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ABSTRACT

The principal aim of this thesis is the further development of the methods of solution 

of crystal structures using the techniques of direct methods. All the research 

undertaken has used either a Bayesian approach to the statistics or has used the more 

specific maximum entropy technique. Much of the work results in an implementation 

to the MITHRIL program which is then used as part of the testing strategy, and is 

mentioned throughout this thesis.

The first chapter is an introduction to direct methods to give the reader an overview in 

the techniques which will be expanded upon later in the thesis. In addition to 

explaining the major techniques used in the field a section on the maximum entropy 

method is included along with a brief explanation of the function of the maximum 

entropy program MICE.

The second chapter details the maximum entropy method and presents the results from 

the entropy maximisation of maps produced using phase sets generated from random 

starting phases by the SAYTAN program. A small protein Avian Pancreatic 

Polypeptide (App) was used as the test structure. No conventional figure of merit was 

able to discriminate between the phase sets yet by applying standard maximum 

entropy procedures using the MICE program and examining the log likelihood gain 

(LLG) the correct phase sets were identified.

The third chapter details a Bayesian method of obtaining temperature factors, scale 

factors and estimated standard deviations on these figures for use in the normalisation 

of structure factors to normalised structure factors. A full derivation of the new 

formula using Bayesian methods and the Wilson statistics is provided along with 

details of the implementation into the MITHRIL90 program. A full set of test results 

based on selections of x-ray diffraction data for seventeen test structures is given. The 

results show that this is a perfectly adequate method that provides reasonable standard 

deviations of the normalised structure factors. The greatest advantage of this new 

theory is that it has the ability to be extended to use Bayesian priors to generate better 

normalisation equations.

The fourth chapter details a likelihood based figure of merit, LOGLIK, designed to 

compare observed and calculated E-magnitudes for the reflections that are not



involved in the direct methods phasing procedure. This gives a measure of the internal 

consistency of the three phase invariants used in phasing. A derivation of the formula 

that yields the calculated E-magnitudes is given. The results are given for twenty two 

test structures and correlations between LOGLIK and conventional figures of merit. 

The results show that while LOGLIK contains new information it has no new 

advantage over conventional figures of merit, and indeed can only be used for ranking 

phase sets into a preferred order not the determination of correctness.

Also included in the thesis is an appendix that contains the manual for the use of the 

MITHRIL90 program, that incorporates the new normalisation method and the 

LOGLIK figure of merit.
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1.0 THE PHASE PROBLEM

1.1 Problem Definition

An X-ray diffraction pattern contains much information including; the shape and size 

of the unit cell, the symmetry within the crystal (or space group) and the relative 

atomic positions within the cell. The aim of the vast majority of X-ray diffraction 

experiments is the elucidation of these relative atomic positions.

The results obtained from a diffraction experiment is normally the diffraction pattern. 

A set of intensities can be routinely acquired, to high precision, using an automatic 

diffractometer, followed by mathematical correction for geometry and seating. The 

intensity of each reflection is dependant on the positions of the atoms in the unit cell 

and the scattering power of each atom. These intensities can be related to structure 

factor amplitudes by EQ 1.1.1

Where

|F\| is the structure factor amplitude of reflection h 

Ih is the measured intensity of reflection h 

Lp is the combined Lorentz factor and polarisation factor

To obtain an electron density map of our structure we require the parameters x,p 

which are the Fourier transform of h,cp. The structure factors with which we will 

determine the atomic positions are complex numbers and are defined by EQ 1.1.2

(EQ 1.1.1)

(EQ 1.1.2)

Where

Fh is the structure factor of reflection h

(ph is the phase of reflection h

2



As can be seen from EQ 1.1.2 it is necessary to determine the phase of the reflections 

before we can proceed to atomic co-ordinates. This phase cannot be measured and 

must therefore be calculated. This problem would normally be insoluble, but as we 

frequently have many more observed reflections than degrees of freedom to define the 

atomic positions, the problem becomes soluble in practice. This is the 

Crystallographic Phase Problem.

1.2 Practical Solutions

Of the several methods that have been devised to solve the phase problem, the 

principal three methods in common use at the moment are:

1. Patterson (heavy atom) method (Patterson, 1934) which relies on the structure 

containing a heavy atom which will dominate the scattering. The maxima in the 

Patterson function, which does not depend on the phases, yield the atomic positions 

of the heavy atoms from the vector peaks. Once the position of this powerfully 

diffracting atom is known then phases can be calculated for the structure factors 

and the remaining structure determined by Fourier methods. In general this 

technique is not applicable to structures that contain no heavy atoms.

2. Isomorphous Replacement, which relies on being able to soak into the crystal a 

solution containing a heavy atom without altering the crystal or molecular structure 

in any way. This heavy atom is then located by Patterson methods. This technique 

is used most frequently in the solution of protein structures.

3. Direct methods, so called, because an attempt is made to determine phases directly 

from the structure factor amplitudes using a series of equations that relate the two. 

This technique is the most commonly used for structure determination as there is no 

requirement for a heavy atom. This makes the technique applicable to the majority 

of small molecules that contain approximately all atoms of equivalent scattering 

power.

3



2.0 PHASE RELATIONSHIPS

Phases may be determined by mathematically relating structure factors. These 

relationships being purely mathematical in nature are perfectly suited to solution by 

the use of computers. It is the power of the technique coupled with recent advances in 

computing technology that has led to the proliferation of structure solution programs 

in the last decade.

The first of these structure factor relationships to be used was the Cauchy-Schwartz 

inequality relationships by Harker and Kasper (Harker & Kasper, 1948). This states 

that, for a centrosymmetric crystal, if |FA| and |F 2̂ | are both large then F 2b is 

probably positive (i.e. (p2h = 0). This inequality is a consequence of the electron 

density being positive at all points within the crystal. As this equation is only true for 

centrosymmetric reflections with a large structure factor amplitude, these equations 

are inadequate for non-centrosymmetrics and are of very limited use for large, or 

complex structures that diffract more weakly.

A more generally applicable relationship is the Sayre Equation (Sayre, 1952) given as 

EQ 2.0.1

(EQ 2.0.1)

Where

(EQ 2.0.2)

Where

fh is the scattering factor for each atom

Y/j is the Fourier transform of the squared electron density

V is the volume of the unit cell

This equation makes no assumptions about the nature or shape of atoms within the unit 

cell. In order to take advantage of the knowledge that atoms are discrete points in



space we must express the structure factors as the normalised structure factor Eh. 

Although the Sayre equation continues to have a practical use in modem direct 

methods its algebraic nature limits this usefulness.

New relationships, derived from probability theory, that were more generally 

applicable were developed by Karle and Hauptman (Karle & Hauptman, 1950) in the 

early fifties and quickly found practical application in the solution of naphthalene 

(Karle & Hauptman, 1953). These probabilistic relationships are still the basis of 

modem conventional direct methods.

5



3.0 NORMALISATION

3.1 Determination of Ej,

It is convenient to work with structure factors from which the effect of variation in

vibration has been eliminated as far as possible. This is called a normalised structure 

factor and for a reflection h is given the symbol Eh. It may be defined in its simplest 

form as 3.1.1

K is the scale factor required to place Fh onto an absolute scale.

8 is the epsilon factor which is dependant on the point group and reflection indices.

Equation 3.1.2 by the use of fj assumes a point atom at rest. As an atom vibrates about 

a point its electron density will appear smeared and this lower density electron cloud 

will have a correspondingly reduced ability to diffract X-rays, so a correction must be 

made using equation 3.1.3

atomic scattering factor with variation in (sin2Q) / X 2, and the effect of thermal

-observed

^ e x p e c te d (EQ 3.1.1)

(EQ 3.1.2)N

Where

—Bsin2d / X 2 (EQ 3.1.3)

Where

\fj\ is the scattering factor of the atom at temperature T

B can be shown to be defined by equation 3.1.4

B = Sn2Uj (EQ 3.1.4)

6



Where Uj is the mean squared amplitude of atomic vibration

Wilson proved (Wilson, 1942) that a plot of In rel  ̂ versus (sin2Q) /A,2 will

give an approximate straight line, which when least squares fitted gives B, the 

isotropic temperature factor, from the slope, and also yields K, the scale factor, from 

the intercept at 0 = 0°. If the plot of the points on the Wilson plot deviate 

significantly from the straight line then it is recommended that the K-curve technique 

devised by Karle and Hauptman (Karle & Hauptman, 1953) is used to determine B and

Another method of determination of B and K has been developed based on a Bayesian 

statistical technique. This technique will be discussed fully in Chapter 2.

With both B and K determined then IEA may be calculated using equation 3.1.5

7 =  1

It is important to note that the reflection h does not change phase during the 

normalisation procedure.

3.2 Probability Distributions

The equations that define the probability distributions (equations 3.2.1 and 3.2.2) of 

normalised structure factors have no dependency on the atomic scattering factors, thus 

making the distribution independent of structural complexity. This is a major 

difference from the probability distributions of the structure factors themselves, which 

are structurally dependant.

K.

(EQ 3.1.5)N

e L ¥
- I B s i n H / X 1

P (  |£ |) = — e
- \E\2

2 (EQ 3.2.1)

for centrosymmetrics



P{\E \) = 2\E\e~m l  (EQ 3.2.2)

for non-centrosymmetrics

The normalisation of the structure factors is a crucial part of the direct methods 

structure determination process, as all procedures that follow are dependant on the E- 

magnitudes. All the factors that can effect these magnitudes must be very carefully 

considered, as the normalisation procedure may determine whether a structure will be 

solved or not.

Using the fact that the fraction of the E ’s lying in the range a,b can be defined by 

equation 3.2.3

b

J P{E)dE  (EQ 3.2.3)
a

We may then predict ideal distributions for each type of reflection. These results are 

given in Table 1. By comparison with the statistics of our real data and the results in

Table 1, we may determine if the data set, or a projection of the data is centric or

acentric.

Centric Acentric
<E> 0.798 0.886
<E2> 1.000 1.000
<e 3> 1.596 1.329
<e4> 3.000 2.000

<(E2-1)> 0.968 0.736
<(E2-1)2> 2.000 1.000
<(E2-1)3> 8.691 2.415

TABLE 1. Theoretical distribution of E-magnitudes

8



3.3 Unitary Structure Factors

Like normalised structure factors the unitary structure factor, Uh, is corrected for fall 

off in scattering power with increasing (sin2d) / X 2. The unitary structure factor is 

defined as:

„  FhUb = (EQ 3.3.1)

L f J
J - l

Since

Then \Uh\ <> 1

N

\F*\ *  L f j
j  = i

While the need for unitary structure factors is conventional direct methods is near non

existent, the new structure solution technique of Maximum Entropy is more efficiently 

expressed in terms of Uh.

9



4.0 ORIGIN AND ENANTIOMORPH DEFINITION

4.1 Origin Definition

In order to fully define a structure in real space we must define an origin to enable us to 

obtain a fixed reference frame for atomic co-ordinates. This is done in reciprocal space 

by assigning phases to a limited number of |F^| or |£^ |. In general there is a choice of 

origins for each space group since the space group defines the direction of the 

symmetry axes but not their absolute positions. The selection of origin defining 

reflections and the phases to be assigned to them, is determined by the International 

Tables for X-ray Crystallography. The origin defining reflections must contain no 

seminvariants and be linearly independent of each other, i.e. the combinations of 2 or 3 

reflections must not be structure invariants or seminvariant.

The effect of changing the origin in real space will obviously have an effect on the 

phases of the reflection in reciprocal space, as the two are related by a Fourier 

transform. The change in phase due to a shift in origin is given by equation 4.1.1

27icp'A = 2n<ph ~ 2 n ( h  ’ Ax) (EQ 4.1.1)

Where

Ax = (Ax, Ay, Az)

cp'A is the phase at the new origin

cpA is the phase at the old origin

4.2 Enantiomorph Definition

In non-centrosymmetric structures we lack a centre of symmetry and so only one 

enantiomorph can exist. In the absence of anomalous scatterers, measured intensities 

are insensitive to the enantiomorph and thus it must be defined. If an enantiomorph is 

not fixed at the beginning of a structure solution we may determine a solution where 

some reflections define one enantiomorph while the others define the alternate 

enantiomorph, resulting in both enantiomorphs appearing in the electron density map.

10



To define the enantiomorph we must assign a phase to a structure invariant, or 

seminvariant. In practice we would assign a phase to a single reflection with large E- 

magnitude that participated in an invariant whose phases sum was not 0 or n.

A change of enantiomorph entails the reversal of all phases i.e. cpA becomes -cpA. This 

change results in a reversal of all invariants and seminvariants also. It may be thought 

of as a reflection of the atomic positions in the origin.

11



5.0 STRUCTURE INVARIANTS AND SEMINVARIANTS

5.1 Structure Seminvariants

Seminvariants are a consequence of space group symmetry and origin choice. They 

can be structure factors, a product of structure factors, a structure factor phase, or a 

sum of phases. These are all invariant with regard to origin shift, provided the origin 

choices are permissible, as defined in The International Tables for X-ray 

Crystallography.

For a seminvariant an origin shift of Ax, from one permissible origin to another, 

should leave cp̂  unchanged, i.e. A<ph should equal zero (or modulus 2n). This leads to 

the requirement that equation 5.1.1 must be true for a structure seminvariant.

h- Ax = 0 ,or . . .n  = integer (EQ 5.1.1)

e.g. in space group P2j allowable origins lie at (0,y,0), ( 1/ 2 ,y,0), (0 ,y ,i/2 ), ( i / 2 ,y ,i/2 )

roi
[h k /] x y = ky 

0

[ h k l \ x
1 / 2

y
0

= ky +

\h ki\  x
0
y

1 / 2
= *y + 5

[hkl \  x
1 / 2

y
1 / 2

h I 
= k y + 2 + 2

The only type of reflection that can make all the above equations zero or an integer is; 

h is an even indice, k is zero and 1 is an even index e.g. (2,0,4). Any linear combination 

of phases that yields a total that is of the form (e,0,e) will also be a seminvariant e.g.

+<P -eko * eko

'P ^  + 'fW + 'PeOo

12



Both the above linear combinations of phases are structure seminvariants in the space 

group P2j.

Of particular use in direct methods are seminvariants of only one reflection as shown 

in the above examples. These are called L l relationships and form the basis of some 

figures of merit, they are also used in the phase determination process.

5.2 Structure Invariants

A structure invariant is a quantity the value of which depends only on the structure and 

not on the choice of origin, a simple example being that of E-magnitudes. As can be 

seen from equation 4.1.1 the phase of a reflection is frequently dependent on both the 

structure and on the position of the origin, however certain linear combinations of 

reflections are structure invariants.

Let us examine the product of three reflections:

E't E't E'_i _t  = Ebe2nl(- ' Al) x E t e2nia ' A*} x E _ i _t e2nU~ ~ ' t ' A?) (EQ5.2.1)

(EQ 5.2.2)

Therefore

E ' h E ' t E ' - h - k  = E t f i j f i - h - k  (EQ 5.2.3)

Since \E\ is a structure invariant then the sum cpA + cp̂  + (ph _ k must also be an 

invariant.

This shows that the product of any three reflections for which the sum of the indices 

are zero, is a structure invariant. These three phase invariants are called triplets or L2 

relationships.

13



6.0 THE NEIGHBOURHOOD PRINCIPLE

It has been shown that for a fixed enantiomorph any invariant is uniquely determined 

by the observed E-magnitudes. For an invariant, in favourable circumstances, the 

phase is determined by a small set of E-magnitudes and is relatively insensitive to the 

remaining bulk of observed |£ A| . These small sets of influential reflections are called 

the neighbourhoods of the invariant. These neighbourhoods are nested, so all 

reflections contained in the first neighbourhood are also within the second 

neighbourhood. The value of the invariant is more dependent on the reflections within 

the first neighbourhood than on the second etc.

Provided the E-magnitude of each of the reflections within the neighbourhood is 

known then a good estimate is possible for the invariant from the conditional 

probability distribution. The estimate for the invariant is particularly good in the 

favourable case when the variance of the distribution is small.

'k+p

'h+p

in-p

FIGURE 1. The first, second and third neighbourhoods for a quartet.
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7.0 TRIPLETS

7.1 Three Phase Structure Invariants

A triplet or three phase structure invariant relationship is an invariant of the form:

° 3  = V h  +  V k  +  (EQ 7.1.1)

when

h  +  k  +  l  =  O  (EQ 7.1.2)

Where

O  is the null vector

i.e. the sum of the indices of the three reflections involved are all zero.

For centrosymmetric structures this phase sum can only have values of 0 or 7t, 

normally called the sign of the relationship, where a phase sum of zero is said to be 

positive and a phase sum of n  is negative. When the E-magnitudes of the reflections 

are large a triplet is much more accurate and can be used to determine the phase of a 

third reflection, providing the phase of the other two reflections are known (Sayre, 

1952).

V A *  1 (EQ 7.1.3)

The neighbourhoods of the triplet are as follows;

First neighbourhood: Composed of the principal terms |EA| , |£^| and |Ez| .

Second neighbourhood: Is formed by consideration of the quintet (five phase 

invariant)

# 5  = <P„ +  <Pt  +  <p, + + <P_p (EQ 7.1.4)

an so is composed of |Ef |, \E_h+p\> |£ i - p | ’ |£ *+p|’ \E1 - p\ ’ \El+p\ 111(3 \Ef~e\'

Where

p is a floating vector



7.2 Cochran Distributions

If the magnitudes of the three structure factors involved in a triplet relationship and the 

number and type of atoms in the unit cell are known, then it has been shown by 

Cochran (Cochran, 1955) that the probability of the triplet being equal to zero is given

If we plot the probability of 0 3 versus the phase angle then we can see that for a 

higher value of K then the greater the probability that the three phase relationship is 

equal to zero (see Figure 2). As K is dependant on the E-magnitudes of the reflections 

being used, it is obviously preferable to construct our triplets from reflections with 

large E-magnitudes.

by:

k c o s < I>3 (A, k )
(EQ 7.2.1)

Where

(EQ 7.2.2)

N

(EQ 7.2.3)
i = 1

I0 is a zero order modified Bessel function

It should be noted that in an equal atom structure the following is true:

Jn

i
(EQ 7.2.4)

16



-180
<Z>

180

FIGURE 2. Cochran distributions for K=2,3,4

It can be seen from Figure 2 that the variance of the distribution greatly decreases with 

increasing K. This variance (or square of the standard deviation) is given by the 

summation of the infinite series of Bessel functions (Karle & Karle, 1966):

A plot of EQ 7.2.5 is shown in Figure 3 
V

(EQ 7.2.5)

3.0-

2 .0-

1.0-

K

FIGURE 3. A plot of the variance of a triple phase relationship as a function of K
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8.0 QUARTETS

A quartet relationship is an invariant of the form:

° 4  = 'P_A + CP* + 'P; +  CPm (EQ 8.0.1)

when

h + k + l + m = O (EQ 8.0.2)

Where

O is the null vector

In practical use this relationship is not as important in the determination of phases as 

the triplet relationship, but is of extreme importance in the solution of structures that 

crystalise in a space group that contains no translational symmetry.

As can be seen in Figure 1, the first neighbourhood consists of the principal terms 

|£ ^ |, |£^ |, |£ z| and |£ m|. The second neighbourhood is composed of the quartet cross 

terms:

+ » \Ejc+i\» \E! + m\- The neighbourhood can be constructed by the addition

of an arbitrary reflection p and its associated reflection q, such that

h + k + p + q  = O (EQ 8.0.3)

To ensure that the probability of this quartet being true it is best if both \E \ and \E\
— \ —I

are large. The addition of these two new reflections has produced two new quartets.

= <P* + tP* + (Pp + <P? (EQ 8.0.4)

<I>4 = <PA +  Cp* +  <P_p +  'P_? (EQ 8.0.5)

Consideration of these two invariants gives rise to the third neighbourhood composed 

of the two new principal terms |£^|, \E^ and the new unique cross terms

\Eh+e\’ \Ei-p\ a n d |£ *+p|-

It is possible to calculate a probability function for 0 4 given the E-magnitudes and 

cross terms using EQ 8.0.6
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P ( ^ 4| |■£/J | E i11E 111 E m1 1 + | is ̂ +z| | £ z + ) -  (EQ 8.0.6)

1 e-2BcoS* , ^  (^ |£i + Jj r12) / 0 ( A|£a + ;|723) /o (J=|£,tB| r31)

Where

I0 is the zero order Bessel function 

L is a normalising constant

B = J l  W / ^ l

Y l 2  =  •J \E * \2 \E *\2 +  \E ^ m \ 2 +  2 \E h\ \E t\ l£ /l | * J c o s * 4

Y 23 =  ,̂ m 2m l + \E^ \ E A 1 + 2 \Eb\ \E i\ \ H |£ m |COS<I,4

II J\E,\2\E H\2 +  \E k\2\Em\2 + 2\Eb\\E t\ l£ *l \E m\ C0S<I>4

There are three types of quartet all distinguished by the value of cos ( 0 4) .

1. Positive Quartets: These are the quartets for which the E-magnitudes of the cross 

terms are large then the probability of the value of cos (d>4) being +1 is large 

(Schenk, 1973). These quartets are highly correlated with triplets and so are rarely 

used in phase determination. The probability distribution for such quartets are 

shown in Figure 4.
P

tc/20 n

FIGURE 4. The probability distribution for a positive quartet.
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2. Negative Quartets: These quartets are those which have small E-magnitudes on the 

cross terms of the second neighbourhood. For these quartets the probability is that 

cos (d>4) = -1  i.e d>4 = it (Hauptman, 1974). These quartets are more readily 

used in direct methods as they are not as closely correlated to the triplets as positive 

quartets are. They can be used actively in phase determination and also in the figure 

of merit NQEST (DeTitta, Edmonds, Langs & Hauptman, 1975). The probability 

distribution for the values of such quartets are shown in Figure 5.

P

n/20 71

FIGURE 5. The probability distribution of a negative quartet

3. Enantiomorph Sensitive Quartets: These are the quartets that have a mix of large 

and small E-magnitudes or a collection of intermediate E-magnitudes in the cross 

terms (Hauptman, 1975). These are less reliable than positive or negative quartets 

and are infrequently used in structure determination. They most likely have
71

0 4 = ± —. The probability distribution for such quartets is shown in Figure 6.
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FIGURE 6. The probability distribution for an enantiomorph sensitive quartet
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9.0 STARTING SETS

In no structure solution do we start in complete ignorance about the phases of the 

reflections. A set of reflections can be phased immediately, composed of the origin 

defining reflections, an enantiomorph defining reflection (if appropriate) and 2^ 

determined reflections. Also in our starting set we can include a small number of 

reflections that are deemed suitable for phase permutation, or symbolic addition with 

assigned phase values.

The selection procedure of the best reflections for origin definition and permutation is 

intrinsically linked with the convergence procedure (Germain, Main & Woolfson, 

1970). The procedure starts with the calculation of a  (h) gst for each reflection. This 

figure is a measure of each reflections connectivity to all other reflections through the 

invariants.

L  { k  ( / * , £ )  }  L  { k ( / i ,  / )  }  
a (h) (h, k) (h, k) k (h, I) , o{K{bJ)}  ®Q9-0.1)

where k  (h, k) is defined in EQ 7.2.2

From this estimation of a  (h) it can be seen that a good choice of reflections to 

have in our initially phased set will be those with maximum connectivity through the 

invariants. This selection is done iteratively where the reflection with the lowest value 

of a  (h) est is removed from the list of reflections to be phased and the value of 

a  (h) est recalculated for all reflections. A reflection will not be dropped from the list 

if that reflection is the last of its type that is required for origin or enantiomorph 

definition. If a reflection has a value a  (h) = 0 then its phase cannot be calculated

from the phases of the remaining reflections, this reflection is then selected for 

permutation.

The convergence procedure is designed in such a way that it leads to strong phase 

development and multiple interactions. It should ideally avoid weak links in the 

convergence map (a weak link is a phase indication from one invariant only). 

Convergence mapping is not a robust procedure and marked differences can appear in 

a map following small changes in the E-magnitudes of the reflections contributing to 

the map.
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10.0 INITIAL PHASING TECHNIQUES

10.1 Phase Permutation

Following convergence we have some reflections for which we know the phase, and

others which we will permute, i.e. assign values to the phase. These assigned phases

will then be propagated through the convergence map to determine the values of the

phase of all other reflections in that phase set. For even a small number of permuted

reflections this can lead to a very large number of possible phase sets. In early versions
7i 3n 5n

of MULTAN (Main, 1985) the phase was permuted through the values , -~r-
771 _ 4 4 4

and — . This gives rise to a 4 number of phase sets for n permuted reflections. As the

calculation and refinement of each phase set is not insignificant it is important to try to

minimise the number of permuted reflections. Obviously centro-symmetric phases

need only be permuted over the two possible values 7t and 0.

10.2 Magic Integer Permutation

To reduce the number of phase sets generated and refined the idea of magic integers 

(White & Woolfson, 1975) was introduced into direct methods. Now almost every 

direct methods computer program that deals with phase permutation uses the magic 

integer approach. It can be shown that a set of n integers mv mv  m3, ..., mn can be 

approximated to a set of n phases that an be represented by a single variable x  (in the 

range 0 < x < 2n), using the equation;

(p .  = m.x (EQ 10.2.1)

As the sets of integers can only approximately represent the set of n phases it is 

important to reduce the root mean square (r.m.s.) errors to a minimum by using the 

most efficient sets of magic integers (Main, 1977). These are shown in Figure 7.
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n Sequence Number 
of sets

r.m.s.
error

2 2 3 12 26
3 3 4 5 20 29
4 5 7 8 9 32 37
5 8 11 13 14 15 50 42
6 13 18 21 23 24 25 80 47
7 21 29 34 37 39 40 41 128 48
8 34 47 55 60 63 65 66 67 206 49

FIGURE 7. The most efficient sets of magic integers for up to eight phase permutations

Although the r.m.s errors are large they are acceptable, and the reduction in the 

number of sets generated allows larger numbers of phases to be permuted.

10.3 Random Phasing

During the study of phase refinement processes, tests were done on the radius of 

convergence (Baggio, Woolfson, Declercq & Germain, 1978). The tests involved 

producing a set of phased reflections with random errors in the phase of a known r.m.s. 

error and testing if the refinement process could reduce this error to below 30°. With a 

starting r.m.s. error of 75° six out of ten tests produced a correct phase set. With an 

r.m.s. error of 90° four out of ten phase sets were correctly refined. When totally 

random phases were used it was still found that a small fraction of the phase sets could 

be refined to correctness. This fact was the basis for the random methods of phasing 

the intitial set.

There are two principal methods of random phasing

1. Assigning random phases to a reduced starting set, say, 100 reflections. These 100 

reflections are then refined and used to extrapolate the remaining phases and then 

these in turn are refined. This is the procedure used in the YZARC (Baggio, 

Woolfson, Declercq & Germain, 1978) program.
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2. Random phases are assigned to all reflections and then refined using carefully 

calculated weights assigned on the basis of whether the phase is known absolutely

i.e. origin defining reflections, known confidently i.e. L 1 reflections, or a randomly 

assigned phase. This procedure is the one used in the RANTAN program (Yao Jia- 

Xing, 1981).

Random phasing methods are now responsible for the majority of routine structure 

solutions using direct methods. These techniques are more easily programmed than the 

phase permutation techniques and in many cases are more robust tools for structure 

solution.

It is unlikely that the starting phases assigned in either phase permutation or random 

assignment will be correct, even after refinement. Therefore it is important to generate 

a number of phases sets. The number of sets generated is dependant on whether phase 

permutation or random assignment is used, whether the structure is centro-symmetric 

or non-centrosymmetric, and on the number of atoms in the asymmetric unit. 

Regardless of how many phase sets have to be generated, it is only necessary that one 

correct phase set, identifiable from its Figure of Merit is produced, this will allow the 

determination of the crystal structure.
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11.0 PHASE REFINEMENT

11.1 Tangent Refinement

There are many different methods of phase refinement but the most common is tangent 

refinement (Karle & Hauptman, 1956). It is a means of relating all of the indications of 

an individual phase from all the associated invariant relationships. It can be written in 

its weighted form as:

Where W^, W^-k are weights

The above formula is derived on the assumption that all invariants are independent of 

each other. This can lead to the over refinement of phases.

The tangent formula is used to refine phases in an iterative manner, with refinement 

continuing until there are minimal shifts in the calculated phases from one cycle to the 

next.

The tangent formula is now very rarely used without a weighting scheme. As a 

consequence of the convergence procedure, the reflections at the bottom of the 

convergence map will have a much greater influence on the phase estimate than those 

further up the map. Reflections near the bottom of the map therefore have a weight 

much closer to one while those further up are correspondingly downweighted. 

Weighting schemes are important in the early stages of phasing, but as refinement 

increases all the weights tend to unity. The weighting scheme that works well with 

many structures can be written as:

tan([>fc (EQ 11.1.1)

(EQ 11.1.2)
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A further development in weighting schemes to be used with the tangent formula 

comes from Hull and Irwin (Hull & Irwin, 1978). This helps prevent the rapid 

movement of the weight to unity.

Khk is given by EQ 7.2.2 

a  (h) gst is given in EQ 9.0.1

This weighing scheme also prevents a  (h) (Karle & Karle, 1966) exceeding a  (h) ,

as the reflection will be downweighted if it does so. This prevents the overconsistancy 

of phases associated with the tangent formula. This weighting scheme is also used 

preferentially in solving structures that contain heavy atoms, have pseudo-symmetry, 

or belong to a symmorphic space group.

The shape of the Hull & Irwin weighting scheme is shown in Figure 8.

FIGURE 8. The Hull & Irwin weighting scheme

A further development in tangent formula weighting has been suggested by 

Giacovazzo (Giacovazzo, 1979) based on an improved estimate for a  (h) that takes 

the uncertainty of known phases into account.

(EQ 11.1.3)

Where

(EQ 11.1.4)
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11.2 Linear Equations

An alternative to the tangent formula for refinement is to set up the phase relationships 

as a set of linear equations with least-squares refinement to obtain a solution 

(Woolfson, 1977).

A three phase invariant can be written as

W yh + W yk + Wcpz« Wn (EQ 11.2.1)

Where

W  is the weight of the invariant 

n is an integer

If the full set of integers are known and a full set of phases is also known then the 

complete set of relationships can be written in matrix form.

A x » c  (EQ 11.2.2)

By replacing »  by = we can obtain a least squares solution for the integers n.

x =(AtA)‘1 At c (EQ 11.2.3)

If approximate phases are available then EQ 11.2.2 and EQ 11.2.3 provide a cyclic 

method of refinement.

This linear equations method has been used in the program YZARC. In this program 

random phases are assigned to the top 100 reflections. These phases are then refined 

by linear equations. Only the top 100 reflections are refined to reduce the size of the 

matrix that has to be inverted for the procedure. The 100 reflections then have further 

refinement and extension using the tangent formula.

11.3 Phase Annealing

The theory of simulated annealing (Kirkpatrick, Gelatt & Vecchi, 1983) is a generally 

applicable tool for the determination of a global minimum within a system that 

contains many local minima. It is usually used to determine minima from random 

starting positions. It can be thought of as an analogy of statistical thermodynamics.
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For phase annealing we will frequently start from a random position and then by slow 

“cooling” of the phase set reach a global minimum in phase space. To simulate this 

random movement within the phases we need a Boltzman like probability distribution, 

which is defined as EQ 11.3.1 for centrosymmetric structures.

If EQ 11.3.3 has a  divided by kT then we have the Boltzman equation.

We now can use a Metropolis (Metropolis, Rosenbluth, Rosenbluth, Teller & Teller, 

1953) algorithm to flip the phases. After each change in the phases the value of a  is 

evaluated. If a  is greater then we test the probability ratio against a random number in 

the range 0-1. Consequently if the ratio is greater than the random number then we 

move to the higher a  state.

This sort of iterative process should end with the global minimum for phase space, 

however the structure solution may not be at this minimum, as the function we are 

minimising may not define accurately enough the phase space. Because of this it is 

best to approach the problem with a multisolution approach, with many random 

starting positions chosen.

This technique has been successfully implemented into the crystallographic package 

SHELX-90, and applied to a number of test structures in a variety of space groups

Ppositive +  2 t a n h ( I )
(EQ 11.3.1)

P negative = 1 ~ P positive (EQ 11.3.2)

This gives the ratio of

positive
P negative

(EQ 11.3.3)

(Sheldrick, 1990).
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12.0 FIGURES OF MERIT
Following phase refinement all phase sets must be evaluated to determine the presence 

of structural information. In a multisolution environment this is essential as it is not 

feasible to generate E-maps for each phase set and check each map individually. There 

are a great many figures of merit (FOMs) and frequently direct methods programs will 

combine these FOMs into a single measure and rank all phase sets according to this

Ideally any FOM should use phase relationships that have not been used as a phasing 

technique to make the FOM independent of the technique used. This however leads to 

the situation that if a relationship is strong enough for a FOM then it should also be 

good enough to derive phases. FOMs are generally a compromise of these two facts.

There are several FOMs in use in the computing packages that are available. Presented 

in the following sections is a small sample of the most commonly used FOMs. In 

Chapter 3, a new figure of merit based on the log-likelihood gain is presented in detail.

ABSFOM (Germain, Main & Woolfson, 1971) is a measure of the internal consistency 

of the triplet invariants used in estimating the phases. It is defined as:

FOM.

12.1 ABSFOM

ABSFOM  =

Where

(EQ 12.1.2)

- est

a h is defined in EQ 11.1.4

( a , ) is defined in EQ 9.0.1D act
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a  is the estimated value of a ,  and a r is the expected value of a  for random phases. 

Therefore ABSFOM is zero for random phases, one if there is a perfect match between 

the estimated and measured values of a  and greater than one for an overconsistent 

phase set. Typically ABSFOM is considered to be a good indication if it lies in the 

range 0.9-1.3.

As ABSFOM is closely related to Z2 relationships and is also closely tied to the 

tangent refinement and extension method. When the tangent formula has refined the 

phases to overconsistancy ABSFOM becomes large, and is small with underconsistent 

phase sets.

Where

( a . ) is defined in EQ 9.0.1
- est

a h is defined in EQ 11.1.4

R a is the residual between the estimated and measured a .  As the FOM is dependant 

on a  it is tied to the tangent formula phasing methods, as is ABSFOM. A correct 

phase set should have a residual value less than 20%, although structures that contain 

large numbers of atoms in the unit cell may have correct phase sets with R a in excess 

of this figure.

12.3 PSI-ZERO

PSI-ZERO (Cochran & Douglas, 1955) is a measure of fit of the small magnitude E’s. 

It is defined as:

12.2 RESID

RES ID can defined in terms of a  by the following:

R a (EQ 12.2.1)
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a ?
V0 = (EQ 12.3.1)

\yo is largely independent of the phasing method and is sensitive to atomic positions. 

A value of \yo less than one is usually indicative of a correct phase set. Although if all 

other figures of merit are good but a value of \\fQ greater than one may indicate a 

correct fragment in the wrong position.

12.4 NQEST

NQEST uses negative quartets. It is defined as:

V  WbUmC0!i(<P* +  <P* +  <P, +  «P„)
NQEST =   (e q  12.4.1)

T f 'h, £7, m
Wn  hklm

Where

Whkim =  11 “  2 P +| for centrosymmetrics (EQ 12.4.2)

Whkim =  for non-centrosymmetrics (EQ 12.4.3)
  O’

Where

ct2 is the variance of the quartet probability distribution

Note that the summation, V  , is over all the negative quartets.
h, T, /, m

Like vp , NQEST uses the information contained in the small E-magnitudes, although 

the information is used in a different way, thus making the two figures of merit 

independent of each other. This dependence on small E-magnitudes also makes 

NQEST largely independent of the phasing procedure. NQEST can he anywhere in the 

range -1.0 to +1.0, with the most negative values likely to correspond to correct phase 

sets.
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12.5 Combined Figure of Merit (CFOM)

The majority of available direct methods programs contain a combined figure of merit. 

As the array of figures of merit is very large most packages have different FOMs and 

thus a different CFOM. Presented here is the CFOM from MITHRIL90 (see Appendix 

A). Regardless of which package and which FOMs are used, CFOM is usually the 

weighted sum of the FOM difference divided by the FOM range.

ABSFOM -  ABSFOMmtn (V .) „ ~ V.
i ”» / ^ |  i  M T j /  fttin t x /  tnax.CFOM  = W, t     —  + W.

1 ABSFOM mal -  ABSFOM min » (V0) max~ (V0) mi„

(R« K ar R« NQESTmax- N Q E S T
3 (Ra) ~ (Ra) . *NQEST - N Q E S T  i (Q  5 }

max min " lUA min

For CFOM the larger the value the more likely the correctness of the phase set. The 

maximum value of CFOM is W1 + W2 + W3 + W4. These weights are normally set to 

unity but can be changed to favour specific FOMs. If a FOM has not been calculated 

then the weight associated with that FOM is set to zero. In MULTAN (Woolfson, 

1991) the weights for CFOM are set to 0.6, 1.2, 1.2 for ABSFOM, \\rQ and R a 

respectively.

CFOM is used to rank phase sets generated by the multisolution technique for 

selection of the phase set most likely to contain structural information.
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13.0 MAPS

13.1 Electron Density Maps

The ultimate aim of the vast majority of X-ray crystal studies is the elucidation of the 

molecular structure of the crystal. This is done by the examination of the electron 

density map. In any structure the majority of the electrons in the molecule will be at or 

close to the atomic centres, so the peaks in the electron density map will correspond to 

the atomic sites.

The electron density map p (x) is a Fourier transform of the phased reflections 

(h, Fobs) . It is defined as

| Fobs\ is the amplitude of the observed structure factor 

cp is the phase of the calculated structure factor

13.2 E-maps

The reflections that are phased most reliably are those with large E-magnitudes. 

However, study of the normalisation procedure shows that reflections with large | 

are also frequently those with high values of sin0, and not those with large |F^|. This 

means that the reflections that we have determined phases for need not be those that 

will give the best electron density map. For this reason we calculate an E-map (Karle, 

Hauptman, Karle & Wing, 1958), a Fourier synthesis using EQ 13.1.1, but replacing

Since E’s correspond to point atoms at rest the peaks of an E-map are very sharp, and 

must be sampled at small grid spacings, typically 0.333A. As the method of selecting 

reflections for phasing produce highly interrelated reflections, spurious peaks can 

appear in E-maps, i.e. benzene rings frequently have a peak in the centre of the ring. 

The relative heights of the peaks should be used to assign chemical types to peaks only

(EQ 13.1.1)

where

V is the volume of the unit cell in A3

F f s with |£ J .
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with extreme caution. The best methods of assigning chemical type is to have some 

idea of the overall structure and using this to assign atomic type to each of the peaks.

Once a peak list has been obtained then an attempt must be made to identify 

chemically reasonable fragments. This can be done manually by examining print out 

or more conveniently by the automatic interpretation of the peak list using the 

computer (Main & Hull, 1978). The auto-interpretation algorithm is based on 

maximum and minimum bond lengths and angles for chemically acceptable 

fragments.

The interpretation of the map is perhaps the most important phase of the structure 

solution, for it is here that the chemical structure will become apparent. To aid in the 

task of examining maps the greater availability of computer graphics is proving to be 

invaluable. With an option to examine either interpreted peak lists for fragments 

graphically or contoured E-maps for molecular positions, the time taken for the 

successful identification of a correct solution decreases dramatically.
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14.0 THE FAILURES OF CONVENTIONAL DIRECT 
METHODS

Modem direct methods are an enormously powerful tool in the elucidation of 

molecular structure, with the majority of crystal structures being solved using this 

technique. Some computer packages are now so complex and reliable that from 

normalisation to assignment of atom types and isotropic refinement is completely 

automatic.

Occasionally a structure proves impossible to solve with no interpretable E-maps 

being produced. These failures can be attributed to many things, the most obvious 

being poor quality diffraction data, although, with modem diffractometers this is 

becoming less of a problem.

Problem structures are frequently large, containing many atoms in the unit cell, which 

reduce the reliability of the phase relationships. A further factor that affects the 

reliability of the phase relationship is that the probability formulae are based on 

randomly distributed atoms. This is obviously a false assumption as atomic positions 

are determined by strict rules of bond lengths and angles. The breakdown of the 

random atom model is a very serious problem in the solution of protein structures.

The most common problem is the choice of starting sets as the convergence map is 

very sensitive to the starting position. A balance must be made between generating 

few phase sets with a weak link in the map and the computer time required to permute 

all the reflections required to remove all the weak links. This is only a problem with 

the multi-solution method.

Even when reliable phase relationships have been used to determine phases, the 

tangent formula, used for phase refinement, can be prove to be unstable. This 

instability arises from the assumption that all phase relationships are independent and 

can lead to over-refinement of the phases, which result in over-correlation and 

meaningless E-maps, with correspondingly unreasonable figures of merit. The figures 

of merit themselves can prevent the elucidation of a structure by failing to provide 

sufficient discrimination to indicate a suitable phase set for examination.
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The other major problem category are the large structures i.e those with a molecular 

weight in excess of 1,500 Daltons, in addition to reducing the reliability of the phase 

relationships, these structures produce cluttered E-maps that are very difficult to 

interpret and fragments may be missed by the crystallographer when checking such



15.0 MAXIMUM ENTROPY

15.1 Bayes Theorem

The majority of statistics encountered in crystallography are classical or frequentist 

statistics. There is however a more natural type of statistics based on Bayes Theorem 

(Bayes, 1763).

P (F| E )  cep  (F ) P (F | F) (EQ 15.1.1)

Where

P (F| E) is the posterior and is calculated after measurement. It is the probability of F 

occurring given that event E has already occurred

P (F) is the prior and is our knowledge before measurement. It is the probability of 

event F occurring.

P (F| F) is the likelihood and correspond to our measured data. It is the probability of 

event E being true if event F has happened.

In image processing it is possible to write Bayes Theorem as

p  ( image\ data) «  p {image)p {data\ image) (EQ 15.1.2)

The full power of the Bayesian method is realised when the posterior is used as the 

prior in a new calculation of the posterior and the process repeated in a cyclic method 

until the likelihood is unchanged.

Prior P (F)

I
Consult Data via Likelihood p {E\ F )

I
-------------------------Posterior p {F\ E)

FIGURE 9. The cyclic approach to Bayesian refinement.
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The obvious weakness of the method is that it is simple to bias results toward the 

solutions that are sought. This bias is reduced by placing constraints upon the 

Bayesian prior (Shannon & Weaver, 1949), these constraints are:

(i) The prior must always be capable of reproducing what we know to within 

experimental error.

(ii) The prior must be maximally non-committal towards that which we do not 

know. i.e. It should not assume that missing data are zero.

To make our prior maximally non-committal we can say that it has minimal 

information content about which we have no knowledge. A probability function has an 

entropy (or information content) that is defined as:

Where

S is the entropy of the probability function 

I is the information content of the function 

p t is the probability of event i

EQ 15.1.3 is for the discrete case, e.g. the rolling of dice, for the continuous case, e.g. 

an electron density, it may be written as an integral

To produce our maximally non-committal prior we now need only to maximise the 

function given in EQ 15.1.4

This technique is called the maximum entropy (ME) technique and is used extensively 

in under-determined problems, such as image processing.

15.2 Maximum Entropy in Crystallography

The above concepts have been shown to be applicable to the phase problem in x-ray 

crystallography (Bricogne 1984, Bricogne 1988).

(EQ 15.1.3)

S = ~ |p (*) logP (*) dx (EQ 15.1.4)
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The power of conventional (probabilistic) direct methods are limited by two principal 

factors:

1. The random atom model which has been used to derive so much of modem 

conventional direct methods theory is flawed. The model cannot represent the 

ordered structure of atoms imposed by the laws of chemistry.

2. The use of the Edgeworth series in the estimation of the joint probability 

distribution of the structure factors. The Edgeworth series is only accurate for small 

values (ideally zero) of E-magnitudes. This means that in practice we need a full set 

of atomic resolution data.

There are two principal ways to avoid the limitations given above.

The first is to use a maximum entropy approach. This is not based on the assumption 

that atoms have a random distribution. This theory has been applied to problems 

similar in nature to the crystallographic phase problem previously with considerable 

success i.e. statistical theory of communications (Rice, 1944; Rice 1945). Almost all 

theories of conventional direct methods are derivable using the maximum entropy 

approach, confirming the validity of the underlying theory (Bricogne, 1984).

The second is to eliminate the asymptotic convergence problems of the Edgeworth 

series using the saddlepoint approximation. This technique allows the evaluation of 

the joint probability distribution of the structure factors when some of the E- 

magnitudes are large.

It has been shown that the two techniques described above are essentially equivalent 

(Bricogne, 1988).

15.3 Normalising data for ME Calculations

It has been found that for ME calculations it is better to use unitary structure factors, 

which for equal point atoms of unit weight are given by



Where

|£ a| is the normalised structure factor magnitude 

N is the number of atoms in the unit cell

From the above equation it can be seen that the maximum value for |£/ |̂ is 1.0. |C/A| 

similarly to |£^| is independent of the scattering angle 0. The values for |{/^| may 

have a variance estimated using the technique of Hall and Subramanian (Hall & 

Subramanian, 1982).

=  \ u b \2

( sin0 2
- 2( |^ |)  O’ W  s in e / „  , 2 (_ AT) r (K,B)a(K)o(B)

+ ° 2W +---------------- K----------------

(EQ 15.3.2)7

Where

ct (|F^|) is the standard deviation on the magnitude of the structure factor 

a  (AT) is the standard deviation on the scale factor 

ct (B) is the standard deviation on the temperature factor

r (K, B) is the correlation coefficient between the scale and the temperature 

factors.

These variances are necessary for the maximisation of the entropy calculations as they 

are used as weights for each individual reflection. They are also used in the calculation 

of E, a measure of the structure complexity, although the technique is not sensitive to 

the errors on the reflections.

15.4 The Basis Set

In determining a solution to the phase problem for a specific set of data we do not start 

in a position of complete ignorance. The phases of the origin reflections must be set to 

locate an origin in real space, this will result in the phases of 1-3 reflections being 

known before we begin. In the case of non-centrosymmetric structures we must also 

define an enantiomorph which generally results in a further reflection being assigned
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an arbitrary phase. These 1-4 phased reflections constitute our basis set {H}, and will 

be used in the calculation of our first non-uniform prior, q ( x ) . The origin is defined 

by selecting a subset of reflections, {L}, with the largest U-magnitudes that he within

temporarily removed from {L}, causes the smallest reduction in summation 15.4.1 is 

then removed permanently from the subset, provided that the ability to define a legal 

origin is retained within the new smaller subset. This process continues in an iterative 

manner until only origin and enantiomorph defining reflections remain, at which point 

the set {L} has become the set {H}.

Where

h, k, 1, m € {L}

i is a reflection in the second neighbourhood of the set {L}, that has at least two sets of 

contributors.

The selection of origin defining reflections that maximise 15.4.1 has the effect of 

maximising the sensitivity of the log likelihood gain.

This preference for low resolution reflections is made as the maximisation of the 

likelihood is best carried out while moving from low to high resolution. It is believed 

that this preference for a low resolution basis set is caused by the conditional 

distribution of the phases being more non-committal towards the future build up of 

electron density within the unit cell. This allows for less committed phase 

extrapolation and a smoother building of the qME (x) map.

The first basis set need not always start with only the origin and enantiomorph 

reflections (although this is the normal case for single crystal work). In electron 

diffraction work there may be additional phased reflections from the Fourier transform 

of the lattice image and for proteins there may be a set of phases that have been 

derived from isomorphous replacement.

a user defined resolution range, typically > 2.5A. The reflection which, when

(EQ 15.4.1)
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15.5 Obtaining a Map

Let Uh€ H be the phased reflections of the basis set, and Uhe K the remaining 

unphased reflections of the data set. We now use the reflections in the basis set to 

calculate our initial electron density map p (x) by Fourier transform. This is not a true 

electron density map but should be thought of as a “probability distribution of atoms” 

that can be treated in the same way as, and appears very similar to, a conventional 

electron density map. This map contains only the information that we input and so is 

heavily biased. As in conventional direct methods, areas of negative electron density 

are forbidden in the ME formalism and so all negative portions of the map p (a:) are 

set to zero to form a new map p' ( x ) . The new map is still highly biased and so the 

entropy of the image p' (x) is maximised subject to the constraint that the Fourier 

transform of the electron density map p ’ (x) must contain the basis set reflections to 

within experimental error of those input to the original calculation. This maximum 

entropy map is denoted as qME ( x ) .

It can be shown (Bricogne, 1984) that when our electron density distribution has 

maximum entropy relative to our prior distribution m (x) and, while continuing to 

obey the constraints, then our new distribution can be described exactly using the 

exponential model:

Where the complex Lagrange multipliers^ are obtained from the condition that

(EQ 15.5.1)

Where

(EQ 15.5.2)

Note: Z (m, co) is a normalising constant

■2711 ( h  • x)
(EQ 15.5.3)

qME (x) reproduces the experimental constraints. This can be expressed algebraically

as
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ME b )  e2«i (A ■,) d3s  = u  (EQ 15 5 4)

The Fourier transform of the qME (x) map contains not only the phases of the basis set 

reflections used in its’ initial calculation but now also contains phase information on 

Un £ K' The map also contains information on reflections that were not measured 

experimentally. This phase extrapolation is shown graphically in Figure 10.

ljME(non_basis set)

U ^^basis set)

FIGURE 10. The reflections produced from the Fourier transform of the qME (x) map.

The reliability of the extrapolated phases from this qME (x) map is dependent on the 

product | t/A|obs\ ME. The larger the product the greater the accuracy of the 

extrapolated phase (Gilmore, Bricogne & Bannister, 1990). Obviously when the basis 

set is very small, say the origin and enantiomorph only, then the extrapolation will be 

very weak for all reflections. While it is possible to add the strong extrapolates to the 

basis set this causes difficulties as it traps the entropy maximisation into a local 

maximum. As the extrapolate method traps the entropy, we require some other 

technique to move reflections from the non-basis set {K} to the basis set {H}.

15.6 The Phasing Tree

To alleviate the problem of adding weakly extrapolated reflections to the basis set, 

reflections with large U-magnitude are given permuted phases just as in conventional 

direct methods. These permuted phases can either be assigned by the full factorial or 

magic integer (White & Woolfson, 1975) methods. These new permuted reflections 

are now added to the basis set and are treated as additional constraints for the entropy 

maximisation of the qME (x) map. The reflections are chosen in such a manner as to 

ensure optimal enlargement of the second neighbourhood of the basis set, while 

favouring reflections for which IUh\ME is small i.e. the maximum entropy
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extrapolation is telling us little or nothing about these reflections. This implies that our 

next qME (x) map should have a maximum information gain relative to the previous 

map. These reflections about which the qME (x) map know least are also the 

reflections least coupled to those that are already known and this should prevent 

islands of highly correlated reflections being determined. Using this method of phase 

permutation gives rise to a node for each choice of phase for each permuted reflection, 

and so builds our phasing tree as shown in figure 11.

Node 1 (Origin reflections)

Node 2 Node 3 Node 4 Node 5

Node 6 Node 7 Node 8 Node 9

Node 10 N odel l

FIGURE 11. The early stages of a centrosymmetric phasing tree.

Such a phasing tree could become computationally unwieldy if each node was to be 

extended, as the maximisation of the entropy is computationally intensive. To 

determine which of the nodes is the most promising to continue the phasing procedure 

with, we use two figures of merit, entropy and likelihood.

15.7 Entropy

This figure is used to determine the current “strength” of the node. This loss of entropy 

in moving from a uniform distribution of atoms to the now non- 

uniform atomic distribution is the measure of the reduction of the population of 

probable structures when the constraints of the basis set are enforced (Shannon & 

Weaver, 1949).

The figure of entropy can be thought of as the girth of the branches on the tree that 

have lead to this point in the phasing procedure.
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Mathematically entropy is defined as:

Sm (?“ (*)) =-_[?(*) log d3X (EQ 15.7.1)

When used on its own entropy appears to be a poor figure of merit (Lemarechal & 

Navaza, 1991; Shankland, Gilmore, Bricogne & Hashizume, 1993). However one 

research group claims to have solved the structure of recombinant bovine chymosin 

(Gilliland, Windbome, Nachman & Wlodawer, 1990) ab initio using entropy as the 

figure of merit to determine phase choices (Sjolin, Prince, Svensson & Gilliland, 

1991). This result disagrees with the observations made by others (Gilmore, 

Henderson & Bricogne, 1991) and goes against the theory (Bricogne, 1988), who 

stated that entropy is best used in conjunction with likelihood in the formula:

Where

N is the effective number of atoms in the unit cell 

L is the likelihood of the system at best match of U-magnitudes 

Sm (qME (x ) ) is the entropy of the qME (x ) map

The above formula gives the theoretical optimum figure of merit for the discrimination 

of phase sets. However in the early stages of phase determination likelihood has 

proved to be a reliable figure of merit, with entropy becoming more relevant as more 

phased reflections are added to the basis set. This results in likelihood alone being 

used as the criteria for phase set discrimination during the early stages of phase 

determination.

15.8 Likelihood

Just as entropy is the figure used to determine the current and past power of a node, 

likelihood is the figure used to determine the future viability of the node under 

examination. It can be thought of as the girth of the branches of the tree that will 

radiate away from this node.

NSm(qME(x))  +L (EQ 15.7.2)
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In direct methods we do not use the likelihood in its native form but rather calculated it 

relative to the null hypothesis L0, the likelihood that for all extrapolated reflections 

| U ^ ME = 0. This is called the likelihood ratio, or if we take logs of the equation it is 

called the log likelihood gain.

Mathematically the formulae for the acentric log likelihood gain is defined as

L  =
k r 8'"1

2 N, U ^ obs\Uh\ME) ~ ^ - ( \ U h\ME) 2 (EQ 15.8.1)

Where

70is a zero order Bessel function

For centric reflections the log likelihood gain is defined as

L = y  riogcosh( |̂<y,|o6s|f//'£) ~^(\u,\ME)2
: tA  h

(EQ 15.8.2)

The above versions of the likelihood equations were derived using the diagonal 

approximation to the likelihood and so are only sensitive to the extrapolated moduli 

| U ^ ME, and not the associated extrapolated phases.

According to a fundamental theorem of classical statistics (Neyman & Pearson, 1933), 

likelihood is the best possible figure of merit for making optimal decisions. In the 

context of direct methods this means that although a great many figures of merit have 

been developed and used successfully, likelihood must be the best (Bricogne, 1991).

By combining the prior distribution of the unitary structure factors with the likelihood 

in Bayes theorem EQ15.1.1 we can use the maximisation of likelihood as a means to 

refine phases (Bricogne, 1988; Gilmore, Bricogne & Bannister, 1991).

15.9 Centroid Maps

A qME (x) map is not a traditional electron density map although it is very similar and 

displays many of the features normally associated with the electron density map for a 

specific compound. The qME (x) map is put through a Sim filter (Sim, 1959; Sim,
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1960) to produce a centroid map. In the centroid map both reflections from the basis 

set {H} and the extrapolated reflections {K} are used and each are assigned weights 

wh. Phase angles are those extrapolated by the ME process.

For centric reflections:

wh = tanh — \UJobs\UJME (EQ 15.9.1)

For acentric reflections

wh =

2AT 77 \obs\ 77 \ME 
U h \  \ u h \

l t t  \ o b s \ T T  |ME 
o A

Where

Ij and Iq are first and zero order Bessel functions respectively

(EQ 15.9.2)

Maps calculated from this new weighted extended set of structure factors will show 

enhanced resolution without the need for any new phase information to be added. This 

feature of the maximum entropy technique results in very sharp and clean electron 

density maps being produced (Gilmore, Bricogne & Bannister, 1991).
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16.0 MITHRIL90

In the early 1980s it was decided to bring together all the important theoretical 

advances made in the 1970s into a single computer program. The result of this NATO 

funded project was the MITHRIL package (Gilmore, 1984; Gilmore & Brown, 1988). 

The name MITHRIL is an acronym for Multan with Interactive facilities, Triplet 

checking, Higher invariants, Random phasing, Intelligent control of flow and options 

and Linear equations phasing. In 1988 it was decided to upgrade the MITHRIL 

package to reflect the theory developed during the 1980s, also to introduce some 

minor bug fixes and to make the package more user friendly. MITHRIL90 was never 

released in this form but was integrated into the commercially available package 

CRYSTAN.

The program itself is written in standard Fortran 77 in a modular form with each 

module having its own menu and user options. It is designed to be run in either batch 

or interactive modes with a great deal of flexibility in the user options for structure 

solution. The flowchart of the modules through the program is shown in Figure 12. 

The basic framework is based around a highly modified version of MULTAN80, that 

incorporates the major features from the following programs:

1. MAGEX (Hull, Viterbo, Woolfson & Shao-Hui, 1981; Shao-Hui & Woolfson, 

1982) a magic-integer based program that uses the primary-secondary method for 

the magic integer representation of the phases. This allows the use of a large 

number of reflections and relationships to be used from the start in a structure 

solution.

2. YZARC (Baggio, Woolfson, Declercq & Germain, 1978) is a procedure for the 

random assignment of phases to the starting set of up to 100 reflections. They are 

then refined and used for phase extension followed by further phase refinement. It 

is essentially a forerunner of the RANTAN procedure.

3. RANTAN (Yao Jia-Xing, 1981) is a program that assigns random phases to all 

reflections and then refines them using the tangent formula with a carefully 

controlled weighting scheme.
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4. LSAM (Germain & Woolfson, 1968) a program to solve structures using a 

symbolic addition method.

The program has a large number of options and techniques available for structure 

solution and has proved to be an efficient and powerful tool in the elucidation of many 

structures. The majority of structures can be solved by MITHRIL using the default 

options and it is only the most obstinate of data sets that have proved impossible to 

solve.
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FIGURE 12. Flowchart of the modules of the MITHRIL package



17.0 MICE

In the mid 1980s the work of Bricogne in the area of Maximum Entropy as applied to 

crystallography (Bricogne, 1984; Bricogne, 1988) was sufficiently advanced to 

produce a computer program based on these theories. A collaboration of C.J Gilmore 

and G. Bricogne at LURE resulted in the computer program MICE (Bricogne & 

Gilmore, 1990), Maximum entropy In a £rystallographic Environment. The program 

is written in standard Fortran 77 in a modular form similar to MITHRIL. Some of the 

tasks required for a full ab initio solution of a structure using MICE are done using the 

MITHRIL program with an interface to MICE.

The maximum entropy technique is computationally very intensive but with modem 

computers and the new network processor distributed version of the program 

(Shankland, Gilmore, Bricogne & Hashizume, 1993) being used it is now feasible to 

use MICE almost routinely. Many structures have been solved using MICE including 

single crystal X-ray of both centro and non-centro symmetric structures (Gilmore, 

Bricogne & Bannister, 1990), powder structures (Tremayne et al., 1992) and has been 

used for phase extension in protein crystallography (Xiang, Carter, Bricogne & 

Gilmore, 1993). The program has also found application in the solution of electron and 

fibre diffraction patterns. The program is not commercially available but is being used 

at several academic sites around the world.

The program is unique in direct methods because it uses entropy maximisation and 

likelihood for structure solution. It also generates no invariants explicitly but the 

procedure uses all invariants implicitly. The radical difference between MICE and 

other conventional direct methods packages make comparisons difficult. However 

based on the success of MICE with very difficult structures at low resolution indicate 

that it represents a useful addition to the armoury of direct methods tools, finding 

greater application solving problems that conventional direct methods cannot tackle.
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CHAPTER 2

THE USE OF LIKELIHOOD IN THE 
SOLUTION OF THE STRUCTURE OF 
AVIAN PANCREATIC POLYPEPTIDE



1.0 INTRODUCTION

1.1 Avian Pancreatic Polypeptide

Avian Pancreatic Polypeptide (App) is one of a series of closely related pancreatic 

polypeptides found in mammals and avians. It is a 36-amino acid polypeptide of 

considerable biological activity (Lonovics, Devit, Watson, Rayford & Thomson, 

1981). It acts as part of a physiological feedback system inhibiting pancreatic secretion 

after a meal. Elevated levels of pancreatic polypeptide are seen in humans suffering 

from duodenal ulcer. It has also been suggested as a screening method for the early 

detection of pancreatic tumours.

The crystals have the following crystallographic parameters

Monoclinic Space group C2

a= 34.18A b=32.92Ac=28.45AP= 105.26°

It has a crystal formula of Cjo9N5 3 0 5 gZn + 8OH2O, giving 301 non-hydrogen atoms 

in the asymmetric unit and an approximate molecular weight of 4,800 daltons.

The structure was initially solved and refined to a resolution of 1.4A (Blundell, Pitts, 

Tickle, Wood, 1981). It was solved to 2 .lA  by single isomorphous replacement, and 

anomalous scattering from Hg in HgCl2 . The phases were refined using a Hull and 

Irwin weighted tangent formula.

In 1983 the structure was solved to 0.98A (Glover, Haneef, Pitts, Wood, Moss, Tickle 

& Blundell, 1983) by collecting 53,000 reflections and merging to 17,058 unique 

reflections with R m erge = 6 .0 %. By a refinement of the 1.4A structure with the new 

diffraction data a final R factor for anisotropic non-hydrogens of 15.6% was obtained. 

It was these merged reflections that were used as the data for the experiments that 

follow.
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The basic crystal structure is that of symmetrical dimers each linked through the zinc 

atoms. Three crystallographically related App molecules contribute ligands to the 

metal atoms. Each zinc is bonded to atoms N and O of residue GLY1 in the first App 

molecule. It is bonded to atom GDI of residue ASN23 of the second molecule, atom 

NE2 of residue HIS34 in the third and the O of a water molecule. This gives a zinc co

ordination of a distorted trigonal bi-pyramid. The molecular structure is that of a small 

globular protein with a hydrophobic core. The residues 2-8, shown in Figure 1, form a 

polyproline II - like helix closely packed by hydrophobic interactions against an a -  

helix comprised of residues 14-32.

GLY PRO SER GLN PRO THR TYR PRO GLY ASP ASP ALA PRO VAL GLU ASP 

LEU ILE ARG PHE TYR ASP ASN LEU GLN GLN TYR LEU ASN VAL VAL 

THR ARG HIS ARG TYR

FIGURE 1. The 36 residues of Avian Pancreatic Polypeptide

FIGURE 2. The structure of Avian Pancreatic Polypeptide, a shaded sphere image
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1.2 Difficulties in the Solution of App

The data supplied for the experiments detailed in this chapter were supplied by 

Michael M. Woolfson and contained only a fraction of those observed by the initial 

diffraction experiment. We further reduced the supplied data to a smaller resolution 

shell to speed up the computation. This very small amount of data should make the 

solution or identification of solutions impossible for conventional direct methods for 

the following reasons.

i. The phase problem is only soluble as more data is gathered than there are 

parameters required to define the system. This has led to the general rule that it is 

necessary to gather at least five times the number of reflections as there are atoms in 

the asymmetric unit, or else the structure will prove to be very difficult to solve. In 

the case of App we have approximately 2.7 reflections per atom and so the phase 

problem will prove very difficult for this structure.

ii. We have no high resolution reflections in our data set, conventional direct methods 

depend on these high resolution reflections for phasing and structures cannot be 

solved without them. This is expressed best in Sheldricks’ rule:

“If less than 50% of the theoretically observable reflections are observed in the 

resolution range 1.1-1.2A are observed (|F^| > 4.0a ( | / ^ | ) ) then the structure will be 

difficult to solve by conventional direct methods.”

The determination of the crystal structure of App has been attempted with 

conventional direct methods techniques using the program S AYTAN (Woolfson & Jia- 

Xing, 1988, Woolfson & Jia-Xing, 1990). This program generated 1000 trial phase 

sets, from the largest 727 reflections and successfully refined some phase sets to 

correctness. The program failed in its attempt to discriminate between the good and 

bad phase sets using conventional figures of merit. In an attempt to solve an unknown 

structure this failure would prevent the structure being determined without the 

laborious task of examining the E-map from each of the phase sets.
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2.0 THEORY

2.1 The Sayre Equation & Tangent Formula

The Sayre equation (Sayre, 1952) is an algebraically derived formula that can be used 

to relate the phases of three reflections, thus determining the phase of one reflection 

from the known phases of two others. It is only true under strict conditions and 

contains no probabilistic information and so is now of limited use when compared 

with later work done on triplet theory.

i(P hi-, | h IP V"1 ^  r-
F u\e — ~Hr  V £ f k (EQ 2.1.1)

Where:

fh0 ,  = —  (EQ 2.1.2)
b \

and:

• //j is the scattering factor for each atom

• Y/j is the Fourier coefficient of the squared electron density of each atom

• V is the volume of the unit cell in A3

While this equation is only true under special circumstances, it can be seen through 

inspection, that for large |F^|, \Fh _ *|, that the sign, S, of |F^| is probably equal to the 

sign of the product of the signs of Fk , F ^ _ k , for centric reflections.

V A - r 1 (EQ 2,1.3)
The Sayre equation is only true for structures containing identical, spherically 

symmetrical atoms, whose electron densities do not overlap, and which are at rest or 

possess identical isotropic temperature factors. It should also be noted that the 

summation over all reflections k implies an infinite summation. Assuming that all 

these conditions are met then the Sayre equation provides a route whereby diffracted 

amplitudes and phases can be related by exact equations.

61



The tangent formula (Karle & Hauptman, 1956) which is most often used for the 

determination and refinement of phases can be derived from the Sayre equation, but is 

more correctly derived by other methods. In its weighted form it may be written:

V wkw h-k\Et\ \Eh - 1|sin (♦*+w
tanc>. «   ---------------------------------------------------- (EQ 2.1.4)

' ^ W kW h - k \ E k\\E h - k \  C0S (+ *  +

Where W^, W ^  are weights.

This form of the tangent formula treats all invariants as independent of each other and 

this assumption, being false, can lead to overrefinement of phases. This is especially 

true when only invariants that use reflections with large E-magnitudes are involved. 

As the probability of the tangent formula being true greatly increases with increasing 

\ E ^  there are good practical reasons for selecting phase relationships

that involve large E-magnitudes.

Where overconsistency of phases is a problem there are two approaches used to 

overcome this. The first is to use a new weighting scheme in the tangent formula, such 

a scheme is that devised by Hull and Irwin (Hull & Irwin, 1978). The alternative is to 

use the Sayre equation directly in an iterative refinement method. Using triplets that 

involve two strong and one weak E-magnitude prevents the overconsistancy caused by 

only using the largest E-values.

2.2 SAYTAN

SAYTAN (SAYre TANgent refinement) is a program that can be used as an alternative 

to the traditional tangent refinement of direct methods. At its core it uses the Sayre- 

equation tangent formula (Debaerdemaeker, Tate & Woolfson, 1985; 

Debaerdemaeker, Tate & Woolfson, 1988)(EQ 2.2.1). Using the Sayre-equation 

tangent formula gives some improvement over the traditional tangent refinement, 

particularly with structures that lack translational symmetry (Debaerdemaeker, Tate & 

Woolfson, 1984).

cpA = phase of {*(£) -  2K q  ( h ) } (EQ 2.2.1)
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Where

t ( b )  = y 1 r - n r r  + - t d t  + , }  E kE h_ k (eq  2.2.2)* f l g ( b )  g ( k )  g ( h - k )  J •*

< l ( b )  =  ^  T 2 J ^ E f E i  _ _ j (EQ 2.2.3)

A' =    (EQ 2.2.4)

g(h) is the scattering factor of atoms with squared electron density

This equation tends to return phases for reflections with large E-magnitudes which 

will satisfy Sayres equation (EQ 2.1.1) for reflections with both large and small E- 

magnitudes. This is an important method of avoiding the overconsistancy problems 

that are associated with the traditional tangent refinement. The addition of these small 

E-magnitude reflections gives additional phasing power to this method, although the 

small E-magnitude reflections are not themselves phased.

The SAYTAN program can generate many hundreds of random phase sets which it 

will then refine to a minimum in phase space. The determination of correct phase sets 

is then done by conventional figures of merit (FOMs) (see chapter 1), and also with the 

TFOM (Refaat, Tate, Yao Jia-Xing, Woolfson, 1990) figure of merit.

I ,  ( K  ( h ,  k ) ) 2
T F O M  = j j T K ( h ,  k )  { cos (cpA + <pf  + tpA_ t ) -  j ^ K ^ h  } (EQ 2.2.5) 

Where

K ( h , k )  = J (EQ 2.2.6)
JN' ~ - -

There have been some considerable difficulties with these FOMs giving false 

indications of correct phase sets in the case of App. It is not unusual in a large or 

complex structure for the traditional figures of merit to fail or give false indications. 

The TFOM was the most successful figure of merit, but even this could not 

discriminate in any conclusive way, resulting in only 4 correct sets in the top 20
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favoured sets. It would be possible to examine each electron density map to determine 

if any structural information was present, however this would be very time consuming, 

and obviously this is far from a satisfactory solution to this problem. This FOM 

problem appears to be the only real problem in the SAYTAN solution of App.

The SAYTAN algorithm is sensitive to the quality and resolution of data 

(Debaerdemaeker, Tate & Woolfson, 1985) which is not a problem with a maximum 

entropy approach to solving crystal structures. This may also be why the FOMs in 

SAYTAN have such difficulty in pointing to the correct phase sets.

2.3 MICE

MICE (Maximum entropy In a Crystallographic Environment) (Gilmore, Bricogne & 

Bannister, 1990) is a computer program written in standard Fortran 77 on a UNIX 

platform. Its structure follows very closely that of MITHRIL (Gilmore, 1984; Gilmore 

& Brown, 1988), with a collection of independent modules linked by a central control 

program. The structure and control of the program with both batch and interactive 

modes of operation is very similar to MITHRIL and indeed, there is an interface 

between the two programs.

MICE is an a generalised computing tool for the elucidation of crystal structures using 

a maximum entropy and maximum likelihood approach as suggested by Bricogne 

(Bricogne, 1984;Bricogne 1988). Although the maximisation of the entropy is very 

computationally intensive, improvements in hardware technology and greater 

refinement of the code have produced a much faster program capable of solving large 

structures, to high resolution, in a relatively short period of time.

The following is a breakdown of the processing of the data through the MICE 

program:

i. The normalisation of the structure factors \F^obs is done in the program 

MITHRIL, using the Wilson plot method, to give normalised structure factors 

|£^| obs These normalised structure factors are then converted to unitary structure 

factors | Ufr|obs, and have a variance estimated using the technique of Hall and 

Subramanian (Hall & Subramanian, 1982).
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ii. The determination of origin and enantiomorph, if appropriate, is performed in a 

process described in Chapter 1 section 15.4

iii. The origin and enantiomorph reflections and the remaining phased reflections are 

now used as constraints (the basis set {//} ) in the calculation of a non-uniform

exponential modelling technique (Bricogne, 1984). The exponential modelling 

algorithm is unstable and is only stabilised by a plane search technique that relies 

on a variety of damping factors, bumpers and other checks to prevent the plane 

search from finding false maxima (Bricogne & Gilmore, 1990). In early cycles of 

entropy maximisation a more computationally economic line search may be used 

without loss of robustness.

v. At each cycle of entropy maximisation the log likelihood gain is determined.

vi. Steps (iv) and (v) are repeated until the reduced %2 statistic (EQ 2.3.1) has reached 

unity. The x 2 statistic is a measure of the fit between and \ ^ .

Where

nc is the number of centric reflections in the basis set {//} 

na is the number of acentric reflections in the basis set {//}

The term (2na + nc) is the number of degrees of freedom for the system. 

The variable is a measure of the variance and is given by EQ 2.3.2

maximum entropy prior or qME (x) map.

iv. The qME (x) map is now updated and has its new entropy maximised using the

(EQ 2.3.1)

(EQ 2.3.2)

Where

eh is the standard epsilon factor
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o 2 is the error on 

p  is an empirical parameter set to unity for this work.

L is related to the effective number of atoms within the unit cell, and so can be 

thought of as a measure of structural complexity. It is a refinable parameter in the 

likelihood calculation.

2.4 The Role of Ea and Ec Criteria

In the calculation of % a quantity E  must be evaluated (see EQ 2.3.2). This quantity

can be broken down into two component parts Ea and Ec, these two parts relating to

acentric and centric reflections respectively. These figures are used in both the

calculation of % and Neff, a parameter that reflects both the quality of phase

information and molecular complexity, it is defined as the effective number of atoms
1 2in the unit cell. Neff can be calculated as the weighted mean of .
c a

The correct sets all show lowered values of both Ea and Ec. While these give an 

indication of correct phase sets they are highly correlated to %2 and do not give 

substantial discriminative powers when compared to log-likelihood gain. These 

parameters also give false indication as to the correctness of set 15 shown in Table 6 .

2.5 The Role of Entropy

We maximise the entropy of our system only to minimise bias in our results i.e be 

maximally non-committal to what we do not know. Entropy is a function of %2 and 

this dependence on % prevents entropy being used as a figure of merit (see Table 2). 

In cases where two phase sets have opposing indications of correctness based on 

entropy and likelihood then a formula that has been used to select the favoured phase 

set is

FOM  = NS + L (EQ 2.5.1)

Where

N is the effective number of atoms in the unit cell, a refinable parameter in the 

likelihood calculation.

UOBS  
h e  K
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S is the entropy

L is the log likelihood gain

The set is preferred if FOM is a maximum. Normally there is a strong indication from 

likelihood and there is no need to refer to the entropy for set indication.



3.0 EXPERIMENTAL & RESULTS

3.1 Preparation of Data

All data processed through the MICE program was kindly provided by Michael 

Woolfson and Yao Jia-Xing. All MICE jobs were run on a cluster of three 

MASSCOMP computers, a 5400,5450 and a 6300, using the UNIX operating system. 

It had been pre-processed in the following way (Gilmore, Henderson & Bricogne, 

1991).

1. The 16,538 data were normalised to give E-magnitudes using a Wilson plot 

(Wilson, 1942).

2. The largest 800 and smallest 200 were selected for further processing. 73 of the 

largest and 18 of the smallest were lost during convergence due to insufficient 

connectivity. This leaves 727 large E’s connected by 9726 triplets and 182 weak 

reflections connected by 6106 triplets.

3. Random phases were assigned to the 909 reflections and refined using the 

SAYTAN program until convergence. 1000 trial sets were generated and tested by 

SAYTAN.

4. Three subsets of the initial 1000 trials were extracted and were used as input to the 

MICE program. The selection of the subsets was made by M.M. Woolfson and 

attempt to simulate a method that could be used to solve unknown structures using 

a SAYTAN/MICE combination.

(i) A collection of 10 phases sets containing one set with an absolute phase error of 

<40°, all others having an absolute phase error >79°

(ii) A collection of 50 phase sets containing six sets with an absolute phase error of 

< 50° all others having an absolute phase error > 80°

(iii) A collection of 20 phase sets that were the preferred sets filtered by the TFOM 

figure of merit.

Each phase set that was received was processed by the MICE program as follows:
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1. The data received contained only h,k,l,E and cp. Errors on the E’s are necessary for 

the weighting of reflections in their contribution to the likelihood, so these errors 

were simulated. This was done by assigning:

a ( | £ / J )  = 0.1 l ^ l +0.01 (EQ 3.1.1)

This proved to be quite adequate for our use and does reflect the normal level of 

error found in measured data.

2. These E-values, |£^| ,were than converted to Unitary Structure Factors, |UA| , using 

the equation

Where
N is the number of atoms in the unit cell

3. Unlike a normal maximum entropy solution, we start with the set {H} , the set of 

phased reflections, which is composed of 117 unique reflections at 1.9A that have 

been phased by the SAYTAN program. The subset of reflections at 1.9A was 

chosen to speed up the calculation of the Fourier transforms in MICE. As all 

qME (x) maps must be oversampled, to reduce aliasing errors, producing a map of 

0.98A data would require a grid of 0.3A. This would give rise to approximately a 

1.2 million point Fourier map. As each cycle of entropy maximisation requires a 

maximum of 14 Fourier transforms, the computing power required to perform such 

a calculation would have been beyond the computing capabilities of our laboratory 

at the time that this work was performed. The final choice of sampling the map at 

0.6A gives rise to a 172,800 point Fourier map.

4. The initial 117 phased reflections h £ H  are used as constraints in the calculation 

of the non-uniform prior. The reflections h € H  are duly returned from the Fourier 

transform, at the end of each cycle of entropy maximisation from the final qME (x)

map. Information is now returned from the final qME (x) map in the form

and also c p , where {A'} is the set of all reflections not in the basis set 

{ //} •
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5. The log-likelihood gain (LLG) (EQ 3.1.3) is calculated to compare u \ J  and
j jobs

h € K  ’

L = L{H)  - L ( H 0) (EQ 3.1.3)

Where

L ( //)  is the log likelihood based on the agreement of observed and extrapolated 

U-magnitudes for all reflections in the set {A'} .

L (H q) is the log likelihood null hypothesis (i.e. all extrapolated magnitudes are set 

to zero)

Steps 4 and 5 are repeated until the fit of
2

reduced % statistic (EQ 2.3.6) is equal to 1.

UME  
h £  H and UOBS

h € H is such that the

For all phase sets the reduced % statistic was allowed to go to unity before entropy 

maximisation was terminated. At % = 1 we should have an optimum match of

. In practice it was found that the LLG was maximised atUOBS  
h€. H and UME

h e H

approximately %2 = 1.9. It was important to follow the change in LLG for all %2, for 

all phase sets, in order to determine the shape of the log-likelihood gain graph for this 

set of diffraction data.

3.2 Experiment 1

A set of ten phase sets, one of which has ( |A c p | ) < 4 0 ° ,  and all others have 

(| Acp|) > 79° were provided by M.M. Woolfson. The data were processed through the 

MICE program and the results are shown in Table 1.

This shows that the LLG very strongly indicates the set with the lowest (| Acp|). While 

the figures may appear to be small it must be remembered that this is a loge scale. It is 

interesting to note that the correct phase set is the one that conventional figures of 

merit point to as being the least likely of all ten sets to contain any relevant structural 

information (see Table 2). Note that the \yo figure of merit strongly indicates that there 

is overconsistancy of phases. Note also that for a structure of this size, the traditional 

figures of merit indicate that all sets with the exception of the correct one are good 

candidates for structure solutions. In Table 2 we also show that the entropy of the map 

is not a good figure of merit.
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Set no.
Absolute
Phase
Error

Maximum
L ( H )  - L ( H 0 )

Corr x2 L xlO"3a I  xl0“3c

1 79.77 -0.013 2.47 0.68 1.02
2 39.19 11.269 1.81 0.60 0.86
3 84.54 0.193 1.58 0.67 0.99
4 82.91 0.078 2.25 0.68 0.98
5 84.83 -0.026 3.44 0.71 1.10
6 84.38 0.004 2.52 0.68 1.02
7 84.51 0.369 1.40 0.67 0.97
8 81.09 3.479 0.97 0.66 0.94
9 83.34 0.006 2.98 0.69 1.02
10 84.95 0.097 2.45 0.68 0.99

TABLE 1. Log-likelihood gain for 10 trial phase sets generated by SAYTAN

Set no.
Absolute
Phase
Error

Maximum
L ( H )  —L ( H q)

Entropy
S Vo *cc

ABS
FOM

1 79.77 -0.013 -0.329 0.87 29.95 0.66
2 39.19 11.269 -0.518 2.73 29.24 1.70
3 84.54 0.193 -0.842 0.77 27.21 0.67
4 82.91 0.078 -0.413 0.84 26.33 0.69
5 84.83 -0.026 -0.632 0.90 27.53 0.70
6 84.38 0.004 -0.312 0.83 26.94 0.67
7 84.51 0.369 -0.948 0.89 26.18 0.72
8 81.09 3.479 -0.153 0.82 26.04 0.72
9 83.34 0.006 -0.165 0.90 26.15 0.70
10 84.95 0.097 -0.331 0.80 27.24 0.69

TABLE 2. A comparison of maximum log-likelihood gain and corresponding entropy with
normal figures of merit for 10 trial phase sets.
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2
In Figure 3 we show the shape of the graph of log-likelihood gain against % for phase 

set 2 from Table 1, the correct set. This characteristic maximum at % « 1.9 is 

repeated in all subsequent experiments and can also be used as an indication of a 

correct phase set, for this structure only. Compare the graph in Figure 3 with that in 

Figure 4, a graph showing the same plot but for phase set 5 from Table 1. Notice how 

there is now no meaningful likelihood maximum and this is characteristic for all 

incorrect phase sets.

Log-Likelihood Gain vs Reduced Chi-Squared

0.00

- 50.00

- 100.00

- 150.00

- 200.00

LLG -25°0&-
- 300.00

- 350.00

- 400.00

- 500.00

- 650.00
1.00 2.00 2.501.50 3.00 3.50

FIGURE 3. A plot of log-likelihood gain vs Reduced %  for phase set 2 (| Acp| ) = 39.2° 
Note that this shows the characteristic log-likelihood maximum at %2 = 1.9
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Log-Likelihood Gain vs Reduced C hi-Squared
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FIGURE 4. A plot of log-likelihood gain vs Reduced %2 for phase set 5 (| Acp|) = 84.83° 
Note that this does not show the characteristic log-likelihood maximum at % = 1 . 9

3.3 Experiment 2

A set of 50 phase sets, six of which have (|Acp|)<50°, the remaining 44 have 

(|Acp|)> 80° were provided by M.M. Woolfson. As in experiment 1, the data were 

processed through the program MICE and the results of this experiment is shown in 

Table 3.

The largest log-likelihood gain for an incorrect phase set is 3.60 while the minimum 

log-likelihood gain for a correct set is 4.58. The log-likelihood of 4.58 does not occur 

at %2 = 1.9 but at %2 = 2.4. In a normal structure solution this set would have to be 

classified as marginal and any better basis set used to proceed with the structure 

determination.

The remaining five sets are all very strongly indicated with the maximum LLG
2

occurring at the characteristic % « 1.9 .
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Set no.
Absolute
Phase
Error

Maximum
L { H )  — L ( H q)

Corr x2 £ xl0“3a £ xlO-3c

1 85.44 3.594 0.98 0.66 0.96
2 84.45 1.366 1.22 0.67 0.96
3 84.71 0.069 2.41 0.68 0.95
4 82.57 1.923 0.98 0.66 0.95
5 83.71 0.333 1.49 0.67 0/97
6 83.36 2.612 1.25 0.67 0.95
7 42.75 10.521 1.93 0.62 0.89
8 84.33 -0.014 3.07 0.69 1.06
9 85.68 0.146 1.77 0.68 0.99
10 85.01 0.223 1.51 0.67 0.96
11 47.11 11.104 1.93 0.62 0.89
12 85.02 0.188 2.05 0.68 0.99
13 83.58 0.457 1.53 0.67 0.97
14 80.24 3.605 0.97 0.65 0.92
15 48.64 8.470 2.03 0.63 0.91
16 85.09 1.288 1.58 0.66 0.95
17 84.16 0.052 3.05 0.69 1.03
18 48.19 10.496 1.95 0.62 0.88
19 85.60 0.002 3.15 0.69 0.98
20 82.01 1.905 1.52 0.66 0.95
21 85.70 1.802 0.99 0.66 0.94
22 49.18 4.584 2.35 0.66 0.95
23 84.04 0.174 2.04 0.68 0.98
24 85.96 1.856 1.30 0.66 0.95
25 83.38 1.095 0.98 0.66 0.94

TABLE 3. Log-likelihood gain for 50 phase sets generated by SAYTAN

74



Set no.
Absolute
Phase
Error

Maximum
L (H ) —L (H 0) Corr x 2 I  xlO"3a L xlO"3c

26 85.45 2.093 1.30 0.66 0.94
27 82.24 0.099 2.81 0.68 1.02
28 83.01 -56.686 1.80 0.68 0.97
29 85.79 0.487 1.99 0.67 0.96
30 84.81 0.089 2.62 0.68 1.01
31 80.62 -0.019 3.30 0.70 1.12
32 43.28 10.546 1.94 0.63 0.89
33 85.17 0.121 1.49 0.67 0.99
34 84.52 0.078 1.76 0.68 0.97
35 83.36 -0.018 3.20 0.69 1.06
36 85.59 0.075 1.78 0.68 0.99
37 85.22 0.289 1.54 0.67 0.98
38 82.48 3.420 0.98 0.66 0.93
39 84.74 0.019 2.61 0.68 0.98
40 85.40 0.008 1.74 0.68 0.99
41 85.47 -4.793 3.43 0.70 1.14
42 83.28 -15.918 2.83 0.69 1.04
43 82.18 -41.973 3.28 0.68 1.00
44 81.10 -18.551 3.48 0.69 1.12
45 83.90 -31.611 3.35 0.70 1.12
46 84.13 -0.043 3.10 0.69 1.07
47 85.43 0.119 1.82 0.68 0.97
48 84.62 2.975 0.97 0.66 0.95
49 86.17 0.689 1.55 0.67 0.98
50 81.92 0.005 3.37 0.71 1.08

TABLE 3. (continued): Log-likelihood gain for 50 phase sets generated by SAYTAN
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2
This maximum log-likelihood gain at % « 1.9 is not the expected result. From the 

theory we would expect an LLG maximum at % = 1 .0 , which is the point of best fit

between UMEu heH and jjobs
UheH . It is believed that this behaviour is caused by the Zn 

atoms forming a pseudo-centrosymmetric lattice within the cell. This effect would be 

most pronounced at 2.0A where the Zn atoms are the dominant feature of the electron 

density maps. This will cause a severe enantiomorph definition problem, and it was 

observed that extrapolated phases V ^E K and phases input as constraints <P̂ E H both 

showed a dependence on the value of the reflection index k.

Once we have detected our six correct sets from the sample of fifty sets we then 

calculate an electron density map. This differs from the qME (x) map in that it is Sim 

filtered to generate a centroid map. In this map reflections belonging to both {//} and 

{AT} are used and assigned weights Wh, that are dependent on whether the reflections 

are centric or acentric

Where

Wlentric = tanh
N.eff

u ME Uobs (EQ 3.3.1)

yyacentric \ \  £h J
I ttMEI I rrObs\ 
\U h \ \ u  h

\ \  %  J
\Uh E\\U°hS\

(EQ 3.3.2)

Neff is the effective number of atoms in the unit cell, and is a refinable parameter in the 

likelihood calculation.

Ij, Iq are the first and zero order Bessel functions respectively 

£h is the crystallographic epsilon factor
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3.4 Experiment 3

The last set of data to be tested were the 20 phase sets preferred by the TFOM figure of 

merit. This group of phase sets contains four sets which have (|Acp|)<50° the 

remaining sixteen sets having (|Aq>|) > 70°. The test is to determine whether LLG is 

sensitive enough to discriminate between a correct phase set containing relevant 

structural information with (| Acp|) = 49.5°, and an incorrect phase set containing no 

information with (|A<p|) = 70.2°. This experiment was also done to simulate a 

method which could be performed in a practical situation to solve difficult structures. 

As it is very time consuming to perform a full ab initio solution of a crystal structure 

using maximum entropy techniques, it may be possible to generate many thousands of 

phase sets using the SAYTAN program and then pass only those preferred by the 

TFOM figure of merit to the log-likelihood calculation. There are problems with this 

however, as SAYTAN takes the phases to its preferred minimum in phase space. When 

the SAYTAN refined phases are taken into MICE this is not the phase minimum that 

would be expected by the maximum entropy technique.

The results are shown in Table 4 and again the correct sets are indicated most strongly, 

with a log-likelihood gain > 1 0 . Fifteen of the remaining sixteen sets all have a 

maximum log-likelihood gain <1.5. One set, set 15, has a maximum log-likelihood 

gain of 10.22, yet has a (|Acp|) = 80.2°. By all previous tests a log-likelihood in 

excess of 10 is considered to be a strong indication that the phase set is correct. An 

examination of the electron density map for set 15 yielded no interpretable 

information, while the maps of the four correct sets all produced the four Zinc atoms 

quite clearly in Figures 5 and 6. This anomaly may be a local entropy maximum only 

applicable to the 1.9A resolution subset because phases are being taken from a 

different phasing technique which has determined a different optimum point.
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Set no.
Absolute
Phase
Error

Maximum
L(ff) - L ( H 0 )

Corr x2 £ xlO”3a L xlO"3c

1 80.29 0.110 3.40 0.68 1.01
2 80.55 0.455 1.39 0.67 1.04
3 76.83 0.066 2.87 0.68 1.05
4 76.55 0.082 3.41 0.68 1.01
5 76.56 1.313 2.46 0.67 1.00
6 71.77 0.037 3.22 0.69 1.14
7 49.46 10.019 2.00 0.63 0.92
8 46.11 10.013 1.73 0.58 0.85
9 79.06 0.075 3.57 0.68 1.01
10 40.59 10.566 1.79 0.60 0.88
11 76.50 0.054 3.57 0.68 1.01
12 41.10 11.896 1.83 0.61 0.89
13 74.23 -0.002 3.32 0.70 1.22
14 80.61 0.070 3.42 0.68 1.01
15 80.16 10.226 2.01 0.63 0.92
16 74.37 0.097 2.68 0.68 1.06
17 82.27 0.065 3.58 0.68 1.01
18 70.15 1.084 1.41 0.66 0.97
19 75.52 0.560 1.31 0.66 0.99
20 76.98 0.533 1.61 0.67 0.99

TABLE 4. Log-likelihood gain for the 20 phases sets most favoured by the TFOM figure of 
merit.
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FIGURE 5. The electron density map projected down the Y-axis showing the position of the 
four zinc atoms.
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FIGURE 6. The electron density map projected down the Z-axis showing the position of the 
four zinc atoms.
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3.5 Summary

The previous experiments have quite clearly shown that log-likelihood gain (LLG) is a 

figure of merit of unique discriminatory powers. The experiments have also shown 

that LLG can be used in situations where the phase problem is severely 

underdetermined and continue to produce valid results.

Under the conditions that LLG determined the correct phase sets (i.e. 117 reflections at 

1.9A) no conventional figure of merit would have been able to make any conclusive 

indication of correctness. The results given in the previous sections are further proof 

of the usefulness of the maximum entropy method in situations where conventional 

direct methods fail.

While we have not shown a full ab initio solution for App in this work, but we have 

demonstrated a very powerful technique for the solution of large or difficult structures. 

The program SAYTAN has proven itself to be of considerable power and speed at 

producing refined correct phase sets, but because it uses only conventional figures of 

merit it cannot discriminate between good and bad phase sets. The MICE program has 

demonstrated the ability to very clearly discriminate between phase sets. If these two 

programs are used together then the possibility of being able to solve even larger 

structures using direct methods increases.
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4.0 FUTURE WORK

The computer limitations on the maximum size of a Fourier map are being reduced 

and new techniques that allow distributed processing, coupled with advanced 

computer hardware are allowing much faster computation times. These enhancements 

are all being implemented to be used in conjunction with the MICE program. These 

advances should allow a full resolution calculation at 0.98A resolution for the data. 

This should alleviate the enantiomorph problem and also hopefully remove the 

anomalous set 15 in Table 6.

As our data set is large consisting as it does of 117 unique reflections it should be 

possible to refine the phases of these reflections even further than is possible using 

SAYTAN (Bricogne, 1984). These further refined phases would provide better quality 

maps for fragment refinement and also provide a better starting point for phase 

extrapolations in MICE.

It should be possible to take our 117 reflections and move onward through the phasing 

tree to give a full solution for the structure, not just the Zinc positions. If this proves 

successful then a full ab initio solution of the protein starting from origin and 

enantiomorph is required. This ab initio work is currently being undertaken by C.J. 

Gilmore. This work involves the determination of the zinc positions at 3A, which has 

already been done. This has allowed the MICE program to break the enantiomorph 

problem at an earlier stage and also removed the problem of LLG peaking at 

X « 1.9 . It has worked well, and with a minimum number of reflections, likelihood 

strongly indicates the presence of an optimal phase set, selected from 4000, with 

which to proceed.
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CHAPTER 3

A BAYESIAN METHOD OF 
NORMALISATION



1.0 INTRODUCTION

1.1 The Discrete Atom Constraint

Correct electron density must always conform to certain constraints i.e the electron 

density must always be positive. It is these constraints that provide the mathematical 

basis for the theories of direct methods. One of the most powerful of these constraints 

is that the electron density must contain discrete atoms when the observed data is of 

atomic resolution, and as this is the very nature of matter this restriction on the 

electron density is always true.

To make use of this restriction mathematically we remove the shape of the atom from 

Fh, converting the structure factor to a normalised structure factor, Eh. The removal 

of the shape of the atom is done by dividing the structure factor by the scattering 

factors of the atoms in the unit cell (see Chapter 1 EQ 3.1.2). This reduces the electron 

density at the atoms to points, and thus prevents any decrease in scattering power with 

increasing (sin 0) /X  . When normalised structure factors are used in phase 

determining formulae the phase constraints are strengthened so that the electron 

density map should contain well resolved atomic peaks.

All the above mathematical quantities can be related to real space quantities using 

Fourier transforms:

x atomic scattering factor =

point atom structure * real atom = electron density

1.2 Normalisation

To obtain a value for Eh we are first required to calculate the following variables:

1. A scale factor, K, required to place ?obs and Fchalc\ onto the same absolute scale.

2. An overall isotropic temperature factor, B, to remove the effect of thermal vibration 

from the atomic shape.
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These variables can be calculated from the intensity statistics using a Wilson Plot 

(Wilson, 1942) as detailed in Chapter 1, Section 3.1. An alternative method of 

normalising data has been suggested using the Patterson map (Nielsen, 1975). The 

Wilson plot method is the most common normalisation technique used and has been 

modified to be more accurate under certain circumstances e.g. the K-curve technique 

(Karle & Hauptman, 1953). These modifications are improvements, but are not a 

major departure from the basic technique or theoretical assumptions of the Wilson 

plot.

Normalisation is one of the most important steps in any structure solution as the 

majority of the probability methods used for determining phases are sensitive to the E- 

magnitudes of the reflections (Hall & Subramanian, 1982a). The E-magnitudes have a 

profound effect on the convergence mapping procedure (Germain, Main & Woolfson, 

1970) and this will determine whether a structure can be solved. Direct methods only 

solve so many structures with such a high success rate due to the multisolution 

method, finding alternative phasing paths through the convergence map, some of 

which lead to an acceptable structure solution.

The major failures of the Wilson plot are encountered when sparse or systematically 

missing data is used to determine the scale and temperature factors. To aid in the 

normalisation of such data and also to provide a new alternative normalisation 

method, a Bayesian technique has been developed and integrated into the MITHRIL90 

program (Gilmore, 1984; Gilmore & Brown, 1988). The remainder of this chapter will 

detail the theory and experimental results of this new technique.
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2.0 THEORY

2.1 The Wilson Plot

As can be seen from Chapter 1 Section 3.1, it is possible to obtain the scale and

H r Jtemperature factors from a plot of In versus (sin 0 )/A r.

To make this plot (sin2Q) / X 2 is split into resolution shells, each having the same 

volume and thus should contain approximately equal numbers of reflections. The 

selection of the size of the shell is important as each shell must contain enough 

reflections to be statistically representative but must also be small enough to display 

minimal variation in (sin2Q )/X 2 (Rogers, 1965). Shells that contain too few 

observed reflections cannot be used statistically and this is a difficulty with organic 

structures that diffract weakly at high (sin2Q) / X 2 due to large thermal effects.

The theory predicts that this plot should ideally be a straight line but in practice is 

frequently a curve. This deviation from ideal behaviour can be caused by systematic 

errors in the measured intensities. These errors can either come from the technique 

used in the measurement of the intensities or may come from the non-random 

distribution of atoms in the unit cell. The random distribution of atoms in the unit cell 

is central to the derivation of the Wilson statistics, but this assumption can be wrong in 

any of four categories of atomic distribution:

i. If the number of independent atoms in the unit cell is low (e.g. <8) then this cannot 

be a uniform distribution. The converse of this may also be true in the case of a 

large number of atoms that are concentrated within a relatively small volume of the 

unit cell, this atomic distribution can occur with proteins.

ii. When a number of atoms he on symmetry elements then these atoms will 

contribute to a subset of reflections only (Hauptman & Karle, 1953). The 

experimental curves become more anomalous the heavier the atoms in the special 

position (Shmueli, Rabinovich & Weiss, 1990).
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iii.When the relative number of heavy atoms is large. This can be thought of as a 

special case of (i), as the contribution of the light atoms will be negligible relative 

to the heavy atoms present.

iv. Pseudosymmetry can cause the crystal to diffract as though it possessed higher 

symmetry than is truly present. This affects the normalisation procedure by making 

the choice of space group ambiguous.

To reduce deviations from the idealised straight line it is common practice to overlap 

contiguous resolution shells. This has the effect of reducing scatter of reflections in the 

shells and also removes the effects of anomalous shells. An example of this 

overlapping shells technique is given for diamantane (Rogers & Kennard, 

unpublished) in Table 1.

Set Range of Mean Number of Average
Number (sin2B ) / X 2 Csin26) / k 2 Refs, in  Range Intensity

1 0.000 - 0.042 0.026 285 1663
2 0.021 - 0.063 0.044 422 1234
3 0.042 - 0.084 0.065 547 997
4 0.063 - 0.105 0.085 615 506
5 0.084-0.126 0.106 686 299
6 0.105-0.147 0.126 767 239
7 0.126-0.168 0.149 825 288
8 0.147-0.189 0.169 882 285
9 0.168-0.210 0.190 910 202
10 0.189-0.231 0.211 992 146
11 0.210 - 0.252 0.231 1056 106
12 0.231 -0.274 0.253 1093 65
13 0.252 - 0.295 0.272 1047 40
14 0.274-0.316 0.294 1066 34
15 0.295-0.316 0.304 580 29

TABLE 1. Distribution of Reflections within Resolution shells for Diamantane

It is normal practice to perform a least squares fit of the points on the Wilson plot to a 

straight line. In an attempt to improve the fitting of this straight line to the curve Hall 

and Subramanian (Hall & Subramanian, 1982a) tested weighting the least squares 

procedure. This weighting procedure was found to be unreliable as the weights were

based on and o ( F 2h ) which are highly correlated to each other, and this

introduces a systematic bias into the refinement.
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2.2 K-Curve Fitting

The basis of the Wilson plot is the assumption of random distributions of atoms in the 

unit cell. In reality structural regularities cause the Wilson plot to deviate from the 

idealised straight line. To take these regularities into account it is possible to fit a 

monotonically decreasing function to the experimentally derived curve (Karle & 

Hauptman, 1953). This is the K-curve technique and is normally recommended when 

the Wilson plot is significantly removed from the straight line.

Extensive studies were carried out on normalisation in the early eighties by Hall and 

Subramanian (Subramanian & Hall, 1982) into the optimum choice for a 

normalisation technique. These studies have indicated that the Wilson plot /  least 

squares fitting technique is in fact better than the K-curve technique.

The difference between the scale and temperature factors derived by the K-curve and 

Wilson Plot technique is small, however these small inaccuracies give rise to less 

accurate invariants and therefore an increase in the potential for phasing errors. It is 

this sensitivity to error in the phasing process that make determination of the best 

possible estimates for B and K essential.

2.3 Errors on the Scale and Temperature Factors

A method for estimating the errors on the E-magnitudes based on the precision of the 

intensity data and the Wilson plot parameters was introduced in the early eighties (Hall 

& Subramanian, 1982b). Values for these errors may be obtained by using the 

following equation:
a 2 (AT) s in 4e

IM 2 K‘
o  (B)

( sin2Q\

+ I£ a|2

r ( K ,B ) u ( K ) a ( B )

K (EQ 2.3.1)

Where

|Fa| and a  (|F^|) can both be obtained from the experimental observations 

B,K and IEh\ can all be obtained from the Wilson plot
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r (K , B ) , ct (AT) and c  (5) are all parameters that can be determined from the Wilson 

plot least-squares fitting procedure

2.4 A New Bayesian Method

The largest errors in normalisation occur, not in the fitting of the straight line, but 

when the data is very sparse i.e. where a subset of reflections are absent, this is often 

caused by the threshold of unobserved reflections being set too high when the data are 

being collected, thus omitting weak reflections.

While it is possible to insert these missing weak reflections back into the data set using 

a Bayesian technique (French & Wilson, 1978), this is inappropriate in the case of 

missing reflections that are strong. The process of using the full Bayesian insertion 

technique is very complex involving additional data measurement and computational 

requirements, although a partial application of the technique has been suggested for 

routine use (Hall & Subramanian, 1982a).

The strength of a new fully Bayesian method of the determination of K and B would 

be the ability to normalise the data without the need for such a complex method to 

alter the intensity data prior to the normalisation. Ideally we would use the measured 

data in the best way possible to yield optimum values of K and B.

2.5 Derivation of the Formula

Let us define the Bayesian temperature factor as P which is related to the conventional 

temperature factor B, by the equation

and also define the Bayesian Scale factor k  which is related to the conventional scale 

factor K by the equation

p = 2 B (EQ 2.5.1)

k  = 1 /K (EQ 2.5.2)

With application of Bayes Theorem (Bayes, 1763) we obtain:

N

P (K , P| { * , }  )  oc Y [ P  (**1 K, P) ’ P (K, P) (EQ 2.5.3)
i = 1
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Where

N is the number of observed reflections 

k  is the Bayesian scale factor 

P is the Bayesian temperature factor

P ( k , P| {R.} ) is the probability of k , p given the set of measured intensities {R t}

P (/?;! k , P) is the probability of an individual intensity given k , p  

P ( k , p )  is our prior knowledge of k , p

If we substitute Wilson statistics for P (/?.| k , p )  and substitute unity for P ( k , p )  then 

we obtain for N reflections:

Where

N is the number of atoms in the unit cell 

fj is the atomic scattering factor

e is the epsilon factor which is dependant on the point group and reflection indices

As log 2R t does not vary with k , P it is only a constant added to the probability and 

can be ignored for the purposes of the determination of maxima, also logic is not 

dependant on i and so can be taken outside the summation.

Therefore EQ 2.5.4 can be rewritten as:

log (P ( k , P[ {/?.})) = £
i = 1

N

k  exp

sin2Q
- ^ - + l o g 2 R t (EQ 2.5.4) 
A

Where

(EQ 2.5.5)
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N

log(/>(K,P|  { /? ( } ) )  = £
i = 1

-R . exp
Psin2e)

K +  P
sin2Q

-M o g K  (E Q  2.5 .6)

EQ 2.5.6 allows the calculation of a surface of probability, whose global maximum is 

at the most probable values for k  and P . The profile of this peak will yield errors on 

the values of k  and p .

In the derivation of EQ 2.5.6 we have used no prior information on k , p. In Bayesian 

terminology we have used a uniform prior i.e. we have multiplied our probability 

surface by a plane. This need not be the case, and any suitable prior could be 

substituted into P ( k , p) for the derivation of another equation. The ability to change 

the prior gives an easily extendable theory which can be tailored to the type of data 

used for the normalisation. This technique is especially applicable to protein 

diffraction data.

As we have used a uniform prior for P ( k , p )  and Wilson statistics for P (/?f| k , p )  the 

formula EQ 2.5.6 is mathematically equivalent to the Wilson plot, although the 

method used to determine k , p  in the Bayesian technique will differ from that used in 

the Wilson plot. This difference in the method of determination of most probable 

values of k , p  should result in very small differences in the values of k , P found by the 

two techniques. Differences greater than the esd of the values of k , P would not be 

expected.

2.6 Obtaining Optimal Values of k , p

In the version of the program implemented in to MITHRIL90 two techniques for 

obtaining the maximum from the probability surface were coded.

(1) A grid search where an area of probability map of course grain is calculated and 

searched for a maximum. Once a new maximum value for log (P ( k , P| {/?.} ) )  is 

obtained another probability map is calculated around this point with a finer grain, 

which is itself searched for a maximum. This process is repeated until the user is 

satisfied that k , p  have been determined accurately enough. A version of this 

procedure was implemented with the program making the decision as to when the 

values of k , P were accurate enough for normal use. Using the grid search technique is

92



only recommended when the eigenvector/eigenvalue system becomes ill conditioned, 

as it cannot provide esd estimates for k  or (3.

(2) An eigenvector/eigenvalue system was set up to speed the searching process and 

also to provide accurate esd estimates on the values of k , (3.

Matrices must be set up to determine shifts toward the maximum of the probability 

surface as in EQ 2.6.1

The solution to EQ 2.6.1 is determined by performing a Householder reduction of A to 

give the tridiagonal form of the matrix, followed by a tridiagonal QL implicit solution 

to yield the eigenvalues, eigenvectors and shifts (Press, Flannery, Teukolsky & 

Vetterling, 1992). The shifts are then applied to k , (3 and the values of the elements of 

matrix A are re-evaluated. This process continues until the shifts are small. The 

derivatives of EQ 2.5.6 follow:

Ax = -b (EQ 2.6.1)

Where

d2f {  k , P) d2f {  k , p)
d$2 dfidK

d2f(K ,  P) d2f ( k, P) 
d\cd$ ^ K2

(EQ 2.6.2)

A Hessian matrix

d f ( K ,  P)

(EQ 2.6.3)
d f(  P)

(EQ 2.6.4)

sin2d

(EQ 2.6.6)

(EQ 2.6.5)
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d  / ( k ,  P )  

dK2 i = 1

f?>sin2Q\

~ 1 F
N_
K2

d 2n K, p )  1 "  * > 4 e

i -  1 A<*p:
''P^in 0 '
“ x2”

rf2/(K, P) d 2/ ( K ,  P) 1 "  R-sin2e
dxdfi dfidvz K2 ,i = 1

exp
P^/w20^
I 2 -

(E Q  2 .6 .7 )

(EQ 2.6.8)

(EQ 2.6.9)

2.7 Calculation of Errors on k , p

The matrix technique for the determination of the probability maximum yields two 

eigenvectors ux and u2, it also yields two eigenvalues and X2. These eigenvectors 

may be thought of as the axes of an equal probability ellipse, whose length is the 

eigenvalue, from the centre of the ellipse, see Figure 1.

K

P
FIGURE 1. The eigenvectors i q  and u2 on an ellipse of equal probability for p, k .

This allows the calculation of the errors on P, k  from the following equations (R.K. 

Henderson, private communication):

ct( k )  =

a(P) =

* ( ¥ i ) 2

h  *■?

* 2

(EQ 2.7.1)

(EQ 2.7.2)
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Where ex = [o l] e2 = [i q]

2.8 Implementation into MITHRIL90

The source code for the Bayesian normalisation method was written to be flexible and 

easily extended as the theory developed. All subroutines were written in standard 

FORTRAN 77 to be run on a UNIX workstation.

The subroutines that performed the Householder reduction and tridiagonal QL implicit 

solution were heavily modified versions of the subroutines available from the book 

Numerical Recipes (Press, Flannery, Teukolsky & Vetterling, 1992).

To activate the Bayesian normalisation method in the program MITHRIL90, the user 

enters the normalisation module using option 2 (see Appendix A). This allows the use 

of all other NORMAL module functions e.g. turning off the error calculations on the 

E-magnitude calculations. The new MITHRIL90 NORMAL menu has been modified 

to the form shown in Figure 2.

THE FOLLOWING COMMANDS ARE CURRENTLY AVAILABLE:

NORMAL < IK,NB,ISC,MAXD UP,[NOSIG][PHASE] >

< IK = -2 /- l/0 /l/2  Test/E-input/Wilson/K-curve/Bayes >
< NB=No. points for plot; ISC=1 No parity rescale >
< MAXDUP=Maximum no of duplicates/absences to list >

< [NOSIG] Turns off the calculation of esd o f E >
< [PHASE] Reads phase angles with intensity data >

LIST < Print a full E-list > SYMM < Symmetry operation >
CELL < a,b,c,angles or cos > LATTICE < A/C P/A/B/C/l/F/R >

CONTENTS < N1 .Type,N2,Type etc. > SFAC < Scattering factor >
LIMITS < Sin max,Sin min,Emax > BSCL < B,Scale factor(s) >

NEWE < h,k,l new E-value > EDIT < h,k,l,(F) >
TRANS < Trans matrix > GROUP < Type,pop,cell >

ATOM < Atom Label,x,y,z > NOCHECK < Do not check data >
XRAY < X-ray data input > NEUT < Neutron Data >
POWD < Powder data > ELEC < Electron data >
OVER < Overlaps:h,k,l,F,sig > ENTR < Link to MICE prog >
DATA < Format of data > MISS < Find weak reflns >

N.B. DATA must be last instruction to Normal
Only the first 4 characters of any dialogue command are
significant and a <CR> then terminates current input.

FIGURE 2. The normalisation menu from MITHRIL90.
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The output from the Bayesian normalisation method is different from the K-curve or 

Wilson methods in that no graph of the Wilson plot, or tables of statistical analysis of 

the graph are produced. All tables of analysis of the E-magnitude distributions are 

produced, as are errors on the E-magnitudes if these are requested. An example of the 

output from the normalisation of diamantane is shown in Figure 3.

DIAMANTANE-4-OL(FILE 1)
Normalisation by Bayesian methods 

No listing o f complete set o f E-values 
Standard deviations on E-values to be calculated 

No index group rescaling 
Radiation type: X-rays 

This structure is centrosymmetric with lattice type P

The 4 symmetry operations are as follows

X Y Z

1 / 2 -X 1 / 2 -Y Z
-Y 1 / 2 +X 1 / 2 + Z

1 / 2 + Y  -X 1 / 2 + Z

Scale and temperature factor to be calculated 

Direct cell is A= 16.704 B= 1 6 .704  C= 7.922 alpha = 90.00 beta = 90.00  gamma = 90 .00

Unit cell contents

Atom Number Atomic Atomic scattering factors radii
in cell number f = aa*rexp(-a*rho) + bb* exp(-b*rho) +cc)

c 112 6 2.112 7.827 2.462 31.650 1.412 0.77 1 .70

H 160 1 0 .388 7.151 0.601 30.180  0 .008 0.37 1.20

O 8 8 4 .197 6 .327 2.218 22 .830  1.578 0.74 1.40

Number of atoms in the asymmetric unit = 1 5.00  
Input data with 1 reflections per line - format (3I4,2F8.2,30X,I4)

There are 0 duplicates and 0 systematic absences in the data set containing 1 553 reflections 
A total of 0 reflections were edited and 0 exceeded the theta limits

Temperature factor = 3 .7347  (esd =0.1 700) Scale factor = 0.831 2 (esd = 0 .0570)  
Suggested least-squares scale factor = 1.0974  

The scale factor - temperature factor correlation coefficient = 0 .9287

FIGURE 3. The layout of the Bayesian normalisation report for the MITHRIL90 program
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3.0 EXPERIMENTAL AND RESULTS

3.1 Source of Data Sets

During the testing of the crystallographic package SHELXTL (Sheldrick, 1985) 

Sheldrick compiled a database of structures that are difficult to solve using the 

techniques of direct methods. Since these are some of the most difficult structures to 

solve, are in a variety of space groups and have a broad range of atom types, it was felt 

that a selection of seventeen of these structures would be a good test of our new 

normalisation method.

A brief summary of the crystallographic data for each test structure is given in Table 2.

Structure Space
Group

Formula Z

Diamantane-4-ol P42/ n 8
Quinol R3 c 6h 6o 2 54
HOV1 C 2/m P r14m 6S in 4

Selendid P 2 l ^ 2 2 ^ 2 ^ 2 ^ e 2
Azet Pca21 C2lH l6ClNO 8

TURIO P63 22 ^15^24^2 12
Dodecane-Diol I42d ^10^18^2 16

APAPA P 4 j 2 j 2 ^30^37^15^16^2 6 //20 8
MGHEX P 3 l C4SH6SN i2° i 2M 8  ' 2C /0 4 * 4CH3CN 3

TOTC P 6X ^33^36^6 ’ ^  ’ ^C 16H33OH 6
TPH C222j C 24^20^2 12

Goldman2 Cc ^28^16 8
Munich 1 C2 ^20^16 8
MBH2 P I ^15^24^3 3
SUOA P 212 121 ^28^38^19 4

Winter2 P 2X ^52^83^11^16 3C //2C/2 2
Loganin P 2l 2121 ^17^26^10 4

TABLE 2. The seventeen test structures selected from the Sheldrick database.

All the above data sets normalise well using both the Wilson plot and K-curve fitting 

technique. Subsets of the observed structure factors were created using a purpose- 

written program called DATAFILT.
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3.2 Random Data

Two subsets of the complete data sets were selected by the program DATAFILT. The 

first composed of 10% of the total reflections selected at random and the other a data 

set composed of fifty reflections selected at random. These two tests were performed 

to compare the capabilities of the new technique and the Wilson plot at dealing with 

non-systematically sparse data. The results of the seventeen tests are shown in the 

tables of results starting on page 105.

3.3 Low Angle Data

Three subsets of the low angle data were generated using the DATAFILT program. 

The first was composed of 10% (rounded down) of the data set with the lowest 

resolution. The second data set was composed of the fifty lowest angle reflections. The 

last subset contains all reflections with a resolution below 2.0A. These three subsets of 

data reflect a realistic problem in crystallography, where data may be sparse and only 

available at low resolution, i.e. electron diffraction patterns. In these subsets of data 

frequently the 2.0A and 10% data sets differ by a total of only 10 reflections, however, 

both sets were tested for the completeness of the study.
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3.4 Examination of Probability Surfaces

It is possible to calculate the probability for a range of k , [3 and plot this as a surface. 

This was done for two structures, Diamantane and Goldman2, to verify that near the 

maximum on the probability surface, the cross section of the peak does approximate to 

an ellipse, and also to study trends in the change of data quality and the subsequent 

effect on the quality of the probability map. The following diagrams were all produced 

using SIMPLEPLOT (Butland) routines using probability maps produced by 

MITHRIL90.

The cut factor refers to a value on the Z-axis below which log(P(K,pi{Rj})) is not 

plotted. This is done to allow clearer maps to be produced and in no way affects the 

integrity of the data produced in the maps below. However this cut factor on the Z axis 

is not always constant and care should be taken when comparing maps in a sequence.

log(P(K,{3l{Rj}))
A

MAP 1A Diamantane produced using the full observed data set.
Range in p = -5.0 - 20.0 Range in K = 0.1 - 12.0 Cut factor = 100

The above map shows a large range of (3 ,k  with what was found to be a characteristic 

curvature, which shows a rapid increase in probability with increasing |3 ,k  followed by 

a slow reduction in probability with increasing k . There is currently no explanation for 

this behaviour in the theory.
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l0g(P(K,PI{R,»)

MAP IB Diamantane produced using the full observed data set.
Range in (3 = 6.0 - 9.0 Range in K = 0.95 - 1.45 Cut factor = 290

The above map is a close up of the maximum of MAP 1A. It shows that near the 

maximum, the probability surface has an elliptical cross section.

P (K ,p l{ R i} )

MAP 1C Diamantane produced using the full observed data set.
Range in (3 = -5.0 - 20.0 Range in K = 0.1 - 12.0 Cut factor = 290

The above map shows not the log of the probability but the probability itself. Notice 

how sharp the peak is relative to MAP 1A, which is the log probability over the same 

range of (3, K.
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Io8 ( P ( k ,PI{R i I ) )

V

Range in ? !  * *

-* Cut factor = 290

hsPfcPlfRj}))

^ n g T m ? ! g o dU9C? ' 10% ,owest
•0 Range in k  = 0.95 - 1 4 *  r  f c t l ons  data set.

3 Cut fac tor  = JOO



log(P(K,pi{Ri)))

MAP 2C Diamantane produced using the 50 lowest angle reflections data set. 
Range in (3 = 6.0 - 9.0 Range in K  = 0.95 - 1 .45 Cut factor = 50

The above sequence of maps MAP2A-2C shows how the maximum probability varies 

over a fixed range of (3 and K as we reduce the number of reflections in the data set, for 

a specific structure. It shows that the optimum value of (3 and K vary with the 

changing data and that the sharpness of the peak reduces thus increasing the margins 

of eiTor, for lower quality data.

Note that it is necessary to reduce the cut factor to allow for the reduction in the 

magnitude of the log probability.
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log(P(K,pi{Ri}))

MAP 3A Goldman2 produced using a full data set of structure factors calculated 
from refined atomic positions.
Range in (3 = -5.0 - 25.0 Range in K = 0.001 - 35.0 Cut factor = 100

log(P(K,pi{Ri}))

MAP 3B Goldman2 produced using a full data set of observed structure factors. 
Range in P = -5.0 - 25.0 Range in K = 0.001 - 35.0 Cut factor =100
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log(P(K,(3l{ R i }))

MAP 3C Goldman2 produced using a data set of observed structure factors with a 
resolution below 2A.
Range in (3 = -5.0 - 25.0 Range in K = 0.001 - 35.0 Cut factor = 100

The above sequence of maps MAP3A-3C shows the change in the probability surface 

over a fixed range of (3,k  and fixed cut factor with decreasing quality of data. There is 

minimal degradation in the quality of the probability map in moving from calculated 

structure factors to observed structure factors for this compound as the quality of the 

observed structure factors is high. There is a severe degradation in the map in going 

from all observed structure factors to those with a resolution of 2.0A or less.
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3.5 The Calculated Scale and Temperature Factors

In all tables of scale and temperature factor results, a figure in brackets beside the 

result indicates the estimated standard deviation (esd). All figures in the tables are 

given to two decimal places for the sake of clarity.

Any test entry, “no results obtained” indicates that the calculation became unstable and 

it was impossible to obtain numeric answers. This is caused by the eigenvalues going 

to zero, at which point the search for a maximum is switched to a grid search of the 

probability surface, however, if after 100  cycles of searching the grid a solution has 

not been found then the search is terminated and no values for p , k  are determined.

In all cases where no reference is given for the structure or it is listed as unpublished 

the reader is referred to the Sheldrick difficult structures database.

Diamantane-4-■ol (Rogers & Kennard. unoublished work!
Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 1553 3.73 (.72) 3.73 (.17) 0.88 (.13) 0.83 (.06)
10% refs, 
random

155 3.29 (.50) 3.06 (.49) 1.10 (.11) 1.12 (.21)

50 refs, 
random

50 3.85 (1.40) 4.63 (.97) 0.72 (.22) 0.55 (.23)

10% refs, 
low res.

155 -8.71 (6.02) -2.63 (2.63) 3.01 (.80) 1.55 (.28)

50 refs, 
low res.

50 36.01 (22.91) 15.87 (7.45) 0.45 (.21) 0.83 (.26)

2A data 142 -8.30(7.12) no results 
obtained

2.78 (.83) no results 
obtained
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Ouinol (Wallwork & Powell. 1980)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 2844 2.91 (.42) 2.95 (.11) 1.02 (.10) 0.98 (.05)
10% refs, 
random

284 2.13 (.28) 2.31 (.31) 1.56 (.10) 1.44 (.20)

50 refs, 
random

50 2.81 (.54) 2.79 (.71) 0.93 (.12) 0.96 (.33)

10% refs, 
low res.

284 4.65 (2.65) 3.58 (1.42) 0.94 (.12) 1.02 (.15)

50 refs, 
low res.

50 -52.94(24.62) no results 
obtained

5.22 (2.01) no results 
obtained

2 A data 208 6.66  (2.26) 6.96 (2.30) 0.83 (.08) 0.82 (.15)

HOVI (Hovestrevdt. Klepp & ParthS. 1983)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 3502 1.24 (.26) 1.16 (.08) 0.47 (.03) 0.51 (.02)
10% refs, 
random

350 1.83 (.86) 1.82 (.28) 0.48 (.11) 0.45 (.06)

50 refs, 
random

50 -0.19 (.39) -0.07 (.69) 0.72 (.08) 0.67 (.24)

10% refs, 
low res.

350 -3.19(8.68) -2.99 (1.45) 1.24 (.58) 1.04 (.16)

50 refs. 50 no results no results no results no results
low res. obtained obtained obtained obtained
2A data 234 -14.66(12.71) -14.08 (2.67) 2.68(1.41) 2.16 (.45)
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Selendid (Clegg et al.. 1980)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 2626 4.77 (.18) 4.82 (.12) 0.72 (.03) 0.71 (.04)
10% refs, 
random

262 4.73 (.21) 4.65 (.35) 0.67 (.03) 0.70 (.10)

50 refs, 
random

50 4.79 (.42) 4.83 (.76) 0.63 (.05) 0.65 (.20)

10% refs, 
low res.

262 1.01 (2.41) -0.07 (2.45) 1.07 (.11) 1.10 (.23)

50 refs, 
low res.

50 12.13 (.91) -0.11 (18.43) 0.64 (.01) 1.01 (.61)

2 k  data 144 0.62 (2 .66) -0.91 (2.54) 1.10 (.12) 1.16 (.24)

Azet (Colens et al.. 1974)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 1910 3.54 (.25) 3.55 (.17) 1.23 (.05) 1.23 (.07)
10% refs, 
random

191 2.87 (.74) 2.75 (.56) 1.48 (.18) 1.57 (.28)

50 refs, 
random

50 3.10 (.92) 1.69(1.21) 1.14 (.17) 1.88 (.71)

10% refs, 
low res.

191 9.50 (4.02) 7.05 (2.82) 0.75 (.10) 0.91 (.17)

50 refs, 
low res.

50 -33.72(11.96) no results 
obtained

2.15 (.34) no results 
obtained

2k  data 262 8.05 (1.69) 6.09 (1.87) 0.80 (.06) 0.95 (.15)
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TURIO (Braekman et al.. 1981)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 1310 4.31 (.42) 4.34 (.17) 1.38 (.12) 1.30 (.09)
10% refs, 
random

131 4.74 (.77) 5.23 (.56) 0.92 (.15) 0.82 (.19)

50 refs, 
random

50 4.38 (.75) 5.24 (.73) 1.53 (.26) 1.17 (.36)

10% refs, 
low res.

131 -2.78 (8.93) 4.57 (2.49) 2.47 (.83) 1.23 (.23)

50 refs, 
low res.

50 43.14(10.81) 34.37 (9.86) 0.42 (.81) 0.53 (.18)

2A data 150 1.59 (5.96) 6.87 (2.26) 1.90 (.47) 1.10  (.20)

Number of

Dodecane-Diol

Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 786 2.69 (.39) 2.63 (.16) 1.60 (.14) 1.60 (.12)
10% refs. 78 3.22 (.84) 2.87 (.49) 1.28 (.25) 1.54 (.34)
random
50 refs. 50 2.08 (.79) 2.13 (.67) 2.27 (.41) 2.11 (.64)
random

10% refs. 78 2.59 (2.66) 3.99 (3.95) 1.39 (.16) 1.28 (.45)
low res.
50 refs. 50 2.92 (3.33) 3.08 (6.97) 1.30 (.15) 1.38 (.64)
low res.
2A data 75 1.41 (3.06) 3.55 (4.14) 1.52 (.20) 1.32 (.46)
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APAPA (Suck. Manor & Saenger. 1976)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

AH data 3242 2.96 (.41) 3.07 (.12) 0.96 (.07) 0.92 (.04)
10% refs, 
random

324 3.56 (.90) 3.66 (.38) 0.76 (.13) 0.71 (.10)

50 refs, 
random

50 2.11 (2.18) 2.06(1.11) 0.80 (.34) 0.84 (.34)

10% refs, 
low res.

324 5.68 (3.27) 5.08 (1.98) 0.85 (.10) 0.83 (.11)

50 refs, 
low res.

50 -29.55(34.03) -60.67(22.60) 2.10  (.66) 3.67 (1.42)

2A data 385 4.02 (2.34) 3.19(1.54) 0.91 (.09) 0.91 (.11)

MGHEX (Karle & Karle. 198.1)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 4595 3.66 (.25) 3.75 (.10) 1.52 (.07) 1.46 (.05)
10% refs, 
random

459 3.71 (.43) 3.80 (.31) 1.50 (.12) 1.44 (.17)

50 refs, 
random

50 6.21 (.31) 6.16 (.89) 0.59 (.03) 0.63 (.21)

10% refs, 
low res.

459 9.19(4.08) 9.16(1.42) 0.88 (.14) 0 .86  (.10)

50 refs, 
low res.

50 -45.72 (42.38) -25.98 (18.61) 2.77 (1.04) 1.82 (.61)

2A data 447 9.11 (3.81) 9.13 (1.39) 0.88 (.14) 0 .86  (.10)
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TOTC (Williams & Lawton. 1975)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 3328 5.30 (.36) 5.38 (.09) 1.15 (.11) 1.10 (.05)
10% refs, 
random

332 4.86 (.43) 5.00 (.28) 1.33 (.14) 1.27 (.18)

50 refs, 
random

50 5.05 (.75) 4.83 (.65) 1.15 (.21) 1.29 (.41)

10% refs, 
low res.

332 7.38 (2.45) 8.09(1.24) 0.90 (.11) 0.82 (.11)

50 refs, 
low res.

50 12.02 (7.55) 13.97(12.34) 0.71 (.08) 0.62 (.22)

2A data 233 9.37 (3.54) 10.17(1.86) 0.80 (.12) 0.74 (.11)

TPH (Hoekstra. Vos. Braun & Hornstra. 19751

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 4758 2.17 (.21) 2.23 (.05) 1.47 (.11) 1.38 (.05)
10% refs, 
random

475 1.96 (.31) 2.01 (.15) 1.62 (.18) 1.55 (.16)

50 refs, 
random

50 2.00 (.37) 2.41 (.48) 1.71 (.24) 1.23 (.44)

10% refs, 
low res.

475 5.97 (1.65) 6.49 (.81) 0 .86  (.10) 0.81 (.09)

50 refs, 
low res.

50 -37.23 (41.45) no results 
obtained

2.53 (1.46) no results 
obtained

2A data 226 9.22 (3.35) 8.17(1.86) 0.72 (.10) 0.77 (.12)
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Goldman2 (Irngartinger Reibel & Sheldrick. 1981)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 3891 2.70 (.32) 2.77 (.07) 1.35 (.12) 1.28 (.05)
10% refs. 389 2.48 (.34) 2.46 (.23) 1.66 (.15) 1.65 (.21)
random
50 refs. 50 3.75 (1.33) 4.00 (.74) 0.52 (.19) 0.47 (.20)
random

10% refs. 389 2.72 (3.63) 3.59 (1.04) 1.22 (.26) 1.09 (.13)
low res.
50 refs. 50 -25.34 (13.03) -16.10(13.43) 1.90 (.38) 1.48 (.60)
low res.
2A data 228 9.22 (6.17) 7.83 (1.91) 0.79 (.20) 0.85 (.14)

Number of

Munich 1 fSzeimies-Seebach et al.r 19781

Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 2240 2.93 (.57) 2.99 (.13) 1.74 (.20) 1.71 (.09)
10% refs. 224 2.82 (.90) 3.11 (.39) 1.82 (.34) 1.62 (.26)
random
50 refs. 50 4.46 (.72) 4.49 (.87) 0.78 (.11) 0.83 (.28)
random

10% refs. 224 8.22 (6.19) 8.22(1.78) 1.13 (.29) 1.19 (.18)
low res.
50 refs. 50 -4.30(24.10) -7.40(15.29) 1.12 (.38) 1.33 (.56)
low res.
2A data 220 8.56 (6.09) 8.35 (1.81) 1.10 (.28) 1.18 (.18)
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MBH2 (Povser et al.. 1986)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 3764 4.31 (.40) 4.33 (.10) 0.91 (.08) 0.89 (.04)
10% refs. 376 4.04 (.75) 4.07 (.32) 0.98 (.16) 0.95 (.13)
random
50 refs. 50 3.99 (1.07) 3.85 (.82) 0.89 (.24) 0.94 (.38)
random

10% refs. 376 1.71 (1.86) 2.74(1.32) 1.29 (.12) 1.15 (.15)
low res.
50 refs. 50 39.79(11.37) 28.62(15.07) 0.46 (.07) 0.60 (.23)
low res.
2A data 294 0.79 (2.00) 1.39(1.68) 1.33 (.11) 1.26 (.18)

Number of

SUOA (Oliver & Strickland, 1984)

Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 3142 2.70 (.35) 2.75 (.10) 0.92 (.08) 0.87 (.04)
10% refs. 314 2.40 (.78) 2.67 (.34) 1.03 (.19) 0.91 (.14)
random
50 refs. 50 3.14 (2.02) 3.42 (.85) 0.82 (.40) 0.68 (.27)
random

10% refs. 314 1.81 (3.67) 1.76(1.39) 1.03 (.18) 0.99 (.13)
low res.
50 refs. 50 -46.61 (12.76) no results 2.62 (.45) no results
low res. 
2A data 253 4.49 (4.66)

obtained 
3.68 (1.76) 0.88 (.17)

obtained 
0.89 (.13)
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Winter2 (Butters et al.. 1981)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 6980 5.69 (.36) 5.68 (.16) 0.83 (.07) 0.82 (.04)
10% refs, 
random

698 6.38 (.54) 6.45 (.22) 1.28 (.16) 1.24 (.12)

50 refs, 
random

50 6.14(1.97) 6.56 (.88) 1.34 (.64) 1.27 (.52)

10% refs, 
low res.

698 8.44 (.80) 8.46 (.92) 1.09 (.05) 1.10 (.10)

50 refs, 
low res.

50 -41.79 (34.05) -51.11 (19.04) 3.04 (.90) 3.47 (1.15)

2Adata 491 7.88 (2.40) 7.90 (1.36) 1.15 (.11) 1.15 (.13)

Logan in (Jones. Sheldrick. Glusenkamp & Tietze. 1980)

Number of Wilson Plot Bayesian Wilson Plot Bayesian
Reflections Temp. Factor Temp. Factor Scale Factor Scale Factor

All data 3498 2.74 (.28) 2.82 (.18) 0.96 (.08) 0.90 (.07)
10% refs, 
random

349 3.34 (.41) 3.22 (.24) 0.68 (.08) 0.73 (.10)

50 refs, 
random

50 3.57 (.74) 3.91 (.77) 0.62 (.13) 0.50 (.21)

10% refs, 
low res.

349 0.47 (2.21) 2.19(1.40) 1.22 (.15) 0.99 (.15)

50 refs, 
low res.

50 -1.96 (7.41) no results 
obtained

0.90 (.11) no results 
obtained

2Adata 224 0.75 (5.27) 2.64 (2.23) 1.19 (.26) 0.96 (.17)
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The tables of results on the previous pages show several trends:

(i) The two normalisation techniques both go wrong “in the same direction” i.e they 

both become negative, or unrealistically large. This is not surprising as the two 

techniques are mathematically equivalent.

(ii) The standard deviations are generally smaller for the full data sets for the Bayesian 

technique, and this lowering of a  (AT) and a  (B) leads in turn to a reduction in o\E\ 

and o\U \ . The values of esds calculated using the Bayesian method are more realistic 

than those calculated using the methods of Hall and Subramanian (Hall & 

Subramanian, 1982b).

(iii) The magnitude of the esd on the temperature and scale factors increases with 

decreasing numbers of reflections and also with decreasing resolution of reflections. 

This is to be expected from the mathematics and from the plots of the log probability 

surfaces shown in Section 3.4.

(iv) For the large majority of data sets used in the test the result obtained by the 

Bayesian technique was within three Bayesian standard deviations of the result 

obtained by the Wilson plot method, when comparing the results for the same data set.

3.6 Summary

We have shown that the Bayesian normalisation method is perfectly adequate for the 

normalisation of X-ray diffraction data. The technique is not as robust as the 

commonly used Wilson plot with very sparse data, but it works well for full data sets. 

It is no worse than the Wilson plot for full structure solution and can provide a useful 

alternative to the Wilson plot. As an alternative to the Wilson plot it may be used to 

give a new phasing path, through which a solution to the phase problem may be 

discovered. This idea of applying many different techniques to difficult structures was 

expressed best by George Sheldrick “If you try to solve a crystal structure many 

different ways, one of them will probably work. Why it works and the others fail may 

not be obvious”. This use of many different techniques in structure elucidation is one 

of the most important tools available to the crystallographer and this new technique 

provides us with another method of normalisation with which to approach a data set.
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The computer code to perform the calculation is no slower than the calculation of a 

Wilson plot and would be easily implemented into existing normalisation packages, 

just as it was implemented into MITHRIL90.

The new error calculation provides smaller and more reliable esd values on the E- 

magnitudes than the method devised by Hall and Subramanian, which may be 

advantageous in the apriori phasing of a structure using maximum entropy techniques, 

which relies on the esd estimates of the U-magnitudes.
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4.0 FUTURE WORK

As was stated in Section 2.5 the theory used to derive the formula 2.5.6 is very easily 

extended by substitution of a new prior set of knowledge. At the moment we state that 

we know nothing at all about the scale and temperature factors while in reality we do 

have some prior constraints, i.e. a negative temperature factor has no physical meaning 

and so should be forbidden by our prior, similarly a temperature factor over 2 0  must be 

considered highly suspicious and should also be forbidden. A function that gives a 

graph as shown in Figure 4 for values of B could be used as a prior. Prior information 

is not easily used with conventional methods of normalisation.

P (P )

FIGURE 4. A plot of the probability of P varying with the value of P for use as a prior.

If a function as shown above was used as our prior to multiply the Wilson statistics 

that we currently use, then all the results that give a negative temperature factor or a 

temperature in excess of 2 0  would be forbidden, while all those with a value within the 

range 1-19 would remain unaltered. Those in the ranges 0-1 and 19-20 would be 

deemed “unlikely” and it would take a very strong indication from the data to produce 

a temperature factor in one of these ranges, although it would be possible.

The theory can be altered to produce a single overall anisotropic temperature factor 

and an anisotropic scale factor. The theory for this has been developed (R.K. 

Henderson, private communication) but has not yet been programmed. The difficulty 

in producing figures from the data then becomes one of keeping the search on the 

probability surface stable and new algorithms for this would have to be studied.
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This new technique could be used for the normalisation of protein structures by using 

a multichannel formalism to produce an independent temperature factor for both the 

solvent and the protein parts of the data. The multichannel technique would be easily 

coded by using a multi dimensional search of the probability map, this would be 

impossible if using the Wilson plot technique alone. Using two temperature factors 

would be of great help in the phase refinement using the maximum entropy method for 

proteins (Xiang, Carter, Bricogne & Gilmore, 1993).
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CHAPTER 4

A LIKELIHOOD FIGURE OF MERIT 
FOR CONVENTIONAL DIRECT

METHODS
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1.0 INTRODUCTION

1.1 The Importance of Figures of Merit

Before the structure solution of a large or complex molecule can begin using the multi

solution technique, we need to know the phases of a large number of reflections. This 

is achieved by use of a large number of permuted reflections in the starting set; 

generally using magic integer sequences (Main, 1977) to reduce the number of phase 

sets produced (see Chapter 1 Section 10.2). The multi-solution technique thus 

produces a large number of phase sets from which the correct solution must be 

determined. It would be very time consuming to compute and examine the electron 

density maps for each phase set to determine which one contains structurally relevant 

information.

Figures of Merit (FOMs) are functions based on quantities which can be expected to 

have extreme values for a correct phase set, or to determine internal consistency of 

some aspect of the direct methods procedure. These FOMs are then used as part of a 

screening procedure to eliminate un-promising phase sets before the calculation of the 

E-maps.

In this chapter a new figure of merit based on triplet consistency will be developed, 

tested and examined for correlations with other conventional FOMs.
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2.0 THEORY

2.1 The Sayre Equation

The Sayre equation (Sayre, 1952) is given in Chapter 1 EQ 2.0.1. The Sayre equation 

can be rewritten in terms of the normalised structure factors as shown in EQ 2.1.1.

Where

flj is the scattering factor for each atom

yh is the Fourier transform of the squared electron density

V is the volume of the unit cell

The above equation allows the mathematical relationship of structure factors, and will 

allow the determination of Eh providing the E-magnitude and phase are known for 

reflections k and h-k. This is normally used in the determination of the phase of 

reflection h from the other two reflections that form a triplet.

The above equation has been used to solve simple centrosymmetric structures (Karle 

& Hauptman, 1953), and also for phase extension in the solution of proteins.

2.2 Common Figures of Merit

There are a great many FOMs in use in the various crystallographic packages that are 

available. These FOMs can be broken down into four main types, all of which are 

measurements of invariants:

1. Those that measure triplet consistency

2. Those that measure quartet consistency

3. Those that are based on special triplets

(EQ 2.1.1)
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4. Those based on one or two-phase structure invariants

All types of FOM have properties to commend them, yet none is good enough to be 

used in isolation of the other FOMs. The first type of FOM is that which measure the 

triplet consistency and are good at indicating correct atomic arrangement. Examples of 

this type of FOM include:

ABSFOM and R a (both of which are discussed in Chapter 1 sections 12.1 and 12.2 

respectively).

R K a rle  (Karle & Karle, 1966) is a residual of observed and calculated E-magnitudes 

for phased reflections.

I rpobs 
\ h

I rpcalc
~ r h

The second type are those that determine quartet consistency; examples of these 

include:

NQEST, which is discussed in Chapter 1 Section 12.4.

NQUAL (Sheldrick, 1990) which is a measure of triplet and negative quartet 

consistency

Til
NQUAL = ■ ■ (EQ 2.2.2)

Where

2 | * W a - .a  =

11 =

Jn

f>\Eh\ E k.E fi-h-k-1
N

g is a positive constant based on the values of the negative quartet cross terms

NQUAL has proved to be a better discriminator of phase sets for larger structures than 

NQEST. Other FOMs have been developed based on special quartets, and include:

123



HKC Harker-Kasper Criterion and PIC (Schenk, 1973)

, i c ■ < m “ 3’

Where

Uh is the unitary structure factor

° ^ <p/.+*+ 'p * - * " 2 cp ^ 27t

PIC is the non-centrosymmetric version of HKC and the two are equivalent in 

centrosymmetric space groups. Both HKC and PIC are particularly discriminative for 

symmorphic space groups (no glide planes or screw axes).

The Negative Quartet Criterion (NQC) (Schenk, 1974) is highly correlated to \yo. This 

is due to \yo using small \E\ reflections in the Sayre equation EQ 2.1.1 and that the 

negative quartets are constructed from two triplets that are composed of one weak 

reflection and two strong reflections. NQC is defined as

NQC = (WJ ~ "9 -*-/l I"- (<p*+ <P*+ + I
(EQ 2.2.4)

Where

j is the number of quartet cross terms present in the observed data set

Wj is a weight, dependent on the number of quartet cross terms present and must he in 

the range 0<Wj<l, and are usually set to the values Wj= 0, W2 = 0.5, W3 = 0.9

mi = \^h + k\

m 2 =  ( \ E h + k \ + \E h + P

m 3 =  +  +  \ ^ h  +  l\ +  | ^  +  / P  ^

O S ^  + cp̂  + tp̂  + tp £271

The equation must also obey the constraint (W j - mj) ^ 0  to ensure only positive values 

of NQC are produced.
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It must be noted that negative quartets are very sensitive to correctly measured weak 

reflections. If a small number of strong reflections are incorrectly measured as being 

weak then this will be very detrimental to the quality of phase information from 

negative quartets and to the reliability7 of NQC.

The third type of FOMs are those that involve special triplets and which are good for 

determination of structural placement within the unit cell. The best example of this is 

the \j/o FOM, discussed in Chapter 1 Section 12.3. This FOM is highly correlated with 

the NQC figure of merit.

The fourth type of FOM is those that measure the consistency of structure 

seminvariants. Examples of these include consistency of relationships and two 

phase structure invariants.

2.3 Calculation of E-magnitudes

As stated earlier we intend to calculate values for |£^| for unphased reflections using 

two reflections that have been phased and refined by some process, usually tangent 

refinement (Karle & Hauptman, 1956). Sayres equation EQ 2.1.1 can be used to 

determine the phase of a reflection from the phases of two known reflections that are 

related by a three phase invariant. The Sayre equation may be rewritten in its 

equivalent form as EQ 2.3.1 (Hughes, 1953).

(EQ 2.3.1)

Where

N is the number of atoms in the unit cell, assumed equal

(...>£ means the average over all values of k

for JN, where aFor unequal atom structures we must substitute
3 7 = 1

We may now examine the real and imaginary parts of EQ 2.3.1

(EQ 2.3.2)
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(E Q  2.3 .3)

Where b is the phase shift that occurrs in moving origins

By squaring and adding EQ 2.3.2 and EQ 2.3.3 we can obtain EQ 2.3.4

2
+

_ *| cos ((pk + Vh-k + b))  (EQ2.3.4)
2

(EQ 2.3.4)

By making the simplification that sin2cpft + cos2(ph = 1 and then taking the square 

root of EQ 2.3.4 we obtain

pcalcl
h a. J ( £  | E kE h -  Jfc| ( ** + V* _ * +  *>) ) 2 + ( £  | _ *| sin ( +  <pb _ +  b)  )

2

(EQ 2.3.5)

To increase the probability of EQ 2.3.5 being true we only use the largest phased E- 

magnitude reflections for k and h-k. The above equation allows us to make an estimate 

for \E ^calc. This can then be compared with \E^°bs to produce a figure of merit, this 

is already done in the calculation of Ricarle but we be making comparisons only 

with reflections that have not been a part of the phasing process.

Before any comparison is performed a scale factor, k  , required to place both the 

observed and calculated IEh\ must be determined. This is done using equation 2.3.6

As was discussed in Chapter 1 Section 15.8 likelihood is the best possible 

discriminator that can be used to make decisions. The log likelihood gain (LLG) is

(EQ 2.3.6)K

2.4 Derivation of LOGLIK

defined as:
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l l g  = log ( Y A cen,ric) + \o g { Y k acen,,ic) + i0 g ( y >  ' " ‘ric) + log ( T K c, T ic)null

(EQ 2.4.1)

Where

^centric -s likelihood of a centric reflection contributing to the FOM 

^ a c e n tr ic  js ^  likelihood of an acentric reflection contributing to the FOM

Ac*£\ric is the centric null hypothesis for a single reflection

^n u iitnC *s acentfic null hypothesis for a single reflection

For LLG to indicate a correct phase set the value should always be a large as possible.

For the diagonal approximation the following equations apply (Bricogne & Gilmore, 

1990) for acentric and centric reflections respectively.

acentric _  I JJ°^S\ q £/l 
£ h

^  ( W Y  +  \ U h ‘ t c \ 2)
— \ulbs\\uc,.alc (EQ 2.4.2)

( l ^ ' l  + \ u h a l c \ )
^ ce n tr ic  _  cosh

TIE,
^  I I jyca/cl (EQ 2.4.3)

By substituting EQ 2.4.4 into EQs 2.4.2, 2.4.3 and rearranging we obtain equations, 

2.4.5 and 2.4.6 respectively.

M d - Jn
(EQ 2.4.4)

2 I I rca/cl
e  A A (EQ 2.4.5)

.------  —  (\E°hbs\2 + \Eialc\2)
/2/V 2e. I -* I I -* IA cen tr ic  „  I ^

J n e t
1 I roftsl I rca /c l (EQ 2.4.6)

Traditionally the null hypothesis assumes that our calculated values are zero i.e.
|£ca/c| _  an(j js substituted into EQs 2.4.5 and 2.4.6 to yield and

A cerj}ric respectively.
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acentric (E Q  2 .4 .7)

centric
null (EQ 2.4.8)

This now allows us to calculate the LLG which has been renamed LOGLIK, and use it 

as a FOM in the MITHRIL90 program.

2.5 FOM Correlations

was decide to perform an investigation into the linear correlations of the new FOM 

with those currently used in the MITHRIL program.

Linear Correlation Coefficient (Pearson r) is given by the following equation (Press, 

Flannery, Teukolsky & Vetterling, 1992).

N

Where

N is the number of pairs of points (jcf, y t)

x. is the mean of the jc.’s and y t is the mean of the y£ ’s

r lies in the range -1 < r  <1 and indicates that there is full correlation as r approaches 1 

or -1 and that the two variables being tested are completely un-correlated when r=0 . 

The linear correlation coefficient is not a good indicator of whether a correlation is 

significant or not as there is no way to introduce a null hypothesis into the formula. It 

is used as the conventional measure of the strength of a known correlation.

In order to determine if our new figure of merit is indeed different from all others it

52 (*/-•*) 0\ - y )
i = 1 (EQ 2.5.1)r
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2.6 Implementation into MITHRIL90

The source code for the new figure of merit was written in standard FORTRAN77, to 

be transportable across systems. The theory lends itself to be written and implemented 

in two parts:

1) A subroutine to generate the additional triplets for the reflections that will remain 

unphased, in addition to the invariants used for phasing and other FOM calculations. A 

temporary file of all triplets involving two reflections that would be phased and one 

that would not is written to disk. The code that generates these triplets is not re-entrant 

unless renormalisation has taken place, to prevent any unnecessary processing. This 

subroutine is called at the time of invariant generation.

2) A subroutine to read in the FOM triplets from the temporary file and produce 

\Echalc\ . The values for | ^ a/c| can then be compared with to produce our figure 

of merit. This subroutine is called following tangent refinement.

To request the calculation of the LOGLIK FOM the user must enter the request at the 

time of invariant generation. This has required an alteration to the menu for invariant 

generation in MITHRIL90 and the new menu is shown in Figure 1.

129



THE FOLLOWING COMMANDS ARE CURRENTLY AVAILABLE:

TRIPIet < Parameters (1) No. of reflections for triplets >

< (2) 0/1 Default/all refs for psi-zero >

< (3) Cut-off for (Sin(T)/L)**2 >

< [FOm] Turns on the calculation of the new F.O.M. >

WEICht < Weight E’s according to (Sin(T)/L)**2 values >

< 1 /0  = Print/Don’t print table of weighted E’s >

L.E. < Use Linear Equations to estimate the triplets >

< Parameters (1) Max. No. of missing terms (0) >

< (2) Minimum diagonal term (1) >

< (3) Max. terms for Eqns. 1 -3 (0.5) >

< (4) Minimum No. of equations (5) >

LIST < Print triplets - Please use this only if essential >

MDKS < Invokes the MDKS formula to estimate triplets >

< Parameter is min. no. o f contributors to <D> >

< *** Both MDKs and L.E. options are very slow *** >
Only the first 4 characters of any dialogue command are 
significant and a <CR> then terminates current input.

FIGURE 1. The triplet menu from MITHRIL90,

The output from the tangent refinement is different in that LOGLIK now appears on 

the reports alongside all other FOMs. An example of the output produced for 

LOGANIN (Jones, Sheldrick, Gltlsenkamp & Tietze, 1980) is shown in Figure 2. Only 

the first 10  phase sets and not all permuted reflections are shown.

Tangent formula phase determination

LOGANIN
The early figures of merit are not to be applied

Starting set phases

Figures of Merit Undet. generated by programme

Set Abs. Psi-Zero Resid. Nqest Loglik Phases 2 5 6 9 21

1 0 .7478 2.054 26.38 0.00 -131.13 0(18) 90 360 50 45 360

2 0 .8960 1.992 24.23 0.00 -126.61 0(18) 90 360 150 45 360

3 0 .7250 2.225 28.38 0.00 -146.88 0(14) 90 360 250 45 360

4 0 .7124 1.708 25.71 0.00 -137.92 0(1 6) 90 360 350 45 360

5 0 .5444 2.943 33.70 0.00 -136.00 0(1 5) 90 360 90 45 360

6 0.9352 1.503 18.26 0.00 -119.11 0(13) 90 360 190 45 360

7 0.5815 2.762 34.20 0.00 -135.96 0(14) 90 360 290 45 360

8 0 .7520 2.717 27.16 0.00 -139.49 0(1 5) 90 360 30 45 360

9 0.8943 1.688 21.12 0.00 -126.69 0(22) 90 360 130 45 360

10 0 .6227 2.161 30.12 0.00 -143.01 0(14) 90 360 230 45 360

The figures in parenthesis in the above list refer to the number of cycles of tangent 
refinement that were required

FIGURE 2. The layout of the tangent phase refinement report showing the LOGLIK FOM
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Additional code was added to the REVIEW module which is used to rank phase sets 

according to the magnitude of individual FOMs. This module now has an option for 

ranking phase sets by LOGLIK. It was decided not to use LOGLIK in the calculation 

of CFOM (see Chapter 1 Section 12.5) until further refinements of the theory had been 

implemented.
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3.0 EXPERIMENTAL AND RESULTS

3.1 Source and Processing of Data Sets

The test structures were selected from the Sheldrick difficult structures database, and 

also from a group of readily solved structures used at Glasgow for the testing of the 

MITHRIL program. Only the full observed data sets were used. Table 1 shows the 

relevant crystallographic data for each of the structures used in the tests.

Structure Space
Group

Formula z

Diamantane-4-ol P42/ n 1̂4̂ 20̂ 8
Quinol R3 c 6h 6o 2 54
HO VI C 2/m P rl4N i6S in 4

Selendid P 2t ^22^2S^2^e 2

Azet Pca2x c 21h 16c in o 8
TURK) P63 22 1̂5̂ 24̂ 2 12

Loganin P 2l 212l 1̂7̂ 26̂ 10 4
Dodecane-Diol I42d 1̂0̂ 18̂ 2 16

APAPA PAX2X2 3̂0̂ 37̂ 15̂ 16̂ 2 * 6//20 8
MGHEX P 3X C4SH6SN l20 12Mg • 2C104 • 4CH3CN 3

TOTC P 6X 3̂3̂ 36̂ 6 ’ ^  * 2Cl6H33OH 6
TPH C222j C 24^20^2 12

Goldman2 Cc 2̂8̂ 16 8
Munich 1 C2 2̂0̂ 16 8
MBH2 P I 1̂5̂ 24̂ 3 3
SUOA P 2l 2 l 21 2̂8̂ 38̂ 19 4

Winter2 P 2X 5̂2̂ 83̂ 11̂ 16 ’ 3C //2C /2 2

Synthanecine P 21/ n Cn H l5NOA 4
Ibuprofen P 21/ c C13H 1S0 2 4

Platynecine P 2l 2 l 2l c , h 15n o 2 4
Cytisine P 212 121 c u h u n 2o 8

Heliotridine P 212l 2l c 15h 21n o 4 4

TABLE 1. Crystallographic information for the test structures used
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The data set for each structure was processed through a test version of MITHRIL90 

that contained the code for the calculations of LOGLIK. The structure was then solved 

using a variety of options that always included a request for LOGLIK to be calculated. 

The structure solution then continued until tangent refinement was completed. Table 2 

shows the options used in the trial structure solution runs and also results of these test 

runs.

Structure Quartets
(Y/N)

Tangent
weighting

scheme

No. of 
Phase sets 
generated

Solution
found
(Y/N)

Diamantane-4-ol N None 16 Y
Quinol Y None 16 Y
HO VI Y None 32 N

Selendid N None 24 Y
Azet N Hull-Irwin 36 N

TURK) N Hull-Irwin 60 Y
Loganin N Hull-Irwin 56 Y

Dodecane-Diol N Hull-Irwin 54 N
APAPA N Hull-Irwin 64 N

MGHEX N Hull-Irwin 54 N
TOTC N None 48 N
TPH N Hull-Irwin 28 N

Goldman2 N Hull-Irwin 40 N
Munich 1 Y Hull-Irwin 16 N
MBH2 N Hull-Irwin 65 N
SUOA N Hull-Irwin 48 N

Winter2 N None 60 N
Synthanecine N None 16 Y

Ibuprofen N Hull-Irwin 24 Y
Platynecine N Hull-Irwin 56 Y

Cytisine N None 24 Y
Heliotridine N Hull-Irwin 15 Y

TABLE 2. Options used during testing of structures

The data used for the correlation experiments were the figures of merit output from the 

final tangent refinement.
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3.2 The Figure of Merit Results

All results given here are comparisons with the conventional FOMs output by the 

MITHRIL90 program.

The first table shows the FOMs for sixteen of the default number of phase sets (shown 

in Table 2), normally this is the first sixteen sets but may be the sixteen phase sets of 

most interest. Phase set numbers that are marked with an asterisk are correct phase sets 

i.e. show the whole or a partial molecular structure. In this table if the column of 

figures for NQEST is given as zero then no quartets were calculated. In all cases where 

no reference is given for the structure or it is listed as unpublished the reader is 

referred to the Sheldrick difficult structures database for further information.

The second table shows the correlations of the conventional FOMs with LOGLIK and 

1/LOGLIK, for all the phase sets that were generated, not only those that are shown in 

the first table. After each set of results there is a short discussion describing the 

behaviour of LOGLIK with this data.
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Diamantane-4-ol (Rodgers & Kennard. unpublished work)

Set
Number

Undet.
Phases

ABSFOM Residual NQEST LOGLIK

1 * 0 1.1899 0.702 18.30 0 . 0 0 7.72

2 0 0.8880 1.455 23.90 0 . 0 0 -8.58

3 0 0.8849 1.442 23.83 0 . 0 0 -8.58
4 * 0 1.1899 0.702 18.30 0 . 0 0 7.72

5* 0 1.1899 0.702 18.30 0 . 0 0 7.72

6 * 0 1.1380 0.796 18.42 0 . 0 0 3.52

7 0 0.4243 2.780 44.77 0 . 0 0 -36.40

8 * 0 1.1380 0.796 18.42 0 . 0 0 3.52
9 * 0 1.1380 0.804 18.42 0 . 0 0 3.52

1 0 0 0.9082 1.246 23.33 0 . 0 0 -5.37

1 1 0 0.9068 1.276 23.28 0 . 0 0 -5.37
1 2 * 0 1.1380 0.804 18.42 0 . 0 0 3.52

13* 0 1.1381 0.804 18.43 0 . 0 0 3.52

14* 0 1.1899 0.678 18.30 0 . 0 0 7.72

15 0 0.4547 2.977 43.51 0 . 0 0 -30.10

16* 0 1.1899 0.678 18.30 0 . 0 0 7.72

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

V0vs.
LOGLIK

NQEST
vs.

LOGLIK

0.9946 -0.9772 -0.9873 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

V0
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

0.6111 -0.4843 -0.5402 0 . 0 0 0 0

For Diamantane-4-ol LOGLIK behaves in an identical manner to the other FOMs 

indicating the best phase set and giving a reduced value for the second best set.



Ouinol (Wallwork & Powell. 1980)

Set
Number

Undet.
Phases

ABSFOM V 0 Residual NQEST LOGLIK

1 * 0 0.8385 1.460 19.16 -0.478 -17.19

2 0 0.5061 2.806 40.34 -0.067 -53.95

3 0 0.9682 2.989 21.48 -0.749 18.57
4 0 0.6058 2.557 34.36 -0 . 1 1 2 -54.91
5* 0 0.8388 1.460 19.15 0.444 -17.19
6 0 0.5097 2.905 40.26 0.086 -54.52

7 0 0.9684 2.989 21.52 0.585 18.43

8 0 0.6047 2.581 34.67 0.028 -50.10

9 0 1.0491 5.299 27.62 -0.502 86.83
1 0 0 0.4522 2.744 43.45 0.035 -96.17
11 0 0.4099 2.674 46.97 -0.749 -80.57
1 2 0 0.5559 2.645 36.70 -0.169 -43.53

13* 0 0.8412 1.451 19.14 0.288 -17.19
14 0 0.4556 2.709 43.10 0.086 -89.58

15 0 0.9689 2.935 21.60 0.543 22.41

16 0 0.5468 2.897 37.61 0.035 -37.62

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

V0
vs.

LOGLIK

NQEST
vs.

LOGLIK

0.9319 -0.7394 0.4584 0.5654

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

To
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

0.3917 -0.1006 0.5925 0.8669

This is the first example of the LOGLIK FOM preferentially selecting sets that have a 

low residual but with a high value for \|/o. On examination of the electron density 

maps for such phase sets, no meaningful structure or fragments can be seen. The 

correlation between LOGLIK and ABSFOM is pronounced.
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HOV1 (Hovestrevdt. Klepp & P arth6 .1983)

Set
Number

Undet.
Phases

ABSFOM Residual NQEST LOGLIK

1 0 1.0601 3.180 2.84 - 1 . 0 0 114.06

2 0 1.0609 3.316 2.99 1 . 0 0 113.06

3 0 0.8413 3.640 16.51 -0 . 6 8 89.08
4 0 0.8367 3.311 16.30 0 . 6 8 74.56
5 0 1.0591 3.224 2.87 -1 . 0 0 115.64

6 0 1.0599 3.361 3.00 1 . 0 0 117.32

7 0 0.8413 3.589 16.48 -0 . 6 8 86.92

8 0 0.8408 3.209 16.59 0 . 6 8 69.69
9 0 1.0601 3.180 2.84 -1 . 0 0 114.06
1 0 0 1.0609 3.316 2.99 1 . 0 0 113.82
11 0 0.8413 3.640 16.51 -0 . 6 8 89.08
1 2 0 0.8408 3.128 16.55 0 . 6 8 71.67
13 0 1.0591 3.224 2.87 -1 . 0 0 115.64
14 0 1.0599 3.361 3.00 1 . 0 0 117.32

15 0 0.8413 3.589 16.48 -0 . 6 8 86.92

16 0 0.8408 3.076 16.52 0 . 6 8 67.95

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK
vs.

LOGLIK

NQEST
vs.

LOGLIK

0.8978 -0.8963 0.0981 0.1593

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

Tovs.
1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.8220 0.8199 -0.2409 -0.1810

HOV1 is a heavy atom inorganic structure with a single heavy atom on a special 

position. The above results do show that LOGLIK is closely related to RESID, which 

is unrealistically small in the above tables and that this appears to be making LOGLIK 

appear to be unrealistically large. Note that the correlation to ABSFOM is still present.
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Selendid (Clegg et al.. 1980)

Set
Number

Undet.
Phases

ABSFOM Residual NQEST LOGLIK

1 * 0 1.2718 2.394 9.45 0 . 0 0 -97.42
2 0 0.8448 2.589 22.75 0 . 0 0 -127.83
3* 0 1.2719 2.394 9.45 0 . 0 0 -97.42
4 0 0.8438 2.584 2 2 . 6 8 0 . 0 0 -127.88
5 0 1.0668 2.108 18.58 0 . 0 0 -114.82
6 * 0 1.2718 2.395 9.45 0 . 0 0 -97.42
7 0 1.0673 2.107 18.62 0 . 0 0 -114.83
8 0 1.0670 2.108 18.61 0 . 0 0 -114.84

9 0 1.0668 2.108 18.61 0 . 0 0 -114.85
1 0 * 0 1.2718 2.394 9.45 0 . 0 0 -97.42
1 1 0 1.0672 2.108 18.61 0 . 0 0 -114.85
1 2 * 0 1.2720 2.394 9.46 0 . 0 0 -97.42
13* 0 1.2722 2.394 9.46 0 . 0 0 -97.42
14 0 1.0666 2.109 18.50 0 . 0 0 -114.78
15 0 1.0669 2.108 18.55 0 . 0 0 -114.80
16 0 0.9987 2.863 20.95 0 . 0 0 -114.14

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

¥To
VS.

LOGLIK

NQEST
vs.

LOGLIK

0.9878 -0.9838 0.1948 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

Vo
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.9774 0.9919 -0.2432 0 . 0 0 0 0

The LOGLIK figure of merit indicates the correct solution strongly, which the y o 

FOM does not.
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Azet (Colens et al.. 1974)

Set
Number

Undet.
Phases

ABSFOM Vo Residual NQEST LOGLIK

1 0 1.1031 1.271 29.44 0 . 0 0 -94.42
2 0 0.9675 1.327 38.71 0 . 0 0 -96.53
3 0 1.7210 2.250 43.66 0 . 0 0 -93.68
4 0 1.1302 1.096 31.66 0 . 0 0 -93.99
5 0 1.7458 2.294 46.65 0 . 0 0 -94.59
6 0 0.8835 2.086 31.52 0 . 0 0 -93.00
7 0 1.1564 1.263 32.93 0 . 0 0 -92.63

8 0 1.0439 1.397 40.64 0 . 0 0 -94.87
9 0 1.3954 1.319 40.61 0 . 0 0 -93.52
1 0 0 0.7883 1.811 31.59 0 . 0 0 -96.74
11 0 0.9997 1.266 42.45 0 . 0 0 -95.93
1 2 0 1.0889 1.393 35.12 0 . 0 0 -95.18
13 0 1.6097 1.969 39.21 0 . 0 0 -93.85
14 0 1.6684 2.126 43.74 0 . 0 0 -93.89
15 0 0.8080 1.502 47.63 0 . 0 0 -95.83
17 0 0.5168 4.417 36.79 0 . 0 0 -100.53

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK
” ovs.

LOGLIK

NQEST
vs.

LOGLIK

0.5189 0.1631 -0.4400 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

v 0
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.5152 -0.1589 0.4284 0 . 0 0 0 0

In the above tables of results there are no correct solutions. The values of LOGLIK are 

very similar with no clear indication of a true minimum in phase space. This structure 

is a good example of LOGLIK not giving a false indication of correctness where none 

is warranted.For this structure there is no correlation between LOGLIK and the 

conventional FOMs.
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TURIO (Braekman et al.. 1981)

Set
Number

Undet.
Phases

ABSFOM Vo Residual NQEST LOGLIK

1 0 0.6009 4.316 40.64 0 . 0 0 -41.85

2 0 0.4885 3.509 43.39 0 . 0 0 -66.39

3 0 0.6741 3.303 36.82 0 . 0 0 -44.01
4 0 0.5397 3.656 39.91 0 . 0 0 -55.17

5 0 0.6333 2.616 38.69 0 . 0 0 -44.80
6 0 0.5515 2.441 36.53 0 . 0 0 -72.79

7 0 0.6069 2.324 33.45 0 . 0 0 -66.48

8 0 0.5812 2.498 35.21 0 . 0 0 -68.51
9 0 0.5903 2.153 34.69 0 . 0 0 -69.52
1 0 0 0.5264 3.449 39.89 0 . 0 0 -57.59
1 1 0 0.5136 2.994 38.57 0 . 0 0 -67.24
1 2 0 0.5219 2.912 38.43 0 . 0 0 -66.38
13 0 0.5375 2.620 37.05 0 . 0 0 -60.67
14 0 0.5215 2.425 37.88 0 . 0 0 -71.31
16 0 0.7228 3.360 32.92 0 . 0 0 -38.24
47* 0 0.8313 1.406 21.47 0 . 0 0 -33.25

ABSFOM Residual v0 NQEST
vs. vs. vs. vs.

LOGLIK LOGLIK LOGLIK LOGLIK
Correlation
Coefficient 0.4760 -0.3661 0.1118 0 . 0 0 0 0

ABSFOM Residual V0 NQEST
vs. vs. vs. vs.

1/LOGLIK 1/LOGLIK 1/LOGLIK 1/LOGLIK
Correlation
Coefficient -0.5938 0.4877 -0.0209 0 . 0 0 0 0

In the above phase sets only one correct solution was produced. The highest value 

given for LOGLIK corresponds to the correct set and has a value similar to a phase set 

with a low residual - high \j/o value, as was seen in many test sets. The spread of 

values of LOGLIK is large within the incorrect phase sets.
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Loganin (.Tones. Sheldrick. Glflsenkamp & Tietze. 1980)

Set
Number

Undet.
Phases

ABSFOM Residual NQEST LOGLIK

1 115 0.7590 1.911 22.89 0 . 0 0 -43.12

2 115 0.6615 1.530 25.56 0 . 0 0 -45.58

3 115 0.7527 1.463 23.99 0 . 0 0 -38.87
4 115 0.7564 2.016 23.92 0 . 0 0 -43.48
5 115 0.7059 1.844 27.96 0 . 0 0 -44.31
6 115 0.6601 1.887 28.54 0 . 0 0 -48.05

7 115 0.7034 1.969 24.73 0 . 0 0 -48.86

8 115 0.7746 1.499 2 2 . 8 8 0 . 0 0 -42.42

9 115 0.7480 1.883 24.85 0 . 0 0 -43.84

1 0 115 0.5714 1.919 30.77 0 . 0 0 -51.53

1 1 115 0.7055 1.750 23.51 0 . 0 0 -48.32
1 2 115 0.6322 2.216 28.43 0 . 0 0 -41.23
13 115 0.7264 2.066 24.68 0 . 0 0 -42.33
14 115 0.6584 1.937 29.72 0 . 0 0 -44.81
15 115 0.6239 1.988 28.59 0 . 0 0 -44.43
43* 115 0.9735 0.996 15.01 0 . 0 0 -34.73

ABSFOM Residual V0 NQEST
vs. vs. vs. vs.

LOGLIK LOGLIK LOGLIK LOGLIK
Correlation
Coefficient 0.6164 -0.5403 -0.5779 0 . 0 0 0 0

ABSFOM Residual V0 NQEST
vs. vs. vs. vs.

1/LOGLIK 1/LOGLIK 1/LOGLIK 1/LOGLIK
Correlation
Coefficient -0.6520 0.5858 0.6257 0 . 0 0 0 0

As for TURIO only one solution was determined from the phase sets generated. We 

see a broad spread of values for LOGLIK for the incorrect phase sets, however the 

correct phase set does possess the highest value, and is thus identified.
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Dodecane-Diol

Set
Number

Undet.
Phases

ABSFOM Residual NQEST LOGLIK

1 0 0.2194 4.771 52.98 0 . 0 0 -7.57
2 0 0.3992 3.120 41.83 0 . 0 0 -10.17
3 0 0.4307 2.462 39.60 0 . 0 0 -10.44
4 0 0.2648 5.382 50.73 0 . 0 0 -10.94

5 0 0.2079 6.272 53.42 0 . 0 0 -8.81
6 0 0.3419 4.677 47.14 0 . 0 0 -8.07
7 0 0.5234 5.394 36.24 0 . 0 0 -8.17
8 0 0.4294 2.790 39.75 0 . 0 0 -9.32
9 0 0.3527 1.955 44.71 0 . 0 0 -9.95
1 0 0 0.5688 3.543 32.98 0 . 0 0 -9.07
1 1 0 0.4836 2.764 36.92 0 . 0 0 -8.74
1 2 0 0.2520 4.131 51.03 0 . 0 0 -9.39
13 0 0.4332 2.965 39.85 0 . 0 0 -9.38
14 0 0.1239 8.781 58.93 0 . 0 0 -9.33
15 0 0.5325 3.695 35.35 0 . 0 0 -9.76
16 0 0.5020 2.282 35.09 0 . 0 0 -8.47

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

Vc
vs.

LOGLIK

NQEST
vs.

LOGLIK

0.1625 -0.1495 -0.0694 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

V0
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.1363 0.1241 0.0454 0 . 0 0 0 0

No solutions were determined from tangent refinement using 54 sets. There is a very 

small spread in the values calculated for LOGLIK. The similar values for LOGLIK for 

all phase sets indicates that there is no false identification of a correct phase set.
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APAPA (Suck. Manor & Saenger. 1976)

Set
Number

Undet.
Phases

ABSFOM Vo Residual NQEST LOGLIK

1 0 0.7292 1.635 27.90 0 . 0 0 -71.25

2 0 0.5331 1.698 32.42 0 . 0 0 -82.64

3 0 0.5980 1.752 33.05 0 . 0 0 -73.79
4 0 0.6714 1.300 26.35 0 . 0 0 -58.57
5 0 0.4675 2 . 2 1 2 35.22 0 . 0 0 -78.18
6 0 0.6200 1.642 29.34 0 . 0 0 -70.51
7 0 0.5501 2.048 33.44 0 . 0 0 -72.96
8 0 0.4686 2.032 34.26 0 . 0 0 -65.05
9 0 0.4031 2.409 37.06 0 . 0 0 -66.14
1 0 0 0.5802 2.048 30.53 0 . 0 0 -64.74
1 1 0 0.4390 2.164 35.59 0 . 0 0 -64.78
1 2 0 0.2705 3.756 42.93 0 . 0 0 -68.51
13 0 0.4231 2 . 1 2 2 36.07 0 . 0 0 -68.36
14 0 0.4815 2.007 33.64 0 . 0 0 -64.87
15 0 0.2747 3.465 43.78 0 . 0 0 -70.09
16 0 0.2876 3.022 42.34 0 . 0 0 -71.89

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK
'Vovs.

LOGLIK

NQEST
vs.

LOGLIK

-0.1254 0.0590 -0.0107 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

¥Tovs.
1/LOGLIK

NQEST
vs.

1/LOGLIK

0.1044 -0.0314 0.0352 0 . 0 0 0 0

No solution was found in the 54 phase sets generated, but the LOGLIK FOM has the 

highest figure for the phase set with the best conventional figures of merit. All other 

values of LOGLIK are similar with a relatively small spread. This structure, with all 

incorrect solutions displays no correlation between LOGLIK and the other 

conventional FOMs.
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MGHEX (Karle & Karle. 1981)

Set
Number

Undet.
Phases

ABSFOM Vo Residual NQEST LOGLIK

1 0 0.2731 0.000 50.37 0 . 0 0 -1 1 1 . 6 6

2 0 0.1796 0.000 56.77 0 . 0 0 -119.03
3 0 0.3708 0.000 43.87 0 . 0 0 -113.70
4 0 0.3842 0.000 42.85 0 . 0 0 -115.56
5 0 0.2073 0.000 54.67 0 . 0 0 -116.84
6 0 0.1872 0.000 56.05 0 . 0 0 -115.20
7 0 0.1994 0.000 55.46 0 . 0 0 -114.54

8 0 0.3375 0.000 45.99 0 . 0 0 -112.58
9 0 0.4878 0.000 36.39 0 . 0 0 -115.33
1 0 0 0.3640 0.000 44.35 0 . 0 0 -116.50
1 1 0 0.3269 0.000 46.67 0 . 0 0 -118.57
1 2 0 0.2652 0.000 50.89 0 . 0 0 -117.20
13 0 0.2207 0.000 54.02 0 . 0 0 -118.93
14 0 0.3326 0.000 46.43 0 . 0 0 -119.10
15 0 0.2718 0.000 50.47 0 . 0 0 -113.52
16 0 0.2990 0.000 48.53 0 . 0 0 -113.91

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

vG
vs.

LOGLIK

NQEST
vs.

LOGLIK

0.0017 -0.0050 0.0000 0.0000
ABSFOM

vs.
1/LOGLIK

Residual
vs.

1/LOGLIK

Vo
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.0048 0.0081 0.0000 0.0000

No figures are given for \jro as there were too few contributors to this FOM for it to be 

calculated by the program. Again there is no solution and LOGLIK has very similar 

values for all phase sets and no correlations with the conventional FOMs.
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TOTC (Williams & Lawton. 1975)

Set
Number

Undet.
Phases

ABSFOM Vc Residual NQEST LOGLIK

1 0 0.5262 1.792 31.87 0.00 -142.32

2 0 0.5016 1.815 33.23 0.00 -139.88

3 0 0.4644 1.887 34.92 0.00 -152.93
4 0 0.4521 2.036 35.93 0.00 -145.75

5 0 0.4542 2.014 35.82 0.00 -139.65

6 0 0.5041 2.229 33.25 0.00 -140.36

7 0 0.4976 1.931 32.96 0.00 -142.24

8 0 0.4927 1.949 33.36 0.00 -139.21

9 0 0.5027 2.014 32.85 0.00 -139.57
10 0 0.5150 1.709 32.23 0.00 -137.47
11 0 0.4967 1.840 34.10 0.00 -146.80

12 0 0.4874 1.908 33.89 0.00 -151.49

13 0 0.4938 1.779 33.45 0.00 -151.10

14 0 0.4755 2.116 34.85 0.00 -146.30

15 0 0.4804 1.940 34.31 0.00 -139.33

16 0 0.4855 1.779 34.10 0.00 -144.51

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

V0
vs.

LOGLIK

NQEST
vs.

LOGLIK

0.2065 -0.2491 -0.0078 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

V0
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.2072 0.2501 0.0107 0 . 0 0 0 0

No correct solution was found in the 48 phase sets refined by tangent refinement. As 

has been seen before, LOGLIK selects no individual phase set although a broader 

spread of LOGLIK is observed than normal for equally bad phase sets.
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TPH (Hoekstra. Vos. Braun & Hornstra. 1975)

Set
Number

Undet.
Phases

ABSFOM v 0
Residual NQEST LOGLIK

1 0 0.8522 2.025 27.56 0 . 0 0 -138.55

2 0 0.7859 1.983 26.15 0 . 0 0 -151.14

3 0 0.7165 1.842 25.46 0 . 0 0 -150.69
4 0 0.7754 2.257 24.11 0 . 0 0 -146.94

5 0 0.7514 2.242 28.00 0 . 0 0 -145.62

6 0 0.8290 1.755 21.04 0 . 0 0 -154.60

7 0 0.8379 1.810 25.15 0 . 0 0 -142.99

8 0 0.8800 1.727 22.75 0 . 0 0 -140.44

9 0 0.7181 1.823 24.28 0 . 0 0 -153.37
1 0 0 0.7634 2.273 26.20 0 . 0 0 -152.17
1 1 0 0.7501 2.313 25.72 0 . 0 0 -144.91
1 2 0 0.7431 2.373 25.97 0 . 0 0 -140.90
13 0 0.7725 2.094 26.15 0 . 0 0 -152.98
14 0 0.8372 2.013 27.31 0 . 0 0 -139.00

15 0 0.8022 1.716 20.51 0 . 0 0 -162.27
18 0 0.8411 1.635 19.87 0 . 0 0 -150.21

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK
VS.

LOGLIK

NQEST
vs.

LOGLIK

0.6612 0.0185 0.3593 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK
Vovs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.6609 -0.0432 -0.3650 0 . 0 0 0 0

No correct phase sets were generated for this structure. The spread of LOGLIK is large 

and the phase set with the best conventional FOMs is not selected as preferred by 

LOGLIK, indeed the largest values of LOGLIK are associated with phase sets that 

have high values of \yo and low values of RESID.
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Goldman2 (Irngartinger Reibel & Sheldrick. 1981)

Set
Number

Undet.
Phases

ABSFOM Vo Residual NQEST LOGLIK

1 0 0.8059 2.027 27.71 0.00 -149.54
2 0 0.8911 1.673 27.91 0.00 -149.65
3 0 0.9237 1.754 24.83 0.00 -150.86
4 0 0.8672 1.675 24.51 0.00 -152.37

5 0 0.9617 1.526 24.81 0.00 -149.30

6 0 0.9804 1.519 25.56 0.00 -150.71

7 0 0.9469 1.614 23.92 0.00 -148.73

8 0 0.9372 1.610 25.20 0 . 0 0 -147.99

9 0 0.8719 1.940 26.72 0 . 0 0 -151.14
1 0 0 0.9034 1.798 24.74 0 . 0 0 -151.79
1 1 0 0.9561 1.777 21.57 0 . 0 0 -152.83
1 2 0 0.8967 1.756 26.07 0 . 0 0 -151.65
13 0 0.9964 1.636 23.87 0 . 0 0 -152.91
14 0 0.8735 1.697 25.68 0 . 0 0 -149.44

15 0 0.9459 1.570 26.58 0 . 0 0 -150.92
16 0 0.9729 1.670 26.34 0 . 0 0 -152.39

ABSFOM Residual VQ NQEST
vs. vs. vs. vs.

LOGLIK LOGLIK LOGLIK LOGLIK
Correlation
Coefficient 0.3766 0.2814 -0.2554 0 . 0 0 0 0

ABSFOM Residual V0 NQEST
vs. vs. vs. vs.

1/LOGLIK 1/LOGLIK 1/LOGLIK 1/LOGLIK
Correlation
Coefficient -0.3710 -0.2835 0.2578 0 . 0 0 0 0

Once again no correct set was determined by tangent refinement.

correlation between LOGLIK and the conventional FOMs and the spread in LOGLIK 

is small.
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Munichl (Szeimies-Seebach et al.. 1978)

Set
Number

Undet.
Phases

ABSFOM v 0 Residual NQEST LOGLIK

1 0 0.7744 2.357 33.19 0.07 -51.23

2 0 1 . 0 1 2 1 2.457 30.85 0.19 - 1 0 . 1 2

3 0 1.1168 2.510 29.63 0.58 2.40
4 0 1.3311 2.543 34.16 0.75 13.43

5 0 1.0513 2.239 31.92 0.31 -25.69

6 0 1.1460 2.246 34.82 0.25 -6.73

7 0 1.2369 2.179 36.52 0.52 -4.90
8 0 1.2035 2.399 36.45 0.48 1.61
9 0 0.9471 2.527 32.21 0.31 -21.83
1 0 0 0.7417 2.380 33.41 0.16 -49.42
1 1 0 1.1034 2.428 31.66 0.39 1.14

1 2 0 1.1534 2.503 34.34 0.49 3.01

13 0 1.6796 3.491 46.98 1 . 0 0 50.83
14 0 1.1192 2.434 32.36 0.46 -0.18
15 0 1.2154 2.327 34.05 0.58 2.96
16 0 1.3958 2.552 36.41 0.64 15.24

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK
VS.

LOGLIK

NQEST
vs.

LOGLIK

0.9592 0.6181 0.6659 0.9113

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

Vo
VS.

1/LOGLIK

NQEST
vs.

1/LOGLIK

0.0408 0.0959 0.0381 0.0249

This structure is LOGLIKs’ greatest failure. It falsely indicates correct solutions and 

selects as the most probable set the one with the worst conventional figures of merit. 

For this phase set NQEST has a value of 1.0, indicating that all negative quartets are 

incorrectly fitted, this may be a false minimum in phase space that is being indicated 

by LOGLIK. The maps were examined that were indicated by LOGLIK but they 

contained no relevant structural information.
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MBH2 (Povser et al.. 1986)

Set
Number

Undet.
Phases

ABSFOM Residual NQEST LOGLIK

1 0 1.3089 0.000 22.50 0 . 0 0 -125.11

2 0 1.3331 0.000 18.88 0 . 0 0 -124.21

3 0 0.9468 0.000 18.97 0 . 0 0 -131.72
4 0 1.3362 0.000 19.27 0 . 0 0 -124.22

5 0 1.3420 0.000 20.37 0 . 0 0 -124.19

6 0 1.3685 0.000 18.26 0 . 0 0 -124.21

7 0 1.3928 0.000 22.08 0 . 0 0 -124.08

8 0 1.3468 0.000 19.78 0 . 0 0 -125.01

9 0 0.9008 0.000 18.84 0 . 0 0 -137.94
1 0 0 1.3721 0.000 19.20 0 . 0 0 -124.56
1 1 0 1.3938 0.000 20.82 0 . 0 0 -124.24
1 2 0 1.2477 0.000 18.31 0 . 0 0 -124.28

13 0 1.0187 0.000 19.21 0 . 0 0 -125.80
14 0 0.8547 0.000 18.61 0 . 0 0 -145.33
15 0 1.4039 0.000 21.82 0 . 0 0 -124.10
16 0 1.3613 0.000 22.62 0 . 0 0 -124.20

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

%vs.
LOGLIK

NQEST
vs.

LOGLIK

0.8307 0.3247 0 . 0 0 0 0 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

V 0
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.8446 -0.3333 0 . 0 0 0 0 0 . 0 0 0 0

Despite good values for RESID no solutions for this structure were found in the phase 

sets. There is a very narrow spread of values for LOGLIK showing no discrimination 

between sets. There is a correlation between LOGLIK and ABSFOM, which is a 

feature normally seen in collections of phase sets that contain correct solutions.
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SIJOA (Oliver & Strickland. 1984)

Set
Number

Undet.
Phases

ABSFOM Vo Residual NQEST LOGLIK

1 0 0.6963 2 . 0 0 2 27.31 0 . 0 0 -140.95

2 0 0.5787 2.368 32.98 0 . 0 0 -130.11

3 0 0.7274 1.794 26.78 0 . 0 0 -132.70
4 0 0.7788 1 . 8 6 6 27.44 0 . 0 0 -134.38

5 0 0.5628 2.044 31.50 0 . 0 0 -148.06

6 0 0.7443 1.798 31.46 0 . 0 0 -130.52

7 0 0.7305 1.759 27.36 0 . 0 0 -137.98

8 0 0.6656 2.097 28.59 0 . 0 0 -144.68

9 0 0.7175 1.998 28.27 0 . 0 0 -133.76

1 0 0 0.7040 1.949 27.37 0 . 0 0 -134.17
1 1 0 0.5827 2 . 2 1 1 32.49 0 . 0 0 -130.45
1 2 0 0.6258 1.737 27.71 0 . 0 0 -144.50

13 0 0.6798 1.942 26.08 0 . 0 0 -130.26
14 0 0.6732 1.925 27.30 0 . 0 0 -134.43

15 0 0.6999 1.942 27.43 0 . 0 0 -131.01
16 0 0.6240 1.791 28.17 0 . 0 0 -137.09

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

vG
vs.

LOGLIK

NQEST
vs.

LOGLIK

0.5732 0.2204 0.1217 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

V0
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.5826 -0.2335 -0.1189 0 . 0 0 0 0

No correct phase sets were produced for SUOA but LOGLIK does exhibit a broad 

range of values giving an indication of correctness to phase sets with higher values of

w . This behaviour is seen in other structures where no solution was found.
* O

150



Winter2 (Butters et al.. 1981)

Set
Number

Undet.
Phases

ABSFOM Residual NQEST LOGLIK

1 0 1.0775 2.786 28.03 0 . 0 0 -105.85
2 0 1.0272 2.839 26.50 0 . 0 0 -111.69
3 0 1.1541 2.775 24.76 0 . 0 0 -104.43
4 0 1.2194 3.034 26.97 0 . 0 0 -105.50

5 0 1.0771 2.777 27.33 0 . 0 0 -105.65

6 0 1.1492 2.752 25.20 0 . 0 0 -107.28

7 0 0.9041 3.066 23.47 0 . 0 0 -108.49

8 0 1.0795 2.773 27.87 0 . 0 0 -105.84

9 0 1.0244 2.778 27.02 0 . 0 0 -110.96
1 0 0 1.1489 2.727 25.11 0 . 0 0 -106.88
11 0 1.0263 2.850 26.65 0 . 0 0 -1 1 1 . 6 6

1 2 0 1.0668 2.748 26.48 0 . 0 0 -104.42

13 0 1.0251 2.854 26.86 0 . 0 0 - 1 1 2 . 0 0

14 0 1.1423 2.724 25.30 0 . 0 0 -107.75

15 0 1.0817 2.765 27.50 0 . 0 0 -105.38
16 0 1.2196 3.016 26.64 0 . 0 0 -105.94

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK
'Vo
VS.

LOGLIK

NQEST
vs.

LOGLIK

0.7312 -0.1088 -0.0379 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

Vo
VS.

1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.7302 0 . 1 1 0 0 0.0373 0 . 0 0 0 0

No solution was found for Winter2 among the phase sets generated. LOGLIK shows a 

small range of values with little discrimination between phase sets.
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Svnthanecine (Barbour. Freer. Robins. 1987)

Set
Number

Undet.
Phases

ABSFOM Vo Residual NQEST LOGLIK

1 * 0 1.1759 0.752 17.39 0.00 43.94
2 * 0 1.1759 0.752 17.39 0.00 43.94

3 0 0.7903 1.841 25.87 0.00 -5.22
4 0 0.6471 1.824 31.50 0.00 -27.07

5 0 0.9077 1.559 24.85 0.00 -15.13

6 0 0.9097 1.489 24.64 0.00 -14.16

7 0 0.6777 1.448 30.76 0.00 -17.68

8 0 0.6950 1.429 29.37 0 . 0 0 -10.23
9 * 0 1.1759 0.752 17.39 0 . 0 0 43.94
1 0 * 0 1.1759 0.752 17.39 0 . 0 0 43.94

1 1 0 0.7860 1.690 25.09 0 . 0 0 -7.72

1 2 0 0.7132 1.669 27.76 0 . 0 0 -12.28
13 0 0.8871 1.593 25.66 0 . 0 0 -9.91
14 0 0.9163 1.551 24.78 0 . 0 0 -18.63

15 0 0.6589 1.990 29.97 0 . 0 0 -37.67

16 0 0.6975 2.753 30.98 0.00 -34.27

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK
vs.

LOGLIK

NQEST
vs.

LOGLIK

0.9152 -0.9374 -0.8929 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

v 0
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

0.5836 -0.5053 -0.5023 0 . 0 0 0 0

LOGLIK strongly identifies the correct phase set. The other incorrect phase sets have 

LOGLIK values in a broad range but the correct value is so large that the others could 

be discounted.
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Ibuprofen (McConnell. 1974)

Set
Number

Undet.
Phases

ABSFOM Vo Residual NQEST LOGLIK

1 0 0.7944 2.318 24.41 0.00 -148.82

2 0 0.8791 2.021 20.23 0.00 -138.74

3 0 0.7920 2.304 21.35 0.00 -145.76

4 0 0.9349 1.729 19.45 0.00 -137.60

5 0 0.9114 2.031 16.69 0.00 -134.47

6 0 0.7954 2.035 19.43 0.00 -147.67

7 0 0.9216 1.984 18.66 0.00 -133.07

8 0 0.8304 2.253 21.70 0.00 -140.08
9 * 0 0.9778 1.125 10.99 0.00 -133.52
10 0 0.8372 2.174 18.21 0.00 -137.59
11 0 0.9075 1.511 14.33 0.00 -137.14

12 0 0.8748 1.650 16.27 0.00 -138.38
13* 0 0.9858 1.080 12.12 0.00 -134.25
14 0 0.8666 1.579 16.41 0.00 -140.89

15* 0 0.9775 1.251 12.85 0.00 -135.94

16 0 0.8020 1.743 19.56 0.00 -149.16

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

V0vs.
LOGLIK

NQEST
vs.

LOGLIK

0.8714 -0.6410 -0.5002 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

Vo
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.8757 0.6459 0.5073 0 . 0 0 0 0

In this structure LOGLIK identifies the correct solutions but also identifies many other 

incorrect solutions as being correct. RESID has a very similar behaviour for this 

structure. The correlations with other figures of merit are not as large as other 

structures where a correct solution was found.
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Platvnecine (Freer. Kellv & Robins. 1987)

Set
Number

Undet.
Phases

ABSFOM Vo Residual NQEST LOGLIK

1 * 0 0.9705 0.993 11.13 0 . 0 0 -17.81
2 * 0 0.9659 0.994 11.32 0 . 0 0 -17.81
3 0 0.6312 3.320 36.80 0 . 0 0 -22.31
4 0 0.7230 2.646 34.97 0 . 0 0 -20.43
5 0 0.6295 3.280 37.25 0 . 0 0 -21.03
6 * 0 0.9356 1.015 13.14 0 . 0 0 -18.01

7 0 0.7444 2.272 33.70 0 . 0 0 -22.33
8 0 0.6845 2.816 34.29 0 . 0 0 -22.32

9 0 0.6217 3.315 34.19 0 . 0 0 -22.62

1 0 0 0.5834 3.332 36.46 0 . 0 0 -23.15
1 1 * 0 0.9788 0.969 11.07 0 . 0 0 -17.82
1 2 0 0.7293 2.664 35.22 0 . 0 0 -2 0 . 2 2

13 0 0.7266 2 . 6 6 6 35.59 0 . 0 0 -20.29
14 0 0.6968 3.398 32.25 0 . 0 0 -19.87
15 0 0.6513 3.027 33.85 0 . 0 0 -21.07
16 0 0.6313 3.233 37.23 0 . 0 0 -21.13

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

v 0
vs.

LOGLIK

NQEST
vs.

LOGLIK

0.7997 -0.7604 -0.7602 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

v 0
vs.

1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.8206 0.7867 0.7763 0 . 0 0 0 0

LOGLIK successfully identifies and ranks the correct solutions that were found. The 

identification of the correct sets is not strong but they are the sets with the highest 

value of LOGLIK. The range of LOGLIK is very small, a feature normally associated 

with a collection of incorrect sets.
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Cvtisine (Freer. Robins & Sheldrake. 1987)

Set
Number

Undet.
Phases

ABSFOM V 0 Residual NQEST LOGLIK

1 0 0.6318 2.510 30.53 0 . 0 0 -124.64

2 0 0.6777 2.271 31.45 0 . 0 0 -121.91

3 0 0.7810 2.034 28.51 0 . 0 0 -111.73
4 * 0 0.9390 1.125 16.12 0 . 0 0 -96.20

5 0 0.5481 1.887 33.63 0 . 0 0 -115.96

6 0 0.7043 2.003 29.68 0 . 0 0 -115.27

7 0 0.6595 2.327 30.14 0 . 0 0 -115.76

8 0 0.6196 2.396 32.36 0 . 0 0 -120.97

9 0 0.6763 2.336 31.28 0 . 0 0 -119.47

1 0 0 0.7221 2.049 27.62 0 . 0 0 -120.51
1 1 0 0.5829 2.350 32.46 0 . 0 0 -120.05
1 2 0 0.6211 2.437 32.83 0 . 0 0 -117.87

13 0 0.6772 2.704 32.16 0 . 0 0 -117.60

14 0 0.6178 2.505 32.16 0 . 0 0 -121.39

15 0 0.6885 2.405 29.74 0 . 0 0 -119.69

16 0 0.6643 2.705 31.16 0 . 0 0 -117.93

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

V0
VS.

LOGLIK

NQEST
vs.

LOGLIK

0.7941 -0.8754 -0.9127 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

Vovs.
1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.7754 0.8945 0.9332 0 . 0 0 0 0

LOGLIK successfully identifies the only correct solution produced by tangent 

refinement. The spread of values of LOGLIK for the incorrect phase sets is very small 

and the correct solution is strongly indicated. This is one of the few structures for 

which LOGLIK is strongly correlated with \|ro.
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(+1 Heliotridine (Freer. Hagan & Robins. 1988)

Set
Number

Undet.
Phases

ABSFOM Vo Residual NQEST LOGLIK

1 0 0.8568 3.426 30.04 0.00 -86.09

2 0 0.8823 2.999 27.53 0.00 -81.90

3 0 0.8614 3.192 29.77 0.00 -84.98
4 0 0.8358 2.852 24.68 0.00 -82.70

5* 0 1.0795 1.293 14.48 0.00 -70.66

6 0 0.8965 2.969 28.33 0.00 -84.03

7 0 0.8823 2.999 27.53 0.00 -81.90

8 * 0 1.0800 1.292 14.40 0 . 0 0 -70.67

9 0 0.8738 3.128 30.15 0 . 0 0 -84.68

1 0 0 0.8385 3.253 26.61 0 . 0 0 -83.74

1 1 0 0.8209 2.776 26.89 0 . 0 0 -89.26
1 2 0 0.3542 3.077 44.08 0 . 0 0 - 1 2 1 . 6 8

13 0 0.6129 3.082 33.97 0 . 0 0 -88.93
14 0 0.8698 3.056 26.00 0 . 0 0 -82.24

15* 0 1.0800 1.287 14.31 0 . 0 0 -70.58

Correlation
Coefficient

Correlation
Coefficient

ABSFOM
vs.

LOGLIK

Residual
vs.

LOGLIK

V0
vs.

LOGLIK

NQEST
vs.

LOGLIK

0.8579 -0.9085 -0.9159 0 . 0 0 0 0

ABSFOM
vs.

1/LOGLIK

Residual
vs.

1/LOGLIK

Tovs.
1/LOGLIK

NQEST
vs.

1/LOGLIK

-0.8617 0.9138 0.9186 0 . 0 0 0 0

The correct phase set is successfully identified by LOGLIK. While the incorrect 

solutions have a small range of values the correct solution is strongly indicated. For 

this structure there is strong correlation between LOGLIK and all other conventional 

FOMs.
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The results on the previous pages show several trends

(i) Where a solution is to be found then it will be indicated as the preferred phase set 

by LOGLIK.

(ii) LOGLIK indicates correct solutions for phase sets with low residual and high \|r 

values. This can be the cause of LOGLIK indicating incorrect results over correct 

phase sets. Despite this trend in results there is little correlation between LOGLIK and 

\|/ when compared directly.

(iii) It is very difficult to define a range of LOGLIK that indicates a correct solution. 

We can only say that the highest value of LOGLIK for any given structure is the 

preferred phase set. In most structures the indication of correctness is given by all 

incorrect phase sets having similar values of LOGLIK while correct sets have much 

increased values.

(iv) Conrelations to other FOMs are not consistent across structures. In those that are 

easily solved there appears to be close correlation, as one would expect, however in 

those where all phase sets are incorrect there is little or no correlation. This lack of 

correlation for incorrect sets is indicative of new information being contained in the 

LOGLIK FOM. The FOM with the highest number of close correlations is ABSFOM, 

which would be expected as both FOMs are a measure of internal triplet consistency.

(v) The values for many of the phase sets is large and negative. This would be 

expected only for very incorrect sets, yet appears for correct sets also.

3.3 Summary

It has been shown that LOGLIK is a good figure of merit that contains information not 

normally available to the conventional figures of merit i.e. the triplet consistency of 

the Es in the mid-range that have not been used in the phasing process. Like all 

conventional FOMs it should not be used in isolation, as false indications of 

correctness can be given. Although LOGLIK contains new information it is not 

superior to the conventional FOMs and as such aids little in the identification of 

correct phase sets. It should remain in the MITHRIL package in its current form as it is 

optional and does not contribute to CFOM.
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The source of incorrect indications is the sensitivity of LOGLIK to the magnitudes of 

Ecalc. We produce Ecalc from the tangent formula which is flawed in its assumption of 

the non-correlation of invariants. This leads to the over consistency of phase sets, seen 

so often in tangent refinement, and reduces the ability to calculate high quality, low 

error E-magnitudes. Use of another technique to produce the extrapolated Ecalc may 

remove these problems.

The problem of the lack of a fixed range of LOGLIK that indicates a correct solution 

can be overcome by using the FOM only to rank phase sets. This ranking can then be 

used to examine a reduced number of the other FOMs to indicate correctness, in a 

similar manner to the CFOM.

For a small increase in computer time it is possible to obtain a new figure of merit 

which can be used to corroborate indications given by the other FOMs. On a modem 

work station this increase in computer time is negligible.
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4.0 FUTURE WORK

The large negative values of LOGLIK that indicate a correct solution is not to be 

expected. It does indicate a very poor fit between \Ecalc\ and \Eobs\, which is not 

expected for a correct phase set. This could be due to a scaling problem of \Ecalc\ and 

a new scaling technique should be used based on resolution or groups of intensities.

When deciding on which Es should be incorporated into LOGLIK those with high 

estimated standard deviations of the observed E-magnitude should be excluded or 

down-weighted in their contributions to the FOM. This would reduce the standard 

deviation of LOGLIK itself and so hopefully reduce the number of instances where the 

FOM only marginally indicates a solution.

The largest problem with this FOM appears to be the quality of the \Ecalc\ data, and a 

better way of extrapolating the E-magnitudes should be found. LOGLIK works very 

well as part of the maximum entropy method and a mix of the two techniques should 

be very powerful. The phased reflections produced and refined from the tangent 

formula would be used to produce an E-map. This E-map would then pass through 

cycles of entropy maximisation until a maximum map had been determined. This ME- 

map would then be Fourier transformed back to phased reflections which could used in 

the \Eobs\, \Ecalc\ comparison. This solution would be expensive in computer time but 

should yield a very powerful FOM.

The reflections being used for comparison to produce a value of LOGLIK should be 

split into two sets, those that contain only low resolution reflections i.e. >2.5A and 

those of atomic resolution i.e. <2.0A. This would have the effect of producing two 

figures of merit, the first used to determine molecular placement within the unit cell 

and the second to determine the correctness of the atomic arrangement.
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APPENDIX A



INTRODUCTION TO APPENDIX A

This appendix contains the manual produced for the program MITHRIL90 in October 

1990. It contains a full explanation of all required commands and optional commands 

that can be used within the MITHRIL90 package. It shows the use of the two new 

options described in chapters three and four of this thesis. It also shows as new 

features added by Stephen Brown, Karine Lesley and Chris Gilmore.
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MITHRIL90

A COMPUTER PROGRAM FOR THE 
AUTOMATIC

SOLUTION OF CRYSTAL STRUCTURES FROM

X-RAY DATA

VERSION 2.0 dated OCTOBER 1990 

by

A. N. HENDERSON 
C. J. GILMORE 
S. R. BROWN

Department of Chemistry 
University of Glasgow 

Glasgow G12 8QQ 
Scotland.
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On every thought I have the countless shadows fall 
Of other thoughts as valid that I cannot have;
Cross-lights of errors, too, impossible to me,
Yet somehow truer than all these thoughts, being with more power aglow.

May I never lose these shadowy glimpses of unknown thoughts 
That modify and minify my own, and never fail 
To keep some shining sense of the way all thoughts at last 
Before life's dawning meaning like the stars at sunrise pale

Hugh MacDiarmid 

Light and Shadow
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1.0 AN INTRODUCTION

It d o e s n 't .  s o  m u c h  m a tte r  w h e re  y o u  b e g in  th e  e x a m in a tio n  o f  a  s u b je c t , s o
lo n g  a s  y o u  k e e p  o n  until y o u  g e t  r o u n d  a g a in  to  y o u r  s ta r tin g  p o in t. A s  it w e re , 
y o u  s ta r t  o n  a  s p h e r e  o r  a  c u b e ;  y o u  m u s t  k e e p  o n  until y o u  h a v e  s e e n  it from  
all s id e s .

Ezra Pound - A B C of Reading

The 1970's were an exciting time for direct methods in X-ray crystallography. 
Groups in Europe and the U.S.A. were involved in producing a whole new set 
of ideas and concepts which were greatly extending the power of the method. 
Although there was undoubtedly a spirit of friendly competition between the 
groups involved, most workers carved out an area in which to work that did not 
overlap much with other groups. One consequence of this was that the practical 
implementation of new methods by other crystallographers began to lag behind 
the theory because no single computer program existed in which these ideas 
were implemented.

Professor Michael Woolfson organised a meeting of researchers in direct 
methods in January, 1978 at York University. This meeting was made possible 
by a NATO Research Grant. It was attended by T. Debaerdemaeker (Ulm), G. 
Germain (Louvain), C. Giacovazzo (Bari), C. Gilmore (Glasgow), H. Hauptman 
(Buffalo), S. Hull (York), P. Main (York), P. Rentzeperis (Salonika), H. Schenk 
(Amsterdam), G. Tsoucaris (Paris), D. Viterbo (Turin) and M. Woolfson (York). 
It was agreed to pool the efforts of the groups represented by these people, and 
attempt to produce a single computer program incorporating all the relevant 
new developments in direct methods. NATO continued to support this work by 
providing travel funds for groups to meet and discuss implementation problems, 
and Chris Gilmore took on the job of coordinating all the material into a 
computer program. The job was assisted by a grant from the S.E.R.C. and the 
University of Glasgow.

In 1988 it was decided that a new release of MITHRIL was required to bring 
the programme up to date with the theory developed during the 1980's. This 
work was done by two Ph.D. students, Stephen R. Brown and Allan N. 
Henderson both of whom worked with Chris Gilmore, and MITHRIL90 is the 
result of their efforts.

The manual is organised as follows. The next section (Section 2.0) gives a brief 
listing of the changes between MITHRIL and MITHRIL90. Section 3.0 gives a 
general view of the program, and a brief theoretical outline of the processes 
involved. These descriptions are necessarily sparse, and those unfamiliar with 
the topics under discussion will need to refer to the literature. Sections 5.0-17.0 
are concerned with detailed descriptions of program input, and the remaining 
sections (18.0-24.0) deal with examples and suggestions on the methods used 
to solve difficult structures.
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2.0 PRINCIPAL CHANGES IN MITHRIL90

In addition to bug-fixes, there have been several improvements made in 
MITHRIL since 1983, some were obvious omissions in the original program, 
e.g. a SYMBOLIC ADDITION module; some were made following advances in 
theory e.g. the calculation of the scale and temperature factors by a Bayesian 
technique, while others were made to improve the user friendliness of the 
program e.g. the REVIEW module.

There follows a list of the modules with a brief summary of the changes made. 
You are referred to the relevant part of section3.0, and the commands sections 
(5.0-17.0) for more detailed information on each change.

NORMAL:
Bayesian method of normalisation is added.
Powder diffraction data including overlaps are now processed.
The ability to normalise Electron and Neutron diffraction data is added.
Missing reflections can be inserted.
Calculation of errors on scale and temperature factors is added.

TRIPLETS & QUARTETS:
Both have cut-offs and weighting schemes based on sin 0/ X.

QUINTETS:
Removed with all subsquent references.

SYMB:
There is a new module to solve centro-symmetric structures by symbolic 
addition.

TANGENT:
Phase refinement is now performed 50% faster.
New figure of merit, LOGLIK.

REVIEW:
A new module to sort and output phase sets after tangent refinement is 
provided.

GENERAL:
Output and menus are largely in lower case.
All input is now case independent.
The ability to deal with larger structures with more reflections has been added.
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3.0 MITHRIL90 - AN OVERVIEW
MITHRIL90 is a crystal log raphic direct methods program based on MULTAN80 
(Main, Fiske, Germain, Hull, Declercq, Lessinger & Woolfson, 1980) with the 
incorporation of MAGEX (Hull, Viterbo, Woolfson & Shao-Hui, 1981), YZARC 
(Baggio, Woolfson, Declercq & Germain, 1978) and RANTAN (Yao Jia-Xing, 
1981), quartet invariants, and symbolic addition. It contains numerous 
additional features all of which are outlined in this section.

The name of the program comes, like so much software, from Tolkien. Readers 
of ‘The Hobbit”, “The Lord of the Rings” or “The Silmarillion” will know all about 
Mithril. It was the light, malleable and infinitely workable metal beloved of 
Dwarves and Elves alike. It was also unbreakable, and so can be considered a 
rather pretentious name for a direct methods program. However, the name 
MITHRIL is also an acronym for Multan with Interactive facilities, Triplet 
checking, Higher invariants, Random phasing, Intelligent control of flow and 
options and Linear equations phasing.

A flowchart of the program modules is shown in Figure 1. Sections 3.2 - 3.15 
give a detailed description of the package. It is assumed here that the reader 
has a working knowledge of direct-methods, and in particular the MULTAN 
package. There is a useful summary by Main (1980).

NORMAL + EDIT

QUARTETS 
2nd NEIGHBOURHOOD 
3rd NEIGHBOURHOOD

TRIPLETS + 
MDKS +  

LE.

CONVERGE + EDIT

PHASE PERMUTATION YZARC MAGEX RANDOM PHASES

TANGENT REFINEMENT 
+ EFOM’S

RANTAN + EFOM’S

E-MAPS + 
INTERPRETATION ^  RECYCLE

FIGURE 1. A flowchart of the MITHRIL90 program
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3.1 The User Interface

Four levels of user interaction are provided, ranging from the batch mode to a 
full dialogue requiring user decisions at key points. This level is set dynamically 
and can be changed at any time, so that some modules may be run interactively 
and others under complete program control. The interactive modes are menu- 
driven with a separate menu for each module outlining available commands. 
Each instruction consists of a 4-character key word and a free-format list of 
input fields. Zero rather than blank fields generate default options. Each 
command has a sensible default value so that the user need only enter non
default options. Furthermore, there are four levels of default complexity, 
designed to cover all situations between the simplest and most difficult 
problems. These default levels are also dynamic and may be altered from 
module to module. Finally, the user need only specify those modules for which 
non-default options are to be used, the program will automatically run any 
modules that are needed but that have not been explicitly called by the user.

3.2 Normalisation

For detailed discussions of the normalisation process see Rodgers (1965, 
1980) and Giacovazzo (1980a). The code used here is an extensive 
modification of the MULTAN80 program. The normalisation procedure is often 
neglected by crystallographers since it is so automatic, but decisions made at 
this point have drastic implications for subsequent steps in the analysis, and full 
control over the process may be needed. Accordingly, the package offers the 
following features:

(1) Equivalent reflections and systematic absences are removed. The former 
distort the phasing procedure, while the latter can render relationships which 
rely on small E-magnitudes incorrect. In this latter category are the Q triplets 
and the negative quartets. Missing reflections may be added to complete a data 
set using Wilson statistics to estimate the magnitudes of the missing E values.

(2) Allowance is made for a lack of knowledge of the detailed contents of the 
unit cell.

(3) Should the traditional K-curve or Wilson plot techniques prove inadequate, 
a new Bayesian method of normalisation has been introduced. In addition direct 
input of E-magnitudes and/or phases is permitted and the normalisation 
procedure is bypassed. This allows interfacing to other normalisation programs.

(4) Editing facilities are provided to remove or modify structure factors before 
normalisation, or to remove or modify the subsequent E-magnitudes. The 
former facility alters the normalisation process, whereas the latter modifies only 
some of the normalised structure factors. Allied to these provisions is a set of
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optional theta limits and a maximum permitted E-magnitude. Experience has 
shown that E-magnitudes greater than approximately 3.5 can prevent the 
weighting schemes in a weighted multi-solution phasing environment from 
working with optimum efficiency as they tend to drive most weights to unity very 
rapidly. The relatively crude device of setting an upper limit can often remove 
this problem. The 0 limits can be useful to exclude low-angle data which are 
subject to large systematic error, or the high angle reflections which can be very 
sensitive to small changes in overall temperature factor.

(5) Full control is provided over scaling and the temperature factor.

(6) The ability to input groups of known stereochemistry whose position and 
orientation in the unit cell can be either fixed or random (Main, 1976).

(7) The ability to normalise X-ray, electron, and neutron diffraction data.

(8) Normalise powders including overlapped reflections. The latter are used for 
normalisation but are not included in the list of reflections to be phased.

(9) An interface to the Maximum entropy program, MICE (Gilmore & Bricogne, 
1990).

(10) Standard deviations are calculated for the scale and temperature factors; 
the method used depends on the normalisation method: Wilson or K-Curve 
techniques use the method of Hall & Subramanian (1982). Whilst in the 
Bayesian method the errors come from the underlying theory. Standard 
deviations are also calculated for each individual E-magnitude. It may be 
advisable to edit invariants involving more than one reflection with unusually 
large sigma(|E|).

3.3 Triplets

The Cochran distribution (Cochran & Woolfson, 1955) is used with the addition 
of two formulae for independently checking the triplet cosine. These are the 
MDKS formula (Hauptman, 1972) and a related technique (LE) in which a 
quintet extension of a triplet is used to derive a joint conditional probability 
distribution involving six E-magnitudes (Gilmore & Hauptman, 1985). The 
distribution is manipulated to give a system of 10 simultaneous linear equations 
in which the triple-phase invariant is one of the undetermined variables, and 
can be calculated in two ways. One is from the 10 simultaneous equations. 
Another method is via linear least-squares since three of the variables in the 
least-squares system are in fact the E-magnitudes involved in the triplet itself, 
and are thus known. The module requires that both estimates should agree 
within reasonable limits, otherwise both are ignored. Both MDKS and LE 
methods give only approximate estimates for the cosines, but they can be used 
to alter the relative weights of the triplets and for indicating which relationships 
may be troublesome.
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The triplets are searched for those which give indications of the phases of one- 
phase seminvariants. If MDKS or LE has been used, an analysis of these 
triplets in terms of the estimated cosine is also given. This can be a useful 
adjunct in the decisions concerning the reliabilities of the Sigma-1 phases.

A cut-off, input as a fraction of the largest value of sin2/ X 2 can be used to 
remove triplets with two or more reflections having a resolution greater than this 
cut-off. A weighting scheme based on sin2/ X 2 may be used to down weight 
unreliable triplets that involve any high resolution reflections. (See Gilmore & 
Brown, 1988). This can be very useful for very high resolution data sets.

3.4 Quartets

Users unfamiliar with quartet theory are recommended to read a review by 
Hauptman (1980). Quartet invariants of the form:

phi{h} + phi{k} + phi{I} + phi{-h-k-l} = PHI{4}

are a very important component of MITHRIL90. Three types of quartet must be 
distinguished - that for which cos PHI{4} is estimated to be zero (a positive 
quartet), one in which cos PHI{4} is estimated to be 180 (a negative quartet), 
and the enantiomorph sensitive relationships between these two extremes. The 
negative quartets in particular are very useful. They can be used both as a 
figure of merit NQEST (DeTitta, Edmonds, Langs & Hauptman, 1975; Gilmore, 
1977), and in an active mode to generate new phases (Freer & Gilmore, 1980). 
Two formulae are provided - the 7-magnitude, 2nd neighbourhood formula, and 
the more powerful 3rd neighbourhood, 13-magnitude formula (Hauptman, 
1977a, 1977b). Missing members of these neighbourhoods are permitted, and 
the missing magnitudes are assigned values of unity. The use of the 2nd. 
neighbourhood formula is now widespread, but the 3rd. neighbourhood formula 
is still somewhat neglected.

Let us define the quartet which we wish to estimate as follows: 

phi = phi{h} + phi{k} + phi{i} + phi{m} (1) 

such that h+ k + i + m = 0

The first neighbourhood consists of E{h},E{k},E{|} and E{m}, whilst the second 
neighbourhood adds the three cross terms E{h+j<},E{k+]} and E{i+h}. The 
addition of the third neighbourhood is accomplished by introducing an arbitrary 
vector p and its associated vector q such that:

h + k + q + q = 0

It is necessary that E{q} and E{q} are 'large'. We now have a second quartet 
invariant:
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phifcg} = ph i®  + phi® + ph i®  + phi{g} (2)

We have also indirectly defined a third quartet invariant:

phi{lm} = phi{i} + phi{m} + phi{-p} + phi{-q} (3)

Quartet (2) has a second neighbourhood comprising:

E{h}, E{k}, E{p}, E{q}, E{h+k}, E{k+p} and E{p+h}

Quartet (3) has a second neighbourhood comprising:
E{1}, E{m}, E{p}, E{q}, E{!+m}, E{m-p} and E{-p-q}
However, an identity exists between (1), (2) and (3), such that:

phi + phi{pq} + phi{lm} = 0 (4)

so that phi can be estimated not only by its own 7-magnitudes comprising its 
second neighbourhood, but also by the two invariants (2) and (3). A total of 21 
magnitudes are now involved in the estimation of phi, of which only 13 are 
unique. These 13-magnitudes define the third neighbourhood. The three 
quartets (1), (2) and (3) define a trio.

It is possible to construct a joint conditional probability distribution of the pair of 
structure invariants phi and phi{pq} given these 13 unique magnitudes. This is 
the P{2/13} distribution of Hauptman (1977a). It is possible to extract from this 
the P{1/13} distribution which gives phi as a function of 13 E- magnitudes.

Clearly, the third neighbourhood is not unique. There is a multiplicity of third 
neighbourhoods, each giving rise to an estimate for f, and each estimate having 
its own variance. Direct methods will only allow us to use one of these. The best 
way to handle this situation is to use that estimate which has the lowest 
associated variance, at the same time discarding any invariants for which there 
is disagreement between the third neighbourhood calculations. It must also be 
stressed that the individual phi estimates are not independent because they will 
have many terms in common. The 3rd neighbourhood formula also goes some 
way towards alleviating the 1/N dependence of quartet reliability (N is the 
number of atoms -assumed equal- in the unit cell). It can also be very useful 
with weak or limited data sets (Gilmore, Hardy, MacNicol & Wilson, 1977).

In practical terms, it is necessary to restrict the vectors p and q to span the top 
50-100 E-magnitudes, otherwise the calculations consume considerable 
amounts of computer time. There is very little loss of accuracy in doing this.

Positive quartets may also be generated if requested. They can sometimes be 
useful in situations where there is a deficiency in the number of triplets 
available, e.g. powder diffraction data. Positive quartets are correlated with 
triplets (Giacovazzo, 1980b) and this correlation is dependent on the E's
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involved. It is handled in the way described by Freer and Gilmore (1980). Higher 
invariants are put on the same scale as triplets using the concept of an 
equivalent k which is obtained from the variance of the appropriate probability 
distribution. (Freer & Gilmore, 1980).

The negative quartet module is always called in situations where the space 
group is symmorphic. They are also generated in cases where difficulty in 
solving the structure is indicated by the user. As in triplets, there is an optional 
sin2/ X 2 cut-off which eliminates all quartets that involve two or more reflections 
above a user specified limit, and a weighting scheme to down weight quartets 
that involve reflections with any reflections having a resolution above a 
specified limit.

3.5 Convergence Mapping

The convergence mapping module follows invariant generation. It performs two 
quite distinct functions:

(1) The collection of invariants. All the invariants generated by previous 
modules are loaded for active use in the phasing procedures which follow, 
although it is possible to exclude higher invariants. Triplets are optionally 
weighted via their MDKS or LE cosine estimate, if they are available. A rather 
simpler method than that used by Bussetta and Comberton (1974) is employed. 
The invariants phi{3} are split into 4 classes:

(i) cos phi{3} >= 0.7
(ii) 0.7 > cos phi{3} >= 0.0
(iii) 0.0 > cos phi{3} >= -0.7
(iv) cos phi{3} < -0.7

Each class (i)-(iv) is assigned a weight greater than or equal to zero by the user, 
and this is used to multiply the kappa value for the relationship, where:

kappa = 2 E{h} E{k} E{h-k} / root(N)

(E{h}, E{k}, E{h-k} are the E's involved in the triplet).

By giving relationships in class (i) weights greater than unity, they can be 
upweighted and play a larger role in the phasing; in a similar way, those in class 
(iv) can be down-weighted or removed completely. The MDKS and LE formulae 
are unreliable in the two remaining classes and unit weights are usually used 
here. It is worth emphasising that this weighting scheme radically alters the 
phasing path as decided by the convergence method, and even if the MDKS 
estimates are unreliable, the resulting convergence map may be sufficiently 
different from the original that previous problems may disappear. In particular, 
unreliable triplets which appear early in the convergence map, even if not 
detected by the MDKS/LE tests, may now appear in less critical phasing areas.
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Specific relationships may be deleted from or added to the list. Any 2-, 3- or 4- 
phase invariant or seminvariant may be added. This can be particularly useful 
as an adjunct to symbolic addition (Karle & Karle, 1966) where indications of 
relationships between symbolic phases or of potentially unreliable invariants 
can emerge. This information can now be supplied to the multisolution process 
in a simple way. The user must estimate the reliability of any input relationship 
by supplying a kappa value.

(2) Convergence mapping itself. Once the relationships have been suitably 
ordered, the convergence map chooses suitable reflections which define the 
origin, the enantiomorph (if relevant), the known phases and the permuted 
phases. The user is provided with the usual options to define or partially define 
origin and enantiomorph, the permuted reflections, the maximum and minimum 
number of phase sets and the values of any known phases. Three criteria are 
applied in the acceptance of the Sigma-1 results:

(i) A minimum probability.
(ii) A minimum number of indications (= (N+) + (N-),
where N+ is the number of zero indications and N- is the number of 180 degree 
indications)
(iii) A consistency ratio (c) defined as: 

c = max(N+,N-) / ((N+) + (N-))

Caution in accepting a Sigma-1 determined phase cannot be overemphasised.

Care is also needed with the active employment of quartets. It is obvious that 
with a triplet, two known phases can derive a third, whereas for a quartet, three 
are required to give a fourth. If the phase angles are very approximate, as they 
are in the early stages of direct methods, quartets will tend to propagate errors 
more than triplets. Accordingly, the number of higher invariants should be a 
maximum of ca. 20% of the total number of invariants used, although this rule 
may be broken for powder data sets.

At this point the negative invariants are assembled for use in NQEST. It is 
important to use reliable invariants, and thus only relationships with an 
equivalent k greater than 1.0 are accepted. A minimum of 25 invariants is 
needed for NQEST. The y o figure of merit is also set up at this point, and again 
there is a minimum number of relationships needed for this figure of merit to be 
invoked.

The reflections which are eliminated last in the convergence procedure are 
those which will be phased first in the tangent refinement module. In other 
words, the map represents an inverted phasing path which is stored, and used 
by all subsequent modules. In difficult circumstances, it is necessary to 
examine this map carefully, and it should always warrant more than just a 
cursory glance.
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Reading the convergence map output is straightforward. A typical line of output 
looks like this:

27 3 0 5 12.3 12 -4 0 12 6.5 17 -6 8 0 4.8
-4181 01.71 488121.8

The reflection to be phased at this point is number 27 with indices 3 0 5. It has 
an alpha value of 12.3 at its point of elimination. Four relationships are shown 
as contributors. The first is a triplet:

Phi{12} - Phi{4} + (12/24) = Phi{27}

with a kappa-value of 6.5, and a phase shift of (12/24) x 360 = 180deg. The 
second is a quartet involving reflections 17, 6, 8 and 27; the phase shift is zero 
and the kappa-value is 4.8. The next relationship is also a quartet, involving 
reflections 1, 4,18 and 27. This is followed by another triplet.

The phases to be permuted are listed at the end of the convergence output, 
along with origin and enantiomorph definitions. Permutation of general phases 
is carried out using magic integers, where each general phase (one with no 
phase restriction) is defined by:
Phi = M{T}X

M{T} is the magic integer, and X is a variable which takes on different values at 
equal intervals in the range 0-360 deg. The interval of X is chosen to make the 
r.m.s. difference from one set to the next equal to the r.m.s. error in the 'best' 
phase set.

The user may specify the number of general reflections (Ngen), and the number 
of special reflections (Ns) the starting set. General reflections have no phase 
restrictions; special reflections have only two possible values. The number of 
starting sets so generated can be calculated by:

No. of sets = Nsets * 2 Ns * Ef

Nsets is the number of phase sets produced from the general reflections via 
magic integer phase permutation (Main, 1978). Ef is an enantiomorph factor. If 
the magic integer variable is set at 2 (the default - see Section 9.0), Nsets can 
be derived from the number of general reflections in the starting set (Ngen) from 
the following table:

Ngen 0 1 2 3 4 5 6 7 8 9 10
Nsets 1 4 14 18 30 48 80 130 214 348 568
Rms 0 26 28 39 42 45 47 48 49 50 50
Error
The value of Ef depends on how the enantiomorph is fixed:
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= 1/2 if an unknown phase defines the enantiomorph - the range of permutation 
is restricted to 1/2 the phase circle.

= 1 if the enantiomorph is defined by restricting the origin defining phases to 
fixed values or the enantiomorph is defined by the space group.

= 2 if the enantiomorph is defined by restricting the origin defining phases to two 
sets of values-one phase must take on two values.

= 4 if the enantiomorph is defined by restricting the origin defining phases to 
four sets of values-two phases each take on two values.

3.6 Symbolic Addition

MITHRIL90 has a symbolic addition module, called SYMB derived from LSAM 
(Germain & Woolfson, 1968). Many modifications have been made including 
the use of quartets and new more powerful figures of merit.

SYMB accepts all triplet and quartet phase relationships (up to a maximum of 
2000) which have probabilities greater than a minimum set by the user. These 
probabilities are calculated using the Cochran & Woolfson(1955) formula

P = 1/2 + 1/2 tan (kappa/2)

where kappa was defined in section 3.5
Using program assigned symbols and origin reflections, signs are developed by 
symbolic addition (Karle & Karle 1966). Starting set signs are assumed true (i.e. 
Prob. = 1.0). Sign indications are then computed for all other reflections and the 
new reflection that is indicated with the highest probability is accepted. This is 
then used in another round of sign indication. In this iterative fashion all signs 
with a probability greater than a set minimum are found. When sign 
determination is done SYMB checks the consistency of the signs by rejecting 
all those with probabilities less than a specified cut-off and re-determining the 
signs that remain. This continues until there is no change in sign from one re
determination to the next. Unlike many symbolic addition programs, SYMB 
allows for the failure of individual triplets.

Note that SYMB can only be used for centro-symmetric structures, and is most 
useful in case where tangent refinement causes phases to become over 
consistent, particularly heavy atom structures.

3.7 Yzarc

Usually one proceeds directly to tangent refinement from convergence 
mapping, but MITHRIL90 offers two additional modules which can be run 
between CONVERGE and TANGENT. The first of these is YZARC. It uses sets 
of random phases as a starting point, and refines them via least-squares or
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steepest-descents. Users unfamiliar with these concepts should first read two 
papers - Baggio, Woolfson, Declercq and Germain (1978) and Declercq, 
Germain and Woolfson (1979). Neither of these papers discuss the steepest 
descents method. It is sufficient to state here that standard steepest-descents 
algebra is used with appropriate weighting schemes. Steepest descents and 
least squares will, in general, produce different phase sets even when all other 
conditions are the same.

Usually only a subset of reflections is phased, and these phases are passed to 
tangent refinement. Normally some 50-100 different sets are processed in this 
way. Some of the facilities offered in MITHRIL90 differ from the standard 
YZARC procedure:

(1) All the relationships collected during convergence are used. The inclusion 
of quartets alters the refinement; sometimes it improves the radius of 
convergence, but sometimes it does not.

(2) The problem of when to stop refinement has always been difficult in YZARC. 
An alternative method based on NQEST is offered as an option. After an initial 
round of n cycles, NQEST is calculated. If at this point the NQEST figure of 
merit is greater than a specified cut-off (e) refinement is terminated, otherwise 
it continues. It checks this figure of merit after each cycle, and refinement 
continues whilst it continues to fall until it hits a minimum at which point it stops. 
Experience dictates that suitable values for n and e above are 7 and 0.0 
respectively, but they are user options. This method has the effect of reducing 
the number of refinement cycles - usually by a factor of six - with a 
commensurate fall in the computer time required. As with the traditional 
techniques of stopping YZARC refinement, it is not always successful.

(3) YZARC normally phases the bottom 100 or so reflections from the 
convergence map. An option is provided whereby the convergence map is 
bypassed except for origin definition, and the top reflections ordered on E- 
magnitude alone are phased. This usually creates a singular matrix if least- 
squares is employed so that steepest descents is normally used. This can be 
useful in circumstances where the convergence map selects a subset of highly 
linked reflections in which certain parity groups are not represented. Bypassing 
the map can phase a more representative set of reflections.

(4) The final figures of merit are augmented by the inclusion of NQEST.

3.8 Magex

MAGEX is another module run between convergence mapping and tangent 
refinement. Users unfamiliar with the concepts employed here should first read 
two papers - White and Woolfson (1975) and Declercq, Germain & Woolfson 
(1975). These deal with a three-dimensional form of MAGEX - the MAGIC 
procedure. A paper by Hull, Viterbo, Woolfson and Shao-Hui(1981) shows how 
the method is adapted to the one-dimensional case employed here.
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MAGEX has been inserted in the MITHRIL90 package without any major 
modifications. Higher invariants are not employed here except that an NQEST 
value is assigned to each possible solution just as in YZARC.

3.9 Tangent Refinement

The tangent formula carries out expansion and refinement of phase angles. 
The following options are provided:

(1) All relationships accepted by CONVERGE are used actively to generate 
new phase angles.

(2) Three early figures of merit - the two MULTAN80 options of \yo combined 
with R{Karle} and \\ro alone to which has been added NQEST. Any combination 
of these three can be specified. Early figures of merit are useful when it is 
proposed to generate large numbers of phase sets. There is a link here with 
SHEXTL which relies very heavily on NQEST to promote efficiency. These 
figures of merit can also be used to filter out unacceptable phase sets from 
YZARC and MAGEX after only a few cycles of tangent refinement and 
expansion.

(3) Two weighting schemes as in MULTAN80 - the traditional MULTAN scheme 
and Hull - Irwin statistical weights (Hull & Irwin, 1978). The latter is useful in 
cases of pseudo-symmetry, over consistent phase sets (as demonstrated by 
very low R{Karle} values, and very high ABSFOM's), symmorphic space 
groups, and heavy-atom cases.

(4) In its interactive mode, the program will attempt to identify any solution with 
exceptional figures of merit. It is possible to stop at this point, compute an E- 
map then continue with tangent refinement if the map seems unpromising.

(5) Four figures of merit: ABSFOM, \yo, R{Karle}, and NQEST, combined 
together with user controlled weights give a single figure of merit and this is 
used to rank the solutions. The R{Karle} is based on alpha values.

(6) A new figure of merit, LOG LI K, based on the agreement between observed 
and calculated magnitudes of unphased reflections has been implemented. It 
is based on the prediction of an E-magnitude from triplets, and the FOM 
keyword in the triplet call will allow calculation of this figure of merit.

(7) Both tangent and Hull-lrwin weighted tangent refinement is now performed 
without disc i/o to give a 50% reduction in the time taken for the refinement of 
one phase set, at the cost of increased memory requirements.
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3.10 RANTAN

The RANTAN module offers all the facilities provided by the tangent refinement 
module discussed above. It differs from the latter in that it does not use phase 
permutation, but assigns all unknown phases random values. There is thus no 
phase expansion, but only refinement. The phases are refined to convergence 
in the usual way. The theory of this technique is discussed by Yao Jia-Xing 
(1981). As in section 3.9 the LOGLIK figure of merit is available and run times 
are decreased by 50%.

3.11 Review

The new interactive module, Review, has been added to MITHRIL as a direct 
consequence of the experience gained in solving difficult structures. For some 
structures it has been found necessary to generate many phase sets (up to 
2000 have been produced). To facilitate in the selection of a correct phase set 
MITHRIL90 will now sort the sets and rank them according to one of six figures 
of merit.

3.12 E-Maps

The final step of a direct methods analysis is the calculation of one or more E- 
maps. It is E-map interpretation that the high level of user interaction which can 
be provided becomes important, particularly when there are many maps to 
search. It is possible to generate and search all the appropriate maps quickly, 
and reject unsuitable solutions on the basis of peak heights, peak positions or 
fragmentation patterns before attempting a full interpretation. Simple graphics 
facilities are also provided for those users with graphics terminals.

3.13 Recycling

Four methods of recycling are provided:

(1) Weighted Fourier syntheses (Sim, 1959,1960).
(2) Karle recycling (Karle, 1968).
(3) Karle recycling with random phases for the unphased reflections (Yao Jia- 
Xing, 1983).
(4) Groups of correct orientation but known or unknown position (Main, 1976).

3.14 Patterson and Vector Maps

Provision is made for the calculation of an EA2 -1 vector map. User control of 
the sharpening procedure is possible. Examination of such maps can be useful 
in difficult cases (Nixon, 1978).
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3.15 Graphics

A program, PLOTQ, is also provided. This stand-alone program reads in the 
maps produced by MITHRIL90 after the MAPS module has been run (providing 
they have been saved as peranent files). It allows the user considerable scope 
for viewing the electron density map, and may be invaluable for defining 
molecular boundaries and placing fragments.
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4.0 DATA COLLECTION

It may seem strange to include a discussion of data collection, but all direct 
methods calculations depend critically on the quality and resolution of the 
intensity data. These factors become more and more important as structural 
complexity increases or in cases of pseudo-symmetry, structural regularity 
(such as fused six-membered rings) or high thermal motion in the crystal. It is 
therefore important to plan your data collection with care especially if any of 
these features are expected. In particular:

(1) Get your intensities as accurately as possible with at least some equivalent 
reflections which are subsequently merged to give a unique data set. Be 
suspicious of any discrepancies.

(2) Measure weak reflections with a similar accuracy to the strong ones. Weak 
reflections generate small E-magnitudes and these play a critical part in the 
quartet and Q relationships which have a vital role in the MITHRIL90 package. 
Some diffractometer software places great reliance on pre-scans of peaks 
before measuring the intensity accurately. Weak peaks are then ignored. This 
increases efficiency but if the small E-magnitudes are only measured in a pre
scan, then they will have very large standard deviations and the relationships 
which use them will be unreliable. So make sure you input data collection 
parameters which will override the pre-scan options.

(3) The higher the resolution the better. The Cu sphere should be considered 
the minimum although for some crystals this is just not possible because of poor 
diffraction quality. The program does its best in these circumstances, but the 
chances of success are reduced. Sheldrick's rule quantifies this as follows "If 
less than 50% of the reflections in the resolution range 1.1-1.2A are observed 
(i.e. |F|>2.0s(|F|)), then the structure will be difficult to solve by conventional 
direct methods". Two exceptions to this rule are very small structures and 
heavy atom structures. Be careful with very high, observed, weak reflections 
which become very large E-magnitudes. This is especially likely with high 
intensity tubes. This problem can be dealt with by the use of triplet and quartet 
weighting and cut-off techniques. These are discussed in more detail in the 
relevant sections. Another problem of unusually large E's can be caused by 
solvent, which may produce very large E's at very low resolution. It is found that 
it is best to remove these reflections from a data set.
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5.0 MITHRIL90 COMMANDS - A GENERAL 
INTRODUCTION

In the remainder of this manual and in the program itself the following 
nomenclature is used:

(1) Any text or part of a command text in lower case is optional e.g. NORMal 
means that only NORM is required but that NORMA or NORMAL is accepted.

(2) All commands appear in LARGE, BOLD, CAPITALS

(3) An essential blank is written as an underscore

MITHRIL90 commands consist of four or more characters which begin in the 
first column of each line, they may be in upper or lower case. Only the first four 
characters are significant, the rest are ignored. The parameters, if any, then 
follow on the same line in free format. Only columns 1-72 are scanned. The 
parameters are separated by blanks or commas. To get a default insert a 
parameter of zero - not a blank. This is important when entering parameters for 
those commands which allow more than one.

For example, in the module NORMAL the command LIMIt can be used. It has 
three parameters - sin theta maximum, sin theta minimum, and maximum 
permitted E-magnitude. If it is desired to use the first two parameters with their 
default values, but to specify a maximum E of 3.5 the command:

LIMIt 0,0,3.5

must be issued. The theta limits are given their default values and E-max is set 
to 3.5. Note that the command:

LIMIt, 3.5 or LIMIt,3.5 is not acceptable.

If the fields fill the line, continuations are possible by using The rest of the 
line is then ignored and another line is read. This should be blank in columns 1 - 
4. As many continuations as needed may be used, but there is a limit of 200 
parameters in total for any command. Example:

PHASe 1 3 4 5 6 7 8 9 11 23 34 45 46 56 102 =
104119

Some commands require keywords instead of, or in addition to the numerical 
parameters. These keywords can be placed anywhere on the line. Only the first 
two characters are significant. E.g.

SIGMa ALL where 'ALL' is a keyword.

184



Comments can be inserted on a command by using Everything that follows 
this symbol is ignored.

There are three different types of command:

(1) The general commands which alter the mode in which the program is run - 
TITLE, END, MENU, LEVEL NOPRINT, PRINT, DEFAULT, HARD, 
VERY_HARD, MODEL SHOW, X.

These can be entered as often and whenever desired.

(2) Those which call modules -

NORMAL, TRIPLETS, QUARTETS, CONVERGE, YZARC, MAGEX, SYMB, 
TANGENT, RANTAN, REVIEW, MAPS, RECYCLE, PATTERSON

These commands cause the relevant module to be entered.

(3) Those which are particular commands for a given module only.

5.1 The General Commands

TITLe Enters a title which is printed at the top of each page. The default is a 
blank line. Continuations ('=' sign) are not allowed with this command.

END Tells the program that no further input will follow. The current module will 
be run to completion, and the package will then stop.

MENU In the interactive modes (LEVEL = 1,2,3) the screen is cleared and the 
current menu is displayed. If LEVEL = 0 the command is ignored.

NOPRint Switches off output to the print file (but not the secondary file used 
under LEVEL 0). This is useful if you are re-running a job for which the output 
has already been printed. The PRINt command turns the printing on again. You 
can use these commands as often as necessary.

LEVEI N The parameter N is an integer which can have the values 0,1, 2 or 3. 
This signifies the degree of user interaction required. The levels operate as 
follows: N=0 This is used for batch jobs. No real-time user interaction is 
expected. No menus are displayed. A secondary print file is created which 
contains a list of the input commands as they are executed, the error and 
warning messages, and a summary of progress through the program.

N=1 This is the lowest level of real-time operation. The user is expected to be 
sitting at a terminal. Menus are displayed on the screen, modules are run in 
real-time as selected by the user. A limited summary of progress and results 
appears on the screen. There is no secondary print file.
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N=2 This gives the same as N=1 but the screen output is more detailed and
interrogation of the user may occur in some modules.

N=3 This expects a high degree of user-machine interaction. For example, the 
screen is never cleared without user permission, tangent refinement stops after 
each solution with a request to continue, the MAPS module becomes more
interactive. All the facilities of N=2 are also included.

The default will depend on your installation (at Glasgow we use N=2). 
Remember that the LEVEL parameter is quite flexible and can be changed as 
you proceed through a task.

DEFAult This removes further control of the package from the user, and runs 
the program to completion from the point at which the command is issued. 
Default parameters are used in all the subsequent modules, and the HARD and 
VERY_HARD options are still relevant. The default flow through the package is 
as follows: (1) For structures with translational symmetry (non-symmorphic):

NORMAL - TRIPLETS - CONVERGE - TANGENT - MAPS

(2) For structures without translational symmetry (symmorphic) or for which the 
commands HARD or VERY HARD have been issued:

NORMAL - TRIPLETS - QUARTETS - CONVERGE - TANGENT - MAPS
(3) For weighted Fourier recycling:

NORMAL - MAPS

(4) For Karle recycling of the non-symmorphic structures:

NORMAL - TRIPLETS - TANGENT - MAPS

(5) For Karle recycling of the structures of type (2) above:

NORMAL - TRIPLETS - QUARTETS - TANGENT - MAPS

(6) For situations where MAGEX or YZARC is being run:

NORMAL - TRIPLETS - QUARTETS - CONVERGE - MAGEX (or YZARC) - 
TANGENT - MAPS

or, in non-symmorphic situations with standard defaults:

NORMAL - TRIPLETS - CONVERGE - MAGEX (or YZARC) - TANGENT - 
MAPS

(7) RANTAN behaves just like TANGENT for default paths.
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So, for example, if you have a symmorphic space group, and during or after 
running the triplets module you issue the command DEFAULT the modules 
QUARTET, CONVERGE, TANGENT and MAPS will be run under appropriate 
defaults, and the program will then halt. The modules MAGEX and YZARC are 
never called by DEFAULT, they are always user called.

HARD This gives a new level of defaults for structures which are proving 
difficult. It has the effect of generating more triplets; it automatically calls the 
quartets module with the third neighbourhood option; no reflections are rejected 
by converge; both MAGEX and YZARC phase larger starting sets; there is no 
automatic stopping during tangent refinement; more than one E-map is 
produced. It is possible to return to the standard level of defaults by entering the 
command HARD a second time.

VERY hard This extends the options of the HARD command further by 
including the generation and use of positive quartets. Both commands make 
considerable demands on computer time and need to be used with care. It is 
possible in times of great need to enter both commands. This results in the 
cumulative effect of both options. It is possible to remove the VERY HARD 
option in the same way as for HARD.

MODEI At Glasgow, each structure has associated with it a ’MODEL' file in 
which the unit cell parameters, symmetry, lattice type, cell contents etc. are 
stored as MITHRIL90 compatible commands. The command MODEL is usually 
issued in NORMAL and it causes the MODEL file to be scanned, and any 
relevant information extracted. This saves entering the information directly from 
the keyboard. It is also possible to store MITHRIL90 commands on this file. 
Under these circumstances, the instruction MODEL will cause the commands 
to be executed before returning control to the user.

SHOW When operating interactively, it is possible to forget which options have 
been selected via PRINT and NOPRINT, or whether HARD and/or VERY 
HARD options are currently in operation. The command SHOW displays these 
parameters on the screen for an interactive job, and on the secondary print file 
for batch jobs (LEVEL 0).

X Gives an immediate abort from the package.

5.2 The Commands Which Call Modules

The following commands call modules:

NORMal, TRIPiets, QUARtets, CONVerge, SYMB, MAGEx, YZARc, TANGent, 
RANTan, REVIew, MAPS, RECYcle.
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In the interactive mode, calling a module will cause the terminal screen to be 
cleared, and a menu appears outlining the available commands which may be 
entered in any order. If you make a mistake with any command just re-enter it. 
The modules do, however, need to be run in a fixed order, and this is outlined 
in the table below. (The diagram shown in figure 1 may be useful here).

MODULE MODULES WHICH MUST BE RUN BEFORE THIS MODULE 
(An * signifies an optional module call)

NORMAL
TRIPLETS
QUARTETS
CONVERGE
MAGEX
YZARC
SYMB
TANGENT
RANTAN
REVIEW
MAPS

NONE (This is the package entry point)
NORMAL
NORMAL, TRIPLETS 
NORMAL, TRIPLETS, QUARTETS*,
NORMAL, TRIPLETS, QUARTETS*, CONVERGE 
NORMAL, TRIPLETS, QUARTETS*, CONVERGE 
NORMAL, TRIPLETS, QUARTETS*, CONVERGE*
NORMAL, TRIPLETS, QUARTETS*, CONVERGE 
NORMAL, TRIPLETS, QUARTETS*, CONVERGE 
NORMAL, TRIPLETS, QUARTETS*, CONVERGE, TANGENT 
NORMAL, TRIPLETS, QUARTETS*, CONVERGE, TANGENT

The consequence of this requirement, is that modules are called automatically 
with suitable defaults whenever the user enters a sequence of commands in 
which one or more of the necessary modules are missing. For example, the 
sequence:

NORMAL - TANGENT - MAPS

has TRIPLETS and CONVERGE missing. (QUARTETS is also missing if the 
structure is symmorphic, hard or very hard), so these modules are run with the 
appropriate default options in between NORMAL and TANGENT.

The sequence:

NORMAL - QUARTET - MAGEX - DEFAULT

will run NORMAL under user control, the TRIPLETS under default, 
CONVERGE under default, and MAGEX under user control. The command 
DEFAULT then invokes the flow already outlined on page 15, and the modules 
TANGENT and MAPS are then run under default. Note that although all these 
examples enter the package via NORMAL, the program can be entered at any 
point provided that the relevant modules have been run on a previous occasion 
and the necessary files have been kept (See Section 21.0)

It is possible to go backwards as well as forwards in the program. When this is 
done the program goes directly to the module which has been called, it does 
not go through the remaining modules first. All the modules can be re-entered 
except TRIPLETS in which the MDKS option is invoked. E.g.
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NORMAL - MAGEX - TRIPLETS - MAPS - YZARC - DEFAULT

will run the modules NORMAL, TRIPLETS, QUARTETS (if appropriate), 
CONVERGE, TANGENT, MAPS, YZARC, TANGENT, MAPS.

It is possible to override the default flow, if you really know what you are doing. 
Any module, except NORMAL, can be called with a “-1” as the first parameter. 
The module is entered, the program is informed of this, but the module is not 
actually run. One of the main uses of this is with the QUARTET module where 
it is possible to prevent quartets being generated in symmorphic space groups 
by using the command:

QUARTET -1

After all the commands for a module have been entered, one of the following 
operations will cause the module to be run:

(1) A call to another module. The current module is run and the new module 
entered. Calling the same module as the current one has two possible effects. 
In the interactive modes (LEVEL 1 -3) the module is abandoned without running 
it, and re-entered. All the options must be re-typed. In the batch mode (LEVEL 
set to 0) the module is run, and then re-entered.

(2) The commands END or DEFAult (See pages'! 85 and 186).

(3) If the LEVEL parameter is 1,2 or 3, a carriage return or blank line. (If LEVEL 
is zero, blank lines are ignored on input)

189



6.0 NORMAL

The normalisation module provides the entry point into the MITHRIL90 
package. It must always be the first module run in an analysis. The following 
commands are available; they can appear in any order except the DATA 
instruction which must come last.

NORMal IK, NB, ISC, MAXDUP [PHase] [NOsigma]

IK = -2 read E's from the Sheldrick data base
= -1 for do not normalise input structure factors. This is used when 

inserting one’s own set of E’s.
= 0 for use Wilson plot.
= 1 for use K-curve.
= 2 for use Bayesian method.

NB is the number of points to use in the Wilson plot. The default is

8*log [0.05 * Max(No. of reflections, 100)]

ISC = 0 for one scale factor per parity group. = 1 for use one overall scale factor.

MAXDUP. The NORMAL module checks for duplicates and systematic 
absences. Any that are found are output on the secondary print file (batch job) 
or the terminal (interactive job). Only the first MAXDUP found are listed. The 
default is 50.

[PHase] A keyword to indicate that phases are to input along with h, k, I, F, 
sigma(F).

[NOsigma] A keyword to prevent the calculation of errors on the temperature 
and scale factors, and to signal that sigma(F) is omitted

LIST

Causes a full list of E’s (and F’s on an absolute scale) to be printed. Only use 
this if you really need it.

CELL A, B, C, alpha, beta, gamma or A, B, C, cosa, cosp, cosy

Enters the unit cell parameters. Any missing or zero angles are assumed to be 
90 deg. So for the orthorhombic system, for example, it is only necessary to 
enter the cell edges.

SYMM

A symmetry operation as written in International Tables Vol. I as far as possible,
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although is needed instead of a bar. One command is needed for each 
operation. The identity operation is not required, and is ignored if input. 
Operations arising from a centre of symmetry at the origin, or from lattice 
centerings must not be entered. Example of a valid symmetry command:

SYMM -X, 1/2+Y, Z

In the interactive mode, it is possible that the user detects an error in the 
symmetry operations whilst entering commands. In this case the instruction: 
SYMM
without any associated fields will cause all the previous symmetry operations to 
be removed, and the symmetry information can then be re-entered.

LATTice A /C  P / A / B / C / l / F / R

The first field defines whether the space group is centrosymmetric (C) or not 
(A). The default is C. The lattice type then follows. The default is P, so if you 
have a primitive, centrosym metric space group then this command can be 
omitted.

SFAC ATOM TYPE, a 1, a 2, b 1, b 2, c, COVALENT RADIUS, VAN DER 
WAALS RADIUS.

Inputs a scattering factor curve of the form: 

f = a{1} * exp(-a{2}roA2) + b{1} * exp(-b{2} roA2) + c 

where ro = (sin theta)/lambda. (Moore, 1963).

Note the use of the five-parameter form here as opposed to the more usual 
nine-parameter form. The program has stored scattering curves for the 
following elements on a file MITHRIL.DAT, an ASCII file which maybe edited if 
desired, and is read in by NORMAL.

H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, 
Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Ru, Rh, Pd, Ag, Cd, Sn, Sb, I, Cs, Ba, W, 
Os, Pt, Au, Hg, Pb, Bi.

You only need to enter an SFAC command if you have an atom type not in the 
above list. Quite often you can approximate to the nearest atom in atomic 
weight without any serious lack of accuracy as far as direct methods is 
concerned. The covalent and van der Waals radii are used by the MAPS 
module, and they can be omitted if desired. They are input in Angstroms.

CONTents ATOM TYPE(S), NUMBER IN THE UNIT CELL

This enters the unit cell contents (not the asymmetric unit). A list of symbols and 
the number of this type of atom in the unit cell must be included. It does not
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matter if the symbols come first or the types, the module associates the first 
symbol with the first numeric field, the second symbol with the second numeric 
field etc., so the following are all permitted:
CONTENTS 120 44 180 C O H 
CONTENTS C 120 O H 44 180 etc.

If the CONTENTS command is missing, a cell in which only CH{2} groups are 
present, and for which the crystal density is 1.25 g/ml is assumed. Certain 
default options will be slightly modified in a pessimistic way if this is done e.g. 
the MAPS module will give you an extra 10 peaks. If an atom type is named 
which does not have a corresponding atomic scattering curve stored in the 
MITHRIL.DAT file (see SFAC) then an SFAC command will be needed for this 
atom.

LIMIts (sinQmax) / X ,  ( sinQmin) / X  MAXIMUM PERMITTED E.

Any reflection with Bragg angles outside these limits is rejected. The defaults 
for the first two parameters are 0.0 and 1.0. The default for the third is 8.2, which 
represents a programming induced limit. Very large E- magnitudes can prevent 
a successful direct methods attempt, and this parameter merely sets any E 
greater than the maximum to the maximum itself. Values around 3.5 are usually 
successful.

NEWE H, K, L, NEW E-MAGNITUDE

This command enables the user to alter the magnitude of the specified 
normalised structure factor. If the new magnitude is given as zero, then the E 
is removed. Note that this takes place after the normalisation procedure, so the 
structure factor is used in the usual way in the calculation of the scaling 
parameters. Note also that the h, k, I indices must refer to the final E as output 
by NORMAL. This may have been symmetry transformed from its input form. A 
maximum of 100 NEWE commands are accepted.

MISSing

Find missing reflections, and, using Wilson statistics, calculate an expected F- 
magnitude, insert this reflection into the data, and re-normalise.

BSCL TEMPERATURE FACTOR, SCALE FACTOR(S)

This command allows the user to input his own temperature factor or scale 
factors. If only the temperature factor appears, then NORMAL calculates its 
own scale factor or factors depending in the ISC parameter on the NORMAL 
call. If the scale factor(s) are included on this command, then the temperature 
factor must be supplied as well. If it is not then a default of 4.0 is used. It is not 
possible to specify scale factor(s) alone and ask NORMAL to compute the 
temperature factor. If individual scale factors have been requested for each
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parity group and a single scale factor is input, this scale is applied to all the 
parity groups.
EDIT H, K, L, NEW F

This works like the NEWE command, except that it operates on the structure 
factors as input before normalisation, so the indices must refer to the input 
indices. A zero structure factor magnitude will cause the input reflection to be 
deleted. A maximum of 100 EDIT commands are accepted.

TRANs TRANSFORMATION MATRICES

This command allows the input reflections to have their indices transformed 
from their old values of h, k, I to new ones h', k' and I' as follows: 
h' = x.h + x.k + x.l + x 1 2 3 4 
k’ = x.h + x.k + x.l + x 5 6 7 8 
I' = x.h + x.k + x.l + x 9 10 11 12

The elements x{1} to x{12} are input in that order. If less than 12 elements are 
input, the remainder will be assumed zero.

If the TRANS command is being used in conjunction with the EDIT command, 
note that the reflections are checked via EDIT before the transformation 
matrices are applied.

ATOM ATOM LABEL X, Y, Z

This defines the coordinates of the group atoms. The label consists of an atom 
type as written on SFAC or CONTENTS commands with an optional label
inside parentheses e.g. C(12) or C(12') or Li(2A) or Li. Labels such as C12 or
C2A are invalid. If the atom type and label is missing or unrecognised, then it is 
assumed to be carbon. A maximum of 200 atoms is permitted when totalled 
from all the groups with a limit of 100 atoms for all the type 3 or 4 groups.

GROUp TYPE(2/3/4/5/6), NO. IN CELL, CELL PARAMETERS

This command inputs the groups of known stereochemistry into the package. 
Each group (up to a limit of 10 groups) is followed by a set of ATOM commands 
(see below). The group type and the default cell associated with the group 
works as follows:

TYPE GROUP POSITION ORIENTATION CELL DEFAULT 2 Random 
Random Orthogonal A 3 Random Correct Orthogonal A -3 Random Correct 
Crystal Cell 4 Correct Correct Orthogonal A -4 Correct Correct Crystal Cell 5 
Karle Recycling Crystal Cell 6 Weighted Fourier Recycling Crystal Cell

Groups of type 5 and 6 imply a recycling procedure is required, and this 
situation is discussed fully in section 18.0. The cell parameters must refer to 
edges and angles not their cosines.
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A missing or zero TYPE parameter is assumed to be 2. If the number of groups 
in the unit cell is missing or zero then it is assumed to be the number of 
equivalent positions including centres of symmetry and lattice centerings.

NOCHeck

This switches off the checks for duplicate reflections and systematic absences 
in the intensity data. This can be useful if you already use a program to remove 
these reflections at data reduction time, since it prevents duplicate calculations 
and reduces the running time of NORMAL. However, only use it if you are 
certain that the duplicates and absences are missing otherwise you will cause 
havoc.

ELECtron

Data input will be electron diffraction data.

POWDer

Data input will be powder diffraction data. In this case only a single scale factor 
is assigned (i.e. there is no parity group rescaling).

NEUTron

Data input will be neutron diffraction data.

XRAY

Data input will be X-ray diffraction data.

OVERlap H,K,L,H,K,L,....H, K, L, £ |F |2, a

Each entry defines the reflections under a 
h,k,l indices defining the reflections plus an 
there are n reflections there must be 3n+2 
automatically sets the powder option.

ENTRopy

Will make the binary, unformatted file that normal outputs readable by the MICE 
maximum entropy program. This option should used with caution during a 
normal structure solution, since the E-magnitudes produced in this are quasi
normalised E's.

DATA NUMBER OF REFLECTIONS PER LINE, FORMAT OF DATA 

Usually intensity data will be input from a standard file that has been interfaced

( £ | f | 2)1 1 1 2 2 2 n n n

given overlap. There are n sets of 
entry for the total F and its e.s.d.. If 
entries on this line. This command
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to the package by the programmer who set it up at your installation (See 
Section 21.0). Under these circumstances no DATA command should be 
issued; once all the commands have been input to NORMAL the intensity data 
will be read automatically. However, if you are using formatted data sets from 
another source, this command can be used to tell the system how many 
reflections are on each line and the FORMAT of the data. The FORMAT must 
obey all the FORTRAN rules and must be enclosed by parentheses e.g.

DATA 2 (3I3, 2F10.5, 10X, 3I3, 2F10.5) The module expects the reflection 
parameters to be in the order h, k, I, F and sigma(F). If the PHASE keyword is 
involved in the NORMAL call line then the phase (in degrees) of the reflection 
is expected as an integer. It may take any value. The end of the data can be 
specified by:

(1) An end of file marker. (2) A reflection with h = k = I = 0 (3) A reflection with 
|F| < 0.0

The DATA command must be the last input to NORMAL.

Reflections having |F| < 2sigma(|F|) are not phased even if they have large E- 
magnitudes.

The commands TITLE, END, MENU, LEVEL, NOPRINT, PRINT, DEFAULT, 
HARD, VERY HARD, MODEL, SHOW and X are always available.
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7.0 TRIPLETS

This module must always be run, and will be executed with defaults if not called 
explicitly. The TRIPLETS module initialises the invariants file so that all the 
invariants (if any) previously stored on it are lost. (See Section 21.0). The 
available commands, which can be entered in any order, are as follows:

TRIPiets NO. OF REFLECTIONS, CUT-OFF, [FOm]

The first parameter is the number of reflections for which triplets will be 
generated. The default is:

No. of reflections = 4 * No. of atoms in asymmetric unit + 100 + 10 * Isymp + 50
* Idif + 150 * Ivdif
where:
Isymp = 0/1 for non symmorphic / symmorphic space group 
Idif = 0/1 for a standard / hard structure 
Ivdif = 0/1 for a standard / very hard structure

This is subject to a minimum of 250, or the number of E's greater than 1.0, 
whichever is the smaller. The maximum permitted is 800.

The second parameter is a cut-off, input as a fraction of the maximum sin2/ X 2 
of the data. This will prevent the use of triplets that contain two or more 
reflections with a resolution larger than the cut-off limit. The default is to use all 
reflections. [FOm] is a keyword designed to cause the calculation of an 
extended triplet list, involving E's not used for phasing. This is used later in 
tangent refinement for the calculation of the LOGLIK figure of merit.

LIST

This causes a full list of each triplet to be output to the printer. In the interactive 
modes (LEVEL = 1, 2 or 3), this information is also output to the terminal. By 
using NOPRINT in conjunction with LIST it is possible to switch off the printing, 
but the user will still get the screen output. The print option uses one line per 
triplet, so use this option with care.

MDKS NUMBER OF CONTRIBUTORS REQUIRED FOR D AVERAGE

This invokes the MDKS calculations. The only parameter here specifies the 
maximum number of contributors required for the D average in the MDKS 
formula. The smaller this number is, the quicker the calculations will run, but the 
less reliable they will be. The default value is given by:

No. = max (5 * no. of atoms in asymmetric unit, 200)

Sometimes triplets appear where this number of contributors cannot be found.
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The program will accept such calculations provided there is at least half the 
required number. Any triplets with less than this are flagged as having no 
available MDKS estimates.

L.E.

This invokes a similar calculation to that of the MDKS formula, although it 
requires no scaling calculations. There are no parameters. Note the two periods 
in this command.

** Both the MDKS and L.E. options are very slow and demanding; for this 
reason they are never called by default. Use them with caution. **

WEIGht N

Use a weighting scheme based on sin2/ X 2 to down-weight triplets that contain 
one or more reflections with a resolution greater than 0.95 times the resolution 
maximum. (See Gilmore & Brown, 1988)

N = 1 Print a list of the weighted E's 
N = 0 Don't print a list of the weighted E's

As usual the commands TITLE, END, MENU, LEVEL, NOPRINT, PRINT, 
DEFAULT, HARD, VERY HARD, MODEL, SHOW and X are always available.
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8.0 QUARTETS
This module generates the quartet invariants. It is always run in situations 
where the space group is symmorphic, or where the HARD or VERYJHARD 
command has been issued. The quartets are put on to the invariants file after 
the triplets. Any existing quartets will be overwritten. (See Section 21.0) The 
available commands are as follows:

QUARtets NO. OF REFLECTIONS, CUT-OFF

The first parameter is the number of reflections for which quartets are to be 
generated. The default is:

No. of reflections = 100 + 15 * Isymp + 25 * Idif + 25 * Ivdif

where: Isymp = 0 /1  for non-symmorphic/ symmorphic space group Idif = 0/1 
for standard / difficult structure Ivdif = 0 /1  for standard / very difficult structure

The maximum number of reflections is 256; it may not exceed the number of 
E's greater than 1.0. The default is often unsuccessful and may result in either 
far too many or too few invariants. You may need to experiment with it.

The second parameter is a cut-off, input as a fraction of the current maximum 
s in2/ X 2. It will prevent the use of any quartet that has two or more reflections 
with a resolution greater than that of the cut-off. The default uses all reflections.

Positive

Usually the program generates only the negative quartets. This command will 
cause the positive invariants to be generated as well. It is a default option when 
the VERYJHARD instruction has been issued. It increases the computer time 
needed by a factor of at least two, and will generate a very large number of 
relationships - so use it with care.

LIST

This causes a listing of all the quartets to appear on the printer, and the terminal 
as well in the interactive mode. There is a considerable amount of output per 
invariant which will be even more extensive if the third neighbourhood has been 
invoked, so use this with care. It is possible just to get the screen output by 
using the NOPRINT and LIST commands together.

NEIGhbour SIZE OF 3rd NEIGHBOURHOOD, MAX NO. OF 3rd 
NEIGHBOURS TO EXPLORE

This command invokes the third neighbourhood calculations. There are two 
parameters:
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The first dictates the range of the floating vector p, which defines the 
neighbourhood. A value, for example, of 100 means that p is restricted to the 
top 100 E-magnitudes. The smaller this parameter is, the faster the calculation 
will run. The default is 100 which usually works well.

The second parameter specifies how many third neighbourhoods are to be 
found for a given quartet before moving on to the next. A full calculation in which 
all the neighbourhoods are explored is very time consuming, and may not be 
any better than a situation in which the search stops after 10-20 neighbours. 
The default is 10 unless the HARD or VERYJHARD command has been 
issued, in which case it is increased to 20.

MISSIng MAX. NO. OF MISSING 2nd NEIGHBOURS, MAX. NO. OF MISSING 
3rd NEIGHBOURS.

This command specifies how many missing reflections are allowed in the 2nd 
and 3rd neighbourhoods. The defaults are both zero unless the VERYJHARD 
command has been issued in which case they become 1 and 2 respectively. 
This command can be useful in situations where the data set is limited in some 
way, or in large structures. It increases the computer time required.

RESTart REFLECTION NUMBER

This is usually used in the batch mode to restart a quartet generation which ran 
out of time. It works as follows:

In batch mode, the secondary output file will print a record of the quartet 
generation as it proceeds. The message takes the form:

ALL QUARTETS GENERATED FOR VECTOR 1: 205 GENERATED 200.....
ALL QUARTETS GENERATED FOR VECTOR 2: 320 GENERATED 290.....
ALL QUARTETS GENERATED FOR VECTOR 3: 450 GENERATED 327.....
etc.

This means that all the quartets have been generated for the first E-magnitude, 
then the second etc. To restart examine this output, go back a few lines from 
the last line to allow for buffering effects, and hence select a vector number from 
which to restart and enter it on the RESTART command. It does not matter if 
you go back too far; the duplicate quartets will get overwritten.
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WEIGht N

Use a weighting scheme based on sin2/ X 2 to down-weight quartets that 
contain one or more reflections with a resolution greater than 0.95 times the 
maximum resolution of the intensity data. (Gilmore & Brown, 1988)

N = 1 Print a list of the weighted E's 
N = 0 Don't print a list of the weighted E’s

As usual the commands TITLE, END, MENU, LEVEL, NOPRINT, PRINT, 
DEFAULT, HARD, VERYJHARD, MODEL, SHOW and X are always available.
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9.0 CONVERGE

The CONVERGE module carries out the dual functions of collecting together 
the invariants (and seminvariants), then selecting the reflections which 
comprise the starting set. Any complete direct methods analysis must include 
this module, and it will be run under defaults if not called explicitly. The available 
instructions, which may appear in any order, are as follows:

CONVerge NDET, IQ4,

NDET is the number of reflections which are to be phased by tangent 
refinement. The default works as follows: The maximum possible value is 
defined by the number of reflections for which invariants were generated. This 
value is usually reduced by 10% to remove those reflections which are mostly 
weakly linked into the phasing procedure and this is the default unless:

(1) There are less than 101 reflections to be phased or
(2) The command HARD or VERYJHARD has been issued.

In both these cases the 10% reduction is not applied. If this procedure is 
unsatisfactory then enter your own value of NDET.

IQ4 = 0 for negative quartets to be used actively and passively; no positive 
quartets are to be used. This is the default. = 1 for use negative quartets as 
figures of merit only; no active use of positive or negative quartets. = 2 for use 
positive and negative quartets actively, and negative quartets as figures of 
merit as well. This is the default for VERYJHARD structures.

EXCLude H, K, L or REFLECTION NUMBER

All the invariants involving this reflection are removed from the input list so that 
the reflection is not phased. The reflection can either be specified by its serial 
number or by its indices.

REMOve RELATIONSHIP

This removes any specified phase relationship from the list of invariants. Any 1 - 
, 2-, 3-, or 4-phase relationship can be deleted in this way. The relationship is 
specified by arranging the moduli of the serial numbers involved in descending 
order. The associated kappa-value, and the phase shift are ignored. The serial 
numbers are then included as parameters of the REMOVE command. A limit of 
100 REMOVE commands is imposed.

SIGMa [ALI] /[NOne] or MIN. PROBABILITY, MIN. CONSISTENCY RATIO.

This defines the criteria by which one-phase seminvariants (the Sigma-1 
reflections) are selected for the starting set. This command either uses the
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keywords “ALL” / “NONE” or utilises two numeric fields which define the 
acceptance parameters.

NONE requests that no Sigma-1 type reflections are accepted. This is the 
default for symmorphic space groups.

ALL requests that all the Sigma-1 reflections be put into the starting set suitably 
weighted.

MINIMUM PROBABILITY specifies the minimum acceptable probability, the 
default is 0.95 unless the space group is symmorphic, in which case the default 
is set so that no reflections are accepted.

MINIMUM CONSISTENCY RATIO (See Section 3.5). The default is 0.67. Note 
that a minimum of three contributors is also required for a Sigma-1 reflection to 
be accepted.

RELAtionship SERIAL NUMBER(S), PHASE SHIFT, k-VALUE

Inputs a 1-, 2-, 3-,or 4-phase invariant or seminvariant into the list of 
relationships. The relationship is arranged in descending order of the moduli of 
the serial numbers involved; the phase shift is expressed in 24ths (e.g. a phase 
shift of 180deg is 12); the kappa-value is usually a guess at this point, but it 
must be included. The larger the value, the more reliable the relationship is 
deemed to be. If you want it to have a very large weight, then use a value of 
10.0 - 20.0. The relationship is then input via the RELATIONSHIP command in 
which the parameters are the serial number(s) involved (complete with signs), 
the phase shift in 24ths, and the kappa-value.

Suppose that symbolic addition strongly suggests that:

phi{12} = phi{23} + 180

rearranged it becomes:

phi{23} - phi{12} + 180 = 0

and it can now be input to CONVERGE via:

RELATIONSHIP 23 -12 12 10.0

KMIN MINIMUM ACCEPTABLE kappa-VALUE

Specifies a minimum acceptable kappa-value. The default is 0.6. Lower this 
value for difficult situations, or occasions where there is a paucity of phase 
relationships.
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MDKS W1, W2, W3, W4

If the MDKS or L.E. command was issued when the TRIPLETS module was 
run, then a record of the estimate of the cosine of each invariant is stored on 
the invariants file. This information can be used to change the kappa-values of 
the triplets. The estimated cosines are split into four classes (i) - (iv) and each 
class is assigned a weight which multiplies the kappa-value of the triplet. As 
already described in section 3.5, the classes are:

(i) cos phi{3} >= 0.7 Weight is W1, default = 1.2
(ii) 0.7 > cos phi{3} >= 0.0 Weight is W2, default = 1.0
(iii) 0.0 > cos phi{3} >= 0.7 Weight is W3, default = 1.0
(iv) cos phi{3} < -0.7 Weight is W4, default = 0.0

A weight of 0.0 or less means that the relationship is deleted. Unless the MDKS 
command is issued, the cosine estimates from the TRIPLETS module are not 
used.

MAX_ MAXIMUM NUMBER OF PHASE RELATIONSHIPS

Usually the module uses all the available relationships up a limit of 28350, 
which is the program limit. If you want less than this then use this command. 
There is a minimum of 100.

LIST [ALI] / [NOne] / [PArtial]

This command uses keywords to specify how much of the convergence map is 
to be printed.

ALL prints the entire map. NONE suspends all convergence map printing. 
PARTIAL prints only the last 60 phasing steps of the map. This is the default.

MAGIc MAGIC INTEGER SEED

Specifies the number to be used as the seed for the series which acts as the 
magic integer sequence generator. The default is 2. Note that this command 
can decrease the number of phase sets generated, at the expense of reduced 
accuracy of the starting set.

ORIGin REFLECTION NUMBER

Usually, CONVERGE defines its own origin, but this command can be used to 
specify a reflection that is to be used for origin definition. The module will reject 
any reflection that is invalid. Note that it is not necessary to fully define the origin 
via a sequence of several ORIGIN commands. The module recognises partially 
defined origins, and will complete the definition during convergence.
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ENANtiomorph REFLECTION NUMBER

Usually, CONVERGE defines its own enantiomorph, but this command can be 
used for a user defined enantiomorph. The module will reject an invalid 
reflection.

PERMute REFLECTION NUMBER

Specifies a reflection which is to be included in the starting set. Its phase is 
unknown, but it is given a sequence of values as generated by the magic 
integer routines in tangent refinement, unless it is a special reflection in which 
case it is given its two possible phase values in turn.

KNOWn REFLECTION NUMBER, PHASE (in DEGREES), WEIGHT

Allows a reflection of known phase to be included in the starting set. Its phase 
(in degrees) must be specified, and an associated weight in the range 0.0 -1.0. 
The default value is 1.0.

SPECial NUMBER OF SPECIAL REFLECTIONS IN THE STARTING SET

This command defines the total number of special reflections to be included in 
the starting set, and whose phases are to be permuted. This includes any 
relevant reflections entered via the PERMUTE command.

GENEral NUMBER OF GENERAL REFLECTIONS IN THE STARTING SET

Specifies the total number of general reflections to be included in the starting 
set. The phases of these reflections are permuted in the usual way.

ANY_ NUMBER OF ANY SORT OF REFLECTIONS IN THE STARTING SET

Specifies the number of any sort of reflection, special or general, which are to 
be included in the starting set, and whose phases are to be permuted.

SETS MAXIMUM NO. OF PHASE SETS, MINIMUM NO. OF PHASE SETS

This command specifies the maximum and minimum number of phase sets to 
be generated. The maximum number of phase sets is only used if the user does 
not specify the starting set in any way via the GENERAL, SPECIAL or ANY 
commands. The default is 65 with a maximum of 2250, and a minimum of zero.

The minimum number of phase sets can also be specified. Again it is only used 
if the starting set has not been specified in any way. The default is calculated 
as follows:

Min. no. of sets = min(2*Nasu/3, Max. no. of sets/2 - 1) + 64*lvdif + 32*ldif 
where:
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Nasu = No. of atoms in asymmetric unit.
Ivdif = 0 /1  for standard / very hard structure.
Idif = 0 /1  for standard / hard structure.

This is subject to a minimum of 12. If the minimum number of phase sets is 
specified, but the maximum number is left as a default, then the latter is given 
the value:

Max. no. of sets = Min. no. of sets *2  + 1

The general commands TITLE, END, MENU, LEVEL, NOPRINT, PRINT, 
DEFAULT, HARD, VERYJHARD, MODEL, SHOW and X can be issued at any 
time.
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10.0 MAGEX

MAGEX is run between CONVERGE and TANGENT. Is is always user called, 
and never entered by default. The available commands, which can appear in 
any order, are as follows:

MAGEx NO. OF PHASE SETS TO GENERATE

This specifies how many phase sets are to be passed to tangent refinement. 
The default is:

No. of sets = 80 + 50 * Idif + 50 * Ivdif 

where:
Idif = 0 /1  for Standard / Hard structure.
Ivdif = 0 /1  for Standard / Very hard structure.

LIST

This causes the primary and secondary reflections and the triplets linking them 
to be listed on the printer.

PRIMary NUMBER OF PRIMARY REFLECTIONS TO USE

This command defines how many primary reflections are to be used to initialise 
the MAGEX procedure. The default is:

No. of primaries = 10 + 6 * Max (Idif, Ivdif)

There is a maximum of 22 primaries.

FUNCtion FUNCTION TO USE IN PARAMETER SHIFT REFINEMENT (N) 

There are four options here:

(1) N = 1 uses

M*)£ * _ _ c° s(P3

Special reflections are allowed to take any value, and then reset to the closest 
permitted value at the end of refinement. This is equation (16) in the paper by 
Hull, Viterbo, Woolfson and Shao-Hui (1981).

(2) N = -1. Uses option (1) above, but special reflections are only allowed to 
take one of their two possible values throughout.
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(3) N = 2 uses Equation 17 in the paper of Hull et al (1981). Special reflections 
are treated as in option (1).

(4) N = -2 uses the same function as option (3) but constrains the special 
reflections in the same way as option (2).

The default value is option (3) i.e. N = 2. For centrosym metric cases only 
options (1) and (2) i.e. N = 1 or -1 are permitted.

MAGIc N

Defines the Magic Integer sequence. If N is a small positive integer then the 
integers are based on the sequence:

= Fn-1 + Fn_|<

where k = N as defined above. A value of N = 1 gives a power of two series, 
whilst N = 2 gives the Fibonacci series which is the default. A value greater than 
2 gives the hyper - Fibonacci series. If N is negative the sequence:

f"n =  ̂ Fn_i + Fn_k 

where k = N, is used instead.

ALIMit MINIMUM ALPHA VALUE FOR ACCEPTING A SECONDARY

This command defines the lowest estimated alpha for accepting a secondary 
reflection. The default is 1.7, but for centrosym metric cases this should be 
increased to around 4.0. If the option chosen results in too many relationships, 
it will be automatically reduced by MAGEX.

KALImit LOWEST kappa-VALUE FOR SECONDARY DEFINITION

This defines the minimum kappa-value a triplet may have if it is to be used in 
secondary definition. The default is 1.0.

EXPAnd NO. OF CYCLES

This repeats the MAGEX process for the specified number of cycles. Use this 
option with care. It is not recommended that more than two cycles are 
performed, but more are possible if you wish. The default is zero.

WSPEc WEIGHT

Each potential primary reflection has an omega function associated with it (See 
equation (5) in Hull, Viterbo, Woolfson and Shao-Hui, 1981), and the reflections 
with the largest omega values are selected as working primaries. The weight 
defined on this command multiplies each omega value when a special
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reflection is involved. Setting the weight to a value less than unity can be used 
to avoid having too many special reflections as primaries. The default is 1.0.

SELEct IFUNC

This selects the function to use for ranking the solutions derived from the small 
Q-maps. IFUNC can have only 2 possible values:

(1) IFUNC = 1 uses function (1) defined in the FUNC command.
(2) IFUNC = 0 uses function (2) defined in the FUNC command.

The default is function (2) i.e. IFUNC = 0.

As always the commands TITLE,END,MENU, LEVEL, NOPRINT, PRINT, 
DEFAULT, HARD, VERYJHARD, MODEL, SHOW and X are available.
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11.0 YZARC

This is another module that is run between CONVERGE and TANGENT. It is 
always user called and never entered automatically. The following commands 
may be entered in any order:

YZARc NO. OF PHASE SETS, MAX. NO. OF CYCLES, MAX. MEAN SHIFT 

This is the YZARC calling command. It has three parameters:

(1) The number of phase sets to pass to TANGENT. The default is calculated 
as:
No. of sets = 60 + 50 * Idif + 50 * Ivdif 

where:
Idif = 0 /1  for Standard / Hard structure 
Ivdif = 0 /1  for Standard / Very hard structure.

(2) The maximum number of cycles of refinement for any phase set. The default 
is 70.

(3) The maximum value of the mean phase shift in degrees. If the mean phase 
shift falls below this value in any YZARC refinement cycle, then refinement 
ceases on this phase set and moves on to the next. The default is 4 deg.

Be careful about tampering with options (2) and (3). In general, they are set at 
their most useful values.

NREF NO. OF REFLECTIONS TO BE PHASED

This specifies the number of reflections to be phased by the YZARC procedure. 
The default is calculated via:

No. of reflections to phase = 100 + 50 * Idif + 50 * Ivdif

where Idif and Ivdif have already been defined.

L.S.

The module normally uses steepest-descents to refine the phase sets. This 
command invokes the standard least-squares procedure with its associated 
weighting scheme. Note the periods in the L.S. command.

STARt IX, IY

These are two odd integers which act as the seed for the random number 
generator which is used to give the reflections random phases. The default
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values are 190907 and 568835.

NQESt CYCLE NUMBER, MAXIMUM NQEST

This command causes NQEST to be used as the criterion for stopping 
refinement of a given phase set. The cycle number specifies the cycle at which 
the NQEST test is first applied. All previous cycles proceed untested. The 
default is 7. The second parameter defines the maximum allowed value of 
NQEST after these cycles. The default is zero. If a solution has a value greater 
than this, then refinement terminates, otherwise it continues as long as NQEST 
is falling. If there is an increase in NQEST, refinement stops. Refinement is still 
subject to any constraints input on the YZARC calling command.

TOP__
Usually YZARC phases the bottom reflections in the convergence map; this 
command causes the map to be bypassed, apart from origin and enantiomorph 
definition, and the top reflections, based on E-magnitude alone, are phased. 
The number to be phased is that defined by the NREF command. This 
instruction should usually be used only in conjunction with steepest descents, 
since it is likely to give a singular matrix in a least-squares environment unless 
all the reflections are linked to each other by the available triplets. If least- 
squares has been specified and a singular matrix is found, the module will 
automatically change to steepest descents.

RANDom IX, IY

This instruction defines two odd integers which act as a seed for the random 
number generator. Unlike the START command, however, only a single phase 
set is produced, the module then expects another RANDOM command for 
another solution to be produce, and so on. In batch mode these commands are 
stacked together in sequence and terminated by a RANDOM instruction with 
IX=IY=0 or by a call to another module. In the interactive mode both these 
options are available, but the user can merely press a carriage return to 
terminate input of random numbers. This command is useful when re-running 
refinements in a situation where only certain solutions are to be investigated.

As usual the commands TITLE, END, MENU, LEVEL, NOPRINT, PRINT, 
DEFAULT, HARD, VERYJHARD, MODEL, SHOW and X are available as 
required.
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12.0 SYMBOLIC ADDITION

The SYMB module may only be entered if a structure is centrosym metric, and 
is only ever called by the user. The following commands may be entered in any 
order:

SYMB

Calls and initialises the SYMBOL module.

SYMboL NO. OF SYMBOLS

Allows the user to choose how many symbols, up to a maximum of 11, are to 
be used in the symbolic addition procedure. The default is four. Note that this 
command is SYML and not SYMB as may be expected.

SIGN MINIMUM PROBABILITY

This sets the minimum probability acceptable for a sign determination. The 
default is 0.95.

NUMBer NUMBER OF EQUATIONS

This determines the number of symbol equations to be considered in the 
solution for the symbols. It may be set at a number higher than the number of 
relationships in order to ensure that all relationships present are considered. 
The default is 10.

LIMIt PROB

All signs predicted with a probability greater than PROB will be included in the 
final output. The default is 0.8.

ORIGin Determine the origin by the SYMB module rather than accepting the 
origin determined by the CONVERGE module.

LIST

Output a table of signs developed by symbolic addition, and relationships 
between the symbols to be displayed in the output file.

As usual, the commands TITLE, END, MENU, LEVEL, NOPRINT, PRINT, 
DEFAULT, HARD, VERYJHARD, MODEL, SHOW and X are available as 
appropriate.
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13.0 TANGENT
The TANGENT module performs the dual tasks of phase expansion and 
refinement. It must always be run except when Fourier recycling is being used, 
and will be entered and run with defaults if there is no explicit user call. The 
following commands can be entered in any order:

TANGent

Calls and initialises the TANGENT module.

SWTR [NO]

This command causes the Hull - Irwin weighting scheme to be used rather than 
the traditional MULTAN80 weights. This is a default when Karle recycling is 
used, otherwise the standard procedure is used. If for some reason the Hull - 
Irwin scheme is to be used and you wish to revert to the standard weighting 
method, then use the command:

SWTR NO where “NO” is a keyword.

SKIP N
This command is usually used for restarts. It causes the first N phase sets to be 
skipped before starting tangent refinement. These N phase sets must already 
exist on the file on channel 11 (See section 21.0). When re-running a job which 
ran out of time, N should be the number of the last set output on the printer, but 
make allowances for buffering by reducing this. The exact extent of this 
reduction depends on your installation.

SKIP 0 has a special function. When either the YZARC or MAGEX modules 
have been run in a job, the TANGENT module automatically takes its input 
phases from those produced by them. Phase permutation is not carried out. 
The SKIP 0 command causes these YZARC / MAGEX calculations to be 
ignored, and routine tangent refinement to be carried out instead.

SETS N1, N2, N3, N4.................etc.

With this option only the phase sets with numbers N1, N2 etc. are investigated 
by the TANGENT module. This is useful for re-runs. Unlike the SKIP command, 
the other phase sets do not need to be on file 11.

EFOM [ALI]/[NOne] or EFOM NO., CUT; EFOM NO., CUT; EFOM NO., CUT

This invokes the early figures of merit. There are three EFOM's numbered as 
follows:

(1) y o + Resid. (RfKarle}) (2) NQEST. (3) \yo alone (applied later in refinement 
than (1) above).
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These are the numbers used on the EFOM command. The cut values listed on 
the command are the maximum values that the early figure of merit may have 
when tested; any solution with values greater than these cut-offs are rejected. 
The defaults are: (1) 1.8 (2) 0.0 (3) 1.6

Usually the EFOM's are not used. The command:

EFOM NONE

also has this effect, and can be used to switch off EFOM's already invoked. If 
you wish to use all three early figures of merit then the command:

EFOM ALL CUT(1) CUT(2) CUT(3)

can be used, where CUT(1), CUT(2) etc. refer to the cut-off parameters 
discussed above. If all three cut-offs are absent then the default values are 
used for all these parameters. If only one appears, it is presumed to apply to 
the first EFOM; two parameters are assumed to apply to the first two etc. A zero 
parameter gives defaults. E.g.

EFOM ALL 1.2 0.1 2.0

applies cut-offs of 1.2, 0.1 and 2.0 respectively; whereas:

EFOM ALL 0 0 2.0

will give defaults (1.8 and 0.0) for the first two EFOM's and a cut-off of 2.0 for 
the third.

If only certain EFOM's are wanted, then do not use the “ALL” keyword. Instead 
enter the EFOM number followed by the required cut-off. In these 
circumstances, only the specified early figures of merit are invoked. E.g.

EFOM 2 0.1 3 2.0 or EFOM 3 2.0 2 0.1

invokes the second EFOM with a cut-off of 0.1 and the third with a cut-off of 2.0; 
the first EFOM is not used. Note that all the EFOM requirements must appear 
on a single EFOM command.

It is quite difficult to devise suitable defaults applicable under all situations, and 
some parameter tuning may be necessary under certain circumstances. 
EFOM's are not available with the Hull-lrwin weighting scheme.

WTFOm W1, W2, W3, W4

This command defines the relative weights of the four figures of merit used by 
the TANGENT module when calculating a combined figure of merit (CFOM).
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The defaults are as follows:

Figure of Merit Weight Default Default in symmorphic cases 
ABSFOM W1 1.0 0.6
PSI-ZERO W2 1.0 1.2
RESID W3 1.0 0.6
NQEST W4 1.0 1.3

If there are no appropriate relationships for a particular figure of merit then a 
weight of zero is assigned. The relative weights are normalised such that the 
maximum CFOM value is equal to the total number of figures of merit 
contributing to it. The LOGLIK figure of merit, if calculated, is not used in the 
combined figure of merit.

NOSTop

If the TANGENT module finds a solution with figures of merit that satisfy the 
conditions:

(1) Resid (R{Karle}) less than 20.0.
(2) \yo less than 1.25
(3) NQEST less than -0.15.
(4) The figures of merit above are within 5% of the best so far

Then the module assumes that this is the correct solution and exits. Users in 
the interactive mode will be questioned first if they wish to accept this solution, 
but batch users will not. The command NOSTOP switches off these tests. So 
do the HARD and VERY_HARD options. NOSTOP is often worthwhile as the 
correct solution can often be missed under the early stop algorithm.

SERIal SERIAL NUMBERS N1, N2, N3, N4 etc.

The commands SERIAL, MARK, WEIGHTS and PHASES are used together to 
input a set of known phases into tangent refinement. The SERIAL command 
gives the serial numbers (in any order) of the reflections whose phases are to 
be input.

MARK M1, M2, M3, M4..............etc.

These are the markers associated with the reflection numbers entered on the 
SERIAL command. A value of 1 means that the input phase can be refined 
immediately, whereas a value of -1 signifies that the phase is to be held 
constant until the last two cycles. The default values are -1, so the MARK 
command is only needed if this is unsatisfactory.

WEIGhts W1, W2, W3, W4 etc.

The weights associated with each input phase. The default values are 0.9, so
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this command is only needed in cases where this is inappropriate.

PHASes PHASE 1, PHASE 2, PHASE 3, PHASE 4 etc.

Inputs the known phase angles in degrees. Each angle must appear in the 
same order as the serial numbers on the SERIAL command. You can input as 
many sets as you require; each set requires its own PHASES command and is 
refined immediately after it has been input. The first input phase set via the 
PHASES command terminates current input to the TANGENT module. In the 
interactive mode the user will be prompted for more phase sets as required-a 
simple carriage return or a call to another module is used to signify the end of 
input phase sets. In the batch mode only another module call, or an END, X or 
DEFAULT command can be used to do this.

As usual, the commands TITLE, END, MENU, LEVEL, NOPRINT, PRINT, 
DEFAULT, HARD, VERY_HARD, MODEL, SHOW and X are available as 
appropriate.
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14.0 RANTAN
In one respect the RANTAN module is similar to TANGENT in that it refines 
phase angles. The difference is that RANTAN uses random phases for all the 
unknown phases and refines them using the tangent formula, rather than using 
the phase permutation techniques of TANGENT. RANTAN is never called 
automatically. The following commands, apart from the first, may be entered in 
any order:

RANTan NO. OF PHASE SETS TO GENERATE.

Calls and initialises the RANTAN module. The number of phase sets to 
generate is entered. The default is:

No. of phase sets = 100 + 50 * Idif + 100 * Ivdif 
where:
Idif = 0 /1  for Standard / Hard structure.
Ivdif = 0 /1  for Standard / Very hard structure.

SWTR [NO]

This command causes the Hull - Irwin weighting scheme to be used rather than 
the traditional MULTAN80 weights. This is a default when Karle recycling is 
used, otherwise the standard procedure is used. If for some reason the Hull - 
Irwin scheme is to be used and you wish to revert to the standard weighting 
method, then use the command:

SWTR NO where “NO” is a keyword.

SKIP N

This command is usually used for restarts. It causes the first N phase sets to be 
skipped before starting tangent refinement. These N phase sets must already 
exist on the file on channel 11 (See section 21.0) When re-running a job which 
ran out of time, N should be the set number of the last set output on the printer, 
but make allowances for buffering by reducing this by 3 or 4 depending on your 
installation, and operating system.

WTMIn WEIGHTS OF UNKNOWN REFLECTIONS.

The random phases have weights of 0.25 assigned to them before refinement 
begins, but if a different value is wanted, then this command can be used. Some 
experimentation with these weights can be useful in difficult cases.

EFOM [ALI]/[NOne] or EFOM NO., CUT; EFOM NO., CUT; EFOM NO., CUT

This invokes the early figures of merit. There are three EFOMs numbered as 
follows:
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(1) \j/o + Resid (R{Karle})
(2) NQEST.
(3) \\fo alone (applied later in refinement than (1) above).

These are the numbers used on the EFOM command. The cut values listed on 
the command are the maximum values that the early figure of merit may have 
when tested; any solution with values greater than these cut-offs are rejected. 
The defaults are:
(1) 1.8(2) 0.0 (3) 1.6

Usually the EFOMs are not used. The command:

EFOM NONE

also has this effect, and can be used to switch off EFOMs already invoked. If 
you wish to use all three early figures of merit then the command:

EFOM ALL CUT(1) CUT(2) CUT(3)

can be used, where CUT(1), CUT(2) etc. refer to the cut-off parameters 
discussed above. If all three cut-offs are absent then the default values are 
used for all these parameters. If only one appears, it is presumed to apply to 
the first EFOM; two parameters are assumed to apply to the first two etc. A zero 
parameter gives defaults. E.g.

EFOM ALL 1.2 0.1 2.0

applies cut-offs of 1.2, 0.1 and 2.0 respectively; whereas:

EFOM ALL 0 0 2.0

will give defaults (1.8 and 0.0) for the first two EFOM’s and a cut-off of 2.0 for 
the third. If only certain EFOM's are wanted, then do not use the “ALL” keyword. 
Instead enter the EFOM number followed by the required cut-off. In these 
circumstances, only the specified early figures of merit are invoked. E.g.

EFOM 2 0.1 3 2.0 or EFOM 3 2.0 2 0.1

invokes the second EFOM with a cut-off of 0.1 and the third with a cut-off of 2.0; 
the first EFOM is not used. Note that all the EFOM requirements must appear 
on a single EFOM command.

WTFOm W1, W2, W3, W4

This command defines the relative weights of the five figures of merit used by 
the RANTAN module when calculating a combined figure of merit (CFOM). The 
defaults are as follows:
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Figure of Merit Weight Default Default in symmorphic cases

ABS FOM W1 
PSI-ZERO W2 
RESID W3 
NQEST W4

1.0
1.0
1.0
1.0

0.6
1.2
0.6
1.3

If there are no appropriate relationships for a particular figure of merit then a 
weight of zero is assigned. The relative weights are normalised such that the 
maximum CFOM value is equal to the total number of figures of merit 
contributing to it. The LOGLIK figure of merit, if calculated, is not used in the 
combined figure of merit.

If the RANTAN module finds a solution with figures of merit that satisfy the 
following conditions:

(1) Resid (R{Karle}) less than 20.0. (2) \yo less than 1.25 (3) NQEST less than 
-0.15. (4) The figures of merit above are within 5% of the best so far.

(assuming that these figures of merit are available), then the module assumes 
that this is the correct solution and exits. Users in the interactive modes will be 
questioned first if they wish to accept this solution, but batch users will not. The 
command NOSTOP switches off these tests. So do the HARD and 
VERY_HARD options.

SETS N1, N2, N3, N4................ etc.

With this option only the phase sets with numbers N1, N2 etc. are investigated 
via the RANTAN module. This is useful for re-runs. Unlike the SKIP command, 
the other phase sets do not need to be on file 11.

STARt IX, IY

Two odd integers used to seed the random number generator. The default 
values are 1 and 1 (cf. YZARC).

As usual, the commands TITLE, END, MENU, LEVEL, NOPRINT, PRINT, 
DEFAULT, HARD, VERY_HARD, MODEL, SHOW and X are available as 
appropriate.

NOSTop
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15.0 MAPS

The MAPS module calculates Fourier maps, picks the peaks and attempts to 
identify chemically reasonable fragments (Main & Hull, 1978). Usually an E- 
map is computed, but where Fourier recycling has been requested a Sim- 
weighted electron density map is calculated and interpreted. Following the 
MAPS command, the following commands may appear in any order:

MAPS N1 [, N2]... etc. or -N or [ALI]

Calls and initialises the MAPS module. There are three possibilities for 
parameters associated with this command:

(1) One or more positive integers. Each of the specified solutions from tangent 
refinement will be used to compute an E-map. E.g.

MAPS 2, 4, 1, 19

will compute the maps for solutions 2, 4,1 and 19.

(2) A single negative integer (-N) will compute maps for the +N best solutions 
as ranked on combined figure of merit.

(3) The keyword “ALL” causes all the E-maps to be calculated. This is usually 
used in the interactive mode with LEVEL = 3 as a way of examining maps in a 
quick and efficient way. Under LEVEL 3, it is possible to exit from the MAPS 
module once a suitable map has been found. It is not necessary to actually 
investigate all the maps.

You may only choose one of these methods on a MAPS command. The default 
is to calculate the single best E-map. In the situation where Fourier recycling is 
being carried out, all parameters on the MAPS command are ignored.

GRID RESOLUTION, X LIMIT, Y LIMIT, Z LIMIT

This command defines the resolution and extent of the Fourier computation. 
RESOLUTION is the resolution required in Angstroms. The default is 0.333A.

X LIMIT is the limit of the Fourier calculation along the x-axis. The calculation 
always starts at x = 0.0. The default is 1.0.

Y LIMIT operates like the X limit above but along y.
Z LIMIT operates like the X limit above but along z.

PEAKS MAX NO. OF PEAKS, NO. OF HEAVY ATOMS, MIN. NO. OF PEAKS 
PRESENT FOR PLOTTING
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This command specifies how many peaks are to be picked from the Fourier 
map, and used in the interpretation routines. The default is calculated as 
follows:

Max. no. of peaks = (11*Nasu+13)/9 + 10*ldif + 10*lvdif + 10*lapx 

where:
Nasu = No. of atoms in asymmetric unit.
Idif = 0 /1  for Standard / Hard structure.
Ivdif = 0 /1  for Standard / Very Hard structure.
lapx = 0/1 for Yes / No CONTENTS command issued in the NORMAL module.

This default is increased when two clusters are within 2.8A of each other.

The number of heavy atoms present in the asymmetric unit (N) is used as 
follows: when carrying out an interpretation of a cluster, the MAPS module will 
assume that the N highest peaks correspond to these heavy atoms. They will 
not be included in the interpretation, and all peaks within the maximum bond 
length will be marked as spurious. This can be useful in heavy-atom cases to 
prevent diffraction ripples around the heavy atom(s) being treated as real 
atoms, but it does not always work well, so be wary of E-map interpretations 
that incorporate this option. The default is zero.

The final parameter defines the minimum size of cluster, defined by the number 
of atoms it contains, which will be plotted on the printer (and the terminal if 
graphics options are used). The default is four.

NOJOin

Stops all connectivity and peak interpretation calculations from being 
performed.

PROJect NO. OF PROJECTIONS, MAX. NO. OF INTERPRETATIONS

The first parameter here defines the number of orthogonal projections of each 
cluster to be plotted. The default is always to plot the least-squares projection 
first, and then to plot the projection orthogonal to the least- and most-squares 
planes if the cluster is spherical or cylindrical in shape. The maximum number 
of projections is three. The third projection is on to the most-squares plane.

The second parameter specifies the maximum number of possible peak 
interpretations to be output for a cluster. The default is three.

DOUT MAXIMUM BOND LENGTH TO OUTPUT

All interpeak distances less than this parameter are tabulated. The default is 
2.4A.

220



DMIN MINIMUM ACCEPTABLE BOND LENGTH

This is the minimum allowed bond length for peak interpretation. The default is
1.1 A.

DMAX MAXIMUM ACCEPTABLE BOND LENGTH

This is the maximum allowed bond length for peak interpretation. The default is 
1.95A.

AMIN MINIMUM ACCEPTABLE BOND ANGLE

This is the minimum allowed bond angle for peak interpretation. The default is 
85 deg. You may need to lower this when three-membered rings are involved, 
although it can result in a rather more messy collection of peaks.

AMAX MAXIMUM ACCEPTABLE BOND ANGLE

This is the maximum allowed bond angle for peak interpretation. The default is 
145 deg. This, too,will not always be a suitable figure.

VDU_
This command requests that all peak interpretations be output to the screen of 
a graphics terminal as well as the printer. It is only accepted if:

(1) The graphics routines have been implemented at your installation.
(2) The LEVEL parameter is set at 2 or 3.

The user will be asked to confirm that this is so.

LIST N

This command causes the full Fourier map to be output on the printer. All the 
peaks greater than or equal to N are underlined with asterisks.

MOLEcule CONNECTIVITY

This instruction inputs a set of molecular connectivies which are used for 
comparison with the molecular fragments found in the map itself. They are not 
used by the MAPS module in its search for a fragment, and are therefore 
optional. The connectivities are input as follows:
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(1) Draw the molecule or fragment whose chemical structure and connectivity 
is known. The stereochemistry is not important. E.g.

c c c

c

cc c

(2) Number the atoms in any order. E.g.

8

4 10

(3) Specify the connectivities as follows:

MOLE 1 3 4 / 2 3 6 7 / 3 1  2 / 4 1  5 / 5 4 7 / 6 2  8/ = 
7 2 5 / 8 6 1 0 / 9 6 1 0 / 1 0 8 9 / / /

where atom 1 is joined to atoms 3 and 4, atom 2 to atoms 3, 6 and 7 etc.

Redundant information may be removed. For example the above sequence can 
be simplified to:

MOLE 1 3 4 / 2 3 6 7 / 4 5 / 5 7 / 6 8 9 / 8 1 0 / 9 1 0 ///or 
MOLE 1 3 4 / 2 3  6 7 / 5 4 7 / 8 6  10 / 9 6  10///

In both these cases each bond is specified only once.

(4) The double slash (//) signifies the end of a fragment. Another can follow, 
although it must be part of the original MOLE command (only one such 
command is permitted). The maximum number of atoms which can be entered 
is 200. Up to five fragments or molecules can be entered each separated by the 
double slash (//). The end of the command is specified by a triple slash (III). This 
must appear.

The commands TITLE, END, MENU, LEVEL, NOPRINT, PRINT, DEFAULT, 
HARD, VERY_HARD, MODEL, SHOW and X are available as required.
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16.0 PATTERSON

This module computes an EA2 -1 vector map followed by a peak search, but 
without peak interpretation. The following commands are available:

PATTerson

Calls and initialises the Patterson map calculations.

LIST N

This command causes the map to be output on the printer. All the peaks greater 
than or equal to N are underlined.

GRID RESOLUTION, X LIMIT, Y LIMIT, Z LIMIT

This command defines the resolution and extent of the Patterson computation.

RESOLUTION is the resolution required in Angstoms. The default is 0.333A.

X LIMIT is the limit of the calculation along the x-axis. The calculation always 
starts at x = 0.0. The default is 1.0.

Y LIMIT operates like the X limit above but along y.
Z LIMIT operates like the X limit above but along z.

PEAKS MAX. NO. OF PEAKS TO LIST

This specifies the maximum number of peaks to output. The default is 30.

As usual, the commands TITLE, END, MENU, LEVEL, NOPRINT, PRINT, 
DEFAULT, HARD, VERY_HARD, MODEL, SHOW and X are available as 
appropriate.
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17.0 REVIEW

This module sorts and outputs the phase sets for each of the individual figures 
of merit as well as CFOM. The output will also give an indication as to whether 
a map has been investigated earlier or has an equivalent set. The following 
commands are available:

Absfom Sort the sets on the Absolute figure of merit
Psi-zero Sort the sets on the \yo figure of merit
Resid Sort the sets on the R{Karle} figure of merit
Nqest Sort the sets on the Nqest figure of merit
Loglik Sort the sets on the Loglik figure of merit
Cfom Sort the sets based on the Combined figure discussed in

section13.0
Exit Exits from the module and returns to the master MITHRIL90

menu.

Note: The above commands require only the first letter each command -any 
additional letters are ignored. This is the only module in which the general 
commands are not available.
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18.0 RECYCLING

If a direct methods analysis provides only a partial fragment or fragments, some 
form of recycling is required to complete the structure. It is usually assumed 
initially that the fragment(s) are correctly oriented and positioned in the unit cell. 
Under these circumstances, four types of recycling are provided:

(1) Weighted Fourier calculations using the RECYCLE module. The fragment 
is recycled using a Sim weighted Fourier.
(2) Karle recycling using the RECYCLE module, the tangent formula is used to 
extend and refine phases.
(3) Karle recycling where the unknown phases are given random values using 
the RECYCLE module.
(4) Using type 4 groups in NORMAL.

We will deal with each of these in turn, and then the situation where the 
fragment(s) are in fact misplaced in the cell.

18.1 Weighted Fourier Recycling

This is the recommended recycling procedure and the best way to proceed is 
as follows:

(a) Set up an ASCII file containing the relevant CELL, LATTICE, SYMM, 
CONTENTS, SFAC, LIMITS, EDIT, TRANS and NOCHECK commands as 
required. These are all commands to NORMAL (See section 6.0). Add to this 
set the GROUP command without any parameters followed immediately by a 
set of atomic coordinates for the fragment which is to be recycled using the 
ATOM command. Store this as a model file.

(b) Now run RECYCLE with this file treated as a MODEL file (See section 5.1). 
The RECYCLE command must contain the keyword “FOURIER”, all other 
parameters are ignored. RECYCLE calls module NORMAL.

(c) Either enter the command DEFAULT or call the MAPS module explicitly. 
You will get a weighted Fourier map. The whole sequence looks like this:

RECYCLE
FOURIER I Requests Fourier recycling.
MODEL I Scans MODEL file-else insert CELL etc.
DEFAULT I Runs MAPS under default.

Note that for the MODEL command to work the MODEL file must be attached 
to the job at run time (See Section 21.0).
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18.2 Karle Recycling without Random Phases

The best way to proceed is as follows:

(a) Set up a model file containing the relevant CELL, LATTICE, SYMM, 
CONTENTS, SFAC, LIMITS, EDIT, TRANS and NOCHECK commands as 
required. These are all commands to NORMAL (See section 6.0) Add to this set 
the GROUP command without any parameters followed immediately by a set 
of atomic coordinates using the ATOM command. Store this as a model file.

(b) Now run RECYCLE with this file treated as a MODEL file (See section 5.1). 
The RECYCLE command must contain the keyword “KARLE”, but unlike 
Fourier recycling, the parameters IK, NB, ISC and MAXDUP are available as 
on the NORMAL instruction.

(c) The program will now need to run the TRIPLETS, QUARTETS (if relevant), 
TANGENT and MAPS modules. Either call these explicitly or use the DEFAULT 
instruction in the usual way. You may control the refinement procedure in the 
same way as an a-priori analysis. You will finally obtain an E-map. E.g. for the 
simplest possible recycling enter the commands:

RECYCLE
KARLE
MODEL I Scans MODEL file
DEFAULT I Runs necessary modules under default.

18.3 Karle Recycling with Random Phases

This is run in exactly the same way as Karle recycling, but an explicit call to the 
RANTAN module is required in the correct place. For example, to run the 
recycling job outlined in section 18.2 above but with random phases for the 
unknowns, the following sequence of commands could be used:

18.4 Using Type 4 Groups in Normal

The type 4 groups in NORMAL are those which are correctly oriented and 
placed in the cell. To recycle in this way it is sufficient to run a typical a-priori 
phasing calculation but to include a:

GROUP 4

NORMAL
KARLE
MODEL I Scans MODEL file

I Asks for 100 phase sets to be generated 
I MAPS will follow under default

RANTAN 100 
DEFAULT
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instruction followed by a set of ATOM commands in the input to NORMAL Then 
proceed in the usual way. The use of the MODEL file as an auxiliary input is 
much recommended since it makes the input of the atomic coordinates less 
prone to error.

18.5 Incorrectly Placed Groups

If none of these recycling procedures are effective, then it is reasonable to 
assume that the fragments) are incorrectly placed. If they make chemical 
sense, however, they are probably correctly oriented in the unit cell. Under 
these circumstances recycling as in section 18.4, but using GROUPS of type 3 
may well prove successful. If this does not work either, then relaxation to 
GROUPS of type 2 should be tried.
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19.0 WHAT TO DO WHEN MITHRIL FAILS

This section outlines some of the options available to you if MITHRIL90 has 
failed to solve a structure. The possibilities are not quoted in any order of 
preference, except perhaps for the first set involving normalisation.

19.1 NORMAL

(1) Check the data. If there are many duplicates or systematic absences list 
them all by setting the MAXDUP parameter on the NORMAL command to 
100000, or any large integer. Then investigate this list with suspicion-are you 
sure about the space group? Have you collected at least the unique data? How 
good is the resolution of the data? If there are missing reflections in your data 
reinsert them using the MISSING command.

(2) Read the output from NORMAL very carefully. Are the statistics sensible? 
Do the large E-magnitudes form a readily identifiable subset where some parity 
groups are missing? If some of the E-magnitudes are very large, it is often 
useful to use a LIMIT or EDIT command to reduce or remove them. The 
variation of EA2-1.0 as a function of Bragg angle is a good guide to the 
applicability of the calculated temperature factor. If there is a fall- off in this 
average as the angle increases, use the BSCL command to input a larger value 
of B than that calculated by the normalisation module. If some or all of the 
stereochemistry is known, then input this as a type 2 group. This is especially 
important with molecules containing planar fused rings.

(3) If you have generated the best set of E-magnitudes that you can, and the 
structure still will not solve, then a systematic distortion of the E's can be 
successful. Changes in the E- magnitudes cause changes in the invariants, and 
these in turn give rise to drastic modifications of the convergence map, and the 
subsequent phasing path. There are several ways of distorting the E's:

(a) Modify the unit cell contents using the CONTENTS command. Doubling the 
contents is the best starting point.

(b) Use artificially raised or lowered temperature factors via the BSCL 
instruction. Often only a small change in B gives rise to drastic changes in the 
E-magnitudes. This is especially recommended for situations where resolution 
is less than the Cu sphere.

(c) Insert a molecular fragment via the GROUP command that does not 
correspond to any group expected in the molecule.

(4) Try using the Bayesian normalisation technique by setting IK=2. If this does 
not work try another normalisation program that has different facilities. For
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example the NORMAL module in the X-ray system permits the use of an overall 
anisotropic temperature factor. These E's can be input using IK=-1 on the 
NORMAL instruction. Nixon (1978) for example, has described an alternative 
approach to normalisation via the Patterson function.

19.2 Invariants - Triplets and Quartets

There are two problems which can arise here. One concerns a paucity of 
suitable relationships which can be common in situations of low symmetry. The 
other concerns the accuracy of the invariants themselves.

(1) If there is a paucity of triplets:

(a) Use quartets as well. Try just the negative ones first, then add the positives 
if this is unsuccessful.
(b) Increase the number of reflections on the TRIPLETS command.
(c) Reduce the minimum kappa-value from its default of 0.6 by using the KMIN 
command in CONVERGE. This will, however, introduce a number of very 
unreliable relationships.

(2) If there is a paucity of quartets:

(a) Increase the number of reflections on the QUARTETS command. This is 
usually the best way.
(b) Invoke the third neighbourhood via the NEIGH instruction.
(c) Ask for positive quartets as well. This can also be useful when triplets are 
scarce.
(d) Allow more missing second (and third) neighbours.

(3) If the problem is thought to be the reliability of the invariants then use the 
cut-off based on sin2/ X 2, and/or the weighting scheme also based on sin2/ X 2. 
These are less time consuming and have proven more useful than MDKS and 
L.E. when dealing with unreliable invariants.

(4) Even if the space group is not symmorphic, quartets often have a very 
beneficial effect on a direct methods analysis, and can be recommended as an 
option to try early in the list of weapons in the armoury. Only the negative 
quartets should be tried first, since they are independent of the triplets. Even a 
few four-phase invariants can drastically alter the phasing path.

(5) The MDKS and L.E. options coupled with convergence map weighting also 
has a drastic effect. The two options are different so if one is unsuccessful, it is 
worth trying the other. However, they are both very time consuming.

(6) Invariant generation is obviously of critical importance. MITHRIL90 allows a 
good deal of user control over the process, so use the options provided.
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19.3 Convergence Mapping

Convergence mapping lies at the very heart of the multisolution approach to 
direct methods employed by MITHRIL90. It is essential to examine the 
convergence map carefully in cases of difficulty.

(1) Make sure that the starting set is a good one with all the starting set 
reflections used early in the phase determination. This can be checked by 
examining the bottom of the convergence map. If a starting set reflection is not 
used at all early on, then a better starting point can often be obtained by 
including at least one other reflection whose phase depends on that of the late 
starter. Introducing quartets may also have a similar effect.

(2) If there are gaps near the bottom of the convergence map (i.e. reflections 
with a zero estimated alpha and no invariants contributing), or the map is very 
'thin' with many phases determined by only one or two relationships, then the 
phasing often fails. This can be remedied by increasing the size of the starting 
set or introducing higher invariants, particularly quartets.

(3) Be wary of the Sigma-1 determined phases. If they play a major role in the 
early stages of phasing, it is often worthwhile excluding them via the SIGMA 
NONE command. If MDKS or L.E. has been run, examine the s(1) triplet 
analysis. The triplets should have estimated cosines close to unity.

(4) If it still proves impossible to obtain a suitable convergence map without a 
massive amount of computer time, then several options are possible:

(a) Run MAG EX. Apart from origin and enantiomorph definition, it largely 
ignores the convergence map.

(b) Run YZARC. Try both least-squares and steepest descents - they give 
different results. The TOP_ instruction by-passes the convergence map.

(c) Run RANTAN instead of regular tangent refinement.

(5) Check to see if all the reflections at the bottom of the map have something 
in common e.g. they all have h even or k+l divisible by 3. If so, then make sure 
that the average value of EA2-1.0 is unity for such reflections. Renormalisation 
may be necessary. It may be possible to use the editing facilities of NORMAL 
to juggle these magnitudes. Try introducing new reflections into the starting set 
which do not belong to these groups.

(6) Altering the origin and enantiomorph is often unsuccessful, particularly if 
only small changes are made. The same relationships are still used in the early 
stages of phasing, but in a different form. For example, the triplet:

Psi{1} - Psi{2} + Psi{3}
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may appear in one map generating Psi{1} from Psi{2} and Psi{3}. If the origin is 
partially re-defined by the user, this triplet may well appear again in a critical 
place but this time generating Psi{2} from Psi{1} and Psi{3}. If this triplet is 
erroneous it will be erroneous however it is used. This said, juggling with the 
starting set can be successful on some occasions, and is worth a try.

(7) Hand applied symbolic addition, even in a limited form, can give rise to 
possible relationships between phases, and these can be introduced into the 
convergence map by the RELATIONSHIP command. The relationships linking 
two phases (the pair relationships) are the most valuable. The inclusion of only 
one or two with high associated kappa-value will drastically alter a convergence 
map. There is the added bonus that symbolic addition can give valuable 
insights into the causes of phasing difficulties (Karle & Karle 1966). Do not use 
the convergence map for symbolic addition; get a list of triplets and work with 
this. The convergence procedure has too many weak relationships early in the 
phasing path.

19.4 Phase Expansion and Refinement

(1) The only way to monitor phase expansion and refinement is by inspecting 
the final figures of merit, so it is important to examine these closely in difficult 
cases. In particular do not just inspect the final CFOM's, but look also at the 
individual contributors:

(a) ABSFOM is the least reliable. If the ABSFOM values all tend to be large then 
the refined phases are over-consistent. Using Hull-lrwin weights will often give 
better results.

(b) NQEST and \jro are the most reliable figures of merit provided that the weak 
reflections have been accurately measured. (See section 4.0.) Do not expect 
NQEST to be very negative, particularly if quartets are being used actively in 
phase refinement. In these circumstances values around -0.1 are often 
satisfactory.

(c) Heavy atom cases often give extreme figures of merit. The correct solution 
may well be present even if the figures of merit seem unrealistic.

(d) Calculate the LOGLIK figure of merit. You do this by using the FOM keyword 
in the call to the TRIPLET module. It must never be examined on its own but 
always in conjunction with y o.

(e) If all the phase sets have similar figures of merit too few invariants may be 
present.

(2) In case of pseudo-symmetry, the presence of heavy atoms or substantial 
planar moieties in the structure, use the Hull-lrwin scheme.

(3) Do not forget that there are two weighting schemes - if one does not work,
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the other may, even using the same starting set and convergence map.

(4) Be careful of the early stop option. It is often found that the set selected by 
the TANGENT module during refinement as being an obvious solution is not the 
correct one. The NOSTOP command will prevent this happening.

(5) If you are using early figures of merit, and most sets are getting rejected, it 
is possible that the correct set is also being discarded. It is an easy matter to 
turn off these figures of merit. Do not use the first EFOM for planar ring 
structures, and set the cut-off for the third EFOM to at least 1.7.

(6) Do not confine your attentions to the one or two phase sets with the highest 
CFOM's. It may be necessary to examine maps with quite low associated 
CFOM's.

(7) The CFOM's are dependent on the relative weights of the individual figures 
of merit. Adjusting the weights to reflect your own intuition concerning the 
contributing figures of merit will often result in a drastic re-ranking of the 
solutions.

(8) In a case with over-consistent phases and a centrosymmetric structure it is 
strongly advised to use the SYMB module in preference to the TANGENT 
module.

19.5 E-Maps

Look at the resulting E-maps carefully. Remember that the interpretation 
assumes that you have well-resolved peaks, and this may not be the case. The 
routines which perform the chemical interpretation are quite sophisticated, but 
they are never as good as a trained crystallographer. Do not, therefore, accept 
the given interpretations as the only possibilities. Some other points to note are:

(a) If the map contains one or two large peaks and no heavy atoms are 
expected, the phases are probably incorrect - but not always. Sometimes 
something can be salvaged. If heavy atoms are present direct methods will 
probably only produce these atoms.

(b) If the E-maps show pseudosymmetry switch to Hull-lrwin weights in 
TANGENT.

(c) One or two missing peaks coupled with one or more spurious ones, can 
quickly make a map uninterpretable. Increasing the number of peaks can make 
parts of the map more readily interpretable at the expense of producing more 
noise peaks.
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In very difficult cases be tenacious. If just a small portion of the expected 
structure is found, stick with it through all the possible recycling schemes. It may 
be correctly oriented but misplaced, so the use of type 3 groups in NORMAL 
will be useful, but this procedure is not infallible. It sometimes does not work 
even with correct information.
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20.0 EXAMPLES
(1) A first time run, batch mode:

LEVEL 0
NORMAL
CELL
SYMM
LATTICE
CONTENTS
DEFAULT

This may be your installation default 
Calls the NORMAL module.
Unit cell.
As many commands as needed. 
Lattice type.
Unit cell contents.
TRIPLETS .... MAPS under default.

Notes.
(a) The commands CELL through CONTENTS could be stored in a model file 

and accessed via the command MODEL .
(b) For interactive mode use LEVEL 1, 2 or 3.

(2) A situation as in (1) but RANTAN is required instead of the standard 
TANGENT module; 100 phase sets are required with Hull-lrwin weights. The 
Fourier module is to follow, run under defaults.

LEVEL 0
NORMAL
CELL
SYMM
LATTICE
CONTENTS
RANTAN 100
SWTR
DEFAULT

Set this as early as possible.
Calls the NORMAL module.
Unit cell.
As many commands as needed.
Lattice type.
Unit cell contents.
TRIPLETS-CONVERGE run first under default 
Hull-lrwin scheme.
MAPS under default.

(3) As in (1) but MAGEX is to be run with default options between CONVERGE 
and TANGENT.

LEVEL 0
NORMAL
CELL
SYMM
LATTICE
CONTENTS
MAGEX
DEFAULT

Set this as early as possible.
Calls the NORMAL module.
Unit cell.
As many commands as needed.
Lattice type.
Unit cell contents.
TRIPLETS,(QUARTETS),CONVERGE run first 
TANGENT and MAPS under default.
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(4) A full interactive run with user control on all modules:

LEVEL 2 Set this as early as possible.
NORMAL Calls the NORMAL module.
CELL Unit cell.
SYMM As many commands as needed.
LATTICE Lattice type.
CONTENTS Unit cell contents.
TRIPLETS 400 Triplets for top 400 E's.
L.E. Use linear equations option.
QUARTET 100 Quartets for top 100 E's.
NEIGH 0,20 Invokes 3rd neighbourhood.
CONVE Convergence map.
SIGMA NONE No S's- note keyword.
SETS 0,32 A minimum of 32 phase sets.
MDKS 1.2,1,1 Weight triplets from L.E. calculation.
YZARC 60 YZARC called-60 phase sets.
RANDOM 3 101 Seed random numbers.
TANGENT Call tangent refinement.
NOSTOP Don't stop for good solutions.
MAPS ALL All the maps to be examined.
LEVEL 3 Highly interactive.

Blank line initiates MAPS
CONVERGE No success-go back to converge.
SETS 128 128 phase sets.
TANGENT Tangent refinement again.
SKIP 0 Ignore previous YZARC phases.
LEVEL 2 Lower interactive level.
DEFAULT TANGENT and MAPS under default.

Note the ability to go backwards as well as forwards.



(5) It is not necessary to start with NORMAL each time, as long as the required 
files have been made permanent. See section 21.0. In this example the files 
from NORMAL and TRIPLETS are both permanent files, so that we can enter 
CONVERGE without re-running these modules. This is an essential feature of 
jobs where invariant generation is time consuming.

LEVEL 2 Interactive job.
CONV Calls CONVERGE.
LIST ALL Full list.
NOPRINT No printer output.
MAPS -4 TANGENT then 4 best maps.
MAGEX Back to MAGEX.
PRINT Printer output on again.
YZARC MAGEX no good-try YZARC.
TOP Ignore Convergence map.
MAPS -5 Tangent then 5 best maps.
RANTAN 200 Back to RANTAN-200 sets.
END Run RANTAN then exit.

(6) Karle recycling with full user control.

RECYCLE KARLE 
MODEL
DATA 1 (3I3,2F10.2)
TRIPLET 450
QUARTET 125
TANGENT
MAPS
END

All atoms etc on MODEL file. 
Data in card image form. 
Triplets for top 450 E's. 
Quartets for top 125 E's 
Tangent refinement.
E-map.
Run MAPS then stop.

(7) Sharpened, origin-removed Patterson:

NORMAL ! Normalise Fs first.
MODEL ! CELL etc. on MODEL file.
PATTERSON ! Run Patterson.
END

(8) Normalisation using the Bayesian technique, with all CELL, DATA etc. 
commands stored on a model file. Run in batch mode.

LEVEL 0 ! Set this as early as possible
NORM 2 ! The 2 calls the Bayesian module
MODEL ! All commands read from model file
DEFAULT ! TRIPLETS MAPS on defaults
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(9) An interactive run using the Bayesian normalisation technique, the LOGLIK 
figure of merit, and reviewing the phases sets after tangent.

LEVEL 2 Run in interactive mode
NORMAL 2 Perform a Bayesian normalisation
MODEL All NORMAL commands on model file
TRIPLET FOM Run the triplets in preparation for the F.O.M.

Blank line to start triplet module
TANG Run (QUARTETS), CONVERGE under defaults before

tangent
NOSTOP Don't stop for a good solution

Blank line to start tangent refinement
REVIEW Call review module
ABSFOM Sort and list sets on Absolute figure of merit
P Sort and list sets on Q figure of merit
C Sort and list sets on Combined figure of merit
E Exit REVIEW return to main menu
MAPS 145 83 27 Calculate E-map for each of the three sets
END Once the maps are calculated end

(10) Run SYMB from E-magnitude and invariant files already present (See
example 5)

CONV Call converge module
SYMB Run converge module under defaults and call SYMB
ORIGIN Use SYMB origin in preference to Converge origin
REVIEW Call review
LOGLIK Sort sets on the LOGLIK figure of merit
C Sort sets on the combined figure of merit
E Exit REVIEW and return to main menu
MAPS Calculate E-map for set with the highest CFOM
END End run after map is calculated

Note: The full command need not be entered only the first four letters for the 
majority of commands, the first two letters of keywords and only the first letter 
of all commands used in the REVIEW module. Upper and lower case are both 
accepted.
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21.0 COMPUTER FILES

This section describes the files used by MITHRIL90. It is of importance to both 
programmer and user, particularly for users who are likely to be working with 
difficult structures, and hence will need to store certain information (such as 
invariants) on permanent rather than scratch files. The files that MITHRIL90 
uses are as follows : (the words in parenthesis are the FORTRAN variable 
names)

FILE 1 (NOUT) : A null file used by the NOPRINT option. Execution of the 
NOPRINT command causes the printer output to be set to this channel.

FILE 3 (NSPEC): The secondary output file used in the batch mode for output 
of warnings, and a summary of input commands. This should be a print file.

FILE 4 (NSPEC): The user terminal in the interactive mode. Setting the LEVEL 
parameter to 1, 2 or 3 causes the secondary output file defined above for 
channel 3 to be changed to this channel.

FILE 5 (NIN): The input channel. This is a terminal for interactive use, or a disc 
file in batchmode. Note that changing from (say) interactive (LEVEL 1 or 2 or 3) 
to batch (LEVEL 0) does not change the input device.

FILE 6 (NOUT): The standard printer output file.

FILE 8 (NTAPEA) : Contains the results of NORMAL for input to TRIPLETS, 
QUARTETS, CONVERGE, PATTERSON and for MAPS when Fourier 
recycling is invoked. It contains the cell dimensions and contents, the 
symmetry, the group atoms, a full set of E's and the subset greater than 1.0. 
This is usually a scratch file, but your system should permit it to be a permanent 
user file as well. It is a binary, unformatted file. It is also an input file for the MICE 
maximum entropy program.

FILE 9 (NTAPEB) : Contains invariants. The triplets always appear first, then 
the quartets if they have been generated. This file is necessary for input to 
CONVERGE - all runs of CONVERGE require it. It is a binary, unformatted file. 
Allowance should be made for making it a permanent, user file.

FILE 10 (NTAPEC) : Contains the results of CONVERGE. All modules which 
follow CONVERGE read this file, except MAPS and PATTERSON. Apart from 
the convergence map, it contains symmetry information, the cell dimensions 
and a collated set of invariants. It is sufficient input for TANGENT, RANTAN, 
MAG EX and YZARC, which do not need to read Files 8 and 9. It is a binary, 
unformatted file.

FILE 11 (NTAPED) : Contains the phase sets from TANGENT or RANTAN for 
input to MAPS. The latter module needs only this file as input. It is a binary,
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unformatted file.

FILE 12 (NTAPEE) : This is a binary file used by most modules. The MAPS 
module writes an electron density map onto this file after a FOURIER 
calculation. If you intend to examine this map using the PLOTQ program it must 
be a permanent file. Note Only the last map to be calculated is stored.

FILE 13 (NTAPEF) : This is a binary scratch file used by most modules. There 
is no need for it to be permanent.

FILE 14 (NTAPEG) : This file contains the user intensity data. The DATAIN 
routine of NORMAL will be modified for your installation to read this file if no 
DATA command is encountered whilst running NORMAL. The same file is also 
used when a DATA command is encountered, the difference being that 
formatted data is expected on NTAPEG, which means that there is one extra 
command to remember to use each time NORMAL is run. This is usually a 
permanent file.

FILE 16 (NTAPEH) : This is the MODEL file, which will be a permanent, 
formatted user file capable of being edited via your system editor. It can contain 
CELL, SYMM, LATT, GROUP, ATOM, CONTENTS, and LATTICE commands. 
It is only accessed if the MODEL command is issued. The use of MODEL files 
is strongly recommended

FILE 17 (NTAPEI): This is a formatted file written by MAPS. It contains a list of 
peaks in the form of ATOM commands which can be subsequently edited, and 
placed in a MODEL file and used in recycling procedures. It removes some of 
the tedium, and errors inherent in entering a large set of atomic coordinates 
manually.

FILE 21 : Contains the results of the TRIPLET module, when it is run using the 
keyword FOM, on the call line. These results are used in TANGENT for the 
calculation of the LOGLIK figure of merit. It is a binary scratch file but due to the 
time involved in its generation it is recommended that this file is made 
permanent.
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22.0 FUTURE ENHANCEMENTS

The following enhancements to the MITHRIL90 package are either planned or 
underway :

(1) Divergence mapping to follow the convergence map as a method of 
strengthening the convergence and phasing processes.

(2) Tests for phase oscillation during tangent refinement.

(3) The use of covalent and van der Waals’ radii in the interpretation routines of 
the MAPS module to assist the derivation of chemically sensible fragments, and 
the identification of incorrectly positioned fragments.

(4)The incorporation of the SAYTAN (SAYre TANgent refinement) program.
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23.0 PLOTQ

PLOTQ is a stand-alone program designed to display MITHRIL90 electron 
density maps on a graphics terminal. The program is fully interactive, menu 
driven and requires no external documentation. Those wishing further 
information on PLOTQ are referred to Henderson, Bannister & Gilmore (1990). 
Densities may be displayed as :

(i) Single sections viewed along any crystallographic axis.

(ii) Multiple sections viewed along any crystallographic axis.

(iii) A three dimensional surface plot viewed from any direction 

For small molecules its principal uses are :

(i) To examine situations of disorder, either molecular or solvent.

(ii) As a final check at the end of Fourier synthesis to detect unaccounted for 
density

(iii) To define molecular envelopes for larger structures where peak searching 
is inappropriate, or smaller structures where an uninterpretable peak list has 
been produced.

The MITHRIL90 maps file (output on channel 12, NTAPEE) must be a, 
permanent file for this program to run. It is possible to superimpose atom 
positions onto a map by reading the relevent model file whilst running PLOTQ.
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24.0 PROGRAMMING CONSIDERATIONS

This section is only intended for those users who are setting up MITHRIL90 on 
their own computer, or who wish to modify it. You should read Section 21.0 on 
files first.

To run MITHRIL90, your computer should provide the following facilities:

(1) 32 bit integers and floating point numbers with facilities for double precision.

(2) The ability to address at least 3 Mbyte of memory either directly or via 
memory management.. If the program is not to use virtual memory, then 3 Mbyte 
of physical memory will be needed. Section 24.2 has a full discussion of 
memory requirements.

(3) A FORTRAN 77 compiler.

(4) At least 5 Mbytes of disc space for files. See section 21.0.

(5) In addition, to run in the interactive mode, a terminal is required. For the 
graphics options then the addition of graphics boards is obviously necessary.

As supplied, the program is written for a Concurrent computer running under 
the UNIX operating system. There are a few machine specific lines of code 
which may need to be altered for your own machine. Each section of machine 
specific code is marked by a comment statement which states "Warning 
machine specific". They are as follows:

(1) You may need a PROGRAM statement on the first line of the main routine.

(2) The BLOCK DATA subroutine has a name (INITAL). Some compilers may 
object to this (in which case remove the name), or they may have their own 
naming requirements (adjust accordingly).

(3) Subroutine CLSCN(N) is machine specific. Its purpose is to clear the screen 
of a terminal after an N second delay (to allow the user time to scan the last 
output). Two versions are supplied, one for a VAX running under VMS, and one 
for UNIX. If you are not using one of these operating systems, you will need to 
make your own version, or you can just leave a dummy routine. This latter 
option is not recommended since it means that the screen output will not be so 
neat. However, if you never intend to use the interactive mode of MITHRIL90, 
then it will be sufficient.

(4) Subroutine DATAIN in NORMAL reads the raw intensity data. You will need 
to tailor it to your own installation. There are some comments on this in the 
subroutine itself.
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(5) Several subroutines use DATA statements to initialise non-character 
variables to characters. This is legal FORTRAN IV, but your compiler may 
object. In this case set the offending variables to CHARACTER types, and the 
problem should disappear.

(6) There is extensive use of END= and ERR= in READ statements. Some 
compilers may object. Dummy reads are used, and so are partial reads of a 
logical record. You may need to pad out these READ statements.

24.1 Graphics Routines

The graphics facilities use the University of Bradford "SIMPLEPLOT" routines. 
These are not supplied with MITHRIL90, and can be obtained from:

D. Butland
Bradford University Research Limited,
University of Bradford,
Richmond Road,
Bradford BD7 1DP 
U. K.

However, you may well have your own graphics routines which are quite 
suitable. The routines called by MITHRIL90 are as follows:

(1) CALL NEWPLT(XLEFT,XRIGHT,XCMS,YBTM,YTOP,YCMS)

XLEFT - Horizontal scale limit for left edge.
XRIGHT - Horizontal scale limit for right edge.
XCMS - Length of horizontal scale in cms.
YBTM - Vertical scale limit for bottom edge.
YTOP - Vertical scale limit for top edge.
YCMS - Length of vertical scale in cms.

All the parameters are real. This is the basic setting-up routine. It defines the 
user's Cartesian units for all subsequent plots, and clears the screen.

(2) CALL NUMBPT (X,Y,I,N)

X - x-coordinate of a point in units of the graph scales.
Y - y-coordinate of a point in units of the graph scales.
I - Integer defining type of symbol placed at point (x,y).
N - Integer number to label point.

This draws a symbol centred at the point (x,y). These points are real numbers.

(3) CALL JOINPT (X,Y)
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This draws a straight line from the current pen position ,if it was reached by a 
previous JOINPT, to the specified point (x,y). Each first call of JOINPT moves 
the pen to the point (x,y) without drawing. BREAK is used if a gap is required 
between groups of joined points.

(4) CALL BREAK

The first call of JOINPT after calling subroutine BREAK moves the pen to the 
point defined in the call to JOINPT without drawing a line.

(5) CALL VDUMOD (I)

1=1 is used to take the terminal into graphics (4010) from alphanumeric mode. 
I=-1 is used to return the terminal from graphical (4010) mode to standard 
alphameric mode.

(6) CALL TITLE(IV, IH,TITLE,N)

IV,IH integer values for the vertical and horizontal positions of the title 
respectively.
TITLE the title string.
N the number of characters in the TITLE string.

This is used to output text to the screen.

(7) CALL CLOSE(1)

Closes all graphical work.

24.2 Memory Requirements

The requirement of 3 Mbyte of memory in which to run MITHRIL90 may not be 
a problem if you have an operating system which gives you virtual memory 
capabilities. There is, however, one problem which can arise with virual 
memory. The COMMON block labelled /BLK1/ requires 116K words (464K 
bytes). The TRIPLETS, and QUARTETS modules use this block to store a full 
hemisphere of E-magnitudes packed in a singly dimensioned array 
IESN(100000). This array is accessed in a wholly random way, and some 
virtual memory systems may spend an excessive amount of time paging 
because of this. Some operating systems allow you to specify data areas which 
may not be paged (i.e. which are memory resident); if this is possible in your 
case, then use it to keep IESN in memory. Alternatively, even a virtual machine 
environment may permit overlays or segmentation to reduce memory 
requirements, and hence the need for pagination.
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