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Summary

Growth factors stimulate glucose transport; the increase in the rate is biphasic, with the 

early phase occurring immediately and lasting up to two hours.

3T3 -LI fibroblasts are a murine cell line which express a single facilitative 

monosaccharide transporter, G lutl. Insulin and platelet-derived growth factor (PDGF) 

stimulate cell proliferation in 3T3-L1 fibroblasts. These growth factors and the tumour 

promoter, 4fi-phorbol 12-myristate, 13-acetate (PMA), all stimulate 2-deoxyglucose 

uptake, in a similar manner. These effects are not additive, so the effects of these 

ligands on the rate of glucose transport may be mediated by a  similar signal 

transduction pathway.

The role of sn-l,2-diacylglycerol (DAG) and protein kinase C (PKC) in the early phase of 

insulin-, PDGF- and PMA-stimulated glucose transport was examined in 3T3-L1 

fibroblasts. Insulin has no effect on either DAG accumulation or PKC activity, so 

neither DAG nor PKC is necessary for insulin-stimulated glucose transport. PDGF 

stimulates both DAG accumulation and PKC activity; however, PDGF-stimulated 

glucose transport is unaffected by the down-regulation or the inhibition of PKC, so PKC 

is not necessary for PDGF-stimulated glucose transport. PMA also stimulates both DAG 

accumulation and PKC activity, and PMA-stimulated glucose transport is abolished by 

the down-regulation and the inhibition of PKC, so PKC is necessary for PMA-stimulated 

glucose transport. Thus, a signal transduction pathway involving PKC is not necessary 

for the early phase of insulin- or PDGF-stimulated glucose transport, but it is necessary 

for the early phase of PMA-stimulated glucose transport.

The role of mitogen-activated protein kinase (MAPK) in the early phase of insulin-, 

PDGF- and PMA-stimulated glucose transport was also examined in 3T3-L1 fibroblasts. 

Insulin, PDGF and PMA stimulate MAPK activity with the same dependancy on PKC as 

for the increase in the rate of glucose transport. In addition, insulin-, PDGF- and PMA- 

stimulated activation of MAPK precedes the increase in the rate of glucose transport.



Therefore, given th a t the activation of MAPK and the increase in the rate of glucose 

transport have the same dependency on PKC, and tha t the activation of MAPK precedes 

the increase in the rate of glucose transport, it is possible tha t the early phase of growth 

factor-stimulated glucose transport is mediated by a signal transduction pathway 

involving MAPK in 3T3-L1 fibroblasts.

Xenopus laevis oocytes also only express G lutl. Insulin-like growth factor-I (IGF-I) 

stimulates both glucose transport and MAPK activity in X. laevis oocytes. Again, the 

activation of MAPK precedes the increase in the rate of glucose transport.

In addition, the microinjection into X. laevis oocytes of recombinant p42maPk, purified 

MAPK kinase (MAPKK) or p39mos fusion protein, results in an increase in the rate of 

glucose transport. Since p39mos activates MAPKK, which in turn activates MAPK, it 

seems th a t components of a signal transduction pathway involving MAPK are able to 

stimulate glucose transport in X  laevis oocytes.

Furthermore, IGF-I-stimulated glucose transport is inhibited by the microinjection of 

CL 100, a protein tyrosine/ threonine phosphatase that is specific for MAPK.

Therefore, given th a t IGF-I stimulates both glucose transport and MAPK activity, that 

components of a signal transduction pathway involving MAPK also stimulate glucose 

transport, and th a t inhibition of MAPK activity abolishes IGF-I-stimulated glucose 

transport, it is likely tha t IGF-I-stimulated glucose transport is mediated by a signal 

transduction pathway involving MAPK in X. laevis oocytes.

The insulin and IGF-I receptors are tyrosine protein kinases of a similar structure, and 

either ligand can bind to either receptor, so it is likely tha t insulin- and IGF-I- 

stimulated glucose transport are mediated by a similar signal transduction pathway.

Therefore, given th a t it is possible tha t the early phase of growth factor-stimulated 

glucose transport is mediated by a signal transduction pathway involving MAPK in 

3T3 -LI fibroblasts, tha t it is likely th a t IGF-I-stimulated glucose transport is mediated 

by a signal transduction pathway involving MAPK in X. laevis oocytes, and tha t it is 

likely tha t insulin- and IGF-I-stimulated glucose transport are mediated by a similar



signal transduction pathway, it seems tha t the early phase of insulin-stimulated glucose 

transport in 3T3-L1 fibroblasts is, in fact, mediated by a pathway involving MAPK

Furthermore, PDGF, which also binds to a tyrosine protein kinase receptor, has similar 

effects to insulin on the rate of glucose transport and the activation of MAPK in 3T3-L1 

fibroblasts. Therefore, it is also likely th a t the early phase of PDGF-stimulated glucose 

transport is also mediated by a signal transduction pathway involving MAPK

This thesis concludes tha t the early phase of growth factor-stimulated glucose transport 

is mediated by a signal transduction pathway involving MAPK
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Abbreviations

The abbreviations used are defined in 'Instructions to authors', Biochem J  (1993) 289 1 - 

15. The abbreviations defined below are also used.

AP -1 activator protein-1

ATP[S] adenosine 5'-[y-thio]triphosphate

Ch choline

ChP phosphocholine

DAG sn -1,2-diacylglycerol

DFP diisopropyl fluorophosphate

DMEM Dulbecco's modified Eagle's medium

E 64 £ratt$-epoxysuccinyl-L-leucylamido(4-guanidino)-butane

ECL enhanced chemiluminescence

EGF epidermal growth factor

ERK extracellular signal-regulated kinase

FAK focal adhesion kinase

FGF fibroblast growth factor

GAP GTPase-activating protein



Glut (GLUT) facilitative monosaccharide transporter protein (gene)

GNRP guanine nucleotide-releasing protein

Grb2 growth factor receptor bound protein-2

GSK glycogen synthase kinase

HBG Hanks buffered saline with BSA and glucose

HBS Hanks buffered saline

HRP horseradish peroxidase

IGF insulin-like growth factor

Ins(l,4,5)P3 D-myo-inositol 1,4,5-trisphosphate

IRS-1 insulin receptor substrate-1

KRP Krebs Ringer buffered phosphate

LPA lysophosphatidic acid

MalE Maltose binding protein

MalE-Mos a fusion protein consisting of MalE and p39mos

MAPK mitogen-activated protein kinase

MAPKAP kinase MAPK-activated protein kinase

MAPKK MAPK kinase

MAPKKK MAPKK kinase



MARCKS myristoylated alanine-rich C kinase substrate

MEK MAPK/ ERK kinase

NCS newborn calf serum

4a-PDD 4a-phorbol 12,13-didecanoate

PDGF platelet-derived growth factor

PH pleckstrin homology domain

PKC protein kinase C

PLA phospholipase A

PLC phospholipase C

PLD phospholipase D

PMA 4fi-phorbol 12-myristate, 13-acetate

PP1 g glycogen-associated protein phosphatase -1

PtdCh sn - 1,2-phosphatidyl choline

PtdCh-PLC sn-1,2-phosphatidyl choline-specific phospholipase C

PtdCh-PLD sn-1,2-phosphatidyl choline-specific phospholipase D

Ptdlns sn-1,2-phosphatidyl inositol

Ptdlns 3'-K sn - 1,2-phosphatidyl inositol 3' -kinase

PtdIns(4)P sn-1,2-phosphatidyl inositol 4-phosphate



PtdIns(4,5)P2 sn-1,2-phosphatidyl inositol 4,5-bisphosphate

Ptdlns-PLC sn-1,2-phosphatidyl inositol-specific phospholipase C

PtdOH phosphatidic acid

RasGAP p21ms-GTPase activating protein

Sglt (SG LT ) active sodium/ monosaccharide transporter protein (gene)

SH Src homology domain

TAG triacylglycerol

TBST Tris buffered saline with Tween-20

TEMED N, N, N', N'-tetramethylethylenediamine

TRE phorbol ester responsive element
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Introduction



1.1 Cell proliferation

1.1.1 The somatic cell cycle

The somatic cell cycle is a complex series of events which culminates in nuclear division 

(mitosis) and cytoplasmic division (cytokinesis), producing two daughter cells, each with 

an identical complement of chromosomes to the parent cell. The process is highly 

coordinated so tha t cytoplasmic growth and one round of DNA replication are followed 

by mitosis then cytokinesis [Johnston et al., 1977]. In mammalian cells, the cell cycle is 

divided into the interphase (consisting of the S phase and two gaps of varying length:

G1 and G2), and the M phase. Cytoplasmic growth (the synthesis of new proteins, 

membranes and organelles) occurs throughout the interphase. DNA replication occurs 

during the S phase. Mitosis and cytokinesis occur during the M phase. In rapidly 

dividing human cells, the interphase takes about 24 hours and the M phase about 30 

minutes.

1.1.2 Control of the cell cycle 

Reasons for control

Cells only divide in specific conditions. If conditions are inappropriate for cell division, 

then, after reaching a critical point in G l, the cells exit from the cell cycle and enter a 

quiescent state, GO. They remain in GO until the correct conditions occur; thus the 

length of GO can vary considerably. This critical point is known as START in yeast and 

as the restriction point in mammalian cells. Entry and exit from GO is determined by 

the presence or absence of extracellular signals. These signals are different for 

unicellular and multicellular organisms.

The survival of a unicellular organism, such as the budding yeast, Saccharomyces 

cerevisiae, depends on rapid cell division. But, one of the conditions for cell division is 

th a t the cell m ust have a certain size. Hence, when cells are starved of an essential 

nutrient they will not pass through START, and so they enter GO [Johnston et al., 1977].
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In addition, budding yeasts also reproduce by conjugation. Consequently, when cells are 

exposed to mating pheromones, they enter GO [Reed, 1991].

The survival of a multicellular organism, such as man, depends on the survival of the 

organism as a whole. Again, the cells may only divide if they have a certain size. 

Division also requires a physiologically appropriate time and location, for example, 

during development or wound repair. Therefore, cell division in multicellular organisms 

is under greater control than in unicellular organisms, and consequently is influenced 

by more extracellular signals. These additional signals include growth factors [Pardee, 

1974] and anchorage to the extracellular matrix [Folkman and Moscona, 1978]. In the 

absence of these signals, cells enter GO. Cells will also enter GO when they touch other 

cells, a phenomenon known as contact inhibition. Furthermore, cells in multicellular 

organisms become senescent after a certain number of cell cycles.

Growth factor dependence

Growth factors are secreted by many cell types into the blood stream. Growth factors 

bind to specific membrane-spanning cell surface proteins which are expressed in a cell- 

specific manner. These receptors can be divided into groups, based on their structures, 

reflecting their different modes of action. Class I receptors are heteromers, each subunit 

having between four and six transmembrane domains. These receptors enclose anion or 

cation channels which open or close in response to ligand-binding [Barnard, 1992].

Class II receptors are monomers, each monomer having seven transm embrane domains. 

These receptors have an intracellular domain through which they bind to G proteins 

tha t are activated in response to ligand-binding [Hepler and Gilman, 1992]. Class III 

receptors are either monomers or formed from monomers, each monomer having a single 

transm embrane domain. These receptors have intrinsic intracellular protein tyrosine 

kinase or guanylate cyclase domains which are activated in response to ligand-binding 

[Yarden et al., 1986].

Growth factors are known to bind to G protein-coupled receptors and to tyrosine protein 

kinase receptors. Examples of growth factors which bind to G protein-coupled receptors 

include: the phospholipid, lysophosphatidic acid (LPA) [van Corven et al., 1989]; and 

the neuropeptides, bombesin [Battey et al., 1991] and a-thrombin [Vu et al., 1991]. 

Examples of growth factors which bind to tyrosine protein kinase receptors include: the
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polypeptides, epidermal growth factor (EGF), fibroblast growth factor (FGF), insulin, 

insulin-like growth factor-1 (IGF-I), and platelet-derived growth factor (PDGF) [Yarden 

etal., 1986].

The binding of a  growth factor to its receptor activates signal transduction pathways 

tha t stimulate the events of cell division. Some signal transduction pathways will be 

discussed in later chapters.

Since growth factor receptors are expressed in a cell-specific manner, and growth factors 

can only bind to their own receptors, a growth factor can only affect certain cell types. 

Thus, by controlling which growth factors are released, a multicellular organism can 

control which cell types divide.

Anchorage dependence

Cells are surrounded by the extracellular matrix, a network of macromolecules secreted 

by members of the connective-tissue cell family {Section 3.1.2). The extracellular matrix 

consists of adhesive fibrous proteins, such as fibronectin and laminin, and structural 

fibrous proteins, such as collagen and elastin, embedded in a polysaccharide 

glycosaminoglycan gel. The composition of the extracellular matrix depends on its 

location.

Cells bind to the adhesive proteins in the extracellular matrix and to proteins on the 

surface of other cells using integrins. Integrins are heterodimeric membrane-spanning 

proteins tha t are expressed in a cell-specific manner, and bind specifically to different 

extracellular proteins and to cytoskeletal proteins [Sastry and Horwita, 1993; Schaller 

and Parsons, 1993]. Since integrins are expressed in a cell-specific manner, integrins 

bind specifically to distinct subsets of extracellular proteins, and the composition of the 

extracellular matrix itself depends on its location, the interaction between extracellular 

proteins and integrins serves to anchor a particular cell type to a particular location.

Integrins are also involved in signal transduction. The binding of extracellular proteins 

to integrins induces changes in the intracellular pH, the intracellular free calcium ion 

concentration, tyrosine phosphorylation of cellular proteins and gene expression 

[Schaller and Parsons, 1993]. Since integrins have no enzymatic activity, these signals

4



must arise from intermediary proteins; possible candidates are the non-receptor tyrosine 

protein kinases: focal adhesion kinase, p 1 2 5 ^ ^ ,  and Src, pGO^ [Zachary and 

Rozengurt, 1992; Schaller and Parsons, 1993].

In addition, growth factors regulate the affinity of integrins for their extracellular 

ligands [Sastry and Horwita, 1993] and cytoskeleton reorganisation [Ridley and Hall, 

1992; Ridley et al., 1992]. Thus, signal transduction pathways may link and integrate 

the growth factor and anchorage dependence of the cell cycle.

Loss of control

In tumour cells and transformed cultured cells, there is no control of the cell cycle. 

Consequently, these cells proliferate in the absence of growth factors and anchorage, 

and do not undergo senescence. In the case of tumour cells, loss of control of the cell 

cycle usually results from a combination of gene mutations occurring spontaneously, or 

in response to chemical carcinogens or radiation. Since there are several controlling 

factors in cell division, loss of control of the cell cycle usually requires four to six 

mutations; one mutation is not enough. In the case of cultured cells, loss of control of 

the cell cycle often results from transformation of the cell by a single mutated gene, 

since cultured cells already contain mutations tha t enable them to be maintained in 

culture. These mutations usually occur in the genes encoding proteins tha t are involved 

in the regulation of the cell cycle. This can occur in two ways: firstly, proteins that 

stimulate cell proliferation (the products of proto-oncogenes) become hyperactive (the 

products of oncogenes) [Bishop, 1985]; or secondly, proteins th a t inhibit cell proliferation 

(the products of tumour repressor genes) become inactive [Goodrich and Lee, 1992].

1.1.3 Early events of the cell cycle

The early events of the cell cycle prepare the cell for the increase in biosynthetic activity 

that leads to cytoplasmic growth and DNA replication, and include: an increase in the 

rate of transcription of intermediate-early genes [Greenberg and Ziff, 1984; Stumpo and 

Blackshear, 1986]; an increase in sodium/ proton exchange [Moolenaar et al., 1984a]; an 

increase in the intracellular free calcium ion concentration [Berridge and Irvine, 1989]; 

an increase in the phosphorylation of ribosomal protein S6 [Sturgill and Wu, 1991] and 

increase in the rate of transport of nutrients [Jimenez de Asua and Rozengurt, 1974].
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The increase in the rate of glucose transport forms the significant interest in this thesis.

The increase in the biosynthetic activity results in an increase in demand for nutrients 

such as amino acids, inorganic phosphate, nucleosides and monosaccharides, so an early 

event of G1 is an increase in the rates of transport of these nutrients [Jimenez de Asua 

and Rozengurt, 1974], When quiescent Swiss 3T3 cells are exposed to serum, the rate of 

glucose transport increases in a biphasic manner {Figure 1.1}. The early phase occurs 

during the first two hours of exposure to serum, during which the increase in the rate of 

glucose transport is rapid, reaching a maximum of approximately two fold by 60 to 

120 minutes. The late phase occurs during longer exposures to serum, during which the 

increase in the rate of glucose transport is rapid and maintained over several hours, 

reaching five to ten fold [Jimenez de Asua and Rozengurt, 1974]. The early phase is 

independent of protein synthesis, while the late phase is dependent on protein synthesis 

{Figure 1.1}.

A biphasic increase in the rate of glucose transport is also observed in response to many 

growth factors, for example: angiotensin II, EGF, thrombin and vasopressin in vascular 

smooth muscle cells [Low et al., 1992]; connective tissue-activating peptide-III and 

neutrophil-activating peptide-2 in 3T3-442A fibroblasts [Tai et al., 1992]; bombesin, FGF 

and PDGF in Swiss 3T3 fibroblasts [Takuwa et al., 1987; Kitagawa et al., 1989]; PDGF 

in Balb/c 3T3 fibroblasts [Rollins et al., 1988] and tumour necrosis factor-a in 3T3-L1 

fibroblasts [Cornelius et al., 1990],

A biphasic increase in the rate of glucose transport is also observed in response to 

tumour promoters, for example: 4fi-phorbol 12-myristate, 13-acetate (PMA) in Fisher 

ra t 3T3 fibroblasts [Flier et al., 1987].
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Figure 1.1 The effect of serum on the rate of deoxyglucose uptake

After incubation of quiescent Swiss 3T3 fibroblasts with foetal calf serum and with (□) or 
without (o) 10 mg/ml cyclohexunide, for the times shown, a 10 minute uptake of
2-deoxyglucose was measured [Jimenez de Asua and Rozengurt, 1974]. These results 
show th a t growth factor-stimulated glucose transport occurs in a biphasic manner and 
tha t the early phase occurs independently of protein synthesis, while the late phase is 
dependent on protein synthesis.
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1.2 Monosaccharide transport

1.2.1 Entry of small molecules into cells 

Diffusion, passive transport and active transport

Small molecules can pass through a lipid membrane in three ways: firstly, by simple 

diffusion; secondly, by facilitated diffusion (passive transport); and thirdly, by active 

transport {Figure 1.2}. The rate of simple diffusion is dependent on the size of the 

molecule and its relative solubility in non-polar solvents. Non-polar molecules, such as 

oxygen (32 Da) and small polar molecules, such as water (18 Da) diffuse rapidly across 

the membrane, while, larger, polar molecules, such as glucose (180 Da), diffuse slowly. 

Facilitated diffusion and active transport are protein-mediated; facilitated diffusion by 

facilitative transporter proteins or by channel proteins, and active transport by active 

transporter proteins. Transporter proteins undergo a conformational change after 

solute-binding in order to transfer th a t solute across the membrane. Transport across a 

membrane will only occur if the solute is able to bind to a transporter protein in tha t 

membrane. Channel proteins are water-filled pores th a t extend across the membrane; 

when they are open they allow solutes to pass through them. Transport across a 

membrane will only occur if the solute, which is usually an inorganic ion, has the correct 

charge and is small enough. These processes are faster than simple diffusion for larger 

hydrophilic solutes, such as monosaccharides, because the solute passes through the 

protein instead of the membrane so the size and solubility requirements of the 

membrane no longer apply. Facilitative transporter proteins and channel proteins, 

move a solute energetically downhill, across the membrane, tha t is, down the 

electrochemical gradient of the solute. However, active transporter proteins move a 

solute energetically uphill across the membrane, tha t is, up the electrochemical gradient 

of the solute. This is achieved by coupling solute transport to another process which is 

energy yielding and can drive solute uptake. Examples of such processes include the 

transport of a second solute down its electrochemical gradient, and the hydrolysis of 

ATP.
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Figure 1 =2 The movement of monosaccharides across membranes

Monosaccharides can pass through membranes in three ways:
a) Simple diffusion,
b) Facilitated diffusion,
c) Active transport.

The example shown is that of the movement of glucose across the plasma membrane of 
the epithelia of the small intestine brush border. The facilitative monosaccharide 
transporter located in the basolateral membrane is Glut2. The active monosaccharide 
transporter located in the apical membrane is Sgltl.

[Na+] = high 
[Glc] = low

Lumen of 
small intestine

Apical
membrane

[Na+] = low 
[Glc] = high

Lateral
membrane

Basal
membrane

Blood [Glc] = low

9



Monosaccharides

Monosaccharides, and glucose in particular, are important nutrients, providing energy 

for metabolic processes in many organisms. Simple diffusion of monosaccharides is 

ubiquitous, but is too slow to meet the full energy requirements of the cell. However, 

facilitated diffusion of monosaccharides, through facilitative transporter proteins is 

common to most cells, and active transport is common in prokaryotes and some 

eukaryotes.

1.2.2 Mammalian transporter proteins

The majority of monosaccharides enter mammalian cells by facilitated diffusion, but 

active transport of monosaccharides also occurs in certain tissues.

Facilitative transporter proteins

To date, seven different genes for mammalian, facilitative monosaccharide transporter 

proteins have been identified, and are named according to their order of cloning:

GLUT1 [Mueckler et al., 1985; Bimbaum et al., 1986; Asano et al., 1988], GLUT2 

[Fukumoto et al., 1988; Thorens et al., 1988; Asano et al., 1989a], GLUT3 [Kayano et al., 

1988; Nagamatsu et al., 1992], GLUT4 [Bimbaum, 1989; Fukumoto et al., 1989; James 

et al., 1989], GLUT5 and GLUT6 [Kayano et al., 1990], and GLUT7 [Waddell et al.,

1992]. Six of the seven genes encode proteins, but GLUT6 is a pseudo-gene, with a DNA 

sequence most closely related to th a t of GLUT3 [Kayano et al., 1990]. Within mammals, 

the corresponding proteins are expressed in a tissue-specific manner [Table 1.1}, which 

is preserved across species. Furthermore, the expression of these transporter proteins 

can vary during development. For example, levels of G lutl are very high in most foetal 

tissues, decreasing between 40 to 80 percent in all tissues, except the brain, after birth 

[Asano et al., 1988]. The levels of other transporter proteins, such as Glut2 and Glut5, 

increase in their respective tissues during foetal development [Davidson et al., 1992]. 

Since different tissues have different requirements for monosaccharides, this 

distribution and variance suggests th a t the transporter proteins have different 

functions.
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Table 1.1 The major sites of expression of the mammalian facilitative
monosaccharide transporters

The data shown was obtained by Western blotting with antibodies which recognise 
G lutl [Bimbaum et al., 1986; James et al., 1989; Gould et al., 1992; Nagamatsu et al.,
1992]; Glut2 [Davies et al., 1987; Thorens et al., 1988; Orci et al., 1989]; Glut3 [Gould et 
al., 1992; Nagamatsu et al., 1992; Shepherd et al., 1992]; Glut4 [Fukumoto et al., 1989; 
James et al., 1989; Zorzano et al., 1989]; Glut5 [Davidson et al., 1992]; and Glut7 
[Waddell e ta l., 1992].

Isoform Tissues

G lutl Foetal tissues—cardiac and skeletal myocytes, hepatocytes, 
brown adipocytes;
Adult tissues—erythrocytes, endothelia and epithelia of the 
blood-tissue barriers (placenta, brain, nerve, retina, 
kidney, colon);
Cultured cells, transformed cells, tumour cells.

Glut2 Pancreatic C-cells;
Hepatocytes (sinusoidal membrane);
Epithelia (basolateral membrane) of kidney proximal 
tubules and small intestine brush border.

Glut3 Brain and neurones (rodents);
Brain, neurones, heart, liver and placenta (human).

Glut4 Skeletal and cardiac myocytes; 
Brown and white adipocytes.

Glut5 Epithelium (apical membrane) of the small intestine brush 
border;
Adipocytes and hepatocytes (low levels in human).

Glut7 Hepatocytes (endoplasmic reticulum membrane).
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Active transporter proteins

Two different genes for mammalian, active monosaccharide transporter proteins have 

been identified, and are named in order of their cloning: Sgltl [Hediger et al., 1989], 

and Sglt2 [Wells et al., 1992], Both encode proteins tha t are sodium ion/ sugar 

symporters. Sgltl is expressed in the apical membranes of the epithelia in the small 

intestine brush border and, to a lesser extent, the kidney nephron proximal tubule, 

while Sglt2 is expressed in the apical membranes of the epithelium of the kidney 

proximal tubule [Hediger et al., 1989; Wells et al., 1992].

The facilitative transporter proteins form the significant in terest in this thesis. 

Structure of the facilitative transporter proteins

A model, based on analysis of the G lutl amino acid sequence, has been proposed for the 

orientation of G lutl in the plasma membrane [Mueckler et al., 1985]. There are twelve 

transmembrane a-helical domains arranged so th a t the hydrophilic amino- and carboxy- 

termini are both intracellular. The loops between the putative transmembrane domains 

are very short, usually seven to fourteen amino acid residues long, except for two longer 

loops, one between transmembrane domains 1 and 2 (the first loop), and another 

between 6 and 7 (the middle loop). All of the transporter proteins have a single 

asparagine-linked, heterogeneous oligosaccharide on the first loop [Cairns et al., 1984; 

Mueckler et al., 1985]. Many of these features have been confirmed using antibodies 

specific to different regions of the transporter protein [Mueckler et al., 1985; Davies et 

al., 1987]. It is possible tha t the constraints imposed by the short loops produce a 

bilobular structure, consisting of two separate, but close groups of transmembrane 

helical domains: six nearer the amino-terminal and six nearer the carboxy-terminal. 

This has been observed using low resolution electron microscopy for lactose permease, 

which is a structurally related transporter protein from Escherichia coli [Li and Tooth,

1987].

There is a high level of amino acid sequence identity between the human, facilitative 

monosaccharide transporter proteins [Table 1.2], and the hydropathy plots are mostly 

superimposable. So, although Glut2 to Glut7 have been less well studied than Glutl, 

they are predicted to have a similar structure. A comparison of the amino acid residues 

for the human transporter proteins shows tha t 26 percent are invariant and 13 percent
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Table 1.2 The sequence identity between the mammalian facilitative
monosaccharide transporters

The data shown was derived from the amino acid sequences of human G lutl (492 amino 
acids) [Mueckler et al., 1985], Glut2 (524 amino acids) [Fukumoto et al., 1988], Glut3 
(496 amino acids) [Kayano et al., 1988], Glut4 (509 amino acids) [Fukumoto et al., 1989] 
and Glut5 (501 amino acids) [Kayano et al., 1990]. The human Glut7 has not been 
cloned, but ra t Glut7 (528 amino acids) has 68% sequence identity to ra t Glut2 [Waddell 
et al., 1992].

Isoform Glutl Glut2 Glut3 Glut4

Glut2 55.5

Glut3 64.0 52.0

Glut4 65.0 54.0 58.0

Glut5 42.0 40.0 39.0 42.0
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are conservative substitutions [Kayano et al., 1990]. These low variance amino acid 

residues (the 39 percent) are found mainly in the putative transmembrane domains, 

while the ones of high variance are found in the amino- and carboxy-termini, and also in 

the first loop [Kayano et al., 1990]. Glut5 is the most divergent; this is thought to be 

because it transports fructose rather than glucose. A comparison of the amino acid 

sequences for the transporter proteins between species shows th a t their amino acid 

sequences are also highly conserved (greater than 80 percent sequence identity) [Asano 

et al., 1988; Gould and Bell, 1990; Nagamatsu et al., 1992].

Kinetics of facilitated transport

The kinetics of facilitated transport can be described in a similar way to the kinetics of 

enzyme-catalysed reactions. A solute exists in an equilibrium between two 

compartments, as defined by a  membrane; the facilitative transporter protein 

accelerates the attainm ent of tha t equilibrium.

T + S „t^ l T S - ^ - > T  + Sfat
« - l

where T is the transporter protein, TS is the transporter-solute complex and Sext and 

Sint are the extracellular and intracellular solutes respectively. The substrates and the 

products of a biochemical reaction exist in an equilibrium; the enzyme accelerates the 

attainm ent of tha t equilibrium.

E + S” - * E S ———»E + P

where E is the enzyme, ES is the enzyme-solute complex, S is the substrates and P is 

the products. However, neither transporter proteins nor enzymes have any effect on the 

position of the equilibrium point.

Transport is dependent on the solute binding to the transporter protein. At low 

concentrations of solute, the rate of transport is almost proportional to the solute 

concentration. At a sufficiently high solute concentration the solute-binding sites 

become saturated, so the rate of transport reaches a maximum value, equivalent to 

Vmay. the maximum rate of an enzyme-catalysed reaction. Transporter kinetics can be 

described by the Michaelis-Menten equation:
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v=v   — ____

[S] + K ,

where V  is the rate of transport, Vmax is the maximum rate of transport, [S] is the 

extracellular solute concentration, and is the concentration of solute a t which the 

transport rate is half its maximal value.

Furthermore, facilitated transport is also inhibited by competitive or non-competitive 

and reversible or irreversible inhibitors. Again, the effects of inhibitors on protein - 

mediated transport can be described in a similar way to the effects of inhibitors on 

enzyme-catalysed reactions.

The kinetic properties of the mammalian, facilitative monosaccharide transporter 

proteins have been analysed by studying their expression in bacteria [Thorens et al.,

1988], cultured cells [Asano e ta l., 1989b] and Xenopus laevis oocytes [Birnbaum, 1989; 

Gould and Lienhard, 1989]. Only the D-enantiomers of glucose, galactose and fructose 

are transported [Gould and Lienhard, 1989]. D-Glucose is transported by G lutl, Glut2, 

Glut3, Glut4 and Glut7, D-galactose by G lutl, Glut2 and Glut3, and D-fructose by Glut2 

and Glut5 [Table 1.3}. Each transporter protein has a characteristic Km and Vmax for 

each monosaccharide tha t it is able to transport. The influx Km and the efflux Km for 

the transport of an individual monosaccharide by a single transporter protein may be 

different. For example, G lutl is asymmetric with respect to glucose, while Glut2 and 

Glut4 are symmetric with respect to glucose [Craik and Elliott, 1979; Taylor and 

Holman, 1981],

The fungal metabolite, cytochalasin B, which binds to all the mammalian transporter 

proteins, is a competitive inhibitor of glucose efflux mediated by all the transporter 

proteins [Bloch, 1973]. I t is also a non-competitive inhibitor of glucose influx mediated 

by G lutl, Glut2, Glut3 and Glut4 [Keller et al., 1989; Colville et al., 1993], of fructose 

influx mediated by Glut2 and of galactose influx mediated by Glut3 [Colville et al.,

1993]. However, it has no effect on fructose influx through Glut5 [Burant et al., 1992]. 

Phloretin is a competitive inhibitor for glucose efflux [Krupka, 1971; Basketter and 

Widdas, 1978].
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Table 1.3 Kinetic parameters of the mammalian facilitative monosaccharide
transporters

The data shown was obtained by measuring the zero-trans influx of 2-deoxy-D-glucose, 
galactose and fructose, and the equilibrium exchange of 3-O-methyl-D-glucose in 
X. laevis oocytes after microinjection of the mRNAs for G lutl [Gould and Lienhard, 
1989; Keller et al., 1989; Gould et al., 1991; Burant and Bell, 1992; Nishimura et al.,
1993], Glut2 and Glut3 [Gould et al., 1991; Burant and Bell, 1992; Colville et al., 1993], 
Glut4 [Keller et al., 1989; Burant and Bell, 1992; Nishimura et al., 1993] and Glut5 
[Burant et al., 1992]. ND: not determined.

Isoform Km (mM)

2-deoxy-D-
glucose

3-O-methyl-D-
glucose

D-galactose D-fructose

Glutl 7 17-26 17 Not
transported

Glut2 11-17 42 36-86 67

Glut3 1-2 11 6-8 Not
transported

Glut4 5 2-4 ND ND

Glut5 Not
transported

ND ND 6
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Functions of monosaccharide transporter proteins

Monosaccharide transporter proteins are important for the homeostatic control of the 

blood glucose concentration in mammals. Control of the blood glucose concentration is 

im portant because, if the concentration is too low, tissues tha t are highly dependent on 

glucose (such as the brain) will be damaged (hypoglycaemia), and if it is too high, 

glucose will be excreted by the kidneys (hyperglycaemia). The blood glucose 

concentration is controlled by balancing the entry and the exit of glucose from the blood 

stream.

Under physiological conditions, the blood glucose concentration is between 4.4 and 

6.7 mM (80 to 120 mg/ 100 ml). The rate of glucose transport through G lutl, Glut3 and 

Glut4 is normally a t a maximum because each of these transporters has a low Km for 

glucose relative to the physiological blood glucose concentration {Table 1.3}, and 

therefore each is normally saturated with glucose. However, the rate of glucose 

transport through Glut2 varies proportionally with the blood glucose concentration 

because it has a very high Km for glucose relative to physiological blood glucose 

concentrations {Table 1.3}, and therefore it is not normally saturated with glucose.

During the absorptive state, monosaccharides are absorbed from the lumen of the small 

intestine into the hepatic portal vein. They enter the epithelial cells of the small 

intestine by passing through the apical membrane, glucose and galactose via Sgltl and 

fructose via Glut5, and leave the epithelial cells by passing through the basolateral 

membrane, all three via Glut2 {Figure 1.1}. Consequently, the blood glucose 

concentration rises dramatically. The reabsorption of glucose from the proximal tubule, 

of the kidney, into the peritubular capillaries occurs in the same way as the absorption 

of dietary glucose. If the blood glucose concentration is very high, the transporter 

proteins will be saturated and glucose will be excreted.

In order to prevent excretion, glucose is stored as glycogen by the liver and skeletal 

muscles and as triacylglycerols (TAG) by adipocytes. The rate of glucose transport into 

the liver increases proportionally with the blood glucose concentration, since the liver 

expresses Glut2. The rate of glucose transport increases in adipocytes and skeletal 

muscle, by 20 to 30 fold and five fold respectively, in response to insulin which is 

released by the 13-cells of the islets of Langerhans. The insulin is released in response to
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high blood glucose concentrations. The insulin-stimulated glucose transport is mainly 

due to an increase in the rate of transport through Glut4 {Section 1.3.2}. In addition, 

Glut2 may have a role in insulin secretion, its high Km enabling the 13-cells of islets of 

Langerhans to sense changes in the blood glucose concentration [Holz and Habener, 

1992].

In the post-absorptive state, glucose is no longer absorbed from the small intestine, the 

blood glucose concentration is maintained by the efflux of glucose from the liver.

Glucose is formed there by glycogenolysis and gluconeogenesis. The last stage of these 

pathways, the dephosphorylation of glucose-6-phosphate by glucose-6-phosphatase, 

occurs in the lumen of the endoplasmic reticulum. Glut7, which is expressed in the 

membrane of the hepatic, endoplasmic reticulum, allows glucose to pass into the cytosol 

[Waddell et al., 1992]. Glut2, which is kinetically symmetric, allows glucose to leave the 

liver. Furthermore, the demand for glucose is reduced since most cells obtain energy 

from alternative sources; however, neurones remain dependent on glucose. During 

prolonged starvation, when blood glucose concentrations are lower than normal, 

neurones have priority access to glucose, over other cells, because the Km, for glucose, of 

Glut3 is lower than tha t of G lutl.

Since most cells express G lutl, which is saturated under physiological conditions, the 

rate of glucose transport into most cells does not increase significantly in response to the 

higher blood glucose concentrations. However, the rate of glucose transport, through 

G lutl, is regulated during processes such as cell division and cell differentiation, during 

which the rate of metabolism increases. For example, growth factors which regulate cell 

division also stimulate the rate of glucose transport in a biphasic manner {Section 1.1.3}.

1.3 Regulation of monosaccharide transport

1.3.1 Mechanisms

In certain conditions, the rate of glucose transport may be regulated; for example, the 

rate of transport through G lutl increases during cell division in response to growth 

factors {Section 1.1.3}, and the rate of transport through Glut4 increases during the
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absorptive state in response to insulin {Section 1.2.2}. There are three mechanisms by 

which rates of transport may be regulated: firstly, by increasing the number of 

transporter proteins a t the plasma membrane by increasing their translocation from an 

intracellular location [Suzuki and Kono, 1980]; secondly, by increasing the total number 

of transporter proteins through increased transcription, greater stability of mRNA, or 

increased translation; and thirdly, by increasing the activity of transporter proteins, in a 

manner analogous to the control of enzyme activity by an allosteric or covalent factor 

[Czech et al., 1992].

1.3.2 Changes in the intracellular location 

Cell proliferation: the early phase

The early phase of growth factor-stimulated glucose transport {Section 1.1.3} results

from the movement of existing G lutl from an intracellular site to the plasma membrane

[Yang et al., 1992; Yang and Holman, 1993]. For example, when quiescent 3T3-L1

fibroblasts are treated with insulin there is a two fold increase in G lutl in the plasma
ti

membrane, 25 percent of the total Glutl^present in the plasma membrane in the 

quiescent cells and 50 percent in insulin-treated cells [Yang et al., 1992]. Translocation 

of G lutl also occurs in response to the tumour promoter, PMA, in Swiss 3T3 fibroblasts 

[Kitagawa et al., 1985].

G lutl continually recycles between the plasma membrane and an intracellular site in 

both quiescent and growth factor-treated cells; the changes in the intracellular location 

result from regulation of the kinetics of endocytosis and, or exocytosis. For example, in 

3T3-L1 adipocytes, insulin stimulates G lutl exocytosis, increasing the rate constant by 

three fold, but only reduces the rate constant for G lutl endocytosis slightly [Yang and 

Holman, 1993],

However, the mechanism by which translocation occurs is not understood and little is 

known about the signal transduction pathways tha t mediate the early phase of growth 

factor-stimulated glucose transport.
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Blood glucose homeostasis

Insulin-stimulated glucose transport {Section 1.2.2} results primarily from the 

movement of Glut4 from an intracellular site to the plasma membrane [Holman et al., 

1990], although, skeletal myocytes and adipocytes express both G lutl and Glut4, and 

insulin stimulates the rapid movement of both transporters to the plasma membrane 

[Holman et al., 1990; Slot et al., 199la,b]. The greater significance of Glut4 for insulin - 

stimulated glucose transport arises because 95 percent of Glut4 is in an intracellular 

location in the basal state; tha t is, it is found in small tubulo-vesicular structures 

located near the traras-Golgi reticulum, as well as near the sarcolemma and transverse 

tubular system in myocytes [Slot et al., 1991a,b]. Consequently, there is the potential 

for large increases in the plasma membrane Glut4 level. For example, when brown 

adipose tissue is treated with insulin there is a 40 fold increase in Glut4 levels in the 

plasma membrane [Slot et al., 1991b]. In contrast, 20 percent of G lutl is found in the 

plasma membrane in the basal state [Yang et al., 1992]; consequently, the maximum 

possible increase in the plasma membrane G lutl level is approximately five fold. 

Furthermore, since Glut4 accounts for 90 percent of the total glucose transporter protein 

in adipocytes and myocytes [Zorzano et al., 1989], a small increase in the plasma 

membrane Glut4 level would be equivalent to all of the G lutl moving to the plasma 

membrane. However, since Glut4 probably has a higher intrinsic activity than G lutl, it 

may make an even greater contribution to the insulin-stimulated increase in the rate of 

glucose transport than can be explained by changes in the intracellular locations alone 

[Holman et al., 1990].

Glut4 is efficiently sequestered intracellularly in the absence of insulin. This is believed 

to be determined by a structural feature of Glut4, since the presence of Glut4 alone is 

sufficient for accurate localisation when expressed in 'non-insulin sensitive' cells such as 

3T3-L1 fibroblasts or Hep2 cells [Haney et al., 1991], Chinese ham ster ovary cells [Piper 

et al., 1992], NIH 3T3 fibroblasts [Hudson et al., 1992], PC12 cells [Hudson et al., 1993] 

andX. laevis oocytes [Thomas et al., 1993]. The precise intracellular targeting motif is 

disputed, with groups assigning it to either an amino-Phe sequence [Piper et al., 1992; 

Piper et al., 1993] or a carboxy-di-leucine sequence [Verhey and Bimbaum, 1994].

Glut4, like G lutl, recycles constitutively between the plasma membrane and an 

intracellular location in both quiescent and insulin-treated cells; insulin induces a
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redistribution of Glut4 by altering the kinetics of endocytosis and or exocytosis [Czech 

and Buxton, 1993; Yang and Holman, 1993]. For example, in 3T3-L1 adipocytes insulin 

stimulates Glut4 exocytosis, increasing the rate constant by nine fold, but only reduces 

the rate constant for Glut4 endocytosis slightly [Yang and Holman, 1993]. However, the 

expression of Glut4 in various 'non-insulin sensitive' insulin receptor positive cell types 

does not lead to insulin-responsive translocation, indicating the need for the expression 

of additional, and as yet, unidentified gene products to produce this response [Piper et 

al., 1992; Thomas et al., 1993].

Again, little is known about the signal transduction pathways tha t mediate the insulin- 

stimulated increase in the rate of glucose transport in adipocytes and muscle.

1.3.3 Changes in the total transporter level 

Cell proliferation: the late phase

The late phase of growth factor-stimulated glucose transport {Section 1.1.3} results from 

an increase in G lutl mRNA and concomitantly in G lutl protein [Hiraki et al., 1988; 

Rollins et al., 1988; Kitagawa et al., 1989; Mountjoy et al., 1989; Cornelius et al., 1990; 

Low et al., 1992; Tai et al., 1992], Growth factors stimulate the rate of transcription of 

GLUT1 [Hiraki et al., 1988; Rollins et al., 1988; Kitagawa et al., 1989] and possibly also 

increase the stability of G lutl mRNA [Rollins et al., 1988].

GLUT1 has several regulatory elements in the 5'-untranslated region. These include: a 

phorbol ester responsive element (TRE), three glucocorticoid response elements and four 

Spl hexamers [Williams and Birnbaum, 1988].

The transcription of genes with a TRE increases when the transcription factor activator 

protein-1 (AP-1) binds to the TRE. Phorbol esters and growth factors stimulate the 

transcriptional activity of AP-1 [Angel and Karin, 1991]. PMA-stimulated AP-1 activity 

is dependent on protein kinase C (PKC). Depletion of PKC abolishes the increase in the 

rate of glucose transport and the level of G lutl mRNA observed in response to PMA 

[Hiraki et al., 1988; Mountjoy et al., 1989], It is likely, therefore, th a t PMA-stimulated 

GLUT1 transcription is mediated by a signal transduction pathway involving PKC tha t 

leads to an increase in AP-1 activity. In contrast, depletion of PKC has no effect on the
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increase in the rate of glucose transport and the level of G lutl mRNA observed in 

response to growth factors [Hiraki et al., 1988; Rollins et al., 1988; Kitagawa et al.,

1989] or transformation [Hiraki et al., 1989], suggesting tha t PKC is not necessary for 

these responses. However, AP-1 activity can be regulated independently of PKC, by a 

signal transduction pathway involving mitogen-activated protein kinases (MAPK) 

{Section 5.1.1}. MAPK is activated in response to many growth factors, and therefore, it 

is likely tha t growth factor-stimulated GLUT1 transcription is mediated by a signal 

transduction pathway involving MAPK.

Transformation

Transformation of cultured cells by oncogenes results in a loss of control over the cell 

cycle. This leads to an increase in biosynthetic activity and an increase in demand for 

nutrients, including glucose. Therefore, an early event during transformation is an 

increase in the rate of glucose transport which also results from an increase in the level 

of G lutl mRNA and therefore G lutl protein [Birnbaum et al., 1986; Flier et al., 1987].

Transcription of GLUT1 in response to both growth factors and transformation occurs 

from the same initiation site [Williams and Bimbaum, 1988], and therefore regulation of 

transcription of GLUT1 during normal cell division and transformation appears to be 

mediated by similar pathways.

Oncogenes, which induce classical morphological transformation, such as v-fps,v-ras 

and v-src, lead to a four to ten fold increase in the rate of glucose transport; however, 

oncogenes which promote transformation weakly, such as c-myc, have no effect on the 

rate of glucose transport [Flier et al., 1987]. The normal cellular proteins corresponding 

to the first group of oncogenes, for example, p21c_ms and p60c' src, are thought to be 

involved in the signal transduction pathways tha t regulate the cell cycle. This further 

suggests tha t the regulation of GLUT1 transcription during normal cell division and 

transformation is mediated by similar pathways.

1.3.4 Changes in the intrinsic activity

Although, researchers agree tha t growth factor- and insulin-stimulated glucose 

transport occur primarily by translocation or by increases in the total transporter level
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{Sections 1.3.2 and 1.3.3}, it is possible tha t there may also be an increase in the 

intrinsic activity of the transporter proteins [Czech et al., 1992; Yang et al., 1992]. 

However, the physiological importance of activation is far from clear. There are no 

direct methods for measuring changes in intrinsic activity, and therefore a role for 

intrinsic activation is instead inferred when the changes in the intracellular location or 

the total level of the glucose transporter proteins are not sufficient to account for the 

whole of the observed increases in the rate of glucose transport.

The use of different cells and techniques for measurements of glucose transporter levels 

also complicates the issue, and consequently the contribution of changes in the intrinsic 

activity of transporter proteins to growth factor and insulin-stimulated glucose 

transport remains uncertain. However, in certain situations it would appear th a t the 

intrinsic activity of glucose transporter proteins is regulated. 3T3-L1 fibroblasts and 

Chinese ham ster ovary fibroblasts have similar basal rates of glucose transport. Both 

express only Glutl; however, there are ten times the number of G lutl transporters in 

the plasma membrane of 3T3-L1 fibroblasts than in Chinese ham ster ovary fibroblasts. 

Thus the basal rate of glucose transport appears to be suppressed in 3T3-L1 fibroblasts, 

perhaps as a result of an inhibitory regulator protein [Harrison et al., 1991],

The intrinsic activity of transporter proteins could be regulated by phosphorylation. 

G lutl is a substrate for PKC and undergoes phosphorylation in response to PMA in both 

3T3-L1 adipocytes [Gibbs et al., 1986] and human fibroblasts [Allard et al., 1987]. 

However, there is no change in the phosphorylation state of G lutl in response to insulin 

in 3T3-L1 adipocytes [Gibbs et al., 1986] nor in response to PDGF, insulin and EGF in 

human fibroblasts [Allard et al., 1987], suggesting tha t phosphorylation has no effect on 

the intrinsic activity of Glutl.

1.4 Aim

The aim of this work was to establish which signal transduction pathway mediates the 

early phase of growth factor-stimulated glucose transport. After characterisation of the 

early phase of insulin and PDGF-stimulated glucose transport in 3T3-L1 fibroblasts, the 

roles of a signal transduction pathway involving phospholipid hydrolysis and PKC
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activation and a signal transduction pathway involving MAPK activation were analysed. 

Finally, the role of a signal transduction pathway involving MAPK activation in IGF-I- 

stimulated glucose transport in X. laevis oocytes was also analysed.
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Materials and methods



2.1 Materials

All reagents used were of the highest quality available and were obtained from the 

following suppliers:

2.1.1 General reagents

Amersham International Pic, Aylesbury, Buckinghamshire, UK

PDGF (BB homodimer, human recombinant)

enhanced chemiluminescence (ECL) Western blotting detection reagents

Bio-Rad Laboratories Ltd, Hemel Hempstead, Hertfordshire, UK

cellophane membrane backing

N, N, N1, N'-tetramethylethylenediamine (TEMED)

prestained SDS-PAGE standards (myosin, fi-galactosidase, BSA and ovalbumin)

Boehringer Manheim, Lewes, Sussex, UK

ATP (519 979)

Calbiochem-Novabiochem (UK) Ltd, Nottingham, Nottinghamshire, UK

IGF-I (human recombinant, cell culture grade) 

sn -1,2-diacylglycerol (DAG) kinase (E. coli recombinant)

Fisons, Loughborough, Leicestershire, UK

acrylamide

ammonium persulphate

chloroform

ethanoic acid

Folin and Ciocalteu's phenol reagent

glucose

glycerol

glycine

Hepes
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hydrochloric acid 

methanol

N, N' methylene-bis-acrylamide

potassium chloride

SDS

sodium chloride

sodium dihydrogen orthophosphate dihydrate 

sodium EDTA 

sodium hydrogen carbonate 

trichloroacetic acid

Gibco BRL, Paisley, Lanarkshire, UK

Tris base 

urea

Hay man Ltd, Witham, Essex, UK

ethanol

Kodak Ltd, Hemel Hempstead, Hertfordshire, UK

RP X-Omat liquid fixer/ replenisher 

RP X-Omat liquid developer/ replenisher 

X-Omat AR film

Lipid Products, Nutley, Surrey, UK

phosphatidyl serine (grade 1)

Merck Ltd (BDH), Lutterworth, Leicestershire, UK

calcium chloride hexahydrate 

calcium nitrate tetrahydrate 

dimethyl sulphoxide 

magnesium chloride hexahydrate 

magnesium sulphate heptahydrate

SG60 pre-coated tic plates (10 x 20 cm, layer thickness of 0.25 mm) 

tetrn -sodium pyrophosphate decahydrate
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National Diagnostics, Aylesbury, Buckinghamshire, UK

Ecoscint scintillation fluid

Premier Brands UK, Knighton Adbaston, Staffordshire, UK

Marvel powdered milk

Schleicher & Schuell, Dassel, Germany

nitrocellulose membrane (0.45 |iM)

Sigma Chemical Company Ltd, Poole, Dorset, UK

BSA (A-7030)

Bromophenol blue 

cyclohex Imide 

cytochalasin B

2-deoxy- D-glucose 

digitonin

diisopropyl fluorophosphate (DFP) 

dithiothreitol

£rans-epoxysuccinyl-L-leucylainido(4-guanidino)-butane (E 64)

imidazole hydrochloride

insulin (porcine monocomponent)

3- O-methyl-D-glucose 

Pepstatin A

Pipes

protein A-agarose

413-phorbol 12-myristate, 13-acetate

4a-phorbol 12 ,13-didecanoate (4a-PDD)

sodium J3-glycerophosphate

sodium deoxycholate

sodium EGTA

sodium fluoride

sodium orthovanadate

sn - l-stearoyl-2-arachidonylglycerol

trichloroacetic acid
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Triton X-100 

Tween-20

Thomson & Joseph, Norwich, Norfolk, UK

tricane methene sulphate (MS 222)

Whatman International Ltd, Maidstone, UK

W hatman P81 ion-exchange chromatography paper

2.1.2 Animals 

South African Xenopus Facility, Noordhoek, Republic of South Africa

Female X. laevis toads (wild)

2.1.3 Antibodies 

Affiniti Research Products Ltd, Nottingham, Nottinghamshire, UK

mouse anti-MAPK monoclonal antibody 

mouse a n t i-p l2 5 ^ ^  monoclonal antibody

Amersham International Pic, Aylesbury, Buckinghamshire, UK

horseradish peroxidase (HRP)-conjugated sheep anti-mouse IgG antibody 

HRP-conjugated donkey anti-rabbit IgG antibody

Dupont (UK) Ltd, Stevenage, Hertfordshire, UK

125I-conjugated goat anti-rabbit IgG antibody

East Acres Biologicals, Southbridge, Massachusetts, USA

rabbit anti-human G lutl antibody

Sigma Chemical Company, Poole, Dorset, UK

rabbit anti-mouse IgG antibody
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2.1.4 Cells

American Type Culture Collection, Rockville, USA

3T3 -LI fibroblasts

2.1.5 Cell culture media and reagents 

Gibco BRL, Paisley, Lanarkshire, UK

Dulbecco's modified Eagle's medium (without sodium pyruvate, with 4500 mg/L glucose) 

(DMEM)

10000 U/ml penicillin, 10000 U/ml streptomycin solution 

trypsin

Flow Laboratories, Irvine, Ayrshire, UK

new bom calf serum (NCS)

2.1.6 Cell culture plastics 

AS Nunc, DK Roskilde, Denmark

50 ml centrifuge tubes 

6 cm 2 cell culture plates 

10 cm2 cell culture plates 

75 cm3 cell culture flasks 

6-well cell culture plates

Bibby Sterilin Ltd, Stone, Staffordshire, UK

sterile pipettes

13.5 ml centrifuge tubes

Corning Glass Works, Corning, New York, USA

6 cm2 cell culture plates 

10 cm2 cell culture plates
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75 cm2 cell culture flasks 

6-well cell culture plates

Costar, Cambridge, Massachusetts, USA

cryotubes

Sartorius AG, Gottingen, Germany

M inisart NML filters (0.2 pm)

2.1.7 Microinjection equipment

Pierce Warriner, Chester, Cheshire, UK

SpectraMesh (08-670-183, size 1000 microns)

Gamier Glass, Claremont, California, USA

glass capillary tubes (internal diameter 0.0285 inches, external diameter 0.048 inches, 

length 7.09 inches)

World Precision Instruments, New Haven, Connecticut, USA

PUL-1 system

Drummond Scientific Company, Broomall, Pennsylvania, USA

manual injection pipette (model 3-00-510-X)

Narishige Europe Ltd, Sydenham, London, UK

micromanipulator (model MN-153)

2.1.8 Radioactive materials

Amersham International Pic, Aylesbury, Buckinghamshire, UK

[y-32P]ATP (PB 108)

3-0-methyl-D-[l-3H]glucose
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2-deoxy-D-[2,6- 3H]glucose 

[3H] thymidine

Dupont (UK) Ltd, Stevenage, Hertfordshire, UK

3- 0-methyl-D-[l-3H]glucose 

2-deoxy- D- [2,6- 3H] glucose 

125I-conjugated goat anti-rabbit IgG antibody

2.2 Buffers and media

2.2.1 Cell culture media 

Serum-free DMEM

100 U/ml penicillin, 100 U/ml streptomycin in DMEM.

0.5% NCS/DMEM

100 U/ml penicillin, 100 U/ml streptomycin, 0.5% (v/v) NCS in DMEM.

10% NCS/DMEM

100 U/ml penicillin, 100 U/ml streptomycin, 10% (v/v) NCS in DMEM.

Sterile trypsin solution for cell passage

A solution of 25% (w/v) trypsin in PBS {Section 2.2.2} was filtered through a sterile 2 pM 

membrane and stored in 10 ml aliquots in sterile universal tubes a t -20°C.

2.2.2 Standard buffers 

Barths buffer

88 mM sodium chloride, 2.4 mM sodium hydrogen carbonate, 1.0 mM potassium 

chloride, 0.82 mM magnesium sulphate heptahydrate, 0.41 mM calcium chloride 

hexahydrate, 0.33 mM calcium nitrate tetrahydrate, 5.0 mM Hepes, pH 7.6.
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Barths buffer was autoclaved and stored a t room temperature.

DAG mass assay: Incubation buffer

250 mM imidazole pH 6.6, 250 mM sodium chloride, 62.5 mM magnesium chloride 

hexahydrate, 5.0 mM sodium EGTA.

Hanks buffered saline (HBS)

137 mM sodium chloride, 5.37 mM potassium chloride, 4.20 mM sodium hydrogen 

carbonate, 1.26 mM calcium chloride hexahydrate, 0.90 mM magnesium sulphate 

heptahydrate, 0.50 mM magnesium chloride hexahydrate, 0.35 mM sodium dihydrogen 

orthophosphate dihydrate, pH 7.4.

Hanks buffered saline with BSA and glucose (HBG)

10 mM glucose, 2% (w/v) BSA, 137 mM sodium chloride, 5.37 mM potassium chloride, 

4.2 mM sodium hydrogen carbonate, 1.26 mM calcium chloride hexahydrate, 0.90 mM 

magnesium sulphate heptahydrate, 0.50 mM magnesium chloride hexahydrate,

0.35 mM sodium dihydrogen orthophosphate dihydrate, pH 7.4.

Homogenisation buffer

80 mM sodium 13-glycerophosphate, 20 mM EGTA, 15 mM magnesium chloride, 0.5 mM 

sodium vanadate.

HPFEV

50 mM Hepes, 100 mM sodium fluoride, 10 mM tetra -sodium pyrophosphate 

decahydrate, 4 mM sodium EDTA, 2 mM sodium orthovanadate, pH 7.4.

HPFEV was stored in a dark bottle at 4°C.

Krebs Ringer buffered phosphate (KRP)

1.37 mM sodium chloride, 4.7 mM potassium chloride, 5.0 mM sodium dihydrogen 

orthophosphate dihydrate, 1.25 mM magnesium sulphate heptahydrate, 1.25 mM 

calcium chloride hexahydrate, pH 7.4.
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Phosphate buffered saline (PBS)

150 mM sodium chloride, 10 mM sodium dihydrogen orthophosphate dihydrate, pH 7.4. 

Protein concentration assay: Reagent A

0.025% (w/v) copper sulphate pentahydrate/ 0.05% (w/v) sodium potassium ta rtra te / 

2.5% (w/v) sodium carbonate/ 2.5% (w/v) SDS/ 0.2 M sodium hydroxide*

Reagent A was made from equal proportions of a) 0.1% (w/v) copper sulphate 

pentahydrate/ 0.2% (w/v) sodium potassium tartrate / 2.5% (w/v) sodium carbonate, b) 

10% (v/v) SDS, c) 0.8 M sodium hydroxide and d) water.

Protein concentration assay: Reagent B

A 1:5 dilution of Folin and Ciocalteu's phenol reagent in water.

Protein kinase C activity assay: Intracellular buffer

5.16 mM magnesium chloride hexahydrate, 94 mM potassium chloride, 12.5 mM Pipes,

12.5 mM sodium EGTA, 8.17 mM calcium chloride hexahydrate, pH 7.4.

2.2.3 SDS-PAGE buffers 

Electrode buffer

25 mM Tris-base, 192 mM glycine, 0.1% (w/v) SDS.

Sample buffer (for standard use)

93 mM Tris hydrochloride pH 6.8, 20 mM dithiothreitol, 1 mM sodium EDTA, 10% (v/v) 

glycerol, 2% (w/v) SDS, 0.002% (w/v) Bromophenol blue.

The dithiothreitol was added immediately before use.

Sample buffer (for phosphotyrosine-containing proteins)

93 mM Tris hydrochloride pH 6.8, 20 mM dithiothreitol, 1 mM sodium EDTA, 2.0 mM 

sodium pyrophosphate, 10% (v/v) glycerol, 2% (w/v) SDS, 0.002% (w/v) Bromophenol 

blue.
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The dithiothreitol was added immediately before use.

Sample buffer (for immunoprecipitation)

8 M urea, 93 mM Tris hydrochloride, pH 6.8, 2.0 mM sodium pyrophosphate, 20 mM 

dithiothreitol, 10 mM sodium EDTA, 10% (v/v) glycerol, 2% (w/v) SDS, 0.002% (w/v) 

Bromophenol blue.

The dithiothreitol was added immediately before use.

2.2.4 Protease inhibitor stocks 

Pepstatin A

1 mg/ml in DMSO.

E 64

10 mM in 2 mM sodium EDTA.

DFP

200 mM in isopropanol.

All of the protease inhibitor stocks were stored a t -20°C.

2.2.5 Western blot buffers 

Blot buffer

25 mM sodium dihydrogen orthophosphate dihydrate, pH 6.5.

First wash buffer

150 mM sodium chloride, 5 mM sodium dihydrogen orthophosphate dihydrate, 1 mM 

sodium EDTA, 0.1% (w/v) Triton X-100, pH 7.4.
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Second wash buffer

790 mM sodium chloride, 5 mM sodium dihydrogen orthophosphate dihydrate, 1 mM 

sodium EDTA, 0.1% (w/v) Triton X-100, pH 7.4.

Towbin buffer

25 mM Tris-base, 192 mM glycine, 20% (v/v) methanol, pH 8.3.

Tris buffered saline with 0.02% Tween-20 (TBST-1)

20 mM Tris, 150 mM sodium chloride, 0.02% (v/v) Tween-20, pH 7.4.

Tris buffered saline with 0.3% Tween-20 (TBST-2)

20 mM Tris, 150 mM sodium chloride, 0.3% (v/v) Tween -20, pH 7.4.

2.3 3T3-L1 fibroblast culture

2.3.1 Growth

3T3-L1 fibroblasts were grown on cell culture flasks and plates containing 10% (v/v) 

NCS/ DMEM {Section 2.2.1}. The medium was replaced every 2 days. The cells were 

kept a t 37°C in a humidified atmosphere containing 10% CO2 .

2.3.2 Passage

When the cells were subconfluent, they were removed from the plates using trypsin.

The medium was replaced with 2 ml of sterile 0.25% (w/v) trypsin in PBS {Section 2.2.2}. 

When some cells had started to float, a Pasteur pipette was used to loosen the 

remainder, and the action of the trypsin was stopped by the addition of a small volume 

of 10% (v/v) NCS/ DMEM {Section 2.2.1}. The cells were then diluted and mixed in a 

larger volume of 10% (v/v) NCS/ DMEM and seeded onto new cell culture dishes; for 

example, the cells from a 10 cm2 plate were seeded onto ten 10 cm2 plates.
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2.3.3 Preparation for experiment

For most experiments, quiescent, confluent cells were required; this was achieved by 

incubation of the cells in serum-free DMEM {Section 2.2.1} for 3 hours. For other 

experiments, preparation details are given with the method.

2.3.4 Long term storage

Confluent cells were removed from the plates using trypsin {Section 2.3.2}. The cells 

from a 75 cm3 flask were resuspended in 5 ml of 10% (v/v) NCS/ DMEM {Section 2.2.1}, 

and the suspension was spun a t 1000 g  a t room tem perature for 5 minutes; the 

supernatant was then removed. 10% (v/v) NCS/ DMEM containing 10% (v/v) glycerol 

was equilibrated in 10% carbon dioxide for 1 hour, and the cell pellet was resuspended 

in 1 ml of this medium. Aliquots of the suspension were put into cryotubes, packed in 

cotton wool and frozen overnight a t -80°C. The cryotubes were then transferred to liquid 

nitrogen for long-term storage.

Cells to be recovered from storage were thawed rapidly a t 37°C, and then the contents of 

each cryotube were resuspended in 10 ml of 10% (v/v) NCS/ DMEM on 10 cm2 plates.

2.4 Xenopus laevis maintenance and oocyte preparation

2.4.1 Maintenance

Female X, laevis were housed three to an aquarium (22 x 22 x 30 cm) in about 15 cm of 

distilled water, and had unrestricted access to the surface. The aquariums were kept in 

a quiet, environmentally controlled room, a t a water temperature of 18°C, on a 12 hour 

light/ dark cycle. The toads were fed, twice a week, on a diet of chopped, raw heart. The 

water in the aquariums was changed the day after feeding.
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2.4.2 Oocyte preparation

Anaesthesia and recovery

Female X. laevis were anaesthetised quickly by immersion in 0.15% (w/v) MS222 in a 

total of 500 ml distilled water supplemented with 25 ml of 0.5 M sodium bicarbonate to 

counteract the irritan t effect of the low pH of MS222. Anaesthesia was complete once 

the toad was immobile upon being placed on her back, occurring, typically, five to ten 

minutes after immersion. After surgery, the toad was rinsed in distilled w ater and 

placed in an aquarium containing sufficient water to cover the bottom of the tank  

without covering the toad's nostrils. The exposed skin was moistened periodically. 

Recovery was complete once full movement had returned, occurring, typically, within 

one hour of surgery.

Removal of ovarian tissue

The toad was placed on her back, a small slit (about 1 cm) was made in the lower third 

of the abdominal wall and the inner body cavity was opened gently. An oocyte lobe was 

located, and a small sample of it was removed. The oocytes were inspected under the 

microscope, and if healthy, more of the oocyte lobe was taken out and placed into Barths 

medium {Section 2.2.2} on a 6 cm2 cell culture plate. The incision was closed with 

stitches in the inner body wall and the outer dermis. Extracted oocyte lobes were cut 

into clumps about 5 mm long and placed on clean cell culture plates.

Isolation of individual oocytes

All the dissection procedures were carried out in Barths buffer under a binocular 

microscope using 10 x 23 magnification eyepieces. A 'swan-necked' light source was 

used to avoid heating the oocytes directly.

The oocytes isolated were in stages IV or V of development. Such oocytes are the 

largest, having a distinct boundary between the animal (dark brown) and vegetal (light 

green/ yellow) poles. The animal pole has uniform pigmentation.

An oocyte lobe consists of a central artery and connective tissue to which the oocytes are 

attached by a thin translucent stalk. Individual oocytes were removed from the 

connective tissue by manual dissection. The central artery was held using a pair of fine
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watchmakers forceps (INOX size 5), and a second pair of forceps was used to tease out 

individual oocytes from the connective tissue. Damaged oocytes were discarded 

immediately to prevent damage to others from the release of proteases. The isolated 

oocytes were transferred onto a clean cell culture plate for overnight incubation in 

Barths buffer a t 18°C. Again, damaged oocytes and debris were removed.

2.5 Protein preparation for microinjection

Brief details of the preparation of proteins for microinjection are given for completeness; 

however, they were not carried out by the author, but by others as acknowledged.

2.5.1 Recombinant p42maPk

The cloning, expression and purification of recombinant p42maPk was carried out at the 

University of Dundee1. p42maPk was cloned from a Swiss 3T3 fibroblast cDNA library 

[Stokoe et al., 1992a]. The full length p42maPk clone was expressed as a glutathione-S- 

transferase fusion protein in E. coli. The fusion protein was then purified by affinity 

chromatography using glutathione-Sepharose beads, and the p42maPk was cleaved from 

glutathione-S-transferase using thrombin, producing a p42maPk concentration of 

0.06 mg/ml [Stokoe et al., 1992a].

The recombinant p42maPk was maximally activated, to 800 U/mg, by incubation, for 

2 hours a t 30°C, in 50 mM Tris pH 7.3, 2 mM sodium EDTA, 2 mM sodium EGTA, 5% 

(v/v) glycerol, 0.3 mM sodium orthovanadate, 0.03% (w/v) Brij 35, 0.1% (v/v) 

2-mercaptoethanol, 6 îM specific peptide inhibitor of cyclic AMP-dependent protein 

kinase containing MAPK kinase (MAPKK) (from purified rabbit skeletal muscle 

[Nakielny et al., 1992a]), 10 mM magnesium acetate and 0.2 mM adenosine

1 The active recombinant p42maPk was a gift from Professor P Cohen, Medical Research 

Council Protein Phosphorylation Unit, Department of Biochemistry, University of 

Dundee, Tayside, UK.
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5' -[y-thio]triphosphate (ATP[S]). The activated p42maPk was then concentrated to an 

activity of 450 units/ml by centrifugation through a Centricon 30 membrane. The 

activity of p42maPk is defined on the basis tha t one enzyme unit catalyses the 

phosphorylation of 1 nmole of myelin basic protein in 1 minute [Stokoe et al., 1992a].

2.5.2 Purified MAPKK

The purification of MAPKK from rabbit skeletal muscle after intravenous injection of 

insulin was carried out a t the University of Dundee2 [Nakielny et al., 1992a]. One unit 

of MAPKK activity is tha t amount which produces a 50 percent reactivation of MAPK in 

1 minute [Nakielny et al., 1992a].

2.5.3 Recombinant p39c_mos

The cloning, expression and purification of recombinant p39c_mos was carried out a t the 

Imperial Cancer Research Fund Laboratories, South Mimms3. The proto-oncogene, 

c-mos, was cloned from a l  laevis cDNA library. The full length c-mos clone was 

expressed as a fusion protein with the E. coli maltose-binding protein (MalE-Mos), in 

E coli [Nebreda and Hunt, 1993]. The fusion protein was then purified by affinity 

chromatography using an amylose affinity column (amylose specifically binds to the 

MalE) [Yew et al., 1992].

2 The purified MAPKK was a gift from Professor P Cohen, Medical Research Council 

Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, 

Dundee, Tayside, U K

3 The MalE-Mos fusion protein was a gift from Dr A R Nebreda, Imperial Cancer 

Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, U K
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2.6 Microinjection of oocytes

Hollow needles with a diameter of approximately 0.5 pm were made from glass capillary 

tubes using an automatic needle puller (PUL-1). Each needle was mounted on a manual 

injection pipette attached to a micro-manipulator. Using a plastic pipette, oocytes were 

placed on a piece of SpectraMesh attached to a 6 cm2 cell culture plate, and then, using 

the glass needle, 50 nl of a water, a buffer or a protein solution {Section 2.5} was injected 

into the vegetal pole of the oocyte {see Section 2.1.7 for equipment details}.

2.7 DNA synthesis assay

DNA synthesis in 3T3-L1 fibroblasts was assayed by measuring the amount of 

incorporation of [3H]thymidine [Kitagawa et al., 1989] The fibroblasts were grown on 

6-well cell culture plates. After reaching 50% confluence, they were incubated firstly, in 

0.5% (v/v) NCS/ DMEM {Section 2.2.1} for 24 hours a t 37°C, then secondly, in serum-free 

DMEM {Section 2.2.1} for 3 hours a t 37°C, and thirdly, in serum-free DMEM containing

1 pCi/ml [3H]thymidine and the ligands (as indicated in the figure legends) for 24 hours 

at 37°C. The incubation was term inated by washing each well twice in 2 ml of ice-cold 

PBS {Section 2.2.2}. The proteins were precipitated by washing the cells three times in

2 ml of ice-cold 5% (w/v) trichloroacetate and twice in 2 ml of ice-cold ethanol. Finally, 

the precipitate was dissolved in 1 ml of 0.3 M sodium hydroxide, and Ecoscint was added 

before the measurement of [3H]thymidine incorporation.

2.8 Glucose transport assays

Transport of a solute is usually assayed using a mixture of the radioactive and the non

radioactive forms. In the case of glucose, a mixture of the radioactive and non- 

radioactive forms of an analogue is used because the use of glucose is impractical since it 

is completely metabolised during glycolysis and the tricarboxylic acid cycle. The two 

most commonly used analogues (and radioactive forms) are 2 -deoxy-D-glucose (2-deoxy- 

D-[2,6-3H]glucose) and 3-O-methyl-D-glucose (3-0-[l-3H]methyl-D-glucose).
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2-deoxyglucose undergoes only the first step of glycolysis, phosphorylation by 

hexokinase, forming 2-deoxyglucose-6-phosphate which is trapped inside the cell {Figure 

2.1}. Therefore, uptake of 2-deoxyglucose consists of two steps, transport and 

phosphorylation. Since the Km of hexokinase for glucose i s ' lower than th a t of the 

glucose transporter protein, and ATP pools are not depleted when uptake times are 

short, glucose transport is usually the rate-limiting step, and so the phosphorylation 

step can be ignored [Kletzien and Perdue, 1974], Therefore, deoxyglucose 'uptake' will 

be taken to mean deoxyglucose 'transport', unless otherwise stated. In addition, the 

low. Km of hexokinase results in an intracellular deoxyglucose level which is too low for 

significant efflux, and the equilibrium between the concentrations of extracellular and 

intracellular deoxyglucose is never reached. As a consequence, assays of the rate of

2-deoxyglucose uptake measure only the influx. 2-deoxyglucose influx occurs with first 

order kinetics (linear), until the ATP levels have decreased sufficiently to become rate- 

limiting.

3-O-methylglucose is another glucose analogue used for kinetic studies. I t is non- 

metabolisable, resulting in influx and efflux, and it accumulates until equilibrium is 

reached {Figure 2.1}. Hence 3-O-methylglucose transport shows first order kinetics 

initially, then mixed order kinetics, then zero order kinetics when equilibrium has been 

reached. As a consequence, several different types of assay are possible, two of which 

are commonly used. Firstly, a zero-trans influx assay, which measures the rate of influx 

of 3-O-methylglucose into sugar-free cells. Influx follows first order kinetics, so the 

initial velocities can usually be used to estimate the Vmax and Km. Secondly, an 

equilibrium exchange assay, which can be used to overcome the problems where the 

initial influx occurs too fast for a zero-trans influx assay, for instance, when a 

transporter protein is over-expressed in a cell [Gould et al., 1991]. In such an assay, 

cells are incubated in various concentrations of unlabelled 3-O-methylglucose, until 

equilibrium is attained. The addition of labelled 3-O-methylglucose measures the rate of 

steady-state rate of transport. The transport values are converted to a rate  constant 

(&obs) using the first order rate equation:

.  ,  . fC „ -C „ l- [C « -C 0l 
" w ~ l n

where C^ is the radioactivity after full equilibration of the cellular water space, C* is the
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Figure 2.1 The transport of glucose analogues

a) 2-deoxyglucose undergoes the first step of glycolysis, phosphorylation by hexokinase, 
forming 2-deoxyglucose-6-phosphate which is trapped inside the cell.

(d G Ic ^

b) 3-O-methylglucose is not metabolised, therefore it may enter and leave the cell.

(^3-O-mGlc
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radioactivity a t time t and Co is the radioactivity a t time, 0. The rate constants 

obtained are used in Lineweaver-Burk plots by plotting 1/k 0bs [3 -O-mGlc] against 

l/[3-0-mGlc] to determine the K m and Vmax values.

Since a zero-trans influx assay measures influx and an equilibrium-exchange assay 
measures a combination of influx and efflux, the values for Km and Vmax produced by 

these two assays are characteristically different.

2.8.1 2-deoxyglucose uptake assay in 3T3-L1 fibroblasts

The rate of 2 -deoxyglucose uptake was assayed in 3T3-L1 fibroblasts [Gibbs et al., 1988]. 

Quiescent 3T3-L1 fibroblasts, grown on 6-well plates, were washed three times in 3 ml 

of KRP {Section 2.2.2} a t 37°C, then incubated in 1 ml of 1% (w/v) BSA/ KRP, for 1 hour, 

on a hotplate a t 37°C. The ligands were present for the times indicated in the figure 

legends. 2-deoxyglucose uptake was started by addition of 50 pi of 2-deoxyglucose (final 

concentration 100 pM; 0.25 pCi/ml) and was stopped rapidly, after 3 to 5 minutes 

incubation a t 37°C, by inverting the plates to remove the buffer, followed by immersion 

twice in ice-cold PBS {Section 2.2.2.}. The cells from each well were solubilised in 1 ml of 

1% (w/v) Triton X-100, by a 1 hour incubation with agitation, before the addition of 

Ecoscint and measurement of radioactivity. The uptake values were corrected for the 

non-specific association of 2-deoxy-D-[2,6-3H]glucose with the cells by subtracting the 

uptake in the presence of 10 pM cytochalasin B, a potent inhibitor of facilitated glucose 

transport [Bloch, 1973; Basketter and Widdas, 1978]. Cytochalasin B was present 

throughout the 1 hour incubation.

2.8.2 2-deoxyglucose uptake assay in X. laevis oocytes

The rate of 2-deoxyglucose uptake was assayed in X. laevis oocytes [Gould et al., 1991]. 

Groups of uninjected, buffer-injected or protein-injected oocytes were placed into 13.5 ml 

centrifuge tubes containing 450 pi of Barths buffer {Section 2.2.2} a t room temperature, 

with the ligands present for the times indicated in the figure legends. 2-deoxyglucose 

uptake was started by the addition of 50 pi 2-deoxyglucose (final concentration 100 pM, 

0.5 pCi per tube) and stopped rapidly, after a 1 hour incubation a t room temperature, by 

aspiration of the buffer. The oocytes were washed three times in 3 ml of ice-cold PBS
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{Section 2.2.2} containing 0.1 mM phloretin [Krupka, 1971; Basketter and Widdas,

1978], then placed into scintillation vials (one oocyte per vial) and solubilised in 0.5 ml of 

1% (w/v) SDS by overnight incubation with agitation, before addition of Ecoscint and 

measurement of radioactivity.

2.8.3 Zero -trans 3-O-methylglucose transport assay in X. laevis oocytes

The rate of 3 -O-methylglucose zero-trans transport was assayed in X  laevis oocytes

[Gould et al., 1991]. Groups of uninjected, buffer-injected or protein-injected oocytes 

were placed into 13.5 ml centrifuge tubes containing 450 pi of Barths buffer {Section 

2.2.2], for 1 hour, a t room temperature. 3-O-methylglucose transport was started by the 

addition of 50 pi 3-O-methylglucose (final concentration 100 pM, 1.0 pCi per tube) and 

stopped rapidly, after incubation of times between 0 and 8 hours, a t room temperature, 

by aspiration of the buffer. The oocytes were washed three times in 3 ml of ice-cold PBS 

{Section 2.2.2} containing 0.1 mM phloretin, then placed into scintillation vials (one 

oocyte per vial) and solubilised by overnight incubation in 0.5 ml of 1% (w/v) SDS with 

agitation before the addition of Ecoscint and measurement of radioactivity.

2.9 DAG mass assay

2.9.1 Lipid extraction

Total cellular lipids were extracted by a modification of the Bligh and Dyer lipid 

extraction, in which cellular extracts are dissolved in a monophase and then the organic 

and aqueous components separated between two phases [Bligh and Dyer, 1959]. 

Quiescent 3T3-L1 fibroblasts, grown on 6-well plates, were washed three times in 3 ml 

of HBS {Section 2.2.2} a t 37°C, then incubated in 1 ml of HBG {Section 2.2.2} for 1 hour 

on a hotplate a t 37°C. The ligands were present for the times indicated in the figure 

legends. The incubations were stopped rapidly by aspiration of the buffer then by 

addition of 500 pi of ice-cold methanol to each well. The cells were triturated  and the 

cell suspension from each well was transferred to a clean 2 ml Teflon capped glass vial. 

Each well was washed in a further 200 pi of ice-cold methanol and the suspension was
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added to the appropriate vial. A chloroform/ methanol (1:1, v/v) mixture was formed by 

the addition of 700 pi of chloroform to the cell suspension, the monophase was mixed 

and incubated on ice for 30 minutes. A chloroform/ methanol/ distilled water (1:1:0.8, 

v/v/v) mixture was formed by the addition of 585 pi of distilled water, the contents of 

each vial mixed and incubated on ice until two separate phases were seen. The lower 

phase (organic) of each sample was transferred, using Hamilton syringes, to a clean 

glass vial and stored overnight under nitrogen.

2.9.2 Quantification

sn -1,2-diacylglycerol (DAG) in mixed micelles was converted to [32P]phosphatidic acid 

using DAG kinase and the incorporation of 23P was measured [Preiss et al., 1986; 

Paterson et al., 1991].

Preparation of lipid/phosphatidyl serine/  Triton X-100 mixed micelles

720 nmoles of phosphatidyl serine was dried under vacuum in 2 ml glass tubes, then 

solubilised in 1.0 ml of 0.6% (w/v) Triton X-100 by sonication a t 4°C until no solid m atter 

remained (approximately 40 minutes). The solution was transferred to a larger glass 

tube and diluted by adding a further 1.5 ml of 0.6% (w/v) Triton X-100 to form 0.6%

(w/v) Triton X-100, 288 pM phosphatidyl serine.

The lipid extracts {Section 2.9.1} were dried under vacuum then solubilised in 50 pi of 

0.6% Triton X-100/ 288 pM phosphatidyl serine by sonication a t 4°C for 30 minutes.

Conversion to p 2P]phosphatidic acid

The reaction was carried out in a total volume of 100 pi of 0.3% (w/v) Triton X-100,

144 pM phosphatidyl serine, 50 mM imidazole hydrochloride pH 6.6, 50 mM sodium 

chloride, 12.5 mM magnesium chloride hexahydrate, 1 mM sodium EGTA, 10 mM 

dithiothreitol, 0.5 mM ATP (20 pCi/  mmol [y-32P]ATP) and 5 mU DAG kinase. This was 

achieved by addition of 20 pi of Incubation buffer {Section 2.2.2}, 10 pi of fresh 100 mM 

dithiothreitol and 10 pi of DAG kinase (5 mU) to each vial. The reaction was started by 

the addition to each vial of 10 pi of 5 pM ATP in 100 mM imidazole, pH 6.6, containing 

1.25 pCi [y-32p]ATP, the contents mixed and incubated for 30 minutes a t 30°C. The 

reaction was stopped by the addition of 470 pi of a chloroform/ methanol/ hydrochloric
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acid (15:30:2, v/v) mixture, and then left to stand for 10 min a t room temperature. The 

phases were split by the addition of 150 pi of chloroform followed by 1 ml of distilled 

water. The upper (aqueous) phase was removed and the lower (organic) phase was 

washed twice in 1.0 ml of distilled water before being dried under vacuum. The dried 

lipids were dissolved in 40 pi of a chloroform/ methanol (19:1, v/v) mixture and spotted 

onto a 10 x 20 cm Silica Gel 60 tic plate, previously activated by heating a t 120°C for 

1 hour. The plates were developed with a chloroform/ methanol/ ethanoic acid 

(130:30:15, v/v/v) mixture, then air-dried and autoradiographed. The area of silica 

corresponding to [32P]phosphatidic acid was scraped into a scintillation vial to which 

Ecoscint was added before measurement of radioactivity.

A standard curve (0 to 2000 pmoles) was constructed from 100 mM src-l-stearoyl-2- 

arachidonylglycerol in chloroform. This was treated in the same manner as the samples 

and was used to calculate the DAG level in each sample {Figure 2.2}.

2.10 Protein kinase C activity assay

Protein kinase C (PKC) activity was assayed by phosphorylation of a synthetic peptide 

substrate in permeablised cells [Heasley and Johnson, 1989; Alexander et al., 1990]. 

Quiescent 3T3-L1 fibroblasts, grown on 6-well plates, were washed twice in 3 ml of KRP 

{Section 2.2.2} at 37°C then incubated in 1 ml of 1% (w/v) BSA/ KRP for 1 hour on a 

hotplate a t 37°C. The ligands were present for the times indicated in the figure legends. 

The cells in each well were washed quickly in 1 ml of Intracellular buffer {Section 2.2.2} 

at 37°C, and then incubated, with occasional agitation, in 500 pi of Intracellular buffer 

containing 250 pM ATP, 1.0 pCi [y-32P] ATP, 200 pg/ml digitonin, and 200 pM PKC 

peptide substrate (sequence Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-Lys)4 [House 

et al., 1987] for 10 minutes on a hotplate a t 37°C. Reactions were stopped by the 

addition of 100 pi of 25% (w/v) trichloroacetic acid, the wells agitated, then incubated on

4 The PKC peptide substrate was a gift from Dr F G Rowan, Strathclyde Institute for 

Drug Research, University of Strathclyde, Glasgow, Strathclyde, U K
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Figure 2.2 A standard curve for the DAG mass assay

sn -l-stearoyl-2-arachidonylglycerol was used to construct a standard curve (from 0 to 
2000 pmoles) for the DAG mass assay {Section 2.9.2}. Each result shows the mean DAG 
mass level (± SD) for triplicate determinations. The SD for some of the results from this 
experiment are too small to be seen on the graph. A standard curve was prepared with 
each experiment.
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ice for 10 minutes. The cells were scraped off the plates, transferred to an Eppendorf 

tube and spun for 10 minutes a t 4°C a t 16 000 g. 100 pi of the supernatant was spotted 

onto 3 x 3 cm squares of P81 ion-exchange chromatography paper, then air-dried. The 

paper was washed three times in 75 mM orthophosphoric acid, then once in ethanol with 

agitation. The paper was dried and the associated radioactivity determined.

2.11 Down-regulation of protein kinase C

PKC activity was down-regulated by a long incubation in a high concentration of an 

active phorbol ester [Blackshear et al., 1985]. Quiescent 3T3-L1 fibroblasts, grown on 

6-well plates, were incubated in sterile 1% (w/v) BSA/ serum-free DMEM {Section 2.2.1} 

containing 1 pM PMA or 1 pM 4a-PDD (4a-phorbol 12, 13-didecanoate) (an inactive 

phorbol ester) for 16 hours a t 37°C. Each well was washed four times in 2 ml of 1% BSA/ 

serum-free DMEM a t 37°C, and then three times in 3 ml of KRP {Section 2.2.2} a t 37°C. 

The cells were then used for 2-deoxyglucose uptake assays or for the preparation of cell 

lysates.

2.12 Inhibition of protein kinase C activity

PKC activity was inhibited using a bisindolylmaleimide, Ro 31-82205 [Davis et al., 1989; 

Wilkinson et al., 1993]. Quiescent 3T3-L1 fibroblasts, grown on 6-well plates, were 

washed three times in 3 ml of KRP {Section 2.2.2} a t 37°C, and then incubated in 1 ml of 

1% (w/v) BSA/ KRP containing 1 pM Ro 31-8220 for 20 minutes on a hotplate at 37°C. 

Cells were then used for 2-deoxyglucose uptake assays.

5 The PKC inhibitor, Ro 31-8220, was a gift from Dr G Lawton, Roche Products Ltd, 

Welwyn Garden City, Hertfordshire, U K
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2.13 Protein preparation for Western blotting

2.13.1 Preparation of 3T3-L1 fibroblast membrane proteins

Quiescent 3T3-L1 fibroblasts, grown on 10 cm2 plates, were washed three times in 5 ml 

of KRP {Section 2.2.2} a t 37°C, then incubated in 3 ml of 1% (w/v) BSA/ KRP for 1 hour 

on a hotplate a t 37°C. The ligands were present for the times indicated in the figure 

legends. The incubations were terminated by washing three times in 3 ml of ice-cold 

PBS or HPFEV (for phosphotyrosine-containing proteins) {Section 2.2.2}. The cells were 

scraped into 4 ml of ice-cold PBS (or HPFEV) containing 1 pg/ml Pepstatin A, 10 jaM 

£r£ms-epoxysuccinyl-L-leucylamido(4-guanidino)-butane (E 64) and 200 pM diisopropyl 

fluorophosphate (DFP) {Section 2.2.4}. The cell lysates were homogenised by sonication, 

three times for 10 seconds with 15-second gaps, a t 60 W using a Dawe sonicator with a 

microtip (Lucas Dawe Ultrasonics Ltd, London, UK; model number: 7532-1), then spun 

at 1000 g  for 10 minutes a t 4°C. The supernatants were transferred to clean centrifuge 

tubes and the pellets (nuclei) discarded. The supernatants were spun a t 100 000 g  for 

1 hour a t 4°C and the resulting supernatant discarded. The pellets containing the 

membrane proteins were resuspended in 200 pi PBS containing 1 pg/ml Pepstatin A,

10 pM E 64 and 200 pM DFP. The samples were snap-frozen in liquid nitrogen and 

stored at -80°C.

Before use in SDS-PAGE, the protein concentration of each sample was measured 

{Section 2.14}. Each sample was then diluted with 4 x SDS-PAGE sample buffer 

{Section 2.2.3} containing 1 pg/ml Pepstatin A, 10 pM E 64 and 200 pM DFP.

2.13.2 Preparation of 3T3-L1 fibroblast lysates

Quiescent 3T3-L1 fibroblasts, grown on 6-well plates, were washed three times in 3 ml 

of KRP {Section 2.2.2} a t 37°C, then incubated in 1 ml of 1% (w/v) BSA/ KRP for 1 hour 

on a hotplate a t 37°C. The ligands were present for the times indicated in the figure 

legends. The incubations were terminated rapidly by inverting the plates to remove the 

buffer; the cells were then washed twice by immersion in ice-cold PBS {Section 2.2.2} (or 

ice-cold HPFEV {Section 2.2.2} for phosphotyrosine-containing proteins). The remaining
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buffer was aspirated and 750 pi of hot (70°C) SDS-PAGE sample buffer {Section 2.2.3} 

containing 1 pg/ml Pepstatin A, 10 pM E 64 and 200 pM DFP {Section 2.2.4} was added 

to each well. The DNA was sheared by drawing the lysate five times through a 21 gauge 

needle. The samples were transferred to Eppendorf tubes, then boiled for 5 minutes.

The samples were snap-frozen in liquid nitrogen and stored a t -80°C.

2.13.3 Immunoprecipitation of phosphotyrosine-containing proteins from 3T3-L1 

fibroblasts

Lysate preparation

Quiescent 3T3-L1 fibroblasts, grown on 10 cm2 plates, were washed three times in 5 ml 

KRP {Section 2.2.2} a t 37°C then incubated in 4 ml of 1% (w/v) BSA/ KRP for 30 minutes 

on a hotplate at 37°C. The ligands were present for the times indicated in the figure 

legends. The incubations were terminated by washing three times in 4 ml ice-cold 

HPFEV {Section 2.2.2}. The cells were scraped into 5 ml of ice-cold 0.05% (w/v) SDS/ 2% 

(w/v) Triton X-100/ HPFEV containing 1 pg/ml Pepstatin A, 10 pM E 64 and 200 pM 

DFP {Section 2.2.4}. The lysates were spun a t 100 000 g  for 30 minutes a t 4°C. The 

supernatants were transferred to new Eppendorf tubes, snap-frozen in liquid nitrogen 

and stored a t -80°C.

Immunoprecipitation

The phosphotyrosine-containing proteins were immunoprecipitated by incubating the 

supernatants with 50 pi of a rabbit anti-phosphotyrosine antibody6 [Pang et al., 1985] 

for 2 hours on ice then adding 50 pi of 50% Protein A-agarose in 1% (w/v) Triton X-100, 

and slowly rotating for 2 hours a t 4°C. The tubes were spun for 10 seconds a t 12 000 g  

and the supernatant discarded. The beads were washed three times in 1 ml of 1% (w/v) 

Triton X-100/ HPFEV, then once in 1 ml of 0.1% (w/v) Triton X-100/ HPFEV, then 

resuspended in 100 pi of 1.3 x SDS-PAGE sample buffer for immunoprecipitation 

{Section 2.2.3} containing 1 pg/ml Pepstatin A, 10 pM E 64 and 200 pM DFP. The

6 The rabbit anti-phosphotyrosine antibody was a gift from Dr G Lienhard, Dartmouth 

Medical School, Hanover , New Hampshire, USA.
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suspensions were incubated a t room temperature for 30 minutes, then the tubes were 

spun for 30 seconds a t 12 000 g, and the supernatant was transferred to new Eppendorf 

tubes, snap-frozen in liquid nitrogen and stored a t -80°C.

2.13.4 Preparation of X. laevis oocyte lysates

Lysates were prepared from groups of five uninjected oocytes [Nebreda and Hunt, 1993], 

The oocytes were placed into 13.5 ml centrifuge tubes containing 500 pi of Barths buffer 

{Section 2.2.2}, then incubated for 1 hour at room temperature. The ligands were 

present for the times indicated in the figure legends. The incubations were terminated 

rapidly by aspirating the buffer then washing twice in ice-cold HPFEV {Section 2.2.2}. 

Each group of five oocytes was homogenised in 250 pi of ice-cold Homogenisation buffer 

{Section 2.2.2} containing 1 pg/ml Pepstatin A, 10 pM E 64 and 200 pM DFP {Section 

2.2.4}. The lysates were spun for 8  minutes at 1 2  000 and the cleared supernatant 

was transferred to clean Eppendorf tubes and diluted with 50 pi of 2 x SDS-PAGE 

sample buffer for phosphotyrosine-containing proteins {Section 2.2.3} containing 1 pg/ml 

Pepstatin A, 10 pM E 64 and 200 pM DFP. The samples were snap-frozen in liquid 

nitrogen and stored at -80°C.

2.14 Protein concentration assay

The protein concentration of 3T3-L1 fibroblast membrane proteins {Section 2.13.1} was 

assayed after acid precipitation [Lowry et al., 1951; Peterson, 1977]. The volume of each 

protein sample was brought to 1  ml using the same buffer as in the preparation, then 

100 ml of 0.15% (w/v) sodium deoxycholate was added to each tube, the contents of each 

tube were mixed, then incubated a t room temperature for 10 minutes. 100 pi of 72% 

(w/v) trichloroacetic acid was added to each tube, the contents of each tubes were mixed, 

and the precipitates were collected by spinning at 3000 £  for 15 minutes a t 4°C. The 

supernatants were discarded and the tubes drained. The pellets were resuspended in 

200 pi of distilled water and 200 pi of Reagent A {Section 2.2.2} added, the contents of 

each tube mixed, then incubated a t room temperature for 1 0  minutes. 1 0 0  pi of 

Reagent B {Section 2.2.2} was added, the contents of each tube mixed and the 

absorbance (A7 5 0 ) measured after 30 minutes incubation a t room temperature. The
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concentration of the sample proteins was determined from a standard curve (from 0 to 

20 (ig) constructed from 1 mg/ml BSA and treated in the same manner as the protein 

samples of unknown concentration {Figure 2.3}.

2.15 Discontinuous SDS-polyacrylamide gel electrophoresis

Protein samples {Section 2.13} were analysed using a discontinuous system [Laemmli, 

1970].

2.15.1 Preparation of acrylamide gels

Acrylamide stock solution

The separating and stacking gels were made using an acrylamide/ N, N'-methylene-bis- 

acylamide (22.6% T, 2.66% C) stock solution, where the total monomer concentration, 

%T, was defined as:

_ mass of acrylamide + mass of crosslinker ^ 
total volume

and the crosslinker concentration, %C, was defined as:

„  ~ mass of crosshnker . „ „%C = -------------   --—------------------- — —  x 100
mass of acrylamide + mass cross linker

Separating gels

The separating gels used were of the following composition: 10% (w/v) acrylamide,

0.375 M Tris-hydrochloride, 0.1% (w/v) SDS, 0.05% (w/v) ammonium persulphate, 0.05% 

(v/v) N, N, N', N'-tetramethylethylenediamine (TEMED).

The casting apparatus for either the Bio-Rad mini-protean II dual slab cell 

electrophoresis unit (mini-gel: 7 x 8  cm) or the Hoefer SE 600 vertical slab 

electrophoresis unit (large gel: 14 x 16 cm) was assembled according to the 

manufacturers instructions.
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Figure 2.3 A standard curve for the Lowry protein concentration assay

BSA was used to construct a standard curve (from 0 to 20 pg) for the Lowry protein 
concentration assay {Section 2.13}. Each result shows the mean protein concentration 
(± SD) for triplicate determinations. A standard curve was prepared with each 
experiment.
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The monomer solution for the separating gel of two mini-gels was prepared by mixing 

2.98 ml of distilled water, 2.5 ml of 1.5 M Tris hydrochloride pH 8.8, 4.42 ml of 

acrylamide stock, 50 pi of 20% (w/v) SDS. Polymerisation was initiated by the addition 

of 50 pi of fresh 10% (w/v) ammonium persulphate and 5 pi of TEMED, the solution 

mixed, then poured into the casting apparatus.

The monomer solution for the separating gel of two large gels was prepared by mixing 

14.9 ml of distilled water, 12.5 ml of 1.5 M Tris hydrochloride pH 8.8, 22.1 ml of 

acrylamide stock and 250 pi of 20%(w/v) SDS. Polymerisation was initiated by the 

addition of 250 pi of fresh 10% (w/v) ammonium persulphate and 25 pi of TEMED, the 

solution mixed, then poured into the casting apparatus.

The monomer solution was carefully overlaid with water-saturated isobutanol to obtain 

a smooth surface . After polymerisation, the overlay was removed and the gel surface 

washed thoroughly with distilled water. Combs were placed in position.

Stacking gels

The stacking gels used were of the following composition: 5% (w/v) acrylamide, 0.125 M 

Tris hydrochloride, 0.1% (w/v) SDS, 0.05% (w/v) ammonium persulphate, 0.1% (w/w) 

TEMED.

The monomer solution for the stacking gel of two mini-gels was prepared by mixing 

4.15 ml of distilled water, 2.0 ml of 0.5 M Tris hydrochloride pH 6.8, 1.77 ml of 

acrylamide stock and 40 pi of 20% (w/v) SDS. Polymerisation was initiated by the 

addition of 40 pi of fresh 10% (w/v) ammonium persulphate and 8 pi of TEMED, the 

solution mixed, then poured into the casting apparatus.

The monomer solution for the stacking gel of two large gels was prepared by mixing 

15.6 ml of distilled water, 7.5 ml of 0.5 M Tris hydrochloride, pH 6.8, 6.6 ml of 

acrylamide stock and 150 pi of 20% (w/v) SDS. Polymerisation was initiated by the 

addition of 150 of pi fresh 10% (w/v) ammonium persulphate and 30 pi of TEMED, the 

solution mixed then poured into the casting apparatus.

After polymerisation, the combs were removed and the wells rinsed with distilled water.
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2.15.2 Running conditions

Mini gels were subjected to electrophoresis a t a constant voltage of 150 V in Electrode 

buffer {Section 2.2.3} using a Bio-Rad mini-protean II dual slab cell electrophoresis unit.

Large gels were subjected to electrophoresis a t a constant current of 15 mA per 1.5 mm 

thick gel in Electrode buffer {Section 2.2.3} using a Hoefer SE 600 vertical slab 

electrophoresis unit.

2.15.3 Protein molecular weight standards

The molecular mass of proteins was estimated by comparing their mobility to tha t of 

pre-stained SDS-PAGE standards. The standards used were myosin (205 kDa), 

13-galactosidase (116.5 kDa), BSA (80 kDa) and ovalbumin (49.5 kDa).

_ distance moved by protein
Hjp —  “

distance moved by dye front

The calculated R f  value obtained for the individual SDS-PAGE standards was plotted 

against log (molecular mass) to produce a calibration curve from which the molecular 

mass of the unknown species can be determined by interpolation.

2.16 Western blotting

2.16.1 Mini-gels 

Glutl

G lutl was examined by Western blotting [Towbin et al., 1979] after separation of 

proteins on 10% mini-acrylamide gels by SDS-PAGE.

The gels were equilibrated by shaking in Blot buffer {Section 2.2.5} for 30 minutes. The 

proteins were transferred to a nitrocellulose membrane, a t a constant current of 250 mA 

for 3 hours, using a Bio-Rad Mini-Trans-Blot electrophoretic transfer cell. After the
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transfer, the non-specific binding sites were blocked by incubation in 3% (w/v) BSA/

First wash buffer {Section 2.2.5} for 30 minutes, then the blots were rinsed in F irst wash 

buffer. The blots were incubated overnight in 3% BSA/ First wash buffer containing a 

1:1000 dilution of a rabbit anti-human G lutl antibody tha t also recognises mouse 

G lutl7 [Davies et al., 1987], then washed several times in First wash buffer. The blots 

were incubated for 3 hours in 3% BSA/ First wash buffer containing 0.1 pCi/ml 125I- 

conjugated goat anti-rabbit IgG antibody, then washed several times in Second wash 

buffer {Section 2.2.5}. The blots were dried between two layers of a cellophane 

membrane backing, then placed next to X-Omat AR film in cassettes with an 

intensification screen and kept a t -80°C for 48 hours. The autoradiographs were 

developed using a X-Omat processor.

Glut2, Glut3 and G!ut4

Glut2, Glut3 and Glut4 were examined by Western blotting after separation of proteins 

on 10% mini-acrylamide gels by SDS-PAGE.

Western blotting was carried out as above with the following exceptions. The non

specific binding sites were blocked by incubation in 5% (w/v) Marvel/ F irst wash buffer 

for 30 minutes. The antibodies were diluted in 1% Marvel/ F irst wash buffer. Glut2 was 

detected with a rabbit anti-human Glut2 antibody th a t also recognises mouse Glut2 

[Brant et al., 1992], used a t a  dilution of 1:66.6; Glut3 was detected with a rabbit anti

mouse Glut3 antibody [Gould et al., 1992] used a t a dilution of 1:100 and Glut4 was 

detected with a rabbit anti-human Glut4 antibody th a t also recognises mouse Glut4 

[Brant et al., 1992], used a t a dilution of 1:66.6.

7 The rabbit anti-human G lutl antibody was a gift from Dr S Baldwin, University of 

Leeds, Leeds, Yorkshire, UK.
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2.16.2 Large gels

Glutl

G lutl was examined by Western blotting [Towbin et al., 1979] after separation of 

proteins on 10% large acrylamide gels by SDS-PAGE.

The gels were equilibrated by shaking in Blot buffer {Section 2.2.5} for 1 hour. The 

proteins were transferred to a nitrocellulose membrane, a t a constant current of 250 mA 

for 3 hours, using a Bio-Rad Trans-Blot electrophoretic transfer cell. After the transfer, 

the non-specific binding sites were blocked by incubation in 3% (w/v) BSA/ First wash 

buffer {Section 2.2.5} for 3 hours, then the blots were rinsed in F irst wash buffer. The 

blots were incubated overnight in 3% BSA/ First wash buffer containing a 1:1000 

dilution of a rabbit anti-human G lutl antibody tha t also recognises mouse G lu tl (from 

East Acres Biologicals), then washed several times in First wash buffer. The blots were 

incubated for 1 hour in 3% BSA/ First wash buffer containing a 1:4000 dilution of a 

horseradish peroxidase (HRP)-conjugated donkey anti-rabbit IgG antibody, then washed 

several times in Second wash buffer {Section 2.2.5}. The blots were submerged in 

enhanced chemiluminescence (ECL) detection solutions (according to the manufacturers 

instructions), drained, wrapped in cling-film and exposed to X-Omat AR film for 1 to 5 

minutes. The autoradiographs were developed using a X-Omat processor.

Phosphotyrosine-containing proteins

Phosphotyosine-containing proteins were examined by Western blotting after separation 

of proteins on 10% large acrylamide gels by SDS-PAGE.

Western blotting was carried out as above with the following exceptions. The gels were 

equilibrated in Towbin buffer {Section 2.2.5} and the proteins were transferred a t a 

constant current of 350 mA. TBST-1 and TBST-2 {Section 2.2.5} were used instead of 

First and Second wash buffers respectively; the antibodies were diluted in 0.2% BSA/ 

TBST-1. Phosphotyrosine was detected with a rabbit anti-phosphotyrosine antibody 

[Pang et al., 1985], used a t a dilution of 1:5000, MAPK with a mouse anti-MAPK 

antibody, used at a  dilution of 1:250 000, and p l 2 5 ^AK with a mouse anti-pl25^AK 

antibody, used a t a dilution of 1:5000. The anti-MAPK and anti-p 1 2 5 ^ ^  antibodies 

were detected using a HRP-conjugated sheep anti-mouse IgG antibody.
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Characterisation of the early phase of growth factor- 

stimulated glucose transport in 3T3-L1 fibroblasts



3.1 Introduction

In order to examine the signal transduction pathways th a t mediate the early phase of 

growth factor-stimulated glucose transport, the effects of insulin and PDGF on the rate 

of glucose transport in 3T3-L1 fibroblasts were characterised.

3.1.1 Insulin and PDGF 

Structure

Insulin and PDGF are both heterodimeric proteins. Insulin is formed from a single 

polypeptide, proinsulin, by the process of folding, stabilisation by disulphide bonds and 

proteolysis. In contrast, PDGF is formed from two homologous polypeptides encoded by 

distinct genes. These polypeptides combine to form three PDGF isoforms, AA, AB and 

BB; again the dimers are stabilised by disulphide bonds [Waterfield et al., 1983]. The 

amino acid sequence of the PDGF B-chain is similar to th a t of the transforming protein 

product of the Simian sarcoma virus, p28v'®s [Waterfield et al., 1983].

Functions

Insulin is released by the fi-cells of the Islets of Langerhans in response to a high blood 

glucose concentration. It reduces the blood glucose concentration by stimulating the 

influx of glucose into myocytes and adipocytes {Section 1.2.2}. I t also modifies the 

activity of many enzymes in these cells, so th a t the storage products, glycogen and 

triacylglycerol, are synthesised and not metabolised.

Insulin also stimulates the rate of proliferation of some cells, for example, BC3H-1 

myocytes [Standaert et al., 1987], Chinese ham ster ovary cells [Wilden et al., 1990], and 

Rat-1 cells [McClain, 1990].

PDGF is released from the a-granules of platelets during the platelet adherence and 

aggregation reactions tha t occur when blood vessels have been injured. It is thought to 

aid wound repair by stimulating: chemotaxis in monocytes, neutrophils, fibroblasts and 

vascular smooth muscle cells; the proliferation of fibroblasts and vascular smooth
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muscle cells; and the secretion of extracellular matrix constituents [Heldin and 

Westermark, 1990; Heldin, 1992].

PDGF is also involved in the development of the optic nerve by stimulating the 

proliferation of 0-2A progenitor cells, and by inhibiting their differentiation into type-2 

astrocytes or oligodendrites. It is released in the optic nerve by type-1 astrocytes. It 

may also have other roles in development, since PDGF receptors are expressed in 

embryonic tissue and placenta [Heldin, 1992].

The three PDGF isoforms may have similar or different effects to each other; for 

example, all three isoforms stimulate cell proliferation, but only PDGF-BB stimulates 

chemotaxis [Heldin, 1992].

Receptor structure

Both insulin and PDGF bind to tyrosine protein kinase receptors. The insulin receptor 

is an heterotetrameric glycoprotein consisting of two a-subunits and two B-subunits. It 

is formed from two identical polypeptides, each of which contains a collinear a- and fi- 

subunit. The precursor becomes the mature receptor by the process of dimerisation, 

stabilisation by disulphide bonds, proteolysis and glycosylation. The a-subunits are 

completely extracellular, while each of the B -subunits has a single membrane-spanning 

region. Each a-subunit has a single cysteine-rich domain and several other cysteine 

residues. There are also a few cysteine residues on the extracellular region of the 

B-subunit. The intracellular region of the B-subunit has a tyrosine protein kinase 

domain {Figure 3.1} [Ebina et al., 1985; Ullrich et al., 1985].

There are two insulin receptor isoforms which differ by a sequence of 12 amino acids 

near the carboxy-terminus of the a-subunit. These arise from alternative splicing of 

exon 11 of the insulin receptor gene. The isoforms are expressed in a tissue-specific 

manner, however, it is not known whether they have different functional roles [Seino 

and Bell, 1989; Goldstein and Dudley, 1990].

In contrast, there are two distinct receptors for PDGF: the PDGF a-receptor and the 

PDGF B-receptor [Yarden et al., 1986; Claesson-Welsh et al., 1989]. These are 

structurally similar glycoproteins with a molecular mass of 170 to 180 kDa. Both PDGF
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Figure 3.1 Tyrosine protein kinase receptors

A schematic representation of the structure of Class I, II and III tyrosine protein kinase 
receptors before ligand binding, represented by a) the EGF receptor (Class I), b) the 
PDGF B-receptor (Class II) and c) the insulin receptor (Class III). The carboxy-termini 
of Class I and II receptors and of the B-subunit of Class III receptors are cytosolic. The 
carboxy-termini of the a-subunits of Class III receptors are near the plasma membrane. 
Cysteine-rich domains are represented by hatched boxes, other cysteine residues in the 
extracellular domain are represented by closed circles. Tyrosine protein kinase domains 
are represented by dotted boxes [Ullrich et al., 1984; Ebina et al., 1985; Ullrich et al., 
1985; Ullrich et al., 1986; Yarden et al., 1986].



receptors have two extracellular cysteine-rich domains, a single membrane-spanning 

region and an intracellular tyrosine protein kinase domain, divided into two, by a 

sequence of approximately 100 amino acid residues known as the kinase insert region 

{Figure 3.1} [Yarden et al., 1986].

Ligand-binding

Most tyrosine protein kinase receptors must assemble into an oligomeric structure to 

permit the ligand-induced activation of the intrinsic tyrosine protein kinase. The 

majority of tyrosine protein kinase receptors, including both of the PDGF receptors, 

exist as monomers in the absence of ligand-binding. Upon ligand-binding these 

receptors dimerise, the two PDGF receptors forming all three combinations of receptor 

dimers, aa, aB and BB [Seifert et al., 1989]. The exact receptor dimer formed depends on 

the PDGF isoform: PDGF-AA forms aa, PDGF-AB forms aa and aB, and PDGF-BB 

forms all three [Seifert et al., 1989; Heidaran et al., 1991]. In contrast, as described 

above, the insulin receptor already exists as an heterotetramer in the absence of insulin- 

binding, and does not dimerise further.

Following PDGF-induced receptor dimerisation, or the binding of insulin to its receptor, 

there is a conformational change in the receptor which activates the intrinsic tyrosine 

protein kinase. This catalyses the tyrosine phosphorylation of both the intracellular 

region of the receptor (autophosphorylation) [Herrera and Rosen, 1986] and of other 

substrates [White et al., 1988]. In both cases, the autophosphorylation occurs in trans, 

th a t is, each tyrosine protein kinase domain catalyses the phosphorylation of the other 

polypeptide [Kelly et al., 1991].

The tyrosine phosphorylation creates binding sites for cytosolic proteins tha t contain a 

sequence motif of approximately 100 amino acids known as a Src homology-2 (SH2) 

domain [Koch et al., 1991]. Different SH2 domain-containing proteins bind to different 

phosphotyrosine residues, the specificity arising from the amino acid sequence 

surrounding the phosphotyrosine residue [Songyang et al., 1993].

In the case of PDGF, the SH2 domain-containing proteins bind directly to 

phosphotyrosine residues in the receptor dimers. The proteins tha t are known to bind to 

the phosphotyrosine residues in the PDGF B-receptor include: phospholipase C-y
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(PLC-y) [Meisenhelder et al., 1989; Wahl et al., 1989], the regulatory subunit (p85) of 

phosphatidylinositol-3'-kinase (PtdIns-3'-K) [Kashishian et al., 1992], the p21ras-GTPase 

activating protein (RasGAP) [Kazlauskas et al., 1990], members of the Src family of non

receptor tyrosine protein kinases (p60src, p59^ n , and p62yes) [Kypta et al., 1990], the 

growth-factor receptor bound protein-2 (Grb2) [Lowenstein et al., 1992], and Syp (also 

known as SH2 domain-containing phosphotyrosine phosphatase-2, SH-PTP2) 

[Kazlauskas et al., 1993]. The phosphotyrosine residues within the PDGF 0-receptor to 

which some of these proteins bind have been identified {Figure 3.2}.

In the case of insulin, the SH2 domain-containing proteins do not bind directly to the 

insulin receptor. Instead, these proteins bind to the major substrate of the insulin 

receptor, insulin receptor substrate-1 (IRS-1). There are 21 potential phosphotyrosine 

sites in IRS-1, many of which occur in sequence motifs known to be consensus sequences 

for the binding of SH2 domain-containing proteins [Sun et al., 1991]. The proteins tha t 

bind to IRS-1 include: p85 [Backer et al., 1992a], Grb2 [Skolnik et al., 1993; Sun et al., 

1993a], Syp [Kuhne et al., 1993; Sun et al., 1993a], and Nek [Lee et al., 1993]. PLC-y 

and RasGAP do not appear to bind to IRS-1 [Lavan et al., 1992; Sun et al., 1993a]. The 

phosphotyrosine residues to which some of these proteins bind within IRS-1 have been 

identified {Figure 3.3}.

Beyond the receptor

Many of the SH2 domain-containing proteins are thought to have im portant roles in the 

signal transduction pathways tha t mediate the effects of ligands tha t bind to tyrosine 

protein kinase receptors [Heldin, 1991; Koch et al., 1991; Sun et al., 1993b]. The 

functions of some of these proteins will be discussed later.

The differences in the effects of the various polypeptide growth factors th a t bind to 

tyrosine protein kinase receptors may arise, in part, from the differences in the 

specificity or affinity of receptors for SH2 domain-containing proteins. This could 

account for the differences in the effects of the three PDGF isoforms; for example, the 

affinity of the PDGF B-receptor for RasGAP is five times higher than th a t of the PDGF 

a-receptor [Heidaran etal., 1993].
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Figure 3.2 The PDGF (3-receptor and the associated SH2 domain-containing proteins

A schematic representation of the specificity of interactions between the different SH2 
domain-containing proteins and the known autophosphorylation sites in the PDGF 
13-receptor [Kazlauskas and Cooper, 1989; Fantl et al., 1992; Kashishian et al., 1992; 
Ronnstrand et al., 1992; Kazlauskas et al., 1993; Mori et al., 1993; Vallus and 
Kazlauskas, 1993].
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Figure 3.3 IRS-1 and the associated SH2 domain-containing proteins

A schematic representation of the specificity of interactions between the different SH2 
domain-containing proteins and the known phosphorylation sites in IRS-1 [Skolnik et 
al., 1993; Sun et al., 1993a].
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3.1.2 Fibroblasts

The connective-tissue cell family

The connective-tissue cell family includes: fibroblasts, chondroblasts, osteoblasts, 

adipocytes and smooth muscle cells. All the members of the connective-tissue cell family 

develop from fibroblasts. It is not yet clear whether there is a single type of fibroblast 

which is able to differentiate into many cell types, or whether there are several distinct 

fibroblast lineages each able to differentiate into a different cell type. Cell 

differentiation, like cell proliferation, is regulated by growth factors and anchorage. For 

example, transforming growth factor - f t  induces differentiation of fibroblasts into 

chondrocytes, and growth hormone induces differentiation of fibroblasts into adipocytes.

The members of the connective-tissue cell family have im portant roles in the support 

and repair of most tissues and organs. Fibroblasts, chondroblasts and osteoblasts 

secrete the various macromolecules th a t form the extracellular matrix. Fibroblasts are 

irregular, branched cells dispersed in connective tissue throughout the body. They 

secrete a non-rigid, extracellular matrix rich in type I collagen. In response to growth 

factors, such as PDGF, which are released as a consequence of tissue injury, fibroblasts 

migrate to the site of injury (chemotaxis), proliferate and secrete large amounts of 

extracellular matrix, thus helping to repair the damaged tissue [Heldin and 

Westermark, 1990; Heldin, 1992].

Fibroblast cell lines

The Swiss 3T3 fibroblast cell line was isolated from mouse embryo connective tissue. 

These cells grow indefinitely in serial culture, but stop growing and enter GO once they 

form a confluent monolayer (contact inhibition) [Todaro and Green, 1963]. If these 

resting cells are maintained for several weeks, some of them will develop visible lipid 

droplets. The lipid-accumulating cells form less than one percent of the total cell 

population, and are not observed among proliferating cells [Green and Kehinde, 1974; 

Green and Meuth, 1974]. They resemble brown or immature white adipocytes; such 

adipocytes have abundant cytoplasm, a central nucleus and multiple droplets of lipid, 

while mature white adipocytes have little cytoplasm, an eccentric nucleus and a single 

large, central, droplet of lipid [Green and Kehinde, 1974; Green and Meuth, 1974].
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Several subclones tha t are able to convert with a high frequency to lipid-accumulating 

cells have been produced by serial selection of the cells from the lipid-rich areas of 

confluent, quiescent Swiss 3T3 fibroblasts (clone: Swiss 3T3-M) [Green and Kehinde, 

1974].

The 3T3-L1 cell line

The cells of the subclone 3T3-L1 convert spontaneously into lipid-accumulating cells 

within two to four weeks of reaching confluence [Green and Kehinde, 1974]. The rate 

and extent of differentiation of 3T3 -LI cells increases in response to insulin [Green and 

Kehinde, 1975], glucocorticoids such as dexamethasone [Rubin et al., 1978], inhibitors of 

cyclic AMP phosphodiesterase such as 3 -iso-butyl-1-methylxanthine [Rubin et al., 1978] 

and high concentrations of serum [Green and Meuth, 1974]. Exposure of confluent 

3T3-L1 cells to mixtures of these agents induces differentiation such th a t more than 90 

percent of the cells resemble fully mature white adipocytes within ten days [Rubin et al., 

1978; Frost and Lane, 1985].

The undifferentiated form of 3T3-L1 cells synthesise collagen [Green and Meuth, 1974]. 

The only monosaccharide facilitative transporter protein expressed by these cells is 

Glutl. The rate of glucose transport increases two to five fold in response to insulin and 

other growth factors arising from the translocation of G lutl {Section 1.3.2}. The rate of 

TAG synthesis is comparable to tha t observed in fibroblasts, and is insensitive to 

lipogenic and lcpolytic agents [Green and Kehinde, 1975; Mackall et al., 1976; Ahmad et 

al., 1979]. The number of insulin-binding sites is comparable to tha t in other fibroblast 

cell lines [Reed et al., 1977], Thus, the non-differentiated form of 3T3-L1 cells resembles 

fibroblasts.

In contrast, the differentiated form of 3T3-L1 cells expresses two monosaccharide 

facilitative transporter proteins, G lutl and Glut4 [Calderhead et al., 1990a]. The rate of 

glucose transport increases 20 fold in response to insulin [Calderhead et al., 1990a], 

arising mainly from the translocation of Glut4 {Section 1.3.2} [Holman et al., 1990]. 

However, the rate of glucose transport increases only two to five fold in response to 

growth factors [Gould et al., 1994] and phorbol esters [Gibbs et al., 1991]. The 

expression of various enzymes required for fatty acid and TAG synthesis is higher than 

tha t in non-differentiated cells [Mackall et al., 1976; Ahmad et al., 1979]. Consequently,
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the activities of these enzymes are ten to 50 fold higher and the rate of TAG synthesis 

itself is greater than in non-differentiated cells [Green and Kehinde, 1975; Mackall et 

al., 1976; Ahmad et al., 1979]. Furthermore, TAG synthesis is sensitive to Jcpogenic 

agents such as insulin [Ahmad et al., 1979], and is also sensitive to lipolytic agents such 

as adrenocorticotrophic hormone and B-adrengeric agents [Rubin et al., 1977]. The 

number of insulin-binding sites is comparable to tha t in hum an and ra t adipocytes, 

while the number of EGF-binding sites is comparable to th a t in fibroblasts [Reed et al., 

1977]. Thus, the differentiated form of 3T3-L1 cells resembles adipocytes.

3.2 Results

The effects of the growth factors, insulin and PDGF, on cell proliferation and the rate of 

glucose transport in 3T3-L1 fibroblasts were characterised.

3.2.1 The effect of growth factors on cell proliferation

The effects of insulin and PDGF on cell proliferation in 3T3-L1 fibroblasts were 

established by measuring DNA synthesis by means of the incorporation of 

[3 H]thymidine [Section 2.7}. NCS was used as a positive control. Insulin, PDGF and 

NCS all stimulated incorporation of [3 H]thymidine. The results, from a representative 

experiment, are shown in Table 3.1; the incorporation was stimulated 3.8 fold by 1 |iM 

insulin, 7.2 fold by 25 ng/ml PDGF and 8.3 fold by 20% NCS.

3.2.2 The effect of growth factors on the rate of glucose transport

The effect of insulin on the rate of glucose transport in 3T3-L1 fibroblasts was 

established by measuring the rate of 2-deoxyglucose uptake [Section 2.8.1}. The EC5 0  

value was typically 5.0 nM. At a concentration of 1 pM insulin, the rate of uptake 

increased rapidly. The increase in the rate was evident within one minute of exposure 

to insulin, reaching a maximum by 60 minutes. The maximal stimulation in the rate  in 

response to 1 pM insulin was 2.0 to 5.0 fold. A representative dose-response curve and a
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Table 3.1 The effect of insulin and PDGF on DNA synthesis in 3T3-L1 fibroblasts

After incubation of quiescent 3T3-L1 fibroblasts with 1 pCi [3 H]thymidine and 1 pM 
insulin, 25 ng/ml PDGF or 20% NCS for 24 hours, [3 H]thymidine incorporation was 
measured {Section 2.7}. Each result shows the mean [3 H]thymidine incorporation (± 
SD) for six determinations. This is a representative experiment from a group of four.

[3 H]thymidine incorporation 
(cpm per well)

Basal 5170 ±1500

Insulin 19600 ± 3000

PDGF 37100 ±9300

NCS 42900 ± 1100
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representative time course for insulin-stimulated 2  -deoxyglucose uptake are shown in 

Figures 3.4 and 3.5, respectively.

The effect of IGF-I on the rate of glucose transport in 3T3-L1 fibroblasts was established 

by measuring the rate of 2 -deoxyglucose uptake {Section 2 .8 .1 }. The EC5 0  value was 

typically 0.5 nM. The maximal stimulation in the rate in response to IGF -I was 4.0 to

5.0 fold. A representative dose-response curve for IGF-I-stimulated 2 -deoxyglucose 

uptake is shown in Figure 3.6.

The effect of PDGF on the rate of glucose transport in 3T3-L1 fibroblasts was 

established by measuring the rate of 2 -deoxyglucose uptake {Section 2.8.1}. The EC5 0  

value was typically 0.5 ng/ml. At a concentration of 25 ng/ml PDGF, the rate of uptake 

increased rapidly. The increase in the rate was evident within one minute of exposure 

to PDGF and reached a maximum by 60 minutes. The maximal stimulation in the rate 

in response to 25 ng/ml PDGF was 2.0 to 3.5 fold. A representative dose-response curve 

and a representative time course for PDGF-stimulated 2 -deoxyglucose uptake are shown 

in Figures 3.7 and 3.8, respectively.

3.2.3 The effect of a tumour promoter on the rate of glucose transport

The effect of PMA on the rate of glucose transport in 3T3 -LI fibroblasts was established 

by measuring the rate of 2 -deoxyglucose uptake {Section 2.8.1}. At a concentration of 

100 nM PMA, the rate of uptake increased rapidly. The increase in the rate was evident 

within one minute of exposure to PMA and reached a maximum by 60 minutes. The 

maximal stimulation in the rate in response to 100 nM PMA was 2.0 to 3.0 fold. A 

representative time-course for PMA-stimulated 2-deoxyglucose uptake is shown in 

Figure 3.9.

3.2.4 Identification of the facilitative monosaccharide transporter proteins 

expressed in 3T3-L1 fibroblasts

The presence of the monosaccharide facilitative transporter protein isoforms in 3T3-L1 

fibroblasts was established by Western blotting. Membrane proteins were prepared
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Figure 3.4 A dose response curve for insulin-stimulated 2-deoxyglucose uptake

After incubation of quiescent 3T3-L1 fibroblasts with insulin present in concentrations 
ranging from 0 to 1 fiM for 60 minutes, a 3 minute uptake of 2-dexoy-D-[2,6-3 H]glucose 
was measured {Section 2.8.1}. Each result shows the mean rate of specific 
2-deoxyglucose uptake (± SD) for triplicate determinations. Each result is expressed 
relative to the basal rate which was measured a t 11.6 ± 1.7 pmoles/ min/ 106  cells. This 
is a representative experiment from a group of five; basal rates varied from 6.0 to 49 
pmoles/ min/ 1 0 6  cells, the EC 5 0  value was typically 5 nM and the maximal stimulation 
was between 2.5 and 5.0 fold.
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Figure 3.5 A time course for insulin-stimulated 2-deoxyglucose uptake

After incubation of quiescent 3T3-L1 fibroblasts with 1 pM insulin present for the times 
shown, a 3 minute uptake of 2-dexoy-D-[2,6-3 H]glucose was measured {Section 2.8.1}. 
Each result shows the mean rate of specific 2-deoxyglucose uptake (± SD) for triplicate 
determinations. Each result is expressed relative to the basal rate which was measured 
at 48.5 ± 2.6 pmoles/ min/ 106  cells. This is a representative experiment from a group of 
four; basal rates varied from 6.0 to 49 pmoles/ min/ 106  cells and the maximal 
stimulation was between 2.5 and 5.0 fold.
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Figure 3.6 A dose response curve for IGF-l-stimulated 2-deoxyglucose uptake

After incubation of quiescent 3T3-L1 fibroblasts with IGF-I present in concentrations 
ranging from 0 to 1 pM for 60 minutes, a 3 minute uptake of 2-dexoy-D-[2,6-3 H]glucose 
was measured {Section 2.8.1}. Each result shows the mean rate of specific 
2-deoxyglucose uptake (± SD) for triplicate determinations. Each result is expressed 
relative to the basal rate which was measured at 6.3 ± 1.3 pmoles/ min/ 103  cells. This is 
a representative experiment from a group of three; basal rates varied from 6.0 to 49 
pmoles/ min/ 106  cells, the EC 5 0  value was typically 0.5 nM and the maximal 
stimulation was between 3.4 and 5.0 fold.
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Figure 3.7 A dose-response curve for PDGF-stimulated 2-deoxyglucose uptake

After incubation of quiescent 3T3-L1 fibroblasts with PDGF present in concentrations 
ranging from 0 to 25 ng/ml for 60 minutes, a 3 minute uptake of 2-dexoy- 
D-[2,6-3 H]glucose was measured {Section 2.8.1}. Each result shows the mean rate of 
specific 2-deoxyglucose uptake (± SD) for triplicate determinations. Each result is 
expressed relative to the basal rate which was measured a t 8.87 ±2.7 pmoles/ min/ 106  

cells. This is a representative experiment from a group of three; basal rates varied from
6 . 0  to 49 pmoles/ min/ 1 0 6  cells, the EC 5 0  value was typically 0.5 ng/ml and the maximal 
stimulation was between 2.5 and 5.0 fold.
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Figure 3.8 A time course for PDGF-stimulated 2-deoxyglucose uptake

After incubation of quiescent 3T3-L1 fibroblasts with 25 ng/ml PDGF present for the 
times shown, a 3 minute uptake of 2 -decxy-D-[2,6-3H] glucose was measured {Section 
2.8.1}. Each result shows the mean rate of specific 2-deoxyglucose uptake (± SD) for 
triplicate determinations. Each result is expressed relative to the basal rate which was 
measured a t 47.8 ± 1.9 pmoles/ min/ 106 cells. This is a representative experiment from 
a group of three; basal rates varied from 6.0 to 49 pmoles/ min/ 106 cells and the 
maximal stimulation was between 1.7 and 2.0 fold.
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Figure 3.9 A time course for PMA-stimulated 2-deoxyglucose uptake

After incubation of quiescent 3T3-L1 fibroblasts with 100 nM PMA present for the times 
shown, a 3 minute uptake of 2-dexoy-D-[2,6-3H]glucose was measured {Section 2.8.1}. 
Each result shows the mean rate of specific 2-deoxyglucose uptake (± SD) for triplicate 
determinations. Each result is expressed relative to the basal rate which was measured 
at 20.3 ± 2.6 pmoles/ m in/106 cells. This is a representative experiment from a group of 
three; basal rates varied from 6.0 to 49 pmoles/ min/ 106 cells and the maximal 
stimulation was between 2.5 and 3.0 fold.
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from 3T3-L1 fibroblasts {Section 2.13.1}. These membrane proteins and selected 

transporter protein standards were separated by SDS-PAGE {Section 2.15}, and then 

transferred onto nitrocellulose membranes. The membranes were probed with 

antibodies which recognised the different isoforms {Section 2.16.1}. The rabbit anti- 

G lutl antibody was raised against the carboxy-terminal 14 amino acids of hum an G lutl, 

but the antibody also recognises mouse G lutl [Davies et al., 1987]. The rabbit anti- 

Glut2 antibody was raised against a sequence of 14 amino acids in the carboxy-terminal 

region of human Glut2, but the it also recognises mouse Glut2 [Brant et al., 1992]. The 

rabbit anti-Glut3 antibody was raised against the carboxy-terminal 13 amino acids of 

mouse Glut3 [Gould et al., 1992]. The rabbit anti-Glut4 antibody was raised against the 

carboxy-terminal 16 amino acids of human Glut4, but again the antibody recognises 

mouse Glut4 [Brant et al., 1992]. Proteins were detected using a 125I-conjugated goat 

anti-rabbit IgG antibody {Section 2.16.1}.

When membrane proteins from 3T3-L1 fibroblasts were probed with the anti-G lutl 

antibody, the antibody recognised a broad band with an approximate, molecular mass of 

50 kDa. A representative Western blot is shown in Figure 3.10.

When membrane proteins from 3T3-L1 fibroblasts and the Glut2 standard (mouse liver 

membrane proteins [Marchmont et al., 1981]) were probed with the anti-Glut2 antibody, 

the antibody recognised a narrow band with an approximate, molecular mass of 56 kDa 

in the lanes containing the Glut2 standard. However, bands corresponding to Glut2 

were not observed in the lanes containing the 3T3-L1 fibroblast proteins, although there 

was a band with an approximate molecular mass of 50 kDa probably due to non-specific 

binding. A representative Western blot is shown in Figure 3.11a.

When membrane proteins from 3T3-L1 fibroblasts and the Glut3 standard (mouse brain 

membrane proteins [Gould et al., 1992]) were probed with the anti-Glut3 antibody, the 

antibody recognised a major band with an approximate, molecular mass of 48 kDa in the 

lanes containing the Glut3 standard. Other fainter bands of higher molecular mass 

were also observed, but these bands are not thought to be Glut3 [Gould et al., 1992]. 

However, bands corresponding to Glut3 were not observed in the lanes containing the 

3T3-L1 fibroblast proteins. A representative Western blot is shown in Figure 3.11b.
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Figure 3.10 The effect of insulin, PDGF and PMA on the total Glutl level

After incubation of quiescent 3T3-L1 fibroblasts with 1 pM insulin, 25 ng/ml PDGF or 
100 nM PMA for 60 minutes, membrane proteins were prepared {Section 2.13.1}. 
Approximately 60 pig of protein was loaded onto 10% (w/v) polyacrylamide mini-gels, 
the proteins were separated by SDS-PAGE {Section 2.15}, and then transferred onto 
nitrocellulose membranes. The membranes were probed with a rabbit anti-G lutl 
antibody, then with a 125I-conjugated goat anti-rabbit IgG antibody {Section 2.16.1}. 
This is a representative Western blot from a group of two membrane protein 
preparations.

Lane A: basal; Lane B: insulin; Lane C: vehicle (insulin); Lane D: PDGF; Lane E: 
vehicle (PDGF); Lane F: PMA.
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Figure 3.11 The monosaccharide facilitative transporter isoforms expressed in 3T3-L1 
fibroblasts

Membrane proteins were prepared from quiescent 3T3-L1 fibroblasts {Section 2.13.1}. 
The proteins were loaded onto 10% (w/v) polyacrylamide mini-gels, separated by SDS- 
PAGE {Section 2.15}, and then transferred onto nitrocellulose membranes. The 
membranes were probed with a) rabbit anti-Glut2, b) rabbit anti-Glut3 or c) rabbit 
anti-Glut4 antibodies, and then with an 125I-conjugated goat anti-rabbit IgG antibody 
{Section 2.16.1}. The standards used were mouse liver (Glut2), mouse brain (Glut3) 
and 3T3-L1 adipocyte (Glut4) membrane proteins. This is a representative experiment 
from a group of two membrane protein preparations.

Lanes A and B: 30 pg and 60 fig of 3T3-L1 fibroblast membrane proteins respectively; 
Lanes C and D: 30 pg and 60 pg of standard membrane proteins respectively.
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When membrane proteins from 3T3-L1 fibroblasts and the Glut4 standard (3T3-L1 

adipocyte membrane proteins [Gould et al., 1989]) were probed with the anti-Glut4 

antibody, the antibody recognised a band with an approximate, molecular mass of 

55 kDa in the lanes containing the Glut4 standard. However, bands corresponding to 

Glut4 were not observed in the lanes containing the 3T3-L1 fibroblast proteins. A 

representative Western blot is shown in Figure 3.11c.

3.2.5 The effect of insulin, PDGF and PMA on the total Glutl level

The effect of insulin, PDGF and PMA on the total G lutl level in 3T3-L1 fibroblasts was 

established by Western blotting. Membrane proteins were prepared from 3T3-L1 

fibroblasts after incubation in 1 |xM insulin, 50 j iM  hydrochloric acid (the vehicle for 

insulin), 25 ng/ml PDGF, 1 mM sodium acetate, 0.15 mM sodium chloride (the vehicle 

for PDGF) or 100 nM PMA, for 60 minutes {Section 2.13.1). The membrane protein 

samples were separated by SDS-PAGE {Section 2.15), and then transferred onto 

nitrocellulose membranes. The membranes were probed with the anti-G lutl antibody 

described above {Section 3.2.4} and then with an l 25I-conjugated goat anti-rabbit IgG 

antibody {Section 2.16.1). The level of G lutl in each sample was quantified by 

measurement of radioactivity.

The anti-G lutl antibody recognised a diffuse band with a molecular mass of 

approximately 50 kDa in each lane containing the 3T3-L1 fibroblast proteins. A 

representative Western blot is shown in Figure 3.10.

The G lutl level varied slightly in the untreated, agonist- and vehicle-treated samples. 

However, the results obtained by this method typically varied by ten percent, therefore 

it is unlikely tha t the relatively small differences observed in the G lutl level are 

significant. The results from a representative experiment are shown in Table 3.2.

81



Table 3.2 The effect of insulin, PDGF and PMA on the total Glutl level

After incubation of quiescent 3T3-L1 fibroblasts with 1 jiM insulin, 25 ng/ml PDGF or 
100 nM PMA for 60 minutes, membrane proteins were prepared {Section 2.13.1}. 
Approximately 60 pg of protein was loaded onto 10% (w/v) polyacrylamide mini-gels, the 
proteins resolved by SDS-PAGE {Section 2.15}, and then transferred onto nitrocellulose 
membranes The membranes were probed with a rabbit anti-G lutl antibody, and then 
with a 125I-conjugated goat anti-rabbit IgG antibody {Section 2.16.1}. The level of G lutl 
in each sample was quantified by the measurement of radioactivity.

G lutl levels 
(cpm per band)

Basal 798

Insulin 767

Vehicle (insulin) 892

PDGF 1174

Vehicle (PDGF) 1144

PMA 1034
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3.3 Discussion

3.3.1 The effect of growth factors on cell proliferation

Most growth factors stimulate cell growth and proliferation. Some stimulate cell 

differentiation. Some, such as PDGF, affect the proliferation of many cell types, while 

others, such as erythropoietin, affect the proliferation of a single cell type. The ability of 

a growth factor to affect the proliferation of a given cell type depends on which growth 

factor receptors are expressed by that cell.

In order to establish whether or not insulin or PDGF could stimulate proliferation of 

3T3-L1 fibroblasts, DNA synthesis was measured. The incorporation of the radioactive- 

labelled DNA precursor [3H] thymidine into DNA was assayed after a 24 hour incubation 

in the presence of each of the two growth factors and NCS. [3H]thymidine incorporation 

was stimulated 3.8 fold in response to 1 pM insulin, 7.2 fold in response to 25 ng/ml 

PDGF, and 8.3 fold in response to 20% NCS {Table 3.1}. NCS which contains many 

growth factors and hormones, including PDGF, was the most potent stim ulant of 

proliferation in 3T3-L1 fibroblasts, and PDGF alone was nearly as potent; insulin alone 

had a lesser effect.

3.3.2 The effect of growth factors on the rate of glucose transport

The increase in the rate of growth factor-stimulated glucose transport is biphasic 

{Figure 1.1}. The early phase of insulin- and PDGF-stimulated glucose uptake, in 

3T3-L1 fibroblasts, was characterised by measuring the effects of insulin and PDGF on 

the rate of 2-deoxyglucose uptake. For insulin-stimulated 2-deoxyglucose uptake, the 

EC5 0  value was typically 5.0 nM {Figure 3.4}. At a concentration of 1 pM insulin, a 

maximal stimulation of the rate of 2-deoxyglucose uptake of 2.0 to 5.0 fold was observed 

within 60 minutes {Figure 3.5}. For PDGF-stimulated 2-deoxyglucose uptake, the EC 5 0  

value was typically 0.5 ng/ml {Figure 3.7}. At a concentration of 25 ng/ml PDGF, a 

maximal stimulation of the rate of 2-deoxyglucose uptake of 2.0 to 3.5 fold was observed 

within 60 minutes {Figure 3.8}. The EC 5 0  values and the magnitudes of the maximal
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increases in the rate of 2  -deoxyglucose uptake are in agreement with work carried out 

by other researchers in similar cells [Allard et al., 1987].

Insulin is closely related to two other growth factors, IGF -I and IGF -II. The IGF -I 

receptor is similar to, but distinct from, the insulin receptor; both the receptors are 

Subclass III tyrosine protein kinase receptors {Figure 3.1} [Ullrich et al., 1985; Ullrich et 

al., 1986]. Insulin binds with high affinity to its own receptor, with low affinity to the 

IGF-I receptor, and with very low affinity to the IGF-II receptor. IGF-I binds with 

highest affinity to its own receptor, with lower affinity to the IGF-II receptor, and with 

lowest affinity to the insulin receptor [Ullrich et al., 1986]. Despite the structural 

similarities of the insulin and IGF-I receptors and the ability to bind to each other's 

receptors, insulin and IGF-I are thought to have different physiological roles in 

mammals. Insulin is known to have an important role in the regulation of blood glucose 

concentrations and many metabolic pathways {Section 1.2.2}, while IGF-I is thought to 

be im portant in development, both for proliferation (osteocytes and myocytes) and 

differentiation (adipocytes, myocytes and chondrocytes). Furthermore, during the 

differentiation of 3T3-L1 fibroblasts into adipocytes, the level of the insulin receptor 

mRNA increases, while the level of the IGF-I receptor mRNA decreases; presumably 

affecting the levels of the corresponding proteins. Consequently, it is likely tha t the 

observed effects of insulin on cell proliferation and the rate of glucose transport in 

3T3-L1 fibroblasts occur as a consequence of insulin being able to bind to the IGF-I 

receptor.

This possibility was examined by comparing the dose-response curves for insulin- and 

IGF-I-stimulated 2-deoxyglucose uptake. If the effects of insulin are mediated by the 

IGF -I receptor then the EC5 0  value for insulin-stimulated 2-deoxyglucose uptake would 

be higher than the EC 5 0  value for IGF-I-stimulated 2-deoxyglucose. For insulin the 

value was typically 5.0 nM {Figure 3.4} and for IGF -I the value was typically 0.5 nM 

{Figure 3.6}, which supports the hypothesis tha t insulin-stimulated glucose transport is 

mediated by the IGF -I receptor in 3T3-L1 fibroblasts.

There are three PDGF isoforms {Section 3.1.1}. All the work presented in this thesis 

was performed using PDGF-BB. PDGF-BB binds to both the PDGF a- and B-receptor 

isoforms, leading to formation of all three receptor dimers {Section 3.1.1}. Preliminary
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work, using PDGF-AA showed that PDGF-AA also stimulated the rate of 2-deoxyglucose 

uptake in 3T3-L1 fibroblasts (results not shown). PDGF-AA is thought to bind to only 

the PDGF a-receptor isoform [Heldin, 1992]. Therefore, it is likely th a t 3T3-L1 

fibroblasts express this isoform. However, this has not been confirmed, nor has the 

presence of the PDGF 13-receptor isoform in 3T3-L1 fibroblasts. Both the PDGF receptor 

isoforms are expressed by NIH 3T3 fibroblasts [Heidaran et al., 1991], so it is expected 

that 3T3-L1 fibroblasts will also express both isoforms.

3.3.3 The effect of a tumour promoter on the rate of glucose transport

The tumour promoter PMA mimics the actions of DAG by binding to and activating PKC 

{Section 4.1.2], leading to cell proliferation [Nishizuka, 1984], The early phase of PMA- 

stimulated glucose transport in 3T3-L1 fibroblasts was characterised by measuring the 

affect of PMA on the rate of 2 -deoxyglucose uptake. At a concentration of 100 nM PMA, 

the maximal stimulation of the rate of uptake of 2.0 to 3.0 fold occurred within 

60 minutes {Figure 3.9}. This is similar in magnitude and timing to the early phase of 

insulin- and PDGF-stimulated glucose transport.

The effects of insulin, PDGF and PMA on the rate of 2-deoxyglucose uptake were not 

additive; th a t is, the incubation of 3T3-L1 fibroblasts with combinations of these ligands 

did not lead to significantly greater increases in the rate of uptake than incubation with 

any of the ligands alone (results not shown). Similar results were obtained concerning 

the effects of EGF, insulin, PDGF and PMA on 2-deoxyglucose uptake in human 

fibroblasts [Allard et al., 1987]. One interpretation of these results is th a t the early 

phases of insulin-, PDGF- and PMA-stimulated glucose transport are mediated by a 

common signal transduction pathway.

3.3.4 Identification of facilitative transporter proteins

The mammalian monosaccharide facilitative transporter protein isoforms are expressed 

in a tissue-specific manner {Table 1.1}. All cultured cells express G lutl, in fact, it is the 

only one known to be expressed in 3T3-L1 fibroblasts. Western blotting of 3T3-L1
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fibroblast membrane proteins confirmed tha t G lutl is the only transporter protein 

expressed by these cells {Figures 3.10 and 3.11}.

3.3.5 The mechanism by which growth factors stimulate glucose transport

There are three mechanisms by which the rate of transport can be altered {Section 

1.3.1}. Published work suggests that the early phase of growth factor-stimulated glucose 

transport occurs as a consequence of translocation of G lutl from an intracellular 

location to the plasma membrane and not as a consequence of an increase in the total 

level of G lutl {Section 1.3.2}. Western blotting of 3T3-L1 fibroblast membrane proteins 

with an antibody raised against Glutl, showed tha t there were only small differences in 

the total G lutl level after incubation with 1 pM insulin, 25 ng/ml PDGF and 100 nM 

PMA {Figure 3.10 and Table 3.2}. These differences could be due to experimental 

variation and are not large enough to account for the 2 to 5 fold increases observed in 

the rate of 2-deoxyglucose uptake {Sections 3.2.2 and 3.2.3}. Hence, the early phase of 

the growth factor-stimulated glucose transport probably occurs because of translocation 

of Glutl.

3.3.6 The basal rate of 2-deoxyglucose uptake

The basal rate of 2-deoxyglucose uptake varied between 6.0 to 49 pmoles/ min/ 10® cells. 

Other researchers have recorded similar variations when using cultured cells in the 

basal rate of 2 -deoxyglucose uptake and in the magnitude of the maximal increase in 

response to growth factors [Allard et al., 1987}. Recent research suggests tha t these 

variations may arise from a gradual increase in the intracellular sequestration of G lutl 

as the fibroblasts become confluent [Yang et al., 1992]. For example, the majority of 

G lutl is found a t the cell surface in preconfluent 3T3-L1 fibroblasts, and the proportion 

of G lutl a t the cell surface decreases as the cells become confluent. In addition, the 

basal rate of 2-deoxyglucose uptake decreases and the magnitude of insulin-stimulated 

2-deoxyglucose uptake increases as 3T3-L1 fibroblasts become confluent; these changes 

reflect the increase in intracellular sequestration of G lutl [Yang et al., 1992].
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3.3.7 Summary

Insulin and PDGF stimulate cell proliferation in 3T3-L1 fibroblasts, and these growth 

factors and the tumour promoter, PMA, all stimulate 2-deoxyglucose uptake in a similar 

manner. In each case, the increase occurs within minutes and reaches a maximum 

within 60 minutes of exposure to the agonist. The maximum increases in the rate of 

2-deoxyglucose uptake are between 2.0 to 5.0 fold.

3T3 -LI fibroblasts express only one facilitative monosaccharide transporter isoform, 

G lutl. The observed increases in the rate of 2-deoxyglucose uptake probably arise from 

the translocation of G lutl, but not because of an increase in the total level of G lutl.

Since insulin, PDGF and PMA all have similar effects to each other on the rate of 

glucose transport in 3T3-L1 fibroblasts, it is possible th a t the intracellular signal 

transduction pathways that mediate these effects are similar. The effects of many 

ligands tha t bind to plasma membrane receptors are mediated by signal transduction 

pathways tha t involve DAG and PKC. The effects of PMA are also mediated by PKC. 

Therefore, the possibility tha t the early phase of insulin-, PDGF- and PMA-stimulated 

glucose transport is mediated by a signal transduction pathway involving phospholipids 

and PKC was investigated and is discussed next.
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DAG and the activation of protein kinase C in 3T3-L1

fibroblasts



4.1 Introduction

The growth factors, insulin and PDGF, and the tumour promoter, PMA, all have similar 

effects on the rate of glucose transport in 3T3-L1 fibroblasts. The increase in the rate of 

glucose transport is evident within minutes of exposure to ligand, reaching a maximum 

within 60 minutes {Section 3.2.2}. This increase is likely to occur as a result of 

translocation of G lutl to the plasma membrane; it does not involve an increase in the 

total G lutl protein level {Section 3.2.5}.

Since these ligands have similar effects to each other on the rate of glucose transport in 

3T3-L1 fibroblasts, it is possible that the intracellular signal transduction pathways 

tha t mediate these effects are similar. The effects of many ligands tha t bind to plasma 

membrane receptors are mediated by signal transduction pathways tha t involve the 

hydrolysis of certain phospholipids. This produces DAG which binds to and activates 

PKC [Asaoka et al., 1992; Liscovitch, 1992]. The effects of PMA are also mediated by 

PKC [Nishizuka, 1984], Since the effects of insulin and PDGF on the rate of glucose 

transport are similar to those of PMA, it is possible tha t the effects of insulin and PDGF 

are also mediated by a signal transduction pathway involving DAG and PKC.

Therefore, the effects of insulin and PDGF on DAG accumulation and PKC activity, and 

the necessity of PKC in the early phase of insulin- and PDGF-stimulated glucose 

transport, were investigated.

4.1.1 Phospholipid hydrolysis 

Signal-activated phospholipases

Ligand-stimulated hydrolysis of phospholipids is catalysed by signal-activated 

phospholipases. Each signal-activated phospholipase catalyses the hydrolysis of a 

particular bond; for example, phospholipase A2  (PLA2 ) catalyses the hydrolysis of the 

ester bond at the sn-2 position, phospholipase C (PLC) catalyses the hydrolysis of the 

phosphoester bond a t the sn -3 position, and phospholipase D (PLD) catalyses the 

hydrolysis of the bond between the phosphate group and the polar headgroup {Figure 

4.1a}. Consequently, the hydrolysis of a given phospholipid by different signal-activated 

phospholipases produces different types of products {Figure 4.1b}. Furthermore, each
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signal-activated phospholipase catalyses the hydrolysis of a particular group of 

phospholipids; for example, the phosphatidyl inositol-specific PLC (Ptdlns-PLC) 

isozymes catalyse the hydrolysis of phosphatidyl inositols; significantly, sn -1,2- 

phosphatidyl inositol 4,5-bisphosphate (PtdIns(4,5)P2) produces D-myo -inositol 1,4,5- 

trisphosphate (Ins(l,4,5)P3) and DAG. The phosphatidyl choline-specific PLC (PtdCh- 

PLC) isozymes catalyse the hydrolysis of sn-1,2-phosphatidyl choline (PtdCh), the 

products being phosphocholine (ChP) and DAG. The PtdCh-specific PLD (PtdCh-PLD) 

isozymes also catalyse the hydrolysis of PtdCh, but the products are choline (Ch) and 

phosphatidic acid (PtdOH) [Exton, 1990].

Phosphatidyl inositol hydrolysis

The Ptdlns -PLC family members are the most well characterised signal-activated 

phospholipases. The amino acid sequences of 16 distinct isozymes are known. 

Comparison of these sequences shows tha t they form three subfamilies, PLC-B, PLC-y 

and PLC S . The members of each subfamily have distinct catalytic properties and 

modes of activation [Rhee and Choi, 1992].

The PLC-fi isozymes are activated in response to ligands th a t bind to G protein-linked 

receptors, particularly those receptors which bind to the members of the Gq family {see 

Section 5.1.3 for a more detailed description of the activation of G proteins}. The 

activation of a Gq leads to activation of PLC-fil [Smrcka et al., 1991; Sternweis and 

Smrcka, 1992].

The PLC-y isozymes are activated in response to ligands tha t bind to tyrosine protein 

kinase receptors [Rhee and Choi, 1992]. The activation of a tyrosine protein kinase 

leads to phosphorylation of the receptor and association of PLC-yl, via its SH2 domains, 

with certain phosphotyrosine-containing sequences in the receptor [Section 3.1.1}. For 

example, PLC-yl associates with Tyr-1021 in the PDGF 3 - receptor {Figure 3.2} 

[Ronnstrand et al., 1992].

Association of PLC-yl with a tyrosine protein kinase receptor is followed by its 

phosphorylation on residues Tyr-771, Tyr-783 and Tyr-1254. However, its catalytic 

activity is not altered by tyrosine phosphorylation [Rhee and Choi, 1992]. In quiescent
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Figure 4.1 Phospholipids and signal-activated phospholipases

a) A typical phospholipid, consisting of a DAG moiety linked via a  phosphodiester bond 
to a polar headgroup. Phospholipids differ from one another with respect to the 
structure of the polar headgroup and the composition of the fatty acids. The polar 
headgroup may be choline, ethanolamine, Ins(4,5)P2> phosphatidic acid or serine. The 
fatty acid in the src-1 position usually is saturated (R) and th a t in the sn-2 position 
unsaturated (R'). The sites of hydrolysis by some signal-activated phospholipases are 
also shown.
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cells, PLC-yl-catalysed hydrolysis of PtdIns(4)P and PtdIns(4,5)P2 is inhibited by 

profilin, a small soluble actin-binding protein which also binds to these phospholipids 

with high affinity, but not to any other phospholipids [Goldschmidt-Clermont et al.,

1991]. However, after tyrosine phosphorylation, PLC-yl can catalyse the hydrolysis of 

the profilin-associated phosphatidyl inositols [Goldschmidt-Clermont et al., 1991]. In 

addition, the association of profilin with phosphatidyl inositols inhibits the interaction of 

profilin with actin. Consequently, the profilin released after PLC-yl-catalysed 

hydrolysis of profilin-associated phosphatidyl inositols can bind to actin, and may have a 

role in mediating growth factor-stimulated rearrangements of the cytoskeleton and 

membrane ruffling.

The products of PLC-catalysed hydrolysis of PtdIns(4,5)P2 are Ins(l,4,5)P3 and DAG. 

Ins(l,4,5)P3 is a soluble molecule which binds to a receptor tha t encloses a calcium ion 

channel (a Class I receptor) {Section 1.1.2}. The receptor is found in the membrane of 

calcium ion-sequestering organelles [Taylor and Marshall, 1992]. Ins(l,4,5)P3 opens the 

channel, thus stimulating the transport of calcium ions from the intracellular stores into 

the cytosol, leading to a rise in the intracellular, free calcium ion concentration 

[Moolenaar et al., 1984b; Berridge, 1993]. The activity of many intracellular proteins, 

including th a t of some PKC isozymes, is regulated by calcium ion binding. DAG, the 

other product of PtdIns(4,5)P2 hydrolysis, also has a role in the stimulation of PKC 

activity {Section 4.1.2} [Kikkawa et al., 1989]. However, hydrolysis of PtdIns(4,5)P2 is 

transient, therefore the increases in Ins(l,4,5)P3 mass and the intracellular, free 

calcium ion concentration are also transient [Takuwa et al., 1987]. This is thought to be 

a negative feedback effect of PKC [Price et al., 1989] which catalyses the 

phosphorylation of PLC-B, thus preventing its interaction with Gq [Ryu et al., 1990], and 

of PLC-yl, thus preventing its tyrosine phosphorylation [Park et al., 1992].

Phosphatidyl choline hydrolysis

Many ligands stimulate a rapid, transient increase in the Ins(l,4,5)P3 level, but a 

sustained increase in the DAG level. For example, in bombesin-treated Swiss 3T3 

fibroblasts, the increase in Ins(l,4,5)P3 mass reaches a maximum in five to ten seconds, 

and returns to the basal level by 30 seconds. The increase in the DAG level is biphasic; 

the first phase of DAG accumulation parallels the increase in Ins(l,4,5)P3 mass, while 

the second phase arises after 30 seconds, but remains above the basal level for a t least
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four hours [Takuwa et al., 1987; Cook et al., 1990]. A similar profile of DAG 

accumulation is observed in PDGF- and vasopressin-treated Swiss 3T3 fibroblasts [Price 

et al., 1989] and in a-thrombin-treated IIC9 fibroblasts [Wright et al., 1988; Pessin and 

Raben, 1989; Ha and Exton, 1993].

Other ligands have no effect on PtdIns(4,5)P2 hydrolysis, but stimulate a slow and 

sustained increase in the DAG level. Such a profile of DAG accumulation is observed in 

IIC9 fibroblasts in response to PDGF-BB [Ha and Exton, 1993], EGF and low 

concentrations of a-thrombin [Wright et al., 1988], and in EGF-treated Swiss 3T3 

fibroblasts [Cook et al., 1991]. In Swiss 3T3 fibroblasts treated with the tumour 

promoter, PMA, there is also a slow, sustained increase in the DAG level, in the absence 

ofPtdIns(4,5)P2 hydrolysis [Cook et al., 1991].

The slow, sustained increase in accumulation of DAG occurs because of an increase in 

the hydrolysis of PtdCh. The fatty acid composition of Ptdlns and PtdCh are different, 

Ptdlns having a higher content of stearic and arachidonic acids, while PtdCh has a 

higher content of palmitic, oleic and linoleic acids [Patton et al., 1982]. Analysis of the 

molecular species of DAG produced in response to various ligands shows th a t the 

sustained increase in DAG mass arises from the hydrolysis of PtdCh [Pessin and Raben, 

1989; Exton, 1990]. In addition, many ligands stimulate accumulation of Ch and of ChP, 

suggesting th a t ligand-stimulated hydrolysis of PtdCh is catalysed by both PLC and 

PLD {Figure 4.1}. The activation of PtdCh-PLC produces DAG directly, while the 

activation of PtdCh-PLD produces DAG indirectly, following the hydrolysis of PtdOH by 

phosphatidic acid phosphohydrolase [Cook et al., 1991]. However, in most cells 

PtdCh-PLD activity reaches a maximum between two to five minutes, suggesting tha t 

the majority of the DAG formed arises from another source, most likely through the 

activation of PtdCh-PLC [Cook and Wakelam, 1989; Exton, 1990; Cook et al., 1991; 

McKenzie et al., 1992].

PtdCh-PLC and PtdCh-PLD are activated in response to ligands th a t bind to G protein- 

linked receptors. The activation may involve direct coupling of the phospholipase to the 

receptor by a G protein [Bocckino et al., 1987]. PtdCh-PLC and PtdCh-PLD are also 

activated in response to ligands that bind to tyrosine protein kinase receptors. It is not 

known how activation of these phospholipases is coupled to these receptors, except tha t
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tyrosine protein kinase activity is necessary [Cook and Wakelam, 1992]. In addition, 

PKC may have a role in the receptor-mediated activation of PtdCh-specific 

phospholipases, although this is more likely to be a positive feedback effect [Cook and 

Wakelam, 1989; Price et al., 1989; Cook et al., 1991; Conricode et al., 1992]. In contrast, 

PMA-stimulated PtdCh-specific phospholipase activation is likely to be mediated by 

PKC, since PMA binds directly to PKC [Cook et al., 1991].

Thus, signal-activated phospholipases catalyse the hydrolysis of various phospholipids. 

The Ptdlns-PLC isozymes catalyse the hydrolysis of PtdIns(4,5)P2> producing 

Ins(l,4,5)P3 and DAG, both of which are involved in the activation of PKC. However, 

PKC inhibits Ptdlns-PLC activity, therefore the accumulation of Ins(l,4,5)P3 is 

transient. In contrast, the accumulation of DAG is often biphasic; the first phase is 

rapid but transient and corresponds to the hydrolysis of PtdIns(4,5)P2» while the second 

phase is sustained and corresponds to the hydrolysis of PtdCh, catalysed by the 

PtdCh-PLC and PtdCh-PLD isozymes. The activity of these phospholipases is 

potentiated by PKC [Figure 4.2}.

4.1.2 Protein kinase C 

The mammalian isozymes

The mammalian PKC family contains at least twelve isozymes, nine of which have been 

cloned. Comparison of the amino acid sequences shows tha t the isozymes comprise 

three subfamilies. Furthermore, the members of each subfamily have distinct kinetic 

characteristics [Bell and Burns, 1991; Asaoka et al., 1992; Dekker and Parker, 1994], 

The 'classical' PKC subfamily consists of four isozymes, a, Cl, CII and y. Activation of 

these isozymes is dependent on calcium ion, the normal intracellular, free calcium ion 

concentration being too low for activation to occur. Activation of these isozymes also 

requires the membrane phospholipid, phosphatidyl serine, a cofactor, and DAG, an 

activator, which increases the affinity of these isozymes for calcium ions.

Cis -unsaturated fatty acids and lysophosphatidyl choline also enhance the activity of 

these isozymes. The 'novel' PKC subfamily consists of five isozymes, 5, e, t|, 0 and p. 

Activation of these isozymes occurs independently of calcium ions, but requires 

phosphatidyl serine and DAG. The 'atypical' PKC subfamily consists of three isozymes, 

£, X and i. These isozymes are not fully characterised; however, it is known tha t
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Figure 4.2 Signal transduction pathways involving phospholipid hydrolysis and PKC 
activation

A schematic representation of the activation of Ptdlns-PLC, PtdCh-PLC and PtdCh-PLD 
in response to ligands that bind to G protein-coupled receptors. These phospholipases 
are also activated in response to ligands that bind to tyrosine protein kinase receptors.
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activation of the ^-isozyme occurs independently of calcium ions and DAG.

Furthermore, this isozyme is not activated in response to phorbol esters [Bell and 

Burns, 1991; Asaoka et al., 1992; Dekker and Parker, 1994].

PMA directly binds to and activates the 'classical' and 'novel' PKC isozymes. This 

activation occurs in the absence of changes in the intracellular, free calcium ion 

concentration [Nishizuka, 1984], and leads to a slow, sustained accumulation of DAG 

[Cook et al., 1991].

The PKC isozymes are expressed in a tissue-specific manner. PKC-a, PKC-8 and PKC-£ 

are ubiquitous, while others are restricted to one or to a few tissues. Consequently, each 

cell type expresses a  characteristic subset of isozymes. This suggests tha t there is a 

divergence in function between the isozymes [Asaoka et al., 1992; Dekker and Parker, 

1994]. However, the combination of isozymes expressed by most cells is yet to be 

determined.

Different ligands activate different combinations of PKC isozymes in the same cell; for 

example, in a-thrombin-treated IIC9 fibroblasts PKC-a and PKC-e are activated, but in 

PDGF-BB-treated IIC9 fibroblasts only PKC-e is activated. The activation of PKC-a is 

transient, while th a t of PKC-e is sustained. This reflects the effects of these ligands on 

phospholipid hydrolysis; in a-thrombin-treated IIC9 fibroblasts DAG accumulation is 

biphasic, while in PDGF-BB-treated IIC9 fibroblasts it is monophasic, being slow in 

onset and sustained. Thus, the activation of PKC-a occurs in response to hydrolysis of 

Ptdlns, while the activation of PKC-e occurs in response to hydrolysis of PtdCh. The 

difference in the patterns of isozyme activation arises from the differing requirements of 

the two PKC isozymes for calcium ions and the differing effects of hydrolysis of the two 

phospholipids on the intracellular, free calcium ion concentration [Ha and Exton, 1993].

Activation

The PKC isozymes have a carboxy-terminal catalytic domain and an amino-terminal 

regulatory domain. Within the regulatory domain, there is a sequence of amino acids, 

termed the pseudo-substrate site, which resembles the consensus phosphorylation site 

for PKC, but differs in that it contains an alanine residue instead of the serine/ 

threonine residue th a t is the site of phosphorylation. When the enzyme is cytosolic or
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membrane-bound through interaction with phospholipid cofactors, the pseudo-substrate 

site interacts with the substrate-binding site in the catalytic domain with relatively high 

affinity, thus inhibiting interaction of the substrate-binding site with substrates, and so 

inhibits the kinase activity. When a lipid activators, such as DAG, binds to PKC, the 

affinity of the pseudo-substrate site for the substrate binding-site is lowered, thus 

allowing substrates to compete more effectively [Bell and Bums, 1991; Dekker and 

Parker, 1994].

Substrates

The myristoylated alanine-rich C kinase substrate (MARCKS), is a good substrate for 

PKC, but not for other kinases [Stumpo et al., 1989]. In quiescent cells, MARCKS binds 

to actin filaments, cross-linking them. MARCKS also binds to calmodulin but, only in 

the presence of calcium ions; phosphorylation of MARCKS prevents it binding to 

calmodulin. The binding of MARCKS to actin filaments is disrupted by both 

phosphorylation and calcium ion-calmodulin binding. Thus, an increase in the 

intracellular, free calcium ion concentration and the activation of PKC leads to the 

release of MARCKS from the plasma membrane and major cytoskeletal rearrangement 

[Aderem, 1992a,b; Blackshear, 1993].

Glycogen synthase kinase-3J3 (GSK-3B) activity is inhibited by PKC-catalysed 

phosphorylation [Goode et al., 1992]. GSK-3C catalyses the phosphorylation of c-Jun, a 

component of the transcription factor AP-1, and so inactivates it. Therefore, PKC- 

catalysed phosphorylation of GSK-3B activates c-Jun, leading to an increase in the 

transcriptional activity of AP-1.

However, each PKC isozyme has a different affinity for a given substrate. For example, 

PKC-a, PKC-BI, PKC-J3II and PKC-y catalyse the phosphorylation of GSK-3B, while 

PKC-e cannot significantly catalyse the phosphorylation of this enzyme [Goode et al.,

1992]. Again, detailed information concerning the substrate specificity of the PKC 

isozymes has not yet been determined.

Thus, the response of a cell to a ligand which activates PKC-dependent signal 

transduction pathways depends on the ability of that ligand to activate the different
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PKC isozymes, which PKC isozymes are expressed by the cell, and which substrates of 

the expressed PKC isozymes are also expressed.

4.1.3 The relationship with cell proliferation

The results of early work on signal transduction pathways involving phospholipid 

hydrolysis and PKC activation lead to the suggestion tha t these events may mediate cell 

proliferation. In many cells a given ligand stimulates DAG accumulation, PKC activity 

and cell proliferation, for example, bombesin, PDGF and phorbol esters in Swiss 3T3 

fibroblasts [Cook and Wakelam, 1989; Cook et al., 1990; Larrodera et al., 1990], LPA 

and phorbol esters in HF fibroblasts [van Corven et al., 1989] and a-thrombin in Chinese 

ham ster fibroblasts [Magnaldo et al., 1988], Transformation of cells with oncogenes 

such as v-ro$,v-src, v-fms,v-ras and v-sis, also leads to DAG accumulation [Wolfman et 

al., 1987].

In support of this hypothesis, the exogenous addition of the PtdCh-PLC from Bacillus 

cereus to Swiss 3T3 fibroblasts stimulates both PtdCh hydrolysis and the rate of cell 

proliferation [Larrodera et al., 1990], In addition, the overexpression of PKC in Rat 6 

fibroblasts results in many phenotypic changes, for example, an increase in the rate of 

cell proliferation and the loss of anchorage-dependence, both in the absence and 

presence of PMA [Housey et al., 1988]. Furthermore, the rate of cell proliferation 

increases in response to PMA in Swiss 3T3 fibroblasts; this effect is abolished by the 

depletion of PKC, and is restored by the microinjection of PKC [Pasti et al., 1986].

However, the activation of Ptdlns-PLC is not necessary for growth factor-stimulated cell 

proliferation. For example, the mutation of the tyrosine residue in the PLC-y binding 

site of the FGF receptor inhibits the FGF-stimulated hydrolysis of PtdIns(4,5)P2 and 

increase in the intracellular free calcium ion concentration, bu t has no effect on FGF - 

stimulated cell proliferation. Furthermore, a major requirement for a signal 

transduction pathway that mediates cell proliferation is tha t it remains active for many 

hours following ligand activation [Van Obberghen-Schilling et al., 1985; Zhan et al.,

1993]. Thus, the transient increase in the DAG level due to the hydrolysis of 

PtdIns(4,5)P2> may be sufficient to mediate some of the early events of the cell cycle, but
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it is not sufficient to stimulate or to maintain growth factor-stimulated cell proliferation 

[van Corven et al., 1989; Seuwen et al., 1990].

Furthermore, the activation of either PtdCh-PLC or PtdCh-PLD is also not sufficient for 

cell proliferation. For example, the activities of PtdCh-PLC and PtdCh-PLD increases 

without any effect on the rate of cell proliferation in response to carbacol, a muscarinic 

agonist, in Chinese ham ster fibroblasts transfected with the human M l muscarinic 

acetylcholine receptor [McKenzie et al., 1992]. In addition, the activation of either 

PtdCh-PLC or PtdCh-PLD is not necessary for growth factor-stimulated cell 

proliferation. For example, the rate of cell proliferation increases without any change in 

the activities of PtdCh-PLC or PtdCh-PLD in FGF- and PDGF-treated Chinese ham ster 

fibroblasts [McKenzie et al., 1992],

In addition, PKC may not be necessary for growth factor-stimulated cell proliferation; 

for example, the rate of cell proliferation increases in Swiss 3T3 fibroblasts in response 

to PDGF and in HF fibroblasts in response to lysophosphatidic acid after depletion of 

PKC [van Corven et al., 1989].

However, PKC is probably necessary for PMA-stimulated cell proliferation, since the 

depletion of PKC abolishes the effect of PMA on cell proliferation in Swiss 3T3 

fibroblasts [Pasti et al., 1986]. In PMA-treated T-cells, there is a sustained increase in 

PKC activity and an increase in the rate of cell proliferation, however, in DAG-treated 

T-cells, there is only a transient increase in PKC activity, with no effect on cell 

proliferation [Berry et al., 1990]. This suggests tha t only a sustained activation of PKC 

is sufficient to stimulate cell proliferation, indeed multiple additions of DAG stimulate 

T-cell proliferation [Berry et al., 1990].

Therefore, Ptdlns-PLC, PtdCh-PLC and PtdCh-PLD are not necessary or sufficient to 

stimulate the rate of cell proliferation. In contrast, PKC is not necessary, but may be 

sufficient for an increase in the rate of cell proliferation. However, these effects may be 

sufficient to stimulate some of the early events of cell proliferation such as the early 

phase of growth factor-stimulated glucose transport.
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4.1.4 The relationship with glucose transport

Since the early phase of growth factor-stimulated glucose transport is an early event of 

the cell cycle, it is possible tha t it could be mediated by a signal transduction pathway 

involving DAG and PKC. In support of this hypothesis, the addition of DAG, to primary 

adipocytes, stimulates the rate of glucose transport. The most effective DAGs are sn- 

1,2-ditetradecanoylglycerol, s/i-1,2-dihexadecenoylglycerol and sn -1,2- 

dioctadecenolyglycerol [Str&lfors, 1988]. In addition, 1-monooleoylglycerol, a DAG 

kinase inhibitor, stimulates the rates of glucose transport and of cell proliferation in 

Swiss 3T3 fibroblasts [Takuwa et al., 1988], The rate of glucose transport also increases 

after the exogenous addition of Ptdlns-PLC from B. cereus to primary adipocytes 

[Str&lfors, 1988], or of PtdCh-PLC from Clostridium perfringens to ra t epitrochlearis 

muscle [Henriksen et al., 1989] or BC3H-1 myocytes [Standaert et al., 1988]. However, 

the exogenous addition of Ptdlns-PLC, from Staphylococcus aureus or Bacillus 

thuringiensis, to BC3H-1 myocytes has no effect on the rate of glucose transport 

[Standaert et al., 1988]. PMA also stimulates the rate of glucose transport in many cell 

types [Flier et al., 1987].

PDGF is able to activate signal transduction pathways involving phospholipid 

hydrolysis and PKC activation, although the precise pathway activated depends on the 

cell type. PDGF has no effect on the hydrolysis of Ptdlns or PtdCh in Chinese ham ster 

lung fibroblasts [McKenzie et al., 1992], but stimulates the hydrolysis of PtdCh in IIC9 

fibroblasts [Wright et al., 1988; Pessin and Raben, 1989; Ha and Exton, 1993] and 

stimulates the hydrolysis of both Ptdlns and PtdCh in Swiss 3T3 fibroblasts [Price et al.,

1989]. However, it is not known whether a signal transduction pathway involving DAG 

and PKC mediates the early phase of PDGF-stimulated glucose transport.

Some groups claim tha t a signal transduction pathway involving DAG and PKC 

mediates the early phase of insulin-stimulated glucose transport. However, many other 

groups do not see any effect of insulin on these processes.

Insulin stimulates the de novo synthesis of phospholipids in BC3H-1 myocytes [Farese et 

al., 1984], but has no effect on Ptdlns hydrolysis in BC3H-1 myocytes [Farese et al.,

1985], ra t hepatocytes [Sakai and Wells, 1986] or adipocytes [Augert and Exton, 1988].
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In agreement with this, insulin has no effect on the intracellular free calcium ion 

concentration in BC3H-1 myocytes [Farese et al., 1985] or HF fibroblasts [Moolenaar et 

al., 1984b]. Insulin is reported to stimulate DAG accumulation by de novo synthesis and 

by the hydrolysis of PtdCh in BC3H-1 myocytes, ra t adipocytes [Farese et al., 1985] and 

soleus muscle [Ishizuka et al., 1990]. However, other studies show no effect of insulin on 

DAG mass in ra t adipocytes [Augert and Exton, 1988] or on PtdCh hydrolysis in Swiss 

3T3 fibroblasts [Price et al., 1989].

Insulin is reported to stimulate the activation of PKC in BC3H-1 myocytes, ra t 

adipocytes [Acevedo-Duncan et al., 1989; Ishizuka et al., 1989; Vila et al., 1989; Cooper 

et al., 1990; Egan et al., 1990], and soleus muscle [Ishizuka et al., 1990]. Insulin- 

stimulated glucose transport is abolished by the PKC inhibitors, staurosporine and 

polymixin B in ra t muscle [Ishizuka et al., 1990] and by staurosporine, H-7 and 

sangiuamyan in ra t adipocytes and BC3H-1 myocytes [Standaert et al., 1990]. However, 

insulin is also reported to have no effect on PKC activity in ra t epitrochlearis muscle 

[Henriksen et al., 1989], or in HIRC-B fibroblasts, BC3H-1 myocytes, 3T3-L1 adipocytes, 

and H35 hepatoma cells transfected with the MARCKS protein [Blackshear et al., 1991]. 

Furthermore, the down-regulation of PKC has no effect on many insulin-stimulated 

responses in many cell types including 3T3-L1 fibroblasts, 3T3-L1 adipocytes, H35 

hepatoma cells, HIRC-B cells, HIR 3.5 cells, Chinese ham ster ovary T-cells, or BC3H-1 

myocytes [Blackshear et al., 1985; Stumpo and Blackshear, 1986; Blackshear et al.,

1990; Lai et al., 1990; Blackshear et al., 1991; Stumpo and Blackshear, 1991].

Thus, it is not clear whether a signal transduction pathway involving DAG and PKC is 

activated in response to insulin, and therefore whether such a signal transduction 

pathway mediates the early phase of insulin-stimulated glucose transport. Nor is it 

clear whether such a signal transduction pathway mediates the early phase of PDGF- 

stimulated glucose transport. In order to examine whether the early phase of growth 

factor-stimulated glucose transport is mediated by a signal transduction pathway 

involving DAG and PKC, several approaches were taken. Firstly, the effects of insulin 

and PDGF on DAG mass were established. Secondly, the effects of these growth factors 

on PKC activity were determined. Finally, the requirement of the early phase of growth 

factor-stimulated glucose transport for PKC was examined.
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4.2 Results

4.2.1 The effect of growth factors on DAG accumulation

The effects of insulin and PDGF on DAG accumulation were established by measuring 

total DAG mass levels in 3T3-L1 fibroblasts. The lipids were extracted after incubation 

of 3T3-L1 fibroblasts in 1 pM insulin or 25 ng/ml PDGF {Section 2.9.1}. The lipid 

extracts were incubated with DAG kinase and [y-32P]ATP, thus catalysing the 

phosphorylation of DAG to produce [32P]-labelled PtdOH. The lipids in each sample 

were separated by tic and the [32P]-labelled PtdOH was located by autoradiography.

The amount of [32P]-labelled PtdOH was quantified by liquid scintillation counting 

{Section 2.9.2}. The standard curve was linear from 0 to 2000 pmoles of sn-l-stearoyl-2- 

arachidonylglycerol {Figure 2.2}.

At a concentration of 1 pM insulin there was no change in DAG mass a t any time 

between 15 seconds and 60 minutes of exposure to insulin. A representative time-course 

for the effect of insulin on the DAG mass level is shown in Figure 4.3.

At a concentration of 25 ng/ml PDGF, DAG mass increased rapidly. The increase in 

DAG mass was evident within 1 minute of exposure to PDGF and reached a maximum 

by 10 minutes, after which it declined slowly. The DAG mass was still significantly 

above the basal level after 60 minutes. The maximal stimulation of DAG accumulation, 

observed in response to 25 ng/ml PDGF, was 1.5 to 1.7 fold. A representative time 

course for the effect of PDGF on DAG mass levels is shown in Figure 4.4.

4.2.2 The effect of a tumour promoter on DAG accumulation

The effect of PMA on DAG accumulation was established by measuring total DAG mass 

levels in 3T3-L1 fibroblasts {Section 2.9}. At a concentration of 100 nM PMA, DAG mass 

increased rapidly. The increase in DAG mass was evident within 1 minute of exposure 

to PMA and was still increasing by 60 minutes. The increase in DAG mass, observed in 

response to 100 nM PMA a t 60 minutes, was 2.8 to 3.0 fold. A representative time- 

course for the effect of PMA on DAG mass is shown in Figure 4.5.

102



Figure 4.3 A time course for insulin-stimulated DAG accumulation

After incubation of quiescent 3T3-L1 fibroblasts with 1 pM insulin present for the times 
shown, the lipids were extracted and the DAG mass measured {Section 2.9}. Each result 
shows the mean DAG mass level (± SD) for triplicate determinations. Each result is 
expressed relative to the basal level which was measured a t 223 ± 24 pmoles/ 106 cells. 
This is a representative experiment from a group of six; basal levels were between 140 
and 260 pm oles/10 6 cells.
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Figure 4.4 A time course for PDGF-stimulated DAG accumulation

After incubation of quiescent 3T3-L1 fibroblasts with 25 ng/ml PDGF present for the 
times shown, the lipids were extracted and the DAG mass measured {Section 2.9}. Each 
result shows the mean DAG mass level (± SD) for triplicate determinations. Each result 
is expressed relative to the basal level which was measured a t 101 ± 13 pmoles/ 106 
cells. This is a representative experiment from a group of seven; basal levels varied 
from 140 to 260 pmoles/ 106 cells and the maximal stimulation was between 1.5 and 1.7 
fold (at 10 minutes).
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Figure 4.5 A time course for PMA-stimulated DAG accumulation

After incubation of quiescent 3T3-L1 fibroblasts with 100 nM PMA present for the times 
shown, the lipids were extracted and the DAG mass measured {Section 2.9}. Each result 
shows the mean DAG mass level (± SD) for triplicate determinations. Each result is 
expressed relative to the basal level which was measured a t 188 ± 9.4 pmoles/ 106 cells. 
This is a representative experiment from a group of four; basal levels varied from 140 to 
260 pmoles/ 106 cells and the maximal stimulation was between 2.8 and 3.0 fold.
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4.2.3 The effect of growth factors and a tumour promoter on PKC activity

The effects of insulin, PDGF and PMA on PKC activity were established by the 

measurement of incorporation of [32P] into a peptide substrate of PKC {Section 2.10}. 

This was carried out with permeabilised 3T3-L1 fibroblasts which had been previously 

incubated for 16 hours in 1 pM 4a-PDD, an inactive phorbol ester, or in 1 pM PMA, an 

active phorbol ester {Section 2.11}. After the 16 hour incubation in 4a-PDD, there was 

no change in PKC activity in response to 1 pM insulin, but PKC activity increased 1.7 

fold in response to 25 ng/ml PDGF and 3.8 fold in response to 100 nM PMA. After the 

16 hour incubation in 1 pM PMA there was no change in PKC activity in response to 

1 pM insulin, 25 ng/ml PDGF or 100 nM PMA. The results of a representative 

experiment are shown in Table 4.1.

4.2.4 The effect of PKC on growth factor and tumour promoter-stimulated glucose 

transport

The requirement of insulin-, PDGF- and PMA-stimulated glucose transport for PKC 

activity was established by measuring the rate of 2-deoxyglucose uptake after down- 

regulation or inhibition of PKC.

Down-regulation of PKC

The rate of 2 -deoxyglucose uptake was measured in 3T3-L1 fibroblasts acutely treated 

with 1 pM insulin, 25 ng/ml PDGF or 100 nM PMA {Section 2.8.1} after a 16 hour 

incubation in 1 pM 4a-PDD or 1 pM PMA {Section 2.11}. After the 16 hour incubation in 

1 pM 4a-PDD, the rate of 2-deoxyglucose uptake increased 1.5 to 5.0 fold in response to 

1 pM insulin, 1.5 to 4.0 fold in response to 25 ng/ml PDGF and 1.5 to 4.0 fold in response 

to 100 nM PMA. After the 16 hour incubation in 1 pM PMA, the rate of 2-deoxyglucose 

uptake increased 1.5 to 2.5 fold in response to 1 pM insulin and 1.5 to 2.5 fold in 

response to 25 ng/ml PDGF, but there was no change in response to 100 nM PMA. 

Furthermore, the basal rate of 2 -deoxyglucose uptake was 2.0 to 4.0 fold higher after the 

16 hour incubation in 1 pM PMA than after the 16 hour incubation in 1 pM 4a-PDD.

The results from a representative experiment are shown in Table 4.2.
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Table 4.1 The effect of insulin, PDGF and PMA on PKC activity, after the down- 
regulation of PKC

After incubation of quiescent 3T3-L1 fibroblasts with 1 pM 4a-PDD or 1 pM PMA 
overnight {Section 2.11}, then with 1 pM insulin, 25 ng/ml PDGF or 100 nM PMA for 
10 minutes, PKC activity was measured {Section 2.10}. Each result shows the mean 
PKC activity (± SD) for triplicate determinations. This is a representative experiment 
from a group of four. * p < 0.05; t- not significant.

PKC activity 
(cpm incorporated/ min)

4a-PDD PMA

Basal 72.0 ±1.5 73.5 ± 2.0

Insulin 77.5 ± 3.5+ 74.5 ± 1.5+

PDGF 125 ± 2.0* 73.0 ±1.5+

PMA 274 ± 3.5* 74.5 ±2.1+
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Table 4.2 The effect of insulin, PDGF and PMA on the rate of 2-deoxyglucose
uptake, after the down-regulation of PKC

After incubation of quiescent 3T3-L1 fibroblasts with 1 pM 4a-PDD or 1 pM PMA for 
16 hours {Section 2.11}, then with 1 pM insulin or 25 ng/ml PDGF for 15 minutes or 
with 100 nM PMA for 60 minutes, a 5 minute uptake of 2-deoxy-D-[2,6-^H]glucose was 
measured {Section 2.8.1}. Each result shows the mean rate of specific 2-deoxyglucose 
uptake (± SD) for triplicate determinations. This is a representative experiment from a 
group of five; basal rates varied from 6.0 to 21 pmoles/ min/ 106 cells after a 16 hour 
incubation in 1 pM 4a-PDD and from 31 to 80 pmoles/ min/ 106 cells after a 16 hour 
incubation in 1 pM PMA. Basal rates were between 2.4 and 5.0 fold higher after a 
16 hour incubation in 1 pM PMA than in 1 pM 4a-PDD. * p < 0.05; t : not significant.

Rate of 2-deoxyglucose uptake 
(pmoles/ min/ 10^ cells)

4a-PDD PMA

Basal 7.9 ± 1.3 31.6 ±5.8

Insulin GO o ±4.0* 69.6 ±5.4*

PDGF 30.6 ±1.7* 624 ±4.4*

PMA 30.9 ±4.4* 41.8 ± 4.6 ̂
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Inhibition of PKC

The rate of 2-deoxyglucose uptake was measured in 3T3-L1 fibroblasts treated with 

1 pM insulin, 25 ng/ml PDGF or 100 nM PMA {Section 2.8.1} after a 15 minute 

incubation with or without Ro 31-8220, a PKC inhibitor {Section 2.12}. In control cells, 

the rate of 2-deoxyglucose uptake increased 3.0 to 4.6 fold in response to 1 pM insulin, 

4.8 to 9.4 fold in response to 25 ng/ml PDGF and 2.0 to 3.0 fold in response to 100 nM 

PMA. After the 15 minute incubation in 3 pM Ro 31-8220, the rate of 2-deoxyglucose 

uptake increased 2.7 to 7.7 fold in response to 1 pM insulin and 4.0 to 6.8 fold in 

response to 25 ng/ml PDGF, but there was no change in response to 100 nM PMA. 

Incubation in 3 pM Ro 31-8220 had no effect on the basal rate of 2 -deoxyglucose uptake. 

The results from a  representative experiment are shown in Table 4.3.

4.2.5 The effect of PKC on the total Glutl level

The effect of PKC on the total G lutl protein level was established by Western blotting. 

Lysates were prepared from 3T3-L1 fibroblasts {Section 2.13.2} treated with 1 pM 

insulin, 25 ng/ml PDGF or 100 nM PMA after a 16 hour incubation in 1 pM 4a-PDD or 

1 pM PMA {Section 2.11}. The proteins were separated by SDS-PAGE {Section 2.15}, 

then transferred onto nitrocellulose membranes. The membranes were probed with a 

rabbit anti-G lutl antibody (East Acres), then with a HRP-conjugated donkey anti-rabbit 

IgG antibody. The sites of antibody binding were visualised using a ECL detection 

system {Section 2.16.2}.

When proteins from 3T3-L1 fibroblasts were probed with the anti-G lutl antibody, the 

antibody recognised a broad band with a molecular mass of approximately 50 kDa.

After the 16 hour incubation in 1 pM 4a-PDD, there was no change in the total G lutl 

level in response to 1 pM insulin, 25 ng/ml PDGF or 100 nM PMA. After the 16 hour 

incubation in 1 pM PMA, there was also no change in the total G lutl level in response to 

1 pM insulin, 25 ng/ml PDGF or 100 nM PMA. However, the basal total G lu tl level was 

clearly higher after the 16 hour incubation in 1 pM PMA than after the 16 hour 

incubation in 1 pM 4a-PDD. Representative Western blots are shown in Figure 4.6.
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Table 4.3 The effect of insulin, PDGF and PMA on the rate of 2-deoxyglucose
uptake, after the inhibition of PKC

After incubation of quiescent 3T3-L1 fibroblasts with 1 |iM Ro 31-8220 for 15 minutes 
{Section 2.12}, then with 1 pM insulin or 25 ng/ml PDGF for 15 minutes or with 100 nM 
PMA for 60 minutes, a 5 minute uptake of 2-deoxy-D-[2,6-3H] glucose was measured 
{Section 2.8.1}. Each result shows the mean rate of specific 2-deoxyglucose uptake (± 
SD) for triplicate determinations. This is a representative experiment from a group of 
three; basal rates varied from 6.1 to 28.3 pmoles/ min/ 106 cells. * p < 0.05; +: not 
significant.

Rate of 2-deoxyglucose uptake 
(pmoles/ min/ 10^ cells)

Control Ro 31-8220

Basal 9.0 ±3.9 11.1 ±2.8

Insulin 36.8 , ±4.1* 31.6 ±2.0*

PDGF 72.6 ±8.3* 51.2 ±9.2*

PMA 29.6 ±7.1* 15.0 ±2.1 +
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Figure 4.6 The effect of PKC on the total Glutl level

After incubation of quiescent 3T3-L1 fibroblasts with a) 1 fiM 4a-PDD or b) 1 pM PMA 
for 16 hours {Section 2.11}, and then with A) 1 pM insulin, B) 25 ng/ml PDGF or C)
100 nM PMA present for the times shown, lysates were prepared {Section 2.13.2}. 
Approximately 0.03 mg of protein was loaded onto 10% (w/v) polyacrylamide large gels, 
the proteins were separated by SDS-PAGE {Section 2.15}, and then transferred onto 
nitrocellulose membranes. The membranes were probed with a rabbit anti-G lutl 
antibody, then with a HRP-conjugated donkey anti-rabbit IgG antibody. The sites of 
antibody binding were visualised using an ECL detection system {Section 2.16.2}.
These are representative Western blots from groups of two lysate preparations.
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4.3 Discussion

In order to examine whether the early phase of growth factor-stimulated glucose 

transport is mediated by a signal transduction pathway involving DAG and PKC, 

several approaches were taken. Firstly, the effects of insulin and PDGF on DAG 

accumulation were determined. Secondly, the effects of these growth factors on PKC 

activity were established. Finally, the requirement of the early phase of growth factor- 

stimulated glucose transport for PKC was examined, using pharmacological reagents 

tha t either deplete cellular PKC or inhibit its activity.

4.3.1 The effect of growth factors and a tumour promoter on DAG accumulation

Insulin stimulated the rate of 2-deoxyglucose transport in 3T3-L1 fibroblasts, the 

maximum rate occurring a t a concentration of 1 fiM insulin {Figure 3.4}. Incubation of 

3T3 -LI fibroblasts in the same concentration of insulin for times between 0 and 

60 minutes had no effect on the DAG mass level {Figure 4.3}. It was possible th a t the 

passages of 3T3-L1 fibroblasts used in the experiments with insulin had lost the ability 

accumulate DAG in response to ligands. However, an increase in the DAG mass level 

occurred in cells from the same passage in response to PDGF (results not shown). 

Therefore these cells had a functional signal transduction pathway leading to DAG 

accumulation. It was also possible that these cells had become insulin-insensitive. 

However, an increase in 2-deoxyglucose transport in response to 1 pM insulin, with 

characteristics as previously described, occurred in cells from the same passage (results 

not shown). Therefore these cells were insulin-sensitive.

If the early phase of insulin-stimulated glucose transport is mediated by a pathway 

involving DAG, then there should be an increase in the DAG mass level under the same 

conditions that the maximal increase in the rate of 2 -deoxyglucose transport occurred, 

that is by 60 minutes in response to 1 pM insulin {Figure 3.5}. This did not occur, 

suggesting tha t the early phase of insulin-stimulated glucose transport is not mediated 

by a signal transduction pathway involving DAG.
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PDGF stimulated the rate of 2-deoxyglucose transport in 3T3-L1 fibroblasts, the 

maximal rate occurring a t a concentration of 25 ng/ml PDGF {Figure 3.7}. Incubation of 

3T3-L1 fibroblasts in the same concentration of PDGF also led to an increase in the 

DAG mass level. DAG accumulation was evident within 1 minute of exposure to PDGF 

and reached a maximum by 10 minutes, after which it declined slowly. The DAG mass 

was still significantly above the basal level after 60 minutes {Figure 4.4}. If the early 

phase of PDGF-stimulated glucose transport is mediated by a signal transduction 

pathway involving DAG, then the increase in the DAG mass level should precede the 

increase in the rate of 2-deoxyglucose transport. This would appear to be the case 

{Figure 4.7}. This suggests that the early phase of PDGF-stimulated glucose transport 

could potentially be mediated by a signal transduction pathway involving DAG.

PMA also stimulated the rate of 2-deoxyglucose transport in 3T3-L1 fibroblasts {Figure 

3.9}. Incubation of 3T3-L1 fibroblasts in 100 nM PMA also led to an increase in the DAG 

mass level. DAG accumulation was evident within 1 minute of exposure to PMA and 

reached a maximum by 60 minutes {Figure 4.5}. If the early phase of PMA-stimulated 

glucose transport is mediated by a signal transduction pathway involving DAG, then the 

increase in the DAG mass level should precede the increase in the rate of 2-deoxyglucose 

transport. This would appear to be the case {Figure 4.8}. This suggests th a t the early 

phase of PMA-stimulated glucose transport could potentially be mediated by a signal 

transduction pathway involving DAG.

The source of the DAG formed in response to PDGF and PMA was not analysed. 

However, the initial rates of DAG accumulation were the similar in response to PDGF 

and PMA {Figures 4.4 and 4.5}. Since activation of signal-activated phospholipases 

occurs in a time-dependent manner [Liscovitch, 1992], it is likely tha t PDGF and PMA 

stimulated the activation of the same phospholipase or groups of phospholipases. Since 

Ptdlns-PLC-catalysed hydrolysis of Ptdlns is generally transient [Cook et al., 1990], and 

PMA inhibits Ptdlns-PLC activity [Price et al., 1989] it would seem likely th a t the DAG 

accumulation observed in response to PDGF and PMA was formed by the hydrolysis of 

PtdCh and not by the hydrolysis of Ptdlns.

Since PDGF is able to stimulate the hydrolysis of both Ptdlns and PtdCh in some cells, 

further analysis is necessary to confirm this hypothesis and to establish w hether the
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Figure 4.7 A comparison of the time courses for PDGF-stimulated 2-deoxyglucose
uptake and DAG accumulation

After incubation of quiescent 3T3-L1 fibroblasts with 25 ng/ml PDGF for the times 
shown, either a 3 minute uptake of 2-deoxy-D-[2,6-3H]glucose was measured {Section 
2.8.1} or the lipids were extracted and the DAG mass measured {Section 2.9}. Each 
result shows the mean rate of specific 2-deoxyglucose uptake (± SD) (o), or the mean of 
the DAG mass level (± SD) (□) for triplicate determinations. Each result is expressed 
relative to the basal levels, which were measured a t 47.8 ± 1.9 pmoles 2-deoxyglucose/ 
min/ 10 6 cells and 101 ± 13 pmoles DAG/ 106 cells. These are representative 
experiments from groups of three and six respectively; basal levels varied from 6.0 to 49 
pmoles 2-deoxyglucose/ min/ 106 cells and 140 to 260 pmoles DAG/ 106 cells.
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Figure 4.8 A comparison of the time courses for PMA-stimulated 2-deoxyglucose
uptake and DAG accumulation

After incubation of quiescent 3T3-L1 fibroblasts with 100 nM PMA present for the times 
shown, either a 3 minute uptake of 2-deoxy-D-[2,6-3 H]glucose was measured {Section 
2.8.1} or the lipids were extracted and the DAG mass measured {Section 2.9}. Each 
result shows the mean rate of specific 2-deoxyglucose uptake (± SD) (o), or the mean of 
the DAG mass level (± SD) (□) for triplicate determinations. Each result is expressed 
relative to the basal levels, which were measured a t 20.3 ± 2.6 pmoles 2-deoxyglucose/ 
min/ 10 6  cells and 188 ± 9.4 pmoles DAG/ 106  cells. These are representative 
experiments from groups of three and six respectively; basal levels varied from 6.0 to 49 
pmoles 2-deoxyglucose/ min/ 106  cells and 140 to 260 pmoles DAG/ 106  cells.
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hydrolysis of PtdCh in PDGF- and PMA-treated 3T3-L1 fibroblasts is catalysed by a 

PLC or a PLD.

The observation that insulin did not stimulate any rapid transient increase in DAG 

mass in 3T3-L1 fibroblasts is in agreement with the observation tha t PLC-yl does not 

bind to the insulin receptor after autophosphorylation, or to IRS-1 after tyrosine 

phosphorylation [Sun et al., 1993a; Vallus and Kazlauskas, 1993]. This result is also in 

agreement with the work of several groups who have observed no effect of insulin on 

Ptdlns hydrolysis in BC3H-1 myocytes [Farese et al., 1985], ra t hepatocytes [Sakai and 

Wells, 1986] or ra t adipocytes [Augert and Exton, 1988], or on the cytoplasmic free 

calcium ion concentration in BC3H-1 myocytes [Farese et al., 1985] or HF fibroblasts 

[Moolenaar et al., 1984b].

Farese and colleagues have reported that insulin stimulates PtdCh hydrolysis and DAG 

accumulation in BC3H-1 myocytes, ra t adipocytes and soleus muscle [Farese et al.,

1985; Ishizuka et al., 1990]. It is possible tha t insulin, like PDGF-BB has different 

effects upon PtdCh hydrolysis in different cells, so tha t insulin is able to stimulate 

PtdCh hydrolysis in some cells but not in others. However, other researchers do not 

observe any changes in PtdCh hydrolysis or DAG accumulation in insulin-treated rat 

adipocytes [Augert and Exton, 1988], thus it is unlikely tha t these are cell-specific 

differences.

4.3.2 The effect of growth factors and a tumour promoter on PKC activity

Several methods can be used to measure PKC activity. These include measurement of 

changes in the intracellular location of PKC (translocation), of changes in the PKC 

activity in different intracellular locations and of changes in the total PKC activity.

Changes in the intracellular location of PKC can be established by Western blotting of 

PKC in membrane and cytosolic extracts. The correlation of translocation of PKC with 

its activation is based upon the assumption tha t PKC isozymes are activated by binding 

to a cofactor, phosphatidyl serine, and an activator, DAG, both of which are located in 

the cytosolic face of the plasma membrane. Therefore cytosolic PKC is inactive while 

membrane PKC is active. However, association of PKC with the plasma membrane does

116



not necessarily reflect its activation, since PKC may be membrane bound by association 

with its cofactor, phosphatidyl serine, in the absence of its activator, DAG [Bell and 

Bums, 1991]. Consequently, changes in the intracellular location of PKC may occur 

without any change in the PKC activity [Halsey et al., 1987; Heidenreich et al., 1990]. 

Furthermore, some isozymes of PKC undergo translocation to sites other than the 

plasma membrane, such as the nucleus or cytoskeleton, in response to ligands [Dekker 

and Parker, 1994]. In addition, some isozymes of PKC are rapidly down-regulated in 

response to ligands [Dekker and Parker, 1994]. Therefore, measurement of the 

intracellular location of PKC is not a reliable indication of PKC activation.

Changes in the PKC activity in different intracellular locations can be established by 

measuring the phosphorylation of a substrate by membrane and cytosol extracts or by 

PKC partially purified from membrane and cytosolic extracts. M easurement of the PKC 

activity in membrane and cytosolic extracts is also based on the assumption tha t 

translocation of PKC correlates with its activation. Activation of PKC occurs by 

allosteric means. Therefore, disruption of the cell may allow the allosteric activators to 

dissociate from the kinase, and so, measurement of PKC activity in a cell extract does 

not measure the activation state that existed in the cell, but the amount of the enzyme 

present in tha t fraction. Therefore, measurement of the activity of PKC in various 

intracellular fractions is not a reliable indicator of PKC activation.

Changes in the total PKC activity also can be established by measuring the PKC activity 

in total cellular extracts, however, as discussed above, this approach is also flawed. The 

total PKC activity can also be measured in  vivo, for example, by measuring the 

phosphorylation of an endogenous specific substrate for PKC, such as MARCKS 

[Blackshear, 1993]. A disadvantage of this approach is th a t some cells such as 3T3-L1 

adipocytes and H35 hepatoma cells express relatively low amounts of this protein 

[Blackshear et al., 1991]. This can be overcome by using cells which stably express 

MARCKS [Blackshear et al., 1991]. An alternative approach is to measure the 

phosphorylation of small synthetic peptide substrates in permeabilised cells [Heasley 

and Johnson, 1989; Alexander et al., 1990]. The sequence of such peptides can be based 

on the phosphorylation site of a substrate of PKC [House et al., 1987; Heasley and 

Johnson, 1989] or on the pseudo-substrate site of a PKC isozyme [Heidenreich et al.,

1990]. Permeabilisation of cells allows rapid access of small peptides to the interior
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without disrupting mechanisms of signal transduction [Alexander et al., 1989]. A 

disadvantage of this approach is that each PKC isozyme has a different substrate 

specificity. However, on balance, this is the best available approach to establish the 

effect of ligands on PKC activity.

The estimates of PKC activity presented in this thesis were made by measuring the 

phosphorylation of a synthetic peptide in digitonin-permeabilised cells {Section 2.10}. 

The peptide used for this analysis (Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-Lys) 

was derived from a peptide corresponding to residues one to ten of glycogen synthase 

[House et al., 1987]. The Km values of ra t brain PKC, rabbit muscle multifunctional 

calmodulin-dependent protein kinase and bovine heart cyclic AMP-dependent protein 

kinase for this peptide are 4.1 pM, 18 pM and 2726 pM respectively [House et al., 1987]. 

Therefore, this peptide is a good substrate of PKC, but not of multifunctional 

calmodulin-dependent protein kinase or of cyclic AMP-dependent protein kinase. 

Unfortunately, the affinities of the individual PKC isozymes for this peptide are 

unknown; this caveat should be kept in mind during the interpretation of these results.

Quiescent 3T3-L1 fibroblasts from the same passage were incubated with insulin, PDGF 

or PMA present a t concentrations sufficient to stimulate a maximum increase in the 

rate of 2-deoxyglucose uptake and in the case of the latter two, to stim ulate DAG 

accumulation. Incubations with ligand were carried out for 10 minutes, before 

permeabilisation and the addition of the peptide substrate. Given th a t increases in the 

rate of 2-deoxyglucose uptake and DAG accumulation were evident by 10 minutes of 

exposure to the ligands, this should be sufficient time to allow for any relevant 

activation of PKC.

The cells were also pre-incubated for 16 hours in 1 pM PMA in order to evaluate the 

effectiveness of a long incubation in a high concentration of phorbol ester as a method to 

deplete cellular PKC activity. For a control, cells were simultaneously incubated with 

1 pM 4a-PDD, an inactive phorbol ester. In cells incubated with 1 pM 4a-PDD, PKC 

activity increased in response to 25 ng/ml PDGF and 100 nM PMA, but did not change 

in response to 1 pM insulin. In cells incubated with 1 pM PMA, PKC activity did not 

change in response to 1 pM insulin, 25 ng/ml PDGF or 100 nM PMA [Table 4.1}. These
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results suggest th a t PDGF and PMA can stimulate PKC activity in 3T3-L1 fibroblasts, 

while insulin does not.

The observation th a t both PDGF and PMA stimulate PKC activity in 3T3-L1 fibroblasts 

is in agreement with the work of several other groups who observe an increase in the 

phosphorylation of MARCKS in response to PDGF and PMA in 3T3-L1 fibroblasts, 

3T3-L1 adipocytes, BC3H-1 myocytes, and Swiss 3T3 fibroblasts [Rozengurt et al., 1983; 

Blackshear et al., 1985; Spach et al., 1986]. These groups also failed to observe any 

effect of insulin on the phosphorylation of MARCKS in these cells or in HIRC-B 

fibroblasts, BC3H-1 myocytes, or H35 hepatoma cells after transfection with MARCKS 

[Spach et al., 1986; Blackshear et al., 1991]. However, Farese and colleagues have 

reported tha t insulin stimulates PKC activity in BC3H-1 myocytes, ra t adipocytes, and 

soleus muscle [Acevedo-Duncan et al., 1989; Ishizuka et al., 1989; Vila et al., 1989; 

Cooper et al., 1990; Ishizuka et al., 1990].

These differences in the activation of PKC could arise from differences in the 

methodology used. Firstly, Farese and colleagues correlate translocation, measured 

either by Western blotting or assay of PKC activity in cell extracts, with PKC activation. 

As discussed previously, this is a flawed approach. Indeed Farese and colleagues 

observed tha t different methods of PKC purification lead to differences in the measured 

PKC activity [Cooper et al., 1990]. Secondly, the differences in observed PKC activity 

could arise from the use of different substrate proteins in the PKC activity assays, since 

each PKC isozyme has a different substrate specificity. Therefore, if  the activity of a 

PKC isozyme increases in response to insulin, it is possible th a t it catalyses the 

phosphorylation of only certain substrates. Unfortunately, the substrate specificity of 

each PKC isozyme is unknown.

The differences in results could also arise from the use of different cells, since the PKC 

isozymes are expressed in a tissue-specific manner. Unfortunately, the PKC isozymes 

expressed by most cells, including 3T3-L1 fibroblasts, are unknown. It is also possible 

tha t different signal transduction pathways mediate the change in the rate of glucose 

transport in cells tha t respond to insulin by increased proliferation and cells tha t 

respond to insulin with a 'classical' hormonal response (skeletal muscle and adipocyte 

cells). Indeed, Farese and colleagues consider BC3H-1 myocytes to be a model of such a
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hormonal response. However, these cells differ considerably from skeletal muscle. 

Skeletal muscle expresses both G lutl and Glut4, however, BC3H-1 myocytes express 

only G lutl [Calderhead et al., 1990b]. The rate of glucose transport in skeletal muscle 

increases eight to ten fold in response to insulin [Henriksen et al., 1989], mainly as a 

consequence of translocation of Glut4 [Slot et al., 1991a], but only two to three fold in 

BC3H-1 myocytes as a consequence of translocation of G lutl [Calderhead et al., 1990b]. 

Furthermore, insulin stimulates the proliferation of BC3H-1 myocytes [Standaert et al., 

1987]. Therefore, BC3H-1 myocytes are not a good model of a 'classical' hormonal 

response to insulin. Thus, it is unlikely th a t the differences in the activation of PKC 

observed in 3T3-L1 fibroblasts and BC3H-1 myocytes are due to different roles of insulin 

in these cells.

Some groups have disputed the validity of studies using a long incubation with a high 

concentration of a phorbol ester to deplete cellular PKC activity, on the basis th a t this 

technique may be applicable only to certain PKC isozymes. However, PMA can bind to 

and stim ulate the activity of all the classical and novel PKC isozymes, therefore, if such 

treatm ent can cause the degradation of one such isozyme, it is likely tha t it will also 

cause the degradation of the other classical and novel PKC isozymes. The results 

presented in this thesis suggest tha t this technique depletes cellular PKC activity. 

Furthermore, analysis of Western blots prepared with an anti-PKC antibody or 

measurement of specific phorbol ester binding show tha t a long incubation in a high 

concentration of a phorbol ester does result in depletion of cellular PKC [Blackshear et 

al., 1985]. In addition, many processes known to be mediated by PKC are abolished by 

such treatment, for example, PMA-stimulated c-fos induction in 3T3-L1 adipocytes 

[Stumpo and Blackshear, 1986] and HIRC-B cells [Stumpo and Blackshear, 1991], PMA- 

stimulated MARCKS protein phosphorylation in 3T3-L1 fibroblasts [Blackshear et al., 

1985], and PMA-stimulated Raf-1 kinase phosphorylation in HIR 3.5 cells [Blackshear 

et al., 1990]. Therefore, this appears to be a valid technique for depletion of the classical 

and novel PKC isozymes [Blackshear et al., 1991]. However, the atypical PKC isozymes 

are probably unaffected by this treatment, since phorbol esters do not activate them, 

and probably do not bind to them. Unfortunately, little is known about the regulation of 

such isozymes, except th a t they appear to be activated independently of DAG, 

phosphatidyl serine and phorbol esters, and therefore are probably not activated by the 

signal transduction pathways described.
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Therefore, the PKC isozymes that are expressed by 3T3-L1 fibroblasts and th a t catalyse 

phosphorylation of the peptide described, are activated in response to PDGF and PMA, 

but not in response to insulin. Furthermore, the activity of these isozymes is abolished 

by a long incubation in a high concentration of PMA, a technique referred to as down- 

regulation of PKC. However, since it is not known which PKC isozymes catalyse the 

phosphorylation of the peptide used in the assay presented or which are expressed by 

3T3-L1 fibroblasts, it is not possible to be more precise in the interpretation of these 

results.

4.3.3 The effect of PKC on growth factor- and tumour promoter-stimulated glucose 

transport

The requirement of the early phase of insulin-, PDGF- and PMA-stimulated glucose 

transport for PKC activity in 3T3-L1 fibroblasts was established in two ways. The rate 

of 2-deoxyglucose uptake was measured in 3T3-L1 fibroblasts treated with 1 pM insulin, 

25 ng/ml PDGF or 100 nM PMA, firstly, after the down-regulation of PKC and secondly, 

after the inhibition of PKC.

In both cases, cells from the same passage were incubated with the ligand present at 

concentrations sufficient to stimulate a maximal increase in the rate of 2 -deoxyglucose 

uptake and in the case of the latter two, to stimulate DAG accumulation. Incubations 

with insulin and PDGF were carried out for 30 minutes, while incubations with PMA 

were carried out for 60 minutes, before measurement of the rate of 2 -deoxyglucose 

uptake. Given th a t the maximum increase in DAG accumulation occurs by 10-minutes 

in response to PDGF and by 60 minutes in response to PMA, this should be sufficient 

time to allow for any relevant activation of PKC.

In each case, in the control cells the rate of 2-deoxyglucose uptake increased in response 

to insulin, PDGF and PMA. However, after down-regulation or inhibition of PKC, the 

rate of 2-deoxyglucose uptake increased in response to 1 pM insulin and 25 ng/ml PDGF, 

but did not change in response to 100 nM PMA {Tables 4.2 and 4.3}. Therefore, these 

results suggest th a t PKC is not necessary for the early phase of insulin- or PDGF- 

stimulated glucose transport, but that it is necessary for the early phase of PMA- 

stimulated glucose transport.
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In agreement with the results presented here, other studies of the early phase of growth 

factor-stimulated glucose transport have shown th a t the down-regulation of PKC has no 

effect on the rate of 3-O-methylglucose transport in response to insulin, EGF, FGF and 

PDGF in Swiss 3T3 fibroblasts [Kitagawa et al., 1986; Kitagawa et al., 1989], or on the 

rate of 2-deoxyglucose uptake in BC3H-1 myocytes [Standaert et al., 1988].

However, Farese and colleagues observe partial inhibition of insulin-stimulated glucose 

transport BC3H-1 myocytes, ra t adipocytes and soleus muscle treated with PKC 

inhibitors [Ishizuka et al., 1990; Standaert et al., 1990]. Therefore, they suggest tha t 

insulin-stimulated glucose transport is mediated by a PKC-dependent pathway. In this 

work, the PKC inhibitors used were polymyxin B, staurosporine, H-7, and sangivamycin.

The indolocarbazole, staurosporine is a bacterial metabolite which is a non-selective 

protein kinase inhibitor. The IC5 0  values for ra t brain PKC, bovine h eart cyclic AMP- 

dependent protein kinase and ra t brain calcium/ calmodulin-dependent protein kinase 

for staurosporine are 0.1 pM, 0.12 pM and 0.04 pM respectively [Davis et al., 1989]. 

Staurosporine also inhibits the PDGF receptor tyrosine protein kinase with an IC5 0  

value of 0.02 pM [Secrist et al., 1990], therefore staurosporine is a general protein 

kinase inhibitor. Furthermore, staurosporine effects cell morphology, causing cells to 

round up and to detach from plate within 1  hour, consistent with staurosporine being a 

general protein kinase inhibitor [Susa et al., 1992]. Thus, loss of an ligand-stimulated 

response after treatm ent of cells with staurosporine does not necessarily imply th a t PKC 

is necessary for tha t response to occur.

H-7, is a isoquinoline-sulphonamide derivative which prevents ATP binding to PKC. 

However, H -7 only partially inhibits PKC activity and has no effect on some PKC 

mediated events [Susa et al., 1992]. Therefore, loss of an ligand-stimulated response 

after treatm ent of cells with H-7 also does not necessarily imply th a t PKC is necessary 

for tha t response to occur.

Ro 31-8220 is a bisindolylmaleimide derivative of staurosporine. I t is a more potent 

inhibitor of PKC and shows a higher selectivity for PKC. The in vitro IC5 0  values of rat 

brain PKC, bovine heart cyclic AMP-dependent protein kinase and ra t brain calcium/ 

calmodulin-dependent protein kinase for Ro 31-8220 are 0.01 pM; 1.5 pM and 17 pM
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respectively [Davis et al., 1989]. Ro 31-8220 can penetrate the cell and prevent PKC- 

mediated effects. The in vivo IC5 0  values of PMA-stimulated phosphorylation of pp47 in 

platelets and inhibition of CD3 down-regulation for Ro 31-8220 are 0.7 pM and 0.5 pM 

respectively [Davis et al., 1989]. Ro 31-8220 shows a slight selectivity for PKC-a over 

PKC -131, PKC-J3II, PKC-y or PKC-e, but not enough to differentiate between the different 

isozymes. The effects on PKC- 8  and PKC-£ are not yet known [Wilkinson et al., 1993].

In order to establish the dependence of a process on PKC, it is necessary to use an 

inhibitor specific for this enzyme, such as the bisindolylmaleimide described. 

Staurosporine and H-7 are not appropriate for such studies. Therefore, the results 

presented in this thesis suggest that PKC-a, PKC-fil, PKC-J3II, PKC-y and PKC-e are not 

involved in the early phase of insulin- or PDGF-stimulated glucose transport in 3T3-L1 

fibroblasts.

4.3.4 The basal rate of glucose transport

Down-regulation of PKC causes a significant increase in the basal rate of 2-deoxyglucose 

uptake {Table 4.2}. A similar increase in the basal rate of 2 -deoxyglucose uptake has 

also been observed in 3T3-L1 adipocytes [Gibbs et al., 1991] and BC3H-1 myocytes 

[Standaert et al., 1988]. It is possible tha t PKC inhibits the basal rate of glucose 

transport in resting cells, and tha t down-regulation of PKC removes this inhibition. 

Therefore, incubation in a PKC inhibitor should also cause an increase in the basal rate 

of 2-deoxyglucose uptake. However, incubation of 3T3-L1 fibroblasts in the PKC 

inhibitor, Ro 31-8220 had no effect on the basal rate of 2-deoxyglucose uptake {Table 

4.3}, suggesting tha t this is not the case.

It is also possible tha t depletion of PKC does not occur immediately in response to a long 

incubation in a high concentration of a phorbol ester and so, initially, the phorbol ester 

stimulates PKC activity and various PMA-stimulated effects occur, for example, an 

increase in the total G lutl level. Analysis of the total G lutl level by W estern blotting of 

3T3-L1 fibroblast lysates prepared from control cells and from PKC-deficient cells 

showed th a t the basal total G lutl level was higher in PKC-deficient cells than in control 

cells {Figure 4.6}. This is in agreement with studies of G lutl levels in 3T3-L1 

adipocytes, where G lutl level was approximately two fold higher after down-regulation
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of PKC [Gibbs et al., 1991], Furthermore, preliminary work showed th a t the increase in 

the basal rate of 2-deoxyglucose transport observed after down-regulation of PKC was 

abolished by incubating the 3T3-L1 fibroblasts in the PKC inhibitor, Ro 31-8220, before 

incubation in the phorbol esters (results not shown).

Therefore, the increase in the basal rate of 2-deoxyglucose uptake observed after down- 

regulation of PKC arises because depletion of PKC does not occur immediately on 

incubation in a high concentration of a phorbol ester. Consequently, during the early 

part of the incubation, the phorbol ester can stimulate the activation of PKC, leading to, 

among other things, an increase in the total G lutl level and consequently an increase in 

the basal rate of glucose transport.

4.3.5 Summary

The results presented suggest that in 3T3-L1 fibroblasts PKC is not necessary for the 

early phase of either insulin- or PDGF-stimulated glucose transport, but th a t it is 

necessary for the early phase of PMA-stimulated glucose transport. In addition, these 

results show that PDGF and PMA each stimulate DAG accumulation, and PKC activity 

in 3T3-L1 fibroblasts, while insulin does not. Furthermore, the increase in the basal 

rate of 2-deoxyglucose transport observed after down-regulation of PKC occurs due to an 

increase in the total G lutl level.

124



The activation of MAPK in 3T3-L1 fibroblasts



5.1 Introduction

The growth factors, insulin and PDGF, and the tumour promoter, PMA, have similar 

effects on the rate of glucose transport in 3T3-L1 fibroblasts {Sections 3.2.2 and 3.2.3}, 

therefore, it is possible tha t the intracellular signal transduction pathways tha t mediate 

these effects are similar. The role of signal transduction pathways involving DAG and 

PKC have been examined with respect to the early phase of growth factor-stimulated 

glucose transport. DAG and PKC appear to be unnecessary {Section 4.3}. Mitogen- 

activated protein kinases (MAPKs) are activated in response to many growth factors, 

therefore, it is possible tha t the early phase of growth factor-stimulated glucose 

transport may be mediated by a signal transduction pathway involving MAPK 

Therefore, the effects of insulin and PDGF on the activation of MAPK were investigated.

5.1.1 Mitogen-activated protein kinases 

The mammalian isozymes

The MAPK isozymes, also known as extracellular signal-regulated kinase (ERK), are a 

group of serine/ threonine protein kinases tha t are activated in response to many 

ligands [Sturgill and Wu, 1991]. These include ligands which bind to tyrosine protein 

kinase receptors, such as FGF, and those which bind to G protein-coupled receptors, 

such as thrombin [Kahan et al., 1992].

There are several mammalian MAPK isozymes, the two best characterised being, 

p4 2 mapk ( p42 MAPK or ERK2) and p44maPk (p44 MAPK or ERK1) [Boulton et al.,

1990; Boulton et al., 1991]. The MAPK isozymes are unique in th a t they are the only 

serine/ threonine protein kinase known to require both threonine and tyrosine 

phosphorylation for their activation [Anderson et al., 1990]. The phosphorylation sites 

have been identified as Thr-183 and Tyr-185 in p42maPk . The threonine and tyrosine 

residues are separated by a single glutamate residue; the Thr-Glu-Tyr motif lies 13 

amino acids upstream of the Ala-Pro-Glu motif common to all protein kinases [Nishida 

and Gotoh, 1993]. The sequence of amino acids containing the Thr-Glu-Tyr motif and 

the Ala-Pro-Glu motif is highly conserved between all known MAPK isozymes [Nishida 

and Gotoh, 1993].
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Activation of the MAPK isozymes is catalysed by a single serine/ threonine/ tyrosine 

protein kinase known as MAPK kinase (MAPKK) or MAPK/ ERK kinase (MEK) {Section 

5.1.2} [Nakielny et al., 1992a,b; Rossomando et al., 1992; Wu et al., 1992; Kosako et al.,

1993].

Substrates

MAPK catalyses the in vitro phosphorylation of many proteins. The consensus sequence 

for phosphorylation by MAPK is Pro-Xaa-Ser/ Thr-Pro, where Xaa is a neutral or basic 

residue [Davis, 1993]. However, other kinases, including GSK-3 and cyclin-dependent 

protein kinases, also preferentially catalyse the phosphorylation of serine and threonine 

residues in proline-rich regions [Alvarez et al., 1991].

MAPK catalyses the in vitro phosphorylation of several proteins tha t function as 

transcription factors [Hunter and Karin, 1992]. These include, c-Jun [Alvarez et al., 

1991; Pulverer et al., 1991], c-Myc [Seth et al., 1992], p6 2 ^CF (Elk-1) [Gille et al., 1992; 

Marais et al., 1993], NF-IL6 (C/EBPJ3) [Nakajima et al., 1993], and ATF-2 [Abdel-Hafiz 

et al., 1992].

One of the early events of the cell cycle is a rapid increase in the expression of 

immediate-early genes, for example c-fos,c-jun and c-myc [Greenberg and Ziff, 1984; 

Stumpo and Blackshear, 1986]. The increase in the rate of transcription of these genes 

occurs independently of protein synthesis, therefore, it is regulated by the modification 

of the activity of existing transcription factors [Almendral et al., 1988]. The growth 

factor-stimulated transcription of the immediate-early genes may be mediated by a 

MAPK signal transduction pathway, since MAPK catalyses the in vitro phosphorylation 

of several transcription factors and at least one isoform of MAPK moves rapidly to the 

nucleus in response to serum [Seth et al., 1992].

MAPK catalyses the phosphorylation of several protein kinases. These include the 

90 kDa S6 kinases (p90rsk) [Nguyen et al., 1993], MAPK-activated protein kinase-1 

(MAPKAP kinase-1) [Lavoinne et al., 1991], and MAPK-activated protein kinase-2 

(MAPKAP kinase-2) [Stokoe et al., 1992a].
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The p90rsk isozymes are a group of serine/ threonine protein kinases tha t catalyse the 

phosphorylation of the ribosomal protein S6, a component of the eukaryotic 40 S subunit 

[Erikson and Mailer, 1986]. Phosphorylation of S6 occurs when quiescent cells re-enter 

the cell cycle [Sturgill and Wu, 1991], and is thought to have a role in the regulation of 

protein synthesis during the cell cycle [Thomas et al., 1982]. Activation of p90rs^by 

MAPK is rapid, but transient [Ballou et al., 1991].

MAPKAP kinase-1, previously known as insulin-stimulated protein kinase-1 (ISPK1), is 

a mammalian skeletal muscle p90rs^ homologue [Lavoinne et al., 1991]. It is part of the 

signal transduction pathway that mediates insulin-stimulated glycogen synthesis. 

MAPKAP kinase-1 catalyses the phosphorylation of the regulatory subunit of the 

glycogen-associated protein phosphatase-1 (PP Iq) [Dent et al., 1990] and GSK-36 

[Sutherland et al., 1993]. The phosphorylation of P P Ig  leads to its activation, and 

therefore to the dephosphorylation and activation of glycogen synthase and the 

dephosphorylation and inactivation of phosphorylase kinase [Dent et al., 1990]. The 

phosphorylation of GSK-36 leads to its inactivation, and therefore, also to the 

dephosphorylation and inactivation of glycogen synthase [Sutherland et al., 1993].

MAPKAP kinase-2 is another mammalian skeletal muscle serine/ threonine protein 

kinase th a t is a in vitro substrate for p42mapk [Stokoe et al., 1992a]. The function of 

MAPKAP kinase-2 is unknown; it catalyses the phosphorylation of the heat shock 

proteins Hsp25, and Hsp27 [Stokoe et al., 1992b].

MAPKs catalyse the in vitro phosphorylation of several cytoskeletal proteins. These 

include microtubule-associated protein-2 [Ray and Sturgill, 1987], myelin basic protein 

[Erickson et al., 1990], and Tau [Drewes et al., 1992]. The phosphorylation of 

cytoskeletal proteins may regulate the reorganisation of the cytoskeleton which is 

observed during the cell cycle.

MAPKs catalyse the in vitro phosphorylation of several membrane proteins and 

membrane-associated proteins. These include the EGF receptor [Northwood et al.,

1991] and the 85 kDa cytosolic PLA2  [Lin et al., 1993; Nemenoff et al., 1993]. MAPK- 

catalysed phosphorylation of the EGF receptor is thought to regulate its internalisation 

and intrinsic tyrosine protein kinase activity [Northwood et al., 1991]. MAPK-catalysed
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phosphorylation of PLA2  is thought to stimulate its activity [Lin et al., 1993; Nemenoff 

et al., 1993].

Therefore, MAPK catalyses the in vitro phosphorylation of many proteins, including 

transcription factors, protein kinases, cytoskeletal proteins, and membrane proteins. 

Many of these could have important roles in cell proliferation.

Inactivation

The activation of the mammalian MAPK isozymes is transient under many conditions, 

therefore, their inactivation must be rapid. However, much less is known about the 

inactivation of MAPK.

Several protein tyrosine/ threonine phosphatases tha t are specific for MAPK have been 

identified recently. These phosphatases include the protein products of the human 

genes, CL100 (mouse homologue, 3HC134/erp), HVH1 and PAC1 [Alessi et al., 1993; 

Nebreda, 1994; Ward et al., 1994] These are immediate-early genes [Charles et al.,

1992; Rohan et al., 1993], their expression being induced in response to the same growth 

factors that stimulate MAPK activity. Since, many of the potential substrates of MAPK 

are transcription factors, it is possible that the induction of these phosphatases could be 

regulated by the MAPK cascade, thus providing a negative feedback mechanism [Alessi 

et al., 1993; Nebreda, 1994]. In addition, PAC1, which is predominantly expressed in 

haematopoietic tissues, is localised to the nucleus in growth factor-stimulated cells 

[Rohan et al., 1993], suggesting that PAC1 may have a role in the regulation of nuclear 

events [Ward et al., 1994].

Other protein phosphatases can inactivate MAPK in vitro by the selective 

dephosphorylation of either the tyrosine or the threonine residue. For example, the 

dephosphorylation of the threonine residue by protein phosphatase 2A (PP2A) or of the 

tyrosine residue by a protein tyrosine phosphatase, CD45, leads to inactivation of MAPK 

[Anderson et al., 1990; Gomez et al., 1990]. It is not known whether this is of 

physiological significance.
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5.1.2 MAPK kinase

Initially, it was thought tha t either the phosphorylation of the tyrosine and threonine 

residues in MAPK was catalysed by two separate protein kinases, tha t is a serine/ 

threonine protein kinase and a tyrosine protein kinase, or th a t the phosphorylation of 

one of the residues was catalysed by a single protein kinase, and the phosphorylation of 

the second residue occurred as a result of autophosphorylation. However, the use of 

kinase-inactive MAPK mutants showed tha t the phosphorylation of MAPK is catalysed 

by a single serine/ threonine/ tyrosine protein kinase, MAPKK, the only known example 

of a dual specificity protein kinase [Nakielny et al., 1992a,b; Rossomando et al., 1992; 

Wu et al., 1992; Kosako et al., 1993]. MAPKK isozymes from several organisms have 

been purified and cloned. The molecular masses range from 45 to 50 kDa [Nakielny et 

al., 1992a; Kosako et al., 1993; Zheng and Guan, 1993]. The only known substrate of 

MAPKK is MAPK [Nakielny et al., 1992a,b].

MAPKK is activated by serine/ threonine phosphorylation [Nakielny et al., 1992a; 

Rossomando et al., 1992; Kosako et al., 1993; Matsuda et al., 1993]. In mammalian cells 

MAPKK phosphorylation is catalysed by three serine/ threonine protein kinases, Raf-1 

(p7 4 ra/‘-l) [Howe et al., 1992; Kyriakis et al., 1992], MAPKK kinase (MAPKKK) [Lange- 

Carter et al., 1993] and Mos (p39mos) [Posada et al., 1993]. The role of p74m/11 and 

MAPKKK are discussed in this chapter, p39mos is not expressed in somatic cells and 

therefore will be discussed later {Section 6.1.2}.

The phosphorylation of MAPKK is also catalysed by MAPK [Matsuda et al., 1993], 

however, this occurs on different serine/ threonine residues to those which are 

substrates for MAPKKK, suggesting tha t the phosphorylation of MAPKK by MAPK has 

either a negative or positive-feedback role [Matsuda et al., 1993].

5.1.3 p74raM

Tyrosine protein kinase receptors

The activation of p74m/ '1 and MAPK by ligands tha t bind to tyrosine protein kinase 

receptors requires Ras (p21ros), a small guanine nucleotide binding protein [Thomas et 

al., 1992; Wood et al., 1992]. There are three mammalian Ras isoforms, H-Ras, Ki-Ras,
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and N-Ras. These are all 21 kDa isoprenylated, membrane-associated proteins with a 

single high-affinity binding site for guanine nucleotides.

Guanine nucleotide-binding proteins cycle between an inactive GDP-bound form and an 

active GTP-bound form. Their activity is controlled by guanine nucleotide-releasing 

proteins (GNRPs) and GTPase-activating proteins (GAPs). GNRPs activate guanine 

nucleotide binding proteins by catalysing the release of GDP. Since the cellular 

concentration of GTP is higher than that of GDP, GTP preferentially binds to the empty 

guanine nucleotide binding site. GAPs inactivate guanine nucleotide-binding proteins 

by stimulating their normally low intrinsic GTPase activity so tha t GTP is hydrolysed to 

produce GDP [Hall, 1990; Bollag and McGdrmick, 1991].

The activity of p21ras is regulated by Sos (a GNRP) [Shou et al., 1992] and RasGAP (a 

GAP) [Trahey and McCormick, 1987] {Figure 5.1}. Activation of tyrosine protein kinase 

receptors stimulates p21ms activity by increasing the rate of guanine nucleotide 

exchange [Gibbs et al., 1990], but has no effect on the nucleotide exchange activity of Sos 

[Buday and Downward, 1993]. Instead, the rate of guanine nucleotide exchange is 

controlled by altering the intracellular location of Sos. In quiescent cells Sos, has little 

effect on p21ms activity, because it is cytosolic, while p21ms is always membrane- 

associated, however, after activation of a tyrosine protein kinase receptor, Sos associates 

with the receptor and so can stimulate p21ms activity [Buday and Downward, 1993; 

Egan et al., 1993; Gale et al., 1993; Rozakis-Adcock et al., 1993]. The growth factor- 

dependent association of Sos with the receptor, is mediated by Grb2, a 25 kDa protein, 

consisting of one SH2 domain and two Src homology-3 (SH3) domains [Koch et al.,

1991]. As previously described, after the activation of tyrosine protein kinase receptors, 

Grb2 binds to specific phosphotyrosine-containing sequences in the receptors or in IRS -1 

via the SH2 domain [Section 3.1.1}. Grb2 also binds to Sos, the interaction occurring 

between the SH3 domains of Grb2 and a proline-rich region in Sos {Figure 5.2} [Buday 

and Downward, 1993; Egan et al., 1993; Li et al., 1993; Rozakis-Adcock et al., 1993]. 

Consequently, Grb2-Sos complexes move from the cytosol to the membrane and p21ms 

activity increases in response to the activation of tyrosine protein kinase receptors 

[Buday and Downward, 1993; Egan et al., 1993; Gale et al., 1993; Rozakis-Adcock et al., 

1993].
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Figure 5.1 The activation of guanine nucleotide binding proteins

A schematic representation of receptor-mediated activation of a) p21ms and b) Gq, 
where the GNRPs are Sos and a G protein-coupled receptor, and the GAPs are RasGAP 
and PLC -13 respectively.
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Figure 5.2 Signal transduction pathways leading to the activation of MAPK

A schematic representation of the activation of MAPK by ligands tha t bind to a) tyrosine 
protein kinase receptors and b) G protein-coupled receptors.
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Active p21ras interacts directly with the amino-terminal regulatory domain of p74ra/-lj 

but does not stimulate the kinase activity of p74m/"1 in vitro [Moodie et al., 1993; Vojtek 

et al., 1993; Zhang et al., 1993]. However, after its activation, p74ra/"1 is associated 

with the plasma membrane, but not with p21ms, suggesting th a t the role of p21ras is to 

localise p74ra/-l to the plasma membrane where it is activated by another signal 

[Leevers and Marshall, 1992]. It is possible th a t plasma membrane-associated p74m/"1 

is activated by hyperphosphorylation or by a conformational change in proteins with 

which it is associated. The hyperphosphorylation of p74mf' 1 occurs in response to 

growth factors, however the kinase which catalyse the phosphorylation of p74m/ '1 is 

unknown [Morrison et al., 1988; Blackshear et al., 1990; Morrison et al., 1993]. In 

addition, p74raf~  ̂ is found in a large complex of 300 to 500 kDa, in both quiescent and 

activated cells. Two other proteins in this complex are the heat shock protein, hsp90, 

and a 50 kDa protein often found in complexes with hsp90 [Wartmann and Davis, 1994]. 

The hsp90-p50 complex regulates the activity of other proteins with which it also 

associates, such as the glucocorticoid receptor and casein kinase II, and therefore may 

be involved in the regulation of p74m/11 activity [Wartmann and Davis, 1994].

Seven membrane-spanning domain receptors

The activation of p74m/-l and MAPK in response to ligands tha t bind to G protein- 

coupled receptors occurs by p21ras-dependent and -independent pathways. G proteins 

are another class of guanine nucleotide binding proteins tha t are similar to small 

guanine nucleotide binding proteins in that the GTP-bound form is active, while the 

GDP-bound form is inactive. However, G proteins are trimeric complexes, the a-subunit 

containing a single guanine nucleotide binding site and the GTPase. Nucleotide 

exchange is stimulated when a ligand binds to the G protein-coupled receptor, also 

causing the a-subunit to dissociate from the By-subunits. Certain G protein effectors, 

such as PLC-B, are thought to act as GAPs [Figure 5.1b] [Berstein et al., 1992].

The G protein-coupled receptors that stimulate p74ra/"1 and MAPK activity bind to 

members of the Gi and Gq families. The GTP-bound aq-subunit stimulates PLC-B 

activity, leading to the activation of PKC [Smrcka et al., 1991; Stemweis and Smrcka,

1992]. PKC catalyses the phosphorylation of p74m/ '1, but it is not known whether this 

affects p74ra "̂1 activity [MacDonald et al., 1993]. In addition, PKC may also stimulate 

p2 i  ras activity, probably by stimulation of nucleotide exchange [Downward et al., 1990].
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The GTP-bound ai-subunit stimulates p21ms activity, probably by stimulation of 

nucleotide exchange [van Corven et al., 1993; Winitz et al., 1993].

The By-complex also stimulates the activities of PLC-B [Carozzi et al., 1993] and p21ras 

[Crespo et al., 1994]. The By-complex is thought to bind to the pleckstrin homology (PH) 

domain, which is found in many proteins including the B-adrenergic receptor kinase, 

PLC-B [Parker et al., 1994], Sos and RasGAP. The By-complex is thought to activate the 

B-adrenergic receptor kinase by interaction with its PH domain [Shaw, 1993], therefore, 

it is also possible th a t the activities of PLC-B and p21ras are regulated in a similar 

manner [Figure 5.2] [Parker et al., 1994; Touhara et al., 1994].

Inhibition ofp21ras and p74mf'1

The activity of p21ms may be reduced by stimulation of the activity of RasGAP [Trahey 

and McCormick, 1987]. After activation of tyrosine protein kinase receptors, RasGAP 

binds to specific phosphotyrosine-containing sequences in the receptors [Section 3.1.1], 

then undergoes tyrosine phosphorylation [Kazlauskas et al., 1990]. However, the 

physiological effect of growth factor-stimulated tyrosine phosphorylation of RasGAP 

remains uncertain [Gibbs et al., 1990],

MAPK also catalyses the in vitro phosphorylation of p74m/ 'l  [Lee et al., 1992], again 

this may have a negative or a positive-feedback role .

5.1.4 MAPK kinase kinase

MAPKKKs were initially isolated from yeasts which do not express p74m/"1 and p39mos. 

Recently several mammalian MAPKKK isozymes have been cloned from mice [Lange- 

Carter et al., 1993; Blumer and Johnson, 1994], Some of the mammalian MAPKKK 

isozymes are activated in response to growth factors; others may be activated in 

response to changes similar to those known to activate the yeast homologues, such as 

osmotic stress [Brewster, 1993].
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5.1.5 The relationship with cell proliferation

MAPK is thought to have an important role in cell proliferation, in particular in control 

of the GO to G1 transition. Virtually all growth factors rapidly stimulate the activity of 

one or more MAPK isozymes. For example, MAPK activity and cell proliferation 

increase in thrombin- and basic FGF-treated CCL39 cells [Kahan et al., 1992], foetal calf 

serum-treated Chinese ham ster ovary cells [Tamemoto et al., 1992] and EGF-treated 

PC 12 cells [Nguyen et al., 1993]. In addition, cells with defects in PMA-stimulated cell 

proliferation, also have defects in PMA-stimulated MAPK activity [L'Allemain et al.,

1991], and growth factor-stimulated MAPK activity and cell proliferation are inhibited 

by the expression of dominant-negative p74raf~  ̂mutants [Kolch et al., 1991]. 

Furthermore, the mammalian MAPK isozymes have a high sequence identity with 

enzymes tha t are required for cell cycle control from S. cerevisiae and 

Schizosaccharomyces pombe [Errede and Levin, 1993].

However, MAPK is also activated by many non-proliferative signals [Wood et al., 1992] 

suggesting tha t MAPK may not be sufficient for cell proliferation. In addition, 

transformation does not always stimulate MAPK activity, for example, MAPK activity is 

not affected by the transformation of Rat 1 fibroblasts with v-ras or v-raf [Gupta et al.,

1992], or of Swiss 3T3 fibroblasts with v-myc [Howe et al., 1992], suggesting th a t MAPK 

may not be necessary for the stimulation of cell proliferation. This also suggests tha t 

there may be cell-specific expression of some components of the signal transduction 

pathways tha t mediate the activation of MAPK

Therefore, although the MAPK is activated in response to many growth factors th a t also 

stimulate cell proliferation it is not clear whether MAPK itself is necessary or sufficient 

for cell proliferation. However, MAPK may be sufficient to stimulate some of the early 

events of cell proliferation.

5.1.6 The relationship with glucose transport

Since the early phase of growth factor-stimulated glucose transport is an early event of 

the cell cycle, it is possible tha t it could be mediated by a signal transduction pathway 

involving the activation of MAPK. When this work was initiated, there was little
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evidence in support or against this hypothesis. Given th a t MAPK appears to be 

important with respect to cell proliferation, it was necessary to investigate the 

possibility that MAPK may mediate the early phase of growth factor-stimulated glucose 

transport.

In order to examine whether the early phase of growth factor-stimulated glucose 

transport is mediated by a signal transduction pathway involving MAPK, several 

approaches were taken. Firstly, the effects of insulin and PDGF on tyrosine 

phosphorylation in 3T3 -LI fibroblasts and the requirement for PKC activity were 

established. Secondly, the effects of insulin and PDGF on MAPK activity in 3T3 -LI 

fibroblast and the requirement for PKC activity were established.

5.2 Results

5.2.1 The effect of growth factors on tyrosine phosphorylation

The effect of insulin and PDGF on tyrosine phosphorylation was established by Western 

blotting of cellular proteins. Lysates were prepared from 3T3-L1 fibroblasts after 

incubation in 1 pM insulin or 25 ng/ml PDGF {Section 2.13.2}. The proteins were 

separated by SDS-PAGE {Section 2.15}, and then transferred onto nitrocellulose 

membranes. The membranes were probed with a rabbit anti-phosphotyrosine antibody 

[Pang et al., 1985], and then with a HRP-conjugated donkey anti-rabbit IgG antibody. 

The antibody binding sites were visualised using an ECL detection system {Section 

2.16.2}.

The anti-phosphotyrosine antibody recognised proteins with approximate molecular 

masses ranging from 30 to 200 kDa in lanes containing the untreated 3T3-L1 fibroblast 

lysate samples. A representative Western blot is shown in Figure 5.3.

During a 60 minute incubation in 1 pM insulin there were large increases in the 

tyrosine phosphorylation of proteins with approximate molecular masses of 42, 44, 120 

and 166 kDa, and small increases in the tyrosine phosphorylation of a protein with an 

approximate molecular mass of 60 kDa and of several proteins with approximate
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Figure 5.3 A time course for insulin-stimulated tyrosine phosphorylation

After incubation of quiescent 3T3-L1 fibroblasts with 1 pM insulin for the times shown, 
lysates were prepared {Section 2.13.2}. Approximately 30 pg of protein was loaded 
onto 10% (w/v) polyacrylamide large gels, the proteins were separated by SDS-PAGE 
(Section 2.15}, and then transferred onto nitrocellulose membranes. The membranes 
were probed with a rabbit anti-phosphotyrosine antibody, and then with a HRP- 
conjugated donkey anti-rabbit IgG antibody. The sites of antibody binding were 
visualised using an ECL detection system {Section 2.16.2}. This is a representative 
Western blot from a group of two lysate preparations.
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molecular masses of 90 to 120 kDa. The tyrosine phosphorylation of the 42 and 44 kDa 

proteins increased within 2 minutes of exposure to insulin and reached a maximum by 

5 minutes. The tyrosine phosphorylation of the 90 to 120 kDa proteins increased within 

1 minute of exposure to insulin and was still elevated by 60 minutes. The tyrosine 

phosphorylation of the 166 kDa protein increased within 1 minute of exposure to 

insulin, was still elevated by 20 minutes, and then decreased. Other phosphotyrosine - 

containing proteins were observed, but the bands were too faint or blurred to determine 

if there were any changes {Figure 5.3}.

During a 60 minute incubation in 1 pM IGF -I, the changes in tyrosine phosphorylation 

were similar to those observed in response to insulin. A representative Western blot is 

shown in Figure 5.4.

During a 60 minute incubation in 25 ng/ml PDGF there were large increases in the 

tyrosine phosphorylation of proteins with approximate molecular masses of 42, 44, 120, 

155 and 190 kDa and a small increase in the tyrosine phosphorylation of a protein with 

an approximate molecular mass of 170 kDa. The tyrosine phosphorylation of the 42 and 

44 kDa proteins increased within 2 minutes of exposure to PDGF and reached a 

maximum by 5 minutes. The tyrosine phosphorylation of the 120, 155, 170 and 190 kDa 

proteins increased within 1 minute of exposure to PDGF, was still elevated by 

30 minutes, and decreased nearly to basal levels by 60 minutes. Other phosphotyrosine - 

containing proteins were observed, but the bands were too faint or blurred to determine 

if there were any changes. A representative Western blot is shown in Figure 5.5.

The effect of insulin and PDGF on tyrosine phosphorylation was also examined by 

Western blotting of membrane proteins. Membrane proteins were prepared from 3T3-L1 

fibroblasts after incubation in 1 pM insulin or 25 ng/ml PDGF {Section 2.13.1}. The 

proteins were separated by SDS-PAGE {Section 2.15}, and then transferred onto 

nitrocellulose membranes. The membranes were probed with the rabbit anti- 

phosphotyrosine antibody, and then with the HRP-conjugated donkey anti-rabbit IgG 

antibody. The antibody binding sites were visualised using an ECL detection system 

{Section 2.16.2}.
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Figure 5.4 A time course for IGF-l-stimulated tyrosine phosphorylation

After incubation of quiescent 3T3-L1 fibroblasts with 1 pM IGF-I for the times shown, 
lysates were prepared (Section 2.13.2}. Approximately 30 pg of protein was loaded 
onto 10% (w/v) polyacrylamide large gels, the proteins were separated by SDS-PAGE 
(Section 2.15}, and then transferred onto nitrocellulose membranes. The membranes 
were probed with a rabbit anti-phosphotyrosine antibody, then with a HRP-conjugated 
donkey anti-rabbit IgG antibody. The antibody binding sites were visualised using an 
ECL detection system (Section 2.16.2}. This is a representative Western blot from a 
group of two lysate preparations.
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Figure 5.5 A time course for PDGF-stimulated tyrosine phosphorylation

After incubation of quiescent 3T3-L1 fibroblasts with 25 ng/ml PDGF for the times 
shown, lysates were prepared {Section 2.13.2}. Approximately 30 pg of protein was 
loaded onto 10% (w/v) polyacrylamide large gels, the proteins were separated by SDS- 
PAGE {Section 2.15}, and then transferred onto nitrocellulose membranes. The 
membranes were probed with a rabbit anti-phosphotyrosine antibody, then with a 
HRP-conjugated donkey anti-rabbit IgG antibody. The antibody binding sites were 
visualised using an ECL detection system {Section 2.16.2}. This is a representative 
Western blot from a group of two lysate preparations.
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The anti-phosphotyrosine antibody recognised proteins with approximate molecular 

masses of 42, 44, and 60 kDa in lanes containing untreated 3T3-L1 fibroblast membrane 

protein samples. A representative Western blot is shown in Figure 5.6.

During a 10 minute incubation in 1 (iM insulin there were large increases in the 

tyrosine phosphorylation of membrane proteins with approximate molecular masses of 

20, 42, and 44 kDa and small increases in the tyrosine phosphorylation of membrane 

proteins with approximate molecular masses of 60 and 90 kDa. The tyrosine 

phosphorylation of the 42, 44, 60, 90 and 190 kDa proteins increased by 2 minutes of 

exposure to insulin and was still evident by 10 minutes. The tyrosine phosphorylation of 

the 20 kDa protein increased by 2 minutes of exposure to insulin and deceased to basal 

levels by 10 minutes. Other phosphotyrosine-containing proteins were observed, but the 

bands were too faint or blurred to determine if there were any changes {Figure 5.6}.

During a 10 minute incubation in 25 ng/ml PDGF there were large increases in the 

tyrosine phosphorylation of membrane proteins with approximate molecular masses of 

20, 42, 44 and 190 kDa and small increases in the tyrosine phosphorylation of 

membrane proteins with approximate molecular masses of 60 and 155 kDa. Tyrosine 

phosphorylation of the 42, 44 and 190 kDa proteins increased by 2 minutes of exposure 

to PDGF and was still evident by 10 minutes. Tyrosine phosphorylation of the 20 kDa 

protein increased by 2 minutes of exposure to PDGF and deceased to basal levels by 

10 minutes. Other phosphotyrosine-containing proteins were observed, but the bands 

were too faint or blurred to determine if there were any changes {Figure 5.6}.

5.2.2 The effect of a tumour promoter on tyrosine phosphorylation

The effect of PMA on tyrosine phosphorylation was established by Western blotting of 

cellular proteins. Lysates were prepared from 3T3-L1 fibroblasts after incubation in 

100 nM PMA {Section 2.13.2}. The proteins were separated by SDS-PAGE {Section 

2.15}, and then transferred onto nitrocellulose membranes. The membranes were 

probed with the rabbit anti-phosphotyrosine antibody, and then with the HRP- 

conjugated donkey anti-rabbit IgG antibody. The antibody binding sites were visualised 

using an ECL detection system {Section 2.16.2}.
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Figure 5.6 The effect of PDGF and insulin on the tyrosine phosphorylation of
membrane proteins

After incubation of quiescent 3T3-L1 fibroblasts with 25 ng/ml PDGF or 1 pM insulin, 
for the times shown, membrane proteins were prepared {Section 2.13.1}.
Approximately 20 pg of protein was loaded onto 10% (w/v) polyacrylamide large gels, 
the proteins were separated by SDS-PAGE {Section 2.15}, and then transferred onto 
nitrocellulose membranes. The membranes were probed with an anti-phosphotyrosine 
antibody, then with a HRP-conjugated donkey anti-rabbit IgG antibody. The antibody 
binding sites were visualised using an ECL detection system {Section 2.16.2}. This is a 
representative Western blot from a group of two membrane protein preparations.

Lane A: basal; lane B: 2 minutes insulin; lane C: 10 minutes insulin; lane D: 2 minutes 
PDGF; lane E: 10 minutes PDGF.
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The anti-phosphotyrosine antibody recognised proteins with approximate molecular 

masses ranging from 30 to 200 kDa in lanes containing untreated 3T3 -LI fibroblast 

lysate samples. During a 60 minute incubation in 100 nM PMA there were large 

increases in the tyrosine phosphorylation of proteins with approximate molecular 

masses of 42, 44, 90 and 120 kDa and a small increase in the tyrosine phosphorylation of 

a protein with an approximate molecular mass of 60 kDa. The tyrosine phosphorylation 

of the 42 and 44 kDa proteins increased within 2 minutes of exposure to PMA and 

reached a maximum by 5 minutes. Other phosphotyrosine-containing proteins were 

observed, but the bands were too faint or blurred to determine if there were any 

changes. A representative Western blot is shown in Figure 5.7.

5.2.3 The effect of PKC on the pattern of tyrosine phosphorylation

The effect of PKC on the patterns of insulin-, PDGF- and PMA-stimulated tyrosine 

phosphorylation was established by Western blotting of cellular proteins. Lysates were 

prepared from 3T3-L1 fibroblasts treated with 1 pM insulin, 25 ng/ml PDGF or 100 nM 

PMA {Section 2.13.2}, after down-regulation of PKC {Section 2.11}. The proteins were 

separated by SDS-PAGE {Section 2.15}, and then transferred onto nitrocellulose 

membranes. The membranes were probed with the rabbit anti-phosphotyrosine 

antibody, and then with the HRP-conjugated donkey anti-rabbit IgG antibody. The 

antibody binding sites were detected using an ECL detection system {Section 2.16.2}.

Again, the anti-phosphotyrosine antibody recognised proteins with approximate 

molecular masses ranging from 30 to 200 kDa in lanes containing untreated 3T3-L1 

fibroblast lysate samples.

The patterns of tyrosine phosphorylation observed in response to 1 pM insulin after a 

16 hour incubation in 1 pM 4a-PDD or in 1 pM PMA were similar. During a 60 minute 

incubation in 1 pM insulin there were large increases in the tyrosine phosphorylation of 

proteins with approximate molecular masses of 42, 44, 120 and 166 kDa, and small 

increases in the tyrosine phosphorylation of a protein with an approximate molecular 

mass of 60 kDa and of a group of proteins with approximate molecular masses of 90 to 

120 kDa. A representative Western blot is shown in Figure 5.8.

144



Figure 5.7 A time course for PMA-stimulated tyrosine phosphorylation

After incubation of quiescent 3T3-L1 fibroblasts with 100 nM PMA for the times 
shown, lysates were prepared {Section 2.13.2}. Approximately 30 pg of protein was 
loaded onto 10% (w/v) polyacrylamide large gels, the proteins were separated by SDS- 
PAGE {Section 2.15), and then transferred onto nitrocellulose membranes. The 
membranes were probed with a rabbit anti-phosphotyrosine antibody, then with a 
HRP-conjugated donkey anti-rabbit IgG antibody. The antibody binding sites were 
visualised using an ECL detection system {Section 2.16.2}. This is a representative 
Western blot from a group of two lysate preparations.

kDa

205 —

116.5 —  

80.0 —

49.5

Dye
front

1® HIP 111 lip
i-V.

*

—  pp120

  pp90

  pp60

pp44
PP42

0 1 2 5 10 20 30 40 60

Time (min)

145



Figure 5.8 A time course for insulin-stimulated tyrosine phosphorylation, after the
down-regulation of PKC

After incubation of quiescent 3T3-L1 fibroblasts with a) 1 pM 4a-PDD or b) 1 pM PMA 
for 16 hours (Section 2.11}, then with 1 pM insulin for the times shown, lysates were 
prepared (Section 2.13.2}. Approximately 30 pg of protein was loaded onto 10% (w/v) 
polyacrylamide large gels, the proteins were separated by SDS-PAGE (Section 2.15}, 
and then transferred onto nitrocellulose membranes. The membranes were probed 
with a rabbit anti-phosphotyrosine antibody, then with a HRP-conjugated donkey anti
rabbit IgG antibody. The sites of antibody binding were visualised using an ECL 
detecton system (Section 2.16.2}. This is a Western blot from a group of two lysate 
preparations.
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The patterns of tyrosine phosphorylation observed in response to 25 ng/ml PDGF after a 

16 hour incubation in 1 pM 4a-PDD or in 1 pM PMA were similar. During a 60 minute 

incubation in 25 ng/ml PDGF there were large increases in the tyrosine phosphorylation 

of proteins with approximate molecular masses of 42, 44, 120, 155 and 190 kDa and 

small increases in the tyrosine phosphorylation of proteins with approximate molecular 

masses of 60 and 170 kDa. A representative Western blot is shown in Figure 5.9.

The patterns of tyrosine phosphorylation observed in response to 100 nM PMA after a 

16 hour incubation in 1 pM 4a-PDD or in 1 pM PMA were different. After the 16 hour 

incubation in 1 pM 4a-PDD, there were large increases in the tyrosine phosphorylation 

of proteins with approximate molecular masses of 42, 44, 90 and 120 kDa and a small 

increase in the tyrosine phosphorylation of a protein with an approximate molecular 

mass of 60 kDa. After the 16 hour incubation in 1 pM PMA, there were large increases 

in the tyrosine phosphorylation of proteins with approximate molecular masses of 90 

and 120 kDa and a small increase in the tyrosine phosphorylation of a protein with an 

approximate molecular mass of 60 kDa. However, there was no change in the tyrosine 

phosphorylation of the 42 and 44 kDa proteins. A representative Western blot is shown 

in Figure 5.10.

5.2.4 The effect of growth factors on MAPK activity

The effect of insulin, PDGF and PMA on the mobility of MAPK during SDS-PAGE was 

examined by Western blotting of cellular proteins. Lysates were prepared from 3T3-L1 

fibroblasts after incubation in 1 pM insulin, 25 ng/ml PDGF or 100 nM PMA {Section 

2.13.2}. The proteins were separated by SDS-PAGE {Section 2.15}, and then transferred 

onto nitrocellulose membranes. The membranes were probed with a mouse anti-MAPK 

antibody, and then with a HRP-conjugated sheep anti-mouse IgG antibody. The 

antibody binding sites were visualised using an ECL detection system {Section 2.16.2}.

The anti-MAPK antibody recognised proteins with approximate molecular masses of 

42 kDa (p42maPk) and 44 kDa (p44maP^) in all 3T3-L1 fibroblast lysate samples. The 

electrophoretic mobility of both isozymes decreased in response to 1 pM insulin,

25 ng/ml PDGF and 100 nM PMA. However, the decrease in the mobility of p44maPk 

was typically less pronounced than the decrease in the mobility p42maPk. The decrease
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Figure 5.9 A time course for PDGF-stimulated tyrosine phosphorylation, after the
down-regulation of PKC

After incubation of quiescent 3T3-L1 fibroblasts with a) 1 pM 4a-PDD or b) 1 pM PMA 
for 16 hours (Section 2.11}, and then with 25 ng/ml PDGF for the times shown, lysates 
were prepared (Section 2.13.2}. Approximately 30 pg of protein was loaded onto 10% 
(w/v) polyacrylamide large gels, the proteins were separated by SDS-PAGE (Section 
2.15}, and then transferred onto nitrocellulose membranes. The membranes were 
probed with a rabbit anti-phosphotyrosine antibody, then with a HRP-conjugated 
donkey anti-rabbit IgG antibody. The antibody binding sites were visualised using an 
ECL detection system (Section 2.16.2}. This is a representative Western blot from a 
group of two lysate preparations.
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Figure 5.10 A time course for PMA-stimulated tyrosine phosphorylation, after the
down-regulation of PKC

After incubation of quiescent 3T3-L1 fibroblasts with a) 1 pM 4oc-PDD or b) 1 pM PMA 
for 16 hours {Section 2.11}, and then with 100 nM PMA for the times shown, lysates 
were prepared {Section 2.13.2}. Approximately 30 pg of protein was loaded onto 10% 
(w/v) polyacrylamide large gels, the proteins were separated by SDS-PAGE {Section 
2.15}, and then transferred onto nitrocellulose membranes. The membranes were 
probed with a rabbit anti-phosphotyrosine antibody, then with a HRP-conjugate donkey 
anti-rabbit IgG antibody. The antibody binding sites were visualised using an ECL 
detection system {Section 2.16.2}. This is a representative Western blot from a group of 
two lysate preparations.
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in mobility was observed within 1 minute of exposure to each of the ligands. 

Representative Western blots are shown in Figure 5.11.

The effect of PKC on insulin-, PDGF- and PMA-stimulated decreases in the 

electrophoretic mobility MAPK was established by Western blotting of cellular proteins. 

Lysates were prepared from 3T3-L1 fibroblasts treated with 1 pM insulin, 25 ng/ml 

PDGF or 100 nM PMA {Section 2.13.2}, after down-regulation of PKC {Section 2.11}.

The proteins were separated by SDS-PAGE {Section 2.15}, and then transferred onto 

nitrocellulose membranes. The membranes were probed with the anti-MAPK antibody, 

and then with the HRP-conjugated donkey anti-mouse IgG antibody. The antibody 

binding sites were visualised using an ECL detection system {Section 2.16.2).

After a 16 hour incubation in 1 pM 4a-PDD, the mobility of both p42maPk and p 4 4 m a P k  

during SDS-PAGE decreased in response to 1 pM insulin, 25 ng/ml PDGF and 100 nM 

PMA. After a 16 hour incubation in 1 pM PMA, the mobility of both isozymes during 

SDS-PAGE decreased in response to 1 pM insulin and 25 ng/ml PDGF but not in 

response to 1 pM PMA. Representative Western blots are shown in Figure 5.12.

5.2.5 The effect of growth factors and a tumour promoter on p125FAK

The effect of insulin, PDGF and PMA on the tyrosine phosphorylation of p l 2 5 FA^  was 

examined by Western blotting of immunoprecipitated phosphotyrosine proteins. Lysates 

were prepared from 3T3-L1 fibroblasts after incubation in 1 pM insulin, 25 ng/ml PDGF 

or 100 nM PMA. The phosphotyrosine proteins were immunoprecipitated using a rabbit 

anti-phosphotyrosine antibody {Section 2.13.3}. The immunoprecipitated proteins were 

separated by SDS-PAGE {Section 2.15}, and then transferred onto nitrocellulose 

membranes. The membranes were probed with a mouse an ti-p l2 5 FAK antibody, and 

then with the HRP-conjugated sheep anti-mouse IgG antibody. The antibody binding 

sites were visualised using an ECL detection system {Section 2.16.2}.

The anti-pl25FAK antibody recognised a protein with an approximate molecular mass of 

120 kDa in each lane containing 3T3-L1 fibroblast lysate samples. The tyrosine 

phosphorylation of this protein increased in response to 1 pM insulin, 25 ng/ml PDGF 

and 100 nM PMA. A representative Western blot is shown in Figure 5.13.
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Figure 5.11 Time courses for insulin-, PDGF- and PMA-stimulated activation of MAPK

After incubation of quiescent 3T3-L1 fibroblasts with A) 1 pM insulin, B) 25 ng/ml 
PDGF or C) 100 nM PMA for the times shown, lysates were prepared {Section 2.13.2}. 
Approximately 30 pg of protein was loaded onto 10% (w/v) polyacrylamide large gels, 
the proteins were separated by SDS-PAGE {Section 2.15}, and then transferred onto 
nitrocellulose membranes. The membranes were probed with a mouse anti-MAPK 
antibody, then with a HRP-conjugated sheep anti-mouse IgG antiboby. The sites of 
antibody binding were visualised using an ECL detection system {Section 2.16.2}. 
These are representative Western blots from groups of two lysate preparations.
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Figure 5.12 Time courses for insulin-, PDGF- and PMA-stimulated activation of
MAPK, after the down-regulation of PKC

After incubation of quiescent 3T3-L1 fibroblasts with a) 1 pM 4a-PDD or b) 1 pM PMA 
for 16 hours (Section 2.11}, and then with A) 1 pM insulin, B) 25 ng/ml PDGF or C)
100 nM PMA for the times shown, lysates were prepared (Section 2.13.2}. 
Approximately 30 pg of protein was loaded onto 10% (w/v) polyacrylamide large gels, 
the proteins were separated by SDS-PAGE (Section 2.15}, and then transferred onto 
nitrocellulose membranes. The membranes were probed with a mouse anti-MAPK 
antibody, then with a HRP-conjugated sheep anti-mouse IgG antibody. The antibody 
binding sites were visualised using an ECL detection system (Section 2.16.2}. These 
are representative Western blots from groups of two lysate preparations.
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Figure 5.13 The effect of insulin, PDGF and PMA on the tyrosine phosphorylation of 
p125FAK

After incubation of quiescent 3T3-L1 fibroblasts with 1 pM insulin, 25 ng/ml PDGF or 
100 nM PMA for the times shown, lysates were prepared and the phosphotyrosine- 
containing proteins were immunoprecipitated {Section 2.13.3). Approximately 33% of 
the sample (from a 10 cm plate) was loaded onto 10% (w/v) polyacrylamide mini-gels, 
the proteins were separated by SDS-PAGE {Section 2.15}, and then transferred onto 
nitrocellulose membranes. The membranes were probed with a mouse anti-pl25FA^  
antibody, then with a HRP-conjugated sheep anti-mouse IgG antibody. The antibody 
binding sites were visualised using an ECL detection system {Section 2.16.2}. This is a 
representative Western blot from a group of two lysate preparations.

Lane A: basal; lane B: 2 minutes insulin; lane C: 10 minutes insulin; lane D: 2 minutes 
PDGF; lane E: 10 minutes PDGF; lane F: 2 minutes PMA; lane G: 10 minutes PMA.
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5.3 Discussion

In order to examine whether the early phase of growth factor-stimulated glucose 

transport is mediated by a signal transduction pathway involving MAPK, several 

approaches were taken. Firstly, the effects of insulin and PDGF on tyrosine 

phosphorylation and the requirement for PKC activity were established. Secondly, the 

effects of insulin and PDGF on MAPK activity and the requirement for PKC activity 

were established.

5.3.1 Phosphotyrosine-containing proteins

Western blotting of 3T3-L1 fibroblast lysate and membrane proteins with antibodies 

raised against phosphotyrosine, showed tha t the tyrosine phosphorylation of several 

proteins changed in response to all the ligands, whilst the tyrosine phosphorylation of 

other proteins changed in response to specific ligands only.

All ligands

Insulin, IGF-I, PDGF and PMA all stimulated an increase in the tyrosine 

phosphorylation of proteins with approximate molecular masses of 42 and 44 kDa in 

3T3-L1 fibroblasts. The tyrosine phosphorylation was transient, increasing within 

2 minutes of exposure to each ligand and reaching a maximum by 5 minutes {Figures 

5.3, 5.4, 5.5 and 5.7}. In addition, the tyrosine phosphorylation of proteins with 

approximate molecular masses of 42 and 44 kDa were increased in both membrane 

{Figure 5.6} and cytosolic preparations (results not shown). The molecular masses of 

these proteins suggest th a t they could be the mammalian MAPKs, p42maPk and 

P4 4 mapk {Section 5.1.1}.

Insulin, IGF-I, PDGF and PMA all also stimulated an increase in the tyrosine 

phosphorylation of a protein with an approximate molecular mass of 120 kDa in 3T3-L1 

fibroblasts. The tyrosine phosphorylation of this protein increased within 1 minute of 

exposure to each ligand, was still elevated by 30 minutes, then decreased nearly to basal 

levels by 60 minutes {Figures 5.3, 5.4, 5.5 and 5.7}. In addition, this phosphotyrosine 

protein was not seen in membrane samples {Figure 5.6}. There are several proteins,
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tha t have an approximate molecular mass of 120 kDa, tha t have a potential role in 

signal transduction. These include RasGAP and pl25^AK

RasGAP binds to a specific phosphotyrosine sequence in the PDGF B-receptor 

[Kashishian et al., 1992], and it undergoes tyrosine phosphorylation in response to 

PDGF [Kazlauskas et al., 1990]. However, it does not appear to bind to the insulin 

receptor or to IRS-1 [Sun et al., 1993a], therefore although RasGAP may be undergo 

tyrosine phosphorylation response to PDGF, it is unlikely to do so in response to insulin 

or IGF-I.

Activation of p l 2 5 ^AK occurs in response to integrin-mediated cell adhesion [Zachary 

and Rozengurt, 1992] and to the neuropeptide growth factors, bombesin, endothelin and 

vasopressin, which bind to G protein-coupled receptors [Zachary and Rozengurt, 1992; 

Schaller and Parsons, 1993]. However, the mechanism by which p l 2 5 ^ K  js activated 

by extracellular stimuli is unclear, since, p l 2 5 ^ ^  is activated by tyrosine 

phosphorylation, even though, the neuropeptide receptors and integrins have no 

intrinsic tyrosine kinase activity. There have been no previous reports of p l 2 5 ^AK 

activation in response to ligands that bind to tyrosine protein kinase receptors, however, 

in 3T3-1 fibroblasts both insulin and PDGF stimulated the tyrosine phosphorylation of 

p l 2 5 FAK within 2 minutes of exposure to ligand [Figure 5.13].

In Swiss 3T3 fibroblasts, PKC is not necessary for bombesin-stimulated p l25^ j!̂  

tyrosine phosphorylation, but it is necessary for PMA stimulation [Sinnett-Smith et al.,

1993]. This is surprising because the bombesin receptor is a G protein coupled receptor 

that activates Gq, then PLC-J3. However, several growth factors, for example, LPA and 

thrombin, which bind to G protein-coupled receptors, activate both Gj and Gq [Magnaldo 

et al., 1988; van Corven et al., 1989], therefore it is possible th a t bombesin stimulation 

of p l 2 5 ^AK tyrosine phosphorylation is mediated by a Gq independent pathway.

As there are several proteins with a similar molecular mass to p l 2 5 ^AK th a t may 

undergo tyrosine phosphorylation in response to growth factors, it is not possible to 

draw definitive conclusions concerning the requirement of PKC for p l 2 5 ^AK tyrosine 

phosphorylation from the Western blots presented in this thesis.
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Insulin and IGF-I

When 3T3-L1 fibroblasts were incubated with insulin or IGF-I, there was an increase in 

the tyrosine phosphorylation of a protein with an approximate molecular mass of 

166 kDa. The tyrosine phosphorylation increased within 1 minute of exposure to each 

ligand, was still elevated by 20 minutes, then decreased {Figures 5.3 and 5.4}. This 

protein could be IRS-1, which is a substrate for the tyrosine protein kinase of both the 

insulin and IGF-I receptors, and has an approximate molecular mass of 160 kDa in 

3T3-L1 adipocytes [Yu et al., 1987] and of 180 kDa in hepatocytes [White et al., 1985]. 

The tyrosine phosphorylation of a membrane protein with an approximate molecular 

mass of 90 kDa also increased [Figure 5.6}. This protein could be the IGF-I (or insulin) 

receptor B-subunit, which has an approximate molecular mass of 95 kDa, and undergoes 

autophosphorylation in response to ligand binding [Herrera and Rosen, 1986].

PDGF

When 3T3-L1 fibroblasts were incubated with PDGF there were increases in the 

tyrosine phosphorylation of proteins with approximate molecular masses of 155, 170 and 

190 kDa. The tyrosine phosphorylation increased within 1 minute of exposure to PDGF, 

was still elevated by 30 minutes, then decreased nearly to basal levels by 60 minutes 

[Figure 5.5}. The tyrosine phosphorylation of membrane proteins with similar 

approximate molecular masses also increased [Figure 5.6}. The 190 kDa protein is 

likely to be the PDGF receptor, which has an approximate molecular mass of 190 kDa, 

and undergoes autophosphorylation in response to PDGF binding [Kelly et al., 1991]. 

The 155 kDa protein could be PLC-y, which has an approximate molecular mass of 

145 kDa [Section 4.1.1}. PLC-y binds to the PDGF receptor [Meisenhelder et al., 1989; 

Wahl et al., 1989] and undergoes tyrosine phosphorylation in response to PDGF [Rhee 

and Choi, 1992].

Insulin, IGF-I and PDGF

When 3T3-L1 fibroblasts were incubated with insulin or PDGF, there was an increase in 

the tyrosine phosphorylation of a membrane protein with an approximate molecular 

mass of 20 kDa. The tyrosine phosphorylation increased within 2 minutes of exposure 

to PDGF or insulin, and decreased to basal levels by 10 minutes [Figure 5.6}. This 

protein was not observed in lysate samples. There are previous no reports of a 20 kDa 

phosphotyrosine protein.
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When 3T3-L1 fibroblasts were incubated with insulin, IGF-I, or PDGF, there was clearly 

an increase in tyrosine phosphorylation of proteins with molecular masses between 60 

and 120 kDa however, this region was blurred and so clear bands could not be observed. 

Another protein known to be a substrate for the insulin, IGF-I and PDGF receptors 

include Syp (p64) [Kazlauskas et al., 1993]. In addition, the regulatory subunit of 

Ptdlns 3'-K (p85) binds to the PDGF receptor and to IRS-1 [Backer et al., 1992b; Hu et 

al., 1992]. There have been reports that p85 undergoes tyrosine phosphorylation in 

response to insulin and PDGF [Kaplan et al., 1987], however, this is disputed [Backer et 

al., 1992b], and it now appears that p85 only undergoes tyrosine phosphorylation when 

it is overexpressed [Hu et al., 1992].

The effect of PKC

When control 3T3-L1 fibroblasts (incubated for 16 hours with 1 pM 4a-PDD) were 

incubated with PDGF, insulin or PMA, or when PKC-depleted 3T3-L1 fibroblasts 

(incubated for 16 hours with 1 pM PMA) were incubated with PDGF or insulin, the 

time-dependent changes in tyrosine phosphorylation of all the observed proteins were 

similar to those observed in the absence of phorbol ester treatm ent [Figures 5.8, 5.9 and 

5.10}. When PKC-depleted 3T3-L1 fibroblasts were incubated with PMA, the time- 

dependent changes in tyrosine phosphorylation of the 6 6  and 120 kDa were also similar 

to those observed in the absence of phorbol ester treatment, however, there were no 

changes in the tyrosine phosphorylation of the 42 and 44 kDa [Figure 5.10}.

This suggests th a t PKC is not necessary for PDGF- or insulin-stimulated tyrosine 

phosphorylation of any of the observed proteins, nor for PMA-stimulated tyrosine 

phosphorylation of the 6 6 , 90 and 120 kDa proteins. However, PKC appears to be 

necessary for PMA-stimulated tyrosine phosphorylation of the 42 and 44 kDa proteins.

These results are in agreement with the suggestions of the identities of the various 

phosphotyrosine proteins. For example, insulin-stimulated tyrosine phosphorylation of 

the insulin receptor 13-subunit and PDGF-stimulated tyrosine phosphorylation of the 

PDGF 13-receptor are known only to be dependent on the intrinsic receptor tyrosine 

protein kinase and not on other tyrosine protein kinases.
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5.3.2 MAPK

Stimulation of MAPK activity

MAPK is activated in response to many growth factors by the phosphorylation of a 

single threonine and a single tyrosine residue. The phosphorylation and activation of 

MAPK can be estimated in many ways. For example, the changes in tyrosine 

phosphorylation in response to various treatm ents can be followed by Western blotting 

of cellular proteins with an anti-phosphotyrosine antibody or with an anti-MAPK 

antibody. Phosphorylation of MAPK causes a decrease in its electrophoretic mobility 

[Posada et al., 1991]. Consequently, anti-MAPK Western blots of partially activated 

MAPK show a doublet, the band with the lower molecular mass corresponding to 

inactive MAPK (p42maPk and p4 4 maPk) and the band with the higher molecular mass 

corresponding to active MAPK (pp42maPk and pp4 4 maPk).

As previously described, PDGF, insulin, IGF-I and PMA stimulated increases in the 

tyrosine phosphorylation of two proteins with approximate molecular masses of 42 and 

44 kDa in 3T3-L1 fibroblasts. The increase in tyrosine phosphorylation was rapid, 

tyrosine phosphorylation being evident within 2  minutes of exposure to each ligand and 

reaching a maximum by 5 minutes {Figures 5.3, 5.4, 5.5 and 5.7}. The molecular masses 

of these proteins suggest that they could be the mammalian MAPKs, p42maPk and 

p4 4 mapk jf  these phosphoproteins are the mammalian MAPKs and if the threonine and 

tyrosine phosphorylation of these proteins occurs in parallel, then the observed increase 

in the tyrosine phosphorylation of these proteins would correlate with an increase in 

MAPK activity. This suggests tha t PDGF, insulin, IGF -I and PMA stimulate a rapid 

increase in p42maPk and p44maPk activity, which reaches a maximum within 5 minutes 

of exposure to ligand.

When 3T3 -LI fibroblasts were incubated with PDGF, insulin or PMA, there were also 

decreases in the electrophoretic mobility of p42maPk and of p4 4 mapk. However, the 

decrease in the mobility of p44maP^ was typically less pronounced than the decrease in 

the mobility of p42maPk, and was best observed in response to PDGF {Figure 5.11b}.

The decrease in the mobility of each MAPK isozyme was rapid, being evident within 

2  minutes of exposure to each ligand and reaching a  maximum by 5 minutes 

{Figure 5.11}. This also suggests that PDGF, insulin and PMA stimulate a rapid
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increase in p42maPk and of p44maPk activity, which reaches a maximum within 

5 minutes of exposure to ligand.

Since the time-dependent changes in tyrosine phosphorylation of the 4 2  kDa and 4 4  kDa 

proteins and in mobility during SDS-PAGE of p 4 2 m a P k  and of p 4 4 m a p k  are similar, it  is 

most probable that the 4 2  and 4 4  kDa phosphotyrosine-containing proteins are the 

p 4 2 m a P k  and of p 4 4 m a P k  respectively.

Rapid increases in the activity of the mammalian MAPK isozymes have been observed 

in other cells in response to many growth factors [Kahan et al., 1992; Tamemoto et al., 

1992; Nguyen et al., 1993]. In some cases the increase in MAPK activity is transient, 

returning to basal levels by 30 minutes, while in others the increase is sustained over 

several hours. For example, when PC 12 cells are treated with EGF, a growth factor, the 

increase in MAPK activity is transient, however when they are treated with nerve 

growth factor, a differentiation factor, it is sustained [Nguyen et al., 1993]. In contrast, 

when CCL39 fibroblasts are treated with thrombin, a growth factor, the increase in 

MAPK activity is sustained [Kahan et al., 1992]  ̂ Therefore the role of MAPK in cell 

proliferation is unclear.

However, the interest in this project, is to examine whether MAPK could mediate the 

early phase of growth factor-stimulated glucose transport. In each experiment, the 

3T3 -LI fibroblasts were incubated with ligand at a concentration sufficient to stimulate 

a maximum increase in the rate of 2-deoxyglucose uptake. Therefore, a concentration of 

each ligand sufficient to stimulate a maximal increase in the rate of 2 -deoxyglucose 

uptake by 60 minutes, was also sufficient to stimulate a maximal increase in MAPK 

activity by 5 minutes. Since the apparent increase in MAPK activity precedes the 

increase in the rate of 2 -deoxyglucose uptake, the early phase of growth factor- 

stimulated 2 -deoxyglucose uptake could be mediated by a signal transduction pathway 

involving MAPK

The effect of PKC

When control 3T3-L1 fibroblasts (incubated for 16 hours with 1 pM 4a-PDD) were 

incubated with PDGF, insulin or PMA, or when PKC-depleted 3T3-L1 fibroblasts were 

incubated with PDGF or insulin, the time-dependent changes in the tyrosine
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phosphorylation of the 42 kDa and 44 kDa proteins {Figures 5.8, 5.9 and 5.10}, and in 

the electrophoretic mobility of p42maPk and of p4 4 maPk {Figure 5.12} were similar to 

those observed in the absence of phorbol ester treatment. However, when PKC-depleted 

3T3-L1 fibroblasts were incubated with PMA, there were no changes in the tyrosine 

phosphorylation of the 42 kDa and 44 kDa proteins {Figure 5.10} or in the 

electrophoretic mobility of p42maPk and of p4 4 mapk {Figure 5.12c}.

Therefore PKC is not necessary for either insulin- or PDGF-stimulated tyrosine 

phosphorylation of the 42 and 44 kDa proteins, or for insulin- or PDGF-stimulated 

decreases in the electrophoretic mobility of p42maPk and of p4 4 maPk. However, PKC is 

necessary for PMA-stimulated tyrosine phosphorylation of the 42 and 44 kDa proteins 

and decreases in the electrophoretic mobility of p42 maPk and 0f p4 4 mapk

Since the PKC dependence of tyrosine phosphorylation of the 42 kDa and 44 kDa 

proteins and of the decrease in the mobility of p42maPk and of p4 4 mapk are similar, ti t is 

likely tha t the 42 and 44 kDa phosphoproteins are the mammalian MAPK isozymes, 

p42maPk and p4 4 mapk Therefore, PKC is not necessary for PDGF- or insulin- 

stimulated MAPK activation, but is necessary for PMA-stimulated MAPK activation. 

Similar results have been obtained using other cells, for example, insulin-stimulated 

MAPK activity in BC3H-1 myocytes is unaffected by down-regulation of PKC [Sturgill 

and Wu, 1991].

Since the increases in MAPK activity and the increases in the rate of 2-deoxyglucose 

uptake have the same dependency on PKC {Section 4.2.4}, it is possible th a t the early 

phase of 2 -deoxyglucose uptake is mediated by a signal transduction pathway involving 

MAPK in 3T3-L1 fibroblasts.

5.3.3 Summary

Many proteins undergo tyrosine phosphorylation in response to PDGF, insulin and 

IGF-I. Many of these proteins have approximate molecular masses tha t suggest th a t 

they could be components of the signal transduction pathways stimulated by these 

growth factors, in particular, the tyrosine protein kinase receptors to which these 

growth factors bind, and substrates of these receptors. In addition, some proteins which
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are not known to be substrates for the receptors also undergo tyrosine phosphorylation. 

These were identified as p l2 5 ^ K , p42maPk and of p4 4 maPk.

In 3T3-L1 fibroblasts, PKC is not necessary for insulin- or PDGF-stimulated activation 

of MAPK, but tha t it is necessary for PMA-stimulated activation of MAPK. PKC is not 

necessary for the early phase of insulin- or PDGF-stimulated glucose transport, but tha t 

it is necessary for PMA-stimulated glucose transport {Chapter 4}. Therefore, given tha t 

the activation of MAPK and the increase in the rate of glucose transport have the same 

dependency on PKC, and th a t the activation of MAPK precedes the increase in the rate 

of glucose transport, it is possible that the early phase of growth factor-stimulated 

glucose transport is mediated by a signal transduction pathway involving MAPK. 

However, this does not prove that MAPK and increases in the rate glucose transport are 

connected.

In order to examine the role of specific proteins in an ligand-stimulated process, there 

are various techniques th a t can be used. A common technique is to use specific 

inhibitors, however, there are no specific inhibitors yet available for MAPK. A second 

technique is to express a protein in a stable or transient manner. An advantage of this 

technique is tha t the sequence of events leading to a process can be determined in vivo 

by expressing various forms of a protein, such as constitutively-active or dominant- 

negative mutants. However, plasmids containing the DNA sequence of the relevant 

proteins were not available. A third technique is to inject proteins into cells. This is 

probably the most technically demanding of the various methods given the small size of 

most cells, but, can be simplified by using larger cells such as the oocytes from the South 

African toad, Xenopus laevis. The facilities for the maintenance of X. laevis and for the 

injection of their oocytes were available. Therefore, the role of various components of 

the MAPK signal transduction pathway in mediating glucose transport was examined 

by injection of purified or recombinant proteins into X. laevis oocytes.
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The activation of MAPK in Xenopus laevis oocytes



6.1 Introduction

The growth factors, insulin and PDGF, and the tumour promoter, PMA, all stimulate 

the rate of glucose transport in a similar manner in 3T3-L1 fibroblasts {Section 3.3}. 

These effects are not additive, therefore, the effects of these ligands on the rate of 

glucose transport may be mediated by a similar signal transduction pathway. Signal 

transduction pathways involving DAG and PKC do not appear to mediate the early 

phase of growth-factor stimulated glucose transport in 3T3-L1 fibroblasts {Section 4.3}. 

However, there is circumstantial evidence tha t a signal transduction pathway involving 

MAPK may mediate the early phase of growth factor-stimulated glucose transport 

{Section 5.3}.

The increase in MAPK activity precedes the increase in the rate of glucose transport in 

response to insulin or PDGF. In addition PKC is not necessary for insulin or PDGF- 

stimulated MAPK activation or glucose transport {Section 5.3}. However, this does not 

prove that a signal transduction pathway involving MAPK mediates growth factor- 

stimulated glucose transport. Therefore, the effects of MAPK on glucose transport were 

examined by injecting components of a signal transduction pathway involving MAPK 

into X. laevis oocytes.

6.1.1 Oocytes 

Meiosis

Meiosis is a complex series of events which consists of a single nuclear division and two 

cytoplasmic divisions, producing four daughter cells, each with half the chromosome 

number of the parent cell. The daughter cells are either female gametes (eggs), or male 

gametes (sperm). Like mitosis, meiosis can be divided into phases, which separate into 

two division cycles, each of which consists of an interphase and a meiotic division.

Egg development takes several years. The first stages of meiosis occur in embryonic 

cells, producing the oocyte, which arrests between G2 and the M phase of its first 

meiotic cycle; a t this point, DNA replication has occurred, but nuclear division has not 

[Mailer, 1990]. During the G2 arrest, all the materials required for the construction of
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the early embryo (other than DNA) are synthesised, hence the mature oocyte is a large 

cell. The G2 arrest is broken by progesterone, which is released at the time of ovulation. 

The oocyte then completes the first meiotic cycle and proceeds through the second 

meiotic cycle as far as the metaphase of meiosis II. The second arrest is broken by 

fertilisation. Meiosis is then quickly completed and followed by a rapid sequence of 

mitotic cell divisions in which the single giant cell cleaves to generate an embryo 

consisting of thousands of smaller cells. In X. laevis, the first division takes about 

90 minutes, while the next 11 cleavage division occur more or less synchronously a t 

30 minute intervals, producing 4096 cells within about 7 hours. The prior accumulation 

of materials in the egg eliminates the time normally required for cell growth in each 

cycle, so tha t practically no growth occurs, although DNA is synthesised to create the 

necessary number of nuclei [Mailer, 1990].

Comparison with mitosis

The activation of GO-arrested somatic cells and G2-arrested oocytes leads to different 

cell cycle stage-specific responses. For example, growth factors stimulate transcription 

in GO-arrested somatic cells, while hormones stimulate transcriptional shut-down in G2- 

arrested oocytes. However, many of the earliest events occurring during re-entry into 

the somatic or meiotic cell cycles are similar. For example, there are rapid changes in 

phospholipid metabolism, a transient elevation of free intracellular calcium, a rise in the 

intracellular pH, and an alteration of the cytoskeleton in both cases [Ruderman, 1993]. 

Therefore, both somatic cells and oocytes provide valid systems to study re-entry into 

the cell cycle.

6.1.2 The activation of MAPK 

X. laevis homologues

A comparison of the mammalian MAPK amino acid sequences with sequences from 

other species shows that highly similar proteins are found in many species, including 

amphibians (X. laevis), insects (Drosophila melanogaster), budding yeast (S. cerevisiae) 

and fission yeast (S. pombe) [Nishida and Gotoh, 1993].

There are two X. laevis MAPK isozymes, with approximate molecular masses of 42 and 

44 kDa [Posada et al., 1991]. The 42 kDa MAPK isozyme is activated by
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phosphorylation on Thr-188 and Tyr-190 [Posada and Cooper, 1992]. The X. laevis 

MAPKK is a 45 kDa protein tha t activates MAPK by dual threonine and tyrosine 

phosphorylation [Matsuda et al., 1992]. X. laevis MAPKK may be activated by p39mos 

[Posada et al., 1993] and MAPKKK [Matsuda et al., 1993]. p39mos is involved in the 

release of oocytes from G2 arrest [Yew et al., 1992].

Release from G2 arrest

p3 9 m°s js necessary for progesterone-induced oocyte maturation [Sagata et al., 1988]. It 

is absent from immature oocytes, its expression being induced within 1  hour of exposure 

to progesterone [Sagata et al., 1989]. It remains active until 30 minutes after 

fertilisation, when it is degraded by proteolysis [Watanabe et al., 1991].

p3 9  mos activates MAPKK leading to the activation of MAPK [Posada et al., 1993]. 

MAPK exists in the immature oocyte and is activated during oocyte maturation about 2 

hours after progesterone treatm ent and remains active until approximately 30 minutes 

after fertilisation [Ferrell et al., 1991].

Insulin and IGF-I also stimulate the release of oocytes from G2 arrest [El-Etr et al.,

1979]. p21ms is necessary for insulin- and IGF-I-induced maturation [Korn et al., 1987], 

but it is not necessary for progesterone-induced maturation [Dominguez et al., 1991]. 

Addition of p21v'ros to oocytes activates MAPK and MAPKK, suggesting th a t insulin 

and IGF-I both stimulate a signal transduction pathway involving MAPK in X. laevis 

oocytes [Hattori et al., 1992]. X. laevis oocytes express few if any insulin receptors, the 

effects of both insulin and IGF-I being mediated by the IGF -I receptor [Janicot et al., 

1991].

6.1.3 Oocytes and glucose transport

X. laevis oocytes express low levels of a G lutl homologue [Hainaut et al., 1991]. Insulin 

and IGF-I stimulate the rate of glucose transport in G2-arrested oocytes. The EC5 0  

values for insulin- and IGF-I-stimulated glucose transport are 200 to 250 nM and 3 to 

3.5 nM respectively. There is a lag, of 20 to 30 minutes following exposure to insulin or 

IGF-I, during which the rate of glucose transport remains a t the basal level. Then the 

rate of glucose transport increases rapidly reaching a maximum of three to four fold by
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60 minutes and remains constant for several hours [Janicot and Lane, 1989]. However, 

the rate of glucose transport returns to the basal level before the onset of maturation 

[Hainaut et al., 1991].

Since, the rate of glucose transport through G lutl is regulated by growth factors tha t 

bind to tyrosine protein kinase receptors in mammalian somatic cells and in X. laevis 

oocytes, it is possible tha t these effects are mediated by a similar signal transduction 

pathway. It is possible tha t a signal transduction pathway involving MAPK mediates 

the early phase of growth factor-stimulated glucose transport in somatic cells, however, 

it is difficult to examine this thoroughly in these cells. Therefore, in order to examine 

whether growth factor-stimulated glucose transport could be mediated by a signal 

transduction pathway involving MAPK, several approaches were taken. The effect of 

IGF -I on endogenous X. laevis oocyte MAPK activity, and the effect of components of a 

signal transduction pathway involving MAPK on the rate of glucose transport in X. 

laevis oocytes were examined.

6.2 Results

6.2.1 The effect of IGF-I on MAPK activity

The effect of IGF-I on the mobility of MAPK during SDS-PAGE was examined by 

Western blotting of cellular proteins. Lysates were prepared from X  laevis oocytes after 

incubation with 250 nM IGF -I {Section 2.13.4}. The proteins were separated by SDS- 

PAGE {Section 2.15}, and then transferred onto nitrocellulose membranes. The 

membranes were probed with a mouse anti-MAPK antibody, and then with a HRP- 

conjugated sheep anti-mouse IgG antibody. The antibody-binding sites were visualised 

using an ECL detection system {Section 2.16.2}.

The anti-MAPK antibody recognised two proteins with approximate molecular masses of 

42 and 44 kDa in all the oocyte lysate samples. The mobility during SDS-PAGE of both 

proteins decreased in response to 1 pM IGF-I. The decrease in mobility was observed at 

2 minutes and 10 minutes of exposure to IGF-I. The effect of incubation with IGF-I for 

other times was not examined. A representative Western blot is shown in Figure 6.1.
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Figure 6.1 The effect of IGF-I on MAPK

After incubation of X. laevis oocytes with 250 nM IGF-I for the times shown, lysates 
were prepared (Section 2.13.4}. The lysate from two oocytes was loaded onto 10% (w/v) 
polyacrylamide mini-gels, the proteins were separated by SDS-PAGE (Section 2.15}, and 
then transferred onto nitrocellulose membranes. The membranes were probed with a 
mouse anti-MAP kinase antibody, and then with a HRP-conjugated sheep anti-mouse 
IgG antibody. The antibody binding sites were visualised using an ECL detection 
system (Section 2.16.2}. This is a representative Western blot from a group of two lysate 
preparations.
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6.2.2 The effect of p42maPk on the rate of glucose transport

The effect of MAPK on the rate of glucose transport in X. laevis oocytes was examined by 

measuring the rates of 2-deoxyglucose uptake {Section 2.8.2} and zero-trans 

3-O-methylglucose transport {Section 2.8.3}, after the microinjection {Section 2.6} of a 

recombinant p42maPk . Before injection, the p42maPk was activated by 

thiophosphorylation by incubating with ATP[S] and MAPKK {Section 2.5.1}.

2-deoxyglucose uptake

After injection of 50 nl of 450 U/ml p42maPk and incubation for 15, 30 and 120 minutes 

the rate of 2-deoxyglucose uptake increased 2.2 to 2.8 fold. After injection of 50 nl of 

Buffer A and incubation for 60 minutes, there was no change in the rate of

2-deoxyglucose uptake, while after injection of 50 nl of Buffer B and incubation for 

60 minutes, there was a slight, but insignificant increase in the rate of 2 -deoxyglucose 

uptake. After a 60 minute incubation with 250 nM IGF-I, the rate of 2 -deoxyglucose 

uptake increased 2.8 to 3.5 fold. The results from a representative experiment are 

shown in Table 6.1.

After injection of 50 nl of 450 U/ml p42maPk and a incubation with 250 nM IGF-I for 60 

minutes, the rate of 2-deoxyglucose uptake increases 2.2 to 3.5 fold. After injection of 

50 nl of 450 U/ml p42maPk and a incubation with 10 fiM cyclohexiunide for 60 minutes, 

the rate of 2-deoxyglucose uptake increased 2.2 to 2.8 fold. The results from a 

representative experiment are shown in Table 6.2.

Zero-trans 3-O-methylglucose transport

After injection of 50 nl of Buffer B or 450 U/ml MAPK and incubation for 60 minutes the 

amount of 3-O-methylglucose transported was such tha t the oocyte water space was 

completely equilibrated by 8  hours (results not shown). During the first 2 hours, the 

kinetics of transport were first order; the rate constant over this period was 

approximately 2 fold higher after the injection of p42maPk , than after the injection of 

Buffer B. The results from a representative experiment are shown in Figure 6.2.
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Table 6.1 The effect of p42maPk on the rate of 2-deoxyglucose uptake

After incubation of X. laevis oocytes with 250 nM IGF -I for 60 minutes a t room 
temperature, or after injection ofX  laevis oocytes with 50 nl of w ater (basal), Buffer A, 
Buffer B or thiophosphorylated recombinant MAPK (450 U/ml) and incubation for the 
times shown a t room temperature, a 60 minute uptake of 2-dexoy-D-[2,6-^H]glucose was 
measured {Section 2.8.2}. Each result shows the mean rate of specific 2-deoxyglucose 
uptake (± SD) for eight oocytes. This is a representative experiment from a  group of 
four; basal rates were 0.2 to 0.5 pmoles/ min/ oocyte and the maximal stimulation in 
response to IGF-I was between 2.5 and 3.5 fold, and to MAPK was between 2.2 and 2.8 
fold. * p < 0.05

Buffer A: 50 mM Tris hydrochloride (pH 7.3), 2 mM sodium EDTA, 2 mM sodium EGTA, 
5% (v/v) glycerol, 0.2 mM sodium vanadate, 0.03% (w/w) Brij 35, 0.1% (v/v) 
B-mercaptoethanol, 6  mM specific peptide inhibitor of cyclic AMP-dependent protein 
kinase.

Buffer B: 10 mM magnesium acetate, 0.2 mM ATP[S] and MAPKK in Buffer A.

Rate of 2-deoxyglucose 
uptake 

(pmoles/ min/ oocyte)

Basal (60 minutes water) 0.42 ± 0.03

60 minutes IGF-I 1.26 ± 0.09*

60 minutes Buffer A 0.46 ±0.03

60 minutes Buffer B 0.66 ±0.03

15 minutes MAPK 1.23 ± 0.08*

30 minutes MAPK 1 . 2 0  ±0.06*

120 minutes MAPK 1.17 ±0.02*
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Table 6.2 The effect of p42maPk and MAPKK on the rate of 2-deoxyglucose uptake

After incubation of X. laevis oocytes with 250 nM IGF-I or 10 fig/ml cyclohextmide for 
60 minutes at room temperature, or after injection ofX  laevis oocytes with 50 nl of 
water (basal), thiophosphorylated recombinant MAPK (450 U/ml), or rabbit skeletal 
muscle MAPKK (1.4 U per oocyte) and incubation for the times shown at room 
temperature, a 60 minute uptake of 2-dexoy-D-[2,6 -^H] glucose was measured {Section 
2.8.2}. Each result shows the mean rate of specific 2-deoxyglucose uptake (± SD) for 
eight oocytes. This is a representative experiment from a group of three; basal rates 
were 0.2 to 0.5 pmoles/ min/ oocyte and the maximal stimulation in response to IGF-I 
was between 2.5 and 3.5 fold, to MAPK was between 2.2 and 2.8 fold, and to MAPKK 
was between 2.0 and 3.0 fold. * p < 0.05

Rate of 2-deoxyglucose 
uptake 

(pmoles/ min/ oocyte)

Basal (60 minutes water) 0.24 ±0.03

60 minutes IGF-I 0.60 ±0.05*

120 minutes MAPK 0.54 ±0.05*

60 minutes MAPK and 
IGF-I

0.57 ± 0.06*

60 minutes MAPK and 
cyclohexcmide

0.53 ± 0.03*

60 minutes MAPKK 0.61 ± 0.05*
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Figure 6.2 The effect of p42maPk on 3- O-methylglucose transport

After injection of X. laevis oocytes with 50 nl of Buffer A (o) or thiophosphorylated 
recombinant MAPK(m) (450 units/ml), then incubation for the 60 minutes a t room 
temperature, 3 -0-methyl-D-[l-3 H]glucose transport, for the times shown, was measured 
{Section 2.8.3}. Each result shows the mean rate of specific 3-O-methylglucose transport 
(± SD) for five oocytes. This is a representative experiment from a group of three; basal 
rates were between 0.2 and 0.5 pmoles/ min/ oocytes.

Buffer A: 50 mM Tris hydrochloride (pH 7.3), 2 mM sodium EDTA, 2 mM sodium EGTA, 
5% (v/v) glycerol, 0.2 mM sodium vanadate, 0.03% (w/w) Brij 35, 0.1% (v/v) 
B-mercaptoethanol, 6  mM specific peptide inhibitor of cyclic AMP-dependent protein 
kinase.
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6.2.3 The effect of MAPKK on the rate of glucose transport

The effect of MAPKK on the rate of glucose transport in X. laevis oocytes was examined 

by measuring the rate of 2-deoxyglucose uptake {Section 2.8.2}, after injection of a 

MAPKK purified from rabbit skeletal muscle {Sections 2.5.2 and 2.6}. After injection of 

50 nl of 44 800 U/ml MAPKK and incubation for 60 minutes the rate of 2-deoxyglucose 

uptake increased 2.5 to 3.0 fold. The results from a representative experiment are 

shown in Table 6.2.

6.2.4 The effect of MalE-Mos on the rate of glucose transport

The effect of Mos on the rate of glucose transport in X  laevis oocytes was examined by 

measuring the rate of 2-deoxyglucose uptake {Section 2.8.2}, after injection of a 

MalE-Mos fusion protein {Sections 2.5.3 and 2.6}.

After injection of 50 nl of 250 pg/ml MalE-Mos and incubation for 30, 60, 120 and 

180 minutes the rate of 2-deoxyglucose uptake increased 2.0 to 2.8 fold. After injection 

of 50 nl of Buffer C and incubation for 60 minutes, there was no change in the rate of 

2-deoxyglucose uptake. After a 60 minute incubation with 250 nM IGF-I, the rate of 

2-deoxyglucose uptake increased 2.8 to 3.5 fold. The results from a representative 

experiment are shown in Table 6.3.

6.3 Discussion

In order to examine whether growth factor-stimulated glucose transport could be 

mediated by a signal transduction pathway involving MAPK, the effect of IGF-I on 

endogenous X. laevis oocyte MAPK activity, and the effect of components of a signal 

transduction pathway involving MAPK on the rate of glucose transport in X. laevis 

oocytes were examined.
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Table 6.3 The effect of MalE-Mos on the rate of 2-deoxyglucose uptake

After incubation of X  laevis oocytes with 250 nM IGF -I for 60 minutes a t room 
temperature, or injection of X. laevis with 50 nl of water, Buffer C or MalE-Mos (250 
(Xg/ml) and incubation for the times shown a t room temperature, a 60 minute uptake of 
2-dexoy-D-[2,6- ̂ HJglucose was measured {Section 2.8.2}. Each result shows the mean 
rate of specific 2-deoxyglucose uptake (± SD) for eight oocytes. This is a representative 
experiment from a group of three; basal rates were 0.2 to 0.5 pmoles/ min/ oocyte and 
the maximal stimulation in response to IGF-I was between 2.8 and 3.5 fold, and to 
MalE-Mos was between 2.0 to 2.8 fold. * p < 0.05

Buffer C: 50 mM NaCl, 20 mM Tris, pH 7.5

Rate of 2-deoxyglucose 
uptake 

(pmoles/ min/ oocyte)

Basal (60 minutes water) 0.42 ± 0.07

60 minutes IGF-I 1.31 ± 0.09*

60 minutes Buffer C 0.46 ±0.04

30 minutes MalE -Mos 0.70 ±0.02*

60 minutes MalE -Mos 0.81 ± 0 .1 2 *

120 minutes MalE-Mos 1.05 ± 0.09*

180 minutes MalE-Mos 1.15 ±0.09*
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6.3.1 The effect of IGF-I on MAPK activity

The phosphorylation and activation of MAPK were examined by Western blotting of 

cellular proteins with an anti-MAPK antibody. As previously described, anti-MAP 

kinase Western blots of partially activated MAPK show a doublet, the band with the 

lower molecular mass corresponding to inactive MAPK and the band with the higher 

molecular mass corresponding to active MAPK {Section 5.3.2}.

When X  laevis oocytes were incubated with IGF-I there was a decrease in the mobility 

during SDS-PAGE ofX. laevis p42maPk and p4 4 mapk The decrease in mobility was 

observed from 2 to 10 minutes after exposure to IGF -I {Figure 6.1}. This suggests that 

IGF -I stimulates a rapid increase in MAPK activity in X. laevis oocytes. The effects of 

longer incubations with IGF -I were not examined, therefore these results do not show 

the length of time for which p 4 2 m a P k  and p 4 4 m a P k  were active. MAPK is also activated 

in by progesterone in G2-arrested oocytes. However, progesterone-stimulated MAPK 

activation does not occur until 2 hours after progesterone treatm ent [Ferrell et al.,

1991]. This difference probably occurs because progesterone-stimulated M ^PK 

activation is dependent upon p39mos [Posada et al., 1993], which is not present in 

immature oocytes and therefore must be synthesised, before MAPK activation can occur, 

while the effects of IGF-I are dependant on p21ms [Korn et al., 1987], which is expressed 

by the oocyte.

6.3.2 The effect of MAPK on the rate of glucose transport

The ability of MAPK to stimulate glucose transport in X. laevis oocytes was; examined by 

measuring the rate of 2-deoxyglucose uptake after injection of a recombinant MAPK 

The recombinant MAPK was activated by phosphorylation by incubating w ith MAPKK 

prior to microinjection. In order for the MAPK to have the maximum possible activity, 

thiophosphate was included in the incubation buffer. Thiophosphate groupis are more 

resistant to in vivo dephosphorylation than are phosphate groups, therefore, 

thiophosphorylation in effect constitutively activates MAPK The thiophosphorylated, 

recombinant MAPK had a specific activity similar to th a t of MAPK isolated from 

mammalian tissues (results not shown).
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Since X. laevis oocytes express very low levels of the G lutl homologue, the rate of 

glucose transport is quite low in comparison to cultured mammalian cells. Therefore, 

when measuring the rate of glucose transport, a short uptake time, for example 

5 minutes, would not be accurate. Consequently, it is not possible to easily carry out 

accurate kinetic studies, tha t is determine the Km and Vmax. Instead, the uptakes were 

measured over 60 minutes. Therefore, the oocytes incubated for 15 minutes with MAPK 

were then incubated for 60 minutes with 2-deoxyglucose, a total of 75 minutes with 

MAPK

The rate of 2-deoxyglucose uptake increased after incubation with MAPK, the maximal 

increase, of 2.8 fold, occurring after 75 minutes, then decreasing slightly but remaining 

significantly above the basal rate for a t least 180 minutes {Table 6.1}. The effects on 

2-deoxyglucose uptake of two buffers was also examined. The rate of 2-deoxyglucose 

uptake did not change after microinjection of Buffer A, but increased slightly, although 

not significantly after microinjection of Buffer B. Buffer B had the same composition as 

Buffer A, with the additions of magnesium acetate, ATP[S] and MAPKK Thus, only 

Buffer B was capable of activating MAPK Therefore, the small increase in the rate of 

2-deoxyglucose uptake in oocytes after microinjection of Buffer B was probably due to 

the activation of endogenous oocyte MAPK by the MAPKK in Buffer B {Table 6.1}.

Since 2-deoxyglucose undergoes phosphorylation by hexokinase, 2-deoxyglucose uptake 

consists of both transport and phosphorylation {Section 2.8}. I t has been assumed that 

transport is the rate-limiting step in these experiments. In contrast, 3-O-methylglucose 

is not metabolised, and therefore undergoes only transport. Therefore, in order confirm 

that the effect of p42maPk on 2 -deoxyglucose uptake was on the transport step and not 

the phosphorylation step, the effect of p42maPk on 3-O-methylglucose transport was also 

determined. The rate constant for zero-trans 3-O-methylglucose transport was 

approximately 2 fold higher after injection of p42maPk, than after injection of Buffer A. 

Therefore, the effect of MAPK was on the transport process and not on phosphorylation 

{Figure 6.2}. In addition, the effect of p42maPk on the rate of 2-deoxyglucose uptake was 

not an artefact caused by excess levels of p42maPk , since the amount injected into the 

oocytes was only 25 to 50 percent of the endogenous MAPK activity [Gotoh et al., 1991].
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In addition, the effects of IGF-I and MAPK on the rate of glucose transport were not 

additive {Table 6.2}, therefore, IGF-I and MAPK may increase the rate of glucose 

transport by a common mechanism. Furthermore, the microinjection of CL100, a 

protein tyrosine/ threonine phosphatase that is specific for MAPK [Alessi et al., 1993], 

into X. laevis oocytes inhibited p42maPk- and IGF-I-stimulated glucose tran sp o rt, while 

an inactive m utant had no effect [Arbuckle et al., 1994].

Therefore, given th a t IGF-I stimulates both glucose transport and MAPK activity, that 

the injection of a recombinant p42maPk also stimulates 2 -deoxyglucose uptake, and that 

inhibition of MAPK activity abolishes IGF -I-stimulated glucose transport, it is likely 

that IGF-I-stimulated glucose transport may be mediated by a signal transduction 

pathway involving MAPK in X. laevis oocytes.

6.3.3 The effect of MAPKK on the rate of glucose transport

The ability of MAPKK to stimulate glucose transport in X. laevis oocytes was examined 

by measuring the rate of 2-deoxyglucostuptake after microinjection of a MAPKK purified 

from rabbit skeletal muscle after intravenous injection of insulin [Nakielny et al.,

1992a]. The MAPKK was purified in an active form, therefore, thiophosphorylation was 

not necessary. The purified MAPKK stimulated the rate of 2-deoxyglucose uptake by 2 

to 3 fold {Table 6.2}. Therefore, it is likely tha t the slight increase in the rate of 

2-deoxyglucose uptake observed after injection of Buffer B was due to the MAPKK in 

this buffer. The residual level of MAPKK in Buffer B was 20 fold lower than the amount 

used for the microinjection of oocytes, thus explaining the small effect of Buffer B.

Therefore, the enzyme th a t activates MAPK also stimulates glucose transport.

6.3.4 The effect of p39/nos on the rate of glucose transport

The ability of p39mos to stimulate glucose transport in X. laevis oocytes was also 

examined by measuring the rate of 2 -deoxyglucose uptake after injection of a fusion 

protein consisting of the maltose-binding protein from E. coli and p39c_mos (MalE-Mos). 

This fusion protein has p39mos activity, being able to stimulate MAPK activity in X.
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laevis oocyte extracts [Nebreda and Hunt, 1993], and able to activate MAPKK in vitro 

[Posada et al., 1993]. MalE-Mos stimulated the rate of 2 -deoxyglucose uptake 2.0 to 2.8 

fold after incubation with for 90 to 240 minutes {Table 6.3}. MalE-Mos also stimulates 

MAPK activity within 10 minutes in oocyte extracts in a dose-dependant manner 

[Nebreda and Hunt, 1993], suggesting that MalE-Mos-stimualted 2-deoxyglucose uptake 

is mediated by MAPK In addition, the effect of MalE-Mos on 3 -O-methylglucose 

transport was examined. Again, MalE-Mos stimulated the rate of 3 -O-methylglucose 

transport (results not shown), confirming that the effect of MalE-Mos was on transport 

and not a  subsequent step.

Therefore, an enzyme tha t activates MAPKK also stimulates glucose transport.

6.3.5 The effect of other serine/ threonine protein kinases on the rate of glucose 

transport

The effect of the some of the in vitro MAPK substrates {Section 5.1.1} on the rate of 

2-deoxyglucose uptake was examined. MAPKAP kinase-1 and MAPKAP kinase-2, 

purified from rabbit skeletal muscle1, were injected into X. laevis oocytes. The rate of 

2 -deoxyglucose uptake did not change, in response to either of these kinases, after 

incubations of one to four hours. Unfortunately, it is not possible to determine whether 

the kinases remained active after microinjection into the oocyte. However, since both 

MAPKAP kinase-1 and MAPKAP kinase-2 are skeletal muscle proteins, it is not 

improbable tha t their physiological roles are restricted to myocytes and th a t they are 

not normally expressed in other cells.

1 MAPKAP kinase-1 and MAPKAP kinase-2 were gifts from Professor P Cohen, Medical 

Research Council Protein Phosphorylation Unit, Department of Biochemistry, 

University of Dundee, Dundee, Tayside, UK.
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6.3.6 Summary

IGF-I stimulates both glucose transport and MAPK activity inX. laevis oocytes. The 

activation of MAPK precedes the increase in the rate of glucose transport.

In addition, the microinjection of recombinant p42maP^, purified MAPKK or p3977105 

fusion protein, results in an increase in the rate of glucose transport. Since p39mos 

activates MAPKK, which in turn activates MAPK, it seems th a t components of a signal 

transduction pathway involving MAPK are able to stimulate glucose transport.

Furthermore, IGF-I stimulated glucose transport is inhibited by the microinjection of 

CL100 (a protein tyrosine/ threonine phosphatase tha t is specific for MAPK).

Therefore, given tha t IGF-I stimulates both glucose transport and MAPK activity, that 

components of a signal transduction pathway involving MAPK also stimulate the rate of 

glucose transport, and tha t inhibition of MAPK activity abolishes IGF-I-stimulated 

glucose transport, it is likely th a t IGF-I-stimulated glucose transport is mediated by a 

signal transduction pathway involving MAPK in X. laevis oocytes.
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Discussion



3T3 -LI fibroblasts express only Glutl. The growth factors, insulin and PDGF, and the 

tumour promoter, PMA, all stimulate the rate of glucose transport in a similar manner. 

These effects are not additive, therefore, the effects of these ligands on the rate of 

glucose transport may be mediated by a similar signal transduction pathway.

Insulin has no effect on either DAG accumulation or PKC activity in 3T3 -LI fibroblasts, 

so neither DAG nor PKC is necessary for the early phase of insulin-stimulated glucose 

transport. PDGF stimulates both DAG accumulation and PKC activity; however, 

PDGF-stimulated glucose transport is unaffected by the down-regulation or the 

inhibition of PKC, so PKC is not necessary for the early phase of PDGF-stimulated 

glucose transport. PMA also stimulates both DAG accumulation and PKC activity, and 

PMA-stimulated glucose transport is abolished by the down-regulation and the 

inhibition of PKC, so PKC is necessary for the early phase of PMA-stimulated glucose 

transport. Therefore, a signal transduction pathway involving PKC is not necessary for 

the early phase of insulin- or PDGF-stimulated glucose transport in 3T3-L1 fibroblasts, 

but it is necessary for the early phase of PMA-stimulated glucose transport.

Insulin, PDGF and PMA stimulate MAPK activity in 3T3-L1 fibroblasts. Insulin has no 

effect on either DAG accumulation or PKC activity, so neither DAG nor PKC is 

necessary for insulin-stimulated activation of MAPK PDGF stimulates both DAG 

accumulation and PKC activity: however, PDGF-stimulated activation of MAPK is 

unaffected by the down-regulation or the inhibition of PKC, so PKC is not necessary for 

PDGF-stimulated activation of MAPK PMA also stimulates both DAG accumulation 

and PKC activity, and PMA-stimulated activation of MAPK is abolished by the down- 

regulation and the inhibition of PKC, so PKC is necessary for PMA-stimulated 

activation of MAPK Therefore, a signal transduction pathway involving PKC is not 

necessary for insulin- or PDGF-stimulated activation of MAPK in 3T3-L1 fibroblasts, 

but it is necessary for PMA-stimulated activation of MAPK

In addition, insulin-, PDGF- and PMA-stimulated activation of MAPK precedes the 

increase in the rate of glucose transport.

Therefore, given that the activation of MAPK and the increase in the rate of glucose 

transport have the same dependency on PKC, and tha t the activation of MAPK precedes
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the increase in the rate of glucose transport, it is possible th a t the early phase of growth 

factor-stimulated glucose transport is mediated by a signal transduction pathway 

involving MAPK in 3T3-L1 fibroblasts.

X. laevis oocytes also express only G lutl. IGF-I stimulates both glucose transport and 

MAPK activity. Again, the activation of MAPK precedes the increase in the rate of 

glucose transport.

In addition, the microinjection intoX. laevis oocytes of recombinant p42maPk, purified 

MAPKK or p39mos fusion protein, results in an increase in the rate of glucose transport. 

Since p39mos activates MAPKK, which in turn activates MAPK, it seems tha t 

components of a signal transduction pathway involving MAPK are able to stimulate 

glucose transport.

Furthermore, IGF-I stimulated glucose transport in X. laevis oocytes is inhibited by the 

microinjection of CL100 (a protein tyrosine/ threonine phosphatase tha t is specific for 

MAPK).

Therefore, given tha t IGF-I stimulates both glucose transport and MAPK activity, that 

components of a signal transduction pathway involving MAPK also stimulate the rate of 

glucose transport, and tha t inhibition of MAPK activity abolishes IGF -I-stimulated 

glucose transport, it is likely tha t IGF-I-stimulated glucose transport is mediated by a 

signal transduction pathway involving MAPK in X. laevis oocytes.

The insulin and IGF-I receptors are both tyrosine protein kinases with a similar 

structure, and either ligand cam bind to either receptor, so it is likely tha t insulin- and 

IGF-I-stimulated glucose transport are mediated by a similar signal transduction 

pathway.

Therefore, given tha t it is possible tha t the early phase of insulin-stimulated glucose 

transport is mediated by a signal transduction pathway involving MAPK in 3T3-L1 

fibroblasts, tha t it is likely tha t IGF-I-stimulated glucose transport is mediated by a 

signal transduction pathway involving MAPK in X. laevis oocytes, and tha t it is likely 

tha t insulin- and IGF-I-stimulated glucose transport are mediated by a similar signal
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transduction pathway, it seems tha t the early phase of insulin-stimulated glucose 

transport in 3T3-L1 fibroblasts is, in fact, mediated by a pathway involving MAPK

Furthermore, PDGF, which also binds to a tyrosine protein kinase receptor, has similar 

effects to insulin on the rate of glucose transport and the activation of MAPK in 3T3-L1 

fibroblasts. Therefore, it is also likely the early phase of PDGF-stimulated glucose 

transport is also mediated by a signal transduction pathway involving MAPK

There are few, if any, published studies concerning the role of M ^PK in the early phase 

of growth factor-stimulated glucose transport. However, several recent studies have 

examined the role of signal transduction pathways involving MAPK in insulin - 

stimulated glucose transport in 'insulin-responsive' tissues. These studies have used the 

differentiated form of 3T3-L1 fibroblasts; these cells have a phenotype characteristic of 

adipocytes {Section 3.1.2}. Importantly, they express both G lutl and Glut4, and the rate 

of glucose transport increases 15 to 20 fold in response to insulin [Calderhead et al., 

1990a], arising primarily from the translocation of Glut4 [Holman et al., 1990].

In one study [Inoue et al., 1993], when 3T3-L1 adipocytes were treated with ML-9, 

reported to be an inhibitor of myosin light chain kinase, insulin-stimulated glucose 

transport and translocation to the plasma membrane of both G lutl and Glut4 were 

inhibited. However, further analysis showed that, in fact, the activity of myosin light 

chain kinase had been unaffected by the ML-9. The study concluded th a t ML-9 inhibits 

the activation of MAPK instead, and tha t insulin stimulation of glucose transport 

through both G lutl and Glut4 is mediated by a signal transduction pathway involving 

MAPK

Other recent studies also suggest tha t a signal transduction pathway involving MAPK 

may mediate the effect of growth factors on glucose transport through G lutl. In 

contrast, however, they suggest tha t the effect of insulin on glucose transport through 

Glut4 is not mediated by the same pathway.

Firstly, EGF and PDGF stimulated the rate of glucose transport by approximately two 

fold in 3T3-L1 adipocytes, while insulin stimulated the rate by approximately 20 fold. 

EGF, PDGF and insulin all stimulated the translocation of G lutl, bu t only insulin
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stimulated the translocation of Glut4. Since the differences between the effects of EGF, 

PDGF and insulin were not due to cell-specific expression, the stimulation of glucose 

transport through G lutl and Glut4 must have been mediated by different signal 

transduction pathways. Furthermore, it was suggested th a t since EGF, PDGF and 

insulin all stimulate MAPK activity, glucose transport through G lutl, but not through 

Glut4, is mediated by a signal transduction pathway involving MAPK [Fingar and 

Bimbaum, 1994a; Gould et al., 1994].

Secondly, expression of a constitutively active Raf-1, p35m ‘̂1, in  3T3-L1 adipocytes 

resulted in an elevated G lutl level, while the Glut4 level and intracellular distribution 

remained normal [Fingar and Bimbaum, 1994b]. After microinjection with a dominant 

negative p21ras mutant, N17Ras, insulin-stimulated G lutl translocation was abolished, 

while insulin-stimulated Glut4 translocation remained unaffected [Hausdorff et al.,

1994]. Thus, given tha t p21ras and p74raf~  ̂both appear to be involved in the regulation 

of glucose transport through G lutl and not through Glut4, and tha t both activate the 

kinase cascade leading to the activation of MAPK, it is likely tha t a signal transduction 

pathway involving MAPK mediates glucose transport through G lutl, but not through 

Glut4.

This thesis concludes th a t the early phase of growth factor-stimulated glucose transport 

is mediated by a signal transduction pathway involving MAPK
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