Department of Computing Science

UNIVERSITY PH D T HESIS

GLASGOW

A Generic Feedback Mechanism for

Component-Based Systems

by

Karen Vera Renaud

Submitted for the degree of

Doctor of Philosophy

University of Glasgow

June 2000

© Karen Renaud. June 2000.

ProQuest Number: 13818553

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13818553

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

GLASGOW
JLfIJRAKT

Abstract

Computers have been integrated into all spheres and occupations and the need
for users to easily understand how to use each computer application has become
paramount. The end-user should not be expected to decipher cryptic messages or
to understand the inner functioning of the computer itself. With computer-users
spanning all walks of life, there is a need for a change in the mind-set of software

developers in making their product more user-friendly.

In addition, software systems of the future will increasingly be built from independent
encapsulated software components and will often be distributed over various sites.
This new paradigm brings a new realm of complexity for the end-user, especially
with respect to the increased possibility of failure, so that in addition to the non-
trivial task of interpreting the general functioning of an application, the user will be
expected to deal with the results of perplexing errors too. The nature of component-
based systems makes the provision of support for handling errors far more difficult
due to the independent and diffuse nature of the creators of the individual parts

making up these systems.

Other factors with respect to application use also need to be addressed. For example,
it is a rare user who is able to spend 100% of his or her time concentrating on
interaction with the computer, without distractions of some sort interrupting. It is
even rarer to find an application which is not prone to occasionally unintelligible error
messages or breakdowns. Few applications are designed with these realities in mind
and when problems do occur, or users are interrupted, they often find it difficult to
recover and to resume their primary task. It is also difficult for applications to tailor
the provided feedback according to the specific needs of different end-users or the

differing roles within which they function.

This dissertation will highlight the role of feedback in increasing the interpretability of
an application and in alleviating the effects of interruptions, errors and breakdowns.
Rather than expecting feedback to be provided by programmers, this dissertation will
argue that feedback can be enhanced in a distributed component-based system by
separating the feedback concern from the basic functional concern of the application
and executing the application within a generic feedback enhancing framework. The
feedback concept is examined in depth and the role of feedback in enhancing under-
standing of applications, and in alleviating the effects of disturbances in our working
day, is explored. The concept of a generic framework for enhancing feedback has
been developed and a prototype implemented. The design and implementation of

this prototype are described, as is the evaluation of the feedback thus produced.

Non nos sed Deus
Cardross Village Motto

To the men in my life —

my husband, Leon

my sons, Gareth, Ashley & Keagan
and my father, Philip Howard

Acknowledgements

| was assisted and supported by many people throughout the production of this dissertation,

and during the course of the accompanying research. | would like to single some out for special
thanks:

*

My supervisor, Richard Cooper, for his support, motivation, astute comments and insights,

unfailing patience, and for his unswerving faith in me.

My husband, Leon, for encouraging me in this endeavour, and for his love and understand-
ing. Without his support | would not have embarked on this journey of discovery.

My sons, Gareth, Ashley and Keagan, for putting up with the side-effects of my efforts to
get a PhD so graciously and for being such outstanding young men.

Huw Evans, for his friendship, wicked sense of humour, and painstaking attempts at refining

my prose.

Malcolm Atkinson, for his support and for constructive comments on drafts of this disser-

tation.

Ela Hunt, Phil Gray, Ray Welland, Stuart Blair and Susan Spence, for spending time
discussing my work with me and for their extremely helpful comments.

Rosemary Mcleish, for her friendship and for proof-reading this dissertation.

My family in South Africa: Mom & Dad, Basil & Leonie, Wendy, Felicity, Ken & Joan, Lynn
and Bernice. They supported us from afar, and we could not have borne the separation

without their love and assistance (and regular emails).

Vera and lan McCulloch, our adopted Scottish “family”. They gathered us under their
wing and made us feel at home. Dankie, en Weereens Dankie.

Neill Bogie, for being brave enough to test my prototype.

The Association of Commonwealth Universities, and the Foundation for Research and
Development in South Africa, who provided the funding for this research.

The University of South Africa, for allowing me an extended period of absence to undertake
the research necessary to do this degree, and for financial assistance too. Thanks to the

Head of Department, Paula Kotzé, for her continued support.

BEA Systems, who donated the use of their Tengah Server for the duration of this research.

If it were done when 'tis done, then 'twere well it were done quickly.
William Shakespeare. Macbeth. Act 1 Scene 7

Contents

I Prologue 1
1 Introduction 2
1.1 Thesis Statement e e e 2
1.2 The Shortfall in Application Feedback 2
1.3 Feedback in Component-Based Systems 4
1.4 Potential Solutions L L 5
1.5 Road Map o o e e e e 6
II Summary of Background Material 7
2 Software Components , 8
2.1 Why Components, and What are They? 8
2.1.1 What are Components? PR 10
2.1.2 How are components different from objects? P 13
2.2 The Component Runtime Environment 15
2.2.1 From Two-tier to Three-Tier Architectures 15
2.2.2 The Middle, or Business-Logic, Tier 18

2.2.3 From a Component-Framework Middle Tier to
Component-Oriented Middleware 19
2.2.4 Moving to N Tiers — The Impact of the World Wide Web 22
225 SUmMmary oo .o e e e e e e e e e 24
2.3 The Evolution of Components 24
2.3.1 Components Embedded within a Process 25
2.3.2 Components in Different Processes 27
2.3.3 Components on Different Machines 27
2.4 Prominent Component Models, . 29
2.4.1 The OMG’s Component Model 31
2.4.1.1 Architecture oL 31
2.4.1.2 Middle-Tier Architecture 33
2413 Example 33

vi

2.4.2 Sun’s Component Model 34
2.4.2.1 Architecture 34

2.4.2.2 Middle-Tier Architecture 35

2423 Example 36

2.4.3 Microsoft’s Component Model 36
2.4.3.1 Architecture oL o 37

2.4.3.2 Middle-Tier Architecture 39

2433 Example e 39

244 SUMMATY ot e e e e e e e 40

2.5 Component-Based Development 42
2.5.1 A Different Approach 43
2.5.2 Component SOUICES « « v v v v v v e e e e e e 44
2.5.3 Benefits of Using Components 45
254 Summary e e e e e e e e 46

26 Review. e C e e e .. 47
2.6.1 The good news about components 47
2.6.2 Reasons for cautious acceptance of components 48

2.7 Conclusion 49
Quirks 51
3.1 Imtroduction. e e e e ... 52
3.2 Analysis of Quirks e e e PR . 53
3.3 Why Quirks are Important oL 54
3.4 System Crashes and Breakdowns 86
3.5 HumanError e 63
3.5.1 TheNatureof Error 63
3.5.2 Performance Levels and Likelihood of Errors 65
3.5.3 Detecting Errors e 66
3.5.4 Enabling User Understanding of Error 68
3.5.5 Recovering from Error L o 69
3.5.6 Summary e 73

3.6 Imterruptions 73
3.6.1 Nature of Interruptions, 74
3.6.2 The Composition of an Interrupt 7
3.6.3 Dealing with Interruptions. 78
3.6.4 Summary e 81

3.7 Summary L e 81

4 Feedback
4.1 Introduction. e e
4.2 Purposeof Feedback
4.3 Why give Feedback? o
4.4 When must Feedback be Given?
4.5 What is Good Feedback? e e e e e e
4.5.1 Examples of Inadequate or Bad Feedback
4.5.2 List of Desirable Feedback Features
4.5.3 Provisos e e e e e e e e e
4.5.4 Differing User Roles
4.6 Feedback Format e
4.6.1 Textual versus Graphical Feedback
4.6.2 What Does Visualisation Do?
4.6.3 Restrictions e e e e
4.7 Feedback for Quirks
4.7.1 Breakdowns e e e e e e e e e
4.7.2 Human Error e e e e e s
4.7.3 Interruptions e e e
4.74 Conclusion e e e
4.8 SUMIMATY« o v o e e e e e e e e e e e e e

III Addressing Feedback Needs in Component-Based Systems

5 Problem Description and Proposed Solution

5.1

5.2
5.3

The Problem e
5.1.1 'Traditional Ways of Providing Feedback

5.1.1.1 Guidelines for Programmers

5.1.1.2 Comprehensive Online Manuals

5.1.1.3 A Feedback Application Programmer Interface

51.1.4 Summary it e e e
5.1.2 Why Feedback Provision is (Even More) Difficult

in Component-Based Systems
5.1.3 Why Error Recovery is (Even More) Difficult

in Component-Based Systems
51.4 Conclusion e
The Proposed Solution o
First Mechanism — Separation of Concerns
5.3.1 Separate Specification of Concerns
5.3.2 Orthogonality of Concerns

5.3.3 Summary e

vil

82
82
85
86
88
89
91
93
94
96
96
96
98
98
99
100
100
100
101
102

103

5.4

5.5

5.6

6.1

Second Mechanism — Application Tracking
5.4.1 First Perspective — User-Interface Tracking
5.4.2 Second Perspective — System-Level Monitoring
5.4.3 First Approach — Invasive Tracking
5.4.4 Second Approach — Non-invasive Tracking
5.4.5 Summary e
Third Mechanism — The Visualisation
5.5.1 Visualisation of User Interaction with an Application.
5.5.2 Visualising Execution of Software
5.5.3 Visualising Dialogue L .
5.5.4 Visualising serial periodicdata,
5.5.5 Interacting with the Visualisation.
5.5.6 Conclusion e e
Consolidation e
5.6.1 Benefits of the Proposed Approach,
5.6.2 Limitations of the Proposed Approach [

5.6.3 Summary e e e e e e
IV HERCULE — Design and Implementation
6 HERCULE's Design
Design Philosophy e e e e e e e e e e e
6.1.1 Design Principles o oo oo oo

6.2

6.3
6.4

6.5

6.1.2 Accessing HERCULE
6.1.3 Required Application Features
6.14 And Thus... e
Facilitating HERCULE’s Observation Function
6.2.1 The “Minimal Impact Proxy” Design Pattern
6.2.2 The User-Interface Proxy
6.2.3 The Component Proxies
Facilitating HERCULE’s Explanatory Function.
HERCULE’s Architecture
6.4.1 Communication modules.,
6.42 Controller e
6.4.3 The Window Manager
6.4.4 The Server Proxy Manager
6.4.5 The Display Controller.
6.4.6 Hercule Components,
Application Activity Visualisation
6.5.1 How Should the Application Activity Visualisation be Provided? . . .

viii

116
116
117
118
119
120
120
120
121
121
121
122
122
122
123
124
124

125

126
127
127
129
130
132
132
134
136
140
142
143
143
144
145
149
152
152
153
154

6.5.2 Visual Representation
6.5.3 Layout. e e
6.5.4 Customisation e
6.6 Conclusion e e e
Implementation
7.1 Prototype Application L o
7.2 Observing User-Interface Activity
7.2.1 Java Platform-Independent User-Interface Mechanism
7.2.2 Imsertingthe Proxy.
7.2.3 The User-Interface Proxy
7.2.4 Watching User Activity
7.2.5 Maintaining and using the internal image of the GUI
7.3 Observing Server Communication
7.3.1 The Enterprise Java Beans Component Model

7.3.2

Using Proxies to Intercept Communication

7.3.2.1 Inserting the Proxtes. e

7.3.2.2 Sending the reports to HERCULE

7.3.3 Using the reports generated by the proxies

7.4 The Descriptor Tool and Proxy Generator o
7.4.1 The Descriptor Tool e S

7.4.2

The Proxy Generatoro oo ... L

7.5 The Runtime Feedback Tool i ..
7.6 Application Activity Visualisation

7.6.1
7.6.2
7.6.3

Characteristics of Visualisation
Interactivity of the Display
Extensibility of the Display

7.7 Conclusion o v e e e e e e e e e e

Epilogue

Evaluation

8.1 Current Approaches to Evaluation of Tools

8.2 Preliminary Evaluation Results

8.2.1

8.2.2

User Needs @ i i it e i e e e
8.2.1.1 Feedback
8212 Quirks
Component-Based System Development and Maintenance
8.2.2.1 Programmer Needs
8.2.2.2 Programmer Experience with HERCULE

ix

156
157
159
161

163
164
165
166
167
168
170
172
173
173
176
176
179
179
179
180
182
183
184
184
185
187
191

192

8.2.3 Performance Impact 205

8.3 Conclusion e e 206

9 Conclusion 207
9.1 Reiteration of Thesis Statement 207
9.2 Summaryof Research 207
9.3 Thesis Contribution 209
9.4 Future Research e 210
V1 Appendices and Bibliography 212
A Glossary 213

B Minimal Impact Proxy Design Pattern Code 216

part |

Prologue

What we call the beginning is often the end
And to make an end is to make a beginning
The end is where we start from.
T S Eliot. 1944

| have striven not to laugh at human actions, not to weep at
them, nor to hate them, but to understand them.

Baruch Spinoza

Tractatus Politicus (1677) ch.1, sect 4

chapter 1

Infroduction

1.1 Thesis Statement

I submit that feedback can be enhanced in a distributed component-based system by exe-
cuting the application within a generic feedback enhancing framework. I further submit this
supports the user: firstly in understanding the application, secondly in recovering from er-
rors, and thirdly in rebuilding mental context after interruptions. The framework standard-
ises feedback provision, simplifies application code, allows continuous post-implementation

refinement of explanatory messages and promotes reuse.

1.2 The Shortfall in Application Feedback

The feedback provided by applications in general use is typically patchy — often inadequate
and sometimes even misleading. Users often have great difficulty in ascertaining exactly
what the application is doing with their inputs and consequently struggle to build up an
internal model of how they should interact with the application.

The immediacy of the reactions of computers, combined with the fact that such reactions
are not random but considered (having been designed by a human programmer), lead people
to consider the computer to be a purposeful social object [Suc87]. Therefore the computer
application can be thought of as fulfilling the same role as a conversational participant

Introduction 3

[PQS96).

Participants in a human-to-human conversation do not merely take turns, but in many
ways collaborate in the conversation. The speaker expects a level of feedback which is
essential in gauging the listeners’ reaction to what is being said, their understanding of
the current subject, their opinions, emotions and much more. This could be referred to as
indicating the listeners’ “state of mind” and feedback can be considered to play a crucial
role in assisting the speaker in interpreting this state. The speaker’s interpretation of this
state will play an important role in steering the conversation in one direction or another.
During the discourse informal “rules” of conversation between two people are developed. In
the same way, application feedback assists the user in understanding the interaction “rules”
of the application.

In gaining an understanding of application interaction rules, the user often gets little as-
sistance, since applications frequently do not explain themselves appropriately. Inextricably
bound up with this is the related difficulty of perceiving the relevant aspects of the cur-
rent state of the application. The computer’s functioning and internal state are completely
imperceptible, making its true nature even more of a mystery than it should be.

What we need to facilitate better communication between the application program and
the end-user is, firstly, a way for the application to explain the interaction rules to the
end-user and, secondly, a method of making relevant application state more available and

[4

perceptible. These two ‘requirements can be termed the “interpretability” problem.

Full interpretability is difficult to'achieve, since there is a fundamental mismatch and
- perennial misunderstanding between end-users and application programmers: - r'I‘.his mis-
match is exacerbated by the fact that application programmers produce applications which
must communicate with a person about whom the programmer can make very few informed
assumptions. Economic realities make it infeasible to develop an entire application for a
specific user and consequently applications are produced for a “generic” user. There is a
tendency to generalise the application interface to satisfy all the needs of generic users, yet
this generality makes it difficult for individual users, with vastly different levels of experience
and individual requirements, to understand the application’s rationale.

The feedback channel, which is so vital to human-to-human interaction, can be utilised
to enhance the interpretability of the application by conveying relevant information about
the application’s expectations and understanding of, and response to, the user’s instructions.
Feedback is routinely used to indicate either a confirmatory response, or to give informa-
tion about the function of some user-interface component — by means of colour changes,
balloons, icons etc.

Feedback with respect to application state is less common and far more difficult to
provide correctly. It is difficult for an application programmer to know which aspects of the
current application state should be visualised to enhance interpretability, which could serve
no purpose and which would be positively confusing. Most rare of all types of feedback is
information which tells the user how the current state was achieved. This causes problems

Introduction 4

since human discourse is incremental and conversants will typically refer to something they
have previously said. Human-to-application interaction seldom fosters this type of referral,
which could potentially be very well catered for by an enriched model of feedback.
Furthermore, application programmers are often unrealistic about the the user’s working
environment and seldom cater for the effects of events which will interfere with the use
of the application. Such events can disrupt the straightforward execution of a task and
interfere with a user’s concentration. These events, which will be referred to as quirks,
could be system breakdowns, various types of interruptions to application use or human
errors. Applications often make no concession to the inevitability of quirks and seldom give
assistance in rebuilding mental context afterwards or facilitate understanding of the cause

in the case of an error.

1.3 Feedback in Component-Based Systems

Component-based three-tier systems are the latest paradigm shift in the software engineer-
ing industry. It is widely believed that future computer systems will be built from software
components. Unfortunately, they present new problems and opportunities which cannot
be ignored. Whereas interpretability is a very real problem in traditional monolithic ap-
plications, it becomes an-even bigger problem in component-based applications due to the
independent and disjointed nature of the programming activity which, produces the individ-
ual components used to build the system, and also due to the “black-box” nature of said
components. The distributed nature of these systems increases the probability of errors and
. breakdowns, once again reducing interpretability.

The developers of the different components used to build a component-based application
will seldom communicate with one another. The application will generally be constructed
from pre-developed components and the developer of the front-end application will merely
be given interfaces to these components specifying the contractual responsibilities and func-
tionality of the component.

The developers therefore cannot enhance the feedback provided by the component, since
they have no control over the implementation details and have to accept the feedback pro-
vided by the component, whatever its quality. The developer will also have great difficulty
in anticipating all the possible error situations which could arise from the use of a server
component. The encapsulation principle which drives component-based development gives
system engineers the flexibility to be able to change the implementation of a component
during the lifetime of the system. This could precipitate a whole new range of errors, hith-
erto unsuspected, which will probably be reported to the user in all their technical verbosity,
reducing the user’s understanding of the system and perhaps necessitating intervention by
specialists.

The background knowledge of the target user of a component-based application is harder
to gauge than that of the the user of a monolithic system since the distributed nature of

Introduction 5

the applications is likely to mean a wider range of users. These systems are designed to
support many different styles of front-end and to be made available on the internet, whereas

stand-alone local deployment was previously the norm.

1.4 Potential Solutions

Programming applications in component-based systems is no easy task [Jam99b]. The
current approach to providing feedback is an expectation that the programmer will program
this in addition to building code which copes with all the complexities of the distributed
system. This approach appears to be flawed, as evinced by current standards of feedback
which do not always meet the requirements. It is also not economically viable to meet
reasonable standards from within each application. This approach also leads to inconsistent
provision of feedback making it difficult for the user to find and assimilate feedback when
having to use several applications.

Current . approaches to enhancing the interpretability of the system rely heavily on either
paper or online manuals. The benefits of this approach are limited since research has shown
that users seldom consult manuals, preferring to familiarise themselves with an application
by using it [CR87].

An alternative approach, described in this dissertation, is that feedback be provided by
a generic feature, produced independently of the application implementation. This approach
necessitates treating the provision of feedback as a separate concern. This well-established
technique has been successfully applied in separating several non-functional characteristics
from the main concern of application programs, but has hitherto not been applied to the
provision of feedback. Separating feedback provision from the application makes things
easier for the programmer and provides a mechanism for augmenting the feedback provided
by the application itself.

There are many approaches to achieving separation of concerns [HL95]. One approach,
application tracking, requires the least effort from the programmer and was thus the ap-
proach chosen. It is also the least invasive way of achieving the required separation of
concerns. Application tracking is widely used for many purposes, but once again has not
hitherto been used to augment application feedback.

A prototype implementation of this proposal has been implemented, in order to test the
viability of the scheme. This prototype has been evaluated in terms of the original feedback
needs identified at the outset of the research.

The success of the prototype application has shown that this means of augmenting
application feedback can indeed be used and that it enriches the concept of feedback in such

a way that it can enhance the interpretability of a component-based application.

Introduction 6

1.5 Road Map

The dissertation has been divided up into different sections:
e Part I contains this introduction.

e Part II provides the background literature in component-based systems, quirks and
feedback. Chapter 2 provides an overview of component models, component-based
systems and component-based development. Chapter 3 explores the nature of quirks
— those events which interfere with our straightforward use of applications. Chapter
4 examines the nature and format of feedback, with attention being given to the role

feedback can play in alleviating the negative effects of quirks.

e Paril III describes the problem being addressed, proposes a solution, discusses the
techniques used in the solution and enumerates the advantages and limitations of the

proposed solution. This discussion constitutes Chapter 5.

e Part IV describes the design (Chapter 6) and implementation (Chapter 7) of the
framework prototype which was developed in order to test the proposals made in Part
ITI.

e Part V evaluates the prototype (Chapter 8), concludes, summarises the contributions
of this dissertation and discusses future work (Chapter 9).

e Part VI contains the appendices and bibliography.

part i

Summary of Background Material

Read, every day, something no one else is reading.
. Think, every day, something no one else is thinking.
Do, every day, something no one else would be silly enough to do.
It is bad for the mind to continually be part of unanimity.

Christopher Morley

Pooh began to feel a little more comfortable, because when
you are a Bear of Very Little Brain, and you Think of Things,
you find sometimes that a Thing which seemed very Thingish

inside you is quite different when it gets out into the open
and has other people looking at it.

A.A Milne

The House at Pooh Corner. (1928) ch.6

chapter 2

... Software Components

This thesis proposes a generic feedback mechanism suitable for applications built out of
components. Therefore this chapter will introduce software component concepts, since these
form an integral part of the research discussed in this dissertation. Section 2.1 describes soft-
ware components. A typical component runtime infrastructure is discussed in Section 2.2.
Section 2.3 discusses the evolution of components. Section 2.4 describes the three prominent
component models, and Section 2.5 gives a brief overview of the process of component-based
development. Section 2.6 reviews material presented in this chapter, while the final section

concludes.

2.1 Why Components, and What are They?

Software components are by no means a new concept. They were first proposed by Mcllroy
back in 1968 [McI68]. He suggested that the software industry needed the mass production
of software components which could be bought and assembled. Parnas [Par72| originally
proposed a packaging technology which is not very different from the prevailing component

technologies of today. However, it is only the progress of the past few years which can make

Software Components 9

this dream a reality.

Components are the latest attempt by the information technology world to simplify the
production and management of software systems, a task which is notoriously difficult to
accomplish. Brooks [BF95] argues that this is due to four properties of software systems:

1. Complezity — software systems can exist in a large number of different states which
have to be visualised, described and tested by a developer. This increases with scale

because of the added complexity generated by objects interacting within the system.

2. Conformity — due to the nature of the human institutions and systems to which

software systems must conform.

3. Changeability — no other kind of system is subject to as many pressures for change as
a software system. This is because software is perceived to be easily changeable, and

because user requirements often change with time.

4. Inuvisibility — Software is very difficult to visualise, making it very demanding for

humans to understand its function comprehensively.

Object orientation was initially hailed as the solution to these problems [Cox90], but failed to
address them significantly or to reduce software development time as much as was anticipated
[0’C99]. Object orientation on its own has not made much of a difference to programmer
productivity. - Any C++ programmer will readily attest to this. The advent of Java has
made a difference, since it. hides a lot of the complexity inherent in other object-oriented
languages. It would be more accurate to say that pure object-oriented languages have made a
difference to programmer performance and productivity. However, even with Java, software
development remains a complex task.

Software vendors are well known for jumping on the band-wagon and hailing the latest
innovation as the solution to all problems. The aggressive marketing of CASE tools is an
example of this. The important fact overlooked by, or perhaps conveniently ignored by,
software development tool vendors in their quest for profits is that no single innovation can
be the cure for all software development difficulties, just as no one medical breakthrough
can be the answer to all health problems.

Some have hailed the advent of components as being the “one best way” of developing
software [SW98]. Others advise caution [Cha99c, O’C99]. It is important to bear in mind
that computing is a relatively new science, and that the software development process needs
to evolve significantly before we can feel we have arrived at a sufficient understanding of the
process to claim that the one best way of developing software systems has been found.

At this stage, each new discovery is a step towards better software life-cycle methodolo-
gies. Object orientation has certainly made a significant contribution and is presently seen
by many to be the best systems design approach. Object-oriented programming languages
such as Java make programming much simpler. All the indicators point towards software

components as the next step in this evolutionary process.

Software Components 10

Machine X

Application| Linked Application
Library 4

Function/ Calls

! Interprocess
Communication

System Calls

! Operating System

FE— -
i

Network Communication | Application

! C_)Perating §ystem)

‘Machine Y

i

Figure 2.1: Different modes of Operation [Cha96]

The section heading posed the question: “Why should anyone use components?”. One
major reason is interoperability in the presence of increasingly heterogeneous contexts. The
scenario presented in Figure 2.1 demonstrates different ways in which an application com-
municates with different types of entities. If a library is being used,. it will be accessed via
function calls. Operating system functions will be invoked by means of system calls. Com-
munication with other applications is achieved by means of interprocess communication if
the application is on the same machine, probably involving the use of the sockets mecha-
nism. Communication is achieved by means of a remote procedure call if the application is
on another machine. Communication with other applications, as well as with libraries, can
usually only happen if both have been implemented using the same language.

Components provide the means for cross-platform and cross-application functionality.
The component infrastructure offered by the prominent component models (to be discussed
in later sections) enables a programmer to make use of the functionality within other applica-
tions, libraries and the operating system all in exactly the same way. Much of the complexity
is hidden, and in addition, with two of the current component models, the implementation
language is no longer an issue.

There are other benefits which make components attractive. The most important of these

are their reusability and their appropriate size for reconstruction, marketing and assembly.

2.1.1 What are Components?

“Component”, like “object”, is an over-used word. It means many contrasting things to dif-
ferent people. Many different definitions exist for components, some of which are presented

Software Components

here:

11

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.!” [Szy98]

“Software objects providing some type of known service, or specifications capable
of creating such objects, that can be used in combination with other components
to build systems via a well-defined interface.” [Kar98]

“An identifiable piece of software that describes and delivers a meaningful service
that is only used via well-defined interfaces” [SW98].

“A static abstraction with plugs” [NT95].

“A way of packaging units or modules of software that makes them such that
they could form some particular kind of plug standard.” [WD98].

“A component is a software module that publishes or registers its interfaces”
[Har98].

“A coherent package of software that can be developed independently and de-
livered as a unit, and that defines interfaces by which it can be composed with

other components to provide and use services” [DW98].

Most of these definitions emphasise three important features: interfaces, a set of offered

services, and reuse. Perhaps more helpful than a definition would be a list of the required

and desirable properties of components. Components should, without a doubt [SW98, Cot98,
Szy98, HG99]:

e be accessed only via interfaces, with each interface being a subset of the full contract

the component has with clients. This implies the use of an interface definition language

— both to enable the component user to discover properties of the component, and

to enable the component developer to advertise services provided by the component;

have explicit context dependencies — for example, if a component needs to access

a relational database, the context dependencies would include information about the

structure of the tables it requires. Location dependence is another example of a context

dependency;
be adequately documented — an essential part of the work described here;

have a unique identity;

!This definition was first formulated at the 1996 European Conference on Object-Oriented Programming
(ECOOP).

Software Components 12

¢ be customisable;

e be a unit to be managed by a container — i.e. be more than just an executable binary.
It must derive many of its properties from the container, and use facilities provided by
the container. It must obey the rules of the container, and will have standard ways of
sending events to the container [Pri99]. The services typically provided by a container
include threading, transactions, security and persistence [Gut99].

Desirable characteristics include, but are not limited to:

e possession of a full description of possible exceptions which could be thrown, and

explanations for these;
e the potential for the dynamic discovery of supported interfaces;
e minimum context dependencies;
e reusability.

The last two desirable characteristics will always conflict with each other. A component is
most useful if it can perform its function without any restricting context dependencies, only
relying on external services general enough to be provided by any component container. To
achieve this, the component would have to have all required software bundled with it, but
this type of over-inflated software produces exactly the type of problem that components
were meant to solve. ' C

If a component needs to make use of a secondary piece of software, it should rather
request that service as a context dependency, so that the component only encloses software
to execute its prime functionality. This makes the component eminently reusable since the
prime functionality is probably specialised enough, and the component lightweight enough,
to be used in other contexts as well. However, this reliance on external services makes the
component more difficult to house because of the increase in context dependencies [Szy98].

For example, consider a desktop button, which is an eminently reusable object. Apart
from the obvious requirement of the operating system, it requires the existence of a container
within which it will be displayed. It will expect to inherit some of its properties from its
container. The button will probably derive its background colour from the container, for
example. Although it allows other components to register an interest in events executed on
it, it requires the existence of an event-propagating mechanism which will inform it of user
actions. The button can change its appearance and be tailored for any number of purposes
in the user interface of most applications.

On the other hand, consider a desktop calculator component, which encloses all software
and has few environmental requirements. Whenever it is used, it will have the same purpose
— that of being a calculator. One cannot tailor it to other purposes, and though it is very

useful, it does not fulfill the requirements of reusability.

Software Components 13

This section has given details of characteristics that can be expected from software
components. The following section will shed some light on how components are different

from objects.

2.1.2 How are components different from objects?

Thus far the characteristics of components have been discussed. Some have criticised the
component model as simply being the object model rephrased [0’C99]. Certainly com-
ponents have many features of traditional objects, so perhaps the best way to start this
discussion is by looking at the accepted notion of an object.

In the early days of object orientation people were confused about the meaning of objects
too, and it was only after some time that the key concepts of object technology were distilled

and universally accepted. The accepted object model tenets are [Tay99]:
1. Objects — executable software representations of real-world objects.

2. Messages — a universal communication mechanism through which objects interact

with one another.
3. Classes — templates for defining similar objects.
The key mechanisms of object technology are [Tay99|:

1. Polymorphism — the ability to implement the same message in different.ways to suit

different object types.

2. Encapsulation — the mechanism for packaging related data and procédhreé together
with objects. The aim of this mechanism is that objects should function as a black box,

hiding the information and mechanisms for operating on the enclosed information.

3. Inheritance — a specialisation mechanism whereby one class can make use of infor-

mation and messages defined within a generalised class.

The object-oriented community has had difficulty with the latter two mechanisms. Encap-
sulation was not equally well-supported by all object-oriented languages?, and most lan-
guages’ understanding of encapsulation did not extend to allowing applications developed
using other languages to use their objects.

The relative desirability and particular nature of inheritance caused a great deal of debate
in academic circles [Szy98]. Some organisations, such as Microsoft, argued that multiple
implementation inheritance was a recipe for disaster. C++ allows multiple implementation
inheritance, so that the programmer’s life is made extremely difficult by unexpected side-
effects of such inheritance. Implementation inheritance can also be regarded as a violation

of encapsulation.

2The friend function in C++ is a direct violation of the spirit of encapsulation, and Java allows public

variables, which can be manipulated by other objects

Software Components 14

Quite apart from these problems is the generally acknowledged fact that objects them-
selves are too fine-grained to be deployed independently, because of their logical coupling
with other objects [0’C99]. This limits the reusability of objects, and makes them difficult
to use independently in a distributed environment. However, it is possible to identify a
group of objects which collaborate with each other in providing some piece of functionality,
and which form a type of unit, which would be more suitable for independent deployment.
This collaboration can be deployed independently, as a separate component.

In attempting to distinguish objects and components, some key issues emerge — objects
are fine-grained, while components are coarse-grained. Objects must be implemented in an
object-oriented language, whereas components can be developed in any language. Objects
do not always support encapsulation, but the very nature of components enforces encapsu-
lation by the mandatory use of interfaces. Finally, objects are highly dependent entities,
whereas components are designed to have a considerable measure of autonomy. Han [Han98|
identifies some characteristics which, he argues, distinguish components from objects, with

only components having the following characteristics:

1. structural constraints which will specify that certain compositions of attribute in-

stances are not permitted;
2. operational constraints which specify permissible operation patterns;
3. events which can be fired by the component.
4. multi-interfaces which specify a number of roles the component can play.
5. non-functional propérties such as security, performance, and reliability.

It is difficult to agree with this list. Java objects generate events, and inherit from multiple
interfaces. Non-functional properties mentioned in point 5 are not generic component char-
acteristics, but rather requirements enforced on behalf of the component by the container
within which it is housed. Structural and operational constraints fall into the same cate-
gory. The component has context dependencies, which incorporate all these requirements,
although these are not properties of the component itself, since objects too can have these
constraints and non-functional requirements. This list is therefore not useful in drawing a
distinction between components and objects. While components and objects can be seen to
share Han’s properties, the true difference would appear to be that whereas objects have to
implement the constraints themselves, components can expect many of the constraints to
be applied by their container.

In summary, we can conclude that components are different from objects, mostly in terms
of perspective. Object-orientation can be considered to be an implementation technology,
while component technology is about packaging and distribution. Whereas the term “object”
implies use of a specific type of implementation language, the term “component” should

imply a unit of deployment providing a specific functionality.

Software Components 15

Before continuing to the next section, which will discuss the component runtime envi-

ronment, it is necessary, in the interests of clarity, to define the term component.

A component is a coherent, opaque, unit of software, accessible only via one
or more interfaces cooperatively defining the full contractual duty of the compo-
nent, which is independently deployed in a container enforcing and supplying the

contextual requirements of the component.

2.2 The Component Runtime Environment

In the not too distant past, all applications were monolithic and ran on what users deemed
to be “powerful” and expensive mainframe computers. Users connected to these mainframe
computers via “dumb” terminals. The mainframes were good at running such applications,
and were not really tuned to reacting speedily to many requests from terminals. The mono-
lithic applications were merely the automation of hand processing systems [BF97]. With
the advent of the Personal Computer (PC), applications were simply moved from the main-
frames to the PC. Moore’s law? ensured that the PCs initially had no difficulty in keeping
up with ever growing application resource demands.

However; the growth of the network and communications industry, the increasing de-
mands .of applications, and the difficulty of sharing data between users, changed the way
people thought of applications, and.the possibility of harnessing a powerful computer in
the background to handle databases, for example, led to the advent, in the early 1970s, of
client-server, or two-tier, systems. The following section will discuss the characteristics of

these systems; and describe their metamorphosis into three-tier systems.

2.2.1 From Two-tier to Three-Tier Architectures

The two-tier architecture separates a distributed application into two collections of processes
— clients which handle user interaction, and servers which manage resources. The form of
inter-application interaction before the advent of these systems was facilitated by means of
Inter-Process Communication (IPC). The IPC mechanism operates on a byte level, and the
protocol for communication must be agreed upon by both participants, both of whom were
probably implemented in the same language [Szy98]. In client-server systems, clients could,
as an alternative to IPC, communicate with the server using a Remote Procedure Call (RPC)
[BN84] mechanism. This mechanism places stubs on the client and server machines. When
the client application makes a call to the client stub, it will marshal the parameters and send
them to the server stub. The server stub receives the parameters, unmarshals them, and
sends them to the server for processing. The client is unaware of this process and follows
local calling conventions in using the procedure. The marshaling and unmarshaling process
is responsible for conversions to different formats on different machines. RPC simplifies

3Moore’s law implies that the power of computers doubles every 18 months.

Software Components 16

all levels of communication (in-process, inter-process and inter-machine) by making their
mechanism the same — the remote procedure call [Szy98].

There are two types of servers — stateless or stateful [Cor91]|. The stateless server does
not maintain any information about clients between calls. An example of this is a Web
server. A stateful server “remembers” client information from one method invocation to the
next. Stateless servers are more fault tolerant than stateful ones, since a client can simply
keep resending a request till the server responds. The client of a stateful server needs to
rebuild server context after a crash, and this could cause the client to fail. However, stateful
servers operate in a well-understood programming paradigm, and are more efficient [Cor91].

In client-server systems, as shown in Figure 2.2, many clients use the same server on a
request-reply basis. These architectures enable clients to have sophisticated user interfaces
and data visualisation tools on their desktop computer, and share data with other clients

by means of powerful database servers at the server level [BF97].

User
User Client
Interface Application

T N

Data

Figure 2.2: The Client Server 2-Tier Architecture

The client-server architecture was a great improvement on the previous monolithic sys-
tems, but had some serious shortcomings. There was a big question of where to put the
application logic. If it is located in the client, the clients become “fat”, and difficult to up-
grade, and the application logic is too closely bound to the user interface code to reuse for
another type of user interface. If a great deal of processing is to be done, it could adversely

affect the performance of the client computer.

Software Components 17

If the logic is located in the server, often a database server, it becomes tightly linked to
the actual data source, and it is difficult to use data from other sources as well. It is also
far too easy to overload the server, degrading performance and affecting response times to
all clients. It is difficult to provide a reliable service due to the difficulty of load-balancing
with this architecture.

Often the logic was split up between the client and the server, and it was very difficult to
reuse any of the client code if the server type changed. If a different type of front-end were
needed (for example, a touch-tone phone access front-end), a whole new application had to
be written. It is also well-nigh impossible to integrate legacy systems into a conventional
client-server system. In summary, client and server processes are too tightly coupled.

User
T T TS TT TS TS T s T T T T T T TSI eI Y
| f
1
User : Client :
interface ! Client Application |
' Machine |
| i
E R 1
Logic
Data

Figure 2.3: The 3-Tier Architecture

The three-tier architecture, shown in Figure 2.3, was developed to alleviate these prob-
lems, with the business logic being situated in a middle tier, between the client application
and the data tier. The middle tier does not make assumptions about how a resource, such
as a collection of data, is stored, but simply expects it to be provided by a lower tier. The
user interface tier deals directly with the middle tier, and relies on this tier to interact with
the lower tier and to control access to all shared resources. This new architecture makes it
much simpler for different types of clients to share business logic and resources.

The middle tier could provide the same services to a desktop application, a browser, and

a touch-type telephone, with only the user interface tier being specialised in each case. The

Software Components 18

advantage of this approach is that the client becomes thinner, with most of the business
logic being located in the middle tier. This minimises the cost of ownership of large numbers
of client systems [Dol98].

Two of the three tiers in this model are well understood — the client application, and
the lower (data) tier. However, the middle tier is relatively new, and will be described in

the following section.

2.2.2 The Middle, or Business-Logic, Tier

The move to incorporate a middle tier was a logical response to the problems outlined in the
previous section. However, when it came to planning the infrastructure, and the provision of
the required middle-tier functionality, things were not as straightforward. It was necessary
to share resources, such as data sources, and business logic, between different clients, and
also to have a structure which was flexible enough to respond to changes in business rules
without great difficulty.

The parallel development of independently deployable components, which were a viable
alternative to finely-grained tightly-bound objects, made it possible for the business logic to

. be encapsulated in the form of middle-tier components. (The component evolution process
is described in Section 2.3.)

The use of middle-tier components enables sharing between different types of applica-
tions, and the size and encapsulated nature of the components makes them easier to upgrade
in a world of ever-changing business rules. In addition, instead of tying the business logic
exclusively to one type of data source, components could be made flexible enough to link to
any available data sources.

Since components are essentially evolved objects, the three-tier architecture requires
the client to communicate with these components in an object-oriented manner — i.e. via
method invocations. In this new architecture, therefore, the RPC mechanism is hidden from
the programmer, and replaced by a remote method invocation protocol, because RPC does
not directly support method invocations [Szy98]*. A system of prozies is used to allow the
client to invoke methods on a surrogate proxy object in exactly the same way as methods are
invoked on local objects. The proxy object supports the same interface as the middle-tier
component. The client program will request services from the middle-tier components by
means of locally-based method invocations, and receive replies in the form of return values.

All components need to be housed within containers, which can provide essential services
required by the components, such as, for example, life-cycle management, and administra-

tion functions. An infrastructure providing such services is called a framework’.

“Method invocations require two things not provided by RPC: runtime inspection of the class of the
receiving object to choose the method to be invoked; and the inclusion of a reference to the receiving object
as a method parameter [Szy98].

SLewandowski defines a framework as being “a large design pattern capturing the essence of one specific
kind of object system” [Lew98]. Froehlich et al. define it as a reusable design and implementation of a

Software Components 19

The object-oriented community originally used the constructs of object orientation to
provide an object-oriented framework to house middle-tier components, giving birth to com-
ponent frameworks®. The component framework provides support for the common function-
ality which is required by all components. Specific components can provide specific solutions,
and make use of the framework to provide common features such as communication and
life-cycle management. The framework imposes certain standards, and allows components
to be “plugged in”, to allow them to interact with groups of other components and the
container itself in a standard way[Szy98].

Frameworks proved to be a suitable idea for taking care of some of the “wiring” problems
of components, but had their limitations when providing for other special needs, which
became clear as people gained experience in the use of three-tier component-based systems.
The middle tier of an application could be servicing hundreds or thousands of concurrent
users, and the types of problems to be dealt with could be [RS99]:

e How are client requests to be load balanced?

e How can system uptime be guaranteed in the face of system breakdowns and necessary

administration?

e Is it possible to ensure that data in the lower tier remains consistent when being used

by multiple users?
e How are client requests transferred to other machines in the case of a failure?
e How will clients be authenticated and authorised to perform secure 6p¢rations?

The object-oriented community have had no history of dealing with these types of problems,
and in order to solve them, they turned to the database industry. The following section

describes the solution to this problem.

2.2.3 From a Component-Framework Middle Tier to
Component-Oriented Middleware

Transaction Processing Monitors (TPMs), such as IBM’s CICS [GR93], have vast experi-
ence in dealing with the issues not dealt with by component frameworks — in the context
of database systems — and the obvious solution to dealing with these issues for middle-tier

components is to give component frameworks special TPM capabilities. TPMs are very

system or subsystem [FHLS99]. They describe a framework as being implemented as a set of abstract classes
which define the core functionality of the framework, together with concrete classes for specific applications.
Froehlich et al. point out that frameworks are intended to provide a generic solution for a set of similar

problems, with applications providing a specific solution for a specific problem.
64A dedicated and focused architecture, usually a few key mechanisms, and a fixed set of policies for

mechanisms at the component level” [Szy98] (p275).

Software Components 20

good at maintaining and utilising scarce resources such as database connections, and at co-
ordinating distributed transactions. This led to a natural marriage of component framework
groups and TPM groups, in order to create a new product which would be able to handle
components, be scalable enough to control many distributed transactions, and deal with the
issues mentioned in the previous section [Ses98b)].

This new infrastructure has been called by many different names, often denoting the
specific vendor implementation. For example, Dolgicer [Dol98, Dol99] calls it an Object
Transaction Monitor (OTM), and Sessions [Ses98a] calls it COMWare. The different names
denote the same functionality, implemented in different ways — which will be explained
further in Section 2.4. In this text, it will be referred to as Component-Oriented Middleware.
This concept will not have an associated acronym, since the one which readily comes to mind

has already been used by Microsoft to describe their specific component model.

The concept of a component model will, in this text, refer to the full stan-
dard encompassing the component definition, packaging, container architecture,

component-oriented middleware and communication infrastructure.

The component-oriented middleware infrastructure takes care of transaction management,
component life-cycle management, supports component packaging and distribution, com-

munication, scalability and security. The consequences of this are that:

e The physical location of the middle-tier components is unimportant — they are used

as if local to the client.

e Middle-tier components can be duplicated on, or moved to, other servers to meet

increased demand, and to help guarantee required uptime.

e Process and machine boundaries are more easily crossed [Pri99]. Platform idiosyn-
crasies have ceased to be relevant because a standard interaction mechanism — the
remote method invocation — provides a standard way of accessing any component

instance, anywhere.

¢ A middle-tier persistence service will ensure consistency of the underlying data sources
in the presence of distributed transactions.

e Security will be handled at the middle tier, rather than at the client tier, decreasing

the chance of unauthorised access.

e Best of all, the application programmer no longer has to be concerned about systems

issues such as security or transaction boundaries.

There are two approaches to providing access to these, and other, component-oriented mid-

dleware services:

Software Components 21

1. The first, followed by CORBA Versions 1 and 2, is to provide them by means of
different Application Programmer Interfaces (APIs) — as illustrated in Figure 2.4.
The client has to invoke the different services — such as transaction management —

Client Machine Ser_y_er Mac@@p_e

Client Process Server Process

Figure 2.4: Middleware by API [Ses00]

in order to apply the service it requires to the component instance. This approach
allows the client-application programmer to exercise control over these aspects of their
component usage. CORBA was designed to be extensible, so that organisations could
buy only those parts of the CORBA implementation they required, and services they

would use.

However, middle-tier components only really become an asset if they ease the task
of the application developer. While one can understand the motivation behind the
extensibility and flexibility of the API approach, it does mean that the application
programmer has a great deal of complexity to deal with which has little to do with the
actual functionality of the program, and which should be the responsibility of a systems
programmer. The alternative approach, interception, deals with this complexity on

behalf of the programmer.

Client Machine Server Machine

-

Client Process Server Process

R e e S

Figure 2.5: Middleware by Interception [Ses00]

2. The second approach to provide these services automatically is by means of intercep-

Software Components 22

tion algorithms — as illustrated in Figure 2.5. The motivation behind a component
runtime environment is that the component’s needs are declared by setting component
properties, instead of these issues being managed programmatically. The component-
oriented middleware can fulfill these properties, without requiring any effort from the
client. The result is rapid application development, and a shorter learning curve for

the client-application programmer.

This approach has been followed by both Microsoft and Sun in their component mod-
els. The interception approach requires the server component to be housed within some
sort of container, so that all client requests are intercepted and transaction bound-
aries can be enforced, life-cycle management can be achieved, and so on. The latest
CORBA specification — Version 3 — also specifies the use of interception, rather than

APIs, to invoke these services.

Sun provides the Enterprise Java Beans (EJB) component-oriented middleware spec-
ification. Microsoft provides COM+. The Object Management Group (OMG?) has
accepted the advantages of the second approach, and has released its third version,

which also applies the interception approach to providing component services.

2.2.4 Moving to:N Tiers — The Impact of the World Wide Web

The advent of component-oriented middleware was soon followed by the tremendous success
of the Web. Organisations began to see the need for Web-centric applications. There are
two ways of making the component-oriented middleware web-wise: ,

One option is to add another tier to these systems, with the web server coming between
the client and the component-oriented middleware. The N-tier architecture was thus born
— with a tier for each major service provided in the middle tier, occurring between the
client and the data tier. The new architecture is shown in Figure 2.6.

The other option is to make the component-oriented middleware itself Web-wise, leading
to the application server concept. Application servers are often produced by professionals
who have a lot of experience in the TPM world, such as IBM and BEA Systems®. The
term “application server” will be used throughout this dissertation to refer to web-centric
middle-tier component-oriented middleware.

Once again, there are many names for what is essentially the same concept. Taylor and
Vaughan [TV99] point out that the term “application server” is often associated with the
Java language. It is certainly true that the term “application server” is many things to
many people, with as many problems in pinning down its true nature, as was experienced in
pinning down the term “object” many years ago [Cha99b, V1.99]. Indeed, IBM called their
CICS servers, “application servers”, long before the current middle-tier component-oriented

flavour was attached to the term.

"www.omg. com

8www.beasys.com

http://www.orag.com
http://www.beasys

23

Software Components

User

IIIIIIIIIIIII

c
ke]
=

« -
-— O
Cc =
o Q
= Q
O«

[]
£

c <

Q
2L
0=

[4)

Q
Lo
0 o
(2
o T =

Web Server

Figure 2.6: The N-Tier Architecture

Software Components 24

Even though the exact nature of the term “application server” may be difficult for people
to agree on, it is generally accepted as a term for a web-wise middle-tier structure, which is
able to provide a reliable service and guarantee required availability. There is currently no
argument about the fact that application servers play an increasingly important role in the

development of enterprise applications [Mes98].

2.2.5 Summary

Previous application architectures — monoliths and client-server — failed to provide sys-
tems which were reliable, easily maintainable and flexible [BF97]. The three- and N-tier
architectures recognise the fact that business rules are independent both of the user inter-
face and the data source. These architectures offer organisations rich rewards because the
middle tier, being specialised, can offer the following runtime services [Dol98]:

e Joad balancing, which might be delegated to the operating system,;
e high availability and recovery;

e security;

e component management and monitoring;

e database connection management, shared cache and pooling;

e state/session management;

e result caching;

e location and service transparency.

This section has attempted to give an extremely condensed view of the vast field of dis-
tributed applications, the infrastructure that supports them, and the role that components
play in these applications. The following section will take a closer look at the evolution of
software components from the object to the middle-tier business-logic component.

2.3 The Evolution of Components

This section will give a synopsis of the advent and uptake of components by the computer
software industry. While application architectures were moving from two-tier to N-tier
systems, a parallel movement in the component world was taking place, moving components
from specialised to generalised entities.

Section 2.1.1 described the differences between objects and components. Basically, ob-
jects were simply too fine-grained, not easily independently deployed, and had to be used

from within the same language. The component concept dealt with these problems and

Software Components 25

offered interoperability regardless of implementation language, and the chance of some dis-
ciplined reuse.

Specialised components have been used for quite some time in aircraft, power and au-
tomobile industries. However, the component industry, in the interests of interoperability,
realised that they needed a standard way to access the services of components. The following

decisions were made:

1. In the first place, components would exhibit the very valuable property of encap-
sulation. To enforce this, all components would be accessible only via an interface,
thus separating the behaviour definition from the implementation. This also allows a
measure of polymorphism to be applied, as well as enabling updating of components

without interfering with client-application code.

2. Secondly, a standard mechanism for accessing the services offered by these components
had to be decided upon, and since the above-mentioned interface mechanism was used

to apply encapsulation, the standard mechanism would be method invocations.

3. Whereas there had been mechanisms for applications to interact prior to components,
for example, by means of the socket mechanism, or messaging — as is done by IBM
MQSeries (email for applications) — the popular component industry initially only
used synchronous method invocations to interoperate. While asynchronous commu-
nication often achieves better performance than synchronous‘, such systems are very
complex to design and debug [Szy98]. (The latest Microsoft component model, COM+,
allows asynchronous communication, as does CORBA Version 3 — but these are later

innovations.)

The advent and growth of the component industry can be traced from the initial embedding
of components within a single process, followed by the use of components between different
processes on the same machine, to the current use of components on different machines.

The following subsections will trace these stages.

2.3.1 Components Embedded within a Process

The first non-specialised and popular component approach to be seen in general use was
found in compound document models. One example of this is the Object Linking and Em-
bedding (OLE) model from Microsoft. OLE documents embed or link to other subsidiary
documents. When the user activates the subsidiary document, the necessary application is
started, and the user interacts with it without leaving the context of the surrounding doc-
ument. Compound documents are more user-centred, since they apply a document-centric
approach rather than an application-centric approach [Szy98]. This means that the end-user
does not have to be concerned with the particular application used to manipulate different

parts of the document — text, clip art or diagrams, for example — but can merely be

Software Components .26

concerned with the document itself, leaving these details to the application being used to
create the document. Another compound document example is the Web, with components
embedded in Hypertext Markup Language (HTML) pages which summon plug-ins to per-
mit user interaction. The structure of an in-process component, which could represent an
embedded component within a document, is shown in Figure 2.7. The small clear circles
represent component interfaces. The filled circles represent references, or pointers, within

the process.

Client Machine

Client Process
In-Process
Server

Cmp
Inst

Figure 2.7: Microsoft view of Component within the Same Process [Cha96]

Soon after the advent of OLE, Visual Basic introduced 16-bit YBX controls, which
were components originally intended to allow developers to create custom Graphical User
Interface (GUI) objects for use within Visual Basic. However, developers soon started to
use them to create other kinds of software components. They were then replaced by 32-bit
OCX controls, and later by ActiveX as the standard for Windows software components

[Kar98].

"Set" Methods

2. -
(0]
"Get" Q —V) Register
Methods G(_ Interest
~ 0 Methods
? -

Events

Figure 2.8: Structure of GUI Components

In October 1996 JavaSoft released JavaBeans [Eng97j. JavaBeans are similar to ActiveX

controls because they are deployed at the desktop, but whereas ActiveX controls can be

Software Coniponents .27

developed in any of a number of languages, JavaBeans are developed in Java. The general
structure of the GUI components is shown in Figure 2.8. Each of the components must have
methods which can either set or query its properties. It also needs methods which allow the
container process to register an interest in user actions o11 the GUI; and it generates events

as a result of those user actions.

2.3.2 Components in Different Processes

Microsoft released their COM standard in the early nineties. This standard allowed inter-
process use of components, as shown in Figure 2.9. While the components had all to be
o1 the same machine, the COM standard provided a mechanism which uniquely identified
components and their interfaces, and dynamically discovered the interfaces implemented by
other components. A component loader sets up component interactions, and the interaction
is relatively painless for the programmer using the components especially when using a

language such as Java.

Client Machine

Client Process Server Process
Proxy
Interprocess
for local P TT Cmp
object Communication Stub Inst

Figure 2.9: Components on the Same Machine [Cha96]

2.3.3 Components o011 Different Machines

While Microsoft was busy perfecting their component standard for desktop components,
another parallel movement was working on tlie idea of distributed interoperability. This
would allow components o1 different machines to make use of each other’s functionality, as
shown in Figure 2.10.

The Advanced Networked Systems Architecture (ANSA) originated in a project under-
taken by a group of software development organisations within the United Kingdom Alvey
Technology Programme in 1986 [ANS89]. ANSA wanted to provide an architecture for
distributed systems which would be portable across different platforms, using different op-
erating systems. They also worked towards providing a modular structure with maximum

reuse of functionality. ANSA supported a range of distributed functions such as naming,

Software Components .28

concurrency, and fault handling. Their basic premise was that architecture should adopt
open standards wherever possible, and that this architecture should operate in such a way
that the fact of distribution should be transparent to application programmers and users.
The Object Management Group (OMG), a software consortium founded in 1989, con-
tinued the work of ANSA, and started working towards a set of standards with the aim
of promoting interoperability on all levels of an open market for ‘objects’ [Szy98]. They
were working on specifications for a complete distributed object platform. Their focus was
somewhat different from Microsoft’s in that they were working o111 a specification which
could be implemented by many different vendors, with the main purpose of allowing them
to interoperate. Microsoft has always been quite open about the fact that in order to use
their technology you have to use their operating system. They make 110 apologies for this,
claiming that it makes their system more efficient, and that their approach is better than
a set of standards which they claim to be unproven. A debate o11 merits of the relative

positions is outwith the scope of this discussion.

Client Machine Server Machine

Client Process Server Process
Proxy *

a for local) *a Cmp
object i RPC Stub Inst

Figure 2.10: Components on Different Machines [Cha96]

After releasing their first standard in 1991, the OMG released their widely accepted and
implemented CORBA Version 2 de jure standard in 1995. The latest standard, Version
3, was released in 1999. CORBA objects, while satisfying many of the requirements for
components, are referred to simply as objects.

Microsoft quickly realised the potential for distributed components and released DCOM,
which allowed the use of components between different machines. COM/DCOM soon be-
came a standard for distributed Windows software components. DCOM treats the cen-
tralised option, where components are o111 the same machine, as a special case of the dis-
tributed option, as recommended by Stroud [Str93]. This approach allows the user to use
components regardless of location.

Sun released the Java/RMI distributed object protocol, which could be used either ot
the same machine, or between different machines. This required both processes to have been

written using Java, and made use of a naming mechanism called the RMIRegistry to allow

Software Components 29

processes to locate components.

The use of distributed components in this way, which allows the user to use the remote
component instance as if it were local, remains an illusion. In fact, this mode of operation
invalidates a number of assumptions which could be made if the object were locally available.
The assumptions are [ANS89):

e Failure: more failure modes are possible for remote method invocation than for local

method invocation. (More about this in Chapter 3.)

e Binding: configuration becomes a dynamic process, with bindings carried out at run-

time.

e (oncurrency: mechanisms are required to impose sequentiality when resources are

shared by many clients.
e Asynchronous communication: required to support pipelining, and workflow processes.

e Heterogeneity: requires a common data representation for interactions between differ-

ent systems.
e Replication: can provide availability and dependability.

e Location independence: mnecessary to enhance the availability and reliability of the

system.

Local optimisations can be performed if the object in use is local, but local should be treated
as a special case of distributed, not vice versa [Str93]. Such optimisations should never be
implemented at a source code level, but rather at a compiler level [ANS89]. The following

section will take a closer look at the three prominent component models.

2.4 Prominent Component Models

In the early days of components many organisations made use of the general component
concept to develop their software. An example of this is OpenDoc, from Apple. OpenDoc is
a component framework for visual components, with the components being called OpenDoc
parts. OpenDoc did not conquer the market place, even though it was far ahead of the field,
mainly because of marketing failure [Szy98]. Another example of a non-standard component
approach is BlackBox, which is also a component framework for visual components. Neither
of these component models have made a significant impact on the market.

The current component world sees three major players, JavaBeans/Enterprise Java
Beans (EJB) from Sun, Common Object Request Broker Architecture (CORBA?®) from

9While CORBA is often referred to as an object model, it has most of the features of component models, as
discussed in the previous sections. The main reason why CORBA is often not considered to be a component
model is because it is not based on the concept of an interceptive container architecture. This is a feature of
the other two component models but it is not an essential component model feature.

Software Components 30

the OMG, and COM+ from Microsoft. These standards are all still evolving, with CORBA
having the oldest component standard (since 1991), and Microsoft having the most mature
interception-based component-oriented middleware (since 1996). Each of the models will be
discussed briefly in turn in the following subsections.

Each component model has different views about what a component is, how it should be
implemented, how components should be located, how interfaces should be defined, and how
components should communicate with one another and their environment. Although there
are differences in the way that each of these works, there is a certain generic functionality
which is required by all. Each has the following essential features [Ses00]:

1. A component architecture. The architectures focus on component packaging and in-

teroperability. This includes:

(a) the definition of an interface definition language, used by the designer to describe

the component.

(b) a remote method invocation protocol. This protocol specifies how the system will

support remote method invocations on distributed objects.

(c) features for interoperating with other component models, or the same one running

on a different platform.
(d) a maming protocol which enables the client application to search for a partiéular

component.

Client applications use this part of the component model to understand the compo-

nent’s features.

2. A component runtime environment. This is the container architecture, discussed fully
in Section 2.2, which provides an environment for components. Components obey the
rules of the container, and communicate with the container in a standard way. They

also derive certain properties from their container [Pri99].
3. Administration tools — to manage the system and configure components.

4. Interoperability service — which allows the component runtime environment to com-

municate with external services. These could include [Pri99]:
(a) Persistence. This service provides a uniform mechanism that allows transactions
to be performed over one or more persistent data stores.
(b) Licencing. This ensures that the users of components have paid to use it.

(c) Security. This service ensures that the client is actually authorised to use the

component, and controls privileges for different users.

(d) Messages. This service supports asynchronous messaging.

Software Components 31

(e) Distributed garbage collection. This service automatically deallocates distributed

objects when they are no longer being used.

Built upon these similarities are differences in perspective, as will be evidenced in the dis-
cussions on the prominent component architectures in use today.

In order to illustrate the similarities and differences between these models an example
will be introduced. Assume we have a server component called CustomerComponent, which
holds the name and password of an organisation’s clients. This component will interact with
a relational database which stores information about customers. For the sake of simplicity,
the Customer relation has only two attributes, name and password. The component supports
two groups of methods. The first group consists of getName () and getPassword(), which
are invoked to get information to validate a client. The second group has the methods
setName () and setPassword() which are used to set up initial accounts for clients, or to

change passwords.

2.4.1 The OMG’s Component Model

The OMG is a software consortium, whose 800 current members have a shared goal of
' using integrated software systems [See98]. OMG members came together because they
wanted to find a way for distributed object systems implemented in different languages on
different platforms to be.able to interact with each other. The first version of the CORBA
specification was released in 1991 and the latest CORBA standard, Version 3, was released
in 1999.

The OMG’s main focus throughout their standards development has been that of inter-
operability. Many organisations have been involved in the development of their standards.
This means that respected experts in industry and computing science have participated and
that the possibility for a really good standard exists. However, their standards are complex,
and often suffer from a “please everyone” syndrome. Big software firms routinely have their
own unique ideas about how things ought to be done, and integrating strong opinions from
different experts is no small task. The result is an often overly complex specification, with
far more features than should be incorporated.

That said, CORBA has been widely accepted in industry today, and many implemen-
tations of the standard exist. Pritchard avers that the CORBA vendors are respected and
that their products are perceived to be more appropriate for mission critical applications
than COM [Pri99].

2.4.1.1 Architecture

The CORBA architecture is illustrated in Figure 2.11. The client and the CORBA object
interact with the Object Request Broker (ORB) by using an Interface Definition Language
(IDL) interface. Each CORBA object must have its interface specified in this IDL, and
clients only ever see this interface — never the implementation. This separation guarantees

Software Components 32

Application CORBA
Objects Facilities

C1 O

< Object Request Broker [>

O O]
CORBA Services

Figure 2.11: The CORBA Architecture [Sie98]

the substitutability of the object. The ORB builds on top of the network transport, using
its own Internet Inter-ORB Protocol (IIOP) to communicate with other ORBs. This is
illustrated in Figure 2.12.

o , ‘Object . . Object
C“ent |mp|ementation Cllent : lmplementation
IDL IDL IDL " IDL
]
. ORB L I ORB.
N IIOP z

Figure 2.12: The InterORB Protocol

When a client makes a request, the request will be intercepted by the ORB, and passed
to the target object. This happens for all objects, whether local or remote. The ORB is
provided by means of library routines which manage both in-process and remote invocations
transparently. CORBA supports distribution by having shared Interface Repositories (IR)
which ensure that all ORBs on the network can gain access to all required IDLs.

CORBA makes use of common object service specifications (CORBAservices), and a
set of common facility specifications (CORBAfacilities) to broaden its focus and provide
specification for services to be used on top of the “wiring” provided by the ORB. The
services provide things such as a naming service, transaction management, concurrency and
other middleware requirements. The facilities which provide support for the enterprise by
specifying standard objects for standard functions, used within a domain [Sie98]. Examples
of these are Business Objects, Finance/Insurance and Manufacturing.

Current CORBA implementations include Orbix from IONA, Visibroker from Visi-

genic and SOM from IBM! [Szy98]. Very few implementations exist for the services and

1930M follows the CORBA specification in some respects, but has added many of its own extensions so

Software Components 33

facilities. It is in the nature of vendors to attempt to differentiate their product [Pri99], and
most organisations will therefore use the same ORB throughout their organisation [AST99],

causing vendor lock-in, which surely was not what OMG originally envisaged.

2.4.1.2 Middle-Tier Architecture

CORBA'’s (Versions 1 and 2) approach to providing the services required of the middle
tier are currently based on the provision of an API. However, some CORBA vendors have
incorporated runtime and deployment services into their CORBA implementations — even
though this is not covered by the specification. These will often be offered to customers as
an additional option, to enhance the scalability, reliability and availability of the product.
CORBA has recently released their CORBA Component Model, which changes their ap-
proach to providing services from the API to interception, the mechanism used by the other
two component models [Ses00]. This interception is completely invisible to the component
client, with all details being taken care of by the underlying architecture. They also provide
a specification for an EJB /CORBA bridge, which allows a client to use a CORBA compo-
nent as if it -were an EJB compaonent, and vice versa. At this early stage no implementations
of this specification exist so it is difficult to tell how industry is going to react to this latest

standard.

2.4.1.3 Example

CORBA version 2, for which current implementations exist, allows interfaces to inherit from
multiple interfaces. Thus in CORBA we will define three interfaces for the example: the
first interface Customer1 for the first group of methods, the second interface Customer2 for
the second group, and the third interface Customer inherits from both of them. The client

view is shown in Figure 2.13.

SERVER
Customer
. Customer
Client U Implementation

Figure 2.13: The CORBA Client View

CORBA Version 3, released in 1999, allows a CORBA object to have multiple interfaces.
In this case, the Customer interface would not be necessary, and the clients would have access

to either one, or both, interfaces for CustomerComponent .

that it is not a “pure” CORBA implementation [TMdIADF99]

Software Components 34

2.4.2 Sun’s Component Model

Enterprise Java Beans (EJB), the latest contender in the component-runtime middleware
market, is Sun’s specification for a server component marketplace [RS99]. EJBs were de-
signed to support the development, deployment and management of transactional business
systems using distributed objects built in the Java language [Kar99]. Sessions sees EJB as
Sun’s attempt to provide a portable virtual machine for the middle tier [Ses00]. This is
because of Sun’s focus on portability. The JVM, Sun’s portable virtual machine, has been
criticised on the basis of performance and functionality — at least on the user interface level
[Ses00] — which may have contributed to the delayed uptake of EJBs in industry.

Programmers who enjoy using Java will like developing EJBs. However, this technology
has been criticised for the same reasons that reservations about CORBA exist. People
from several different computer organisations were involved in the development of the EJB
specification, and it does seem to have the same sort of flavour of keeping everyone happy
by incorporating all sorts of different features.

EJB is the youngest technology in the component-oriented middleware club, and it
remains to be seen whether it will be able to perform as required in electronic commerce

applications.

2.4.2.1 Architecture

EJB SERVER

s)
)
Distribution

EJB Container

; Entity &
Securit .
y Session Config-
Beans urability
ACL

Transaction
Management
J

Figure 2.14: Enterprise Java Beans [PvV99]

\.

The EJB component model [Tho97, Mic98a] is illustrated in Figure 2.14. All EJBs must
be developed using Java. This language is used to develop both the interface, and the bean
implementation. There is no interface definition language to be learnt by the programmer
— as is required for CORBA and COM. The client locates the required beans by using
the Java Naming and Directory Interface (JNDI) which provides a naming service. This is

Software Components 35

layered on top of Remote Method Invocation (RMI), which is used to communicate with the
server.

EJBs run within a component runtime environment called an EJB container. EJB
containers are typically provided by any server container that satisfies the EJB specification.
Transaction coordination is provided by the container interacting with the Java Transaction
Service (JTS), which is essentially an implementation of the OMGs Object Transaction
Service (OTS). All bean requirements, such as security, transactions and so on, are specified
in a deployment document which defines the bean configuration requirements.

There are many implementations of the EJB standard. Examples are the Tengah server

from Weblogic'!, Pramati from Proton!?, and PowerSystems from Persistence 3.

2.4.2.2 Middle-Tier Architecture

The container housing any EJB acts as an interface between the EJB and the client invok-
ing the bean. Each bean will typically have two distinct interfaces, a-Home interface (for
managing bean instances) and a Remote interface (for application specific methods). This
would seem to be a weakness of this model, since different roles could conceivably require

more than two interfaces. There are two distinct types of bean:

1. Entity Beans: These beans are persistent objects, which model data in the underlying
data tier. For example, a credit card bean would be an entity bean, because it is mod-
elling the credit card data in the database. Each bean declares its requirements, for
example, transaction isolation required, or security procedures, in a special descriptor
object. EJB containers will provide the necessary middleware services automatically,
as directed -declaratively by the individual components. There are two kinds of entity

beans:

(a) Bean-Managed Persistence — persistence for this bean is managed by the bean
itself. The bean must provide methods which will be invoked by the container to
obtain data from the database, and to update this data when changed.

(b) Container-Managed Persistence — The persistence for this bean is provided by
the container. The deployment descriptor document will specify the linkage be-
tween the bean state and the underlying data structure; and the container ensures
that the data is always consistent and correctly updated in the database.

2. Session Beans: A session bean models a business process, and executes on behalf of
a single client. This could be a credit card verification, or a shopping basket for an

Internet bookstore. There are two types of session beans:

(a) Stateful — A stateful session bean will hold state between service requests.

11weblogic.beasys.com
12

13

www.pramati.com/products.htm
WwW.persistence.com

http://www.pramati.com/products.htm
http://www.persistence.com

Software Components 36

(b) Stateless — A stateless bean only offers a service. When a client uses a state-
less bean the client has to take care of all state within their program, and pass
references to the state to the bean to be operated on. This bean is identical in
principle to COM+ objects.

2.4.2.3 Example

To implement the example using EJBs, the first thing to decide is the type of bean to be
implemented. Since this bean will be modelling a database record, an entity bean will be
used. The choice between bean-managed and container-managed persistence will depend
on how complex the underlying data structure is. Since this data structure is very simple,
container-managed persistence can be applied. This makes it far simpler to implement the
bean, since no database access code must be written — everything is done by the container.

Every bean has two interfaces, so the CustomerComponent bean has home interface
CustomerHome and remote interface Customer. The CustomerHome interface implements
factory and finder methods, which will be used either to create or locate existing EJBs. The
Customer interface will encompass methods from both groups mentioned in the introduction.
The. client view is'shown in Figure 2.15. This means that any client programmer will be
given access to the full functionality of the component, so that the security mechanism will
have to be used to ensure that clients do not call methods they have no right to call.

EJB Container

CustomerHome|
EJB
Home —O—_
Object Customer
Component
Remote
\O Object o
Customer

Figure 2.15: The EJB Client View

2.4.3 Microsoft’s Component Model

This component model’s main problem is its nomenclature. It started off as “ActiveX”,
which cannot be described as a descriptive name for a software component. Then the Com-
ponent Object Model (COM) was introduced — and used two words in the name, component
and object, which are meant to denote completely different concepts. The associated compo-
nent runtime environment is called Microsoft Transaction Server (MTS), another misnomer,
since it does not handle transactions at all. It is a component runtime environment, and
delegates responsibility for transactions to the Distributed Transaction Controller (DTC).

Software Components

Microsoft’s component model was updated and the latest model, called COM+, was released
in 1998. This is an umbrella name for many different products making up this component
model. Having said this, it must be admitted that their component model is innovative and

mature, and if Microsoft has its way, will dominate the middleware component market.

2.4.3.1 Architecture

COM+
~
<
{ ActiveX

Load Balancing J

In Memory DB

Object Pooling OLE

Queued Components

New Event Model Y ~

[COM
J
[1\ N
DCOM
Translation Services ©
OLEDB LDAP
Admin
Services . Management Layer Services J Registry
| Security MSMQ MTS
-
Communication Services } _/
(. / - J

To make things clearer, a list can be given, illustrated in Figure 2.16, of the main

Microsoft Component Services [Raj99, TK98, RE98]:

e OLE — standard for compound document technology. The outer document acts as a
container, while the other data inside the document act as a server. The server either
embeds its data inside the document or links it — in which case the component will
remain in its own file, with just a link being maintained in the compound document.
Microsoft is not the sole vendor supporting this technology [Cha96]. The user of the
compound document can edit the embedded component where it is — called either

in-place activation or visual editing.

e OLE DB provides access to data in databases, files etc. It provides a set of classes

Figure 2.16: The COM Architecture [RE98]

Software Components 38

and interfaces which can be used by the developer to access the data which could be

in various different formats.

o ActiveX — refers to the integration of components in applications. Examples of this
are components used within web applications. ActiveX controls are generally used to
display some visible entity at the user interface. They also have special methods which
allow the client programmer to examine and set the values of certain properties which

probably have bearing on their appearance.

In addition, the ActiveX control also needs a mechanism which will allow it to com-
municate events to the client program. For this purpose the ActiveX control will have
methods which allow its container (client program) to register an interest in certain
events. When the event occurs, the ActiveX control will invoke a special method

within its container to signal the event.

e COM — the integration infrastructure, used to implement components that interact
either within a single address space, or between processes on the same host. It supports
OLE and ActiveX, and other Microsoft Services such as DirectX. COM can be said
to be the foundation on which all Microsoft’s component software is based [Szy98|.

It accesses.other COM objects via interface pointers, which allows data and process
encapsulation and transparent remoting. Its interfaces are immutable so an application

. with a pointer to an outdated interface will not fail because a new interfa_cé has been
added.

e DCOM — extends COM to enable processes on different machines to interact.

e MTS — the component runtime environment in which components live, which watches
requests coming into components and participates in processing them, providing se-
curity, automatic transaction management and a scaleable environment. The initial
Microsoft component runtime environment, MTS, combines components with TPM

capabilities.

e MS DTC — Distributed Transaction Coordinator which is very similar to CORBA’s
Object Transaction Service and which automatically handles distributed transactions.

e MSMQ — the asynchronous messaging capability which is somewhat similar to CORBA’s

dynamic invocation interface.

e LDAP — is an API which allows developers to access the registry. The registry stores
information about the location of components, the users and groups in the system,

passwords of those users, etc.

e Security Services — controls access to the system and the components a user can

access.

Software Components 39

e MS-RPC — is Microsoft’s software which supports remote procedure calls. It supports

DCOM'’s distributed processing functionality.

COM+ is a component software architecture that defines a binary standard for component
interoperability. This means that the component will always fit into the required system
correctly, since it is tailored to the underlying operating system. The components developed
for the other two environments do not satisfy this requirement. It is difficult to take a
CORBA component and plug it into another ORB, for example, and assume that everything
will execute as before. EJBs too, are plagued by vendor-specific extensions, which means
that an EJB developed using one type of EJB container will not necessarily fit into another
container and work as before. At the very least the developer will have to import a different

set of classes, and recompile in order to change containers.

2.4.3.2 Middle-Tier Architecture

The Microsoft compbnent runtime environment is called Microsoft Transaction Server (MTS).
It operates on an interception basis. Client requests will be intercepted so that the MTS

can carry out various administrative functions. The functions offered by. MTS are [RE98]:
e Administrative tasks such as monitoring transactions, performance etc.

e Resource management and pooling. This is essential for scalability and efficiency. For
example, the pooling of database connections saves a great deal of time when accessing
the database.

e Efficient triggering mechanisms — for example the “Just in Time” object activation.
e Support for asynchronous processing.

¢ Distributed Transaction Support. The MTS makes use of the Distributed Transaction
Coordinator (DTC) to handle distributed transactions. This ensures that transactions

which involve multiple data sources all commit, or all abort.

MTS currently only runs on Windows NT and 95. Services can be invoked from a browser,
but only if the web server runs on a Windows NT machine. Microsoft achieves scalability
by splitting data across machines and handling the distributed updates using MTS [RE98].
Unfortunately MTS does not support Database Management Systems (DBMSs) such as
Ingres, Sybase or Informix, and does not communicate with DBMSs on other platforms.

2.4.3.3 Example

To implement the example, two interfaces could be defined for CustomerComponent,
ICustomerl and ICustomer2, for the two groups of methods. COM objects can have mul-
tiple interfaces, so a new interface can simply be added when required. Administrators

Software Components 40

could be given access to both interfaces, and give end-user client programs access to only
the ICustomerl interface. This ensures that only the administrator can change client pass-
words. This means that each distinct feature of a component can have a separate interface.

The client programmer’s view of these interfaces is shown in 2.17.

| | Factory _O\

Server
Client ICustomer1 oot Object
jec
Wrapper —Q/
ICustomer2
Object
Wrapper

Figure 2.17: The COM Client View

2.4.4 Summary

Much has been said and written by. experts claiming the superiority of one or another of
these models. The table in Figure 2.18 summarises the basic differences and similarities
between the three models. This section attempts to provide an unbiased comparison.

CORBA, the oldest component model, provides connectivity between application com-
ponents, location transparency and many other middleware services such as naming, trans-
actions, events, security and life-cycle management. Many vendors are only just delivering
the implementations of the CORBA services. However, the CORBA specification does not
address services such as load balancing, database connection pooling, result caching and
failover. Consequently most of these features are not provided by most CORBA vendors.
Some CORBA vendors do provide proprietary extensions to implement these services, but
they are notoriously difficult to use [Dol98].

Many people criticise the Microsoft component model without really understanding it,
and often only because they disapprove of the parent company’s tactics. COM+ components
are often criticised because they are stateless. Microsoft counters that this makes their
middleware scaleable. COM+’s biggest disadvantage, the fact that it only runs on Windows
2000, has been turned to its advantage, because MTS is bundled with Microsoft’s operating
system. The other advantage is that it has been produced by the same company who made
the operating system [Cha98]. COM+ is also said to be easy to use, and it allows application

developers to use a number of languages, including Visual Basic, C++ and Java. On the

Software Components

COM+ EJB CORBA
Interfaces Many & Home and Remote Many
Immutable
Transactions Declarative Declarative API
Connection Declarative Declarative API
Pooling
Instance Declarative Declarative API
Management
Resource Declarative Declarative API
Sharing
Security Declarative Declarative API
and Programmatic
Link to CICS and IMS Via JDBC
Legacy
Applications
Link to Other CORBA CORBA Link to COM
Component Proposed
Models link to EJB
Component Windows 2000 Many Any
Platform IBM, some UNIX
Runtime Windows 2000 Many Any
Environment
Platform
Programming Visual Basic Java C, C++, Java
Language C++, Java Cobol, Ada
State Stateless Stateless or Stateful Stateful
Management
Naming Service No Yes Yes
(Component Instances)
Interface Microsoft IDL Java Code OMG IDL
Definition
Language
Exception No Yes Yes
Specification in
Interface Definition
Asynchronous Yes No Yes
Messaging

Figure 2.18: Differences and Similarities between the Component Models

Software Components 42

other hand, Windows is sometimes perceived to be less reliable than Solaris or HP/UX, and
is therefore less likely to be used for critical applications.

EJB, the newcomer, will be available on many platforms supporting Java, which means
that EJB-based application servers can run on big powerful systems as well as cheap Win-
dows systems. EJB also has some drawbacks. It fails to provide specifications for load
balancing, directory services, distributed security services, and does not indicate which wire
protocol should be used for controlling transactions. The EJB specification also allows
vendors to add extensions to the API [Cha98]. This could invalidate Sun’s claims of inter-
operability. Some people also feel that the restriction of only using Java could prove to be
too much of a limitation. Supporters of COM technologies point out that it is unrealistic to
expect one language to be all things to all people. They forget that COBOL did a pretty
good job of this for many years, and is still to be found in many running systems today.
Only time will tell whether Java will satisfy the needs of component developers to such an
extent that other component models will overtake COM.

So, what is the-conclusion? There is no winning component model. CORBA Version
3 provides a “ComponentlSpeciﬁcation” which, among other things, provides support for
a link to EJBs. It seems-as though the OMG and Sun are joining forces to give Microsoft
some much-needed competition. In choosing one of the three models, one has to take into
account the platforms that the application servers will be running on, the criticality of the
application, the programming language to be used, and the budget.

2.5 Component-Based Development

Component-Based Development (CBD) can be defined as:

the process of building systems by the combination, aggregation and integration

of pre-engineered and pre-tested software objects [Kar98]

thus providing a view of application development as an assembly process based on well-
defined pieces of functionality [Bro99]. The original developers of component-based sys-
tems using generalised components simply glued chosen components together in a visual
development environment. Unfortunately this only works for relatively small applications.
Sophisticated applications need to have an application architecture, which has been arrived
at in a new way, using a methodology matched to the special needs of component-based
systems [Cha97]. Section 2.5.1 will discuss the special needs of CBD. Section 2.5.2 considers
the possible sources of the component building blocks used in the CBD process, and Section
2.5.3 will enumerate the benefits that can be expected from this approach. Section 2.5.4

summarises this section.

Software Components 43

2.5.1 A Different Approach

CBD requires a new approach. Whereas traditional monolithic software development fol-
lowed the waterfall model, CBD needs an approach based on concurrency and evolution.
Where traditional software development builds systems from scratch, or produces the system
by modifying a previous system’s code, CBD composes systems from pre-built components
[Aoy98].

The creation of a software architecture for components will probably determine whether
the system will be successful or a headache for the maintenance team. Bassett [Bas99]
argues that there are two types of architectures in a CBD. The first set applies to runtime
components, and the second to the parts used to construct those components. Execution

architectures — for runtime components — can be divided into two layers:

1. Technical architecture layer — which technologies are used, how they fit together, and
how they should be used.

2. Application architecture layer — how the applications look and feel to the users and
how they should be broken up into modules.

. Component architectures specify how the component can be customised and how it should be
integrated into different contexts. Bassett contrasts execution and construction architectures
. by characterising an execution architecture as layering components to isolate independent
sources of functionality or data, while construction architectures layer parts of a component
to isolate independent sources of change. .

Because components are essentially objects that have “grown up”, object-oriented method-
ologies are easily -extended to CBD. The waterfall model of software development has been
rejected for CBS development, and the proposed methodologies suggest an approach based
on iteration, incremental delivery and overlapping phases [Got98]. Tools for CBD need to
support [BW98]:

e modelling of interfaces and component specifications;
e improved modelling for inter- and intracomponent dependencies;

e enabling component specifications to be developed independently of implementation

details;

e new component-development approaches based on object-oriented analysis and design

techniques.

Tools for CBD are beginning to appear. Some tools, such as Rational Corporation’s tool
which applies the Rational Unified Process method and ICON’s Catalysis are simply exten-
sions of their object-oriented tools. Other products such as Select’s Component Manager
and Sterling Software’s COOL:Spex have been developed specially for the needs of CBD
[BW98]. The latest tools support interface-based design as a key approach.

Software Components 44

2.5.2 Component Sources

Component-based development rests on the notion of being able to procure the required
components. It is necessary to distinguish between desktop components and middle-tier
components, since the markets for these are very different. The current market generally
caters for desktop components only — smart display-oriented components. Most of these
are COM components — reflecting the overwhelming number of Windows-based computers
on the desktop. Internet web-sites selling desktop components have sprung up over the last
few years. Examples of these are Components Online!* and ComponentSource!®.

There is, as yet, no equivalent market for business-logic type components. This could be
due to the lack of standards for component description. Terzis and Nixon [TN99] propose
a component trading facility which will support semantic trading within a community of
component traders. They advocate the inclusion of non-functional information in component
descriptions to engender and encourage component-oriented development.

Component buyers will have to ensure that support for the component will be available in
the foreseeable future, so that they will be safer buying from established vendors rather than
~one-man businesses. Some software companies, such as IBM, Oracle, Amdahl, Fujitsu and
‘Sterling Software offer :specialised component groups to corporations, and some companies,
such-as banks, are considering selling their own specialised componentis [Mac99]. '

There are problems related to buying components, however. Components will have to
be of ‘high: quality — or organisations will create their own and not bother to purchase
them. The required quality can only be achieved if the customers are able to match their
requirements to the stated capabilities of the components. Current p‘récti(‘:e merely lists
interfaces with informal descriptions [Szy98], which is simply inadequaté. Szyperski suggests
that an explicit and unambiguous link is required between the component interface and its
contractual specification to assist customers in choosing the correct components to meet their

needs. There are alternatives to purchasing components, such as [WD98, Cha99c, SW98|:

e Subscribe: pay a subscription to make use of a remote component, rather than de-
veloping or purchasing a component for use in-house. An example of this could be a

credit card validation facility.
e Modify: Develop a new component by altering an existing one.
e Wrap: Legacy components could be wrapped and used as components.

e Develop the component in-house and reuse it within the organisation. This is not as
straightforward as it might seem, since a whole new programming paradigm must be

introduced.

For example, components are far more coarsely grained than traditional objects. Al-
though the component’s methods can be invoked by the client program as if they

14www.components—online.com

15www.ComponentSource.com

http://www.components-online.com
http://www.ComponentSource.com

Software Components 45

were locally available, the application developer has to remember that the middle-tier
component could be located on another machine. Remote method invocations, while
giving the illusion of being local, have a substantial time penalty attached. Szyperski
points out that remote method invocations can be up to 10 000 times slower than lo-
cal method invocations [Szy98]. Thus the object-oriented approach, which encourages
the use of trivial methods like getName () and setName (), should not be supported
by middle-tier components, since their use will increase network traffic unacceptably,
and a significant performance penalty will be paid. To keep communication with the
(probably distributed) component to a minimum, the methods should be such that all
necessary information is conveyed together with a method invocation, and a significant

service carried out by the component as a consequence.

A group of component vendors have recently formed a body — called the Component Ven-
dors Consortium (CVC) which hopes to encourage the growth of a component market by de-
veloping standards of interoperability, documentation and technical support [Mac99]. This

might be an important step in building a substantial component market.

2.5.3 Benefits of Using Components

The potential benefits of the component-based approach include [Kar98, Rog99, All99,
Ses00]: .

e interoperability — this is one of the main reasons that components made such a big
impression in the first place. Components written in a variety of languages can work
together to accomplish a common goal, often making use of diverse platforms. Before
the advent of components, many organisations were reluctant to move over to object
orientation because they would have to retrain all their staff in object-oriented tech-
niques. Components can be developed in many languages, so the benefits of object
orientation can be enjoyed without the rigours of retraining.

e reusablity — the same component can be used by many applications throughout the
organisation, or sold to other organisations. Some organisations are already putting
incentives in place to encourage reuse [Bae98]. There are also proposals to wrap legacy
code and reuse it rather than re-develop. One of the greatest advantages of reusability
is that code is well tested and problems are ironed out by long periods of use. Thus
the product can be expected to be more reliable than code which is not intended for

reuse.

e control of complexity — components separate the implementation from the interface,
so that all actual implementation details are hidden. Components are also easy to
understand, so that their use is not restricted to technical communities but is extended

to business communities as well.

Software Components 46

e case of change — one component can be replaced by another, which implements the
same interface, with the minimum of fuss. So long as the component adheres to
the same “contract” published by the replaced component, the replacement will be
unnoticed. In this category benefits such as maintainability, clarity and accuracy can
also be included. This, in turn, leads to increased developer productivity due to a
component’s black-box design — the developer using the component does not need to

understand how things are done.

e the rapid development of highly customised applications — components can be ob-
tained from various sources to build an application, and customised to satisfy the

application’s particular requirements.

o application reliability — components should manage their own memory, resources and
error management, but some may delegate some of this responsibility to the underlying
operating system. Developers have to make provision for fewer of these issues, which

should increase reliability of the entire system.

o scalability — the component runtime environment has been developed to take this
responsibility, so that the component developer does not need to make provision for

it — it happens automatically.

e yersioning — some component models have built-in mechanisms which allow easy ver-
sioning of components. It is imperative that the holder of an interface to a component
not be disrupted should the component be replaced, or upgraded. The old interface
should still be supported, so that progress does not break existing applications.

These benefits, however, will not be automatically derived from making use of components.
The list merely gives a flavour of the tremendous potential benefits of using components.
Whether these benefits will be realised depends on many factors, such as the architecture
of the application, the design of the component container architecture, and the quality of

the available components.

2.5.4 Summary

It is worth reiterating what was said at the beginning of the chapter: software development
is just as complex as it ever was. Some developers advocate the use of methodologies, while
others feel that the “just build it” approach is better for projects with a short development
time. Adding complicating factors such as distribution, parallelism and asynchronism to
the software development process tends to make software development even more difficult.
It is hoped that components will make this process simpler, but it does seem as if the “one

best methodology” has yet to be found.

Software Components 47

2.6

Review

Components, while solving many problems, have introduced a new realm of complexity into

the lives of application developers. It is necessary to make an informed decision about

components, and this section attempts to give arguments both for, and against, the use of

components in systems development.

2.6.1 The good news about components

Software components have some advantages over object-orientation which will make software

development simpler and go beyond object-orientation by doing the following:

having interfaces which publish details about how to use the component, and specify

which errors could result from the usage;
reducing the scale of the unit to be produced by programmers;

having standard ways.of communicating with other components by means of method
invocations. Method invocations were used previously, but their use is more ubiquitous

since the advent of component technology.

providing a better means for characterising components by their functionality in the

application;
providing a viable means for harnessing the functionality of legacy systems; and

providing. a better delivery mechanism than objects [SW98]. Objects (on their own),
have never been reusable entities because they are often too tightly bound to other
objects within a particular system. Current practice shows the reuse of packages
of objects — the precursors of the current components. Components, however, can
be reused because of their qualities of independent deployment and explicit context

dependencies.

Many prominent people are firm in their belief that software components will be the way

that software is going to be built in the future [ND99]. It occurs to us to wonder why it has

taken thirty years for the revolution to happen. Reasons for this could be that:

It has only just become clear to the software industry how the runtime infrastructure
for these components should be built. The efforts of the members of the OMG, and
the innovations of companies such as Microsoft, have made the acceptance and use of

components possible, and financially accessible.

The networks and communications industry has worked hard on solving the problems
of communicating quickly and efficiently. This has made distributed applications the

Software Components 48

order of the day — with distribution ceasing to be a complicating factor. Once dis-
tributed systems became common, it was only logical for organisations to want to use
clusters of machines to load-balance, and they needed the capability to move software

around easily.

e Three prominent component architectures have emerged and are competing for cus-
tom. This can only be beneficial since they will learn from one another and develop

better products.

e The advent of the Web [WD98]. Components will be used to bridge thin Web clients

to the traditional mainframes in many organisations.

e The growing legacy system problem. The fact that these systems can conceivably be

wrapped and used as a system component is attractive.

Many organisations are throwing in their lot with component-based development [Bae98].
Large companies such as IBM and BEA are producing software to support the deployment
of components, and companies such as Rational, Sterling Software and Sybase are offering
component management tools to enable the development of component-based systems. This
would seem to indicate that components are not simply a nine-day wonder, but something

far more substantial.

2.6.2 . Reasons for cautious acceptance of components

- Even in the face of this progress, many organisations are not yet whole-heartedly embracing
the new world of components. Kiely [Kie98] maintains that this is due to the fact that
there are no standards for specifying component functionality and specific needs. There are
also questions about how components should be billed for. In view of the fact that they
are intended to be reused, component vendors might feel cheated at only receiving a single
payment for a widely used component. Perhaps the widely used licencing systems would
have to be engaged to bill clients on runtime usage of components. The cost of finding and
understanding components, and tailoring them to specific needs, might prove to be cost
ineffective.

Resistance to change could also be holding development teams back. Baer points out that
developers who were disappointed by CASE are understandably reluctant to embrace this
new panacea until it has proved itself [Bae98]. The other factor could be that management
generally does not reward reuse, preferring to reward quantity of newly created code rather
than reusable code [Gla98|.

Chappell [Cha99c] argues that reusable business logic is just too difficult to create. This
comes back to the point made in Section 2.1.1 about reusability minimising usage. The other
difficulty with respect to reusability is that business logic changes so fast that the effort put

into a truly reusable component might not pay off if the component is out of date in a

Software Components 49

matter of months. Most experts agree that the one big factor standing in the way of wider
acceptance of component-based development is a cultural one. It is undeniably difficult
for programmers to put faith in other people’s code, especially if this code happens to be
perceived to be inadequately tested. Programmers routinely use other people’s code when
they make use of libraries, operating systems, and DBMSs, but these are all extensively
used, and it can therefore be expected that any latent bugs will have been eliminated. If a
programmer does not have this sort of reassurance about code, they are usually reluctant
to trust it, and will rather rewrite it. The entire mind-set will have to be changed for
component-based development to become the order of the day. However, the fact that the
demand for new applications far exceeds the ability of programmers to supply this software
may mean that programmers will simply have to make the cultural shift to components.

2.7 Conclusion

Organisations can hardly afford to ignore this latest innovation. Chappell [Cha99c], while
expressing disappointment at the slow uptake of components, concludes that they are a
crucial part of software’s future. Many vendors have invested heavily in CORBA imple-
mentations, and many erstwhile TPM vendors have started marketing EJB Containers.
However, most of these organisations have other products which could pull them through
if component-based systems were to fail. COM+ however, is a critical and integral part of
Microsoft’s new Windows 2000 operating system. Microsoft therefore has-a vested interest
in making component-based development work [Ses99]. When Microsoft invests everything
in a technology it is.not going to go away. Component-based development is here to stay.

Having concluded this, it is necessary to acknowledge that component-based Systems
will, while solving a set of problems, create new anomalies. This dissertation considers
one anomaly, the provision of adequate feedback to end-users. Those characteristics of
components — their independent nature, third-party development and composition — which
make them such an attractive option, are the very characteristics which make the provision
of feedback to users more difficult.

Whereas feedback is a difficult problem to solve in any application, the distributed nature
of component-based systems adds a new dimension to this difficulty, since it opens up a
window of opportunity for a whole new range of possible errors. Application programmers
need to account for these errors, so that when they occur they will be reported to the user
in an understandable format.

In addition to this, it is necessary to consider the impact of everyday events such as
interruptions on a user’s application experience. If a system has not been designed with
such events in mind, it will tend to disadvantage the end-user if use of the application is
interrupted for an unspecified time period before resuming. All application user-interfaces
need to be designed with the end-user in mind, and this includes planning possible responses

to errors made by the user with great care. The following chapter takes a look at these

Software Components 50

events, which here are called quirks, and analyses their effect on the end-user. Chapter 4
then addresses the general question of feedback, and considers the role of feedback in coping

with quirks.

From then on, when anything went wrong with a computer,
we said it had bugs in it.

Rear Admiral Grace Murray Hopper, US Navy

on the removal of a bug two inches long from an experimental
computer at Harvard in 1945. (Time. 16 April 1984)

chapter 3

Quirks

The previous chapter introduced the concept of component-based systems, and concluded
by arguing that:

1. the distributed nature of these systems made error reporting, with respect to system
breakdowns, somewhat more difficult than for monolithic systems.

2. the possibility of interruptions should be taken into account when designing application

front-ends.
3. the reaction of the application to user errors should be planned with forethought.

These issues are even more important in component-based systems, due firstly to the fact
that the nature and experience of the end-user of these systems cannot be gauged as accu-
rately as is possible in monolithic systems; and secondly due to the diffuse nature of these
applications. This chapter thus introduces the concept of quirks, any occurrence which
interferes with the normal execution of a task. A quirk is defined in the Oxford English
Dictionary [SW89] as:

1. A sudden turn;

2. A trick or peculiarity in action or behaviour;

o1

Quirks 52

3. A sudden twist, turn or curve.

Section 3.1 will introduce the general notion of quirks, and Section 3.2 will provide a classi-
fication of quirks. Section 3.3 discusses the importance of quirks. Sections 3.4, 3.5 and 3.6
will describe the nature of each of the three types of events which cause quirks. Section 3.7

summarises the chapter.

3.1 Introduction

In executing a task, the user may take the direct route to proceed from beginning to end,
as shown in Figure 3.1, moving directly from the initial state | to the final state F upon
completion of the task. Using this direct path, with no detours on the way, is only one
possible way of proceeding. In reality, this is a simplistic and unrealistic view of the way

humans interact with computer applications.

o 0

I:Initial State
F: Final State Q
Q: Quirk

Figure 3.1: Initial and Final States in Task Execution

The execution of a task can be disrupted by a system breakdown, an error or an interruption
— what will be referred to as a quirk — indicated by node Q in Figure 3.1. Simon [Sim69]
points out that humans are basically serial in their operation, that they can process only
a few symbols at a time, and that these symbols must be held in a limited capacity area
(working memory) while they are being processed. Seen in this light it is not surprising that
quirks can be so troublesome.

It is useful to build up a model of what quirks are and how users are affected by them.
Simon [Sim69] states that a taxonomy can be seen as the first step in understanding a set
of phenomena. Many researchers have worked on each of these different aspects — errors,
interruptions and breakdowns — in isolation, but since there is often a commonality in the
user’s handling of each of these and in the effects on the user’s emotions and task completion,
it is useful to study them as forming part of group of similar concepts, as will be discussed

in the following section.

Quirks 53

3.2 Analysis of Quirks

The nature of these disruptive events will now be analysed to determine a commonality
in the user’s handling of the disruption. Jambon [Jam96] studied these issues and defined
singularities to encompass the concept of a federation of the detection of human errors and
interruptions, which can cause a user to suspend a task. Since the term “singularity” is
somewhat ambiguous and since the intention here is to incorporate all errors (both detected
and undetected) and also to include events such as system crashes, the term quirk will be

used to refer to:

- any event which causes the user to deviate in any way from the straightforward

User
Initiated
Interruption

Figure 3.2: Classification of Quirks

execution of a task.

System
Initiated
Interruption

Interruption

0

It

Figure 3.2 gives a classification of quirks, which are a superset of Jambon’s singulari-
ties. Quirks can be initiated either by the user, by the system, or by some external entity
(Other). An external entity can interrupt the user’s task processing by demanding attention
elsewhere. The user could make an error, or interrupt the process voluntarily. The system
could crash, or interrupt the process. Quirks are indicated by the node labeled Q in Figure
3.1. It is possible that more than one quirk will interfere with a user’s execution of a task,
hence the recursive arrow. The presence of a quirk could cause the system to end up in
any of a number of different states, depending on the user’s handling of the quirk. These
different states will be explained in detail further on. The different types of quirks can be

placed into one of three distinct categories:
1. breakdown — signaling a problem with some part of the distributed application;
2. human error;

3. interruption — this includes things such as external interruptions, user-initiated in-

terruptions and system-initiated interruptions.

Quirks 54

Before describing each of these quirks in detail, the following section will consider the ques-

tion of why quirks are worthy of consideration.

3.3 Why Quirks are Important

Quirks are not merely an irritating fact of life, and should not be perceived to be purely a
negative occurrence. Humans can only concentrate for limited periods before their brains
become incapable of continuing without rest. Quirks can therefore be beneficial in increasing
effectiveness and productivity by giving the user a rest. Research shows that certain types
of quirks can raise worker stress and in some cases affect the health of workers. Quirks are
worthy of some attention, because the extent to which the system designer develops the
system with possible disruptions in mind will contribute to the usability of the system.

The critical point to consider is that a user who is busy with some activity builds up a
context [Cyp86]. The context is a rich mental environment that stores all sorts of information
built up during the time spent using that particular system to execute that particular task.
Cypher points out that even a momentary distraction will cause this mental context to
collapse. Czerwinski et al. [CCS91] have shown that advance warning of an interruption
will enable the person to remember the context more effectively, and thus enable easier
- resumption of the interrupted task. People receiving unanticipated interruptiohs will tend
to struggle more to re-establish their context upon resumption of their task.

Whereas quirks can have an effect on any user regardless of experience, the problem
tends to be rather more serious for novice users. Novice users often expefience a feeling of
lack of control, fear and pressure when they have to use a computer or new application for
the first time. Torkzadeh and Angulo [TA92] discuss the prevalence of computer anxiety
amongst workers who first encounter computer technology. They point out that whilst com-
puters have the potential for increasing productivity, reducing costs and gaining competitive
advantage for an organisation, these advantages are not always actually realised for the em- -
ployees. Users with the least computer experience have the most problems with computer
anxiety. These feelings can only be exaggerated by error messages which the novice user
often has no chance of interpreting correctly, let alone using to aid recovery.

Perry et al. [PSV94] found that a group of software developers spent 75 minutes per day,
on average, in unplanned interpersonal interactions which makes these interruptions more
common than might have been envisaged. Computer applications also build up contexts over
time and could lose this context if suspended — unless the designer takes the possibility of
a disruption into account when developing the system.

Brodbeck et al. [BZPF93] observed users handling errors when working with office
computers. They observed negative emotional reactions such as anger, frustration and
tension. Their findings are shown in Table 3.1. It is obvious from this table that reducing
the time users need to spend handling an error can reduce negative feelings and lower stress

levels.

Quirks 55

Error Handling Time | Number of Errors %Errors with
Negative Reaction
Immediately 608 7.6
< 2 Minutes 330 15.5
< 5 Minutes 127 33.9
< 10 Minutes 11 36.4
> 10 Minutes 28 57.1

Table 3.1: Negative Emotions [BZPF93]

Fogg and Nass [FN97] argue that the rule of reciprocity, which exists in all cultures,
also applies to human-computer interactions. As a consequence of this, users will tend to
“help” computers that have previously helped them and retaliate against computers that
have performed poorly. The frequent occurrence of errors would therefore tend to have far
more long-term effects than merely the time spent in repairing the error would suggest.

Problems experienced with using computers have other negative effects on end-users.
Studies by Yang and Carayon [YC93] have conclusively linked slow responses, breakdowns
and insufficient information to increased worker stress. Schleifer and Amick [SA89] found
that end-users became impatient and frustrated as a result of slow response times. End-
users’ health can also be affected, as shown in a study by Johansson and Aronsson [JA84]
where a four hour breakdown was shown to cause an increase in blood preséure and adrenaline
excretion. Lindstrom [Lin91] studied the effects of breakdowns and slow response times in
office employees and found that they could be linked to excessive fatigue and nervoﬁsness.
Waern [Wae89] cites research that has shown a connection between stress, dissatisfaction
and frequent breakdowns.

There are also occasions when quirks have positive effects [Jam00, OF95]. One can
hardly conceive of the fire alarm signaling a fire as a negative interruption'. Some system-
initiated quirks are also helpful to the user. A virus warning is preferable to an undetected
virus while a message informing the user of some event of interest can also be positive. We
must therefore conclude that quirks are a fact of life and it is as well if they are accepted
with equanimity and catered for by the application system.

It is necessary to understand quirks if one is to support the user when dealing with them.
A categorisation of quirks has therefore been devised, in which they have been split into
three broad categories — breakdowns, human error and interruptions. Breakdowns will be
discussed in Section 3.4, human error will be discussed in Section 3.5 and interruptions will
be described in Section 3.6.

!Fire alarm practice runs irritate and interrupt, but the benefit is so obvious that they, too, are positive

quirks.

Quirks 56

3.4 System Crashes and Breakdowns

The collapse of some part of the computing system will be referred to as a breakdown.
Eldridge and Newman [EN96] studied the impact of technology failures on work. They
identified so-called “agenda benders” — the effects of technology breakdowns which led
to important activities not being completed on time. They found that the negative effect
of an agenda bender, due to time lost in dealing with it, was exacerbated by the damage
done to the rest of the day’s activities. There was another knock-on effect, in which one
person’s technological problem had an effect on other people’s agendas. They conclude that
unreliable technology has a significant effect on work done during the day.

The rest of this section will address breakdown issues in three-tier systems. The type of

problems which can be classified as breakdowns are a failure of (shown in Figure 3.3):

Client Client Client Client
Application Application Application Application

3

OO
pplicatiol .
Server

00
Application
Server

090
Application
' Server

o & e

Database Database Database Database

090
- Application
Server

Figure 3.3: Breakdown Location

1. the user’s computer. This would include moderate to critical failures — either of some

application or of the whole computer.
2. the network. Networks can be affected by the following failures [Mul93]:

(a) Crash — a faulty link stops transporting messages, but before stopping it behaved

correctly.
(b) Omission — a faulty link loses messages.

(c) Arbitrary — a faulty link exhibits strange behaviour, perhaps generating too

many messages or damaging messages.

Quirks 57

(d) Timing — characterised by messages being sent either faster or slower than ex-

pected.
3. the application server —

(a) failure of the server host, or

(b) failure of the server housing the server component.

4. the data store being used. Since the application is completely separated from the data
store by the middle tier, this type of failure will present as a failure of the previous

type.

In the case of the end-user computer crashing, the user is generally left with little choice
about how to handle the situation or doubt of its severity. After a crash, the user generally
ends up in state IR shown in Figure 3.4 — the initial state reinstated after a recovery. This
is not the same as the initial state |, since any application state built up before the crash

will be lost and the user’s context has been modified by the lost work.

I: Initial State
IR: Initial State after Recovery

F: Final State
Q: Quirk

Figure 3.4: States in Task Execution, including state IR

In the case of a breakdown of the other computers involved in the distributed system or
of the network, things become more difficult. The failure of some section of the system will
mostly manifest itself by the reporting of an error by the end-user application. Sometimes
the user will simply be faced with a lack of response from the computer, which could indicate
a breakdown, but which could also conceivably simply be a symptom of an overloaded
network. After a certain time period, the user will detect the problem and assume that
the application has crashed. The rest of this section will therefore address the effects of
breakdowns on the user — whatever their source.

The handling and effects of possible breakdowns can be classified on three axes — eztent,
time taken to recover and assistance required [Jam00]. The resulting graph is shown in Figure
3.5.

Quirks. .58

~j -~ .0 intervention

App

- - advice

Threai none.
< 1min <10min >10min
Time

Assistance
Required

Figure 3.5: Classification of Breakdowns

Each of the axes will be explained in turn. The planes of the Y axis (labeled Extent), as

shown in Figure 3.6, refer to the severity of the breakdown which is one of:

1. moderate — where the user’s immediate process is disrupted. This is typically the

failure of an application thread.
2. severe — where the user’s entire task is disrupted. This is the failure of the application.

3. chronic — where the entire end-user computer crashes and no work can be done.

If the probability of each of these combinations is considered, the realistic planes become
those shown in Figure 3.7. This is because a computer failure cannot realistically be resolved
in less than 10 minutes and an application failure cannot be rectified in less than one minute.
Intervention cannot realistically occur in less than 10 minutes, since presumably the user
would have to summon assistance.

The X axis, labeled Time, refers to the time taken for the user to recover from the
breakdown. This axis has three possible values, linked to the recovery from the disruption
of the user’s task. The values have been split up into the values of < 1 minute, < 10
minutes and > 10 minutes. This is due to the findings listed in Table 3.1, which show a
sharp increase in negative emotions when longer than 10 minutes is spentin resolving an
error. The different planes are shown in Figure 3.8. A more realistic viewof the situation
leads to the planes shown in Figure 3.9, due to the same arguments which limited the Extent

planes.

Quirks.

Computer

App

Thread

Assistance,
Required/

Computer

App

Thread

Assistance,
Required/

advice
none.
< 1min <10min >10min
Time
Figure 3.6: Extent Planes
advice
none.
< 1min <10min >10min
Time

Figure 3.7: Realistic Extent Planes

) intervention

intervention

.59

Quirks. .60

Computer
intervention
App
advice
Thread none.
) < 1min <10min >10min
Assistance, Ti
Required/ ime
Figure 3.8: Time to Recover Planes
Computer
j intervention
App
advice
Thread none.
. < 1min <10min >10min
Assistance. Ti
Required/ ime

Figure 3.9: Realistic Time to Recover Planes

Computer

intervention

App
J 1 advice
Thread none.
: < 1min <10min >10min
Assistance- .
Required/ Time
Figure 3.10: Assistance Planes
Computer
intervention
X App
J' advice
Thread none
. < 1min <10mm >10min
Assistance

Required Time

Figure 3.11: Realistic Assistance Planes

Quirks. .62

The Z axis, labeled Assistance Required — shown in Figure 3.10 — has three possible

values:

1. The user will sometimes be able to handle the recovery from a breakdown — linked

to value none.

2. The user may telephone someone for advice, or consult a manual linked to the value

advice.
3. When all else fails, the user may have to request intervention from a specialist.

Once again the planes can be limited as shown in Figure 3.11. It is simply not possible to
get advice or assistance in less than a minute and intervention will probably take longer

than 10 minutes to summon.

Computer Q- #
A intervention
App
<Y advice
Threat none.

. < 1min <10min >10min
Assistance Ti
Required/ ime

Figure 3.12: Classification of Probable Breakdowns

When all these restrictions are taken into account, the classification graph is reduced to
the one shown in Figure 3.12. The obvious conclusion to be drawn from this graph is no
surprise. The summoning of assistance from a specialist should be minimised so that the
user’s problem can be solved in the fastest possible time, thereby improving productivity
and minimising stress. It is also obvious from the graph that breakdowns are almost certain

to lead to negative emotions2, something to which any computer user can attest.

“Since they will probably take longer than 10 minutes to resolve.

Quirks. 63

3.5 Human Error

Using a new computer application for the first time can be intimidating. This is especially
true for non-technical people, but even applies to sophisticated users. The application
developer faces an initial hurdle of getting people to use their application for long enough to
overcome this initial period of uncertainty. Even after this period, it is possible for people
to be put off by inadequate documentation or by the software overwhelming them with
complexity [Bor91].

These problems are exacerbated when an error occurs. Errors are exasperating for novice
users, but even expert users are not immune. FErrors are always unexpected. The user is
expecting to continue with the task, but now they are confronted with an error message
which will require a completely different reaction. Surveys of computer use by expert users
show that up to 10% of working time is spent handling errors [BZPF93]. Around 11% of
successfully handled errors required external support. Errors are expensive in both human
and economic terms. They contribute towards stress, interrupt the user’s train of thought
and can lead to negative emotions [ZBF192]. The following sections will discuss issues

pertaining to error handling.

3.5.1 The Nature of Error

The way error situations are handled is critical for usability. In the first place the user will
probably need help in detecting and understanding the error; and, secondly, will probably
not be able to continue using the system until the error situation has been resolved. -

It is necessary to understand the nature of error, if there is to be any hope of providing
help in dealing with the results of such errors. The next section discusses the types of
error, while the following sections deal with the consequences of such errors. The following
discussion draws heavily on the book on human error by James Reason [Rea90]. Reason
considers the notion of errors in relation to intentions, since any attempt at defining human
error must start with a consideration of the varieties of intention. Intention comprises two

elements:
1. an expression of the end-state to be attained (the goal), and

2. an indication of the means by which it is to be achieved (the plan) in terms of one or

more control statements (actions).

Once an intention has been formed and a plan formalised, the actions to achieve the intention
are stored in memory and ezecuted. Each of these cognitive stages (planning, storage and
execution), has a related error type. Another way of looking at it is to identify errors which
result from intended or unintended actions, the former being mistakes, the latter either slips
or lapses. Mistakes are often referred to as planning errors, lapses as storage errors and slips

as execution failures. These concepts are illustrated in Table 3.2.

Quirks 64

Cognitive Stage | Error Type | Action Type
Intention
Plan Mistake Intentional
Storage Lapse Unintentional
Execution Slip

Table 3.2: Error Types and Cognition

Slips are characterised by actions which differ from intentions. Slips are usually detected
quickly since the state of the system is not what the user intended. The plan is usually
correct, but the action fails to be executed correctly.

Lapses are due to a failure of working memory and short-term memory. Lapses include
[Rea87a] forgetting list items, forgetting intentions, and losing track of previous intentions.

Mistakes are due to errors of judgement and reasoning errors [Rea87a]. Mistakes can be
further classified according to the rationality that underlies them [Rea87b]. This classifica-
tion relies on the notion that all human actions are governed by an interplay between the

attentional and schematic modes of control:

e The attentional mode is a problem solving mode of control and is good at coping with

novel situations but is limited, slow and laborious.

e The schematic mode of control makes use of inner “patterns” of action to handle
situations for which a person has previously worked out a solution. The schematic
database has no known limits and holds a vast number of “action patterns”, each one

of which fits a particular aspect of the world or skill the person has mastered.

Reason describes these schemata as large grain size action plans which are stored and which
can be instantly retrieved for use. Kitajima and Polsen [KP95] contend that rather than a
stored action sequence, the “stored” skills amassed by a person give the brain the ability to
generate action sequences very quickly without conscious effort.

Whatever the mechanism, we can take it that there is a large body of knowledge at
a person’s disposal, which represents those tasks the person has mastered. This body
of knowledge makes up a set of skills which can be used to carry out tasks and process
information rapidly and in parallel without conscious thought.

As mentioned in the beginning of this section, the previous discussion of human error
relied heavily on James Reason’s analysis of human error as related to actions resulting
from intentions. There is another perspective, not considered by his approach, which takes
account of the fact that some actions may not be prompted by intentions but rather in-
fluenced by learned and subconscious behaviour. In stark contrast to the intention-based
mode of operation is the undeniable fact that people often have subconscious reasons for
their actions, and since the rationale behind their actions is often a mystery to the person

Quirks 65

him or herself, let alone to others, they will often be at a loss as to the cause of the errors

they will make as a result of learned or subconscious behaviour.

3.5.2 Performance Levels and Likelihood of Errors

Experts and novices make different types of errors because they are functioning at differ-
ent cognitive levels. New users of a system typically have to invest a great deal of effort
and thought into discovering how the system works. They have no internal “pattern” for
achieving goals using the system. During this discovery period, they are essentially in a
problem solving mode, which involves frequent decision-making episodes. When the user
has learnt how to use the system and is a frequent and expert user of the system, many of
the sets of actions required to achieve certain goals have become “automatic” and require
little thought.

The artificial intelligence branch of computer science is based on the existence of under-
lying plans influencing user actions. An alternative view is that action is inherently situated
— with plans having a limited prescriptive affect on user actions [Suc87]. The situated
action view is that users react to their circumstances, with an objective in mind, rather
than slavishly following some set of plans. This would appear to describe the nature of a
novice’s use of an application, whereas the expert’s mode of working mlght be more aligned
to Miller’s plan-based mode of action [MGP60).

It should also be borne in.mind that a user may be an expert at using some parts of a
system and yet be a complete novice with features not used before. Thus it is not sensible
to classify any user as wholly novice or wholly expert, but better to consider any user as
ranging between these two extremes at any time during their use of the system.

During a study of 198 workers at 11 German companies conducted by Zapf et al.
[ZBF192] it was shown that experts committed many more habit errors than novices. Zapf’s
study proves that the nature of user errors changes and the help required by the expert user
is consequently very different from the help required by the novice. Another study done by
Kitajima and Polson has shown that slips are most often made by expert users and error
rates for experienced users are found to be as high as 20% [KP95]. They are caused by
the highly practiced, automated behaviour of the expert with the resulting lack of focused
attention leading to a slip [LN86].

In the light of this, it would be beneficial to consider the error handling requirements of
expert and novice users separately by seeing them as functioning at different performance
levels [Ras87b, Ras87al:

e The expert is engaged in a routine activity and the performance of an action requires
successful retrieval from long-term memory. This retrieval is fallible and restricted by
factors such as resource limitations and misperceptions. This results in errors, hence
the high error rate for experts. The expert functions at Rasmussen’s skill-based(SB)
level. Activity at this level is controlled by know-how and stored automated schemata,

Quirks 66

or rules. The conscious mind is often busy with other thoughts. Slips and lapses are

generally made at this level.

e The novice user could be seen to be engaged in a problem-solving activity. The novice
is trying to discover, by exploration, what the system does and this knowledge will
be hard to acquire and difficult to attain [KP95]. The errors made by the novice
user will therefore be due to a lack of knowledge about the underlying system. These
users function at Rasmussen’s rule-based(RB) or knowledge-based(KB) level. Rules or
procedures are derived empirically during the use of a computer system. These rules
are stored and while a user is using a system, information coming in will be seen as
a signal, which serves to activate some predetermined rule. Mistakes made at this
level, such as activating the incorrect rule, are called rule-based mistakes. If no rule
fits, the user proceeds to the knowledge-based level. During unfamiliar situations,
when no internal rule can be found to fit the situation, the person needs to develop a
specific plan. Various plans are formulated and their effects tested against the goal,
either conceptually or physically. Errors made at this level are called knowledge-based

maistakes.

When a user is trained in a particular task, control moves from the knowledge-based or
rule-based levels towards the skill-based level as the user becomes familiar with the systerm.
The causes of mistakes made by the novice user are illustrated in Figure 3.13. The novice

user is pulled by various forces:

e A: The rational thought processes, cognitively exhausting but capable of problem

solving.
e R: The rules stored within the schematic database.
e E: Signals from the environment.

When the user is unable to deal with the forces coming from A, E and R concurrently,
mistakes of bounded rationality occur. When the forces from A and R become confusing
and the user veers between them, mistakes of reluctant rationality occur. When the wrong

rule is retrieved from the schematic database, mistakes of imperfect rationality occur.

3.5.3 Detecting Errors

Detecting an error is the first step towards recovery. Mistakes are generally more subtle,
complex and difficult to detect than slips. Slips are easier to detect because the action did
not match the intention. Detection usually occurs as a result of comparing the outcome with
the intention. Waern [Wae89] argues that user perception of performance is often defective
due to inadequate feedback, or because the feedback is difficult to process.

After a mistake, the outcome matches the intention [LN86]. This means that it is

hard to detect the error due to overconfidence, with the user using intelligence to explain

Quirks 67

Mistakes of bounded rationality

mistakes of
imperfect rationality

Mistakes of
reluctant rationality

o @

@ @ Schemata
®

Attentional

(Knowledge Based Level)

(Rule Based Level)

Figure 3.13: Shifts in Control causing Mistakes

away unusual occurrences thus failing to register the presence of an error. Overconfidence
is caused by the person looking mainly for positive evidence of correctness. In research
cited by Waern [Wae89], users were found to be better at detecting errors when they were
diréctly instructed to look for negative evidence. Zakay [Zak92] has shown that immediate
computerised feedback reduces this overconfidence level.

Errors are typically detected in three different ways: by self-monitoring; by some mis-
match between what the user thinks the state of the system should be and what it seems to
be; or by someone else pointing out the error. These all rely on some feedback mechanism
— either by the computer or by some other means, allowing the user to compare what is
expected with what has occurred.

A study of error detection during problem solving was carried out by Allwood [AM82].
Problem solving here is used as a blanket term including reasoning, judgement, diagnosis
and decision making. Allwood instructed subjects to check completed work after finishing
a task and found that the results of checking were either positive (satisfaction) or negative
evaluation. Error detection occured during negative evaluation and involved two stages:
triggering error detection, and taking steps to discover and correct the error. Negative
evaluation was found to be of three types:

o standard check (SC): the subject simply decided to check their progress;

o direct error-hypotheses formation (DEH): triggered by a detection of a presumed error.

Quirks 68

This implies actual detection of the error.

e error suspicion (ES): when the subject noticed something unusual and suspects an
error. This suspicion does not imply actual detection of the error — merely a suspicion

of error.

Once again the stored schemata come into play. Errors may be detected due to a mismatch
between a stored representation and the currently observed error [Rea90]. On the other
hand, the detection may be triggered by the subject’s general expectations. The results of

Allwood’s study can be summarised as follows [Rea90]:
e Subjects had difficulty reacting to the effects of their errors.

e Among the types of evaluation mentioned above, DEH and ES occurred most fre-

quently.

e Slips were detected far more readily than mistakes and most of the slips were detected
by DEH episodes.

e The chance of successful error detection occurring during ES episodes decreased with
the time elapsed between the error and the episode. This effect was noticed more with

slips than with mistakes.

These findings suggest that improving the likelihood of error detection is by no means easy
to achieve. - Studies.to' measure error detection (full details in [Reagf)], ch.” 6) show that
detection rates are 86.1% for skill-based ‘errors, 73.2% for rule based errors and 70.5% for
knowledge-based errors. The relative proportions of error types were 60.7% for skill-based
errors, 27.1% for rule-based errors and 11.3% for knowledge based errors. This should not
be misinterpreted to mean that KB errors occur least often, since it should be borne in mind
that SB errors occur in the SB and RB levels, and that SB and RB errors occur at the KB
level too [Rea90].

3.5.4 Enabling User Understanding of Error

Error reporting is far more effective if it is context sensitive. Hammond [Ham87] points out
that interpretation of unfamiliar information makes heavy demands on working memory. An
error message can be seen as an unfamiliar situation — at least to new users of a system.
Thus it is to be expected that the user will be extremely likely to forget exactly what was
being done prior to the error situation.

Most systems react to errors by generating error messages, but error messages are not
necessarily the solution to the problem. The difficulty with error messages is well known,
for instance [LIN86, Nie93}:

e The format and tone of the error message is often offensive.

Quirks 69

e The messages will often make people believe they have committed some serious error

and that they are incompetent.

e Messages sometimes supply insufficient information and the user often does not know

how to recover from the error.
e Messages often give obscure codes, instead of using understandable language.

It is important to remember that different users have different needs for error feedback —

enabling understanding of error [MNG87]:

e Expert users often only need to be alerted to the fact that an error has occurred and
to the location of the problem. Telling them the nature of the error is not important,

since they can usually work this out for themselves.
e Frequent users, on the other hand, need to be told the nature of the error.
e Novice users need full explanations.

Understanding errors which result from learned or subconscious behaviour is far more dif-
ficult. The action which resulted in the error was automatic and ‘the user may not have
been fully aware of the action which caused the error. The user will probably need to be
reminded of the preceding action, and then be given explanations in line with his or her

experience.

3.5.5 Recovering from Error

Sometimes it is impossible to recover from an error. This is especially true of breakdowns.
It is important that the user knows whether trying to recover is simply a waste of time.

The occurrence of a user error can cause the system to enter a number of states, as
illustrated by Figure 3.14. There is a need to distinguish between system detection of an
error and user detection of an error. This typifies the so-called “gulf of evaluation” [Nor86].
The width of this gulf is determined by the quality of the feedback in the user interface.
(More about this in Chapter 4)

System Detection. If a user submits some input for a system to act upon, the system
could detect an error and abort the action. The system needs to inform the user of the
error with the success of the notification depending on the quality of the feedback and
on whether the user is concentrating on the system at the time. If the user ignores
or misses this notification and continues working, the gulf of evaluation has become

wider and future actions will possibly be affected by this misunderstanding.

If the user does indeed realise that an error has occurred, either a decision can be
made to abort the task — ending up at state IA (Initial State after an Abort) shown
in Figure 3.15 — or to correct the input and continue working. Since the error was

Quirks.
ERROR
OCCURRENCE
ZONE
invalid valid but
input incorrect
input
SYSTEM ERROR
Error No Error ESLECTION
Message Message
inadequate
feedback i
adequate delay
feedback HUMAN ERROR
R tNQ{ DETECTION
etection ZONE
) Delayed
Detection Detection
Perfect Imperfect
Forward Forward
Recovery Recovery
~ RECOVERY
ZONE
S Compensating
- Abandon Actions
. Continue Approaching Approaching
(A FU FR
Figure 3.14: Analysis of an Error Occurrence
I =\ F

I: Initial State

IA: Initial State after Abort

IR: Initial State after Recovery

F: Final State

FR: Final State after Forward Recovery
FU: Final State after an Undetected Error
Q: Quirk

Figure 3.15: All Possible States in Task Execution

70

Quirks 71

detected by the system, the effects of this error are not critical and the consistency of

any underlying data store will not be compromised.

User Detection. If the user provides input to the system which is valid but not what
they intended, the system has no way of realising that this is a mistake on the part
of the user and accepts the input. The input will thus be processed and changes will
possibly be made in one or more underlying data stores as a result. If the user were to
discover the error, as a result of its effect, a decision could be made to supply inputs
to the application which compensate for the error. The user could continue to work
on the task in hand, but the final state will not be state F, but rather state FR, since
another user could have made use of the incorrect information between the erroneous
action and the compensation. If the user does not realise that an error has been made,
then the gulf of evaluation, which has just become wider, needs to be bridged in order
for the user to realise that an error has been made. The system is now in state FU,
since the state of the system is not what the user intends and the consistency of the

underlying data store has possibly been compromised.

Users sometimes do not realise that data was not useful till an indefinitely long time
after the event. People also change their ideas about what was correct or incorrect over
a period of time. People’s memories are also notoriously inconsistent, even shortly after
an event has taken place. The vastly differing eye-witness accounts of accidents are a
well-known occurrence, indicating that people’s perceptions of the same event are often
coloured by inherent, subconscious factors beyond their control. In other words, the
user may misremember inputs provided to an application, and accuse the “computer”
of causing an error. The user may think that the inputs provided are correct, and only
realise later, perhaps after speaking to a colleague, that he or she could possible have
provided incorrect inputs to the application. It is often very difficult for users to check
up on their actual inputs and interaction with an application once the application
has terminated. It is also quite common for users to change their minds about the

correctness of their actions over a period of time.

Application errors have purposely been omitted. These errors leave the application in an
anomalous state and the user has no defence against them. They are not represented in the
state diagram since they are almost impossible for the user to recover from.

The effects of user errors could accumulate, affecting the eventual recovery process and
the error handling time, and exacerbating long-term effects of the error. The more unre-
solved errors in the system, the more time and effort will be taken to restore the system to
the correct state.

Different types of errors occur for different reasons, because of failures at different cog-
nitive levels. It is logical that the recovery needs are different too [BZPF93|.

e In non-transactional systems, the undo function will work admirably for slips and

lapses, for which the user is not exactly sure about what happened. As has been

Quirks 72

explained, this is probably not an option in transaction systems. If the system de-
tected the error, undo is not really necessary since the database has been unaffected
by the error. If the system did not detect the error, undo is also not an option, unless
the computer system is “intelligent” enough to generate a compensating transaction
automatically. Thus, in a transactional system, errors such as slips, which are tradi-
tionally easy to recover from, become far more difficult to manage. This is because
users realise that something went wrong, but have no idea what, since their actions

did not match their intentions.

Recovering from mistakes — rule-based and knowledge-based errors require complex
actions compelling the user to go back through some actions to recover [BZPF93].
Users will often realise that something is amiss with their reasoning, or method of
achieving the goal, but are at a loss as to how to go about recovering. Users, especially
novices but occasionally also experts, will need external assistance to recover from such

€rrors.

Knowledge activation and transformation are the crucial points which support the human

error handling process [RPMB96]. Rizzo et al. argue that most mistakes depend on the mis-

activation, conscious or unconscious, of knowledge. They further aver that error handling is

the process of supporting the activation of relevant knowledge by modulating the conditions

in which tasks are performed. It remains to be seen whether the mere re-activation of

-this knowledge and explanation of the effects of the error suffices to facilitate effective error

recovery. Rizzo et al. propose the following guidelines for supporting the handling of human
errors [RPMBY6]: '

1.

Make the action perceptible — by this is meant that designers should make the match

between action and outcome more obvious.

Display the error message at a high level — messages should be displayed at the user’s
level of understanding, with the possibility of getting more detailed messages should

they be required.

. Provide an activity log — thus supplying people with an external memory aid.

. Allow comparisons — the user must be assisted in comparing the state with other,

perhaps intended, states.

Make the action result available to user evaluation — this needs to be achieved as soon
as possible. This aspect coincides with the discussion on feedback in the following
chapter, which stresses that the feedback should provide aspects relevant to the task

just performed.

Provide result explanations — the best way to provide error diagnosis is to give specific
answers to the user. The user should not be overwhelmed by reams of explanations.

Quirks 73

The user should only be given a high-level message, with further details available upon

request.

3.5.6 Summary

This section has discussed human errors, their nature, their occurrence, their effects and
issues with respect to user recovery from errors. Errors will be handled in the course of
task execution and can be considered to be part and parcel of the task execution albeit
an unpleasant or unexpected one. Error recovery can be likened to a “repair” effect often
encountered in conversation. Listeners will give negative feedback if they either do not
understand, or are not satisfied with what the speaker is saying. The speaker will then

attempt a repair and get the conversation back on course.

3.6 Interruptions

Interruptions pervade our 21st Century lives. Telephones ring, people pop into the office
and email continuously demands ta be read and answered. Sometimes ini:e’rruptions happen
concurrently — for example, the telephone often rings just as you'are about to answer the
door. Often.people feel that one 'interruption follows on from the pr'evio'us one, leaving
them no time to finish what they were doing. Humans routinely handle up to five activities
simultancously, and with ease, by interleaving them. Cypher [Cyp86] maintains that they do
this by linearising — organising the parallel activities into a single linear stream of actions.
Humans are very good at this — we have all seen evidence of this while watching someone
cook a meal. The coordination of the various different activities, often while holding a
conversation, is ample evidence of the versatility of the human race.

This interleaving of activities could be voluntary — such as when we decide that we do
not want to wait for something to finish, and switch to another activity — or involuntary
when, for example, the phone rings and has to be answered. In Section 3.3, the context
which a user builds up during an activity was mentioned. In order for a computer system to
support the user in linearising of multiple activities, it is essential that the user be provided
with some sort of memory aid. This should keep the activity visible and provide a way for
the user to “pick up the threads” as quickly as possible upon resuming an activity.

Care should be taken that the memory aid itself should not be distracting or clutter
up the display. There is a continuous trade-off between providing the user with external
memory aids and the limitations of working space [MN86).

Interruptions are common in the field of operating systems, with the definition of an
interrupt being “events which modify the normal course of the execution of a program”
[Kra88]. This definition could apply to errors and exceptions too, so it would be better to
narrow down the definition a little. For the purpose of this discussion we will define an

interrupt as being:

Quirks. 74

events, not caused by an error on the part of the user, which modify the normal

course of execution of a task by a specific user using an application program.

3.6.1 Nature of Interruptions

A user in the process of using an application to carry out a task can be interrupted either by
the application itself communicating some problem to be solved; or by something external
to the application. This is illustrated in Figure 3.16. Each of these broad categories will be

considered in turn.

Interruption
External to Application
Application Specific
System User Processing Communication
. Other -
Initiated Initiated Exception sAException
Another Operating)))
Application System Distractions Miscellaneous
Nature of
Environment Temporal Gap External Event Memory Periodic Action Activity

Figure 3.16: Classification of Interruptions

Application-Specific

This class of interruption will be split up into two distinct types: processing exceptions,
and communication exceptions. These are different in that processing exceptions refer to
exceptions generated by the application within itself, which have nothing to do with any
communication with other parts of a distributed system. Communication exceptions, on
the other hand, are received from some external entity. Since we are considering distributed
component-based systems, this would indicate the failure of a global method invocation.
The failure of a global method invocation will possibly indicate that the user needs to redo
part or all of the actions which led to the method invocations. Note that breakdowns in the

middleware or network are covered by the breakdown classification.

Quirks 75

Application-External

This type of interruption could either come from the user’s environment (external), or the
user (internal). External interruptions come from our environment, while internal interrup-
tions are caused by our own thought processes [MN86]. Application-external interruptions

have been split into three types:

System Initiated — This type of external interrupt could come either from another ap-
plication running on the user’s computer, such as a mail reading program, or from the
operating system itself indicating some sort of problem such as, for instance, a full
hard drive.

User Initiated — This type of interruption is generated by user actions and could be

triggered by one of the following external or internal factors [DRW95]:

e Environment — something external that reminds a user of something to be done.
This could be a realisation that an error had been made of which the user has
only now become aware. This could cause an immediate cessation of activity in

the previous task in order to correct the error.

o Temporal gap — an expectation that something must occur within a certain time

period.

e FErternal event — for example, an alarm ringing to remind the user of an ap-

pointment.

e Memory — a memory of something that has to be done, or a need to check up
on the activity of some other application. This is a prime example of an internal

interruption.

e Periodic action — some actions are habitual and the importance of these actions

could cause the user to interrupt the present task.

e Nature of activity — the interruption could be caused by the nature of the ac-
tivity the user is engaged in, rather than some trigger causing an activity totally
unrelated to the present activity. Cypher [Cyp86] cites the following mismatches
between user activities and system programs, which lead to natural interleaving

of actions due to internal interruptions:

— Single activity and multiple programs — This would happen when some ac-
tivity requires the use of more than one program. For example, someone
sending an email might need to check a calendar to locate a free slot.

— Multiple activities and single program — This occurs when a single program
must be used for two different purposes in the execution of an activity. Pro-
grams such as browsers handle this type of thing quite nicely by allowing
users to have more than one context (window) at a time, so that multiple

Quirks 76

activities can be handled by the same program. Other applications are not
as successful.

— While-I’'m-at-it activities — These activities occur to the user in the course
of some activity. For example, the user could be editing a document and,
in the course of this activity, realises that there is no backup copy of the
document on a removable disk. A decision could then be made to take the
backup immediately, rather than risk losing the document.

— Related activities — A user sending an email message could need to incor-
porate part of a document in the message. This would require opening the
word processing program in order to copy part of the document into the
email message.

* Simultaneous interaction — occurs when the user wants both activities
to be visible at the same time, or wants to transfer data between them.

* Shared context — is required when the user is perhaps using the same
document in two different activities, for two different purposes. The
system would ideally merge the editing from both contexts to arrive at
the final document. '

- Other — This category includes two types of interruptions:

e Distractions — this is a special type of interruption. If the distraction is simply
an-irritating noise or a conversation between two other people in the same room,
it requires no handling by the user, but does disrupt the task. The user has to
acknowledge the existence of the distraction, change context to understand its
content and then resume the original task, since the distraction does not require
any processing. If enough distractions occur, the user could feel that nothing at
all is being achieved. However, the user whose performance is degraded enough
by distractions might feel the need to do something to handle it — promoting it to
an interruption. The user may leave the room, or use ear plugs to screen out the
noise, or even change task to one which does not require as much concentration.
Gardiner [Gar87] points out that the immediate memory for visual abstract pat-
terns, such as the structure and composition of a particular window, is disrupted
by small amounts of distraction. With respect to verbal chunks of information
(a familiar pattern — eg. a word or group of words combined according to a
rule), short term forgetting increases with the level of distractions too. Research
has shown that this finding can be applied to chunks of user actions within some
action sequence, so that a distraction could make users forget where they were
in an action sequence very easily [CCHO0] — especially if no advance warning of

the interruption was received.

e Miscellaneous — caused by personal visits or phone calls, or even the fire bell.

Quirks 77

Some of these, such as a phone call, will allow the user to switch to the new
context gracefully, with time to save context if desired. Others, such as the fire

bell, generally do not allow graceful context switching.

3.6.2 The Composition of an Interrupt

The sequential structure of interrupts is shown in Figure 3.17. There are three sequential

Prologue Interruption Body Epilogue
’ N ’ S
/’ o R /I s ~
’ S e ,/ RS R
Taking Signal Selecting a . Restoration of Context L
of Interrupt Task Body A ~.
. Choice of Resume Task
Save and Change context of activity Post-Implementation After Interruption
Task

Figure 3.17: The Sequential Structure of an Interruption [Jam96]

stages, the prologue, the body of the interruption, and the epilogue. The three t;)gether
make up the taskkinterruptidn. Jambon notes that the body of the interruption is generally
independent of the interrupted task, the “External to Application” in the classification. The
classification also includes those interruptions which are dependent on the interrupted task.
We consider that the application could publish an error message because of the failure of a
method invocation which cannot be attributed to any error on the part of this user. The
error could have been caused by the actions of some other user making use of the same
middleware server, or data layer, and therefore cannot be classed as an error. This class of
interruption is classified as an “Application Specific” interruption.

The prologue and epilogue are often dependent on the interrupted task. The user has
to take some action in anticipation of handling the interruption. For example, the user may
choose to save the document being worked on before answering the door. The epilogue will
require the user to change context once again. The user has to try to remember what was
being done and perhaps retrieve a document from the disk once again before resuming work.
The epilogue could also lead to the user deciding to work on another task altogether — and
not resuming the interrupted task. Waern [Wae89] notes that working memory is only able
to retain information for a couple of seconds at a time and that unexpected interruptions

can thus be fatal to an entire problem solving process.

Quirks 78

3.6.3 Dealing with Interruptions

In the previous section the detection of errors by the system and by the user was analysed.
This section will address the mechanics of handling interruptions.

Sometimes the handling of an interruption is interrupted by yet another interruption.
Either the first interruption is suspended so that the most recent one can be dealt with,
or the recent one is queued and forced to wait until the handling of the first one has been
completed [WC95]. This mode of handling interruptions is defined by its sequential nature.
However, the user may choose to interleave the handling of the interruptions, as is often
done when a person suspends one phone call in order to answer another incoming call and
then attempts to handle both in an interleaved fashion.

In some cases, the user will resume the original task, but in 45% of cases, according
to a study done by O’Conaill and Frohlich [OF95], the user will not resume the disrupted
task. This is illustrated in the diagram in Figure 3.18, by the transition to node O (Other
activity state), instead of node F (Final state). O’Conaill and Frohlich tried to quantify the
effects of interruptions in a working day. They found that the interruption was often seen
to benefit both the initiator and the recipient, so that very few of those who participated

tried to dissuade the initiator from making the interruption.

() O

I Initial State

F: Final State

Q: Quirk

O: Other Activity

Figure 3.18: Non-Resumption of the Primary Task

Studies by van Solingen et al. [vSBvL98] into the effects of interrupts in software devel-
opment found that the subjects of the study spent 1 to 1.5 hours per day on interrupts, and
concluded that they spent up to 20% of their time servicing interrupts. The recovery time
after an interrupt was gauged to be a minimum of 15 minutes.

Miyata and Norman [MNB86] offer a perspective for understanding interruption handling
by contrasting two types of processing styles that humans can be engaged in: task-driven
and interrupt-driven. When someone is engrossed in some task-driven activity, such as
reading a book, they will often screen out any interruptions they can in order to continue
with the task in hand. When someone is doing a job such as answering a switchboard,

they are in interrupt-driven mode. They are therefore tuned into taking interruptions and

Quirks. 79

dealing with them. The task-driven processing mode, when interrupted, will be difficult to
resume because of the difficulty of resuming context, especially where the task involved a lot
of thought. Interrupt-driven activity will, by its very nature, not be as negatively affected
by interruptions.

Figure 3.19 depicts the interruption handling process (modified from [Jam96]). The way
a user deals with interruptions is dependent on their present processing mode and on the
perceived urgency of the interruption. A person who is in task-driven mode will probably
filter out all but the most persistent of interruptions. Waern [Wae89] finds that people are
able to eliminate irrelevant cues and thereby raise their level of performance. In this mode,
they would probably choose to let email messages remain unread till they have completed
their task. Someone coming into their office for help, on the other hand, will probably be
“allowed” to interrupt their task. Thus, Jambon’s [Jam96] model of interrupt handling in
which the user either accepts or ignores the interruption, can be extended to take account
of the two different processing modes. ‘

As can be seen from the figure, the user can either filter out the interruption, or choose
to take the interrupt signal. In the first case the user carries on with the task and the
interruption does not disrupt that process at all. Miyata and Norman [MN86] suggest that
people in task-driven mode are aware. of the interruption, but not of the content. In the
latter case, the user acknowledges the purpose and content of the interruption and chooses
to either accept or deny .it. If the interruption is accepted, the user needs to decide how the
interruption will be dealt with 'and change context in order to deal with it. Hitch [Hit87]
argues that the load on working memory increases directly in proportion to the amount
of material that must be remembered temporarily or “held in mind”. Consequently, the
speed and accuracy with which people can process information will depend on the working
memory load.

After the interruption has been dealt with, the user then needs to change context again
and decide which task to proceed with. Often the nature of an interruption will determine
the continuing activity. For example, if you are interrupted by a phone call telling you that
your car has been stolen, it is likely that you would not continue with your previous task,
but that you would phone the insurance company instead. Miyata and Norman [MN86]
suggest that a system of reminders might be a good idea in ensuring that the user does
indeed resume a suspended activity. Human memory limitations require these prompts, if a
potentially critical activity is not to be forgotten. Simon [Sim69] (p40) cites two examples
from literature about effects of interruption which show that while humans generally can
retain up to seven units of information if there is no interruption between the encoding of
the information and the recounting, they only retain two “chunks” of information after an
interruption. Reason [Rea90] identifies errors of omission caused by interruptions, which in

some cases have been the cause of major disasters.

Quirks

80

ORIGINAL
TASK

screen out

w Execution

Receive
Signal

Acknowledge

CONTEXT
CHANGE

I
|
i
!
i
i
|
|
|
|
I
|
|
!
1
|
|
|

accept

Select
Action
Change
Save context
: Context
Change,
Resume context |
Context
Choose
Task

i
To another
Task

Resume

Figure 3.19: Interruption Handling

INTERRUPTION

interrupt
Occurs

” Deal with
Interruption

Quirks 81

3.6.4 Summary

From the previous discussion it would appear that the biggest problems confronting users
who are interrupted are firstly that they might forget what they were doing; and secondly
that even if they do return to the original activity, they have difficulty rebuilding the context,
or train of thought. In order to assist the user in recovering from interruptions, it would

thus be helpful to have the following features provided by the application:
e mental aids, to help the user remember past actions;

e graphical features to allow the user to take a couple of steps back to rebuild the mental

context.

e user assistance in building an awareness of the history of interaction with the appli-

cation, by linking past inputs to the results — or outputs — thereof.

Since each user has different “remembering” needs, the principle of giving the user an

overview and then allowing zooming-in to get required detailed information, applies here.

3.7 Summary

This chapter has investigated quirks in some detail. Their nature has been explored, as have
their negative and positive effects and techniques for dealing with them. This dissertation
intends exploring the role of an enriched model of feedback to, amongst other things, assist
in alleviating the negative effects of quirks. Such feedback would have to provide information
about current application activity as well as a sense of the user’s past interaction with the
application. The following chapter will introduce the feedback concept in general terms,
and then concludes by discussing how feedback can be used to alleviate the negative aspects

of quirks.

Ah! What is man? Wherefore does he why? Whence did he
whence? Whither is he withering?

Dan Leno (George Galvin)

Dan Leno Hys Booke. (1901) ch.1

chapter 4

Feedback

The work presented in this dissertation attempts to provide a general purpose feedback
framework for applications that -use the component technology surveyed in Chapter. 2. Fur-
- ther chapters will discuss this problem with specific reference to component-based systems.
This chapter concentrates on the role of feedback in more general terms and refers to the
role that feedback plays in alleviating the negative effects of quirks.

The need for feedback, the means for providing it and the difficulties inherent in this,
from a programmer’s point of view, are discussed in this chapter. Section 4.1 explores
the nature of feedback and likens it to human conversation. Section 4.2 examines the
use to which people put feedback. Sections 4.3 and 4.4 discuss the motivation for, and
timeliness of, feedback. Section 4.5 examines aspects of good and bad feedback and makes
recommendations about the type of feedback that should be provided. Section 4.6 explores
the concept of the provision of feedback graphically rather than textually and Section 4.7
considers the role that feedback can play in alleviating the negative effects of quirks. Section

4.8 summarises the chapter.

4.1 Introduction

Feedback is a word widely used with different meanings in several academic areas including

engineering, economics, biology, mathematical models or biological systems, formal logic

82

Feedback 83

and social science [Ric91]. The Oxford English Dictionary [SW89] defines feedback as:

1. The modification, adjustment or control of a process or system (as a social
situation or a biological mechanism) by a result or effect of a process esp.
by a difference between the desired and an actual result.

2. Information about the result of a process, experiment, etc.

3. A response.

Spink and Saracevic [SS98] argue that all academic perspectives have a basic concept of
feedback as involving a closed loop of causal influences, a loop of mutual or circular causality.

The research in this dissertation focuses on the human-computer interaction perspective,
which has an interest in “the exchange of information between participating agents through
sets of channels, where each has the purpose of using the exchange to change the state itself
or one or more others” [Sto94]. The feedback thus concentrates on the method and type
of interaction, the participants in the interaction, their purpose, and the interface between
the human and the computer [SS98].

Shneiderman [Shn86] defines feedback as communication with a user resulting directly
from the user’s action. Pérez-Quifiones and Sibert [PQS96] point out that this definition
does.not cover communication from the system which notifies the user about the state
of the system, or feedback about long-lived activities or transactions. Feedback allows the
. computer to fulfill the same role as a conversational participant. Suchman [Suc87] points out
that the immediacy of the reactions of computers of today, combined with the fact that such
reactions are not random but considered (having been designed by 'a human programmer),
lead people to consider the computer to be a purposeful social object — a conversational
participant. Friedman and Millett [FM95] found that people, even computer literate people,
attributed social attributes to computer technology.

Participants in a conversation do not merely take turns, but in many ways collaborate
in the conversation. The person doing the talking expects a level of feedback from the
person being addressed, either in the form of nods, verbal affirmations (“uh huh”), or facial
expressions. These indicators are used so that the person doing the talking can determine
whether the person being spoken to is receiving the message and understanding it. A
facial expression can convey a negative response to what a person is saying, or a positive
response, indicating understanding. A blank expression, on the other hand, could indicate
that the person being addressed is deaf, or does not understand the language of discourse.
Thus the feedback can be seen to be either positive (when things are going smoothly) or
negative (when the listener signals a problem), and the feedback will determine the future
conversation [BH93].

This conversational feedback model neatly fits in with the interaction between humans
and computers. Clark and Schaefer [CS87] proposed a model of collaborative contributions

to conversation and identified four possible states of the person being addressed:

Feedback 84

1. not aware of being addressed;

2. aware, but did not hear what was said;
3. heard it, but did not understand;

4. heard, and understood;

If we apply these principles to the human-computer conversation, it is logical to assume
that the user will want to be able to identify these states in a conversational partner —
the application — so as to know how to proceed. Nickerson [Nic76] tries to pin down the
nature of the participants in human-computer interaction. He points out that in normal
conversations one would not call one or the other participant a user. He argues that in
human-computer interaction this nomenclature is correct, since the human-computer con-
versational model, although in many aspects similar to the human-human conversational
model, is quite different, since the human partner can be characterised by their goals and
cognitive abilities, while the computer cannot.

Suchman [Suc87] likens the human-computer interaction to human-to-human conversa-

tion in three ways. Both are:

1. reactive — Computers react to user actions, meaning that the control of the human-

interaction process is essentially in the hands of the user.

2. linguistic — The use of computers today is not a matter of pulling levers and pressing
buttons, but rather of specifying operations and considering their results — exhibiting

linguistic behaviour.

3. opagque — The general opacity of human participants in a conversation makes expla-

nations about human intentions critical in understanding human action.

Suchman argues that the aforementioned reactive, linguistic and opaque properties of com-
puters lead users to attribute intentions to the behaviour of the computer system. She
further argues that, having drawn this conclusion, users then expect the computer to ex-
plain itself and expect it to behave in a rational way.

When humans communicate they often assume a shared background knowledge of the
particular subject they are discussing. The speaker will have to gauge the listener’s un-
derstanding of the topic and take steps to explain further if the speaker concludes that the
listener does not have some knowledge needed in order to understand the conversation prop-
erly. The listener will also make assumptions about the speaker’s knowledge and opinions
during the conversation. Suchman points out that much of what is said often requires refer-
ence to other facts which are unspoken, but relevant to the conversation. As a conversation
continues, the two participants will learn much about each other, their knowledge, attitudes

and expectations.

Feedback 85

The success of human-computer “conversation” will depend on the user being able to
gauge the “knowledge” of the application — and being able to supply the computer with
those items it needs in order to continue the conversation successfully. Feedback is a valuable
tool in the hands of an application developer, who needs to communicate the application’s
“knowledge” and expectations to the user to facilitate the application’s role as conversational
participant. In conclusion, perhaps the best definition of feedback would be

the communication of the state of the system, either as a response to user actions,
to inform the user about the conversation state of the system as a conversation
participant, or as a result of some noteworthy event of which the user needs to

be apprised.

4.2 Purpose of Feedback

The previous sections have justified the need for feedback and discussed issues pertaining to
the timeliness of feedback provision. Before proceeding to further examination of feedback
provision and attempting to compile a list of desirable feedback features, we need to take a
look at the use to which the user will put the feedback which is provided. |

Feedback was defined at the beginning of the chapter as achieving the following (some-

what paraphrased):

1. signifying a response. This serves to reassure the user and confirm that inputs have
. been accepted and that the system is acting upon them.

2. modifying the behaviour of the user. If we once again consider the similarity of the
human computer interaction to a conversation, feedback will serve to help the user
decide how to proceed. Without feedback, either negative or positive, the user is left
wondering whether to pursue the original course of action, or to veer to one side or

another to accommodate some fault.

Engel and Haakma [EH93] distinguish between two kinds of feedback which are perti-
nent here — I-feedback and E-feedback. I-feedback refers to the reception of information
already supplied by the user while E-feedback communicates to the user the next in-
puts expected by the system. Whereas I-feedback is genuine feedback, E-feedback is
considered to be feed-forward, affecting future behaviour. Engel and Haakma argue
the importance of E-feedback, since it reveals the system’s expectations and allows the

user to judge whether these expectations are compatible with envisaged intentions.

3. promoting understanding. The user needs to understand the system and the effect
that inputs are having on the state of the system. Without a good understanding
both of the present state and the role the user has played in bringing the application
into that state, he or she cannot hope to proceed knowledgeably.

Feedback 86

In addition, feedback can be used for

o overview purposes. The feedback could be used by some other application, as is the
case with application monitoring, or by some distributed entity which needs to mon-
itor performance of the application, or by the user to provide some information not
pertaining directly to the state of the system, but rather to other characteristics such

as performance, workload etc.

The traditional role of feedback is often seen as pertaining exclusively to the first use men-
tioned above. There is a need to widen that view to encompass the other uses, in order
to provide a complete feedback mechanism. These are not traditional uses of feedback and
the following sections will address the extension of the feedback concept to include these

features.

4.3 Why give Feedback?

De Bono [dB98] points out that it is often better to simplify a process than to train people
to cope with complexity. Feedback can be considered as a way of simplifying the interaction
- between the user and the system. To justify the “simplifying” role of feedback, it is necessary
to understand the nature of the interaction between the user and the computer.

One of the first attempts to model human interactive behaviour was done by Card,
Moran and Newell [CMN83], who proposed the GOMS (Goals, Operators, Methods and
Selection) model. GOMS is a very good model for predicting temporal properties, but not
as good at accommodating the effects of human thought [Dix91]. Norman’s action-based
approach [Nor86], which analyses the interaction between humans and computers, identifies
the stages of human activity shown on the left hand side of the following table, while the
matching stages of conversational activity (since we are considering feedback needs with
respect to conversational dialogue) are shown on the right:

[Step | Stages of Human Activity | Conversational Stages
1 Establishing the goal Establishing the goal
2 Forming the intention Deciding what to say
3 Specifying the action sequence | Formulating the words in the mind
4 Executing the action Saying the words
5 Perceiving the system state Hearing the reply
6 Interpreting the state Understanding the reply
7 Evaluating the system state Interpreting what was said

During this activity, Norman identifies two gulfs that have to be bridged as a result of the
difference between human goals (in psychological terms) and system states (expressed in
physical terms). The two gulfs which need to be bridged to enable human use of a system

Feedback 87

are the gulfs of ezecution and evaluation. The gulf of execution represents the effort that
the user has to make in order to translate goals into action sequences which, when applied
to the system, will achieve the goal. The gulf of evaluation represents the effort the user has
to make to understand the state of the system as a result of their actions. Norman argues
that these gulfs can be bridged from either direction. The system can narrow the gulf by
constructing the interface with the needs of the user in mind. Norman notes that the user
can bridge the gulf by creating plans, action sequences and interpretations of the system.

There are two different schools of thought with respect to the motivation behind user
actions. The artificial intelligence branch of computer science is based on the concept of the
existence of underlying plans influencing user actions. An alternative view is that action is
inherently situated — with plans having a limited prescriptive effect on user actions [Suc87].
The situated action view is that users react to their circumstances, with an objective in
mind, rather than slavishly following some set of plans.

Clancey [Cla97] explains that the theory of situated cognition claims that what people
- perceive, how they conceive of their activity and what they physically do, develop together.
He adds that human action is essentially improvisatory by directly connecting perception,
memory and action, concluding that conceptual knowledge is developed over time as part
of, and by means of, physical performances.

The conversational model of user interaction in the current paradigm-of recognition
rather than.recall [Dix91], seems to lean towards the situated action perspective, rather
than a plan-baséd mode of operation as proposed by Miller et al. [MGP60]. Users behaving
in this manner are even more dependent on the narrowing of the gulf of evaluation, since
they react according to the way they interpret the state of the system. Dascal [Das92] argues
that the structure of dialogue is inherently reactive, with the speaker planning what to say
in reaction to what was said (according to the current state of the dialogue).

The traditional plan-based approach suggests a fore-knowledge of the application’s user
interface. The expert user may indeed have this knowledge, but the novice or occasional
user would tend to react to the state of the application rather than act according to some
set of plans. O’Hara [O’H94| suggests that neither plan-based nor situated action would
suffice to describe all interaction. He suggests a continuum between the two modes along
which people shift according to factors such as knowledge and task.

The quality of the feedback provided by the system can go a long way towards narrowing
the gulf of evaluation — in conversational terms, enabling an understanding of what was
said. Feedback becomes very important when the system is prone to long response times,
which often happens in distributed systems. A slow response could be indicative of an error
or simply a normal occurrence if the network is overloaded. Either way, the user needs to
be fully informed about the reason for the delay. Feedback becomes critical in the case of
system failure. Many systems simply stop functioning in the case of a system failure and
the user is left in the unenviable position of not knowing what has happened. The user
will definitely be unsure about whether the activity that resulted in the failure is worth

Feedback 88

repeating or not.

Norman [Nor89] argues that in any complex environment — for instance, a new appli-
cation — one should always expect the unexpected. To deal with the unexpected, Norman
concludes that continuous and informative feedback is essential. Norman [Nor86] mentions
three different concepts which exist when the human computer interaction process is con-

sidered:

1. The design model — the model held in the system designer’s mind of how the system

should work.

2. The user’s model — the mental model of the system, as built up by the user during

user interaction with the system.
3. The system image — which portrays the physical structure of the system.

As users use a system, they build up a model of how the system works. In a conversation, the
speaker is also able to gauge the knowledge of the listener during the course of a conversation
-— also building up a mental image of the thought processes and attitudes of the person
being addressed. With respect to building this model for computer applications, users tend
not to read manuals, wanting rather to find out for themselves how the system works [CR87].
“They also tend to be impatient to get on with their task and don’t want to spend hours
. being taught how to use.a system [Bor91]. This is in accordance with cognitive principles,
which advocate “learning by doing” {And83, Man87]. Because of this, the user model will
not be based on the design model, but rather on the system image. The designer thus has
a difficult tagk in making this system image explicit, intelligible and constant [Nor86].

Therefore, feedback is far superior to user manuals for helping the user to build up
a correct internal model. The role of clear explanations in this process is vital [Lew86].
Explanations of system actions can provide a sense of the underlying purpose of the system’s
response to a user’s actions. Chan et al. [CWS95] have also shown that an active feedback
system greatly improves user performance.

This section has discussed the need for feedback from a cognitive perspective. This
perspective is vital in understanding the need for feedback with respect to application use
when the application has the user’s full attention and nothing occurs during use of the
application. This is an unrealistic expectation though, since a user’s working day will be
interspersed with disruptions of all types, which serve to make feedback even more crucial.

The following sections consider the timeliness and quality of feedback.

4.4 When must Feedback be Given?

The need for feedback has been argued in the previous section. Different authors have
attempted to provide guidelines to help developers to provide the right level of feedback.

Feedback 89

Waern [Wae89] suggests that feedback should not be delayed, since the user needs it con-
tinuously to support a sequence of mental operations. Other researchers also urge that im-
mediate and continuous feedback be provided [Shn86, App87, Nie93]. Planas and Treurniet
[PT88] have shown that continuous feedback reduces annoyance caused by slow responses.

Nielsen contrasts different types of feedback with its persistence. Persistent feedback
refers to something such as a disk space or performance indicator, while transient feedback
refers to error messages. Others, such as Marshall et al. [MNG87] point out the difference
between what they refer to as required (during execution of the task) versus confirmatory
(at the end of the task) feedback. The former is required for more complex tasks, while the
latter is suitable for simpler tasks or tasks for which the user can be considered to be an
expert.

Finally, it has been shown that feedback has an effect on the level to which a particular
task is automated!. When the feedback is immediately available, the user will be less likely
to automate the task and more likely to work in a controlled mode — making less errors.
Thus, in complex tasks for which the user needs to concentrate in order to_noticé exceptional
circumstances which will require handling, the feedback should be more intense and available
than for simple tasks which can be automated without risk [Gar87]. To summarise, the rule
seems to be: “Always provide feedback, for every action, and make sure it is completely

unambiguous and informative”. Quite a tall order. ,

4.5 What is Good Feedback?

Some feedback needs are fairly standard, such as the need to alter the display to.indicate
that something has been selected. Standard requirements such as these lead to uniform
treatments in accordance with the Human-Computer Interaction (HCI) principles of consis-
tency of interface. For example, text is often highlighted to indicate selection while an icon
is inverted to show that it has been selected. However, some feedback needs are not nearly
as straightforward and the developer may not have ready guidelines to follow. An excellent
example of this is the diverse treatment accorded to error management. Some applications
will display an error message which requires some acknowledgement from the user before
work can continue. Others simply generate a beep and refuse to continue until the user
provides a correct response, and yet others will display an enigmatic message and close the
application. It is difficult to provide a general rule about the exact nature of the feedback
since it is directly dependent on the nature of the task.

The feedback discussed in previous sections has referred to the communication of the
“here and now” state of the system to the user. This feedback model is impoverished and a
strong case can be made to motivate the extension of the concept to encompass a historical

perspective that would add a dimension to feedback hitherto unexplored.

!That is, promoted from the attentional level to the schematic level, at which the user no longer thinks

about what they are doing.

Feedback 90

It has been noted by various researchers that discourse typically has an incremental
quality about it [CM93, LM94]. When people converse they often refer back to some part
of their conversation in order to explain their present remarks. Dix [Dix91] argues that it
is difficult for users to manage and visualise this “sense of history” in their interaction with
the computer, especially since the current interface is based more on recognition than recall.
The user has no need to remember lists of commands but simply chooses one from a menu.
This historical need was also noted by Tweedie [Twe97] who argues that past input and
output should be linked so that all historical input and output relationships can be explored
directly. This is echoed by Shneiderman [Shn98]. Often the application’s only concession
to a user’s need for this is the provision of an undo facility. Even where some tutorial or
visualisation applications supply the user with a log file containing previous explanations
[EL96, DJA93], this does not link the explanations to user actions and is of limited assistance
in providing feedback. If Norman'’s stages of human activity are considered, the explanations
only provide step 5 — the system state — whereas the user needs to understand the link
between step 4 (their actions) and step 5 in order correctly to interpret the state of the
system.

Another look at the conversational model will serve to illustrate this concept. If someone
is recounting a conversation with a third party, the structure of the narrative will take the

)

form: “She said , and then I said ...”. This is so that the person being addressed can
understand the context of the narrator’s statements. It is no good only hearing one side of
the conversation and if the narrator chooses to present only one side it will often lead to the
listener being given an incomplete view which is not conducive to understanding.

In addressing the question of which type of feedback is to be provided, it is therefore
appropriate to consider the need for the portrayal of previous system states so that the user
can refer to it in order to understand the present state of the system. Rich and Sidner
[RS97] refer to the need to relate current actions to the global context and interaction
history. The previous paragraph has motivated the need to keep a history of both the user’s
actions, together with the system’s response. This type of information could be referred
to as archival feedback, as opposed to immediate feedback which communicates the present
state of the system. Such archival feedback provides the facility often used in conversation
when a person refers to a previous statement and builds on it. In the light of this discussion,
good feedback would thus involve giving the user both immediate and archival feedback.

The previous section discussed the use to which feedback will be put. We can now
bring these two concepts together, by marrying the concepts of use of feedback with either

immediate or archival feedback, as follows:
1. signaling a response — satisfied by immediate feedback;

2. changing behaviour and promoting understanding — satisfied by both immediate and
archival feedback. Immediate feedback allows the user to judge the immediate state of
the system, while archival feedback supports the generation of a deeper understanding

Feedback 91

4.5.1

of how the system arrived at that state over a period of time;

Examples of Inadequate or Bad Feedback

Given the wealth of examples available, this section could become long and arduous to read,

but instead will consist of a few examples encountered in using widely known applications:

Ghostscript — Produced this message, which could not be cleared till the system was
rebooted. StartDocPrinter() failed, error code 1722.

Internet Explorer — The buttons at the top of the Internet Explorer window include
a Print button, which provides no feedback. The user will often be unsure about
whether the document has been printed or not — especially when a specific train
of thought has been interrupted. Since the printer might be in another room, the
only way to make sure is to get up and check whether the document has come out
of the printer. It would be relatively simple to change the appearance of the button
to indicate that the displayed page had been printed. This would leave the user in
no doubt about whether the. command had been acknowledged by the system and
whether the page had been printed or not. This is an example of the reliance of some

applications on other tools on the system to provide the required feedback.

xv — Upon issuing the Print command the user hears a series of beeps and nothing

comes out of the printer?.

White Tiger? — In contrast to the paradigm applied by most applications, this ap-
plication wants the user to specify the location of the output file, before specifying
the location of the input file. Doing things the other way round causes the output to
be written to the wrong file. No feedback is provided about this and it is often only

discovered after a period of frustration.

Whereas the previous examples merely give inadequate or no feedback, it should be noted

that bad feedback is worse than no feedback at all. Some examples are:

Internet Explorer — The message: “Application error. Press 0K to exit, and
Cancel to debug.” is frequently displayed. Why on earth should a user be offered
the opportunity of debugging? When the user reluctantly chooses to exit, another
useless message is displayed: “Application Error”, and the user is invited to click
on an 0K button. It then closes down the application, whether the user likes it or not.

This is worse than inadequate, it is completely useless!

Microsoft Outlook Express — If one uses their facility for connecting via a modem to
a mail server, the program will sometimes display a message upon disconnecting that

looks very like an error message:

T

till haven’t figured this one out!

3 A shareware application which converts MP3 files to WAV files, among other things.

Feedback 92

Internet Explorer cannot open the Internet site
http://www.freeserve.com/email/outlook/infopane.htm.

The connection with the server was reset.

This leads the novice user to the conclusion that “something has gone wrong”, whereas

the application is merely informing the user that the modem has been disconnected.

Why is feedback provision so inadequate? It could be because the application programmer
is expected to provide for the feedback needs of at least three completely different types
of users (end-user, programmer and system support) — often without guidelines, trusting
only instinct. Any application will be used by a variety of users during its lifetime. The
first is the programmer, the next is the end-user and finally the system-support person
supplying assistance to the end-user. Each needs a different type or flavour of feedback.
Many applications in use today evidence the variability of feedback provided by different

programmers. Some possible reasons for this variability will be briefly discussed:

1. Lack of Human-Computer Interaction (HCI) training. The programmer belongs to
the world of-information technology and finds it hard to conceive of users who do
not have this understanding. The system developer brings a store of background
-knowledge to the task and tends to assume a certain taken-for-granted knowledge
in the end-user [FFW88|.- Assumptions about the expectations of people not known
to the developer are.bound to be inaccurate. Consequently, it is extremely difficult,
especially for a programmer without formal training in human-computer interaction,
to provide feedback at the level required by the user. Since there is a shortage of
programmers withispecific training in human-computer interaction [MB99, Str99], it
is realistic to expect that most applications will fall short of the ideal level of feedback.

2. Insufficient communication with the user. There is a very real difficulty in judging
the knowledge of the user. The programmer becomes so wrapped up in the program,
spending hours and hours developing it, that it is extremely difficult to remember
exactly what can be presumed fore-knowledge and what should be imparted to the

end-user.

3. Layering of systems. Many errors occur at a depth in the system where there is no
awareness of the current state of the dialogue with the user. Thus the program from
which the reporting emanates typically has no idea of the context from which the user

needs to be relocated.

4. Difference in goals. Grudin [Gru87] published a paper which looked at the issue of
technologies in which one person did work for which another person would reap the
benefits. This was coined by Norman [Nor94] as Grudin’s Law:

“When those who benefit are not those who do the work, then the technology

is likely to fail, or, at least, be subverted.”

http://www.freeserve.com/email/outlook/infopane.htm

Feedback 93

The programmer achieves little benefit from providing the right level of reporting for
other types of user. Indeed, some organisations actually profit from software which
provides inadequate feedback — by requiring users to pay for advice on using their

systems.

5. Unrealistic expectations of users’ working environment. The user rarely devotes full
attention to any application 100% of the time. Applications seldom take this into ac-

count and provide little or no support to users who are frequently interrupted [Jam00).

It is clear from the previous discussion that feedback is vital and that it is often neglected
by application developers, to the detriment of end-users. The published guidelines do not
seem to go far enough in establishing a clear path for developers to follow in providing the
necessary feedback. The following section will attempt to remedy this by consolidating the
work by researchers in this field into a list of desirable feedback features.

4.5.2 List of Desirable Feedback Features

It would be useful to have some sort of list of requirements, a milestone to measure actual
system.feedback against what could or should be provided. Bannon [Ban89] points out the
need for research results which have an applicability to design, rather than c’oﬁcentratihg on
merely delivering tools for post-factum analysis. The beginning of this section argued for
* the provision of both immediate and archival feedback. The features listed below have been
chosen to meet both those needs. A list of desirable features would include the following:

Immediate Feedback

1. Keep the user informed about system state [SKB99], i.e. whether the system [FvD82]:

e has received their request;

is working on it;

has a problem; or

has completed the task.

2. Explain unusual occurrences and errors. Provide context sensitive assistance [Gar87].
Ensure that it is absolutely clear whether a feedback message is indicating an error or
an event of interest which is being reported merely in the interests of good communi-

cation.

3. Make visible what would be invisible and improve the user’s feeling of control [Nor98].
Give each action an obvious and immediate effect [Shn98|. In addition, the feedback
should be structured in such a way that the user is left in no doubt as to which
particular action the feedback refers to [Ham87, Gar87], with Nielsen [Nie93] advising

Feedback. 94

that the user’s input should be rephrased and returned to indicate what the system

did as a result.

4. Provide a form of feedback which is consistent across applications. The degree of
low-level consistency evidenced by windowing systems could usefully be extended to

feedback as well. This type of consistency is very comforting to the user.

Archival Feedback

1. Mental aids to help users remember things [Shn98, Nor98]. People have severely
limited memories, as illustrated by the following examples [Ols87):

e Users sometimes forget what they have done, especially if they are interrupted

during a processing session.

e Users often do not detect their errors. Sometimes the user is vaguely aware that

something has gone wrong, but has no idea how this occurred.

e Difficulties are often experienced in holding recently experienced information until

needed.

e Users experience problems retaining information retrieved from long-term mem-

ory — such as remembering where they are in a plan of action. .

2. Provide inter-referential feedback. Draper [Dra86] points out the importance of a
mutual reference, or link, between user input and application reaction so that previous

parts of the user-machine dialogue can be referred to.

It is unusual for any system to provide a standard of feedback which copes with these
problems. In addition, it seems to be a waste of programmer resources to duplicate some
of these functions for each and every application. Furthermore, in providing the feedback,
there are difficulties which beset application programmers, as described in the next section.

4.5.3 Provisos

Humans are diverse and wondrous creatures and their very versatility makes the provi-
sion of feedback, along with other features of human-computer interaction, anything but
straightforward. Shneiderman [Shn98| discusses the following factors which should be kept

in mind:

e Physical abilities and physical workspaces. Applications often use a beep sound to
signal an error, while a mail reading facility running on the same machine will use
the same sound to signal the arrival of a message. While the user might not have a
problem distinguishing these signals from one another, a noisy working environment

could detract from the efficacy of these signals.

Feedback 95

e Cognitive and perceptual abilities. The following classification of human cognitive
processes is given by the Ergonomics Abstracts journal:
— Short-term memory.
— Long-term memory.
— Problem solving.
— Decision making.

— Attention.

Search and scanning.

— Time perception.

People also have different cognitive styles [Jac73]. However, Tan and Lo [TL91] find
that there is evidence, citing research done in [Hub83, TB80], to suggest that cognitive
styles are not a critical factor in user interface design. Cognitive styles will therefore

not be considered to affect the provision of feedback.

e Personality differences. There are differences in the way people feel about computers.
Some like them while others loathe them. Shneiderman argues that there are differ-
ences between males and females with respect to computers too, but points out that

this difference has yet to be fully explored.

e Cultural and international diversity. Examples of concerns for user-interface devel-
opers in this category could be left-to-right versus right-to-left, currency differences,

addresses or national identification.

o Disabilities. Visual feedback is not much use to blind users and deaf users will not be

aware of audio feedback.

o Limitations of elderly users. With age people find it more difficult to distinguish
between colours. Older users are slower to react and can often not read small print
on the screen and can hold less information in their working memory at a given time
[Gar87].

e Experience. There is a difference in performance and in expectations between the user
who has had very little computer experience and one who is familiar with computers.
The former is very easily intimidated by computer applications and will need far more
explanation of basic functions. The experienced user, even if encountering a new

application for the first time, is not as easily discouraged and needs less reassurance.

It is difficult, if not impossible, for an application to provide feedback which is customisable

to the needs of a specific user as shown above.

Feedback 96

4.5.4 Differing User Roles

Any computer application has different types of users during successive stages of the life
cycle of the application. At least three distinct categories can be identified, as differentiated
by their different roles. The first user is the application programmer, who will be creating
the end-user application. The next is the end-user, the client for whom the application has
been created. The third is the system-support person responsible for providing technical
assistance and error intervention to end-users. Each type of user has very different feedback

needs:

1. The application programmer will need highly technical feedback. The goal of the
programmer is to produce a working application and the feedback provided must
therefore assist in the debugging process. The type of feedback required could be the
parameters provided in a particular method call or the return value supplied or a stack

trace of an exception thrown by a method call.

2. The end-user needs to be given feedback relating to specific goals, linked directly to
the task being carried out. The feedback must be on a much higher level than that

required by the programmer.

3. The system-support staff will often . be summoned when the end-user has received
a message from an application which is indecipherable, or due to an error message
indicating some sort of problem. The first question asked by system support staff will
be: “What were you doing?” followed by, “What message did the system display?”.
This will assist them in tracking down the source of the problem.

The application programmer is expected to provide for the feedback needs of these three
completely different types of users. It is extremely difficult for an application to provide
for all these different user needs and many applications in use today are evidence of the

variability of this provision by different programmers.

4.6 Feedback Format

The previous sections have argued the necessity of feedback and discussed the type of feed-
back to be provided as well as the difficulties inherent in feedback provision have been
discussed. This section will address the issue of how feedback should be provided in a visual

format.

4.6.1 Textual versus Graphical Feedback

The first issue to be resolved is whether feedback should be given in textual or graphical

format. In human discourse, many different communication channels are used to provide

Feedback. 97

feedback. Apart from utterances, people also use gestures, gaze and body stance to commu-
nicate their understanding of what is being said [EH93]. A feedback model based only on
textual descriptions will therefore not exploit the multiple possibilities available in providing
feedback to the user.

In conveying a message it is often useful to make judicious use of metaphor, per-
haps involving graphical components which can be superior to a purely textual description
[DFAB93]. An example of this is the use of the spreadsheet metaphor for accounting appli-
cations. A well chosen metaphor is invaluable in increasing an end-user’s familiarity with an
application. Metaphor must be used with caution, though, since an incorrect choice could
make things even more confusing for the user.

Shneiderman advises that a feedback display should be consistent — using the same
colours, formats, captialisation etc. so that users will know what to expect, and that feed-
back should always be given where it is easily detected [Shn98]. This can apply equally to
textual or graphical feedback. However, there is a body of research which points unhesitat-
ingly towards the advisability of graphical feedback.)

Norman advises that sound and graphics should be investigated [Nor98]. Faulkner, too,
advises that feedback be presented in agraphical format and that all feedback messages
should be clear and unequivocal [Fau98]. Phillips [Phi86] argues that visual imagery is su-
perior to verbal representation in aiding memory and thinking. Gardiner [Gar87] agrees,
saying that recall is-better for dynamically interacting items than for items stored in isola-
tion. She avers that recall is further improved if items are presented pictorially, rather than
textually.

From a cognitive point of view, graphical feedback may be far more helpful, since users
have particular strengths which can be utilised by non-textual feedback mechanisms such
as processing visual information rapidly, coordinating multiple sources of information and
making inferences about concepts or rules from past experiences [O1s87].

Since the user’s interaction with modern computer systems is essentially based on recog-
nition, rather than recall, and is intensely visual, it would be less than optimal to try to
describe the actions in a textual format. The representation chosen for a particular set of
data will indeed make a difference [Sim69] — some representations allowing users to per-
ceive one type of pattern in the data, others revealing something totally different. We should
therefore explore possibilities for portraying feedback in a graphical format. In order to do
this, there must be a visualisation of the information that we are attempting to portray —
a graphical format which will be assimilated by the user more easily than a text description.
The following section will define the concept of visualisation and Section 4.6.3 will briefly

address issues that must be borne in mind in deciding on a visualisation.

Feedback 98

4.6.2 What Does Visualisation Do?

Visualisation provides an interface between the human mind and the computer. In visual-
ising information, the challenge is to find designs that reveal detail and complexity, rather
than presenting the user with a confusing profusion of clutter. The failure of the design will
sometimes be blamed on the complexity of the data, or on lack of understanding on the part
of the viewer [Tuf90]. Chen [Che99] explains that information visualisation is composed of
two essential activities: structural modelling and visual representation. Once a visualisa-
tion structure has been identified, the mechanisms and design techniques must be chosen
to present a visualisation of the information. Shneiderman [Shn98] cites the following tasks

that need to be supported by a visualisation:
e Overview — to gain an overview of the whole collection;
e Zoom — zoom in on items of interest;

e Filter — filter out non-interesting items;

Details-on-demand — select an item and get more information about it;

Relate — view relationships between items;

History — keep a history' of actions to support undo or replay; and
e Extract — allow the user to extract subsets of the information.

In choosing a visualisation, a ‘designer has to work at different levels. The first, low-level
choice is concerned with the visual variables available — such as size, éolour, shape and sym-
bols. The second far more difficult choice pertains to the use to which these visual features
will be put in order to present the required information. Dix [Dix91] notes the difficulty
of choosing a particular technique for some data set. Directives in choosing téchniques are

discussed in Section 4.6.3.

4.6.3 Restrictions
There are some guidelines to be borne in mind when visualising information [Cha99a, Tuf90]:

¢ Do not overload the user with information. Rather provide tools which will allow the

user to get extra information.

e Gershon et al. [GEC98] urge that visualisation systems should be based on human

capabilities of perception and information processing.

e The layering of information is difficult. Tufte [Tuf90] advises the importance of a
proper relationship among information layers. Information can be separated by using
colour, shape, size or value (light to dark). Separation is sometimes achieved by means
of a grid — the grid should not dominate, but should be muted relative to the data.

Feedback 99

e Small multiple designs which visually represent comparisons of change are the best way
to answer questions about quantities. Small multiples reveal a range of options. Tufte
warns that comparisons should be enforced within the scope of the eyespan. There is
also a continuous trade-off between the maintenance of context and the provision of

visualisation to support comparison.

e Visualising time and space involves the design of maps and time-series. Examples of
this type of visualisation include road maps, itinerary design and timetables. Many
of these depict changes in both time and space. A novel application of this technique

has been applied to the visualisation of dance routines.

Layout is important and Chen [Che99] emphasises this, pointing out that a good layout
conveys the key features of the system to a wide range of users, while a poor layout would
obscure them. Vanderdonckt and Gillo [VG94] give five sets of visual techniques which can

be used as guidelines for presenting a layout:
e physical — balance, symmetry, regularity, alignment, proportion and horizontality;

e composition — simplicity; economy, understatement, neutrality, singularity, positivity

and transparency;
e association — unity, repartition, grouping and sparing;
e ordering — consistency, predictability, sequentiality and continuity;

e photographic — sharpness, roundness, stability, leveling, activensss, subtlety, repre-

sentation, realism and flatness.

Vanderdonckt and Gillo emphasise that these techniques cannot all be applied to every
situation, but that others are always to be applied. Which techniques should be applied is
completely dependent on the nature of the data being displayed. Throughout this process,
we should keep in mind that we are seeking to reduce the complexity of the data and allow
the user to use information which, if presented badly, will be useless.

The question of quirks was fully explored in Chapter 3. The following section will
consider the role that feedback can play in alleviating the negative aspects of quirks and in

assisting the user in dealing with them.

4.7 Feedback for Quirks

Jambon [Jam96] urges system developers to design with interruptions and errors in mind.
He argues that this would decrease the possibility of operators forgetting something critical
after handling a quirk, thereby causing a serious accident. The focus of Jambon’s research
was interfaces for pilots. Errors made by users using other systems may not have such serious

repercussions as those made by pilots, but that does not make them any less annoying. The

Feedback ' 100

contribution made by feedback to alleviating the effects of each of the quirk categories will

be discussed in the following sections.

4.7.1 Breakdowns

Immediate feedback is not much use if the end-user computer breaks down. Archival feed-
back can only be useful if it persists. If another part of the distributed system breaks down,
it will depend on the forethought of the application designer whether the system will respond
in a helpful way or not. If the breakdown was not anticipated by the designer during system
development, the user is sure to receive an unintelligible response. Archival feedback could
be helpful to the specialist summoned to track the events leading to the breakdown. What
will be useful is some way of understanding exactly what the problem is together with some
indication of the course of action to be taken.

4.7.2 Human Error

The recommendations given for error recovery by Rizzo et al. [RPMB96] for supporting the
handling of human errors as discussed in Section 3.5.5 will be reiterated here:

1. Make the action perceptible.

N

. Display the error messagé at a high level.

3. Provide an activity log.

4. Allow comparisons.

5. Make the action result available to user evaluation.
6. Provide result explanations.

These are remarkably similar to the desirable feedback features given in Section 4.5.2. The
first, second, fifth and sixth recommendations are satisfied by immediate feedback, while
the third and fourth are satisfied by archival feedback.

4.7.3 Interruptions

If we consider the stages of activity defined by Norman, and enumerated in Section 4.3,
Miyata and Norman [MN86] suggest that an interruption would be least disruptive if it oc-
curred between the evaluation stage and the formation of a new goal or intention. Generally
an interruption when the memory load is high is very disruptive, whereas an interruption
when the memory load is low — where much of the context is available via external cues
— is not as disruptive. Miyata and Norman conclude that interruptions would be most

disruptive at the planning and evaluation stages.

Feedback 101

It would appear that the great problem with handling of interruptions is that it is often
difficult to re-establish context so that the user, in choosing the task to be resumed, has
often forgotten all about the stage of important work in progress. Thus, it is clear that the
nature of human episodic memory is relevant to the interrupt handling process. Gardiner

[Gar87], presents the following facts in her discussion of episodic memory:

1. People have a very limited ability to remember the detailed appearance of novel, visual

abstract patterns, even over intervals of a few seconds.
2. Immediate memory is poorer the more complex the visual pattern.

3. Immediate memory for visual abstract patterns is disrupted by even a small amount

of distraction.

4. So long as the context in which information is retrieved approximates the context in
which it was stored, recognising an item in memory is easier and more efficient than

having to recall the item unaided.

Point number 4 is especially relevant to error reporting and interruptions, since it underlies
the need to remind users.of what they did, in the same format in which it was done, in
order to provide context-sensitive assistance — hence once again a motivation for archival
feedback. Jambon [JamO00] points out that at design time it is important to have a table of
all possible interrupted tasks by all possible interruptions. He advises that for each entry
of the table the developer must indicate the context and find out how this context may be
stored during the interruption (by the human working memory and/or the interface). The
interface can be said to tolerate interruption if, in each case, the programmer can prove that

the context may be saved.

4.7.4 Conclusion

There is a commonality in the user’s handling of errors, breakdowns and interruptions. In
the case of error, the user has to understand the cause of the error and understand how to
recover from it. In the case of breakdowns, the user needs to understand what caused the
breakdown and what, if any, action should be taken to recover. In the case of interruptions,
the user attempting to resume context must correctly perceive the state of the application
in order to take up their task at the point of interruption.

We can conclude that feedback which enhances the user’s comprehension of the appli-
cation state, and the events that led to that state, is a valuable tool in ensuring that users
are able to handle quirks easily. Furthermore, this will comprise a judicious mixture of

immediate and archival feedback.

Feedback. 102

4.8 Summary

This chapter has argued the necessity of feedback and given guidelines about how it should
be provided. The need for both immediate and archival feedback has been argued and
directives for providing feedback have been given.

It has been pointed out that feedback should be tailored towards the needs of the end-user
and it would be a difficult task for applications to provide for all the possibilities mentioned
in Section 4.5.2. Thus we can conclude that the provision of feedback is not easi,ly achieved.

Feedback

@late Archival
@

Figure 4.1: A Classification of Feedback

In order. to synthesise the recommendations cited in this section, a classification of the
nature of feedback has been constructed and is illustrated in Figure 4.1. Feedback should
have both immediate and archival features. The immediate feedback should confirm user
actions, reassure users that the system is functioning correctly and explain errors if they
occur. This should be done in the framework of a reference between the users actions and
the resulting system response. The archival feedback should offer an overview of session
activities, as well as a summary function so that the user can get a broad view of activities.
The overview should offer the facility for the user to choose a particular previous action
so that the previous immediate feedback can be duplicated — with the explanatory and
confirmatory functions still being useful at that stage.

This chapter concludes the background literature survey. The following section of this
dissertation will pose the problem being addressed by this research, propose a solution and

cite related work which supports the proposal.

part I

Addressing Feedback Needs in
Component-Based Systems

He who joyfully marches in rank and file has already earned my contempt.
He has been given a large brain by mistake,

since for him the spinal cord would suffice.

Albert Einstein

103

i

“This affair must be unravelled from within.’
He [Hercule Poirot] tapped his forehead.
“These little grey cells. It is ‘up to them’ .
Agatha Christie

The Mysterious Affair at Styles. (1920) ch. 10

chapter 5

Problem Description and Proposed
Solution

Part T discussed the emergence of component-based systems as a dominant force in software
construction, and the importance of feedback to the usability of software. Part II brings these
two aspects together to discuss how to support feedback in component-based applications.
The diffuse nature of such applications is certain to affect the way in which feedback can
be programmed, and the difficulty of recovery from quirks. The solution that is adopted
centres around the use of application tracking — i.e. monitoring what the user is doing and
how the application is reacting.

Section 5.1 presents a synopsis of the problem being addressed, with special emphasis
on the feedback needs of component-based systems. Section 5.2 proposes a solution to the
problem. Sections 5.3 and 5.4 discuss the techniques used in the proposed solution, and
Section 5.5 justifies the need for the provision of feedback by means of a visualisation of
application activity. Section 5.6 consolidates the chapter by providing an outline of some of
the benefits and limitations of this approach and summarising the chapter.

104

Problem Description and Proposed Solution 105

5.1 The Problem

Chapter 3 looked at the various problems which interfere with the straighforward use of ap-
plications, all of which make feedback vital. Chapter 4 examined the nature of feedback and
concluded that the feedback provided to end-users is often woefully inadequate. The research
described in this dissertation concentrates on feedback needs in component-based systems.
Section 5.1.1 will look at the ways in which feedback has traditionally been provided. Sec-
tion 5.1.2 will examine reasons for the difficulty in feedback provision in component-based
systems (CBSs). Section 5.1.3 will discuss why error recovery becomes more difficult in

CBSs, with specific reference to e-commerce systems. Section 5.1.4 concludes this section.

5.1.1 Traditional Ways of Providing Feedback

There are various ways in which we can ensure that adequate feedback is provided. The

following sections will discuss different approaches.

5.1.1.1 Guidelines for Programmers

Provision of feedback during application development is often left to the individual pro-
grammer’s discretion. However, good user-interface design is more than just common sense
[Tul93].

There have been some attempts to set out guidelines for many aspects of user-interface
design and feedback has not been neglécted. Some examples were given in Section 4.4.
Thimbleby [Thi90] points out that developers are sceptical of guidelines because of a per-
ception that they are either trivial or difficult to implement, or both. Guidelines are often
user- or application-dependent, which makes formulating or following them almost impos-
sible. Thimbelby also notes that adherence to guidelines by no means guarantees that a
chosen means of feedback will work, until it is in use. By then, it is probably too late to
improve on it.

Expecting programmers to follow guidelines is simply not realistic, as evidenced by the
many systems in use today with appalling standards of feedback. Norman and Thomas
[NT91] give some examples of problems experienced by users making use of systems which
do not give an appropriate response to their actions. Provision of feedback is such a complex
activity that it is doubtful that any set of guidelines will ever fit the bill. As in other complex
human activities, those who do it well will have difficulty in formulating their methodology.

Furthermore, it is wasteful to have programmers duplicate the coding required to provide
identical, non-application specific feedback functionality in application programs. While
application specific feedback cannot be replaced by any other facility, many of the extra
features discussed in Chapter 4 are almost generic in their nature and offer the possibility
of being provided for by a generic facility. For example, many user interfaces provide an

explanatory balloon which pops up when the user lingers over some button on the screen.

Problem Description and Proposed Solution 106

This facility, which has become almost generic, has so obviously been helpful to the end

user that it has become ubiquitous.

5.1.1.2 Comprehensive Online Manuals

This approach is followed with different measures of success by various applications. The
literature on online manuals is well established [DPM92, Kea88]. Innovative approaches,
such as providing animated help, have also been developed [Thi93a]. In a CBS, however,
the late composition of the system makes the development of a comprehensive online manual
difficult, if not impossible. There is also currently no standard to which components can
satisfy which requires that they provide an online help facility for their component. Even if
provided, the diversity of the different component producers would not facilitate a coherent,
understandable help facility. Even if the application programmer were to choose to provide
a help option, that would not supply the level of feedback that the user needs, but only
fulfill an explanatory function. The issue of dynamic feedback is not catered for by online
help. This problem is exacerbated by the international nature of most component-based

systems.

5.1.1.3- A Feedback Application Programmer Interface

This approach would provide an API, which could be used by a ﬁrogrammer to provide
feedback to the end-user. The API might display feedback in a standard window, or be
- added systematically to the active window in some way. This would become visible ' whenever
the user needed to be apprised of some event, or to denote closure of an action. This option
suffers from the same problems as the first, since use of the API is dependent on the vagaries
of the individual programmer. It also limits the type of feedback which can be provided.

5.1.1.4 Summary

If we judge the process by its end-product, we can conclude that the traditional ways of
providing feedback are not effective. This section has addressed the difficulties of feedback
provision in general terms. The following section will discuss the special problems of feedback

provision in component-based systems.

5.1.2 Why Feedback Provision is (Even More) Difficult
in Component-Based Systems

With respect to traditional usability needs, CBSs are no different, but in CBSs user needs
are less likely to be addressed comprehensively. Component-based systems are constructed
using components harvested from possibly (and indeed probably) many different sources.
The developers of different components will not have met each other, let alone discussed

their error reporting and handling mechanisms. This means that each component will handle

Problem Description and Proposed Solution 107

errors differently, according to the particular developer’s own preferences. The components
will also probably have different input conventions, for example, increasing the likelihood
of mistakes. Even if components are documented correctly, there will probably still be
problems, due to the black-box component approach [BW97].

Consequently, the user-interface developer will not have developed the server compo-
nents, and is simply given an interface, an API and some component documentation for
each server component. Using only these resources, the developer creates a user interface.
This developer will probably not anticipate all the errors which could result from the use of
each component and not make provision for all of them. This will cause great problems for
the user when something goes wrong later on.

Furthermore, the developers of components, CBSs and user interfaces for these systems
are mostly people who have a high technical expertise and this can make them unrealistic
about the abilities of their end-users. (This makes it very difficult for developers to conceive
of a user who has not attained the basic level of technical knowledge that they take for
granted.) One only has to read a few papers about CBSs to be convinced of this. Norman
[Nor98] puts it very succinctly by stating that “there is no return to innocence”. Applications
cannot be produced for individual users, since this is not economically viable. Thus the
application developer must produce applications for a kind of “generic” end-user and make

-assumptions about the users’ knowledge. A large part of the problem is that there is a basic
mismatch of assumptions and knowledge. This gulf has to be bridged effectively if feedback
needs are to be met.

Distribution, once again, makes things more complex. CBSs are often distributed over
many sites. This adds to the possibility that some parts of the system will not always be
available. Such is the nature of distributed systems [Bac97, Mul93]. Users will often be
puzzled by such absences and need to be apprised of the reasons for them.

Finally, as we know, feedback is traditionally provided from within the application code,
but this approach is flawed because programmers are seldom trained with the HCI skills to
provide adequate feedback and it is almost impossible to augment the feedback once the
application has been delivered. Furthermore, users functioning in different roles often have
completely different feedback needs and it is difficult for an application to provide for all of
them adequately.

5.1.3 Why Error Recovery is (Even More) Difficult
in Component-Based Systems

Section 3.5 examined error in some detail. There is ample evidence to lead to the conclusion
that humans do indeed err, that they are unrealistic about their propensity for making
errors and their ability to detect them, and thus, having erred, will convince themselves, in
spite of clear evidence to the contrary, that they did not err.

In the days of batch processing, the traditional transaction concept protected databases

Problem Description and Proposed Solution 108

from the effects of errors. The application program would start the transaction, make the
changes, and either commit or abort the transaction. A human agent would supply the
data being used to make the updates, and data entry professionals being highly skilled,
made relatively few mistakes. In those days, much use was made of manual checking, with
supervisors being responsible for keeping the occurrence of errors down to a minimum.

These days, things are somewhat different. Contributing factors are both the nature
of components, as expounded in Chapter 2, and the architecture of these systems, which
decrees that the user interface is essentially thin, with much of the logic being encapsulated
in the middle tier. Instead of disciplined data-entry specialists exclusively entering data,
just about anyone is involved in entering the data to be used in database transactions. Each
user of internet e-commerce can, and will, enter data which will make changes to some
underlying data store. Very few of these people will be skilled in data entry and we can
therefore expect that many errors will be made. These errors will possibly be unlike the
fatigue-induced errors generated by data-typists, but regardless of their cause, they can be
expected to be far more numerous.

. Another factor to be considered is the fact that most users of thin-client e-commerce
systems will not have been trained in their use. Since the user will not have been trained to
use the system, the user interface will have to be designed with great care. The user must
be able to discover everything about the system, based on the perceptible system state.
Users aré no longer given extensive training in the use of particular systems, this must have
a significant effect on the way that systems should be designed. The designer of the user
interface must be sure to bestow rational behaviour on the application — ensuring that
the application behaves in a way that is reasonable and intelligible. When a user makes
use of an application, the application must give the impression of being being responsive to
user actions, in the same way as humans are responsive to other humans’ actions [Suc87].
This, once again, brings us back to Norman’s assertion that things invisible should be made
visible [Nor98], so that the user can understand the motivation behind the system’s actions
— as being directly in response to their own actions. While humans routinely correct
mistakes made by other humans, it is important to make the distinction between humans
and computers. Computer applications are quite simply unable to make these corrections
and it would be unwise to contemplate complete reliance on such a scheme. What the
application must do is give the user the maximum opportunity of detecting their errors so
that they can be corrected.

If this admonition is ignored, it could cause an unwary user to precipitate all sorts of
havoc by using a system incorrectly. A simple order form, currently used with great success
by catalogue firms, could be a disaster on an e-commerce system. The user could easily
enter an item code into the quantity box, for example, and inadvertently order hundreds of
items they did not require. The removal of the intelligent human agent, which in manual
systems would filter out this type of error, means that even greater care must be exercised

to ensure that user errors do not cause disasters.

Problem Description and Proposed Solution 109

It is also essential that the user understands when their action (perhaps the click of a
button) will cause a transaction to become final. In the days of batch processing, computer
applications proceeded from instruction to instruction within predictable time boundaries.
So, if the application program did not crash, the program would start a transaction, make
some changes to the data and commit or abort the transaction. When a human enters the
process, it is no longer possible to allow the program to start a transaction, then wait for
the user to enter some data, and then only commit or abort the transaction. Compared to
computers, humans are extremely slow and laborious and it is not possible to keep database
locks for extended time periods while the user decides which displayed item to choose. The
implications of this — what is sometimes called the lazy client problem — is that the
program will collect the data from the user, and then start a transaction, make the changes,
and commit the transaction. The user will have no control over whether the transaction
commits or aborts — due to not being consulted. It will probably happen automatically, as
described in Chapter 2.

‘For example, the online bookseller site, www.amazon. co.uk, has obviously been designed
with great forethought. The user is continuously told, throughout the ordering process, that
nothing is final until the last screen has been reached and a confirmation has been obtained.
When users reach the confirmation screen, and confirm the transaction, they are left in no
doubt about exactly what they have ordered, that the transaction has been accepted and
the order placed. To ensure that this is understood, email is dispatched immediately, further
reinforcing the sense of closure. ‘

The online flight reservation site, expedia.co.uk, has been less well designed. A user
wanting to book a flight uses a search process to choose a flight from a displayed list. The
user then has the choice of reserving the flight for 24 hours or purchasing it directly. In
either case, the user is asked to enter credit card details and all personal data. Once this
has been entered, and the user clicks on the “reserve” button, they rightly expect that
the reservation has been made, or the tickets purchased. They hope in vain. Only at this
stage does the system make contact with the airline’s computers, to ensure that the flight
is available. I once entered my details no less than six times with this particular site, each
time being informed that the flight was full, before I wrote it off in disgust and used a travel
agent instead.

If, having completed a transaction, the user realising he or she has made a mistake,
will often find it extremely difficult to correct the mistake. Traditional monolithic systems
provide an undo facility, so that one can back up to a previous state, thus undoing the
error [LN86]. This is very useful for most applications. However, in transactional CBSs,
undo is unlikely to be an option. It will probably not be possible for the application to
offer an undo facility. In CBSs where the user-interface program communicates with an
interception-based component-oriented middleware layer, each method call is potentially a
complete transaction, so an erroneous action which succeeds probably results in a transaction
being committed. Other transactions might already have used the data resulting from that

http://www.amazon

Problem Description and Proposed Solution 110

transaction.

The only option for CBSs is for a compensating transaction to be executed. So, a user
using an e-commerce system selling gardening products to place an order could incorrectly
order 11 garden gnomes (by pressing the “1” key too hard), instead of only one. To correct
this, a compensating transaction, cancelling the order of 10 gnomes, would need to be
executed.

Dix et al. [DFAB93] refer to the concept of forward recovery, as opposed to backward
recovery (undo). Jambon [Jam98], in his taxonomy of error recovery, discusses the different
states a system could be in after the occurrence of an error. He emphasises the fact that
the state arrived at after forward recovery is not necessarily the same as the state arrived
at after normal execution. In the same way, recovery after a crash will leave the system in
a state which is not equal to the initial state.

The amazon site offers the user the opportunity of executing a compensating transaction
via email, or telephone. This would be an additional transaction, since the original one
would have been processed already. It is essential that system developers bear these issues
in mind while developing their system.

The state of the system — your credit card account, your temper and the space taken
in your garden by your acquisition — will not be the same after backward recovery, as after

forward recovery. For example:

e Backward recovery — the user enters a quantity of 11, instead of 1. Before clicking
on the confirmation button, the error is noticed and corrected. The user confirms
the transaction by means of some confirmatory gesture such as clicking on a button.
The result: one garden gnome arrives and the credit card account is debited with 20

pounds.

e Forward recovery — the user enters a quantity of 11, instead of 1. This is not noticed,
and the order is placed. The credit card is debited in the amount of 220 pounds. The

error is discovered:

— before the gnomes are delivered. The user contacts the organisaton and cancels
the order. Result: a compensating transaction goes through, cancelling the order
for 10 gnomes and crediting the credit card account in the amount of 200 pounds.
It may seem that the end result is the same. Perhaps it will be, but there is a
bigger picture. Suppose the user only realised the error a day after the order was
placed. What if the user tried to purchase another item and could not because
the credit card limit had been reached? What if the credit card account was
printed, and interest payable calculated, during those 24 hours? Either way the

user is in for a nasty surprise.

— after the gnomes are delivered. If the organisation is customer-centred, it may
take the excess gnomes back without charging extra for collecting them again.

Problem Description and Proposed Solution 111

It will probably be a much bigger job getting the forward recovery done in this
case and the effects on the user’s temper will be considerable. That convenient
scapegoat, “the computer”, will probably be blamed for the error and the user

might be reluctant to order online again.

The previous discussion merely underlines the need for great care to be exercised when
designing these systems — so that the user is given every opportunity to realise that an
error has been made, facilitating rapid and painless backward recovery. Should an error be
undetected, the system can make life much simpler by making the user’s forward recovery

process as painless as possible too.

5.1.4 Conclusion

Feedback can be considered to be “making visible that which should be visible, and hiding
what is irrelevant” [Nor98]. This is not merely a matter of common sense, as is abundantly
obvious to any user of computer applications, but rather an issue which should be given due
consideration. It is clear that research into mechanisms and guidelines for the provision of
feedback are in an unresolved state, so that many programmers currently are left with no

choice but to depend-on their own common sense.

5.2 The Proposed Solution

The previous section concluded that the manner of providing feedback, and standards for
ensuring the quality thereof, are an open question. Feedback must, at present, be provided
during the development of an application front-end!, and it is extremely difficult to remedy
applications which provide inadequate feedback, once they are in use.

Dynamic feedback and error reporting must also presently be provided by the program-
mer in addition to all the other work. In assisting the programmer to improve the level of

feedback provided, there are three prime tenets:

1. It is necessary to make the programmer’s task simpler. The traditional approaches
to providing better feedback — training programmers and providing guidelines — are
doomed to failure since they require an extra measure of effort on the part of the
programmer. Chapter 4 explored this issue and concluded that the programmer has
an enormous task in satisfying a myriad of requirements, during implementation of an
application. On top of that there are ever-present deadlines and inevitable technical
problems. It makes no sense to add to this load. Therefore any proposed solution
should have as its first tenet the reduction and easing of the programmer’s workload.

2. Inseparable from the previous tenet, is the need to provide feedback independently of

the application. It is counter-productive to expect the programmer to change program-

!The rest of this chapter will refer to front-end applications simply as applications

Problem Description and Proposed Solution 112

ming style to suit any new methodology. If the programmer has to make function calls
to facilitate extra feedback, it is not likely to be successful. Thus the mechanism cho-
sen to facilitate extra feedback should be as independent as possible of the application

program, and be easy to understand and use.

This leads to the logical conclusion that we should consider feedback to be of two
types: application-internal and application-external. Application-internal feedback
will respond to user inputs which do not require the application to interact or com-
municate with any external entity. This type of feedback will convey information
about internal application functioning such as, for example, reporting a subtotal, or
registering receipt of a user-interface customisation instruction. Application-external
feedback is required when the application interacts with the environment, the user,
and the rest of the CBS. This split is made so that we can argue that different feedback
needs must be handled in distinctly different ways:

o Application-internal feedback should be provided by the application programmer
 who is completely in touch with the inner functioning of the application.

e Application-external feedback, on the other hand, can be provided in a generic
manner for all applications, since the applications are necessarily communicating
with external entities, so-that applications could all fall foul of exactly the same
types of errors. Furthermore, each component-based framework includes a generic
architecture which can be exploited to build a generic feedback mechanism using

application tracking.

Another perspective could consider component-based versus non-component-based feed-
back. Any component-based interaction will necessarily entail communication with
other components, whereas non-component-based activity could be executed entirely

within the application itself.

It is reasonable to assume that there is a benefit to be derived from providing these

two types of feedback needs in different ways.

3. Chapter 4 drew the conclusion that feedback should be both immediate and archival,
and that it should be supplied in a visual or graphical format, rather than providing
solely textual feedback. Any tool which is provided for augmenting feedback should
therefore give due consideration to offering feedback in as visual a format as possible.

This doesn’t mean that all feedback should be iconic rather than textual. Textual
abstractions have been developed over the past 4000 years, and are often far more
effective than pictures. Thus total reliance on text, or total reliance on pictures, will
never suffice. Feedback should be tailored according to the data being displayed, and

the user’s needs.

Problem Description and Proposed Solution 113

After consideration of these tenets, and contemplation of various established techniques,
the proposed solution treats the provision of application-external feedback as a separate
concern, which can be dealt with independently of the basic functionality of the program.

Unlike many other tools which provide for the separation of behavioural from functional
concerns, the approach applied here is that functionality should be catered for with minimal
participation by the programmer — by providing the feedback independently of the applica-
tion. The use of the separation of concerns technique satisfies the first tenet. Making use of
application tracking to obtain the required information to provide the feedback satisfies the
second tenet. The third tenet will be satisfied by investigating techniques for visualisation
of application activity.

The following sections will take a look at the research into the areas of separation of
concerns (Section 5.3) and application tracking (Section 5.4). Section 5.5 will address issues

pertaining to the visualisation of the information thus obtained.

5.3 First Mechanism — Separation of Concerns

Programmers have to deal with a considerable amount of complexity — this being inherent
in their task: They have to deal not only with the programming of the required functionality,
but also with other important issues like replication of components, distribution, real-time
configuration, synchronisation and persistence. Wherever possible, software development
systems should-isolate the various aspects so as to help the programmer focus on specific
tasks. Approaches to this vary from separating the specification of concerns — which implies
that the programmer can implement the functionality separately — to proposed orthogo-
nality of the specific issue, which implies that the work is done on behalf of the prograrﬁmer,

without any effort on their part.

5.3.1 Separate Specification of Concerns

Some research has been done into providing programmers with tools which separate the
behavioural features of the software from the functional features [GGM97]. Kiczales [Kic96]
introduces aspect-oriented programming. Aspects could refer to location, communication
and synchronisation, and once specified, they can be automatically combined with the ap-
plication program by using some tool, such as AspectJ[Asp98], to arrive at the executable
application. For example, Kersten and Murphy [KM99] built a web-based learning environ-
ment and used aspects to support its runtime configuration. Some examples illustrate the

separate concerns approach with respect to [HL95]:

e Process synchronisation — in which details about the interaction of concurrently exe-
cuting processes have been separated from those processes. Frolund and Agha [FA93]
have developed language support which enables multi-object coordination. The co-

ordination patterns are specified abstractly, in the form of constraints, which control

Problem Description and Proposed Solution 114

the invocation of a specified group of objects. Properties such as ordering and atom-

icity are enforced by means of these constraints.

Lopes and Lieberherr [LL94] describe an approach to concurrent object-oriented pro-
gramming which separates synchronisation schemes from the basic behaviour of the
application. They introduce a new level of abstraction, called the adaptive level, which
describes concurrency control requirements. By using the original program and the
adaptive constructs, a complete and correct application program is generated.

e Location control — The AL-1/D system [OI94] allows dynamic object location control
using meta-level programming. Okamura and Ishikawa make use of computational
reflection and a meta-level architecture to separate the programmer-defined compu-
tational algorithm from the location control mechanism. This allows programmers to
control object location more flexibly than with traditional approaches.

o Real-time constraints — Aksit et al. [ABvdSB94]| make use of composition filters to
effectively separate the real-time concerns from other method concerns. Their compo-
sition filters are used to allow messages between objects to carry timing information,
which allows the receiver of the messages to take the sender’s timing)constraint into
account. These filters catch and affect the real-time properties of nieséages intérﬁcting
with an object. Aksit et al. argue that the considered configuration of their filters can

be used to specify real-time constraints.

e Distribution — Since the failure semantics for distributed systems.is obviously different
from centralised .systems, separating this distribution concern is not simple. - Stroud
[Str93] points out that it can only be done successfully if centralised semantics are con-
sidered to be a special case of distributed semantics. Guerraoui [GGM97] describes
Garf, a software development tool which provides a library of abstractions to simplify
distributed programming. Garf encourages programmers to develop application com-
ponents by focusing initially only on their functionality. Then, without changing these
components, the distribution and replication features can be activated.

Another approach, for Java, is the Kan project (www.cs.ucsb.edu/~dsl/Kan) [Jam99a].
Kan provides extensions to the Java language which allows the programmer to mark
classes of objects as distributed objects so that the runtime system then manages the
distribution, replication and migration of these classes. It either creates distributed
objects on specified machines or instructs Kan to choose locations. The Kan system

can be used to adapt a Java program to run on multiple machines.

o User-interface code — the Chiron-1 User Interface development system [TJ93] intro-
duces a series of layers that separate the user-interface code from the application code
by using user-interface agents called artists which are attached to abstract data types.

Operations on the abstract data types automatically trigger user-interface activities.

http://www.cs.ucsb.edu/~dsl/Kan

Problem Description and Proposed Solution 115

The Teallach model-based approach [BMP199] allows the application developer to
specify task and presentation requirements independently from the database contents.
The domain model, which reflects the database structure, is meshed together with the

other models and the application program is generated automatically.

e User manuals — Thimbleby [Thi93b] developed Hyperdoc, a system which allowed a
programmer to develop a user manual alongside the user interface, so that the user
manual mirrors the structure of the user interface. The programmer can add to either
the user manual or the program, and the matching section in either the program or

the manual will be modified automatically.

e Ezception handling — Dellarocas [Del98] makes a case for separating exception han-
dling from normal system operation. An exception handling service is provided for
use by component developers, which uses a knowledge base to describe the failure of

the system to the user.

5.3.2 Orthogonality of Concerns

This approach is.rather different from the previous one. Orthogonality frees the user from
the concern altogether. This means that the issue will be taken care of by the underlymg
system. Examples are far more difficult to find, and include: '

1. Persistence — orthogonality of persistence was proposed by Atkinson and Morrison

. [AM95] where the programmer simply identifies a persistent root, and ensures that all

persistent objects-are reachable from this root. The approach is demonstrated by the
development of the persistent programming language PJama [PAD*97].

2. Location — COM and CORBA illustrate an orthogonal approach to component lo-
cation. The programmer never has to be concerned with the location of the server
component being used — these details are taken care of by the underlying component

communication architecture.

5.3.3 Summary

It is clear from this list, which is by no means exhaustive, that there are many methods of
reducing complexity in application development. Most of the examples shown above have
required the developer to program both the basic and special concerns, albeit separately.
Kiczales [Kic96] argues that this helps to reduce the complexity with which the developer
has to cope. Others, such as orthogonal persistence, do most of the work for the programmer
in a transparent fashion. The author is not arguing orthogonality of feedback, but rather
approaching the problem by providing a tool which will help the programmer to provide the

feedback as easily as possible.

Problem Description and Proposed Solution 116

5.4 Second Mechanism — Application Tracking

Application tracking is a generic term that refers to the observation of some aspect of an
application for one or more purposes. For example, the development of an application
throughout its lifecycle could be traced in order to assist management in controlling a
software project. On the other hand, a workflow application could be “tracked” to ascertain
its route through the intranet, and to ensure that it had not crashed before completing its
task. Yet another type of tracking could concentrate on the licencing perspective — with
software vendors licencing their product for a specific time period, and installing a licence
server on the client’s system to ensure that the products being used are indeed licenced.
The meaning attributed to “application tracking” in this dissertation will be the o0b-
servation of the behaviour of an application during its execution. Within these boundaries

many motivations for tracking exist. Among these could be a need to:

e understand the application execution process, especially if the application is dis-

tributed or runs on parallel processors;
e provide information needed to carry out system tuning;
e satisfy security requirements;
e support debugging purposes;
e provide an audit trail; or
e provide extra support for end-users.

Application tracking is often achieved by adding extra code to the fundamental application
code. The execution of this code observes and reports on the behaviour required. An
important aspect of application tracking is how this extra code is added. It must not
intefere with the normal running of the application, and yet achieve its goals. This section
describes different approaches to adding application tracking.

However, before considering this aspect of tracking, it is necessary to discuss the focus
or reason for the tracking activity. Applications can be tracked from at least two different
perspectives, either tracking the user interaction with the application or watching application
interaction with the rest of the system. Each will be discussed in the following two sections,
followed by a discussion which focuses on the actual insertion of the code to facilitate tracking
in Sections 5.4.3 and 5.4.4.

5.4.1 First Perspective — User-Interface Tracking

This type of tracking has an interest in the user’s interaction with the application. One
example of user-interface tracking is seen in the work of Trafton and Brock [TB96] whose

system provides a layer between the user interface and the application to keep track of the

Problem Description and Proposed Solution 117

user’s actions, comparing them to an internal representation of various task models, to try
to identify the task being performed by the user. When a correspondence can be pinned
down, the user is offered the option of the sequence being completed automatically. Masson
and De Keyser implemented a prototype of their Cognitive Ezecution Support System which
anticipates errors and warns users when these errors could occur [MK93]. Yoshimune and
Ogawa [YO94] developed a graphical feedback system which watches user interactions with
a guide book, and suggests correct procedures if the user deviates from what is deemed to
be an optimum procedure.

Fawcett and Provost [FP90] worked on finding ways to predict whether the user of a
given account is not the authorised user. They profile each user by characterising behaviour
based on histories of previous sessions. Myka et al. [MGS92] developed a system which
automatically generates hypertexts and then records user actions when interacting with the
text to determine whether any relationships can be inferred about the document by tracing
user actions. Many researchers have studied the processes and patterns of user interaction
‘with computer systems [BF88, CE89, LM88, Mar89, WSA97], while Lin et al. [LLM91] have
developed methods for visualising the masses of data collected about user search patterns in
a variety of graphical formats, allowing human pattern recognition capabilities to be applied.

5.4.2 "~ Second Perspective — System-Level Monitoring

Other researchers have looked at tracking application use of system resources. Burton and
- Kelly [BK98, BK99] have developed a tool which traces system calls and provides the ability
to re-execute these calls to allow system tuning.

Jeffery et al. [JZTB98) introduce the Alamo monitor program execution monitoring
architecture which assists developers in bug-detection, profiling programs and visualisations.
Siegle and Hofmann [SH92] have developed the SUPRENUM microprocessor which uses a
hybrid combination of software and hardware monitoring to determine parallel program
behaviour. This assists programmers in gaining insight into the execution of their parallel
programs. Wybranietz and Haban [WHS88] also use a hybrid approach to observe system
behaviour, measure performance, and record system information. They make use of a
special measurement processor which runs monitoring software for each distributed node
in the system. The information thus derived is displayed graphically and used to improve
understanding about run-time system behaviour. Joyce et al. [JLSU87] monitor distributed
systems by means of a distributed programming environment called Jade, which assists the
programmer in debugging, testing and evaluating distributed systems.

Eisenhauer and Schwan [ES98] have addressed the problems experienced as a result
of the traditional event-stream mechanism that most monitoring devices use to report on
activity. They propose that the communication, instead of only proceeding in one direction
from the application to the monitoring program, should be flowing in both directions. They

argue that the monitoring program should be able to send “steering” information back to

Problem Description and Proposed Solution 118

the application. This is facilitated by the use of augmented objects which will both send
monitoring reports, and receive steering information.

When a decision is made to track an application, there are basically two ways of going
about it — invasively and non-invasively. The following sections will discuss these alternative

approaches.

5.4.3 First Approach — Invasive Tracking

If we consider an executing application, we can see that there are various levels at which

tracking agents can be inserted into the system:

1. Within the application itself — This is probably the most common method of track-
ing application activity, as is demonstrated by Thomas [Tho96], and Welland et al.
[WSA97], for example.

Application-invasive tracking requires that a reporting component be inserted into the
application code. This code is inserted either at developmé_nt time or once the need
for monitoring becomes evident.. Ball and Larus [BL94] have described algorithms for

placing code within programs in order to record program behaviour and performance.

Inserting monitoring code could have negative effects. Errors can easily be introduced
into the system by the monitoring code and it could be very difficult to locate these
errors. More rarely, the insertion of monitoring code could actually remove errors from
the system. This could be caused, for instance, by the fact that the monitofing’ code
slows down the threads and problems which could occur when threads co-dfdina'fé‘are

LI

alleviated.

In order to disable the monitoring, the programmer must either remove the code or
use some sort of environment variable or flag setting to disable the reporting. Either
way, if the monitoring code is not removed, it will negatively affect the performance
of the application. If it is removed, it is entirely possible that human fallibility will
lead to more errors being made and cause much valuable time to be wasted in order
to correct the error thus introduced into the system.

2. Inside the libraries or classes the application uses — Inserting tracking code into
libraries will track the activity of the contents of that particular set of classes, not
the application. Since other applications could use the same libraries, it is necessary
either to duplicate the library and insert the reporting code into it, or disable the
reporting when it is used by other applications. Thus in this case you would get

library monitoring rather than application monitoring.

3. Via the operating system — This is even more generalised than library monitoring.

Operating system monitoring will generate many reports about all and sundry events.

Problem Description and Proposed Solution 119

The monitoring application will have quite a job filtering out the meaningful reports

from the dross.

All the techniques mentioned in this section are invasive in one way or another — and one
can readily understand why this is so. There is a need to be invasive to get the amount of
information required by the developers of systems, in order to perform the types of functions

for which the tuning is required.

5.4.4 Second Approach — Non-invasive Tracking

The monitoring in this case should not make changes either to the source code, or make use

of a non-standard set of libraries. Some examples are:
1. Using reflection, which must necessarily be language dependent, for example —

(a) Java: Welch and Stroud [WS99] give a comprehensive overview of the various
approaches to reflection in Java and note that most of them require access to
source code, or the use of a customised Java Virtual Machine — the portable

© operating system used by Java programs. This does not meet the criterion of
non-invasion, but the Kava approach described by Welch and Stroud does ex-
ercise reflection non-invasively. They use runtime byte cdde transformation in
order to incorporate the use of special meta-object protoco‘ls, which are used for
implementing special behaviour into the system. This mechanism could be} used

just as easily for a.pplicatioh monitoring.

(b) Oberon-2: Mdessenbock and Steindl [MS99] describe a reflection technique for the
Oberon-2 language which allows a programmer to access run-time information
about variables and procedures, and allows the programmer to manipulate the

values of such variables.

2. Using prozies — Chalmers et al. [CRB98] have developed a non-invasive methodology
to build up Web usage histories for users in a particular community. The user search
path is compared to paths of other users within the community and if a match is
found, sites visited by the other users will be suggested as being of probable interest.
Wexelblat and Maes [WM99] have built a set of tools to support Web browsing. These
tools accumulate a history of other user’s search paths and make it available to later

users. Their tools contextualise the web pages the user is viewing.

3. Using operating system APIs — Some operating systems, such as Windows, have sub-
stantial APIs to support non-invasive tracking. An example of this is the DeskWatch

facility.

4. Using specialised hardware — Argade et al. [ACT94] present a non-invasive technique

for monitoring applications, but they use a specially tailored piece of hardware to

Problem Description and Proposed Solution 120

facilitate the monitoring. Their main goal is to simulate application execution, so

that the application execution environment can be optimised.

5.4.5 Summary

To summarise, tracking can be carried out either invasively or non-invasively. Invasive
tracking is risky, since it could introduce errors and be expensive in terms of time and
effort to disable the reporting mechanism when there is no longer a need for it. It is also,
by definition, application-specific, and tracking must be added to each application type
individually. Non-invasive tracking is easily deactivated and can seamlessly track a variety
of applications, but is much harder to accomplish.

Whereas the results of user interface monitoring are sometimes utilised by the end-
user of a system [CRB98, YO94, MK93, TB96], it is often carried out primarily for the
benefit of system developers and maintenance teams. System resource monitoring is carried
out exclusively for the benefit of system development teams. One important stake-holder in
application use, the end-user, is seldom catered for. This research will consider the provision
of feedback for the benefit of the end-user to be a special concern— separated from the
basic functionality concern of the application. This will be done by using the results of non-
invasive application monitoring, implemented by means of proxies, to augment application
feedback.

5.5 . Third Mechanism — The Visualisation

Portraying information about application activity in order to augment application feedback
is a novel use of the information derived from application tracking. The last important
issue to be addressed concerns the manner in which the information thus obtained can be
visualised in a helpful manner.

Chapter 4 argued for the provision of both immediate and archival feedback. Section
4.6 justified the need for the visualisation of application activity to provide the required
feedback, rather than supplying merely textual feedback. The following subsections will

discuss the research carried out in the visualisation area.

5.5.1 Visualisation of User Interaction with an Application

It has been noted by various researchers that discourse typically has an incremental quality
about it [CM93, LM94]. This need is often satisfied in tutorial or visualisation applications
by supplying the user with a log file containing previous explanations [EL96, DJA93]. This
does not link the explanations to user actions, though, and is therefore of limited assistance
in visualising the user interaction with the system.

There are three types of research which have some bearing here — the first is research
into the visualisation of software execution; the second is research into the visualisation of

Problem Description and Proposed Solition 121

user-machine dialogue, and the third is the visualisation of serial information.

5.5.2 Visualising Execution of Software

Some researchers have worked on visualising the execution of software [ESS92, BDPS94,
Jer96, KMS*95]. This is done primarily for the benefit of developers who need to analyse
access patterns, and increase understanding of the program execution. Drew and Hendley
[DH95] have worked on visualising complex object oriented software systems.

5.5.3 Visualising Dialogue

Other researchers have worked on visualisation techniques which maintain and present a
record of user dialogue with the machine. This information can be used for providing a
record of explanations, as shown by Lemaire and Moore in [LM94]. Kurlander et al. [KF90]
illustrate a system which allows users to browse, redo or undo past actions which were
performed using a graphical editor. Reiser et al. [RFG188] developed a system which
provides a record, in graphical format, of a student’s solution to a problem.

Rich and Sidner [RS97] have developed a collaborative interface ége_,nt which maintains
the history and context of the interaction between the user and the appliéation. The agent
interacts directly with the application, and with the user. It then maintains a history
based on interaction with the user and observation of user actions. This agent queries
the application, and makes recommendations based on observation of the user’s interaction
with the application. Two windows are used to facilitate the visualisation of the user’s
communication with the agent, and the agent’s communication with the application. The
~ communication is textual, based on an artificial language developed by Sidner [Sid94].

Berlage and Genau [BG93] developed the GINA framework, which provides a history
mechanism for multi-user applications. This framework allows users who are located at
different sites to work in collaboration on the same document. The framework requires
the application programmer to provide additional hooks to facilitate the functioning of the

framework.

5.5.4 Visualising serial periodic data

The data to be visualised — application interaction with the user — can be modeled as
event-anchored serial periodic data [CK98]. This type of data has periods with different
durations. Each period is composed of some user activity followed by some application
activity caused by information supplied by the user activity. Each period is triggered by
some user actions, signaled by events. The time taken for each period varies according to
many factors. Periods follow each other in serial form, mirroring the serial nature of human
processing capabilities.

Some researchers have worked on visualising different types of purely serial data. Some,
such as Chi et al. [hCKBR97] have used tabular techniques. Rao and Card [RC94] and

Problem Description and Proposed Solution 122

Spenke et al. [SBB96] allow the user to interactively explore the data being displayed in
a tabular format. Other researchers have worked on techniques for displaying serial data.
One approach, by Robertson et al. [RM93], shows a “perspective wall”, with time moving
from left to right, and the central part of the wall giving the current focus. Plaisant et al.
[PMR*96] developed LifeLines which shows a person’s history compactly, with selectable
items allowing the user to get more detail as required.

5.5.5 Interacting with the Visualisation

Serial data exploration is often supported by one of two tools — dynamic querying and
focus+context techniques [CK98]. Dynamic query systems allow users to explore the data
by executing queries, using user-friendly interfaces [KPS95]. What Carlis and Konstan call
focus+contezt is the same as Shneiderman’s [Shn98] overview and zoom approach. This
approach displays a broad overview and allows the user to zoom in on items of interest.
Some examples of research using this technique can be found in [Fur86, RM93, SSTR93].
Carlis and Konstan [CK98] present -a scheme for visualising serial periodic data which
displays data-along a spiral so that both serial and periodic qualities of the data can become
visible. They have also incorporated:some dynamic querying facilities into their visualisa-

tion, feeling that it was not obvious how the focus and context technique would be applied.

5.5.6 Conclusion

- Once again, the pitch of the research to be found in this area mirrors the approach taken
- in the application tracking field i.e: half of the work done benefits application developers
— usually giving insights about the execution of the application program. The other work
is done for the benefit of the end-user and depicts the user’s interaction with the system in
the form of a structure — usually a list — containing a representation of user commands.
Examples of this are the selective paste offered by Emacs, or the history command used
in Unix and MS-Dos. The author is unable to locate research which maps user dialogue
to application response, independently of the application, to provide a visualisation for the

benefit of the end-user.

5.6 Consolidation

The approach proposed here is use of application tracking to enable the programmer to treat
feedback provision as a separate concern and to provide feedback by means of a visualisation
of session activity. This approach has positive and negative points and it is as well to
enumerate them here, before continuing with the design of the generic framework.

The proposed approach is made possible by the architecture, and generic features, of
component-based systems. Specific details about the features exploited by this technique

Problem Description and Proposed Solution 123

will be covered in detail in the following chapter. The following sections address the benefits

and limitations of the approach.

5.6.1 Benefits of the Proposed Approach

There are two basic techniques which make up the foundation for this approach: separation
of concerns and application tracking. The benefits of using this combination are:

e The programmer’s job is simplified.

— Separating the feedback concern from the basic concern of the application re-
duces complexity and allows programmers to concentrate on the main task of the

program — the functionality of the program [Kic96).

— The programmer does not have to provide detailed feedback about application
external errors throughout the application.

— The programmer will not be required to anticipate all possible problems which

could occur as a result of the failure semantics of the distributed system.

— The programmer can get debugging assistance during application development.
" This is primarily linked to their use of the middle-tier components, since this use

is observable, and can thus be reported.

— The programmers need no longer be human-computer interaction experts, since

 much of the work will be done by the generic framework.

e The non-invasive approach requires minimal effort from the application programmer,

which makes it more likely to be used.

e The feedback is augmented by means of non-invasive application tracking, which means
that the application has the flexibility to function either with or without it, and the

end-user can use it only when required, and deactivate it once the need disappears.

e Distributed systems open up the possibility of many more indeterminate failures, and
it is therefore useful to have a standard way of indicating that an error has occurred,

and for finding out more about that error [Str93].

e The generic framework will supply a feedback display which can act as an external
memory aid to the user. This is what Norman [Nor98] calls “knowledge in the world”,

which makes it easier for the user to pick up the threads after an interruption or error.

e The feedback display can be designed to be extensible, which will make it easier to

accommodate changing user needs.

Problem Description and Proposed Solution 124

5.6.2 Limitations of the Proposed Approach

The disadvantages of the approach are that:

e It can only give feedback based on the external activities of the application. Thus the
feedback that can be provided is limited to the interaction of the application with the

user and the rest of the distributed system.

e It requires the use of a language with introspective capabilities, since this is essential
for the generation of proxies — the mechanism used to implement the non-invasive

application tracking.

e [t is bound to have a negative impact on the performance of the application. This

matter is addressed fully in Chapter 8.

5.6.3 Summary

The problem definition rests on the central assumption that feedback provision is difficult
and that it is seldom provided adequately and appropriately. The proposed solution is based
on three supporting areas of research — separation of concerns, application tracking and
visualisation — and the particular'features of component-based systems, as is illustrated in

Figure 5.1.

Visualisation

Separation

Application
of Concerns

racking
Features of CBSs

Figure 5.1: Supporting research

Each research area plays an equally important role without which the proposed solution
would falter. Having decided to augment feedback by means of separating the concern, and
tracking application activity in order to obtain enough information to provide that concern,
it is necessary to test this by implementing a prototype of the framework. The implemented
framework obtains information about application activity and provides a visualisation of
that activity in order to augment the feedback provided by the application

The next part of this dissertation will describe the design and implementation of a
prototype of the generic framework, which was used to test the proposal made in this
Chapter.

part IV

HERCULE — Design and
Implementation

I never worry about action, only inaction.

Sir Winston Churchill
If A is a success in life, then A equals x plus y plus z.

Work is x; y is play; and z is keeping your mouth shut.

Albert Einstein

125

Sometimes | think the surest sign that intelligent
life exists elsewhere in the universe is that none
of it has tried to contact us.

Bill Watterson

Calvin and Hobbes

chapter 6

- "HERCULE’s Design

Part II of this-dissertation described the problems experienced in providing adequate feed-
back in component-based systems. The. proposed solution entails the use of a generic
feedback-enhancing framework which works by tracking application activity and providing a
visualisation of that activity in order to augment the feedback provided by the application.
It has been argued that this framework would allow feedback to be treated as a separate
concern, freeing the programmer to concentrate on the functionality of the application pro-
gram.

The approach discussed here which has been applied to meet user feedback needs is
applicable to a wide range of computer application systems. This research has focused on
a feedback mechanism for component-based systems since these systems are distributed,
increasing the likelihood of errors. The nature of component-based systems also decreases
the likelihood of adequate feedback provision — as motivated in Chapter 5.

The concept of a framework was explored in Section 2.2.2, which concluded that a
framework should provide a generic solution for a set of similar problems. The framework
described in this chapter seeks to provide a generic solution to the problem of providing
feedback in CBSs. The framework has been named HERCULE after Hercule Poirot, Agatha
Christie’s legendary detective — since it essentially acts as a detective which watches all

events, tries to discover the reasons for quirks, and explain application activity.

126

HERCULE's Design 127

This chapter will explore the rationale behind the design of HERCULE (Section 6.1). Sec-
tions 6.2 and 6.3 discuss the technology supporting HERCULE's observation and explanatory
roles. The general architecture and functionality of the framework is described in Section
6.4 and the visualisation of the application activity is discussed in Section 6.5. Section 6.6
concludes the chapter. Chapter 7 will then go on to discuss the actual implementation
details.

6.1 Design Philosophy

The purpose of this research is to provide a framework which facilitates the provision of a
visualisation of the user’s interaction with the application. The effect of this visualisation
is to provide feedback including dynamic immediate feedback about the current state of the
system, and archival feedback about previous states of the application.

6.1.1 Design Principles

A number of design decisions were made, each of which is described below.

o Flexibility: To allow any existing. or new application to make use of a stand-alone
generic feedback enhancing framework. The framework should not be tailored to a

- specific group of applications, except that broad category of thin-client systems which
routinely appears in three-tier CBSs. The thin-client basically provides the Graphical
- User Interface (GUI) for the application, while the actual business processing is done
by the other two tiers: This is not a particularly restrictive requirement, since most
systems are moving to three-tiers in these days of e-commerce. By allowing existing
applications to make use of the framework and thus obtaining the benefits of the extra
feedback, it is hoped that the idea will become more widely accepted and that this
will speed the uptake of the concept.

e Painlessness: To require minimal participation from the application programmer. This
requirement is important because any extra burden on an application developer is un-
likely to be appreciated and, even if the programmer is willing explicitly to invoke
calls to HERCULE, this could be done incorrectly, which would result in the applica-
tion becoming even less usable than the original version. Additionally, if the frame-
work requires application programmer participation, existing applications would be

disqualified from utilising its functionality.

It is as well to be absolutely clear about the meaning of the word minimal, since it
is a relative term. The approach which is intended here is that programmers would
be able to rely on the framework to provide the extra feedback, but would have to

take no action within their programs to facilitate it. They are also not to be expected

HERCULE's Design 128

to participate in the insertion of any mechanisms into the system to facilitate the

functioning of the framework that they would not have provided in any case.

What is expected is that they will participate in the tailoring of descriptive messages
which are supplied to the end-user to describe what the system is doing. HERCULE
can only give meaningful messages if assisted to do so by a human agent — and
programmers are the most important and valuable allies in this respect, since they
will become completely familiar with the server components’ idiosyncrasies as they

develop their program. This is the full extent of their participation.

e Optionality: If the user decides not to use the framework, it should not intrude on the

system. This could be interpreted in two different ways:

— The user could choose to have HERCULE running in the background, but make
no use of the facility. The impact here is a slight performance penalty only.

— On the other hand, the user could choose not to use it at all and simply execute the
application without additional feedback. In this case the environmental variables
- must be altered, so that HERCULE would not activate at all. It would simply

take up a little room on the hard disk, which is not a scarce resource.

e Least damage: The failure of HERCULE should not in any way cause the failure of
the application. The negative impact of HERCULE on the applicatioh performance
should also be kept to-a minimum. It would be unreasonable to expect HERCULE
to have no impact at all, since extra computation is being carried out by HERCULE.
An endeavour was made to design HERCULE to have the smallest negative impact

possible.

e Non-invasiveness: No part of the application should be changed to accommodate
the framework. The alternative to this is that an application could be engineered to
enable HERCULE, but that would invalidate optionality. Thus optionality and non-
invasiveness go hand-in-hand — you cannot have one without the other.

e Non-intrusiveness: The HERCULE console should always be available, perhaps in the
form of an icon, or on the screen in the form of a window, but, because of the aforemen-
tioned points, should not intrude. It must maintain an up-to-date display depicting
information about session activities so that it can be used by the user as a feedback
mechanism at any time. By “not intruding” what is meant is that the HERCULE
display will not display itself, unbidden, in front of the application’s windows, will not
force its help on the user and will not make the user take any extraneous action to

deactivate it.

This is in stark contrast to the deplorable tendency of certain products to force help

on the user in the form of the annoying paper clip. While one empathises with the

HERCULE's Design 129

designer’s probable good intentions in creating this facility, the expert user is often so
alienated and aggravated by this unwanted assistance that it is more damaging than
helpful!.

e Simplicity: Complex schemes are admirable, but offer far more opportunities for dis-
aster. Complexity leads to distracted effort, while simplicity leads to a more focused
effort [dB98]. Designing with simplicity as the aim produces a more elegant, un-
derstandable solution, enabling the remaining time to be spent more profitably on

mechanisms for visualising application activity.

e (Clarity: Explanations should be understandable and lucid. This is no simple matter.
We have all been the recipients of unintelligible messages — no matter how computer
literatc we are. The programmer can be of assistance in tailoring these messages,
but that is not likely to be the ultimate solution. HERCULE should enable the post-
implementation tailoring of explanations and messages so that one user’s problem can
be solved and then the explanation relayed to HERCULE on other machines so that

the problem is solved for other users too.

o - Versatility: It is often better to simplify a process than to train people‘to cope with
complexity [dB98]. . Explanations and error messages should be relayed at the user’s
~level. Tailoring. facilities should be provided which will offer different ty]p,es'of expla-
nations and error messages dependent on the requirements of the 'userl., If the user is
an end-user with no interest-in the inner functioning of the system, the explanations
should be at a high level and, if the user is the system designer, the -exrplanations

should give far more detail.

6.1.2 Accessing HERCULE

A decision must be made about the facilitating mechanism used to provide the user with

access to the feedback. It could be achieved in various ways:

e activated by a special control sequence from the keyboard. This might be daunting to
technophobes or novice users, and might prevent the user from making use of it.

e a button added on to the application’s window — perhaps at the bottom of the window
— which allows the user to summon help. This conflicts with the non-invasiveness

and optionality aims.

It could be argued that expert users should know how to deactivate the paper clip. They do indeed, but
when the help is offered they are engaged in another activity. Switching off the feature entails an interruption,
together with the accompanying loss of context. Once the primary task has been completed the user will
probably have forgotten about the paper clip until its next appearance.

HERCULE's Design 130

e in a minimised window, which can be maximised as required. This would satisfy the
design aims, but the window, being hidden, would not be in a position to offer dynamic

feedback with respect to the state of the system.

e in a window being displayed to the right of the user’s screen. This option was ulti-
mately chosen since it facilitates the provision of both dynamic immediate and archival
feedback at a glance. The fact that the user does not have to go and look for the feed-
back makes it immediately available and since it is always in the same place the user

knows exactly where to find it.

User

Screen

!
!
i
'
Client :
[
|
[
!

Middle-tier
Components

Figure 6.1: Application executing without HERCULE

The application running without HERCULE is shown in Figure 6.1, while when the applica-
tion runs in harness with HERCULE, the structure of activity is shown in Figure 6.2.

6.1.3 Required Application Features

Before proceeding further, it is necessary to state exactly what is required, both of the
application system and the programmer, to use HERCULE. The generic framework scheme

relies on, and exploits, the following features of component-based systems:

1. Their tiered structure, with most of the processing being done in a different address
space. The client application makes extensive use of “external” entities to carry out

processing on its behalf.

2. The object-oriented nature of inter-tier communication. The client program issues

requests to the middle tier and receives replies indicating the success or failure of the

HERCULE's Design 131

User

/7 Hercule Display

Application f—”j Feedback
Window | E

N

I
|
| —_— .

|
|
I User Interface |
Pro
: a4 Socket 1| :
1
| |
! ; !
| Client ! |
' Application ! HERCULE :
' ¥ .
I by i
: i,\:‘,> Socket ' I
Server Proxy ® I
] — » |
: : i I
b { --------- MLl JYM |
To and From

Middle-tier Components

Figure 6.2: Application running in harness with HERCULE

processing carried out as a consequence.

3. The business logic provided by the middle tier of three-tier systems is often supplied by
server components housed within an application server. This means that the middle-
tier components, being independently developed, are: accessed via defined interfaces;
which must be self-describing; and are accompanied by at least some form of docu-
mentation which can be harnessed by the framework. It also implies the existence
of some sort of component documentation intended to inform the programmer of the

functionality of the component.

4. The event-based nature of graphical user interfaces. It is therefore relatively simple to

detect meaningful activity, from the application’s point of view, at the user interface.

These features are essential in supporting an independent feedback facility since application
behaviour must be observed and explanations supplied by means of a visualisation of activity
based on interpretation of this observation. The first feature ensures that much of the
application activity will be observable. The second ensures that the communication with
the middle tier is easily understood, since it is structured in a predictable format. The third
ensures that the essence of the communication thus observed can be interpreted correctly,
while the fourth feature supplies the framework with an understanding of the relevance of

events at the user interface.

HERCULE's Design 132

The last requirement is that the application programmer must have the necessary ex-
pertise to be able to use HERCULE effectively to provide extra feedback. This means that
the application programmer must have the required expertise both in Java and in EJBs.
This is not an exacting requirement, since the programmer has to have this knowledge to

build an end-user application for a component-based system anyway.

6.1.4 And Thus...

HERCULE needs two distinct facilitating functions: observation of the user and application
activity; and explanation of that activity. The following section discusses HERCULE’s ob-
servation function, while Section 6.3 explains how the components are described in order to

give HERCULE information about method semantics, in order to fulfill its role of exponent.

6.2 Facilitating HERCULE’s Observation Function

The aim of flexibility is satisfied by not making changes to either application code or any of
the packages being used by the application. This ensures that any application can function
either with or without HERCULE and also satisfies optionality and non-invasiveness.
Chapter 5 introduced the HERCULE concept, which is based on the observation of the
external behaviour of an'application. No attempt is made to deduce the internal functioning
of the application. Thus HERCULE observes the application’s interaction with the user, and
with the rest of the CBS. and ‘merely reports on what it observes. The HERCULE approach
thus monitors systems on-an application level — specifically Java applications — rather

than at a system level. This has been decided on for several reasons:

1. The application-oriented approach makes it possible to involve the programmer in
tailoring messages for the end-user, because the semantics of the communication with

the environment is easily understandable, as they are merely method invocations.

2. Application tracking using Java offers a platform-independent opportunity for moni-
toring, rather than system tracking, which is platform dependent. Platform indepen-
dence is extremely important for thin-client distributed systems, since most CBSs are
structured this way. The thin-client, especially the e-commerce thin-client, must be
designed to be executed on any computer that could possibly connect to the middle-
ware server. Most three-tier CBSs will have many different types of client accessing
the middle tier, providing tailored clients for different needs. For example, the same
middle tier could support a browser client, a Java application client and a telephone

interface client.

The CBS client application can therefore not really make any assumptions about the
type of computer used as the platform for the client program. HERCULE is intended
to be an end-user assistant and must therefore be able to run on any platform that

HERCULE's Design 133

supports Java and uses it. System-level monitoring only works on a specific platform
and is not the right option for HERCULE.

3. System-level monitoring is complex to achieve and it is very difficult to link events
to the application activity. This difficulty is confirmed when you consider that all
system-level monitoring done so far has delivered results to system engineers — not

end-users. (See Section 5.4)

Since the application-oriented approach has been chosen, the mechanism to facilitate track-
ing needs to be decided. One way to track an application non-invasively is to insert proxies
between the application and the environment — which requires no changes to be made
to the application code. A proxy must be inserted between the user and the application
user-interface and between the application and the middleware layer. The use of proxies,
following the decorator or prozy design pattern [GHJV94), satisfies the aims of painlessness,
optionality, simplicity and non-invasiveness. Least damage is guaranteed by ensuring that
these proxies cannot cause the failure of the application. The implementation should be
carried out in such a way that the proxies, upon encountering a probleril;.will simply revert
to the “normal” behaviour of the system., They should no longer report, anything and simply
act as an empty channel through which the application communicates.

There is no question of the proxies, once activated, being removed at runtlme since the
application holds references. to both proxies, without being aware of the fact. There is no
way to update these references inside the application so the best approach is simply to cause
the least possible damage and behave as a sleeper. Once the proxies become aware of an
error condition ‘they must immediately cease to report to HERCULE, so that the impact on

performance is negligible. There are two types of proxies to be inserted:
o the user-interface proxy; and
e the component proxies.

The communication between the proxies and HERCULE can be made either synchronously
or asynchronously. Synchronous communication is simply not viable in this case, since that
would entail the application waiting for HERCULE to accept reports from the proxies and
slow the application unnacceptably. Asynchronous communication using some asynchronous
messaging system would have less impact on the application, but it is doubtful that dynamic
immediate feedback can be guaranteed in this case. The “minimal impact proxy” design
pattern, described in Section 6.2.1, was developed to provide a reusable solution to this
problem.

Section 6.2.2 discusses the design of the user interface proxy, while Section 6.2.3 describes
the proxies which intercept communication between the application and the middleware

layer.

HERCULE's Design 134

6.2.1 The “Minimal Impact Proxy” Design Pattern

This new design pattern was developed specially for the HERCULE framework. This pattern
can be used to link proxies to receiving applications, at runtime, in order to track appli-
cation activity and to facilitate reporting of activity with minimal impact on application
performance

The insertion of proxies enables the observation of application activity without necessi-
tating the alteration of application code. However, with monitoring becoming more common
and the reasons for monitoring ever more justified, it is beneficial to identify a design pat-
tern, namely the “Minimal Impact Proxy” pattern — a general solution to a problem in
context [GHJV94] — to ensure that the proxy does not slow the application down too much.
This section will identify the key aspects of this common design structure that make it useful

for reuse.

Characteristics — This pattern has two distinct features, the first is the use of proxies
between the application and some component making up its environment. This could
be the user interface, a server, a database or whatever interaction needs to be mon-
itored. The means. for insertion of these proxies does not form part of this design
pattern. The second feature, the feature with which this pattern is concerned, is the
linkage of the proxies with an independent application which will receive the reports

generated by the proxies and act upon them.

Intent — Linkage of inserted proxies to a monitoring application with minimum perfor—

mance degradation.

Applicability — This pattern will be used when there is a need to track an application

by making use solely of proxies.

Structure: Reports — Reports should be catered for by a single class type, with various
subtypes for specialising reports. The specialisation could be used to reflect different
types of activity or different types of objects or operations on objects. It is impor-
tant to note that all fields in the report should be easily stored?, so that it can be
transmitted by means of the socket mechanism. This means that objects tracked from
the application cannot necessarily be included in the report, unless the programmer

is certain that such objects will not contain unserializable fields.
Structure: Linkage — Shown in Figure 6.3.
Participants —

e Proxies — observe the activity and generate reports.

2 As Java is being used, serializing the report structure will be sufficient.

HERCULE's Design 135

Proxy ReporterQueue
Op1() additem .| additem()
0p2() o getitem()
) [
' ' Socket
s § 8
:7 g L5, E% writeObject()
5 |
LA ¥
Component Interface Reporter
Opl() wakeup()
Op2()
Figure 6.3: CBS Test Application Architecture
¢ ReporterQueue — provide a queueing structure, which introduces a measure
of asynchronicity into the reporting activity — minimising the impact of the
monitoring on the application.
e Reporter — removes-the reports from the queue and sends the item to the

monitoring application.
e Monitoring Application — which receives the reports and generates some mean-
ingful representation with respect to the application activity.
Collaborations —
e The application unknowingly invokes methods on the proxies, who then report
such activity and invoke methods on the actual components.

e The proxies put reports onto the ReporterQueue for forwarding to the monitoring

application.
¢ The ReporterQueue notifies the Reporter of the existence of a report.

e The Reporter removes the report from the queue and sends it to the designated

sockets.

¢ The monitoring application gets the reports from the designated socket.
Consequences — This pattern offers the following benefits:

1. If a non-invasive proxy insertion mechanism can be found, this is a great ad-
vantage. Even if some system libraries have to be altered to effect insertion of

HERCULE's Design 136

2.

proxies, the old libraries can be reinstated once monitoring is completed. There
will be no problems with removing the monitoring code from the application.

The linkage structure ensures minimum impact on the application, since writing

to the socket — which takes some time — is done asynchronously.

The following restrictions should be taken into account:

1.

2.

An insertion mechanism should be found which is not invasive. This is possible
in Java, as will be shown in the following chapter, but it may not be as easy to

achieve using other implementation languages.

This pattern uses two sockets, thereby tying them up. This might be a problem
if any other application on the system uses the same socket numbers. This is an
unavoidable consequence of the socket system and the user of the pattern should

simply be aware of it, rather than waste time trying to overcome it.

Implementation — In implementing the linkage, the following should be noted:

1.

In the interests of doing least damage, the proxies should not cease functioning
if something goes wrong with the linkage. As can be seen from.the Reporter
Code Fragment in Appendix B, a global variable, reportEvenﬁs, is used wh‘ich
is initially set to true. If anything goes wrong with the connection, this variable
is set to false and the entire object structure stays in place, acting as a channel

through which messages are passed.

The ReporterQueue and Reporter run in their own threads, indepéndehtly of
the proxies, meaning that their failure will not cause failure of the application

and that they can function without degrading the application’s performance.

The environmental variable verbose is used to implement a measure of debugging
in case the monitoring does not work. Thus, when a specialist is called in to
ascertain the cause of a problem, the various error messages are easily generated
without the need for a separate compilation. (This is applicable, once more,
only to Java applications, since other languages have their own techniques for

removing debugging-type output.)

Some of the implementation code is given in Appendix B.

6.2.2 The User-Interface Proxy

In order to track user activity, without being language specific, there are two requirements:

the need to build up a data structure to represent the user interface; and the need to track

activities by both the application and the user at that interface. These needs are addressed

as follows:

HERCULE's Design 137

L.

The first is to build an internal representation of the user-interface structure. To
achieve this, there is a need to know about each user-interface component being created
and how the user interface is composed. In any user interface, the window is built
up hierarchically. Each visible item on the screen is a component. Components have
specialised functions. Some of these, the container components, have the ability to
“house” other components. For example, in the window shown in Figure 6.4, the outer
Window is a container component. It contains a menu bar (also a container) at the top
containing four menu options. Each menu is also a container and holds the different
menu item components. The window itself also contains three panels, the top one
containing only a label, the second one containing four button components and the
bottom one containing only the Quit button. A panel is a non-visible container which

is used to group components together using some type of specific layout function.

HERCULE EXPERIMENT _USl_sjl
File Hide Show Customise

SAVINGS ACCOUNT TRANSACTIONS

Create Account

Withdrawal

Deposit

Close Account

Figure 6.4: The Client User Interface

The Window in the figure houses the following components:

* a MenuBar, which in turn contains the following:

- a File Menu

- a Hide Menu

- a Show Menu

- a Customise Menu
* a Panel containing the Label "Savings Account Transactions”
* a Panel containing four Buttons:

- Create Account

- Withdrawal

HERCULE's Design 138

— Deposit
— Close Account

e a Panel containing the Quit button

This can be represented as a tree structure, as shown in Figure 6.5.

Panel
Button @

The user-interface tree structure is required so that the event delivery to contained

Figure 6.5: The Internal User Interface Representation

components can be traced. Without such a structure, it would be more difficult to
identify windows containing event-generating components, to keep track of components
within a window: being added or removed, and to provide any sort of context-sensitive
feedback.

2. The second is to keep track of activities at the user interface — both with respect to
the application and the user — and to associate them with the parts of the interface
being used. To watch user and application activities, a tracking facility needs to be
notified whenever the user does something at the GUI, and every time the application
changes the appearance of the display. Since GUIs are primarily event-based, this
information can reasonably be expected in the form of events. So, for example, in the
Window shown in Figure 6.4, the application responds to button activations. In this
case, HERCULE also needs to be apprised of button activations. On the other hand,
in some cases, the application makes some on-screen components visible which were
not visible before — or hides some components. This impacts on the user’s view of

the application’s interface and is obviously important.

HERCULE can only keep track of these activities if it is informed when actions occur.
It could, upon learning that a component has been created, declare an interest in all
events on that component. This would mean that it would be interested in every
button press, every mouse movement, every key press, window activation and deacti-

vation and much more. This volume of reporting would slow the system unacceptably.

HERCULE's Design 139

The second-best option is to have HERCULE register an interest in events which are
important to the application. These events would presumably precipitate some action
on the part of the application and are therefore meaningful activities from the point

of view of the user when using that particular application.

This keeps HERCULE aware of events triggered by user actions, but not activities
triggered by the application. To keep track of these changes, HERCULE needs to
register an interest in the visibility of components which could possibly be removed
from, or added to, the display. The state of on-screen components which could have
changing values are also of interest and HERCULE needs to be informed of these
activities too. Since part of HERCULE's task is to provide a mechanism for rebuilding
context, it is essential that HERCULE knows about any change in components that
are visible at the user interface. Changes to invisible components are not important,

since they will not have any effect on user perception.

The previous discussion has focused on the activities required to report on .interaction be-
tween the user and one window display. An application typically makes use of many window
structures in order to communicate with the user. Thus, HERCULE needs to be able to dis-
tinguish between different displayed windows and be aware of the transition between them.
In addition to registering an interest in events which interest the application, or components
within a window, HERCULE also has to register an interest in windows 'beiné made visible
or invisible as the application executes. | ‘

Since there is only one user-interface, HERCULE only needs one user-interface proxy
— and it would have to be an intelligent agent, with specially tailored behaviour for each
different type of user interface component. The behaviour of the proxy can be summarised

as follows:

e For each component:

|

send a report signaling that the component has been created;

— send a report giving the identity of the container the component resides in;

|

if the component has state, send a report about the state of the object. For

example, a button’s label would be reported.

if the component can be the source of events, check whether the application has
registered an interest in events on the component and, if so, register an interest

in those events too.
e For each container component:

— register an interest in events on the container. This is so that HERCULE is
informed of new components being added to, or removed from, the container.

In some containers, the layout specifies that some components can be visible

HERCULE's Design 140

while others can be invisible. Registering an interest in the container ensures
that HERCULE is informed of components being added, removed or having their
visibility altered.

e For each window component:

— register an interest in all events on this window. This issues a report whenever a

window is either shown, or closed, or destroyed.

— register an interest in the simple activation and deactivation of a window. This is
important because the user may switch to another application, to carry out some
other work and then switch back to the application being tracked. HERCULE
needs to know that this activation has not actually changed anything in the user

interface and that it is merely a resumption of use after an interval.

— report on the title of the window.

The reports generated by this scheme serve to keep HERCULE informed of the application
and user activity at the interface, as well as events generated by the user. So, for example in
the window in Figure 6.4, reports will be generated for each component — buttons, labels,
panels, frames, menu bars and menus. The construction of the window is also reported, as
for example, the fact that the menu bar is contained within the window frarmme. The state
of .the buttons and menus is reported too. The proxy registers an interest in each button
and menu, since these are of interest to the application. An interest is also registered in the
window itself, so that HERCULE is.informed of window open and close activities. If the user
clicks on the “Close Account” button, a report is sent to HERCULE informing it of the fact
that the user had activated that button. If a new window was displayed, construction and
status reports would be generated for this new window and a report generated to inform
HERCULE that the first window was no longer active.

6.2.3 The Component Proxies

To intercept communication with server components, it is necessary to intercept each of

three different phases of this communication:
1. when the client application “makes contact” with the application server;
2. when the actual component is being located; and
3. when methods are being invoked on the server components.

The first contact typically involves an object from a naming facility, while the second uses
that object to locate server components. A naming facility is used in order to locate the
required server component. This is done in different ways according to the component
model being used, but each scheme has the basic use of a naming facility in common. If

HERCULE's Design 141

HERCULE intercepts communication with the naming object by means of the insertion of
a proxy into the system, the naming object can engineer the insertion of all the necessary
server component proxies from there onwards since it is solely used to gain access to server
components used by the application.

There is a need for a server component proxy for each interface of each server component.
To satisfy the painlessness aim, proxies must be generated automatically. The programmer
should not have to put any effort into getting the proxies written or installed into the system.
To facilitate the creation and insertion of proxies, a language with extensive introspective
qualities is required, for example, the Java reflection package [Mic99], which allows the
investigation of all aspects of a component interface and enables generation of a proxy for
any component implementing that interface.

The general structure of the proxy is essentially that of a “wrapper” [GHJV94]. The
proxy implements the same interface as the component, so that the proxy instance can
be substituted for the component instance. The application program uses the proxy as
it would the component instance returned by the middleware server. The fact that the
proxy implements the same interface as the component, and is compatible at a type level,
makes this substitution possible. The interface inheritance mechanism makes it possible to
substitute one object for a completely different object, as long as both implement the same
interface or a subtype of the interface. v

The proxy reports on all method invocations, then invokes the method on the actual
component and reports on the value returned or exception thrown. The Java code for the
proxy incorporating this functionality is generated automatically and then compiled so that
the class files are automatically made available to the JVM at runtime. The proxies can be
generated either at runtime or offline — Chapter 7 discusses this issue further. The proxies

have the following functionality:

e When the proxy is initialised, a report is sent to HERCULE telling it about this server
component interface and informing HERCULE of the name of the descriptor object for

this interface.
e For the interface method signatures:

1. store the parameters provided by the application program in a data structure;
2. report that the method is about to be invoked;

3. invoke the method on the wrapped component;

4. report the completion of the method invocation — including the return values or

the exception thrown.

o Ensure that all exceptions are caught, so that a report can be relayed to the proxy

about it, before relaying it back to the application.

HERCULE's Design 142

Once the proxies are in place, HERCULE needs to have some understanding of the semantics
of method invocations, so that explanations can be generated for method invocations. The

following section discusses the approach to this problem.

6.3 Facilitating HERCULE’s Explanatory Function

In accordance with the aim of clarity, it would not be sufficient to report on methods invoked
in the same format as, for example, an exception output statement, since that would not
make any sense to the end-user. HERCULE, as an observer, has no understanding of the
semantics of either the inputs supplied by the user, the methods invoked on the server
components or the results from the method invocations. HERCULE therefore needs to have
access to textual descriptions of these events, so that these descriptions can be relayed to
the user as part of the feedback.

To get descriptive information about method invocations, existing component documen-
tation is mined. HERCULE should function with the minimum requirements. HERCULE’s
requirements should not be greater than that which can be expected from a component
supplier. Since there is presently no standard for documents supplied with components, the
-absolutely minimum requirements, without which no component would be delivered; are the

following:

1. An Application Programmer Interface (API) document, explaining the purpose of the
component, and giving details of method functionality, for example, javadoc [Mic98b]

output.
2. One or more interface classes through which the component can be accessed.

3. A deployment document which specifies the context dependencies of the server com-

ponent and explains how the component should be deployed.

\ L

Programmer DISCOVERY
PROCESS

Component
Documentation

Proxies

Figure 6.6: The HERCULE's discovery process

HERCULE's Design 143

HERCULE mines the information from this documentation to customise itself with respect
to that specific component. The explanations might not be suitable for an end-user and thus
the programmer should be provided with a tool to allow these explanations to be augmented
easily. To provide HERCULE with the required semantic information, a discovery process is
executed to build up a set of descriptors for each participating server component interface.

(see Figure 6.6) This descriptor holds information about:
1. the interface name;
2. the method signature for each method in the interface;

3. the semantics of each method invocation. This is a free-text description explaining
what the method does; and

4. the possible errors and exceptions which could be produced by each invocation and

an explanation for each particular error.

It is to be hoped that, in time, more descriptive component documentation will be delivered,
as a matter of course with server components. The need for rich component specifications
is critical [ND99] It is the component specification that allows component consumers to

determine quickly which services are provided by the component [Sho98].

6.4 HERCULE’s Architecture

The HERCULE framework essentially obtains dctails of the dialogue between the user and
the application, together with an understanding of the effects of user actions — method
invocations triggered by these actions. The framework must transform information about
the dialogue to a graphical feedback display. The design of HERCULE was driven by the
need to find the simplest and most elegant solution to the problem. Some complexity could
not be avoided, as becomes evident from the discussion of the window manager component,
but the structure of HERCULE, shown in Figure 6.7, was deliberately kept as unelaborate
as possible, in accordance with the aim of simplicity. Each of the constituent components

is explained in the following subsections.

6.4.1 Communication modules

The “Get UI Reports” & “Get Proxy Reports” modules receive user interface or proxy
reports and make them available to the GoBetween module. Since two types of reports can
be expected, there are two of these modules dedicated to receiving each individual report

type — each on a different socket. To receive the reports, the following steps are taken:

e listen on the designated socket and wait for the application’s proxy to make contact;

HERCULE's Design 144

HERCULE

Get Go .
— U | Between Controller [+——————| Display > To
Reports Controller Fgedback
From A l Display
Proxies
/
Server
—t+= Proxy |— Window Proxy
Manager Manager
Hercule
Components

Figure 6.7: HERCULE's Internal Architecture

e maintain a queue of messages appomt an object to wait at the socket for new messages

- and append the messages to the queue when they arrive;

e reply to requests from the GoBetween for messages by removing and returning the
message from the head of the queue — if there is a message.: If there are ng current

messages, simply wait a while and try again; and

e if communications break down7 throw an exception to the chAtrollerl,‘ so that the display
can be updated to reflect the fact that the application has severed the connection. This
is probably an indication that the application has completed its execution.

This procedure is shown in Figure 6.8.

6.4.2 Controller

This is the control centre for HERCULE — the “brain” that controls and co-ordinates all
activities. It is responsible for initialising all the other components at launch time and
assigning each to a separate thread. HERCULE needs to be multi-threaded because the
communication modules have to block while waiting for messages from the proxies and the
HERCULE display must be able to respond in spite of this. Apart from this, the controller
also launches the console and maintains the status display by informing it when the proxies
make contact and when they sever contact at application completion time. During system
operation, it requests reports from the communication modules and decides what to do with
the reports. The controller relates the user interface reports to the proxy reports to link user
interface activity to application reaction. If a user action at the user interface, as signaled

by an event, directly precedes a call to the server, we can assign a purpose to a user action.

HERCULE's Design 145

To Controller

GoBetween

TAIL

Get Reports

8

Figure 6.8: Communication Module

This must serve as a substitute for an understanding of the user’s intention when the action
was taken with respect to the sequence of proxy invocations thus triggered. Construction,
status and event reports are sent to the Window Manager, while server proxy reports are

sent to the Server Proxy Manager.

6.4.3 The Window Manager

The window manager has a dual function. Its first function is to build up an internal
structure in memory to represent each individual window which is displayed — as indicated
by construction reports. Linked to this are the status reports, which send details about the
display characteristics of the windows, such as the text typed into a text field or the text
displayed on a button. These reports, both construction and status, give a comprehensive
picture of the appearance of the application user interface.

The second function is to keep track of user actions at the GUI. The window manager
builds up a linked list of windows as they are created and displayed by the application and
also remembers user actions with respect to those windows.

The window manager has a simple structure, shown in Figure 6.9, belying the complex
nature of the software. In deciding on a mechanism for making sense of this plethora of

information, the following decisions and assumptions were made:

1. It was assumed that the structure of a particular window would be constructed by

HERCULE's Design

146

|

Report Construction Reports Build up
from structure
Proxy
Status Reports ‘f
Record
Status
Event Report ‘(
“| Link Event
to Window
Change
. 4
Query Get History »| Return alist
B of session
History a_ctlwty until
given event

Figure 6.9: The Window Manager Architecture

HERCULE's Design 147

the application only once, utilised as required and made invisible when no longer
needed. Such a window could be re-displayed many times during the session activity,
containing possibly different state in various user-interface components. For example,
the application programmer could use the same window to issue warning messages
or information messages. The same window could be used with different messages
displayed in a particular message box. Thus, it is necessary to remember the structure
of the different windows separately from the state. This window structure storage

mechanism is illustrated in Figure 6.10.

Window 1 Window 2 Window 3
Structure Structure Structure

Figure 6.10: Storage of Window Structures

2. There are two ways of storing the window state (of visible components) separately

from the structure of the window.

e A duplicate structure could be stored with each node containing information
about the state. For example, a node which represents a label could store the
text value being displayed, while a container could store the layout structure
which it uses to determine the layout of the composite components.

e A list of components which have changed state could be stored.

The choice between these two schemes would obviously be based on the type of appli-
cation. An application with a very involved structure, but relatively few components
which change state frequently, would benefit from the second approach. For exam-
ple, a word processor window has many buttons and fixed menus, but only one main
component which changes all the time — the editable text display.

On the other hand, if the windows are re-used for various purposes with different
entity states, or if a series of windows with different appearances are used to obtain

information from the user, the first scheme is probably better.

Since this software is generic, it is not easy to judge the nature of the applications so

that a good choice can be made. However, this decision can once again be based on the

HERCULE's Design 148

nature of thin-client systems. These systems generally collect information and then
send the data to the middleware to be processed. This type of application generally
uses a window structure of one type to get a specific type of information and then
proceeds to another window display to get another type of information. This can
be judged from the structure of systems like the online bookseller, amazon.co.uk,
or any of the many e-stores in existence today which are a prime example of thin-
client technology. Thus it was decided that the first scheme would be followed. The
aforementioned scheme for storing state is illustrated in Figure 6.11.

- ' N 'd N\
Window 3 | Window- 3 Window 3 Window 3
Structure State 1 State 2 State 3

N\ <) N\ J ___ J L J

Figure 6.11: Storage of Window State Changes

3. Information about the state:of the window components, constituting the window ap-

pearance, needs: to be recorded. A decision must be made about the eztent of infor-
mation to be recorded. It is possible to store information about every possible feature
— including colour, size, position on the screen, fonts used in the display and so on.
To store this information so that it can be relayed to the user would obviously be
valuable, but once again we come up against the fact that the negative impact of
HERCULE on the application should be as small as possible. Each type of information
stored leads to information being relayed between the proxies and HERCULE and slows
the application down. Thus, a pragmatic approach was followed, with a minimum of
information extracted and other details regretfully ignored. Therefore the state of
each component with respect to displayed text and visibility on the screen is recorded,
while the other features like colour, position and size are not collected.

Finally, the window manager has to satisfy a query relating to the session history. In

storing the session activity history, it is not enough to store the succession of windows and

window component state. An assumption about the event driven nature of the system has

been made, thus it is reasonable to assume that some action by the user precipitates the

transition either from one window type to another (shown proceeding from top to bottom in

Figure 6.12), or from one state to another state in the same window (shown proceeding from

left to right in the Figure 6.12). Therefore the state changes must be stored in conjunction

HERCULE's Design

149

with the actions which caused them.

Event A Event B
Event C
\i
Event D
Event E
1]
Window Structure Window State
Time

State Changes within Windows

Figure 6.12: Storage of Session History

6.4.4 The Server Proxy Manager

Time

Changing
Windows

This module keeps a history of all server component method invocations. There are three

possible consequences of a call to the server:
1. no response within an expected time period;

2. an exception, signaling that an error occurred; or

3. correct execution, signaled by a return value or values to the user.

In the first case, the lack of a response within the expected time triggers investigation into

the source of the delay. It is difficult to determine the difference between a slow server and a

HERCULE's Design 150

dead server. This manager therefore keeps a record of reaction times. If the current reaction
time exceeds double the current maximum time, it is assumed that the server has crashed.
To diagnose the problem, the module firstly attempts to check whether the server is indeed
still responding by attempting to establish a new connection to the server. If this fails, the
manager then executes a program which checks whether the machine housing the server is
functioning. The diagnosis will be reported to the user. It is readily acknowledged that
diagnosis is not always possible, but it is hoped that experience with this framework will
suggest better and more reliable ways of making a more conclusive and reliable diagnosis.

In the second and third cases the return values are stored together with the details of
the call to augment the history of the session. In the second case, an exception handler
is activated to investigate the source of the error. The descriptors will contain textual
descriptions of the reasons for each exception thrown by method invocations.

The server proxy manager architecture is shown in Figure 6.13. The inputs received
consist of reports generated by the proxies. The reports indicate one of four events:

e that a connection to a server has been made — giving the host and port details;

-e that a specific component interface has been used by the application — giving infor-

‘mation about the descriptor class which describes this component interface;
e that a method has been invoked on a component interface; or
e that a method invocation has completed, giving the return value or exception thrown.

In each case the information is stored for later availability. The third case causes a Timer to
be started, which times the response and registers the absence of a response in the rare cases
when this happens. In these cases the server proxy manager is informed so that information
can be relayed to the display controller. The following queries are satisfied by the server

proxy manager:
e getting an explanation for an exception thrown by a component;
e getting a list of method invocations which were precipitated by specified user actions.

The server proxy manager has another function too — that of maintaining a system state
indicator which is an essential part of the immediate feedback to be provided by the HER-
CULE display. The server proxy manager is in a unique position to gauge the “health” of
the rest of the distributed system. The system state indicator clearly shows whether the
server is ready and waiting for work, busy servicing a request, or not responding. The server
proxy manager is the first to know of any problems in this respect and therefore informs the
display controller of the required state to be depicted.

HERCULE's Design 151

LOGGING and MONITORING
Register Host and Port Record
Report Details
from
Proxies
Identify Component Interface | Racord
Details
N
Log the Call
Method Invocation Start Update the Console Status
Start the Timer
A\ : J
s N
Log the Call
Complete .
Update the Console Status
Stop the Timer
L)
Get
Exception @ QUERY RESPONSE
Explanation Use Descriptor Object
*1 and Generate Exception
explanation Explanation s
(.
Get Method Get all Method Invocations
Invocations »| matching given Actions
list of —
invocations

Figure 6.13: Architecture of the Server Proxy Manager

HERCULE's Design 152

6.4.5 The Display Controller

This controller handles the display that provides both immediate and archival feedback. It
depicts all activity for the session and can also explain errors and offer possible reasons for
those errors. The display is active continuously, but does not intrude. If the user wants to
verify any actions or get explanations of errors, the display can be consulted.

The session visualisation should depict the relationship between the user’s actions and
the actions of the system as a result. The system interactions with the rest of the CBS as
a result of user actions occur in the form of global method invocations. The visualisation

aspect is discussed in Section 6.5.

6.4.6 Hercule Components

These feedback-tailoring components extend the feedback capacity of the display and satisfy
the versatility design principle. They can be tailored to the specific needs of the end-user,
as discussed in Sections 4.5.3 and 4.5.4. There is a capacity to add them to the system
dynamically so that the system can keep up with changing user needs.

Thus, suppose the system has been in use for some time and a blind user needs to
make use of the system. A special feedback component which plays an audio message as
explanation of system actions could be very helpful for such a user. This feedback component
can be added dynamically to the HERCULE display on the new user’s machine whereupon
it would be available for use .immediately. To support this extensibility of the HERCULE

.- console, the following mechanism, shown in Figure 6.14, is used:

e An abstract class named HerculeComponent (which extends java.awt.Panel). This
class must be implemented by any feedback component to be incorporated into the
HERCULE console.

e A HistoryListener interface. The feedback component implements this interface and
registers as a listener with the history panel. The feedback component is then notified
of user actions at the history panel, which enables it to provide relevant feedback.
The feedback component implements this interface if it is going to provide dynamic

feedback related to a specific user activity.

e An OutcomeListener interface. The feedback component implements this interface
and registers as a listener with the history panel. The feedback component is then
notified of the outcome of system actions which were caused by a set of user actions.
The feedback component typically implements this interface if it wants to provide

statistics about the entire session activity, or performance.

HERCULE's Design 153

java.awt.Panel

{abstract} {interface} {interface}
HerculeComponent HistoryListener OutcomelListener
A i
, .-
, .-
’I . _ - -
, -
, -
, -
Hercule
Component

Figure 6.14: Structure for extending the HERCULE cénsole ;

6.5 Application Activity Visualisation

The focus of this research has been end-users — consideration of their needs and attentive-
ness towards finding out how system interpretability can be enhanced. The purpose of this
section is to explain the design of the application-activity visualisation in graphical format
to satisfy these needs. The cost to the user of accessing this information is made up of the
cost of finding it on the screen and the cost of assimilating it [CRM91]. To reduce the first
cost, it should be available at a glance while to address the second, the information being
depicted should not be ambiguous. The user should be left in no doubt of which particular
action it refers to. This section therefore starts off by taking a look at the user’s needs and

summarising the findings of Chapter 4.

General Needs

Section 4.5.2 gave a summary of the user’s feedback needs. There are some important things

to be remembered in providing these:

o The feedback display should not intrude, but offer the user assistance. Thus, it should
use as little screen space as possible. Many feedback devices tend to become over-
powering and the last thing we want to do is to annoy.

o The user should be able to obtain as much information as possible immediately —
and more if needed, but there is a need to be careful not to overload the user with

HERCULE's Design 154

information.
e Allow different types of navigation of archival feedback.

e Section 4.4 concludes that feedback should be continuous. In Section 4.5, a distinction
was made between immediate and archival feedback. Immediate feedback must neces-
sarily be continuous and informative. Archival feedback should provide an immediate
overview and summary of information — and then allow the user to interact with
it in order to reconstruct inter-referential relationships between their input and the

application’s response (output).

Contextual Needs

It is often necessary to help the user reconstruct their context. This need was mentioned
in the sections of Chapter 3 dealing with interruptions and errors. It was also referred to
indirectly in the discussion of situated action in Chapter 4. The following analogies, with

which we are all familiar, illustrate the need:

e when you go into a room to fetch something and, having arrived, you forget what it
was you wanted. By going back to where you were, it is often possible to reconstruct

the train of thought that prompted the errand.

e when you lose something you can try to reconstruct the events surrouhding the last

time you used the item. This often helps you to remember where the item is.

If the user is operating with an objective in mind [Suc87], rather than a rigid plan of action,
and is responding to the system’s state during the user of the application, the reconstruction
of this state is extremely important in enabling the user to rebuild the circumstances that
prompted action in the first place. A feedback mechanism can be truly helpful to the user

in reconstructing mental context, by facilitating backtracking.

6.5.1 How Should the Application Activity Visualisation be Provided?

Section 4.6 argued the need for graphical rather than textual feedback. In providing such a
visualisation it is necessary to build a model of the user’s interaction with the application
and to convert that to some sort of visualisation which is helpful and meaningful. Chen
points out that there are two issues to be resolved [Che99], the structure of the information

and its visualisation.

Structure of the Information

It is useful to examine the nature of the information to be depicted. HERCULE holds
information about the appearance of the user interfaces, events at that interface and method

invocations resulting from those events. This is a continuous process with one set of events

HERCULE'’s Design 155

continuing on from method invocations resulting from previous events and so on. In choosing
a structure to be visualised, it is important to find a configuration which can exploit the
user’s intuitive understanding of interaction with the application. The fact that HERCULE is
working with a thin client greatly simplifies matters, since the application itself, by its very
nature, only collects the necessary information and relays it to the middleware layer and
does the minimum of processing itself. The user’s operating paradigm is that some inputs
will be supplied whereupon the application responds to those inputs by doing something
meaningful. The pervasiveness of web browsers makes this paradigm well understood by
many computer users and thus makes the task of designing this part of HERCULE somewhat
simpler.

In broadly analysing the application activity, two types of activities stand out: the
user-interface activity and the application communication with the middle tier. Chapter
4 compared the interaction of a user with the computer to a two-way conversation. In a
conversation there are also two types of “activity” — what was said by one person and
what was said by the other. In observing a conversation we can only guess at the internal
reasoning process of the participants, based on what is said. In the same way, HERCULE, by
tracking the application, only monitors external application behaviour and cannot attempt
to guess at internal functioning of the application. Application interaction with the rest of
the CBS occurs by means of method invocations.

Since not all user-interface activity results in server component method invocations,
there could be a number of user-interface activities occurring before a method invocation.
In the same way, -a whole string of method invocations could be precipitated by a sequence
of user-interface activities. The user carries out a set of actions and these actions change the
state of the system in some way. These changes can be considered to be a trace of the user’s
actions. Suchman analyses the structure of discourse as follows: “the user’s actions can be
grouped in a series of displays such that the last action prescribed by each display produces
an effect that is detectable by the system, thereby initiating the process that produces the next
display” [Suc87].

To model this behaviour, it is necessary to consider each application thread in turn,
with the sequence of user-interface activities (including user actions and application dis-
plays) which precede some or other component-based application-activity being called a UI-
sequence (User Interface Sequence), and the series of method invocations thus precipitated
being referred to as an MI-sequence (Method Invocation Sequence). When a Ul-sequence is
matched to an MI-sequence, we can call this mapping an Episode. This is illustrated in Fig.
6.15.

HERCULE must treat the dialogue as an information source that can be browsed by
the user, thus giving a representation to the dialogue history. This visualisation is not
merely a matter of displaying the content of user-interface activity, but needs to be linked
to the method invocations which were precipitated as a result of the dialogue as well as
the user interface activities. The system must have a strategy for producing tools which

HERCULE's Design 156

Episode

Ul-sequence MI-sequence Ul-sequence

(ul ul ul uj) (em oem)| (v w)

Time

Figure 6.15: Ul-sequences, MI-sequences and an Episode

allow the user to browse and search through the dialogue. Considering the conversational
nature of the user’s interaction with the application, it is possible to interpret the UI-
sequences to be the application’s interaction with the user, with the MI-sequences being
the application’s response to the user has instructed it to do. Thus HERCULE reveals the
application’s response to user inputs. In a conversation the listener is sometimes instructed
to do something and the actions as a result of the instruction serve to inform the instructor
of the understanding of the instructions given. Since the application’s actions are often
hidden and therefore unintelligible to the user, the user is left puzzled By visualising this
activity — making visible what is-invisible — HERCULE can promote a better understanding

of application functwnmg

6.5.2 Visual Representation

Section 4.5.2 discussed the feedback features which should be provided by a computer ap-
plication. These are satisfied as follows:

Immediate Feedback

This is satisfied by giving the user immediate feedback about the state of the system. Since
the current time can be indicative of the state, that too is included here. The following

displays are used to provide the required feedback:
¢ a status display;
e a current time display;
¢ explanations:

— an explanation of the latest Episode (if chosen by the user); and

— detailed information about latest method invocations (if chosen by the program-
mer). This requires nothing more from the programmer than a choice from a
menu on HERCULE's display — whereupon the method invocations are displayed.

HERCULE's Design 157

Archival Feedback

Archival feedback is best satisfied by an interface which allows the user to get details of the
most recent interface activity, and the ability to access details of previous interaction. To
satisfy archival feedback needs, therefore, the user must be given an overview of all session
activities, with the option of getting an explanation of any one of the activities, as follows:

e access to facilitate reconstruction of context (memory aid)
¢ summary information (overview)
e an overview of Episodes (overview) — which can be expanded to:

— time when Episode occurred;
— explanation of an Episode;

— detailed information about method invocations.
¢ an expanding facility (det‘ail-on-demand) in which the system:

— allows a choice of which Episode is to be expanded;

— allows a choice of the type of expansion that is required — either end-user expla-
nations or method invocation information for the programmer or both;

— makes it easier for a programmer to add new feedback features to cater for dif-

- ferent feedback requirements since new needs can be identified at any time.

6.5.3 Layout

The derived layout is shown in Figure 6.16. This layout has components to address each of
the feedback needs outlined in the previous section as follows (small letters in brackets refer

to the specified areas in the figure):

1. Immediate Feedback:

e A status display (a). A symbol is used to depict the system status. This is used
both to save space since a legend becomes unnecessary and to save the user time,
since nothing needs to be read but the symbol can simply be interpreted directly.

e A current time display (b), which is given in hh:mm am/pm format. The decision
to display the time in digital rather than analog format was made for two reasons:

(a) Many younger people today are not as familiar with analog watches as used
to be the case and it is not as easy for them to tell the time at a glance. The
digital display is suitable for all age groups.

(b) There is a need for the user to compare the current time with the action
time, displayed as part of the archival feedback. This is easier to do with
digital displays.

HERCULE's Design 158

1| HERCULE

(h) Legend | | () Time 4
(a) Status
(g) Groups of 100 Episodes
(b) Current Time
(f) Groups of 10 Episodes
(c) Context Link (e) Current Episodes
STATUS PANEL HISTORY PANEL

Individual Episode Feedback
(d) or

Summary Feedback

Figure 6.16: The Feedback Layout

e Explanations are supplied in the panel at the bottom of the display (d).
2. Archival Feedback:

e Access to facilitate reconstruction of context (c) — supplied as a button. This
reconstruction of context requires the animation of the window displays as they
appeared on the screen. This is impossible and inadvisable to depict in a small

space, so it is constructed on demand.
e Summary information — supplied in the panel at the bottom of the display (d).

e Overview of Episodes is supplied in the history panel as groups of episodes. They
are not called episodes since the term “Episode” has only been coined to assist
the designer in building a model of dialogue structure and using that term in the
display would only confuse the user. Therefore they are referred to as actions,

since the user is surely aware of their actions having an effect on the application.

¢ Expanding Facility — obtained by clicking on one of the symbols used to depict
episodes in the groups of episodes. This causes the explanation to be displayed in
the panel at the bottom of the window. The topmost display (g) groups Episodes
by hundreds, while the middle display, (f), groups them by tens. The bottom
area (e) displays the current ten Episodes. Each episode has a link to:

HERCULE's Design 159

— the time of the user action (i); and

— the explanation shown in the lower area (d).

The history panel contains grouped Episode areas which link downwards to the

group presently being displayed.

This layout has the following desirable features, mentioned in Section 4.6.3 and as discussed
by Vanderdonckt and Gillo [VG94]:

regularity, as characterised by the fact that the components of the layout are deter-

mined by some evident principle.
vertical and horizontal alignment, giving a pleasant aspect.

proportion as shown by the various labeled areas, with no one area overwhelming the

others.

horizontality, since the display is wider than it is long. Vanderdonckt and Gillo cite
research which shows that displays should have a greater width than height, as this is

preferred by users.

simplicity and economy, with only absolutely essential features being shown. Cluttered
displays do nothing to ease understanding so that simplicity has been applied here as

throughout the design phase.

unity, with only .one window being used to display all required information. The
various components of the display are related to each other, giving an overall picture

of application activity.

grouping, which has been used to demonstrate an overview — areas for the Episodes
are grouped together on the right. The status panel contains areas for status, current
time and context linkage to provide immediate feedback with respect to the system
state. Each panel provides a grouped area of feedback components, the status panel
depicting immediate feedback with respect to the current status of the system and the

history panel providing archival feedback.

sequentiality and predictably arranged in a logical rhythmic order — by time. The
feedback components will, by their similarity, help the user to anticipate their use and

understand the relationship with the history panel.

6.5.4 Customisation

In Section 4.5.3 some differences between people were cited. It is tempting to satisfy these

needs by providing a profuse collection of customisation facilities. There is evidence that

people often take no advantage of customisation features, seeing the time spent on this

HERCULE's Design 160

as time wasted [Mac91]. MacLean et al. [MCLM90] point out that users with extensive
computer skills tended to make more use of customisation facilities than users who had no
interest in the computer but just wanted to get on with their task. The latter users seem
to have less expectation of tailoring their system. MacLean et al. advise that tailoring
mechanisms be made more accessible to the user, to reduce the need to learn a new set of
skills merely to customise the system.

In designing customisation features for the HERCULE display, the need for simplicity
once again becomes paramount. There are two types of customisation to be considered
— appearance and functionality. Customisation of appearance could possibly apply to the
size of the fonts used or the colours used by the display. Customisation of functionality
would have more to do with the actual feedback provided, like the type of explanations
being tailored to the end-user or the programmer. The former should be accessible to the
end-user, while the latter should be provided by the programmer and offered to the end-user
as a possible option.

The initial prototype customisation features are kept to a minimum. It is certainly
possible that experience with HERCULE will suggest the desirability of other customisation
features and it would be interesting to investigate these needs at a later stage. The provisos

mentioned in Section 4.5.3 are catered for as follows:
e Appearance:

— Physical abilities and physical workspaces. HERCULE allows the user to choose
whether an error should be signaled by a beep sound or not. This allows the
user to adapt HERCULE to noisy environments and individual preferences with
respect to beeps.

— Disabilities. There is scope for HERCULE to offer an audible explanatory mes-
sage instead of a textual one. This is handled by the addition of a new feedback
component which is displayed at the bottom of the HERCULE display. The mech-
anism for doing this has been designed into HERCULE, but implementation of

the actual audio feedback has been reserved for future attention.

— FElderly users. The HERCULE display does not explicitly define font sizes and
thus uses the default size defined by the user for the desktop. This means that
HERCULE reflects the user’s display preferences with respect to font and window

size.
¢ Functionality:

— Cognitive and perceptual abilities. Possible limitations are alleviated by the in-
formation given in the session history panel and by the use of a symbol to com-

municate system state.

HERCULE's Design 161

— Personality differences. HERCULE seeks to make the application less threatening
by explaining activities. It also seeks to reassure by offering a dynamic system-

state indicator.

— Cultural and international diversity. The customisation feature offered by HER-
CULE allows the programmer to tailor messages to support these differences.
Extra feedback components can also be developed specifically to support the

user with unusual needs.

Design problems often appear to have many solutions. While solutions can often be com-
pared to each other to find some which are better or worse than each other, it is often
impossible to cite the best design while it might be uneconomical to expend a vast amount
of time chasing after such an elusive design. Thus designers will often expend what they feel
is a reasonable amount of effort, using guidelines such as the ones cited above, and arrive at
a satisfactory design. Simon [Sim69] calls this “satisficing” — the process of seeking good
or satisfactory solutions instead of optimal ones. The science of information visualisation is
young enough to support this paradigm for the present, while the future may well produce

stronger guidelines which allow us to approach the optimal solution more quickly.

6.6 Conclusion

The design of HERCULE suggests the need for three distinct tools:
1. A descriptor tool, which would:

e provide a mechanism to generate descriptor objects which describe the server
components used by an application. This should be generated automatically

from the component documentation; and
e provide a mechanism for explanatory messages to be updated during the lifetime
of the system, by means of a simple interface.

2. A proxy generator, which would:

¢ provide a mechanism for component interface proxies to be generated automati-

cally.
3. A runtime feedback tool, which would:

e intercept all server calls and keep a history of the calls to provide session feedback;

¢ build up an internal representation of the user interface and watch all user activity

at that interface;

e provide runtime support for application users by providing continuous feedback

and error explanations; and

HERCULE's Design 162

e allow end-user and programmer customisation of the feedback display.

In addition, there is a need to devise a scheme for inserting the proxies dynamically so
that the end-user does not have to bother about achieving this. The following chapter will
discuss the details of the implementation of these tools and outline the mechanism used to

insert the proxies.

Debugging is anticipated with distaste, performed with
reluctance, and bragged about forever.
Anon.

Backup not found: (A)bort, (R)etry, (P)anic.
Anon.

chapter 7

Implementation

The design having been completed, the next step is to implement a prototype of HERCULE.
Before details about implementation can be given, Section 7.1 describes the component-
based test application framework within which HERCULE was implemented.

Section 7.2 will discuss the implementation of the user interface proxy, while Section 7.3
gives details about the technique for the automatic generation of server component proxies.
The design chapter concluded that three tools were needed in order to facilitate HERCULE:

1. A descriptor tool — described in Section 7.4.1, providing a mechanism to automat-
ically generate descriptor objects describing server components. It also provides a

mechanism for updating explanatory messages by means of a simple interface.

2. A prozy generator — described in Section 7.4.2, providing a mechanism to generate

component interface proxies automatically.

3. A runtime feedback tool — described in Section 7.5, builds up an internal representation
of the user interface, tracks user interface activity, links it to requests for server activity
and provides runtime support for application users by providing a visualisation of

application activity.

163

Implementation 164

Since the approach followed in this research has been to provide the feedback by means of a
visualisation of application activity, an entire section, Section 7.6, has been devoted to this.

Section 7.7 concludes the chapter.

7.1 Prototype Application

The prototype was tested on a three tier CBS, as shown in Figure 7.1, with Enterprise
Java Beans (EJBs) [Mic98a] fulfilling the role of the server components. The application
server used was the Tengah server from Weblogic [Tho98b], an all-Java application server.
The test system was composed of a client on an NT host running on a Pentium 166, the
Tengah server running on Solaris on a Pentium 166, with the third level being made up by
a Cloudscape database [Wil99] containing a set of client accounts.

Client
Intet Application

running

running
Solaris

t
|
|
:
1
¢ Intel
1
1
1
1

Cloudscape
Database

Database

Figure 7.1: CBS Test Application Architecture

This system, which is typical of a three-tier CBS, was used to test the design of HER-
CULE. Although the test application is physically divided into three tiers with each tier
running on a different machine, this is not necessary for the functioning of HERCULE. All
three tiers could easily run on the same machine. All that is required to support HERCULE

is that the client should be “thin” — meaning that most business-logic is taken care of by

Implementation 165

another layer of the system.

The choice of EJBs to provide the middle tier was completely arbitrary with respect
to functionality provided by the middle tier. All that was required was a middle tier to
provide the business-logic layer. It could have been provided by either COM or CORBA
components.

However, there were some other factors which led to the choice of EJBs. It was decided
that a prototype based on COM objects would be too platform-specific. The delay in the
CORBA Component Specification loaded the decision in favour of EJBs. Furthermore, the
need for an implementation language with introspective capabilities, such as Java, made

EJBs the obvious choice.

7.2 Observing User-Interface Activity

This section describes how to insert a user-interface proxy, positioned as shown in Figure

7.2. The first goal of the implementation is to intercept user activity successfully. This

Server Proxy Socket

User
1 User Interface Socket Client Machine :
! Proxy ocke :
: Client HERCULE !
i Application Framework !
' |
| I
X |
X |
X |
' 1

__

Machine

AY

|

Middleware Server :

]

Components '
1

1

Databases on
Separate Machines
in Lowest Tier

Figure 7.2: CBS Application Architecture with Proxies

involves two tasks: building a description of the active user interface and recording the user’s

Implementation 166

interaction with that interface. In a Java application, the interface consists of a hierarchy of
interaction objects — instances of awt or Swing package classes — such as frames, panels and
buttons. This hierarchy is built up by instantiating awt or Swing classes. User interaction
results in calls to methods of these classes.

These tasks require HERCULE to be aware of the instantiation of new user interface
components and to be informed when the state of any of these components changes. For-
tunately, the Java runtime system enables the interception of component instantiation by
means of the insertion of a special proxy object which is invoked when the user interface is
being constructed. An adaptation of the minimal proxy impact pattern (Section 6.2.1) is
used to allow the ReporterQueue object to register an interest in components of the user
interface which are subject to change. This will be described for the case of intercepting
button press events, but equivalent techniques apply to other user interface components too.

Section 7.2.1 describes the mechanism used by Java in providing platform-independent
user-interface classes. Section 7.2.2 explains how the user-interface proxy is inserted into
the system. Section 7.2.3 describes the operation of the proxy. Section 7.2.4 describes the
mechanism used to watch and record user activity at the user interface, and Section 7.2.5
briefly describes how the reports about this activity are used.

7.2.1 Java Platform-Independent User-Interface Mechanism

The way that the: JVM provides platform-independent user-interface classes for the GUI
is by means of a combination of the java.awt.Toolkit class and a library of platform
dependent Toolkit classes. When a Java program instantiates user-interface components
in order to ‘build a GUI, the component class instance will use the Toolkit to establish a
link to a platform dependent peer.

When the Java application interacts with these java.awt objects, the messages are
relayed to platform dependent peers, in order to display the required GUI. The peers handle
all details so that the programmer is completely oblivious of the process. The programmer
simply instantiates and invokes methods on the java.awt objects, while subsequent calls to
the peer objects are completely invisible. The java.awt.Toolkit class has the responsibility
for loading the platform dependent classes. This Toolkit is loaded automatically by the
java.awt classes when they are instantiated. A programmer will often never have to make

direct use of this class at all. For example, the program may include the following:
Button quit = new Button("Quit");

The Button class calls on the Toolkit to create the platform dependent peer object,
ButtonPeer. This object is the actual platform specific object which is displayed on the
user interface. If the programmer now calls:

quit.setLabel("Cancel");

then the quit object will call the setLabel method on ButtonPeer so that the label on the
button on the GUI will change. The structure of this activity is shown in Figure 7.3.

Implementation 167

—] Package j Package

Platform
Dependent

Application o _I java.awt java.awt.peers

Toolkit

Figure 7.3: The Use of the Toolkit to facilitate GUI platform independence

7.2.2 Inserting the Proxy

The aim is to track user interface activity with respect to an application, without making
changes to either the application, the java packages’ source code or bytecode. A first
approach would be to generate wrappers for all the classes in the java.awt package, use an
auxiliary class loader and, by an additional level of indirection, substitute the proxy classes

1. This satisfies the requirement that no part of the application

for the wrapped classes
should be altered and it also does not interfere with the java.awt package. Unfortunately
we cannot wrap the java.awt package, because its use invokes the java:awt.Toolkit class.
. This class cannot be wrapped since it is abstract and therefore cannot ‘be instantiated, so
that the platform dependent java.awt.Toolkit and java.awt peers are loaded by the
. -application class loader. This confuses the wrapped classes which are loaded by their own
separate class loader, so that.they consequently cannot reference the Toolkit. Since the
java.awt package is essential for our purpose in tracking user interface activity?, another
mechanism must be used.

The approach just described attempted to intercept user interface communications for
each user interface component. However, an alternative position for the interception of
information can be found in the Toolkit class, since Java requires the creation of all user

interface objects be created using this class. Two factors make this a viable proposal:

1. The first is that Toolkit is an abstract class. As an instance of an abstract class
cannot be instantiated, the programmer either has to use an instance of a class that
extends the abstract class or a static method which returns an instance of a subtype.
The java.awt package makes use of the abstract class java.awt.Toolkit, which
provides a static getDefaultToolkit () method. This gets the name of the platform
dependent Toolkit class from system properties and obtains an instance of that class
from the platform-specific libraries to be returned to the caller.

2. The second, which relies on the first, is that the static method getDefaultToolkit ()
allows the use of an environment variable (-Dawt.toolkit=...) to specify which
Toolkit is to be loaded [Beg99]. The java.awt.Toolkit incorporates a mechanism

'This method is explained in detail in [RE00].
Swing is built on top of the awt package, so applications using Swing also utilise the awt classes.

Implementation 168

to allow the developer to substitute another Toolkit for the one which would, by
default, be loaded by the JVM.
So, suppose a proxy Toolkit is written which extends java. awt .Toolkit, called java. awt.

ProxyToolkitT The EssentialApp application can be told to use this proxy Toolkit by
starting the application with the following command line:

java -Dawt.toolkit=java.awt.ProxyToolkit EssentialApp

The java.awt .ProxyToolkit Will be instantiated when the application needs a.« instance

of a Toolkit and the proxy will thereby be dynamically activated.

7.2.3 The User-interface Proxy

The java.awt .ProxyToolkit class, which extends java.awt .Toolkit, is the user interface
proxy. When the application calls the static getbefaultToolkit method to get an instance
of the toolkit, an instance of the ProxyToolkit is created. This ProxyToolkit then loads
the OS specific Toolkit, so that the ProxyToolkit acts as a channel, relaying all calls to
the platform dependent toolkit and relaying all return values back to the application. The

resulting structure is shown in Figure 7.4.

Package Package
. Platform .
Application java.awt java.awt. Dependent java.awt.peers
ProxyToolkit Toolkit

Figure 7.4: The System using the ProxyToolkit

Since the ProxyToolkit must be a Toolkit and re-route all method invocations o011 the
Toolkit, it must implement all the public methods provided by the java.awt .Toolkit
class. Within the ProxyToolkit, a static block loads the platform dependent toolkit, and
maintains a reference to this toolkit so that all future method calls can be relayed to the
platform dependent toolkit. The code is shown in Code Fragment 7.1.

All methods invoked o011 the system’s default toolkit are forwarded to ProxyToolkit,
which relays them to the platform dependent Toolkit. The createButton method in
ProxyToolkit called when a Button is created, illustrates this.

The proxy can execute programmer-defined code in the overridden methods, which pro-
vides a means of extracting meaningful information from the ProxyToolkit. as required.
It is important that application performance is not affected unduly by the presence of the
ProxyToolkit. When reporting the required information the application should not be
slowed down any more than is absolutely necessary. The minimal impact proxy pattern

'The ProxyToolkit must be part of the java. awt package because all the methods in the abstract Toolkit

class are protected, and cannot be invoked by a member of another package exactly what this proxy

needs to do, in order to relay messages to the platform-dependent toolkit.

Implementation 169

package java.awt;
public class ProxyToolkit extends Toolkit {

// the link to the platform dependent toolkit
private static Toolkit theToolkit;
// queue structure for reports

ReporterQueue queue;

// static block to initialise the "real" toolkit
static {

String toolkitName="";

String osName = System.getProperty("os.name");

// hardcode the names of the platform dependent toolkits here
if (osName.index0Of ("Windows")>=0) toolkitName = "sun.awt.windows.WToolkit";

else if (osName.equals("Solaris")). toolkitName = "sun.awt.motif.MToolkit";

try { theToolkit = (Toolkit)Class.forName(toolkitName).newInstance();}
catch (Exception e) {
e.printStackTrace();
System.exit (0);
} // catch
} // static block

protected ButtonPeer createButton(Button target) {
queue.addItem(target,target.getParent());
return theToolkit.createButton(target);

} // createButton

// rest of methods

} // ProxyToolkit

Code Fragment 7.1: ProxyToolkit

Implementation 170

Application ProxyToolkit ReporterQueue Reporter Socket Hercule

create awt

Object addltem()

getltemQ

AWTEventMulticaster AwtReport

event notification AwtReport

readObject()
(Signals some event the AwtReport

application has registered
an interest in)

Figure 7.5: Structure of User Interface Reporting

described in Section 0.2.1 will be applied to utilise two distinct objects, the ReporterQueue
and the Reporter, to ensure that the proxy has a minimal impact on the overall performance
of the application.

The interaction between the ProxyToolkit and these two objects is shown in Figure 7.5.
So, for example, if a Button is being created, and the createButton method is called in the
ProxyToolkit, the createButton method would put an item on the queue describing the
new item being created, as shown in the given code. So, for example, if a button, with the

title gQuit, is being created, two reports will be generated:

1. a “new Component,” report to indicate that a button with the title Quit, has been

created.

2. an “add Component to Container’ report to indicate that the button resides in some

specific panel container.

Information can now easily be extracted about the structure and composition of the user
interface, enabling the construction of an internal structure duplicating each window struc-

ture. This structure provides the basis for making sense of user activity reports.

7.2.4 Watching User Activity

Once an internal structure has been created, the next requirement is to be able to keep track

of user activities. This can only be done if HERCULE is informed when those actions occur.

Implementation 171

HERCULE could, upon learning that a component has been created, declare an interest in
all events upon that component. This would mean that HERCULE would be interested
in every button press, every mouse movement, every key press, window activation and
deactivation, and much more. This volume of reporting would slow the system unacceptably.
The second best option is to register an interest in events which interest the application.
These events would presumably precipitate some action on the part of the application and
are therefore meaningful activities from the point of view of the user when using that
particular application.

All java.awt components allow other objects to declare an interest in events on the
component by registering as a listener. Each component has different capabilities so, for
instance, a java.awt.Button has registered action listeners (registering, for example, the
pressing of a button), while a java.awt.TextComponent has both action listeners and text
listeners. The actions of interest are the pressing of the Enter key and the text listeners
register all changes in the displayed text of the text component. The event notifications
received as a result of registering as a listener will serve to provide a tangible record of all
user activity.

When a component is instantiated via a call to the Toolkit, the ProxyToolkit will
check whether the application has registered an interest in that component. If it has, the
ReporterQueue will be added as a listener for that event. The ReporterQueue implements
the interfaces for all listeners so that it has the ability to be registered as a listener for all
types of user interface events. When the ReporterQueue receives an event notification from
the AWTEventMulticaster (as shown.in Figure 7.5), an event report will be placed on the
queue, giving information about.the type of event and the component that generated it.
When this functionality has been included, the createButton method is altered as shown

in Code Fragment 7.2.

protected ButtonPeer createButton(Button target) {
// send a report through about this button,
// as well as the button container
queue.addItem(target,target.getParent());

// is the application interested in this component as a source of
// events? If so, we need to watch it too

if (target.actionListener != null) target.addActionListener(queue);

// now get the real toolkit to create the button
return theToolkit.createButton(target);

Code Fragment 7.2: createButton

Notification of all application-relevant user actions will be sent to the ReporterQueue.
The Reporter object will relay these reports to HERCULE. There is one more thing that

Implementation : 172

has to be done. HERCULE needs to know when Windows are being displayed on the user
interface and when they are removed. To be informed about this, the ReporterQueue also
listens to all window events, thus being informed about when windows are shown or hidden
from the user interface. When this happens a show component or hide component report is
generated and added to the queue.

The code given in Code Fragment 7.2 looks bound to work and indeed it does keep
HERCULE informed. All listeners are structured as a linked list, the first of which is the
application listener. Therefore the application will be notified first and be allowed to com-
plete all execution which hinges on the event. Only then is HERCULE notified. This makes
it impossible to provide immediate dynamic feedback with respect to the status of current
application-server interaction, because the method-invocation reports will arrive long after
all activity has been completed. To alleviate this, the order of the two listeners must be
reversed. This is achieved by placing extra code within the createButton method of the
ProxyToolkit as shown in Code Fragment 7.3.

if (target.actionListener != null) {
// ok, there is a listener, remove it and
// put- the reporter queue in as the first listener
// then add the old listener again
java.awt.event.ActionListener listener = target.actionListener;
target.removeActionListener(listener);
target.addActionListener(queue);
target.addActionListener(listener);

} // listeners registered

Code Fragment 7.3: Registering Interest in Events

This section has outlined the mechanisms used to record user activity at the user interface
and to watch changes in displayed windows. Together with the previously defined internal
structures representing these windows, the meaningful information can be provided about

user interaction with the system.

7.2.5 Maintaining and using the internal image of the GUI

The construction, status and event reports generated by the ProxyToolkit are used to build
up a tree structure, depicting the appearance of the user interface, as shown in Figure 7.6.
HERCULE keeps track of user activity by maintaining a history of windows which are shown
at the user interface. HERCULE also keeps track of user actions which cause a change in
the user interface appearance. Event reports will keep the tracking program informed of all
activity which will then be up to date with exactly what the user has been doing at any

time, together with the effect on the user interface of that user activity [Ren99].

Implementation 173

Figure 7.6: The Internal User Interface Representation

7.3 Observing Server Communication

This section discusses the Java-specific application of the minimal impact. proxy pattern
for observing communication with the server, with the proxy inserted between the:client
application and the rest of the CBS, positioned as shown in Figure 7.2, using Enterprise Java
Beans (EJBs)[Tho98a] as server components. Although the mechanism has been developed
specifically for- CBSs using the Java Naming and Directory Interface (JNDI) [Mic98"c] to
access EJBs, it appears not ifnpossible to customise for other communication model’s" where
a naming service is used to locate server components and components separate interfaces

from implementation.

7.3.1 The Enterprise Java Beans Component Model

The EJB specification requires a client application to make use of the Java Naming and
Directory Interface (JNDI) package to contact the application server. Each bean will have a
JNDI name which is published by the server and which will be supplied by the application
in order to enable JNDI to find the component. It will have two distinct interfaces, a Home
interface (for managing bean instances) and a Remote interface (for business-logic methods).
The object that implements the Home interface is called an EJBHome object, while the object
implementing the Remote interface is called an EJBObject.

JNDI requires the client application to establish communication with the server hous-
ing the server components before any connection can be made with those components.
The context must implement the javax.naming.Context interface. The javax.naming.
InitialContext class implements the Context interface, providing the necessary context
to the application. The JVM makes use of a CLASSPATH environment variable that can be
exploited to ensure that the JVM loads a prozy class instead of the original class, simply
by putting the location of the proxy class ahead of the location of the original class in the

Implementation i 174

CLASSPATH. The proxy for the InitialContext class will be dynamically inserted by mak-
ing use of the above-mentioned CLASSPATH mechanism. This works because of the JVM’s
equivalence mechanism which considers two classes to be equivalent if they have the same
name and are loaded by the same class loader. By giving the proxy class the same name
one can guarantee that the JVM will accept it when the application requests that the class
be loaded.

Consider an EJB which provides the functionality required to create new accounts, close
existing accounts, withdraw funds or deposit funds. The EJB is called accountBean, which
is supplied together with two interfaces, the home interface called AccountHome and the
remote interface called the Account interface. The client application goes through the

following steps to use an EJB:

1. Establish a starting point to link the application program to the available EJBs con-
tained in the EJB server, as shown in Figure 7.7, by instantiating the InitialContext
object. The InitialContext object needs some properties to.identify the server to
be contacted. The first, and most critical property, is the Universal Resource Locator
(URL) which identifies the location of the EJB server. Other properties include the
context factory (which will produce the required context object), the user login name
and the password. The client program establishment of context is shown in Code

Fragment 7.4. E

// build up the properties of the conmnection

Properties propertieés = new Properties();

// put the URL, initial context factory, user name

// and password into properties

// get the initial context
Context theContext = new InitialContext(properties);

Code Fragment 7.4: Application calls to establish initial context

The InitialContext object implements the Context interface, and establishes a nam-
ing context. The context is an object whose state is a set of bindings with distinct
atomic names. Since, in this case, we are “pointing” the context at the URL of the
EJB server, this Context object will allow us to obtain a link to any EJBs residing in
the EJB server.

2. Get the EJBHome object, as shown in Figure 7.8, by calling the lookup method in
InitialContext. The client program requests the home object by providing the
JNDI name of the EJB (accounts.accountBean) and invoking the InitialContext

lookup method as follows:

AccountHome home = (AccountHome) theContext.lookup("accounts.accountBean");

Implementation

Application

new InitialContext ()

InitialContext

establish initial context

EJB Server

Application

LAN

Figure 7.7: Establishing contact with the server

lookup ("accountBean")

InitialContext

lookup ("accountBean")

EJB Server

AccountHome Object

AccountHome Object

LAN

Figure 7.8: Getting the Home Interface Object

Implementation 176

The home object implements the AccountHome interface and will be used to locate

existing beans, or to create new beans.

3. Use the EJBHome object, as shown in Figure 7.9, to get instances of individual EJBObjects,
each of which is identified by means of a key object. This could be done as follows:

currentAccount = (Account) home.create(accountKey);

The currentAccount EJBObject implements the Account interface.

Application AccountHome EJB Server

create ("PK234")

create("PK234")

Account Object

Account Object LAN

Figure 7.9: Getting the EJB Object

7.3.2 Using Proxies to Intercept Communication

There are two steps involved in tracking all application interaction with the EJB server.
The first is to insert proxies at each of these three communication stages. The next step
requires the reports generated by these proxies (MiReports — Method Invocation Reports)
to be forwarded to HERCULE.

7.3.2.1 Inserting the Proxies

To insert a proxy at the connection stage, the system has to generate a proxy which will
implement the Context interface, in the same way as is achieved by the InitialContext
class — since the application’s source is not going to be altered in any way. This proxy
Context object has been specially developed, but will now serve to insert proxies into
an application using the InitialContext class to establish an initial link to a middle-
tier server. The proxies for the EJBHome and EJBObjects, on the other hand, will have
to be uniquely generated for each different EJB. In order to ease this process, HERCULE
generates the proxies automatically by using the class files and reflection. The tool provided
for generating these proxies, as part of the prototype implementation, is discussed in Section

7.4.1. To explain exactly how the proxies are engaged at runtime:

Implementation 177

1.

In tlu1first place, HERCULE needs to intercept calls to the InitialContext. The
Ccontext interface is therefore implemented and also named javax.naming. Initial
Context. This class is put into a location which was inserted into the cLassPATH
ahead of the original InitialContext, thus ensuring that the JVM loads the proxy
InitialContext and not the original one. When the application instantiates Initial
Context, the proxy implementation of InitialContext is called. A special context,
ProxyContext, iS now instantiated (this also implements the context Interface) and
this instance is returned to the application. Since the application is expecting an

object that implements the context interface, it is unaware of the substitution.

Application InitialContext ProxyContext EJB Server Proxy Socket Hercule

Reporter

new InitialContext()

new establish
initial
context _
. . read
ProxyContext Object MiReport MiReport ObjectQ
MiReport

Figure 7.10: Establishing contact with the server using a proxy

All communication between the application and the EJB server is now routed through
this ProxycContext. This object holds a reference to the actual InitialContext,
allowing it to observe all calls made via this object to the server. The procedure is

illustrated in Figure 7.10.

When the application makes a call to the Initialcontext to request an object that
implements the home interface, the ProxyCcontext instantiates a proxy implementation
of the home interface (AccountHomeProxy). The required EJBHome Object, implement-
ing the home interface, is requested from the server and the AccountHomeProxy oObject
is given a reference to this object. The instance of AccountHomeProxy is returned to
the client. Once again the client application is none the wiser, since the proxy also
implements the Home interface. The proxy relays all calls to the actual EJBHome

object and returns replies to the application. See Figure 7.11.

When the application makes a call to the EgJBHome oObject to request a specific bean,
the AccountHomeProxy oObject instantiates a proxy EJBObject (AccountProxy). The
EJBObject implementing the Account interface is requested from the server, and the
AccountProxy iS given a reference to this object. It then acts as a channel through

which all calls are relayed. The interception is illustrated in Figure 7.12.

Implementation 178
Application ProxyContext EJB Server Proxy Socket Hercule
Reporter
lookup
lookup ("accountBean")
("accountBean")

AccountHome

Object
new

MiReport . read
AccountHomeProxy MiReport Object()
Object MiReport
AccountHomeProxy
Figure 7.11: Getting the EJBHome Object using a proxy
Application AccountHomeProxy Proxy Socket Hercule
AccountHome EJB Server Reporter
create MiR ¢
("PK234") create repor
create
Account
Object Account
MiReport
new MiReport read
ObjectQ
MiReport
AccountProxy
MiReport
Object
AccountProxy

Figure 7.12: Getting the EJB Object using a proxy

Implementation 179

This explains how to insert proxies at each level of the communication with the server, and
these proxies then generate reports by means of which all communication with the server is

monitored.

7.3.2.2 Sending the reports to HERCULE

The server proxies also need a structure which will facilitate the sending of reports to HER-
CULE. The ProxyReporter provides for this. The proxy object, both EJBHome objects and
EJBObjects, will essentially have to report on every method invocation, giving information
about the method, the parameters supplied, and the time the invocation occurred. Once
the method has been executed, the proxy will either report on the successful completion of
the method invocation — reporting the return value if there is one — or give details about
the exception thrown, in the case of an error. The ProxyReporter receives these reports,

and uses a Socket connection to relay them to HERCULE.

7.3.3. Using the reports generated by the proxies

When HERCULE receives the reports, they have to be stored so that the information can
be retrieved at any time for feedback purposes. It is important to realise that the server
proxies are totally unaware of the user interface proxy and that they therefore have no
communication with one another. The only way that HERCULE can link user actions to
server method invocations is by using the time factor enclosed within the generated reports.
Therefore, when server reports are received, these actions will be linked to the user actions
which preceded them.

When storing the proxy information (derived both from the user interface and the server),
it is vital to store it in the form of Episodes. This is necessary because the user activity
must be linked to system actions so that a link is established which can be exploited by
the display mechanism to portray the application activity to the user. It is still necessary
to keep them apart for some specialised feedback requirements, so HERCULE will store a
list of UA-sequences and link each UA-sequence to the MI-sequence precipitated by the
UA-sequence. These two lists will be linked one to the other, forming a history of session

Episodes.

7.4 The Descriptor Tool and Proxy Generator

HERCULE has two distinct phases of use: discovery and runtime. The discovery phase
is a customisation phase, which serves to inform HERCULE, essentially providing a generic
feedback mechanism, of the server components which will be used by an application. During
the runtime phase, the results of the customisation will be used to facilitate the required
feedback.

Implementation 180

Since the programmer has to generate the proxies and the descriptors at least once,
to customise HERCULE, the two tools have been merged, as shown in Figure 7.13. The

following sections will discuss the implementation of these tools.

Figure 7.13: Customising HERCULE

7.41 The Descriptor Tool

This “discovery” phase is executed prior to HERCULE being used, and as often as necessary
after that as the programmer becomes more familiar with the operation of the component.
HERCULE makes use of the server component documentation to customise the framework
for a particular server component. In Section 6.3, three documents were mentioned that

have to be provided together with a server component:

1. An Application Programmer Interface (AP1) document, which explains the purpose of
the component and gives details of method functionality. Examples of such documents

are those found as javadoc [Mic98b] output.
2. One or more interface classes through which the component can be accessed.

3. A deployment document which specifies the context dependencies of the server com-

ponent and explains how the component should be deployed.

Many component vendors will choose to provide far more, but HERCULE only relies on the
basic minimum being provided. The delivered documentation is “mined” in order to extract
descriptor objects that hold details about the methods used to access the server components,
and to generate proxies.

Descriptor objects are essential to the visualisation of session activity. Tracking will only

be meaningful if its results can be depicted in an information-rich and useful fashion. In

Implementation 181

order to provide the users with explanations of server activity, the method invocations should
be described in terms easily understood by the user, rather than in language familiar to the
programmer of the system. These explanations are all to be found in the server component
APl documentation and the descriptor objects can thus be derived from these documents.
Since Java class documentation is generally produced by javadoc, this makes the mining
process simpler4. This mining process should produce at least an adequate descriptor object,
since it contains the information as obtained from the API| document. In order to improve
this object, HERCULE provides a tool to allow the programmer to augment the descriptor
object. With the programmer’s assistance the descriptor object can be augmented to make

it even more helpful to the end-user.

3Change Method and Exception Explanations L*J

beanManaged.AccountHome DESCRIPTOR

1
Create an accountwith key $paramO$ and d
findByPrimaryKey balance $param1$
findBigAccounts
Id dH
Click here to Change
1
javax.ejb.CreateException
java.rmi RemoteException
L T 1
Click here to Change J

Finished Store Changes Cancel

Figure 7.14: Permitting the Programmer to Augment Descriptors

Parameters used in method invocations can be inserted into the explanations of these
methods. This will allow the programmer to customise the explanations of method invoca-
tions and exceptions thrown by the methods, according to the parameters provided by that

particular invocation.

IIf this is not done by javadoc, it becomes more difficult to mine since we have no idea how the docu-
mentation would be structured. The next EJB specification requires the use of Extensible Markup Language
(XML) for this documentation, which would make the process even simpler because we no longer have to
rely on the vagaries of the html being produced. This could possibly change from one version of javadoc to
another, which would invalidate the current generation code. XML is easily parsed and does not suffer from

these limitations.

Implementation 182

HAlter Description

|Create an accouritwith key $paramO$ and ~n Clear
balance $param1 $
Restore Original Content

Insert Parameter Value
Remove Parameter Value
OK - change it

Li Cancel

PARAMETERS IN EXPLANATION
$paramO$ is parameter 1 display: class java.lang.String toString
$param1 $ is parameter 2 display: double

Ly

Figure 7.15: Changing a Method Explanation

74.2 The Proxy Generator

The proxies conform to the wrapper or decorator pattern [GH.JY94]. This is one approach
to adding reflection to statically typed languages [WS99]. Some examples can be seen in
the work of Karaorman et al. and De Oliveira Guimaraes [KHB99, De 98]. Many imple-
mentations of reflective5 Java rely on customised JVMs or require access to the source code
of the application — examples are cited by Welch and Stroud in [WS99]. Since one of our
design decisions stems from a strong desire to be non-invasive and optional, neither of these
options is attractive.

If we want to engage proxies using a standard platform, without changing the source
code, there are two ways to go about it. One is to make use of byte code transformations
at runtime, while the other is to generate proxies offline and insinuate them into the system
by manipulation of the cLassparua at JVM runtime.

The first mechanism has been applied successfully by the Dalang prototype and its exten-
sion Kava [WS99]. However, the approach taken in these projects is aimed at implementing
meta-object protocols for commercial off-the-shelf components, whereas the focus here is on
reporting on the activities of specific middle tier components. Whereas the changing nature
of meta-object protocols6 will make it feasible to re-generate and compile wrappers with
each program execution, in the case of reporting, the requirements are stable. It is wasteful

'The java.lcing.reflect package is wrongly named, since it allows introspection, but not actual re-

flection. Reflection implies the ability to change the behaviour at runtime — and the java. Icing,reflect

package does not allow that.
"Meta-object protocols allow the runtime insertion of additional behaviour into a system. This could

cater for non-functional requirements such as distribution or concurrency, for example.

Implementation 183

to generate and compile the proxy classes for each execution when it can be done once and
repeatedly re-used thereafter.

The other concern is that the runtime compilation of wrappers may affect the perfor-
mance negatively. The final factor which swayed the decision in favour of the second option
was the sheer simplicity of the approach — the byte code transformation approach is intri-
cate and admirable, but rather complex. It is also not clear whether the specialised class
loaders written to expedite this scheme would work for future JDK releases.

The generation of the proxies was made possible by the introspective abilities of the Java
language i.e. the java.lang.reflect package [Mic99]. This package reveals information
about the interfaces needed to generate wrappers — method signatures and inheritance
details and so on.

The proxies have the same methods as the interfaces. Methods will be invoked on the
proxies by the application, the proxy will invoke the methods on the actual stub object,
receive the reply, and pass that back to the application. In order to carry out its task, the
proxy will report to the communication agent before the method is invoked on the stub, and
after-the reply has been received from the stub, before passing it back to the application.

7.5 The Runtime Feedback Tool

HERCULE tracks application activity by dynamically inserting proxies, and extracts infor- ‘
mation based on the reports generated by these proxies. HERCULE operates based on two
types of inputs. The first is made up of the documentation and Java class files delivered with
the EJB. The second comprises the reports génerated, at runtime, by the proxies. HERCULE
must use the information from this documentation to customise itself. This customisation
facilitates the operation of the proxies at runtime. HERCULE receives two types of reports

from run-time invoked proxies:

1. User interface reports: signaling events and the user interface construction. These

events enable HERCULE to keep a history of user interface appearance and user activ-
ity.
2. Middle-tier component method invocation reports: The reports received here indicate
different stages of server component communication:
(a) Contact: initial establishment of communication with the server;
(b) New Server Component: initiation of a new interface object;
(c) Interface Object Activity: method invocations on the interface object;
HERCULE runs in a separate process so that its execution and termination are not dependent

on the application. When HERCULE executes, it is initially in an inactive mode while it

waits for the application proxies to make contact. Upon receiving the first report, which

Implementation 184

informs HERCULE that the application is up and running, and that the middle-tier server
was contacted successfully, HERCULE enters feedback mode. In feedback mode HERCULE
receives messages about application activity and provides feedback to the user.

HERCULE registers the termination of the application by the cessation of the Socket
connection either from the server proxies or the GUI proxy. HERCULE stays active so that
the user can use the display to provide post-execution feedback. This will be particularly
useful if the application terminated erroneously or if the user needs to confirm actions taken
during the session. It also allows the user to summon help if something has gone wrong and
enables the user to demonstrate the actions taken, should a support person be summoned

for assistance.

7.6 Application Activity Visualisation

Once the UA-sequences have been linked to the MI-sequences and the Episodes have been
constructed, the results need to be depicted in a helpful manner on the screen. There are
many aspects of this interaction that could be depicted, but for HERCULE, the decision was
made to depict the success or failure of each Episode. This decision was made because the
focus is to provide end-user feedback and the success or failure of an Episode is of .critical

interest to the end-user. Since a particular application session could easily generate many

s

Episodes, the display chosen has some important characteristics:

e It should be able to depict either one or many Episodes in a clear manner, so that the

user can obtain as much information as possible at a glance.
e It should not intrude, but offer the user assistance.

e It should allow the user to step backwards in time to view and confirm previous actions.

7.6.1 Characteristics of Visualisation

Section 6.5.2 suggested that the following feedback should be provided:
o A status display.
e A current time display.
e Explanations of latest episode — tailored to the current user role.
e Access to reconstruction of context.

e Summary information — such as, for example, a graphical display indicating the

performance of the network.

e An overview of episodes — a display offering the “overview and zoom” facility, which
Y g Y:

will allow users to choose which Episode to access.

Implementation .185

* An expanding facility linked to the above feature, giving extra information about

the chosen Episode.

The display designed for HERCULE was created with those requirements in mind and satisfies

them as follows:

» It provides a mechanism to enable the user to get information about all of the Episodes

for the entire application.
+ It allows detailed information about Episodes to be obtained quickly and easily.

* It does not intrude, but is always available as an icon, offering the possibility of

obtaining feedback at any time.

» It allows the user to obtain information about previous Episodes quickly and easily.

Customisation Action
System State Indicator Facility Time
File Hide Show Customise Advanced
System Readiness 1 Successful Action Action Time
| Failed Action 12:54 pm
Groups
Ready of 100
Current Time
. Groups
12:55 pm of 10

Repiay My Actions

Replay Facility

Current

Current Display

Session History

Panel

Figure 7.16: The HERCULE Display

The icon chosen for HERCULE is that of a man’s head, shown in black on white. This has
been chosen so that the user can easily identify the HERCULE window and the icon, should

it be minimised.

7.6.2 Interactivity of the Display

At runtime, the HERCULE display (Figure 7.16) provides the following information, which

is dynamically updated as the user works:

Implementation 186

1. A traffic lights widget depicts the current system state. This will display:

* red when the application cannot be tracked. The legend beside the traffic light
will display the result of HERCULE’s attempt to diagnose the cause. This could
be: due to a server breakdown or a network problem; or because the application

has not yet started executing; or because the application has terminated;
* orange when the middle tier server is busy servicing a request; and

* green when HERCULE is waiting for application activity. Since humans are so
much slower than computers, one can expect the display to be in this state for a
great percentage of the time — reflecting the time spent by the user assimilating
the screen display and deciding what to do next. HERCULE will depict activity
once the user has provided inputs arid signaled that they should be processed,

otherwise it simply waits.

The traffic lights display is a universal symbol, and adequately sends the required

message in most cultures.

Figure 7.17: The Playback Facility

2. A Replay My Actions button will summon a playback facility, shown in Figure 7.17,
which allows the user to view a screen replay of all UA-sequences as they took place.
This shows the windows displayed by the application to the user, one at a time. The
user can control the transition to the next window by clicking the mouse, and so
control the pace. Each window will highlight the action which caused the transition
to the next window. For example, if the user clicked on a button, that button would

be highlighted by setting the background colour to yellow in the replay window.

To allow extra flexibility, the user can search for a particular window with a key
phrase in it, step back a certain number of windows or simply replay all activity from

beginning to end.

By providing this functionality, HERCULE supports users by alleviating their weak-

nesses (such as limited working memory), while capitalising on and utilising their

Implementation 187

strengths (such as swift pattern recognition, and the ability to retrieve relevant in-
formation about the meaning of these patterns quickly). The replay mechanism has
no effect on the application whatsoever, in accordance with the non-intrusion policy,
and should be considered to be rather like an action replay used in television sports

broadcasts.

3. A session history panel which presents all Episodes hierarchically, displayed in three

separate panels:

e the bottom panel displaying the last ten Episodes;
e the middle panel depicting groups of ten Episodes; and
e the top panel depicting groups of hundreds of Episodes.

Each distinct Episode is displayed as a coloured rectangle. This depicts the result of
the MI-sequence resulting from the Episode UA-sequence as:

o red if it failed — assumed if the server throws an exception,
e yellow if the outcome is pending, and

e green if it succeeded — assumed by the absence of an exception.

The colour red is traditionally used in the western world to indicate either danger, or
heat, while green is used to signal safety [Tra91]. The use of these is highly culture-
specific since the Chinese traditionally use green to symbolise death, with red symbol-
ising luck and good fortune [War00]. The link of the colour to the meaning is shown
in the legend at the top of the session history panel, so that this type of confusion
can be avoided. The best option would be to allow users to choose the colours them-
selves, but this would add to the complexity of the display, something which should
be avoided. These colours are used so that an error will automatically “pop out” of

the background, so that the user will be more likely to notice it.

7.6.3 Extensibility of the Display

The HERCULE display is dynamically extensible, so that the identification of a new user
feedback need can be accommodated. New HERCULE feedback components can be coded,
and added to the HERCULE display at runtime. The top section of the display, as shown in
Figure 7.21, will always be displayed, since it provides the core functionality of the display.
A programmer can add a new feedback component, by coding a class which must extend the
HerculeComponent class. The inheritance hierarchy for a HERCULE feedback component is
shown in Figure 7.19.

The component could implement either the HistoryListener or the QutcomeListener

interfaces, or both, depending on the notifications required. To add the component to the

Implementation 188

MHERCULE DLE]
File Hide Show Customise Advanced
System Readiness H Successful Action Action Time
| Failed Action 2:30 pm
Groups
Ready of 100

Current Time

2:31 pm %"

Replay My Actions Current

Explanation of System Action

Find an accountwith key X333-SV
Deposits £100.0 into account.

Figure 7.18: The User Viewing an Explanation of a Previous Episode

java.awt.Panel

{abstract} {interface} {interface}

HerculeComponent HistoryListener Outcomelistener

Hercule
Component

Figure 7.19: Structure for extending the PIERCULE Display

Implementation

[JHERCULE

File Hide Show Customise Advanced

System Readiness Successful Action Action Time

Failed Action 5:38 pm

Ready of 100

Current Time

5:38 pm ot

Replay My Actions Current

System Call Details

Time taken: 1372

METHOD: withdraw
PARAMETERS: 100.0
RETURN VALUE: 1079.0
Time taken: 250

Figure 7.20: The Extended HERCULE Console

UHERCULE *CTnUn

File Hide Show Customise Advanced

System Readiness | Successful Action Action Time

| Failed Action 2:38 pm

Finished
Groups
of 100

Current Time

2:57 pm ot

Replay My Actions Current

[]

Successful Calls

Ftesponse Time

Figure 7.21: The HERCULE Console showing the Support Panel

Implementation 191

points to the Episode for which feedback is currently being given in the visible feedback
components. The Current Display label in Figure 7.16 points to the highlighted rectangles
in the history panels, indicating that the most recent Episode Ml-sequence explanations
would be displayed (if any feedback components were visible).

The user’s immediate feedback requirements with respect to individual Episodes, as
indicated by clicking on a block which represents a previous Episode, will be met by dy-
namically reflecting the feedback for that Episode in the information displayed by each of
the visible feedback components. On the console shown in Figure 7.18, the Episode actions
are explained as Deposits £100.0 into account. This is not the explanation of the most
recent Episode MI-sequence, since the highlighted rectangle is in the last but one position,
indicating that the explanation belongs to the second last Episode.

7.7 Conclusion

The implementation described in this chapter has produced a prototype of the HERCULE
feedback enhancing framework. It was mentioned in Chapter 5 that the general concept of
such a framework required the use of a language with introspective qualities. It should be
clear from the discussion in this chapter that these were indeed used extensively throughout
this project. The implementation was done using JDK 1.1.7, because the middle tier server
used that version, and the 1.2 version was not available when implementation commenced.

The scheme for engaging the proxies makes use of manipulation of the CLASSPATH in

-order to insert the proxies into the system. This feature is used rather differently in JDK
1.2. Preliminary tests have indicated that the hook provided by JDK 1.1.7 which facilitates
the insertion of the user interface proxy is still provided in 1.2. The only difference is that
JDK 1.2 expects to find any class with a name starting with java, in a special place —
i.e. within the rt.jar file provided by Sun. Since the ProxyToolkit must be part of the
java.awt package because all the methods in the abstract Toolkit class are protected
and cannot be invoked by a member of another package, the only way to make use of
the user interface proxy proposed in this chapter is to add the ProxyToolkit class file to
the JDK rt.jar file. This is trivial and, although it could be considered to violate the
non-intrusiveness aim, it does not do so to an unacceptable extent.

Since the JNDI package is external, or additional, to the core JDK, the CLASSPATH facility
is used by the JVM to locate it, which means that the mechanism explained in this chapter
can be used without alterations.

An alternative to the CLASSPATH mechanism is the use of a specialised class loader to
insert the proxies. This classloader can detect members of specific classes, and substitute
the proxy classes as required. This mechanism has been used by Welch and Stroud [WS99]
in developing their Kava byte code transformation approach.

This chapter discussed the implementation of the HERCULE prototype. The following

part of this dissertation will evaluate the software and draw the final conclusions.

part V

Epilogue

It was the best of times, it was the worst of times.

Charles Dickens. A Tale of Two Cities. 1890

Reason, or the ratio of all we have already known, is not the same

that it shall be when we know more.

William Blake. 1788

192

Basic research is what I'm doing
when [don't know what I'm doing.
Wernher Von Braun

We have a habit in writing articles published in scientific
Jjournals to make the work as finished as possible, to cover up
all the tracks, to not worry about the blind alleys or describe
how you had the wrong idea at first, and so on. So there isn't
any place to publish, in a dignified manner, what you actually
did in order to get to do the work.

Richard Feynman

chapter 8

Evaluation

The evaluation of HERCULE proved to be the most difficult part of the research. Since this
tool is so unlike other software development tools there is no obvious way of evaluating it.
Even for standard tools, no widely accepted systematic assessment method exists [CMH92].
If one is to prove the value of HERCULE conclusively, there are various aspects of HERCULE's
use that should be evaluated. Evaluation is often done in a laboratory, and the resulting
findings are essentially based on short-term user experience of the tool. Laboratory-based
short-term evaluation is not the best way of evaluating HERCULE because it has the following

shortcomings:

e Evaluation involving the use of HERCULE by a number of end-users would be the
ideal way to evaluate the HERCULE display. The need for HERCULE is deemed to
be greatest in complex systems, in which people are forced to learn how to use the
system in order to perform their duties. People who must use a piece of software for

193

Evaluation 194

some reason are motivated enough to overcome problems in understanding the system
and will simply have to master it. Volunteers are not motivated by this need and it is
unrealistic to expect it of them. It is therefore difficult to set up an experiment which
tests the efficacy of HERCULE within a short experimental period of a half hour, or an
hour, with a volunteer group. The application must be kept simple if the user is to have
any chance of making use of it within the short period and the very simplicity of an
application which can be used in an experimental setting makes HERCULE somewhat

superfluous;

e Subjects in such an evaluation are subject to the Hawthorne effect, the tendency for
individuals to respond positively to special attention or a change in routine [Mil94].
Any increase in productivity and performance, or perceived ease of use, can therefore
not be linked conclusively to HERCULE;

e One has to rely on the subjects’ subjective evaluation of their workload, performance
and satisfaction with respect to the use of the tool. Studies suggest that users often
do not report effects that they plainly do experience, either because of a sense of pity
towards the developer of the tool, or a sense of irritation with the entire evaluation

process, or because they find it difficult to evaluate their experiences effectively [WS00].

¢ Finally, there is always the need to test a tool such as HERCULE in a real life setting
rather than in a laboratory in which the findings are not necessarily applicable to

authentic work situations [And90].

The alternative to short-term evaluation is to test HERCULE over the long term in an
industrial setting, so that the long-term benefits can be assessed. Aspects to be evaluated

would include the following:

1. Chapter 3 has derived a classification of disruptive events and motivates the need
for user assistance in recovering from such events. It is necessary to confirm the
correctness of the classifications of each of the separate quirks — error, interruptions
and breakdowns. It would also be useful to determine the cumulative effect of these
events on users’ working day. While other researchers have studied these concepts in
isolation, a study which considers all events together could be interesting and would

either validate, or suggest changes to, the derived classifications;

2. Easing the process of recovery from interruptions in particular is a subject that has not
received much attention from researchers. It is hoped that HERCULE will assist users in
recovering from interruptions quickly and with little effort, by reminding them of past
actions, thereby easing recovery of context. In order to prove that this is indeed the
case, it is necessary to observe users recovering from interruptions with and without
HERCULE, and to time the recovery time. Previous studies suggest an unassisted

FEvaluation 195

context recovery time of up to 15 minutes [vSBvL98]. A quantitative evaluation would
be able to show whether this time is reduced by users using HERCULE;

3. The sociological impact of HERCULE is the aspect that will be most interesting and
relevant to evaluate. Many people are intimidated by their computers. Other veer
towards hate — and many become increasingly stressed as they attempt to use their
computer to carry out essential tasks during their working day. It is hoped that HER-
CULE would have the effect of reducing these negative emotions and increasing general
confidence in the computer. Feelings with respect to particular applications in partic-
ular and computers in general can not be expected to change in the short term and
any change in attitude would have to be gauged over a period of time. In determin-
ing the effect of HERCULE it is important for the evaluator to establish an amicable
relationship with the user so that the user feels free to express displeasure or delight
without fearing disapprobation. This too, is not to be hurried, since relationships take

time to build up;

4. Tt is hoped that HERCULE will be of assistance to application programmers. The first
obstacle in evaluating this is in overcoming the programmers’ initial reluctance to use
the tool, and then in gauging their reaction to it, and ascertaining whether HERCULE
is indeed easing their task. One could rely to a certain extent on a subjective evaluation
since programmers may feel positive enough about the tool to rate it highly. However,
any subjective analysis is bound to be error-prone and the best test of HERCULE
would probably come from an observable increased reliance on HERCULE during the
system development process and in consequent suggestions from programmers about

useful extensions to the tool.

As a consequence of the above factors, it was concluded that the long-term evaluation of
HERCULE should be cited as a topic for future investigation. A short-term evaluation was
carried out, in spite of its shortcomings, since any findings as a result of this evaluation
would be helpful in obtaining an initial impression of the reception accorded to HERCULE
by end-users and programmers. Different approaches to evaluation are discussed in the fol-
lowing section. The motivation for the preliminary evaluation methods chosen for short-term
evaluation of HERCULE are also given. Section 8.2 discusses the results of the preliminary

evaluation. Section 8.3 concludes.

8.1 Current Approaches to Evaluation of Tools

McKirdy and Gray [MGOO] point out that many tools are chosen based on marketing mate-
rial, journal reviews or word-of-mouth rather than by the use of evaluation tools. Evaluation
methods have been proposed for some classes of tools, such as development environments,
user interface development tools or CASE tools. For example, Mosley [M0s92] has developed

Evaluation 196

a five-step method to assist developers in selecting CASE tools. Her approach evaluates the
proposed tool according to: ease of use, power, robustness, functionality, ease of insertion
and quality of support. The tool is given a score, which indicates how well it measures up in
each category. Mosley emphasises that the evaluation of a tool is only the tip of the iceberg
and that the use of the tool in the organisation is a much bigger issue.

McKirdy and Gray [MGOO] introduce their S.U.I.'T framework, which can be used to
evaluate the suitability of user interface development tools. They evaluate the tool according
to categories which take human resource and organisational context into account. S.U.I.T
also considers the ease with which the tool can be integrated into the existing working
practice.

Poston and Sexton [PS92] propose that software tools be evaluated according to various
criteria including productivity gain, quality gain, organisational changes required, platform
changes required, functionality, response time, user friendliness and reliability.

HERCULE is the only tool that is specifically designed to assist an application program-
mer in providing feedback to the end-user. The agent implemented by Rich and Sidner
[RS97], described in Section 5.5.3, is the only other tool the author has located which does
something similar, although their tool requires the application programmer to provide hooks,
which is not required by HERCULE. There can therefore be no comparison with other tools.

It is important to note that the evaluation of HERCULE should also be initiated from
the perspective of the end-product produced by the software development process. Other
software development tools will be used exclusively by the programmer and, while it might
be easier to produce the end-product —— a working application, the end-user will not have any
interest in, or knowledge of, the tools used to produce the software. HERCULE is somewhat
different, since the end-user will gain a direct and visible benefit from the programmer’s use
of HERCULE during the software development life-cycle — to whit, the HERCULE feedback
window. Thus it is necessary to extend and modify the traditional evaluation criteria to

include evaluation of the end product by the end-user in the evaluation process.

8.2 Preliminary Evaluation Results

For the purpose of a preliminary evaluation it was decided that HERCULE would be evaluated
from two distinct perspectives. Firstly in terms of how the end-user (in any of a number
of roles) perceives and uses the HERCULE display. The second perspective is that of the
programmer. Evaluation here must assess the impact of the HERCULE facility on their task
and determine whether it helps or hinders. Some relevant evaluation criteria have been
selected from those proposed by Mosley [Mos92] and Poston & Sexton [PS92]:

1. End-user assistance — encompassing criteria such as functionality of the HERCULE
display and the quality gain (with respect to feedback). Section 8.2.1 will discuss the

evaluation of HERCULE from the end-user’s perspective.

Evaluation 197

2. Software development encompassing criteria such as ease of use, robustness, func-
tionality, ease of insertion, productivity gain, organisational changes required and
reliability. Section 8.2.2 will discuss how the HERCULE framework can be used by the
application programmer. The evaluation of HERCULE by application programmers

will also be described.

3. Performance impact — evaluation of HERCULE in terms of its effect on application
performance and robustness. Since this did not fit neatly into either of the above

categories, Section 8.2.3 will describe the results of the performance evaluation.

8.2.1 User Needs

The first prototype of the HERCULE display was tested by eight subjects. The subjects were
specifically chosen as being computer-illiterate, since it was felt that the use of computing
science students for this type of experiment would produce an unrealistic result. A very
simple application was used, which allowed users to carry out simple banking transactions
on various accounts. The choice ofa banking application was made because of the familiarity
of the general populace with this type of computer application and because it consequently
did not intimidate the subjects. The application interface was fairly simple and allowed the
user to click on buttons to make choices of the type of banking transaction — opening or
closing an account, depositing or withdrawing funds. Inputs were provided by means of text

fields. The following results were obtained:

1. Various errors were deliberately generated throughout the experiment and the users
were observed dealing with the errors. Users also spontaneously made unforced errors
which enriched the experiment considerably. They did handle the errors better when
the HERCULE display was visible and seemed more confident and relaxed when they

understood the problem.

HERCULE CONSOLE HERCULE CONSOLE
Session History Session History
Last Action: Last Action: Error Explanation
System Status: System Status:

Can’t Connect

Figure 8.1: The Initial Display

Evaluation 198

2. Users were asked directly whether they felt that the display had been helpful. In
retrospect this was unwise, since they almost all felt obliged to be complimentary
about it. When asked to rate their performance with and without the HERCULE
display, the majority rated their performance as being better with the display. This

too, was suspect, due to the previously mentioned Hawthorne Effect.

3. The initial prototype feedback display, shown in Figure 8.1, required the user to click
on a button to get an explanation of the error and this caused some irritation in at
least one of the subjects, who wanted the explanation offered without having to go

looking for it.

The first prototype provided the user with archival feedback in the form of a table,
as shown in Figure 8.2, with clickable buttons beneath the “Action” and “Effect”
headers to give users more information about their actions, and the corresponding
system response. The effort required by the user to get at the needed information
caused the same irritation as mentioned above. The table is also clearly not scalable

and was not a good solution.

SESSION HISTORY

TIME ACTION | EFFecT |SUCCESS/

FAILURE
Find

3:01 Book More... | SUCCESS

3:05 Search More... SUCCESS

3:15 Order More... SUCCESS

316 | Submit More... FAILURE

Figure 8.2: The Initial Session History Display

The conclusions which can be drawn from the users’ reactions to this display underline
the findings described in Chapter 4. Users simply do not want to spend time looking for
answers to questions. They want the information to be directly available — supporting
an increasingly likely “situated action” mode of operation. This experience led to the
format of the present display (Figure 8.3), which gives an explanation of the most

recent activity spontaneously without any effort on the part of the user.

4. Tt was also noted that users often did not detect errors, even though they were being
reported by the application in the form of error messages. This led to the inclusion
of the optional beep feature into the HERCULE display — which alerts users to the
occurrence of an error. It is optional because it might not be suitable in a noisy
environment to use a beep, or the user’s aversion to a beeping noise may negate the

positive effects of the beep.

Evaluation

HHERCULE

File Hide Show

System Readiness

Ready

Current Time

2:31 pm

Replay My Actions

Explanation of System Action

Customise Advanced

H Successful Action
Failed Action

Groups DS

of 100
Groups -O
of 10

Culle,,

Find an account with key X333-SV
Deposits £100.0 into account.

g|*l

Action Tim
2:30 pm

Figure 8.3: The Revised Session History Display

199

The experimental use of HERCULE was obviously valuable in discovering problems with the

display, but there was still a feeling of unease with respect to the fact that the simplicity

of the application made the HERCULE display less useful than it could be. This led to the

decision not to repeat the experiment with the latest HERCULE display, but rather to rely

on a functional evaluation of the features offered. This will be addressed in the following

sections.

8.2.1.1 Feedback

Immediate Feedback

The immediate feedback will be evaluated according to the features listed in Section 4.5.2.

1. System state indicator -

HERCULE provides a continuous feedback mechanism in the

form of traffic lights. The lights are green when the system is idle and waiting to be

used. The lights are orange when the system is busy servicing a request and red when

the system has broken down and cannot be used. The traffic lights were used because

2% of the population is colour-blind and it is not sufficient to have an indicator which

is either red, green or orange. The traffic light structure is universally recognised and

even colour-blind people wall have no difficulty interpreting it.

Traffic lights are also

FEvaluation 200

used throughout the world, and will be readily assimilated by all cultures and across

language barriers. Another helpful indicator of system state is the time display.

2. Ezxplanations — The HERCULE provides a spontaneous explanation of the system’s
actions as a result of the user’s actions. This is provided in the format preferred by
the user, so that the feedback provided to programmers will be very different from
that provided to the end-user or system support person. This feedback can also be

tailored to suit users’ particular language of choice or mode of communication.

3. Making visible what is often invisible — The effects of actions are made visible, by
means of the above-mentioned explanations. In the absence of such feedback, the user

can only guess at what the system did as a result of their inputs.

Archival Feedback

1. Mental aids — provided by the context building facility, which performs an action

replay and enables reconstruction of the mental context surrounding a specific task.

2. Inter-referential links — provided by the overall history display. HERCULE presents
an overall display of the session history which graphically depicts Episodes — each
being a direct link between actions taken and the success or failure of system activity
precipitated by those actions. This “overview and zoom” technique allows the user to

get information about previous actions and their effects.

8.2.1.2 Quirks

Chapter 3 described what were called quirks, those things which interfere with “normal”
execution of a task. The characteristics of the three sub-groups of quirks were described
and their effects on the user explored. The following sections explain how HERCULE can

alleviate the negative effects of quirks.

Error

Section 3.5 described error in some detail. While HERCULE cannot prevent errors, it can

ease the detection of, understanding of, and recovery from, errors:

o Error detection — HERCULE could go some way towards reducing the time elapsed
before the error is detected, by providing feedback about actions taken. Information
about inputs given and results obtained from the server are all recorded and can
be accessed by the user. There is a flaw in this though, because the user who has
made this type of error has no reason to confirm an action unless some feedback
mechanism, or some difference in the state of the application, makes evident the
fact that something has gone wrong. Enhancing feedback by displaying a window

containing a confirmatory message after the action has completed would help reduce

FEvaluation 201

the occurrence of this state, but HERCULE's non-invasiveness property prevents this

course of action.

Since users do not always see error messages, HERCULE can assist by providing visual
and audio feedback about the success or failure of an action. Non-detection of this
type of error state is not as damaging as it is for undetected errors, since the data

store has not been affected.

The Episode display colour indicates the presence of an error by displaying red and
by beeping, unless the user chooses to deactivate the beep feature. The use of colour
was discovered not to be sufficient in HERCULE's first end-user evaluation, and this
influenced the decision to incorporate an optional beep-upon-error facility. It is pos-
sible to flash an error message window, but there is a need to proceed carefully since
the user should not be annoyed any more than they will be already by the presence of

an error.

e FError understanding — There are two aspects involved in making the problem clear

to the user:

1. the first is a reminder of what the person did, and

2. the second is an explanation of what the system did as a result of the action.

HERCULE provides a small rectangle, as part of the session history, representing this
link, while the information about either the user actions or the system actions can be

obtained with ease.

e FError recovery — Once users understand the nature of the error, and their part in
causing it, the next step is to assist them in recovering from the error. They should
be able to work out what steps to take in getting the application to the state they
intended. HERCULE reduces cognitive under-specification [Rea90] according to the
guidelines given in [RPMB96|:

1. Make the action perceptible — HERCULE links the action to the effect. The users
can link their inputs to the system’s actions and this should help them understand

why the error occurred.

2. Display message at high level — explanations of error are given in terms of the

user’s intentions.
3. Provide an activity log — provided by the archival feedback facility.
4. Allow comparisons — not supported.

5. Make action result available to user evaluation — provided by means of the

archival facility.

6. Provide result explanations — the results of the method invocations are explained.

Evaluation 202

In general terms, HERCULE should assist the user to build up an internal model of how the
system works, enabling them to move more quickly toward the skill-based level of perfor-
mance. Table 3.1 shows that if the time taken to resolve an error can be reduced, it will
directly reduce the negative emotions experienced by the user. HERCULE seeks to reduce
this time by explaining system actions so that the user does not have to puzzle about things

for too long and get annoyed.

Interruptions

The biggest problem caused by interruptions, as explained in Section 3.6, is the re-establishment
of the context after an interruption. The user will often not go back to the original task but
resume another task altogether — often with disastrous results!.

Chapter 4 introduced Suchman’s [Suc87] situated action theory, which presents the case
that users tend to respond to their current circumstances rather than following a rigid plan.
Once the user has lost context, it often does not help to look at the last window displayed
by the application. When using a browser it is a simple task to backtrack over the browsing
path to check previous states. If this were not available, they may remember what they
were doing, but will often have difficulty doing so. ‘ |

Users need to be supported in linearising the activities of their regular working day and
in dealing with unexpected interruptions. To help with this, a software application should
facilitate the rebuilding of the lost contexrt so that the user remembers the circumstances
which existed, with respect to the application, before the interruption.

Since the user’s interaction with modern computer systems is essentially based on recog-
nition, rather than recall, and is intensely visual, it would be less than optimal to try to
describe a set of user or system actions in a textual format. Therefore, to assist the user in
rebuilding the mental context after an interruption HERCULE provides an action replay of
the user’s interaction with the application — up to the point of the interruption. Since the
original circumstances were established based on the recognition of certain windows on the
screen, the reconstruction of this state is facilitated, and eased, by visual means as well.

Breakdowns

Section 3.4 discussed breakdowns and identified four possible breakdown locations:

1. The end-user computer itself — the crash of the entire computer will mean that HER-
CULE will cease execution too. Only if the session history is made persistent can it be

useful in such a case.

2. An application on the end-user computer — errors generated as a result of communica-
tion between the a component-based application and the rest of the component-based

Tt is a rare person who has never allowed the bath to overflow or the supper to burn!

Evaluation 203

system will always be signaled by exceptions. HERCULE will provide a user-friendly
explanation of the error, rather than confronting the user with an exception printout.

3. The network — this could be signaled by a lack of response. HERCULE times responses,
tries to find out what is wrong and provides an explanation.

4. The application server and/or data store — this will present as either an unlimited
delay, which will be handled as network errors are handled — or by an exception,

which will be handled as an application error.

HERCULE provides continuous feedback to keep the user informed about the state of the
entire component-based application. This will help the user to identify errors outside the
scope of their own computer. The current Task Manager facility offered by Windows oper-
ating systems offers the useful facility for being able to ascertain that applications on one’s
own machine are not responding. HERCULE attempts to provide this facility for applications
outside the user’s machine. There is, as yet, no way for HERCULE to detect application,

hardware or software faults.

8.2.2 Component-Based System Development and Maintenance

Section 2.5 pointed out that component-based development is a relatively new field and
that it is logical to expect the development process to change and mature as component-
based development becomes the order of the day. The programmer’s task is thus not clearly
defined at present. HERCULE seeks to support programmers in their efforts to produce a
good product in what is becoming an increasingly complex environment. The 21st century
programmer has a much more complex task and the concepts which must be mastered are a
world removed from those of the programmer of the last two decades. The following section
will explain how HERCULE assists the programmer in providing feedback, while Section
8.2.2.2 summarises a programmer’s experience with HERCULE.

8.2.2.1 Programmer Needs

Section 5.1.1 concluded that programmers are not often trained to provide good user in-
terfaces and that for a number of reasons the feedback provision by programmers seems
doomed to be inadequate. The HERCULE framework acknowledges this and seeks to make
the task easier for the programmer. Programmers must participate in tailoring messages for
the end-user, by means of one of the HERCULE tools and that is their only contribution.
In return for this small investment, programmers get help in debugging programs, since
the framework times responses and displays information about method invocations and
server replies. They also save time in generating user-friendly error messages within their

programs, since the framework will do this for them.

Evaluation 204

The focus in this research has been the simplification of the programmer’s task, since
it is my understanding that they have more than enough to do in programming the core

system functionality.

8.2.2.2 Programmer Experience with HERCULE

There are two ways to evaluate this type of software, from the programmer’s perspective:

1. objective evaluation by a number of programmers. The author’s approaches to industry
were met with polite refusals. It could have been that companies were afraid to
demonstrate their use of technology to an outsider, which is understandable in the
cut-throat software industry of today. The ever prevalent deadlines in this industry
which considers 3 month plans to be “long-term” planning, make the possibility of

testing tools in a real world environment rather unlikely.

Faced with this brick wall, the other option, that of using student programmers within
the University to test the software, was attempted, with little success. It proved to be
extremely difficult to find enough programmers with the required expertise within the
University. An attempt was made to interest the MSc class, but, when faced with the
steep learning curve required to develop an application using EJBs the students were
unwilling to participate. There is also the difficulty of persuading students to put a

lot of effort into a project for which they are not earning credits.

2. subjective evaluation by one or two programmers. While not the perfect solution, this
proved to be the only workable evaluation method and was thus the approach followed.

The following discussion addresses the experience of HERCULE as obtained via an interview
with a programmer who used it to develop a thin client for a CBS. The general feedback

can be summarised as follows:

e He enjoyed the fact that he did not have to do anything special for HERCULE to
work. He could program in his own style, using his own mechanisms, without worry-
ing about HERCULE. This meant that the “ease of insertion” criteria scored highly.
Since no extra effort was required to facilitate HERCULE's functioning, there was total

programmer “ease of use”.

e The customisation was easy to use, as he found that it took very little time — scoring

high on end-user “ease of use”.
e HERCULE did not crash. (This robustness was particularly encouraging)

e He felt that the HERCULE feedback component which displayed details of method
invocations raised his productivity since he did not have to track his own application

and print the details out himself.

Evaluation 205

He suggested some changes which were incorporated in the final version:

1. the need for more information about exceptions was expressed. At that stage HER-
CULE did not include any information about the method invocation causing the ex-

ception, in the exception explanation.

2. the time taken by the method invocation, if included in the programmer feedback

component display, was seen to be very helpful.

3. a change to the highlight mechanism was suggested. The HERCULE display currently
uses the highlighting technique suggested by the programmer. The previous display
used a triangle to indicate the current Episode and he quite rightly pointed out the

inconsistency this caused.

8.2.3 Performance Impact

It is very important that the presence of HERCULE should not affect application performance
unacceptably. Since HERCULE inserts proxies between the application and the user interface,
and between the application and the rest of the CBS, we can expect any performance

degradation to take place:

1. when the user interface proxy is being loaded, since an extra level of indirection is

being introduced;

2. when the initial connection with the server is being forged, since this is where the

server proxy will be introduced;
3. whenever a new window is being constructed; and

4. when global methods are invoked on distributed components. Two types of methods
need to be considered independently, methods which will require action by the com-
ponent container and methods on the component itself. The former naturally take

longer than the latter to process.

A preliminary study of performance differences was undertaken, by running the example
application twenty times both with and without HERCULE. The client computer used was a
Pentium 166, not exactly the leading edge of computing technology, and the figures should
therefore be seen as a “worst-case scenario”. Where effects were observed, the results are
shown, in seconds taken for each activity, in Table 8.12.

It is clear that the user will have to pay a penalty for using HERCULE. It would be
unreasonable to expect otherwise. The entire insurance industry is based on the “present

pain, future gain” principle. Shneiderman [Shn98] cites research which shows that modest

2There was no discernable effect when new windows were constructed, with only the time taken for the

initial window being affected.

Evaluation 206

Action Without Proxies | With Proxies
Display of Initial Application Window 1.44 2.45
Initial Contact with Server 5.92 8.73
Container Method Invocation 1.40 1.56
Component Method Invocation 0.25 0.54

Table 8.1: Time taken for core activities

variability in response times is deemed by users to be acceptable. If users see the benefits of
using HERCULE, they will hopefully be prepared to pay the small penalty of slightly longer

response times, for the future gain of having informative and extensive feedback available.

8.3 Conclusion

The evaluation of HERCULE is by no means completed. I have cited it as a topic for future
research in Chapter 9. The evaluation of this type of specialised software tool will be no
small task, since the world of component-based systems is a relatively young field, and the
skills required to operate as a programmer in this area are not yet commonly found.
However, such evaluation as has proved possible has indicated that HERCULE does con-
vey some benefits to end-users and application programmers alike. End-users experiénce
improved feedback while programmers find it easy to use, and find that it assists in appli-
cation development by automatically tracking the application. Performance is somewhat
affected, but not in such a way that the end-users will be significantly disadvantaged. I look

forward to pursuing this line of research in the future.

I am sorry that | have had to leave so many problems
unsolved. | always have to make this apology, but the world
really is rather puzzling and | cannot help it.

Bertrand Russell.

"The Philosophy of Logical Atomism,” Lecture V

chapter 9

Conclusion

9.1 Reiteration of Thesis Statement

I submit that feedback can be enhanced in a distributed component-based system by exe-
cuting the application within a generic feedback enhancing framework. I further submit this
supports the user: firstly in understanding the application, secondly in recovering from er-
rors, and thirdly in rebuilding mental context after interruptions. The framework standard-
ises feedback provision, simplifies application code, allows continuous post-implementation

refinement of explanatory messages and promotes reuse.

9.2 Summary of Research

This dissertation started off by drawing a comparison between human-to-human conversa-
tion and human-to-computer interaction, and concluded that the ability of computer ap-
plications to generate a shared context with the user needed to be enhanced. This con-
clusion was based on personal experience, with many professional people who happened to
be computer-illiterate, vast amounts of anecdotal evidence and the prevalence of web-sites
and newspaper columns explaining the behaviour of computer applications and interpreting

error messages for the benefit of perplexed end-users.

207

Conclusion 208

The introduction stated the author’s intent to explore the enrichment of the traditional
feedback provided by applications to enhance the interpretability of applications and pro-
vide an explanatory bridge between the application programmer and the end-user. It is
abundantly clear from the applications in use today that the provision of feedback is sadly
neglected. Current techniques clearly needed to be re-examined and a new approach found.

Component-based systems are being used increasingly in all types of systems and in
these systems the possibility that the user will receive adequate feedback is even smaller
than usual. The nature of component-based systems was explored, with Chapter 2 providing
an overview of the current state of this technology.

While users might have problems in using these systems when things are proceeding as
planned, they could have even more problems if something interferes either with their con-
centration or execution of the task. The nature of the various events which could interfere
with straightforward execution were studied and a classification of quirks, which encom-
passed all such events, was derived. Quirks can be either breakdowns, human errors or
interruptions. The characteristics of each type of quirk were explored in depth in Chapter
3.

The literature with respect to feedback was studied and the conclusion drawn that feed-
back could be either immediate or archival. Each type meets different needs — immediate
feedback assisting the user in understanding the rules of discourse, and archival feedback
making the application state visible. This boundary is not absolutely rigid, with immediate
and archival feedback fulfilling the other’s function as well. While feedback can be very
useful when everything proceeds according to plan, it becomes even more essential when
something goes wrong, or interrupts the user’s interaction with the application. The use of
feedback to alleviate these negative effects was investigated. The findings with respect to
feedback were given in Chapter 4.

Having thereby motivated the need for an additional and augmentary user-programmer
communication mechanism, an approach was developed which provides the end-user with
a runtime feedback assistant, named HERCULE, which can also be used as a software-
development tool to ease the programmer’s task. This approach combined established
techniques of application tracking, separation of concerns and visualisation to provide the
end-user with a visualisation of application activity (described in Chapter 5). The design
and implementation of this tool was discussed in Chapters 6 and 7. This unique form
of feedback — application activity visualisation — augments the feedback provided by a
component-based application, so that the end-user is assisted in understanding and using
these applications, as discussed in Chapter 8. This is expected to satisfy many of the user’s
feedback needs, as has been suggested by initial usability tests. The approach applied, and
mechanism developed, during the course of this research is applicable to a wide range of
end-user applications. Thus, although this dissertation has concentrated on the provision of
this framework in the context of component-based systems, its scope is far wider, and can

be applied as such.

Conclusion 209

To conclude, this dissertation has shown that it is feasible to provide feedback, using
a combination of separation of concerns and application tracking, as a visualisation of the
application activity and has developed initial evidence to strongly suggest this will often be
beneficial to both application developers and end-users.

9.3 Thesis Contribution
The contributions of this dissertation can be enumerated as follows:

1. A summary of the large and volatile field of component-based systems, a field which
does not easily lend itself to scientific analysis. This is due to changing names, differ-
ent meanings attributed to the same names, prevalence of books which are designed
for managers rather than engineers and scientists, and marketing jargon. Chapter 2
describes how components have evolved, explains issues with respect to component-
based development and gives a brief overview of the prominent component models in

use today.

2. A classification of quirks, those diverse events which interfere with our everyday ex-
ecution of tasks. Each type of quirk — error, interruptions, and breakdowns — was
analysed and classifications derived. Findings with respect to quirks were given in
Chapter 3.

3. Motivation for the extension of the traditional concept of feedback to include archival
feedback as well as immediate feedback. A case was also made for the due consideration
of the use of graphical feedback rather than solely textual descriptions. The need
for customisability of feedback to meet the needs of different types of users or users
functioning in different roles was also addressed. Feedback was discussed in Chapter
4.

4. A review and organisation of several normally unrelated areas of research — separation
of concerns, application tracking and visualisation — into one framework for future

reference, in Chapter 5.

5. Motivation for treating feedback as a separate concern and for implementing this

separation by means of application tracking, also in Chapter 5.

6. Development of a model of application activity, namely Episodes, to be portrayed as
being representative of the activity of the application, and motivation for providing

feedback graphically.

7. A prototype implementation of the proposed framework, which tests the viability of
the proposed scheme and provides a visualisation of the activity of the application,
described in Chapters 6 and 7.

Conclusion 210

8. A design pattern, namely the “Minimal Impact Proxy” pattern, was developed to be
re-used in ensuring that proxies do not impair application performance more than they
should. This is discussed in Section 6.2.1

9.4 Future Research

The author echoes the sentiments of Bertrand Russell in feeling that many issues have been
left unsolved. It is some consolation that this is the nature of research and that it does give
one many opportunities for further work. The following opportunities for future research

have been identified:

1. Enhanced query facilities for the display. The display as it stands does not offer
many opportunities for either grouping of similar Episodes, or searching for a specific
Episode, or characterising Episodes as one of a certain type. Since the display is
essentially a type of visualisation these facilities will have to be provided if HERCULE

is going to be a meaningful tool.

2. Link to knowledge base to explain errors. Dellarocas [Del98] has developed a scheme
whereby a knowledge base is established which builds up a collection of explanations
of errors. This would take some of the effort out of defining the reasons for exceptions,
and assist the programmer, since the same explanation could be used throughout the

application.

3. Incorporating fault tolerance. Huang and Kintala [HK93] have worked on an add-on
‘fault tolerance mechanism which is widely used within their organisation (Bell Labs).
This could conceivably be harnessed by HERCULE. For example, HERCULE could be
used to detect the failure of a particular server and notify a specified person so that

the problem can be resolved in as little time as possible.

4. Full evaluation of HERCULE, which is necessary to confirm conclusively the many
benefits of HERCULE both to the end-user and programmer. It is not absolutely
clear how this evaluation should be done, since this tool is a new concept in software
development. It would be interesting to work with researchers in the evaluation field to
arrive at a comprehensive evaluation method and thereby be able to assess HERCULE

comprehensively.

5. It would obviously be very helpful for HERCULE to keep a permanent record of session
activity. This would be very helpful for auditing, security purposes etc.

6. It has been suggested that it would be helpful if HERCULE could run on a remote ma-
chine, so that a system support person could monitor the performance of a particular

application on a particular machine from their own office.

Conclusion 211

7. The mechanism used to insert Java proxies opens up a host of questions about the
safety and security of Java applications, which I look forward to investigating in more

depth in the future.

8. The HERCULE concept could easily be adapted to function as a monitor of user
interface usability. It could be used to check which parts of the dialogue were used
regularly, which were ignored, and which were seldom invoked. Instead of supplying
the user with an activity visualisation, HERCULE could be tailored to write such

information to files so that it could be analysed by the usability engineer.

— The End —

part VI

Appendices and Bibliography

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started.

T S Eliot. 1944

212

Appendix A

Glossary

ActiveX — COM based visual desktop components integrated into applications.
ANSA — Advanced Networked Systems Architecture.
API — Application Programmer Interface.

CBD — Component Based Development. The process of designing and developing a system

using pre-built components.
CBS — Component Based System. The system built using components.
COM — Component Object Model. Microsoft’s component model.

CORBA — Common Object Request Broker Architecture. The component model specifi-
cation delivered by the OMG.

CVC — Component Vendors Consortium. An organisation which seeks to standardise

technical support and documentation of components.
DBMS — Database Management System.

DCOM — Distributed COM. An extension of COM which allows components to reside on

different machines.

DTC — Distributed Transaction Coordinator. Ensures consistency in the face of multi-

database transactions.

213

Glossary 214

EJB — Enterprise Java Bean. Sun’s component model.

GUI — Graphical User Interface.

HCI — Human Computer Interaction.

HTML - Hypertext Markup Language. Formatting language used by Web Documents.
IDL — Interface Definition Language. Defines component interfaces.

IIOP — Internet InterORB Protocol. Protocol for different ORBs to interoperate.

IPC — Inter Process Communication. Protocol for applications to communicate by means

of sockets.
IR — Interface Repository. Repository of component interfaces used by CORBA.
JNDI — Java Naming and Directory Interface. Naming service for the EJB standard.
JTS — Java Transaction Service. Transaction monitor for Sun’s EJB.

JVM — Java Virtual Machine. The portable virtual machine for applications written in

the Java language.
MTS — Microsoft Transaction Server. Component-oriented middleware for COM.
OCX — 32 bit version of VBX.
OLE — Object Linking and Embedding. First Microsoft components.
OMG — Object Management Group. Authors of the CORBA standard.
ORB — Object Request Broker. CORBA protocol for interacting with remote objects.

OTM — Object Transaction Monitor. Another terminology for component-oriented mid-

dleware.
OTS — Object Transaction Service. CORBA'’s specification for distributed transactions.
PC — Personal Computer.

RMI — Remote Method Invocation. Allows method invocations of remote objects in the

same way as is done locally.

RPC — Remote Procedure Call. Procedure call protocol implemented for client-server

architectures.
TPM — Transaction Processing Monaitor.

URL — Universal Resource Locator.

Glossary 215

VBX — Visual Basic Controls (application-internal components).

XML — Eztensible Markup Language.

Appendix B

- Minimal Impact Proxy Design
Pattern Code

Proxy Code Fragment

The setting up of the link to the ReporterQueue is demonstrated in the following code:

ReporterQueue queue;

public Proxy() {
queue = new ReporterQueue();
queueThread = new Thread(queue);
queueThread.start();

} // constructor

ReporterQueue Code Fragment

public class ReporterQueue extends Thread {

// THE TARGET FOR ALL OUR REPORTS

216

Interaction Monitor Design Pattern Code 217

Reporter reporterToBeNotified;

// other variables ..

public ReporterQueue(){
// start up the communicator object
reporterToBeNotified = new Reporter(this);
Thread reporterThread = new Thread(reporterToBeNotified) ;

reporterThread.start();

// wait till the thread is alive and running
vhile (!reporterThread.isAlive()) ;

} // constructor
public void run() {} // required to implement Runnable

public synchronized void addItem(ReporterQueueltem newItem){
// ADD A NEW REPORTER QUEUE ITEM TO THE QUEUE

/...

// tell the waiting thread something is in the queue
reporterToBeNotified.wakeUp() ;

} // addItem

} // ReporterQueue

Reporter Code Fragment

public class Reporter extends Thread {

static boolean verbose = Boolean.getBoolean("verbose");

ReporterQueue queue;

static boolean reportEvents=true; // report till false
static java.net.Socket socket;
static java.io.OutputStream outStream;

static java.io.ObjectOutputStream objectOut;
public Reporter(ReporterQueue rq) {

queue = rgq;

setOutputStream();
} // constructor

public synchronized void wakeUp() {notify();}

public void run() {

Interaction Monitor Design Pattern Code 218

try {
while (true) {
if (queue.elements() == 0)
synchronized (this) {
if (reportEvents) wait(1000); // wait for something
else wait(); // ERROR CONDITION - go to sleep forever
} // nothing on the queue
if (queue.elements() > 0) {
// GET THE FIRST REPORT OFF THE QUEUE
ReporterQueueItem item = queue.getHead();
write(item.getReport());
} // elements on the queue
} // while
} // try
catch (Exception ee) {
if (verbose) {
System.out.println("EXCEPTION - Reporter");
ee.printStackTrace();
}
} // catch
} // run()

public void setOutputStream(){

// THIS IS ONLY DONE ONCE, TO SET UP COMMUNICATIONS WITH
// THE MONITORING APPLICATION

/...

} // setOutputStream()

public void write(Report message) {
if (!reportEvents) return; // an error occurred, do nothing
try { objectOut.writeObject(message);}
catch (Exception ee) {
if (verbose) {
System.out.println("Problem communicating");
ee.printStackTrace(System.out);
}
} // catch
} // write
} // Reporter

Bibliography

[ABvdSB94)

[ACT94]

[A1199]

- [AM82]
[AMY5)
[And83]
[And90]
[ANS89]
[Aoy98]
[App87]

[Asp9g]
[AST99]

[Bac97]

Mehmet Aksit, Jan Bosch, William van der Sterren, and Lodewijk Bergmans. Real-
Time Specification Inheritance Anomalies and Real-Time Filters. In [TP9{], pages
386-407, 1994.

P V Argade, D K Charles, and C Taylor. A Technique for Monitoring Run-Time
Dynamics of an Operating System and a Microprocessor Executing User Applica-
tions. In Proceedings of the 6th International Conference on Architectural Support
for Programming Languages and Operating Systems, San Jose, CA USA, Oct 5-7
1994. ACM.

P Allen. Doing Business with Component-Based Development. Application Develop-
ment Advisor, 3(1):36-44, October 1999.

C M Allwood and H Montgomery. Detection of errors in statistical problem solving.
Scandinavian Journal of Psychology, 23:131-139, 1982.

M. P. Atkinson and R. Morrison. Orthogonally Persistent Object Systems. VLDB
Journal, 4(3):319-401, 1995.

- J R Anderson. The Architecture of Cognition. Harvard Urﬁversity Press, Cambridge,

Massachusetts, 1983.

P B Andersen. A Theory of Computer Semiotics. Cambridge Series on Human-
Computer Interaction. Cambridge University Press, Cambridge, 1990.

ANSA. An Engineers Introduction to the Architecture. Architecture Projects Man-
agement Limited. Cambridge, November 1989. Release TR.03.02.

Mikio Aoyama. New Age of Software Development: How Component-Based Software
Engineering Changes the Way of Software Development. In [ics98], 1998.

Human Interface Guildelines: The Apple Desktop Interface. Addison-Wesley, Read-
ing, Massachusetts, 1987. Apple Computer Inc.

http://www.parc.xerox.com/spl/projects/aop/aspectj. AspectJ Web Page, 1998.

M Aleksy, M Schader, and C Tapper. Interoperability and Interchangeability of
Middleware components in a Three-Tier CORBA-Environment-State of the Art. In
3rd International Enterprise Distributed Object Computing Conference. EDOC’99,
pages 204-213, University of Mannheim, Germany, September 27-30 1999. IEEE.

J Bacon. Concurrent systems: operating systems, database and distributed systems:
an integrated approach. Addison Wesley, Harlow, second edition, 1997.

219

http://www.parc.xerox.com/spl/projects/aop/aspectj

Bibliography

[Bae98]

[Bang9]

[Bas99]

[BDPS94]

[Beg99]
[BF8S]

[BF95]
[BF97]

[BG93]

[BHO3]

[BK98]

[BK99)]

[BLY4]

[BMP+99]

[BN84]

[Bor91]

220

T Baer. The Culture of Components. Web Document, September 1998.
www.adtmag.com/pub/sept98/fe902.htm.

L Bannon. From Cognitive Science to Cooperative Design. In N O Finneman, editor,
Theories and Technologies of the Knowledge Society, pages 33—59. 1989.

P Bassett. Two Flavors of Component Architectures. Component Strategies,
1(11):70-72, May 1999.

Marc Brown, John Domingue, Blaine Price, and John Stasko. Software Visualization.
ACM SIGCHI Bulletin, 26(4):32-35, 1994.

James Begole. Personal communication, March 1999.

L Blackshaw and B Fishhoff. Decision making in online searching. Journal of the
American Society for Information Science, 39:369-389, 1988.

J R Brooks and P Frederick. The Mythical Man-Month. Addison-Wesley, 1995.

D J Berg and J S Fritzinger. Advanced Techniques for Java Developers. John Wiley
and Sons, 1997.

Thomas Berlage and Andreas Genau. A Framework for Shared Applications with a
Replicated Architecture. In Proceedings of the ACM Symposium on User Interface
Software and Technology, CSCW and Distributed Applications, pages 249-257, 1993.

Susan E. Brennan and Eric A. Hulteen. Interaction and feedback in a spoken language
system. In AAAI Technical Report FS-93-05, pages 1-6, 1993.

A N Burton and P H J Kelly. Workload Characterization and Using Lightweight
System Call tracing and re-execution. In IEEE International Performance Comput-
ing and Communications Conference. IPCCC ’98, Phoenix/Tempe, Arizona, USA,
February 16-18 1998. IEEE.

A N Burton and P H J Kelly. Tracing and Reexecuting Operating System Calls for
Reproducible Performance Experiments. Computers and Electrical Engineering: An
International Journal, May 1999.

T Ball and J R Larus. Optimally Profiling and Tracing Programs. ACM Transactions
on Programming Languages and Systems, 16(4):1319-1360, 1994.

Peter J. Barclay, Jo McKirdy, Norman W. Paton, Philip D. Gray, Jessie Kennedy,
Richard Cooper, Carole A. Goble, Adrian West, and Michael Smyth. Teallach: A
model-based user interface development environment for object databases. In Nor-
man W. Paton and Tony Griffiths, editors, Proc. User Interfaces to Data Intensive
Systems (UIDIS99), pages 86-96, Edinburgh, Scotland, 5-6 September 1999. IEEE
Computer Society Publishers.

A D Birrell and B J Nelson. Implementing remote procedure calls. ACM Transactions
on Computer Systems (TOCS), 2(1):39-59, 1984.

N Borenstein. Programming as if People Mattered. Princeton Univeristy Press,
Princeton, New Jersey, 1991.

http://www.adtmag.com

Bibliography

[Bro99]

[BW97]
[BWOS]

[BZPF93]

[Car87]

[CCHOO]

[CCS91]

[CE89)]

[Chag6]

[Cha97]

[Cha98g]

[Cha99a]

[Cha99b)]

[Cha99c]

[Che99]

[CK98]

[Cla97]

221

A W Brown. Moving from components to CBD. Component Strategies, 1(10):23-28,
April 1999.

M Biichi and W Weck. A Plea for Grey-Box Components. In [L597], 1997.

Alan W Brown and Kurt C Wallnau. The Current State of CBSE. IEEE Software,
15(5):37-46, September/October 1998.

F C Brodbeck, D Zapf, J Priimper, and M Frese. Error handling in office work with
computers: A field study. Journal of Occupational and Organizational Psychology,
66:303-317, 1993.

J M Carroll, editor. Interfacing Thought: Cognitive Aspects of Human-Computer
Interaction. MIT Press, Cambridge, MA, 1987.

Edward B Cutrell, Mary Czerwinski, and Eric Horvitz. Effects of Instant Messag-
ing Interruptions on Computing Tasks. In Barbara Hayes-Roth and Richard Korf,
editors, Proceedings of CHI'2000, pages 814-819, The Hague, Netherlands, 1-6 April
2000.

M Czerwinski, S Chrisman, and B Schumacher. The Effects of Warnings and Dis-
play Similarities on Interruption in Multitasking Environments. SIHCHI Bulletin,
23(4):38-39, October 1991.

F R Campagnoni and K Ehrlich. Retrieval using a hypertext-based help system.
ACM Transactions on Information Systems, 7:271-291, 1989.

D Chappell.. Understanding ActiveX and OLE. Strategic Technology Series. Microsoft
Press, Redmond, Washington, 1996.

D Chappell. The Next Wave. Component Software Enters the Mainstream. Web
Document, April 1997. Chappell and Associates. www.chappellassoc.com.

D Chappell. MTS versus EJB. Component Strategies, 1(5):14-17, November 1998.

Matthew Chalmers. Information visualization tutorial. In 25th International Confer-
ence on Very Large Data Bases VLDB’99, Edinburgh, Scotland, 7th - 10th September
1999. Morgan Kaufmann.

D Chappell. Application servers: COM-Based vs. Java-Based. Component Strategies,
1(9), March 1999. www.chappellassoc.com/artlcs.htm.

D Chappell. Taking Stock of Component Technology. Component Strategies,
1(12):16-17, June 1999.

Chaomei Chen. Information Visualisation and Virtual Environments. Springer, Sin-
gapore, 1999.

John V. Carlis and Joseph A. Konstan. Interactive Visualization of Serial Periodic
Data. In Proceedings of the ACM Symposium on User Interface Software and Tech-
nology. UIST’98, Visualization, pages 29-38, San Francisco, CA USA, November 1 -
4 1998.

William J Clancey. Situated Cognition. On Human Knowledge and Computer Rep-
resentations. Cambridge University Press, Cambridge, UK, 1997.

http://www.chappellassoc.com
http://www.chappellassoc.com/artlcs.htm

Bibliography

[CM93]

[CMH92]

[CMN83]

[Cor91]

[Cot98]

[Cox90]

[CR87]

[CRBYS]

[CRM91]

[CS87]

[CWS95]

[Cyp86]

[Das92]

[dBYg]
[De 98]

[Del98]

[DFAB93]

222

Giuseppe Carenini and Johanna D. Moore. Generating Explanations in Context.
In Proceedings of the 1993 International Workshop on Intelligent User Interfaces,
Session 6: User Support, pages 175-182, 1993.

Elliot J. Chikofsky, David A. Martin, and Chang Hugh. Assessing the State of Tools
Assessment. IEEE Software, 9(3):18-21, May 1992.

S Card, T Moran, and A Newell. Applied Information-Processing Psychology. Erl-
baum Associates, Hillsdale, NJ, 1983.

John R Corbin. The Art of Distributed Applications. Springer Verlag, New York,
1991.

B Cottman. Componentware: Component software for the enterprise. http://www.i-
kinetics.com/wp/cwvision/CWVision.html, 1998. (27/11/98) I-Kinetics Web Site.

B Cox. There is a silver bullet: The birth of interchangeable, reusable software
components will bring software into the information age. Byte, October 1990.

J M Carroll and M B Rosson. The Paradox of the Active User In [C’ar87] chapter 5,
pages 80-111. MIT Press, 1987.

M Chalmers, K Rodden, and D Brodbeck. The Order of Things: Activity—Centred
Information Access. In Proceedings of the 7th International Conference on the World
Wide Web, pages 359-367, Brisbane, Australia, Oct 5-7 1998.

S. K. Card, G. G. Robertson, and J. D. Mackinlay. The information visualizer, an
information workspace. In Proc. ACM Conf. Human Factors in.Computing Systems,
CHI, pages 181-188. ACM, April 1991.

H H Clark and E F Schaefer. Collaborating on contributions to conversations. Lan-
guage and Cognitive Processes, 2:1-23, 1987.

H C Chan, K K Wei, and K L Siau. The effect of a database feedback system on
user performance. Behaviour and Information Technology, 14(3):152-62, 1995.

Allen Cypher. The structure of users’ activities. In D A Norman and S W Draper, ed-
itors, [ND86], chapter 12, pages 243-264. Lawrence Erlbaum Associates, Publishers,
Hilldale, New Jersey, 1986.

Marcelo Dascal. On the Pragmatic Structure of Conversation. In Herman Parret and
Jef Verschueren, editors, (On) Searle on Conversation, pages 35-56. John Benjamins
Publishing Company, Amsterdam, 1992.

Edward de Bono. Simplicity. Penguin, London, 1998.

J. De Oliveira Guimaraes. Reflection for Statically Typed Languages. Lecture Notes
in Computer Science, 1445:440-461, 1998.

C Dellarocas. Toward Exception Handling Infrastructures for Component-Based Sys-
tems. In [WCB88], 1998.

A Dix, J Findlay, G Abowd, and R Beale. Human-Computer Interaction. Prentice
Hall, 1993.

http://www.i-

Bibliography

(DH95)

[Dix91]

[DJA93)

[Dol9g]

[Dol99]

[DPM92)

[Dra86]

[DRWY5]

[DW9s]

[EHO3)]

[EL96)]

[EN96]

[Eng97]
[ES98]

[ESS92]

223

Nick Drew and Bob Hendley. Visualising Complex Interacting Systems. In Proceed-
ings of ACM CHI’95 Conference on Human Factors in Computing Systems, volume 2
of Short Papers: Information Visualization, pages 204-205, 1995.

A J Dix. Closing the loop: modelling action, perception and information. In
M. F. Costabile T. Catarci, S. Levialdi, and G. Santucci, editors, AVI’96 - Advanced
Visual Interfaces, pages 20-28. ACM Press, 1991.

Nils Dahlback, Arne Jonsson, and Lars Ahrenberg. Wizard of Oz Studies — Why
and How. In Proceedings of the 1993 International Workshop on Intelligent User
Interfaces, Session 7: Design & Evaluation, pages 193—-200, 1993.

M Dolgicer. Distributed Object Middleware & the Internet. Component Strategies,
1(5):23-32, November 1998.

M Dolgicer. Building a Middleware Platform. Component Strategies, 1(9):40-44,57,
March 1999.

T M Dufly, J E Palmer, and B Mehlenbacher. Online Help. Design and Evaluation.
Ablex Publishing Company, 1992.

S Draper. Display managers as the basis for user-machine communication. In D A
Norman and S W Draper, editors, [ND86], chapter 16, pages 339-352. Lawrence
Erlbaum Associates, Publishers, Hilldale, New Jersey, 1986.

A. Dix, D. Ramduny, and J. Wilkinson. Interruptions deadlines and reminders:
Investigations into the flow of cooperative work. Technical Report RR9509, School
of Computing and Mathematics, University of Huddersfield, 1995.

D F D’Souza and A Wills. Objects, Components and Frameworks with UML: The
Catalysis Approach. Addison Wesley, 1998.

Frits L. Engel and Reinder Haakma. Expectations and Feedback in User-System Com-
munication. International Journal of Man-Machine Studies, 39(3):427-452, 1993.

Stephen G. Eick and Paul J. Lucas. Displaying trace files. Software—Practice and
Experience, 26(4):399-409, April 1996.

Margery Eldridge and William Newman. Agenda Benders: Modelling the Disruptions
Caused by Technology Failures in the Workplace. In Proceedings of ACM CHI 96
Conference on Human Factors in Computing Systems, volume 2 of SHORT PAPERS:
Models of Work Practice (Short Papers Suite), pages 219-220, 1996.

R Englander. Developing Java Beans. O’Reilly, Cambridge, USA, June 1997.

G Eisenhauer and K Schwan. An Object-Based Infrastructure for Program Monitor-
ing and Steering. In Proceedings of the SIGMETRICS Symposium on Parallel and
Distributed Tools, 1998.

S G Eick, J L Steffen, and E E Sumner. SeeSoft — A Tool for visualising software.
IEEE Transactions on Software Engineering, 18:957-968, November 1992.

Bibliography

[FA93]

[Fau98]

[FFW8S]

[FHLS99]

[FMY5]

[FN97]

[FP90]

[Fur86]

[FvD82]

[Gar87]

[GC8T]

[GEC98]

[GGMY7]

[GHIV94]

224

Svend Frglund and Gul Agha. A Language Framework for Multi-Object Coordi-
nation. In Furopean Conference on Object-Oriented Programming (ECOOP), pages
346-360, Kaiserslautern, Germany, July 1993. Springer Verlag, Lecture Notes in
Computer Science. Vol. 707.

C Faulkner. The Essence of Human Computer Interaction. Prentice Hall, London,
1998.

Brad Hartfield Fernando Flores, Michael Graves and Terry Winograd. Computer sys-
tems and the design of organizational interaction. ACM Transactions on Information
Systems, 6(2):153-172, April 1988.

G Froehlich, H Jim Hoover, L Liu, and P Sorenson. Designing Object-Oriented
Frameworks. In [Zam99], chapter 25. 1999.

Batya Friedman and Lynette Millett. ”It’s the Computer’s Fault” — Reasoning about
Computers as Moral Agents. In Proceedings of ACM CHI’95 Conference on Human
Factors in Computing Systems, volume 2 of Short Papers: Agents and Anthropomor-
phism, pages 226-227, 1995.

BJ Fogg and Clifford Nass. How Users Reciprocate to Computers: An Experiment
that Demonstrates Behavior Change. In Proceedings of ACM CHI 97 Conference on
Human Factors in Computing Systems, volume 2 of SHORT TALKS: A Melange,
pages 331-332, 1997.

T Fawcett and F Provost. Activity Monitoring: Noticing Interesting Changes in
Behaviour. In Proceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego, CA USA, August 15-18 1990.
ACM.

George W. Furnas. Generalized Fisheye Views. In Marilyn M. Mantei and Peter Or-
beton, editors, Proceedings of the ACM Conference on Human Factors in Computer
Systems, SIGCHI Bulletin, pages 16-23. Association for Computer Machinery, New
York, U.S.A., 1986.

J D Foley and A van Dam. Fundamentals of Interactive Computer Graphics. Addison-
Wesley, Reading, Mass. London, 1982.

M M Gardiner. Principles from the psychology of memory. In [GC87], chapter 5,
pages 119-162. John Wiley & Sons, 1987. Part II. Episodic Memory.

M M Gardiner and B Christie, editors. Applying Cognitive Psychology to User In-
terface Design, Chichester, 1987. John Wiley & Sons.

Nahum Gershon, Stephen G. Eick, and Stuart Card. Design: Information Visualiza-
tion. interactions, 5(2):9-15, 1998.

Rachid Guerraoui, Benoit Garbinato, and Karim R. Mazouni. Garf: A Tool for
Programming Reliable Distributed Applications. IEEE Concurrency, 5(4):32-39,
October/December 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1994.

Bibliography

[G1a98]

[Got98]

[GRY3]

[Gru87]

[Gut99]

[Ham87)

[Han98]
[Har98]

[hCKBRY7]

[HG99)

[Hit87]

[HK93]

[HL95]

[Hub83]

[ics98]

[JA84)

225

Robert L. Glass. Loyal Opposition: Reuse: What’s Wrong with This Picture? IFFE
Software, 15(2):57-59, March / April 1998.

E Gottesdiener. OO Methodologies. Process & Product Patterns. Component Strate-
gies, 1(5):34-44, November 1998.

J Gray and A Reuter. Transaction Processing — Concepts and Techniques. Morgan
Kaufmann, San Francisco, California, 1993.

J Grudin. Social Evaluation of the user interface: Who does the work and who gets the
benefit. In H-J Bullinger and B Shackel, editors, INTERACT 1987. IFIP Conference
on Human-Computer Interaction., Stuttgart, Germany, 1987. IFIP, Elsevier Science
Publishers B.V.

Rhett Guthrie. The Business Case for Server Component Models. Component Strate-
gtes, 1(12):24-29, June 1999.

N Hammond. Principles from the psychology of skill acquisition. In [GC87], chapter 6,
pages 163-188. John Wiley & Sons, 1987.

J Han. Characterisation of Components. In [WCB88], 1998.

P Harmon.. Components and Objects. http://www.cutter.com/cds/cds9807.html,
July 1998. Component Development Strategies. Monthly Newsletter from the Cutter

Information Corporation.

Ed Huai hsin Chi, Joseph Konstan, Phillip Barry, and John Riedl. A Spreadsheet
Approach to Information Visualization. In Proceedings of the ACM Symposium on
User Interface Software and Technology, Programming by Demonstration, pages 79—
80, Banff Canada, October 14 - 17 1997.

D Hinchcliffe and M J Gaffney. Components: Where are They?
http://www.objectnews.com, January 1999. (19/1/99).

Graham J Hitch. Principles from psychology of memory. In [GC87], chapter 5. John
Wiley & Sons, 1987. Part I. Working Memory.

Y. Huang and C. M. R. Kintala. Software implemented fault tolerance: Technologies
and experience. In Proceedings of 23rd Intl. Symposium on Fault- Tolerant Computing,
pages 2-9, Toulouse, France, June 1993. Also appeared as a chapter in the book
Software Fault Tolerance, M. Lyu (Ed.), John Wiley & Sons, March 1995.

Walter Hiirsch and Cristina Videira Lopes. Separation of Concerns. Technical Re-
port NU-CCS-95-03, College of Computer Science, Northeastern University, Boston,
Massachusetts, February24 1995.

G P Huber. Cognitive style as a basis for MIS and DSS designs: much ado about
nothing? Management Science, 29(5):565-597, 1983.

1998 International Workshop on Component-Based Software Engineering. ICSE98,
Kyoto, Japan, April 25-26 1998.

G Johansson and G Aronsson. Stress reactions in computerized administrative work.
Journal of Occupational Behaviour, 5:159-181, 1984.

http://www.cutter.com/cds/cds9807.html
http://www.objectnews.com

Bibliography

[Jac73]
[Jam96]

[Jam98|

[Jam99a)

[Jam99b)

[Jam00]

{Jer96]

[JLSU8T]

[JZTB9S)

[Kar98]

[Kar99]

[Kea88]

[KF90]

[KHBYY)

[Kic96]

[Kie98]

[KM99]

226

J Jacobi. The Psychology of C G Jung. Yale University Press, New York, 1973.

Francis Jambon. Erreurs et interruptions du point de vue de l'ingénierte de
Uinteraction homme-machine. Phd thesis, Université Joseph Fourier, 1996.

F Jambon. Taxonomy for Human Error and Fault Recovery from the Engineering
Perspective. In International Conference on Human-Computer Interaction in Aero-
nautics (HCI-Aero’98), pages 55-60, Montreal, Canada, May 1998.

J James. Design of the Kan Distributed System. Technical Report TRCS99-29,
University of California, Santa Barbara, Santa Barbara, CA 93106, 1999.

J James. Reliable Distributed Objects: Reasoning, Analysis, and Implementation.
PhD thesis, UNIVERSITY OF CALIFORNIA, Santa Barbara, March 1999.

F Jambon. Personal communication, May 2000.

Dean F. Jerding. Visualizing Patterns in the Execution of Object-Oriented Programs.
In Proceedings of ACM CHI 96 Conference on Human Factors in Computing Systems,
volume 2 of Doctoral Consortium, pages 47-48, 1996.

J Joyce, G Lomow, K Slind, and B Unger. Monitoring Distributed Systems. ACM
Transactions on Computer Systems, 5(2):121-150, May 1987.

C Jeffery, W Zhou, K Templer, and M Brazell. A Lightweight Architecture for
Program Execution Monitoring. In ACM SIGPLAN/SIGSOFT workshop on Progra
Analysis for Software Tools and Engineering, Montreal, Canada, June 16 1998. ACM.

D Kara. Build vs Buy: Maximizing the Potential of Componentsi. Component Strate-
gies, 1(1), July 1998. http://www.componentmag.com/.

D Kara. The Enterprise Java Beans Component Model. Component Strategies,
1(7):18-25, January 1999.

G Kearsley. Online Help Systems. Design and Implementation. Ablex Publishing
Corporation, Norwood, New Jersey, 1988.

David Kurlander and Steven Feiner. A Visual Language for Browsing, Undoing, and
Redoing Graphical Interface Commands. In S.-K. Chang, editor, Visual Languages
and Visual Programming, pages 257-275. Plenum, New York, 1990.

Murat Karaorman, Urs Holzle, and John Bruno. jContractor: A Reflective Java
Library to Support design by contract. Technical Report TRCS98-31, University of
California, Santa Barbara. Computer Science., January 19, 1999.

G. Kiczales. Aspect-oriented programming. ACM Computing Surveys, 28(4es):154—
154, December 1996.

D Kiely. The Component Edge — An Industrywide Move To Component-Based de-
velopment holds the promise of massive productivity gains. Information Week, (677),
April 1998. www.techweb.com/se/directlink.cgi?TWK19980413S0001.

Mik A. Kersten and Gail C. Murphy. Atlas: A Case Study in Building a Web-Based
Learning Environment Using Aspect-oriented Programming. Technical Report TR-
99-04, Department of Computer Science, University of British Columbia, March 31
1999. Wed, 07 Apr 1999 21:31:26 GMT.

http://www.componentmag.com/
http://www.techweb.com/se/directlink.cgi7IWK19980413S0001

Bibliography

[KMS+95)

[KP95]

[KPS95]

[Kra88]
[Lew86]

[Lew98]

[Lin91]

[LL94]

[LLMO1]

[LMSS]

[LM94]

[LN86)

[LS97]

227

D. Kimelman, P. Mittal, E. Schonberg, P. F. Sweeney, Ko-Yang Wang, and D. Zernik.
Visualizing the Execution of High Performance Fortran (HPF) Programs. In IEEE,
editor, IPPS ’95: 9th International parallel processing symposium — April 25-28,
1995, Santa Barbara, CA, International Parallel Processing Symposium, pages 750—
759, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1995. IEEE Com-
puter Society Press.

M Kitajima and P G Polson. A comprehension-based model of correct performance
and errors in skilled, display-based, human-computer interaction. International Jour-
nal of Human-Computer Studies, 43:65-99, 1995.

Harsha Kumar, Catherine Plaisant, and Ben Shneiderman. Browsing Hierarchical
Data with Multi-Level Dynamic Queries and Pruning. Technical Report CS-TR-
3474, HCIL Dept. of Computer Science, University of Maryland, March 1995.

Sacha Krakowiak. Principles of Operating Systems. MIT Press, Cambridge, 1988.

C Lewis. Understanding what’s happening in system interactions. In D A Norman
and S W Draper, editors, [ND86], chapter 8, pages 171-186. Lawrence Erlbaum
Associates, Publishers, Hilldale, New Jersey, 1986. '

Scott M. Lewandowski. Frameworks for component—based client/server computing,.
ACM Computing Surveys, 30(1):3-27, March 1998.

K. Lindstrom. Breakdowns and other interruptions in VDT work as a source of stress
in customer service and banking. In Proceedings of the Fourth International Confer-
ence on Human-Computer Interaction, volume 1 of Congress I: Work with Terminals:
HEALTH ASPECTS: WORKLOAD, STRESS AND STRAIN AND IRREGULAR
WORKING HOURS; Causes and Measures of Stress, pages 185-189, 1991,

C. V. Lopes and K. J. Lieberherr. Abstracting Process-to-Function Relations in
Concurrent Object-Oriented Applications. In [TP94], pages 81-99, 1994.

X Lin, P Liebscher, and G Marchionini. Graphical Representations of Electronic
Search Patterns. Journal of the American Society for Information Science, 42(7):469-
478, 1991.

P Leibscher and G Marchionini. Browse and analytical search strategies in a full-text
CD-ROM encyclopedia. School Library Media Quarterly, Summer:223-233, 1988.

Benoit Lemaire and Johanna Moore. An improved interface for tutorial dialogues:
Browsing a visual dialogue history. In Proceedings of ACM CHI’94 Conference on
Human Factors in Computing Systems, volume 2 of PAPER ABSTRACTS: Accessing
and Exploring Information, page 200, 1994.

C Lewis and D A Norman. Designing for Error. In D A Norman and S W Draper,
editors, User Centred System Design. New Perspectives on Human-Computer Interac-
tion, chapter 20, pages 411-432. Lawrence Erlbaum Associates, Publishers, Hilldale,
New Jersey, 1986.

Gary T. Leavens and Murali Sitaraman, editors. Proceedings of the First Workshop
on the Foundations of Component-Based Systems, Zurich, Switzerland, September 26
1997, September 1997.

Bibliography

[Mac91]

[Mac99]

[Man87]

[Mar89]

[MB99]

[McI68]
[MCLM90]

[Mes98]

[MGO00)]

[MGP60]

[MGS92]

[Mic98a]

[Mic98b]

[Mic98c]

[Mic99]

[Mil94]

228

Wendy E. Mackay. Triggers and Barriers to Customizing Software. In Proceedings of
ACM CHI’91 Conference on Human Factors in Computing Systems, Group Use of
Computing, pages 153-160, 1991.

Murdoch Mactaggert. Cbd, components and class libraries. Application Development
Advisor, pages 14-17, Sept-Oct 1999.

Ken Manktelow. Principles from the psychology of thinking and mental models. In
[GC87], chapter 4. John Wiley & Sons, 1987.

G Marchionini. Information-seeking strategies of novices using a full-text electronic
encyclopedia. Journal of the American Society for Information Science, 50:54-66,
1989.

T Merridenard and J Bird. Filling the gap. In Management Today. June 1999.
Produced for Microsoft.

M D Mcllroy. Mass produced software components. In [NR69], pages 88-98, 1968.

Allan MacLean, Kathleen Carter, Lennart Lovstrand, and Thomas Moran. User-
Tailorable Systems: Pressing the Issues with Buttons. In Proceedings of ACM CHI’90
Conference on Human Factors in Computing Systems, End User Modifiable Environ-
ment, pages 175-182, 1990.

J J Meserve. Application servers come into focus. Web Document, October 1998.
Application Development Trends. www.adtmag.com.

J McKirdy and P Gray. SUIT -— Context Sensitive Evaluation of User Interface
Development Tools. In DSVIS’2000, Limerick, Ireland, 2000.

G. A. Miller, E. Galanter, and K. H. Pribram. Plans and the structure of behaviour.
Holt, Rinehart and Winston, New York, 1960.

A. Myka, U. Giintzer, and F. Sarre. Monitoring User Actions in the Hypertext System
“HyperMan”. In ACM Tenth International Conference on Systems Documentation,
pages 103-113, 1992.

Sun Microsystems. Enterprise Java Beans Specification. Web Document. URL:
java.sun.com/products/ejb, March 1998.

Sun Microsystems. javadoc - The Java API documentation Generator. Web Docu-
ment, 1998. http://java.sun.com/products/jdk/1.2/docs/tooldocs/javadoc/.

Sun Microsystems. JNDI: Java Naming and Directory Interface.
http://java.sun.com/products/jndi/docs.html#11, January 1998. Web Docu-
ment.

Sun Microsystems. java.lang.reflect. Web Document, 1999.
http://java.sun.com/products//jdk/1.2/docs/api/java/lang/reflect /package-
use.html.

Steve Miller. Ezperimental Design and Statistics. New Essential Psychology. Rout-
ledge, London and New York, second edition, 1994.

http://www.adtmag.com
http://java.sun.eom/products/jdk/l.2/docs/tooldocs/javadoc/
http://java.sun.com/products/jndi/docs.html%23ll
http://java.sun

Bibliography 229

[MK93] M Masson and V De Keyser. Preventing human errors in skilled activities through a
computerised support system. In [5593], 1993. volume IL

[MNg6] Yoshiro Miyata and Donald A Norman. Psychological issues in support of multiple
activities. In D A Norman and S W Draper, editors, [ND86], chapter 13, pages
171-186. Lawrence Erlbaum Associates, Publishers, Hilldale, New Jersey, 1986.

[MNGS87] C Marshall, C Nelson, and M M Gardiner. Design guidelines. In [GC87], chapter 8,
pages 221-278. John Wiley & Sons, 1987.

[Mos92] Vicky Mosley. How to Assess Tools Efficiently and Quantitatively. IEEE Software,
9(3):29-32, May 1992.

[MS99] H. Moessenbdck and C. Steindl. The Oberon-2 reflection model and its applications.
Lecture Notes in Computer Science, 1616:40-53, 1999.

[Mul93] S Mullender. Distributed Systems. Addison Wesley, Wokingham, second edition,
1993.

[ND86] D A Norman and S W Draper, editors. User Centred System Design. New Perspec-

tives on Human-Computer Interaction. Lawrence Erlbaum Associates, Publishers,
Hilldale, New Jersey, 1986.

[ND99] P A Nixon and S A Dobson. Objects, Components and the Virtual Enterprise. Tech-
nical Report TCD-CS-1999-07, Trinity College, Department of Computing Science,
Trinity College, Dublin 2, Ireland, February 1999.

[Nic76] R Nickerson. On conversational interaction with computers. In Proceedings of
ACM/SIGGRAPH workshop, pages 101-113, Pittsburgh, PA, 14-15 October 1976.

[Nie93] J Nielsen. Usability Engineering. AP Professional, Boston, 1993.

[Nor86] D Norman. Cognitive engineering. In D A Norman and S W Draper, editors, [ND86],
chapter 3, pages 31-62. Lawrence Erlbaum Associates, Publishers, Hilldale, New
Jersey, 1986.

[Nor89] D Norman. The “problem” of automation: Inappropriate feedback and interaction,
not “overautomation”. Technical Report ICS Report 8904, Institute for Cognitive
Science, University of California, San Diego, La Jolla, California, 92093, 1989.

[Nor94] D A Norman. Things That Make Us Smart : Defending Human Attributes in the
Age of the Machine. Addison Wesley Publishing Company, 1994.

[Nor98] D A Norman. The design of everyday things. MIT Press, London, England, 98.

[NR69] P Naur and B Randell, editors. Proceedings, NATO Conference on Software En-

gineering, Garmish, Germany, October 1969. NATO Science Committee, Brussels
(published as a book in 1976).

[NTI1] M. A. Norman and P. J. Thomas. Informing HCI Design through Conversation
Analysis. International Journal of Man-Machine Studies, 35(2):235-250, 1991.

[NT95] O Nierstrasz and D Tsichritzis, editors. Object-Oriented Software Composition. Pren-
tice Hall, London, 1995.

Bibliography
[0’C99]

[OF95)

[0°HY4]

[0194]
[01s87]

[PAD+97]

[Par72]
[Phig6]

[PMR*96]

[PQS96]

[Pri99]
[PS92]

[PSV94]

[PT8S]

230

A O’Callaghan. Full moon rising. Application Development Advisor, pages 59-61,
May-June 1999.

Brid O’Conaill and David Frohlich. Timespace in the workplace: Dealing with inter-
ruptions. In Proceedings of ACM CHI’95 Conference on Human Factors in Comput-
ing Systems, volume 2 of Short Papers: Workplaces and Classrooms, pages 262—263,
1995.

Kenton O’Hara. Cost of Operations Affects Planfulness of Problem-Solving Be-
haviour. In Proceedings of ACM CHI’94 Conference on Human Factors in Computing
Systems, volume 2 of INTERACTIVE POSTERS, pages 105-106, 1994.

H. Okamura and Y. Ishikawa. Object Location Control using Meta-level Program-
ming. In [TP9/], pages 299-319, 1994.

J R Olsen. Cognitive Analysis of People’s Use of Software. In [Car87], chapter 10,
pages 260-293. MIT Press, 1987.

Tony Printezis, Malcolm P. Atkinson, Laurent Dayneés, Susan Spence, and Pete Bai-
ley. The Design of a new Persistent Object Store for PJama. In Proceedings of the
Second International Workshop on Persistence and Java (PJW2), Half Moon Bay,
CA, USA, August 1997.

D. L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053--1058, December 1972.

R J Phillips. Computer graphics as a memory aid and a thinking aid. Journal of
Computer Assisted Learning, 2:37-44, 1986.

Catherine Plaisant, Brett Milash, Anne Rose, Seth Widoff, and Ben Shneiderman.
LifeLines: Visualizing Personal Histories. In Proceedings of ACM CHI 96 Confer-
ence on Human Factors in Computing Systems, volume 1 of PAPERS: Interactive
Information Retrieval, pages 221-227, 1996.

Manuel A. Perez-Quinones and John L. Sibert. Negotiating User-Initiated Cancel-
lation and Interruption Requests. In Proceedings of ACM CHI 96 Conference on
Human Factors in Computing Systems, volume 2 of SHORT PAPERS: Models, pages
267-268, 1996.

J Pritchard. COM and CORBA Side by Side. Architectures, Strategies and Imple-
mentations. Addison Wesley, Reading, Massachusetts, 1999.

Robert M. Poston and Michael P. Sexton. Evaluating and Selecting Testing Tools.
IEEE Software, 9(3):33-42, May 1992.

Dewayne E. Perry, Nancy A. Staudenmeyer, and Lawrence G. Votta. People, Orga-
nizations, and Process Improvement: Two experiments to discover how developers
spend their time. IEEE Software, 11(4):36-45, July 1994.

M A Planas and W C Treurniet. The Effects of Feedback During Delays in Simulated
Teletext Reception. Behaviour and Information Technology, 7(2):183-191, 1988.

Bibliography

[PvV99]

[Rajoo]

[Ras87a]

[Ras87b]

[RC94]

[RDL87]

[RE98]
[RE00]
[Rea87a)
[Rea87b]
[Rea90]

[Ren99]

[RFG+88]

[Ric91]

[RMY3]

231

M Porter and M van Vliet. Expand your server-side toolkit with EJB. Web Docu-
ment. IT Architect. Sunworld, April 1999. www.sunworld.com/sunworldonline/swol-
04-1999/swol-04-itarchitect.html.

G S Raj. A detailed comparison of enterprise javabeans (ejb) & the
microsoft transaction server (mts) models. Web Document, May 1999.
http://members.tripod.com/gsraj/misc/ejbmts/ejbmtscomp.html.

J Rasmussen. Cognitive control and human error mechanisms. In f[RDL87]. John
Wiley and Sons, 1987.

J Rasmussen. Reasons, causes and human error. In [RDL87]. John Wiley and Sons,
1987.

Ramana Rao and Stuart K. Card. The Table Lens: Merging Graphical and Symbolic
Representations in an Interactive Focus+Context Visualization for Tabular Informa-
tion. In Beth Adelson, Susan Dumais, and Judith Olson, editors, Proceedings of the
Conference on Human Factors in Computing Systems, pages 318-322, New York,
NY, USA, April 1994. ACM Press.

J Rasmussen, K Duncan, and J Leplat, editors. New Technology and Human Er-
ror. -New Technologies and Work. Ed: Bernhard Wilpert. John Wiley and Sous,
Chichester, 1987.

R Rock-Evans. DCOM Ezplained. Digital Press, Boston, 1998.

Karen Renaud and Huw Evans. Javacloak: Engineering Java Proxy Objects using
Reflection. In M Weber, editor, NET.OBJECTDAYS 2000. Messekongresszentrum
Erfurt, Germany, October 9-12 2000.

J Reason. A framework for classifying errors. In [RDL87]. John Wiley and Sons,
1987.

J Reason. A preliminary classification of mistakes. In [RDL87]. John Wiley and
Sons, 1987.

J Reason. Human Error. Cambridge University Press, 1990.

K V Renaud. Tracking activity at the user interface in a Java application. Technical
Report TR-1999-33, Department of Computing Science, University of Glasgow, 17
Lilybank Gardens, Glasgow, G12 8RZ, April 1999.

Brian J. Reiser, Patricia Friedmann, Jody Gevins, Daniel Y. Kimberg, Michael Ran-
ney, and Antonio Romero. A Graphical Programming Language Interface for an
Intelligent Lisp Tutor. In Proceedings of ACM CHI’88 Conference on Human Fac-
tors in Computing Systems, Visualization, pages 39-44, 1988.

G P Richardson. Feedback Thought in Social Science and Systems Theory. University
of Pennsylvania Press, Philadelphia, 1991.

George G. Robertson and Jock D. Mackinlay. The Document Lens. In Proceed-
ings of the ACM Symposium on User Interface Software and Technology, Visualizing
Information, pages 101-108, 1993.

http://www.sunworld.com/sunworldonline/swol-

Bibliography

[Rog99]

[RPMBY6]

[RS97]

[RS99]

[SA89]

[SBBY6]

[See98]

[Ses98a)

[Ses98b]

[Ses99]

[Ses00]
[SH92]

[Shn8&6]

[Shn98]

[Sho98]

[Sid94]

232

The Component Buyer’s Guide. White Paper, March 1999. Rogue Wave Software
Inc.

A. Rizzo, O. Parlangeli, E. Marchigiani, and S. Bagnara. The management of human
errors in user-centered design. ACM SIGCHI Bulletin, 28(3):114-119, 1996.

Charles Rich and Candace L. Sidner. Segmented Interaction History in a Collab-
orative Interface Agent. In Proceedings of the 1997 International Conference on
Intelligent User Interfaces, Planning Based Approaches, pages 23-30, 1997.

E Roman and R Sessions. EJB vs COM+. Debate at Austin Foundation for Object
Oriented Technology (AFOOT), July 13 1999. www.objectwatch.com/eddebate.htm.

Lawrence M. Schleifer and Benjamin C. Amick, III. System response time and method
of pay: Stress effects in computer-based tasks. International Journal of Human-
Computer Interaction, 1(1):23-39, 1989.

Michael Spenke, Christian Beilken, and Thomas Berlage. FOCUS: The Interactive
Table for Product Comparison and Selection. In Proceedings of the ACM Symposium
on User Interface Software and Technology, Papers: Information Visualization, pages
41-50, 1996. '

K Seetharaman. The CORBA Connection. Communications of the ACM, 41(10):34—
36, October 1998.

R Sessions. COM and DCOM. Microsofts Vision for Distributed Objects. John Wiley
and Sons, Inc, New York, 1998.

R Sessions. The Convergence of TPMs and Components. Web Document, September
1998. www.objectwatch.com/converge.htm.

R Sessions. ObjectWatch Newsletter Number 22. Focus on Distributed Technology.
Web Document, October 30 1999. www.objectwatch.com /issue22.htm.

R Sessions. COM+ and the Battle for the Middle Tier. Wiley, New York, 2000.

M Siegle and R Hofmann. Monitoring Program Behaviour on SUPRENUM. In
International Conference on Computer Architecture. Proceedings of the 19th Annual
International Symposium on Computer Architecture, Queensland, Australia, May 19-
21, 1992 1992. ACM.

B Shneiderman. Designing the User Interface. Addison-Wesley, Reading, Mas-
sachusetts, 1986.

Ben Shneiderman. Designing the User Interface. Addison-Wesley, Reading, Mas-
sachusetts, 1998.

K Short. Component-based development and object modeling.
http://www.selectst.com, June 1998. (20 April 1999).

Candice L. Sidner. An Artificial Discourse Language for Collaborative Negotiation. In
Barbara Hayes-Roth and Richard Korf, editors, Proceedings of the Twelfth National
Conference on Artificial Intelligence, pages 814-819, Menlo Park, California, 1994.
American Association for Artificial Intelligence, AAAI Press.

http://www.objectwatch.com/eddebate.htm
http://www.objectwatch.com/issue22.htm
http://www.selectst.com

Bibliography

[Sie98]

[Sim69)

[SKB9Y]

[5S93]

[SS98]

[SSTR93]

[Sto94]

[Stro3]

[Str99]

[Suc87]

[SW89]

[SW98]

[Szy98]

[TA92]

[Tay99]
[TBS0]

[TBY6]

233

J Siegel. OMG Overview: CORBA and the OMA in Enterprise Computing. Com-
munications of the ACM, 41(10):34-36, October 1998.

Herbert A Simon. The Sciences of the Artificial. The M.I'T Press, Cambridge,
Massachusetts, 1969.

P A Savage-Knepshield and N J Belkin. Interaction in Information Retrieval: Trends
over Time. Journal of the American Society for Information Science, 50(12):1067—
1082, 1999.

G Salvendy and M J Smith, editors. Advances in Human Factors/Ergonomics.
Proceedings of the Fifth International Conference on Human-Computer Interaction,
(HCI International ’93), Orlando, Florida, August 8-13 1993. Elsevier, Amsterdam.

Amanda Spink and Tefko Saracevic. Human-Computer Interaction in Information
Retrieval: Nature and Manifestations of Feedback. Interacting with Computers,
10(3):249-267, 1998.

Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss. Stretching the
Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens. Technical

Report (CS-93-39, Department of Computer Science, Brown University, Box 1910,
Providence, RI 02912, September 1993.

G Storrs. A conceptualization of multiparty interaction. Interacting with Computers,
6(2):173-189, 1994.

Robert, Stroud. Transparency and reflection in distributed systems: position paper
of the 5th ACM SIGOPS european workshop. ACM Operating Systems Review,
SIGOPS, 27(2):99-103, April 1993.

W Strigel. What’s the problem: Labor Shortage or Industry Practices. IEEE Soft-
ware, 16(3):52-54, May/June 1999.

L Suchman. Plans and Situated Actions. Cambridge University Press, Cambridge,
1987.

J A Simpson and E S C Weiner, editors. Ozford English Dictionary. Clarendon Press,
Oxford, second edition, 1989.

D Sprott and L Wilkes. Component-based development.
http://www.butlergroup.com/pubsframe, September 1998. (20 April 1999).

C Szyperski. Component Software. Beyond Object Oriented Programming. Addison
Wesley, Harlow, England, 1998.

G Torkzadeh and I E Angulo. The Concept and Correlates of Computer Anxiety.
Behaviour and Information Technology, 11(2):99-108, 1992.

David A Taylor. The Keys to Object Technology. In [Zam99], chapter 1. 1999.

R N Taylor and I Benbasat. A critique of cognitive style theory and research. In
Proceeding of the First International Conference on Information Systems, 1980.

J G Trafton and D P Brock. Simplifying interactions with task model tracing. ACT-R
Summer School, Psychology Department, Carnegie Mellon University, June 1996.

http://www.butlergroup.com/pubsframe

Bibliography

[Thi90]

[Thi93a]

[Thi93b]

[Tho96)

[Tho97]

[Tho98a

[Tho98b)

[TJ93]

[TK98]

[TL91]

[TMdIADF99]

[TN9Y]

[TP94]

234

H Thimbleby. User Interface Design. Frontier. ACM Press, Addison Wesley Pub-
lishing Company, New York, 1990.

M A Thies. Animated help as a sensible extension of a plan-based help system. In
[5593], 1993. volume II.

H Thimblebey. Combining systems and manuals. In J L Alty, D Diaper, and S Draper,
editors, People and Computers VIII HCI’93, pages 479-88, 1993.

Richard C. Thomas. Long-Term Variation in User Actions. ACM SIGCHI Bulletin,
28(2):36-38, 1996.

A Thomas. Enterprise Java Beans. Server Component Model for Java. Patricia
Seybold Group, Dec 1997.

Anne Thomas. Enterprise ~ JavaBeans technology. Server Com-
ponent Model for the Java Platform. Web Document, 1998.
http://java.sun.com/products/ejb/white_paper.html.

Anne Thomas. Selecting Enterprise JavaBeans Technology. Prepared for WebLogic,
Inc., July 1998. http://www.beasys.com/products/weblogic/server/papers.html.

Richard N. Taylor and Gregory F. Johnson. Separations of Concerns in the Chiron-
1 User Interface Development and Management System. In Stacey Ashlund, Ken
Mullet, Austin Henderson, Erik Hollnagel, and Ted White, editors, Proceedings of
the Conference on Human Factors in computing systems, pages 367-374, New York,
24-29 April 1993. ACM Press.

O Tallman and J B Kain. COM versus CORBA: A Decision Framework. Web
Document, December 1998. www.quoininc.com/quoininc/COM_CORBA .html.

Boon Wan Tan and Tak Wah Lo. The Impact of Interface Customization on the
Effect of Cognitive Style on Information System Success. Behaviour and Information
Technology, 10(4):297-310, 1991.

Lourdes Tajes-Martines and Maria de los Angeles Diaz-Fondon. Systems Object
Model (SOM). In [Zam99], chapter 30. 1999.

S Terzis and P Nixon. Component trading: The basis for a component-oriented de-
velopment framework. In Jth International Workshop on Component-Oriented Pro-
gramming (WCOP 99),(in conjunction with ECOOP’99), Lisbon, Portugal, 14 June
1999.

Mario Tokoro and Remo Pareschi, editors. Object-Oriented Programming, Proceedings
of the 8th European Conference ECOOP’94. Lecture Notes in Computer Science,

- volume 821, Bologna, Italy, July 1994. Springer Verlag.

[Tra91]

[Tuf90]

[Tul93)

D Travis. Effective Color Displays. Theory and Practice. Academic Press, London,
1991.

Edward R. Tufte. Fnvisioning Information. Graphics Press, Cheshire, Connecticut,
U.S.A., May 1990.

T S Tullis. Is user interface design just common sense? In [$593], 1993. volume II.

http://www.beasys.com/products/weblogic/server/papers.html
http://www.quoininc.com/quoininc/COM_CORBA.html

Bibliography

[TV99)

[Twe97]

[VG94]

[VL99]

[vSBvL9S]

[Wae89]

[War00]

[WC95]

[WCBSS]

[WDY8]

[WHSS]

[Wil99]

[WMO99)]

[WS99]

[WS00]

235

S Taylor and J Vaughan. OTMs — ORBs for the enterprise. Web Document, February
1999. Application Development Trends. www.adtmag.com.

Lisa Tweedie. Characterizing Interactive Externalizations. In Proceedings of ACM
CHI 97 Conference on Human Factors in Computing Systems, volume 1 of PAPERS:
Information Structures, pages 375-382, 1997.

Jean Vanderdonckt and Xavier Gillo. Visual Techniques for Traditional and Multi-
media Layouts. In Proceedings of the workshop on Advanced visual interfaces, pages
95-104, Bari Italy, June 1994.

J Vaughan and G Lawton. Application Servers in 1999: Persistent objects are knock-
ing at the door. Web Document., May 1999. Application Development Trends.

www.adtmag.com.

Rini van Solingen, Egon Berghout, and Frank van Latum. Interrupts: Just a Minute
Never Is. IEEE Software, 15(5):97-103, September/October 1998.

Y Waern. Cognitive Aspects of Computer Supported Tasks. John Wiley & Sons,
Chichester, 1989.

Colin Ware. Information Visualization — Perception for Design. Morgan Kaufmann,
San Francisco, 2000.

Wade Walker and Harvey G. Cragon. Interrupt Processing in Concurrent Processors.
Computer, 28(6):36-46, June 1995.

ACM. 1998 International Workshop on Component-Based Software Engineering.
Proceedings of the 1988 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Kyoto, Japan, April 25-26, 1998 1988. URL:
http://www.sei.cmu.edu/cbs/icse98/papers/index.html.

N Ward-Dutton. Componentware turns the corner.
http://www.adtmag.com/pub/jul98/qa701.html, July 1998. Application De-
velopment Trends.

D Wybranietz and D Haban. Monitoring and performance measuring distributed
systems during operation. In Proceedings of the 1988 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, pages 197-206, Santa Fe, USA|
May 1988. ACM.

Shawn Willett. Cloudscape Woos VARs for Java Database. Computer Reseller News
6-99, June 1999. http://www.crn.com/search/display.asp?ArticleID=7017.

Alan Wexelblat and Pattie Maes. Footprints: History-Rich Tools for Information For-
aging. In Proceedings of ACM CHI 99 Conference on Human Factors in Computing
Systems, volume 1 of Foundations for Navigation, pages 270-277, 1999.

I. Welch and R. Stroud. From Dalang to Kava — the evolution of a reflective Java
extension. Lecture Notes in Computer Science, 1616:2-21, 1999.

Gillian M Wilson and Angela Sasse. Do Users Always Know What’s Good for Them?
Utilising Physiological Responses to Asses Media Quality. In Sharon McDonald,

http://www.adtmag.com
http://www.adtmag.com
http://www.sei.cmu.edu
http://www.adtmag.com/pub/jul98/qa701.html
http://www.crn.com/search/display.asp?ArticleID=7017

Bibliography

[WSA97]

[YC93]

[Y094]

[Zak92]

[Zarn99]

[ZBF+92]

236

Yvonne Waern, and Gilbert Cockton, editors, Human Computer Interaction 2000.
People and Computers XIV Usability or Else! 11C12000, Sunderland, United
Kingdom, September 5-8 2000. Springer Verlag.

Ray Welland, Dag Sjoberg, and Malcolm Atkinson. Empirical Analysis based on Au-
tomatic Tool Logging. In Empirical Assessment in Software Engineering. EASE'97,
University of Keele., 24-26 March 1997.

C Yang and P Carayon. Effects of computer system performance and job support on
stress among office workers. In [SS93/, 1993. volume I.

Toshiya Yoshimune and Katsuhiko Ogawa. Graphical Feedback System to Effectively
Support User’s Task. In Proceedings of the Human Factors and Ergonomics Society
38th Annual Meeting, volume 1of COMPUTER. SYSTEMS: Usability [Lecture], pages
345 349, 1994.

D Zakay. The influence of computerized feedback on overconfidence in knowledge.
Behaviour & Information Technology, 11(6):329 33, 1992.

S Zamir, editor. Handbook of Object Technology. CRC Press, Boca Raton, 1999.

D Zapf, F C Brodbeck, M Frese, H Peters, and J Plumper. Errors in working with
office computers: A first validation of a taxonomy for observed errors in a field setting.
International Journal of Human-Computer Interaction, 4(4):311 339, 1992.

