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Synopsis

The main objective of the research, presented in this thesis, was the design of an 

updatable optical correlator. This was based on the use of a crystal of Bismuth 

Silicon Oxide (BSO) placed in the Fourier plane. The system performance was 

prescribed to meet specific targets: the correlation of images comprising 512x512 

pixels; at 40 milliseconds per image. To undertake the design work, the predictions 

of the Band Transport Model were used to describe the performance of the BSO 

crystal. In addition to this, coupled wave theory was used to model the effects of a 

‘thick’ hologram in the correlator.

Several, previously unreported, aspects of the system were considered in the de­

sign. These included the effects of the positions of the input images, with respect to 

the transforming lenses. It was shown theoretically, that spatial filtering effects occur 

if the images are not in the front focal planes of the lenses. Specification of the lens 

combinations to be used in the correlator was carried out using standard ray-tracing 

software with manufacturer’s lens data. Digital simulation was also used to predict 

intensities in both the Fourier and the correlation plane of the optical system. An 

important effect, not hitherto reported, was that of the hologram’s grating vector 

becoming tilted with respect to the electric field which is applied to the BSO. The 

drop in diffraction efficiency thus caused can be comparable with that due to the 

Bragg de-tuning of the beam reading out the hologram.

It was shown that the correlator could be designed to meet the imposed speci­

fications. The main problems encountered were the angular selectivity of the BSO 

hologram, and low writing-beam intensities in the Fourier plane. In order to predict 

the maximum sizes of the images that could be processed, the equations governing 

system performance were expressed in terms of a reduced parameter set. Limits on 

the number of pixels, in the images on the read and write sides of the correlator, 

were then determined.

It was predicted that it would be difficult to correlate two images of more than 

about 2000 pixels across. This limit was imposed by the angular selectivity effects. It
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was also predicted that a system would be feasible, which could correlate an image of 

6000x6000 pixels with a small reference template. In both cases, optical path lengths 

of several meters would be needed; as well as large-aperture, thin BSO crystals. From 

the results it was concluded that BSO was not going to compete with other, recently 

developed, materials and devices: such as switchable photo-chromic materials and 

phase modulating spatial light modulators (SLMs).

Severe problems with the acquisition of suitable SLMs, meant that the designed 

correlator could not be constructed. Effort was therefore diverted to extend the digi­

tal simulation work to cover these devices. Models were developed which represented 

the distortions typically found in optically addressed SLMs. The results produced 

highlighted some shortcomings of published work in this field. Finally, an experi­

mental method was chosen, which allowed combinations of different distortions to 

be applied to pairs of images. This method, and the computer models developed, 

can be used to assess fully the effects of SLM distortions on any optical processing 

task. An example is presented in which correlations were performed in the presence 

of a grey-level non-uniformity and two types of phase distortion. The effects of the 

distortions on peak-height, signal-to-noise ratio, shift-invariance and the accuracy of 

peak location were computed.
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A bbreviations/sym bols used in Chapter 1

Ar+ Argon ion (laser).

BSO Bismuth Silicon Oxide.

BTM Band Transport Model.

CCD Charge Coupled Device.

CHF Circular Harmonic Filter.

CRT Cathode Ray Tube.

d.c. Zero-spatial-frequency component of FT.

FT Fourier Transform.

He-Ne Helium-Neon (laser).

JTC Joint Transform Correlator.

MSF Matched Spatial Filter.

SBWP Space Bandwidth Product.

SDF Synthetic Discrimination Function.

SLM Spatial Light Modulator.

TV Television.

VLC Vander Lugt Correlator.

N x  N Number of pixels in a (square) image.
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The research presented herein was carried out as part of a three year, collabo­

rative project entitled Hybrid Industrial Inspection (HII). The project as a whole 

sought to construct and evaluate an industrial inspection system composed of inte­

grated digital and coherent optical processing systems. At the centre of the optical 

processing system was to be an updatable optical correlator based around photore- 

fractive Bismuth Silicon Oxide (BSO). In this introduction, the history and uses of 

optical correlation are reviewed in order to explain its powers and drawbacks. This 

review leads to the requirement for an updatable (or re-programmable) system and 

explains the selection of BSO as the storage medium. A literature survey is then 

used to sketch an outline of the history of correlation work using BSO. A generic 

industrial inspection task is described, which was used to specify the required corre­

lator performance. The role of real-time spatial light modulators is also discussed. In 

order to provide relevant background information, the hologram formation process is 

briefly reviewed in terms of the band transport model. Finally, the scope, objectives 

and organisation of the remainder of the thesis are summarised.

1.1 Optical Correlators

Correlation, or template matching, can be used to perform two related functions. 

Firstly, it can be used to recognise the presence of a particular object within an 

image containing many different shapes. Secondly, it can be used to determine the 

position of a particular object within an image [1.1-1.3]. Correlation can be visualised 

as the process of stepping one image (the reference) over another (the object image) 

and, at each point, multiplying the values of their overlapping pixels. At each point, 

the correlation plane value is calculated by summing all these multiplied values.

1.1.1 O ptical vs D ig ita l Correlation

The step by step method of forming the correlation plane can be carried out digi­

tally. However, for large images it is computationally more efficient to perform the 

correlation in the Fourier domain as shown in appendix A. In this case, the Fourier 

transform (FT) of each image is computed and the complex conjugate of one is mul-
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tiplied by the other. The inverse transform of the result is then computed to form 

the correlation plane ([1.4] for example). In general, the mere performance of the 

mathem atical operation of correlation is not, in itself, useful and it is necessary to 

carry out a preliminary edge enhancement of the images. A simple illustration of 

this is shown in figure 1.1. Here, the task is to recognise and locate a relatively low 

intensity square while discriminating against a brighter triangle. The figure shows 

correlation planes produced both with and without edge enhancement of the im­

ages. The edge enhancement in this case being provided by a simple Gaussian ‘stop’ 

blocking the zero-frequency components (d.c.) of the Fourier transforms.

Figure 1.1: Reference image (left), input image and correlation planes without edge 
enhancement (producing a failed result) and with a simple edge enhancing filter 
giving a good recognition peak.

In order to implement this spatial filtering and correlation with two N  x N  pixel 

images, the number of essential floating point operations is shown, in appendix A, 

to be approximately 20 x N 2log2(N).  For a 512 by 512 pixel image this is about 

47 million operations. Since the two initial FTs can be performed in parallel, a 1.3 

Gflop processor would theoretically be able to carry out this correlation at TV frame 

rates. However, at the tim e of writing, such machines cost around $1 million and, at 

the same time, current CCD cameras are capable of producing images of 2048x2048 

pixels. Thus, to carry out correlations, on images larger than 512x512 pixels, at TV 

frame rates, it is necessary to consider other available technologies in order to reduce 

the cost and size of the system

It was for these reasons tha t the Fourier transforming capability of a positive lens 

[1.5] generated so much interest. A further step forward was the use of holographic 

film to store the optically produced FTs. The stored FTs are also known as m atched
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spatial filters (MSFs). These MSFs could be multiplied with the transforms of other 

images passed through one arm of the original recording system [1.6]. Twenty eight 

years ago when this reference appeared the digital computing speeds available now 

were not even dreamed of.

1.1.2 O ptical Correlation: M ethods and U ses

Since the original work, many papers have been published on optical processing by 

researchers all around the world. In its infancy, this work made use of holographic 

filters stored on high resolution photographic plate. The necessity to expose, develop 

and carefully realign the holograms meant that the systems could not easily be 

updated to search for new objects. Filter updating is also needed if a system is to 

recognise different types of object or if the object under surveillance suffered an out- 

of-plane rotation. Even if the object suffers an in-plane rotation or a scale change 

then the Fourier plane filter needs to be changed if the image could not be de-rotated 

or re-scaled prior to the correlation process. Systems without the ability to update 

their filters will be referred to as fixed filter systems.

Even with their limitations, there were still tasks that could be performed by these 

fixed filter correlators. One of these was in the field of automatic photogrammetric 

stereo compilation [1.7] where, since the images being correlated formed a stereo 

pair, there was a guaranteed match between the object and reference images. Other 

proposals included word recognition [1.8], medical screening [1.9] [1.10], tracking and 

recognition of industrial components [1.11][1.12][1.13], autonomous navigation [1.14], 

cloud motion analysis and water pollution monitoring [1.15]. At the same time it 

was demonstrated that fixed filter correlators could be made very small, compact 

and robust [1.16] [1.17] which would be essential for operation in non-laboratory 

conditions.

The limitations imposed by fixed filters are self evident especially if one considers 

typical, military pattern recognition tasks. For example, if a ship or a tank is being 

engaged from the air then, it could be approached from any point on a hemi-spherical 

surface. However, a single MSF would only recognise the target from one particular
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angle. In general there are two types of distortion that a recognition system needs 

to be made insensitive to:

1. In-plane distortions

• These include rotations about the line of sight and scale changes and shall 

be referred to here as ‘type I distortions’.

2. Out-of-plane distortions

• These include any rotations with some component about an axis perpen­

dicular to the line of sight and shall be called ‘type II distortions.

Some attempts to overcome distortion problems still used fixed filters. However, 

by using either multiplexing, averaging or coordinate transforms, a reduction was 

sought in the sensitivity of the system to the distortions. The multiplexing tech­

niques included the addressing of a large number of filters in parallel, after optically 

replicating the input image [1.18] [1.19] [1.20], or even sequentially placing different 

filters into the Fourier plane [1.21]. The averaging techniques, which basically sought 

to make a single filter insensitive to distortions, included creating synthetic images 

from linear combinations of a set of training images (SDFs) [1.22] [1.23] [1.24]. These 

methods could be used to deal with both type I and type II distortions. Other tech­

niques used the circular harmonic expansion of an image to produce filters (CHFs) 

that were insensitive to both in plane rotations and image contrast [1.25] [1.26] [1.27]. 

Filters were also designed that produced a constant signature as the filter was ro­

tated in the Fourier plane and these could be made invariant to in plane distortions 

and image contrast [1.28] [1.29]. The most commonly used coordinate transform 

was the log-polar transform which could be used to overcome all type I distortions. 

By performing the log-polar transform on the FT of an image and correlating the 

resulting pattern, shift invariance could also be built in [1.30] [1.31] [1.32].

These were the main techniques for extending the operation of correlators using 

fixed filters. However, for all these techniques their ultimate limitation (even allowing 

for some of their practical limitations [1.33] [1.34] [1.35]) is that, in order to change the
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object being searched for, the holographic filter or bank of filters has to be physically 

removed from the system and a new one inserted. This is a fax cry from the total 

flexibility offered by digital systems. Ideally, to enable the optical correlator to 

access a large library of reference images, the holographic plate needs to be replaced 

by another medium. This should be capable of storing the FTs while possessing the 

ability to be erased and re-written in situ in the optical system.

Two methods of accomplishing this involve the use of electronically addressed 

spatial light modulators (SLMs: see later) in the Fourier plane of the correlation 

system. Both of these have been the subject of many published papers in recent years. 

The first is based on a Joint Transform Correlator (JTC) architecture [1.36]. Instead 

of allowing the reference and object images’ transforms to fall onto a holographic 

plate, they are detected by a CCD camera. The resulting interference pattern is 

then relayed to a binary spatial light modulator [1.37]. However, this technique 

suffers from a chronic lack of space-bandwidth-product (SBWP) with image sizes 

limited to less than 64x64 pixels. This is due to the need to sample the interference 

pattern with the CCD detector [1.38]. The second method involves the use of a binary 

SLM to display phase only filters in the Fourier plane of the correlator [1.39] [1.40]. 

Generally, using this technique, the amplitude information of the FT is discarded and 

the phase is quantised according to the dictates of the particular researcher. This 

phase pattern can then be reproduced by appropriately aligning the output polaxiser 

on a device such as a magneto-optic spatial light modulator [1.39]. This technique 

has a real potential advantage in that the reference functions can be stored as binary 

representations of FTs providing great savings in the memory requirements for their 

storage. Another great benefit is that the FT is sent directly to the SLM which 

removes the need for an interferometric system to record the FT of the reference 

image. This in turn relaxes the vibrational stability requirements of the system 

while allowing the use of cw lasers. Furthermore, because the FT is written to the 

SLM, there is no restriction on the use of complex valued inputs to form the reference 

templates. This opens up the possibility of using filters such as SDFs or CHFs in 

the updatable correlator [1.41] [1.42]. However, at the time of commencement of
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this work, the SLM devices that were commercially available were limited to around 

128 x 128 pixels and evaluation of a device purchased for another project had shown it 

to be of relatively poor quality. Two published reports have also highlighted problems 

with the current technology [1.43] [1-44]. The main objective of this research was to 

exploit the parallelism of the optical correlator in the processing of images with a 

large SBWP. It was therefore decided not to pursue this SLM approach but to note 

its potential for the future.

In order to utilise large SBWP images, it was decided to use an optically non­

linear material to act as an updatable hologram in the Fourier plane. This material 

should, in the same way as a holographic plate, undergo physical changes as a result 

of the fringe patterns falling upon it. These physical changes may then be used to 

modulate a read out beam; thus allowing the stored hologram to be interrogated. 

The material chosen for the project was Bismuth Silicon Oxide (BSO) which has 

been used in the field of Fourier based optical image processing since the late 1970’s. 

Its main advantage, for optical image processing, is its ‘near photographic’ sensi­

tivity which allows reasonably fast hologram formation at moderate optical powers. 

Typical values axe often quoted as a 10-40ms response time at 100-500^Wcm“2. 

Another advantage is that crystals of good optical quality can be obtained and the 

material possesses a high spatial resolution. From the point of view of the current 

work, an important factor was that good theoretical models had been developed for 

the hologram formation process. This allowed the definition of experiments for the 

measurement of those operating parameters pertinent to the correlator design.

Before presenting an outline history of the use of BSO in optical Fourier plane 

processors, it is useful to explain the difference between the two main correlator 

architectures that axe employed. These are the Joint Transform Correlator (JTC) 

[1.36] and the Vander Lugt Correlator (VLC) [1.6]. The difference between these 

two architectures is illustrated in figure 1.2. In the case of the JTC the hologram 

is formed by placing the two input transparencies side by side in a collimated laser 

beam, in the front focal plane of a positive lens. The correlation plane is formed by 

reading out the hologram with a plane wave.
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Figure 1.2: A comparison between the Vander Lugt Correlator (top diagram) and 
the Joint Transform Correlator (bottom diagram).

This read-out beam could be from a laser of different wavelength to that used for 

hologram writing. In the VLC however, the hologram is formed between two mutu­

ally coherent beams, one of which is the FT of one of the images while the other is 

a plane-wave reference. This hologram is then read out with the FT of the second 

image which again need not be coherent with the writing beams. However, in the 

case of the VLC, if a different read-out wavelength is used, steps must be taken to 

ensure that the scale of the object and reference FTs axe matched.

1.1.3 A  H istory o f BSO -Based Correlators

A literature search was carried out, specifically targeted at the use of BSO in optical 

Fourier plane processors. These included systems for both correlation and other 

spatial filtering operations. The references axe described below, in chronological 

order, to produce an historical overview of work in this field.

In 1978 Pepper et al [1.45] put forward the idea of using degenerate four-wave
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mixing for the convolution and correlation of optical fields. This idea had grown 

out of original work on the use of four wave mixing for phase conjugation. In this 

paper it was demonstrated how manipulation of the equations for phase conjugation 

lead to convolution and correlation products. The proposed correlator used a JTC 

architecture. BSO was not mentioned and it is interesting to note that a theoretical 

example involving the use of CS2 as the non-linear medium used input powers in 

the MW range. This paper also derived limits on the space bandwidth product of 

the system based on the original use of the Fresnel approximations in the optical 

FT. It pointed out the potential problems posed by the thickness of the material in 

terms of the need to preserve the form of the FT throughout the interaction region. 

The use of a single frequency source to overcome Bragg matching problems was also 

discussed.

This work, carried out at the California Institute of Technology, was followed up 

by White and Yariv, from the same institute, in 1980 [1.46]. This paper reported 

an experimental demonstration of the theoretical predictions using a JTC with pho- 

torefractive BSO at the Fourier plane (‘suggested by the analogy between four-wave 

mixing and real time holography’) . Although all three beams entering the crystal 

were mutually coherent, it was pointed out that the optical activity of the BSO 

reduced the interference between the plane read-out beam and the FT beams to neg­

ligible levels. The BSO crystal was 3mm thick and, to enhance the grating, a voltage 

of 5-7kV was applied to the crystal. The input laser used was a 1.6W Argon Ion 

(Ar+) and response times of 30ms were reported (there being no indication of powers 

at the BSO however). Another practical point was the use of a polariser to isolate 

the desired, diffracted signal from other scattered light in the correlation plane. The 

correlations and convolutions were demonstrated using simple shapes and letters on 

photographic transparencies.

In 1981 a paper by Pichon and Huignard, of Thompson-CSF, was published [1.47]. 

This described a JTC but with wavelengths of 488nm and 633nm used for writing 

and reading the holograms respectively. A wavelength selective filter was added 

prior to the correlation plane to remove scattered light from the writing beams. This
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was essential since the read out beam entered the BSO from the same side as write 

beams. The BSO was 2mm thick and the paper mentions the problems presented 

by Bragg matching requirements. The writing power was quoted as 200pW  at the 

hologram. The system was found to have a response time of around 70ms (quoted 

as a time constant of ~25ms). Like Yariv’s system it’s operation was demonstrated 

with letters on photographic transparencies as inputs.

A general paper by White and Yariv in 1982 [1.48] covered areas including phase 

conjugation, image addition/subtraction and image plane edge enhancement. The 

section on correlation contained only the original 1980 results with the same JTC 

architecture. It also mentioned the potential problems presented by the interaction 

of the beam reading out the hologram with the hologram itself. A calculation was 

performed to determine the field of view constraints due to Bragg matching problems 

when one of the writing beam angles was changed.

An overview paper by Feinberg [1.49], from the university of Southern California, 

in 1983 discussed the use of photorefractives from a holographic rather than a four- 

wave mixing standpoint. The advantages of photorefractives were cited as their 

coupling efficiency, their stability and their erasability. Their disadvantages were 

listed as their slow speed at low intensities and the lack of understanding of the 

charge transport mechanism. The results used to illustrate the paper were again 

Yariv’s of 1980. Also in 1983 Valley and Klein, of Hughes Research Laboratories, 

published a paper [1.50] in which Kukhatarev’s band transport model was used. 

Figures of merit, relevant to optical data processing systems, were evaluated using 

the model and a comparison was made between BSO and BaTiOa. No reference to 

any correlation work at Hughes was mentioned however.

Two papers by Laycock and co-workers appeared in 1984 highlighting the interest 

of GEC’s Hirst Research Centre in updatable optical correlators [1.51] [1.52]. The 

papers described a JTC architecture with gratings being read and written at 633nm. 

The motivation for the use of the Helium-Neon (He-Ne) laser was the production of 

a small system with low power consumption. However, the performance must have 

suffered with the BSO being relatively insensitive at 633nm and the holographic

2 5



grating being equally affected by the read and write beams. Using a 2.7mm thick 

crystal with no applied field, a diffraction efficiency of 0.1% was reported, with a 

response time of 0.1 seconds. A half wave plate was used in the read beam to 

optimise its polarisation in order to maximise diffraction efficiency. To reduce the 

effects of the washing out of the grating by the read beam, this was chopped so as 

to be present for just a small fraction of the cycle time. Another significant step in 

this paper was the inclusion of a Hughes liquid crystal light valve in the system to 

give the potential for ‘real time’ input. The SLM was only used for the input of one 

of the images and was itself written to by imaging a transparency onto its back face. 

Also in 1984 GEC workers published a paper jointly with Hall et al of King’s College, 

London [1.53]. This used the same JTC architecture but with no SLM and the He- 

Ne replaced with an Ar+ laser. The paper dealt with the fidelity of the correlations 

formed and compared simulated and experimental results. In particular, the role 

of the relative beam intensities and the coupling of the read and write beams were 

examined. It was shown to be desirable to minimise the coupling between the read 

and write beams. This could be achieved by reducing their mutual coherence or by 

selecting an appropriate BSO axis. The controlling of spatial frequency response by 

the read beam intensity was discussed but it was not pointed out that the response 

would be much more easily controlled in a VLC architecture. For accurate correlation 

it was shown to be desirable to use a strong read beam intensity although this would 

obviously reduce the diffraction efficiency of the grating. The paper also noted that 

a fourth beam could be used to selectively erase portions of the grating to produce 

various degrees of edge enhancement. This was an idea that appeared later in a 

scheme designed specifically for edge enhancing images [1.54]. Finally, it pointed out 

that the thickness of the crystal should be small with respect to the overlap region 

of the writing beams.

In 1985 another correlator employing a SLM was reported by Thomson-CSF 

[1.55]. The architecture was again a JTC system with Ar+ write and He-Ne read 

beams incident from the same side of the BSO. The input images were again static, 

being projected photographic transparencies. Apart from the SLM, the system con­
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struction and performance were similar to that reported in their previous paper. The 

Bragg matching constraints were cited as a factor which would ultimately limit the 

number of pixels that could be processed in parallel. Also in 1985 Ochoa, Good­

man and Hesselink - of Stanford University, California - demonstrated that variable 

degrees of edge enhancement could be produced by varying the strength of a plane 

reference beam in the recording of a FT hologram in BSO [1.56]. The particular 

application was the enhancement of defects in a periodic mask. The process relied 

on the fact that the diffraction efficiency of the BSO hologram was proportional 

to the reference to object beam ratio. Thus, by using a weak reference beam the 

weaker Fourier orders associated with the defects would be enhanced whilst the high 

intensity regions of the FT, which were due to the periodic mask structure, would 

be suppressed. However, no extension of this idea to the performance of spatial- 

frequency-weighted correlation was put forward in this paper.

In 1986, another overview of the use of photorefractive materials in optical data 

processing was published, this time by by Fainman and Lee [1.57]. It covered areas 

such as matrix operations, statistical pattern recognition, associative memories and 

digital optical processing. The small section on correlation was again illustrated by 

the 1980 Yariv results but the more recent Thomson-CSF paper was also referenced. 

However, 1986 saw a number of papers published by workers from King’s College, 

GEC and British Aerospace. A paper by Foote et al (King’s college and BAe) [1.58] 

presented a review of the band transport model making a distinction between the 

intrinsic material parameters and the extrinsic system parameters. The predictions 

of the model were related to dynamic holographic optical processing applications 

including phase conjugation and correlation. The paper then went on to spell out 

the differences between processing schemes using the VLC and those using the JTC. 

In particular, it showed that the use of a VLC made it easier to control the prob­

lems created by the different growth times of the gratings corresponding to different 

Fourier frequencies. The paper pointed out that if it is desired to form a perfect 

auto-correlation then the JTC would give the best diffraction efficiency since fringe 

contrast would be maximised across the whole transform. However, if it was re­
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quired to correlate an unknown scene against a library of references, then the VLC 

was useful since the reference beam could be used to maintain the fringe contrast 

at some required Fourier plane frequency. Also, since the hologram was read with 

the FT of the reference image, which merely needed to diffract from the already 

formed grating, the reference could be updated arbitrarily quickly. This last point 

was reiterated in another paper by Foote, Hall and Connors [1.59] which compared 

the growth and decay of the photorefractive grating with the cycle time achieved 

with a rapidly chopped beam diffracting from the hologram. While the JTC system 

would take tens of milliseconds to respond if either input image were changed, the 

VLC could operate with one image updated at arbitrarily fast rates.

A GEC paper by Cooper, Laycock et al now reported a VLC architecture. The 

advantages of the VLC discussed in the previous two papers were cited and spatial 

frequency weighted correlation was demonstrated. The correlator used a 633nm read 

beam which, it was pointed out, did not significantly perturb the BSO hologram. 

The hologram writing was accomplished using either a chopped 514nm beam or a 

532nm pulsed laser source. The advantages of the pulsed system were the relaxation 

of stability requirements and an improvement in signal to noise ratio. This latter 

point was due to the absence of any intense writing beams during the hologram read 

out. This in turn meant that there was no light to be scattered into the correlation 

plane from defects in the BSO or other optics. The first experiment [1.60] simulated a 

pulsed laser by the use of an acousto-optic device to chop a cw Ar+ beam. The second 

[1.61] used a pulsed, frequency-doubled Nd:YAG source. The reported rise time for 

the BSO hologram was ~  200 nanoseconds. All the inputs were again simple shapes 

on photographic transparencies. Two more papers, based on this system, appeared 

in 1987 [1.62] [1.63]. The two papers contained mostly the same material, beginning 

with a mathematical model of correlation by non-degenerate four-wave mixing in 

a VLC architecture. Coupled wave theory was used to examine, at a fairly basic 

level, the Bragg matching effects for both the reading and writing image transforms. 

Experimental measurements of the angular selectivity of holograms in BSO were 

presented. It was claimed that the selectivity was only half that predicted by theory
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but no concrete explanation was put forward for this. Correlation results for the 

simple test shapes were shown, although any effects due to the Bragg matching 

constraints were not really evident.

Also in 1987, Vainos and Eason demonstrated multiple correlations performed 

simultaneously by multiplexed matched filters in a single BSO crystal [1.64]. The 

output correlation planes were spatially separated. In the example presented, two 

images, each consisting of four numerals, were correlated with a single numeral ref­

erence but it was claimed that the process could be extended to many more images.

Aldridge reported on correlation work carried out at British Aerospace [1.65]. 

Experimental results were presented demonstrating the dependence of diffraction 

efficiency on fringe modulation and of the response time on input intensity. Results 

for real time edge enhancement and weighted correlation using a VLC were also 

shown; again using photographic transparencies. It was noted that, if the reference 

beam was balanced to the higher spatial frequencies in the Fourier domain, then the 

system response time would increase because of their relatively low intensity.

The last paper from the search was published in 1988 by Coupland and Hali- 

well from Southampton university [1.66]. In this, BSO was used as the holographic 

medium for auto-correlating particle image velocimmetry transparencies using a 

VLC. This paper was significant in the fact that the correlator was being applied to 

the solution of a real image processing problem. However, it should be noted that the 

use of a holographic medium for the performance of auto-correlation is, theoretically, 

unnecessary. This is because the auto-correlation function of an object is just the 

Fourier transform of its power spectrum. Thus, an optically addressed SLM could 

be used to convert the amplitude and phase of an optically produced FT into an 

intensity pattern which could then be optically re-transformed.

The overall picture to emerge from this search was that no new practical corre­

lation systems were reported from the USA subsequent to the 1980 paper by Yariv. 

The main systems work in the UK had taken place at GEC between 1984 and 1987. 

However, this work then ended without any reported correlation system using real 

time input from an SLM. Furthermore, the reported results involved inputs that were
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simple binary shapes. The work at Thomson-CSF had benefited greatly from their 

possession of SLMs, developed in-house, of sufficient quality for optical correlation. 

At the time of commencement of this research, Thomson were working on an ESPRIT 

funded program to develop a compact version of their JTC for industrial inspection 

tasks. However, it was thought that their SLMs were only capable of providing im­

ages with a SBWP of less than 300 x 300 pixels. Furthermore, the JTC architecture 

did not easily lend itself to the production of weighted correlation functions. Thus, 

the construction of a BSO based optical correlator for use, with real time inputs, in 

a high resolution industrial inspection task was considered to be a potentially large 

step forward in this technology area. The use of weighted correlations to provide 

varying degrees of discrimination would also aid the interpretation of the results.

1,1.4 Spatial Light M odulators and Input Im ages

Although the use of BSO in the Fourier plane allows the matched filters to be updated 

in real time, there is still one crucial component needed for a real time system. This 

is a spatial light modulator (SLM), the function of which is to convert input images 

into an intensity modulation of a collimated laser beam. The original images may 

have been imaged directly onto a light sensitive face of the SLM, acquired by a CCD 

camera or generated by a computer. It is not intended to go into detailed descriptions 

of these devices here. For general information on spatial light modulators the reader 

is referred to [1.67] [1.68] and [1.69].

One topic that will be covered in this thesis is the effect on system performance 

of the optical quality and the fidelity of these devices. For this study it should be 

noted that the spatial light modulator may not exactly reproduce the intensities 

of the original scene. Localised changes in the phase of the beam may result from 

the mechanisms used to modulate the beam’s intensity. It may also, like any of the 

other optical components in the system, be subject to defects such as a lack of overall 

flatness or surface roughness. The device intended for use in this research was of a 

type that behaves like an updatable photographic transparency. The SLM is optically 

addressed by an intensity pattern which falls onto a photoconductive layer. The local
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changes in conductivity, thus caused, are used to spatially modulate the strength of 

an electric field applied across a liquid crystal layer. The field modulation in turn 

produces a two dimensional pattern  in the alignment angles of the liquid crystal 

molecules and this modulates the polarisation state of a collimated laser beam. A 

polariser placed after the SLM can then be used to create the intensity image. This 

is as opposed to devices which comprise a m atrix of individual liquid crystal cells 

addressed by an electrode grid to produce a pixellated image. In order to relay 

images, in real time, from a TV system to the SLM, the images are displayed on 

a miniature cathode ray tube (CRT). The CRT’s output can then be imaged onto 

the photoconductive layer of the SLM either by conventional optics or by a fibre 

optic faceplate. The choice of the CRT determines the spatial frequency of the input 

images; since the resolution of the CRT was expected to be somewhat lower than 

tha t of the SLM.

Figure 1.3: Images of machined component (left) with simple computer generated 
hole tem plate inset and their computed cross-correlation (right).

In any discussion of the performance of an optical correlator, the conclusions will 

nearly always relate closely to a specific image processing task. As mentioned at
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the beginning of this chapter, the task considered for this research was a simulated 

industrial inspection process. A generic, machined-metal component was compared 

to a computer-generated model. As one part of this comparison, the various faces of 

the machined component were searched for a sub-feature from a library of images. 

An example of the imagery used is shown on the left of figure 1.3, with a simple, 

computer-generated hole template inset in the top left corner. On the right of the 

figure is a computer generated cross-correlation, formed from edge enhanced versions 

of the two input images.

The crucial feature of the correlation plane is the ratio of the peak intensity to the 

background intensities in the rest of the correlation plane. The magnitude of the peak 

should be such that simple thresholding can highlight its presence whilst eliminating 

the rest of the correlation plane structure. It should be noted that this background 

structure stems from two sources: the first, is noise which may be introduced either 

in the input images or in the processing; the second, is the structure due to the 

cross-correlation of the reference image with the whole input shape. Noise can often 

be reduced by careful system design. However, the cross-correlation structure, which 

dominates the example of figure 1.3, can never be reduced below its minimum level. It 

will, however, take different forms depending on the nature of the edge enhancement 

applied to the images.

It was decided that the optical correlator should be capable of processing grey­

scale images of up to 512 X 512 pixels. It was also decided that the correlator should 

have the capability of cross-correlating two 512 x 512 pixel images; even though, in 

the example task, the reference template was small compared to the input image. 

Since the images were being acquired by a CCD camera it was also decided that the 

target cycle time for the system would be as close as possible to 40ms which is equal 

to a TV frame time.
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1.2 The Photorefractive Effect and the Band Trans­
port M odel

As discussed in the previous section, BSO was selected as the medium in which 

updatable, holographic matched filters would be formed in the Fourier plane of the 

correlator. The mechanism by which BSO is able to form temporary or fixed [1.70] 

holograms is the photorefractive effect. An advantage gained in the selecting BSO 

was that the physical process of hologram formation had been extensively modelled 

by a number of researchers. This allowed the work to concentrate on the correlator 

design. One of the most complete models of this process is the ‘Band Transport 

Model’ (BTM) [1.71]; although a ‘Charge Hopping Model’ [1.72] has also been put 

forward. The actual mathematical formulation of the BTM is not included in this 

thesis but may be found elsewhere [1.71] [1.73] [1.74]. It should be noted that [1.73] 

is, itself, a review paper and contains a further eighty two references. Although 

the mathematical details are not included, it is thought that a description of the 

photorefractive mechanism may be of use to any reader of this dissertation.

It is assumed that defects exist within the BSO crystal, e.g. lattice vacancies or 

atoms of some foreign substance. These defects may be classified into three groups:

1. acceptor sites which may receive and trap electrons, becoming negatively charged 

in the process.

2. donor sites which may lose electrons into the conduction band of the crystal.

3. traps which are those donor sites that have become ionised.

An electron may be lost from a donor site as a result of either photo-excitation or 

by thermal excitation. The ionised donor site (trap) may accept and trap electrons 

although, of course, these could be re-excited again at some later time. The presence 

of the acceptor sites is important because they can trap and hold thermally excited 

electrons. It is usually assumed that every available acceptor site in the crystal has 

been filled by an electron which in turn has come from a donor site. The significance
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of this is that, even in the dark there will be both donors and traps present in the 

crystal.

Consider a situation in which one part of the crystal is illuminated while its 

neighbouring regions are not. In the illuminated region electrons will be excited into 

the conduction band in which they are free to move about the crystal. Since there 

will be a relatively high local concentration of conduction band (free) electrons in 

the illuminated region, there will be a net diffusion into the dark regions. Electrons 

in the conduction band may also be encouraged to move by the application of an 

electric field to the crystal. These electrons will eventually be captured in a trap 

site; however electrons captured in traps in the illuminated region are liable to be 

re-excited again. On the other hand, electrons which become trapped in the dark 

regions are less likely to be moved on if the rate of thermal excitation is not too 

large. Thus, electrons are gradually moved out of the illuminated and into the dark 

regions. This displacement of charge causes an internal electric field to build up 

between the dark and the light regions. This field itself will start to inhibit the 

exodus of electrons from the illuminated regions. Eventually a stalemate will be 

reached when the forces of the internal field exactly counter the diffusive ‘force’ and 

the force of any externally applied field.

At this stage there exists, within the non-uniformly illuminated crystal, a non- 

uniform electric field. This field will not, in itself, affect light passing through the 

crystal. However, BSO exhibits the linear electro-optic effect and its refractive index 

will be altered wherever there is an electric field present. Any non-uniform refractive 

index distribution within the crystal will affect incident light. Since, there will be a 

limit to the size of the electric fields that can be sustained, it is important to note 

that the refractive index change is linearly proportional to the magnitude of the 

electric field. The material parameter that links this refractive index change to the 

magnitude of the electric field is the effective electro-optic coefficient, r e/ / .  Things 

are not quite straight forward however, because re/ /  is actually different depending 

on which orientation of the crystal is being considered. In order to describe the way 

in which the electric fields, and hence the changes in refractive index, build up, the
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BTM may be used.

The starting point of this model is four equations. The first equation concerns the 

rate of change of local free electron density and it takes into account the formation 

and absorption of the free electrons and their ability to drift into and out of a 

local volume. It includes a term for the probability of electrons being excited which 

depends on several factors including incident intensity, local donor concentration and 

temperature. Another material parameter included in the rate equation is the photo­

excitation constant. This is wavelength dependent, being relatively high for green 

light but many times lower in the red part of the spectrum. There is also a term 

for the probability of re-trapping which includes the local concentration of traps and 

also the density of free electrons. Finally there is the term describing electron drift. 

This includes such parameters as the diffusion coefficient, the difference in electron 

concentration between the region of interest and its neighbours, the electron mobility 

and the local electric field.

The second equation concerns the rate of change of local trap site density. It 

contains the same rate terms as the equation for electron generation, which implies 

the assumption that all free electrons present come from and are re-absorbed by 

donor atoms. There is however no drift term since the donor and trap sites are 

immobile within the crystal.

The third and fourth equations are Gauss’s law and a quasi static approximation 

of one of Maxwell’s equations. Gauss’s law relates the derivative of the electric 

field, with respect to the spatial coordinates within the crystal, to the local net 

unbalanced-charge. The fourth equation fixes the direction of the electric field.

These equations illustrate an important fact, namely, that the parameters that 

will ultimately govern the performance of the BSO as an updatable holographic 

medium fall into two groups. Firstly, there are the parameters such as the diffusion 

constant and the donor concentration which axe internal to the crystal itself. Unless 

a large number of different crystals are purchased and characterised, these will be 

unalterable ‘facts of life’ in the construction of the correlator. Secondly, there are 

parameters such as: the temperature, the incident intensity and the applied electric
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field. These parameters may be adjusted when the correlator is set up in order to 

meet, within practical limits, the desired operating characteristics.

The problem with the equations of the BTM is that they are all nonlinearly 

coupled and so, in general, difficult to solve. It is therefore necessary to consider 

some simple situations for which approximations may be used to make solution of 

the equations possible. For hologram formation, the case to consider is that for 

cosinusoidal illumination. In this case, it is assumed that the incident light is a 

uniform grating with fringes in one direction only. As electrons move from the bright 

parts of the fringe pattern to the dark parts a ‘grating like’ electric field distribution 

will result which will in turn lead to a grating like refractive index modulation which 

is basically a hologram. This is illustrated in figure 1.4:
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Figure 1.4: Grating formed by charge separation caused by cosinusoidal illumination.

The mathematical derivation of solutions to the equations of the BTM, including 

solutions for cosinusoidal illumination is found in [1.73]. The results that will be used 

in subsequent chapters are the expressions for the magnitude of the space charge field 

and its temporal behaviour.
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1.3 The Objectives and Scope o f this Research

As mentioned at the beginning of the chapter, this research was undertaken within 

the wider framework of a three year research program, part funded by the EEC. The 

research presented in this thesis concentrates on a thorough design and evaluation 

of a BSO based optical correlator. The starting points for the design were the band 

transport model and the results from coupled wave theory which were used to predict 

the effects of the thick BSO hologram in the Fourier plane. The work addressed every 

relevant practical consideration and lead to a design ready to be constructed on a 

laboratory optical bench.

The key system parameters were:

• the cycle time;

• the images’ space bandwidth product;

• the fidelity of the correlation;

• and the light utilisation.

The variables used to achieve the desired parameters were:

• the laser powers and wavelengths;

• the basic correlator geometry;

• the strength of the external field applied to the BSO;

• the f-numbers of the lens systems;

• the holographic fringe spacing;

• and the polarisations of the write and read beams.

Chapter 2 of this thesis is concerned with the problems presented by the pres­

ence of a thick hologram in the Fourier plane of the correlator. It uses the results 

of Kogelnik’s coupled wave theory [1.75] to predict both the maximum diffraction
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efficiency and the variations in diffracted power that may be expected. The expected 

refractive index modulation is calculated, based on measurements made on a spe­

cific BSO crystal. Expressions are derived for the beam angles in the Fourier plane. 

The problems associated with the depth-of-field of the Fourier transform are also 

discussed.

Chapter 3 considers other factors pertinent to the correlator architecture which 

were studied as the design work progressed. These included problems presented by 

the location of the input images, which axe discussed for the first time with respect 

to optical correlators employing thick holograms. It is also shown how computer 

simulation can be used to determine the optical powers present in the various planes 

of the system. This is used in the design process to specify laser powers. Experimen­

tal results axe presented which allow the prediction of the BSO’s response time for 

any given laser power, applied electric field and fringe spacing. The predictions of 

the BTM and the coupled wave theory also lead to requirements for optimising holo­

graphic fringe spacing. These axe compared to the requirements that axe imposed 

by the need to separate the correlation plane from the undiffracted read-beam. One 

effect, not previously considered in the design of a BSO-based correlator, is that 

of holographic fringes becoming tilted with respect to the applied field. This has 

implications for the image being written into the BSO and the problem is discussed 

and an experimental evaluation carried out. The way in which FTs are stored in 

BSO is compared to their storage in conventional photographic media. A computer 

simulation is presented which leads to some conclusions regarding the effect of the 

holographic storage on spatial filtering of the FTs.

Once produced, the final design was to have been experimentally evaluated with 

respect to correlations performed as part of an industrial inspection task. However, 

a major problem was encountered with a failure to produce the spatial light mod­

ulators for the correlator. The work on the optical system had to be abandoned in 

order to concentrate on other areas within the framework of the overall project. The 

effort that was to have been put into the construction and evaluation of the optical 

system was switched to a computer simulation of spatial light modulator distortions.
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This work provided simulation methods which could be used to assess the require­

ments for SLM quality for the performance of given tasks. It was also concerned with 

demonstrating a suitable experimental method to assess the effects of distortions.

Chapter 4 discusses three areas, with implications for correlators employing op­

tically addressed SLMs. These are: device resolution; large and small scale phase 

distortions; and grey-level distortions. In order to carry out a simulation of the effects 

of these distortions on correlation, the 2N factorial method was proposed as a suit­

able tool. The advantages of this technique are discussed, along with its limitations 

as regards a computer simulation. An example experiment was performed to assess 

SLM distortions relative to the location of a sub-feature -  namely a drilled hole -  in 

the image of a machined component. In this experiment, three distortion parameters 

were modelled and their direct effects on the correlation task were assessed as well 

as the interactions between them.

Chapter 5 relates the results derived in the preceding chapters to the actual sys­

tem parameters that will apply to the optical correlator. An actual system design 

is produced, based on the use of ‘off-the-shelf’ optical components. The equations 

governing the correlator’s performance, are expressed in terms of a few key system 

parameters. This allowed some predictions to be made about the potential for pro­

cessing larger SBWP images in a BSO correlator. The reduction in the number of 

parameters is based on the assumption that the lens’ focal length is selected to match 

the highest Fourier plane spatial frequency to the radius of the BSO crystal.
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A bbreviations/sym bols used in C hapter 2

BSO Bismuth Silicon Oxide (Chapt. 1).

BTM Band Transport Model (Chapt. 1).

CRT Cathode Ray Tube (Chapt. 1).

MSF Matched Spatial Filter (Chapt. 1).

SLM Spatial Light Modulator (Chapt. 1).

B  Bragg angle for hologram.

AB  Difference between read-beam
and Bragg angle.

d Hologram thickness.

Esc Total electric field across BSO.

Ea Electric field applied to BSO.

/  Lens’ focal length.

n Refractive index (of BSO).

An Refractive index modulation (of hologram).

ref f  Effective electro-optic coefficient of BSO.

u Spatial frequency.

Q Hologram thickness parameter.

Az Represents the longitudinal extent of the
Fourier transform.

a  Half-angle between holographic writing beams,
inside holographic medium.

A a Difference between actual a  and
that required to produce fringe spacing A.
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V Diffraction efficiency.

A Hologram’s fringe spacing.

Ac Critical fringe spacing for BSO.

A Free-space wavelength.

Aj>! Aji; Subscripts to denote reading and 
writing of hologram.

* Holographic grating vector angle.
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Unlike the typical matched spatial filters (MSFs), recorded as holograms on pho­

tographic emulsions, the MSFs recorded in the BSO crystal may display significant 

angular selectivity. This is because the physical thickness of the BSO may be of the 

order of millimetres as opposed to photographic emulsions which have thicknesses 

measured in microns. In order to predict the sort of effects that will be encountered 

in the correlator, a theory describing the diffraction of light from thick holograms is 

required. For this work, the coupled wave theory of Kogelnik [1.75] is chosen as it 

provides a relatively simple picture of the diffraction process. This theory results in 

an equation for the diffraction efficiency as opposed to other methods such as those 

of Bruckhardt [2.1] and Kaspar [2.2] which require numerical solutions. The coupled 

wave theory provided results which at least highlighted the main practical problems 

and quantified their relative severity. The first predictions in this section concern 

the maximum diffraction efficiency expected from the BSO. The effects of the holo­

gram’s angular selectivity are then assessed with respect to the angular spread of 

the reading and writing beams. Finally, the validity of using coupled wave theory 

for this work will be discussed and some experimental results presented.

2.1 M axim um  Diffraction Efficiency

The following results for the diffraction efficiency of a lossless, thick transmission 

hologram of arbitrary fringe slant are presented in [1.75]. The results are derived from 

coupled wave theory and the definitions are with respect to the geometry of figure 2.1. 

For phase only holograms, it is assumed in the derivation that the average refractive 

index is large with respect to the refractive index modulation. Note that all the angles 

are defined within the medium of refractive index n and the grating boundaries do not 

represent a transition between regions of different refractive indices. The angles are 

measured with respect to the z axis which is defined as the normal to the boundaries 

of the grating region. The wavelengths are all measured in free space, i.e. outside 

the medium.
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Figure 2.1: Geometry used to describe the diffraction from the volume hologram.

The diffraction efficiency, 77, defined as the power in the diffracted wave produced 

by an incident wave of unit amplitude, is:

sin2 y /v ^ + t20 c*77 =  — S S  =
c r i + 4v

(2.1)

where:
Cr  = cos 9

(2.2)
cs =  cos 0 — (Ar cos (f>f An)

v =  ir A nd/ (Xr y/CRCs) (  =  Ai?7rdsin( 0  — B)/(Acs) 
and B  is the angle of incidence that satisfies the Bragg condition for maximum

transfer from the incident wave to the diffracted wave. The angle AB  is the difference

between the incident angle and the Bragg angle, B, or the Bragg miss-match. The

Bragg angle, B, can be obtained from:

Arcos (<j> — B) = 2A n (2.3)

When a wave is incident on the grating at the Bragg angle, A B  =  0 and the amplitude 

of the diffracted beam is maximised. In this case, it can be seen from equation 2.1 

that, TJrncix «  v2 provided that v «  1 . Furthermore, for small angles of incidence 

and for grating vectors nearly perpendicular to the z axis:

(2.4)
. o (  icAnd \  (  vA n d  \

V m ax  =  S in   ---------   «  T----------B\X r cos B )  \ \ r cos B )
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This indicates that the peak diffracted amplitude will increase as the square of both 

the hologram thickness and the refractive index modulation. For the case of a BSO- 

based correlator, the relatively small values of refractive index modulation will make 

this approximation valid.

2.1.1 Refractive Index M odulation o f BSO

In order to calculate the peak diffraction efficiency expected from the BSO crystal, 

the expected values of index modulation need to be deduced. If an electric field of 

magnitude E  exists at some point in the BSO crystal then the resulting refractive 

index change is given by:

An =  ^ n3ref /E  (2.5)

As described in the introduction, such electric fields can be brought about by a sepa­

ration of positive and negative charge in the BSO. This charge separation will occur 

if the crystal is illuminated with light possessing a cosinusoidal intensity variation of 

the form:

I  =  / 0(1 +  M  cos(27rr/A)) (2.6)

where x is the spatial coordinate in the direction of the grating vector. For this 

intensity profile [1.73] gives the magnitude of the space charge field as:

Êscl = m ((1 + Ed/£s)2+ W ^ ) 2)  ( 2 ' 7 )

where E& is the magnitude of an external electric field applied to the crystal. Ed is 

a constant known as the diffusion field, it is independent of material but inversely 

proportional to the grating spacing.

_  2tt /

" A vT )e d  = - t \  —rr~ (2-8)

where K b is the Boltzman constant, T  the absolute temperature and q the charge on 

the electron. Es is known as the saturation field and is proportional to the grating 

spacing. This parameter takes account of the fact that the maximum field will be 

limited by the number of traps available. The remaining parameter in equation 2.7 

is m. This is the reduced modulation ratio and is less than and proportional to
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the modulation, M , of the incident intensity pattern in equation 2.6. The reduction 

arises from the fact that electrons are excited by thermal processes, even in regions 

of the crystal that are not illuminated. This thermal excitation has the effect of 

reducing the degree of charge separation.

A convenient method for measuring Es is derived from the behaviour of equa­

tion 2.7 as the fringe spacing is varied. As has already been stated, Ed is inversely 

proportional to grating spacing while Es is directly proportional to it. It is therefore 

convenient to substitute the expressions Es =  oA and Ed =  J3/A into equation 2.7. 

If the resulting equation is differentiated with respect to grating spacing, it is found 

that, for the case of no applied field (Ea = 0):

d\Esc\
dA

y— /  a/32 -  a 2f3A2\  .
~  ^  V (aA3 +  J ( )

The grating spacing at which this expression is equal to zero is known as the critical 

fringe spacing, Ac, given by Ac =  yJ/3/a. The second differential at this point is 

also seen to be negative, indicating a maximum. At this point the modulation of 

the space charge field is a maximum and Es =  Ed =  i.e. the saturation and

diffusion fields are equal. The value of space charge field at this point is known as the 

critical field E c* By setting up a two beam coupling experiment, the fringe spacing 

that maximises the coupling, Ac, can be measured. Since, from equation 2.8, (3 is a 

collection of fundamental physical constants, the second constant of proportionality, 

a , can be calculated from the measured value of Ac*

In order to illustrate the effect of the applied field on \Esc\, figure 2.2, shows 

\ESC\ plotted against fringe spacing for applied fields of 0, 1, 2 and 4 kVcm-1. To 

produce the curves, m was taken as 1.0, Ed as 1.57 x 10-6/A kVcm-1 and Ac as 

0.5/xm. As expected, the plot for Ea = 0 shows a peak at the critical fringe spacing 

of 0.5/mi. The important point to note is that, for fringe spacings greater than Ac, 

the space charge field increases with applied field. Thus, the diffraction efficiency of 

any holograms formed in the BSO can be increased by the application of an external 

field which is a very well known result.
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Space Charge Field Vs Fringe Spacing

E a = 4 kV/cm4.0-1

1.5-

1.0 -

0.5 -
Ea =0 kV/cm

0.0
0 1 2 3 4 5 6 7 8 9  10

Fringe Spacing (Microns)

Figure 2.2: \Esc\ varying with fringe spacing for various applied fields.

Furthermore, at sufficiently large fringe spacings, the increase in the saturation field 

means that equation 2.7 reduces to \E$c\ w E& and thus the space charge field be­

comes independent of fringe spacing. This variation in behaviour with fringe spacing 

will be important in the correlator design since a range of fringe spacings will be 

produced by the writing beams.

We now have, from equation 2.1, an expression for the peak diffraction efficiency 

of a hologram of thickness d with a refractive index modulation of An. The expected 

refractive index modulation can be derived from equation 2.5, knowing the magnitude 

of the electric field present in the crystal. For the case in which the crystal is 

illuminated with a cosinusoidal grating, the expected electric field magnitude is given 

by equation 2.7. If the grating spacing is sufficiently large, the field within the crystal 

will be approximately equal to the externally applied field. The fringe spacing that 

has to be exceeded for this to be true is the critical fringe spacing, Ac. This can 

be determined by a relatively straight forward experiment to measure the two beam 

coupling strength, as a function of grating spacing, in the absence of an external 

field. This same experiment will also allow the determination of the various electric
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field terms of equation 2.7. However, two other effects must be taken into account: 

namely the absorption of light by the BSO; and the Fresnel reflections at each of 

the two crystal surfaces. As will be discussed in chapter 3, the decision was taken to 

read out the hologram with light of 633nm wavelength rather than the 514nm that 

would be used to form the holograms. Values for the absorption coefficient and the 

refractive index of BSO are:

Wavelength, A 633nm 514nm
Absorption coefficient, a 1.0cm-1 2.5cm-1

Refractive index, n 2.54 2.61

For the 1mm thick BSO crystal at near-normal incidence these imply total transmis­

sions of 60% at 633nm and 50% at 514nm.

For the BSO sample to be used in the correlator, the electric field was applied in 

the < 110 > direction and the relevant electro-optic coefficient was r41 . Experiments 

were carried out in order to measure the value of r 41 for the BSO crystal. These 

gave:

r4i =  (3.6 ±  2) x 10“12mV-1 (2.10)

This compared well with measurements by Foote [1.74] but is lower than the com­

monly accepted value of 5xlO-12mV-1 or the value of 4.25xlO-12mV-1 by Bayvel 

[2.3].

In order to measure the critical fringe spacing, a two beam coupling experiment 

was performed with no externally applied electric field. The coupling was measured 

as the ratio of the intensity of a weak probe beam with and without the presence of 

a strong pump (the beam ratio was «  1000 : 1). The results are shown in figure 2.3 

together with a theoretical curve for \Esc\’ The theoretical curve was generated 

using a critical fringe spacing of 0.55/mi and was scaled in order to match the peak 

values. The overlap of the experimental and theoretical data confirmed that the 

critical fringe spacing was approximately 0.5/^m. This corresponds to a critical field 

of 3kVcm-1.
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Figure 2.3: Coupling in two wave mixing as a function of fringe spacing. Circles 
show experimental data while the solid line shows a normalised theoretical curve for 
Ac=0.55jxm.

Thus, assuming that the grating spacings are significantly larger than 0.5/im, the 

expected value for the maximum diffraction efficiency will be:

’ = G 02 ( ( T ^ ) ^  = h27 x 10'4̂  (2-n)
where d is measured in cm and Ea in kVcm-1. This assumes that the refractive index 

modulation is small as are all the beam angles. The second and third terms are the 

expressions for absorption and Fresnel transmission at two surfaces respectively.

2.2 Variations in Diffraction Efficiency

The BSO hologram in the correlator architecture will be both read and written by 

beams which subtend a cone of angles. In order to investigate the effects of varying 

beam angles, graphs may be plotted from equation 2.1.
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2.2.1 Changes in R ead-B eam  A ngle

The first thing to be considered is the effect of changing the read-beam angle away 

from the optimum Bragg condition. Figures 2.4 and 2.5 show the variation of diffrac­

tion efficiency with read-beam angle. The angle is measured relative to the Bragg 

angle of the hologram, given by equation 2.3. Figure 2.4 shows three plots for holo­

grams of different thicknesses with a constant fringe spacing of 7/xm. Figure 2.5 

shows the effects of varying fringe spacing for a 1mm thick hologram. It should 

also be noted that all beam angles are measured within the holographic medium. 

A value of Ea =5kVcm_1 was used to determine the maximum diffraction efficiency 

for the hologram. The graphs illustrate the quadratic increase in peak diffraction 

with hologram thickness, as well as the increase in angular selectivity for the thicker 

holograms. At an angle of 0.75°, for example, it can be seen that there is actually 

greater diffraction from the thinner hologram compared to the thicker ones. Thus, 

there will be a trade off between peak height and angular selectivity and this is dealt 

with later. In the case of varying fringe spacing, the three holograms are seen to pro­

duce the same peak efficiency, each at its own particular Bragg angle. An increase 

in fringe spacing leads to a decrease in the angular selectivity of the hologram. An 

often used parameter is the half-power angle, i.e. the Bragg mismatch that causes the 

diffraction efficiency to fall to half its maximum value. This will be approximated 

[1.75] as:

2A B l ss ^  (2.12)

Some sample calculations, using the half-power approximation, have shown that 

it gives a value of 0 .47/mox, and not 0.57/max, when substituted into equation 2.1. 

However, this only makes a significant difference for the broader selectivity functions. 

If the maximum Bragg miss-match is known, then the hologram thickness may be 

optimised to produce the maximum diffraction efficiency when this miss-match is 

present. This is important since it is the weakest diffraction signal present in the 

system that will ultimately limit the performance. Two competing effects are present: 

firstly, the maximum diffraction efficiency increases with thickness; and secondly, 

there is a decrease in the minimum to maximum efficiency ratio.
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Figure 2.4: Diffraction efficiency vs read-beam angle at a constant fringe spacing but 
for different thicknesses of grating.
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Figure 2.5: Diffraction efficiency vs read-beam angle for different fringe spacings but 
with a constant thickness of d =  1mm
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Equation 2 .1  can be rewritten:

sin V (« * +  4*)<P sin2 (c<f)
v = ------ 7 7 1 ? ------ =  ~ T ~  (2' 13)

1 + ¥
Where d is the hologram thickness and:

a =  7 c A n / ( \ Ty/ c R C S )

(2.14)
b =  ABnsm(<l> — B)/(Acs)

To maximise rj with respect to the hologram thickness the expression above may be 

differentiated with respect to d and the result equated to zero.

a - ^ - ,  < « >

Ignoring the solution d =  0, the above expression is true when the argument of the 

sine function is a multiple of w. Hence, the optimum thickness which maximises the 

diffraction efficiency for a given deviation from the Bragg angle is given by:

( 2 - 1 6 )

Thus, the diffracted power at the edge of the field of view of the read-beam can 

be maximised at the cost of increased variation across the input field. It should 

be noted that the hologram is only strongly selective in the direction parallel to 

the grating vector and movements of the read-beam in a direction perpendicular 

to this have relatively little effect [1.62]. In order to remove the angular effects on 

the read-beam, it would be possible to place a blocking filter in the system, with a 

transmission profile which is the inverse of the angular selectivity function. In this 

case, the angular selectivity would reduce the apparent peak diffraction efficiency, 

since this value would be reduced to that produced at the edge of the field of view. An 

even better solution would be to use beam shaping holograms to change the intensity 

profile of the incident laser beam [2.4] in order to counteract the selectivity effects. In 

theory, this could greatly improve the light utilisation of the system. A third solution 

would be to perform a simple digital operation on the captured correlation plane, to 

boost the intensity values at its edges. This, however, would lead to different signal 

to noise ratios across the output plane unless the output detector had a sufficiently
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large dynamic range. All things considered, the transmission mask would seem to 

be the simplest effective solution.

2.2.2 Changes in W rite-Beam  A ngle

The second case to consider is that in which the angles of the writing beams are 

vaxied. It will be assumed that the read-out beam has been Bragg matched to a 

hologram formed by two plane writing beams of free-space wavelength A^. However, 

this may not necessarily be equal to the read-out wavelength. This initial hologram 

is then altered by changing the angles of the writing beams whilst the read-beam 

angle remains fixed. The two writing beams initially interfere in the medium, with 

a relative angle of 2a, as shown in figure 2.6. The fringes, being lines of constant 

phase, are shown as dotted lines.

90-cx

Figure 2.6: Grating formed by two interfering beams.

Figure 2.6 also shows an expanded view, from the geometry of which the fringe 

spacing, A, may be calculated.

A =  ^  (2.17)
2 n sin a  2 na

Note that, it is again assumed that all beams are in the holographic medium and so 

the wavelength is Aw/n.

The grating vector K is perpendicular to the fringe planes, i.e. perpendicular to 

the angle bisector of the two writing beams. For this study the initial conditions will
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always be with the bisector lying along the z axis, i.e. with <f> =  7 r /2  in figure 2.1. 

If the read-out beam now remains stationary whilst the angle of one of the writing 

beams is changed, this will effect the intensity of the diffracted beam. To quantify 

the actual effects produced, the system geometry shown in figure 2 .7  is considered.

Change in 
grating vector

Fixed reference 
beam

Aa
Changing object beam angleRead out beam

Figure 2.7: Varying the writing object beam angle with fixed reference and read- 
beams.

The writing beam that is approximately counter propagated by the read-beam 

has been named the ‘reference beam’, whilst the other is designated the ‘object 

beam’. This is done in anticipation of the Vander Lugt correlator architecture which 

the holographic system will be part of. Initially, with Aa=0, the grating spacing is 

given by equation 2.17 and the fringes are parallel with the z axis. In order to Bragg 

match the read-out beam to this grating, it is set at an angle of B ^ a~0). Note that, 

if Xw=Xr then B  =  a, i.e. the read-beam counter propagates the reference beam.

£ ( a „ = o )  = B in ' 1 ( A . )  "  i f  (2-18)

First, consider the effect of changing the angle of the object beam by an amount 

Aa; it is conventional to denote anti-clockwise rotations as positive. The angle be­

tween the two beams becomes 2 a  — A a since, for a positive value of a , the angle is 

reduced. Two affects axe observed; firstly the grating fringe spacing changes and sec­

ondly the fringe orientation changes (a fact that was omitted from the brief analysis
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of [1.48] but noted by [1.62]). The grating fringe spacing becomes:

A,/, Afi»
( 2 .1 9 )2n sin[(2a — A a)/2 ] n(2a — Aa)

It is important to remember that if the fringe spacing becomes too large, the grating 

will cease to constitute a thick hologram and the analysis will break down. The 

grating vector now makes a different angle with the z  axis, given by:

<£( Aa) =  « — (2a — A a ) / 2  +  7r/ 2

= A a » (2'2°)
2 +  2

Note that anti-clockwise rotation of the object beam causes an anti-clockwise rotation 

of the fringes. Now the Bragg condition given by equation 2.3 must be satisfied with 

respect to the new values of A and <j> given by the two previous equations.

'A a 7r _ \  Ar
cos

For small angles, this rearranges to give:

K
A,„ 2

=  (2.22)

which gives a Bragg mismatch of:

AB^a —■ B^a=o

A a
~2 (*-£)

(2.23)

If AB  is positive then the read-out beam is displaced in an anti-clockwise direction 

from the required Bragg angle. Note that if \ w =  Ar then AB  is zero for all object 

beam angles, which is a well known result. In this case the effects of changes in 

the fringe angle and the fringe spacing exactly cancel. It is interesting to note that 

for write and read wavelengths of 514 and 633nm respectively, the Bragg mismatch 

produced is only about one tenth of the actual angular change in the object beam 

angle. If the expression of equation 2.12 is considered, this in turn suggests that 

the angle associated with a drop in power to the half-peak value will be ten times 

that associated with the read-beam. Figure 2.8, which was computed using a full
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unapproximated form of equation 2.23, illustrates the change in diffraction efficiency 

with object beam angle. It assumes writing and reading wavelengths of 514nm and 

633nm respectively and shows the effects of varying BSO thickness. The read-beam 

is fixed at the angle required to Bragg match it to an initial 7/zm grating and the 

object beam is then moved towards (positive Aa) and away from (negative Aa) the 

reference beam. As expected the actual sensitivity of the system to changes in object 

beam angle is less than that for read-beam angles. In the case of figure 2.8 it would 

be expected that a change in read-beam angle of only 0 .2 ° would have caused the 

diffracted signal to fall to half its peak value.

0.7-1 d =  1.5mm

0.6-

d — 1 .0 mm

d =  0.5mm
0.1

0.0
0.5 1.00.0—0.5- 1.0

Object Beam Displacement (degrees)

Figure 2.8: Diffraction efficiency varying with object beam angle for a system initially 
set up with A =  7 /xm

The plot of figure 2.8 is asymmetric; reducing the angle between the two writing 

beams has less effect than the corresponding increase. This is due to the higher 

angular tolerance of large fringe spacing holograms, with A appearing in the denom­

inator of £ in equation 2.1. If higher initial fringe spacings are used, the symmetry 

of the curves improves. This is due to the fact that, at higher fringe spacings, the 

relatively small angular changes needed to reduce the diffraction efficiency to zero

63



will only cause a small percentage change in grating spacing.

If, instead of the object beam, the reference beam angle is changed then the fringe 

spacing will become:

A «  A™ ... (2.24)
2 a  +  A a v '

This is the same expression as that derived previously but now a positive value of 

A a leads to a decrease in fringe spacing. The angle required for Bragg matching to 

the altered grating spacing is the same as before and so the Bragg mismatch AB  is 

now given by:

^  ( l  +  A A  (2.25)

This expression is identical to equation 2.23 except for a change in sign of the brack­

eted term. For a given value of Aa:

A-BAa(Ref«)  Ar -f \ w .
A £ Aa(Obj) ~  Ar -  Atu K

For the case when Ar =  633nm and A*, =  514nm, a rotation of the reference beam 

produces a Bragg mismatch that is about ten times worse than that caused by an 

equal rotation of the object beam. This means that the effect of a given angular 

change in the reference beam would be roughly equal to the equivalent change in the 

read-beam. This is important if one considers a joint transform correlator in which 

two images, each with a large field of view, are being cross-correlated. In this case, 

one of the images will suffer from the same angular selectivity problems as an image 

imposed on the read-beam in the Vander Lugt architecture. Thus, for large images, 

there is nothing to choose between the two architectures from the point of view of 

angular selectivity.

If the hologram is being interrogated by a read-out beam of the same wavelength 

as the writing beams, then changes in the object beam angle have no effect. Figure 2.9 

illustrates the case for a grating with an initial 2 ẑm fringe spacing (which intensifies 

the angular selectivity effects). The hologram is 1mm thick and three curves are 

plotted for read-beam wavelengths of 514, 570 and 633nm. Thus, if it is required to 

correlate a large field of view image with a small reference, the ideal solution would 

be a system with 514nm read and write beams. The large field of view image could
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then be placed on the writing beam with minimal angular selectivity effects being 

observed. However, if the image on the read-side is large, then it will produce high 

intensities in the Fourier plane which will, in turn, perturb the hologram.

Ar =  514nm

0.4-

Ar =  570nm

Ld

Ar =  633nm0.1-

0.0
- 1.0 -0.5 0.0 0.5 1.0

Object Beam Displacement (degrees)

Figure 2.9: Diffraction vs object beam angle for a 1mm thick hologram with an initial 
fringe spacing of 2 /rni

When considering the case of changes in the read-beam angle, it was shown that 

the effects could be negated by the use of a spatially varying intensity filter. In the 

case of the writing beams however, this solution is not appropriate. In this case, the 

strength of the signal due to a particular part of the image can only be manipulated 

by altering the modulation of the hologram fringes formed by it. However, every 

point in the Fourier transform plane potentially contains information from every 

point in the image; so no filtering can be applied in this plane. If any attempt is 

made to alter the intensities in the image plane on the write side of the correlator, 

the results will be unpredictable. This is because the act of reducing the intensity 

of one part of the image will merely alter the part of the Fourier spectrum that the 

reference beam is balanced to: a fact that was overlooked by [1.62]. Altering the 

intensities in the image plane, may only have the desired effect in the case when the
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reference beam is balanced to the d.c of the Fourier transform.This will not usually 

be the case since the unweighted correlation functions thus produced are of little use 

for image processing.

It would seem therefore that there is little that can be done as far as correcting 

the problems due to an angular spread in the writing object beam. However, the 

relative reduction in the angular selectivity on the writing side of the hologram 

suggests that this may not pose a serious problem for the proposed system. If the 

problem was found to be significant, then an alternative approach to producing edge 

enhanced correlation could be used. One such approach could use a reference beam 

intensity that was balanced to the d.c. of the Fourier transform. In this case, edge 

enhancement could be performed by using an incoherent erase beam to remove the 

area around the d.c.

2.2.3 Beam  A ngles Produced in th e Correlator

Given expressions for the variation of diffraction efficiency with beam angle, it re­

mains to derive expressions for the angles that will be found in the correlator. In 

order to do this, a ray matrix formulation is used. Four system parameters are con­

sidered: the focal length of the Fourier transform lens; the physical size of the input 

image; the spatial frequencies associated with it; and its distance from the lens.

r._
i ____i

.......

lout

D

... Lout

Figure 2.10: Fourier transform of a grating image.

Figure 2.10 illustrates a lens which is forming the Fourier transform of a grating
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which has an amplitude transmission of:

T0 =  sin(27ixju) (2.27)

where u is the spatial frequency of the grating. The grating is an example of a simple 

image comprising only a single spatial frequency. The images fed into the correlator 

will obviously contain many frequencies but the CRT/SLM combination will limit 

the maximum frequency present. The grating is probed by a relatively small laser 

beam parallel with the optical axis of the system. This small probe beam allows 

an examination of the change in beam angles in the Fourier plane as a function of 

position in the input plane. The ‘image’ is at some arbitrary distance D from the 

lens; and the plane of interest is the lens’ back focal plane. On passing through the 

grating, the beam is split into two diffracted orders, at angles of ±Au to the optical 

axis. In order to calculate the angle and the distance from the axis of this ray in the 

Fourier plane, standard ray matrix notation (chapter 6  of [3.2] for example) may be 

used.

( t ' ) - 0  ° ) C ‘  " ‘ " ) U ? ) ( £ ) .  ,2 2 8 )

On performing this matrix multiplication, and making the substitution 0,n =  ±Au, 

it is found that:
rout = /Aw

f  -  - 7 - 4 - 7 )  < * * »

The expression for rout is the well known result for the scaling of the Fourier trans­

form. It is important to note that if D = f  then the angles of the rays in the Fourier 

plane are determined solely by the position from which they originated. In this case 

the magnitude of the angular spread depends only on the size of the input image 

and the focal length of the lens. In the correlator architecture, the optical axis of

the system shown in figure 2.10 will be Bragg matched to the BSO hologram. Any

ray with an output plane angle of zero, as given by equation 2.29, will be diffracted 

with maximum efficiency. Any change in angle will lead to a drop in diffraction for
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the particular part of the image and/or spatial frequency considered. It is important 

to note that the angles produced by the lens will be multiplied by a factor of 1 /n  on 

entering the holographic medium.

2.3 Validity o f th e U se o f Coupled Wave Theory

The coupled wave theory is very useful for predicting, in a conveniently expressed 

form, the behaviour of a thick holographic element in the correlator. It is important 

to assess those conditions under which the theory may become invalid; and what the 

consequences of such failure may be as regards the design process.

In the derivation of the coupled wave theory it was assumed that the only waves 

propagating in the hologram were the read-beam and one diffracted beam. In this 

case the hologram could be described as ‘thick’. However, as the fringe spacing 

increases, or as the hologram thickness is reduced, more diffracted orders will be 

seen. Eventually the alteration of the hologram parameters will produce an output 

which is seen to be the Fourier transform of the refractive index modulation-profile. 

In this case the hologram can be described as thin. The thin hologram possesses 

the important property that its diffraction efficiency is independent of read-beam 

angle. In [1.75], Kogelnik put forward a grating parameter Q, which was originally 

considered in the field of acoustic diffraction.

0  =  ^  (2.30)

It was suggested in [1.75] that the coupled wave theory will give good results when 

Q >  1 , and that it begins to give good results when Q =  10. However, Kaspar [2.2], 

in his extension of Brukhardt’s work, suggested that the coupled wave theory will 

give good results for low Q values when the refractive index modulation is small. 

Since, for the BSO crystal, it is expected that this will be the case, this finding tends 

to support the use of coupled wave theory for the correlator design even if Q falls as 

low as 1.3 [2.2].

Further support for the assumption that low refractive index modulation extends 

the usefulness of the coupled wave theory can be found by considering the diffraction
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efficiency predicted for thin holograms. In particular it is the thin phase grating that 

is of interest. In order to predict the strength of the first-order diffracted beam from 

a thin hologram, the analysis presented by Goodman on page 69 of [1.5] is used. In 

this reference the transmittance function of a phase grating is Fourier transformed 

and expressions for the maximum intensities in the far field pattern axe obtained. 

The transmittance function used in [1.5] is:

t(x i v) =  exP [*Y  sin(27r/0a;)| rect rect ( j j  (2.31)

In this expression, m represents the peak-to-peak excursion of the phase delay and f Q 

is the frequency of the grating. To match this to the parameters used in the coupled 

wave theory, the identity given below may be used.

47rAnd
m  =  — -—  (2.32)

This is the phase delay introduced as the light travels through a thickness d, with 

maximum and minimum refractive indices of n ±  An. Another important difference 

between the notation in the two theories is the inclusion of boundary conditions in 

the thin hologram calculations. Unlike the coupled wave theory, the thin hologram is 

contained in a square aperture of side /. In order to take this into account, a square 

aperture may be imposed on the diffracted order of the thick hologram. This is done 

by considering the diffraction pattern formed by a square aperture, illuminated by 

a plane wave with an intensity predicted from the diffraction efficiency for the thick 

hologram.

The peak intensity in the qth order produced at a distance z from the thin phase 

grating is given in [1.5] as:

f]\thin\max — 2) (2.33)

Where Jq is a Bessel function of the first kind, order q. Note that in order to be 

valid this expression assumes z »  I. To compare this with the coupled wave theory 

result, the fax field pattern of a square aperture of side / illuminated by a plane wave 

of intensity rj[thick]max (from equation 2.4), must be considered. The peak intensity
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of the far-field pattern can be simply obtained from tlhe expression for the intensity 

pattern given in [1.5] as:

U  =  hn ( j A  (2.34)

where /,n is the intensity incident on the aperture. By replacing 7tn with the ex­

pression for r)[thick]max from equation 2.4, and substiituting for m into the equation 

for T)[thin]max, the following expression is obtained ffor the ratio of intensities for 

diffracted orders from thin and thick holograms:

T)[thin\max _ /  Ji (2wAnd/X)\ 2 __ f J i(2 x )\ 2 
rj[thick]max \  sin (7r And/A) /  \s in (a ;))

But, for small x , the following approximations axe vallid:

Ji(2x) w x and sin(a?) fssa x (2.36)

x will be small if the refractive index modulation, Am, of the grating is small and in 

this case:

T j\th iT i\m ax  w T)[thick]maix (2.37)

Thus, the two theories, derived in totally different wayrs, give the same peak diffracted 

signal. In fact, with a hologram thickness of lmm„ An values of up to 7 x 1 0 ” 5 

lead only to a 1 0 % difference in the diffraction effiiciencies predicted by the two 

theories. This equality implies that, in figure 2.8, tlhe diffraction efficiency should 

climb back towards the peak Bragg matched value ait some point before the object 

and reference beams become colinear. Since the hologram will then be thin, the 

diffraction efficiency will subsequently be independent of beam angle. As there is no 

predicted drop in diffraction efficiency, it will be beneeficial to use holograms as close 

to the thin regime as possible.

In the derivation of coupled wave theory it was ; assumed that the fringe profile 

was cosinusoidal. However, the predictions of the BJTM suggest that this may not 

be the case if the modulation of incident intensity friinges approaches 1 . In this case 

the profile of the refractive index grating may be far * from the idealised form used in 

the prediction of the diffraction efficiencies of the thiick and thin holograms.
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Figure 2.11 is a sketch of the fringe profiles taken from [1.73] and it shows the 

case for a photorefractive material with an applied field.
1.0

0.8 -
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Low m o d .

High mod.0.4 -

az
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0.0
2 3 4 5 70 1 6

Position on grating.

Figure 2.11: Fringe profile for different grating intensity modulations.

It is outside the scope of this work to predict the precise effect of this alter­

ation in fringe profile on the coupled wave theory. It is usually assumed that only 

the fundamental Fourier component of the grating interacts with the incident light. 

This assumption is based on Bragg matching considerations. The modified fringes of 

figure 2.11 can be considered as a Fourier sum of a large number of different cosinu­

soidal gratings. However, it is assumed that the read-beam is only Bragg matched to 

one of these gratings, the fundamental. There will be no diffraction from the other 

components since these, having different periods will require different Bragg match­

ing conditions. If the amplitudes of the other Fourier components became relatively 

large, then significant signals might be obtained when nearly Bragg matching to these 

otli components. This might appear to broaden the angular selectivity when the 

amplitudes of other Fourier components, near the fundamental, become large. If the 

hologram becomes thin, the effects, on diffraction, of the changes in the fringe profile 

could be predicted by computing its one dimensional Fourier transform. In some 

experiments, in which a He-Ne laser was diffracted from a high modulation grating, 

multiple diffraction orders were observed suggesting the non-sinusoidal profile of the 

fringes.
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When predicting how a shift in the object beam angle would affect the diffracted 

signal, it was assumed that refractive index modulation was independent of fringe 

spacing. This implies that the electric fields, present in the material, are dominated 

by the externally applied field, as discussed earlier in this chapter. This will be true 

only at fringe spacings significantly larger than the critical fringe spacing, Ac. As 

described in the previous section, this fringe spacing was measured as approximately 

0.5//m. From the curves of figure 2 .2 , it would be expected that, in this case, the 

diffraction efficiency will remain constant with grating spacing for values higher than 

about 5/im. In order to test both this, and the predictions concerning the peak 

diffraction efficiency, a non-degenerate four wave mixing experiment was carried out.

1.5-

it 1-° iu
&
% 
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j§ 0-5H
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12 14 16 18 20 22

Grating Spacing (microns)

Figure 2 .1 2 : Diffraction efficiency varying with fringe spacing for a 1mm thick BSO 
hologram with an applied field of 5kVcm_1. Diffraction efficiency should be constant 
(solid line).

Diffraction efficiencies were measured at fringe spacings between 10 and 22/im. 

The results were produced by probing a grating, written with an Ar+ laser, with 

a beam from a He-Ne laser. The intensity modulation of the writing grating was 

approximately unity and a field of 7kV was applied across a 14mm wide, 1mm thick 

BSO crystal. The results are shown in figure 2 .1 2  and have been re-scaled to include
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the losses due to absorption and reflections that attenuate the probe beam as it 

passes through the BSO.

For this BSO sample, a fringe spacing of 1 2 /im corresponded to a holographic Q 

parameter of 10. Thus, for fringe spacings greater than this the hologram may be 

moving into the thin regime. However, as predicted, the diffraction efficiency remains 

approximately constant. The average value is 1.7%. However, from equation 2.11 

a value of 0.3% would have been predicted. This discrepancy is more than could 

be accounted for by having underestimated the value of r^ . It was thought that it 

was due to an inaccurate measurement of the actual voltage across the region of the 

crystal that was supporting the hologram.

The coupled wave theory is derived assuming that the polarisation of the read- 

beam is perpendicular to the plane of incidence shown in figure 2.1. For the system 

being considered here, it may be desirable, from signal to noise considerations, to 

use different input polarisations. Even if, at the front face of the crystal, the polar­

isation corresponded to that used in the derivations, it would be altered by optical 

activity and field induced birefringence as the beam passed through the crystal. In 

an appendix to [1.75] Kogelnik considered the effect of polarisation on the maximum 

diffraction efficiency for light polarised parallel to the plane of incidence. It was 

shown that, for a grating vector angle of tt/2 , the coupling constant was reduced by 

a factor of cos(2B). It is interesting to note that for Bragg angles of up to 9° the re­

duced coupling constant would still be 95% of the one for perpendicular polarisation. 

However, it could be possible that polarisation effects decrease the apparent thick­

ness of the hologram as suggested in [1.62]. This will happen if polarisation changes 

decrease the diffraction efficiency towards the back face of the crystal. Thus, most of 

the diffracted signal would be produced in a layer of reduced thickness at the front 

of the hologram. In this case, the reduction in angular selectivity would be accompa­

nied b) reduction in the peak diffracted signal. However, it should be noted that, 

for a 1mm thick sample of BSO, the rotation of a linearly polarised beam at 633nm 

will be only about 24°which can be translated to ±12°about the optimum angle for 

diffraction. Also, the maximum phase difference between the o and e waves, due to
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the field induced birefringence, will only be 0.16A.

In figure 2.1 the grating is embedded in a medium of the same average refractive 

index as the grating itself. In reality, the grating in the BSO will be bordered by 

two air interfaces. Thus, the grating is inside a Fabry-Perot oscillator. The effects 

of this were discussed in another paper by Kogelnik [2.5]. The discussion centres 

on the calculation of the peak Bragg matched efficiency of the grating. It does not 

specifically include angular matching effects, other than the change in the apparent 

Bragg angle of the system. In the case of small refractive index modulation, it was 

shown that the peak efficiency calculated by the coupled wave theory should be 

modified by:

(1 -  R)2(l +  2Rcos(2/3d) +  R2)
W  Vma* ̂  _  R1y  +  4 fi2(! + C0 S2(2 /3d)) _  4ii(l +  R?) cos(2fid) (2-38'

Where R  is the power reflectance of the grating boundaries and /?, a propagation

constant for light in the medium, is given by (3 =  (27rn/A) cos B. Note that B  is

still the Bragg angle in the grating medium. By plotting the modifying term against

cos(2 fid) it can be found that the limiting cases are when the cosine is equal to plus

or minus one. For the BSO crystal, R  can be calculated from the Fresnel equations

and, if n is taken as 2.5, R  =  18% at near-normal incidence. The two limiting cases

then give 2 .1 0 ?]max and Q.2Srjmax respectively, which represents a significant change

in the diffraction efficiency. Note that the effect is very oscillatory in terms of both

the Bragg angle, B, and the hologram thickness, d. At near-normal incidence, a

change in d of A/2n will cause cos2(3d to change from -1 to 1. This would make the

diffraction efficiency very difficult to predict. It was found however, that the BSO

crystal was wedge shaped, with a difference in thickness of 50A between opposite

edges. Because of this, the result of the multiple reflections will be fringes across the

output, the fringe modulation being about 0.4.

In order to test the angular selectivity predictions of the coupled wave theory, a 

simple experiment was performed on a 1mm thick sample of BSO. The diffraction 

efficiency of a He-Ne laser beam was monitored as a function of its angle of incidence, 

measured with respect to the holographic fringe planes. The efficiency was monitored 

by a photo-detector placed in the diffracted beam; and care was taken to ensure that
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the results were not influenced by variations in the probe beam intensity. A fringe 

spacing of 1 0 /im was used with an applied field of 7kVcm-1. The experimental results 

are shown in figure 2.13, together with a theoretical curve generated from Kogelnik’s 

equations.
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Read—Beam Angle (degrees)

Figure 2.13: Experimental data (circles) and theoretical prediction (curve) for vari­
ation of diffraction efficiency with read-beam angle.

The theoretical curve has been rescaled to take account of the fact that the 

experimental angles were measured outside the BSO. This meant that the actual 

angular change of the light addressing the holographic grating was about 2.54 times 

less than that measured outside the crystal. It can be seen from the figure that 

theory and experiment are in good agreement unlike the results reported by [1.62]. 

However, it is difficult to assess where the discrepancies between the two sets of 

results may have arisen.

2.4 D ep th  o f Field in the Fourier P lane

The advantages of using long focal length lenses in the presence of thick holographic 

media extend beyond the reduction of angular selectivity. The longer the focal length
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of the transform lens, the greater will be the ‘depth of field* through the Fourier 

plane. It must be assumed that, for a moderately thick BSO crystal, the hologram 

will extend through its entire thickness. This is because there will be no significant 

attenuation of the writing beams as they pass through the crystal. However, the 

precise Fourier transform is located at a discreet plane and is bordered by Fresnel 

diffraction patterns on either side of it. An analysis of this depth of field may be 

found in [3.9]. Here, the through focus intensity pattern for a converging spherical 

wave, diffracted by a circular aperture, is derived. An expression for the separation 

of the two zero intensity points either side of the geometric focus, for an aberration 

free system, is derived. Measurements made on an actual diffraction pattern showed 

that this separation is misprinted in [3.9], as a factor of 4 is ‘lost*. However, from an 

examination of the text it is found to be:

Az =  4An f ^  (2.39)

where a is the radius of the aperture. The refractive index, n, was included as it is 

the depth of field inside the BSO crystal which is important.

2.5 Conclusions

The results of the coupled wave theory are useful for the design of the correlator 

architecture, because they lead to an analytical solution. Thus, it is relatively easy 

to make predictions about the behaviour of a thick hologram in the Fourier plane of 

the system. In general it can be seen that, because of the hologram’s angular selec­

tivity, it is important to keep the read-beam as close to the Bragg angle as possible. 

Thinner holograms, and holograms with larger fringe spacings, will show less angu­

lar selectivity. However, the peak Bragg-matched diffraction efficiency will decrease 

with the square of the hologram thickness. In terms of the read-beam, the angular 

selectivity effects may be neutralised by simply placing a filter, with an appropri­

ate intensity transmission profile, in the read-beam. This will reduce the diffracted 

power, across the whole of the output plane, to the value of the minimum diffraction 

at the edges of the input image. If the maximum angular spread is known, then the
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crystal thickness can be optimised to produce the greatest possible diffraction at the 

limits of the angular spread.

Changing the angle of the write-side object beam will change both the grating 

spacing and the angle of the grating vector. If the write and read-beams are of the 

same wavelength these effects exactly cancel. In the correlator architecture, it is 

expected that wavelengths of 514nm and 633nm will be used respectively to write 

and read the holograms. Even with this wavelength difference, a change of object 

beam angle produces only one tenth of the Bragg miss-match that would result 

from an equivalent change in the read-beam angle. The effect of decreasing the 

read wavelength is an increase in predicted diffraction and a reduction of angular 

selectivity. However, it would be accompanied by an increase in the absorption of 

the read-beam in the BSO which would perturb the hologram. Unlike the case for 

the read-beam, the angular selectivity, due to changes in object beam angle, cannot 

be rectified by a simple transmission filter. This is because changes in intensity in 

the image plane will change the intensity of the corresponding light in the Fourier 

plane. If weighted correlation functions axe being produced, these changes in the 

Fourier intensities will alter the spatial frequencies to which the reference beam is 

balanced. Thus, the effect will be to produce different degrees of edge enhancement 

for different parts of the write-image, and not different apparent intensities. The 

angular spread of the writing object-beam is not expected to be a problem however, 

because of the reduced angular selectivity on the write-side.

It is also important to consider the validity of the theory in the context of the 

design task. The results for a 10//m fringe spacing match the theory very closely 

in terms of variations in efficiency with beam angle. Ultimately, decreasing the 

hologram thickness, or increasing the fringe spacing, will produce ‘thin’ holograms 

for which the theory is not correct. These thin holograms are predicted to have the 

same efficiency as the thick holograms but without the angular selectivity. Another 

effect, occurring at small fringe spacings, is a variation of diffraction efficiency with 

fringe spacing. However, it is not expected that these conditions will be encountered 

in the correlator.
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Other effects that may alter the performance of the hologram are: the effects of 

non-cosinusoidal fringe profile; polarisation effects; and multiple reflections from the 

faces of the BSO. A measurement of peak diffraction efficiency produced a result 

that was five times higher than that predicted. It is thought however, that the 

most important factor will be the angular effects and not the maximum diffraction 

efficiency. It is hoped that the coupled wave theory will at least predict the worst 

possible effects to be encountered. If the actual effects observed in the final correlator 

system are less severe than expected, this will be of benefit, but it will not be relied 

upon.
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A b b reviation s/sym bols used in Chapter 3

BSO Bismuth Silicon Oxide (Chapt. 1 ).

CCD Charge Coupled Device (Chapt. 1).

CRT Cathode Ray Tube (Chapt. 1).

d.c. Zero-spatial-frequency component of FT (Chapt 1.).

FT Fourier Transform (Chapt 1.).

MSF Matched Spatial Filter (Chapt. 2).

SLM Spatial Light Modulator (Chapt. 1).

Ar+ Argon ion (laser) (Chapt. 1).

D Separation of two lenses in a compound lens.

E'a is the applied field (Chapt. 2 ) normalised
by the critical field.

Esc Total electric field across BSO.

/  Lens’ focal length (Chapt. 2).

I  f t  Intensity in the Fourier plane.

k 27r/A

lpmm- 1  Line-pairs per mm (spatial frequency).

N x N Number of pixels in an image (Chapt. 1).

Plaa Laser power.

t b s o  Half-width of clear aperture of BSO crystal.

Tim Half-width of input image aperture.

T1 / 2  Time for grating to decay to give half the
maximum diffraction.

u Spatial frequency.
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a  Half-angle between holographic writing
beams (Chapt. 2).

A Hologram’s fringe spacing (Chapt. 2).

Ac  Critical fringe spacing for BSO (Chapt. 2 ).

A Free-space wavelength (Chapt. 2 ).

Ar: Xw Subscripts to denote reading and 
writing of hologram.

r} Diffraction efficiency (Chapt. 2).

Tg Exponential rate coefficient for growth of
field in BSO.

v Holographic grating frequency normalised
by the critical grating frequency.

t c Dielectric lifetime for BSO.

0 2 is a diffusion length parameter.

6 Tilt of holographic grating vector with respect
to the direction of the applied field.
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During the course of the design work, several important topics were identified 

that were not covered by previously published papers. The work that was carried 

out, in order to fill the various gaps, is reported in this chapter. The effect of the 

input plane position is considered both from the point of view of the correlation plane 

position and from that of the beam angles produced in the Fourier plane. Following 

this, the selection of the read and write-wavelengths and the requirements for the 

Fourier transform lenses are discussed. It is shown how a lens, of any required focal 

length, can be constructed from a pair of standard ‘off-the-shelf’ components. The 

use of ray-tracing lens analysis for selecting appropriate lens combinations is also 

discussed.

The powers required in the read and write-beams are dictated by: the sensitivity 

of the output plane detector; the applied field; the thickness of the BSO crystal; and 

the required BSO response time. It is shown in this chapter how computer simulation 

can be used to compute the intensities in both the Fourier plane and the correlation 

plane.

An effect, not hitherto considered, is that of tilted hologram fringes. If the 

holographic grating vector becomes miss-aligned, with respect to the applied electric 

field, this will cause the diffraction efficiency to fall. There will always be some 

points in the write-side image that will produce these tilted fringes. Expressions 

for the degree of fringe tilt produced in the correlator are derived and experimental 

results are presented which measure the severity of the effects.

In the previous chapter, it was shown that the use of large holographic fringe 

spacings reduces the angular selectivity of the holograms. A limit on the maximum 

fringe spacing is imposed by the need to separate the correlation plane from the 

undiffracted beam. At the same time, the minimum fringe spacing must be signif­

icantly greater than the critical fringe spacing A<7 . In this chapter, expressions for 

the maximum and minimum allowable fringe spacing are derived.

Unlike holographic film, the holographic recording in BSO is much less subject 

to intensity saturation effects. This alters the way in which the recorded ampli­

tude of a Fourier transform relates to its original amplitude. In this chapter, a
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one-dimensional, digital simulation of hologram storage is carried out. This allows 

conclusions to be drawn about the differences between BSO and holographic plate 

storage.

One other area included in the correlator design, is the optimisation of the read 

and write-beam polarisations. Although not examined in detail in this research, the 

subject is reviewed in this chapter for completeness.

3.1 Effect o f Input P lane Positions

In order to construct a compact optical correlator, it is often desirable to place an 

image close to its Fourier transforming lens. The Fourier transform is unaltered ex­

cept for the addition of a quadratic (spherical) phase function. If a standard, Vander 

Lugt correlator is employed, then the same optical set up is used to both record 

and replay the holograms. Thus, the phase conjugation process, that is inherent in 

this situation, removes the additional spherical phase front. In the BSO correlator 

however, different lenses and wavelengths may be used to read and write the MSFs, 

and the removal of the spherical phase term is not guaranteed.

3.1.1 The Location o f th e Correlation Plane

In this section, an expression for the location of the correlation plane is derived. It 

is shown that this location depends on the wavelengths used for reading and writing 

aiid on the positions of the input images relative to the lenses. In the previous 

chapter, expressions were derived for the angles of rays in the Fourier plane. These 

angles were shown to depend on: their point of origin in the image; the distance of 

the image from the lens; and the spatial frequency with which they are associated. It 

is shown here that unwanted, complicated spatial filtering effects can be introduced 

if the images are not in the front focal plane of the lens.

To determine the location of the correlation plane, three independent sets of optics 

must be considered. These are: the read-side, the write-side and the correlation plane 

lenses. This is summarised in figure 3.1. Note that, in this case, it is assumed that the 

correlation plane is formed by the specific inclusion of a lens after the hologram. It
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has been suggested [3.1], that more compact systems can be formed by removing this 

lens and using a converging reference beam to form the MSF. However, as discussed 

in the previous chapter, it is undesirable to introduce an angular spread into the 

holographic reference beam.

Read X.

d r f r

BSO

-JL

Write Aw

g (*.y) g (x,y)
BSO

Correlation Xr g * g

Figure 3.1: Schematic diagram of reading and writing arrangements and the corre­
lation plane.

In the system of figure 3.1, an auto-correlation of the image g(x,y) is being 

formed. Each replica of the image may be at an arbitrary distance (dr and dw) 

from the two Fourier transforming lenses of focal lengths f r and f w respectively. In 

addition, the read and write-beams may be of different wavelengths; Ar and Xw. The 

Fourier transform of g is multiplied by its conjugate via the hologram formed in the 

BSO crystal. The result of this multiplication is then Fourier transformed by a lens 

of focal length f c to form the correlation plane, which is imaged at a distance Z  

behind the lens. In order to derive an expression for Z , two approaches will be used. 

One of these involves an examination of the mathematical expression for the optical 

Fourier transform, and the second involves a simple geometrical optics approach.

Referring to figure 3.1, the amplitude distribution at the BSO, formed by the 

transform of g on the read-side is (from [1.5] for example) :

A = <?(„,„> exp ( x 2f + j£ ) ^ 1  -  (3.1)

Where G denotes the Fourier transform of p, u =  x p /frK  links the Fourier plane 

coordinates to frequency space and k =  27r/Ar. If the image g is not in the front focal
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plane of the lens -  i.e. dr ^  f r then the quadratic phase factor, described by the 

complex exponential term, is non-zero. This is equivalent to the Fourier transform 

being superimposed on a spherical wavefront.

The spherical wavefront effect can be easily demonstrated by considering an input 

image g(x, y) =  £(x,y), where 8 is the Dirac delta function, i.e. a point source. If 

this source is placed in the front focal plane of the lens then a plane wave results; 

the exact Fourier transform of the delta function being unity over the Fourier plane. 

However, if the delta function is moved away from the lens, the beam is converging 

through the Fourier plane.

d

8 (x,y)

f f

Figure 3.2: Fourier transforming a Dirac delta function

In terms of geometric optics, the lens is forming a real image of the point source, 

as illustrated in figure 3.2. Conversely, if the delta function is moved towards the 

lens then a diverging beam is formed. In this second case, the lens forms a virtual 

image of the point source. It may be noted from equation 3.1, that if dr > f r 

then the argument of the exponential is negative. Thus, it can be stated that, if 

the argument of the exponential is negative; the spherical wavefronts produced are 

converging onto a point to the right of the Fourier plane. Conversely, if the argument 

of the exponential is positive, dr < / r , then the spherical wave is diverging from a 

point to the left of the Fourier plane.

Now consider the case when the Fourier transform of a Dirac function is recorded 

in the BSO hologram. This is equivalent to recording a simple holographic lens. To 

record the lens, the function 8(x, y) is placed at a distance dw from the lens f w of
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figure 3.1, i.e. on the write-side of the system. The amplitude recorded is:

A hoi =  1 x exp |  i (x \  +  y2F) ^1 -  j -  j  (3.2)

To read this hologram with a plane wave a second delta function is placed in the 

front focal plane of lens f r. The output of the hologram at the hologram plane, is 

then Ar x A*hol, where * denotes the complex conjugate. Hence the result is:

Aout =  1 x 1 x exp ^[-t] (x2f +  y2F) ^1 -  (3-3)

If dw > f w then the argument of the exponential in equation 3.2 is positive, i.e. 

the diffracted read-beam waves axe diverging. This is consistent with the geometric 

optics/phase conjugation picture shown in figure 3.3.

BSORead Write

f2 d2

Figure 3.3: Simple holographic lens replayed by plane wave

Now consider the case in which this holographic lens is read out by a spherical 

wave formed by placing a point source at dr ^  / r . The amplitude immediately after 

hologram is then given by:

=  exp ( i  ( 4  +  y2p) ( l  -  I )  exp {[-i] ( 4  +  y l)  ( l  -

(3.4)

This result may be written as Aout — exp(t7rC(x^ +  yF)) where C is given by:

c= ^ +i S r 4 - ^  (35)
If C is positive then the beam is diverging after the hologram, if C is negative then 

it is converging.
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This approach can again be compared with a simple model baaed on geometric 

optics. The lens formed in the hologram may be assessed with reference to figure 3.3. 

The focal length of the holographic lens, viewed from the write-side of the system, 

is the distance between the hologram and the point at which a plane wave recon­

structing it would either appear to, or actually focus (the lens may be negative or 

positive). This is simply given by:

r  „. c (  f v j d w \ t  _  f w  
J h  — V J w  —  I t  r J J w  — J _  r 

\ ( * w  J w /  0>W J v
(3.6)

However, light from the read-side of the system sees a lens of opposite sign, the 

strength of which is altered by a factor of XW/XT. Thus:

fh f l
fuj y Ar J (3.7)

The input on the read-side may again be considered as a point source, this time 

being imaged by a two lens system. This system comprises lenses of focal lengths 

f r and fh, separated by a distance f r as shown in figure 3.4. The final image of the 

point source is at a distance Vhoi from the hologram. If Vhoi is positive, then the rays 

converge after the hologram; if it is negative, then they diverge.

The first lens forms an image of the point source at a distance vr from the lens. 

This image becomes the object for the second lens, the lens to object distance being 

f r — vrj i.e. the lens separation minus vr.

$ (x,y) BSO

di Vhoi

Figure 3.4: System formed of lens f r and holographic lens
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It may be shown that Vhoi is given by:

Vk°l f f + l h - f r f h  (3'8)

Substituting for fh from equation 3.7 it is found that:

A f 2 f 2_ _____________^wJrJw____________  /o q\
k°l K t f f w  +  l w d r f l - K f i d v - K f r f I  '  ’

From equation 3.9 it can be shown that in order for v^i  to be negative:

dw + t V > A  + t V  (3-10)
K f l  ^ r f r  ^ r f r  ^ w f u

If Vhoi is negative then the wave fronts are diverging after the hologram and, from 

equation 3.5, it is seen that this is the same requirement as that for the argument 

of the quadratic phase factor to be positive. Hence the two methods again produce 

consistent results.

It should be remembered that the correlation plane is formed by a lens of focal 

length / c, located at a distance f c from the hologram. To derive the required ex­

pression for Z, the inverse problem may be considered. That is: at what distance, 

from lens / c, should a transparency of the correlation plane be placed, such that its 

transform would match that calculated by multiplying the transforms of the write 

and read-images.

In order to produce a solution, the images considered axe again Dirac delta func­

tions, the auto-correlation of which is another Dirac delta function. Since the phase 

factor is radially symmetric, the comparison can be carried out along the xp  axis 

without loss of generality. The problem may then be expressed as the need to satisfy 

the following equation:

= p  ( [ - 0 4  ( i  - 1 )  =  = p (  j .
(3.11)

where the hologram output, given by equation 3.4, is compared with the conjugate 

of the Fourier transform of the correlation plane. By comparing the arguments of the
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exponentials, it can be shown that the value of Z satisfying this condition is given

* - 4 i +£ -? )+£(s-E)] (312)
It is known that the required correlation function, for two input Dirac delta 

functions, is another Dirac function. The input point source on the read-side can be 

considered as being imaged, by a three-lens system, to form the correlation plane. 

These three lenses are: the lens of focal length / r; the holographic lens; and the lens 

of focal length f c. The image distance, corresponding to the two lens system, f r and 

the holographic lens Vhoh has already been derived in equation 3.9. This image now 

becomes the object for lens / c, the distance between object and lens being f c — Vhoi- 

The final lens to image distance Z, is the distance from lens f c to the correlation 

plane. This is obtained from:

(3-i3>
On substituting for Vhoh 311 identical expression to that given in equation 3.12 is 

obtained.

Another test case was also considered, in which an image g(x,y) > at a distance dr 

from lens / r , is correlated with a Dirac delta function in the front focal plane of lens 

f w. The result of this correlation should be a re-imaged version of This is

obvious since the input image is transformed, diffracted from a plane grating and 

re-imaged by lens f c. On malting the substitution dw = f w in equation 3.12 it is 

found that:

z  =  f '  + y - ( j )  d* (3-14)
This is simply the equation for the image distance of a telescope formed by two lenses 

of focal lengths f r and / c, separated by a distance f r -f / c, which is again the correct 

result.

3.1.2 Unwanted Spatial F iltering Effects

After this analysis had been carried out, a second effect due to the position of the 

input images was noted. In this case, movement of the input plane away from the
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front focal plane of the lens alters the angular spread of the light in the Fourier plane. 

This is seen from equation 2.29, of chapter 2, when D ^  / .  In this case the beam 

angles at the hologram are a function of both the position in the input image and 

the spatial frequency.

To illustrate these combined effects, the expression for the beam angles was com­

bined with equation 2.1 of chapter 2. Equation 2.29 allowed the calculation of a 

ray angle, produced by any combination of image position and spatial frequency. 

Equation 2.1 was then used to predict the diffraction efficiencies, associated with the 

various angles. The case of a 10/xm grating, in a 1mm thick hologram, probed by a 

633nm read-beam was used. Rays originating from three positions within the input 

plane were considered. The distances of these positions from the optical axis were 

expressed as a fraction of the focal length of the lens, / :  they were 0.0, 0.01/ and 

0.02/. For each position, the diffraction efficiency was plotted as a function of spatial 

frequency. It should be noted that the spatial frequencies were either negative or 

positive depending on which half of the Fourier plane was being considered.

Two graphs are plotted for the read-beam: the first, figure 3.5, illustrates the case 

when the input plane is at a distance of 0.75/ from the lens; the second, figure 3.6, 

illustrates the case when this distance is 0.25/. In plotting the graphs, account was 

taken of the change in angle as the rays enter the BSO. It was assumed that the 

optical axis of the Fourier transforming lens lay at the Bragg angle of the hologram. 

Therefore, at the zero spatial frequency point, the efficiencies for the three different 

rays show the angular selectivity effects across the input plane. For both input plane 

to lens distances, a pronounced, asymmetric variation of the diffraction efficiency 

was observed as a function of spatial frequency. This would correspond to a spatial 

filtering operation. The exact form of the filtering depends on the point from which 

the rays originate in the input plane; i.e. the image would be subject to position 

variant filtering. This in turn implies that the effects could not be compensated for 

by any sort of global filtering of the image’s Fourier transform, prior to the BSO. 

Thus, if it is wished to avoid complicated spatial filtering effects, the input plane 

for the read-image should be located close to the front focal plane of the Fourier
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transforming lens.

Figure 3.7 shows the same effects computed for the writing object beam. This 

plot is for a distance, between input plane and lens, of 0.25/ but shows a negligible 

variation with spatial frequency. This is because of the much smaller Bragg -tuning 

caused by changes in write-beam angle as discussed in chapter 2.

Although an expression has been derived for the location of the correlation plane, 

its position in the actual optical system will be measured by carrying out test cor­

relations. If an edge enhanced auto-correlation is performed, the output detector 

can be moved through the correlation plane in order to locate the peak signal. In 

theory, the reference beam should be balanced to the high spatial frequencies which 

should produce the largest through-plane variation in the correlation output. This 

is analogous to the through focus change when an apertured, collimated beam is 

focussed down by a lens.

1.0-1

=  0.0tn

UJ

=  0.01/tn

0.2- = 0.02/tn

0.0
0-20 -10 10 20 30-30

Spatial Frequency (Ip/mm)

Figure 3.5: Variation of diffraction efficiency with read-image spatial frequency for 
points at 0, 0.01 and 0.02/ from the optic axis. The input plane is 0.75/ from the 
Fourier transforming lens.
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Figure 3.6: Variation of diffraction efficiency with read-image spatial frequency for 
points at 0, 0.01 and 0.02/ from the optic axis. The input plane is 0.25/ from the 
Fourier transforming lens.
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r in =  0.0
Tin =  0.01/ 

Tin =  0.02/

Spatid Frequency (Ip/mm)

Figure 3.7: Variation of diffractipn efficiency with write-image spatial frequency for 
points at 0, 0.01 and 0.02/ from the optic axis. The input plane is 0.25/ from the 
Fourier transforming lens.
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In this case, the larger the aperture, the more rapid is the expansion of the beam 

around the focal point. By balancing the reference beam to the higher frequencies 

of the MSF, light from the edges of the Fourier plane is being collected by lens f c 

which focusses it down to form the correlation peak.

In order to test this hypothesis, a computer program was written to produce 

defocussed correlation planes. The method of achieving this was to form an auto­

correlation, with a spatial frequency weighting to simulate the holographic storage 

characteristics of the BSO; this is discussed in more detail in a later section. The 

auto-correlation result was stored as a data file of complex numbers. A second 

program was then used to inverse-transform this file, in order to return to the Fourier 

plane, and then impose a spherical phase front onto the transform. When this was re- 

transformed, the result was a defocussed correlation plane. At the time of writing, 

the amount of defocussing was only controlled by the curvature of the spherical 

wavefront applied to the transform; so the results were not related to actual lens, 

image or wavelength parameters. However, it was only necessary to demonstrate the 

fact that balancing the reference beam amplitude to higher spatial frequencies would 

increase the through focus variation. Thus, actual numbers were not required.

The test image used was a 28 x 28 pixel square embedded in a 64 x 64 pixel image. 

Results axe shown in figure 3.8, for a reference beam with an amplitude 4 times lower 

than that of the d.c. of the Fourier transform. The figure shows a slice through the 

maxima of three auto-correlation peaks. On the left is the ‘perfect’ result, while in 

the centre is the result of adding a spherical phase front with a maximum difference 

of 7r radians between the centre and the edge of the Fourier plane. On the right of the 

figure is the same correlation result, but with the distortion increased to 2ir radians; 

increasing the defocussing. A repeat experiment with an amplitude 32 times lower 

them that of the d.c. is shown in figure 3.9. The much bigger change in the correlation 

peak intensity would obviously ease the task of locating the true correlation plane.
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Figure 3.8: Slices through three computer generated correlation planes with a ‘per­
fect’ result on the left and progressive degrees of defocussing in the two other peaks. 
The BSO hologram was simulated with a reference/d.c. beam ratio of 1:4.
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Figure 3.9: Repeat of the above but with a reference/d.c. beam ratio of 1:32.

9 5



3.2 Lens and W avelength Requirem ents

It has already been shown that the angular selectivity of the hologram in the Fourier 

plane of the correlator can reduce diffraction efficiency and restrict the location of 

the input images. It is imperative to reduce, as far as possible, the angular spread 

of the light originating from the read and write-images. One important factor to 

consider is the lens’ focal length, which should be maximised to reduce the angles 

in the Fourier plane; as can be seen from equation 2.29 in the previous section. 

However, there are limits to the focal lengths that can be used. This is because of 

the physical size of the Fourier transform which is equal to 2 f \u max\ where umax is 

the maximum spatial frequency in the image. This size should not exceed the size 

of the BSO crystal available for recording the hologram. If it does, vignetting will 

take place and spatial frequency information will be lost. This is equivalent to a 

reduction in the resolution of the system. If the limits of the lens’ focal length have 

been reached, and the hologram is still too angularly selective then one solution is to 

use a larger aperture BSO crystal. This will allow a further increase in focal length, 

reducing the angular spread. An increase in the size of the crystal however, may not 

be straight forward, because of the difficulty of maintaining a uniform applied field. 

The only other alternatives are to use a thinner crystal, at the expense of diffracted 

energy, or to increase the fringe spacing.

It was decided to use a read-beam wavelength of 633nm. The reason for this was 

the relative insensitivity of the BSO to light of this wavelength which should reduce 

the chances of the read-out process perturbing the hologram. This was considered 

especially important, since, if it could be read out with relatively high intensities, 

the hologram could be thinner or the applied electric fields smaller. The thinner 

hologram would be less angularly selective; while applying a smaller field would lead 

to an increased speed of response. The writing beams would be provided by a cw Ar+ 

laser and would therefore be at a wavelength of 514nm. Since the write and read- 

images would be relayed to the optical system by identical CRT/SLM combinations, 

the maximum spatial frequency, umax would be the same for each image. Given a
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BSO crystal with a clear aperture of 2tbso, it would be necessary to arrange for the 

products of the focal lengths and wavelengths of the write and read-sides to conform 

to:
tbso

Umax
(3.15)

Thus, different lenses are required for the write and read-sides of the correlator, 

their focal lengths being determined by the BSO aperture.

3.2.1 Tw o-Elem ent C om pound Lenses

The use of arbitrary focal lengths could be an unattractive proposition, since custom 

made lenses would be relatively expensive. Furthermore, new lenses would have to 

be made each time it was desired to change the system parameters. Fortunately, 

a simple compound lens can be constructed from two ‘off-the-shelf’ components, to 

provide a flexible solution to the problem.

Front
Focal
Plane

a

A

V

Back
Focal
Plane

D

Figure 3.10: A two element compound lens.

Figure 3.10 shows a simple compound lens comprising two ‘thin lenses’ of focal 

lengths f \  and / 2 , at locations 0 \  and 02, separated by a distance D. The compound 

lens has a focal length F  and principal planes at H\ and H2 . The focal length of the 

compound lens is given in [3.2] as:

i _  J _  1 D
F f i  f i  / 1 /2

(3.16)
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The locations of the principal planes relative to the lenses are given by:

FD FD
0\H \  =  ~~z and 0 2H2 = — (3.17)

J2 J l

These lengths are positive if the principal plane lies to the right of the lens and 

negative if it lies to the left.

One condition that was imposed during lens selection, was that a reasonable 

‘clear-space’ should exist between the individual lenses and the front and back focal 

planes of the combined element. It was also desirable to select lenses which minimised 

the overall distance between front and back focal planes. Another important consid­

eration was the required lens diameter. To compute this diameter for both lenses of 

the combination, ray matrices may again be used. Consider a ray, associated with

the maximum spatial frequency in the input image (u )T originating from a point

at the edge of the input image which will be designated as r\n =  rjm in equation 2.29. 

If the input image is situated in the front focal plane of the compound lens then, 

as can be seen from figure 3.10, this ray will travel a distance of F  — 0 1H1 before 

reaching the first lens: remembering that 0\H \  is negative if the principal plane lies 

to the left of the lens. After passing through this lens, the ray travels a distance

D before reaching the second one of the pair. The ray matrix equations needed to

calculate the distance of the ray from the optical axis at each lens are then:

; ) ( Ar )  <3is>

( i ;)(; ;)(*£•) ‘3i9>
Since the input image was assumed to be square, the required lens radius was y/2 

times the calculated ray-axis distance. Multiplying the matrices and substituting for 

0\H \  gave the following radii for the two lenses:

riensi =  \/2rim + y/2F\umax ^1 -  (3.20)

riena2 =  F\u,mox + V2rim ^1 -  (3.21)
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It was noted that FXumax was the radius of the Fourier transform being formed by 

the lens. Thus, in order to form large Fourier transforms, larger aperture lenses 

will be needed. Another important parameter was the rate of change of the focal 

length of the combination with the separation of its elements. If this change is too 

rapid, it would be difficult to control the focal length of the lens without building 

the individual components into a sub-assembly. From equation 3.16 it can be seen 

that the rate of change of F  with D is given by:

dF F 2
dD h h  (3'22)

Thus, lens combinations with the largest product of individual focal lengths will be 

the easiest to set up.

It is also be useful to know the errors that might be caused by the assumption 

that the lenses are thin, and by the errors in the focal lengths of the individual 

components. The errors quoted in [3.3] for achromatic doublets are ±2% and ±5% 

for negative singlet lenses. Also, the distance D in equation 3.22 is measured between 

the second principal plane of the first lens and the first principal plane of the second 

as shown in figure 3.11.

0,H,

Figure 3.11: Thick lens version of the two-element compound lens.

An inspection of tabulated values in [3.3] suggests that measuring between lens 

centres will produce typical errors in D of 5mm. This might represent an error of 

around 5% but it will be different depending on the lens combination chosen. The
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error in F  can be estimated using:

<"■>’ -  {w :!/i) ’ + [w ,” ) '  * ( S H ’ izn)
Where 6fi is the absolute error in f i ,  i.e. 0.02/|. The absolute error in D is taken as 

5mm. This expression can be evaluated for equation 3.16 to give the absolute error 

in the focal length. Dividing this expression by F  then gives the fractional error. For 

a system which employs a positive doublet and a negative lens the error is given by:

where all lengths are in mm. This figure was of relevance in selecting a lens combi­

nation to produce a particular focal length.

A simple computer program was written to select, from a set of available lenses, 

elements for a compound lens of specified focal length. The program calculated the 

relative positions of the lenses and principal planes, as well as the probable error 

in the focal length. The rate of change of focal length with lens separation was 

also calculated. Since an enormous number of combinations were generally possible, 

restrictions were placed on the selection. These included: limiting the total length 

between front and back focal planes; stipulating a minimum clearance of 100mm 

between the lenses and the focal planes; and stipulating a minimum separation of 

10mm between the lenses. These restrictions were imposed with a view to facilitating 

the setting up of the optical system. The lenses were selected from a set including 

positive focal lengths of 200, 250, 300, 400, 500, and 750mm, and negative focal 

lengths of -200, -250, -300, -400 and -500mm. The program then ordered the possible 

combinations according to the total distance between the front and back focal planes.

As an illustrative example, a focal length of 452mm was selected. As will be seen 

in chapter 5, this corresponded to the expected image resolution of 22.71pmm-1 and a 

clear aperture in the Fourier plane of 13mm diameter. The wavelength was assumed 

to be 633nm. In this case, the best combination was found to be a pair of 750mm 

focal length lenses separated by a distance of 255mm. The total front to back focal 

plane separation was 851mm, which was less than twice the focal length because the 

two principal planes are overlapped. The probable error was 1.2% while the value
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for dF/dD  was just 0.4, suggesting good tolerance to lens separation accuracy. The 

required lens diameters would be 27mm for the first lens and 28mm for the second 

lens, which are also readily obtainable. One of the worst combinations was a positive 

200mm lens separated by 89mm from a 200mm negative lens. In this case the total 

length was 992mm (longer than 2F), the probable error in focal length was 10.7% 

and the value for dF/dD  was calculated as -5.1. The required lens diameters were 

42mm and 27mm and the first of these is a large diameter for a 200mm lens.

In the above discussion, the criteria for selecting a given lens combination were 

based on the geometric optical properties of the lenses. However, another important 

consideration, from the point of view of the correlator, was the effect of lens aber­

rations on the Fourier transform. Using a very simple extension of the analysis of

[1.5], the effect of lens aberrations on an optical Fourier transform can be assessed. 

In [1.5] a multiplicative phase function was derived to describe a radially symmetric 

lens comprising spherical surfaces. This expression was inserted into a diffraction 

integral describing the observed amplitude distribution resulting from the light dis­

tribution in a previous plane. In the case of an image placed against the lens, the 

amplitude at the back focal plane of the lens is given by:

exp [«r(zj +»/)/(A /)] 
iX f

(3.25)

where ti(x,y) is the lens transfer function. This expression describes a unit ampli­

tude plane wave illuminating a transparency of transmittance f ( x ,  y). This modified 

amplitude field is then immediately incident on a lens represented by a multiplicative 

phase function. The light then forms a diffraction pattern Uf at a distance /  behind 

the lens. The lens transfer function, from [1.5], is:

ti(x,y) = exp[z27rnA0/A]exp [—i7r(a:2 -f y2)/(A/)] (3.26)

x J  J  f { x ty)ti(x}y )exp

Uf ( x f , y f ) . =
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Note that all expressions were derived assuming that the regions of interest are 

much smaller than the separation of the planes. The lens transfer function, for 

instance, when multiplied by a plane wave, produces an approximation to a spherical 

wavefront for x and y «  f .  The first term is merely a uniform phase delay 

representing the finite thickness of the lens, Ao being its thickness at the optical axis. 

When the lens transfer function is inserted into the diffraction integral, the terms 

exp[±A(x2 +  J/2)] cancel. The remaining expression represents the Fourier transform 

of /(a?,y), with respect to spatial frequency components (u ,r) =  (z //A /,y //A /). 

The Fourier transform is not exact, being multiplied by a quadratic phase function, 

but for correlation this term mainly affects the position of the output plane. In a real 

system, the ideal approximation, that an incoming plane wave will be converted to a 

spherical wave, will be inexact. The lens will, in general, introduce aberrations into 

the transmitted wavefront. Thus, a lens transfer function, including the aberration 

terms should be substituted into the diffraction integral. In order to do this the 

nature of the aberrations has to be considered.

The aberrations can be quantified as deviations from perfect performance as 

illustrated in figure 3.12.

Ideal Wavefront
Aberrated Wavefront

W(x,y)

Figure 3.12: Wavefront aberrations produced by a lens.

The collimated beam, entering the lens at some arbitrary angle, should be converted 

to a spherical wave, ideally converging on the image point p. However, because of 

lens imperfections, the wavefront immediately behind the lens may take an aberrated 

form; represented by the heavier line in the figure. All the rays from this wavefront 

do not travel to the ideal image point, which becomes spread out or blurred. At each
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point on the wavefront emerging from the lens, the optical path difference W(x,y)  

between the actual wave and the ideal spherical wave can be measured. W(x,  y) is 

known as the wavefront aberration and the path difference is measured along the 

rays from the ideal reference sphere to the image point.

For axially symmetrical optical systems, the wavefront aberrations are shown to 

depend on ray angles and position of the rays in the exit pupil of the lens ([3.4] for 

example). However, for the Fourier transforming process, these angles and positions 

depend on the point in the input image and the spatial frequency with which a given 

ray is associated. Thus, ignoring a constant phase term, the lens transfer function 

for a system including aberrations might be written:

*/(*> V) =  exp[tW(x, y, tz, v)] exp [—i7r(a:2 +  y2)/(A/)] (3.27)

Note that this assumes a small angle approximation since the wavefront aberrations 

are measured in the z  direction rather than along the actual rays. When the expres­

sion of equation 3.27 is inserted into equation 3.25 the light distribution in the back 

focal plane of the lens is found to be:

rr / n e x p  \in{x) +  y J ) / ( A / ) ]
Ui{xj,ys) =  -----------1------------7 7 7 ---------------------- -

7 (3.28)

X J  J  f ( x , y )  exp[i\V(x, y ,u ,v)}  exp {—i27r(ux -)- vy)]dxdy 

Ignoring the quadratic phase term this is seen to be:

Uf  =  (exp[t'W(a;, y, u, v)]) * (f ( x , y)) (3.29)

which is the Fourier transform of f (x,  y), convolved with the Fourier transform of the 

wavefront aberration. However, since the wavefront aberration itself depended on the 

particular spatial frequency being considered, this becomes very difficult to evaluate 

for functions comprised of many spatial frequencies. The actual position of an object 

in the input image will also effect the result. Two references were found which dealt 

with the effect of lens aberrations on the Fourier transforming process [3.5] [3.6]. 

These authors circumvented the problems by only considering images containing a 

single spatial frequency, that were also centred on the optical axis. The images were
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a pupil function filled by a grating, and were placed at the lens. This effectively 

involved computing or measuring the point spread function of the lens as a function 

of the angle of tilt applied to it. No attempt was made to extend the analysis to more 

complex images. The two papers were also concerned with the Fourier transforming 

process rather than a correlation system.

It was noted that [3.5] also considered the effects of aberrations in the collimating 

optics of the optical transforming system. The wavefront aberration used was of a 

quadratic form which, although not mentioned in the paper, was equivalent to de- 

collimating the beam. Thus, the analysis was effectively considering the effects of a 

defocus in the Fourier plane. Such problems would normally be resolved by carefully 

setting up the system and ensuring that the BSO hologram was at the observed focal 

plane of the lens.

In a standard Vander Lugt correlator, any aberration information would be 

stored, with the reference Fourier transform, in the matched filter. The same lens 

would be used in the recording and replaying of the filter. If the object were centred 

for both recording and replaying, it would be possible to form a good auto-correlation 

as the aberrations would be phase-conjugated by the MSF. The price paid for the 

presence of the aberrations however, would be a loss of shift invariance in the sys­

tem. In the case of the BSO correlator, different optics would be used for writing 

and reading the MSFs. Thus, it may be expected that little correlation would exist 

between any aberrations. Since their effects would be extremely complex to model, it 

was decided to choose systems which exhibited negligible aberrations, i.e. the prob­

lem would simply be ‘designed out’. Aberrations may arise from two sources: firstly, 

the inherent aberrations of the lenses themselves; and secondly, centring and an­

gular alignment errors. It was assumed that these latter sources of error could be 

eliminated by careful setting up procedures.

In order to assess the aberrations of the various, two-element lenses, a commercial, 

ray-tracing program [3.7] was used. The calculation of actual wavefront aberrations 

was not possible with the program available. However, it was possible to produce 

geometric point-spread diagrams for the lenses. The computer traced the paths of
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rays, through the optical system, from rings of points in a specified input plane. The 

angles of the rays, relative to the optical axis were also specified. The refraction of 

these rays at all subsequent optical surfaces was computed and the points where the 

rays struck the focal plane were plotted. The lens data used by the program, was 

supplied by the manufacturers Newport and Melles Griot. On examining the data, 

it was found that, for optimised achromats of a particular focal length, the surface 

parameters varied with lens diameter. For the negative lenses, on the other hand, 

the surface parameters were always the same for a given focal length. Thus, while 

it might be worth selecting the diameter of a doublet to be used in the system, any 

diameter negative lens would yield the same results.

In an ideal system, all rays of a certain input angle would focus down onto a 

single point in the Fourier plane. The presence of aberrations however, leads to a 

spread in the output points. An example of a typical computer output is shown in 

figure 3.13, with a representation of the diffraction limited point spread function for 

comparison. The size of the latter was calculated from the diameter of the ‘Airy’ 

disk formed by an aperture of radius r im, i.e. dia.(psf)=1.22A//r,m. The figure 

shows results for a Relies Griot achromatic doublet, of 200mm focal length and 

40mm diameter, followed by a -300mm focal length, biconcave lens from the same 

manufacturer. The lenses were spaced so as to form a compound lens of 452mm focal 

length. The input aperture was situated at the front focal plane of the lens. For 

comparison, the results for a single Melles Griot achromatic doublet of 400mm focal 

length and 38mm diameter are also shown. It should be noted that the 1 degree 

beam angle corresponds to a spatial frequency of 0.017/633 x 10~6 =  28 lpmm-1. 

As in [3.5], only images of discreet spatial frequency content are considered. The 

dominant aberrations, shown in figure 3.13, are spherical aberration (defocus), coma 

and field curvature (change in position of best focus). This latter effect is important, 

since it would be undesirable for the best focus to ‘walk out’ of the limited hologram 

thickness. The actual point spread function of the system is a convolution of the 

geometric, ray-trace spot and the diffraction limited spot.
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Figure 3.13: Aberrated spot diagrams from computer output with schematic rep­
resentation of the diffraction limited spot size. Top is a 452mm focal length lens 
formed from a 200mm doublet followed by a -300mm biconcave lens. Bottom is a 
single 400mm doublet for comparison.
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Figure 3.14: Spot diagrams for a 452mm focal length lens in which a -300mm bicon­
cave lens is preceded by a 200mm doublet.

Thus, a criterion for lens selection was a requirement that, up to the spatial frequency 

of interest, the geometric spread be small compared with the diffraction limited spot 

size.

Several broad conclusions were drawn from the ray tracing experiments. The 

results depended, to some extent, on the distance between the aperture and the 

first lens. If a ray, diffracting from the input aperture, travelled a long way to the 

lens, then it would strike it at a point near to its edge. If the lens was close to 

the input plane however, the rays would not get very far from the central region 

of the lens. The difference in the results for these two cases, arose from the better 

performance of the lens when the region close to its centre is used. A combination 

of two positive doublets formed a very well corrected system, superior even to a 

single doublet of a comparable focal length. On the other hand, any combination 

in which a negative lens preceded a positive lens showed a very poor performance. 

An example of this is shown in figure 3.14; in this case, the lenses, used to produce 

the plots of figure 3.13, have been placed in reverse order, but with their combined
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focal length remaining the same. This result is to be expected, since the use of a 

diverging lens as the first element forces the second lens to ‘do more work’ in focussing 

the light down to a point. It was nevertheless possible to select positive/negative 

lens combinations of sufficiently good performance for the correlator. Since these 

combinations possessed different spacings between optical elements, this meant that 

more flexibility in system design was available. From the results, it was clearly seen 

that the best lens combination, for the formation of a 450mm focal length lens, was 

a pair of 750mm doublets. This combination actually performed better than a single 

400mm doublet, with regard to aberrations. If a 450mm focal length lens were used 

to transform the read-image, then a 560mm lens would be needed on the write-side.

In this case, the best combination was again a pair of 750mm doublets, but the 

clearance between front and back focal planes and the lenses was quite small, being 

194mm. However, other, more than adequate, combinations are available; e.g. a 

-f-300mm lens followed by either a -300, -400 or -500. These allow a choice in the 

distances between the focal planes and the lenses.

It has been pointed out [3.8] that, in many cases, an improved performance can 

be obtained by a departure from the standard image-lens-transform arrangement. 

Specifically, the image can be placed just behind a lens, in a converging beam. This 

has the advantages that no collimating optics are required for the input beam, and 

a variable, focal length may be achieved with a single lens. More importantly, the 

lens only needs to be well corrected for rays travelling parallel with the axis, rather 

than exhibit good performance for a range of input angles. This scheme is ideal for 

producing Fourier transforms of photographic transparencies. However, it was not a 

suitable method to use with the polarising beam splitters and SLMs that were to be 

employed in this project, because of their angular sensitivity.

3.3 Powers Required in the Read and W rite-Beam s

One advantage of the digital implementation of correlation is the relatively large 

dynamic range of the digital system. If one set of correlation results include numbers 

of the order of 106, and other results from the same system are of the order of 10-6,
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there is usually no problem. However, in the optical system, the output correlation 

plane will be captured by a CCD camera, which usually produces a maximum of 

256 usable grey-levels. Therefore, if the correlation plane intensities varied by more 

than an order of magnitude, the limited dynamic range of the cameras would pose 

a serious problem. Another important point, is that the absolute values of the 

correlation results are not important for the digital system; whereas a CCD camera 

is limited by its sensitivity. Thus, it is important to predict the absolute intensity 

levels expected in the optical system.

3.3.1 Correlation P lane Intensities

In order to predict the intensities in the correlation plane of an optical system, 

it is necessary to relate a computed correlation pattern to actual intensity values. 

Firstly, the Fourier transform of a reference image was computed, and modified to 

simulate the way in which it would be affected by the holographic recording process. 

The modified transform was then scaled so that its maximum amplitude equalled the 

expected peak amplitude transmission of the BSO hologram. Any angular selectivity 

effects were neglected since they would be overly complicated to model and were 

expected to be relatively weak on the write-side (see chapter 2). The next stage was 

to take the transform of the second image, multiply it by the reference and compute 

the inverse transform to form the correlation plane. The actual intensities could then 

be calculated from the intensity expected in the input plane while taking account of 

the difference in size between this and the correlation plane. This point is important 

since the input images, as displayed on a miniature CRT, were expected to be about 

twice the size of the detector array of a typical CCD camera. The focal length, / c, 

of the lens used to form the correlation plane would therefore be chosen to be half 

that of the lens used to transform the input image, f r.

In order to illuminate the SLM, it is usual to expand and spatially filter the beam 

from a laser using a microscope objective and a pin hole. In order to collimate this 

beam, a lens is placed a focal length away from the pin hole. The focal length of 

this lens is important, since it determines the uniformity of the collimated beam’s
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intensity over the area of the input image. As the Gaussian laser beam expands, 

after the microscope objective, there will be an intensity profile in the ®,y plane 

(normal to the direction of propagation) given by:

I(x,  y , z) =  J0(z) exp(—a(z) x (x2 +  y2)) (3.30)

where: I0 is the intensity of the beam at the z  axis; a(z) is a constant which de­

termines the beam’s Gaussian profile; and z is the distance from the pin hole. The 

rate of change of both of these quantities is determined by the focussing power of the 

microscope objective used to expand the beam. At any distance from the microscope 

objective, there will be some radial distance ri, measured from the z  axis, at which 

the intensity falls to n% of the peak value I0 (the z dependence will be implicit from 

now on) i.e.

=  Io exp(-orj) (3.31)

Where the identity r2 =  x2 +  y2 has been used. In order to calculate the power 

contained within a circular area of radius ri, the following integral can be evaluated:

P(r = 0 —» ri) = Io J  2wr exp(—ar2)dr =  ( l  — exp(—arj)) (3.32)

Assuming that there is negligible light loss at the microscope objective and pin hole, 

the evaluation of this integral between r  =  0 and r  =  oo is equal to the power 

of the laser, Piat- From the previous equation this implies that Pias =  Trio/a. By 

substituting for exp(—arj) in the previous equation, the fraction of the original laser 

power contained within the radius ri is given by:

Thus, if the radius ri is the radius at which the intensity has fallen to n %  of the 

central peak intensity, the area within r\ contains (100-n)% of the laser power. This 

is true for any value of z and it serves to illustrate how inefficient the process of 

expanding the beam to produce a nearly uniform profile can be. Typically, r x might 

be chosen to ensure that the intensity at the edges of the beam is 95% of the peak, 

central value. In this case, only 5% of the available laser power is utilised. One
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method of improving this is by the use of a pair of holographic ‘beam flattening’ 

elements to redistribute the light [2.4] but this option was not available for this 

research.

Since the image is square, and has a half width of r,m, the intensity at the 

SLM could be calculated at this point. However, there is one further consideration 

necessitated by the possible angular selectivity of the BSO hologram (see chapter 2). 

In the case of the read-beam, the angular selectivity effects will be removed by using 

a filter to reduce the intensity at the centre of the image. If the diffraction efficiency 

for light from the edges of the read-image is rjm in and that for the centre is 7/max; the 

effect of the transmission filter will be to reduce the apparent image intensity by a 

factor of rjm in /T jm a x . Thus, the intensity at the SLM can now be calculated taking 

all factors into account. This will correspond to the intensity corresponding to the 

maximum pixel in the read-image; which will be taken to be 255.

The digital Fourier transform process that was used ‘conserved energy’, since the 

sum of the squares of the pixel amplitude values remained constant after a forward 

and reverse transform. Thus, once the apparent intensity of the input plane pixels 

was calculated, the output intensity values could be calculated directly. Thus, if the 

maximum amplitude-squared value in the computed correlation plane is Gmaxi the 

peak intensity in the correlation plane of the optical system would be:

j    YJmtn /r  Gmax 0.05P/
255 f a * .  t J

Here it was assumed that the beam was expanded to cover a circular area of radius 

y/2 x r,m and that the beam’s intensity falls to 5% of the maximum at this radius. 

The factor /;? / f l  accounts for the difference in size between the correlation plane 

and the read-image. It is also assumed that the peak value in the reference Fourier 

transform has been re-scaled to the the value of r/mox, given by equation 2.4 of chapter 

2 .

Two potential sources of error, associated with the conservation of energy assump­

tions, were investigated. The Fourier transform routine that was used to perform
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the calculations was configured so that, for the forward transform:
N x N  N x NE s \ N ) in = N 2 £  ^ { N ) f T  (3.35)
n=l n=l

and for the inverse transform:
N x N  i  N x N

E s ' W r r  =  -jj; E 9 \ * U  (3-36)
n=l n=l

where g(N)  is the amplitude value of a pixel. An experiment was carried out to 

investigate the accuracy of the relationship expressed in the above two equations. 

A number of forward and reverse transforms were performed on various images of 

various sizes. The largest error, of 0.1%, was found in a forward transform of a 

512x512 image. It was found that the errors were smaller for smaller images. It was

also discovered that an error in a forward transform was cancelled out by an equal

and opposite error in the reverse transform. Thus, the error in the conservation of 

energy through a two Fourier transform process was never greater them 0.007%.

Another assumption made in the calculations was that all the energy in the 

input plane was present in the digital transform plane. For example, consider the 

computed Fourier transform of an 8x8 pixel square, in a 256x256 pixel image. The 

result includes the central lobe of the 2-d sine function as well as the next three lobes. 

However, if the square was displayed on an SLM, more than just three lobes might be 

present in the resulting optical transform plane. Thus, by conserving energy in the 

digital Fourier process, the results might contain a positive error, since energy has 

been included that lies outside the region of the Fourier plane actually computed. To 

assess the magnitude of this problem, a simple experiment was performed to compute 

the total energy contained in various parts of the sine function. This was done by 

summing the modulus-squared of the pixel values in the appropriate areas of the 

Fourier plane. It was discovered that 99% of the total energy was contained within 

the first 12 minima. This is the number of minima that would be present if the 

transform if a 24 pixel square had been computed. Thus, to a first approximation, if 

objects of greater than 24 pixels were being transformed, it would be expected that 

the errors due to the assumptions implicit in the energy normalisation process would 

be less than 1%.
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3.3.2 Fourier P lane Intensities

The intensities produced in the correlation plane, depend on the strength of the 

electric field that can be applied to the BSO crystal. However, the application of 

the field slows down the response of the crystal to the incident light field. In order 

to achieve the desired cycle time for the system, it is therefore necessary to produce 

sufficient write-beam intensities in the Fourier plane. These intensities depend not 

only on the image being transformed but also on the physical size of the transform 

produced by the optical system. This in turn depends on: the size and resolution of 

the input image; the wavelength of the light; and the focal length of the transform 

lens. Thus, in order to compute the theoretical intensities, using the digitised images, 

it was necessary to assign a spatial equivalence to the digital representation of the 

image:

N x N  pixels =  Nfi x Nfimm  (3.37)

Here, N  was the number of pixels and /?, which was determined by the CRT used 

to write images to the SLM, was in mm per pixel. Thus, assuming the maximum 

pixel value in the image was again 255, the energy associated with a pixel with an 

am plitude g was:

<3-38>
Since there were the same number of pixels in the computed Fourier transform as in 

the original image array, the Fourier plane was still apparently N/3 x N/3 mm. Thus, 

assuming that the output pixels represented energy in Watts, the apparent output 

intensity for a pixel of amplitude g was:

I  f t  =  E/f$2 WmnT2. (3.39)

It is now necessary to relate the apparent size of the digital Fourier plane to the 

expected size of the optically produced transform. To do this, it was noted that 

the maximum ‘spatial’ frequency in the digital image was 1/2 cycles pixel-1. Thus, 

taking into account the scaling factor of /?mm pixel-1, the frequency at the extreme
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edge of the Fourier plane was:

Umax = -^cycles mm-1 (3.40)

The apparent distance between this point and the d.c. of the Fourier transform was 

N/3/2mm. For the optical system, the size of the Fourier plane was rpr — fwXwumax 

where f w and A  ̂ were the focal length and the wavelength used on the write-side 

of the correlator. Thus, equating rpr with N/3/ 2 and u with 1/(2/?), the apparent 

product of focal length and wavelength for the digital system was given by:

(/A), =  AT/?2 (3.41)

The apparent intensity in the output plane must be multiplied by the scaling 

factor (apparent area)/(real area) given by (/A)3/(/A)2. Thus, remembering that, 

a factor of l / N 2 had to be included to conserve energy in the forward transforming 

process, the final result for Fourier plane intensity was:

T __  9 f t  0 ' 0 5 - P l o a  /? 4

** ■ 255 2xr?m ( fwXw)2

In order to test this theory, an experiment was carried out with a 16x16 pixel 

square -  of grey-level 255 -  embedded in a 256x256 field of zeros. The input intensity 

was assumed to be 0.5 Wmm"2, the product ( fwXw) =  0-3 and (3 was assumed to be 

0.125 mm pixel-1. For this image, the computed d.c. value was equal to (16 x 16 x 

^ 2 5 5 ))2 =  1.67 x 107. The intensity at the d.c. of the optical Fourier transform 

was then computed to be 88.888 Wmm-2. This agreed exactly with theoretical 

predictions for the optical transform [1.5]; which, for a square aperture, predicts:

I  f t  =  0-5. * .2Wmm~2 (3.43)
\JwAw)

where: I is the length of the side of the square aperture.

The intensity at the first lobe was computed as 4.31 Wmm-2. This departed from

theoretical predictions, with an error of 2.5%. In relation to the correlator design,

this error was not a problem. This was because the system was being modelled with 

the reference beam intensity expressed as a fraction of that of the d.c. of the Fourier 

transform. Thus, it was only the d.c. intensity calculations that were important.
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It must be remembered that, as well as the Fourier transform, the laser on the 

write-side must also provide a reference beam of the same intensity as the region 

of the Fourier transform of interest. This beam must extend over the whole BSO 

crystal. Therefore, with the reference beam balanced to the d.c. of the FT, the 

laser must supply a reference beam with a power of /pT27rrJ5O/0.05. This assumes 

a square BSO crystal of half-width t b s o > and the factor of 0.05 takes into account 

the spatial filtering and beam expansion.

3,3.3 R esponse T im e o f the BSO

In order to relate the computed intensities to the response time of the BSO, an 

equation for the temporal behaviour of the space charge field from [1 .7 3 ] was used. 

By choosing to look at a specific location on the grating, the expression for the space 

charge field, E sc , of [1.73] was re-written:

Esc  oc 1 — exp cos(a?at) (3.44)

This is basically, an exponentially-decaying rate of growth with a modulation term 

which causes the field to oscillate as it grows. This oscillation results from interference 

between the refractive index grating, which actually moves as it forms, and the

stationary, cosinusoidal intensity pattern. Also from [1.73] it was found that:

w, oc — =  — (3.45)
Ta Ta

Figure 3.15 shows the time development of Esc  lor various values of the con­

stant of proportionality, a . As can be seen from figure 3.15; in the absence of any 

oscillations, the time for the field to reach 90% of its maximum value is t = 2.7ra. 

The effect of the oscillations is, primarily, to cause the field to first reach 90% of its 

steady state value for much shorter times. However, from the point of view of the 

optical correlator it is undesirable to have any oscillations in the diffraction efficiency 

as they would make the correlation results difficult to interpret. For this reason it 

was decided to take times of several ra as the limiting response time of the system.
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Figure 3.15: The variation of the fundamental component of space charge field with 
the normalised variable t / r 5.

The parameter rg is given by:

(1  +  0 V ) 2 +  (Q2vEA)2
T„ =

(1 +  ^2)(1 + O2*'2) 4- 0 2v2EA

Where:
E[

(3.46)

is the applied field normalised by the critical 
field Ec  (see chapter 1 ) 

v is the grating frequency normalised to the critical 
grating frequency i.e. K /K c  where K  =  27r/A.

0 2 is a diffusion length parameter; being the product of 
the charge carrier mobility and the free charge 
carrier lifetime 

tc is the dielectric lifetime

It is important to note that rc is inversely proportional to the intensity of the 

grating that is forming the hologram in the BSO. Thus, the response time of the 

BSO correlator will also be inversely proportional to the hologram writing intensity.

In order to predict system response times, the BSO parameters 0 2 and rc had to 

be measured; the latter at a particular intensity. The oscillatory behaviour of the 

growth of the space charge field makes measurements based on rise-times difficult. If
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decay times are measured under uniform illumination, in the absence of the writing 

intensity grating, the oscillations are not present. However, the decay will still be 

an exponential function with the time constant rg. The most convenient way of 

measuring the decay rate of the grating was to diffract a probe beam from it and 

to monitor the decay of the diffracted power with time. The probe beam had to 

be sufficiently weak, and/or of a wavelength sufficiently removed from the crystals 

peak sensitivity, so as not to contribute to the grating decay. The diffracted power 

was proportional to the square of the refractive index modulation of the grating and 

hence to the square of the space charge field. If the grating decay time, T1/2 , is the 

time it takes for the diffracted power to fall to one half of its original value then: 

T1 / 1  = ln(2 )rg/ 2 .

Two experiments, measuring the decay time, were carried out. The first used a 

fixed grating fringe spacing with various applied fields. The second used a constant 

applied voltage and investigated the effects of varying fringe spacing. The grating 

was initially written using an Ar+ laser and was probed by a weak He-Ne beam. The 

diffraction was monitored with a photo-diode. One of the holographic writing beams 

was then shuttered. The grating was erased by the remaining writing beam, and 

the decay time of the diffracted signal was measured. A preliminary experiment was 

carried out, to ensure that the expected inverse relationship between decay time and 

intensity was observed. The results axe shown in figure 3.16. Following this, exper­

iments to determine 0 2 and rc were undertaken. The results were compensated for 

laser power fluctuations, being normalised to an intensity of 3mWcm“2. Figure 3.17 

shows experimental results for fringe spacings of 10/mi and 2 2 /xm. The applied field 

was normalised by the critical field Ec  =  3 .1kVcm_1 (see chapter 2). For compari­

son, theoretical curves for these fringe spacings were generated from equation 3.46. 

The theoretical plots were produced using a value of 160 for 0 2 and 5.2ms for rc. 

In the second experiment, the decay time was measured while the fringe spacing 

was varied, at a constant applied field. The results, for an applied field of 7kVcm- 1  

are shown in figure 3.18 and, in this case, the theoretical curve was generated with 

0 2 = 1 2 0  and rc = 5 .0 ms.
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Figure 3.16: Decay time versus erase beam intensity for grating spacings of 10 mi­
crons (circles) and 2 2  microns (triangles).
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Figure 3.17: Decay time versus, Ea/Ec  with grating spacings of 10 microns (trian­
gles) and 22 microns (circles): wash-out beam intensity of 3mWcm“2. Theoretical 
curves generated with 0 2 =  160 and tc = 5.2.
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Figure 3.18: Decay time versus grating spacing (circles) for FJ>i=7kVcm-1: wash­
out beam intensity of 3mWcm~2. Theoretical curve generated with 0 2 =  120 and 
rc = 5.0.

3.4 T ilted  Fringes in an Applied Field

n+An n-An

Figure 3.19: Fringes tilted with respect to the applied field.

The optimum geometry, to enhance the holographic grating with an applied electric 

field, is with the field parallel with the grating vector. One problem with the correla­

tor architecture, is the possibility of the grating vector becoming tilted with respect 

to the applied field. It will be shown that the possibility of the fringes becoming 

significantly tilted, increases as the angle between the hologram writing beams is
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decreased. The geometry of interest is shown in figure 3.19. As the fringes are tilted,

the perpendicular component of the electric field falls.

Some experimental measurements of the effect were made. In order to carry out

the experiment, the holographic writing beam directions were held fixed while the

BSO crystal was rotated. The polarisations of the writing and read-beams were also

rotated in order to keep them at a fixed orientation with respect to the crystallo-

graphic axes. This was necessary since these polarisation states may also affect the

diffraction efficiency. The results are shown in figure 3.20.
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Figure 3.20: Diffraction efficiency versus fringe tilt for a 10 micron grating with an 
applied field of 7kV. The zero degree point corresponds to a 0 degree angle between 
grating vector and applied field direction.

A fairly sharp fall off in efficiency was measured as the applied field was tilted with 

respect to the fringes. The experiment was quite difficult to set up and control; as the 

scatter of points about the zero degree mark illustrates. The diffraction efficiency, 

measured as the response of a photo-detector in the diffracted beam, fell to about 

50% of its maximum value at tilt angles of ~  ±20°. A theoretical description of this 

process is beyond the scope of this thesis. However, it is sufficient, for the correlator 

design, to note the presence of this effect and to derive an expression for the fringe
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tilts that will be produced in the correlator.

In order to predict the fringe tilts that may be encountered, the geometry shown 

in figure 3.21 was used. The coordinates in the plane of the write-image have their 

origin at the centre of the image.

BSO

un

2 naf,
Area representing write image

Figure 3.21: Schematic diagram used to determine the fringe tilts produced at the 
BSO hologram by rays from different parts of the write-image.

This origin was assumed to be located on the optical axis of the Fourier transform 

lens. The maximum and minimum values are ±r,-m at the image borders. Note the 

directions of the right handed coordinate system in the diagram, with z going into 

the page, ki and k2 are vectors representing the two beams writing the hologram. 

k2 represents the reference beam, and is at a fixed angle with respect to the optical 

axis of the Fourier transforming lens. The angle of the reference beam is such that 

it forms fringes of spacing A =  Xw/2na  when it interferes with light from the centre 

of the input image. The angle, 2a, is the beam intersection angle in the BSO. The 

image is assumed to be in the front focal plane of a lens of focal length f w. Therefore, 

the angles of the rays in the Fourier plane are determined solely by their point of 

origin in the input image. When light from the image point xtm, ytm interferes with 

the reference beam, the grating vector lies in the plane defined by the two writing 

beam vectors. This is at an angle 9 to the xz  plane and hence to the applied field. 

If (3 is a unit vector in the x direction, then cos(0) is given by:
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cos(0 ) = -----
7

where 7  is the modulus of the vector and:

(3.47)

7  =  k 2 -  k i =  (2f wna  + zim)i + ytmj (3.48)

It is then found that:

c 2 /m _  (2fwna  -f Xjm)2   (fw^w — Aytm ) 2  . .
(2fna  +  Xim)2 +  yfm ( fw\ w -  Axim)2 +  (At/ im ) 2

where A is the fringe spacing formed by light from the centre of the image. From 

figure 3.21, it can be seen that the worst tilt occurs for image coordinates =  —rtm, 

Vim ~

If a joint transform architecture was constructed, using the same average fringe 

spacing, then the maximum fringe tilt produced would be even greater. This would 

be because the reference beam would also subtend a cone of angles. This is another 

advantage of the Vander Lugt architecture, not previously noted for BSO based 

correlators. If the hologram becomes thin, the tilt effects can be reduced by using 

smaller fringe spacings without the penalty of increased angular selectivity.

If the write-image is not in the front focal plane of the lens, then the angles of 

the rays in the output plane will be a function of spatial frequency. Thus, the write- 

image could also be subject to position variant spatial filtering. It would therefore 

be necessary to ensure that the write image be located as close as possible to the 

lens’ front focal plane.

3.5 Limits on Fringe Spacing

In chapter 2 it was shown that, in order to minimise angular selectivity effects, the 

fringe spacing used should be as large as possible. However, the maximum fringe 

spacing is limited by the need to ensure the separation of the correlation plane 

from the undiffracted beam. In [1.5], an expression is derived for this limit. The 

arguments used, are based on the fact that the pattern on the undiffracted beam
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is the auto-correlation of one of the images convolved with the other image. The 

two images are denoted h(x,y)  and g(x,y) and, thus, the on-axis term is given by 

h(x,y) * h*(—x, —y) * g(x,y). This is assumed to have a physical width three times 

that of the original images; as long as the images were initially all the same size. 

The cross-correlation of h and g on the other hand extends to twice the width of the 

original images. It is therefore stated that the separation between the centres of these 

two outputs should be at least 2.5 times the width of the original images. However, 

it should be noted that this analysis was based on the assumption that the amplitude 

transmittance of the MSF was proportional to the incident interference pattern. In 

the BSO correlator, phase modulated holograms will be formed. The term giving 

rise to the triple convolution product should not then be present. Furthermore, the 

requirement derived in [1.5] may be over stringent if correlation is being carried out 

in the presence of image edge enhancement. This is because the auto-correlation of 

a function in the presence of edge enhancement is a sharp peak at the origin. In 

this case the term h(x,y) * h*(—x , —y) * g{x,y) will tend to an approximation of 

g(x)y). The intensities of the undiffracted term may then be negligible outside the 

area of the original image. The requirement that the centres of the on-axis term 

and the correlation plane be separated by a distance of 5r*m was therefore an over- 

specification. For the purposes of the correlator design carried out here this figure 

was replaced by 3r\m. This condition could then be linked to the holographic fringe 

spacing and the read-side lens focal length and wavelength as in [1.5].

Two further rules governing the allowed values of the holographic fringe spacing 

stem from the predictions of the BTM. Firstly, as the fringe spacing approaches the 

critical value A<?, a regime is reached in which the strength of the space charge field 

is dependent on the fringe spacing; as shown in figure 2.2. This dependence on fringe 

spacing is undesirable since there will be a range of fringe spacings produced in the 

MSF, due to the angular spread in the write-beam. In order to avoid this, the fringe 

spacing should, if possible be greater than about 6 A<7 . Secondly, faster response 

times can be achieved with larger fringe spacings.

Unfortunately, the problems that may be associated with fringe tilt can only be
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alleviated by increasing the angle between the hologram writing beams. This in turn 

reduces the fringe spacing and, if the hologram is exhibiting thick behaviour, there 

will be a trade off between fringe tilt and angular selectivity effects.

Given the need to separate the correlation plane from the undiffracted beam, 

while keeping the fringe spacing sufficiently larger than Ac, the following inequalities 

must hold:

6 Ao < A < ^  (3.50)
^im

It is interesting to note that this actually imposes a limit on the physical size of the 

image given by:

rim(max) < (3.51)

Since the maximum spatial frequency in the image will be limited by the hardware 

used, the above inequality actually sets a limit on the space bandwidth product of 

the system. It must be remembered however, that the saturation effects will only be 

a problem if a significant range of fringe spacings are present in the hologram.

3.6 Comparison o f BSO and Holographic Film

The optical Fourier transform of an image, which contains both amplitude and phase 

information, may be recorded holographically. In early correlation systems, the 

recording medium was photographic plate. The absolute and relative intensities 

of the hologram writing beams and the characteristics of the recording medium, will 

always affect the recorded information in some way. This, in turn, will affect the 

nature of the correlation function produced. A theoretical study was undertaken 

in order to compare the storage characteristics of holographic plate with those of 

the BSO. The effect of nonlinear film response has been studied previously at BAe 

[3 .1 0], this has been added to here by the creation of a computer simulation, in one- 

dimension, to allow rapid appraisal of the various effects. In order to describe how 

storage on film would affect a Fourier transform, a hypothetical curve to describe the 

variation of amplitude transmission with recording exposure was used. The form of
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curve chosen was:

Ta =  1 +  SiE2  +  S2 E 3  + 6 3 E*

Here, E  was the incident exposure, which was a product of intensity and time; and 

the constants, S, were specified to alter the profile of the curve. This form of curve 

had the properties of giving a transmission of 1 for zero exposure. It also had a slope 

that tends to zero as exposure tends to both zero and infinity; which was the reason 

that no linear term in E  was included. A plot of this curve is shown in figure 3 .2 2 : 

with £i =  5 x 10“4, 6 2  =  5 x 10- 6  and S3 =  5 x 10~7. It can be seen to have a form 

similar to curves reported in [3.11], for example.
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Figure 3.22: Hypothetical film response curve.

In order to assess the effect of this curve on the holographic recording of a matched 

spatial filter, a 1-D simulation was used. The Fourier transform of a square pulse, 

16 points wide, was computed. An ‘interference pattern’ between this transform and 

a uniform reference beam, of variable intensity, was then formed. To do this, the 

phase of the transform was preserved but the amplitude was modified according to 

the relative intensities of the reference beam and each point in the transform. If the 

intensity of the Fourier transform at some frequency u  was I f t { u )i  and the intensity
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of the reference beam was Jre/; then the maximum and minimum intensities in the 

resulting interference pattern were:

l i n t  ( m o x / m i n ) ( ^ )  =  “f" y j  ̂ F r { ^ ) J r e J  ( 3 . 5 3 )

Three methods of determining the recorded amplitude of the were investigated 

for photographic film. The simplest ignored the Ta vs E  curve of figure 3.22 and 

assumed that the amplitude transmission of the film fell linearly with exposure un­

til it reached zero. The amplitude transmittance of the film, after exposure to the 

interference pattern, was assumed to be sinusoidal, following the incident fringe pro­

files. The maximum and minimum values of Ta were determined by the supposed 

linear relationship. The second method was slightly more sophisticated, the ampli­

tude transmittance of the exposed film was again assumed to be sinusoidal but the 

maximum and minimum values were determined from the Ta vs E  curve. Since these 

first two methods assumed that the recorded fringes were sinusoidal, the amplitude 

diffraction efficiency at each point in the Fourier transform hologram was calculated 

from:

* /o ro p (^ )  =  m o i ( ^ )  T a  m i n ( ^ )  ( 3 . 5 4 )

which is taken from [1.5]. The amplitude of the original transform was then set equal 

to this value.

For the third method, the diffraction efficiency, for each point in the hologram, 

was computed by performing a 1-D Fourier transform on the modified fringe profile. 

Typically, the result of this transform no longer contained just the d.c. and the first 

orders, but also higher orders. The diffraction efficiency was found by measuring the 

height of the first order peak. To illustrate this process, fringe profiles have been 

generated for two interfering beams of amplitude 10 (arbitrary units). These gave a 

maximum intensity of 2 0 0  and a minimum intensity of 0  in the resulting interference 

pattern. One set of fringe profiles was generated by assuming a linear transfer, with 

the film giving zero transmission at an intensity of 200. The result was an amplitude 

transmittance varying, as a perfect sinusoid, between 0 and 1. This profile was then 

modified by assuming that the recording material followed the Ta v s  E  curve shown
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in figure 3.22. The resulting amplitude still varied between 0 and 1 , but the effects 

of saturation were clearly seen in the region of low transmission. The results are 

shown in figure 3.23. The computed Fourier transforms of the fringes of figure 3.23 

are both shown in figure 3.24. Note that the modulus of the amplitude is shown. In 

order to bring out the detail, the amplitude of the transform of the non-linear fringes 

was magnified by 3x before plotting.

It was found that the amplitude diffraction efficiency was given by dividing the 

computed value at the first order by the number of points in the array. This was due 

to the organisation of the normalisation factors in the FT routine. It was interesting 

to note that most of the energy in the higher orders had come from the d.c. and 

the amplitude of the first order was only slightly reduced. Another experiment was 

carried out in which a beam of amplitude 16 was interfered with a beam of amplitude 

4. For linear transfer, sinusoidal fringes were produced, with a Ta varying between 

0  and 0.65. However, saturation effects resulted in a Ta that varied between 0  and 

0.05, if the nonlinear transfer curve was used. Thus, as expected, saturation effects 

have attenuated the fringes of low modulation with high intensity.
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Figure 3.23: Sinusoidal fringes and the result of their non-linear recording.
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Figure 3.24: Fourier transforms of the perfect sinusoidal fringes (left) and the same 
fringes subject to the film transfer curve (right).

For the BSO, the space charge field, and hence the amplitude diffraction efficiency, 

is proportional to m, the reduced fringe modulation. If the cosinusoidal fringe pat­

tern is given by IQ( 1 — Mcos(x)), then M  is equal to ( /mo* — I m i n ) / ( I m a x  +  Tmin); 

where Imax and / mtn can be obtained from equation 3.53. The reduced modulation 

m is then given by m =  M /(l +(3/(sIo)) where /? and s are the probabilities for ther­

mal and photo-excitation respectively. Thus, at very low intensities the hologram’s 

modulation will tend to zero. However, in order to simplify matters, it was assumed 

that m  = M  and the thermal effects were ignored.

There were now four models to compare: the linear model; the amplitude model; 

the distorted fringe model; and the BSO model. When the Fourier transform of the 

16 pixel square pulse was computed: its d.c. amplitude was 16; the first lobe was -3.5; 

the second 2.1; and the third -1.6. The first set of experiments involved balancing 

the reference beam to the d.c. amplitude of the transform.

Initial experiments with the simple linear model suggested that its predictions 

were not physically realistic. It was therefore decided to concentrate on the amplitude
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and the distorted fringe models when studying the response of the photographic 

film. The amplitudes of the Fourier transform were linearly scaled so as to match 

the interference pattern intensities to various parts of the film response curve of 

figure 3.22. The first experiment involved a reference beam of amplitude 16 with the 

original, unsealed transform. The peak intensity of the fringes was 512; which was 

well into the curve’s saturation region. The result of this was a recorded transform 

with its amplitude biased heavily towards the d.c. The reason for this was that the 

d.c. was the only part of the interference pattern where the intensity fell to zero, 

consequently this was the only place where good modulation was recorded. As the 

minimum fringe intensity started to rise, the recorded amplitude transmission fell at 

a much greater rate, since the recording was well into the saturation region of the 

film. Thus the modulation of the recorded pattern fell much more quickly at points 

away from the d.c. than it did in the original fringe pattern.

At this point it was noted that care had to be taken in the interpretation of these 

results. When deep into the saturation region, the only reason that any appreciable 

fringes were recorded was that the reference beam and Fourier transform were very 

precisely balanced. It would not have taken much of a miss-match to greatly reduce 

the diffraction efficiency of the recording.

The experiment was repeated with both the amplitude of the transform’s d.c., 

and that of the reference beam, reduced to 7. This produced a maximum fringe 

intensity of 98 which was at the end of the linear region of the film curve. In this 

case, the saturation effects seemed to attenuate the d.c. term with respect to the 

higher frequencies. This produced a degree of edge enhancement in the reconstructed 

square pulse. The transform was then scaled to give a maximum intensity of 40.5; 

near the centre of the linear region. It was now found that the higher frequencies 

were being attenuated by the saturation at the low exposure end of the curve. How­

ever, the reconstructed result was much nearer to the original square pulse. Further 

reduction in intensity lead to a more severe attenuation of the higher frequencies. 

The original transform and the three modified versions are shown in figure 3.25, and 

the reconstructions of the four transforms in figure 3.26.
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Figure 3.25: Fourier transform of a square pulse (left) and the modified transforms 
recorded with the reference beam balanced to the d.c. of the transform with the 

| amplitude of the d.c. scaled to 16, 7 and 4.5.
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Figure 3.26: Reconstructions of the FTs from the previous figure.
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A second set of experiments was performed with the reference beam balanced to 

the third lobe of the transform. The amplitude was scaled by factors of, 10.0, 2.5,

1.0 and 0.5. This moved the fringe intensity, at the point of highest modulation, 

from the high saturation end of the response curve down to the low saturation end. 

The modified transforms for the scaling factors 10 (maximum intensity in interference 

pattern 512), 2.5 (intensity 32), 1.0 (intensity 5.12) and 0.5 (intensity 1.28) are shown 

in figure 3.27. In this case, the use of high intensities lead to a very hard clipping 

of the d.c. values to a zero amplitude level. However, when very low intensities were 

used, the only significant recorded amplitude was at the d.c. Thus, a range of edge 

enhancements can be produced by a combination of absolute intensity and beam 

ratio manipulation. To confirm this point, the reconstructions of these transforms 

are shown in figure 3.28.

0.3-.
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Figure 3.27: Modified transforms recorded with the reference beam balanced to the 
third lobe and with the original FT amplitude scaled by factors of 10, 2.5, 1.0 and 
0.5
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Figure 3.28: Reconstructions of the various FTs from the previous figure.

The full distorted fringe model produced results very similar to the amplitude 

model, apart from the absolute amplitude values. In order to apply the full fringe 

model, a 1-D FT of the fringe profile would have to be computed for every pixel in 

a Fourier transform. Bearing in mind this heavy computational load, it was decided 

that, in the light of the similar results produced, the amplitude model was sufficient. 

However, if it was necessary to take account of energy transfer through a system 

based on holographic film, the full distortion model could be used to predict the 

peak diffraction efficiency.

These experiments were repeated, using the BSO model to compute the stored FT 

amplitude. In this case, the absolute intensity did not affect the results. Figure 3.29 

shows the modified transforms produced by balancing the reference beam to the 

d.c. and to the third lobe of the transform. The are shown in figure 3.30. It can 

be seen that, even with the reference beam balanced to the d.c. of the transform, 

there was still a slight degree of edge enhancement. It was found that increasing the 

reference beam further produced reconstructions that were closer approximations to 

the original square pulse. However, this was only achieved at the expense of reducing 

the diffraction efficiency of the hologram.
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Figure 3.29: Modified transforms recorded with the reference beam balanced to 
the d.c. and the third lobe using the BSO model to compute the amplitude of the 
hologram.
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Figure 3.30: Reconstructions of the various FTs from the previous figure.
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The main difference between the film and the BSO was the effect that the ab­

solute intensities had on the film storage. The BSO could be used to record either 

‘perfect’ or edge enhanced representations of the original image. However, unlike 

the holographic film, it was not possible to record in such a way as to attenuate the 

lower intensity portions of the FT with respect to the higher intensity areas. Such 

an attenuation will usually have a blurring effect as the lower intensities correspond 

to higher spatial frequencies. This property can affect the way that noise, in the 

reference image, is transmitted through a system. For example, figure 3.31 shows 

the test square with random amplitude noise added. Figure 3.32 illustrates the simu­

lated results of recording and reconstructing the Fourier transform on film and BSO. 

The film recording was carried out at a relatively low absolute intensity in order to 

attenuate the lower intensity regions of the FT. This resulted in a reduced amount 

of noise in the recording compared to the BSO storage. However, as discussed in the 

introduction, in the case of BSO, an extra ‘wash-out’ beam can be used to spatially 

filter the recorded FT. Although often used for edge enhancement, this could also be 

used for any required blurring operations.
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Figure 3.31: Square pulse test shape with random noise.

134



0 100 200 300 400 500 600
Position

Figure 3.32: Reconstructions of the noise corrupted square pulse after simulated FT 
storage on holographic film (left) and BSO (right).

3.7 Beam  Polarisation

Although not included in the work for this thesis, it is worth, for the sake of com­

pleteness, outlining the beam polarisation requirements for the correlator. For the 

proposed system, the grating vector and the applied field lie in the < 1 1 0  > crystal 

direction, i.e. in a direction normal to the 110 face. It is expected that the diffraction 

efficiency will be independent of the polarisation angle of a linearly-polarised, read- 

beam [1.74] [3.12]. It is therefore advantageous to use an input polarisation angle 

that bisects the induced fast and slow axes of birefringence. In this case the light 

diffracted from the hologram is linearly polarised at 90° to the undiffracted beam. 

Some of the undiffracted light may be scattered into the correlation plane by de­

fects in any of the system’s optical surfaces. In this case, the signal to noise ratio 

can be significantly increased by using a polariser to block the scattered light and 

transmit the desired correlation signal [3.13]. The birefringence introduced by the 

applied field means that the light does not remain linearly polarised but is, in fact,
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elliptical [3.14]. However, dramatic reductions in noise from scattered light can still 

be achieved in the correlator.

A brief experiment to measure diffraction efficiency as a function of read-beam 

polarisation was carried out. For larger fringe spacings, it was found to be reason­

ably constant. However, some variations were detected, which was consistent with 

experimental results reported in [1.74] and [3.12]. It was noted that the experiment 

was difficult to set up since many optical components, such as beam-splitters and 

wavelength filters, were found to impose their own polarisation selectivity on the 

results. An experiment to measure diffraction efficiency as a function of write-beam 

polarisation was also carried out and it was found to be fairly independent. In this 

case the optimum solution would be to use write-light of an orthogonal polarisation 

to that expected in the correlation plane, since a polariser transmitting the correla­

tion plane would also help to block scattered write-light. However, a narrow-band, 

wavelength-selective filter would also provide an effective block to stop stray light 

from the writing beams, which were of a very different wavelength to the read-beams.

3.8 Conclusions

A reduction in the optical path lengths in the correlator would be beneficial on two 

counts. Firstly, the size of the overall system would be reduced, which is generally 

desirable when ‘breadboarding’ is considered. A second, and perhaps greater, ad­

vantage stems from reducing the path lengths on the write-side of the system. In 

this case, a shorter distance is travelled by the object and reference writing-beams 

before they axe re-combined at the hologram. For the work being undertaken in 

this project, the only lasers available were continuous wave and not pulsed. This 

obviously puts a much greater emphasis on system stability. Even air currents can 

become a problem when the object and reference beam travel long distances to the 

hologram. Thus, reducing path lengths on the write-side of the system will relax the 

mechanical stability requirements.

In section 3.1, an expression for the location of the correlation plane has been 

derived as a function of the positions of the read and write image planes. If the
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BSO hologram exhibits thin behaviour, the input planes can be brought close to 

their respective Fourier transforming lenses. Consider equation 3.12 for the case 

K fr  =  Atvf w: as dr and dw tend to zero; Z  tends to f c. Thus, an initial total path 

length of 2( fr +  f w + f c) can be reduced to 2f c +  f r + f w  However, it was also 

shown that, if the hologram exhibits angular selectivity, complicated spatial filtering 

effects will be introduced if the images are not close to the front focal planes of 

the transforming lenses. This is because, if an image is away from the lens’ front 

focal plane, the angles of the rays in the Fourier plane depend partly on the spatial 

frequency with which they are associated. The form of the spatial filtering is not a 

global function but changes with image position. The effects cannot, therefore, be 

alleviated with a transmission filter in the Fourier plane. This problem will be most 

pronounced on the read-side and it may be necessary to ensure that this image is 

close to the front focal plane of the lens.

In section 3.2, the lens and wavelength requirements were discussed. In order 

that it does not perturb the holograms, it is intended to use a read-beam of 633nm 

wavelength. The holograms will be written with light of 514nm, to which the BSO is 

relatively sensitive. In order to match the scales of the write and read Fourier trans­

forms, the lenses must have a focal length ratio equal to the inverse of the write/read 

wavelength ratio. Furthermore, to minimise the spread of angles in the Fourier plane 

-  while retaining all the image information -  it is necessary to match the size of the 

transforms to the clear aperture of the BSO crystal. Achieving these criteria will, in 

general, require lenses of non-standard focal lengths. It was shown that such lenses 

could be constructed from a combination of two standard components. The focal 

length of the combination will be adjusted by altering the lens separation. It was 

also shown how an optimum lens combination can be selected, both with regard to 

the ease of setting up the system, and to the aberrations of the compound lens. To 

produce combinations with focal lengths in the 400 to 500mm range, it was found 

that a pair of 750mm achromatic doublets separated by a few hundred mm provided 

the optimum solution.

In section 3.3, methods were developed that allowed the computation of the inten­
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sities in the correlation plane and in the Fourier plane. Furthermore, measurements 

of the BSO parameters, 0 2 and rc, made possible the calculation of the response 

time; for any applied field, fringe spacing and input intensity. The powers of the 

lasers available for the construction of the correlator were known. Therefore the 

simulations, together with the known sensitivity of the CCD camera, would deter­

mine the required strength of applied field to produce a detectable correlation signal. 

Given the applied field, the fringe spacing, and the expected intensities in the Fourier 

plane; the time constant rg can be determined from equation 3.46.

A new consideration for BSO based systems, was discussed in chapter 3.4. If the 

holographic fringes become tilted with respect to the grating, this will cause a drop 

in diffraction efficiency. An expression was derived for the fringe tilts that will be 

produced in the correlator. Experimental results were also presented that measured 

the drop in diffraction efficiency with fringe tilt. One consequence of this effect was 

that, in order to avoid complicated spatial filtering effects, the write-images too, will 

have to be located at the front focal plane of their transform lens.

In the previous chapter, and in section 3.3, it was seen that it would be beneficial 

to use large fringe spacings. This was because of the decreases in angular selectivity 

and response time thus produced. In section 3.5 an expression for the maximum 

allowable fringe spacing was produced. Also, by considering the critical fringe spacing 

for the BSO, an upper limit on image size was found.

• The 1-D simulation methods, developed in section 3.6, allowed a rapid, prelimi­

nary assessment of the effects of holographic storage on the amplitude of the Fourier 

transform. The storage in the BSO was modelled as a perfect phase recording. 

The amplitude was proportional to the fringe modulation between the FT and a 

holographic reference beam. The use of a reduced reference beam intensity was in­

vestigated, to provide varying degrees of edge enhancement. This produced results 

that were very similar to those produced by ‘second order differentiation’ filters such 

as the ‘Difference of Gaussian’. These are characterised by the equal magnitude 

peaks, of opposite phase, that appear either side of the position of an edge in the 

original image. This type of edge enhancement is useful for correlation since it need
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only be applied to one of the images being correlated. This is in contrast to first 

differential operators such as the Sobel filter, which need to be applied to both.

The main difference between holographic film and the BSO model was the effect 

that the absolute intensities had on the film storage. The BSO could be used to 

record either ‘perfect’ or edge enhanced representations of the original image. It was 

ishown how this made noise suppression more difficult in the BSO case. However, an 

extra ‘wash-out’ beam can be used to spatially filter the FT recorded in the BSO, if 

required.
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A bbreviations/sym bols used in Chapter 4

BSO Bismuth Silicon Oxide (Chapt. 1 ).

CCD Charge Coupled Device (Chapt. 1).

CRT Cathode Ray Tube (Chapt. 1 ).

d.c. Zero-spatial-frequency component of FT (Chapt 1.).

LCLV Liquid Crystal Light Valve (type of SLM).

MSF Matched Spatial Filter (Chapt. 2).

MTF Modulation Transfer Function.

SLM Spatial Light Modulator (Chapt. 1 ).

D Separation of two lenses in a compound lens (Chapt, 3).

/  Lens focal length.

F  Focal length of compound lens (Chapt. 3).

iVxN Number of pixels in an image (Chapt. 1).

rim Half-width of input image aperture (Chapt .3).

A Wavelength.

$  Phase of a coherent light field.
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After carrying out the preliminary work for the optical design of the correlator, 

problems were experienced with the acquisition of suitable spatial light modulators 

(SLMs). As a result of this, it was decided that the digital simulation work should be 

extended to model SLM performance. Many published papers on this subject were 

found; however, each of them dealt with one or two specific SLM characteristics. 

Furthermore, the applications and optimisations considered, were often either very 

specific or very vague. For example: [4.1] considers the effect of image grey-level noise 

on optically generated chord functions; while [4.2] considers the effects of SLM phase 

distortions on the width of the auto-correlation peak for the image of a girl’s face. 

It was decided therefore, to concentrate on developing a set of computer programs 

to model various aspects of SLM performance. These programs would refer to a 

generic SLM rather than to a specific device. Once these programs were written, 

a suitable experimental method was chosen, to allow the effects of SLM distortions 

to be assessed for any given task. To prove the principle of the chosen method, 

the correlation task described in the introductory chapter was modelled with the 

inclusion of three image distortions.

4.1 Image Processing M ethods

This section contains a description of the various algorithms that were employed in 

order to model various image distortions introduced by an SLM.

4.1.1 Non-Linear Grey-Level Transfer

This title covers any systematic discrepancy between the intensities in the image of 

a scene, as produced by a lens, and those relayed to the optical system. In order to 

produce a variable grey-level response, it was decided to construct a generic transfer 

curve with a set of distinct regions. This is shown in figure 4.1, together with the 

formulae used to create each region. The first of these was a uniform ‘off-state* 

represented by y = a: where a is not necessarily equal to zero. A non-zero value 

may represent, for example, an imperfect linear polarisation produced by an SLM 

when the device is not switched on. This allows light to leak past the polariser that is
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placed after the SLM; which is used to change the polarisation modulation, produced 

by the device, into an intensity modulation. Next, as the device begins to switch on, 

the slope of the curve increases at a rate governed by the constant b. The point at 

which the switching started was the specified input intensity, I\.

Saturation: y = f  — exp(—g(x — I 2 )2)300

250
200

■4—«

Z3o 150
Linear: y =  dx -f e

100

Switch on: y = b(x — Ii)2 + a
Off state y = a.

100 150 200 250 300
I in (arb. units)

Figure 4.1: Generic grey-level transfer curve.

This switching process eventually leads to a linear region, of specified slope d. The 

computer program that produced the curve, automatically calculated the value of 

intercept for the linear region, e. This was chosen so as to join the linear part of the 

curve to the ‘switch-on’ part. Finally, at a specified intensity h ,  the output begins 

to saturate. The rate at which saturation is reached, is determined by the specified 

constant g. The computer program set the value of the offset /  to join the saturation 

curve to the linear region. Splitting the curve into separate regions in this way, made 

control of the various parameters easier.

To illustrate the effects produced by this sort of grey-level distortion, a cross 

correlation was performed between the images of two machined components: com­

ponen t^  and component#3. These are shown in the top half of figure 4.2. Two 

sets of transfer curves were produced. The first, shown in figure 4.3, contained curves 

that converged to a thresholding operation at a level of 128. The second set con­

verged to a threshold at a level of 40, as shown in figure 4.4. Two distorted versions 

of the image of component#2 are shown in the bottom half of figure 4.2. They were
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produced using the most non-linear curve from each of the two sets. The main visual 

difference between the two original component images, was the structure present in­

side the boundary of the object. This was only visible in the image of com ponent#2. 

This difference was enhanced by one of the sets of transfer curves, but was hidden 

by the second set.

Figure 4.2: Perfect images of com ponent#2 and com ponent#3 (top) and two differ­
ent grey-level distorted versions of com ponent#2 (bottom).

A series of correlations was carried out using the two sets of transfer curves, 

which were applied to both of the images. The discrimination of the correlation 

process was defined as the ratio Pautol Pcrosa' where Pauto is the m agnitude of the 

peak of the auto-correlation function for com ponent#2, and Pcrosa tha t of the cross­

correlation peak formed by the two components. The images were edge enhanced 

prior to correlation. The variation in discrimination, as the different curves were 

applied, is shown in figure 4.5. Results for both sets of curves are plotted together. 

The triangles illustrate the changes as the transfer curves tend to a threshold at the 

level of 128; the circles plot the change from a near linear curve to a threshold of 40. 

In both cases, curve 0 is the result with no distortion applied and curve 5 represents 

the most non-linear transfer.
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Figure 4.3: First set of transfer curves.
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Figure 4.4: Second set of transfer curves.
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Figure 4.5: Correlation discrimination, between components#2 and #3, varying with 
the different grey-level transfer curves.

What these experiments showed, was that a very wide range of results could 

be produced, if the dynamic range of an SLM is small compared with that of the 

input imagery. Although the results, in some cases, appeared to be beneficial, this 

would be a false assumption. This is because, for all but the simplest tasks, a large 

amount of prior knowledge would have to be built into the system to allow it to set 

an appropriate threshold level. Thus, when assessing the effects of limited dynamic 

range, care must be taken to avoid drawing erroneous conclusions as a result of, 

for example, using human intelligence to set threshold levels. For example, research 

reported in [4.3] concluded that binary data could give improved signal to noise ratios 

in the correlation plane , compared to noisy grey-level data. However, no mention of 

the effort required to determine suitable thresholds was made. Furthermore, there 

was no discussion in the reference of the effects of the actual threshold level on the 

discrimination between different objects.

Given an SLM of limited dynamic range, the effects of grey-level transfer would 

need to be explicitly modelled for each task that was to be performed by the cor­

relator. This would be especially important if was expected to distinguish between
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objects that differed merely by virtue of details contained within the boundary of an 

object.

4.1.2 Random  Grey-Level Noise

As well as the non-linear grey-level transfer, the intensities in an image displayed on 

an SLM may be corrupted by random intensity noise. This could be caused by:

1. Variations in the responses of the individual CCD elements in the camera 

viewing an object.

2. Local variations in the CRT phosphor brightness.

3. Variations in the local sensitivity of the photo-conductor on the SLM.

4. Imperfect alignment of the liquid crystal molecules in the SLM

5. Defects and blemishes on the optical components both before and after the

SLM.

One form of noise, often used in optical processor simulations, is Gaussian additive 

noise [4.1] [4.4]. This noise can be shown to be associated with shot noise and thermal 

noise in a generic photo-detector [1.1]. In order to generate this Gaussian noise using 

a Fortran random number generator the following rule was applied:

Iou, = 4 , +  A * ( £ “="rnapd(°) -  0.5j  (4.1)

where A  was the amplitude of the noise; and the Fortran function rand(0) pro­

duced random numbers between 0 and 1. If was greater than 255 or less than 0, 

it was clipped to these values. The width of the Gaussian function could be increased 

or decreased by averaging over smaller or larger n.

To show that this random number averaging produced a Gaussian distribution, 

an experiment was carried out in which 5000 amplitude values were generated. A  

was set to 1 and J,n was set to 0.5; so the values of equation 4.1 varied between 0 

and 1. The resulting values were sampled with an interval of 0.01. The population 

of the intervals, for two different values of n, is shown in figure 4.6. The broad curve
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was generated by using n =  4 in equation 4.1; the narrow one by using n =  10. Also 

shown axe two ideal Gaussian curves and it can be seen that the averaged random 

numbers produced a good approximation.

To illustrate the effect of this noise, a corrupted version of the image of compo­

nent#^ was produced. The parameters used were: A  =  510 and n =  10. This meant 

that the maximum possible error at an individual pixel was ±255. To examine the 

effect of this noise on a correlation result, two, different, noisy versions of the input 

image were produced. The random number generator was started from a different 

seed point for each application of noise. This ensured that the noise in the two images 

was uncorrelated. One of the images was Fourier transformed and the amplitudes 

were modified to simulate storage in a BSO crystal; as described in section 3.6 of 

chapter 3. The reference beam amplitude was set to be 32 times less than that of 

the transform’s d.c., in order to provide edge enhancement in the correlation process. 

One of the noise corrupted images is shown on the left of figure 4.7. On the right of 

the figure is the result of reconstructing the BSO-stored Fourier transform.

250-1

200 ”

150-

o. 100-

50-

10 20 30 40 50 60 70 80 90
Infarunl

Figure 4.6: Gaussian populations, generated by averaging values from Fortran ran­
dom number generator. The dashed lines represent perfect Gaussian curves.
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noiseexp i.res

Figure 4.7: Noise corrupted image of com ponent#2 (left) and the result of simulating 
its storage as a BSO hologram (right).
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Figure 4.8: Corresponding slices through the noise-corrupted correlation plane (left) 
and the perfect auto-correlation (right).

Figure 4.8 shows a slice through the correlation peak, with a corresponding section 

through the un-corrupted auto-correlation for comparison.

From the experim ental results, it can be seen tha t the random  noise had very 

little effect on the correlation result. The profile of the corrupted peak is itself slightly 

noisy; but the original structure of the perfect auto-correlation is fully in tact. The 

reduction in the peak am plitude would correspond to a drop in intensity to about 

70% of the auto-correlation peak value. However, it is unlikely th a t this would be
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significant, especially considering the severity of the noise that was applied to the 

images. It is concluded that random grey-level noise of this type is unlikely make 

any serious impact on the correlation results.

4.1.3 Structured G rey-Level D istortions

For optically addressed SLMs, thickness variations across a device can cause both a 

phase distortion and a change in the grey-levels. Often, the most noticeable mani­

festation of this is non-uniformity in the dark off-state of the device. Developing a 

full model of this effect was not within the scope of this research. However, it was 

relatively straight forward to produce a program that would alter, in a realistic way, 

the lower grey-level values of an image.

The thickness of the SLM, T, may depart from perfect flatness - e.g. a uniform 

thickness A - according to:

T =  A +  6(ic,y) (4.2)

Four different forms of 6(x,y) will be discussed in section 4.1.4; which deals with 

large scale phase distortions. The grey-level values of an image were then changed 

from Iin(x,y) to I<mt{x ,y) according to:

Un{*,y) +  {A/2) +  (A/2)cos(6(x,y)/a) if Iin < A
/out(z, y) =  (4.3)

4 » ( s >  y )  i f  I%n> A

• The level A determined the severity of the effect by setting the level below which 

the pixel values would be altered. The constant a , merely determined the number 

of cycles across an image, for a given variation in device thickness.

This form of distortion was one of those included in the 2N factorial experiments, 

reported in section 4.2.

4.1.4 Large Scale P hase D istortions

These distortions are caused by thickness variations across the SLM; and are inde­

pendent of the input signal. Reported phase distortions can range from less than

A/4 -  for high quality research SLMs [4.5] -  to many wavelengths for cheap, com­

mercially available devices [4.6]. It should be pointed out that the effects of the
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phase distortion can be alleviated, or cured completely, by using additional optical 

elements in the system. These elements include phase conjugating holograms [4.6] 

and liquid gates [4.7]. It has also been proposed, that programmable, SLM-based, 

Fourier plane filters could be used. These would adapt themselves to produce opti­

mum signals in the presence of phase distortions [4.8]. Another method suggested 

to overcome the problem was the encoding of the conjugate of the phase distortion 

onto the SLM, using the phase modulating properties of the liquid crystal layer [4.9]. 

However, these measures all imply increased system complexity and, in the case of 

holograms, reduced light efficiency and increased noise in the optical system. There­

fore, they may be regarded as undesirable; unless the cost of manufacturing devices 

to the required specification is prohibitively expensive.

In order to model the effects, a computer program was written to add phase 

distortions to input images, which could then be correlated. Studies such as these 

have been carried out before [4.2], but as pointed out in this reference, the results are 

always application and image specific. At the input plane, the images were initially 

considered to have zero phase. The first distortions that were modelled were the most 

obvious cases: a ramp distortion, and a spherical distortion. The ramp distortion 

involved altering the phase of the image from $ » „ ( * , y )  to $ o u i( ® ,3 / )  according to:

$out(x,y) =  $in(x,y) + X Ar* (4.4)

where the image is assumed to be N  x N  pixels. The severity of the distortion was 

controlled by the constant, Af. A computer generated interferogram of this function 

is shown in the top right of figure 4.9; together with an inset intensity representation 

of the phase.

The spherical distortion was created by applying a function which represented a 

sphere of radius A tir:

$ o u t ( x , y )  = +  AS7T -  yjAllT2 -  x2 -  y2 (4.5)

The interferogram of this function, together with an inset intensity representation, is 

shown at the top left of figure 4.9. As expected, the addition of these phase terms to
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an image, resulted in a degradation of the correlation peak; when a cross-correlation 

was performed with a perfect image. However, at this point, it is im portant to assess 

the significance of these results for an actual optical system.

Figure 4.9: Computed interferograms of four phase distortions with different (x ,y ) 
variations. An intensity representation of the phase is inset in the top left corners of
each of the interferograms.

If a phase ram p is added to an input image, this is equivalent to placing a glass 

wedge just after the SLM. This has the effect of deviating the beam away from the 

optical axis. This in tu rn  leads to the light being focussed at an off-axis point in the 

F<?urier plane; as illustrated in figure 4.10. It was found tha t the digital correlation 

could be recovered by translating the reference Fourier transform by an appropriate 

amount. This was not discussed in [4.2] or [4.9], although the phase distortions 

considered, were dom inated by a ramp function. The distances involved may be very 

small. If the phase ram p causes a change of Arir across the width of the input image, 

the angle of deviation caused will be:

Ar7T Ar A

where r tm is the radius of the image. The displacement in the Fourier plane is then 

found, from equation 2.29, to be: 8 = f a .  For a 400mm lens, with: A =  633nm, 

A r = 4, and r tm =  5.0; the displacement is found to be: 6 = 50/zm. Nevertheless,
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this can lead to a dram atic reduction in the magnitude of the correlation peak. 

Figure 4.11 is a plot of the correlation plane for an auto-correlation of com ponent#2. 

The correlation was carried out using a simulation of a BSO correlator; the ratio of 

the am plitudes of the reference beam and the d.c. being 1/16. The effect of the 47r 

phase ram p, on the correlation peak, is illustrated in figure 4.12. It is seen th a t the 

correlation has failed to locate the object.

Image + Phase ramp

Off-axis d.c.

Figure 4.10: Effect of a phase ramp on the position of the Fourier plane.

PEAK=255 (65,65)

s
Figure 4.11: Auto correlation of com ponent#2: BSO correlator with 1/16 beam
am plitude ratio
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PEAK=119 (65,104)

x
s

Figure 4.12: Cross correlation of undistorted image of component# 2 , with second 
image with 47t phase ram p added.

Using a similar argum ent, the effect of adding a spherical distortion to the input 

plane, is equivalent to placing an additional lens just after the SLM. This has the 

effect of moving the location of the Fourier plane along the optical axis; as illustrated 

in figure 4.13.

Image + Spherical
Distortion Shift in 

Focus

Figure 4.13: Equivalent effect of spherical phase distortion at the SLM.

Equation 3.16, in chapter 3, gave the focal length, F , of a system of two lenses of 

focal lengths f \  and / 2, separated by a distance D. In the correlator, the SLM will 

often be in the front focal plane of the transforming lens; thus, D = / 2. However, 

in this case, the equation predicts tha t the focal length of the system is equal to
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the focal length of the second lens, fi. This implies that the spherical phase will 

not alter the apparent focal length of the transform lens. The distance, between the 

second lens and the focal plane is; from equation 3.17:

F  + 0 2H2 =  F - ™  = h  ( l  — & (4.7)

where D and F  have been substituted for; assuming that the image was at the front 

focal plane of the lens / 2 . Thus, a , in figure 4.13, is given by:

<x = f 2 - ( F  + 0 2H2) = £
h

(4.8)

In order to relate the spherical phase distortion to the actual optical system, the 

geometry of figure 4.14 can be considered.

im

Figure 4.14: Geometry for calculating the apparent focal length from the phase 
change between the centre and the edge of the field.

In the digital simulation, the change in phase between the centre and the edge of the 

image was known. From the geometry of the figure we have:

t'n
2 dd = R-sJ&-rl =4- R =

cP + - 2
2 d (4.9)

where the fact that, for most cases, d «  r,-m has been used. If the phase change 

between the centre and the edge of the image is A4> = n7r then:

. A4> , nXa =  —— x A = —  
2tt 2

(4.10)

This leads to an expression for R -  which is equivalent to the focal length f \  -  of:

( 4 .1 1 )
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For a value of n =  1; with / 2 =  400mm, A=633nm, and r tm =  5mm: it is found 

tha t a  =  4mm. The correlation plane, resulting from adding a spherical phase term  

to an image of com ponent#2 is shown in figure 4.15. The peak is reduced in height, 

and the am plitude of the background structure in the correlation plane increased.

PEAK=218 (65,65)

s
Figure 4.15: Cross-correlation of undistorted image of com ponent#2, with second 
image with 7r spherical phase front added.

The application of either spherical or ramp phase distortions to an image, is 

equivalent to modelling the effects of misalignments in the Fourier plane. If an SLM 

suffers either a perfect ram p or a spherical phase distortion, the optical correlator may 

not be greatly affected. This is because any Fourier plane filter would be placed at the 

measured position of the lens focus, and not its theoretical location. Furtherm ore, 

if a measured distortion is found to have a ramp-like or a spherical component, the 

results of com puter simulation will be over pessimistic. They could be improved in 

the equivalent optical system by repositioning the Fourier plane filter.

To simulate the effects of measured SLM phase distortions on the performance 

of an optical system, the following procedure should be adopted:

1. Measure the actual phase distortion of the device.

2. Subtract or add spherical phase profiles to minimise overall distortion.
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3. Subtract or add ramp phase profiles to minimise overall distortion.

4. Perform simulations using the modified phase distortion.

Steps 2 and 3 are equivalent to refocussing the optical system and repositioning the 

Fourier plane filters respectively.

In order to continue the work on large scale phase distortions, new profiles were 

generated. These contained no overall spherical or ramp-like components. Two such 

functions are an ‘astigmatic1 function formed from two back-to-back half-cylinders 

and a sinusoidally varying distortion.

The cylindrical distortion was generated using:

=  $ « > ( * .  y )  + A i *  -  sfA h -K 1 -  ( N / 2  -  x) *

- A c 2T  +  -  ( N / 2  -  y ) 2

The sinusoidal function was generated by:

$ im =  $ , +  A.in sin (4.13)

where n is the number of phase cycles across the image.

The interferogram of the sinusoidal and cylindrical functions, together with their 

intensity representations can be seen in the lower half of figure 4.9 on the left and 

right respectively. These profiles were generated using a sinusoid with an amplitude 

of 2.57T and two cylinders with radii 2507T.

So far, the work had concentrated to the case where distortions were applied to 

one image only. This was reasonable since in the BSO correlator, different SLMs — 

with different distortions -  would be used on the write and read-sides. In a conven­

tional Vander Lugt correlator, employing only one SLM, the main effect of phase 

distortions is to destroy the shift invariance of the system. An MSF may be recorded 

with, say, the object at the centre of the image displayed on an SLM. If there is a 

phase profile associated with the SLM, then the region of this profile which overlaps 

the object will also be recorded. If an auto-correlation is formed, with the object 

still at the centre of the image, the phase conjugation properties of the MSF will 

eliminate the phase effects. However, if the object moves to a different part of the
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input field, at another position on the SLM, it will see a different phase profile. The 

difference between this new profile and tha t recorded on ,the MSF will degrade the 

correlation peak.

An example of this loss of shift invariance was provided by correlating the two 

images shown in figure 4.16. The perfect correlation plane is shown in figure 4.17. It 

was formed by simulating a BSO correlator with a reference beam to d.c. amplitude- 

ratio of 1/16. An identical phase distortion, of cylindrical form, was then applied to 

both images. The correlation plane tha t was produced, is shown in figure 4.18.

•  •  •  
m  m  m  

m  m

Figure 4.16: Input images used in the position invariance experiment.

Figure 4.17: Correlation of single, centred hole tem plate with an array of identical 
objects.
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s
Figure 4.18: Correlation of hole template with array of holes, with identical, cylin­
drical phase distortion added to both images.

As expected those circles not at the centre of the image have suffered a drop in their 

correlation signals; i.e. the system has lost its position invariance.

Large scale phase distortion is one of the effects included in the experiment re­

ported later in this chapter.

4 .1 .5  Sm all Scale  P h a se  N o ise

Previous work [4.10] had highlighted the problems caused by small scale phase dis­

tortions on the outputs of SLMs such as the Hughes LCLV. These distortions are 

caused by point defects in the layers tha t underlie the device’s back mirror [4.11]. 

This, coupled with their random nature, meant th a t they can only be successfully 

eliminated at the device fabrication stage. Theoretically, these phase effects could be 

compensated for with a phase conjugating hologram. However, the phase pattern  is 

at such a small scale tha t it would be impossible to align the compensating element 

with the SLM. These phase defects have been found to introduce a large amount of 

noise into optically edge enhanced images [4.10]. They will also produce noise in the 

Fourier plane, by random scattering of incident light. Papers such as [4.12], in which 

a Hughes SLM was used, make no mention of the problem although it should have
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had an effect on the results. In the absence of any reported data, a brief experiment 

was performed in order to provide some numbers for the simulation work.

A Twyman-Green interferometer was set up to provide a magnified image of the 

back mirror of a Hughes LCLV. In this system, the image was interfered with the 

beam from a second mirror. Two images were then acquired: one with two mirrors 

in the system; and one with the SLM and one mirror. The images were stored 

digitally which allowed the fringe noise to be highlighted by contouring the fringes. 

The results are shown in figure 4.19; the mirror fringes are on the left and the SLM 

fringes on the right. The field of view is 2.15mm and the defect size was found to 

be around 0.1mm. This equated to about 4 lines on the CRT that would have been 

used in the correlator. The peak distortion appeared to be about A/8.

Original 
fringes

Contoured
fringes

Figure 4.19: Comparison of mirror and LCLV fringes

In order to generate noise of this type, a program was written which randomly 

scattered phase noise ‘tem plates’ over an image. These tem plates were 1 pixel, 

3x3, and 5x5 pixels in size. The magnitude of the phase of each tem plate was 

also randomly varied between specified maximum and minimum values. W hen the 

program was run, the number of defects of each size was specified by the user. For 

each tem plate, of each size, up to the maximum number specified, the program 

generated random x ,y  locations and a random amplitude. The phase tem plate was
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then added to the phase already existing at the x ,y  location. For the 3x3 and 5x5 

pixel tem plates, the phase values added to the central pixel and its neighbours were:

0.15 0.30 0.38 0.30 0.15
0.26 0.51 0.26 0.30 0.61 0.79 0.61 0.30
0.51 1.0 0.51 Airx 0.38 0.79 1.00 0.79 0.38
0.26 0.51 0.26 0.30 0.61 0.79 0.61 0.30

0.15 0.30 0.38 0.30 0.15

where A t: was the am plitude of the noise at the particular location. These tem ­

plates approxim ated Gaussian profiles. They were designed to ensure tha t, in adding 

noise tem plates to the image, no sharp edges were introduced.

An experiment was carried out to assess the effects of this phase noise on an edge 

enhancement process. A 256x256 pixel image of com ponent#2 was corrupted with 

phase noise. The storage of its Fourier transform, as a BSO hologram, was then 

simulated. The holographic reference beam was given an am plitude tha t was sixteen 

times lower than th a t of the transform ’s d.c.; this produced an edge enhanced image 

on reconstruction. The noise tha t was added to the image consisted of 5000 single­

pixel defects, 10000 3x3 pixel defects and 5000 5x5 pixel defects. The maximum 

am plitude of any defect was 0.257t; i.e. A/8. The results are shown in figure 4.20.

Figure 4.20: Simulated results of edge enhancement, by BSO holographic storage, 
for images with (right) and without (left) phase noise.

The edge enhancement of an undistorted is shown on the left which may be compared 

with the enhanced, noisy image on the right. This dem onstrated how the edge
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enhancement process highlights the phase noise structure, at the expense of the

edges in the image.

This type of SLM distortion was further investigated in the experiment reported 

later in this chapter.

4.1 .6  Signal D ependent Phase D istortion

Several papers have been published on the cross-coupling between amplitude and 

phase in the output from liquid crystal based SLMs. Reference [4.13] considered 

the case of a twisted nematic cell between crossed polarisers. It suggested that the 

main phase modulation took place at lower voltages than those required to affect the 

amplitude of the output. No observable cross-coupling would occur, since the phase 

output was reportedly constant at the voltages used for amplitude modulation. In 

[4.14] however, it was stated that a linear amplitude-phase relationship, with some 

quadratic behaviour, existed in the output of a Hughes LCLV. In the simulation 

work performed here, the requirement was to study generic systems and not specific 

devices. It was therefore decided, to model the cross-coupling as a linear relationship, 

although this could easily be extended to include higher order terms.

The input image might already contain phase information, for example if the 

image had already been subjected to any of the phase distortions discussed above. If 

this was not the case, then the image array was assumed to have zero phase initially. 

In either case, the phase of the output image at each pixel was given by:

y) = $in(x, y) +  i4ir^/in(a!,y)//mox (4-14)

where the square root of the input intensity was taken to give the amplitude values. 

A'k was the maximum phase distortion that the device was capable of producing and 

I  max was the predetermined, maximum image grey-level. In order to illustrate this 

effect, for an SLM in the input plane of an optical system, the edge enhancement 

of the image of component#2 was considered. In this case, the enhancement was 

performed by a Fourier plane band-pass filter. A maximum, signal dependent phase 

distortion of 27r was used; i.e. this would be the phase added to an input pixel of grey-
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level 255. The results of the edge enhancement are shown in figure 4.21. The image 

has been negated, and the square root of the output intensity taken, to compress the 

dynamic range for printing.

It was clearly seen tha t the phase distortion greatly enhanced the internal detail 

of the test object relative to its external outline. It also increased the m agnitude 

of the computed auto-correlation function by a factor of 1.5 times. Predictably, the 

actual shape of the correlation peak was altered as the peak became elongated. This 

was due to the stronger vertical lines in the edge enhanced image.

Figure 4.21: Effect of amplitude-phase cross coupling on edge enhancement.

A second experiment was carried out, to illustrate the effect of signal dependent 

phase distortion on the discrimination of a correlation system. The two images shown 

in figure 4.22 were cross-correlated. A reference tem plate was made of com ponent#2, 

which was then correlated with a second image, containing component# 2  and two 

others. The correlation was first performed on the images, assuming tha t they both 

had no phase associated with them. The resulting correlation plane is shown in 

figure 4.23.

Both images were then subject to a phase distortion", with a maximum of 27r, 

and the correlation repeated. The result of this is shown in figure 4.24. Both a large 

increase in discrimination and a change in correlation peak shape can be clearly seen. 

The results of this simulation were very interesting. The presence of amplitude- 

phase cross-coupling was shown to increase the discrimination between objects in a 

correlation experiment.
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Figure 4.22: Input data for discrimination experiment.

s
Figure 4.23: Discrimination experiment with no phase coupling.

s
Figure 4.24: Improved discrimination as a result of phase coupling.
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This is perhaps not surprising, since the unique phase pattern, associated the ampli­

tude of an object’s image, would emphasize the differences between this object and 

others. Such improvements in discrimination were not noted in [4.14] which merely 

studied the effects on the correlation peak profile. O ther workers have discussed the 

cross-coupling effects when the SLM is used in the Fourier plane of a system [4.15]

[4.16]. However, this was beyond the scope of this research, since the correlator was 

to have used a holographic material to store the MSFs.

4.1 .7  D e v ic e  R e so lu t io n

Spatial Frequency (cydes/image)

Figure 4.25: MTF curve, and the result of applying it to the image of com ponent#2. 
The original image is shown on the left, the filtered image on the right.

For an optically addressed SLM, reductions in resolution are modelled by applying 

a smooth attenuation to the Fourier transform. This is the modulation transfer 

function (MTF) for the device. A convenient mathematical expression for generating

MTF curves is:

Fout{r) = F(r)e~ar2 (4-15)

Where r is the radial distance from the d.c. of the Fourier transform. The shape 

of this curve is fairly typical of reported MTF measurements. An example curve is 

shown on the left of figure 4.25; the result of applying it to a 256x256 pixel image of

component#2 is also shown.
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4.2 A 2n  Factorial Experim ent

SLMs will usually suffer from several distortions simultaneously. It is possible that 

several factors acting together, will produce degradations more severe than those 

predicted by treating each separately. If the digital simulation work is to predict 

the output of an optical system, a way of investigating the interaction of the various 

factors must be found.

The 2n  factorial experiment is a special case of the complete factorial experiment, 

see [4.17] for example. Both are used when an experimental system may be influenced 

by several different factors simultaneously. The value that a particular factor takes 

in a given experiment is called the level of that factor. The application of a set of 

factors, at different levels, is called a combination. In the 2N factorial experiment, 

each of the factors is limited to just two levels. The main reason for doing this is to 

limit the number of combinations; and hence the number of experiments that need 

to be performed.

Measurement M(A)(B)(C)

Level of 
factor a

Factor

Factor

Factor

Figure 4.26: Experimental system influenced by three factors each of which can be 
set at two levels.

Figure 4.26 is a sketch of an experimental system which is influenced by three 

external factors: A , B , and C. Each of these can be present at either a ‘high 

level’ or a ‘low level’. The state of the experimental system is monitored via some
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measurable quantity M. To build up a picture of the effects of factors A, B  and C 

on the value of M , experiments must be carried out using all possible combinations 

of the three external factors. It is usual to create an experimental nomenclature 

to list the results. When factor A  is at a high level, and the other two are low, 

the measured value is denoted by Ma - Similarly, when B  and C are high and A  is 

low, the measured quantity is Mbc• If there are N  external factors influencing the 

experimental system, then 2N experiments must be performed. These experiments 

will cover all the possible combinations of all the factors at their low and high levels: 

hence the name of the experimental method.

For the system of figure 4.26, 8 experiments must be performed and eight mea­

surements made: M, Ma , Mb , Me, Mab , Mac, Mbc and Mabc• Of these measure­

ments, there axe 4 where factor A  is high and 4 where it is low. The ‘direct effect’ 

of factor A  is defined by:

( M a b c  +  M a b  +  M a c  +  M a )

(4.16)
-  ( i )  ( m b c  + Mb + Mc + M) 

i.e. the average value of M  when factor A  is high, minus its average value when 

it is low. The direct effects of the other two factors are similarly defined. Each of 

the eight measurements, M xx x ,  should themselves be averaged over a number of 

experiments, in order to reduce the effects of random error. The direct effects can be 

either positive or negative, depending on whether the effect is to decrease or increase 

the value of M.

The main advantage of using this experimental technique, is that the interactions 

of the various factors can be calculated. The ‘interaction’ of factor A  and B  is defined 

as:
(4 ) ((Mabc + Mab) — (Mbc +  Mb ))

(4.17)
-  (?) ((Mao +  Ma ) -  (Mc + M))

In the first term, are grouped all the measurements for which factor B  was high, 

and in the second term are all those for which B  was low. In each of these terms, 

a calculation is made of the direct effect of factor A. This is done by subtracting 

the average value of M  with A  low from that with A  high. Hence the ‘interaction’
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of A  with B  is the difference between the direct effect of factor A when factor B  

is also high and the direct effect of factor A  when factor B  is low. This value may 

be positive or negative depending whether A has a more or less positive effect on 

M  when factor B  is at a high level. It can be seen, by making the appropriate 

substitutions into equation 4.17, that calculating the interaction of B  and A  will 

produce a result identical to the interaction of A  and B.

One problem with using the 2N factorial experiment, is the implicit assumption 

that the measurable quantity varies linearly with the change in level of the factors. 

This problem can be alleviated by ensuring that the levels chosen are sensible in 

the first place and, in any case, they must be chosen to be representative of those 

expected to be encountered.

4.2.1 T he D istortions U sed in th e Experim ent

The images used in the experiments were those of the machined component and 

the hole template, shown in figure 1.3 in chapter 1. It was recognised that limits 

would be imposed by the number of correlations that would need to be performed 

in the experiment. As discussed below, it was decided to perform 12 correlations
j

for every combination of factors. If three different distortions were included, a total 

of 96 correlations would need to be performed. It was felt that this would be a 

reasonable number if the results could be analysed automatically, without the need 

to take measurements from the correlation planes ‘by hand’. This was feasible if the 

distortions were not so severe as to totally destroy the correlation plane structure. 

For this experiment, two features were being searched for in the image of the face 

of the component. Therefore, the computer scanned the correlation plane to find 

the two highest peaks; and then found the highest clutter signal in the rest of the 

correlation plane. The severity of the effects of the worst degradations was checked 

beforehand, by applying the maximum distortion levels to the images and performing 

a few sample correlations.

When selecting the three distortions to be investigated, it was noted that the 

input images contained no significant grey-level information. For this reason, image
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dependent grey-level distortions were not included. These included dynamic range, 

linearity and signal dependent phase noise. Furthermore, it had already been shown 

that random grey-level noise had minimal effects on the correlation plane. The three 

distortions used were: large scale phase distortion, as described in section 4.1.4; 

small scale phase noise, described in section 4.1.5; and structured grey-level distor­

tion, found in section 4.1.3. The large scale phase distortion took the form of an 

astigmatic phase profile with an am plitude of ±27t. The small scale phase distor­

tion was generated using 3x3 pixel tem plates with a maximum possible distortion 

of 0.757T. Figure 4.27 shows the type of phase profile generated when the large and 

small scale phase distortions are added together. The left of the figure shows an 

intensity representation of the phase, ranging from black at —2x to white at +27T. 

On the right of the figure is a computer generated interferogram of the phase profile.

Figure 4.27: Computer generated phase profile including small scale phase distortions 
superimposed on an overall, large scale astigm atic distortion.

The structured grey-level distortion took the form of a non-uniform off-state. The 

maximum level of this distortion was such th a t a pixel with a grey-level of zero could 

be distorted to a level of 3: i.e. 1.2% of the maximum possible. The minimum level of 

all the above distortion factors was set to be zero; i.e. the baseline for the experiment 

would be a perfect SLM. To avoid correlation between the distortions on the SLMs, 

different patterns were applied to the object and reference images. In order to achieve 

this, the arrays of phase values generated were rotated by 90°between the two SLMs. 

Also, the function used to generate the non-uniform background used a sinusoidal
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relationship for one SLM and a cosinusoid for the other (see equation 4.3).

4.2.2 Experim ental R esults

Four images of the machined component were captured, each rotated by 90°. This 

was done in order to average out any anomalies in the lighting, when the images 

of the component were captured. From each of these original images, two further 

copies were generated with the component translated towards the edge of the image. 

This ensured that a large area of the distortion field would be sampled when the 

correlations were performed. This, in turn, allowed the assessment of the tracking 

non-linearities as the object was translated around the field of view. There were 

therefore, twelve images to be correlated for every combination of distortion factors. 

Initial experiments suggested that the large scale phase distortion was having a 

relatively small effect. Subsequent calculations showed that, for all the positions of 

the test object in the images used, the hole features were never sampling a phase 

distortion greater than 0.77T. This then, was the effective phase distortion for the 

SLM.

Since 96 correlation planes were to be produced, it was decided to limit the size 

of the input images to 256 x 256 pixels. A computer program was written to seaxch 

for the correlation peaks, due to the two holes, and then to find the peak value due 

to background noise or clutter. These values were all written to a file along with 

a description of the particular image being correlated and the levels of the three 

factors. Another advantage of this automated approach, was that a second program 

could then be written to read the data file produced and then to compile and analyse 

the results.

Figure 4.28 shows edge enhanced images of the component and the hole template, 

without any distortions present. Also shown is the correlation plane, repeated from 

chapter 1. As expected, the next largest signal, after that of the two holes, was 

produced by the round-ended slot. The signal to clutter ratio was 2:1 and 1.6:1 

for the two holes. The difference in the signal strengths was due to lighting non- 

uniformities when the image was captured.
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Figure 4.28: Edge enhancement of undistorted component and tem plate, together 
with their correlation surface.

IIP

Figure 4.29: Edge enhancement and correlation results when the three distortions 
were present at their highest levels.

In contrast to this perfect result, figure 4.29 shows the edge enhanced images with 

all the distortions present at their highest levels. It also shows the corresponding 

correlation surface. The signal to clutter ratios had fallen to 1.28:1 and 1.19:1. The 

absolute intensities of the two correlation peaks corresponding to the holes -  which 

have been normalised in the surface plots -  also fell to about a quarter of their
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undistorted values.

Once all the correlations had been performed, the results were collected and 

grouped with respect to each of the eight treatment combinations. From this in­

formation, the direct effects of the various factors were calculated. The measurable 

quantities used were the absolute peak intensities and the signal to clutter ratios. 

The discrepancies between expected and actual peak locations were also monitored. 

Next, the first order interactions of the factors were calcillated; again using the av­

erage values of peak height and the signal to noise.

All the direct effects and interactions were calculated independently for the two 

holes in the image of the component. Thus, two individual estimates of these quanti­

ties were produced, which helped to give some idea of the consistency of the results. 

Finally, the results were searched in order to ascertain if there had been any cases in 

which the signal to noise ratio had fallen to below one. The results are listed below, 

together with the calculated values. The experimental description is written ABC  

where:

A — 1 =£> Large scale phase distortion = ± 2 x
A = 0 => Large scale phase distortion =  0

B = 1 => Small scale phase distortion 0.75tt
B  = 0 => Small scale phase distortion = 0

C = 1 =$> Background intensity distortion =  3 : 255
(7 =  0 => Background intensity distortion = 0

DESCRIPTION: 000
Average peak holel =  309.6: Range: 341.1 to 288.3 =  52.9 =  + /- 8.5% 
Average peak hole2 =  265.5: Range: 302.1 to 233.8 =  68.4 =  + /- 12.9% 
Average S/C holel =  2.27: Range: 2.68 to 1.91 =  0.78 =  + /-  17.1% 
Average S/C hole2 =  1.94: Range: 2.33 to 1.64 =  0.70 =  + /- 17.9%

DESCRIPTION: 100
Average peak holel =  269.9: Range: 325.5 to 220.7 =  104.8 =  + /- 19.4% 
Average peak hole2 =  230.0: Range: 288.0 to 178.4 =  109.7 =  + /- 23.8% 
Average S/C holel =  2.08: Range: 2.72 to 1.51 =  1.21 =  + /- 29.0% 
Average S/C hole2 =  1.77: Range: 2.47 to 1.31 =  1.16 =  + /-  32.7%

Maximum position error for holel: 0.0 pixels.
Maximum position error for hole2: 0.0 pixels.
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DESCRIPTION: 010
Average peak holel = 206.2: Range: 279.8 to 175.8 =  104.0 = 
Average peak hole2 =  188.6: Range: 232.1 to 140.4 =  91.7 = 
Average S/C holel = 2 .1 2 : Range: 3.22 to 1.51 =  1.71 =  +/• 
Average S/C hole2  =  1.93: Range: 2.71 to 1.25 =  1.46 =  +/•

Maximum position error for holel: 1.0 pixels.
Maximum position error for hole2: 1.0 pixels.

DESCRIPTION: 001
Average peak holel =  160.6: Range: 193.9 to 143.9 =  50.0 = 
Average peak hole2 = 135.4: Range: 150.0 to 113.4 =  36.6 = 
Average S/C holel = 2.49: Range: 3.31 to 2.02 =  1.29 =  -f/
Average S/C hole2  = 2.09: Range: 2.49 to 1.71 =  0.78 =  +/■

Maximum position error for holel: 0.0 pixels.
Maximum position error for hole2: 0.0 pixels.

DESCRIPTION: 110
Average peak holel = 185.8: Range: 256.7 to 137.5 =  119.2 =
Average peak hole2 = 163.0: Range: 211.3 to 111.9 =  99.5 =
Average S/C holel = 1.93: Range: 3.07 to 1.19 =  1.88 =  +/•
Average S/C hole2 = 1.68: Range: 2.45 to 1.07 =  1.38 =  + /

Maximum position error for holel: 1.0 pixels.
Maximum position error for hole2: 1.0 pixels.

DESCRIPTION: 101
Average peak holel =  111.4: Range: 133.5 to 94.8 =  38.7 =  
Average peak hole2 = 93.4: Range: 114.6 to 76.0 =  38.6 =  4 
Average S/C holel = 2.29: Range: 3.05 to 1.74 =  1.31 =  + /
Average S/C hole2  =  1.91: Range: 2.47 to 1.58 =  0 .8 8  =  + /

Maximum position error for holel: 0.0 pixels.
Maximum position error for hole2: 0.0 pixels.

DESCRIPTION: 011
Average peak holel =  113.4: Range: 163.1 to 80.7 =  82.4 =
Average peak hole2 =  105.5: Range: 138.5 to 66.4 =  72.1 =
Average S/C holel = 1.90: Range: 3.39 to 1.21 =  2.18 =  4*/
Average S/C hole2  = 1.74: Range: 2.13 to 1.09 =  1.05 =  4-/

Maximum position error for holel: 1.0 pixels.
Maximum position error for hole2: 1.0 pixels.

= 4-/- 25.2% 
4-/- 24.3% 
40.4% 
37.9%

+ /- 15.6% 
+ /- 13.5% 
26.0% 
18.7%

= + /- 32.1% 
4-/- 30.5% 
48.8% 
40.9%

4-/- 17.4% 
-/- 20.7% 

28.6% 
23.1%

+ /- 36.3% 
+ /- 34.2%
- 57.2%
- 30.1%
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DESCRIPTION: 1 1 1

Average peak holel =  81.2: Range: 117.4 to 55.0 =  62.4 =  + /- 38.4%
Average peak hole2 =  72.5: Range: 103.6 to 51.6 =  52.0 =  +/" 35.8%
Average S/C holel =  1.79: Range: 2.56 to 1.26 =  1.30 =  + /- 36.4%
Average S/C hole2 =  1.60: Range: 2.35 to 1.03 =  1.32 =  + /- 41.3%

Maximum position error for holel: 1.0 pixels.
Maximum position error for hole2: 1.4 pixels.

4.2.3 D iscussion o f th e  R esults

The results, for the direct effects of the three factors and their first-order interactions, 

are shown in table 4.1. It was noted that the two holes produced broadly similar
j

results for the direct effects and the interactions. There were no actual failures in the 

recognition process. However, one of the correlations, with all the distortions present, 

produced a signal to clutter ratio of just 1.03:1. The positional errors produced were 

not large, being at most a couple of pixels, which was probably not significant. The 

main conclusion from the results was that the grey-level non-uniformities were by 

far the most damaging in terms of absolute peak intensity. They did not however,

have a significant effect on the signal to clutter ratio. It must be remembered that

the results are specific to this task; using the BSO correlator.

Subsequent experimentation showed that the non-uniform background was affect­

ing the system in two ways. Firstly there was the obvious reduction in contrast of 

the holes, reducing the peak intensities. At the same time, the non-zero background 

pixels were greatly increasing the FT’s d.c. intensity. This was affecting the intensity 

that was selected for the reference beam used to form the BSO hologram.

It was found that some of the lost correlation intensity could be recovered by 

not adjusting the reference beam intensity for varying d.c. levels. It was noted that 

the direct effects of the large scale phase distortion on peak intensity were hardly 

significant, especially when compared with the variations in the ‘perfect’ results 

produced by the lighting changes in the images. It should be remembered however, 

that for this task, the need to keep the object within the field of view, ensured that 

only a small part (~  0 .77r) of the large scale phase distortion was sampled. The 

direct effects on signal to clutter were also barely noticeable.
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Direct effect of Large scale phase on holel peak = 
Direct effect of Large scale phase on hole2 peak =  
Direct effect of Large scale phase on holel S/C =  
Direct effect of Large scale phase on hole2  S/C =

-35.39
-34.01

-0.17
-0.18

Direct effect of Small scale phase on holel peak =  
Direct effect of Small scale phase on hole2 peak =  
Direct effect of Small scale phase on holel S/C =  
Direct effect of Small scale phase on hole2  S/C =

-6 6 .2 1

-48.67
-0.35
-0.19

Direct effect of grey-level on holel peak =  
Direct effect of grey-level on hole2  peak = 
Direct effect of grey-level on holel S/C =  
Direct effect of grey-level on hole2  S/C =

-126.23
-110.07

0 .0 2

0 .0 0

Interaction large/small scale phase: holel peak =  
Interaction large/small scale phase: hole2  peak =  
Interaction large/small scale phase: S/C =  
Interaction large/small scale phase: S/C =

9.05
4.74
0 .0 2

-0 .0 1

Interaction large phase/grey-level: holel peak =  
Interaction large phase/grey-level: hole2  peak = 
Interaction large phase/grey-level: S/C =  
Interaction large phase/grey-level: S/C =

-5.32
-3.50
0 .0 2

0 .0 2

Interaction small phase/grey-level: holel peak =  
Interaction small phase/grey-level: hole2 peak =  
Interaction small phase/grey-level: S/C =  
Interaction small phase/grey-level: S/C =

27.52
23.30
-0.19
-0.14

Table 4.1: Final results; calculated from the averaged experimental results for the 
different treatment combinations.
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The small scale phase distortions produced a significant drop in both peak in­

tensity and in the signal to clutter ratios. Also, the only significant interaction was 

between the small scale phase distortions and the grey-level non-uniformity. For the 

case of the correlation peak height: the positive value of this interaction implied 

that the absolute effect of the phase distortion was less severe when the grey level 

distortion was present. For the signal to clutter ratio, on the other hand, the neg­

ative interaction implied that the absolute effect of the phase distortion was worse 

with the grey-level distortion present. Thus, if the effects of the three distortions 

were measured separately and the results added: the predicted peak intensity would 

be slightly worse than that actually produced; while the prediction for the signal to 

clutter ratio would be on the optimistic side. To illustrate this, consider the case 

for the peak height produced by hole 1. The falls in absolute intensity, measured in 

experiments 100, 010 and 001, were -40, -103 and -149 respectively: giving a total 

of -292. However, the difference in peak height, measured with all the distortions 

present, was just -228.

The changes in signal to clutter ratio, for the same hole, for the three experiments 

were -0.19, -0.15 and +0.22: giving a total of -0.12. The difference in signal to 

clutter ratio, measured with all three distortions present, was in fact worse, at -

0.48. The figures for intensity variations across the input image were calculated as 

a plus or minus percentage variation. It was apparent that the small scale phase 

distortions had the biggest effect on this variation. With all the distortions present, 

the percentage variation was such that a correlation peak could vary between, say, 

255 and 119. This would use up a significant portion of the dynamic range of a typical 

CCD camera. With such a large variation it would be very difficult to do anything 

with the correlation plane results by way of interpretation other than simple object 

recognition.
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4.3 Conclusions

A set of computer programs was written that could be used to apply distortions 

to digital images, prior to the simulation of their use in an optical processing sys­

tem. The distortions, which affected the amplitudes and the phases associated with 

the images, were typical of those encountered when using optically addressed SLMs. 

Standardising the input and output formats for the programs, made it easy to ap­

ply combinations of various distortions. This was important since many different 

deformations will often occur simultaneously as an image is relayed by an SLM.

The small-scale phase distortion, modelled in this chapter, has not received much 

attention in the surveyed literature. However, it was shown to introduce a large 

amount of noise into edge enhanced images and correlation planes. When modelling 

large-scale phase errors, an important conclusion was drawn regarding the type of 

phase distortion that could be studied digitally. It was shown that modelling either 

spherical or ramp phase distortions was not valid. This was because, in an optical 

system, they would be compensated for by translating the Fourier plane filter. This 

has not been noted in previously published papers.

Another factor, not covered extensively elsewhere, was the effect of background 

non-uniformities in an image. It was shown that, even at low levels, they could 

have a serious effect on the tracking uniformity of a correlator. A study of signal- 

dependent phase modulation demonstrated that this effect could actually improve 

the discriminating capability of the correlation process.

The ultimate aim of this simulation work, was to produce software that could be 

used to assess the effects of various SLM distortions for any given image processing 

task. Since many different factors act simultaneously on the SLM output, the 2N 

factorial method was used as the basis for the experiments. A real image of a 

machined component was correlated with a computer generated template. The task 

was to identify and locate two drilled holes in the component’s face. Three distortions 

were applied to the images in various combinations, these were: large-scale phase 

distortion; small-scale phase noise; and structured grey-level distortion. For every
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possible combination, 1 2  correlations were performed, with the machined component 

at 12 different locations in the input image. Since each distortion could be either 

‘on’ or ‘off’, there were eight possible combinations of the factors and thus a total of 

96 correlations was performed. One of the key steps in speeding up the experiment 

was the automatic analysis of the correlation planes. This was possible since: firstly, 

the distortions were never so bad as to completely destroy the correlation peaks; and 

secondly, the expected location of the peaks was known. A master program then 

performed the 96 correlations, tabulated the results and calculated the direct effects 

and interactions of the various distortions.

This method could be applied to any optical processing operation for which an 

SLM is used as an input. However, there must be a measurable quantity that can 

be defined, and that the computer can readily monitor. In the example experiment 

performed here, the quantities were: correlation peak height, signal to clutter ratio, 

and peak location accuracy. If these quantities had been measured by a human 

observer, for all of the 96 correlation planes, the experiment would obviously have 

taken much longer.

With images of 256x256 pixels, the time taken to perform 96 correlations, using 

a Sun SPARC station 2 , was about half an hour. Using 512x512 images, the ex­

periment would have taken four times as long. If desired, six different factors could 

be investigated, using 512x512 pixel images, in about 13 hours of run-time. This 

assumes that, for each of the 64 possible combinations of the 6  factors, the results 

are averaged over 12 correlations. Thus, even without specialised hardware, this ex­

perimental technique can be extended to larger images with more image distortions.
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A b b reviation s/sym bols used in Chapter 5

Ar+ Argon ion (laser) (Chapt. 1 ).

BSO Bismuth Silicon Oxide (Chapt. 1 ).

CCD Charge Coupled Device (Chapt. 1 ).

CRT Cathode Ray Tube (Chapt. 1).

d.c. Zero-spatial-frequency component of FT (Chapt 1.).

FT Fourier Transform (Chapt 1 .).

He-Ne Helium-Neon (laser) (Chapt. 1).

SLM Spatial Light Modulator (Chapt. 1 ).

TV Television (Chapt. 1).

B  Bragg angle for hologram (Chapt. 2).

AJ3 Miss-match between read-beam angle
and Bragg angle (Chapt. 2).

d Hologram thickness (Chapt. 2).

Ea Electric field applied to BSO (Chapt. 2 ).

/  Lens’ focal length.

I  ft Intensity in the Fourier plane (Chapt. 3).

n Refractive index (of BSO) (Chapt 2.)

An Refractive index modulation (of hologram) (Chapt 2.).

N x N Number of pixels in an image (Chapt. 1 ).

P  Laser power.

Q Hologram thickness parameter (Chapt. 2).
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f'BSO  Half-width of clear aperture of BSO crystal (Chapt.3).

rcorr Half-width of correlation plane.

r tTn Half-width of input image aperture (Chapt. 3).

ref /  =  r4i Relevant effective electro-optic coefficient 
of BSO (Chapt. 2 ).

j

u Spatial frequency (Chapt. 3).

Az Represents the longitudinal extent of the
Fourier transform (Chapt. 2 ).

a  Half-angle between holographic writing beams (Chapt. 2).

A a  Difference between actual a  and
that required to produce fringe spacing A (Chapt. 2 ).

tj Diffraction efficiency (Chapt. 2 ).

A Hologram’s fringe spacing (Chapt. 2 ).

Ac Critical fringe spacing for BSO (Chapt. 2 ).

A Free-space wavelength (Chapt. 2).

Ar: Xw Subscripts to denote reading and
writing of hologram.

0 2 Diffusion length parameter (Chapt.3).

rc Dielectric lifetime for BSO (Chapt.3).

Tg Exponential rate coefficient for growth of
field in BSO (Chapt. 3).
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The first section in this chapter, describes the system that was specified to meet 

the requirements of the research project. The design was produced within the con­

straints imposed by the available equipment and materials. The second section is 

concerned with the generalisation of those equations which were used to predict the 

system’s performance. It is shown how the number of variables can be reduced to a

small set which includes the number of pixels in the input image and the physical
*

size of the BSO crystal. By examining the behaviour of these equations, predictions 

were made about the feasibility of extending the performance of the correlator. In 

the third section, conclusions are drawn about the suitability of BSO, for use as an 

updatable holographic medium in an optical correlator.

5.1 Calculations for the Specified Optical System

The starting point, for the design of the optical correlator, was a list of the equipment 

and material specifications. Some of these were fixed; being determined by the 

available hardware. Ideally, the dimensions of the BSO crystal would have been 

specified during the design process. However, the purchase and characterisation of a 

single BSO crystal was all that was allowed within the limits of the available budget. 

Therefore, correlator design is based around this specific crystal. A list of the various 

system parameters is given in table 5.1. Those listed as having ‘variable’ values, were 

free to be adjusted in the design stage. Those that were fixed, have their appropriate 

values listed. The input images, the BSO crystal, and the correlation plane detector, 

were all square in shape. When a radius is referred to, this is the half-width of the 

square. The radius of the correlation plane was based on the pickup area of a COHU 

4710 CCD camera; which is a rectangle of 6.4 x 4.8mm.

The CCD camera sensitivity was measured experimentally. An expanded, He-Ne 

laser beam was used to illuminate a small aperture. This aperture was then imaged 

onto the CCD detector of the camera, using a long focal length lens to allow easy 

access. Neutral density filters were placed in the laser beam, in order to reduce the 

intensity to a level that did not saturate the camera.
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D escription Symbol Value

Radius of input image: r im 5.64 mm

Number of pixels across input image: N 512

Max. spatial frequency: U m ax 22.7 lpmm - 1

Radius of correlation plane CCD: r  corr 2.4 mm

CCD camera sensitivity: --- 5nW mm - 2

Read laser wavelength: Ar 633 nm

Write laser wavelength: Ây 514 nm

Read laser power: P r 15 mW

Write laser power: P u, 1000 mW

Refractive index of BSO: n 2.5

Effective electro-optic coefficient: r*ff =  r4i 3.6 pm/V

Diffusion length parameter: 0 2 140

Dielectric lifetime (at 30/zWmm-2): Tc 5.1ms

Required response time: 2.7 XT/ 40 ms

Radius of BSO: rBSO 6.5 mm

Thickness of BSO: d 1 .0  mm

Hologram grating spacing: A Variable

Critical grating spacing: A c 0.5^m

Read lens focal length: f r Variable

Write lens focal length: U Variable

Applied field: e a Variable

Table 5.1: Parameters specified for the Optical System
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The camera was then replaced by a power meter and the filters removed to produce 

a detectable signal. This allowed the measurement of the intensity that had been 

needed to produce an upper-range grey-level value in the image produced by the 

camera.

5.1.1 Steps used in th e Definition

The steps used to define the correlator’s architecture are illustrated in figure 5.1. 

The first parameters that were set were the focal lengths of the lenses on the write 

and read-sides of the correlator. These were determined by: the maximum image 

spatial frequency; the wavelengths; and the radius of the BSO crystal. The values 

were calculated by substituting the relevant data into equation 3.15, of chapter 3.

The value of read-side focal length, together with the wavelength and the image 

size, dictated the grating spacing required for the BSO hologram. The maximum 

allowable spacing was calculated from equation 3.50 of chapter 3. As discussed in 

previous chapters, this maximum spacing would normally be used since it is beneficial 

to the correlator performance; both in terms of minimising angular selectivity, and 

in terms of maximising the speed of response.

The lens’ focal length on the write-side, was one of the factors that determined 

the expected intensities at the BSO hologram. In order to calculate these intensities, 

the procedure outlined in section 3.3 was followed. The first step, involved the 

computation of the Fourier transforms of the two input images which were shown 

in figure 1.3, in the introductory chapter. Once this was done, the intensities were 

calculated by inserting the appropriate values into equation 3.42 of chapter 3. As 

well as the computed amplitude of the FT, the equation also depended on: the power 

of the laser; the lens focal length; and the image size.

In this calculation, account was taken of the need for the writing laser to provide 

both an object beam and a holographic reference beam. Assuming that there was 

no loss of power at the beam division stage, P0b +  Pref = Pias] where P  indicates the 

power, in Watts, of the various beams.
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Check hologram Q parameter

Determine lens focal lengths.

Calculate required 
fringe spacing.

Determine intensity 
of write-side FT

Calculate expected peak 
diffraction efficiency

Calculate worst expected 
 fringe tilt______

Check depth of field in the 
 Fourier plane_____

Calculate variation in diffraction 
across the write-image

Calculate variation in 
diffraction efficiency 

across read-image

Determine the intensities expected in the correlation plane 
__________ (check against CCD sensitivity)__________

Determine max. value of applied field 
that allows operation at required 

  response time_________

Figure 5.1: Steps used in defining the optical correlator parameters.

After the beam expansion and Fourier transforming stages, the intensity of the FT 

-  at a specific frequency -  was proportional to PQb- Furthermore, after expanding 

the beam to flood the BSO crystal, the reference beam intensity was proportional to 

Pref- These constants of proportionality, for the object and reference beams, can be 

written as O and R  respectively. For the formation of the BSO hologram, the object 

and reference beam intensities should be equal at the spatial frequency of interest:
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i.e. OPob =  RPref and thus:

O ' " 1
P.l =  P/a. ( l  +  (5.1)

The constant O can be found from equation 3.42:

Q  _  9 f t  Q-Q5 P 4

"  “  255 2xr?m ^

In the above equation, <7̂ 7* is the amplitude of a point in the FT; calculated by

digital simulation. The constant ft is the scale, in mm/pixel, of the images used in

the simulation. The figure 0.05, was included on the assumption that the intensity 

of the expanded laser beam does not fall by more than 5% across the image. The 

constant R  was obtained by considering the expansion of the reference beam to flood 

the BSO crystal:

R  =  2 ^  (5‘3)Z 7rr  BSO

The intensities in the Fourier plane were then calculated, using the value of PQb 

in equation 3.42. Thus, the reduction in available laser power, due to the need to 

provide the holographic reference beam, was accounted for.

In the previous two stages, the holographic grating spacing and the writing inten­

sities were calculated. These values, together with the measured values for 0 2 and 

tc , were used to evaluate equation 3.46; found in chapter 3. This allowed the deter­

mination of the hologram’s rise-time constant, r5, for any value of applied field, Ea- 

The processing speed was one of the predefined targets for the demonstrator. Thus, 

since the crystal’s response slows down as Ea is increased, the maximum allowed 

value of applied field could be calculated. This was done assuming that the response 

time was the time taken to reach 90% of the maximum space charge field, 3rg. This 

only accounted for the grating rise-time; but an intense erase beam, derived from 

any light source, could be used to produce almost instantaneous decay.

By using this maximised value of Ea , the peak diffraction efficiency, ?/max, was 

calculated from equation 2.11, of chapter 2. This value also relied on the expected 

value of An, which was calculated from equation 2.5 using the measured value of r^ .  

As well as r)max, the fall in tj across the read-image was calculated. In order to do
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this, the maximum Bragg miss-match was determined from equation 2.29. The drop 

in 77, corresponding to this miss-match, was then calculated from equation 2 .1 . All 

angles were multiplied by 1 /n , to account for the refraction of the beams on their 

entry into the BSO crystal. For all the calculations involving the angular spread 

of the beams, it was assumed that the images were located close to the front focal 

planes of the lenses. This was necessary in order to avoid the chance of introducing 

complicated spatial filtering effects, as discussed in chapter 3.

The calculated value of tj was used to determine the intensity of the correlation 

peaks in the output plane, as outlined in section 3.3 of chapter 3. In order to do this, a 

digital auto-correlation was carried out using the images of the machined component 

and the hole template. The reasons for using the auto-correlations are discussed 

later. The computed correlation peak values were then used, along with the relevant 

system parameters, in equation 3.34 of chapter 3. It was important to demonstrate 

that the intensities would be significantly larger than the minimum intensity that 

can be detected by the CCD camera. To understand what is meant by ‘significantly’ 

in this case, the experimental results of chapter 4 should be considered. The digital 

simulation, carried out in this chapter, computed the effects of SLM distortions on 

the output correlation plane intensity. Two types of phase distortion and one type 

of grey-level non-uniformity were modelled. The values used for the magnitudes 

of the distortions were considered to represent the levels expected for a real SLM. 

The results gave an average drop in correlation plane intensity, in the simultaneous 

presence of all the distortions, of about 60%, with a maximum fall of nearly 80% 

recorded in one of the experiments. Thus, the intensities in the correlation plane 

should be sufficiently greater than the camera’s sensitivity to allow for these sort of 

variations.

At this point, all the relevant system parameters were preliminarily defined. As 

discussed in chapter 2 , the variation in rj due to hologram selectivity was expected to 

be relatively insignificant for the write-image. The actual variation was calculated 

by assessing the maximum Bragg miss-match, using equations 2.29 and 2.23. A more 

severe effect was expected to result from the tilting of the holographic grating vector
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with respect to the direction of the applied field. The maximum fringe tilt expected 

in the correlator was calculated using equation 3.49 of chapter 3. This tilt was then 

related to a fall in 77 by referring to the experimental plot shown in figure 3.20.

If it was thought that the maximum fringe tilt was too large, the holographic 

fringe spacing would have to be decreased. This would alter the response time and 

the angular selectivity of the hologram, and those parameters that were affected 

would have to be recalculated. The only other alternative to a change in grating 

spacing, would be a reduction in the physical size of the write-image. This size was 

pre-determined by the CRT purchased for the project; which implied that the only 

way to reduce it was to reduce the number of pixels in the image.

The final two values calculated were: the hologram’s Q parameter, and the depth 

of field in the Fourier plane. The Q parameter gave an indication of the extent 

to which the BSO would behave as a thick hologram. In order to perform the 

calculation, the relevant values were used in equation 2.30 of chapter 2. For the 

calculation of the depth of field, equation 2.39 was used.

Calculating the auto-correlation of the hole template, gave the same result as that 

which would be expected from a cross-correlation of the template and the image of 

the component. In order to perform the cross-correlation, an edge enhanced version 

of the hole would be stored as a Fourier transform hologram in the BSO. The edge 

enhancement would be achieved by setting the intensity of the reference beam to be 

1/16 that of the FT’s d.c. (see later). The hologram would then be read out with the 

FT of the machined component. However, the only parts of this image that would 

contribute to the two main correlation plane peaks, would be the two holes in the 

face of the component. The fact that the holes, in the image of the component, are 

of opposite contrast to the hole template, only affects the phase of the correlation 

peaks. The actual intensities are the same as if the positive contrast template was 

being correlated with itself. This is only true because edge enhancement is being 

performed.

The second case to consider, is that in which the BSO hologram is formed from 

the Fourier transform of the image of the machined component. In order to form a
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good correlation with the hole template, it would again be ̂ necessary to edge enhance 

the hole features. However, because the holes are only a small part of the image of the 

component, the intensities associated with them are relatively small. The computed 

d.c. intensity of the Fourier transform of the machined component was about 4,500 

times that of the hole alone. Thus, in order to edge enhance the image of the hole, 

the reference beam would have to be set to an intensity of 1/(16x4,500) of that of 

the d.c.

Max. Amplitude = 3,350

100-.

80-

4
M 60-

40-1
20 - Reference

Beam

Figure 5.2: Comparison between the Fourier transforms of the hole template (left) 
and the machined component (right).

Two plots, taken through the centres of the Fourier transforms of the hole template 

and the machined component, are shown in figure 5.2. In this case, the amplitude 

of the Fourier transforms, which is taken to be the square root of the intensity, has 

been plotted. It was not possible to fit the full transform of the machined component 

onto the same scale as the hole template without a great loss of detail. Therefore, 

the values have been clipped. The amplitude of the reference beam, required to edge 

enhance the holes, is also shown in the figure.

This implied that, in order to perform the cross-correlation, the BSO hologram 

had to be formed from the Fourier transform of the hole template. If an attempt
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was made to record the transform of the machined component, the reference beam 

intensity would be very much lower than that of the transform’s d.c. In this case 

it was highly likely that a lot of noise, due to scattered light etc., would also be 

recorded. Furthermore, the very bright d.c. would perturb the electric field applied 

to the BSO; by creating a local region of relatively low electrical resistance. This 

would have effects on the correlation plane that would be difficult to predict. Local 

changes in electric field strength would produce local variations in the diffraction 

efficiency of the Fourier hologram. These, in turn, would produce some form of 

spatial filtering.

5.1.2 C alculated values for th e System

The write and read-side focal lengths, and the maximum fringe spacing are listed 

below:

u = 557.1 mm
fr = 452.4 mm
A = 16.9 fJLTl1.

The value of the fringe spacing was significantly larger than the critical fringe spacing 

of 0.5/mi. Thus, it was expected that the space charge field in the crystal would be 

approximately equal to the applied field, as discussed in chapters 2 and 3.

In order to produce the desired correlations, it was required that the stored BSO 

holograms represented edge enhanced versions of the input images. To achieve this, 

the reference beam intensity had to be balanced to that of the Fourier transform 

at some spatial frequency higher than the d.c. Experiments were carried out with 

the images of figure 1.3, shown in chapter 1 , using digital simulation of the BSO 

holograms. A good edge enhancement of the hole template was produced by making 

the reference beam 1/16 of the intensity of the Fourier transform’s d.c. component. 

For the image of the machined component, the reference beam was set at 1/256 of 

the d.c. intensity to produce the required edge enhancement.

The appropriate calculations were performed for the images of the hole and the 

machined component. The results, assuming 1 Watt of input laser power, are shown
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in table 5.2.

Image 0(m m  2) R (mm 2) Pob{ W) * ./(W ) I  f t  (Wmm 2)

Hole 5 . 3 6  x l O - 5 1 . 8 8  x l O " 4 0 . 7 8 0 . 2 2 4 . 2  x l O " 5

Machined
component 1 . 5 0  x l 0 “ 2 1 . 8 8  x l 0 ~ 4 0 . 0 1 0 . 9 9 1 . 9 x l 0 - 4

Table 5.2: Parameters determining the writing intensities in the Fourier plane.

Given these values, the strengths of the electric fields that could be applied, while 

meeting the response time requirements, are as shown in table 5.3.

Image ^ (k V c m  *) t9 (ms) response time (ms)

Hole 2.1 13.33 40

Machined
component 5.2 13.33 40

Table 5.3: Applied fields and associated response times.

For the specified size of input images -  and the focal length of the lenses for this 

system -  the maximum Bragg miss-match, on the read-side of the correlator, was 

4.91mrad. For the applied field strengths calculated above, the diffraction efficiency 

parameters are shown in table 5.4. In the table: An  is the refractive index modulation 

of the hologram, and the value for r)max took into account the absorption of the read- 

beam and the Fresnel reflections at the surfaces.

Image An 1}max T jm in / tfm a x

Hole 6.1 xlO"6 0.09% 0.75

Machined
component 1.5 xlO-5 0.58% 0.75

Table 5.4: Diffraction efficiency parameters for holograms of the two images.
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Once the values for the diffraction efficiency were calculated, a digital simulation 

was used to determine the expected intensities in the correlation plane. In each case, 

the auto-correlation of the images was formed. The results are shown in table 5.5.

Image Correlation plane intensity 
(nWmm-2)

Hole 40.3

Machined
component 526.0

Table 5.5: Correlation plane intensities for the auto-correlations of the two images.

The maximum Bragg miss-match, on the write-side of the correlator, was found 

to be just 0.57mrad. This would have little or no effect on the correlation output. 

The Q parameter, calculated for the BSO hologram, was 5.5; which suggested that 

it would exhibit thick behaviour.

The maximum fringe tilt was found to be 26.6°. From the experimental results 

shown in figure 3.20 of chapter 3, this would cause a fall in diffraction efficiency to 

between 50 and 60% of the peak value.

A diagram of the proposed optical correlator is shown in figure 5.3. The total 

optical path length was about 2.5 meters. This was relatively large; but was a result 

of the need for long focal length lenses and the restrictions on the positions of the 

input images.

The two SLM/CRT combinations were addressed by passing an expanded, col­

limated laser beam through polarising beam splitters: marked p.b.s. in the figure. 

The half wave plate in the read-beam controlled the intensity of the light reaching 

the correlation plane. That on the write-side, controlled the ratio of the intensity of 

the holographic reference beam to that of the object beam. The 452mm focal length 

lens on the read-side comprised two 600mm achromatic doublet lenses, separated by 

403.5mm. The 557mm focal length lens, on the write-side, was created by placing 

two 750mm lenses, a distance of 490mm apart.
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1/2 A, plate
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collimating 
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Write beams 
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optics
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Figure 5.3: Scale diagram of the optical correlation system.



The 50:50 beam splitter, on the writing side of the BSO, performed two func­

tions. Firstly, it was used to re-combine the holographic reference and object beams. 

Because of the large grating spacing used, the angle between these beams was very 

small. For this reason, the reference beam would not have cleared the 750mm lens 

before the BSO; hence the need for the beam splitter. The second function per­

formed by the beam splitter was to re-direct the diffracted light from the read beam 

towards the ‘special’ beam splitter. This was a specially coated component which, at 

a 45° angle of incidence, transmitted about 90% of the argon ion beam and reflected 

90% of the He-Ne read-beam.

The correlation plane was imaged onto the CCD camera using a 200mm achro­

matic doublet. The effects of using a cube-shaped beam splitter, placed between 

the lens and the Fourier plane were evaluated using computer ray tracing programs. 

These showed that a cube of glass introduced less aberrations than a flat plate; this 

latter component introduced coma into the focal spots. The only other alternative 

would have been to use a pellicle beam splitter. Although this component would not 

have introduced any aberrations, pellicle splitters are very prone to being excited 

by air vibrations. For this reason, they are impractical for use in interferometric 

systems. Not shown in the diagram are a wavelength selective filter and polariser, 

which would be located in front of the CCD to improve the signal to noise ratio in 

the correlation plane.

5.2 R educing the Set o f Variable Param eters

The BSO-based correlator that had been designed for the research project, was spec­

ified to operate on specific images. However, an important consideration was: could 

the same recording medium be used to correlate larger images; beyond the reach of 

digital systems? In order to answer this question, the equations that determined 

the system’s performance were re-defined in terms of a smaller set of variables. This 

re-definition was carried out assuming that:

1. The lens focal length was chosen so that the highest frequency in the Fourier 

transform reached the edge of the BSO crystal.
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2. The fringe spacing was chosen to be the maximum value that separated the 

correlation plane from the undiffracted beam.

In the following discussion, only the image’s maximum spatial frequency will be 

of interest and the subscript, m oi, will be dropped.

Focal length, im age size and grating spacing.
From equation 3.15 of chapter 3, we have:

f  rB S O  l K A \
f '-w = x ~ Z  (5-4)

The radius of the input images can also be expressed in terms of the number of pixels 

across the image and its maximum frequency:

£  ' <5-5) 

By substituting these expressions for rtm and f r into the expression for the maximum 

fringe spacing, given in equation 3.50 of chapter 3, it is found that:

*  -  5 ( t t )

In this case, the fringe spacing is a function of reso and N  only, all other terms have 

cancelled out and.

Fourier plane intensity.
The next stage in the specification of the optical system, described in section 5.1.1, 

was to compute the intensity in the Fourier plane. From equation 3.42 of chapter 3 

it is found that, for a particular image:

B4 1
J F T  OC p - ,  (5.7)

1 im  \ J w ^ w )

where:

P = ^  (5-8)

As will be discussed below, it is also necessary to note that the computed values of 

I  f t  are also proportional to N*b: where N0b is the number of pixels across the actual 

object of interest that is present in the image.
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After substituting for /?, r im and f wi in equation 5.7 it is found that:

N 4
I f t  “  ( 5 ’ 9 )

In order to illustrate how the relationship, expressed in equation 5.9, works in 

practice, the following cases could be considered.

1. Increasing r s s o :

This increase in tbso implies a corresponding increase in the lens focal length, 

which in turn increases the size of the Fourier transform. Thus, if all other factors 

remain unchanged, the intensity in the Fourier plane will fall.

2. Increasing N  without increasing u :

Because the maximum spatial frequency, u, remains unaltered, this increase in 

N  results in an increase in the size of the input image. Two separate examples can 

be looked at:

2a. N  Is increased but N 0b remains the same:

This increase in N ,  results in the same sized object image embedded in a larger 

image field. The size of the object’s Fourier transform will remain unchanged. How­

ever, the laser beam illuminating the input image will have to be expanded further 

to cover the larger image area. This will result in a drop in intensity at the input 

plane, and the intensity in the Fourier plane drops accordingly.

2b. Both N  and N 0b are increased:

. In this case, the image of the object is expanded to occupy the same proportion of 

the input image field. Although the intensity in the input plane will still be reduced, 

the larger object image will intercept the same total amount of energy. Furthermore, 

if the focal length of the lens is unaltered, the Fourier transform of the object image 

will be reduced in size. This will result in an increase in the intensities in the Fourier 

plane; as predicted by the equation.

3. Increasing N  by increasing u :

In order to increase N , whilst leaving the physical size of the input image unal­

tered, the spatial frequency can be increased. In these examples, it is assumed that 

N 0b increases proportionally with N .  Again, two examples can be considered.
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3a. Increasing u  while leaving t b s o  unaltered:

Because tbso remains the same, the focal length of the lens must be reduced in 

order to match the size of the transform to the BSO crystal. Since the physical size of 

the input image remains unchanged, the intensities in the input plane axe unaltered. 

Hence, the power in the Fourier plane is increased by the greater focussing power of 

the lens.

3b. Increasing both u  and v b s o •

Since tbso is increased to accommodate the change in size of the Fourier trans­

form, the focal length of the lens remains fixed. With the same focal length, and the 

same size of input images, the intensities in the Fourier plane remain unaltered.

The last two examples need some qualification. If thp spatial frequency in the 

input image is increased, finer details may be resolved in the image of the object. 

These finer details will spread light to the higher frequencies in the Fourier plane. 

This means that predictions about intensities may give results that are slightly too 

high. However, as the intensities of the higher frequencies are generally very low 

compared to the d.c., the errors are expected to be small.

R esponse tim e.
The parameter governing the response time of the system, rg, depends on both 

I  f t  and Ea- If If t  can be increased, the improved response time could allow the 

system to run at faster processing rates; or the applied field could be increased while 

maintaining rg. The increase in Ea would be beneficial in increasing the diffraction 

efficiency of the system.

There is however, another factor which affects the apparent diffraction efficiency 

of the system. This is the variation in diffraction efficiency across the image.

Diffraction efficiency variation.
The maximum Bragg miss-match, on the read-side, can be found by substituting 

the expressions of equations 5.4 and 5.5 into equation 2.29 of chapter 2. If this is 

done -  and the result is divided by the refractive index -  the worst Bragg miss-match,
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inside the crystal, is found to be:

ABmaI =  ( — )  (5.10)
4n \rBsos

By substituting this expression into equation 2.1, in chapter 2, the value of

can be plotted as a function of N jrs so • Results are shown in figure 5.4, for three

different hologram thicknesses.

1.0-1

d =■ 0.5mm

0.4-
d — 1.5

d =  1.0

0.0
50 100 150 200

N/r(BS0)

Figure 5.4: Tjmin/rjmax plotted as a function of N /rsso

In addition to the Bragg miss-match on the read-side, that on the write-side 

can also be expressed in terms of N / tbso• This is done by substituting for A a  in 

equation 2.23, in chapter 2. The expression for A a  is identical to that for AB  given 

in equation 5.10, but with the write-beam wavelength replacing that of the read 

beam. When the substitutions are made, the following expression is obtained:

AB(A«)mar =  (Ar ~  K )  ( — )  (5.11)
8n \ r Bso /
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M inim um  hologram fringe spacing.
From equations 2.17 and 2.19, in chapter 2, the following expression can be 

derived:

A(Aa) =  J*" (5.12)nA a +  (A^/A) - v '

This gives the fringe spacing that results when the writing beam is moved through 

an angle, Aa. In this case, A is the fringe spacing that was being produced before 

the writing beam was moved through the additional angle. By substituting for A a 

and A, it is found that the minimum fringe spacing, produced in any part of the 

hologram, is given by:

Amt„ =  ^£ 2 . (5.13)

Correlation plane in tensities.
The intensities in the correlation plane depend on the lens focal lengths and the 

size of the input image as well as on the diffraction efficiency. From equation 3.34, 

in chapter 3, it can be seen that:

Ic° "  * G&) ( 5 -1 4 )

However, the focal length f c of the lens which forms the correlation plane, is 

chosen to match r im to the required correlation plane size, r corr. Thus:

fr r,-im (5.15)
corrfc r,

and the correlation plane intensity is independent of the size of the read-image.

Hologram  fringe t ilt .
An expression for the maximum fringe tilt that would be present in the hologram 

is obtained from equation 3.49, in chapter 3. This tilt occurs for the point in the 

input image: X{m =  —rtm; ytm =  r,m. In this case, the fringe tilt is given by:

2 /m  ( f w ^ w  ~  A r im)2 / r i m
C° S {B) = ( f ^ - A r , my  + (Ar,m)> < 5 - 1 6 >
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However, from equation 5.6:

. 4 TBSOTim / r  i  r?\Arim = -  x — - —  (5.17)

and by combining equations 5.4 and 5.5:

fw K  = “  x I (5. 18)
u 3 N

It can then be seen that the quantity rBso'f'im/3N is common to all the terms in

the numerator and denominator of equation 5.16. After this has been cancelled out,

the expression becomes:

cô ) = (12(124~)^ 4, => 0 =  26.6“ (5.19)

which is true for all optimised systems.

Hologram Q param eter.
The expression for A can be substituted into equation 2.30 in order to derive the 

hologram’s Q parameter:
q  =  2 ^

n \ r s s o J

Fourier plane depth o f field.
The final parameter considered in this section, is the depth of field in the Fourier 

plane. This depends on the focal length of the lenses and on the aperture size; as can 

be seen from equation 2.39 in chapter 2. After making the appropriate substitutions 

it is found that:
64n ( r Bs o \ 2 , ko1x

Az- = n H  ( 5 -2 1 )

5.3 Extending the Correlator to  Larger Im ages

In order to assess the feasibility of processing larger images, many of the key sys­

tem parameters have been expressed in terms of the coefficient N /rsso  (units L_1).

Before discussing the results, it is important to understand the significance of this

variable.
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To increase the value of N , is to increase the number of pixels across the input 

image. This can be achieved in one of two ways. Firstly, the image size, r,m, can 

remain fixed and the maximum spatial frequency, u, increased. Secondly, the size of 

an image can be increased but its maximum spatial frequency held constant. The 

first option requires that either the lens focal length is decreased or that the size of 

the BSO crystal is increased. In the second option, the lens focal lengths will remain 

fixed, as will the size of the BSO crystal. Thus, in the first case, the value of N/tbso 
will remain fixed; whereas, in the second, it will increase.

Increasing the value of rsso  allows longer focal length lenses to be used in the 

system. The increase in crystal size would be chosen to match the increase in the 

size of the Fourier transform of an image. When an increase in rsso  is mentioned, 

for the optimised system, an increase in lens focal length is also implied.

Decreasing the value of r bso can imply one of two things. Firstly, it can mean 

reducing the size of the crystal and reducing the lens’ focal length; so that the Fourier 

transform is not clipped by the BSO. Secondly, the focal length of the lens may be 

reduced so that the Fourier transform only occupies a part of the area of the crystal. 

In either case, reducing rsso  implies a reduction in the lens* focal length.

5.3.1 M aximum Im age Size on the Read-Side

Equation 5.13, in the previous section, expresses the minimum holographic fringe 

spacing that will be produced in the correlator. As was discussed in section 3.5 of 

chapter 3, the fringe spacings must be greater than the BSO’s critical fringe spacing,

A a- Thus:

A > Ac =>• ^ > A c => N  < (5.22)
N  A c

Equation 5.21, gave an expression for the depth of field in the Fourier plane. 

Since this should always be greater than the hologram thickness, d, another limit is 

imposed on N :

A z > d  ^  64; r™> > d =*■ N  < 8rBSOJ ^ r  (5.23)
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In addition to these, there is yet another limit imposed on N , due to the angular 

selectivity of the hologram. From the curves of figure 5.4, it is seen that there is a 

value of N /tbso at which the diffraction efficiency falls to zero for points at the edge 

of the field of view.

Going back to equation 2.1, of chapter 1, and noting that, at large values of Bragg 

miss-match f 2 >>  v2 it can be seen that:

V m in  _  sin2(y^2 +  v2) _  / s in A 2
V m ax t 2 +  V 2 ~  \  { /

This expression will equal zero when £ =  w. Thus, for the BSO correlator, the 

following conditions must be met:

where small angle approximations have been used in equation 2.2. Substituting 

for AB  and A, and rearranging, gives:

N K rBso\lm : ( 5 -2 6 )

There are now three conditions which can limit the maximum value of N  on the 

read-side of the correlator. Using: Ar = 633nm, n=2.5 and Ac =  0.5/im; the limits 

become:

Condition Limit

Limit on Ac N < (2000 x t b s o )

Limit on A Z N < (500 x rsso/y/d)

Limit on f N < (145 x rBso/y/d)

Of these, the strictest limit is imposed by the Bragg miss-match term, f . From 

equation 5.20, it is seen that the hologram’s Q parameter also increases with N. 

Thus, the BSO will be behaving more and more like a thick hologram. For the 1mm 

thick, 13mm diameter BSO crystal, used in the previous design work, N  would be 

limited to 940 pixels. As discussed in the previous section, the correlation plane in­

tensities are not expected to be affected, other than by diffraction efficiency changes.
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By reducing d to 0.2mm and increasing the diameter to 26mm, N  could be 

increased to nearly 3000 pixels. Compared to the system designed previously, the 

peak diffraction efficiency would be reduced by a factor of 25 times. The efficiency 

at the edge of the field of view might be just 1% of the Bragg-matched value at 

the centre of the image. Thus, with the reduction in d and the increase in the 

variation of diffraction efficiency across the image, correlation plane intensities could 

be 1875 times lower than those produced by the system specified for 512x512 pixel 

images. To make up for this, a pair of holograms could be used to re-profile the 

laser beam intensity. Even if the hologram pair had an overall efficiency of 50%, 

this would lead to intensities 10 times higher than those produced by expanding the 

beam. Efficiencies of this magnitude should be achievable with materials such as 

dichromated gelatin. Increasing the applied field by a factor of two, would lead to a 

four fold increase in intensity. These steps would be sufficient to produce intensities 

on the borderline of the CCD camera’s sensitivity. However, this assumes that the 

number of pixels across both objects being correlated was similar to the images’ 

size. If it was wished to correlate with smaller templates, then either the laser power 

would have to be increased or some form of image intensifier used in the correlation 

plane. This latter option might be ruled out by signal to noise considerations.

5.3.2 Large Im age on the W rite-Side

From the preceding section, it seems that it will be difficult to perform correlations 

with large images on the read-side of the correlator. Another possibility is to perform 

correlations with very large image on the write side and a small reference template 

on the read side. In all the prior work, it was assumed that N , the number of pixels 

across the image, was the same on both read and write-sides. However, there are 

now different values, Nr and Nw pixels; and it will be assumed that N w »  Nr. The 

corresponding image radii will be written rr and rw.

One important consequence of this change is that the size of the correlation plane 

will now be approximately equal to rw. The required separation between the centre 

of the correlation plane and the undiffracted beam will now be rr + rw & rw. This
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is less than the value of 3r;m in section 3.5; where all the images were the same size. 

Because of this, the minimum required fringe spacing will become:

A = A ^  =  4r p  ( 5 2 7 )
710  I

where it has been assumed that the spatial frequencies of the write and read 

images are the same; although they contain different numbers of pixels. This would 

be beneficial in making the hologram ‘thinner’, and therefore less angularly selective. 

However, the maximum fringe tilt, produced in the hologram would now increase. 

Substituting the new value of A into equation 5.16, it is found that cos2(0) =  0. This 

is because the light from the edge of the write-image has become co-linear with the 

reference beam. As it will be seen later, it is, in fact, undesirable to decrease the 

angle between the beams.

Leaving the fringe spacing for now, the Bragg miss-match can be considered, and 

an equation can be written down, analogous to 5.25 above. In this case, instead of 

AJ3, the expression for A B (A a)f from equation 5.11 is substituted. If this is done, 

a n d  the e q u a t i o n  r e a r r a n g e d  it is found that;

For the moment, the fringe spacing is set as if the images on the read and write 

sides were the same size; so equation 5.6 was used to substitute for A.

When the depth of field in the Fourier plane is considered, the condition is the 

same as that of the previous section; but with Xw instead of Ar . It is then found that:

Nw < 8r s s o J ^ -  (5.29)

When values of 633nm, 514nm and 2.5, are used for Ar , Xw and n respectively; 

the conditions on become:

Condition Limit

Limit on A Z  Nw < 558 x rsso/y/d

Limit on £ Nw < 473 x rBso/y/d
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Hence, it can be seen that the strictest limit on N  is still enforced by the maximum 

Bragg miss-match produced in the correlator.

With the values of rsso  = 6.5mm and d =  1.0mm, the system would be capable 

of processing write-side images of about 3000 pixels across. By reducing d to 0.3mm 

and increasing tbso to 9.3mm; this figure could be increased to over 7000 pixels. For 

the calculations carried out below, the case of a 6000 pixel image is considered.

It now remains to calculate the diffraction efficiency variation across this large 

image. Because it was assumed that the read image was small, there would be no 

significant Bragg de-tuning on the read-side. On the write-side however, two effects 

would be present: the fringe tilt and the Bragg de-tuning.

Because the fringe spacing for the system was still governed by equation 5.6, 

equation 5.19 -  previously derived for fringe tilt -  still holds. This gave the angle of 

tilt as 26.6 degrees. In order to reduce this, the angle between the holographic object 

and reference beams could be increased. However, the minimum fringe spacing, 

produced by light from the edge of the 6000 pixel image, would already be 1.55 

microns. This is getting very close to the BSO’s critical fringe spacing of 0.5 microns, 

so there is little or no scope for reducing the fringe spacings any further. From the 

graph of experimental results, shown in figure 3.20, a tilt of 26 degrees would cause 

a drop in diffraction efficiency of 50%. This drop would occur at the two corners of 

the image that were nearest to the line of the reference beam.

The maximum Bragg miss-match for the write-image can be found from equa­

tion 5.11. The hologram’s Q parameter, given by equation 5.20 is nearly 200; so it 

would definitely be expected to exhibit thick behaviour. Using the value of Bragg 

miss-match, and the average fringe spacing (2/zm), to calculate £, it is found that:

Thus, the combined effects of Bragg de-tuning and fringe tilt, could lead to a

(5.30)

drop in diffraction of 85% between the centre and the comers of the image.

In section 2.2.2 of chapter 2, it was stated that variations across the write-image 

could not be compensated for. However, when the input image on the read-side is 

small, there is a way round the problem.
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Consider the example images shown schematically in figure 5.5. 

Read-image Write-image Correlation plane

01 02

03

04 05

PI P2

P3

P4 P5

Figure 5.5: Schematic diagram of images and correlation plane for a s m a l l  reference 
template correlated with a large image.

Because the template on the read-side is relatively small, the locations of any 

peaks in the output plane, match the locations of the features in the write-image. 

Because of fringe tilting and Bragg effects, the correlation peaks will have different 

intensities. The central peak will be the highest; next will be the peaks at the image 

corners away from the reference beam; and the peaks at the image comers nearest the 

reference beam will have the lowest intensities. To compensate for this, an intensity 

transmission filter could be placed in the correlation plane. The transmission profile 

of this filter would be such that the peaks would be variously attenuated according 

to their position. Thus, the situation is now analogous to that previously discussed 

• for the read-side: the apparent efficiency of the hologram is reduced to the lowest 

value encountered for any part of the image.

This being the case, the expected drop in efficiency of 85% could easily be dealt 

with. Beam-shaping holographic elements could be used to improve light utilisation 

on the read-side, and this would compensate for some of the loss of intensity. Also, 

because higher intensities are expected in the write-images, higher electric fields could 

be applied to the BSO crystal without degrading the speed of response.

One final design feature must be incorporated for this large write-image correla­

tor. As discussed at the end of section 5.1.1, the very intense d.c. Fourier term, from 

a large write-image, could seriously perturb the BSO hologram. It would therefore 

be necessary to include a pre-filter to block out the d.c. and, perhaps, attenuate some
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of the lower spatial frequencies.

5.4 Conclusions

Firstly in this section, the broad conclusions of this chapter are stated. The individual 

topics of the specific system design and the extension to larger images are then 

discussed in more detail.

The following conclusions, regarding the practical use of BSO-based correlators, 

have now been drawn:

1. A correlator could be designed to meet the following requirements:

• Process images of 512 x 512 pixels.

• Carry out processing at TV frame rates.

• Use 15mW He-Ne laser for reading and a 1W Ar+ laser for writing, with 

no special holographic elements for beam re-profiling.

• Use a standard CCD camera as the output plane detector.

2. The intensities in this system, both in the correlation plane and the Fourier 

plane were starting to approach the limits dictated by response time and CCD 

sensitivity.

* 3. Extending the performance of the system to cross-correlate two, 3000x3000 

pixel images, might just be possible. This is very near the practical limits of 

producing detectable signals in the correlation plane. The effective diffraction 

efficiency could be as low as 0.0002%. Images of 1000-2000 pixels may represent 

a more feasible upper limit.

4. The angular selectivity of the BSO hologram is the main problem encountered. 

This is because the low refractive index modulation of the BSO necessitates 

the use of relatively thick crystals.
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5. By making use of the reduced selectivity on the write-side, a BSO correlator 

could theoretically be used to correlate a 6000 x 6000 pixel image with a small 

reference template.

6. The total optical path length in the correlators will be of the order of meters, 

unless two very small images are being cross-correlated.

7. Extending the correlator’s performance requires the fabrication of thin, large 

area crystals: ~  20 x 20 x 2mm.

5.4.1 Discussion o f the Optical System  D esign

The image processing task to be performed, involved the use of correlation to identify 

sub-features within a 512x512 pixel image. The identification was to take place on a 

time scale commensurate with TV frame rates; i.e. 40ms. The available reading and 

and writing laser powers were limited to 15 milliWatts and 1 Watt respectively. The 

main conclusion, drawn from this simulation, was that the BSO correlator could be 

used to perform the specified correlations. Furthermore, the correlator design made 

use of ‘off-the-shelf* optical components. However, as may be seen from table 5.5, 

the predicted intensities in the correlation plane approached the limits of the CCD 

camera’s sensitivity. The reason for this was the relatively small size of the image of 

the hole that was used to form the BSO hologram. This lead to a low writing inten­

sity. As a result of this, only a relatively small field could be applied to the crystal; 

without the response time becoming unacceptably long. The output intensities may 

not have been sufficient if correlations were performed with SLM distortions present 

in the input images.

From the Fourier plane intensities of table 5.2, it is seen that there would be 

a definite advantage in correlating images which contain larger objects. For the 

image of the machined component, the writing intensity in the Fourier plane was 

increased by a factor of 4.5 times. This allowed a much larger electric field to be 

applied, while maintaining the required response time. This, in turn, increased the 

diffraction efficiency of the hologram. The intensity in the correlation plane was then 

almost 100 times greater than the sensitivity of the CCD camera. This would give
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better tolerance to any reduction in the height of the correlation peak caused by 

SLM distortions. The angular selectivity of the BSO hologram did not, in this case, 

pose a serious problem. From table 5.4 it is seen that the diffraction efficiency at the 

edge of the read-image only fell to 75% of its maximum value at the centre. This 

variation would be removed by use of a transmission filter, which would reduce the 

apparent diffraction efficiency -  for all points in the image -  to 75% of the maximum. 

If the holograms were being written with images of large objects, there would be a 

problem due to the tilting of the fringes with respect to the direction of the applied 

field. As discussed previously, the only way to alleviate this problem, was to use 

smaller grating spacings. This would reduce the useable diffraction efficiency in two 

ways. Firstly, the angular selectivity of the hologram would increase; leading to a 

greater fall in diffraction efficiency across the read-image. Secondly, the response of 

the crystal would become slower; and the applied field would have to be reduced, in 

order to meet the specifications.

For the images used here, the worst-case fringe tilt could be reduced from 26.6° 

to 13.8°, by reducing the grating spacing to 10.0 microns. From the experimental 

results, this tilt caused tj to fall to between 80 and 90% of its maximum value. It 

should be noted that the scatter of the experimental results makes an exact prediction 

difficult. At this spacing, the maximum field that could be applied was reduced to 

3.2kV/cm. At the same time, the diffraction efficiency at the edge of the read-image 

fell to about 40% of the maximum value. The predicted intensity in the correlation 

plane then dropped to 112nW/mm2; but this is still a long way above the CCD’s 

minimum sensitivity.

Results were simulated for the hole template correlated with the machined com­

ponent and for the machined component correlated with itself. The intensities of the 

correlation peaks, in these two cases, differed by a factor of 13 times. If the more 

intense peak produced a CCD output grey-level of 255, then the weaker peak would 

only produce a level of 20. If the system was expected to perform correlations on 

both of these image pairs, the range of this variation would have to be reduced. This 

would best be achieved by reducing the power of the read-beam when performing
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the correlation which produced the greater intensity.

5.4.2 D iscussion o f the Processing o f Larger Im ages

In order to assess the possibility of processing of images larger than 512x512 pixels, 

a number of key parameters were expressed in terms of N/rsso- N  was the number 

of pixels across the image, and t b s o  was the radius of the clear aperture of the BSO 

crystal. The parameters expressed in terms of this new variable were:

Maximum hologram fringe spacing (Equation 5.6)
Minimum hologram fringe spacing (Equation 5.13)

Fourier plane Intensity (Equation 5.9)
Read-side Bragg miss-match (Equation 5.10)
Write-side Bragg miss-match (Equation 5.11)

Hologram thickness parameter (Equation 5.20)
Fourier plane depth of field (Equation 5.21)

In addition, it was shown that the maximum hologram fringe tilt would be inde­

pendent of the write-image size. Also the correlation plane intensity was independent 

of the read-image size.

Two cases were studied, the first involved the use of large images on the read- 

side, the second looked at the limits imposed on the write-side image size. The 

ultimate limit in the case of the read-side, was imposed by the variations in diffraction 

efficiency due to the angular selectivity of the hologram. The ultimate figure of 3000 

pixels is about half the size of images acquired by some earth-observation satellites 

and by high resolution, airborne synthetic aperture radar systems. However, this 

figure relied on a BSO crystal of 26 x 26x0.2mm and it is not known, if BSO crystals 

of these dimensions can be produced. Furthermore, it might be difficult to create a 

uniform applied electric field over this size of crystal. Actually achieving this figure 

would depend on the light utilisation of the system. The calculated number of pixels 

corresponds to a correlation plane intensity at the limits of the typical sensitivity of 

a CCD camera. SLM distortions could reduce these intensities to levels that are too 

low to be practical, and light scattered from various optical surfaces could mask the 

correlation plane. The figure of 3000 pixels therefore represents an upper limit and 

a real system might only be capable of processing images of 1000 -  2000 pixels.
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In the case of a large image on the write-side, the ultimate limit was imposed by 

the need to keep the longitudinal extent of the Fourier transform to a value greater 

than the thickness of the BSO crystal. Also, in order to allow the compensation for 

variations in diffraction efficiency across the large write-image, it was necessary to 

restrict the system to relatively small images on the read-side. However, it might 

be feasible to search a 6000x6000 pixel image for a small sub-feature using this cor­

relator. The small reference template on the read-side of the correlator could be 

updated at an arbitrarily fast rate. The comments made in the previous paragraph, 

concerning light utilisation, would again be true here. Practical uses of such a corre­

lator would probably be in the field of photo-reconnaissance. Airborne devices such 

as infra-red line-scan and synthetic aperture radars are capable of producing image 

data covering large swaths of terrain. Images several thousand pixels across are 

not uncommon. Using the correlator proposed here, these images could be rapidly 

searched for targets such as vehicles, ships and parked aircraft.

2 1 5



Chapter 6

Conclusions and  
R ecom m endations

Contents of Chapter 6

6.1 Design Meeting Required Specifications................................................... 217

6.2 Extending the Design to Larger Im ages................................................... 218

6.3 Digital Simulation of SLM Performance................................................... 220

6.4 Recommendations for Future W o rk ......................................................... 221

2 1 6



During the course of this research, advances were made in three main areas.

6.1 D esign M eeting Required Specifications

A thorough optical design was undertaken and plans were produced for a BSO-based 

correlator. The design enabled the theoretical performance of the system to attain 

two specific goals: the processing of images of 512x512; at a rate of 40ms per frame. 

The system was also constrained by a need to use cw lasers with output powers of 

no more than 15mW and 1W for the read and write-beams respectively.

The design process incorporated several aspects that have not been discussed pre­

viously in published papers on BSO correlators. The Bragg matching constraints, 

imposed by the presence of a thick hologram in the Fourier plane, were investi­

gated more thoroughly than elsewhere. The angles of light rays at the hologram 

were explicitly linked to the Fourier transforming process' Methods of dealing with 

the hologram’s angular selectivity, by use of intensity transmission filters, were also 

discussed. It was concluded that the effects on the read-side could be negated by plac­

ing a filter, with a spatially varying intensity transmission, in the image plane. The 

penalty associated with this, was a reduction in the apparent diffraction efficiency to 

that of the minimum value which is encountered at the edges of the read-image. In 

the case of the write-image, action could only be taken if the correlation was being 

performed with a small reference template. In this case, a transmission filter could 

be placed in the correlation plane.

The effect of the location of the write and read-images, with respect to their 

transforming lenses, was also investigated. An expression was derived for the location 

of the correlation plane as a function of image position. However, it was also shown 

that complicated spatial filtering effects would result if the images were moved away 

from the front focal planes of the lenses. This restricted the correlator to a ‘4 / ’ 

design.

A computer program was written that could be used to calculate the intensities at 

the Fourier and correlation planes of the optical system. The intensity in the Fourier 

plane governed the response time of the system for a given magnitude of electric field
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applied to the BSO crystal. As the electric field is increased, their is an associated 

rise in diffraction efficiency does; but the speed of response falls. Thus, for a given 

Fourier plane intensity, there will be a maximum field that can be applied, whilst 

maintaining the required system response time. This limit imposed on the strength 

of the applied field will, in turn, limit the diffraction efficiency of the BSO hologram.

Lens design work was undertaken so that pairs of ‘off-the-shelf’ lenses could be 

combined to produce a compound lens with any desired focal length. This allowed 

the /  number of the system to be maximised by matching the size of the Fourier 

transform to the clear aperture of the BSO crystal. This optimisation of focal length 

was beneficial as it minimised the angular selectivity effects; and also allowed accurate 

matching of the scales of the Fourier transforms on the write and read-sides.

An important new effect, identified in this research, was that caused by the holo­

graphic grating vector becoming tilted with respect to the applied field. Experimental 

measurement, and a calculation of expected correlator fringe tilts, suggested that the 

magnitude of this effect on the write-side of the system could be comparable to that 

of the Bragg de-tuning effect on the read-side.

Taking all of the above factors into account, a design was produced that allowed 

the correlation of the specified images, at the desired rate. However, computer 

simulations predicted that the correlation plane intensities would only be between 

one and two orders of magnitude above the minimum sensitivity of a typical CCD 

camera. Thus, there was not much latitude for error in either predictions or practical 

realisation.

6.2 Extending the Design to Larger Im ages

It was discovered that the main equations governing the performance of the system 

could be expressed in terms of the coefficient N /rsso ' where N  was the number of 

pixels across the image; and t b s o  was the radius of the clear aperture of the BSO 

crystal. When this was done, some interesting predictions could be made regarding 

the extension of the system’s performance. The main problem encountered was the 

angular selectivity of the hologram. This was exacerbated by a predicted increase in
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‘thick’ behaviour as the holographic fringe spacing is decreased in order to deal with 

larger input images. This decrease is necessary in order to maintain the separation 

of the correlation plane and the undiffracted beam.

By examining the equations, it was found that three factors provided absolute 

limits on the value of N/rsso-  These were: the need to keep the hologram’s grating 

spacing greater than the critical value for the BSO; the need for the diffraction 

efficiency for light from the edge of the images to be non-zero; and the need to keep 

the longitudinal extent of the Fourier transform greater than the thickness of the 

BSO crystal.

For the correlation of two large images, the most severe limit on N /rsso  was set 

by the angular selectivity of the hologram. It was shown that an upper limit would 

be the correlation of two 3000x3000 pixel images. However, the light utilisation of 

the system would be very poor with an effective diffraction efficiency of just 0.0002%. 

In addition to this, fringe tilt effects would reduce the response at the corners of the 

write image to 50% of the maximum. This would disrupt the form of the correlation 

peak; but there would be no simple way to alleviate the problem. It would therefore 

be difficult to realise such a system and a more practical upper limit might be the 

correlation of images of between 1000 and 2000 pixels across.

On the other hand, by utilising the relative lack of angular selectivity on the 

write-side, it would be theoretically feasible to correlate a 6000x6000 pixel image 

with a small reference template. Here, the limit on N/rsso  was set by the depth 

of field in the Fourier plane. Importantly, the variations across the write-image, 

due to angular selectivity and fringe tilt, could be alleviated. To do this an intensity 

transmission filter would be placed in the correlation plane. The apparent diffraction 

efficiency would be reduced to the minimum value encountered for any point in the 

write image.

In either of the above systems, the optical path lengths would be measured in 

meters. Furthermore, large aperture, thin BSO crystals -  ~  20 x 20 x 0.2mm -  would 

be needed; as well as applied fields of around lOkVcm-1.

219



6.3 D igital Simulation of SLM Perform ance

Software was written for the simulation of a variety of image distortions that can 

be produced in optically addressed SLMs. Both the phase and amplitude of the 

input images were considered. Because the input and output formats of the various 

programs were standardised, it was easy to apply a number of different distortions 

to the same image. This allowed a proper scientific investigation, into the relative 

effects of a variety of SLM faults, for any optical image processing task. The results 

produced, highlighted some shortcomings of published work in this field.

The 2n  factorial method was chosen as the experimental procedure around which 

the work was based. The advantage of this method was that it minimised the number 

of separate experiments that needed to be performed. At the same time, it allowed 

the direct effects of different distortions to be assessed when a number of them were 

affecting the SLM simultaneously. As well as their direct effects, the interactions of 

the various distortions can also be evaluated.

In an example experiment, a correlation task was studied. This involved the 

location of a small sub-feature within an image of the face of a generic, machined- 

metal component, machined metal component. It was shown how the experimental 

process could be fully automated; provided that the distortions were not so severe 

as to completely destroy the correlation peak. The experiment investigated three 

different distortions; using 256x256 pixel images. Eight combinations were possible, 

with each of the distortions either present or absent. For each combination, the cor­

relation results were averaged over 12 images of the machined component at different 

positions in the input field. Thus, a total of 96 correlations were performed. These 

took about half an hour of computer run-time; using a Sim SPARC-station-2. If 

512x512 images had been used, the experiment would have taken four times as long. 

If desired, six different factors could be investigated, using 512x512 images, in about 

13 hours of run-time. This again assumes that, for each of the 64 possible combina­

tions of the 6 factors, 12 correlations were performed. Thus it can be seen that, even 

without specialised hardware, this experimental technique is readily extendible.
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6.4 Recom m endations for Future Work

In the research reported here, the designed optical system could not be constructed 

because of an unexpected failure to acquire SLMs of the necessary quality. There 

is no doubt that a lack of guaranteed, high quality, commercially available SLMs 

is a limiting factor in the exploitation of optical technology. One of the reasons 

BSO was selected for this research was its high resolution as a holographic storage 

medium. If no SLMs can be found to allow high resolution images to be relayed 

to the optical system, then this advantage can not be exploited. Over recent years, 

there have been great advances in the processing speeds of digital Fourier transform 

based systems. A recently reported correlator [6.1] was claimed to run at 15 frames 

a second with 256x256 pixel images. To demonstrate a significant advantage over 

this and future digital processors, optical correlators would have to work with either 

very large images or at very high processing rates.

It has been demonstrated that BSO could, theoretically, be used to cross-correlate 

images of up to 3000x3000 pixels. The read-image could be updated at a rate limited 

solely by the data input and output to and from the system. However, the use of 

BSO for this task does not compare favourably with a new material; genetically 

engineered bacterio rhodopsin [6.2]. Unlike BSO, this material does not require an 

applied electric field. More importantly, useful diffraction efficiencies can be obtained 

with relatively thin films. These two facts remove all of the problems associated 

with using high /  number lenses in BSO, as well as the constraints on input image 

position. Thus, it would allow the construction of much more compact architectures. 

This material would therefore be preferred to BSO for the correlation of large images.

For the cross-correlation of large images with small reference templates, an alter­

native to BSO is the use of a phase modulating SLM, as discussed in the introduction. 

In this case, the system would only require one laser. Since no hologram is formed, 

the requirement for interferometric stability would also be removed. The reduced 

complexity of these systems could make them more attractive than BSO for this 

purpose. As previously mentioned, the filters that could be placed in the Fourier
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plane would not be limited to the transforms of real-valued inputs. This would give 

the system greater flexibility than the corresponding BSO-based correlator. The only 

drawback to this approach is the need to produce the transforms for the filters dig­

itally. However, this would probably be done off-line, and a library of filters stored 

instead of a library of reference images. If binary phase only filters are used, the 

data storage requirements axe reduced by a factor of 8 times; compared to standard 

grey-level images.

The most successful piece of work to come out of this research was that on the 

digital simulation methods for predicting SLM performance. There can be little 

doubt that BSO-based correlators are being overtaken by other, more attractive 

optical technologies. However, many future optical image processing systems will 

still depend on a spatial light modulator; either in the Fourier plane, in the image 

plane, or in both. The development of these devices can be both expensive and 

time consuming; as experiences during this project showed. It will therefore be of 

paramount importance that any devices produced, while being of sufficient quality 

for a particular image processing task, are not prohibitively expensive as a result 

of being over-engineered. At the same time, much research time can be saved by 

making sure that an SLM chosen to implement a particular system is in fact capable 

of reproducing images to the required standard. The digital simulation work reported 

here could be used to produce a specification/evaluation tool for various generic SLM 

types. This would be of use to both designers and users of SLMs and would ideally 

be employed at the initial stages of a project.
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A ppendix A  

O perations Required to  Perform  
Correlation

When computing the number of floating point operations it should be noted that 

on computers such as the Sun SPARC station it was found that the times taken to 

perform floating point addition and multiplication were identical.

In the; first case, consider the image space, mask stepping approach. It should be 

noted thait, using this technique, the images being correlated do not have to comprise 

the same number of pixels. The reference image will be assumed to be the smaller 

of the tw co  and be nr X nr pixels. The edge enhancement will be done by stepping 

a mask a<cross this image since it would be computationally inefficient to apply the 

edge filter to the larger image (an identical result is obtained either way). This edge 

enhancement mask will be nm x nm pixels. Finally, the object image is nQ x nQ. First 

the edge enhancement mask is stepped over the reference image. For every point in 

the reference image nm x nm multiplications and nm x nm additions are performed. 

(If any part of the mask overlaps an edge of the image it is assumes that it wraps 

round to the opposite edge). Thus, a total of n2rn2m multiplications and additions axe 

performed. After this the filtered reference image is stepped over the object image 

and multiplications and additions performed at each point. It should be noted that 

it is expected that both images and the edge enhancement filter would ideally be 

real valued so the additions and multiplications of the pixel values require only one 

floating point operation. The total number of multiplications and additions in the 

entire correlation process is then:
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2«r(«m + nl) «  2njn3 (A.l)

where, it has been noted that the number of pixels in a typical image space edge 

enhancement mask is usually much less than that in the object image.

For the Fourier transform approach, both the reference and object image are 

assumed to have the same number of pixels, N  x N. In order to compute the 

two dimensional Fourier transforms of the object and reference image, a series of 

one-dimensional Fast Fourier Transforms can be applied; first along the rows of the 

images and then down the columns [1.3]. Since the images are initially real valued, 

the N  pixels along the row can be treated as an array of N/2 points [A.l]. However, 

the results of these transformations will be complex numbers. In order to perform 

a one dimensional FFT on an array of length N  requires (N \og2(N))/2 complex 

multiplications and N  \og2(N) complex additions. So, transforming a real image 

requires N  FFTs to be performed on arrays of apparent length N/2  and then N  

FFTs of arrays of length N. Thus, in order to transform the object and reference 

images the number of complex multiplications and additions are:

2 x (log2(AT) -  1) +  NHo&(N ^  = ^ ( 3  log2(A0 -  1) (A.2)

and,

2 x (log2(JV )- l)  +  iV2 log2(AT)) =  AT3 (3log2(JV) -  1) (A.3)

After taking these two transforms they must be multiplied together which requires 

N 2 complex multiplications and then must be multiplied by the Fourier transform 

of the edge enhancement filter which again is assumed to be real and thus re­

quires N 2 real, complex multiplications. Finally the inverse transform of the result 

must be computed and this requires 2N((N \og2(N))/2) complex multiplications and 

2N(N\og2(N)) complex additions.

Finally, it should be remembered that a complex multiplication requires four float­

ing point multiplications, a real.complex multiplication requires two, and a complex 

addition requires two floating point additions. The total number of floating point 

operations (multiplications and additions) is then found to be:
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2 N 2 (3 log2(iV) - 1 )  +  2ATJ(3 loga( JV) - 1 )  +  41V3 +  2JV3 +  4 N 2 log3( N )  +  41V3 log3(lV)

(A.4)

which is equal to,

N \ 20 log2(N) + 2) «  20N 2 log2(N) (A.5)

since for a 16x16 pixel image 20 log2{N) = 80 2.

Thus, to a first approximation if an N  x N  object image is assumed (n0 is set 

equal to N  in the equation for the number of operations for correlation in image 

space) the size of reference image at which it becomes more economical to work in 

Fourier space rather than image space is given by:

20N 3 log3(lV) =  21V3n3 => nr =  ^lO logj(N)  (A.6)

For example for a 512x512 image it is advantageous to use Fourier space for corre­

lations with reference images of greater than 9x9 pixels.


