
Computing Science
Ph.D. Thesis

U N IV E R S IT Y

G L A S G O W

Execution Profiling for Non-strict
Functional Languages

Patrick M. Sansom

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

SB

© 1994, Patrick M. Sansom

ProQuest Number: 13818545

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818545

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW
UNIVERSITY
LIBRARY

E xecu tion P rofiling for N on -str ict Functional Languages

by

P atrick M. Sansom

Submitted to the Department of Computing Science
on 29th April, 1994, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Profiling tools, which measure and display the dynamic space and time behaviour of
programs, are essential for identifying execution bottlenecks. A variety of such tools exist
for conventional languages, but almost none for non-strict functional languages. There
is a good reason for this: lazy evaluation means tha t the program is executed in an
order which is not immediately apparent from the source code, so it is difficult to relate
dynamically-gathered statistics back to the original source.

This thesis examines the difficulties of profiling lazy higher-order functional languages
and develops a profiling tool which overcomes them. It relates information about both
the lime and space requirements of the program back to the original source expressions
identified by the programmer. Considerable attention is paid to the cost semantics with
two abstract cost semantics, lexical scoping and evaluation scoping, being investigated.
Experience gained from the two profiling schemes led to the development of a hybrid cost
semantics. All three schemes are described and compared in a single formal framework.

These abstract cost semantics are mapped onto an operational semantics and an im
plementation based on the STG-machine is developed. The manipulation of cost centres is
made precise by extending the state-transition operational semantics of the STG-machine.

The profiling tool has been incorporated into the Glasgow Haskell compiler ghc. Our
approach preserves the correct cost attribution of costs while allowing program optimi
sation to proceed largely unhindered. So far as we know ghc is the only lazy functional
language compiler to support source-level time profiling. The use of the profiler has lead
to significant performance improvements in the compiler itself and other large application
programs.

Thesis Supervisor: Prof. Simon L. Peyton Jones
Title: Head of Planning Unit, Department of Computing Science

Acknowledgem ents

I would like to thank my supervisor, Professor Simon Peyton Jones, for his guidance and
support during this research. I would also like to thank my colleagues in the Functional
Programming Group for listening to my ideas and providing invaluable feedback.

This thesis is a direct result of my involvement in the GRASP project and in particular,
my participation in the design and implementation of the Glasgow Haskell compiler. I’d
like to thank all the members of the GRASP team for providing the framework th a t made
my research possible. Special thanks to Will Partain for answering an endless stream of
questions and slaving away on my behalf.

This research would not have been possible without financial support. I am very
grateful to the Commonwealth Scholarship Commission for the scholarship th a t made all
this possible. I am also grateful to John Launchbury for giving me time off to complete
the writing up of this thesis.

Finally, I’d like to thank Lisa Schroder for all her support.

To the fond memory of my beloved grandfather

C.E. Carter

Contents

1 Introduction 1
1.1 Scope .. 2
1.2 Main C ontributions... 2
1.3 Outline ... 4

2 Execution Profiling 6
2.1 Developing Efficient P rogram s.. 7

2.1.1 Profiling p ro g ra m s .. 7
2.2 Requirements of P ro f i l in g .. 8

2.2.1 W hat should be m easu red ... 9
2.2.2 How should data be presented ... 9
2.2.3 Understanding the b o tt le n e c k s ... 10
2.2.4 Constraints on p ro f il in g .. 10

2.3 Time Profiling Systems ... 11
2.3.1 Frequency c o u n ts ... 11
2.3.2 Execution sampling .. 12
2.3.3 Procedure t im in g s .. 12

2.4 Allocation and Memory P rofiles.. 12
2.4.1 Allocation p ro f i le s ... 13
2.4.2 Leak profiles ... 13
2.4.3 Heap p ro f i le s ... 14

2.5 Aggregation and Inheritance... 14
2.5.1 Call graph profiling .. 16
2.5.2 Subsuming c o s t s ... 17
2.5.3 Module s tru c tu re ... 18

2.6 Profilers T o d a y ... 19

3 Lazy Profiling 20
3.1 Performance of Lazy Functional P ro g ram s... 20

3.1.1 Current state-of-the-art perform ance... 21
3.1.2 P red ic tab ility ... 21

3.2 Lazy Profiling is Difficult .. 22
3.2.1 Many concise functions .. 22
3.2.2 Polymorphism .. 23
3.2.3 Higher-order fu n c tio n s ... 23

v

Contents vi

3.2.4 Lazy evaluation .. 24
3.2.5 Program transformation and o p tim isa tio n ..25

3.3 Lazy Profiling T o o l s .. 25
3.3.1 Hbc/lml heap p r o f i le r ... 25
3.3.2 Nhc heap p ro file r... 27
3.3.3 UCL lexical profiler .. 27
3.3.4 Monitoring semantics ... 30

4 P ro filing w ith C ost C e n tre s 31
4.1 Principles of Cost A ttr ib u tio n ..32

4.1.1 Degree of e v a lu a tio n ... 33
4.1.2 Expression in s ta n c e s ... 34
4.1.3 Evaluation of i n p u t s ... 34
4.1.4 Subsuming unprofiled c o s t s .. 35
4.1.5 Profiled sub-expressions.. 36
4.1.6 Inheritance and profiled sub-expressions... 37
4.1.7 Global updateable closures (C A F s)... 37

4.2 Abstract Cost Sem antics... 39
4.2.1 Abstract reduction ru le s .. 40
4.2.2 Cost augmented reduction ru le s ... 44
4.2.3 Evaluation sco p in g .. 49
4.2.4 Lexical sc o p in g .. 50

4.3 Lexical vs. Evaluation S c o p in g .. 53
4.3.1 Some e x am p le s .. 54
4.3.2 Identifiable c o s t s ... 55
4.3.3 Higher order fu n c tio n s ... 57
4.3.4 T ransform ation.. 58
4.3.5 Im plem entation.. 58
4.3.6 Conclusion ... 58

4.4 Problems with Lexical Cost A ttr ib u t io n .. 59
4.4.1 C A F s ... 59
4.4.2 O verloading... 61
4.4.3 A hybrid so lu tion ... 66

4.5 Conclusion .. 67

5 Im p le m e n ta tio n 69
5.1 The Glasgow Haskell C o m p ile r .. 69
5.2 Identifying Source Expressions .. 72

5.2.1 Automatic a n n o ta tio n ... 72
5.2.2 Explicit see anno ta tions.. 72
5.2.3 Expressions vs. F u n c tio n s ...72
5.2.4 Possible ex tensions ..73

5.3 Transformation and O ptim isation ... 73
5.3.1 Cost centre boundaries... 74
5.3.2 Annotating sub-expressions... 75

5.4 Transformation in the Glasgow Haskell compiler ..76
5.4.1 Local tran sfo rm a tio n s ... 78
5.4.2 Effect of sec on local transform ation ... 81

Contents vii

5.4.3 Let f lo a t in g ... 82
5.4.4 Enclosing cost c e n t r e s ... 84
5.4.5 W orker/W rapper u n b o x in g .. 85
5.4.6 Foldr/Build d e fo re s ta tio n ... 87
5.4.7 Transformation of evaluation scoping ... 91
5.4.8 Transformation of hybrid p ro f il in g ... 91

5.5 Profiled E x e c u tio n ... 91
5.5.1 Push-enter reduction sem an tic s ... 93
5.5.2 Cost-augmented push-enter s e m a n tic s .. 97
5.5.3 Lexical s c o p in g .. 98
5.5.4 Evaluation sco p in g .. 101
5.5.5 Hybrid profiling s c h e m e ...104
5.5.6 STG-machine im plem en tations... 106

5.6 Runtime S y s t e m ...110
5.6.1 Flexible code genera tion .. 110
5.6.2 Cost cen tres ... I l l
5.6.3 Registering cost c e n t r e s .. 112
5.6.4 Closure layout .. 113
5.6.5 Closure d e sc r ip tio n s ...114
5.6.6 Time profiling .. 116
5.6.7 Heap profiling..116

5.7 Profiling O verheads... 117
5.8 C o rre c tn e ss .. 119

6 P ro filing O u tp u t 121
6.1 Example program: c l a u s i f y ... 121
6.2 Cost Centre P ro file ... 123

6.2.1 Lexical vs. Evaluation cost centre p ro file s ... 125
6.2.2 Automatic a n n o ta tio n ...128
6.2.3 Allocation r a t e .. 130

6.3 Heap P ro f i le s ...130
6.3.1 Heap con ten ts... 130
6.3.2 Heap selection .. 133
6.3.3 Comparison with other heap profilers ..133

6.4 Serial Time P ro f i le ... 134
6.5 C la u s ify R evisited ...135

7 P ra c tic a l A p p lica tio n s 137
7.1 Profiling the C o m p ile r .. 137

7.1.1 Initial profiles... 137
7.1.2 Input space l e a k ...138
7.1.3 Execution hot s p o t s .. 141
7.1.4 The r e n a m e r ... 142
7.1.5 Hash ta b le s ...143
7.1.6 The s u b s t i tu t io n ...144
7.1.7 Overall im provem ent.. 146

7.2 Other A pp lications... 149
7.2.1 Profiling a strictness a n a ly se r .. 149

Contents viii

7.2.2 Profiling a natural language p ro c e s so r ..150
7.3 Conclusion .. 152

7.3.1 Using the P rofiler...152
7.3.2 Diagnosing performance b u g s .. 153

8 C onclusions 154
8.1 Current S t a t u s ..155
8.2 Continuing D evelopm ent... 156
8.3 Formalism in P r a c t i c e ...157
8.4 Future D irections... 157

8.4.1 Formal p ro o fs ... 157
8.4.2 Inheritance p ro f il in g .. 158
8.4.3 Programming environment ... 159
8.4.4 Parallel p ro f il in g ...160

8.5 Final R e m a rk ...160

B ib lio g rap h y 161

A S T G -m ach in e O p e ra tio n a l S em an tics 166
A .l The Extended STG L anguage... 166
A.2 Unprofiled Operational Sem antics...167

A.2.1 Initial S ta t e ...170
A.2.2 Applications ... 171
A.2.3 l e t (r e c) E x p ress io n s ...172
A.2.4 Case Expressions and D ata Constructors ... 172
A.2.5 Built-in O perations... 173
A.2.6 Updating C lo su re s ... 174
A.2.7 see Expressions ...175

A.3 Extending the Semantics for Profiling ... 176
A.3.1 Initial S ta t e ...176
A.3.2 Constructing Heap O b je c t s ... 177

A.4 Lexical Profiling ... 178
A.4.1 Entering Closures ... 178
A.4.2 Saving and Restoring Cost C e n tre s .. 179
A.4.3 Updating C lo su re s ... 179
A.4.4 sec Expressions .. 181

A.5 Evaluation Profiling ... 181
A.5.1 Entering Closures and Saving Cost C e n t r e s ..182
A.5.2 Updating Closures and Restoring Cost C e n t r e s183
A.5.3 sec Expressions ...184

A.6 Hybrid Profiling ... 185
A.6.1 Entering Closures ... 185
A.6.2 Saving and Restoring Cost C e n tre s ..187
A.6.3 Updating closures ... 187
A.6.4 see Expressions ...190
A.6.5 Evaluation sc o p in g ..190

B P ro filin g D o c u m e n ta tio n 191

Contents ix

B .l Compiling programs for p ro f il in g ... 191
B.2 Controlling the profiler at r u n t im e ..192
B.3 Graphical post-p rocesso rs..194

B.3.1 s ta t2 re s id ... 194
B.3.2 h p 2 p s ..194

C Clausify 196
C .l Haskell Source ... 196
C.2 Unboxing Optimisation ...200

List of Figures

2.1 Improving Performance — The Profiling C y c l e ... 8
2.2 Example Call G r a p h .. 15
2.3 Flat Time P ro file .. 15
2.4 Call Graph Profiles — Statistical and Accurate In h e r ita n c e 16
2.5 Subsumed P ro file .. 18

4.1 Subsumed see s c o p e ... 35
4.2 The scope of an sec ex p ress io n .. 37
4.3 Development of abstract cost semantics ... 39
4.4 Dynamic Semantic R u les... 42
4.5 Cost Augmented Dynamic Semantic R u le s .. 47
4.6 Lexical vs. Evaluation Cost A ttr ib u t io n ... 54
4.7 Example class, instance and u s e .. 62
4.8 Translated class, instance and u se .. 63

5.1 Structure of the Glasgow Haskell co m piler.. 71
5.2 Syntax of the Core language.. 77
5.3 Local T ransform ations.. 79
5.4 Substituting with Cost C e n t r e s ... 81
5.5 Effect of see Annotations on Transformation of c l a u s i f y82
5.6 Development of push-enter semantics and STG im plem en tation93
5.7 Push-Enter Reduction R u les.. 95
5.8 Summary of Lexical Scoping Cost Centre Manipulation 99
5.9 Lexical Scoping Push-Enter Reduction Rules ..100
5.10 Summary of Evaluation Scoping Cost Centre Manipulation 102
5.11 Evaluation Scoping Push-Enter Reduction R u l e s ... 103
5.12 Hybrid Push-Enter Reduction R u l e s .. 105
5.13 Example code generated for flexible closure la y o u ts ..I l l
5.14 Closure layout ... 113
5.15 Example type and description s tr in g s .. 115
5.16 Profiling Overheads Compiling the Com piler... 118

6.1 Lexical Scoping Cost Centre Profile (explicit anno ta tion).................................. 126
6.2 Evaluation Scoping Cost Centre Profile (explicit annotation) 126
6.3 Lexical Scoping Cost Centre Profile (- a u to - a l l anno ta tio n)........................... 129

x

List of Figures xi

6.4 Heap Profile by Cost Centre (lexical s c o p in g) ..131
6.5 Heap Profile of "disin" by Description (lexical sco p in g)...................................... 132
6.6 Heap Profile of "disin" by Creation Time (lexical s c o p in g) 132
6.7 Serial Time Profile (lexical scoping) ..135

7.1 Aggregate Profile (Version 0: T cE xpr.lhs)..139
7.2 Heap Profile (Version 0: TcExpr.lhs) ...139
7.3 Heap Profile (Version 1: TcExpr.lhs) ...140
7.4 Further Time Profile Breakdown (Version 1: T cE x p r .lh s)141
7.5 Hash Table Performance Comparison (relative to 17 bucket indexed list) . . 144
7.6 Performance of monadised substitution algorithms (T c E x p r .lh s) 145
7.7 Time Profile (Version 2: TcExpr.lhs)......................... ..147
7.8 Summary of Time Profile (Version 2: T c E x p r .lh s) ... 147
7.9 Heap Profile (Version 2: TcExpr.lhs) ..148
7.10 Performance Improvements Compiling the Whole Compiler (-0) 148

A .l Syntax of the Extended STG lan g u ag e .. 168

C hapter 1

Introduction

Many functional programs are quick and concise to express (Hughes [1989]) but often slow

to run. Before being able to improve the efficiency of a program, a programmer has to be

able to:

1. Identify the execution bottlenecks or “critical parts” of the program tha t account for

much of the time and space used. This allows effort spent improving the program

to be focussed on parts of the program where it will be of greatest benefit.

2. Identify any inefficiencies present in the bottlenecks thus identified. These may

range from “hidden” space leaks (Peyton Jones [1987]), caused by the subtleties of

the method of evaluation, to inappropriate choices of algorithms and data structures.

Once this is done, alternative, more efficient, solutions can be proposed and evaluated.

Conventional languages provide profiling tools such as gprof (Graham, Kessler &

McKusick [1983]) and mprof (Zorn & Halfinger [1988]) which attribute time usage and

space allocation to the source code. This enables the programmer to identify the “critical

parts” of the program being developed. However current functional language programming

environments, especially for non-strict (so-called lazy) languages, lack equivalent tools.

As the use of lazy functional languages for applications programming has grown there

has been a strong call for source-level profiling tools to aid the applications programmer

in the identification of execution hot-spots and inefficiencies. The lack of these tools has

severely hindered the use of lazy functional languages for real applications programming.

This thesis attem pts to address this shortcoming by developing suitable profiling tools for

1

1.1. SCOPE 2

the lazy functional language Haskell.

Though these tools include the identification of time spent in the different “parts”

of the program, we are also interested in tools tha t identify the space usage. Unlike

most conventional languages, functional languages provide an abstraction which hides the

allocation and reclamation of data structures. This abstraction can result in unexpected

spatial behaviour ranging from over-liberal allocation to so-called space leaks. Results from

Runciman and Wakeling who have developed a heap profiling tool have indicated how

revealing such information can be (Runciman & Wakeling [1993]; Runciman & Wakeling

[1992]).

1.1 Scope

This thesis is concerned with the development of source-related performance profiling

tools for sequential evaluation of lazy functional languages which are independent of a

particular implementation (though the costs themselves depend on the efficiency of the

implementation). It does not address the provision of performance statistics about a

particular implementation nor the profiling of parallel evaluation.

Profiling is concerned with the detection of “performance bugs” . We do not address

the provision of more specific debugging tools for lazy functional languages. However,

there is a close relationship between profiling tools and debugging tools: debugging tools

may be required to identify the cause of a particular “performance bug” identified by a

profiler; and profiling data may reveal algorithmic bugs in the program.

The emphasis of this thesis is on the underlying cost semantics and efficient imple

mentation of the basic technology required to gather the profiling data. Though the

presentation of this data to the programmer is also im portant we do not focus on this

issue. Our implementation uses straightforward presentation techniques, making use of

existing presentation tools where appropriate.

1.2 Main Contributions

This thesis develops a time and space profiling system for a compiled implementation of

Haskell (Hudak et al. [1992]): a non-strict, higher-order, purely functional language. The

1.2. MAIN CONTRIBUTIONS 3

main contributions made are:

• The approach taken explicitly addresses the key problem of the identification of

the different program “parts” for which statistics are accumulated. To this end

the notion of a “cost centre” is introduced. Cost centres are used to identify the

source code expressions of interest. They are introduced by annotating the source

or automatically by the compiler. A simple, but effective, inheritance scheme is

employed tha t attributes the costs of unprofiled functions to the cost centres where

they are used.

• Considerable attention is paid to the meaning of the “cost of evaluating an expres

sion” . We develop a formal semantic model tha t makes precise which costs are

attributed to which cost centre. This model provides a setting in which we explore,

in a precise way, several different cost-attribution schemes.

• The abstract cost semantics are then mapped onto a push-enter semantic model

which incorporates an argument stack. From this, STG-machine implementations

for each of the profiling schemes are developed (Peyton Jones [1992]). These are

formally presented as extensions to the state transition system for the STG-machine.

• An implementation scheme is presented tha t allows the time spent in a particular

“part” of the program to be measured, even though lazy evaluation causes this

execution to be interleaved with different parts of the program.

• The practicality of our approach is demonstrated by our implementation in the

context of the Glasgow Haskell compiler — a state-of-the-art optimising compiler

(Peyton Jones et al. [1993]). Our approach preserves the correct cost attribution of

costs while allowing program optimisation to proceed largely unhindered. Programs

compiled with profiling enabled report both time and space usage to the programmer.

The basic execution overhead is about 65%.

• The practical use of the profiling tool is demonstrated with results from the profiling

and improving of the compiler itself.

One of the major strengths of our profiler is tha t it has been incorporated into a widely-

used, production-strength, optimising compiler. This provides programmers with a profiler

1.3. OUTLINE 4

th a t they will actually use. It makes it more than an interesting, but obscure, research

toy. It also highlighted the shortcomings in our early cost-attribution models and focussed

attention on “what really m atters” .

1.3 Outline

This thesis begins with a general discussion of execution profiling, describing the task of

execution profiling, highlighting the requirements of a profiling tool, and briefly examines

the different profiling tools tha t exist for conventional languages (Chapter 2). We then

go on to discuss the particular problems tha t have to be overcome when profiling lazy,

higher-order functional languages and describe the profiling tools tha t currently exist for

these languages (Chapter 3).

In Chapter 4 we introduce “cost centres” . After discussing the principles of cost a ttr i

bution we extend an abstract semantics with a well defined notion of cost attribution. Two

different cost semantics are developed and compared. This leads to the development of a

third, hybrid cost semantics which incorporates the desirable properties of both semantics.

Chapter 5 describes the implementation of our profiler. This has three main compo

nents:

• The appropriate cost attribution is preserved across the transformation phases of

the compiler.

• The development of profiled STG-machine implementations for each of the three cost

semantics. On the way to our STG-machine implementations we develop abstract

push-enter semantics with equivalent cost attributions. The gory details of the STG-

machine are relegated to Appendix A.

• Modifications to the runtime system to record the necessary attribution information

and gather the required profiling data.

The output of profiler is described in Chapter 6. This includes both time and space

profile. Example profiles are generated using the optimised c la u s i fy program (Runciman

& Wakeling [1993]).

The practical use of the profiler with large applications is demonstrated in Chapter 7.

We present detailed results obtained while profiling the compiler itself and report on the

1.3. OUTLINE 5

experiences some other users have had using the profiler.

Finally, in Chapter 8, we present our conclusions.

C hapter 2

Execution Profiling

Programming differs from most other crafts in one notable way: it is purely de

scriptive. The job has been done when the way to do it has been described. Com

pared to building and tuning an engine, programming is a very non-physical

experience. Inefficiencies are not betrayed by great vibrations of the computer

— in fact we seldom even see the computer. What is missing in this craft is

feedback.
D Ingalls [1972]

An execution profile attem pts to provide this feedback by reporting to the program

mer information that highlights any inefficiencies within their program. This enables the

programmer to direct any effort spent improving the program to the parts where it will

be of most benefit.

The potential benefits of execution profiling were first highlighted by Knuth [1971].

He reported the results of a study of the behaviour of FORTRAN programs drawn from

a number of applications, observing that “less than 4 per cent of a program generally

accounts for more than half of its running time.” The identification and improvement

of this 4 per cent can have a dramatic effect on overall performance. Knuth reported

tha t the use of a profiler “made it possible to double the speed of FORDAP [the profiling

pre-processor] in less than an hours work.” Indeed K nuth’s profiling experiences led him

to conclude that “profiles should be made available routinely to all programmers by all of

the principal software systems.”

The benefits of using a profiling tool have been repeatedly highlighted with large

6

2.1. DEVELOPING EFFICIENT PROGRAMS 7

speedups being reported with relatively little effort when tha t effort has been directed at

known trouble spots revealed by a profiler (Darden & Heller [1970]; Ingalls [1972]; Knuth

[1971]; Ripley & Griswold [1975]; Satterthwaite [1972]; Sites [1978]; Waite [1973]). Bentley

[1987] gives a delightful account of some profiling “pearls” .

Before going on to describe conventional profiling systems I first pause to consider the

way programmers use profilers, and the requirements of any profiling system.

2.1 Developing Efficient Programs

The availability of profiling tools offers a new approach to the development of efficient

programs. Instead of writing code obscured by the concern for efficiency, the programmer

can initially write simple, maintainable code without much concern for efficiency. Once

completed and debugged the performance of the program can be profiled, and effort spent

improving the program where it is deemed necessary.

The use of this approach to program development was first advocated in the early

seventies. Darden & Heller [1970] used it in the development of their Algol compiler.

Ingalls [1972] introduces the idea in a more general discussion of the benefits of profiling.

It also forms the basis of Bentley’s book “Writing Efficient Programs” (Bentley [1982]).

This approach to development has a number of advantages:

• Added complexity caused by, possibly unnecessary, efficiency concerns during the

initial development is avoided. This significantly reduces the initial development

costs.

• Program efficiency is only considered where it is im portant. The time to rewrite the

im portant sections is low as there is very little code tha t needs this attention.

• Maintenance costs are reduced, since most of the code remains clean and easy to

understand. Where efficiency modifications have been made the original code can

often form the basis of the documentation for the more obscure, but efficient, code.

2.1 .1 P rofiling program s

Figure 2.1 depicts the profiling cycle. The most im portant task in improving the per

formance of a program efficiently is the identification of the “bottlenecks” or “hot spots”

2.2. REQUIREMENTS OF PROFILING 8

Examine ^
performance

More profiling
info required _ _Profile

Program
Identify

Bottleneck(s)

Further changes
\ requiredAcceptable

performance]

Modify \
Program j

(edit,compile,run) J

Figure 2.1: Improving Performance — The Profiling Cycle

in the program. A lot of effort can be wasted improving parts of a program tha t the pro

grammer “thought” were sources of inefficiency but actually consumed a relatively small

amount of resources. The main function of a profiling system is to provide the program

mer with the information that enables the identification of any bottlenecks. Additional

information may still be required to identify the cause of a particular bottleneck. This

may range from a more detailed program profile to specific program generated trace data.

Once the causes of the hot spots in a program have been identified the offending

algorithms, data structures, and/or code can be improved. The effect of the modifications

should then be measured to determine the effect the changes had on the performance. In

particular the programmer must decide if a particular bottleneck has been removed or if

further improvements are still required.

As the performance is improved other bottlenecks may be identified and subsequently

improved. This process can continue until the programmer is satisfied with the perfor

mance, or deems the expected effort required to undertake any further improvements to

outweigh the expected performance benefits.

2.2 Requirem ents of Profiling

Profiling is essential if a program’s performance is to be improved efficiently. The informa

tion gathered about the execution must provide the basis for answering the key questions:

2.2. REQUIREMENTS OF PROFILING 9

• Where are the execution bottlenecks?

• W hat was the effect of a particular modification?

For a profiler to be of use it must accurately report data about the execution of the program

presented in a form tha t enables these questions to be easily answered. In particular:

• The profiler must measure the distribution of the key program resources.

• The measurement data must be related to the program source in a way tha t is

meaningful to the programmer.

In addition, the profiling system must also provide the facilities to aid the programmer in

the identification of the causes of a particular bottleneck.

2.2.1 W h at should be m easured

If a profile is to identify program bottlenecks then it must measure the use of resources

tha t are likely bottlenecks, and attribu te the demand for the resource to the appropriate

program part. The most obvious resource is execution time. A number of techniques have

been used to measure execution time. These are described in Section 2.3.

However, execution time is not the only possible bottleneck. Memory is also a limited

resource. Excessive dynamic memory requirements result in an increased amount of time

spent in the garbage collector. In a virtual memory system, these memory requirements

may lead to thrashing. If the memory requirements are degrading performance they must

be addressed directly. An understanding of a program’s memory requirements requires a

very different profile: see Section 2.4.

2.2.2 H ow should data be presented

Any execution data must be related to the source code responsible for the costs. This

is absolutely essential since it is the source code that the programmer has to modify.

The data must be presented in a way th a t draws the attention of the programmer to the

performance problems. Typical presentations included:

• A profile summary reporting each source-level function, possibly ordered by the

execution cost conveyed by the profiling data.

2.2. REQUIREMENTS OF PROFILING 10

• Annotated source listings. These can be easily scanned for smaller programs, but

for a larger program are only useful once the costly procedures have been identified.

In addition, as a program modification often affects an entire logical component, it is

desirable to be able to instruct the profiler to aggregate the measurement data into logical

groupings th a t reflect the program structure. Example logical groupings include:

• The total cost of a function including all sub-function calls.

• The cost of all the operations provided by an abstract data type.

Such a facility enables the total cost of a logical component to be easily determined and

compared with another implementation of the same component (see Section 2.5).

2 .2 .3 U n d erstan d in g th e b ottlen eck s

Once a bottleneck has been identified the programmer still has to find the cause of the

bottleneck before a solution can be developed.

The programmer may gain additional understanding about the execution of their pro

gram from a whole range of execution data. Examples include: execution counts of func

tions or source lines; I/O activity; and memory allocation. Though all this information

may be of interest a profiling system must be careful not to swamp the programmer with

unnecessary data, providing the additional data only if requested.

Additional tools tha t aid this task are more in the realms of debugging and execution

tracing than profiling, but are still an essential part of a programmer’s profiling armoury.

In fact, the process of improving performance could be termed “performance debugging” .

2 .2 .4 C onstrain ts on profiling

Though the act of profiling changes the execution behaviour of a program, the execution

d a ta reported should (as far as is possible) accurately reflect the execution th a t would

occur during normal execution. In particular:

• Compiler optimisations must not be turned off. If normal execution is optimised then

the profiled execution should also be optimised. Unfortunately this makes the job

of relating the execution data back to the original source much more difficult as the

source may no longer reflect the execution tha t actually occurs. This is a particularly

2.3. TIME PROFILING SYSTEMS 11

awkward problem for very high-level languages (Appel, Duba h MacQueen [1988]).

Solutions require the integration of profiler and compiler.

• Overheads introduced by the profiler should, where possible, be discounted in any

measurement data reported.

• If the profiler includes real execution timings, execution overheads must be minimised

to avoid distorting these timings. However, since we are interested in the relative

timings, a constant factor overhead across all execution is acceptable as long as any

variation in the overhead is small.

In addition, the profiling overheads must be small enough to permit the profiling of ex

pensive programs running on real data sets — it is exactly these programs tha t need to

be examined and improved! Typical overheads for conventional profilers are between 5%

and 100% with anything less than 30% generally considered quite acceptable.

2.3 Time Profiling System s

Profiling systems have been developed for many different languages and execution plat

forms. The vast majority, especially for conventional programming languages, have been

concerned with the profiling of execution time. Though the number of execution time

profiling systems developed is quite large, the profiles produced and techniques used fall

into three basic categories.

2.3.1 Frequency counts

Frequency count profiling inserts counters in each basic block of the program in order to

determine the number of times each statement is actually executed (Coutant, Griswold

& Hanson [1983]; Foxley & Morgan [1978]; Ingalls [1972]; Knuth [1971]; Lyon & Stillman

[1975]; Satterthwaite [1972]; Wichmann [1973]). This provides a great deal of information

about the execution of a program revealing the dynamic behaviour of the code being

executed. As well as highlighting the inner loops, it reveals unexecuted code, and the

dynamic behaviour of the algorithms used.

This can be augmented with an estimation of the execution cost of each statem ent

to provide a cost oriented profile, identifying the expensive parts of the program (Ingalls

2.4. ALLOCATION AND MEMORY PROFILES 12

[1972]; Knuth [1971]).

2.3 .2 E xecu tio n sam pling

Execution sampling interrupts the execution of the program at periodic intervals recording

which part or procedure of the program is currently executing (Appel, Duba & MacQueen

[1988]; Brailsford et al. [1977]; Graham, Kessler & McKusick [1983]; Ingalls [1972]; Jasik

[1972]; Knuth [1971]; Ripley & Griswold [1975]; UNIX Programmer’s Manual [1979]; Waite

[1973]). If the execution time is long enough to provide a significant number of samples,

the data gathered gives a good indication of the relative execution times of the different

parts of the program. Due to the random nature of the of the sampling process, two

sampled profiles will not give identical results. This profiling scheme tends to be less

precise but more realistic as it includes time that is spent in system (as opposed to user)

subroutines.

2.3 .3 P roced u re tim in gs

Procedure timing profilers insert statements tha t read a system clock at the entry and

exit points of each procedure or program unit (Bergeron & Bulterman [1975]; Matwin &

Missala [1976]; Wichmann [1973]). This enables the time spent in each procedure, either

including or excluding any sub-procedure calls, to be determined. Unfortunately the cost

of accessing the system clock is often prohibitively expensive and the accuracy of the

profile is dependent on the resolution of the system clock.

2.4 A llocation and M emory Profiles

Most programming environments provide an automatic or explicit storage management

system. Understanding the dynamic space or heap requirements of a program can reveal

additional bottlenecks such as:

• Allocation hot spots.

• Large space requirements caused by the construction and retention of large, space-

hungry data structures.

2.4. ALLOCATION AND MEMORY PROFILES 13

• Unidentified “memory leaks” caused by the failure to reclaim storage th a t is no

longer required. In long-running programs such a “memory leak” can have a very

serious effect on performance.

Though a time profile may reveal an excessive amount of time spent in the storage manage

ment routines, it does nothing to identify the source of a program’s memory requirements.

Similarly, statistics provided by storage management systems about the heap objects allo

cated and amount of live heap data processed at each garbage collection, also do nothing

to identify the source of the memory requirements.

2.4.1 A llo ca tio n profiles

The simplest dynamic memory profile is an allocation profile (Coutant, Griswold & Han

son [1983]; Ripley, Griswold & Hanson [1978]; Zorn & Halfinger [1988]). This reports

information about the allocation of dynamic memory, attributing it to the source location

responsible for its allocation. A more detailed breakdown of allocation is provided by

m p ro f (Zorn & Halfinger [1988]) which attributes allocation to the dynamic call sequence

responsible.

Though an allocation profile may reveal the allocation hot spots, these do not necessar

ily correspond to the source of the long-lived dynamic data that happens to be consuming

all the memory. It may be that the long-lived da ta is allocated by seemingly insignificant

allocation site(s) tha t are not highlighted by the allocation profile. Identifying the source

responsible for allocating the long-lived data requires yet another profile.

2.4.2 Leak profiles

Specialised profiles for identifying “memory leaks” in C programs, which use explicit

dynamic storage management, are described by Barach & Taenzer [1982], and Zorn &

Halfinger [1988]. They identify heap objects tha t are never deallocated and report the call

sequence responsible for allocating them. Indeed, the problems associated with “memory

leaks” in explicit storage management systems have resulted in a number of implemen

tations incorporating (conservative) garbage collection schemes to remove the need for

explicit deallocation (Bartlett [1988]; Boehm & Wuiser [1988]; Caplinger [1988]; Went

worth [1990]; Zorn [1992]).

2.5. AGGREGATION AND INHERITANCE 14

2.4 .3 H eap profiles

A more general tool, used in systems with implicit storage management, is the heap pro

file. This reports the live data occupying the heap, attributing it to the source location

responsible for its allocation. Since the contents of the heap change over time the profile

must describe the behaviour of the heap objects over time. This can be done by report

ing summary statistics about the lifetime of the heap objects (Ripley, Griswold & Hanson

[1978]) or by presenting a number of “snap shots” of the objects occupying the heap during

execution (Ripley, Griswold & Hanson [1978]; Runciman & Wakeling [1993]).

Due to the large amount of data such a profile can generate careful attention needs

to be paid to the presentation of the profile and the facilities provided to select relevant

data. These issues are addressed by the hbc/lm l heap profiler (Runciman &; Wakeling

[1993]) (see also Section 3.3).

2.5 Aggregation and Inheritance

Section 2.2.2 described the need to provide a profiling scheme that aggregates the cost of

the logical components of a program. This is particularly im portant when profiling large

programs, since reporting isolated data for each function1 is cumbersome and unillumi-

nating.

Figure 2.3 shows a very basic flat profile for the call graph presented in Figure 2.2.

It reveals tha t 900 time units are spent in h. If we wish to improve the performance we

could optimise h directly and/or improve the way in which h is called. Unfortunately

this flat profile does not show which functions were responsible for calling h, nor the costs

associated with the various call sites. W hat we would like to be able to determine is the

total costs of f and g, including the costs incurred executing h. This would reveal tha t

the execution of f is the bottleneck, costing a total of 810 time units. This requires the

costs of any sub-functions called to be attributed to the calling function as well.

1 We use the term function to refer to the basic program unit — normally a function an d /or procedure
depending on the programming language being profiled.

2.5. AGGREGATION AND INHERITANCE 15

m ain(10)

main

f(10) ca lled o nce / , g (10) ca lled o n ce

t S

h(8 0) c a lled 10 tim es v / h (5) ca lled 20 tim es
(co st 800) ^ p (co st 100)

(h)

The argument passed to each function represents the basic cost of
execution, excluding any sub-function calls. Observe tha t h is called
from both f and g with substantially different execution costs.

Figure 2.2: Example Call Graph

Function #calls Time
main 1 10
f 1 10
g 1 10
h 40 900

Figure 2.3: F lat Time Profile

2.5. AGGREGATION AND INHERITANCE 16

Statistical
Inheritance

Accurate
Inheritance

Parents Called/Total Inh Inh
Function Total Time Time

Children Called/Total Inh Inh
m ain 1 930 930

f 1/1 310 810
g 1/1 610 110
main 1/1 310 810

f 1 310 810
h 10/30 300 800
main 1/1 610 110

g 1 610 110
h 20/30 600 100
f 10/30 300 800
g 20/30 600 100

h 30 900 900

Figure 2.4: Call Graph Profiles — Statistical and Accurate Inheritance

2.5.1 Call graph profiling

A much more detailed profile can be generated if information about the arcs of the call

graph, rather than just the nodes, is gathered. Instead of recording the number of times

each function is called a call count is associated with each call site. This enables the

functions responsible for calling each function to be identified.

S ta tis tic a l in h e ritan c e

The call graph information can also be used to propagate an approximate cost up the call

graph by apportioning the time spent in a particular function to its various callers. This

statistical inheritance scheme is used by g p ro f (Graham, Kessler & McKusick [1983]). The

example inheritance profiles in Figure 2.4 show the total cost for each function. The costs

inherited from each child are displayed below the entry for the function, and the costs

inherited by each parent are displayed above the entry.

Unfortunately the accuracy of this scheme relies on the assumption tha t the average

cost of a call to a function is independent of the call site. If this is not the case incorrect

2.5. AGGREGATION AND INHERITANCE 17

costs are attributed to the calling function.2 For example, the statistical inheritance

column in Figure 2.4 reports the total cost of g as 610 units where as its actual cost is

only 110 units. This error arises because the cost of calls to h from g are considerably less

than the mean cost of all calls to g.

A c c u ra te in h e rita n c e

Accurate inheritance of costs is possible if the costs are attributed directly to all the

caller/callee pairs on the current call stack during execution. This scheme is used by

m p ro f (Zorn & Halfinger [1988]) which attributes memory allocation data to all the

caller/callee pairs on the call stack (up to a maximum depth of 5). Unfortunately the

overheads involved in such a scheme, especially if data points are frequent, are very large.

C op ing w ith cycles

Any call graph inheritance scheme has to cope with cycles in the call graph arising from

recursion in the executing program. Costs should not be attributed multiple times to the

same function. Both g p ro f and m p ro f solve this problem by collapsing recursive cycles

into a single node in the graph. This can result in a loss of information, but seems to be

an adequate solution.

2.5 .2 S u bsum in g costs

Limited, but accurate, inheritance can be achieved without large overheads if the costs

of any unprofiled functions are attributed directly to the calling function i.e. the costs of

any unprofiled sub-functions are subsumed by the caller as if the sub-function was part

of the caller. During execution profiling da ta is attributed to the profiled function tha t

is deemed to be currently executing (though an unprofiled sub-function may actually be

executing). This scheme was first used in the New Jersey SML profiler (Appel, Duba &

MacQueen [1988]) which introduced the notion of the current (profiled) function.

2 Statistical profilers like g p r o f usually collect accurate timing information for each parent-child call
count. This provides accurate inheritance to the im mediate parent, but the inheritance approxim ations
still arise when costs are inherited to grandparents.

2.5. AGGREGATION AND INHERITANCE 18

Function #calls Time
main 1 10
f 1 810
g 1 110
h — —

Figure 2.5: Subsumed Profile

Unfortunately this scheme results in the loss of information about the unprofiled sub

functions. At least the loss of information is controlled by the programmer who identifies

the unprofiled functions. The up-side is tha t it provides more accurate information about

the total costs of the calling functions. If all the sub-functions called are unprofiled the

total cost reported is indeed accurate. For example, marking h as an unprofiled function

would result in the basic profile presented in Figure 2.5. Though we have lost information

about h we see accurate costs reported for f and g. Of course, we can still generate

information for h (as in Figure 2.3) by running the profiler again with h marked for

profiling. These two profiles can then be compared to determine the distribution of the

costs of h between the different call sites. (Though this does not provide an accurate

breakdown of the call-site counts.)

In addition, this profiling scheme can be combined with information about the call

graph of profiled functions. In particular, statistical inheritance can still be used to prop

agate the costs of the profiled functions, providing approximate to tal costs for functions

tha t still call profiled sub-functions.

2.5 .3 M odule structure

A program’s module structure may also be used to provide an alternative grouping of costs.

The module structure usually reflects the logical structure of various program components.

Summing the cost attributed to all the functions provided by a module is an easy way of

reporting the total cost of a logical component such as an abstract data type. This task

has usually been left to the programmer using the profiler, though the profiler may aid

this process by sorting the profiling data by module.

2.6. PROFILERS TODAY 19

2.6 Profilers Today

The conventional profiles around today have not moved much beyond the technology de

veloped in the seventies. The basic source related feedback about the execution behaviour

of a program, such as statem ent counts and/or procedure costs, possibly with inheritance,

is as invaluable to the programmer as ever. The only advances seem to have been in the

provision of integrated programming environments making the profiling information more

readily available.

More recent profiling research has moved towards interactive visualisation or monitor

ing of program behaviour (see, for example, Jeffrey [1993]). However, this is beyond the

scope of this thesis.

C h apter 3

Lazy Profiling

In considering the total cost of computing, people began to observe that program

development and maintenance costs often overshadow the actual costs of run

ning the programs. Therefore most of the emphasis in software development

has been in making programs easier to write, easier to understand and easier to

change. There is no doubt that this emphasis has reduced total systems cost in

many installations, but there is little doubt that the corresponding lack o f em

phasis on efficient code has resulted in systems which can be greatly improved,

and it seems to be time to right the balance.
DE Knuth [1971]

Lazy functional programming environments have typically provided few profiling tools

despite the fact tha t they are more prone to unexpected “performance bugs” than their

imperative counterparts. This is largely because the task of producing a useful profile for

lazy functional programs is more difficult than doing so for a program written in a more

conventional, strict language.

3.1 Performance of Lazy Functional Programs

Functional languages provide the programmer with a high level of abstraction from the

computer architecture on which the program is run. They enable the programmer to

concentrate on expressing the solution to the problem in a declarative manner, without

worrying about low-level execution details. The abstraction provided can significantly re

duce the costs of developing large applications. Page & Moe [1993] estimate a productivity

20

3.1. PERFORMANCE OF LA ZY FUNCTIONAL PROGRAMS 21

improvement of between 3 and 5 using Miranda for an oil reservoir modelling application.

Armstrong [1993] estimates tha t the use of Erlang for real-time telecommunications sys

tems increased productivity, over the complete software cycle, from specification to tested

code, by a factor of between 9 and 25!

However the increased productivity does not come for free. One must expect the high

level of abstraction to:

• Impose additional execution overheads when the program is run. (This is an instance

of the development vs. execution cost trade-off.)

• Reduce the predictability of the execution behaviour.

The extent of these “costs” in current implementations of lazy functional languages is

discussed in the following sections.

3.1 .1 C urrent sta te-o f-th e-art perform ance

Recent years has seen a significant amount of research into the efficient implementation of

lazy functional languages. The result has been a dramatic improvement in the performance

of these languages. Recent research comparing the use of lazy functional languages with

more conventional programming languages, such as C and Fortran, have observed an

execution performance differential of between 10 and 30 (Grant et al. [1993]; Kozato

& O tto [1993]; Sanders & Runciman [1992]). With active research continuing further

performance improvements can be expected. The use of functional languages by the “real

world” looks likely to grow, provided appropriate support tools are provided.

3 .1 .2 P red ictab ility

In spite of the improved performance, lazy functional languages still suffer from unexpected

runtime behaviour or “performance bugs” . The ease of expression, especially when higher-

order functions are used, often obscures the time complexity involved. In addition, evalu

ation often has implicit space requirements. Stoye [1985], Meira [1985] and Peyton Jones

[1987] all discuss the problems of predicting this, presenting examples of programs tha t

are semantically identical, but have very different pragmatic space behaviour.

Since reasoning about the space and time behaviour of lazy functional programs is

very complex (Meira [1985]), a more pragmatic approach is to put effort into the provision

3.2. LA ZY PROFILING IS DIFFICULT 22

of better profiling and debugging tools, leaving the programmer to fix the performance

problems identified. The insights gained from the use of the heap profiling tool recently

added to the h b c /lm l compiler certainly support this approach (Kozato & O tto [1993];

Runciman & Wakeling [1993]; Runciman & Wakeling [1992]; Sanders & Runciman [1992]).

3.2 Lazy Profiling is Difficult

The key problem faced in profiling any program is to relate the profiling information

gathered about the execution of the program back to the original source code in a well-

defined and usable manner. This is difficult to achieve when profiling a high-level language,

since it provides abstractions and constructs that are unrelated to the underlying execution

engine.

Lazy functional languages are no exception. The very features which they advocate,

such as:

• many concise functions,

• polymorphism,

• higher-order functions,

• lazy evaluation, and

• program transformation

pose particular problems to a profiler attempting to map profiling data back to the original

source.

Some of the problems tha t lazy languages pose to profiling are discussed in Runciman

& Wakeling [1990]. The issues are addressed here with respect to the source mapping issue

identified above.

3.2.1 M any concise fu nctions

Functional programming encourages a style of programming which constructs a program

from many small function definitions. This results in a program with a very large number

of small pieces of code. For example, the Glasgow Haskell compiler consists of over 36000

lines of Haskell source code containing nearly 3000 function definitions averaging under

3.2. LA ZY PROFILING IS DIFFICULT 23

10 lines of code each. Reporting profiling information for all of these functions would be

very cumbersome. Features which aggregate the profiling data in a meaningful and useful

way are essential.

3.2 .2 P o lym orp h ism

Polymorphism encourages the re-use of functions in many different contexts. Unfortu

nately this heavy re-use of functions makes it harder to identify the source of observed

execution costs. Suppose we wish to know the cost of the expression:

map (g x) 1

Knowing tha t the program spent 30% of its time in the function map is not particularly

helpful, since there may be many applications of map in the program.

The solution requires the costs of the calls to map to be attributed to its call sites.

Statistical inheritance (Section 2.5.1) is unlikely to be suitable as the costs of calls from

different call sites are likely to vary greatly. For example, the cost of map is dependent on

the length of the list argument passed and the demand on the resulting list. Subsuming

the costs of these heavily re-used functions (Section 2.5.2) would seem to be a more

appropriate inheritance technique. The loss of information about these functions should

not be significant as they are not critical to the overall cost structure of the program.

3.2 .3 H igher-order functions

Higher-order functions are an integral part of functional languages. Hughes [1989] advo

cates the provision of generalised, higher-order functions, which can then be specialised

with appropriate base functions. They pose problems to the profiler since the actual func

tion being applied may not be known at compile time as it is passed as an argument or

extracted out of a data structure.

In the New Jersey SML profiler (Appel, Duba &; MacQueen [1988]) each profiled func

tion is responsible for setting the current function to itself when it is called. This ensures

tha t its execution costs are attributed correctly, even if it is passed as an argument to

a higher-order function. The costs of executing an unprofiled function th a t is passed as

an argument to a higher-order function are subsumed by the higher-order function in

which it is applied. In contrast, Clack, day m an & Parro tt [1994] argue tha t the costs of

3.2. LA ZY PROFILING IS DIFFICULT 24

applying the unprofiled higher-order argument should be attributed to the function tha t

referenced it, not the function tha t applies it. We discus the details of their lexical profiler

in Section 3.3.3.

3 .2 .4 Lazy evaluation

Lazy evaluation poses the profiler with some particular difficulties.

It is not necessarily clear what part of the program should bear the cost of evaluating

a suspension. An expression is only evaluated if its result is demanded by some other

expression. So the question arises: “Should the cost of evaluation be attributed to the

part of the program tha t instantiated the expression or the part of the program that

demanded its value?” . This is further complicated by the fact tha t multiple expressions

may demand the result, with all but the first finding the expression already evaluated. If

we attribute the cost to demanding expressions it should probably be shared among all

the demanding expressions.

Furthermore, the nature of lazy evaluation means tha t evaluation of an expression

is interleaved with the evaluation of the inputs that it demands. Since this expression

is itself being demanded it is also interleaved with the execution of its demander. The

resulting order of execution bears no resemblance to the source code we are trying to map

our profiling results to. A scheme that attributes the various execution fragments to the

appropriate source expression is required. Accumulation of statistics to the different call

sites is made more difficult as we do not have an explicit call stack at runtime — instead

we have a demand stack.

Finally, it is essential tha t the lazy semantics are not modified by the profiler. In strict

languages one might measure the time taken to execute between two “points” in the source

(see Section 2.3.3). However in a lazy language there is no linear evaluation sequence so

we no longer have a clear notion of a “point” in the execution. One could imagine a crude

profiling scheme tha t forced the evaluation of the intermediate data structure after each

phase of (say) a compiler. This would enable the cost of the each phase to be measured, but

we would be measuring the cost of a different program — one tha t forces its intermediate

data and may be evaluating parts which need never be evaluated!

3.3. L A Z Y PROFILING TOOLS 25

3.2 .5 P rogram transform ation and op tim isation

Functional language implementations involve radical transformation and optimisation that

may result in executable code which is very different from the source:

• Hidden functions are introduced by high-level translation of syntactic sugar such as

list comprehensions.

• Auxiliary functions and definitions are introduced as expressions are transformed.

• The combined effect of all the transformations may drastically change the structure

of the original source.

It is highly undesirable to turn off these optimisations, because the resulting profile would

not be of the program you actually want to run and improve. Since our aim is to be

able to profile a fully optimised program execution, the problem of mapping the costs of

optimised execution back to the source code must be addressed.

3.3 Lazy Profiling Tools

As noted earlier there are very few profiling systems for lazy functional programs. Typi

cally lazy functional language implementations have only provided basic statistics about

the execution of the particular abstract machine and the performance of the storage man

agement system. These implementation statistics do nothing to aid the programmer in

identifying the source of any performance problem with their program.

Aside from the ghc profiler described in this thesis, I am aware of only three execution

profilers for lazy functional programs th a t relate the profiling data back to the program

source, and only one of these profiles execution time.

• The h b c /lm l heap profiler developed by Runciman & Wakeling [1993].

• The nhc heap profiler developed by Rojemo [1994].

• The UCL lexical profiler developed by Clack, d ay m an & Parro tt [1994].

3 .3 .1 H b c /lm l heap profiler

Runciman & Wakeling [1993] have implemented a heap profiling scheme for the Chalmers

h b c /lm l compiler (Augustsson & Johnsson [1989]). They map the heap objects back to

3.3. LA ZY PROFILING TOOLS 26

the source code by storing, in every heap object, the function , module and group that

produced the heap object and the name of the construction and type of the heap object.

The profiling output consists of a graphical display of the contents of the heap over time

broken down by function, module, group, construction or type. In addition the program

mer can focus the profiling output by limiting the profile to a subset of the heap objects.

This selection can be made by any of the function, module, group, construction or type

attributes.

Interpreting the heap profiles of particular programs has revealed interesting phenom

ena about their space behaviour. These insights have led to significant improvements being

made to many of the programs that have been profiled (Kozato & O tto [1993]; Runciman

& Wakeling [1993]; Runciman h Wakeling [1992]; Sanders & Runciman [1992]) as well

as changes to the evaluation scheme used by the compiler itself (Runciman & Wakeling

[1993]).

Unfortunately the Runciman and Wakeling profiler does not provide a mechanism

for aggregating information up the call graph. A producer profile may indicate tha t

cells produced by a certain function, e.g. map, occupy a large amount of heap space.

However there is no mechanism to determine which application (s) of map were responsible

for producing these cells (Kozato & O tto [1993]).

The emphasis of this profiling tool is on the identification and removal of the exces

sive space requirements tha t lazy functional programs are particularly prone to. Though

improving the space behaviour of a program reduces the paging and garbage collection

costs, the effect of these changes on the evaluation time is often minimal because most

of a program’s execution time is usually spent evaluating expressions, not in the garbage

collector. Unblocking pipelines and modifying definitions to change strictness properties

do not necessarily result in algorithmic changes tha t reduce the evaluation time. The heap

profiles do not provide an explicit indication of the amount of time being consumed by

the program parts.

However, if the memory requirements exceed the physical memory of the machine the

paging overheads can be quite significant (assuming a virtual memory system is avail

able) (Sansom & Peyton Jones [1993]). Under these circumstances reducing the space

requirements can result in substantial performance improvements.

This heap profiler was the first practical profiling tool developed for lazy functional

3.3. L A ZY PROFILING TOOLS 27

programs. Its success has a lot to do with the fact tha t it was incorporated into a widely-

used, production-strength compiler, rather than existing as an obscure research toy.

3 .3 .2 N h c heap profiler

Nhc (nearly a haskell compiler) is alight weight compiler for a subset of Haskell developed

by Rojemo [1994], It includes a heap profiler similar to tha t provided by the hbc/lm l

compiler. However nhc incorporates two new heap profiles:

• The lifetime profile displays the (selected) heap objects broken down by the length of

time each heap object lived. Every heap object has a word th a t records the creation

time of the object with the lifetimes being deduced by post-processing a profile log.

• The retainer profile attem pts to answer the question: What is retaining the objects

in the heap? It displays the (selected) heap objects broken down by the (set of)

heap objects that reference the object. This profile has been developed as an aid to

identifying the cause, rather than the presence, of an unexpected space leak.

These new heap profiles look very promising. They have already provided additional

insights into the space-behaviour of the c l a u s i f y program (see Section 6.1) which was

initially profiled by Runciman & Wakeling [1993] using the hbc/lm l profiler (Runciman

& Rojemo [1994]).

The nhc compiler is still in the early stages of development. It does not profile execu

tion time and does not perform any significant program optimisations.

3.3 .3 UCL lex ica l profiler

Clack, daym an & Parrott [1994] have implemented a profiling scheme in an interpreted

lazy graph-reduction system tha t profiles call counts, heap usage and execution time of

identified functions. Each profiled function is assigned a unique “colour” 1. The time and

space costs of evaluating all expressions declared within the lexical scope of the function

are attributed to the colour assigned to the function. Though there are encouraging

similarities between the UCL profiler and our lexical profiler (see Section 4.2.4), there are

also some significant differences.

^ h e UCL notion of “colour” is similar to our “cost centre” — both are attributed w ith the costs
identified during execution.

3.3. L A ZY PROFILING TOOLS 28

Subsuming function costs

The UCL profiler requires all shared functions to be profiled separately. Only the costs of

unshared, unprofiled functions are subsumed by the referencing function (Section 2.5.2).

In contrast, our lexical profiler requires all but only CAFs to be profiled separately (Sec

tion 4.1.7). All unprofiled function costs are subsumed by the referencing cost centre

(Section 4.1.4). We believe this to be a major strength of our profiling scheme since it

enables the costs of the logical “parts” of a program to be aggregated together, regardless

of the sharing properties of the program. This is especially im portant when profiling large

applications.

It is im portant to note tha t the sharing property, on which the inheritance property of

the UCL profiler depends, is global. This is not a problem for an interpreted implemen

tation since this is easy to determine once the code has been loaded into the interpreter.

However, in a module-based, compiled implementation the linker has to be modified to

mark functions as being shared or unshared, greatly reducing the portability of any im

plementation. This is not a problem with our approach since the inheritance property is

determined locally, by the form of the declaration.

We observe tha t it would be quite easy to modify the UCL profiler to enable all

unprofiled function costs to be subsumed, regardless of the sharing property. All tha t is

required to enable all unprofiled function costs to be subsumed is for the instantiation of

unprofiled supercombinators to assign the constructor colour, as well as the origin colour,

from the referencing colour pair (see Clack, daym an & Parrott [1994], Section 5.3). Our

experience suggests that this would be a very worthwhile enhancement.

Higher-order functions

To ensure tha t the colouring of the reference to an unprofiled higher-order function ar

gument is available when the function is applied the UCL profiler attaches colouring

information to every field in a closure, as well as the closure itself. This introduces quite

a large space overhead. Most of the time the field colouring is redundant since the clo-

sure being referenced has the same colouring. Our implementation avoids attaching cost

centres to the closure fields. A simple “boxing” transformation is used to ensure that

any top-level, unprofiled functions that are passed as arguments have the referencing cost

3.3. L A ZY PROFILING TOOLS 29

centre attached (see Section 4.2.4).

Colour pairs

The colouring information recorded by the UCL profiler identifies colour pairs c <— o: the

constructor colour identifies the function being evaluated and the origin colour identi

fies the function tha t referenced it. This enables a more detailed profile to be produced,

providing enough information for statistical inheritance (though this has not been imple

mented). Our current implementation only produces a flat cost centre profile. We rely

on the subsuming of all unprofiled function costs. Inheritance profiling using cost-centre

pairs is discussed in Section 8.4.2.

Time profiling

The UCL implementation measures execution time by interrogating the system clock

whenever the colour of the expression being evaluated changes; recording the elapsed

time attributed to the previous colour. The accuracy of this approach is dependent on the

accuracy of the system clock, the overhead of accessing it, and the number of times the

clock must be accessed.

Accessing the system clock whenever the colour changes imposes an overhead tha t

is inversely proportional to the length of the interval. The shorter the timed intervals

the larger the overhead. Under lazy evaluation the time intervals are often very short,

especially if the implementation is efficient, since the evaluation of one colour is often

interleaved with the evaluation of its inputs. There is also no guarantee th a t the timing

overhead is linear since the intervals which make up execution of one cost centre may be

of a different length to the intervals which make up the other cost centres. In addition,

most Unix clocks only have a resolution of about 20ms. This implies th a t the measured

time “jumps” in 20ms ticks.

Our implementation attributes execution time by sampling the current cost centre at

regular intervals (every 20ms) during the execution. This avoids distorting the profile

since the timing overhead is linear (a fixed sampling overhead for each 20ms execution).

The statistical variation introduced by the sampling mechanism is no worse than timing

a clock with a 20ms tick.

3.3. L A ZY PROFILING TOOLS 30

Current status

The UCL implementation is still in a prototype stage with the current version profiling the

interpreted execution of the FLIC intermediate code produced by their Haskell compiler.

This has a number of acknowledged shortcomings:

• It profiles interpreted execution, not full-blooded compiled code. They are currently

working on a compiled TIM implementation.

• The profiling information is related back to the FLIC intermediate code, not the orig

inal Haskell source. They do not address the compiler transformation/optim isation

issues.

3 .3 .4 M o n ito r in g s e m a n t ic s

A completely different approach is taken by Kishon [1992]. Kishon introduces the notion of

a monitoring semantics tha t is used to specify source-level debuggers, tracers and profilers,

for both strict and non-strict languages. A non-standard interpreter for the monitoring

semantics is then combined with a standard interpreter for the language to produce a

monitored interpreter. Partial evaluation techniques are used to produce a more efficient

implementation.

This is a very promising approach for the development of debuggers. However, it is less

attractive for practical profilers Since it is monitoring the semantics, not the execution.

Our profiler attem pts to monitor the compiled execution, attributing the “real” costs back

to the program source.

C hapter 4

Profiling w ith Cost Centres

Our profiling system specifically addresses the crucial problem of attributing the profiling

data gathered during execution back to the original source code. This is achieved by:

1. Associating expressions of interest in the original source with a cost centre.

2. Preserving this association during the transformation and optimisation phases of the

compiler.

3. At runtime, identifying the cost centre associated with the expression currently being

evaluated.

4. Attributing profiling data gathered during execution to the cost centre identified.

A cost centre is simply a label to which we attribute execution costs. Each cost centre is

attributed with1 the costs of evaluating the expression it identifies.

The association of an expression with a cost centre is made very explicit by extending

the syntax of expressions with an see (set cost centre) construct.

expr —y sec label expr

This expression-level annotation is very general. It can be used to annotate the entire

body of a function or a particular branch of a case.

Semantically, an sec expression simply returns the value of expr, but operationally, it

attributes the cost of evaluating expr to the cost centre label. For example:

Mn English we would usually say “the cost A is attributed to cost centre B. However, since this is really
a relation, we often find it more convenient to say “cost centre B is attributed with the cost A” .

31

4.1. PRINCIPLES OF COST ATTRIBUTION 32

mapg x 1 = see "mapg" map (g x) 1

causes the costs of evaluating the expression map (g x) 1 to be attributed to the cost

centre "mapg". The syntax for sec uses a very loose binding, extending all the way to the

right within the enclosing language construct. The scope of an sec annotation is restricted

by placing brackets around'the see annotation. For example:

mapg x 1 = (sec "map" map) (g x) 1

only annotates the reference to map.

For the profiling data collected to be useful, we must provide the programmer with a

clear understanding of what costs are attributed to each cost centre. This requires us to

define what we mean by the cost of a source program expression — its cost semantics —

and to identify the cost centre to which these costs are attributed. Ideally the necessary

understanding should correspond with the programmer’s intuition. There should be only

a few concepts with which the programmer needs to be familiar to use the profiler and

preferably no unexpected pitfalls.

We first identify the desired principles of cost attribution (Section 4.1), before making

this precise using a high-level reduction semantics augmented with a notion of cost and

cost attribution (Section 4.2).

4.1 Principles o f Cost Attribution

In Section 3.2 we identified a number of properties of lazy functional languages tha t make

the task of attributing costs back to the original source difficult. In response to these we

have developed a profiling tool which subscribes to the following principles:

• We profile the actual evaluation required during normal execution — the evaluation

sequence is not changed (Section 4.1.1).

• The costs of evaluating all the instances of an scc-annotated expression are a t

tributed to its cost centre (Section 4.1.2).

• The costs of evaluating any unevaluated inputs to an expression, i.e. the free vari

ables, are attributed to the declaring scope, not the demanding scope (Section 4.1.3).

4.1. PRINCIPLES OF COST ATTRIBUTION 33

• Aggregation of costs is achieved by arranging for the costs of any unprofiled expres

sions to be subsumed (Section 4.1.4).

• Costs are attributed to precisely one cost centre — there is no inheritance of profiled

sub-expression costs (Sections 4.1.5 and 4.1.6).

• The one-off costs of evaluating global updateable closures are attributed to special

cost centres (Section 4.1.7).

Each of these design decisions is discussed in the following sections.

4.1 .1 D egree o f evaluation

In a lazy language the extent to which an expression is evaluated depends on the demand

placed by the surrounding context. For example, consider the result of the map in the

expressions

sum_mapg x 1 = sum (see "mapg" map (g x) 1)

take_mapg x 1 = ta k e 10 (sec "mapg" map (g x) 1)

In sum_mapg all the elements of the list are demanded if the result of sum_mapg is ever

demanded. In take_mapg at most 10 elements of the list are required, but the actual

number of elements demanded still depends on the number of elements required by the

context in which take.m apg is called.

The profiler should not affect the degree of evaluation or the evaluation sequence at

all. The profiler should measure the cost of evaluating an expression to the extent th a t is

actually required by the program being executed. Let’s call this degree of evaluation the

actual evaluation.

This unknown degree of evaluation results in a potential source of confusion: a pro

grammer might be expecting to measure evaluation tha t never occurs. However, since we

are interested in identifying the critical expressions within the program, we are not con

cerned with potentially inefficient expressions that are never actually evaluated. If (and

only if) the evaluation is demanded, its cost will be measured.

4.1. PRINCIPLES OF COST ATTRIBUTION 34

4 .1 .2 E xpression instan ces

Many instances of a single source expression may be evaluated during the execution of a

program. For example, an instance of the expression map (g x) 1 in the body of

mapg x 1 = see "mapg" map (g x) 1

is evaluated each time mapg is called with two arguments. It is not feasible or desirable

to report individual costs for every instance of the annotated expression map (g x) 1.

Instead the profiler attributes the cost of evaluating all the instances of the see expression

to its associated cost centre.

In fact it is possible for more than one sec annotation to have the same label. The

cost of evaluating all the instances of sec expressions with the same label are attributed

to a single cost centre with tha t label.

The number of instances of each see label annotation that are evaluated during ex

ecution is counted and reported along with the total cost. This is called the “sec entry

count” . It is equivalent to the entry count or frequency count reported in conventional

profiling systems (see Section 2.3.1). Care must be taken if this count is used to average

the total cost since the cost incurred by each instance may differ. This is especially true

in a lazy language, since the actual evaluation is dependent on the demanding context.

4.1 .3 E valuation o f inputs

Under lazy evaluation an expression instance is evaluated only when required; subsequent

demands “see” the evaluated form as the expression is updated with its result. The cost

of demanding an expression’s inputs or free variables therefore depends on the existing

degree of evaluation of these inputs. Consider the following definition of avg

avg 1 = (see "sum" sum 1) / (sec " len" le n g th 1)

At most one of the annotated expressions will have to evaluate the spine of 1, the other

will find that the spine of the input list 1 has already been evaluated.

When examining the cost of a particular expression we don’t want the water to be

muddied by the degree of evaluation of the inputs. We avoid this confusion by excluding

from the cost of an expression the cost of evaluating the values bound to its free variables,

even though this evaluation occurs interleaved with tha t of the demanding expression.

4.1. PRINCIPLES OF COST ATTRIB UTION 35

see e

■ static scope o f see

□ referenced scope o f see (costs subsumed)

Figure 4.1: Subsumed se e scope

We arrive a t the sam e conclusion when we observe th a t one expression’s input is

ano ther expression’s result. W hen evaluating the result of a suspended com puta tion the

costs should be a t t r ib u ted to the cost centre of the suspension, not to the expression

dem anding the result.

In the avg example above the costs of evaluating 1 should be a t t r ib u ted to the scope

responsible for construc ting 1, not to "sum" or " le n " . This corresponds to the intuition we

have for s tr ic t languages where the evaluation of all inputs to an expression is completed

before we evaluate the expression.

4.1.4 S u b s u m in g unprof i led costs

Aggregation of profiling d a ta is very im p o rtan t when profiling functional p rogram s as they

typically comprise many small function definitions (Section 3.2.1) which may be heavily

re-used (Section 3.2.2). O ur profiler arranges for unprofiled costs to be subsumed by the

caller (Section 2.5.2). This enables the program m er using the profiler to accurately:

• Determ ine the to tal cost of a (possibly large) nest of function calls.

• A t t r ib u te the costs of heavily re-used function definitions to the cost centres of their

application sites.

All top-level functions are considered to be unprofiled — though they may have profiled

expressions embedded within. Indeed, the entire body of the function may be a profiled

expression. T he costs of evaluating any unprofiled expressions within a top-level function

are subsumed by the expression th a t referenced the function, ju s t as if the top-level function

had been unfolded at the site where the function is referred to. This subsumed scope is

depicted in Figure 4.1. In the example

mapg x 1 = s e e "mapg" (map (g x) 1)

4.1. PRINCIPLES OF COST ATTRIBUTION 36

the evaluation of map and the evaluation of all the applications of g hidden inside map

are attributed to "mapg". Any other applications of map are attributed to the cost centre

enclosing that application site.

We use the term reference site to identify the source location where the function is

referred to. This may be different from the application site since the function may be

passed as an argument (to a higher order function) and applied at a different site, possibly

in the scope of a different cost centre. For example, in the declaration:

app f = see "app" f 1

r e f = sec " re f" app sum

sum is referenced in the scope of " re f" , but is applied in the scope of "app". Any costs

associated with the evaluation of sum should be attributed to the referencing cost centre

" re f" , not the applying cost centre "app".

4.1 .5 Profiled sub-exp ression s

A profiled expression may have a profiled sub-expression embedded within it. This might

arise from an explicit see sub-expression or an sec expression embedded within a sub

sumed top-level function. Consider the expression:

sum_mapg x 1 = sec "sum" sum (sec "mapg" map (g x) 1)

Should the cost of the map be attributed to the cost centre "sum" as well as "mapg"? We

adopt a very simple scheme: Costs are only attributed to a single cost centre. The cost of

the inner expression, map (g x) 1, is attributed to the cost centre "mapg" and the cost

of summing the result is attributed to "sum".

Therefore the scope of a particular cost centre may have “holes” in it tha t correspond

to annotated sub-expressions which attribute their costs to another cost centre (see Fig

ure 4.2). So that the existence of any annotated sub-expressions does not go unnoticed by

the programmer, we count the number of sub-scc expression instances evaluated. When

see "mapg" is entered in the example above, the sec entry count of the cost centre "mapg"

and the sub-scc count of "sum" would be incremented. The sub-scc count does not iden

tify which cost centre(s) the sub-scc expression(s) are attributing their costs to — just

that there are such expressions.

4.1. PRINCIPLES OF COST ATTRIB UTION 37

see e
I static scope o f see

□ referenced scope o f see (costs subsumed)

C] see sub-expressions (costs excluded)

Figure 4.2: T he scope of an s e e expression

4.1.6 I n h e r i t a n c e a n d prof iled sub-express ions

It is quite possible to take a different approach to th a t of 4.1.5, and arrange for the costs

of profiled sub-expressions to be a t tr ib u ted to the enclosing cost centre(s) as well. This is

equivalent to the call graph profiling described in Section 2.5.1 except th a t we would use

the reference graph.

However, collecting accura te inherited information is very expensive. We would have

to keep track of the reference stack of cost centres for every unevaluated expression. (The

explicit s tack in a lazy im plementation is a dem and stack.)

On the o ther hand, s ta tis tica l inheritance is feasible. It requires the run tim e costs to

be a t t r ib u ted to cost-centre pairs. This is discussed in Section 8.4.2.

Given th a t we already have accura te subsuming of unprofiled costs, providing a form

of cost aggregation, statis tical inheritance was not a high priority. We decided not to

implement it in the initial im plementation, prefering to concentra te our effort on the

more fundam ental problems identified. However, we do believe th a t combining s ta tis tica l

inheritance with the subsum ing of unprofiled costs could prove to be a useful extension to

the profiling tool.

4.1.7 G loba l u p d a t e a b l e c losures (C A Fs)

Section 4.1.4 s ta ted th a t all top-level functions are considered to be unprofiled — their

costs are subsumed by the reference site. However some top-level closures may have no

argum ents, and hence be updateable . They are only evaluated once (if a t all), and only

to the ex ten t to which they are dem anded. These argument-less top-level closures are

called constant applicative fo rm s or CAFs. For example, i n t s is a C A F whose value is

the infinite list of integers:

4.1. PRINCIPLES OF COST ATTRIBUTION 38

in t s = from 0

where from is a function returning the infinite list of integers starting from its argument.

C A F cost c en tre s

Since each CAF is only evaluated once, the one-off costs of evaluation should be a t

tributed to the declaration site of the CAF (Section 4.1.3). Otherwise, these costs would

be attributed to the cost centre of the first expression to demand the value of the CAF.

Understanding which cost centre was attributed with the evaluation of the CAF would

require the programmer to reason about the evaluation order.

So to which cost centre should these costs be attributed? To ensure tha t we always

have a cost centre to which to attribute these costs the compiler annotates every CAF

with an see annotation (if it doesn’t already have one). By default a single "CAF" cost

centre label is used to annotate all CAFs in a module, but a compiler option is provided

tha t instructs the compiler to annotate each CAF with a cost centre derived from the

name of the CAF. For example, the individual annotation for in ts would be:

in ts = scccaf "CAF:ints" from 0

Entry to CAF see expressions is also treated specially. We know tha t there is only

one instance of each CAF expression, but we do not know which reference to the CAF

will be the first to demand its value and force its evaluation. If we increment the sub-

sec count of the first expression to demanding evaluation of the CAF, the sub-sec count

would be dependent on the evaluation order. To avoid this undesirable outcome, seccaj

does not increment the sub-sec count of the demanding cost centre. Instead we increment

a sub-seeca ̂ count which we know is dependent on the evaluation order.

N o n -u p d a te d C A Fs

In an effort to save space it is possible to arrange for CAFs (with large results) to be

re-evaluated every time their value is required. These repeated evaluation costs could be

inherited by the expression demanding the result. However, the compile time (or runtime)

decision to avoid updating a top-level thunk and pay the cost of any re-evaluation to save

space should not affect the costs attributed to the demanding cost centre(s). Thus we

4.2. ABSTRACT COST SEMANTICS 39

f A b s trac t \
 ̂ S em an tics J
\ (4 .2 . 1) J

C o st
S em an tics

' L ex ica l
Scop ing

H y b rid
S em an tics

E v a lu a tio n '
S co p in g j

Figure 4.3: Development of abstract cost semantics

still annotate these CAFs and attribute the cost of repeated evaluation to their CAF cost

centre. The CAF see entry count records the number of instances of the CAF which are

evaluated during execution.

4.2 Abstract Cost Semantics

Our initial profiling implementation was based on the informal principles developed in

Section 4.1. However, some very subtle issues emerged tha t were difficult to identify and

investigate in such an informal setting. This led us to develop a more formal notion of

cost attribution that enables us to be precise about these issues.

In order to explain precisely how costs are attributed it is necessary to reason about

the operational behaviour of the program. To this end we introduce an abstract reduction

semantics, which we then extend with notions of cost and cost attribution. These cost

semantics are sufficiently concrete to allow us to be precise about the evaluation behaviour

and cost attribution, but are sufficiently abstract tha t we do not get bogged down in

irrelevant details.

The development of the cost semantics is summarised in Figure 4.3. Initially two ab

stract cost semantics, lexical scoping and evaluation scoping, are developed and compared.

Experience gained from the two profiling schemes leads to the development of a third,

4.2. ABSTRACT COST SEMANTICS 40

hybrid cost semantics.

4.2.1 A b stract reduction rules

The reduction semantics used here are based on Launchbury’s natural semantics (Launch-

bury [1993a]). The semantics are given for the following language:

X £ Var
C e Constructor D N um bers
© € P rim itive
e e E xp Xx.e

| e x
I x
| l e t Xi=eu .. . , x n=en in e
I C x ! • • • &„
| case e of {C,- • • •xmt -> et-}”=1
| C\ © ^2

This language contains a minimal set of constructs required to implement Haskell without

losing any efficiency. It consists of the lambda calculus extended with (recursive) lets,

saturated constructors (including numbers), case, and primitive applications2.

The language also contains an im portant syntactic restriction: all function and con

structor applications must have variables as arguments. This is easily achieved by le t -

binding any non-variable arguments. It forces all closure allocation to be made explicit

(the l e t construct is the only construct that allocates closures in the heap) giving the

language a more direct operational reading.3

In presenting the semantics we assume that all bound variables are distinct. This is

ensured by renaming all the bound variables in an expression with fresh variables, written

e, whenever an expression is duplicated.

The dynamic semantic rules are presented in Figure 4.4. They obey the following

conventions. The heap is a partial mapping from variables to expressions. It is viewed as

an (unordered) set of variable/expression pairs, binding distinct variables to expressions.

r , A , 0 € Heap ::= {a:1 i4 e1, . . . , x n H>en}

2We assume that the primitive operators ® (e.g. +, *, ==, < etc.) are strict in both arguments and
return a nullary constructor, such as a number or boolean.

3 An even more restricted language is used in Appendix A to present a direct operational sem antics for
the STG-machine.

4.2. ABSTRAC T COST SEMANTICS 41

r imt is the initial heap, binding all the variables declared at the top-level. A value z is

an expression in weak head normal form (whnf) i.e. a lambda abstraction or saturated

constructor application.

z G V al ::= Xx.e
I C X i" 'Xn

A judgement has the form T : e A : z which should be read: “the term e in the

context of the set of bindings T reduces to the value 2 together with the (modified) set

of bindings A.” During the course of evaluation new bindings may be added to the heap

and old bindings updated with their results.

Reduction rules

Referring to the rules in Figure 4.4, the Lambda and Constructor rules simply reduce

lambda abstractions and constructor applications to themselves, without affecting the

heap. Such terms are already in whnf so have no need for further evaluation.

The Application rule reduces the term on the left (to a A-abstraction), substitutes the

argument for the A-variable, and continues reduction. Since the syntax ensured th a t all

application arguments are variables no work is duplicated by the substitutions.

The most interesting rule is the Variable rule. To evaluate a variable x the heap must

contain a binding of the form i 4 e . Assuming it does, e is evaluated in the context of the

heap, omitting the reference to x. This ensures tha t any cyclic data dependencies, or black

holes, are detected. If this reduction produces a value z a renamed version of the result z

is returned. This renaming ensures tha t no name clashes occur as a result of duplicating

the resulting term z. If the original expression e was not in whnf (captured by the W H N F

selector) the heap is updated with a binding x z, otherwise the original whnf binding is

simply restored. The update ensures tha t subsequent references to x immediately return

the result value z.

The conditional update, defined using the w h n f selector, is not actually required for

the abstract semantics. It would suffice to always update a binding with its result. We

have gone to the trouble of identifying the case when no update is required because this

is significant when the costs of evaluation are considered (Section 4.2.2).

The remaining rules are quite straight forward. The Let rule extends the heap with the

4.2. ABSTRACT COST SEMANTICS 42

T : Xx.e Jj- T : Xx.e Lambda

T : e JJ. A : Xy.e' A : e'[x/y\ 0 : z
T : e x 0 : z

Application

r : e A : z
{ r ? x i—y e} : x JJ. {A, WHNF(e, x *->• e, x h->- z) } : z Variable

w h e r e w h n f (Xx. e , n, u) — n
WHNF(C a;] ■ • ■ x n , n , u) = n
WHNF(e, n , u) = u

{r, x x I-)- eu . . . , xn h* en] : e JJ. A : z
T : l e t Xx=ei, . . . , xn=en in e JJ. A : z

Let

T : C x i " - x n ^ T : C x i - - - x n Constructor

r : e 4J- A : Ck x l - - x mk A : ek[xi/yi]”L\ Jj- 0 : z
Case

r : case e of {C{ yx • • • ym, ~ > e*}"=1 0 : z

T : ei -ii A : A : e2 -ii 0 : z2
r : ex ® e2 -IJ- 0 : Z\ ® z2

Primitive

Figure 4.4: Dynamic Semantic Rules

4.2. ABSTRACT COST SEMANTICS 43

new bindings and evaluates the body e. Renaming ensures tha t there are no name clashes.

after substituting the constructor arguments returned. The Case rule only succeeds if the

constructor returned is contained in the alternatives. Finally, the Primitive rule evaluates

each argument (left to right) and returns the result of applying the primitive operator.

Reduction sequences

Reduction sequences are expressed using proof trees. To stress the sequential nature of

reduction we lay these proofs out vertically. If T : e A : z we write:

bars. For example, the reduction sequence for the expression l e t f=Xx.x+l in f 3 would

Case reduces the body (to a constructor), and then reduces the appropriate alternative

another sub-proof

with sub-derivations (proving the judgements above the line) contained within the vertical

be written:

{A} : l e t f - \ x . x + l in f 3
{A, / i—>■ Ax.x+1} : f 3

{ A ,/ i-)- A x.x+1} : f
{A} : A x.x+1
{A} : A x.x+1

{ A ,/ A x.x+1} : A^.Xj + f

Let
Application
Variable
Lambda

(no update)

Primitive
Constructor

combine

{ A, y* i— A x.x+1} : 3+1
{ A ,/ i-)- A x.x+1} : 3
{ A ,/ i->- A x.x+1} : 3

{ A ,/ i->- A x.x+1} : 1
{ A ,/ t-)- A x.x+1} : 1

{ A ,/ i—>■ A x.x+1} : 4
{ A ,/ i—̂ A x.x+1} : 4

{ A ,/ i—̂ A x.x+1} : 4

(evaluate +)

Constructor

Evaluating a variable tha t is already in whnf requires two reduction steps. As this is such

4.2. ABSTRACT COST SEMANTICS 44

a common operation we will combine the two steps required into a single step. This is a

notational convenience intended to reduce the length of (tedious) reduction sequences.

4.2 .2 C ost augm ented reduction rules

We now extend the reduction semantics with a notion of cost and cost attribution. The

intention is to precisely identify the costs that are attributed to each cost centre. We first

add a new language construct, see, that associates a cost centre, cc, with the evaluation

of an expression e:

cc G CostCentre
e G E xp ::= sec cc e

The dynamic semantics are then extended with each reduction rule reporting the costs

attributed to each cost centre. The cost attribution 0 is represented as a partial mapping

from cost centres to integers. The costs of two attributions can be combined using l+J which

determines the total cost attributed to each cost centre.

0 G Attribution = {cci n x, . . . , cc^ ^ n^}

6{cc) = rii if cc = cc,-
— 0 otherwise

(0 i W 0 2) (cc) = 0 i (cc) + 0 2 (cc)

In addition variable/expression pairs in the heap are annotated with the cost centre

associated with the declaration site of the expression.

r , A ,0 G Heap ::= {a?! ^ eu . . . , x n en}

The costs of evaluating these heap-bound expressions are attributed to the annotating

cost centre. This ensures tha t the evaluation of the inputs to an expression is attributed

to the declaration site, not the demanding expression (Section 4.1.3).

The judgement form is extended to cc, T : e ^ A : z, ccz tha t should be read: “the

term e in the context of the set of (annotated) bindings T and enclosing cost centre cc,

reduces to the value 2 together with the (modified) set of (annotated) bindings A and

result cost centre cc2, attributing costs 0.” The result cost centre, ccz, is the cost centre

4.2. ABSTRAC T COST SEMANTICS 45

tha t enclosed the expression that declared or constructed the result value z. The need to

return this cost centre will be explained later.

The initial top-level heap bindings, r,•„,•*, depend on the form of expression bound.

• Function values are annotated with the special cost centre "SUB". Since the costs

of top-level functions are subsumed by the reference site this cost centre is never

associated with an expression during evaluation.

• CAFs are annotated with the cost centre "CAF". The costs of evaluating all CAFs are

attributed to the "CAF" cost centre. This corresponds to the explicit see annotation

of CAFs described in Section 4.1.7.

p f C C i CCm 'j
1 i n i t — \ 3 T F t ^ 1 > • • • i % m F t 6 m j

where cc, = "SUB" if e* = = Xx.e
= "CAF" otherwise

Finally, we introduce the following constant costs which are intended to reflect the

costs of the reduction steps in a particular implementation:

Ra: the cost of returning a lambda abstraction

Rc: the cost of returning a constructor.

H: the cost of allocating a closure in the heap

V: the cost of evaluating a variable.

U: the cost of an update.

A: the cost of a curried application.

C: the overheads of a case expression.

P: the cost of a primitive application.

The cost attribution for each reduction rule is derived from the attribution reported by

any sub-reductions and the costs associated with the reduction rule itself.

The value of these abstract costs may vary greatly between different implementations.

However, the actual or relative size of these costs is not particularly im portant to the cost

attribution semantics since they are not reported to the user: instead, the implementation

measures and reports actual execution time rather than these abstract costs. W hat is

im portant is the cost centre to which each cost is attributed. The abstract costs above

enable us to specify and reason about different cost attribution models, the effect of

4.2. ABSTRAC T COST SEMANTICS 46

different program transformations on the attribution of costs, and the correctness of the

implementation.

Reduction rules

The augmented reduction rules are given in Figure 4.5. Apart from the addition of

cost centres and attribution information the rules are identical to the those given earlier in

Figure 4.4. The evaluation semantics have not been modified at all. The same expressions

are evaluated in the same order.

The only new reduction rule is the rule for see annotations. It evaluates the annotated

expression e in the context of the annotating cost centre ccSC€. The cost attribution

reported will reflect the fact that e is evaluated in the scope of cc3CC. There is no fixed

cost associated with an sec reduction as it is not part of normal execution. Though it is

not specified as part of the semantics, this reduction should also increment the see entry

count of ccS0C and the sub-sec count of cc.

The Lambda and Constructor rules return the enclosing cost centre with the value —

this is the cost centre which encloses the scope that declared/constructed the result. The

cost of returning the value is attributed to this cost centre.

The interesting rule in the cost semantics is the Application rule. It reduces the term

on the left, substitutes the argument for the A-variable, and reduces the body of the

A-abstraction, e'. The question is: Where should the cost of evaluating the body of the

X-abstraction be attributed:

cc: the cost centre enclosing the application, or

cc\\ the cost centre of the A-abstraction?

The (possible) use of cc\, the cost centre returned with the A-abstraction is the reason

for introducing a cost centre attached to the the result of a judgement. We explore this

decision in Sections 4.2.3 and 4.2.4.

The Variable rule encounters a heap binding with the form x e. It evaluates the

bound expression e, attributing the costs to the cost centre cce (the cost centre annotated

by the declaration site) unless this is a "SUB" cost centre (attached to top-level functions

in r,ult). In this case the costs are attributed to the demanding cost centre cc. This choice

is captured in the SUB selector. If the heap is updated the updated binding is annotated

4.2. ABSTRACT COST SEMANTICS 47

cciCC, T i e JJ-g A : z ,cc2
cc, T : see ccscc e 4j-(? A : z, ccz

cc, T : Xx.e ^{cch.rx} T : Xx.e,cc

cc, T : e Jj-01 A : Ay.e', ccx cc
ccx A : e'[x/y\ Ĵ 2 0 : z , c c z

cc.F : e x U.rTT- ! *■, n „ 0 : z ,ccz
{ C CX ^ A . } w 0 iW 0 2 ’

SU B(c ce , c c) , r : e A : z ,ccz
cc, {T, x?4 e} : x {A, WHNF(e , x ^ e, x ^4 z)} : z, ccz

w h e r e 9 r e s = { c c t-* -V } u { c c z i->-wHNF(e,o,u) } u e

WH N F(Xx.e, n , u) = n SU B (" S U B " , cc) = cc
W H N F (C xi ■ • • x n , n , u) = n SUB(cce ,cc) = cce
WHNF(e , n , u) - u

cc, {r, xi >4 e i , . . . , x n en} : e A : z, ccz
cc, T : l e t X!=eu . . . , xn=en in e ^{cc->n*H}w* A : z ,c c z

C C , r . C X j • • • X n J j-{ c c t-> -R c } ^

c c ,F :e A : Ck x x • • • xmk, ccc cc, A : ek[xi/ y j ' ^ l JJ-g2 0 : z , c c z
cc, r : case e of {C* t/i -> e,-}"=1 @ : cc*

c c , r : e i JJ-gj A i z ^ c C j c c , A : e 2 { l &2 0 : z 2 , c c 2

c c , T : e i © e2 JJ-{cc.->.p}iij01w02 ® : z i ® z2, cc

SCC

Lambda

Application

Variable

Let

Constructor

Case

Primitive

Figure 4.5: Cost Augmented Dynamic Semantic Rules

4.2. ABSTRACT COST SEMANTICS 48

with the result cost centre ccz . This ensures that subsequent references to x also return

the cost centre responsible for declaring or constructing the result. The reduction rule has

two explicit cost components:

V: the cost of demanding the value of the variable. This is attributed to the demanding

cost centre cc.

U: the cost of performing the update4. If the closure e was not in whnf it must be

updated with its result. The cost of the update is attributed to the result cost

centre ccz. No update cost is attributed if the closure was already in whnf as no

update is actually required. This is captured using the WHNF selector introduced

earlier. Updates are discussed further in Section 5.5.

The Let rule extends the heap with the new bindings, annotating each binding with

the enclosing cost centre cc. The costs of allocating the closures (n*H) are attributed to

cc and combined with the costs of reducing e.

The Case rule reduces the body and the appropriate alternative in the context of the

enclosing cost centre cc. The cost of the case is also attributed to cc. The Case and

Application rules are quite similar: the Application rule evaluates a function whose body

is then applied to the argument; while the Case rule selects an alternative tha t is “applied”

to the arguments of the constructor. However, the choice of cost centre th a t arose in the

Application rule does not appear in the Case rule. The reason for this can be seen if the

implicit “A-abstraction” and its “application” are made explicit:

case e of {Ct y lt • • •ym, "> (A ar • • -zmi.ei) yi • • •ym J’U 1

Observe that the implicit A-abstraction is declared in the same scope as it is applied. Thus

there is no choice of cost centre to be made.

Finally, the Primitive rule evaluates each argument in the context of the enclosing cost

centre cc and applies the primitive operator. The enclosing cost centre cc is attached to the

result — this is the cost centre which encloses the scope that computed and constructed

the result © z2. The cost of the primitive application, P, is attributed to cc.

4 The actual update costs depend on the return/update conventions employed by the actual implemen
tation for the particular result value returned. For example, x may be bound to a copy of the closure, or
updated with an indirection to a single, shared copy of the closure.

4.2. ABSTRACT COST SEMANTICS 49

Reduction sequences

The reduction sequences are extended to include the manipulation of cost centres. If

cc, T : e -JJ-0 A : z, ccz we write:

cc, {T } : e

a sub-proof

another sub-proof

{A} : z, ccz 6

For convenience, we will omit 6 if we are only interested in identifying the cost centre in

the context of a particular expression evaluated in the reduction sequence.

4 .2 .3 E valuation scoping

The cost semantics described in Section 4.2.2 left an im portant question to be answered

about the Application rule: Where should the cost of evaluating the body of the X-abstraction

be attributed?

The first profiling semantics we investigate attributes the cost of evaluating the body

of the A-abstraction to the cost centre enclosing the application site.

cc, T i e A : A y.e',ccx cc, A : e'[x/y] 0 : z , c c z
--- = ; -------------------------7.---pr-- Appevai

cc, r : e x 0 : z, ccz

We use the term evaluation scoping to describe this profiling semantics since it cor

responds quite closely to the underlying lazy evaluation mechanism (see Section 5.5.6).

Each cost centre is attributed with the costs of the actual evaluation of the results of all

the instances of the annotated expression. The amount of actual evaluation depends on

the amount of the result of an expression instance tha t is demanded by the surrounding

program. We term the final form of the result of an expression instance demanded by the

actual evaluation of the program the actual normal form (ANF).

The cost attribution of evaluation scoping can be rather counter-intuitive. Consider

the reduction sequence for the expression:

4.2. ABSTRACT COST SEMANTICS 50

see cciet l e t h=\x.eh in see ccapp h I

cc/et,{A} : l e t h=\x.eh in see ccapp h I
cc/et, {A, h \ x . e h} : see ccapp h I

ccapp, {A, h Xx.e^} • h I
ccapp, {A, h ch '̂ Xx.eh} : h
{A, h \ x . e h] : A ^ .e ^ / a ;] , cclet

ccapp) {A, h Xx.eh} : eh[l/x]

The function h is declared within the scope of cc/et, but the costs of evaluating the body

of h , are attributed to the cost centre ccapp that encloses its application site. The costs

attributed to the cost centre ccapp are dependent on the declaration of h which is not

within the scope of the cost centre. Modifying the definition of /i, which is outside the

scope of the see ccapp expression, directly affects the costs attributed to ccapp.

However, since the costs of evaluating the body of a function are attributed to the

application site we can distinguish between the costs of several applications of the same

function, which might be useful. For example, the costs of each application of h in the

expression

see cc/e(l e t h=Xx.eh in (sec ccappi h li , sec ccapP2 h l2)

are attributed to the distinct cost centres, ccappi and ccapP2 tha t enclose each application

site.

4 .2 .4 Lexical scoping

The alternative to evaluation scoping is to attribute the costs of the application and

evaluating of the body of the A-abstraction to the cost centre attached to the A-abstraction.

cc, T ie ^ A : A y.e',ccA ccA, A : e'\x/y] ^ 2 G : z , c c 2
P . , II * Appiex

We use the term lexical scoping5 to describe this profiling semantics because it has the

5This term was was taken from the UCL profiler terminology (Section 3.3.3). They use this notion of
lexical scope as the underlying principle in the development of their profiler. T hough we have adopted

4.2. ABSTRACT COST SEMANTICS 51

very appealing property that:

The cost of executing all the “code” lexically enclosed within an annotated

expression is attributed to the annotating cost centre.

The cost attribution of lexical scoping is more suitable for profiling because the costs

attributed to a cost centre are only dependent on the expression enclosed within the scope

of the cost centre. The example reduction sequence under lexical scoping is:

see cciet l e t h - \x . e h in sec ccapp h I

cciet, {zi} : l e t h=\x.eh in sec ccapp h I
cciet, {Zl, h Xx.eh] : sec ccapp h I

ccapp, {A, h Xx.eh] : h I
ccapp, {A, h c£f' Xx.eh] : h
{ A ,h c£f' Xx.eh] : Xxj . e ^ / x], cclet

cC[et, { A , h c£$ Xx.eh] : eh[l/x]

The cost of evaluating the body of h is attributed to the cost centre cc/et tha t encloses the

declaration of h. Modifying the definition of h, affects the costs attributed to the declaring

cost centre cc/et. The cost centre ccapp is only attributed with the cost of building and

subsequently entering the closure for h I.

Though this may seem a more intuitive semantics it has the disadvantage tha t the

costs of different application sites cannot be distinguished. In the example expression

see cciet l e t h=Xx.eh in (sec ccapPl h lly sec ccapp2 h If)

cciet is attributed with the costs of both the applications.

The reduction example above is for a A-abstraction declared in the scope of one cost

centre and applied in the scope of another. There is no difference between the profiling

schemes if the A-abstraction is declared and applied in the scope of the same cost centre

(since ccibt = ccapp) or if the A-abstraction is a top-level subsumed function. In this latter

case both schemes attribute the costs of evaluating the body of the A-abstraction to the

cost centre enclosing the application site (but see below).

their terminology this work was developed independently.

4.2. ABSTRACT COST SEMANTICS 52

Boxing top-level function arguments

The semantics, as currently specified, do not implement true lexical scoping. Section 4.1.4

requires the costs of applying subsumed functions to be attributed to their reference site.

Unfortunately the SUB selector in the Variable rule selects the demanding cost centre of the

application site and returns this with the A-abstraction (via the Lambda rule). This may

be different from the cost centre that enclosed the reference site if the top-level function

is passed as a higher-order argument. Consider the reduction sequence:

T = A, sum ^ Xxs.esum, app °ĈV X f . f I

ccrej , {T } : app sum
ccref , { T } : app
{ r j : Xfj.fi I, ccapp

ccapp, {r } : sum I
ccapp, {T} : sum
{T"} . Axsi .esumfxs^ Jxs], ccapp

ccapp, {T} . esum[l/xs]

The top-level function, su m , is referenced in the scope of ccrej, but the costs of evaluating

the body of sum are attributed to the cost centre enclosing the application site, ccapp.

The problem is that sum is substituted in the body of app, the function it is passed to,

without recording the cost centre of its reference site, ccrej.

The solution requires us to “box” any top-level functions that are passed as arguments

with the cost centre of the reference site. When this function is later applied the “boxing”

cost centre is returned and the evaluation of the body attributed to it. This is specified

with a simple static transformation that le t-b inds any top-level function names being

passed as arguments — written e* . The key rules in the transformation are:

(e x)& = le t y=x in (e#) y if a; a top-level function [y fresh]
= (e#)x otherwise

(C x i •••£„)# = le t y-Xi in ((C aq • • • zn)[y/z;])#
if some z, a top-level function \y fresh]

= C x \ ' " X 1x otherwise

The other cases simply apply the transformation to all sub-expressions. The reduction

sequence above now becomes:

4.3. LEXICAL VS. EVALUATION SCOPING 53

r = A, sum Axs.esum, app A/ . / I

ccrej , { r } : l e t y=sum in app y
f 7~i C C r e f 'iccref, {P, y h-» sum} : app y

f 7 1 c c re /ccref , {i , y »->- 5 t/mj : app
{r ,y°Z m sum} : Af 1.f1 /, ccapp

f H c ^ re / ^ *ccapp, {T, y i->- sum} : y I
f 71 C C r c fccapp, { r , y I-)- sum) : y

ccrej , {J1} : sum
{ r} : A x s ^ .e J z s j /z s] , ccre/

I ̂ \XS i .Csum\xS i J Xs)̂ } . \XS£. sum , CCrej

Ĉ ref i }P i V 1 ̂ ^XSj .€sum \xS i / XS~\̂ } . € sum\l / XS~\

The let-binding of the argument sum ensures tha t the value substituted in the body of

app refers to a heap binding annotated with the referring cost centre ccrej attached. This

is returned with the (renamed) binding of sum when y is applied.

Unfortunately the transformation has introduced some extra evaluation costs that

would not be incurred during normal execution. Though we can discount any fixed costs

introduced by the transformation (such as the heap allocation) there is some distortion of

the execution time. We can omit the transformation if we can determine at compile that

the actual application site will have the same cost centre as the reference site. However,

there is still a (small) price to pay for correct cost attribution.

This problem does not arise with evaluation scoping since the cost centre returned with

a function value is not attributed with the cost of evaluating the body of the function.

Evaluation scoping always attributes these costs to the application site.

4.3 Lexical vs. Evaluation Scoping

The two profiling schemes attribute different costs to an annotated source expression. This

difference can be summarised as follows:

Lexical scoping attributes costs to the scope enclosing the declaration site.

Evaluation scoping attributes costs to the scope enclosing the application

site.

4.3. LEXICAL VS. EVALUATION SCOPING 54

Cost attributed to cc
Source Expression Evaluation Scoping Lexical Scoping

a) see cc (Xx.e) y A\x.e A \x .e
b) (sec cc Xx.e) y 0 A\x.e
c) (Ax.sec cc e) y E e E e

d) sec cc sum I An 5um Asum
e) (sec cc sum) I 0 Asum

f) sec cc (val, Xx.e) F'O + Evai + 0 E() + E vai + Axx.e
Eexpr is the cost of .Evaluating expr to ANF.
Afn is the cost of Applying the function f n .

Figure 4.6: Lexical vs. Evaluation Cost Attribution

However, the practical implications of this distinction are not immediately obvious. This

section attem pts to provide some insight into this difference, comparing the two schemes

and summarising the relative merits. Our preference is for lexical scoping since its cost

attribution seems more suitable for profiling, and is easier to maintain across the compiler

transformations.

4.3.1 Som e exam ples

Figure 4.6 presents the costs attributed to the annotating cost centre, cc, for some example

expressions using the different profiling schemes. Examples (a), (b) and (c) in Figure 4.6

highlight the basic differences between the schemes.

(a) If a function is declared and applied within the scope of the same cost centre both

schemes attribute the cost of applying the function to tha t cost centre.

(b) The function Xx.e is declared within the scope of cc but applied outside th a t scope.

The cost of applying the function is only attributed to cc under lexical scoping.

Evaluation scoping attributes it to the scope of the particular application.

(c) Explicitly annotating the body of a function attributes the evaluation of the body to

the cost centre cc under both schemes, regardless of where the function is applied.

Examples (d) and (e) are equivalent to Examples (a) and (b) respectively. Since sum is a

top-level function the evaluation of sum is subsumed as if it was unfolded a t the reference

site (Section 4.1.4). There is no equivalent to Example (c) since annotating the body of

4.3. LEXICAL VS. EVALUATION SCOPING 55

the declaration of sum would capture the costs of all references to su m , not just those

arising from this reference.

Finally, example (f) shows the cost attribution of a data structure containing a func

tion. Both schemes attribute the cost of evaluating the data structure to ANF to cc,

but only lexical scoping attributes the cost of applying the function embedded within

the resulting data structure to the cost centre cc. Evaluation scoping attributes the cost

of applying the function to the scope of the application site. We discuss this further in

Section 4.4.2.

4.3 .2 Identifiable costs

The two profiling schemes enable the programmer to identify different costs. Evaluation

scoping provides a very fine breakdown of particular costs, while lexical scoping provides

a very useful aggregation of all the costs associated with executing the code in the scope

of the see annotation.

P a r t ic u la r app lica tio n s

Evaluation scoping can distinguish between the costs of different applications of a partic

ular function. In the example:

apph 1 1 1 2 = sec " le th " l e t h x = . . .
in (sec "h i" h 1 1 , sec "h2 " h 1 2)

evaluation scoping attributes the costs of each application of h to the cost centres enclosing

each application site.

In contrast, lexical scoping attributes the costs of both the applications of h to the

declaring cost centre " le th " . The costs of the different applications can only be dis

tinguished if different versions of the function h are declared with different cost centre

annotations or if h is declared at the top-level and treated as a function whose costs are

subsumed. These solutions require undesirable reformulation of the source program.

E v alu a tio n o f functions

Evaluation scoping can also distinguish between the cost of evaluating a function to whnf

and the cost incurred in applying the function. Consider our original example:

4.3. LEXICAL VS. EVALUATION SCOPING 56

mapg x 1 = see "mapg" (map (g x) 1)

If g is a top-level function that takes one argument, examines it and returns a specialised

function based on that value then evaluation scoping can distinguish the costs of special

ising the function from the cost of mapping it over the list.

mapg’ x 1 = sec "mapgx" (map (sec "gx" g x) 1)

If instead, g requires two arguments then "gx" only measures the small cost of building

the partial application.

Under lexical scoping we cannot distinguish the costs of evaluating a function from the

cost of applying it. The cost of specialising g x and all the applications of g x is attributed

to the cost centre "gx". The only way to distinguish the cost of applying the specialised

function would be to annotate the body of the specialised function at the declaration site

within g with a different cost centre. Unless the code for g is duplicated, this would cause

all applications of tha t specialised function to be attributed to tha t cost centre, not just

those arising from this reference to g.

T o ta l cost o f an exp ressio n

In contrast to the fine breakdown of costs identifiable by evaluation scoping, lexical scop

ing identifies the “total cost” associated with executing the code in the scope of an see

expression. If the programmer wants to identify this “total cost” they just have to an

notate the declaration without worrying about the application sites of any functions that

might be returned in the result. For example, consider the following declaration:

mapf x 1 = sec "mapf" map f 1

Now suppose the programmer wants to identify the cost of all the applications of the

top-level function f being passed to map. Under lexical scoping all the programmer has to

do is annotate the reference to f being passed to map:

mapf x 1 = see "mapf" map (sec "f" f) 1

This ensures that the cost of all the applications of f in map are attributed to the cost

centre "f".

4.3. LEXICAL VS. EVALUATION SCOPING 57

In contrast, the fine breakdown of costs provided by evaluation scoping, makes the task

of identifying the “total cost” more difficult. If the programmer wants to measure the cost

of applying a function the application site must be annotated. In the example above the

annotation see " f " f only measures the cost of evaluating the partial application of f to

no arguments. The cost of applying f is still attributed to the "mapf" cost centre. The

application site can only be annotated if a specialised version of map is created with the

application site annotated or a A-abstraction is introduced tha t exposes and annotates the

application of f in the function passed to map:

mapf x 1 = see "mapf" map (\y -> sec " f" f y) 1

Both of these solutions require undesirable reformulation of the source program. They are

also rather confusing to the programmer.

4 .3 .3 H igher order functions

The two schemes also differ in their treatm ent of higher order functional arguments.

• Lexical scoping attributes the cost of applying a functional argument to the scope

tha t declared it (or the scope which referenced it in the case of top-level subsumed

functions).

• Evaluation scoping attributes the cost of applying a functional argument to the

scope where the function is applied (as it does for all functions). This application

site might be far removed from the declaration site.

Consider the expression:

see "renaming" l e t lookup s t r = . . .
in rename lookup code

Evaluation scoping attributes the costs of looking up strings with the lookup function to

the application site deep within rename. Modifying the definition of lookup affects the

costs attributed to the cost centre of this application site, not the cost centre "renaming"

which encloses the declaration site.

Lexical scoping attributes all the lookup costs to the scope of the declaration site i.e.

the cost centre "renaming". Any modifications to the lookup function would be reflected

by changes in the costs attributed to "renaming".

4.3. LEXICAL VS. EVALUATION SCOPING 58

4 .3 .4 T ransform ation

Another im portant consideration is how easy it is to maintain the required attribution

of costs during the transformation phases of the compiler (Section 5.4). The fine break

down of costs provided by evaluation scoping makes the cost attribution more difficult

to maintain during transformation — more optimisations have to be curtailed (see Sec

tion 5.4.7). In contrast, the attribution semantics provided by lexical scoping are much

easier to maintain during transformation.

4 .3 .5 Im p lem en tation

The implementation of the two profiling schemes requires the cost centres to be manipu

lated in different ways (Section 5.5). This requires different code generator and runtime

system modifications (though there were a lot of modifications tha t were common to both

schemes). Both implementations pose specific problems tha t have to be overcome, but

neither pose any particularly nasty difficulties.

4 .3 .6 C onclusion

We believe tha t lexical profiling has a more appropriate cost attribution for profiling. Its

identification of “total cost” is a much more intuitive cost semantics since it corresponds

to our intuitions about the cost of executing the “code” of the expression. It is easier to

use and imposes fewer transformation restrictions. (But see Section 4.4.)

We have not found a significant need for the more detailed breakdown of costs provided

by evaluation scoping. In fact, this detailed breakdown tends to hinder the process of cost

centre annotation as the programmer has to be very careful that the annotations identify

the costs they actually intend to measure.

4.4. PROBLEMS WITH LEXICAL COST ATTRIBUTION 59

4.4 Problem s with Lexical Cost Attribution

Unfortunately lexical profiling still has its problems, that turn out to be quite significant

in practice.

The evaluation of an expression instance can be broken down into two components:

• The one-off evaluation to ANF, and

• The repeated application of any functions embedded in the result.

Both profiling schemes attribute the one-off evaluation to ANF to the enclosing cost centre.

However, the profiling schemes differ in their attribution of the costs associated with the

application of any functions embedded in the result. Evaluation scoping attributes these

costs to the cost centre of the application site, while lexical scoping continues to attribute

them to the declaring cost centre.

Problems with the lexical attribution of embedded functions are discussed below. A

hybrid solution tha t uses evaluation attribution at the particular places where it is deemed

more suitable is then proposed in Section 4.4.3.

4.4 .1 C A Fs

The automatic annotation of CAFs (Section 4.1.7) is simple and effective. However, under

lexica] scoping the costs of functions embedded in the result of a CAF are attributed to

the CAF cost centre. This turns out to be a very significant problem in practice. For

example, the profile presented in Figure 6.1 attributes 78% of the execution time to the

"CAFrunicl" cost centre (see Section 6.2.1).

Consider the alternative definitions of the function u n ic l used in the program c la u s i f y

(see Section 6.1):

u n ic l! form ulae = f i l t e r s e t (no t . ta u tc la u s e)
(map c lau se form ulae)

u n ic l2 form ulae = (f i l t e r s e t (not . ta u tc la u s e)
. map c lau se) form ulae

u n ic l3 = f i l t e r s e t (no t . ta u tc la u s e) . map c lau se

The first two definitions declare u n ic l as a subsumed function. All the costs of applying

4.4. PROBLEMS WITH LEXICAL COST ATTRIBUTION 60

u n ic l are subsumed by the reference site. The third definition u n ic l3 is a very simple

CAF. It is annotated with a CAF cost centre:

u n ic l3 = scccaf "CAF:unicl"
f i l t e r s e t (not . tau tc lau se) . map clause

Both profiling schemes attribute the costs of evaluating the compositions to the cost centre

"CAF:u n ic l" . But where will the costs of applying the resulting function be attributed?

The answer depends on the profiling scheme being used.

• Evaluation scoping attributes the application of u n ic l to the site of its full applica

tion i.e. the current cost centre at the site where u n ic l is applied.

• Under lexical scoping the costs of applying u n ic l are attributed to the cost cen

tre "CAF:unicl" because the code is referenced in the scope of the cost centre

"CAF:unicl".

The cost attribution provided by lexical scoping is undesirable since the attribution differs

significantly between the two, quite reasonable, definitions of unicl. Changing the defini

tion of u n ic l from u n ic l2 to u n ic l3 (a simple 77-reduction) would suddenly cause all the

costs associated with u n ic l to be attributed to "CAF:unicl", rather than just the one-off

costs of evaluating the composition application and updating the CAF. Moreover, this

may be done automatically by the compiler optimisations since u n ic l3 is more efficient

because it only evaluates the function composition once.

This problem is not a result of introducing CAF cost centres. Indeed, removing the

CAF cost centres only makes the problem worse since all the costs associated with the

CAF, including the application of any functions embedded in the result, would then be

attributed to the cost centre of the expression tha t happened to demand the value of the

CAF first.

The u n ic l example might seem a little contrived, but there are situations where some

significant one-off evaluation needs to be done before a partial application is returned. For

example, a function that looks up builtin names might be expressed as:

4.4. PROBLEMS WITH LEXICAL COST ATTRIBUTION 61

lookup_Builtin :: String -> I d e n t i f ie r
lookup_Builtin = l e t hash_tbl = mk_Hash builtin_names

in lookup_Hash hash_tbl

mk_Hash :: Hash a => [(a , b)] -> (HashTbl a b)
mk_Hash mapping = . . .

lookup_Hash :: Hash a => (HashTbl a b) -> a -> b
lookup_Hash tb l key = . . .

The one-off construction of the hash table should be attributed to a CAF cost centre, but

the repeated lookup costs should be subsumed by the application site.

4.4 .2 O verloading

Haskell has a systematic way of handling overloading through the use of type classes

(Wadler & Blott [1989]). Our experience with lexical scoping has identified a significant

problem with the attribution of method costs.

A type class is a set of types sharing some operations, called methods. A c la s s

declaration specifies what the common operations are. A type is declared to be in the

class with an in s ta n c e declaration. The instance declaration describes what the methods

in the class do for that particular type.

Figure 4.7 contains the declaration for the class Eq containing methods (==) and (/=) .

Instance declarations are given for the types Int and L ist a. Note tha t the L ist instance

requires an element type that is a member of the class Eq. The example also contains the

definition for the overloaded function elem that determines if a value is an element of a

list using the overloaded function (==). A non-overloaded version fnElem tha t explicitly

passes the equality function, is also given.

Dictionaries

The standard mechanism for implementing overloading has been to use method dictionar

ies (Hall et al. [1994]; Wadler & Blott [1989]), though various optimisations and alternative

schemes have been proposed (Augustsson [1993]; Jones [1992]). Each overloaded function

is given an extra argument tha t contains the methods for the particular type at which the

function is being applied. The dictionary is given as an argument to the method, which

4.4. PROBLEMS WITH LEXICAL COST ATTRIBUTION 62

c la s s Eq a where
(==), (/=) :: a -> a -> Bool
(/=) x y = i f x == y then False e l s e True

instance Eq Int where
(==) x y = eqlnt x y
(/=) x y = nelnt x y

instance (Eq a) => Eq [a] where
□ == □ = True
(x :xs) == (y:ys) = x == y && xs == ys
[] == ys = False
xs == [] = False

elem : : Eq a => a -> [a] -> Bool
elem v 1 = see "elem" case 1 of

[] -> False
x:xs -> (==) ̂ x |I elem v xs

fnElem :: (a -> a -> Bool) -> a -> [a] -> Bool
fnElem eq v 1 = see "fnElem" case 1 of

[] -> False
x:xs -> eq v x I I fnElem eq v xs

Figure 4.7: Example class, instance and use

4.4. PROBLEMS WITH LEXICAL COST ATTRIBUTION 63

(==) (m, _) = m
(\=) (_, n) = n
Eq.(==) dictEq x y = error "no =="
E q.(/=) dictEq x y = i f (==) dictEq x y then False e l s e True

Eq. I n t .(==) x y = eqlnt x y
E q .In t .(/=) x y = nelnt x y
Eq.Int = (E q .In t .(= =), E q .I n t .(/=))

E q .L is t .(==) dictEq [] [] = True
Eq.L ist.(==) dictEq (x:xs) (y:ys) =

(==) dictEq x y && Eq. L i s t .(==) dictEq xs ys
E q.L ist.(==) dictEq [] ys = False
E q.L ist.(==) dictEq xs [] = False

E q .L is t . (/=) dictEq xs ys =
i f E q .L is t . (==) dictEq xs ys then False e l s e True

Eq.List dictEq = (E q .L ist .(==) dictEq, E q .L is t . (/=) dictEq)

elem dictEq v 1 = see "elem" case 1 of
[] -> False
x:xs -> (==) dictEq v x I I elem dictEq v xs

fnElem eq v 1 = see "fnElem" case 1 of
[] -> False
x:xs -> eq v x I I fnElem eq v xs

Figure 4.8: Translated class, instance and use

4.4. PROBLEMS WITH LEXICAL COST ATTRIBUTION 64

extracts the particular method from the dictionary. This is then applied to the method

arguments as before.

Figure 4.8 gives a possible translation of the declarations in Figure 4.7. This defines:

(==) and (/=) as selector functions; default Eq methods Eq.(==) and E q .(/=)6; the

Eq.Int and Eq.List methods and dictionaries; and adds a dictionary argument to the

elem function. Note tha t the L ist methods and dictionary have an extra argument —

the Eq dictionary for the element type.

Cost attribution

Let us consider the attribution of the method and dictionary costs in the application:

elem 10 i n t l i s t

This is translated to pass the appropriate element dictionary:

elem Eq.Int 10 i n t l i s t

Since E q .In t is declared as a CAF (Figure 4.8), its declaration is annotated with a CAF

cost centre, and the one-off construction costs attributed to this cost centre. Unfortunately

lexical scoping also attributes the costs of applying the method functions to the CAF cost

centre as they are referenced within the CAF. However, the programmer expects the

application of the (==) method in the original source to be a top-level function with the

costs being subsumed by the reference site within elem and attributed to the "elem" cost

centre. The desired cost attribution is provided by evaluation scoping which attributes

the costs of applying the method to the actual application site within elem.

In contrast, consider an application of fnElem where the equality function, eqlnt, is

passed explicitly in the original source:

fnElem eqlnt 10 i n t l i s t

The costs of eqlnt are attributed to the reference site (the cost centre enclosing the

expression above) by lexical profiling or the application site (cost centre "fnElem") by

evaluation profiling. In this case the lexical attribution seems most appropriate since the

costs are attributed to the cost centre enclosing the reference site.

6 We disregard the restrictions Haskell places on identifier names.

4.4. PROBLEMS WITH LEXICAL COST ATTRIBUTION 65

Dictionary cost centres

The problem is worse when dictionaries cannot be declared statically. For example, search

ing for a singleton list in a list-of-lists might be defined as:

e le m .l l :: Eq a -> a -> [[a]] -> Bool
elem _ll v 11 = see "elem _llM elem [v] 11

This is translated to:

elem _ll dictEq v 11 = sec "elem_ll" elem (EqList dictEq) [v] 11

A dictionary for comparing lists of the element type is built and passed to the elem func

tion. The costs of constructing the dictionary is attributed to the cost centre "e lem _ll".

However, the programmer is not necessarily aware of any dictionary construction costs

attributed to the cost centre "e lem _ll" since these were introduced by the compiler’s

implementation of overloading. Lexical scoping also attributes the costs of applying the

List.Eq. (==) method to the "e lem _ll" cost centre since the reference to L ist.E q. (==)

is embedded in the dictionary.

We solve the attribution of dictionary construction costs by attributing all these costs

to special DICT cost centres. As for the CAF cost centres, a single "DICT" cost centre

for each module is the default, but a compiler option is provided tha t annotates each

dictionary construction with a cost centre derived from the name of the dictionary being

built. Dictionaries declared as CAFs are annotated with a DICT cost centre, rather than

a CAF cost centre. For example:

Eq.Int = sccdid "DICT:Eq.Int" (E q .In t .(= =), E q .I n t . (/=))

elem _ll dictEq e 11 = see "elem_ll"
elem (sccdict "DICT:Eq.List" Eq.List dictEq) [e] 11

The sccdict annotation is similar to the scccaj annotation (Section 4.1.7) — it does not

incrementing the sub-sec count of the enclosing cost centre.

With this dictionary annotation lexical scoping attributes all method application costs

to the dictionary cost centre(s) responsible for building the dictionaries. Evaluation scop

ing still attributes the costs of applying methods to the application site.

4.4. PROBLEMS WITH LEXICAL COST ATTRIBUTION 66

4 .4 .3 A hybrid so lu tion

The previous sections highlighted particular situations where evaluation scoping provided

a more suitable cost attribution than lexical scoping. We now propose a hybrid profil

ing scheme based on lexical scoping but which uses evaluation scoping in exactly these

circumstances. This provides us with the best of both worlds.

The idea is to attribute the costs of evaluating the body of any functions declared

(or referenced) within the scope of a CAF or DICT cost centre to the cost centre of the

application site rather than the declaring CAF or DICT cost centre. The costs of applying

functions declared in the scope of any other cost centre are still attributed to the declaring

cost centre (as required by lexical scoping).

The difference between lexical and evaluation scoping arose in the Application rule and

this is precisely where we introduce the hybid profiling scheme. The hybrid Application

rule is:

cc, T : e ^ A : Ay.e', ccx EVA L(ccA, cc), A : e'[x/y] 0 : z, ccz
r> II r\ ApPhybrid

C C , I . 6 X A } W 0]W 0 2 C ' 2

w h e r e EVAL(MCAF" , c c) = cc
EVAL("DICT",c c) = cc
EVAL(cc,\ , c c) = ccx

This has a runtime choice which chooses the cost centre to which the evaluation of the

body of the A-abstraction is attributed. This choice is based on the attribution properties

associated with the cost centre, cc*, returned with the A-abstraction — CAF and DICT

cost centres use evaluation scoping while all the other cost centres use lexical scoping.

This is captured by the e v a l selector.

Consider the evaluation of the method application (==) d ic tE q v x within the elem

function using the Apphybri<i rule above. The heap, T, will contain the following bindings:

r = A,
(==) i—>■ Ap.case p of (m, n) -> to,
dictEq "D4 T" (E q .In t .{==), E q .In t .(/=)),
Eq.Int.(==) h? Xy.Xz.e=

We assume tha t the binding of the top-level method E q .In t. (==) has been boxed and

updated with a binding annotated with the "DICT" cost centre. The hybrid reduction

sequence is:

4.5. CONCLUSION 67

cceiemi { r } : (==) dictEq v x
ccelem, { r } : (==) dictEq v

cCeiemi • () dictEq
CCelemi • ()
{ r } : \ p i .case p t of (m^n,) -> mi?cceiem

cceiem, {T } : case dictEq of (m ^rix) - >

cceiem, { r } : dictEq
{ T } : (Eq.Int.(==), Eq.Int. (/ =)) , "DICT"

ccelem, {r] : Eq.Int.(==)
{ r } : X y ^ X z i . e ^ y J y , z j z] , "DICT"

{r } : Xy1.Xz1.e=[y1/ y , z 1/z],"VlCT'
{r } : \ y 1. \ z 1.e=[y1/ y , z 1/z] 1"DlCT»

CCelem ■>{r} : XZ!.e=[v/y, zj /z]
{r } : Xzj[.e~[v/y, z j z] , cceleT

{ r } : Xz j . e ^ v / y , zj /z], ccelem

CCelem i {r } : e=[v/ y , x/ z]

The critical point in the reduction sequence occurs when the method extracted from the

dictionary is applied to its first argument. At this point we observe tha t the function

being applied was returned with a "DICT" cost centre and evaluate the function body in

the context of the application cost centre cce[em (observe the | 1 above).

Im plementation

Apart from the introduction of a simple runtime test, the implementation of this hybrid

profiling scheme poses no particular problems (see Sections 5.4.8 and 5.5.5).

4.5 Conclusion

This Chapter has developed an abstract semantics of cost attribution tha t is independent

of the underlying implementation (though the actual costs tha t are reported depend on the

underlying implementation). Initially we compared two possible semantics tha t satisfied

the principles of cost attribution:

4.5. CONCLUSION 68

L exical Scoping attributes the cost of evaluation to the cost centre enclosing the “code”

being executed i.e. the cost centre enclosing the declaration site.

E v a lu a tio n Scoping attributes the cost of evaluation to the scope enclosing the appli

cation site.

Since the practical implications of this distinction were not immediately obvious we have

implemented and compared the practical use of the two profiling semantics (Chapters 5

and 6). Our conclusion is that lexical scoping is more suitable for profiling. Its identifi

cation of “total cost” is a much more intuitive cost semantics since it corresponds to our

intuitions about the cost of executing the “code” of the expression. It is easier to use and

imposes fewer transformation restrictions.

However, practical experience also identified a significant problem with lexical profiling:

the costs of applying functions embedded in the result of a CAF are attributed to the CA F’s

cost centre, rather than being subsumed by the reference site. This is not a problem for

evaluation scoping because it attributes the costs of applying all functions, including those

embedded in CAF results, to the application site. In response to this, we have developed

a hybrid profiling scheme that is base on the lexical cost attribution, but uses evaluation

cost attribution for those functions declared inside a CAF or DICT cost centre. This

should significantly improve the practical usability of the profiler since this cost attribution

corresponds more closely to the programmer’s intuition.

It is worth noting tha t the formal cost semantics has proved invaluable in provid

ing insight, and enabling a precise formulation of the rather subtle distinction between

evaluation scoping and lexical scoping. The benefit of using the formal semantics was

clearly demonstrated by the almost trivial ease with which the hybrid profiling scheme

was subsequently developed.

C hapter 5

Im plem entation

The implementation of the profiler was a significant undertaking, requiring modifications

to both the compiler and runtime system.

• The source expressions to be profiled are identified early in the compilation process.

(Section 5.2)

• The attribution of the costs of these expressions is preserved by the transformations

performed during compilation. (Sections 5.3 and 5.4)

• Code is generated that identifies and maintains the current cost centre during exe

cution. (Section 5.5)

• The runtime system is extended to gather the profiling data. (Section 5.6)

The documentation for the various profiling related compiler options and runtime system

options is presented in Appendix B.

Before describing the implementation of the profiler we give a brief overview of the

structure of the Glasgow Haskell compiler to provide a framework for describing the mod

ifications required for profiling.

5.1 The Glasgow Haskell Compiler

The Glasgow Haskell compiler is a state-of-the-art optimising compiler. It has been devel

oped at the University of Glasgow as part of the GRASP project funded by the Science

and Engineering Research Council (SERC). The major characteristics of the compiler are:

69

5.1. THE GLASGOW HASKELL COMPILER 70

• The compiler is written almost entirely in Haskell. The only exception is tha t the

parser is written in Yacc and C. Its core, hsc, consists of a number of distinct passes

(see Figure 5.1), each responsible for a different aspect of the compilation. Within

the compiler monads are used extensively to carry around the “plumbing” and catch

any compilation errors (Wadler [1990]). The reader is referred to Peyton Jones et

al. [1993] for a description of these passes and an overview of the main compilation

techniques used.

• The code generated is based on the Spineless Tagless G-machine model of reduction

(Peyton Jones [1992]). The operational semantics of the STG-machine are presented

in Appendix A.2.

• The compiler generates C as its target code, providing a high level of portability.

However, the very significant cost of compiling the C code have prompted the devel

opment of simple native assembly code generators for common architectures.

• The runtime system is also written in C. It includes a highly configurable interface

between the storage manager and the compiler tha t comes with a number of differ

ent garbage collectors, including a generational collector (Sansom & Peyton Jones

[1993]).

• Other features include:

- Mixed language programming, with a C interface.

- Monolithic and incrementally-updateable arrays with 0(1) access time.

The overall organisation of the compiler is quite conventional. A driver program pro

cesses the compiler options and runs a sequence of Unix processors, namely: a “literate-

script” pre-processor, the Lex/Yacc parser, the core of the compiler (hsc), the C compiler

and Unix assembler, and the Unix linker (see Figure 5.1).

The profiler was developed as an integral part of the compiler. Since the profiled

expressions are identified in the original source, modifications were required throughout

the compiler because every pass had to be extended to deal with the see expression

construct. The most significant modifications were in the transformation passes and the

5.1. THE GLASGOW HASKELL COMPILER 71

Haskell source

Litterate processor

Interface filesHaskell source

Lex/Yacc parser

Prefix source
hsc: The core of the compiler

Reader
Core2Core

transformationsCoreSyntax

AbsSyntax

Core2Stg
Renamer

Stg2Stg
transformationsStgSyntaxAbsSyntax

Typechecker CodeGen

AbsSyntax Abstract C

Other code
generatorsRattenDesugarer

C compilerC compiler

Object codeObject code

Linker

Executable

Figure 5.1: S truc tu re of the Glasgow Haskell compiler

5.2. IDENTIFYING SOURCE EXPRESSIONS 72

code generator. In addition the runtime system was extended to gather and report the

profiling data during execution.

5.2 Identifying Source Expressions

In this section we describe how the programmer identifies the particular source expressions

of interest. The mechanisms provided to the programmer for identifying expressions are

independent of the underlying notion of see annotations (described in Chapter 4), since

the front end of the compiler can easily introduce the appropriate sec annotations.

The profiling tool currently provides two methods for identifying the expressions to be

associated with cost centres.

5.2 .1 A u to m a tic an n otation

A compiler option can be used to instruct the compiler to annotate the body of each top-

level function definition with a cost centre of the same name (see Appendix B .l). Recording

the module name with each cost centre enables the cost of the module as a whole to be

determined by summing the costs of the individual cost centres in the module.

5.2 .2 E xp lic it see an n otations

Alternatively the programmer can explicitly annotate expressions in their source code

using the sec expression construct directly. This enables the programmer to annotate any

expression of interest. If the program has a clear logical structure, such as the passes of a

compiler, a few see annotations at the top level can quickly reveal which “parts” of the

program should be focussed on.

5 .2 .3 E xpressions vs. Functions

We do not believe tha t the decision to allow the user to annotate expressions, rather

than named functions, is particularly significant — it only affects the profiling interface.

We chose to allow the programmer to annotate expressions directly because Haskell is

an expression oriented language. The ability to identify expressions reduces the need to

massage the code to identify expression of interest. For example, annotation of a particular

branch of a case is very straight forward with this expression oriented approach. Of course,

5.3. TRANSFORMATION AND OPTIMISATION 73

the expressions identified may themselves be functions. Indeed, the automatic annotation

compiler option identifies and annotates all top-level functions.

Within the compiler the expression-oriented view is more significant. It is im portant

th a t a cost centre can be associated with an expression, or some sub-expression, as it

is manipulated (see Section 5.3). It has proved very useful to make this identification

explicit, as this gives us a language in which we can express the manipulation of cost

centres within the compiler.

5 .2 .4 P ossib le ex ten sion s

There are many other possible methods of identifying expressions. Other possibilities we

have considered include:

• Source annotations tha t direct the compiler to annotate each binding in a l e t or

where construct with a cost centre of the name being bound.

• Compiler options that name the functions to be annotated or point to a file contain

ing the names to be annotated.

• Cost centres tha t can be activated/deactivated at runtime. A number of profiles

with different costs being identified could then be generated without requiring re

compilation.

None of these extensions is particularly difficult to implement and they may well improve

the usability of the profiling tool quite considerably. However, we have deferred any further

implementation until a real need for a particular extension is identified.

5.3 Transformation and Optimisation

Any optimising compiler performs many different program transformations during com

pilation. For the profiling results to be meaningful it is im portant tha t these program

transformations maintain the correct attribution of costs i.e. program transformations

that move evaluation from the scope of one cost centre to another must be avoided. For

tunately:

• Many transformations do not change the attribution of costs and can proceed as

normal.

5.3. TRANSFORMATION AND OPTIMISATION 74

• We can still perform arbitrary program transformations on the expression within an

see annotation and on expressions containing sec annotated sub-expressions. The

restrictions only affects transformations occurring across the cost centre boundaries.

• It is possible to relax the transformation restriction provided any sub-expressions

tha t are moved into the scope of a different cost centre are annotated with the cost

centre of their original scope. Thus, many transformations can still be performed

even when they do move evaluation across a cost centre boundary.

A key advantage of our approach is tha t program transformations are only hindered

by the actual see annotations introduced by the programmer (either by explicit source

annotation or implicitly with a compiler flag). Thus, the program being profiled may

differ from a fully optimised version, but only at the sec boundaries. The optimisation

of a large program containing a few careful sec annotations proceeds largely unhindered.

Unfortunately care must still be taken since one lost transformation might stall a whole

series of subsequent optimisations, possibly in the “inner loop” of the program.

5.3.1 C ost centre boundaries

The see expression construct identifies the cost centre boundaries. The very explicit

nature of the construct has a number of advantages:

• It necessarily requires us to examine the treatm ent of a cost centre boundary in

every pass in the compiler!

• It provides us with a language that can be used to express alternative versions

of transformations tha t would move evaluation from the scope of one cost centre

to another. These modified transformations must maintain the appropriate cost

attribution.

For example, consider the following transformation:

see cc ...Esub... ==> l e t v = E sub in sec cc ...v...

Though this transformation doesn’t change the meaning of the program, but it does change

the attribution of evaluation costs. The costs of evaluating E sub are no longer attributed

to cc since E sub has been lifted outside the sec annotation. However, it is still possible to

5.3. TRANSFORMATION AND OPTIMISATION 75

perform this transformation if the expression E sub is annotated with the cost centre of its

original scope:

see cc ...Eaub... = > ■ l e t v = s c c sub cc E sub in sec cc ...v...

This ensures tha t the costs of evaluating E sub are still attributed to the cost centre cc.

5.3 .2 A n n ota tin g sub-exp ression s

In general, a sub-expression can be moved into the scope of a different cost centre if it is

annotated with the cost centre enclosing its original scope. An s c c aub annotation is used

to annotate these moved sub-expressions. The effect of an s c c aub annotation is only to

attribute the evaluation costs to the appropriate cost centre. Evaluating an s c c aub does

not increment the count of the expression instances evaluated — this is only incremented

when the original see expression is entered (see Section 4.1.2). Since they do not keep

track of entry counts s c c sub annotations can be eliminated if there is no cost involved

in evaluating the expression they are annotating. They can also be eliminated if they

reside within the scope of an see with the same cost centre. This may arise if subsequent

transformations move the sub-expression back into the scope of the original cost centre.

There are two distinct changes of scope:

• A sub-expression tha t is lifted out of an sec expression. The sub-expression can

always be annotated with the cost centre of the see expression (see above).

• An expression tha t is unfolded or inlined inside an sec sub-expression:

l e t v = E sub in sec cc ...v... =$> sec cc . . . (s c c sub ecc E aub)...

Unfortunately the enclosing cost centre, ecc, may not always be known at compile

time. If the expression tha t we wish to unfold does not reside within an see annotated

expression the costs of evaluating the sub-expression are subsumed by the cost centre

which referenced the function. If this cannot be determined at compile time the unfolding

cannot be performed by the compiler (but see Section 5.4.4).

Though this may seem restrictive, there are some im portant special cases th a t can

always be unfolded. Since the costs of top-level functions are always subsumed by the

reference site (see Section 4.1.4) they can always be unfolded at the reference site. Thus,

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 76

the inlining of top-level function declarations is not hindered! In addition, simple bind

ings tha t do not involve any evaluation or heap allocation, such as variable renamings,

(unboxed) literal values, and zero-arity constructors, can always be inlined.

5.4 Transformation in the Glasgow Haskell compiler

The compiler first translates a Haskell program into a Core Language (Figure 5.2), re

moving all syntactic sugar. The Core Language is a variant of the second order lambda

calculus augmented with the constructs le t(r e c) , case and see. It is designed to aid

program transformation by making certain information explicit:

• All application arguments are atomic. This forces the creation of argument closures

to be made explicit using l e t bindings.

• The boxing and unboxing of values is made explicit. This enables many low-level

transformations usually relegated to the code generator to be expressed as Core-to-

Core transformations.

Most of the optimising program transformations within the compiler are performed on

the Core Language (Figure 5.2). At the heart of the compiler is a set of local transforma

tions tha t simplify core expressions. In addition to these there are some more specialised

transformations aimed at particular optimisations:

• Let bindings may be floated outward to increase sharing or inwards to avoid unnec

essary allocation.

• The worker/wrapper transformation arranges for strict function arguments to be

passed unboxed.

• Intermediate list data structures are eliminated using foldr/build deforestation.

As already noted the explicit sec construct requires us to add code to deal with an

see annotation in every pass within the compiler. This makes it quite difficult to overlook

the introduction of sec annotations and perform “bad” transformations which modify the

attribution of costs. The following sections discuss the transformations focussing on the

preservation of the cost attribution for lexical profiling. The preservation of evaluation

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 77

Program

Bindings

Expression

Alternatives

Algebraic alt
Primitive alt
Default alt

Atom

prog —> binds

binds —»• bind1; ; bindn>i
bind —y var - expr

expr —>• l e t bind in expr
| l e tr e c binds in expr
| \ vari .. .varn>i -> expr
| expr atom
| A tyvar -> expr
| expr ty
| case expr of alts
| constr atomi .. .atomn>0
| prim a to m i .. .atomn>o
| see cc expr
| literal#
| var

alts —̂ aalti j .. . j aaltn> o [d e f]
| paltx; .. . ; paltn>0; [def]

aalt —> constr var i . . . varn>0 -> expr
palt -» literal# -> expr
d e f —> var -> expr

atom —>• literal# I var

Local definition
Local recursion
Lambda abstraction
Application
Type abstraction
Type application
Case expression
Saturated constructor
Saturated built-in op
Set cost centre
Unboxed object

Algebraic alts
Primitive alts

Atomicarguments

Figure 5.2: Syntax of the Core language

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 78

profiling cost attribution and our hybrid cost attribution are considered separately in

Sections 5.4.7 and 5.4.8 respectively.

5.4.1 Local transform ations

The “simplifier” consists of a set of very simple Core-to-Core transformations (see Fig

ure 5.3). It proceeds in two phases:

• The program is analysed to determine the way each named value is used. This

includes both occurrence counts and basic strictness information. This information

is used to ensure tha t the constraints on particular transformations are satisfied and

to identify the let-bindings to be inlined. Bindings are normally inlined if they

occur once or they are bound to a variable, literal, or zero-arity constructor. A

binding that does not occur at all is removed.

More aggressive unfolding heuristics may be used when unfolding lambda abstrac

tions at the expense of possible code duplication (Santos & Peyton Jones [1992]).

In particular, top-level function definitions may be inlined if it is expected tha t this

will lead to further optimisation.

• Based on this information the program is then simplified, using the set of transfor

mations in Figure 5.3.

Since one transformation pass may expose further transformations, this process is iterated

until no more transformations are applicable or a user-specifiable maximum number of

iterations (default 4) have been performed.

Transformation with see

The transformation restriction states that: evaluation must not be moved from the scope

of one cost centre to another. Many of the local transformations can be applied without

modification as their effect is limited to the transformation of local language constructs

and they do not modify the sub-expressions within. There are two situations where cost

centres and sec annotations affect these local transformations:

• Unfolding and case elimination perform a substitution on the entire expression. This

may move evaluation into the scope of another see annotation. /3-reduction also

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 79

Name Before After

Unfolding or Inlining1 l e t v = E v in E E [Ev/v]
Case Elim ination2 c a se E v o f v -> E E [Ev /v]
/3-reduction (Av .E) x E [x / v]

Let to Unboxing Case3 l e t v = E v in E
c a se E v o f

C VI . . . Vn -> l e t V = C VI . . . Vn
in E

Let to Case4 l e t v = E v in E ca se E v o f v -> E

Constructor Reuse I
l e t v = C t>i . . . vn
in . . . C vi . . , v n . . .

l e t V = C Vi . . . v n
in . . . v . . .

Constructor Reuse II
c a se v o f

C V\ . . . v n -> . . . C V\ .. , v n

c a se v o f

C Vl . . . Vn ~> ■ ■ ■ V . . .

Case of known constructor
c a se Ci vi .. . v n o f

Ci Vn . . . Vin ~ ̂ Ei
E, [v i /v i l . . . Vin/Vn]

Let Floating from Let
l e t v = l e t w = E w

in E v
in E

l e t w - E w
in l e t v = E v

in E
Let Floating from Case ca se (l e t v = Ev in E) o f . . . l e t v = E v in c a se £ o f . . .
Let Floating from App (l e t v = E v in E) x l e t v = E v in E x

Case Floating from Let5

l e t v = c a se E c o f
al t i -> E\

oltn ̂ En
in E

c a se Ec o f
alt\ -> l e t v - Ei in E

al t n ~> l e t v = E n in E

Case Floating from Case
(Case of Case)

/ ca se Ec o f \
(lit r] ̂ Ejc 1 cca se CJ of

y dltcm ~~̂ Ecrn J
alt \ -> Ei

Clltn ̂ En

c a se E c o f
a l t ci -> c a se E ci o f

alt i - > Ei

oltn ̂ En

oltcm -> ca se E Cm o f
alt i Ei

oltn ̂ En

Case Floating from App

(c a se E c o f ̂
alt i -> Ei

\ oltn -> En)

V

ca se Ec of
a l t i - > Ei v

a l tn ~> E n v

1 See Section 5.4.1.
2v used strictly in E and either v occurs only once in E or E v is a constant or variable.
3v used strictly in E and has a type with a single constructor, C.
% used strictly in E.
5v used strictly in E or E c is a “cheap” primitive operation that cannot fail. If v is recursive then v must
not occur in E c-

Figure 5.3: Local Transformations

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 80

performs a substitution on the resulting expression but it is only substituting one

variable for another which does not change the attribution of costs.

• The applicability of transformations that match patterns consisting of more than

one language construct may be hindered by an intervening see construct.

S u b s titu tio n in sub -ex p ressio n s

The unfolding and case elimination transformations perform a substitution on the result

expression.

l e t v = E v in E ==> E [Ev/v\

case E v of v -> E ==>• E [Ev/v\

If the expression being substituted E v is not a simple variable, literal, or zero-arity con

structor and the variable v occurs in the scope of a different cost centre, Ev must be

annotated with the enclosing cost centre of the l e t or case if it is to be substituted. If

the enclosing cost centre is not known at compile time substitution cannot proceed and

the transformation must not be applied.

This restriction is enforced by extending the simplifier’s analysis phase to determine

which bindings can be safely substituted before performing the transformation. The oc

currence count information for each binding is split into two counts:

• this-scc: occurrences within the scope of the enclosing cost centre and

• sub-sec: occurrences in the scope of sec annotated sub-expressions.

This information is then used to determine when the substitution is safe and the trans

formation can be applied. If the variable occurs in the scope of a sub-sec expression the

substituted expression E v is annotated with the enclosing cost centre ecc. If the enclosing

cost centre is not known the substitution cannot be performed. This is summarised in

Figure 5.4.

In te rv e n in g secs

If an sec annotation interferes with the pattern of constructs required by a transformation

the transformation is not applied since the constructs don’t match. This is im portant as

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 81

Occurrence Counts Enclosing Substitution
total this-scc sub-scc Cost Centre

0 0 0 E
1 1 0 E [EJv]
1 0 1 Known E [scc*ui> ecc E v/v]
1 0 1 Unknown cancelled

>1 >1 0 n.a.1
>1 >1 Known n.a.2
>1 >1 Unknown n.a.3

1 Lambda abstractions may still be inlined.
2More aggressive unfoldings require the expression substituted

to be annotated with the enclosing cost centre.
3More aggressive unfoldings have to be cancelled.

Figure 5.4: Substituting with Cost Centres

it prevents “bad” transformations being performed. For example, in the expression

case (see cc l e t v = E v in E) of alts

the let-floating-from-case transformation is prevented by the presence of the sec annota

tion.

If we still want the local transformation to be performed, we have to introduce an

additional transformation rule that matches the sec construct. In introducing this rule

we are forced to consider the implications of the sec and the required attribution of costs

in the resulting expression. An example sec transformation is discussed in Section 5.4.3.

5.4.2 Effect of see on local transform ation

The optimisations tha t are curtailed depend on the placement of cost centres. Fig

ure 5.5 compares the number of local transformations performed when compiling c la u s i fy

(described in Section 6.1) with different sec annotations. The first column reports the

number of transformations with no sec annotations. This is exactly the same as the num

ber of transformation performed during normal, unprofiled compilation. The Explicit see

column reports the number of transformations performed when five explicit sec annota

tions are added to the source (see Section 6.1) and the Automatic sec column reports

the number of transformations performed when all top-level declarations are annotated.

Examination of Figure 5.5 reveals that:

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 82

No see Explicit sec Automatic sec
Transformation No. No. Change No. Change

Unfolding 424 408 -1 6 391 -3 3
Unused Binding 25 25 28 +3
Let to Case 0 0 0
Constructor Reuse 4 4 4
Case of Known Constr 16 16 14 - 2
Let Float from Let 119 59 -6 0 29 -9 0
Let Float from Case 12 12 12
Let Float from App 142 85 -5 7 64 -7 8
Case Float from Let 0 0 0
Case Float from Case 18 18 14 - 4
Case Float from App 0 0 0

Execution Time (secs) 4.02 4.04 +0% 4.44 +10%
These figures are for ghc Version 0.16.

Figure 5.5: Effect of see Annotations on Transformation of c l a u s i f y

• Only 4% of the unfoldings are curtailed when the explicit sec annotations are in

troduced. Even with all top-level declarations annotated this figure only rises to

8%.

• The presence of sec annotations hinders a large number of l e t floating transforma

tions. A solution to this problem is discussed in Section 5.4.3.

• A few case transformations are curtailed when all top-level declarations are anno

tated.

The final row in Figure 5.5 shows the profiled execution time. The increase in execution

time with automatic annotation is due to the considerable bookkeeping required during

the profiled execution rather than the curtailed optimisations (see Section 6.2.2).

5.4 .3 Let floating

Figure 5.5 revealed tha t a significant number of local let-floating transformations were

curtailed when the see annotations were introduced. In addition to the local l e t floating

transformations, there are also some global l e t floating transformations (Peyton Jones,

Santos & Partain [1994]). These come in two flavours:

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 83

F lo a tin g o u tw ard s : Floating let-bindings out of A-abstractions to improve sharing.

This is similar to the full laziness transformation (Hughes [1983]; Peyton Jones &

Lester [1990]).

F lo a tin g inw ards: Floating let-bindings inwards to avoid allocating the binding unnec

essarily.

To enable all these transformations to proceed without being hindered by see annotations

we introduce transformations tha t annotate the right-hand-side of a le t-b inding with an

sccsub annoation when it is floated past an sec annotation:

sec cc l e t v = Ev in E ==>• l e t v = (sccsub cc Ev) in (sec cc E)

l e t v = E v in (sec cc E) = > sec cc l e t v = (sccsub ecc Ev) in E

The second transformation, which floats a let-binding into an sec annotation, can only

be performed if the enclosing cost centre, ecc, is known.

These let-floating see transformations enable the other let-floating transformations

to proceed unhindered. For example, the hindered let-floating-from-case transformation

example given in Section 5.4.1 can now proceed as follows:

case (sec cc l e t v = E v in E) of alts

=$■ let-floating-from-scc

case (l e t v = sccsub cc Ev in sec cc E) of alts

= > let-floating-from-case

l e t v = sec sub cc E v in case (see cc E) of alts

Though we annotate the body of the binding with an sccsub annotation, the alloca

tion of the let-binding is moved into the scope of a different cost centre. This violates

the principle of preserving the cost attribution. However, we believe tha t the benefit to

program transformation is worth this movement in execution costs. We still attach the

original cost centre to the closure, rather than the current cost centre, when the closure is

allocated, and the space allocated is still attributed to the original cost centre. It is only

the small amount of execution time required to allocate and initialise the closure tha t is

attributed to the current cost centre.

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 84

F lo a tin g co n s tan t exp ressions (C A F s)

A constant expressions which is floated to the top-level is turned into a CAF. If it is

floated out of an see annotated declaration the transformations above ensures th a t it is

annotated with its original cost centre. However, if it is floated from a subsumed scope,

no sccsub annotation is attached. Instead the one-off evaluation costs are attributed to a

CAF cost centre (Section 4.1.7).

Unfortunately the names of the cost centres of these introduced CAFs may be a source

of confusion for the programmer. To alleviate this problem we plan to improve the naming

of the bindings introduced by the compiler, basing them on the name of the enclosing

declaration. This will result in the introduced CAF cost centres being given a more

meaningful name.

5.4 .4 E nclosing cost centres

The main obstacle to the specific see transformations is not knowing the enclosing cost

centre at compile time. This situation occurs in the scope of a top-level subsumed function

when no explicit sec annotation encloses the expression being transformed. This is not a

problem if the entire function body is annotated (as is the case with automatic annotation)

since the enclosing cost centre is known. However, with explicit annotation there may be

situations where an see annotation occurs in a scope where the enclosing cost centre is

not known.

One possible solution is to record the enclosing cost centre when the function is en

tered. Subsequent transformations can then annotate a sub-expressions with this recorded

cost centre. This is easily expressed at the source level by allowing cost centres to be ma

nipulated within the language. A get_ccc primitive is used to record the current cost

centre enclosing a function when it is entered.

f x = body

==>■ record enclosing cost centre

f x = l e t ecc = get_ccc
in body

If required, subsequent transformations can now annotate a sub-expression with the enclos

ing cost centre ecc: sccsub ecc esub. The problem with this approach is tha t the execution

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 85

may be distorted since ecc is now a free variable of any expression in which it is used and

must be saved in any closures. Though the extra space allocation can be discounted in the

profiling data reported, the execution time would be distorted. However, this may be a

price worth paying if it enables additional program transformations to proceed unhindered.

5.4 .5 W orker/W rapper unboxing

The worker/wrapper transformation was developed to use strictness information to reduce

the amount of boxing (Peyton Jones & Launchbury [1991]). The basic idea is to split each

function definition into two pieces. The wrapper which takes normal boxed arguments,

evaluates any strict arguments that have a single constructor, and passes the components

to the worker. The worker takes the unboxed arguments and evaluates the body of the

function, which has been optimised to use the unboxed values.

If the result has a single constructor of arity one it may also be returned in an unboxed

form, and boxed by the wrapper. However, this is not implemented since the increased

cost to our STG-machine implementation is negligible — the STG-machine returns these

apparently boxed values in a register (Peyton Jones [1992]).

Consider the standard definition of factorial, with the boxing made explicit:

fac n = case n of
Int n# -> case n# of

0# -> Int 1#
n#’ -> n * fac (n -(In t 1#))

Unboxed values are identified by the use of a trailing #. Boxed values are constructed using

normal data constructors applied to unboxed values. For example, the boxed integer 1 is

expressed as Int 1#.

The worker/wrapper transformation observes tha t fac is strict in n and splits this

definition into:

fac n = case n of Int n# -> fac# n#

fac# n# = l e t n = Int n#
in
. . . o r i g i n a l body of f a c . . .

The subsequent transformation of the worker, which includes the unfolding of the wrappers

of - , * and the recursive call to fac, gives:

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 86

fac# n# = case n# of
0# -> Int 1#
n#’ -> case (n# -# 1#) of

nl# -> case (fac# nl#) of
Int m# -> case (n# *# m#) of

r# -> Int r#

The transformations have removed the boxing of the arguments to fac, - and *. The

result of fac# is still a boxed value, but the STG-machine returns this in a register —

never constructing it in the heap.

Transformation of see annotated definitions

How does the introduction of cost centre annotations affect this optimisation? Let us

consider a definition of fac with the entire body annotated with a cost centre.

fac n = see "fac" case n of
Int n# -> case n# of

0# -> Int 1#
n#’ -> n * fac (n -(In t 1#))

The splitting process is modified to identify the see annotation of the body and annotate

the wrapper with the see. The worker is not annotated with the see — its cost is

subsumed by the see annotation in the "Tapper.

fac n = see "fac"
case n of Int n# -> fac# n#

fac# n# = l e t n = Int n#
in
case n of
Int n# -> case n# of

0# -> Int 1#
n#’ -> n * fac (n -(In t 1#))

The subsequent optimisation of the worker includes the unfolding of the recursive call

to the wrapper which contains the see "fac" annotation. This see is retained in the

optimised version of the worker. It ensures that the entry count is incremented on each

recursive call to fac#, as it would have been in the original definition of fac.

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 87

fac# n# = case n# of
0# -> Int 1#
n#’ -> case n# -# 1# of

nl# -> case (see "fac" fac# nl#) of
Int m# -> case (n# *# m#) of

r# -> Int r#

The presence of the see annotation has not hindered the unboxing.

Unfortunately an see annotation within the body of fac may still hinder the opti

misation of the worker as some of the local transformations may not be possible (see

Section 5.4.1). For example, annotating the subtraction in the body of fac:

fac n = case n of
Int n# -> case n# of

0# -> Int 1#
n#’ -> n * fac (see "fac-" (n -(In t 1#)))

results in the optimised worker:

fac# n# = case n# of
0# -> Int 1#
n#’ -> case (see "fac-" case n# -# 1# of

r l# -> Int r l#)
Int nl# -> case fac# nl# of

Int m# -> case n# *# m# of
r# -> Int r#)

The intervening see annotation has prevented the case-of-case transformation being per

formed. In annotating the sub-expression (n -(In t 1#)) with a cost centre we are asking

the profiler to measure the cost of an expression tha t produces a boxed integer. It is

therefore, not entirely surprising that we may then be forced to produce the integer!

5.4 .6 F o ld r /B u ild deforestation

The foldr/build transformation was developed to remove intermediate list structures (Gill,

Launchbury & Peyton Jones [1993]). The technique introduces a uniform way of con

structing and consuming lists, abstracting the use of cons and nil. A simple algebraic

transformation is then used to remove the intermediate lists.

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 88

Consuming Lists

A function tha t consumes a list in a uniform fashion can be expressed by replacing the

conses in the list with a given function ©, and replacing the nil a t the end of the list by a

given value z. This operation is encapsulated by the higher-order function fo ld r , which

can be informally defined like this:

f o ld r (©) z [x i ,x2}.. . , a r n] = xi © (x2 © (• • • (®„ 0 z)))

The Haskell implementation of f o ld r is:

f o ld r k z [] = z
f o ld r k z (x:xs) = k x (fo ld r f z xs)

Many list-consuming functions can be expressed using foldr. For example:

sum xs = f o ld r (+) 0 xs
map f xs = f o ld r (\ a b -> f a : b) [] xs

Producing Lists

List-producing functions are similarly abstracted with respect to the cons and nil used to

construct the list. For example, abstracting the above definition of map with respect to

the : and [] used to produce the resulting list we get:

map f xs = b u ild (\ c n -> f o ld r (\ a b -> c (f a) b) n xs)

The b u ild function is used in the abstracted definition to supply the actual : and []

to the abstracted function.

b u ild g = g (:) []

Foldr/Build rule

Having abstracted the conses and nils we can obtain the effect of a f o ld r consuming a

list tha t is produced by a b u ild by applying the abstracted function in the b u ild directly

to the cons and nil supplied to the fo ld r .

f o ld r k z (b u ild g) ==>• g k z

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 89

This is the foldr/build transformation (modulo a type restriction tha t ensures tha t the

lists really are abstracted correctly (Gill, Launchbury & Peyton Jones [1993])). Consider

the application of this transformation to a simple pipeline:

map f (map g 1)

==>■ unfolding map

b u ild (\ c l n l -> f o ld r (\ a l b l -> c l (f a l) b l) n l (b u ild
(\ c2 n2 -> fo ld r (\ a2 b2 -> c2 (g a2) b2) n2 1)))

= > foldr/build

build (\ c l n l -> (__c2_n2 -> fo ld r (\ a2 b2 -> c2 (g a2) b2) n2 1)
(\ a l bl -> c l (f a l) b l) n l)

=$> /3-reduction

build (\ c l n l -> fo ld r (\ a2 b2 -> (\ a l bl -> c l (f a l) b l)
(g_a2) b2) n l 1)

= > /3-reduction

build (\ c l n l -> fo ld r (\ a2 b2 -> c l (f (g a2)) b2) nl 1)

The result is the unfolding of map (f .g) 1 — the intermediate list has been eliminated!

Transforming see annotated expressions

We now consider how the introduction of cost centres affects this transformation process.

We introduce a second rule tha t copes with an intervening see annotation around the

build.

f o ld r k z (see cc b u ild g) => (see cc g) k z

This rule annotates g , the part of the result extracted from within the see expression,

with the cost centre. The resulting list is attributed to the enclosing cost centre since it is

built by the k and 2 passed to g. The list built by the cost centre cc has been eliminated.

Consider the transformation of a simple pipeline with sec annotations:

sec "mf" map f (sec "mg" map g 1)

= > unfolding map

sec "mf" b u ild
(\ c l n l -> f o ld r (\ a l b l -> c l (f a l) b l) n l (sec "mg" b u ild

(\ c2 n2 -> f o ld r (\ a2 b2 -> c2 (g a2) b2) n2]JTT

5.4. TRANSFORMATION IN THE GLASGOW HASKELL COMPILER 90

= > foldr/build with see

see "mf" b u ild
(\ c l n l -> (see "mg"

(_c2_n2 -> fo ld r (\ a2 b2 -> c2 (g a2) b2) n2 1))
(\ a l b l -> c l (f a l) b l) n l)

At this stage we would like to perform a /3-reduction. Unfortunately this will unfold the

function (\ a l b l -> c l (f a l) b l) within the inner see. We can only proceed if the

enclosing cost centre is known.

=>• /3-reduction with annotation

sec "mf" b u ild
(\ c l n l -> (sec "mg"

f o ld r (\ a2 b2 -> (scc iUb "mf"
(\ a l b l -> c l (f a l) b l))

(g_a2) b2) n l 1))

==>• /3-reduction with annotation

sec "mf" b u ild
(\ c l n l -> (sec "mg"

f o ld r (\ a2 b2 -> (sccsub "mf"
c l (f (sccsub "mg" g a 2)) b2))

n l 1))

The resulting expression is the same but the cost centre annotations are somewhat mys

tifying. Let us consider what costs are now attributed where:

• "mg" is attributed with the mapped function g. It is also attributed with the costs

of consuming 1 — the application of f o ld r to 1.

• "mf" is attributed with the function f and the construction of the new list — the

cons and nil embedded within the outer b u ild .

• If the example is extended with a third pipeline element, the middle element incurs

no list consumption or list production costs — both intermediate lists are eliminated.

This attribution of costs seems quite appropriate.

If the enclosing cost centre, "mf", was not known at compile time the /3-reductions

above would not be possible since the unfolded expression could not be annotated with

the enclosing cost centre. Though this would reduce the opportunities for further opti

misation, the intermediate list is still eliminated since the foldr/build transformation has

been applied.

5.5. PROFILED EXECUTION 91

5 .4 .7 T ransform ation o f evaluation scop ing

So far we have been looking at program transformation tha t preserves lexical cost a ttri

bution. We now turn our attention to the differences encountered when preserving the

evaluation and hybrid cost attributions.

The preservation of evaluation cost attribution places some additional restrictions on

program transformation. Since evaluation scoping attributes the costs of a applying a

A-abstraction to the scope of the application site, we have to ensure tha t the cost centre

enclosing the application site is preserved. For example, the foldr/build see transformation

f o ld r k z (sec cc b u ild g) =$> (sec cc g) k z

is not possible because the application site of k is been moved from the body of fo ld r , in

the scope of the enclosing cost centre, to the body of g in the scope of cc.

As our preference is for lexical profiling we do not explore this issue further.

5.4 .8 Transform ation o f hybrid profiling

Preservation of hybrid cost attribution requires us to treat seecaj and sccdict boundaries

as evaluation scoping sec boundaries. All other sec boundaries are treated as for lexical

scoping.

In practice this causes us no problems, since we only introduce the seecâ and sccdict

annotations after all the compiler optimisations have been performed. The restrictions

during optimisation are identical to those described for lexical profiling.

5.5 Profiled Execution

Having optimised the program, being sure to maintain the appropriate cost attribution,

we then have to generate code to execute the program. When profiling we must arrange

for the profiled execution events, such as a timer interrupt or heap allocation, to be

attributed to the appropriate cost centre. This task appears particularly difficult in a lazy

implementation since the execution of a particular expression may be interleaved with the

execution of other expressions (Section 3.2.4).

Fortunately the abstract cost semantics of Section 5.5.2 suggest an implementation.

5.5. PROFILED EXECUTION 92

This implementation has two major components:

• The cost centre in the context of the expression currently being evaluated is stored

in a special current cost centre register.1 This register is also used to return the

result cost centre, ccz, with the result of an expression. As costs are incurred they

are attributed to the current cost centre.

• Every heap-allocated closure has an extra field tha t identifies the cost centre respon

sible for allocating it — the allocating cost centre. The current cost centre is stored

in each closure when it is allocated.

These two ideas are common to the implementation of all the profiling schemes. The

differences between the implementations are in the way the cost centres are manipulated

during execution. Namely:

• When the current cost centre is loaded, and

• When the current cost centre is saved and restored.

The actual value of the current cost centre at a particular point during the execution will

differ if the different semantics require the costs of the expression currently being evaluated

to be attributed to different cost centres.

Unfortunately there is a large gap between the abstract cost semantics of Section 4.2

and any implementation based on graph reduction. This is because the abstract cost

semantics uses the eval-apply model of reduction while graph reduction uses a push-enter

model of reduction (Peyton Jones [1992, Section 3.2]). The difference between the two

models of reduction is in the treatm ent of function application. The eval-apply model

evaluates the A-abstraction being applied and then evaluates the body. In contrast, the

push-enter model pushes the argument being applied on an argument stack and tail-calls

(or enters) the function expression. When the evaluation of the function is complete

the argument is retrieved from the stack and the body evaluated without returning the

A-abstraction.

^ u r current cost centre is very similar to the current funct ion used in the New Jersey SML profiler
(Appel, Duba & MacQueen [1033]). Their work was m otivated by the need to keep track of interleaved
execution arising from transforming optimisations. Though this is also an issue for us: we arrived at our
scheme because we can’t avoid the interleaving arising from lazy evaluation.

5.5. PROFILED EXECUTION 93

L ex ica l
S co p in g

(5.5.3)

P u s h -e n te r
S em an tics
. (5.5.1) ,

E v alu a tio n
S co p in g

(5.5.4)

H y b rid \
S em an tics j

(5.5.5)

S T G -m a c h in e
Im p le m en ta tio n

(5.5.6, Appendix A)

L ex ica l ̂ E v a lu a tio n \ / A lte rn a tiv e \ ' H y brid
Im pl j (Im p l 1 E val Im p l J [l m Pl
(A-4> A (A.6.5) (A.5) . (A-6>

Figure 5.6: Development of push-enter semantics and STG implementation

Rather than trying to describe our implementation directly in terms of the eval-apply

semantics we introduce an abstract push-enter semantics (Section 5.5.1). We then aug

ment this semantics with notions of cost and cost attribution (Section 5.5.2) and present

complete cost augmented push-enter semantics for each of the profiling schemes (Sec

tions 5.5.3, 5.5.4 and 5.5.5). This allows us to highlight the differences between the

eval-apply and push-enter models without being caught up with the details of our imple

mentation. Indeed, up to this point the discussion applies to any graph-reduction based

implementation e.g. the G-machine (Augustsson & Johnsson [1989]) the TIM (Fairbairn

& Wray [1987]), and the STG-machine (Peyton Jones [1992]).

Finally, we discuss the details of our STG-machine implementation (Section 5.5.6).

The STG-level manipulation of cost centres is made precise by extending the STG-machine

state-transition semantics with the manipulation of cost centres (Appendix A). The de

velopment of the different push-enter semantics and our STG-machine implementations is

summarised in Figure 5.6.

5.5.1 P u sh -en ter reduction sem antics

The push-enter semantics are given for the same restricted language as the eval-apply

semantics of Section 4.2.1. The reduction rules are presented in Figure 5.7. We have

5.5. PROFILED EXECUTION 94

presented these semantics in the same style as the eval-apply semantics. The only new

component of the semantics is the argument stack — an ordered sequence. () denotes the

empty stack and a : as denotes the stack obtained by pushing the argument a onto the

front of top stack as.

as E Stack ::= a : as
i o

A judgement has the form F,as : e A : z which should be read: “the term e in

the context of the set of bindings T and argument stack as reduces to the value z together

with the (modified) set of bindings A.” During the course of evaluation the argument

stack is consumed by the expression being evaluated and the heap may be extended with

new bindings and/or have old bindings updated with their results.

It is im portant to note tha t a A-abstraction is returned if and only if there are no

arguments available to apply. This is where the two evaluation models differ. In the eval-

apply semantics there is no argument stack. A A-abstraction is always returned to the

application site before being applied.

Reduction rules

Referring to the rules in Figure 5.7, the main difference between the eval-apply seman

tics and the push-enter semantics is in the rules for application and A-abstractions. The

App rule enters the function expression e in a context with the argument x pushed onto

the argument stack. This argument is applied by the LamArg rule once e has been reduced

to a A-abstraction — the A-abstraction is not returned.

The Lambda rule has two cases depending if there is an argument available on the

argument stack. If the argument stack is non-empty the LamArg rule substitutes the

argument on the top of the stack for the A-variable in the body of the A-abstraction and

enters the body in a context containing the remaining arguments. If the argument stack

is empty the Lam^oArg rule simply returns the A-abstraction value.

For convenience we split the Variable rule into two cases. If the bound expression is

already in whnf, i.e. x >-> z, the bound expression z does not need to be evaluated and

no update is required. This is captured by the VarWHNF rule which just enters a renamed

copy of the bound value £ with the same context. Alternatively the bound expression

5.5. PROFILED EXECUTION 95

T, (x : as) : e Jj- A : z
T, as : e x JJ- A : z

App

T, as : e[a/x\ A : z
T, (a : as) : Xx.e JJ- A : z L a m A r g

T, () : Xx.e Jj- T : Xx.e L a m ^ o A r g

(T, x \ - ¥ 2}, as : z JJ. A : z'
{ T , x ^ z} ,a s : x § A \ z ‘ Var w h n f

r, () : e JJ. A : z {A, x 2}, as : 2 0 : z'
{T, x !->• e}, as : x JJ. 0 : z' Varrhunk

{T, Xi !->• el f . . . , xn en}, as : e JJ. A : 2

T, as : l e t Xx=ei,. . . , xn=en in e A : 2
Let

T, () : C x x • • - x n T : C x i - - - x n Constr

r, () : e ̂ A : C* • • -armfc A, as : efc[a:*/S/*]̂ i Q : z
T, as : case e of {Ct- yi ■ • • t/mi -> e ,} ^ JJ- 0 : 2

Case

r, () : d JJ. A : 2, A, () : e2 JJ- 0 : 22
r, () : 61 ® e2 Jj- 0 : 21 © 22 Prim

Figure 5.7: Push-Enter Reduction Rules

5.5. PROFILED EXECUTION 96

may not be in whnf. In this case the bound expression e must be evaluated and the

binding updated with its result. The VarThunk rule evaluates the bound expression in a

context with x omitted from the heap (to detect cyclic data dependencies) and an empty

argument stack. The empty argument stack ensures tha t the result of the expression is

returned before being applied to any arguments. If a result value z is returned the heap

is updated with the binding x i-» z and a renamed version of the result S' is entered with

the arguments as now available in the context.

The remaining rules are basically the same as the eval-apply rules, except for the

addition of the argument stack. The Let rule extends the heap with the new bindings and

evaluates the body e, in the extended context. Renaming ensures tha t there are no name

clashes. The Constr rule always returns the constructor value. A constructor always has

an empty argument stack as it cannot be applied. The Case rule reduces the body e in a

context with no arguments. When the constructor is returned the appropriate alternative

is selected; the constructor arguments are substituted; and the alternative is entered with

the original argument stack in the context. The Case rule only succeeds if the constructor

returned is contained in the alternatives.

Finally the rule for primitive applications. As a primitive application always returns a

constructor the argument stack is always empty. The Prim rule evaluates each constructor

argument in a context with an empty stack, computes the result and returns it.

Reduction sequences

The reduction sequences are extended with an argument stack. If T, as : e JJ- A : z we

write:

{F}, as : e

a sub-proof

another sub-proof

{ Z l } : z

For example, the push-enter reduction sequence for the expression l e t f= \x .x+ l in f 3

would be written:

5.5. PROFILED EXECUTION 97

Let
App
Var w h n f

LamArg
Prim
Constr

Constr

(evaluate +)

{A}, () : l e t f=Xx.x+l in f 3
{ A , f i->- Xx.x+1} , () : / 3

{ A J Xx.x+1}, (3 : ()) : /
{ A ^ f i—y Xx.x+1}, (3 : ()) : Aaq .aq + i

{ A , f i-)- Xx.x+1}, () : 3+1
{ A , f t-> Xx.x+1}, () : 3
{ A , f i-»- Xx.x+1} : 3

{ A , f Xx.x+1}, () : 1
{ A , f i—y Xx.x+1} : 1

{A , f i ̂ Xx.x+1} : 4
{ A , f i—̂ Xx.x+1} : 4

{ A , f h-> Xx.x+1} : 4
{ A , f i—̂ Xx.x+1} : 4

{ A , f (->■ Xx.x+1} : 4

Comparison with the equivalent eval-enter reduction sequence on page 43 reveals that

the nesting is much deeper with the push-enter semantics since the A-abstraction is not

returned to the application. Fortunately this deeper nesting is not a problem for the

implementation as all reduction steps that require a single sub-proof can be implemented

with a tail-call.

5.5 .2 C ost-augm en ted pu sh -enter sem antics

We now extend the push-enter reduction semantics with a notion of cost and cost attribu

tion. These extensions are identical to those required for the eval-apply cost semantics in

Section 4.2.2. We introduce: a new see language construct; a cost attribution 6, mapping

cost centres to integers, with combining operator l±); cost centre annotations on the vari

able/expression pairs in the heap; the same initial heap bindings, r , mt; and extend the

form of the judgement with enclosing and returning cost centres.

The augmented judgement form is cc, T,as : e A : z, ccz which should be

read: “the term e in the context of the set of (annotated) bindings T, argument stack as

and enclosing cost centre cc, reduces to the value z together with the (modified) set of

(annotated) bindings A and result cost centre ccz, attributing costs OP The result cost

centre, ccz, is the cost centre tha t enclosed the expression th a t declared or constructed

the result value z.

Push-enter reduction sequences are similarly extended with the enclosing and returned

5.5. PROFILED EXECUTION 98

cost centre, and the reported cost attribution if required.

Finally, we introduce the same set of reduction costs R*, Rc, H, V, U, A, C, and P.

This allows us to compare the abstract cost attribution, 6, reported by the push-enter

semantics with tha t reported by the corresponding eval-apply semantics. Apart from a

reduction in the number of A-abstraction returns (RA) the cost attributions should be

equivalent. However, the actual costs involved in a push-enter implementation would be

different from the actual costs of an eval-apply implementation.

We present and discuss the push-enter semantics for each of our profiling schemes in

the following sections.

5.5 .3 Lexical scoping

Mapping the lexical scoping eval-apply semantics onto the push-enter semantics is quite

straightforward. In the eval-apply semantics the application rule for lexical scoping, Appiex

(Section 4.2.4), attributes the evaluation of the body of the A-abstraction to the cost centre

tha t is returned with the A-abstraction. In the push-enter semantics the A-abstraction

evaluates its body directly without returning. The cost of evaluating the body of the

A-abstraction are attributed to the cost centre of the A-abstraction.

A summary of the cost centre manipulation for the push-enter semantics is contrasted

with the eval-apply manipulation in Figure 5.8. The cost augmented push-enter reduction

rules for lexical scoping are given Figure 5.9.

The App rule enters the function expression e with the argument pushed on the stack

and the enclosing cost centre cc in the context. We do not associate any cost with the

App rule. The cost of a curried application, A, is associated with the LamArg rule when

the A-abstraction is actually applied.

The LamArg rule evaluates the body of the A-abstraction in the context of the cost

centre enclosing the A-abstraction. The cost of the application, A, is also attributed to

the cost centre cc. This corresponds directly to the attribution of costs achieved by the

eval-apply Appiex rule, except tha t the cost of returning the A-abstraction, R* is no longer

incurred.

The LamNoArg rule is identical to the eval-apply Lambda rule. It returns the A-

abstraction with the enclosing cost centre cc attached. The cost of returning the A-

abstraction RA is attributed to the cost centre cc.

5.5. PROFILED EXECUTION 99

Execution Event Eval-Apply
Semantics

Push-Enter
Semantics

Application Evaluate A-abs with cc
of application and applied
body with cc of A-abs
(returned)

Push argument and enter
A-abs expression with cc
of application

Apply A-abs n.a. (see Application) Evaluate body with cc of
A-abs

Return A-abs Return cc of A-abs Return cc of A-abs
Evaluate thunk Set cc of thunk Set cc of thunk
Apply thunk result n.a. (see Application) Set cc of A-abs (returned)
Return thunk result Return result cc Return result cc
Return constr Return cc of constr Return cc of constr
Case Restore enclosing cc for

evaluation of alternative
Restore enclosing cc for
evaluation of alternative

Evaluate SCC Set cc of see Set cc of sec

Figure 5.8: Summary of Lexical Scoping Cost Centre Manipulation

The VarWHNF rule enters the (renamed) bound value z, attributing the costs of eval

uation to the bound cost centre ccz. This ensures tha t the LamArg rule attributes the

costs of applying a A-abstraction value and evaluating its body to the cost centre that

declared the A-abstraction. The only exception to this is top-level functions which have a

"SUB" cost centre attached. Their evaluation costs are attributed to the demanding cost

centre cc. This choice is captured by the SUB; selector. The cost of entering the variable

is attributed to the demanding cost centre cc.

The VarThunk rule attributes the evaluation of the bound expression e to its whnf to

the bound cost centre cce. The renamed result z is then entered in the context of the

returned cost centre ccz. Again, this ensures tha t the costs of applying a A-abstraction

value and evaluating its body are attributed to the declaring cost centre returned by the

LamNoArg rule. Before entering the result the heap binding is updated with the result z

annotated with the result cost centre ccz . This ensures that subsequent enters of x also

attribute evaluation to the declaring cost centre ccz. The cost of entering the variable, V,

is attributed to the demanding cost centre cc and the cost of the update, U, is attributed

to the result cost centre ccz.

The remaining reduction rules hold no surprises. The cost centre manipulation is

5.5. PROFILED EXECUTION 100

cc, T, (x : as) : e ^ A : z, ccz
cc, T, as : e x ^ A : z, ccz App

cc, T, as : e[a/x] ^ A :z ,cc z
cc, T, (a : as) : Xx.e A : z, ccz LamArg

cc, T, () : Xx.e Jj-{co+RA} T : Xx.e, cc LamNoArg

suB/(z, ccz, cc), {r, x z } , as : z ^ A \ z ',ccz>

c c , { Y ,x c& z} ,a s : x 4 {co+v}w0 A : z ' ,c c z< VarwHNF

cce, T, () : e A : z ,ccz ccz, {A, x z}, as : z 0 : z ' , c c z>
cc, {T) x i £ e}, as . x 0 . z , ccz< VarThunk

c c ,{ T ,X i& e i , . . . , x n & en},as : e JJ-o A : z ,ccz
cc, V, as : l e t Xi=e^,.. . , x n=en in e Jj-{Co+n*H}w<? A : z ,c c z Let

CC, r, 0 . C Xi • • • Xn '(J'{cch-Rc} r* • C X \ ’ " ’ X n , C C Constr

cc, r , () : e A :C k Zi ■ • - xmjk, ccc cc, A, as : ek[xi/yi]™=\ © : z, ccz
Casecc, T, as : case e of {C,- yx ■■•yrnl ~ > e,}?=1 ^ { c c k + c } ^ ^ © : z, ccz

cc, T, () : ei ^ A i z ^ c c x cc,A, () : e 2 h 2 0 ' - z 2,cc2
cc, T, () : e1 © e2 0 : z 1 ^ z 2,cc Prim

ccscc,Y ,a s : e A :z ,c c z
cc, T, as : see ccSC0 e I).# A : z, ccz

s e e

where SUB/(A:r.e,"suB", cc) = cc
SUB/(z, ccz,cc) = ccz

Figure 5.9: Lexical Scoping Push-Enter Reduction Rules

5.5. PROFILED EXECUTION 101

identical to the corresponding eval-apply reduction rule in Figure 4.5.

5.5 .4 E valuation scoping

Mapping the evaluation scoping eval-apply semantics onto the push-enter semantics is not

so straight forward. In the eval-apply semantics the application rule for evaluation scoping,

Appevai (Section 4.2.3), attributes the evaluation of the body of the A-abstraction to the

cost centre enclosing the application site. In the corresponding push-enter semantics the

cost centre which enclosed the application site must be available when the LamArg rule is

applied since the cost of evaluating the body of the A-abstraction must be attributed to

this cost centre.

One way to achieve this is to push both the argument and the cost centre of the

application site, (cc, a), onto the argument stack in the App rule. The LamArg rule can

then set this cost centre when the A-abstraction is applied.

cc, T, ((cc, x) : as) : e A : z, ccz
cc, Y , a s : e x A : z, cc2

App

ccapp, T, as : e[a/x\ ^ A : z } ccz La mA rg
cc, r, ((ccapp, a) : as) : Xx.e -H{cc->a}w0 A : z, ccz

All the other push-enter reduction rules are identical to the rules for lexical scoping in

Figure 5.9.

Though pushing a cost centre onto the stack with each argument seems quite straight

forward it is very intrusive in our STG-machine implementation since the stacks have a

non-trivial structure. It also seems excessive when one considers tha t the STG-machine

introduces multiple argument A-abstractions that grab all their arguments off the stack in

one go. The only cost centre tha t is actually required is the cost centre associated with

the last argument retrieved from the stack.

In the light of this we have developed an alternative evaluation semantics th a t does

not require the cost centre of the application site to be pushed on the stack with the

argument. Instead, it ensures tha t the cost centre of the application site encloses the

A-abstraction when the LamArg reduction rule is applied. This is achieved by insisting

tha t all sub-reduction sequences tha t evaluate an expression in the context of a different

cost centre ensure tha t the result is returned even if an argument is available on the stack.

5.5. PROFILED EXECUTION 102

Execution Event Eval-Apply
Semantics

Push-Enter
Semantics

Application Evaluate A-abs and ap
plied body with cc of
application

Push argument and enter
A-abs expression with cc
of application

Apply A-abs n.a. (see Application) Evaluate body with en
closing cc — the cc of the
application

Return A-abs Return cc of A-abs Return cc of A-abs
Evaluate thunk Set cc of thunk Set cc of thunk
Apply thunk result n.a. (see Application) Restore enclosing cc
Return thunk result Return result cc Return result cc
Return constr Return cc of constr Return cc of constr
Case Restore enclosing cc for

evaluation of alternative
Restore enclosing cc for
evaluation of alternative

Evaluate SCC Set cc of see Set cc of see
Apply SCC result n.a. (see Application) Restore enclosing cc
Return SCC result Return result cc Return result cc

Figure 5.10: Summary of Evaluation Scoping Cost Centre Manipulation

This is achieved by evaluating the expression in the context of an empty argument stack.

If the returned result is a A-abstraction and an argument is available the cost centre of the

application site is restored and the A-abstraction entered with the argument now available

on the stack. If the result is not a A-abstraction or no argument is available the the result

is returned without restoring the cost centre.

A summary of the cost centre manipulation for this evaluation semantics is contrasted

with the eval-apply manipulation in Figure 5.10.

The cost augmented push-enter reduction rules are given in Figure 5.11. Most of the

rules are identical to the lexical scoping rules (Figure 5.9) described in Section 5.5.3. The

rules tha t differ are the Vary/HNF> Vdf'Thunk and SCC rules which have to ensure tha t the

cost centre of the application site is loaded/restored before a A-abstraction value is entered

with the argument available on the stack.

The VarWHNF enters the renamed value z. The SUBe (z , as, ccz, cc) selector determines

the cost centre. There are two cases:

• A A-abstraction tha t is applied by the LamArg rule. Under evaluation scoping the

costs of evaluating the body of the A-abstraction should be attributed to the cost

5.5. PROFILED EXECUTION 103

cc, T, (x : as) : e JJ.# A : z, ccz
cc, T, as : e x ^ A : z, ccz

App

cc,T ,as : e[ajx\ ^ A : z, ccz
cc, T, (a : as) : Xx.e A : z, ccz LamArg

cc, r , () : Xx.e J|{cĉ r a} T:Aa:.e, cc La TYlpjo A rg

SUBe(2 , as, ccz, cc), { r , x z}, as : z -JJ.# A : z ' ,cc z>
Var whnfcc,{T ,x°& z} ,a s : x A \ z ',ccz>

cce,T , () :e A : z ,ccz SUBe(z, as, ccz, cc), {A , x z}, as : z ^ 0 : z ' , ccz
FarThunkCC, { r , X 1 % e}, aS . X •|J'{cci->-V}li){cczi->-U}li)0iW02 0 . z , ccz>

cc, {T , Xi & e i , . . . , x n & en}, as : e ^ A : z ,ccz
Letcc, r , as . l e t Xi~e \ , . . . , xn~en in e {̂cci— ccz

CC, T) () • C X\ Xn 'l]-{cci-»-Rc} ^ C 1 i CC Constr

cc, r , () : e JJ.*, A : Ck x Y • • -xmk,ccc cc, A, as: e*[a;i/y i]?lfc1 JJ.*2 0 : z, ccz
Case

cc, r, as : case e of {Cf yi • ■ •ym, ~> Ci}"=i 0 : *i ccz

cc, T, () : e i V A : z l ,cc1 cc, A, () : e2 ty02 0 : z 2,cc2
Prim

cc, r , () : ex 0 e2 ^{co+pjw^wtfa 0 : Z\ 0 z2, cc

cc5CC, r , () :e A : z, ccz SUBe(z, as, ccz, cc), A, as : z 0 : z ',ccz>
SCC

cc, T, as : see ccscc e ^ j lls)«3 0 : z \ ccz>

where SUBe(Aa\e, a s ,MsuB", cc) = cc
SUBe(Ax.e,a : as, ccz ,cc) = cc
suBe(z, as, ccz,cc) = ccz

Figure 5.11: Evaluation Scoping Push-Enter Reduction Rules

5.5. PROFILED EXECUTION 104

centre enclosing the application site. We ensure tha t any intervening reduction

rules tha t modify this enclosing cost centre do not supply the argument, forcing

the result to be returned and allowing the enclosing cost centre (the cost centre of

the application site) to be restored before the result is entered with the argument

available on the stack. Thus, the costs of applying the A-abstraction and evaluating

its body can be attributed to the enclosing cost centre cc.

• A value tha t is by the LamNoArg or Constr rule. The value is returned with its

cost centre ccz, unless it is a subsumed A-abstraction. This returned cost centre is

attached to any updated closures.

The SUBe (z , as, ccz, cc) selector selects the enclosing cost centre cc if the value z is a

A-abstraction and the bound cost centre is "SUB" or the argument stack is non-empty,

otherwise the bound cost centre ccz is selected.

The VarThunk rule evaluates the bound expression e in the context of the cost centre cce

without supplying any arguments. If the result is a A-abstraction and the argument stack

is non-empty the cost centre of the application site is restored before the A-abstraction is

entered with the argument supplied. If no argument is available the value is entered in the

context of the result cost centre ccz, and returned again. This is the same choice as the

V a r W H N F rule (except tha t the "SUB" case is redundant). The same SUBe(z, as, ccz, cc)

selector is used.

The SCC rule evaluates the annotated expression e in the context of the cost centre

ccscc. Under evaluation scoping it must restore the cost centre of the application site before

supplying any arguments. It evaluates the annotated expression e without supplying any

arguments. If the result is a A-abstraction and the argument stack is non-empty the

cost centre of the application site is restored before the A-abstraction is entered with the

argument supplied. Again this is captured by the SUBe(z ,as,ccz,cc) selector.

5.5 .5 H ybrid profiling schem e

The semantic rules for our hybrid profiling scheme are given in Figure 5.12. These

are identical to the rules for evaluation scoping (Figure 5.11) described in Section 5.5.4,

except tha t the SUB/ ,(z , a s , ccz, cc) selector only selects/restores the cost centre of the

application site if the A-abstraction is subsumed or declared in a CAF or dictionary i.e. the

5.5. PROFILED EXECUTION 105

cc, T, (a; : as) : e A : z, ccz
App

cc, r , a s : e x Jj-e A : z, ccz

cc, T, as : e[a/x] A :z ,ccz
cc, T, (a : as) : Xx.e ^{cc^a}^ A : z, ccz La tyia rg

cc, T, () : Xx.e ^{cĉ r a} T : Xx.e, cc Lai7ljg0j\ rg

SUBh(z ,as ,ccz,cc), {T,Xh4 z} ,a s : z A : z ' , c c z>

cc, { r , x i f z }, as . x v}uo ^ • z , cc2, VarwHNF

cce, r , () : e lb?, A \ z ,ccz suB/,(z, as, ccz, cc), {A, x z}, as : z JJ.*2 0 : z', ccz<
Far fhunkcc, { r, x i £ e}, as . x ■JJ'{cct-»-v}tjj{ccji-)-u}iii0iiii02 0 • z , ccz>

cc, { r ,£ i h* d , .. . , x n & en}, as : e JJ-* A : z,ccz
Let

cc, r , as . x±~e\, . . . , x n~en in c ■tl'-fcci— • %i c.cz

CC, r , Q . C X\ • • • Xn -l]'{cc>-+Rc} ^ ^ ^ n i Constr

cc, r , () : e ^ A : Ck Xi ■ ■ -xmk, ccc cc, A , as : efc[x,/?/i]™,‘1 0 : z, ccz
Case

cc, r , as : case e of {Q yi ■■■yrnl ~> e,-}"=1 0 : 2',ccz

cc, T, () : ei A :Z i,cc ! cc, A, () : e2 JJ-</2 0 \ z 2,cc2
Primcc, r , () : ei © e2 0 : z 1 © z2,cc

cciCC, r , () : e A : z, ccz s\JBh(z,as,ccz,cc), A ,a s : z ^ 2 0 : z', cczl
SCC

cc, T, as : see cc3CC e 0 : z', ccz#

where SUB/, (Ax.e, as, "subm, cc) = cc
SUB/, (Ax.e,a : as, -caf", cc) = cc
SUB/, (Ax.e,a : as,"uicv, cc) = cc
SUB/, (z, as, ccz,cc) = ccz

Figure 5.12: Hybrid Push-Enter Reduction Rules

5.5. PROFILED EXECUTION 106

A-abstraction’s cost centre ccz is "SUB", "CAF" or "DICT". The costs of applying all other

A-abstractions are attributed to the cost centre of the declaration site, not the application

site.

5.5 .6 ST G -m ach ine im p lem en tation s

We now outline the extensions to the STG-machine implementation required for profiling.

This section should be relevant even if the reader is not familiar with the details of the

STG-machine (Peyton Jones [1992]) since we relegate the details of the STG-machine to

Appendix A.

Mapping the abstract push-enter semantics onto the STG-machine description does not

pose any particular problems. The main conceptual difference is th a t the STG-machine

description is a “small-step” state transition system, while the abstract semantics are “big-

step” . The STG-machine state must record all information required for any remaining

evaluation required by the corresponding big-step rule. For example, when a case is

evaluated the alternatives must be recorded in the state. For the profiled implementations

we have to save the enclosing cost centre if it is to be restored when evaluation returns.

Implem entation o f lexical scoping

The implementation of lexical scoping is quite straight forward. The main STG-level

extensions required are:

• A current cost centre is added to the machine state. Any execution costs are a t

tributed to the current cost centre.

• All heap closures have a cost centre attached to them. Whenever a closure is entered

it loads its cost centre into the current cost centre, except for subsumed top-level

functions.

• Evaluation of a case saves the enclosing cost centre with the continuation for the

alternatives on the return stack. It is restored when the constructor is returned and

the appropriate alternative evaluated.

A formal description of the STG-level manipulation of cost centres for lexical profiling is

given in Appendix A.4.

5.5. PROFILED EXECUTION 107

Im plementation o f evaluation scoping

The implementation of evaluation scoping requires a second mechanism for saving and

restoring cost centres. The STG-level modifications for evaluation scoping have a lot in

common with the modifications required for lexical scoping. Below is a complete list of

the STG-level modifications with the differences with lexical scoping highlighted.

• A current cost centre is added to the machine state. Any execution costs are a t

tributed to the current cost centre.

• All heap closures have a cost centre attached to them. This is loaded into the current

cost centre when a thunk or constructor is entered. Entering a X-abstraction or

performing a partial application update (if there are not enough arguments available)

does not load the closure’s cost centre.

• Evaluation of a case saves the enclosing cost centre with the continuation for the

alternatives on the return stack. It is restored when the constructor is returned and

the appropriate alternative evaluated.

• The update mechanism is extended to save the enclosing cost centre in the update

frame. It is restored if the update is triggered by a partial application. If the

update is triggered by a returning constructor the cost centre is not restored (see

the VarThunk rule).

• The update mechanism is also used to save/restore the enclosing cost centre when

an see expression is evaluated except that a dummy update frame is used. This

“update” does not actually update a closure, but just restores the cost centre if the

“update” is triggered by a partial application. If the “update” is triggered by a

returning constructor no action is taken. A simple optimisation can be performed

which omits the dummy update if the result is known to be a data constructor.

Compiler analysis may determine tha t some unevaluated closures will only be evalu

ated once and omit the update (Launchbury et al. [1992]; Marlow [1993]). However, the

demanding cost centre must still be restored when evaluation has completed. Unfortu

nately, we don’t have an update frame to detect when this occurs. This problem is solved

by pushing a dummy update frame, like that used for see expressions, th a t restores the

cost centre but does not actually perform an update.

5.5. PROFILED EXECUTION 108

We do not include a full description of the STG-level manipulation of this evaluation

scoping semantics. It can be easily derived from the STG-level description of the hybrid

profiling scheme in Appendix A.6 (see A.6.5).

Alternative implementation of evaluation scoping

Having extended the update mechanism to save/restore cost centres we observe tha t it is

possible to make use of the update mechanism whenever a cost centre is saved or restored

— removing the need for saving and restoring the cost centre when a case is evaluated.

This can be done if the costs of entering all values, including constructors, are considered

to be subsumed, i.e.

SUB 'e(z, as, cc2, cc) = cc

Under this scheme a constructor is entered in the context of the enclosing cost centre cc,

not the cost centre of the constructor ccz. The (small) cost of entering a constructor and

returning its value is attributed to the demanding cost centre. The cost centre enclosing

an expression, evaluated in the context of a different cost centre, is always restored using

the update mechanism by the VarThunk or SCC rule tha t entered the expression. This

removes the need to restore the cost centre in the Case rule since the cost centre returned

with the constructor ccc is always the same as the cost centre cc tha t enclosed the case

expression.

The only problem with this implementation is tha t the cost centre of the result is not

available during an update. The returned cost centre ccz is the same as the entered cost

centre cce. Thus, the cost of performing the update is attributed to the cost centre of the

closure being updated cce. Any copies of the closure constructed by the update mechanism

will have the cost centre cce attached, unless an alternative mechanism for returning the

cost centre to be attached to these closures is introduced.

Though this alternative evaluation implementation is not as clean, it does highlight the

close relationship between evaluation scoping and the underlying lazy evaluation mecha

nism — hence the term evaluation scoping. Our initial evaluation scoping implementation

used this semantics (extended with a return/update mechanism tha t ensured tha t the

cost centre of the result is attached to closures constructed by the update mechanism). A

5.5. PROFILED EXECUTION 109

formal STG-level description of this alternative implementation of evaluation scoping is

given in Appendix A.5.

Im plem entation of hybrid profiling scheme

The hybrid implementation requires both save/restore mechanisms. The complete list of

STG-level modifications is given below. The differences with the standard implementation

of evaluation scoping are highlighted.

• A current cost centre is added to the machine state. Any execution costs are a t

tributed to the current cost centre.

• All heap closures have a cost centre attached to them. Whenever a closure is entered

it loads its cost centre into the current cost centre, except for subsumed top-level

functions and X-abstractions declared in the scope of a CAF or D ICT cost centre.

• Evaluation of a case saves the enclosing cost centre with the continuation for the

alternatives on the return stack. It is restored when the constructor is returned and

the appropriate alternative evaluated.

• The update mechanism is extended to save the enclosing cost centre in the update

frame. It is restored if the update is triggered by a partial application and the cost

centre of the X-abstraction being entered is a CAF or D ICT cost centre.

• A dummy update mechanism is introduced for see expressions and single-entry

closures. This “update” restores the cost centre if the “update” is triggered by a

partial application and the cost centre of the X-abstraction being entered is a CAF

or D ICT cost centre.

Unfortunately a A-abstraction may not “know” its cost centre at compile time. Instead

a runtime test has to be performed when a A-abstraction is entered. To ensure this runtime

test is as efficient as possible each cost centre contains a boolean flag indicating if it is

a special “subsumed” cost centre. This is set for all CAF and DICT cost centres. Of

course, if the enclosing cost centre is known at compile time, as it is for any A-abstractions

declared in the static scope of an see annotation, the appropriate code can be generated

at compile time and the test omitted.

5.6. RUNTIME SYSTEM 110

A formal description of the STG-level manipulation of cost centres for our hybrid

profiling scheme is given in Appendix A.6. Unfortunately this profiling scheme has not

yet been implemented, though an implementation should be available with the next public

release of the compiler.

5.6 Runtime System

Having described the manipulation of cost centres at the abstract machine level we now

outline the main features of the low-level runtime implementation. In line with the dis

cussion in Section 2.2.4 we have attempted to minimise the impact of the cost centre

manipulation and runtime bookkeeping. In particular, we have ensured tha t all data

requirements are declared statically and all inlined profiling instructions are simple as

signments or counter increments (apart from the runtime test required by the hybrid

profiling scheme).

A complete description of the implementation is beyond the scope of this thesis. Any

one interested in all the gory details should examine the (mostly documented) source code

distributed with the Glasgow Haskell compiler. The following sections provide a brief

overview of the main extensions to the runtime system required for profiling.

5.6.1 F lex ib le code generation

The Glasgow Haskell compiler generates C as its target code. Though we had to make

significant modifications to the code generator for profiled execution we have attem pted

to be as general as we can in the code generated. Substantial use of C macros has been

made to enable the bookkeeping performed at each profiling event to be easily modified.

We have also put considerable effort into generating C code tha t has a variable sized

closure header (see Figure 5.13). This allows us to attach additional runtime information

to every closure without modifying the code generator — we just have to modify the

macro definitions. This feature is used by the cost centre profiling and other runtime

system profiling. For example, the gathering of the closure lifetime and update age data

presented in Sansom &; Peyton Jones [1993] required a creation time field to be added to

every closure.

5.6. RUNTIME SYSTEM 111

Fixed Code Flexible Code
Space allocated for n word closure

Indexing ith word of closure

Initialise n word closure

1 + n

n odefi]

node[0] = hdr;
nod efi] = v a i l ;

node[n] = v a in ;

1 + _HDR + n

node[_HDR+i]

_IN IT(node,h d r ,n) ;
node[_HDR+l] = v a i l ;

node[_HDR+n] - v a in ;

Figure 5.13: Example code generated for flexible closure layouts

5.6 .2 C ost centres

During compilation we statically declare a cost centre structure for each see annotation

encountered in the module being compiled. Within a module, annotations with the same

label refer to a single cost centre. However, annotations with the same label which reside

in a different modules refer to different cost centres. These costs are currently reported

separately, but could easily be combined in the profiling report.

Within each cost centre structure we store the following information:

• The label of the cost centre.

• The name of the module containing the see annotation.

• The module group specified as a compiler option. If no group is specified the module

name is used.

• For the hybrid profiling scheme we include a flag indicating if the cost centre is a

special “subsumed” cost centre. This is set for CAF and DICT cost centres.2

• Any statistical meters we want to accumulate during execution. Currently we record:

— see enters,

— the number of sec sub-expressions entered,

— seecaj and sub-seecay enters,

— sc c iu6 enters,2

2 N ot yet implemented.

5.6. RUNTIME SYSTEM 112

— sccdict and sub-scc<f,ct enters,2

— the number of thunks evaluated and closures allocated,

— the total heap space allocated, and

— the number of time ticks (see Section 5.6.6).

• Any temporary data needed during cost centre processing.

During execution a pointer to the cost centre structure is used to identify the cost

centre. A special location, _CCC, is declared to store the current cost centre. This is

initialised to the cost centre MAIN at the start of execution. Profiled events are attributed

to the cost centre identified by _CCC.

5.6 .3 R eg ister in g cost centres

When execution has completed we need to be able to access all the cost centres so we

can produce a profile report. Ideally we would like to link all the cost centres together as

they are declared during compilation. However, this is not possible with separate module

compilation. So we are left with the task of registering each cost centre at runtime.

One solution is to register each cost centre the first time it is set to the current cost

centre. Unfortunately this requires a conditional test every time an see expression is

executed.

An alternative solution, which we have adopted, is to traverse the module dependency

graph at the start of execution, registering all the cost centres. In each module we declare

a small routine that registers all the cost centres declared in tha t module and calls the

registering routine of each imported module. At the start of execution, before evaluation

of the program actually begins, the runtime system calls the registering routine for the

Main module, and ensures tha t any prelude cost centres are registered. This ensures that

the entire module structure is traversed and all the cost centres registered.

Care must be taken to ensure tha t any cycles in the module dependency graph are

dealt with correctly. Each module is marked when its registering routine is first executed.

Any subsequent calls to the registering routine observe th a t the module has been marked

and simply return.

5.6. RUNTIME SYSTEM 113

In fo P tr C o s t C T im e P o in te r W ords N o n P o in te r W ord s

E n try C o d e la b e l

"m o d u le '

g ro u p '

’d esc rip tio n '

’type"

s ta tis tics

Figure 5.14: Closure layout

5.6 .4 C losure layout

When profiling is enabled each closure has two words added to its header: a cost centre

and a creation interval. The layout of each closure is shown in Figure 5.14. This is specific

to the STG-machine. The first word of the closure is the info pointer. It points to the

info table: a static structure containing information about the closure. In particular it

contains the code to execute when the closure is entered. When profiling we add a pointer

to some additional information describing the closure (see Section 5.6.5). The second

word points to the cost centre responsible for building the closure and the third word the

time interval during which the closure was created. Following this is a block of words

containing pointers and a block containing non-pointers. The distinction between the two

is for garbage collection purposes.

Thus, for every heap-allocated closure we can identify:

• Which “part” of the program created the closure, as indicated by the attached cost

centre.

• W hat the closure is, as described by the additional information stored in the info-

table (see Section 5.6.5).

• The time the closure was created.

This information is used when profiling the contents of the heap (see Section 6.3).

5.6. RUNTIME SYSTEM 114

5.6 .5 C losure d escrip tions

Each info table points to a closure description record that describes the closure.3 This

description consists of two strings: a type string and a description string derived from

the original source. For example, an evaluated cons cell would have type " L is t" and

description

The type and description strings derived from the source are described below. Some

examples are shown in Figure 5.15. Note that a particular closure’s description changes

when it is updated with its result.

T y p e s tr in g s

The type string is normally just the type constructor — any type parameters are not in

cluded in the type string. However, for function types we do examine the type parameters,

rather than just using a type string producing a string of the form ' '-»> resu lt ty"

where there is one > for each argument type omitted and resultty is the type string of

the final result type. Polymorphic types, which are not known at compile time, are given

the unknown type string " ty " . Dictionary types introduced by the compiler are given the

fixed type string " d ie t" .

We do not claim tha t these type strings are in any way ideal — we just chose a scheme

tha t seemed reasonable. Any suggestions for improvements are welcomed.

D esc rip tio n s tr in g s

The description string depends on the form of the closure:

• T h u n k s , i.e. unevaluated closures, are described by the name of the declaration.

However, if the declaration is anonymous or introduced by the compiler the de

scription is derived from the expression on the right-hand-side using the outermost

identifier being applied. If this is an application of a higher order argument the

identifier is the argument name not the actual function being applied. The applied

3 We introduce a separate description record, rather than including the description strings directly in
the info table since the description record actually contains some additional data fields that cache runtime
information such as hash values. These data fields cannot reside in the info table as this is declared constant
and cannot be modified during execution.

5.6. RUNTIME SYSTEM 115

Expression Type Description
map = \ x y -> . . . " -» L is t" "map"
r e su lt = map g xs "List" "result"

... after evaluation "List" II * II

in c a l l = map (+1) "->List" " incall"
... after evaluation " P A P " " P A P "

? = \ x y -> map x y " -» L is t" "\@map"
? = map g xs "List" "@map"
? = l e t . . . in map g xs "List" "lQmap"
? = case map g xs of . . . need alts "c@map"

Figure 5.15: Example type and description strings

identifier is prepended with an 0 if it is a normal application or a # if it is a primitive

application. In addition a string summarising any l e t or case expressions enclosing

the application (in the transformed program) is prepended.

• Manifest functions are also described by the name given to the declaration. If the

declaration is anonymous or introduced by the compiler the name is derived from

the right-hand-side, as it is for thunks, the only difference is a \ is prepended.

• Constructors, i.e. evaluated data closures, are described by the actual data con

structor used to build the data object. This is always known.

• Partial applications are built at runtime. Since there is only one info-table for

partial applications we have to use a single description "PAP". This is also used

for the partial application type string. The runtime system could construct a more

meaningful description using the description of the function being applied, but we

do not do this.

Again, we do not claim tha t these description strings are in any way ideal. It may

be necessary to dump the intermediate code (see Appendix B .l) to determine exactly

what expression a particular description refers to. We will move to improve them if user

feedback indicates it would be worthwhile. Possible improvements include:

5.6. RUNTIME SYSTEM 116

• Giving a binding introduced by the compiler a name derived from the enclosing

source level declaration.

• Including the module name and line number in the description string.

5.6 .6 T im e profiling

Underlying the time profiles produced by our profiling system (see Chapter 6) is a very

simple execution sampling mechanism implemented with Unix signals. We interrupt the

execution of the program every 20ms using the se tit im e r system call. A customised

routine to handle each interrupt is specified using the s ig n a l system call. During each

interrupt the interrupt handler increments the tim e_tick counter for the cost centre

currently referenced by the current cost centre (_CCC->time_tick). As the value of _CCC

is required by the interrupt handling routine it must be stored in a memory location — it

is not possible to optimise it into a real machine register.

5.6 .7 H eap profiling

If the user requests a heap profile, execution is suspended at regular intervals (specified

by the user), and the entire heap garbage collected. During this garbage collection a

profiling routine is called once for each live closure in the heap. It is passed a pointer to

the closure and the closure’s size. From this it can extract the closure’s cost centre and

description, and incrementally build up the data required for the requested heap profile

(see Section 6.3). When the garbage collection is completed a profiling finalisation routine

is called and the data for this heap sample is written to a file.

In terrup ting execution

The heap profile interrupt will occur at some arbitrary point during the execution. Unfor

tunately the garbage collector can only be invoked when the heap is in a consistent state

and all pointers into the heap are known. The only time this is guaranteed to be the case

is when a heap overflow check has failed and the special code which tidies up the state

and makes the roots known to the garbage collector has been executed.

This problem is solved by introducing a global flag in terv a l.e x p ired tha t indicates

when a heap profiling interval has expired. Each heap overflow check is modified to test

5.7. PROFILING OVERHEADS 117

the availability of heap space and the in te rv a l_ e x p ire d flag:

i f (Hp + HpRequest > HpLim I I in te rv a l_ e x p ire d) {
. . . tidy up and invoke garbage collection . . .

y

The in te rv a l_ e x p ire d fla g is set by the interrupt handler when the heap profiling interval

expires and normal execution is resumed. The required garbage collection is then invoked

at the next heap allocation.

Profiled garbage collection costs

The garbage collection overheads of profiled execution are vastly different to the garbage

collection overheads of normal execution.

• Garbage collection is performed whenever a heap sample is required.

• Each garbage collection includes the additional cost of collating the required profiling

data.

• We currently use a two-space copying garbage collector, rather than the generational

garbage collector used during normal execution.

As far as time profiling is concerned we ignore the profiled garbage collection costs by

disabled the execution sampling during garbage collection. (Though we do plan to provide

a brief summary of the garbage collection costs with the cost centre profile (Section 6.2)

in the next release.)

If required, detailed information about the profiled garbage collection overheads can

still be obtained by requesting the garbage collection statistics using the - s or -S runtime

option. More importantly, information about the normal garbage collection overheads can

be obtained by requesting the garbage collection statistics during a normal execution.

5.7 Profiling Overheads

One im portant consideration of any profiling system is the overheads it imposes on exe

cution time and space requirements. If the profiling overheads are too high the tool may

become unusable. Our profiling system imposes a number of overheads:

5.7. PROFILING OVERHEADS 118

Optimised C Execution Portable C
Normal Profiled Overheads Profiled

Useful Reduction Time 2,709s 4,437s 64% 8,576s
GC and Heap Profiling Pauses 258s 2,478s n.a. 5,214s
Total Execution Time 2,967s 6,915s 133% 13,790s

Total Heap Allocation (Mb) 12,119 19,873 64% 19,873
Maximum Heap Residency (Mb) 3.5 5.7 63% 5.6

(compiling T cE xpr.lhs)
Executable Size (Mb) 6.7 9.7 44% 14.1

Figure 5.16: Profiling Overheads Compiling the Compiler

• The manipulation of cost centres and time sampling interrupts (every 20ms) reduce

execution speed somewhat.

• Heap profiling increases the garbage collection overheads (see Section 5.6.7).

• The heap space occupied and allocated is increased as every closure has two ex

tra words storing the cost centre and creation interval.4 (This space overhead is

discounted in the allocation/live heap data reported in the profiling output.)

• Executable size increases, due to cost centre manipulation code and static profiling

data structures and strings.

• The current profiling implementation uses the two-space copying garbage collector.

This imposes an additional 100% heap space overhead for the second semi-space.

Figure 5.16 provides a summary of the optimised profiling overheads measured over the

compilation of the whole compiler. The profiled execution times are for lexical profiling

runs generating both a cost centre and a heap profile with a heap sampling interval of

one second and time sample of 20ms. Profiled execution imposes a basic 64% execution

time overhead. Additional pauses to profile the heap (every second) brought the total

execution overhead to 130%. This additional overhead is only incurred if a heap profile is

requested. We consider this to be an acceptable execution overhead.

4 It is possible to build a version of the profiler that does not store the creation interval in each closure,
removing the ability to produce a heap profile broken down by creation time. This would halve the 64%
space overhead.

5.8. CORRECTNESS 119

The space overhead is about 64%. This applies to the amount of heap allocated and the

maximum heap residency. Though this seems quite acceptable, it excludes the additional

space required by the two-space copying garbage collector. This brings the total heap

space overhead to more than 200%. This is not acceptable, especially since we expect

to be profiling programs with space problems. To address this problem we a~e planning

to develop an implementation of the profiling runtime system tha t uses our generational

garbage collector (Sansom & Peyton Jones [1993]). This does not require the additional

semi-space since the major collection uses an inplace compaction algorithm. D ata for the

heap profiles will be gathered using the mark phase of the major collection.

All the profiles presented in Chapters 6 and 7 are produced by a version of the profiler

tha t compiled programs using portable C compilation. Using a more sophisticated code

generation route (as we now do) improves the performance by a factor of more than 2,

for both profiled and unprofiled programs. Timings for portable C profiled execution are

given in Figure 5.16 for comparison.

Slower profiled execution does not cause us any problems because we are interested in

identifying relative costs and quantifying relative improvements. In fact, slower profiled

execution may even have a benefit, since it results in an increased number of timer samples,

improving the accuracy of the resulting profile; i.e. if your profile does not contain enough

timer samples run it on a slower machine! A more desirable solution would be to increase

the sampling frequency, but not all Unix machines support this.

5.8 Correctness

We have no formal proof tha t the costs attributed to an annotated source expression are

a true reflection of the costs tha t should be attributed to tha t expression for the profiling

semantics being used.

However, we have attem pted to be rigorous in our specification and implementation

of the profiling system. The main components of this rigour are the abstract cost se

mantics (Section 4.2), the push-enter cost semantics (Section 5.5) and the STG-machine

operational semantics (Appendix A). These provide us with very useful formalisms at dif

ferent levels of abstraction. Though we have no formal proof tha t the current cost centre

identified by the STG-level operational semantics actually corresponds to the cost centre

5.8. CORRECTNESS 120

context identified by the abstract cost semantics, the formalisms provide us with a strong

notion tha t this is indeed the case.

At a more practical level, using the profiler has provided us with a considerable amount

of evidence tha t supports the accuracy of the profiling results reported. When examining

the profile of a program we consider the question:

Can we explain the (often surprising) profiling results?

If we can convince ourselves tha t the profiling results are plausible then all is well (we

hope). If not, we attem pt to identify the reason for the inconsistency: Have we overlooked

an explanation or is there a bug in the implementation of the profiler or compiler? A

very useful step is to obtain a dump of the optimised code from within the compiler. This

optimised dump can be of benefit to anyone attempting to understand their profile since it

contains the optimised code tha t is actually being profiled. Any inconsistencies are usually

explained by the (sometimes erroneous) transformations which were performed within the

compiler.

C hapter 6

Profiling Output

The current implementation of the profiler produces a number of different profiling out

puts:

• An aggregate cost centre profile.

• A serial heap profile.

• A serial time profile.

Each of these profiles is described in the following sections. We present example profiles

and compare the profiles produced by lexical scoping with those produced by evaluation

scoping. The relevant ghc user documentation can be found in Appendix B.

6.1 Example program: c la u sify

The example profiles tha t are presented in this Chapter are generated by a Haskell version

of the program c la u s i fy (Runciman h Wakeling [1993]). This program was chosen as

it has already been the subject of extensive profiling and improvement by Runciman

and Wakeling using the hbc/lm l heap profiler. We were interested in discovering if our

profiling output revealed anything about the execution of the program tha t the hbc/lm l

heap profiler did not. We profile the final version of the program developed in Runciman

h Wakeling [1993].

Before describing the profiles we give a brief summary of the c la u s i fy program and

describe the profiling annotations used. (The summary has been taken from Runciman &

121

6.1. EXAMPLE PROGRAM: CLAUSIFY 122

Wakeling [1993].)

C lau sify takes as input a series of propositional formulae, and produces their clausal

form equivalents. The required transformation of each proposition to a set of clauses can

be specified by the following rules:

• elim eliminates equivalence and implications:

p = q - y (p q) A (q =» p)

p => q -> -i p V q

• negin makes negations the innermost connectives:

-i-i p —>■ p

~ ' (p V q) —y - i p A - i q

-i (p A q) —> -ip V -i<7

• disin pushes disjuncts within conjuncts:

p V (q A r) - y (p V q) A (p V r)

(p A q) V r —y (p V r) A (q V r)

• sp/zi splits up the conjuncts:

p A q —y p

q

• unicl forms a set of unique non-tautologous clauses:

Pl V . . . V p „ V-10! V . . .V -n g rm ({p i, . . . , p n }, {^1 , . . . , g m})

A clause (ps, <ps) is tautologous if (ps fl ^s) j=- 0.

The implementation of the transformation rules uses the following da ta definition to rep

resent propositional formulae:

data Formula = Sym Char
I Not Formula
I Dis Formula Formula
I Con Formula Formula
I Imp Formula Formula
I Eqv Formula Formula

6.2. COST CENTRE PROFILE 123

At the heart of the program is a “pipeline” composition of several functions, each corre

sponding to one of the rules above.

c la u se s = u n ic l . s p l i t . d is in . negin . elim

Appendix C contains the complete Haskell source for the final version of c la u s i fy devel

oped by Runciman & Wakeling [1993].

For the purposes of profiling we use the same input as Runciman & Wakeling [1993]

so tha t our profiling results are comparable. Namely the proposition:

(a = a = a) = (a = a = a) = (a = a = a)

Though this reduces to the single clause, ({a}, 0), it generates a substantial amount of

work as the intermediate formulae are extensive.

C ost c e n tre a n n o ta tio n s

To profile c la u s i fy we first have to identify the expressions of interest. Initially we added

explicit see annotations to each element of the pipeline:

c la u se s = (\x -> see "u n ic l" u n ic l x) .
(\x -> see " s p l i t " s p l i t x) .
(\x -> see " d is in " d is in x) .
(\x -> sec "negin" neg in x) .
(\x -> sec "elim " elim x)

We had to introduced the \x ’s to expose the application sites to the sec annotations when

using evaluation scoping. If we were only interested in using lexical profiling, the following,

less intrusive, annotations would have sufficed:

c la u se s = (sec "u n ic l" u n ic l) . (see " s p l i t " s p l i t) .
(see " d is in " d is in) . (see "negin" neg in) .
(see "elim " elim)

We also give an example profile generated using the automatic annotation scheme provided

by the compiler.

6.2 Cost Centre Profile

The cost c e n tre profile shows the proportion of execution time and heap allocation

attributed to each cost centre during a run of the program. It is generated with the -p or

6.2. COST CENTRE PROFILE 124

-P runtime option (see Appendix B.2). The output consists of a simple text file displaying

formatted data. Example cost centre profiles are presented in Figures 6.1, 6.2.

The profile displays the date the program was run, the command used to generate the

profile, the total execution time (measured in seconds), the total number of time ticks

and the tick interval (normally 20ms), the total heap allocation (measured in bytes) and

the total number of closures allocated. For each cost centre, introduced with an explicit

source annotation or by the compiler, the -p profile reports:

COST CENTRE: The cost centre label. The cost centre module and group are also re

ported, but they have been omitted from the example profiles to ease

presentation.

see: The number of instances of the sec annotated expression th a t were

evaluated. If the entire body of a function is annotated with an sec

expression the sec entry count is the number of function calls,

subcc: The number of sec annotated sub-expressions tha t were evaluated. The

costs of these sub-expressions are attributed to their cost centre, not this

cost centre. Unfortunately, this count does not identify which cost cen

tres these sub-costs are being attributed to. This would require counts

to be associated with cost-centre pairs (see Section 8.4.2).

'/.time: The proportion of CPU time spent evaluating instances of the annotated

expression. (The current cost centre is sampled every 20ms.)

'/,a l lo c : The proportion of the total heap allocation tha t was allocated by the

evaluation of the instances of the annotated expression. (The space

allocation for each closure is attributed to the cost centre stored in the

closure.)

A more detailed profiling output can be requested using the -P runtime option. This also

reports:

caf cc: This consists of two counts concerning the evaluation of CAFs. The first

is the s c ccaj entry count for this cost centre. The second is the number

of unevaluated CAFs whose value was demanded by this cost centre,

thunks: The number of thunks allocated by this cost centre tha t were subse

quently evaluated.

6.2. COST CENTRE PROFILE 125

c lo su re s : The number of closures allocated by this cost centre.

tick s: The number of time ticks attributed to this cost centre. This is used to

calculate the '/.time.1

bytes: The number of bytes allocated by this cost centre. This is used to

calculate the '/,a llo c .1

Sorting the profile

The profile can be sorted by '/.time, ’/,a llo c , or alphabetically by module and label. The

example profiles are sorted by '/.time, with all CAF cost centres placed at the end. This

is the default sorting. It places all the “expensive” cost centres at the top of the profile.

Special cost centres

There are a number of special cost centres that can be seen in the example profiles. The

cost centre "MAIN" is the initial cost centre, set at the start of execution. It is attributed

with the costs of processing the I/O requests, and constructing the responses. In particular,

the costs of actually performing the I/O (reading and writing the characters) is attributed

to "MAIN". It also subsumes any costs of evaluating main tha t are not attributed to some

source cost centre.

"Prelude: CAF" is attributed with the costs of evaluating all the CAFs in the prelude.

These CAFs may have been introduced by the compiler when compiling the prelude.

"Prelude:DATA" is attributed with the costs of all static data closures. These consist

of single arity constructors, all the characters, and some small integers. This cost centre

is never attributed any costs by our evaluation profiler because our evaluation implemen

tation does not load the current cost centre on entry to a data closure.

6.2 .1 L exical vs. E valuation cost centre profiles

We now compare a lexical profile and an evaluation profile of c la u s ify , generated using

the explicit see annotations described in Section 6.1. This highlights problems with both

^ h e t i c k s and b y te s data fields have been om itted from the example cost centre profiles to ease
presentation.

6.2. COST CENTRE PROFILE 126

Tue Apr 26 18:00 1994 Time and Allocation Profiling Report
(Lexical Scoping)

clausify-lex +RTS -P -RTS

total time = 4.04 secs (202 ticks ® 20 ms)
total alloc = 3, 162,380 bytes (197701 closures)

COST CENTRE see subcc '/.time '/.alloc caf cc thunks closures
disin 0 8.9 6.3 0 0 12362 12362
split 0 2.0 3.4 0 0 5345 5346
negin 0 0.5 0.1 0 0 198 294
elim 0 0.0 0.2 0 0 198 330
MAIN 0 0.0 0.1 0 8 34 129
unicl 0 0.0 0.0 0 1 0 0
CAF:unicl 0 0 78.2 89.7 1 2 115497 178597
CAF:d .Eq.clO 0 0 4.0 0.0 1 0 2 6
Prelude:CAF 0 0 3.0 0.1 9 2 138 278
CAF:main 0 5 2.0 0.2 1 4 198 330
CAF:elem.c82 0 0 1.0 0.0 1 0 1 3
Prelude:DATA 0 0 0.5 0.0 0 0 0 0
CAF:stg 0 0 0.0 0.0 3 0 18 24
CAF:spaces 0 0 0.0 0.0 1 0 0 2

Figure 6.1: Lexical Scoping Cost Centre Profile (explicit annotation)

Tue Apr 26 18: 01 1994 Time and Allocation Profiling Report
(Evaluation Scoping)

clausify-eval +RTS -P -RTS

total time = 3.52 secs (176 ticks ® 20 ms)
total alloc = 3,162 ,380 bytes (197701 closures)

COST CENTRE see subcc V,t ime '/,alloc oaf cc thunks closures
unicl 1 0 91.5 89.7 0 2 115490 178584
disin 1 0 5.1 6.3 0 0 12362 12362
split 1 0 3.4 3.4 0 0 5345 5346
MAIN 1 5 0.0 0.3 0 13 319 654
elim 1 0 0.0 0.2 0 0 198 330
negin 1 0 0.0 0.1 0 0 198 294
Prelude:CAF 0 0 0.0 0.0 9 1 51 80
CAF:stg 0 0 0.0 0.0 3 0 18 24
CAF:unicl 0 0 0.0 0.0 1 1 7 13
CAF:d.Eq.cl0 0 0 0.0 0.0 1 0 2 6
CAF:main 0 0 0.0 0.0 1 0 0 3
CAF:elem.c82 0 0 0.0 0.0 1 0 1 3
CAF:spaces 0 0 0.0 0.0 1 0 0 2

Figure 6.2: Evaluation Scoping Cost Centre Profile (explicit annotation)

6.2. COST CENTRE PROFILE 127

profiling schemes, thus revealing the need for the hybrid profiling scheme proposed in

Section 4.4.3.

Origins of the hybrid profiler

The lexical profile is shown in Figure 6.1 and the evaluation profile in Figure 6.2. The most

notable feature of the lexical profile is tha t 78% of the time is attributed to "CAFrunicl".

Examining the source of c la u s ify (Appendix C) reveals that u n ic l is declared as a CAF

tha t has a function result:

u n ic l = f i l t e r s e t (not . ta u tc lau se) . map clause

The lexical cost attribution attributes the costs of applying this function to the CAF cost

centre introduced by the compiler (Section 4.4.1). Our explicit annotation of the reference

to u n ic l is attributed with zero cost. In a similar way the costs of applying the method

function embedded in the Eq dictionary are attributed to the cost centre "CAF:d.Eq.clO"2

tha t constructed the dictionary. It is not immediately clear which part of the program

is responsible for incurring these costs. In a large program, determining which part is

responsible for these CAF costs can be a very intractable problem.

In the evaluation profile the CAF cost centres are only attributed with the small, one-

off evaluation costs. The costs of applying the functions embedded in the CAF results are

attributed to their application site. It turns out tha t all these CAF costs are attributed

to "u n ic l" . However, if there were many different applications of the CAF results the

application costs would be distributed between the cost centres of the different application

sites.

The evaluation profile is much easier to interpret. However, it was only generated with

very carefully placed cost centre annotations (Section 6.1). Just annotating the references,

without exposing the application site, results in zero cost being attributed to each cost

centre — all the costs are attributed to "MAIN".

The hybrid profiling scheme should be a significant improvement since it will give us

the best of both worlds: the simple annotation of lexical scoping, with a usable attribution

of CAF and dictionary costs.

2Dictionary cost centre annotations, as described in Section 4.4.2, have not yet been im plemented.

6.2. COST CENTRE PROFILE 128

Timing differences

The different cost centre manipulation required by the two profiling schemes results in

slightly different timings. The lexical profiler saves/restores the current cost centre when

ever a case is executed where as our evaluation implementation only saves/restores the

current cost centre when an unevaluated closure is entered. As execution of a case occurs

more frequently the overhead of the lexical profiler is larger (observe the larger t o t a l tim e

in the lexical profile).

Since the evaluation profiler does not load the cost centre when a da ta closure is

entered, the cost of returning the value is attributed to the demanding closure. This can

be observed in the zero costs attributed to "P re lu d e : DATA" and the smaller cost attributed

to " d is in " . Instead, these costs are attributed to "u n ic l" , the cost centre demanding

the values.

6.2 .2 A u to m a tic ann otation

Figure 6.3 shows a lexical profile of c la u s i fy generated by directing the compiler to

annotate all top-level declarations (- a u to - a l l compiler option). This produces a profile

with a very different flavour:

• The profile identifies the top-level functions that are consuming all the execution

time. These can then be examined for possible improvements.

• The see counts report the number of times each top-level function was applied,

revealing information about the structure of the execution.

This information can be used to direct low-level coding and data-structure improvements.

Comparing the t o t a l tim e in Figure 6.3 with Figure 6.1 reveals tha t profiled execution

of c la u s i fy with automatic annotation is 10% slower than profiled execution with explicit

annotation. There are two factors which contribute to this slower execution:

• The number of see annotations results in more optimisations being curtailed (see

Section 5.4.2).

• The bookkeeping overhead is larger since a lot more see annotations are executed

(observe the large see counts in Figure 6.3).

6.2. COST CENTRE PROFILE 129

Tue Apr 26 18:02 1994 Time and Allocation Profiling Report
(Lexical Scoping)

clausify-lex-auto +RTS -P -RTS

total time = 4.44 secs (222 ticks © 20 ms)
total alloc = 3,162,604 bytes (197714 closures)

COST CENTRE see subcc '/.time '/,alloc caf cc thunks closures
clause 5346 52398 37.8 76.1 0 0 99450 151850
insert 52398 0 20.7 0.0 0 0 0 0
disin’ 12214 12164 9.0 6.2 0 0 12164 12164
tautclause 5346 0 7.2 7.4 0 1 5346 16037
split 1 0 3.6 3.4 0 0 5345 5346
parse’ 40 55 3.2 0.0 0 1 9 61
filterset’ 5347 0 1.8 0.0 0 0 1 2
elim 199 198 1.4 0.2 0 0 198 330
negin 231 230 0.9 0.1 0 0 198 294
clausify 1 4 0.0 0.1 0 1 160 208
disin 199 248 0.0 0.1 0 0 198 198
MAIN 1 0 0.0 0.1 0 8 34 129
disp 1 5 0.0 0.0 0 0 17 24
red 8 0 0.0 0.0 0 0 0 16
while 12 8 0.0 0.0 0 0 8 8
interleave 9 0 0.0 0.0 0 1 6 6
filterset 1 0 0.0 0.0 0 0 0 0
opri 26 0 0.0 0.0 0 0 0 0
parse 1 1 0.0 0.0 0 0 0 0
spri 20 18 0.0 0.0 0 0 0 0
CAF:unicl 0 5346 5.0 6.1 1 2 10694 10697
Prelude:DATA 0 0 2.7 0.0 0 0 0 0
CAF:elem.cl5 0 0 2.3 0.0 1 0 1 3
CAF:filterset 0 5348 1.8 0.0 1 1 7 16
Prelude:CAF 0 0 1.4 0.1 9 2 138 278
CAF:d.Eq.c25 0 0 1.4 0.0 1 0 2 6
CAF:clausifyline 0 2 oo 0.0 1 1 12 17
CAF:main 0 1 0.0 0.0 1 0 3 8
CAF:redstar 0 24 0.0 0.0 1 0 0 6
CAF:clauses 0 4 0.0 0.0 1 1 4 6
CAF:spaces 0 0 0.0 0.0 1 0 0 2
CAF:tautclause 0 5346 0.0 0.0 1 0 0 2

Figure 6.3: Lexical Scoping Cost Centre Profile (- a u to - a l l annotation)

6.3. HEAP PROFILES 130

6 .2 .3 A lloca tion rate

One general property that the cost centre profiles have revealed is tha t the rate of allocation

is not constant across the different parts of the program — the %time and %alloc figures

often differ by a considerable amount (observe " in s e r t" in Figure 6.3). This is especially

true in a heavily optimised implementation since the affect of the optimisations which

reduce allocation is not uniform.

6.3 Heap Profiles

The se ria l heap profile shows how the amount of heap space (measured in bytes) re

quired by the program varies over the execution of the program (measured in seconds).

A graphical post-processor, hp2ps (see Appendix B.3.2), is used to convert the raw data

gathered during execution into a PostScript3 graph. Shaded bands provide further infor

mation about the contents of the heap (Section 6.3.1). The various heap profiling options

are described in Appendix B.2.

An example heap profile of c la u s i fy is shown in Figure 6.4.4 This profile has the heap

contents broken down by the cost centre attached to each closure (-hC runtime option).

The order of the key is the same as the order of the bands. This removes any ambiguity

arising from the limited number of different shades tha t are available. The title displays

the command used to generate the profile, a measure of the total cost of the program (the

total area below the graph), and the date the program was run. The total cost of the

c la u s i fy program is approximately 27Kbs (Kbyte-seconds).

6.3 .1 H eap contents

There are a number of different criteria on which the contents of the heap can be broken

down, based on the information attached to each closure (Section 5.6.4). These fall into

three categories:

P ro d u c e r profiles (Figure 6.4)

3 PostScript is a registered trademark of Adobe Systems Incorporated.
4Figure 6.4 is equivalent to Figure 14 in Runciman &: Wakeling [1993]. g h c does not have a mechanism

equivalent to the subsequent improvement made to the h b c / lm l compiler, which eliminated the lazy
pattern matching space leak (Sparud [1993]; Wadler [1987]).

6.3. HEAP PROFILES 131

clausify-lex +RTS -hC -iO. 10 -RTS 27,003 bytes x seconds Tue Apr 26 18:00 1994

t i l l Mairrdisin

ill Main:CAF:main

I I Prelude:CAF

H Main:CAF:unicl

[I Main:elim

H Main:negin

B l Main:split

| MAINTAIN

| Main:CAF:stg

seconds

Figure 6.4: Heap Profile by Cost C entre (lexical scoping)

Producer profiles break down the contents of the heap by the cost centre a t tached to each

closure. This can be done on a cost centre, module or group basis. They reveal which

“p a r t ” of the program was responsible for producing the closures in the heap.

Description profiles (Figure 6.5)

Description profiles break down the contents of the heap by the s ta t ic description string

or type string (Section 5.6.5) a ttached to each closure. This reveals “w h a t” closures make

up the contents of the heap.

C reation tim e profile (Figure 6.6)

The creation time profile breaks down the heap by the time interval during which each

closure was allocated. Each band shows the life of the closures created during a particu lar

interval.

It is im p o rtan t th a t all bands are plotted in the profile and th a t the bands are stacked

in the creation interval order, with the early intervals on the bo tto m . This required us to

extend the hp2ps post-processor, adding the -m, - i and - t options (see A ppendix B.3.2).

6.3. HEAP PROFILES 132

clausify-lex +RTS -hD -c{Main:disin} -iO. 10 -RTS

11,524 bytes x seconds Tue Apr 26 18:00 1994

4.500

4.000

3,500.

3,000.

2,500.

2,000

1.500.

1.000

Con

©disin’

seconds

Figure 6.5: Heap Profile of " d i s i n " by Description (lexical scoping)

clausify-lex +RTS -hT18 -c{Main:disin} -i0.24 -RTS

11,175 bytes x seconds Tue Apr 26 18:01 1994

4,500.

4.000

3,500.

3.000

2.500

2 ,000 .

1,500.

1,0 00 .

I I before_4.08s

before .3.84s

[~~l before.3.60s

| before .3 .36s

B l before. 3.12s

| before_2.88s

| before .2 .64s

FI before. 2.40s

f§§ before_2.16s

H before. 1.92s

I I before..1.68s

before_ 1.44s

I | before. 1.20s

before_0.96s

before_0.72s

before.0.48s

before_0.24s

Figure 6.6: Heap Profile of " d i s i n " by Creation Tim e (lexical scoping)

6.3. HEAP PROFILES 133

6 .3 .2 H eap selection

By default all live closures in the heap are reported in the heap profile, but the profile can

be limited to a particular subset of closures. This allows the user to “focus” the profile

on any problematic heap closures. Closures can be selected on the attached cost centre

(label, module or group), description string, type string, closure kind, and closure age.

These selection features can be used to produce quite specific profiles tha t examine

the behaviour of particular groups of closures. For example:

-hD -c fM a in :d is in } produces a heap profile, broken down by the description string, of

the closures allocated by the cost centre " d is in " (Figure 6.5)

-hT -c{M ain :d is in } produces a heap profile, broken down by the creation time, of the

closures allocated by the cost centre " d is in " (Figure 6.6).

A very good demonstration of the use of such heap profiles to investigate space problems

can be found in Runciman & Wakeling [1993].

6 .3 .3 C om parison w ith oth er heap profilers

Our heap profiler is very similar to the heap profilers provided by the Chalmers h b c /lm l

compiler (Runciman h Wakeling [1993]) and the nhc compiler (Rojemo [1994]). Indeed,

the same post-processor (hp2ps) is used to provide the graphical visualisation.

All these heap profilers provide producer and description profiles. However, there is an

im portant difference between our producer profiles, which are based on the attached cost

centre, and the h b c /lm l and nhc producer profiles, which are based on static function,

module, and group information. Cost centres enable the closures produced by an unprofiled

function to be subsumed by the referencing function. This cannot be achieved by the other

heap profilers. For example, examination of Figure 2 in Runciman & Wakeling [1992]

reveals a large “band” attributed to l i b (the standard prelude) rather than to the user’s

program source. With our profiler the costs of evaluating a prelude function are subsumed

by the reference site. Consequently any closures constructed by the prelude function are

attributed to the cost centre tha t referenced the function.

Using the automatic annotation of all top-level declarations (- a u to - a l l) makes our

producer profiles almost identical to the h b c /lm l and nhc producer profiles. The only

6.4. SERIAL TIME PROFILE 134

difference is the subsuming of prelude functions. Perhaps we should provide a special

version of the prelude, compiled with - a u to - a l l , so tha t these functions can be identified

if required.

The nhc profiler also provides lifetime and retainer profiles (Section 3.3.2). Our cre

ation time profile provides similar information about the age of closures to the lifetime

profile, though the semantics of the profiles are quite different. The lifetime profile reports

the age each closure, currently residing in the heap, will live to, while the creation time

profile shows the pattern of survival for the closures created in each interval. We have not

developed an equivalent of the retainer profile, though this does look a promising direction

for identifying the cause, rather than the presence, of space leaks (Runciman & Rojemo

[1994]).

6.4 Serial Tim e Profile

We have also been experimenting with a serial tim e profile. The idea is to provide

the programmer with a visual picture displaying the order of evaluation. Execution is

divided up into a number of intervals and the time attributed to each cost centre during

each interval is displayed. We currently use the same graphical post-processor as we do

for the heap profiles, plotting bands showing the proportion of time (measured in ticks)

vs. execution time (measured in seconds). An example serial time profile of c la u s i fy is

shown in Figure 6.7.

Though this profile is an intriguing idea, it only provides a very rough picture of the

execution behaviour. It suffers from a number of problems:

• The sampling process may miss small, but im portant, spurts of execution.

• The presentation is not very satisfactory since time is not always distributed in neat

bands. (Though we have observed pipelines exhibiting bands of execution.)

• The intervals have to be large to provide a reasonable number of samples for each

interval. However, a moving average5 could be used to overcome this problem.

A more satisfactory profile might be provided by reporting the distribution of some

fundamental execution event, such as closure entry, for each time interval. This would not

5 T he moving average is the average of the last n data points.

6.5. CLAUSIFY REVISITED 135

clausify-lex +RTS -P -i1.00 -RTS 176 time ticks x seconds Tue Apr 26 18:00 1994

Main:CAF:unicl

m l Main:disin

I I Main:CAF:d.Eq.c10

Prelude:CAF

n Mairvsplit

Main:CAF:main

Main:CAF:elem.c82

Prelude:DATA

Main:negin

seconds

Figure 6.7: Serial T im e Profile (lexical scoping)

suffer from the sampling problems mentioned above. Indeed, we could m easure the “time"

for the cost centre profile (Section 6.2) using closure en try counts (currently we only report

th u n k en try counts and closures allocated). The d isadvantage with this approach is th a t

the “tim e” spent in system routines is not observed because these routines d o n ’t en ter

closures.

6.5 C l a u s i f y Revisited

So, w h a t have the ghc profiles revealed ab o u t clausify?
T h e time profiles revealed t h a t unicl consumes ab o u t 90% of the execution time. This

was not revealed by any of the heap profiles here or in Runcim an &: Wakeling [1993]. T h e

- a u t o - a l l profile (Figure 6.3) revealed th a t this time is spen t in c l a u s e , i n s e r t , and

t a u t c l a u s e , throwing away all the clauses and duplicate a ’s.

T h e ability to focus directly on this ho t-spot quickly led to a significant perform ance

gain. Observing th a t all this “throw ing away” relies on com paring cha rac te rs we in tro

duced unboxed charac ters (Peyton Jones & Launchbury [1991]) into the Formulae and

6.5. CLAUSIFY REVISITED 136

literal lists, recoding the functions tha t processed these characters. The source modifi

cations can be found in Appendix C.2. These modifications resulted in a performance

improvement of more than 25%, with less than an hour’s work.

The creation time profile of " d is in " reveals tha t all the Dis and Con closures produced

by " d is in " are created in two bursts. One at the s ta rt of execution, and one half way

through. This behaviour is also revealed by Runciman & Rojemo [1994] using the nhc

lifetime profiles. They go on to develop a further improvement after examining the nhc

retainer profiles.

C hapter 7

Practical Applications

We have placed considerable emphasis on developing a practical profiler, suitable for pro

filing large applications. This Chapter demonstrates the use of the profiler for profiling

large applications with detailed results from profiling the compiler itself (Section 5.1). We

also report on the experiences some other users have had using the profiler (Section 7.2),

before drawing some conclusions about the practical use of the profiler (Section 7.3).

7.1 Profiling the Compiler

To evaluate the effectiveness of our profiler for profiling large applications, we undertook

the (somewhat incestuous) task of profiling the core of the Glasgow Haskell compiler (see

Section 5.1), with the aim of identifying its inefficiencies and improving them. This is

a particularly large Haskell program consisting of over 200 modules and 30,000 lines of

code. The initial profiling experiments examined the performance of Version 0.13 of the

Glasgow Haskell compiler.

7.1.1 In itia l profiles

We first determine the total cost of each pass of the compiler by placing see annotations

around each of the major passes. Figure 7.1 shows the aggregate profile of the compiler

compiling one of its own modules (TcExpr .lh s). Each cost centre (except MAIN) corre

sponds to a particular pass of the compiler (see Figure 5.1). The initial cost centre, MAIN,

is attributed with the costs of processing the I/O request dialogue, since this is outside

137

7.1. PROFILING THE COMPILER 138

the scope of the source program.

The compilation requires 240 seconds of profiled execution time on our SS10-41. 45%

of th a t time is spent in the type checker and 25% in the renamer with a further 7% spent

in the built-in name environments (buf ItinEnv) by the renamer. As these passes take

up a large proportion of the execution time they are the obvious places to focus on when

optimising the compiler.

7 .1 .2 Input space leak

A heap profile of the same compilation is shown in Figure 7.2. The most significant feature

of the heap profile is the large amount of space occupied by rdModule across much of the

compilation. We would expect this input to be discarded as we constructed the abstract

syntax tree. Clearly this does not happen.

Figure 7.2 reveals tha t the input is discarded at the onset of code generation. The

critical event tha t allows the input to be discarded is the opening of the output file.

Examining the code we find tha t the module name, which is required to name the output

file, is bound in a lazy pattern match with the input module.

(mod_name, absyn_tree) = cvModule (rdModule input_pgm)

The identification of this space leak is slightly embarrassing as an identical space

leak had already been identified by Runciman and Wakeling in the Chalmers h b c /lm l

compiler using their heap profiler (Runciman & Wakeling [1992]). This type of lazy pattern

matching space leak can be eliminated if the evaluation mechanism (or garbage collector)

arranges for all the pattern selectors to be evaluated when the first of them is evaluated

(Sparud [1993]; Wadler [1987]).

Since ghc has no such evaluation mechanism we recoded the problematic lazy pattern

match with a strict case expression. The resulting profile is shown in Figure 7.3. The

input (now comprised of rdlmports and rdModule) is consumed by the subsequent pass

of the compiler. The space-time product has been reduced from 580Mbs to 255Mbs — a

reduction of over 50%. This measure should be treated with caution since the improvement

here is solely due to a reduced heap occupancy — there is no reduction in execution time.

Of course, space usage does have an indirect time cost, because it increases garbage-

collection overheads (which are not included in the profiled execution timings). With

7.1. PROFILING THE COMPILER 139

Sat Jun 26 11:52 1993 Time and Allocation Profiling Report
(Lexical Scoping)

hsc-0 . 13 +RTS -H25M -p -RTS -C -hi

total time 240 .48 secs (12024 ticks <2 20 ms)
total alloc = 619,779, 088 bytes (51846277 closures)

COST CENTRE MODULE GROUP see subcc '/, t ime '/.alloc
TypeChecker Main main 1 0 45.4 44.6
Renamer Main main 1 0 25.0 27.0
builtinEnv Main main 1 0 7.6 14.4
PrintRealC Main main 1 0 4.5 4.3
Core2Core Main main 1 0 3.9 2.5
MAIN MAIN MAIN 1 1 2.7 2.7
CodeGen Main main 1 0 1.5 1.1
rdModule Main main 1 0 1.8 1.2
Stg2Stg Main main 1 0 1.1 0.5
FlattenAbsC Main main 1 0 0.7 0.5
cvModule Main main 1 1 0.6 0.5
Core2Stg Main main 1 0 0.6 0.3

Figure 7.1: Aggregate Profile (Version 0: T c E x p r . lh s)

hsc-0.13 +RTS -hC -i1.0 -RTS -C -hi ...

Tue May 18 17:03 1993580,784,352 bytes x seconds

ig Main:rdModule

Main:PrintRealC

hm Main TypeChecker

I I M airrCodeGen

2 .500k _

| Main:Core2Core2,000k.

M ainRenam er

Main:Core2StgMi
1,500k.

Main:FlattenAbsC

Main:Stg2Stg
1,000k.

AbsPrel:CAF:std_gieWM
Main:cvModule

500k.
Main:DeSugarer

OTHER

seconds0.0 20.0 40.0 60.0 80.0

Figure 7.2: Heap Profile (Version 0: T c E x p r . lh s)

7.1. PROFILING THE COMPILER 140

hsc-0.13 +RTS -hC -i1.0 -RTS -C -hi ...

254,942,256 bytes x seconds Fri May 28 13:38 1993

j I ReadPrefix:rdlmports

B Main:PrintRealC

§ 0 Main:TypeChecker

I | Main:CodeGen

B Main:Core2Core

j 1 M ain:Renamer

| Main.rdModule

W Main:Core2Stg

| M ainFlattenAbsC

| Main:Stg2Stg

f~l AbsPrel:CAF:std_gie

B Main:cvModuie

H I Main:DeSugarer

| OTHER

seconds

Figure 7.3: Heap Profile (Version 1: TcExpr.lhs)

trad it ional collection schemes, such as copying, this indirect cost is p roportional to the

space occupied. However, generational garbage collection reduces the im pact of large space

occupancy by prom oting any long lived d a ta and only collecting it occasionally. Unprofiled

compilation of TcExpr.lhs with a 10Mb heap imposes a generational G C overhead of

a b o u t 10%1. Reducing the space requirements can only improve the compilation time by

a fraction of this am ount.

During our investigation of the input space leak we added a rdlmports cost centre

which distinguishes the source of the interface files from the source of the module itself.

T he interface files are inserted into the source as each import s ta tem en t is processed by the

Haskell parser (see Figure 5.1). Since this is before the module source all the interface files

m ust be read before the module source is encountered and compilation can proceed. This

accounts for the large rdlmports spike in the initial s tages of compilation (TcExpr.lhs
im ports some large interface files). It may be possible to avoid this spike by placing the

'T h is 10% garbage-collection overhead assum es the m achine has enough physical m em ory to avoid
paging. If paging overheads are significant, reducing the space requirem ents to enable efficient execution
w ith a sm aller heap can resu lt in su b stan tia l reductions in elapsed execution tim e.

7.1. PROFILING THE COMPILER 141

Sun Jun 27 21:46 1993 Time and Allocation Profiling Report
(Lexical Scoping)

hsc-0.13 +RTS -H25M -p -RTS -C -hi ...

total time = 230.20 secs (11510 ticks Q 20 ms)
total alloc = 619,779,216 bytes (51846289 closures)

COST CENTRE MODULE GROUP see subcc '/.time oor—
1

i—
1

extendSubst Subst basicTypes 1304 28768 35.5 43.6
buildLookupFn NameEnv envs 2617 0 28.3 38.0
PrintRealC Main main 1 0 4.9 4.3
lookupSubst Subst basicTypes 30678 0 4.8 0.0
Rename Main main 1 2617 3.9 3.4
CoreSimplify SimplCore simplCore 2 9542 3.9 2.0
TypeChecker Main main 1 4035 3.5 0.8

Figure 7.4: Further Time Profile Breakdown (Version 1: T cE xpr.lhs)

interface files after the module source and/or forcing the processing of each interface file

as it is read, but we have not attem pted this.

7 .1 .3 E xecu tion hot sp ots

Figure 7.1 revealed two execution hot spots: the type checker and the renamer. However

further investigation is still required to identify the cause of the inefficiencies.

For the type checker we suspected tha t the inefficiencies were due to inefficient substi

tution algorithms based on a simple association list, but had never previously been able

to quantify this. Annotating each of the functions in the substitution module reveals that

nearly 36% of the entire compilation time is spent extending the substitution (a routine

consisting of only 30 lines of code), with an additional 5% of the execution time spent

searching the association list for a type variable’s substitution (see Figure 7.4).

Once the extent of the substitution inefficiencies were quantified we decided tha t it

would be worth investing the time to develop improved substitution algorithms th a t used

a mutable array data structure. This is described in Section 7.1.6. First, though, we

address the inefficiencies in the renamer.

7.1. PROFILING THE COMPILER 142

7 .1 .4 T he renam er

The job of the renamer is to resolve the scoping of source identifiers, replacing them

with unique integers. We suspected tha t string-based lookups in name environments were

consuming a lot of the time. Annotating the function which constructed and returned

the function to look up names in an environment reveals tha t a total of 28% of the entire

compilation time is spent building environments and looking up strings within them (see

Figure 7.4). More significantly, the function buildLookupFn is called a total of 2617

times, resulting in the construction of 2617 environment lookup functions! This is very

suspicious, since there are only 47 environments required (7 explicit environments plus 2

for each of 20 modules imported). This certainly does not account for the construction of

2617 environment lookup functions!

The current implementation of the lookup environments uses different algorithms de

pending on the number of elements in the environment.

• A simple unordered list search is used for small (less than 8 element) environments.

• If the environment is already sorted a binary tree is constructed.

• If not sorted a hash table (with 17 buckets) is constructed. This hash table is

implemented as a list, indexed by the hash value (see Section 7.1.5).

Using cost centres to provide a breakdown of the costs associated with the different im

plementations produced the (partial) profile:

COST CENTRE MODULE GROUP see subcc '/,t ime '/.alloc
mkHash NameEnv envs 2977 0 13.9 26.9
mkTree NameEnv envs 3983 0 13.1 11.0
lookupHash NameEnv envs 2977 0 0.3 0.1
buildLookupFn NameEnv envs 2617 14036 0.3 0.0
lookupTree NameEnv envs 3983 0 0.2 0.0
lookupList NameEnv envs 58 0 0.0 0.0
mkList NameEnv envs 58 0 0.0 0.0

These reveal tha t the environment lookup functions (lookupHash, lookupTree and

lookupList) are called the same number of times as the corresponding functions which

build the lookup data structures (mkHash, mkTree, and mkList)! One would have expected

many lookups to be performed on each structure. Examining the STG-machine code

(dumped by the compiler) we see that

7.1. PROFILING THE COMPILER 143

mkGenericLookupFun_hash_tbl eq_k lt_ k hash_k s tu f f
= lookup_Hash eq_k lt_ k hash_k (mk_Hash eq_k lt_ k hash_k s tu f f)

is translated to

mkGenericLookupFun_hash_tbl eq.k lt_ k hash_k s tu f f sa t .T l
= l e t hash_tbl = mk_Hash.wrk hash_k s tu f f

in lookup_Hash.wrk eq_k hash_k hash_tbl sa t .T l

This reveals an error in the argument saturation pass of the compiler: the hash_tbl is built

only after, and every time, the lookup argument is supplied! After fixing this optimisation

bug we found tha t the compiler still built 295 environments. Continued investigation

revealed a second optimisation bug that duplicated work by substituting bindings inside

anonymous lambda expressions.

Profiling the execution after fixing both these compiler bugs revealed a 34% (82 sec

onds) reduction in total execution time with the total renaming costs dropped from 78

seconds to just 4 seconds.

7.1 .5 H ash tab les

The work with the renamer drew our attention to a rather inefficient implementation of

the name environment hash table — a list indexed by the hash value has an access time

proportional to the hash value. We decided to develop a hash-table implementation based

on array transformers (Peyton Jones &; Wadler [1993]) and compare the efficiency with

the indexed-list implementation.

The relative performance results are reported in Figure 7.5. These were gathered by

profiling a number of compilations, each using a different hash table implementation, and

comparing the time attributed to the mkHash and lookupHash cost centres. W ith 17

buckets the array implementation results in a smaller lookup time, but construction time

actually increased slightly. This is because the cost of a read-write sequence with an array

transformer is slightly higher than the average insertion cost into a 17 element index-list

insert (average insert position 8.5).

The benefit of using arrays is the ability to use a larger number of buckets, reducing

the lookup costs as there are fewer elements in each bucket, without incuring increased

construction overheads.2 W ith a hash-indexed list implementation, increasing the number

7.1. PROFILING THE COMPILER 144

Construction Cost Lookup Costs
No. of Hash Buckets Indexed List Array Indexed List Array

17 1.00 1.04 1.00 0.60
37 1.77 1.05 0.95 0.42
79 3.60 1.04 1.52 0.39

Figure 7.5: Hash Table Performance Comparison (relative to 17 bucket indexed list)

of buckets increases construction costs. Lookup costs also increase when the increased

linear access costs outweigh the reduced bucket search costs (observe 79 buckets).

The array implementation (with 79 buckets) improved the performance of the hashed

name environment by over 50%. (The lookup costs dominate, once repeated construction

has been avoided.) However, since the name environments were no longer a bottleneck

the overall impact of this improvement was very small — less than half a second.

7 .1 .6 T he su b stitu tio n

The implementation of the substitution was inefficient for two reasons:

• The lookup structure was based on a simple association list tha t had to be searched

every time a type variable’s substitution was required.

• The type being substituted for each type variable was stored idempotently — the

type to be substituted for a type variable is applied to all the existing types in the

substitution whenever the substitution is extended.

We decided to use monadic mutable array technology (Launchbury [1993b]; Wadler

[1990]) to implement a graph-rewriting version of the substitution algorithm. This idea

was proposed by Hammond in (Hammond [1991]), in response to an intuition th a t the

substitution was a bottleneck within the compiler. (Our profiling results have confirmed

and quantified Hammond’s intuition.) At tha t time, an implementation was not practical

since efficient array implementations were not available. Since then, support for mutable

arrays has been added to the Glasgow Haskell compiler.

2 Actually there is a small linear cost associated with increasing the array size as fill the elem ents of the
array must be initialised when the array is allocated.

7.1. PROFILING THE COMPILER 145

Algorithm Substitution Total
Idempotent association list 98s 150s
Non-idempotent association list 18s 68s
Non-idempotent mutable array 1.8s 50s

Figure 7.6: Performance of monadised substitution algorithms (TcE xpr.lhs)

The type checker already had a customised monad threaded through it. It was respon

sible for:

• Carrying the current substitution, a unique name supply, and the current source

location.

• Catching, reporting and recovering from any type checking errors.

This monad had to be extended to enable the implementation to be modified to use a

mutable array. The following modifications were required:

• The monad was threaded through the unifier (previously the substitution was passed

explicitly through the unifier).

• The monad interface was extended to provide the required substitution operations

to the unifier.

• A special unique name supply used only by the type variables was added. This was

used to directly index the substitution array. The array is dynamically resized if it

overflows.

These modifications took a significant amount of time to implement. However once they

were in it was a simple m atter to change the implementation of the monad and experiment

with different substitution algorithms.

We compared three different substitution implementations:

• An idempotent association list (the original implementation).

• A non-idempotent association list. This algorithm has to apply the substitution to

the type being substituted before returning it.

• A non-idempotent representation stored in a mutable array. This provides constant

time lookup and modification.

7.1. PROFILING THE COMPILER 146

The results in Figure 7.6 show quite spectacular speedups. Making the substitution rep

resentation non-idempotent improved the performance of the substitution algorithm by

a factor of 5. This could have been undertaken without all the mutable-array modifica

tions described above. However the modifications proved worthwhile as the introduction

of a mutable array as the underlying data structure provided a further 10 times speedup.

Overall the performance of the substitution algorithm was improved by a factor of more

than 50!

7 .1 .7 O verall im provem ent

The time profile of the optimised compiler (Version 2) is shown in Figure 7.7. Comparison

to Figure 7.1 shows an overall reduction in execution time of 79%, with total execution

time dropping from 240 seconds to 50 seconds. Figure 7.7 reveals a much more balanced

time profile with no unexpected inefficiencies — though P rin tR ealC and C oreSim plify

still look like good candidates for optimisation. The dominant compilation tasks are now

I/O related as the summary in Figure 7.8 reveals.

The heap profile for Version 2 of the compiler is shown in Figure 7.9. This is dominated

by a peak at the end of compilation which we suspect is a space leak in the code generator.

Comparison with the initial heap profile (Figure 7.2) reveals a slight increase in the peak

memory requirements, but an overall reduction in the space-time product of 85%, from

580Mbs to 81Mbs.

The module we were profiling had a particularly “hard” type checking problem. This

resulted in spectacular overall performance improvements when the substitution algorithm

was improved. Figure 7.10 gives a summary of the performance improvements for the

compilation of all 211 modules tha t make up the compiler. The reduction in execution

time for the compilation of all modules was 51%.

The compilation of some modules is dominated by inefficiencies tha t were not revealed

by the profiling of T cE xpr.lhs. For example, the compilation of one 1200 line module,

A bsPrel .lh s , accounts for over 10% of the total time to compile the 30,000 line compiler!

This is due to inefficiencies in the optimisation and analysis phases of the compiler when

presented with a very large static data object. Further investigation is required — at least

7.1. PROFILING THE COMPILER 147

Tue Aug 17 14:13 1993 Time and Allocation Profiling Report
(Lexical Scoping)

hsc-0.13 +RTS -p -hC -i0.5 -RTS -C -hi ...

total time 50.46 secs (2523 ticks <0 20 ms)
total alloc = 97,950,284 bytes (8076271 closures)

COST CENTRE MODULE GROUP see subcc '/,t ime Xalloc
PrintRealC Main main 1 0 21.4 26.5
CoreSimplify SimplCore simplCore 2 0 13.9 13.0
MAIN MAIN MAIN 1 1 11.4 17.4
TypeChecker Main main 1 0 10.2 11.3
Renamer Main main 1 0 7.0 3.9
rdlmports ReadPrefix reader 1 0 6.5 6.9
CodeGen Main main 1 0 5.6 6.3
FlattenAbsC Main main 1 0 3.0 3.2
cvModule Main main 1 1 2.7 3.5
Core2Stg Main main 1 0 1.7 1.3
StgFloat SimplStg simplStg 1 0 1.3 1.1
CoreStranal SimplCore simplCore 1 0 0.9 0.7
DeSugarer Main main 1 0 0.8 0.7
StgUpdAnal SimplStg simplStg 1 0 0.7 0.6
builtinEnv Main main 1 0 0.6 0.1
rdModule Main main 1 1 0.4 0.3

Figure 7.7: Time Profile (Version 2: TcExpr.lhs)

Task Time
Input/O utput 40%

Optimisation 17%
and Analysis

Type Checking 10%
Code Generation 9%
Renaming 8%
Translation 5%
Other 1%
CAFs 10%

Components
PrintRealC rdlmports rdModule

MAIN (actual character I/O)
CoreSimplify CoreStranal

StgFloat StgUpdAnal
TypeChecker (including the substitution)
CodeGen FlattenAbsC
Renamer builtinE nv
cvModule DeSugarer Core2Stg

(lexical scoping CAF/dictionary costs)

Figure 7.8: Summary of Time Profile (Version 2: T cE xpr.lhs)

7.1. PROFILING THE COMPILER 148

hsc-0.13 +RTS -hC -i0.5 -RTS -C -h i...

81,817,410 bytes x seconds Tue Aug 17 14:13 1993

F~1 ReadPrefix:rdlmports

H Main: PrintRealC

EM Main:TypeChecker

□ Main:CodeGen

H SimplCorerCoreSimplify

| Main: FlattenAbsC

H Main:Core2Stg

□ Main: Renamer

| Main:rdModule

| SimplStg:StgFloat

I 1 AbsPrel:CAF:std_gie

| Main Stg2Stg

H I Main:cvModule

■ OTHER

Figure 7.9: Heap Profile (Version 2: T c E x p r . lh s)

Module Initial Improved Reduction
TcExpr.lhs (best) 240s 50s 79%
AbsPrel.lhs 1499s 1015s 32%
Pref ixSyn. lhs (worst) 19s 16s 16%

T O TA L (211 modules) 15612s 7604s 51%

Figure 7.10: Perform ance Im provements Compiling the Whole Compiler (-0)

7.2. OTHER APPLICATIONS 149

we now have the tools to undertake this.3

7.2 Other Applications

A version of the lexical profiler has been distributed with the Glasgow Haskell compiler

since Version 0.15 (June 1993) enabling other users to profile their Haskell applications.

This has provided us with invaluable feedback about the practical use of the profiler for

profiling large applications. This section reports some of the experiences other users have

had using the ghc time profiler to profile their applications. I am very grateful to Julian

Seward and Stephen Jarvis for their cooperation in providing considerable feedback about

their experiences using the profiler.

7.2.1 P rofiling a str ictn ess analyser

Seward [1994] used an early version of the profiler to examine the internal dynamics of

his 12,000 line, frontier-based strictness analyser. Explicit see annotations were used

to gather information about a large number of functional components in which he was

interested. He then wrote a very simple post-processor (in Haskell) tha t summed the

costs of all related components, as specified by an auxiliary input file. This enabled him

to determine the costs of the different “parts” of the algorithm, without having to remove

ail his low-level see annotations and recompiling. He used these results to compare the

performance of a number of different analysis techniques.

P ro b le m s e n c o u n te re d

Unfortunately, Seward found tha t up to 40% of execution time was being attributed to

CAF (and DATA) cost centres. This highlighted the problems with lexical scoping and

prompted us to develop our hybrid profiling scheme (Section 4.4).

The fact tha t Seward needed to develop a customised inheritance post-processor indi

cates tha t extending our implementation with statistical inheritance (Section 8.4.2) may

be a very worthwhile enhancement.

3 Subsequent improvements to the strictness analyser have reduced the performance problems encoun
tered when compiling A b sP re l. lh s and other programs that contain large static data objects.

7.2. OTHER APPLICATIONS 150

7.2 .2 Profiling a natural language processor

More recently, the profiler has been used to profile and improve the performance of

LOLITA (Large-scale, Object-based, Linguistic Interactor, Translator and Analyser) (Gar-

igliano, Morgan & Smith [1992]; Jarvis 11994]) — a natural language system which has

been developed by the Artificial Intelligence Research Group at the University of Durham.

This consists of approximately 30,000 lines of Haskell, divided into 150 modules.

Compilation using the Glasgow Haskell compiler has been in operation for a number

of months, with the emphasis on using the time profiler to identify bottlenecks and in

efficiencies in the code. As well as improving the performance of Lolita, the study also

investigated different methods of profiling.

Initial results were obtained using the - a u to - a l l option to annotate all the top-level

declarations. This highlighted the basic functions in the system tha t were responsible

for a large proportion of execution time. By identifying and improving these particular

functions, which were generally simple operations called hundreds of thousands of times,

they were to bring about an initial performance improvement of 7.8%. This task required

no detailed understanding of the application being optimised.

Further performance improvements were obtained by developing more efficient algo

rithms for system components tha t consumed a large proportion of the execution time.

These improvements required a more detailed understanding of the application being pro

filed.

The Lolita system uses a hash dictionary to perform efficient word lookup. The system

computes a hash number from a given input word and this number refers to where the

word is located in the Lolita dictionary. This feature is a key operation in the Lolita

system so it was not surprising to find the hash operation high in the profiling statistics.

Using the profiler to record progressive changes the hashing function was rewritten to a

benefit of a further 11.7%, giving a compound improvement of 19.3%. Further work in

this area is currently in progress, to move from a hash-table implementation to a tree. At

each node in this tree either an array or a list is used to store the subtrees depending upon

the number of subtrees below it. The profiler is being used to calculate the optimal point

at which we convert from list representations to arrays, i.e. the threshold at which array

access is quicker than list access, and thus providing the optimal look up time for a word.

7.2. OTHER APPLICATIONS 151

Although the integration of this implementation with Lolita has yet to be completed, the

profiling results indicate a fifteen fold improvement on the old method. When this work is

completed impressive improvements to the word look up time of the system are expected.

Lolita is built around a large semantic network tha t holds information and data about

the world as well as some of its linguistic data. The semantic network consists of over

35,000 conceptual graph nodes capable of representing over 100,000 inflected word forms.

The representation and accessibility of the network is therefore an essential point in the

efficiency of the system. Profiling information had identified the indexing and update

operations of the semantic net as costly, accounting for 30-40% of all system costs. Moving

away from the automatic annotation to explicit source annotation enabled all these costs

to be attributed to just two cost centres, reporting the total indexing and update costs

respectively (although problems with costs being attributed to CAF cost centres were

encountered).

The semantic network was originally loaded into a collection of single dimensional list

structures, from which data could be accessed and updated. This single dimensional list

structure has evolved through a 2D array to an n-arry-tree of arrays, the latter containing a

method by which the size of the leaf nodes, storing the data in arrays, can be offset against

the depth of the tree. Profiling has played a key role in the development and evaluation

of these algorithms. The final tree representation of the semantic network brought about

improvements of 15-20%. Compound improvements now stand a t 35.4% and many further

improvements are envisaged.

Problems encountered

The major problem encountered while using the profiler was the attribution of costs to

CAF cost centres. This often accounted for 30% of the profiling results. The overheads of

the profiler were also a problem, both in terms of the increased time needed for program

execution with the profiling options set, and also the amount of heap space needed.

The space problems were not surprising since normal execution required 42Mb resident

heap. The corresponding profiled execution has a 75Mb heap residency which requires a

heap size of about 160Mb when using the two-space copying collector. There is a clear

need to reduce the excessive space requirements. We are currently planning to develop a

7.3. CONCLUSION 152

version of the profiler which uses our inplace generational garbage collector (Sansom &

Peyton Jones [1993]). Building a version of the profiler tha t does not store the creation

time in each closure would also reduce the space overhead. The time problems are still

being investigated.

7.3 Conclusion

The ghc profiler has been successfully used to profile and improve the performance of

a number of large applications. Most notably, the compiler itself, where a 51% perfor

mance improvement was achieved, and Lolita, a natural language system, where a 35%

performance improvement has been achieved to date.

7.3 .1 U sin g th e Profiler

Most users have tended to use the time profiler to identify and improve execution hot

spots. We believe this is because the time profile provides a form of feedback tha t is more

tangible since it can be directly related to the observed execution time. The time profiler

has proved particularly useful for the following tasks:

• Identifying the basic functions tha t are responsible for a large proportion of execution

time (using automatic annotation). These are generally simple operations tha t are

called hundreds of thousands of times.

• Identifying the system components tha t consume the majority of the execution time

(using explicit source annotations).

• Quantifying the potential benefits of an improvement, before a complete implemen

tation is undertaken. This provides a sound basis for deciding if a proposed improve

ment might be worthwhile.

• Evaluation and comparison of different algorithmic solutions for a particular system

component.

• Tuning the performance of a particular algorithm.

The major problem encountered while using the lexical profiler was the attribution of

function costs to CAF cost centres. Implementing the proposed hybrid profiling scheme

7.3. CONCLUSION 153

(Section 4.4.3) should significantly improve the usability of the profiler.

The heap profiler has not been used as extensively as the time profiler. We have found

that, once provided with a time profiler, users do not use the heap profiler, unless the

space requirements are causing significant performance degradation due to thrashing or

physical memory constraints.

7.3 .2 D iagn osin g perform ance bugs

It is not enough to simply profile and identify the execution hot-spots. The cause of the

inefficiencies must also be identified before they can be addressed. This may require more

specific information about the dynamic behaviour of the algorithm being executed. The

profiler does provide some dynamic information, in the form of see counts and the serial

profiles, but additional diagnostic or debugging tools are also needed.

One very simple diagnostic tool that the ghc compiler provides is a side-effecting t r a c e

“function” . When entered, t r a c e evaluates and prints its first argument on s td e r r and

returns the value of its second argument. It is a primitive, but useful, debugging tool

since it can be used to reveal specific information about the dynamic execution, in much

the same way as informational p r in t statements are often used in conventional languages.

Unfortunately t r a c e affects the evaluation order — forcing the evaluation of its first

argument. More work still needs to be done developing more sophisticated diagnostic and

debugging tools.

A particularly awkward diagnostic problem is identifying the cause of a space leak. The

heap profiles address the question “W hat is in the heap?” , but they do necessarily help

with the question “Why is it in the heap?” . Further work needs to be done to develop tools

tha t help to identify “W hat is holding onto the closures in the heap?” . The development

of the nhc retainer profiler is an encouraging step.

C hapter 8

Conclusions

This research set out to develop a practical time and space profiler for a lazy higher-order

functional language which relates the profiling data back to the original source in a way

tha t is meaningful to the programmer. On the way we encountered some rather subtle

issues concerning the attribution of execution costs. This led to the development of a

formal semantics of cost attribution tha t has proved invaluable in providing insight and

enabling a precise formulation of the distinction between two different cost attribution

schemes: lexical scoping and evaluation scoping. Given this framework, the subsequent

development of the hybrid profiling semantics proved almost trivial.

Associating a cost centre with each profiled expression, using the see construct, has

proved very convenient. As well as preventing “bad” transformations, it provides a lan

guage in which cost preserving transformations can be expressed. Parts of the original

expression can be moved into the scope of a different cost centre provided they are an

notated with their original cost centre. When no see annotations are present program

optimisation proceeds as normal.

The formal approach was also used to specify equivalent abstract cost semantics based

on the push-enter graph-reduction model of evaluation. The conversion to the push-enter

semantics highlighted a set of implementation related design decisions made on the way

to our STG-machine implementation. However these semantics and the design decisions

tha t they highlighted are applicable to a number of different abstract machines based on

graph reduction, such as the G-machine and the TIM.

The final step in our implementation, mapping these semantics onto the STG-machine,

154

8.1. CURRENT STATUS 155

then proved quite straightforward. This was again specified in a formal manner by ex

tending the state transition semantics with the required manipulation cost centres.

The incorporation of the profiler into the Glasgow Haskell compiler has demonstrated

the practicality of our approach since it has enabled large application programs to be

profiled and improved. It has also provided invaluable feedback from real users. Most

notably, it revealed tha t the lexical scoping attribution of function costs to CAF cost

centres was a serious practical problem. This prompted the development of the hybrid

profiling scheme which should significantly improve the usability of the profiler.

8.1 Current Status

A version of the lexical profiler has been distributed with the Glasgow Haskell compiler

since Version 0.15 (June 1993). However, this implementation has a couple of shortcom

ings:

• The boxing transformation described in Section 4.2.4 is not implemented. The cost

of top-level functions tha t are passed as arguments are attributed to the application

site, not the reference site.

• Many of the see specific transformations are not implemented. Most notably, sccsub

annotations within the transformation passes of the compiler have not been im

plemented. Consequently the current implementation does not unfold declarations

inside an sec annotation.

We intend to complete the implementation work for the next public release of the compiler

(Version 0.22). In particular we plan to:

• Release a version of the hybrid profiling scheme.

• Implement the boxing transformation required by the lexical and hybrid profilers.

• Introduce sccaub annotations to enable more program transformation in the presence

of see annotations. The most im portant of these is the unfolding of declarations

inside sec annotations and the floating of let-bindings in and out of sec annotations.

• Introduce sec diet annotations and the automatic annotation of dictionary construc

tion.

8.2. CONTINUING DEVELOPMENT 156

• Improve the naming of local bindings introduced by the compiler.

• Report the garbage collection time and estimated maximum residency in the cost

centre profile report (Section 6.2). This should draw the attention of the user to any

unreasonable space costs.

This work should greatly improve the usability of the profiler.

8.2 Continuing Developm ent

Aside from completing the implementation for the next release, there are a number of

developments to the profiler tha t we are currently considering.

• The current implementation of the profiler uses the two-space garbage collector. This

imposes a 100% space overhead for the second semi-space. Developing a profiling

runtime system that is based on the generational garbage collector will remove this

overhead. D ata for the heap profiles can be gathered using the mark phase of the

major collection.

• Providing a mechanism to enable cost centres to be activated and deactivated at

runtime. This should significantly reduce the amount of recompilation required

during profiling.

• Implementing specific transformations tha t deal with the situation where a particular

transformation is hindered by an intervening see annotation.

• Introducing the get_ccc primitive to enable the enclosing cost centres to be deter

mined dynamically (Section 5.4.4).

• Developing a serial profile reporting the distribution of closure entry counts. This

would be more precise than the serial time profile we currently produce (Section 6.4).

• The current heap profiles identify “what is in the heap” , not “why it is in the heap” .

Developing heap profiles, like the nhc retainer profile, tha t identify “what is holding

onto the closures in the heap” should aid the difficult task of tracking down the cause

of a space leak.

8.3. FORMALISM IN PRACTICE 157

In addition we always attem pt to respond to any feedback received from our users.

Unfortunately, the incorporation of the profiler in the Glasgow Haskell imposes a cost

on subsequent development of the compiler since all developments must now ensure tha t

the attribution of costs is preserved when compiling for profiled execution.

8.3 Formalism in Practice

I believe tha t the fairly formal approach to the attribution and measurement of profiled

costs is a distinctive contribution of this thesis. It is interesting tha t this formalism

emerged within the context of a practical project as a tool for managing the intellectual

complexity of a real problem. The formalism itself was not the goal of this research.

As in almost all formalism it provides an abstraction from some, but not all, implemen

tation issues. Different layers of formalism, each providing a different level of abstraction,

were used to isolate different design issues. The design decisions made at one level of

abstraction provided the basis for the more detailed formalisms subsequently developed.

In hindsight one might argue that introducing a formal approach earlier in the de

velopment of the profiler could have identified some of the more significant issues earlier.

However, I am not convinced tha t this would be the case since experience from our initial

implementation provided a lot of input into the development of the abstract cost seman

tics. The result was a formalism with the appropriate level of abstraction, identifying

exactly what we needed, without incorporating unnecessary detail. The necessary detail

was then incrementally exposed once the major design issues had been identified.

8.4 Future Directions

There are a number of possible directions for future work, both theoretical and practical,

which are discussed in the following sections.

8.4 .1 Form al proofs

The formal semantics of cost attribution developed here could provide the basis for proving

certain properties about the correctness of the implementation. For example, using the

abstract cost semantics as a definition of the required attribution of costs one would like

8.4. FUTURE DIRECTIONS 158

to prove tha t the compiler transformations are indeed faithful to tha t cost attribution.

The equivalence of the abstract cost-semantics, the push-enter semantics and the STG

state transition system could also be investigated. We are currently working on proving the

equivalence of the abstract cost semantics and a cost-augmented abstract state transition

system.

8.4 .2 Inheritance profiling

A more practical future development would be to extend the profiler to incorporate a form

of statistical inheritance.

The profiler currently produces a flat profile, with costs only being attributed to the

immediately enclosing cost centre. However, it is possibly to gather profiling data that

would enable the statistical inheritance of costs up the reference graph.

The required profiling data can be gathered by attributing profiling da ta to a pair of

cost centres.1 Each cost-centre pair contains:

• The current cost centre, and

• The cost centre tha t enclosed the see annotation which set the current cost centre

i.e. the cost centre one arc up the reference graph.

The current cost centre register would become a current cost-centre-pair register. This

cost-centre pair is stored in each closure when it is allocated. Profiling data, such as see

counts, time ticks, and allocation, can then be attributed to the current cost-centre pair,

and the profiling output extended to report the more detailed cost-centre pair information.

A statistical inheritance post-processor could then be developed.

The main problem with this scheme is the construction of cost centre pairs. When

an see expression is evaluated a cost-centre pair, containing the enclosing cost centre

and the sec cost centre, must be loaded into the current cost-centre-pair register. Since

the enclosing cost centre may not be known at compile time the cost-centre pair can

only be determined at runtime. Unfortunately, this necessarily introduces some dynamic

execution, whenever an see is evaluated, increasing the profiling overhead.

lrThe notion of a cost-centre pair is remarkably similar to the colour pairs used by the UCL profiler
(Section 3.3.3)

8.4. FUTURE DIRECTIONS 159

Fraser & Hanson [1991] describe a solution to exactly this problem in the context of

their C compiler that is easily adapted to our cost centre implementation. Each cost centre

is linked to all the cost-centre pairs in which it is the current cost centre. When an see is

evaluated this list is searched for the pair containing the enclosing cost centre, extracted

from the previous cost-centre pair. If it is not found a new cost-centre pair structure is

allocated from a pre-declared array, and added to the list for tha t cost centre. Various

optimisations are possible, such as a special test for cost-centre pairs tha t have the same

current and enclosing cost centres. These arise in recursive functions tha t contain an see

annotation.

The modifications required to implement cost-centre pairs are limited to the C macros

that manipulate cost centres and record profiling data, and the runtime system. No

modifications need to be made to the compiler. It generates exactly the same code to

manipulate cost-centre pairs as it currently does to manipulate ordinary cost centres.

8.4 .3 P rogram m ing environm ent

Generally programmers only resort to profiling when they encounter a noticeable perfor

mance problem. Routinely generating profiles to examine the behaviour of the program

you have just written is the exception rather than the rule. As most programmers are

surprised by the contents of the profile when they do bother to profile their program,

providing an integrated programming environment tha t automatically generated profiles,

using automatic see annotation, and presented them to the programmer, could improve

the understanding programmers have about the programs they write. It could also result

in increased productivity as programmers could concentrate on writing correct programs,

knowing that they will be presented with a profile tha t will direct them to any execution

bottlenecks.

Of course, more detailed, programmer directed profiling, could then be undertaken once

the existence of a performance problem was drawn to the attention of the programmer.

P rofiling in real tim e

As part of the automatic generation of profiles the runtime system could be extended to

display the profiling data to the user while the program is executing. The serial profiles

8.5. FINAL REMARK 160

are ideally suited for this. They could be drawn in a separate window as the program

executes, providing immediate feedback to the programmer. This is particularly useful

when profiling interactive programs since the programmer can observe the effect of a

particular interaction on the execution the program as it occurs. A thorough treatm ent

of this topic can be found in Jeffrey [1993].

8 .4 .4 Parallel profiling

This thesis has not addressed the profiling of the parallel execution of lazy functional

programs. However, the cost centre model could be used to profile parallel execution.

Each processor could record information about the execution it performs, attributing the

costs to a cost centre local to the processor. Separate profiles of the execution activity

of each processor could then be presented, or the data could be combined into a global

execution profile. Parallel execution overheads, such as time spent communication between

processors and idle time, could be attributed to special cost centres and reported as part

of the profile. This approach is being explored by Clack, d aym an & Parro tt [1994] who

intend to extend the UCL profiler to profile parallel execution on the DIGRESS system

at Athena Systems Design Ltd.

8.5 Final Remark

A major attraction of this research has been the very tangible benefit to the practical

development of lazy functional programming. Three years ago there were virtually no

profiling tools available for lazy functional languages. Understanding what was going on

inside them was more of an art than a science. We now have profiling tools tha t are

comparable to, and in many cases, a lot better than, the profiling tools available for

conventional languages. This is a very encouraging situation. We hope tha t it will aid the

use of lazy functional languages for real applications programming.

Bibliography

AW Appel, BF Duba & DB MacQueen [Nov 1988], “Profiling in the presence of optimiza
tion and garbage collection,” SML Distribution.

J Armstrong [1993], “Industrial Experience of Declarative Programming,” Computer Sci
ence Laboratory, Ellemtel Communications Systems Laboratories, Alvsjo, Sweden.

L Augustsson [June 1993], “Implementing Haskell overloading,” in Functional Program
ming Languages and Computer Architecture, Copenhagen, ACM.

L Augustsson & T Johnsson [April 1989], “The Chalmers Lazy-ML Compiler,” The Com
puter Journal 32, 127-141.

DR Barach & DH Taenzer [May 1982], “A technique for finding storage allocation errors
in C-language programs,” SIGPLAN Notices 17, 16-21.

JF B artlett [Feb 1988], “Compacting garbage collection with ambiguous roots,” Digital
Equipment Corporation Western Research Laboratory, Palo Alto, CA, Technical
Report 88/2.

JL Bentley [1982], Writing Efficient Programs, Prentice Hall.
JL Bentley [July 1987], “Programming Pearls — Profilers,” Communications o f the AC M

30, 587-592.
RD Bergeron &: HR Bulterman [March 1975], “A technique for evaluation of user systems

on an IBM S/370,” Software — Practice and Experience 5, 83-92.
H Boehm & M Wuiser [Sept 1988], “Garbage collection in an uncooperative environment,”

Software - Practice and Experience 18, 807-820.
DF Brailsford, E Foxley, KC Mander h DJ Morgan [June 1977], “Runtime profiling of

Algol 68-R programs using DIDYMUS and SCAMP,” SIGPLAN Notices 12, 27-
33.

P Caplinger [Feb 1988], “A memory allocator with garbage collection for C,” in Proceedings
of the Winter 1988 USENIX Conference, Dallas, Texas, 325-330.

C Clack, S day m an & D Parrott [March 1994], “Lexical Profiling: Theory and Practice,”
Dept of Computer Science, University College London, to appear in Journal of
Functional Programming.

CA Coutant, RE Griswold Sz DR Hanson [Jan 1983], “Measuring the performance and
behaviour of Icon programs,” IEEE Transactions on Software Engineering SE-9,
93-103.

161

8.5. FINAL REMARK 162

SC Darden k SB Heller [Oct 1970], “Streamlining your software development,” Computer
Decisions 2, 29-33.

Jon Fairbairn & S tuart Wray [Sept 1987], “TIM - a simple lazy abstract machine to ex
ecute supercombinators,” in Proc IFIP conference on Functional Programming
Languages and Computer Architecture, Portland, G Kahn, ed., Springer-Verlag,
LNCS 274, 34-45.

E Foxley k DJ Morgan [Jan 1978], “Monitoring the runtime activity of Algol 68-R pro
grams,” Software — Practice and Experience 8, 29-34.

CW Fraser & DR Hanson [Oct 1991], “A retargetable compiler for ANSI C,” A C M SIG
PLAN Notices 26.

R Garigliano, RG Morgan & MH Smith [Sept 1992], “LOLITA: Progress Report 1,” Tech
nical report 12/92, Artificial Intellegence Research Group, University of Durham.

A Gill, J Launchbury k SL Peyton Jones [June 1993], “A short cut to deforestation,”
in Functional Programming Languages and Computer Architecture, Copenhagen,
ACM.

SL Graham, PB Kessler k MK McKusick [1983], “An execution profiler for modular pro
grams,” Software — Practice and Experience 13, 671-685.

PW Grant, JA Sharp, MF Webster k X Zhang [June 1993], “Some issues in a functional
implementation of a finite element algorithm,” in Functional Programming Lan
guages and Computer Architecture, Copenhagen, ACM.

C Hall, K Hammond, SL Peyton Jones k P Wadler [Jan 1994], “Type Classes in Haskell,”
Research Report FP-94-04, Dept of Computer Science, University of Glasgow.

K Hammond [Aug 1991], “Efficient type inference using monads,” in Functional Program
ming, Glasgow 1991, R Heldal, CK Holst k P Wadler, eds., Springer-Verlag, Work
shops in Computing, Portree, Scotland.

P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel, J Fairbairn, J Fasel, M Guzman,
K Hammond, J Hughes, T Johnsson, R Kieburtz, RS Nikhil, W Partain k J
Peterson [May 1992], “Report on the functional programming language Haskell,
Version 1.2,” A C M SIGPLAN Notices 27.

John Hughes [April 1989], “Why functional programming m atters,” The Computer Journal
32.

RJM Hughes [July 1983], “The design and implementation of programming languages,”
PhD thesis, Programming Research Group, Oxford.

D Ingalls [1972], “The execution profile as a measurement tool,” in Design and Optimisa
tion of Compilers, R Ruskin, ed., Prentice Hall, 107-128.

SA Jarvis [April 1994], “Profiling Large Scale Lazy Functional Systems,” Artificial Intel
legence Research Group, University of Durham.

S Jasik[1972], “Monitoring program execution on the CDC 6000 series machines,” in
Design and Optimisation of Compilers, R Ruskin, ed., Prentice Hall, 129-136.

CL Jeffrey [1993], “A framework for monitoring program execution,” PhD Thesis, TR
93-21, Dept of Computer Science, University of Arizona.

MP Jones [1992], “Efficient implementation of type class overloading,” Dept of Computer
Science, Oxford University.

8.5. FINAL REMARK 163

AS Kishon [1992], “Theory and art of semantics-directed program execution monitoring,”
PhD Thesis, Dept of Computer Science, Yale University.

DE Knuth [1971], “An Empirical Study of FORTRAN Programs,” Software — Practice
and Experience 1, 105-133.

Y Kozato & GP O tto [June 1993], “Benchmarking real-life image processing programs in
lazy functional languages,” in Functional Programming Languages and Computer
Architecture, Copenhagen, ACM.

J Launchbury [Jan 1993a], “A natural semantics for lazy evaluation,” in Proc 20th AC M
Symposium on Principles o f Programming Languages, Charlotte, ACM.

J Launchbury [June 1993b], “Lazy imperative programming,” in Proceedings o f A C M Sig-
plan Workshop on State in Programming Languages, Copenhagen, (available as
YALEU/DCS/RR-968, Yale University), 46-56.

J Launchbury, A Gill, J Hughes, S Marlow, SL Peyton Jones & P W adler[July 1992],
“Avoiding Unnecessary Updates,” in Functional Programming, Glasgow 1992, J
Launchbury &; PM Sansom, eds., Springer-Verlag, Workshops in Computing, Ayr,
Scotland.

G Lyon &; RB Stillman [Oct 1975], “Simple transformations for instrumenting FORTRAN
decks,” Software — Practice and Experience 5, 347-358.

S Marlow [July 1993], “Update avoidance analysis by abstract interpretation,” in Func
tional Programming, Glasgow 1993, draft proceedings, Dept of Computer Science,
University of Glasgow, Ayr, Scotland.

S Matwin & M Missala[Aug 1976], “A simple machine independent tool for obtaining
rough measures of Pascal programs,” SIGPLAN Notices 11, 42-45.

SL Meira [March 1985], “On the efficiency of applicative algorithms,” PhD thesis, Univ of
Kent, Canterbury.

RL Page & BD Moe [June 1993], “Experience with a large scientific application in a func
tional language,” in Functional Programming Languages and Computer Architec
ture, Copenhagen, ACM.

D Parrott & S Clayman [Nov 1990], “Report on ‘Cost’ and ‘Debug’ primitive extensions to
FLIC,” Technical Report, Dept of Computer Science, University College London.

SL Peyton Jones [1987], The Implementation of Functional Programming Languages, Pren
tice Hall.

SL Peyton Jones [April 1992], “Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine,” Journal o f Functional Programming 2, 127-202.

SL Peyton Jones, CV Hall, K Hammond, WD Partain & PL Wadler [March 1993], “The
Glasgow Haskell compiler: a technical overview,” in Joint Framework for Informa
tion Technology Technical Conference, Keele.

SL Peyton Jones & J Launchbury [Sept 1991], “Unboxed values as first class citizens,” in
Functional Programming Languages and Computer Architecture, Boston, LNCS
523, Springer Verlag.

SL Peyton Jones &; D Lester [1990], “A Modular fully-lazy lambda lifter in Haskell,” CSC
90/R17, Dept of Computer Science, University of Glasgow.

8.5. FINAL REMARK 164

SL Peyton Jones, A Santos & W Partain [1994], “Let-floating: a modest transformation
with big effects,” Dept of Computer Science, University of Glasgow.

SL Peyton Jones & PL Wadler [Jan 1993], “Imperative functional programming,” in Proc
20th A C M Symposium on Principles of Programming Languages, Charlotte , ACM.

GD Ripley [Jul 1977], “Program Perspectives: A relational representation of measurement
data,” IEEE Transactions on Software Engineering SE-3, 296-300.

GD Ripley &; RE Griswold [May 1975], “Tools for measurement of SNOBOL4 programs,”
SIGPLAN Notices 10, 36-52.

GD Ripley, RE Griswold & DR Hanson [March 1978], “Performance of storage manage
ment in an implementation of SNOBOL4,” IEEE Transactions on Software Engi
neering SE-4, 130-137.

N Rojemo[Jan 1994], “nhc — Nearly a Haskell compiler,” in Proceedings o f La Winter-
mote, Dept of Computer Science, Chlamers University, Sweden.

C Runciman & N Rojemo [1994], “New dimensions in heap profiling,” Departments of
Computer Science, Chalmers University and University of York.

C Runciman & D Wakeling [April 1993], “Heap profiling of lazy functional programs,”
Journal o f Functional Programming 3.

C Runciman & D Wakeling [Aug 1990], “Problems and proposals for time and space pro
filing of functional programs,” in Functional Programming, Glasgow 1990, SL Pey
ton Jones, G Hutton & CK Holst, eds., Springer-Verlag, Workshops in Computing,
Ullapool, Scotland.

C Runciman & D Wakeling [July 1992], “Heap profiling of a lazy functional compiler,”
in Functional Programming, Glasgow 1992, J Launchbury & PM Sansom, eds.,
Springer-Verlag, Workshops in Computing, Ayr, Scotland.

P Sanders & C Runciman [July 1992], “LZW text compression in Haskell,” in Functional
Programming, Glasgow 1992, J Launchbury & PM Sansom, eds., Springer-Verlag,
Workshops in Computing, Ayr, Scotland.

PM Sansom [July 1993], “Time profiling a lazy functional compiler,” in Functional Pro
gramming, Glasgow 1993, K Hammond & J O ’Donnell, eds., Springer-Verlag,
Workshops in Computing, Ayr, Scotland.

PM Sansom h SL Peyton Jones [July 1992], “Profiling lazy functional programs,” in Func
tional Programming, Glasgow 1992, J Launchbury & PM Sansom, eds., Springer-
Verlag, Workshops in Computing, Ayr, Scotland.

PM Sansom h SL Peyton Jones [June 1993], “Generational garbage collection for Haskell,”
in Functional Programming Languages and Computer Architecture, Copenhagen,
ACM.

A Santos & SL Peyton Jones [July 1992], “On program transformation in the Glasgow
Haskell compiler,” in Functional Programming, Glasgow 1992, J Launchbury &
PM Sansom, eds., Springer-Verlag, Workshops in Computing, Ayr, Scotland.

E Satterthwaite [1972], “Debugging tools for high level languages,” Software — Practice
and Experience 2, 197-217.

J Seward [1994], “Abstract Interpretation: A Quantitiative Assessment,” PhD thesis in
preparation, Dept of Computer Science, University of Manchester.

i

8.5. FINAL REMARK 165

RL Sites [Dec 1978], “Programming Tools: Statement counts and procedure timings,” SIG-
PLAN Notices 13, 98-101.

J Sparud [June 1993], “Fixing some space leaks without a garbage collector,” in Functional
Programming Languages and Computer Architecture, Copenhagen, ACM.

W Stoye[May 1985], “The implementation of functional languages using custom hard
ware,” PhD Thesis, Computer Lab, University of Cambridge.

UNIX Programm er’s Manual [Jan 1979] ‘p ro f command’, section 1, Bell Laboratories,
Murray Hill, N.J..

P Wadler [Sept 1987], “Fixing some space leaks with a garbage collector,” Software —
Practice and Experience 17, 595-608.

P Wadler & S Blott [Jan 1989], “How to make ad-hoc polymorphism less ad hoc,” in Proc
16th A C M Symposium on Principles o f Programming Languages, Austin, Texas,
ACM.

PL Wadler [June 1990], “Comprehending Monads,” in 1990 AC M Conference on Lisp and
Functional Programming, Nice, France.

WM Waite [1973], “A sampling monitor for applications programs,” Software — Practice
and Experience 3, 75-79.

EP Wentworth [July 1990], “Pitfalls of conservative collection,” Software - Practice and
Experience 20, 719-727.

BA Wichmann [1973], Algol 60 Compilation and Assessment, Academic Press.
B Zorn [April 1992, revised August 1992], “The Measured Cost of Conservative Garbage

Collection,” Department of Computer Science, University of Colorado, Boulder
Colorado, Technical Report C&U-C&S-573-92, Submitted for publication.

B Zorn & P Halfinger [1988], “A memory allocation profiler for C and LISP programs,” in
USENIX 88, San Francisco, 223-237.

A p p en d ix A

STG-m achine Operational

Semantics

This appendix presents STG-level operational semantics for the different profiling schemes,

based on the STG language and the operational semantics presented in Peyton Jones

[1992].

We first define the extended STG language used (Section A .l) and give an unpro

filed operational semantics, expressed as a state transition system (Section A.2). This

operational semantics is then extended to provide semantics for execution with lexical

profiling (Section A.4), evaluation profiling (Section A.5), and our hybrid profiling scheme

(Section A.6).

Though a complete syntax and semantics is given here, the accompanying discussion

concentrates on the extensions required for profiling. The reader is refered to Peyton Jones

[1992] for a detailed description of the standard STG language and its semantics.

A .l The Extended STG Language

The STG language is an austere but recognisably-functional language. The language used

here is the same as tha t presented in Peyton Jones [1992] with the following extensions.

• An see expression form is introduced into the language which attaches a cost centre

to an expression.

166

A.2. UNPROFILED OPERATIONAL SEMANTICS 167

expr —» . . . as before
| see cc expr Set Cost Centre

where cc is the cost centre label.

• Non-updateable closures (update flag \n) are classified into two distinct cases: those

that are already in HNF (\r) and those that are not (\s). This distinction is required

as they may have different cost semantics. The resulting update flags are:

— \u — Updateable.

Unevaluated closures tha t will be updated with their normal form.

— \s — Single-entry.

Unevaluated closures that promise that they will only be entered once. They

are not updated with their normal form. It is up to the compiler to detect and

label these single-entry closures (Launchbury et al. [1992]; Marlow [1993]).

— \r — Reentrant.

Closures that are already evaluated and may be entered (and re-evaluated)

more than once. Manifest functions, constructors, and partial applications are

always reentrant. They are never updated.

The complete extended STG language syntax is shown in figure A .l.

A .2 Unprofiled Operational Semantics

This section presents the operational semantics for the extended STG language executing

without profiling. The semantics is presented using a state transition system. The state

has six components:

1. the code, which takes one of several forms, given below;

2. the argument stack, as , which contains values;

3. the return stack, rs, which contains continuations;

4. the update stack, us, which contains update frames;

A.2. UNPROFILED OPERATIONAL SEMANTICS 168

Program prog —> binds

Bindings binds —> vari = Ifi", . . . ; varn = l f n n > 1

Lambda-forms / / -» varsj \n varsa -> expr

Update flag 7r —y u
1 s
1 r

Updateable
Single Entry |
Reentrant f

Expression expr —»• l e t binds in expr
| l e t r e c binds in expr
| case expr of alts
| var atoms
| constr atoms
| prim atoms
| literal
| see cc expr

Local definition
Local recursion
Case expression
Application
Saturated constructor
Saturated built-in op

Set Cost Centre f

Alternatives alts —► a a lt i; . . . ; aaltn ; default
| p a lt i ; . . . ; paltn ; default

n > 0 (Algebraic)
n > 0 (Primitive)

Algebraic alt
Primitive alt
Default alt

aalt —> constr vars -> expr
palt —> literal -> expr

default var -> expr
| d e fa u l t -> expr

Literals literal —> 0# | 1# | . . . Primitive integers

Primitive ops prim —> +# | -# | *# | /# Primitive integer ops

Variable lists vars —> {v a r i , . . . , varny n > 0

Atom lists atoms —>■ i a to m i , . . . , atomny
atom var \ literal

n > 0

|Extensions made to standard STG language presented in Peyton Jones [1992].

Figure A .l: Syntax of the Extended STG language

A.2. UNPROFILED OPERATIONAL SEMANTICS 169

5. the heap, h, which contains (only) closures;

6. the global environment, <r, which gives the addresses of all closures defined at top

level.

Section A.3 introduces a seventh component, the current cost centre which is required for

specifying the profiling semantics.

Sequences are used extensively in what follows. They are denoted using curly brackets,

thus {ax,. . . , an}. The empty sequence is denoted {}; if as and bs are two sequences then

as -H- bs is their concatenation; and a : as denotes the sequence obtained by adding

the item a to the beginning of the sequence as. The length of a sequence as is denoted

length(as).

A value takes one of the following forms:

Addr a A heap address

In t n A primitive integer value

In the operational semantics, values are tagged with Addr and In t and so on to distinguish

these different kinds of value (though the actual implementation avoids this). Further

forms of value for other primitive data types, such as floating-point numbers, are handled

exactly analogously to integers, so they are omitted to reduce clutter. Note tha t w. Wi, . .. ,

is used to range over values, and ws to range over sequences of values.

The heap, h, is a mapping from addresses, ranged over by a, Gq,. . . , to closures. Every

closure is of the form

(vs \7T xs -> e) ws

Intuitively, the lambda-form (vs Vr xs -> e) denotes the code of the closure, while the

sequence of values ws gives the value of each of the free variables vs. (n is used to range

over update flags, which can be either u, s or r.)

The global environment component of the state, a , maps the name of each variable

bound at the top level of the program to the address of its closure. These closures can all be

allocated once and for all before execution begins. (Indeed, unlike the other components,

a does not change during execution.)

Finally, the code component of the state takes one of the following four forms, each of

which is accompanied by its intuitive meaning:

A.2. UNPROFILED OPERATIONAL SEMANTICS 170

Eval e p Evaluate the expression e in environment p

and apply its value to the arguments on the

argument stack. The expression e is an arbi

trarily complex STG-language expression.

Enter a Apply the closure at address a to the argu

ments on the argument stack.

ReturnCon c ws Return the constructor c applied to values ws

to the continuation on the return stack.

R etu rn ln t k Return the primitive integer k to the continu

ation on the return stack.

The local environment p , maps variable names to values. The notation p[v t—> w] extends

the map p with a mapping of the variable v to value w. This notation also extends in the

obvious way to sequences of variables and values; for example p[vs i->- u;s].

The val function takes an atom (Figure A .l) and delivers a value:

val p o k = In t k

val p o v — p v if u E dom(p)

= o v otherwise

If the atom is a literal A;, val returns a primitive integer value. If it is a variable, val looks

it up in p or a as appropriate, val extends in the obvious way to sequences of variables:

val p a vs is the sequence of values to which val p a maps the variables vs.

A .2.1 In itia l S ta te

First the initial state of the STG machine is specified. The general form of an STG

program is as follows:

g i = V S i \7T! X S i “ >

gn = vsn \irn x sn -> en

A.2. UNPROFILED OPERATIONAL SEMANTICS 171

One of the <7* will be main. Given this program, the corresponding initial state of the

machine is:

(0)

A .2.2 A pplications

To perform a tail call, the values of the arguments are put on the argument stack, and the

value of the function is entered.

(i)

The rule for entering a closure depends on the update flag. The rules for updatable

closures (\u update flag) are given in Section A.2.6 . For single entry (\s) and re-entrant

(\r) closures the body is evaluated in an extended local environment.

(2)

The rule for single entry closures is identical in the unprofiled semantics.

Evaluating a constructor application simply moves into the ReturnCon state (see

Section A.2.4):

Enter a as rs us h[a 1—̂ (vs \ r xs -> e) wsj] a

such that length(as) > length(xs)

=> Eval e p as' rs us h a

where wsa -H- as' — as
length(wsa) — length(xs)
P = [US !-)• lUSf, xs t-> u>sa]

Eval (f xs) p as rs us h a

such that val p a f = Addr a

=> Enter a (val p a xs) -tf as rs us h a

Code

Eval (main {}) {} {} {} {}

g1 h* (Addr ax)

Arg Return Update
stack stack stack Heap Globals

h in i t &

where o
gn 1-4 (Addr an)
ai (usi \7rx xsx -> ex) (a vsi)

an h* (usn \irn x sn -> en) (a vsn)

A.2. UNPROFILED OPERATIONAL SEMANTICS 172

(3)

A .2.3 le t (r e c) E xpressions

A l e t expression constructs one or more closures in the heap.

(4)

The rule for le t r e c is almost identical, except that prh3 is defined to be p' instead of p.

A .2.4 Case E xpressions and D ata C onstructors

The rule for case pushes a continuation onto the return stack and evaluates the case

expression, e.

(5)

When the case expression, e, is evaluated and the result returned, the continuation is

popped from the return stack and the appropriate alternative evaluated. The return rules

for constructors and literals use intermediate return states ReturnCon and R etu rn ln t

respectively. Primitive values are dealt with in the next section, while the rules for con

structors are given next.

If the continuation on the return stack contains a pattern c vs whose constructor c is

the same as that being evaluated, the right-hand side of th a t alternative is evaluated, in

the saved environment p augmented with bindings for the constructor fields, vs.

(6)
ReturnCon c ws as (. .. ; c vs -> e ; . ., p) : rs us h a

=$> Eval e p[vs h-> u ; s] as rs us h a

Eval (case e o f alts) p as rs us h a

Eval e p as (alts,p) : rs us h a

Eval

l e t Xi = vsi \7T! xsi -> ex

%n ~ \ ^ n 3 '^ n

V in e

Eval e p'

p as rs us h a

as rs us h' a

where p' = p[x± Addr a l7. . . , x n i—>■ Addr an\
a\ (us! \7r1 xsi -> ei) (prhs usi)

h' = h

Pr hs ~ P

& n 1 ^ \ ^ n Z ' S n ^ € n) (p r h s V S n)

Eval (c xs) p as rs us h a

ReturnCon c (val p a xs) as rs us h a

A.2. UNPROFILED OPERATIONAL SEMANTICS 173

If there is no such alternative, the default alternative is taken. The rule for this is easy

when no variable is bound in the default case:

(?)

The case where a variable is bound to the default is avoided for algebraic case expres

sions, as these would require the constructor to be allocated in the heap, by enforcing the

following program transformation.

let v = xs \ u O -> e
case e of ... ; v -> b ==> in

case v of . . . ; default -> b

Lastly, if there is no match and no default alternative, no rule matches, which is

interpreted as failure.

A .2.5 B u ilt-in O perations

The rule for evaluating a primitive literal, &, enters the R eturn ln t state:

(8)

A similar rule deals with the case where a variable bound to a primitive value is entered:

(9)

The Return ln t state looks for a continuation on the return stack chooses the appro

priate alternative. First the case when there is a matching alternative.

(10)
R eturn ln t k as (. . . ; k->e; . ., p) : rs us h a

==> Eval e p as rs us h a

Eval (/ {}) p[f h-> In t k] as rs us h a

R eturn ln t k as rs us h a

Eval k p as rs us h a

R e turn ln t k as rs us h a

(Ci vsi -> e i ; ^

ReturnCon c ws as • • • }
» P : rs us h a

Cn VSn >
\ d e fa u l t -> ed

such tha t c ^ Ci (1 < i < n)

==> Eval ed p as rs us h a

Next, the cases where the default alternative is taken:

A.2. UNPROFILED OPERATIONAL SEMANTICS 174

(11)

(12)

Finally, there are a family of rules for built-in arithmetic operations which, for each

binary built-in operation ®, have the form:

(13)

A .2.6 U pd ating C losures

When an updateable closure is entered, it pushes an update frame onto the update stack

and makes the argument and return stacks empty. An update frame is a triple consisting

of the previous argument stack, the previous return stack, and a pointer to the closure

being entered. This closure will be updated with the result of evaluating the expression.

(14)

When evaluation of the closure is complete an update is triggered. This can happen

in one of two ways.

If the value of the closure is a data constructor, an attem pt will be made to pop a

continuation frcom the return stack, which will fail because the return stack is empty.

Enter a as rs us h[a i-* (vs \u {} -> e) wsj] G

=$■ Eval e p {} {} (as, r s , a) : us h G

where p = [us h-* wsj

Eval (® {x i ,X 2}) p[xi i—y In t x 2 •-> In t i f as rs us h a

R eturnln t ® if) as rs us h a

A1

\

Returnlnt k as • • • 9

Jc — ^ p *
r t n c n i

^ d e fa u l t -> e

P : rs us h g

such that k ^ ki (1 < i < n)

= = > Eval e p as rs us h g

(ki -> e i ; \

R e turn ln t k as • • • i
kn €,n t

 ̂ x -> e

, p : rs us h g

such that k ^ ki (1 < i < n)

= > Eval e p[x In t k] as rs us h g

A.2. UNPROFILED OPERATIONAL SEMANTICS 175

This failure triggers an update which updates the closure pointed to by the update frame,

restores the argument and return stacks from the update frame, and tries again. It may be

th a t the return stack is still empty requiring further updates to expose the continuation.

(15)

If the value of the closure is a function, the function will attem pt to bind arguments

th a t are not present on the argument stack (because they were squirrelled away in the

update frame). This failure to find enough arguments triggers an update.

(16)

The closure to be updated (address au) is updated with a partial application of a to the

arguments currently on the stack, as. Partial applications use of a fixed piece of code

which unpacks the function and arguments stored in the closure if subsequently entered.

A .2.7 see E xpressions

Finally the semantics for an sec expression. During unprofiled execution an sec expression

is simply ignored and the body evaluated.

(17)
Eval (see cc3CC e) p as rs us h a

Eval e p as rs us h a

Enter a as {} (asu,r s u iau) : us h o

such tha t h a = (vs \ r xs -> e) wsj
length(as) < length(xs)

Enter a as -H- asu rsu us hu g

where XS! -H" XS2 = XS
length(xs i) = length(as)
f is an arbitrary variable
hu = h[au i-)- ((/ : zsi) \ r {} -> / arsj (a : as)]

ReturnCon c ws {} {} (asu,r s u,au) : us h a

=>■ ReturnCon c ws asu rsu us hu a

where vs is a sequence of arbitrary distinct variables
length(vs) = length(ws)
hu = h[au i—>• (vs \n {} -> c vs) ws]

A .3. EXTENDING THE SEMANTICS FOR PROFILING 176

A .3 Extending the Semantics for Profiling

The operational semantics of Section A.2 are now extended to include the manipulation

of cost centres. As the lexical, evaluation and hybrid profiling schemes have different cost

semantics separate STG-level operational semantics are presented in Sections A.4, A.5

and A.6 respectively.

These profiled STG-level semantics should only be read once the reader has a thorough

understanding of the corresponding abstract cost semantics presented in Section 5.5.

All the STG-level profiling semantics require the following extensions to the state

transition system presented in Section A.2:

• The current cost centre, cc, is added as an extra element to the machine state.

• All heap closures have the current cost centre attached to them when they are

allocated (Section A.3.2). This is indicated by prefixing the heap object with the

cost centre.

• The initial state is extended to include an initial cost centre and cost centres for all

the top-level closures (Section A.3.1).

The extended transition systems concentrate on the rules tha t manipulate cost centres.

The rules tha t do not manipulate cost centres are omitted for brevity. Where appropriate

the rule numbers used correspond directly with those in Section A.2.

A .3 .1 In itia l S tate

In the initial state we must attach cost centres to the global or top-level declarations. The

cost centre attached depends on the type of declaration.

• Functions:

The cost of evaluating top-level functions are subsumed (see Section 4.1.4). This is

indicated by attaching a special "SUB" cost centre. This is only a dummy cost centre

— it is never assigned to the current cost centre.

• Thunks:

Section 4.1.7 required all CAFs to be annoated with a cost centre. For the purpose of

these semantics we introduce a single "CAF" cost centre which is attached to all CAF

A.3. EXTENDING THE SEMANTICS FOR PROFILING 177

closures. The costs incurred evaluating each CAF can be distinguished by attaching

distinct cost centres.

• D ata Values:

Top-level data values are already evaluated. They are treated as thunks which

happen to require no further evaluation — they simply return their value. The

special cost centre "DATA" is attached. These are not built in the heap but may be

created in the heap if a closure is updated with a copy of the data value.

We also initialise the current cost centre to the special cost centre "MAIN". This results

in the cost of evaluating main being attributed to "MAIN".

(0 p r o f)

A .3.2 C onstructing H eap O bjects

Objects constructed in the heap by le t(rec) expressions have the current cost centre

attached to them.

(4 p r o f)

Eval

l e t Xi = vsi \7r! xsi -> ex

X n = V S n \7Tn xsn -> e „

in e /
= > Eval e p'

where p' — P

h' = h

Pr h s — P

p as rs us cc h a

as rs us cc h! a

x l h-* a l i • • • 5 x n l— ̂ a n]

ax !->■ cc (vsi \7r! xsi -> ex) (prhi vsi)

a n CC (v s n \7Tn xsn -> en) (p r h s

Code

Eval (main {}) {} {} {} {}

i-)- (Addr a x)

Arg Return Update Cost
stack stack stack Centre Heap Globals

MAIN hinit a

where a

gn (Addr an)
ax i-)- cci (vsi \ tt! xsi -> ex) (a usx)

Lini t —

an ^ ccn (vsn \ n n xsn -> en) {a U5n)
cci = i f length(xsi) > 1 then "SUB"

else i f 7r,- = r then "DATA"
else "CAF"

A.4. LEXICAL PROFILING 178

The rule for l e t r e c is almost identical, except tha t prhs is defined to be p' instead of p.

A .4 Lexical Profiling

Lexical scoping makes use of the tail call mechanism and return stack. The cost centre

of the closure entered is loaded during a tail call. Return stack frames are used to save

the cost centre when a non tail-call closure is entered. This cost centre is restored when

evaluation returns.

This STG-machine implementation is based on the abstract push-enter rules in Fig

ure 5.9.

A .4.1 E ntering C losures

When a closure is entered the current cost centre is loaded with the cost centre stored in

the closure, unless the closure is a top-level subsumed function.

We assume that the boxing transformation of Section 4.2.4 has already been applied.

This ensures that any top-level functions which are passed as arguments have the cost

centre of the referencing scope attached.

First the rule for top-level subsumed functions which does not load the current cost

centre. These top-level functions are always re-entrant (\ r update flag).

(2?)

In all other cases the current cost centre is loaded with the cost centre of the entered

closure ccenter. This includes the entry of data closures which will simply return the data

value.

Enter a as rs us cc h a

such that h a = "SUB" (vs \ r xs -> e)
length(as) > length(xs)

W S f

=*• Eval e p as' rs us cc h a

where wsa -H- as'
length(wsa)
P

= as
= length(xs)
~ [us l—7- W S j , xs u>sa]

A.4. LEXICAL PROFILING 179

(2?)

The rule for single entry closures (\s update flag) is identical to rule 2f. We discuss

updateable closures (\u update flag) in Section A.4.3.

Note that the top-level subsumed functions are easily identified at compile time so no

runtime test to is required to determine if the cost centre of the entered closure should be

loaded. We generate entry code tha t “knows” if the cost centre should be loaded.

A .4.2 Saving and R estorin g C ost C entres

When a case expression is evaluated the current cost centre must be saved so tha t it can

be restored when the evaluation returns to the appropriate alternative.

(5<)

This current cost centre is restored when evaluation returns.

(6/)

The other return transition rules 7, 10, 11, and 12 restore the current cost centre in a

similar fashion.

A .4.3 U pdating C losures

When an updateable closure (\u update flag) is entered an update frame is pushed on the

update stack (as for the unprofiled semantics) and the cost centre loaded from the closure.

ReturnCon c ws as (alts, ccret, p) : rs us cc h o

such that alts = . . . ; c vs -> e; . . .

==> Eval e p[us ws] as rs us ccret h a

Eval (case e of alts) p as rs us cc h o

Eval e p as (alts, cc, p) : rs us cc h a

Enter a as rs us cc h o

such that h a — ccenter (vs \ r xs -> e) wsj
length(as) > length(xs)

= > Eval e p as' rs us ccenier h o

where wsa 4f as'
length(wsa)
P

= as
= length(xs)
= [us W S j , X S l-)- wsa]

A.4. LEXICAL PROFILING 180

(14/)

When a closure is updated a logically new heap closure1 is built which contains the

cost centre tha t evaluated the closure i.e. the current cost centre. There are two distinct

cases: data value updates and partial application updates.

When a constructor sees an empty return stack the update stack is popped and the

closure is updated with the data value. The current cost centre is attached to the updated

closure. Any copies of the data closure that are generated by the update mechanism will

have the same cost centre as the original.

(15<)

When a A-abstraction does not have enough arguments on the stack the closure is

updated with a partial application. The cost centre of the function being entered is

attached to the partial application (unless this is a "SUB" cost in which case the current

cost centre is attached). This cost centre will be loaded if the partial application is ever

entered.

1 The use of indirections may avoid the actual construction of these new heap closures.

ReturnCon c ws {} {} (asu, r s u,a u) : us cc h g

=> ReturnCon c ws asu rsu us cc hu o

where vs is a sequence of arbitrary distinct variables
length(vs) = length(ws)
hu = h[au cc (vs \ r {} -> c vs) ws]

Enter a as rs us cc h a

such tha t h a = ccenter (v s \u O -> e) wsf

Eval e p {} {} (a s , r s ,a) : us ccenter h g

where P = Pinit[vs t-> wsf]

A.5. EVALUATION PROFILING 181

(16/)

To avoid a runtime test checking for a subsumed cost centre we specialise this rule into two

cases, generating code tha t “knows” when a top-level subsumed function is being entered.

A .4.4 see Expressions

Evaluating an sec expression under lexical profiling simply loads the current cost centre

with the cost centre of the see annotation, ccscc. As this is a tail call the sec does not

need to restore the cost centre when evaluation completes.

(17.)

A .5 Evaluation Profiling

Evaluation scoping makes use of the update frames to save and restore cost centres when

closures are entered. The update frames are augmented with the cost centre to be restored

once the closure evaluated and the update has been performed. A second form of update

frame is introduced which is used to keep track of cost centres when no update is actually

required. It does not contain a closure to update, just a cost centre to restore.

The STG-level evaluation semantics presented here are based on the our original im

plementation of evaluation profiling which only uses the update frames to save and restore

cost centres (see Section 5.5.6). The STG-level implementation for the abstract push-enter

rules in Figure 5.11 can be derived form the hybrid STG-level description in Appendix A.6

(see A.6.5).

Eval (see cc3CC e) p as rs us cc h a

==$>■ Eval e p {} {} US CCscc h g

Enter a as {} (asu, rs„, au) : us cc h a

such that h a — ccenter (vs \ r xs -> e) wsj
length(as) < length(xs)

=> Enter a as -H- asu rsu us cc hu g

where xsi -H- xs 2 = xs
length(xsi) = length(as)
f is an arbitrary variable
K = h[au i ̂ ccpap ((f : xsi) \ r {} -> / zsi) (a : as)]
ccpap — suB(ccenter, cc)

s u b ("S UB " , cc) = cc
s u b (ccenier, cc) — CCenter

A .5. EVALUATION PROFILING 182

A .5.1 E ntering C losures and Saving C ost C entres

Entering an evaluated closure (\ r update flag) does not modify the current cost centre.

The (small) cost of entering these closures to extract the value within will be attributed

to the cost centre demanding the value.

(2.)

This is crucial when entering functions as these do not return their value but evaluate

the function as applied to the arguments on the stack. Under evaluation scoping this eval

uation should be attributed to the cost centre of the application site not the cost centre

attached to the function being entered. This is the fundamental distinction between eval

uation and lexical scoping. Lexical scoping requires the loading of the cost centre on entry

to a function (except for top-level subsumed functions) so tha t evaluation of the function

body is attributed to the declaration site not the application site (see Section A.4.1).

When entering unevaluated closures, or thunks, the current cost centre is loaded with

the thunk’s cost centre. The demanding cost centre is saved and restored once evaluation

of the closure has completed. For updateable closures (\u update flag) the demanding

cost centre is added to the update frame. It will be restored when evaluation is complete

and the closure updated.

(14“)

Single-entry closures (\s update flag) push a dummy update frame th a t just restores

the cost centre when evaluation is complete and the update is triggered. No update will

Enter a as rs us cc h a

such that h a = ccenter (vs \u {} -> e) wsj

Eval e p {} {} (as, rs, cc, a) : us ccenter h a

where P = Pinit[vs t—>■ wsf]

Enter a as rs us cc h G

such that h a = ccenter (vs \ r xs -> e) wsj
length(as) > length(xs)

= > Eval e p as' rs us cc h G

where wsa -H- as'
length(wsa)
P

-- as
= length(xs)
= [us l—V V J S f , X S iusa]

A.5. EVALUATION PROFILING 183

actually be performed.

(14*)

A .5.2 U p d atin g C losures and R estorin g C ost C entres

Finally the rules for updating. These fall into two categories:

• Those that resulted from entering an updateable closure and require the closure to

be updated and the cost centre to be restored.

• Those that resulted from entering a single-entry closure or evaluating an see expres

sion and simply require the cost centre to be restored.

First the rules for full updates. When a constructor sees an empty return stack an

update is triggered. The updated closure requires the cost centre tha t evaluated and

returned the constructor to be attached to it. Unfortunately this is below the level of

detail of this semantics. We have not deemed it necessary to incorporate the required

detail into the semantics as it is not critical to the semantics. The cost centre attached

to updated closure has no affect on further evaluation — it only affects the attribution

of heap allocation. The transition rule here refers to a “magic” value ccC0n. Its value is

simply the cost centre of the constructor that is being returned.

(is;)

When a A-abstraction does not have enough arguments on the stack the closure is

updated with a partial application. The cost centre of the function being entered is

ReturnCon c ws {} {} (asu, r s u, ccu, au) : us cc h a

= > ReturnCon c ws asu rsu us ccu hu a

where vs is a sequence of arbitrary distinct variables
length(vs) = length(ws)
hu = h\au \—y ccC0n (vs \ r {} -> c u s) i d s]

Enter a as rs us cc h o

such that h a = ccenter (vs \ s {> -> e) wsj

=*• Eval e p {} {} (as, rs, cc) : us ccenter h a

where P = Pinit[vs w s f]

A.5. EVALUATION PROFILING 184

attached to the partial application (unless this is a "SUB" cost in which case the current

cost centre is attached). This cost centre only affects the heap profile — it has no effect

on further evaluation as the costs of the application will be attributed to the application

site.

(16;)

As for lexical scoping we specialise this rule into two cases, generating code tha t “knows”

when a top-level subsumed function is being entered.

There is a corresponding pair of rules for dummy cost-centre updates. Here, the update

frame only contains the cost centre to be restored, ccu. There is no closure to be updated

so the heap is left unchanged.

(15‘)

(ie;)

A .5.3 see E xpressions

Evaluating an see expression under evaluation profiling loads the current cost centre with

the cost centre of the sec annotation, cc5CC. A dummy cost-centre update frame, containing

Enter a as {} (asu, r s u,ccu) : us cc h e r

such that h a = ccenter (vs \ r xs -> e) wsj
length(as) < length(xs)

= > Enter a as -ff asu rsu us ccu h a

ReturnCon c ws {} {} (asu, rsu, ccu) : us cc h a

=^> ReturnCon c ws asu rs„ us ccu h a

Enter a as {} (asu, r s u,ccu,au) : us cc h a

such th a t h a = ccenter (v s \ r xs -> e) w s f
length(as) < length(xs)

==> Enter a as -H- asu rsu us ccu hu a

where xsi -ff xs 2 = xs
length(xsi) = length(as)
f is an arbitrary variable
hu = h[au h* ccpap ((/ : x s ^ \ r {} -> / xsi) (a : as)]
-̂̂ -'pap — SUB(cCen£er, Cc)

SUB("SUB", cc) = cc
s u b (ccenter, cc) — C C e n t e r

A.6. HYBRID PROFILING 185

the enclosing cost centre, cc, is pushed onto the update stack. It will be restored on

completion of the evaluation of the expression e when the update will be triggered.

(17.)

A .6 Hybrid Profiling

The implementation of the hybrid profiling scheme combines the mechanisms of the lexical

and evaluation implementations described in the previous sections:

• The return stack is used to save the cost centre on entry to a case and restore it

when evaluation returns and the appropriate alternative is evaluated.

• Update frames are used to save the cost centre, restoring it if the result is a partial

application of a function declared within the scope of a CAF or dictionary cost

centre. This ensures tha t the costs of applying these A-abstractions are attributed

to the application site, not the declaration site.

This STG-machine implementation is based on the abstract push-enter rules in Figure 5.12.

A .6.1 E ntering C losures

When an evaluated closure (\ r update flag) is entered the current cost centre is loaded with

the cost centre stored in the closure, unless the closure is a top-level subsumed function

or a function declared in the scope of a CAF or dictionary cost centre. We have three

distinct cases:

• Entering a top-level subsumed function. Since these top-level functions are easily

identified at compile time the correct code can be generated. No runtime test is

required.

• The general case for entering a A-abstraction requires a runtime test, captured by

the e v a l selector, to check for A-abstractions declared in the scope of a CAF or

dictionary cost centre. If the scope declaring the A-abstraction is known at compile

time the appropriate code can be generated and the runtime test omitted.

Eval (see ccSC0 e) p as rs us cc h a

=> Eval e p {} {} (as,rs, cc) : us cc3CC h a

A.6. HYBRID PROFILING 186

As for lexical scoping, we assume tha t the boxing transformation of Section 4.2.4

has already been applied. This ensures that any top-level functions th a t are passed

as arguments have the cost centre of the referencing scope attached.

• Entering an evaluated data closure (no arguments) always loads the cost centre. No

runtime test is required.

The three rules are given below:

Enter a as rs us cc h a

such tha t h a = "SUB" (vs \ r xs -> e) wsj
length(as) > length(xs)

= > Eval e p as' rs us cc h a

where wsa -H- as'
length(wsa)
P

= as
= length(xs)
= [U S !->• W S f , xs 1—y ?usa]

(2 ;)

Enter a as rs us cc h e r

such that h a = cca (vs \ r xs -> e) wsj
lcngth(xs) > 0
length(as) > length(xs)

=► Eval e p as' rS US CCenter h ®

where wsa 4f as' — as
length(wsa) = lcngth(xs)
P = [vSh-tWSj, xs wsa]
^Center = EVAL(cCa,Cc)

eval("CAF" cc) = CC
EVAL("DICT" cc) = CC
EVAL(cCa cc) = CCa

f t)

Enter a as rs us cc h g

such that h a — CCeTiter (us \ r {} -> e) U)Sf

Eval e p as rs us ccenier h g

where p - [us 1—y wsf]

(2Ji)

A .6. HYBRID PROFILING 187

The rule for entering single entry closures (\s update flag) requires a dummy cost-

centre update frame. This is discussed along with updateable closures (\u update flag) in

Section A.6.3.

A .6.2 Saving and R estorin g C ost C entres

When a case expression is evaluated the current cost centre must be saved so tha t it can

be restored when the evaluation returns to the appropriate alternative. This is identical

to the save and restore mechanism used in the lexical implementation (Section A.4.2).

(5*)

This current cost centre is restored when evaluation returns.

(6*)

The other return transition rules 7, 10, 11, and 12 restore the current cost centre in a

similar fashion.

A .6.3 U p d atin g closures

When entering unevaluated closures, or thunks, the current cost centre is loaded with the

thunk’s cost centre. The demanding cost centre is saved. This is restored when evaluation

completes if the result is a A-abstraction (i.e. partial application) declared in the scope of a

CAF or dictionary cost centre. The hybrid update rules are similar to those for evaluation

scoping (Sections A.5.1 and A.5.2) except that the cost centre is only restored when a

CAF or dictionary PAP update occurs.

For updateable closures (\u update flag) the demanding cost centre is added to the

update frame.

ReturnCon c ws as (alts, ccret, p) : rs us cc h a

such tha t alts = . . . ; c vs -> e; . . .

= > Eval e p[vs ics] as rs us ccret h a

Eval (case e of alts) p as rs us cc h a

Eval e p as (alts, cc, p) : rs us cc h a

A.6. HYBRID PROFILING 188

Enter a as rs us cc h a

such tha t h a = ccenter (vs \u O -> c) wsf

= > Eval e p {} {} (as, rs, cc, a) : us ccenter h a

where P = Pinit[vs ^ WSj]

(142)

Single-entry closures (\s update flag) push a dummy update frame which will just

restore the cost centre if required when the update is triggered. No update will actually

be performed.

Enter a as rs us cc h a

such that h a = ccenter (v s \ s O ~ > e) w s j

= > Eval e p {} {} (as,rs, cc) : us ccenter h a

where p = p ini t [v s i—> w s f]

(146k)

The rule for updating with a constructor proceeds as for lexical scoping. The cur

rent cost centre is attached to the updated closure and the demanding cost centre is not

restored.

ReturnCon c ws {} {} (asu, rsu, ccu, au) : us cc h a

=> ReturnCon c ws asu rsu us cc hu a

where vs is a sequence of arbitrary distinct variables
length(vs) = length(ws)
hu = h[au h* cc (vs \ r {} -> c vs) rosl

(15;)

Dummy updates triggered by a returning constructor are simply removed as the cost centre

does not need to be restored.

ReturnCon c ws o {} (asu, rsu,ccu) : us cc h a
(15*)

==>• ReturnCon c ws asu rs„ us cc h a

Partial application updates restore the demanding cost centre only if the cost centre

of the closure being entered is a CAF or dictionary cost centre. If the cost centre of

the closure being entered is "SUB" then the decision is based on the value of the current

A.6. HYBRID PROFILING 189

cost centre. This requires a runtime test, which is captured by the EVAL selector. (The

SUB selector does not require a test as we generate code tha t “knows” when a top-level

subsumed function is entered.)

Enter a as {} (asu, rsu, c c u , au) : us c c h e r

such tha t h a = ccenter (vs \ r xs -> e) wsj
length(as) < length(xs)

==> Enter a as 4f asu rsu us ccrestore hu a

where xsi 4f z s2 — x $
length(xsl) = length(as)
f is an arbitrary variable
hu = h[au »->• ccpap ((/ : xsi) \ r {} -> / xs x) (a : as)]
CCpap — SUB(cCerl£er, Cc)
^restore — EVAL(cCpap, CCU)

S U B (" S U B " , cc) = CC
sub (ccenter, cc) — CCen(er

E V A L (" C A F m , ccu) = c c u

E V A L (" D I C T " , ccu) = c c u

EVAL(c Cpap , CCU) — CCpap

(W)

Enter a as {} (asu, r s u,ccu) : us cc h a

such th a t h a = ccenter (vs \ r xs -> e) wsf
length(as) < length(xs)

=> Enter a as -H- usu rsu

where ccrestore = EVAL(suB(cceriter, cc),ccu)

sub("SUB", cc) = cc
SUB(cCen(er, cc) — CCenier
EVAL("CAF" , c c u) = ccu
EVAL("DICT", C C y) = ccu
EVAL(cCpap , CCU) — CCpap

U S CCres t ore ^ ^

(K)

The demanding cost centre is only restored if the result is A-abstraction declared in the

scope of a CAF or dictionary cost centre. If it is known at compile time tha t the demanding

cost centre will not be restored (i.e. the result is a constructor or a A-abstraction tha t is

not declared in a CAF or dictionary cost centre) then the cost centre need not be saved

A .6. HYBRID PROFILING 190

in the update frame. This optimisation is particularly significant for single entry closures

as the dummy update frame can then be omitted altogether.

A .6 .4 see E xpressions

Evaluating an see expression under the hybrid profiling scheme loads the current cost

centre with the cost centre of the sec annotation, cc8CC. A dummy cost-centre update

frame, containing the enclosing cost centre, cc, is pushed onto the update stack. It will be

restored on completion of the evaluation of the expression e when the (dummy) update is

triggered if the result is a A-abstraction declared in the scope of a CAF or dictionary.

(17.)

This is identical to the see rule for evaluation scoping (Section A.5.3), except tha t the

enclosing cost centre will only be restored if the result is a A-abstraction with a CAF or

dictionary cost centre.

A .6.5 E valuation scoping

This STG-machine implementation of the evaluation scoping push-enter rules in Fig

ure 5.11 can be derived from the hybrid implementation given above. All tha t is required

is for the e v a l selector used in rules 16^, 16£ and 2bh to always select/restore the cost

centre of the application site i.e.

EVALe (c C f n , CCap) — CCap

This is a known action which does not require any runtime test.

Eval (see ccscc e) p as rs us cc h a

= > Eval e p {} {} (as , rs, cc) : us cc3CC h a

A p p en d ix B

Profiling D ocum entation

The following sections are taken from the user documentation of the Glasgow Haskell
compiler (Version 0.22).

B .l Compiling programs for profiling

To make use of the cost centre profiling system ALL modules must be compiled and linked
with the -p ro f profiling option.

There are a number of additional options which affect the cost centre declarations
within particular Haskell modules. These do not have to be used consistently.

-p ro f : Compile module with cost centre profiling (based on the hybrid cost semantics),
see annotations in the Haskell source will be be recognised, causing the costs incurred
by the enclosed expression to be attributed to the named cost centre. ALL modules
must be compiled and linked with this option.

If the -p ro f option is not specified see annotations in the source will be ignored.
This allows you to compile the source normally after placing explicit sec annotations
in your source.

-a u to : All top-level, exported declarations are automatically annotated with cost centres.
The label given to cost centre annotation is the name of the declaration. Explicit
see annotations are still recognised.

- a u to - a l l : All top-level (included non-exported) declarations are automatically anno
tated with cost centres.

- c a f - a l l : By default the costs of all CAFs in a module are attributed to a single CAF
cost centre. This option requests tha t the costs of each CAF be attributed to its
own cost centre.

- d i e t - a l l : By default the costs of all dictionaries in a module are attributed to a single
DICT cost centre. This option requests that the dictionary costs of each instance
be attributed to a separate cost centre.

- ig n o re -s c c : Forces any sec annotations in the module’s source to be ignored. This is
a surprisingly useful option as it allows a module which has had see annotations

191

B.2. CONTROLLING THE PROFILER AT RUNTIME 192

added to be compiled for profiling with the annotations being ignored. There is no
need to remove the annotations.

-G<group>: Specifies the (group) to be attached to all the cost centres declared in the
module. If no group is specified it defaults to the module name.

Alternative profiling semantics may also be available. To use these the runcime system
and prelude libraries must have been built for the alternative profiling setup. This is
done using a particular User Way setup. The alternative profiling system will normally be
invoked using the options:

- le x : for lexical profiling.

-e v a l: for evaluation profiling.

All modules must be consistently compiled with the - le x or -e v a l option instead of the
-p ro f option. The other profiling options are still applicable.

Finally we note tha t the options which dump the program source during compilation
may be useful to determine exactly what code is being profiled. Useful options are:

-ddump-ds: dump after desugaring. Any automatic see annotations will have been added.

-ddump-simpl: dump after simplification.

-ddum p-stg: dump the STG-code immediately before code generation.

B.2 Controlling the profiler at runtime

These flags are passed to the runtime system between the usual +RTS and -RTS options.
They will only have an effect if the program was compiled and linked with the -prof
options (see Section B .l).

-p<sort> or -P<sort>: The -p option produces an aggregate profile report describing
the amount of time and allocation consumed by each cost centre. The report is
written into the file (program).pro f.

The -P option produces a more detailed report containing the actual time and al
location data as well. It also produces serial time-profiling information, in the file
(program).tim e. This can be converted into a (somewhat unsatisfactory) PostScript
graph using hp2ps (see Section B.3.2). The profiling interval may be set using the
-i< secs> option (the default is 1 second between data samples).

The (sort) indicates how the cost centres are to be sorted in the report. Valid (sort)
options are:

T: time, largest first (the default);

A: bytes allocated, largest first;

C: alphabetically by group, module and label.

The T and A (sort)s place all the CAF and dictionary cost centres at the end.

\

B.2. CONTROLLING THE PROFILER A T RUNTIME 193

-h<break-down>: Produce a detailed serial heap profile of the space occupied by live
closures at regular points in time over the run of the program. The profile is written
to the file (program) .hp from which a PostScript graph can be produced using hp2ps
(see Section B.3.2).

The heap space profile may be broken down by different criteria:

-hC: cost centre which allocated the closure (the default).

-hM: cost centre module which allocated the closure.

-hG: cost centre group which allocated the closure.

-hD: closure description — a string describing the closure.

-hY: closure type — a string describing the closure’s type.

-h T < in ts> ,< s ta r t> : the time interval the closure was created. < in ts> specifies the
no. of interval bands plotted (default 18) and < s ta r t> the number of seconds
after which the reported intervals start (default 0.0).

By default all live closures in the heap are profiled, but particular closures of interest
can be selected (see below).

The heap profiling interval may be set using the -i< secs> option (the default is
1 second between heap profile samples). This is used to adjust the number of sample
points during the run of the program.

Finally we note tha t heap profiling uses hash tables. If these tables should fill the
run will abort. The -z< tb l> < size> option is used to increase the size of the relevant
hash table (C, M, G, D or Y, defined as for (break-down) above). The actual size used
is the next largest power of 2.

The heap profile can be restricted to particular closures of interest. The closures of
interest can selected by the attached cost centre (moduledabel, module and group), closure
category (description, type, and kind) and closure age using the following options:

-c-C<mod>:<lab>,<mod>:<lab>. . .}: Selects individual cost centre(s).

-m{<mod>,<mod>. . Selects all cost centres from the module(s) specified.

-g{<grp>,<grp>.

-d{<des> , <des>.

-y{< typ> ,< typ> .

-k{<knd>, <knd>.

Selects all cost centres from the groups(s) specified.

Selects closures which have one of the specified descriptions.

}: Selects closures which have one of the specified type descriptions.

}: Selects closures which are of one of the specified closure kinds.
Valid closure kinds are CON (constructor), FN (manifest function), PAP (partial ap
plication), BH (black hole) and THK (thunk).

-a<age>: Selects closures which have survived (age) complete intervals.

The space occupied by a closure will be reported in the heap profile if the closure satisfies
the following logical expression:

([-c] or [-m] or [-g]) and ([-d] or [-y] or [-k]) and [-a]

where a particular option is true if the closure (or its attached cost centre) is selected by
the option (or the option is not specified).

B.3. GRAPHICAL POST-PROCESSORS 194

B.3 Graphical post-processors

Utility programs which produce graphical profiles.

B .3 .1 sta t2resid

USAGE: s ta t2 r e s id [(file)[.stat] [(outfile)]]

The program s ta t2 r e s id converts a detailed garbage collection statistics file produced
by the -S runtime option into a PostScript heap residency graph. The garbage collection
statistics file can be produced without compiling your program for profiling.

By convention, the file to be processed by s ta t2 r e s id has a . s t a t extension. If
the (outfile) is not specified the PostScript will be written to (file) . r e s id .p s . If (file) is
omitted entirely, then the program behaves as a filter.

The plot can not be produced from the statistics file for a generational collector, though
a suitable stats file can be produced using the -F2s runtime option when the program has
been compiled for generational garbage collection (the default).

s t a t2 r e s id is distributed in g h c /u t i l s / s t a t2 r e s id .

B .3 .2 hp2ps

USAGE: hp2ps [flags] [(file)[. s ta t]]

The program hp2ps converts a heap profile as produced by the -h<break-down> runtime
option into a PostScript graph of the heap profile. By convention, the file to be processed
by hp2ps has a .hp extension. The PostScript output is written to (file).ps. If (file) is
omitted entirely, then the program behaves as a filter.

hp2ps is distributed in g h c /u tils /h p 2 p s . It was originally developed by David Wake-
ling as part of the h b c /lm l heap profiler. Various extensions have been made to the
original program by Patrick Sansom.

The flags are:

-d In order to make graphs more readable, hp2ps sorts the shaded bands for each identifier.
The default sort ordering is for the bands with the largest area to be stacked on top
of the smaller ones. The -d option causes rougher bands (those representing series of
values with the largest standard deviations) to be stacked on top of smoother ones.

— i [+ I —] The - i option causes the bands to be sorted lexicographically by the identifier
string. + indicates the greatest string will be on top (the default) and - indicates
the least string will be on top. - i+ is used to sort the creation-time heap profiles.

-p Use previous parameters. By default, the PostScript graph is automatically scaled
both horizontally and vertically so tha t it fills the page. However, when preparing
a series of graphs for use in a presentation, it is often useful to draw a new graph
using the same scale, shading and ordering as a previous one. The -p flag causes
the graph to be drawn using the parameters determined by a previous run of hp2ps
on file. These are extracted from file.aux.

B.3. GRAPHICAL POST-PROCESSORS 195

-m<int> Normally a profile is limited to 20 bands with additional identifiers being grouped
into an OTHER band. The -m flag specifies an alternative band limit (the maximum
is 20).

-mO requests the band limit to be removed. As many bands as necessary are pro
duced. However no key is produced as it won’t fit! It is useful for displaying creation
time heap profiles with many bands.

- t< f lo a t> Normally trace elements which sum to a total of less than 1% of the profile
are removed from the profile. The - t option allows this percentage to be modified
(maximum 5%).

- tO requests no trace elements to be removed from the profile, ensuring th a t all the
da ta will be displayed.

-e < flo a t> [in I mm I p t] Generate encapsulated PostScript suitable for inclusion in LaTeX
documents. Usually, the PostScript graph is drawn in landscape mode in an area 9
inches wide by 6 inches high, and hp2ps arranges for this area to be approximately
centred on a sheet of a4 paper. This format is convenient of studying the graph
in detail, but it is unsuitable for inclusion in LaTeX documents. The -e option
causes the graph to be drawn in portrait mode, with float specifying the width in
inches, millimetres or points (the default). The resulting PostScript file conforms to
the Encapsulated Post Script (EPS) convention, and it can be included in a LaTeX
document using Rokicki’s dvi-to-PostScript converter dvips.

-g Create output suitable for the gs PostScript previewer (or similar). In this case the
graph is printed in portrait mode without scaling. The output is unsuitable for a
laser printer.

-b Normally, hp2ps puts the title of the graph in a small box at the top of the page.
However, if the JOB string is too long to fit in a small box (more than 35 characters),
then hp2ps will choose to use a big box instead. The -b option forces hp2ps to use
a big box.

- s Use a small box for the title.

-? Print out usage information.

A p p en d ix C

Clausify

This Appendix contains the Haskell source for clausify, after the improvements by Runci-

man & Wakeling [1993] have been incorporated. A brief description of the program can

be found in Section 6.1.

C .l Haskell Source

— CLAUSIFY: Reducing Propositions to Clausal Form
— Colin Runciman, U niversity of York, 10/90

— An e x c e l le n t benchmark i s : (a = a = a) = (a = a = a) = (a = a = a)

— Optimised version: based on Runciman & Wakeling [1993]
— Patrick Sansom, U niversity of Glasgow, 2/94

module Main(main) where

— the main program: reads s td in and w rites stdout
main = readChan s td in e x i t (\input ->

appendChan stdout (c la u s ify input) e x i t done)

— convert l in e s of propostions input to c lausa l forms
c la u s ify input = concat

(in ter lea v e (repeat "prop> ")
(map c la u s i fy l in e (l in e s in p u t)))

c la u s i fy l in e = concat . map disp . c lauses . parse

196

C.l. HASKELL SOURCE 197

— the main p ip e lin e from propositional formulae to printed clauses
— with e x p l i c i t see annotations (lex and eval scoping)
— clauses = un icl . s p l i t . d is in . negin . elim
c lau ses = (\x -> see "unicl" u n ic l x) .

(\x -> see "split" s p l i t x) .
(\x -> see "disin" d is in x) .
(\x -> see "negin" negin x) .
(\x -> see "elim" elim x)

data StackFrame = Ast Formula I Lex Char

data Formula = Sym Char
I Not Formula
I Dis Formula Formula
I Con Formula Formula
I Imp Formula Formula
I Eqv Formula Formula

— separate p o s it iv e and negative l i t e r a l s , e lim inating d uplicates
clause p = c la u se ’ p ([] , [])

where
c la u se ’ (Dis p q) x = c la u s e ’ p (c la u s e ’ q x)
c la u se ’ (Sym s) (c ,a) = (in se r t s c , a)
c la u se ’ (Not (Sym s)) (c ,a) = (c , in ser t s a)

— s h i f t d isjunction within conjunction
d is in (Con p q) = Con (d is in p) (d is in q)
d is in (Dis p q) = d i s in ’ (d is in p) (d is in q)
d is in p = p

— auxilary d e f in it io n encoding (d is in . Dis)
d i s i n ’ (Con p q) r = Con (d i s in ’ p r) (d i s in ’ q r)
d i s i n ’ p (Con q r) = Con (d i s in ’ p q) (d i s in ’ p r)
d i s i n ’ p q = Dis p q

— format pair of l i s t s of propositional symbols as c lausa l axiom
disp (l , r) = in terleave 1 spaces ++ "<=" ++ in ter leave spaces r ++ "\n"

— elim inate connectives other than not, d isju nction and conjunction
elim (Sym s) = Sym s
elim (Not p) = Not (elim p)
elim (Dis p q) = Dis (elim p) (elim q)
elim (Con p q) = Con (elim p) (elim q)
elim (Imp p q) = Dis (Not (elim p)) (elim q)
elim (Eqv f f ’) = Con (elim (Imp f f ’)) (elim (Imp f ’ f))

C.l. HASKELL SOURCE 198

— remove d uplicates and any elements s a t is fy in g p
f i l t e r s e t p s = f i l t e r s e t ’ [] p s

f i l t e r s e t ’ res p [] = []
f i l t e r s e t ’ res p (x:xs) = i f (notElem x res) && (p x) then

x : f i l t e r s e t ’ (x :res) p xs
e lse

f i l t e r s e t ’ res p xs

— in ser t io n of an item into an ordered l i s t
in se r t x [] = [x]
in se r t x (y:ys) = i f x < y then x:y:ys

e l s e i f x > y then y : in ser t x ys
e l s e y:ys

in ter lea v e (x :xs) ys = x : in ter leave ys xs
in ter lea v e [] = []

— s h i f t negation to innermost p os it ion s
negin (Not (Not p)) = negin p
negin (Not (Con p q)) = Dis (negin (Not p)) (negin (Not q))
negin (Not (Dis p q)) = Con (negin (Not p)) (negin (Not q))
negin (Dis p q) = Dis (negin p) (negin q)
negin (Con p q) = Con (negin p) (negin q)
negin p = p

— the p r io r i t i e s of symbols during parsing
opri ’ (’ = 0
opri) =) = 1
opri ’>» = 2
opri ’ 1* = 3
opri ’&’ = 4
opri) ~ > = 5

— parsing a propositional formula
parse t = f where [Ast f] = parse’ t []

parse’ [] s = redstar s
parse’ (’ ’:t) s = parse’ t s
parse’ (’(’:t) s = parse’ t (Lex ’(’ : s)
parse’ (’)’:t) s = parse’ t (x:s’)

where
(x : Lex ’(’ : s ’) = redstar s

parse’ (c:t) s = if inRange (’a ’,’z ’) c then parse’ t (Ast (Sym c) : s)
else if spri s > opri c then parse’ (c:t) (red s)
else parse’ t (Lex c : s)

C.l. HASKELL SOURCE 199

— reduction of the parse stack
red (Ast P Lex ’=’ Ast q s) = Ast (Eqv q p) : s
red (Ast P Lex ’>’ Ast q s) = Ast (Imp q p) : s
red (Ast P Lex ’ | ’ Ast q s) = Ast (Dis q p) : s
red (Ast P Lex ’&’ Ast q s) = Ast (Con q p) : s
red (Ast P Lex ’ ~ ’ s) = Ast (Not P) : s

— i t e r a t iv e reduction of the parse stack
redstar = while ((/=) 0 . sp ri) red

spaces = repeat * ’

— s p l i t conjunctive proposition in to a l i s t of conjuncts
s p l i t p = s p l i t ’ p []

where
s p l i t ’ (Con p q) a = s p l i t ’ p (s p l i t ’ q a)
s p l i t ’ p a = p : a

— p r io r ity of the parse stack
spri (Ast x : Lex c : s) = opri c
sp r i s = 0

— does any symbol appear in both consequent and antecedant of clause
tau tc lau se (c ,a) = [x I x <- c, x ‘elem‘ a] /= []

— form unique c lau sa l axioms excluding ta u to lo g ie s
u n ic l = f i l t e r s e t (not . tau tc lause) . map clause

— fu nction al while loop
while p f x = i f p x then while p f (f x) e l s e x

Runciman & Wakeling’s Original Version D efin it ion s:

conjunct (Con p q) = True
conjunct p = False

d is in (Dis p (Con q r)) = Con (d is in (Dis p q)) (d is in (Dis p r))
d is in (Dis (Con p q) r) = Con (d is in (Dis p r)) (d is in (Dis q r))
d is in (Dis p q) =

i f conjunct dp I I conjunct dq then d is in (Dis dp dq)
e l s e (Dis dp dq)
where
dp = d is in p
dq = d is in q

d is in (Con p q) = Con (d is in p) (d is in q)
d is in p = p

C.2. UNBOXING OPTIMISATION 200

un ic l a = fo ld r u n i c l ’ [] a
where
u n i c l ’ p x = i f tau tc lause cp then x e l s e in ser t cp x

where
cp = clause p

->

C.2 Unboxing Optimisation

Below are the modified declarations which use gh c’s unboxed characters (Peyton Jones

& Launchbury [1991]). They must be compiled using the -g lasgow -exts flag. Most of

the modifications are defining operations on the user defined data type L ite ra ls ^hich

replaces the L ist of literals in the original program. It is not possible to construct a

List of unboxed literals directly since an unboxed value cannot be passed to polymorphic

function.

data Formula = Sym Char#
I Not Formula
I Dis Formula Formula
I Con Formula Formula
I Imp Formula Formula
I Eqv Formula Formula

data L ite ra ls = End 1 Lit Char# L itera ls

clause p = c la u s e ’ p (End, End)
where
c la u s e ’ (Dis p q) x
c la u s e ’ (Sym s) (c ,a)
c la u s e ’ (Not (Sym s)) (c ,a)

aisp (l , r) = in ter leave (u n lit 1) spaces ++ "<=" ++
in ter leave spaces (u n l i t r) ++ "\n"

where
u n l i t End = []
u n l i t (Lit 1# Is) = MkChar 1# : u n l i t Is

f i l t e r s e t ’ res p [] = []
f i l t e r s e t ’ res p (x:xs) = i f (p x) && (notin x res) then

x : f i l t e r s e t ’ (x :res) p xs
e lse

f i l t e r s e t ’ res p xs
where

= c la u s e ’ p (c la u s e ’ q x)
= (in se r t s c , a)
= (c , in se r t s a)

C.2. UNBOXING OPTIMISATION 201

in s e r t x# End
in s e r t x# (Lit

nontautclause

p a rse ’ []
p a rse ’ (’ ’ :t)
p a r se ’ (’ (’ :t)
p a rse ’ (’) ’ :t)

p a rse ’ (c : t)

not in x [] = True
notin x (r :r s) = n e l i tp r x r && n otin x rs

n e l i tp r (p,q) (r , s) = n e l i t s p r I I n e l i t s q s

n e l i t s End End = False
n e l i t s (Lit x# xs) (L it y# ys) = neChar# x# y#

I I n e l i t s xs ys
n e l i t s = True

= Lit x# End
y# ys) = i f eqChar# x# y# then Lit y# ys

e l s e i f ItChar# x# y# then Lit x# (L it y# ys)
e l s e L it y# (in ser t x# ys)

(c s ,a s) = n o in tersect cs as
where
n o in tersect End as = True
n o in tersect (Lit c# cs) as = notmeraber c# as

&& n o in tersec t cs as
notmember c# End = True
notmember c# (Lit a# as) = neChar# c# a#

&& notmember c# as

s = redstar s
s = p arse’ t s
s = p arse’ t (Lex ’ (’ : s)
s = p arse’ t (x : s ’)

where
(x : Lex ’ (’ : s ’) = redstar s

s = i f inRange (’a ’ , ’z ’) c then
p arse’ t (Ast (Sym (case c of MkChar c# -> c#)) : s)

e l s e i f spri s > opri c then p arse’ (c : t) (red s)
e l s e p arse’ t (Lex c : s)

u n ic l = f i l t e r s e t nontautclause . map clause

