i n  t h e  s t r o n g e r  o r d e r i n g  a r e  

a s c e n d i n g  i n  t h e  s t a n d a r d  o r d e r i n g  a n d  h a v e  t h e  s a m e  l i m i t s  i n  b o t h  o r d e r i n g s .  T h e  

m a p p i n g  o f  N J  v a l u e s  t o  l e a s t  r e l a t e d  B  v a l u e s  i s  i n j e c t i v e ,  a n d  i s  c o n t i n u o u s  w h e n  

t h e  o r d e r i n g  o n  v a l u e s  i s  C s + , i n  o t h e r  w o r d s ,  t h e  l e a s t n e s s  p r o p e r t y  i s  i n c l u s i v e  

i n  t h e  s t r o n g e r  o r d e r i n g .

T h e  d o m a i n s  a r e  c l o s e d  u n d e r  t h e  N j_  c o n s t a n t s ,  a n d  t h e  c o n s t a n t s  a r e  c o n t i n u o u s  

i n  t h e  s t r o n g e r  o r d e r i n g ,  h e n c e  t h e  d o m a i n s  a r e  c l o s e d  u n d e r  £ N j- [  e  ]  f o r  a l l  e ,  a n d  

i n  p a r t i c u l a r  a l l  d e n o t a b l e  v a l u e s  a r e  i n  t h e  d o m a i n s .

T h e  r e s u l t  i s  t h e  f o l l o w i n g .  G i v e n  e  : T  w i t h  e n v i r o n m e n t  t y p e  E ,  v a l u e  G T ^ E ] ,  

a n d  l e a s t  c o r r e c t l y  r e l a t e d  v a l u e  pB G T B\ E  ] ,  w e  h a v e  t h a t  £ B [  e  ]  pB i s  t h e  l e a s t  v a l u e  

c o r r e c t l y  r e l a t e d  t o  < f N j- [ e ]  pNi ;  t h i s  f o l l o w s  f r o m  t h e  f a c t  t h a t  t h e  c o r r e s p o n d i n g  

r e s u l t  h o l d s  f o r  e a c h  N j .  c o n s t a n t .

F i n a l l y ,  w e  o b s e r v e  t h a t  i f  w e  r e s t r i c t  a t t e n t i o n  t o  d e n o t a b l e  v a l u e s  t h e n  t h e  f u n c t i o n  

s p a c e  ^ [ T i  # >  T 2 ]  =  T ^ f T i ]  —> T b [ T 2 ]  m a y  b e  r e s t r i c t e d  t o  t h e  d i s t r i b u t i v e  

f u n c t i o n s .

6.3.1 R elation between S and B semantics 1 .

L e t  Egi b e  t h e  t y p e  o f  g l o b a l  e n v i r o n m e n t s .  S u p p o s e  t h a t  /  G 7 ? [ E ]  a n d  h G ^ [ E ]  

s u c h  t h a t  [ E ]  ( / , / » )  f o r  a l l  a  G T d ° [ E 5 / ] .  T h e n  f o r  g G 7 ^ ° [ E ] ,  a n d  {g',h') =  

£ N [ e ]  f o r  e : T  w i t h  e n v i r o n m e n t  t y p e  E  w e  h a v e  t h a t

g  ̂ — data-i o £ s [ e ]  o unfacE o A d.(d ,/) o g ,

a n d  w h e n  g i s  t h e  i d e n t i t y ,  g' i s  t h e  d a t a - d e p e n d e n c y  f u n c t i o n .  T h e  i s o m o r p h i s m  

f r o m  T N o [ E ]  t o  T ' M E ]  m a p s  e a c h  g t o  gL>; s l i g h t l y  a b u s i n g  t h e  n o t a t i o n ,  l e t  h±> b e  

t h e  i m a g e  o f  h u n d e r  t h e  i n d u c e d  i s o m o r p h i s m  f r o m  ^ [ E ]  t o  7 J N x [ E ] .  T h e n

=  £ Nx[e J  (&_/, M  ,

s o  w h e n  g , a n d  t h e r e f o r e  g±i, i s  t h e  i d e n t i t y ,  t h e  f u n c t i o n  (,g')L, i s  t h e  l i f t  o f  t h e  d a t a -  

d e p e n d e n c y  f u n c t i o n .  N o w  i f  ( r , / c )  G T b [ E |  i s  c o r r e c t l y  r e l a t e d  t o  (g±',hLi), t h e n
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f o r  ( t ' , a c ' )  =  £ B [ e ]  ( r , k) w e  h a v e  t h a t  ( t ' , k / )  i s  c o r r e c t l y  r e l a t e d  t o  ((g')L,,(hf)Li). 
I n  p a r t i c u l a r ,  w h e n  g i s  t h e  i d e n t i t y ,  gL> i s  t h e n  i d e n t i t y  w i t h  l e a s t  B S A  t h e  i d e n t i t y  

A o . a ,  a n d  r' i s  a  B S A  o f  t h e  l i f t  o f  t h e  d a t a - d e p e n d e n c y  f u n c t i o n .

6.3.2 Exam ples of analysis

E x a m p l e .  G i v e n  z e r o - o r d e r  e x p r e s s i o n  e  w i t h  z e r o - o r d e r  e n v i r o n m e n t  t y p e  E ,  ( s t a 

b l e )  f u n c t i o n  pNl-0 G  T ^ f E ] ,  a n d  r  a  ( l e a s t )  B S A  o f  p ^ 0 , f o r  r ’ d e f i n e d  b y

( t ' .O )  =  ( r ,0 ) ,
w e  h a v e  t h a t  r '  i s  a  ( l e a s t )  B S A  o f  £ S j- ° [ e ]  o  p Nj- ° .  A l s o ,  r '  i s  e q u a l  t o  £ B ° [ e  J r ,  s o  

t h e  z e r o - o r d e r  a n a l y s i s  i s  a  s p e c i a l  c a s e  o f  t h e  h i g h e r - o r d e r  a n a l y s i s .

I t  i s  a l s o  s t r a i g h t f o r w a r d  t o  s h o w  t h a t  t h e  s e c o n d  a p p r o a c h  t o  f i r s t - o r d e r  a n a l y s i s  i s  

a  s p e c i a l  c a s e  o f  t h e  h i g h e r - o r d e r  a n a l y s i s ;  t h e  d e m o n s t r a t i o n  i s  e s s e n t i a l l y  t h e  s a m e  

a s  t h a t  o f  t h e  a n a l o g o u s  r e s u l t  f o r  t h e  N 2  a n d  N  s e m a n t i c s .

E x a m p l e .  S u p p o s e  a n y  i s  a n y  c l o s e d  e x p r e s s i o n  o f  t y p e  T i  - >  T 2 , a n d  w e  w i s h  

t o  d e t e r m i n e  t h e  s t r i c t n e s s  p r o p e r t i e s  o f  t h e  f u n c t i o n  d e n o t e d  b y  a n y .  T o  d o  t h i s  

w e  i n t r o d u c e  a  v a r i a b l e  x : T i  a n d  d e t e r m i n e  t h e  s t r i c t n e s s  p r o p e r t i e s  o f  £ s [ a n y  x j ,  

w h e r e  t h e  e n v i r o n m e n t  i s  t a k e n  t o  h a v e  a  s i n g l e  e n t r y  f o r  x  a n d  t h e r e f o r e  h a v e  t y p e  

T i .  L e t  any b e  d e f i n e d  b y

any — £ s [ a n y  x ]  =  Xx . £ s [ a n y  x ]  [ x  h-> x] .

W e  d e t e r m i n e  a  B S A  o f  t h e  l i f t  o f

A d . ( 7Ti o  £ d [ a n y  x ] )  [ x  i - >  {d,f)]

a s s u m i n g  t h a t  n o t h i n g  i s  k n o w n  a b o u t  / .  F o r  a l l  v a l u e s  /  G  7 J ° [ E ]  t h e r e  i s  a  v a l u e  

^ 7 ^ [ E ]  s u c h  t h a t  /  i s  r e l a t e d  t o  h b y  7 ^ B^ ! [ E ]  f o r  a l l  a ,  a n d  e v e r y  v a l u e  h±i i s

c o r r e c t l y  r e l a t e d  t o  v a l u e  T  G  T ^ E ] .  H e n c e  w e  t a k e  t h e  B  v a l u e  o f  x  t o  b e  ( A a . a ,  T ) .

L e t

( r , « )  =  £ B[any x ] [x H  ( A a . a , T ) ]  .

T h e n  any i s  s t r i c t  i f  r  S T R  C  STR , h e a d  s t r i c t  i f  r  ID [ I  A B S  U  ( FINF STR),  a n d  

s o  o n .  T h i s  p r o c e d u r e  c a n  b e  s t r e a m l i n e d .  W e  h a v e

£ B [ a n y  x ]  pB =  ( A c ^  . ( r ^ y  L AM)  &  ( r y  a y j ,  Ky) 

w h e r e

(^ a n y ?  K 'any) —  £ | 1 []
(r„K y) =  Km  (£B[x ]  pB) .
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I f  a n y  i s  o f  t h e  f o r m  \ x . e ,  t h e n  y  i s  Xa.ABS , a n d  t h e  e x p r e s s i o n  s i m p l i f i e s  t o  

^ a n y  ( A o f .Q J ,  T ) .

I f  a n y  w e r e  \ x . \ y . x  t h e n  t  w o u l d  b e  Xa.ABS , i n d i c a t i n g  t h a t  any i s  n o t  s t r i c t :  i t  

a l w a y s  r e t u r n s  s o m e t h i n g  t h a t  e v a l u a t e s  t o  W H N F .  I n  a n  i m p l e m e n t a t i o n  i n  w h i c h  

f u n c t i o n s  a r e  o n l y  ( n e c e s s a r i l y )  e v a l u a t e d  w h e n  a p p l i e d  w e  w o u l d  l i k e  t o  r e g a r d  any 
a s  b e i n g  s t r i c t .  T h i s  m a y  b e  d e t e r m i n e d  b y  a b s t r a c t l y  a p p l y i n g  a n y  t o  a l l  o f  i t s  

a r g u m e n t s :  i n  g e n e r a l  i f  a n y  h a s  t y p e  T i - > .  . . - > T n + i ,  l e t  t h e  v a l u e  o f  x z- : T *  b e  i n  

p o s i t i o n  i o f  e n v i r o n m e n t  pB o f  t y p e  ( T i , . . .  , T n )  w i t h  v a l u e  pB =  ( A a.a,  T )  s o  t h a t  

p B [ x j ]  =(Xa.ABS  0  . . .  0  ABS  ®  a 0  ABS  ®  . . .  ®  ABS,  T )

[a i n  i th p o s i t i o n ]  

t h e n  f o r  r  a n d  k d e f i n e d  b y

( t , k )  =  £ B [ a n y  x x . . .  x n ]  pB 

i f  r  m a p s  p r o j e c t i o n  STR  t o  p r o j e c t i o n  a  a n d

a  C  ID <S> ■ ■ . ®  ID ®  STR  ®  ID < g > . . .  (8 ) ID [STR i n  t h e  i th p o s i t i o n ]  

t h e n  any i s  s t r i c t  i n  i t s  i th a r g u m e n t .

E x a m p l e .  L e t  ( o )  b e  s h o r t  f o r  \ f  . \ g . \ x . f  ( g  x ) ,  l e t  i d  b e  s h o r t  f o r  \ x . x ,  l e t  

f u n f o l d r  b e  s h o r t  f o r

f i x  ( \ f u n f o l d r  .

\ f  . \ a  . \ f s  . c a s e  f s  o f

f n i l  ( )  - >  a

f c o n s  ( g , g s )  - >  f  g  ( f u n f o l d r  f  a  g s ) )  ,

a n d  l e t  c o m p o s e  b e  s h o r t  f o r  f u n f o l d r  ( o )  i d .  T h e  f u n c t i o n  d e n o t e d  b y  c o m p o s e  

m a p s  l i s t s  o f  f u n c t i o n s  t o  t h e  c o m p o s i t i o n  o f  t h e  l i s t  e l e m e n t s .  F o l d i n g  r i g h t  a l l o w s  

t h e  c o m p o s i t i o n  o f  p a r t i a l  o r  i n f i n i t e  l i s t s  o f  f u n c t i o n s  t o  h a v e  n o n - b o t t o m  v a l u e s .  

T h e n

£ B [ c o m p o s e  ( f c o n s  ( \ x . x + l ,  f c o n s  ( \ x . x + 2 ,  f n i l  ( ) ) ) ) ]

i s  e q u a l  t o  £ B [ \ x . x + 3 ] ;  t h e  p o i n t  i s ,  t h e r e  a r e  n o  s u r p r i s e s  b e c a u s e  t h e  B  s e m a n t i c s  

l o s e s  n o  i n f o r m a t i o n  p r e s e n t  i n  t h e  s t a n d a r d  s e m a n t i c s .

N o w  l e t

( r f s , « f s )  =  £ B [ f c o n s  ( \ x . x + l ,  f c o n s  ( \ x . x + 2 ,  f n i l  ( ) ) ) ] [ ] .

T h e n  r f s  =  Xa.ABS  a n d  Kfs i s  t h e  a b s t r a c t  f o r w a r d  v a l u e  o f  t h e  l i s t  o f  f u n c t i o n s .  

N e x t  w e  d e t e r m i n e  s t r i c t n e s s  o f  c o m p o s e  f s  x  i n  b o t h  f s  a n d  x  w h e n  f s  h a s  t h e  

v a l u e  o f  t h e  g i v e n  l i s t  o f  f u n c t i o n s ,  s o  w e  f i n d  a  B S A  o f  t h e  l i f t  o f

A ( d f s , d x )  . £ D{ c o m p o s e  f s  x ]  ( ( d f B , d x ) ,  ( / f s ,  ( ) ) )  ,
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w h e n  t h e  f o r w a r d  p a r t  / f s  o f  t h e  l i s t  a r g u m e n t  i s  t h e  g i v e n  l i s t  o f  f u n c t i o n s .  L e t  

p B =  ( A a.a , ( / c f s , ( ) ) )  s o  t h a t  p B [ f s ]  =  ( \a .(a ® A B S ) ,K f3) a n d p B [ x ]  =  ( A a .(A B S®  
« ) , ( ) ) ,  a n d  l e t  r  b e  d e f i n e d  b y

( r ,  ( ) )  =  £ B [  c o m p o s e  f s  x ]  pB .

T h e n  t i s  d e t e r m i n e d  b y  t h e  m a p p i n g s

Ni (FCONS {LAM  ®  (FCONS (LAM  <g> FNIL)))) 0  7 V ; _ 3 , a l l * .

B e c a u s e  a l l  o f  t h e  f u n c t i o n s  i n  t h e  l i s t  a r e  s t r i c t ,  a r g u m e n t  x  a n d  t h e  e n t i r e  

l i s t  f s  a n d  a l l  o f  i t s  e l e m e n t s  m a y  b e  e v a l u a t e d  i f  t h e  r e s u l t  i s .  I f  f s  h a d  

t h e  v a l u e  o f  f c o n s  ( \ x . l ,  f c o n s  ( \ x . x + 2 ,  f n i l  ( ) )  t h e n  r  w o u l d  m a p  Ni  t o

(FCONS (L A M  0  A B S))  0  A B S  and Ni to FAIL  for i ±  1.

E x a m p l e .  W e  c o n s i d e r  t h e  s t r i c t n e s s  p r o p e r t i e s  o f  a p p l i c a t i o n  i n  b o t h  o f  i t s  a r g u 

m e n t s  w h e n  t h e  a c t u a l  v a l u e s  o f  t h e  a r g u m e n t s  a r e  u n k n o w n .  I f  a p p l y  i s  \ f . \ x . f  x  

then we wish t o  determine the strictness o f  a p p l y  f  x  in f  and x .  Let the v a l 

u e s  o f  f  a n d  x  b e  i n  t h e  f i r s t  a n d  s e c o n d  p o s i t i o n s  o f  t h e  e n v i r o n m e n t ,  r e s p e c 

t i v e l y ;  a s s u m i n g  n o t h i n g  a b o u t  t h e  a r g u m e n t s  w e  t a k e  pB t o  b e  ( A a . o ,  T ) ,  s o  

P B [ f  ]  —  ( A a . ( a  0  A B S),  T )  a n d  p B [ x ]  =  (Xa.(ABS  0  a), T ) .  N o w  £ B [ a p p l y  f  x ]  

i s  j u s t  < f B [ f  x  J ,  a n d

£ B [ f  x ]  pB =  ( A o l . ( t i  LAM)  &  ( r 3  c * i ) ,  k3) 
w h e r e

(n,Ki) =  £ B[ f  1 p B 
( T 3 ,  K3) =  K l  ( £ B [ x ]  p B) ,

w h i c h  s i m p l i f i e s  t o

( \ oil .(LAM ® ID),  T )  , 

w h i c h  s h o w s  t h a t  a p p l i c a t i o n  i s  s t r i c t  i n  i t s  f i r s t  a r g u m e n t .

6.3.3 Abstraction

T h e  a b s t r a c t  p r o j e c t i o n  d o m a i n s  SProjT a r e  e x t e n d e d  t o  a l l  t y p e s  T  b y

P Sxo[Ti #> T2] =  P M O ]  =  11±| =  { ID ,B O T }  .

T h e n  SProjT]_>T2 =  l ^ l T i  -> T2] |  =  11±± \ = {ID^,ID j_,BOTx ,B O T l }, o t h e r 

w i s e  k n o w  a s  { L A M . ID, A B S ,  FAIL}. T h e  r e s t r i c t i o n  o f  p r o j e c t i o n  d o m a i n s  t o  SProj 
i n d u c e s  a b s t r a c t  d o m a i n s  o f  p r o j e c t i o n  t r a n s f o r m e r s ,  j u s t  a s  a t  z e r o  o r d e r ;  a b s t r a c t
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d o m a i n s  o f  B v a l u e s ,  d e n o t e d  SAbsT a t  e a c h  t y p e  T; a n d  a n  a b s t r a c t i o n  o f  t h e  B e x 

p r e s s i o n  s e m a n t i c s .  W e  c o n j e c t u r e  t h a t  t h i s  a b s t r a c t  e x p r e s s i o n  s e m a n t i c s  d e t e r m i n e s  

t h e  s t a n d a r d  s e m a n t i c s  ( a s  i t  d o e s  w h e n  r e s t r i c t e d  t o  z e r o  o r  f i r s t  o r d e r ) .

F r o m  e a c h  a b s t r a c t  d o m a i n  SAbs? w e  c h o o s e  a  f i n i t e  s u b d o m a i n  FAbsT. F i r s t  w e  

e x t e n d  FProjT t o  f u n c t i o n  t y p e s  b y  a d d i n g  t h e  i n f e r e n c e  r u l e s

B O T l  fproj Ti #> T2 , B O T L fproj Ti #> T2 •

T h e n  F P r o j =  SProjTl» T2 a n d  FProjT l_>l2 =  SProjTl_>T2.

G i v e n  t y p e  E gi d e f i n e  t h e  a b s t r a c t  d o m a i n  o f  p r o j e c t i o n  t r a n s f o r m e r s  FTranT t o  b e
B _Q-yy- #

FProj T — >• FProj Egl. I f  T^o [ T ]  w e r e  d e f i n e d  t o  b e  FTranT t h e n  s o  l o n g  a s  r e c u r s i v e  

t y p e s  w e r e  n o t  i n v o l v e d  t h e  h i g h e r - o r d e r  a b s t r a c t  s e m a n t i c s  c o u l d  b e  t a k e n  t o  b e  

t h e  Bf  i n s t a n c e s  o f  t h e  p a r a m e t e r i s e d  s e m a n t i c s .  F o r  r e c u r s i v e  t y p e s  h o w e v e r  t h e s e  

a b s t r a c t  d o m a i n s  m a y  n o t  b e  f i n i t e ,  f o r  e x a m p l e  f o r  F u n L i s t .  W e  t a k e  t h e  a b s t r a c t  

d o m a i n  FAbsT t o  b e  FTranT x  FAbsFj , w h e r e  FAbsFT i s  t h e  f i n i t e  a b s t r a c t i o n  o f  ^ [ T ]  
d e f i n e d  b y  t h e  f o l l o w i n g  s e t  o f  i n f e r e n c e  r u l e s :  v a l u e  k i s  i n  FAbsF-r i f  k f a b s f  T  c a n  

b e  i n f e r r e d  f r o m  t h e  f o l l o w i n g .

T h e r e  i s  o n l y  o n e  f o r w a r d  v a l u e  a t  t y p e  I n t .

() fabsf I n t  .

F o r  p r o d u c t s ,

Ki fabsf Ti • • • Kn fabsf Tn

fabsf ( T i , . . . , Tn)

F o r  t h e  u n i t  t y p e  t h i s  r e d u c e s  t o  ( )  fabsf () .

S i n c e  7 J B [  ci Ti +  . . .  +  cn Tn |  =  7 J B [  (Ti, . . .  ,Tn) J t h e  r u l e  f o r  s u m s  i s  t h e  s a m e  a s  

t h e  r u l e  f o r  p r o d u c t s :

fabsf Ti • • • Kn fabsf Tn 

«„) fabsf ci Ti + . . .  + cn Tn

F u n c t i o n  s p a c e s  c o n s i s t  o f  a  s e t  o f  s t e p  f u n c t i o n s  c l o s e d  u n d e r  l u b .

Ti G FTranTl fabsf Ti r2 G FTranT2 k 2 fabsf T2

step ((ri,« i), (t2,« 2)) fabsf (Ti #> T2)

w h e r e

step ( v i ,  v2) x  =  v2l i f  V\ □  x 

step ( v i , t ^ )  x =  _ L , o t h e r w i s e  ,
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a n d

ki f a b s f  ( T i  # >  T 2 )  f a b s f  ( T i  # >  T 2 )

( « i  U  « 2 )  f a b s f  ( T i  # >  T 2 )

T h i s  g i v e s  t h e  f u l l  s p a c e  o f  m o n o t o n i c  f u n c t i o n s  o n  t h e  a b s t r a c t  d o m a i n s .

F o r  r e c u r s i v e l y - d e f i n e d  t y p e s ,  r o u g h l y  s p e a k i n g ,  w e  c h o o s e  t h o s e  f o r w a r d  v a l u e s  t h a t  

r e p r e s e n t  e a c h  c o m p o n e n t  o f  t h e  s a m e  t y p e  b y  t h e  s a m e  v a l u e .  G i v e n  t y p e  d e f i n i 

t i o n s  A i  =  T i ; . . .  ; A n  =  T n , w h i c h  w e  w i l l  w r i t e  A i = T j ( A i , . . . , A n ) ,  1  <  i <  n ,  i f  b y  

a s s u m i n g  k,{ f a b s f  A * f o r  1  <  i <  n w e  m a y  d e d u c e  P * ( a c i ,  . . . ,  « „ )  f a b s f  T t- ( A i . . .  A n )  

f o r  1  <  i <  n ,  t h e n

/ /(«!,.  • • , «n)-(Pl(«l, • • • , «n), • • • , Pn(«l, • • • , «n))

i s  a  t u p l e  ( « i , . . . ,  « n )  o f  v a l u e s  s u c h  t h a t  f a b s f  A * f o r  1  <  i <  n.

F o r  a l l  T  t h e  l a t t i c e  FAbsT i s  a  s u b l a t t i c e  o f  SAbsT w h i c h  c o n t a i n s  t h e  t o p  a n d  b o t t o m  

e l e m e n t s  o f  T ^ l T ] .

E x a m p l e .  F o r  z e r o - o r d e r  t y p e s  T  t h e  a b s t r a c t  d o m a i n  FAbsj  i s  o f  t h e  f o r m  

FTranT x D , w h e r e  D i s  i s o m o r p h i c  t o  1.

E x a m p l e .  T h e  a b s t r a c t  d o m a i n  FAbslnt.>int i s  

FTrariint->Int x FAbsFxnt->int

w h e r e

FAbsFint->int =  ( FTranlnt x 1) - >  ( P 7 V a n I n t  x 1) .

L e t  t h e  t y p e  E gi o f  g l o b a l  e n v i r o n m e n t s  b e  B o o l ,  a n d  l e t  e  b e  

\x . case b of
true () -> x + 1
false () -> x + 2

w i t h  e n v i r o n m e n t  t y p e  B o o l .  H e r e

FTranlnt->lnt =  FProjlnt_>lnt 4  FProjBool ,

FTranlnt =  FProjlnt 4  FProjBool ,

a n d  £ B [ e ]  [ b  i - »  ( r b , ( ) ) ]  i s  

( r b  o  Xa.ABS ,

A(tX) ()) . c f t o o s e B ,  ((rb, ()), (Aax.r, ()), ( \ a x . r x STR,  ( ) ) ) )  .
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T h e  s e c o n d  c o m p o n e n t  i s

A ( r x , ( ) )  .  ( A ax  . ( ( r „  TRUE) k  ( r x  q j)  U  ( ( r b  FALSE) k  ( r .  q j) , ()) .

F o r  r b =  A c * .a :  t h e  f i r s t  c o m p o n e n t  s i m p l i f i e s  t o  Xa.ABS,  i n d i c a t i n g  t h a t  n o  d e m a n d  

i s  m a d e  o n  t h e  e n v i r o n m e n t  i n  e v a l u a t i n g  t h e  e x p r e s s i o n  t o  W H N F ,  a n d  t h e  s e c o n d  

c o m p o n e n t  s i m p l i f i e s  t o

A ( r x , ( ) )  . ( XaL. S T R k ( r x a±), ( ) )  .

N o w  l e t  e  b e

case b of
true () -> \x.x+l
false () -> \x.x+2

then £ B[ e ]  [b i-4 (t„, ())] is

choosef a t _ > I I l t  ( ( 7 b ,  ( ) ) ,

(rb o Xa.ABS,  A ( r x , ( ) ) . ( A a i . r I  STR,()))

(rb o Xa.ABS,  A ( r x , ( ) ) . ( A a A .T x  STR,())))

= choosefM_>Int ((rb, ()),

(Xa.ABS, X( r x , ( ) ) . ( t x , ( ) ) )

(Xa.ABS,  A ( r x , ( ) ) . ( r x , ( ) ) ) )

=  ( chooseB o ( r b , Xa.ABS, Xa.ABS),
CHOOSE, [ I n t - > I n t  ]  ( r b , A ( r x , ( ) ) . ( r x , ( ) ) ,  A ( t x , ( ) ) . ( t x , ( ) ) )  ,

t h e  f i r s t  c o m p o n e n t  o f  w h i c h  i s

A o j l  • ( r b  TRUE) k  ( r b  FALSE)  ,

w h i c h  i s  s a f e l y  a p p r o x i m a t e d  b y  A a±.rh STR ; f o r  r b  =  A q j .q ;  i t  i s  j u s t  A a±.STR, 
w h i c h  m a p s  ID t o  ID, STR t o  STR, ABS  t o  ABS,  a n d  FAIL t o  FAIL. T h e  s e c o n d  

c o m p o n e n t  i s  t h e  s a m e  a s  i n  t h e  p r e v i o u s  e x a m p l e .

E x a m p le . T h e  a b s t r a c t  d o m a i n  FProjFmiList i s  i s o m o r p h i c  t o  FProj I n t L i s t , a n d

^ [ F u n L i s t ]  =  1  x  ( 7 J B [ I n t - > I n t ]  x  ^ [ F u n L i s t ] )  ,

s o  t h e  v a l u e s  i n  FAbsFFu n L i s t  a r e  o f  t h e  f o r m  /ik .((), (v, k)) f o r  v €  E 4 & s F I n t - > I n t , 

h e n c e  FAbsFFunList i s  i s o m o r p h i c  t o  FAbsFin t - > I n t -  I f  w e  r e p r e s e n t  FAbsFFmLList b y  

FAbsFint->int t h e n  t h e  r e l e v a n t  c o n s t a n t s  a r e

i n f n i l B ( r ,  ()) =  ( i n f n i l Bo r ,  _L) , 

o u t f n i l B ( t , k ) =  (o u t f n i l B° r ,  ()) ,



C H A P T E R  6. HIGHER-ORDER A N A L Y SIS 187

infconsB ( t ,  ( « 1 , ^ 2 ) )  =  ( infconsB° r ,  (k\ U  ^ 2 ) )  , 

outfconsB ( t ,  « )  =  ( outfconsB° r, ( « , « ) )  .

T h e  p r o j e c t i o n  t r a n s f o r m e r  A « j l * 5 7 7 2  i s  a  B S A  o f  e v e r y  l i f t e d  s t r i c t  f u n c t i o n :  i t  h a s  

t h e  g u a r d  p r o p e r t y  a n d  m a p s  e v e r y  e a g e r  p r o j e c t i o n  o t h e r  t h a n  FAIL t o  STR.  W h e n  

t h e  f u n c t i o n s  a r e  i n  Intj_ Int± a n d  w e  a r e  w o r k i n g  i n  FProj t h i s  s i m p l i f i e s  t o  A c * . a .  

F o r  a n y  c l o s e d  e x p r e s s i o n  f  d e n o t i n g  a  s t r i c t  f u n c t i o n ,  a  s a f e  a p p r o x i m a t i o n  o f  t h e  

s e c o n d  c o m p o n e n t  o f  i t s  B  v a l u e  i s

A (t, k) . (Xa^.STR oB r, T) .

W h e n  f : I n t - > I n t  t h i s  s i m p l i f i e s  t o  A ( r ,  ( ) ) . ( t ,  ( ) ) ;  t h i s  v a l u e  i n  FAbsFFunLi3t i s  a  s a f e  

a b s t r a c t i o n  o f  a l l  f i n i t e ,  p a r t i a l ,  a n d  i n f i n i t e  l i s t s  o f  s t r i c t  f u n c t i o n s .  W e  h a v e

£ B [  c o m p o s e  I s ]  [ f s  >->  (Xa.a,  A ( r ,  ( ) ) . ( t ,  ( ) ) ) ]

=  ( A a±.STR,  A ( t ,  ( ) ) ,  ( r ,  ( ) ) )  .

I n  o t h e r  w o r d s ,  c o m p o s e  m a p s  a l l  f i n i t e ,  p a r t i a l ,  a n d  i n f i n i t e  l i s t s  o f  s t r i c t  f u n c t i o n s  

t o  a  s t r i c t  f u n c t i o n ,  a n d  e v a l u a t i o n  o f  c o m p o s e  f  s  f o r c e s  e v a l u a t i o n  o f  f  s  t o  W H N F .

N o w  l e t

( r » 0 )  =  £ B [  c o m p o s e  f s  x ]  (Xa.a,  ( A ( r ,  ( ) ) . ( r ,  ( ) ) ,  ( ) ) )  .

N o w  r  i s  Xa±.(FIN ID) 0  STR,  w h i c h  r e v e a l s  t h a t  w h e n  f  s  i s  a  l i s t  o f  s t r i c t  f u n c t i o n s  

c o m p o s e  f s  x  i s  s t r i c t  i n  t h e  s p i n e  o f  f s  a n d  x .  W e  m i g h t  e x p e c t  s t r i c t n e s s  i n  t h e  

e l e m e n t s  o f  f  s  b u t  t h i s  i n f o r m a t i o n  i s  l o s t  b e c a u s e  o f  a b s t r a c t i o n ;  p e r f o r m i n g  t h e  s a m e  

c a l c u l a t i o n  i n  t h e  f u l l  d o m a i n s  y i e l d s  t h e  e x p e c t e d  A a±.(FIN STR)  0  STR.  J u s t  a s  

a t  z e r o  o r d e r  t h e  l o s s  o f  i n f o r m a t i o n  m a y  b e  r e g a r d e d  a s  a r i s i n g  f r o m  t h e  p a r t i c u l a r  

s e m a n t i c s  o f  c a s e  e x p r e s s i o n s .

E x a m p l e .  R e c a l l  t h e  t y p e  d e f i n i t i o n

F u n T r e e  =  f l e a f  ( I n t  - >  I n t )  +  f b r a n c h  ( F u n T r e e ,  F u n T r e e )  .

T h e  e a g e r  e l e m e n t s  o f  t h e  U - b a s i s  o f  FProjFvnTree c o m p r i s e

II FAIL ,
FF LAM  ,

IF LAM  ,

FI LAM  ,

FF ABS  ,

IF ABS  ,

FI ABS  ,
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where

FF a  = fi7 . (FLEAF  a) U FBRANC H  (7 0  7) ,

F I a  — fi'y . {FLEA F  a) LI FB RANC H  (7  0  (A B S  U 7)) ,

IF  a  =  /i7  . {FLEAF  a) U FBRANCH  {{ABS  U 7 ) 0  7 ) ,

I I  a  = /i7  . {FLEAF  a) U FB RANC H  {{ABS  U 7 ) 0  (XBS U 7 )) .

Now E4&sFFunTree is isomorphic to E4&sFInt->Int, so the abstraction of a forward value 
of type FunTree must be a safe approximation of all of the leaves. The values in 

FAbsFFuilj Tee are of the form fiK.{v, (« ,«)) for v G FAbsFint->int» and are represented 

by values from F14&sFInt->inf

Let t r e e  comp be short for
fix (\treecomp .
\t . case t of

fleaf f -> f
fbranch (tl,tr) -> (o) (treecomp tl) (treecomp tr)) .

First we consider strictness of treecom p t  x when t  is a tree of strict functions. 

Let the values of t  and x be in the first and second positions of the environment, 
respectively, and let r  be defined by

(t , 0 ) =  <?B[treecom p t  x ] (Aa.a, (A (t,/c).(t, ()),())) .

Then r  maps S T R  to {II L A M)  0  S T R , revealing tha t the expression is strict in x, 
and leaf-value strict in the tree, but not th a t it is strict in the branch structure of 
the tree: the optim al result would be {FF L A M)  0  S T R ; again this is a result of 

abstraction, arising from the semantics of case. Next we consider the result for a 
tree of (possibly) non-strict functions: let r  be defined by

(r, ()) =  £ B[treecom p t  x ] (Aa.a, (A(t ,«).(Aa ./D , ()), ())) .

Then r  maps S T R  to I I  L A M  0  ID, which is optimal.

E x a m p le  (a d a p te d  fro m  [S to82].). Let FunType = FunType -> In t  -> In t ,
let g be short for

\f:FunType . \x:Int . case (x=0) of
true () -> 1
false () -> x * (f f (x - 1)) ,

and let f  ac be short for g g. Now FAbsFunTy?e =  F 7hm FunType x FAbsFFunTjpe, and

7 ^ [FunType] =  f iX  . ((T B°[FunType] x X )  -» T ^ [ ln t  -> I n t ] ) ,

and we wish to determine FAbsFFuni:7pe. Suppose r  G FTranFuaType and v G
FAbslnt->lnt, then we may deduce

step ((t , k) , v) fa b s f  FunType ,
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hence the least fixed point of AK. s t ep ( ( t , k ) , v )  is an element of FAbsFFmnvl)e. The 

fact th a t this function is not monotonic (ultimately because FunType appears in a 
contravariant argument position of #>) is not a problem if the fixed point is de

term ined as the limit of the canonical approximations on the approximating dO-
13#mains for T  ° [FunType]. (So, for example, the first approximation is () in 1, the 

second s t ep  ( ( t , ( ) ) , v )  in FTranFuniype x 1) 4  FA&sInt_>Int, and so on.) The re

sult is determined by r  and v; the abstract domain FAbsFFunTyve is isomorphic to 
(F7VanFunType x 1 ) 4  -Fa^sInt_>Int. Abstract application of k to ( / ,  k!) yields v if 
t '  □  r  and ac' □  ac, and _L otherwise.

Now £ B[ g ]  [] is

(X a .A B S , A(rt ,Kf) .

(X a.A B S, A(rx, ()) .

(Aax.(rx ST R )  U ((rx STR ) k  ( r ' STR )), ()) 

where

(r '>0) = £ B[ f  f  (x -  1 )]  [f 1-4 (Tf,Kf ), X 1-4 (rx,())] )) .

Then £ B[g  g ] [] is

) • (X a.AB S, A(rx,()) .
(Aa±.(rx STR )  U ((rx STR) & ( r ' STR )), ()) 

where 

t '  =  Aa±.(rt LA M )  & (ni (Kf (Ao'x-'T’x STR )))) ,

which is equal to (X a.AB S, A(rx, ()).(tx, ())), showing th a t Ax.5s [ f a c  x ] [x i-4  x] is 
strict.

6.3.4 B etter semantics for case?

Using the unimproved semantics of case a t first order, working in the finite abstract 
domains we were able to show th a t sum is strict in the spine of its list argument but 
not th a t it is strict in the elements of the list, and th a t d f s in a FA LSE -stnct context 
is leaf-strict bu t not th a t it is strict in the branch structure of the tree. At higher 

order we have an analogous loss of information: given a list of strict functions we 
can show th a t their composition, when applied, forces evaluation of the spine of the 
list but not of the elements; given a tree of strict functions we can show th a t their 
composition, when applied, forces evaluation of each function i f  its enclosing leaf 

node is ever examined, but not th a t every leaf node (and hence the branch structure) 
is evaluated. At zero-order (and both approaches to first order) we were able to 

improve the abstract semantics for case expressions to give optimal results for sum
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and d f s. Proceeding ‘by analogy’ with the zero-order case it is not too hard to give 
an improved semantics for case at higher order th a t gives optimal results for compose 
and treecomp. However, showing th a t this semantics is correctly related to the N_l 
semantics appears to be considerably more involved than the corresponding task at 
zero order and we leave this for future investigation.

6.4 Binding-tim e Analysis

We define fix  to  be greatest fixed point, hence bot , bou, and bot 0 are all T . The
F semantics is essentially the same as th a t described in [Dav93b].

Proposition  6.9
The semantic functions S N and £ F are correctly related.

P roof
We need only verify th a t f ix N and f ix F are correctly related. Now botN° and botF° are 

related by 7̂ NoF°[T] at each type T, hence botN and 6otF are correctly related. As 
defined we have

f ix N h =  Ll*>o botN ,

f ix F k =  [~]t>0 ^  botF ,

Let h and k  be correctly related arguments of f ix N and f ix F, respectively, and let 
Vi — hl botN and V{ =  k,1 botF for all i >  0. Now v0 is correctly related to ho, by

induction Vi is correctly related to ht- for all * >  0 , the ut- are increasing and the Vi are
decreasing. Then ri^oh,- is correctly related to V{ for all i since under-approximation 

of F values is safe; so n,->ohj is correctly related to Ut->ou* since the relation is inclusive. 
□

For each value in T ^ fT ] there is a greatest related value in T f[T ], bu t in general 

the F semantics does not preserve greatestness. If we restrict attention to denotable 

values then the function space 7Jf[T i #> T2] =  T f[T i ] -A T f [T21 may be restricted 
to the n-distributive functions.

It is easy to show th a t the zero-order analysis technique is a special case of the 
higher-order technique.
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E x a m p le . Let FSPIN E  be the projection transformer defined by

FSPIN E a  =  /i7 .ZDj_ 0  (a  x 7 ^  .

Then FSPIN E ID  is ID, specifying completely static lists, and FSPINE B O T  

acts as the identity on the spines of all lists but maps all list ele
ments to _L, specifying static spines and dynamic elements. Let f s  be 
fco n s ( \x .x + l ,  fco n s  ( \x .x + 2 , f n i l  ( ) ) ) ,  a  list of functions th a t map static 

values to static  values and dynamic values to dynamic values, and let

(7fs,Kfs)  =  £ F[ f s ]  [] .

Then r fs is A a. ID  and Kfs is

( 0 .  (•M'r . ( ) ) - (T' o r >())> 1 

( 0 .

t )))) ,
where r' maps ID  to ID  and all other projections to B O T .

Let compose be defined as before. Here there is no guarantee th a t £ F[ compose f  s ] is 
the same as £ p[ \x .x + 3 ]  but in fact it is; £ F[ \x .x + 3 ]  [] is (Aa.ID , A(r, ( ) ) .( t 'o t ,  ())) 
where r' is defined as before.

Now let the the values of f  s and x be in the first and second position of the environ
ment, respectively, and let r  be defined by

(r, ()) =  £ F[ compose f s  x ] (Xa.a, («fs ,())) •

Then r  is the least element in its domain: it maps (FSPINE ID )®  ID  to  ID  and all 
other projections to B O T . Had f  s been a list of functions each mapping all values 
to  static values, for example

fco n s ( \ x . i ,  fcons ( \ x . 2 , f n i l  ( ) ) )  ,

then r  would m ap all projections greater than (FSPINE ID) ® B O T  to  ID  and all 
other projections to B O T .

6.4.1 Abstraction

The abstract projection domains SProjT are extended to all types T by 

7>So[T 1 # > T 2 ] =  P s° [ ( ) ]  =  11 1 =  {ID} .

Then SProjT l_>T2 =  | lj_ | =  {ID , B O T }. The restriction of projection domains to 

SProj induces abstract domains of projection transformers, just as a t zero order; 
abstract domains of F values, denoted SAbsj a t each type T; and an abstraction of
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the F expression semantics. From these abstract domains of F values we choose finite 
subdomains FAbsT a t each type T. First we extend FProj to function types by adding 
the inference rule

B O T  fp ro j (Ti #> T2) .

Then FProj Tl9>l2 =  SProjT̂ >l2, and FProjTl_>Tj =  SProj Ti_>Ti.

Given type Egi define the abstract domain of projection transformers FTranT to be 

FProjEgl A  FProjT. Then FAbsj is FTrarij x FAbsF-?, where FAbsFT is the finite 

abstract domain of values from 7Jf [T ]. The domain FAbsFj is defined by a set of 
inference rules; their definition is the same as th a t for strictness analysis.

E x a m p le . Ju st as in the lifted case the abstract domain FAbsFFunList is isomorphic 
to E 46sFInt->Int. The greatest abstract forward value safely abstracting all lists of 

functions th a t m ap static arguments to static results is A(r, ()).(t, ()). Let the values 
of f  s and x be in the first and second positions of the environment, respectively, and 
let r  be defined by

(r >0)  =  £ F[ compose f s  x ] (Aa.a, (A(r, ()).(r, ()), ())) .

Then r  maps (FSPIN E ID) x ID  to ID  and all other projections to B O T . The 
greatest abstract forward value safely abstracting all lists of functions th a t map all 
arguments to static  results is A(r, ()).(Aa.ID , ()); for r  defined by

(t ,())  =  £ F[compose f s  x ] (Aa.a, (A(r, ()).(Aa.ZD, ()), ())) ,

the projection transform er r  maps projections greater than (FSPINE ID) x B O T  to 
ID  and all other projections to B O T . Both results are optimal.

E x a m p le . The projection domain FProjFunTree is isomorphic to FProj BoolTree; the 
elements are B O T , FB RA N C H  B O T , and FBRANCH  ID, where

F B RA N C H  a  = ® ( 7  x 7 )j_ .

Then FB R A N C H  ID  is ID  and FBRANC H  B O T  acts as the identity on the branch 
nodes of all trees but maps all leaves to X. Again, ju st as in the lifted case, the 
abstract domain E4&sFFunTree is isomorphic to E 46 5F Int_>Int. The greatest abstract 

forward value safely abstracting all trees of functions th a t map static arguments to 
static results is A(r, ()).(r, ()). Let the values of f  s and x be in the first and second 

positions of the environment, respectively, and let r  be defined by

(r >0)  =  £ F[ compose f s  x ] (Aa.a, (A(r, ()).(r, ()), ())) .
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Then r  maps (FB RA N C H  ID) x ID to ID  and all other projections to B O T . The 
greatest abstract forward value safely abstracting all trees of functions th a t map all 
argum ents to static results is A(r, ()).(Aa .ID , ()); for r  defined by

(r, ()) =  £ F[ compose f s  x ] (Aa.a, (A(r, ()).(Aa.ZD, ()), ())) ,

Then r  maps projections greater than (FBRANC H  ID) x B O T  to ID  and all other 
projections to B O T . Just as for lists of functions, both results are optimal.

Example. We consider f ac as previously defined. Analysis gives optim al results: 
fac denotes a function th a t maps static arguments to static results and dynamic 
argum ents to dynamic results.

6.5 Termination Analysis

We need only define f ix 1. We take botL° to be the least FTA Aa .A B S  of 6o^Nj-°, then 
botL°, botp  and botL are correctly related to botN±0, 6o£jNj-, and 6o£Nx, respectively. 
Then f ix L is defined by

f ix 1 f  = L b o  w p botL
where wf x =  x U ( /  x) .

Proposition 6.10
The semantic functions £ Nj- and S L are correctly related. I

The proof is trivial. □

Just as a t first order the result of f ix 1 may be improved by narrowing: every element of 
the descending sequence {/* (fix1 / )}  is correctly related to f ix L / .  W hen the domains 
are finite this sequence has a fixed point, which we take as the definition f ix L f  when 

working in the finite abstract domains. We conjecture th a t when the domains are 

finite th a t the sequence {/* botL | i > 0 } reaches a fixed point; this would necessarily 
be a better result than  the result of narrowing.

Example. It is straightforward to show th a t zero-order analysis and the second 
approach to first-order analysis is a special case of higher-order analysis; the key
fact is th a t application of lam bda expressions (both \# x .e  and \x .e )  behaves like
substitution. A simple example is

£ L[ \ x : I n t . l ]  [] =  (Xa.LAM, X(T,Q).(Xa.-ylift2 j o r, ()))

=  (Xa.LAM,  A ( t , ( ) ) . ( A « . 7i * .  i . O))  •
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This reveals th a t evaluation of \ x : I n t . 1 terminates. W hen applied we have

£ L[ ( \x :  I n t . 1 ) y ] [y i-s- (A a.a,())] =  (Aa.7 SJt» !,()) ,

which reveals th a t regardless of the argument application of \ x : I n t . 1 always term i

nates with value 1 .

E x a m p le . Let f s  be

fco n s  ( \ x . l ,  fcons ( \ x . 2 , f n i l  ( ) ) )  .

Let (7i„Kf.) =  £ L[ f s ] [], so

Tts = \ a  . FCONS  (L A M  ® FCONS (L A M  ® FNIL)) ,

Kfs =  ((), (A(t, ( ) ) . { \a .Ju f t*  i , ( ) ) ,

(0. CMt, OMAa/yii^ 2,0),
B O T j [ I n tL is t  ] ))) ,

which shows th a t f  s is head- and tail term inating.

Now let f  unf o ld r  be defined as before. Before narrowing we have 

£ L[compose f s ]  [fs i-* (A a.a ,« fs)]

=  (X a.LAM  U A B S , A(r, ()).(Aa .7 ^ 2 i U A B S, ())) ,

which fails to reveal th a t either f  unf o ld r  f s  term inates or th a t f  unf o ld r  f s  x 
term inates for any value of x. Narrowing gives the expected value

(X a.LA M , \ (T ,( ) ) . ( \a . llift, u  ())) ,

so for the values of f  s and x in the first and second positions of the environment, 

£ L[ compose f s  x ] (Aa.a, (/%s, ()))

= (Aa-7ii f i  i, ())) , 

after narrowing, showing th a t the result is certain to  term inate with value 1 .

6.5.1 Abstraction

The abstract domains are the same as those for strictness analysis. We consider 
results in the finite domains after narrowing.
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E x a m p le . The abstract injection and projection operators for FunL ist are 

m m /L (t, ()) =  (inn ill° r, BO T^{  In t  -> I n t ] )  , 

outnilL ( t , «) =  (outnilL° r, ()) ,

mccms1 (r, (^1 ,^ 2)) =  (mconsL° t ,  aci U ^2) , .

owfcons1- ( t , k )  =  (ow£consL° r, (« ,«)) .

Let f  s be defined as before. Now

£ L[ f n i l  ( ) ] [ ]  =  (Aa.FNIL, A(r,()).(Aa .A B S ,()))  ,

so for (rfs ,ACfs) =  £ L[ f s ]  [] we have

7fg =  Aa . FINF L A M  ,

«fs =  A(r, ()).(Aa .ID t Q) ,

so term ination and head-term ination is determined, but nothing else, for example, 
£ L[ compose f s  x ] [x (Aa.a:, ())] is (Aa.ID , ()), which tells nothing.

Analysis of treecom p gives similarly good results before abstraction and similarly 
poor results after abstraction. The essence of the problem is th a t the least L value 

B O T j [ t ] correctly related to the bottom  Nj_ value is not _L, th a t is, it
is not the identity for U. For recursive definitions this forced us to  use a widening 
operator, but we were able to  improve the results by narrowing. It is not clear how 
to improve results for recursive da ta  types.

I

6.6 Summary and Related Work

We have successfully generalised the zero-order analysis techniques to higher order. 
We briefly discuss related work.

6.6.1 Strictness analysis

H u g h e s ’ te c h n iq u e . As mentioned, Hughes [Hug87a] suggested an approach to 
higher-order backward strictness analysis using contexts. W ith the power of a  great 
deal of hindsight we can recast his non-standard semantic equations in term s of pro
jections and suitably transform them  to obtain a non-standard semantics th a t is 
roughly parallel to  ours, and specialises to Wadler and Hughes’ first-order technique. 
This technique appears to be considerably weaker than ours (and therefore correct), 
bu t when abstracted to our choice of finite domains would be incomparable to ours 

because of the semantics of case  expressions.
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P E R -b a s e d  an a ly sis . Hunt [Hun90b, Hun91a, Hun91b] proposed a strictness anal
ysis technique for monomorphic languages in which the basic non-standard values are 

partial equivalence relations (PERs). A PER on a domain D  is a binary relation on 
D  (a subset of D  x D) th a t is transitive and symmetric; it is partial because it need 

not be reflexive. For strictness analysis the abstract domain of PERs at each ‘base 
type’ T (for illustration, type In t)  is { b o t ,  ID, a l l } ,  where BOT C ID C A L L  and

ALL =  {(z ,y ) I X ,y e  T ^ T ] }  ,

ID =  {(a;,®) | x G 7 ^ [T ]}  ,

BOT =  { ( 1 , 1 ) }  .

Following Hunt, given R  we write v : R  to mean (v,v) 6  R. Then, for example, 
function /  is strict if /  : BOT —> BOT, constant if /  : A L L  —> ID, and the constant 

bottom  function if /  : A L L  -» BOT; binary function /  is strict in its first argument if 
/  : ( b o t  x  i d ) -* BOT, ignores its first argument if /  ( a l l  x  i d ) - f  ID, and so on. 
(Here —»■ and x  are the standard operators on binary relations.)

Recall tha t a projection 7 determines an equivalence relation (which we will write as 
just 7) in which the canonical representatives of the equivalence classes are the fixed 
points of 7; two values are related if they are mapped to the same fixed point. Hunt 

shows th a t 70 /  [T /  o5 iff /  : 7 —> S, and claims th a t PER-based analysis of functions 
is therefore strictly more general the projection-based analysis.

A crucial fact is th a t if Q and R  are PERs then so are Q x  R  and Q R; this 

does not hold for equivalence relations, or in particular those equivalence relations 
defined by projections, for example B O T  —> ID  is not an equivalence relation. As 
Hunt shows this makes straightforward the definition of a compositional PER-based 

higher-order program analysis technique: abstract function spaces are induced in the 
straightforward way, for example, a t type In t  #> In t  it is the set of monotonic maps 
from { b o t ,  i d ,  a l l }  to itself, and there is an interpretation of such functions a s  

PERs on 7 ^ [ i n t  #> I n t ] .  H unt’s technique is able to  discover, for example, head 
strictness.

It is far easier to compare PER-based and projection-based function analysis than 
the corresponding program analysis techniques. Certainly a function /  is determined 

by the set of PERs of the form Q -> R  such tha t /  : Q —» R; domain lifting is not 
required. Presumably the PER-based analysis semantics in the full spaces of PERs 
determines the standard expression semantics, so before abstraction to finite domains 
both approaches are in a sense equally powerful. Their relative power when abstracted 
to particular finite domains is not clear but certainly warrants further investigation.
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6.6.2 B inding-tim e analysis

P E R -b a s e d  an a ly s is . Hunt [Hun91b] and with Sands [HS91] shows how PER- 
based analysis can be used for binding-time analysis. In [HS91] PERs have been 

refined to  complete PERs—those tha t relate ±  to _L (strict) and are chain complete 

(inductive). The abstract PER  domain at each base type is { d , s }  where S intuitively 
indicates staticness and is equal to ALL, and D indicates dynamicness and is equal to 

ID. Then, for example, function /  maps static arguments to static results if f  : S —» S, 

dynamic arguments to  dynamic results if /  : D —> D , and so on. The abstract list 
domain constructor is the topping operation: given abstract list element domain P  
the abstract list domain comprises the new top element D and values SPINE (p )  for 
all P E P. The PER  S P IN E (p )  relates all finite, partial, and infinite lists of the 
same length with corresponding elements related by P; intuitively S P I N e (p )  indicates 
staticness in the spines of lists and staticness property P in all of the elements. At 
both  base types and list types these abstract domains are in 1-1  correspondence with 
our abstract projection domains.

Hunt does not consider the staticness of functions or th a t functions can be evaluated, 
th a t is, he considers only unlifted function spaces. It is a simple m atter to extend his 
treatm ent. We define the operator LIFT(-) on PERs to be the usual lifting operation on 
binary relations, and abstract domain lifting is again topping: given abstract function 
domain P  the abstract lifted function domain comprises the new top element D and 
elements l i f t ( p )  for all P E P. Intuitively D indicates th a t the constructor la m  is 

dynamic, and l i f t ( p )  indicates static functions th a t map their argument according 
to  P. A bstract application of l i f t ( p )  to  Q yields P Q, and abstract application of D 

to  Q necessarily yields D.

M o g e n se n ’s te c h n iq u e . Mogensen [Mog89] describes his technique as a higher- 
order generalisation of Launchbury’s polymorphic binding-time analysis. Higher- 
order functions are represented by abstract closures—symbolic representations of 

functions which are m anipulated algebraically. Approximation of recursively-defined 
abstract closures is performed ‘on-the-fly’ according to time and space considerations. 

The nature of these approximations is strongly dependent on the syntax of the cor

responding function definitions, so non-standard values are not functions of standard 
values, making precise comparison with our m ethod difficult. Unlike our approach, 

the abstract values of higher-order functions are their projection abstractions, where 
projections on functions are operations th a t map (parts of) abstract closures to _L. 
We regard this as somewhat ‘quick and dirty’ since there is no formal notion of cor
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rectness.

6.6.3 Termination analysis

There do not appear to  be any term ination analysis techniques comparable to ours. 
Further, it is not clear how the PER-based approach might be adapted to term ination 

analysis.



i

C hapter 7 

C onclusion

We conclude w ith a summary of the contributions of this thesis and some directions 
for future work.

7.1 Summary

The presentations of the first projection-based program analysis techniques—Wadler
i

and Hughes’ for strictness analysis, Launchbury’s for binding-time analysis—showed 
very promising results but gave little indication of the potential power of projection- 
based analysis, or how close to ideal their techniques are. To lessen this deficiency, 
in our treatm ent we started  by considering the intrinsic power of projection-based 
analysis of functions (rather than  programs) in order to give some bounds on what 
could be possibly achieved by projection-based program analysis. We showed th a t a 
function is determined by a single forward or backward strictness abstraction, hence 

th a t it m ight be possible to define projection-based analysis semantics th a t determine 
the standard semantics, th a t is, lose no information given by the standard semantics. 
We also showed th a t term ination properties may be captured with projections.

Before abstraction to  finite projection domains, the first-order strictness-analysis se
mantics yields best non-standard values and determines the standard semantics, real

ising the potential suggested above. When restricted to the finite projection domains 

used by W adler and Hughes [WH87] our technique, unlike theirs, is able to  detect 
joint strictness properties. Nonetheless, in certain cases their technique yields results 
better than  ours; we showed how the strengths of both techniques could be combined 

to yield a  technique strictly better than either.

Our first-order binding-time analysis technique is essentially the same as Launchbury’s 
monomorphic technique [Lau91a].

199
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While our first-order term ination analysis technique is not as strong as might be 
hoped, it appears to serendipitously lose information th a t could not reasonably be 
expected to  be exploited by a compiler, yielding only information th a t could. It is able 

to capture potentially useful information, such as head term ination, never captured 
before.

All three techniques were generalised to higher order; their merits read the same as 
those for the first-order techniques. They are the first formally-based higher-order 
projection-based techniques, Hughes’ [Hug87a] and Mogensen’s [Mog89] being the 
notable earlier attem pts.

We assiduously avoided an ad hoc approach to the development of the analysis seman
tics; we have striven for a general and uniform approach. The benefits of this approach 
are more than  aesthetic: the correctness conditions are in some sense parallel and the 
analysis semantics are essentially derived from the correctness conditions. More, the 
higher-order correctness conditions and analysis semantics are parameterised by their 
first-order counterparts in such a way tha t, once the parameterised semantics were 

defined, the three higher-order correctness conditions and analysis semantics came 
almost for free.

i
The correctness conditions for the higher-order analyses take the form of recursively- 
defined predicates. While the underlying theory of recursively-defined predicates was 
developed by Milne and Strachey [MS76], their presentation is considered rough going 
and is cast in term s of a universal domain. We have recast their theory in term s of 
domains constructed from primitive domains (following Schmidt [Sch8 6 ]) yielding, we 
believe, a more comprehensible presentation.

7.2 Loose Ends

Before mentioning some general areas for future work we summarise some loose ends 
th a t could reasonably be developed in a continuation of this work.

Our use of unboxed function and product types was simply to give a more uniform 
development, and did not involve the unpointed domains arising from a general trea t
ment of unboxed types [PJL91]. A proper treatm ent would be a useful generalisation 
since they may be used explicitly by programs, or implicitly by the compiler (for 
example, when ordinary (boxed) integers are used in Glasgow Haskell). We have 
given some indications th a t such a generalisation would be straightforward, in par
ticular for strictness analysis: where relevant in Chapter 3 we considered the analysis
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of strict bottom-reflecting functions rather than just the special case of functions 

/ i  G t/ i  4  14 where U and V  are (pointed) domains.

For backward strictness analysis the treatm ent of case expressions could be explored 
further. This was pursued with positive results a t first order, with the suggestion th a t 
further exploration might be worthwhile. Short of tha t, a worthwhile improvement 

would be the modification of the semantics of case expressions at higher order (as 
was done a t first order) to improve the results of analysis in the finite domains; this 
is discussed further in the next section.

7.3 Polym orphism

The chief deficiency of our entire approach is the inability to handle polymorphism; 
for our analysis techniques to be genuinely useful this problem must be overcome. 
Following we suggest a possible approach.

Hughes’ early work on the abstract interpretation of first-order polymorphic functions 
[Hug89] has since been developed in two directions. The first is Hughes and Launch
bury’s [HL92a] polymorphic projection-based backward strictness analysis technique 
and Launchbury’s [Lau91a] polymorphic projection-based forward binding-time anal
ysis technique. The second is Hughes and Baraki’s generalisation to abstract interpre
ta tion  of higher-order polymorphic functions [BH90, Bar91, Bar93]. Recalling th a t 
the values arising from our analysis techniques consist of a projection abstraction of a 
first-order function, and a function (or tuple of functions) from a lattice to a lattice,

I
we conjecture th a t the two developments could be combined: Hughes and Launch
bury’s theory to  handle polymorphism in the projection abstractions, and Baraki’s 
to handle polymorphism in the forward components.

One possible source of difficulty in this approach is the presence of CHOOSE since it 
is defined in term s of type structure (Section 6.1.2). One way around this would be 
to find a definition for CHOOSE  th a t does not depend on the type. For backward 
strictness analysis it appears th a t CHOOSE j defined by

C H O O SE^l T j (r0, ,« n) =  «i U . . .  U «„

is safe, in the sense th a t it is correctly related to C H O O S E ^ \T], and hence would 
yield a correct analysis semantics. (And similarly for term ination analysis; for 
binding-time analysis n  replaces U.) This is also interesting because such a definition 
is needed to allow the improvement for case expressions suggested in Section 6.3.4.
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Further, Hughes’ approach to  higher-order backward analysis [Hug87a] depends on 
the correctness of essentially the same definition.

On a more modest scale, we conjecture that the generalisation of our first-order 
term ination analysis technique to polymorphism would be straightforward using the 
theory developed by Hughes and Launchbury.

7.4 Im plementation

As is often the case with non-standard interpretation, implementation is problematic 
at higher order because the domains associated with higher-order types become very 
large, so th a t the tim e and space costs of analysis become prohibitive.

Conceptually, im plem entation of our techniques is feasible. As previously mentioned, 

we have implemented a prototype monomorphic first-order backward strictness anal
yser, Kubiak has implemented a polymorphic analyser for a first-order subset of the 

Haskell Core language, and Launchbury has implemented both monomorphic and 
polymorphic versions of a first-order binding-time analyser. There are two indica
tions th a t if our analysis techniques could be generalised to polymorphism in the 
m anner suggested then implementation would be less problematic: first, Launch
bury reported th a t implementing the polymorphic version was actually simpler than  
the monomorphic one [Lau89]; second, Baraki’s theory allows the implementation 
of a  higher-order strictness analyser to be vastly more efficient than a comparable 
monomorphic analyser, as dem onstrated by Seward [Sew9 3 ].

Although there is no formal argument for the correctness of Mogensen’s [Mog89] im

plem entation of a  higher-order generalisation of Launchbury’s polymorphic analyser, 
it appears to produce correct results and to run acceptably fast; adapting his ap
proach to strictness analysis and term ination analysis might give practical, if rather 
quick and dirty, analysers.

7.5 Other Applications of the General Approach

Taking a step back, we believe th a t there is much wider scope for our general approach 
to promoting first-order analysis techniques to higher order. We give two examples.

We considered forward strictness abstraction of both lifted and unlifted functions, but 
corresponding semantics for program analysis were developed only w ith respect to the 

unlifted case; this was appropriate for binding-time analysis. It is clear th a t giving
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the corresponding analysis semantics for the lifted case would yield semantics suitable 
for forward strictness analysis; it would be worthwhile to develop these techniques for 

comparison with the backward techniques.

It seems clear th a t we could also promote first-order BHA strictness and term ination 
analysis techniques to higher order in our framework; except for fix  (which would be 
least fixed point) we would get for free analysis techniques essentially the same as 
the higher-order BHA techniques. It is interesting to consider why this works: the 

answer seems to be that the corresponding higher-order correctness conditions would 
be, in essence, instances of the logical relations Abramsky used to so concisely prove 

correctness of higher-order BHA analysis [Abr90]. This is also interesting because the 
generalisation of such a technique to  polymorphism using Baraki’s theory would be a 
natural stepping-stone to the more complex problem for higher-order projection-based 
analysis.

7.6 Projections for Program Analysis

Both our work and others’ has shown the use of projections to be a powerful tool for 
program analysis. Our work is neither the beginning of the story—which is properly 
credited to Hughes, Wadler, and Launchbury—nor hopefully the end—there remains 
much to do. We have contributed, we believe, significant forward steps on three 
fronts: by providing results on the intrinsic power of projection-based analysis; by 

generalising, strengthening, and making more efficient existing techniques; and by 
extending the scope of projection-based program analysis by giving projection-based 
term ination analysis techniques. We look forward to the day when such techniques are 

usefully employed in compilers and partial evaluators for lazy functional languages.
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