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Summary

Organobromine compounds have a wide range of uses in the chemical industry, 

which vary from petrol additives and drilling fluids to dyestuffs and pharmaceuticals. The 

production of these compounds under more environmentally and industrially friendly 

conditions is desirable.

In this work the ability of y-alumina and montmorillonite K10 to adsorb bromine 

onto the surface, and the ability of these adsorbed species to enhance bromination 

reactions, are investigated. These investigations include the bromination of the supports 

using, dibromomethane, hydrogen bromide and dibromine. The action of each of these 

individual reagents upon the supports results in its own distinct adsorbed bromine species 

on the surface. These investigations also include the hydrobromination of alkenes and the 

Hell Volhard Zelinsky reaction (bromination of the carbon a  to the carboxylic acid group). 

The alkenes chosen for this work include 1,9-decadiene and butenes, as these give rise to 

both liquid and gas phase interactions with the solid supports. For the Hell Volhard 

Zelinsky reaction hexanoic acid was used.

The techniques employed to analyse these reactions include:-

I) Transmission FTTR spectroscopy: to identify the volatile products of the reactions.

II) DRIFTS and PAS: to investigate the surface of the supports after the

reactions had occurred.

HI) 2 7 A1-MAS-NMR: for analysis of the supports after reactions.

IV) Neutron activation analysis: for determination of the halogen content of the

supports.

V) [8 2 Br]-Bromine labelled hydrogen bromide and dibromine: for in situ studies of the

bromination reactions.

A major part of this work involves developing the necessary methods for the preparation, 

handling and counting of radiolabelled bromine compounds in heterogeneous systems.



The interaction of dibromomethane and tribromomethane (bromoform) results in 

the formation of at least two types of bromine species on the surface of the supports. One 

arises from the direct interaction of the halomethane with the support the other from the 

dissociative adsorption of hydrogen bromide, which forms during the reaction. These 

interactions do not occur to any appreciable extent below 523K. An indication as to the 

possible reason for this high temperature is provided by the formation of carbon monoxide. 

This suggests that the bromination process involves the substitution of surface oxygen 

species with bromine, a process which requires a high activation energy. Determination of 

the bromine content after these interactions indicates contents of between 0.5 and 1.2 mg 

atom Br g"1. There is no indication, however, that the bromination of the supports with 

halomethanes enhances the Lewis acidity of the supports to any great extent.

The [8 2 Br]-bromine labelled hydrogen bromide tracer studies indicate that the room 

temperature interaction of hydrogen bromide with the supports is rapid, resulting in a 

bromine content of approximately 1.0 mg atom g 1. The bromine uptake values increase in 

the presence of unsaturated hydrocarbons. These radiotracer experiments also indicate that 

the adsorption of hydrogen bromide onto montmorillonite K 1 0  results in at least two types 

of bromine species. One of these species is labile to room temperature exchange with 

unlabelled hydrogen bromide, the other inert. The effectiveness of acidic supports in 

enhancing hydrobromination of alkenes, appears to be related to the uptake of hydrogen 

bromide onto the supports. The regioselectivity of hydrobromination is greater where the 

overall reaction process occurs to a less extent.

Results from the [8 2 Br]-bromine labelled dibromine interactions with the supports 

show these interactions to be much slower than those observed for hydrogen bromide. 

These interactions, like those of the previous halogenating reagents, result in more than 

one type of bromine species. The [8 2 Br]-bromine radiotracer experiments indicate a 

bromine content much greater than observed for the other brominating reagents. Most of 

the bromine is removed, however, if the support is degassed. This results in a bromine 

content similar to that observed for the previous reagents, 1.0 mg atom Br g '1. A 

consequence of this ability of dibromine to adsorb onto the surface, in such large



quantities, is that if dibromine is added to the support first then no surface mediated 

reactions occur due to the swamping of these sites by bromine, and the order of addition of 

reagents, therefore, determines the reaction products obtained. The Hell Volhard Zelinsky 

reaction is not enhanced by either calcined y-alumina or montmorillonite K10. There are 

indications however that chlorinated montmorillonite K 1 0  and chlorinated y-alumina may 

enhance this reaction to some degree.

The acidic nature of the surface of the solid support is investigated by the 

adsorption of vapour phase basic probe molecules (pyridine and 2 ,6 -dimethylpyridine) 

onto these sites. The pyridine adsorption studies indicate that halogenation of the supports 

alters surface features to such an extent that the spectra of pyridine adsorbed onto calcined 

supports are completely different from the spectra of pyridine adsorbed on halogenated 

support. These studies show the complexity of the interaction of hydrogen bromide with 

pyridine adsorbed onto the supports. In contrast, the 2,6-dimethylpyridine adsorption 

studies indicate that the surface features of montmorillonite K10, montmorillonite K10 

treated with carbonyl chloride and y-alumina treated with carbonyl chloride, are very 

similar.
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CHAPTER 1

Introduction.

1.1 Bromine

Bromine, in its elemental form, is a dense, mobile, dark red liquid at room 

temperature. It was isolated by A.J.Balard in 1825 whilst experimenting with an end- 

liquor, from salt manufacture using waters of the Montpellier salt marshes [1], a liquor 

rich in MgBr2. J.von Liebig failed to discover the element several years earlier by 

incorrectly identifying it as iodine monochloride [2 ]. Balard reported his discovery to 

the French Academy of Science suggesting the name ’muride’. The committee, 

nominated by the academy, confirmed Balards findings. They suggested that the new 

element be called 'brome' from the Greek 'bromos', meaning stink, in recognition of its 

unpleasant odour.

Bromine was the third of the halogen family to be discovered and separated, 

after chlorine (1774) and iodine (1811). The atomic weight was reported in 1833 [3] as 

78.392 (based on H=l). In 1841 the first mineral containing bromine (bromyrite, AgBr) 

was discovered. The light sensitive properties of AgBr led to the major use of bromine 

in the photographic industry [4]. In 1857 bromine, in the form of KBr, was used in the 

medical world as a sedative and anti-convulsant in the treatment of epilepsy [4 ].

Bromine, the third in the halogen group, occurs principally as bromide salts of 

the alkalis and alkaline earths. It is substantially less abundant in crustal rocks (2.5ppm) 

than either fluorine (544ppm) or chlorine (126ppm) and is forty-sixth in order of 

abundance. The largest natural source of bromine, like chlorine, is in the oceans, but 

the bromine concentration of 65ppm is still significantly less than the chlorine content
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which makes up more than half the total average salinity of the oceans (3.4 wt%). 

Industries' main sources of bromine are the Arkansas brines (4000-5000ppm), the Dead 

sea (4000-5000ppm) and the Michigan brines (~2000ppm) [5].

Industrial production of bromine involves the oxidation of the bromide ion in the 

brine with CI2 . Bromine is removed from the solution by either 'steaming out' with a 

passage of steam or 'blowing out' with air, condensed then purified. The total world 

production of bromine, at 270000 tonnes p.a., is only one-hundreth the scale of the 

chlorine industry, the main producers being USA, USSR, UK, Israel, France and Japan 

[6].

The industrial usage of bromine had been dominated by the compound ethylene 

dibromide, which acts as a scavenger for lead from the petroleum anti-knock additive 

PbEt4 . In 1975,53% of all manufactured bromine was used as a fuel additive [7]. The 

agricultural industry, with 17.9%, was the next largest user. Here the bromine was 

used, notably in the form of methyl bromide, as a general pesticide (insecticide, 

fungicide and herbicide). 25000 Tonnes of bromine (8.9%) was used in fire retardant 

fibres and plastics, with the remaining 19.6% of bromine involved in a variety of uses 

including cleaning agents, water sanitation, dyestuffs, drilling fluids, photography, 

pharmaceuticals and organic and inorganic synthesis. Environmental legislation 

reducing the amount of PbEt4  allowed to be used in fuel has resulted in a world wide 

reduction in the market for ethylene dibromide. Fortunately for the bromine producers, 

however, bromine is now being used on a larger scale by many other industries.

1.2 Aim of This Work.

Electrophilic bromination of organic compounds is an important reaction and of 

considerable relevance to the Associated Octel Company who are the Co-operating 

Body in the work, since many synthetic intermediates concerning bromine have
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potential commercial value. The requirement for selective bromination of simple 

organic compounds, often in unfavourable positions, presents a synthetic challenge and 

recent work in this area includes the use of powerful electrophiles, for example BrF [8 ], 

Br2  adsorbed on zeolites [9] and polymer-supported reagents [10].

The objective of the present work was to explore the potential and hence 

develop new routes for the controlled introduction of bromine into organic compounds 

under electrophilic conditions. Most synthetic procedures have employed homogeneous 

conditions but the case for heterogeneous conditions has considerable attractions. For 

example, selectivity is potentially achievable from constraints imposed by the surface. 

The initial strategy was to direct attention to two areas; firstly vapour phase bromination 

using Br2  on a strongly acidic, brominated y-alumina surface and secondly, bromination 

using bromine containing cations supported on materials such as y-alumina or KSbF6.

In practice the first area required considerable development. It quickly became 

apparent that bromination of oxides such as y-alumina was significantly different from 

chlorination. The work has been based on bromination and hydrobromination reactions 

involving y-alumina and the clay montmorillonite K 1 0 .

The study of bromine containing compounds under heterogeneous conditions 

requires experimental methods for identifying products and in particular for monitoring 

the behaviour of bromine containing species on a gas/solid or liquid/solid interface. 

Analytical methods, for studying the bromine on a solid support, that were discounted 

included:-1) Infrared spectroscopy, including DRIFTS and PAS. The finger print 

region of bromine contained too much background noise from the solid support. II) 

Mass spectroscopy. The samples were non-volatile. IQ) NMR. Although bromine is 

NMR active it has a large quadrapole, broadening out any signals. NMR of the solid 

supports was possible using the 2 7 A1 isotope as discussed in chapter 2 .

A major consideration is the requirement for the detection of small quantities of 

bromine containing species on an inorganic surface. Radiolabelling offers the necessary 

sensitivity (0.1 mmol). Radiolabelled bromine is a very useful tool as it has several 

gamma emitting isotopes, of varying half-lives, described later in the chapter (section
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1.3). The isotope 8 0 Br, with a half-life of 18 minutes, is very useful for neutron 

activation analysis (section 2.5.7), whilst the 8 ^Br, with a half-life of 35.5h, is useful for 

in situ measurement of bromine uptake.

Although the University of Glasgow has considerable experience in the use of 

the radio-isotopes of fluorine, chlorine and iodine, no previous work in these 

laboratories has used radio-isotopes of bromine. For this reason a major part of this 

work involved developing the necessary methods for the preparation, handling and 

counting of radiolabelled bromine compounds in heterogeneous systems.

1.3 Radioactive Isotopes of Bromine.

Bromine has a number of radioactive isotopes which have been obtained using a 

variety of nuclear processes. These isotopes have been used in exchange reactions and 

other tracer studies of chemical reactions, in chemical analysis, biology and other fields 

of science, technology and industry [11-13]. Bromine isotopes formed as a result of the 

fission of heavier elements are of considerable interest and importance to nuclear 

reactor technology. Radiative neutron capture by bromine isotopes has played an 

important part in the development of a branch of radiochemistry, referred to as Tiot- 

atom' chemistry, and was the process by which radioactive bromine was produced in 

this work [14].

Naturally occurring bromine consists of a mixture of two isotopes, 7^Br and 

8 1 Br. The relative abundances of these are 50.5% and 49.5% respectively. Radioactive 

bromine isotopes have masses 74 to 90 inclusive; these isotopes are only available in 

sufficient quantities for study when prepared by synthetic or degradative methods.

Bromine isotopes which have a smaller mass than a stable isotope of the element 

have a lower neutron to proton ratio than is required for nuclear stability. The ratio can 

be corrected by converting a proton into a neutron by means of either P+ emission, 

orbital electron capture or both processes in competition, equations 1.3.1 & 1.3.2. In all
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cases the atomic number is reduced. Isotopes of mass greater than a stable isotope have 

a neutron excess and the decay is by p" emission, converting a neutron into a proton, 

equation 1.3.3, thus increasing the atomic number.

proton + e --------► neutron equation 1.3.1

proton -------- ► neutron + P+ equation 1.3.2

neutron  ► proton + p~ equation 1.3.3

It is not uncommon for the daughter product to be formed in an excited state, making 

the decay schemes of the isotopes (parents and daughters) quite complicated. 

Fortunately the decay schemes of the [8 0 mBr], [8 0 Br] and [8 2 Br] isotopes, that were 

used in this work, are known in some detail [15-17].

The [8 0 mBr] and [8 0 Br] isotopes are in the unusual situation of having mass 

numbers which lie between those of two stable isotopes, [7 ^Br] and [8 1 Br]. When 

compared with the stable [7 ^Br] isotope, the [8 0 mBr] and [8 ^Br] isotopes have a lower 

neutron to proton ratio than is required for nuclear stability, and will undergo the 

rearrangements shown in equations 1.3.1 and 1.3.2, to form [8 0 Se]. When these 

isotopes are compared with the stable [8 1 Br] isotope, they have a higher neutron to 

proton ratio than is required for nuclear stability, and will therefore undergo the 

rearrangement shown in equation 1.3.3, to form [8 0 Kr].

The [8 0 mBr] isotope successively undergoes two low energy internal transitions 

to the ground state [8 0 Br], which in turn decays mainly by emitting p“ particles with a 

maximum energy (end point) of 2.00 MeV. A small but significant proportion of the 

decays proceed by p+ emission or orbital electron capture to the ground state of stable 

[8 0 Se]. It is believed that a very small proportion, about 0 .6 %, of the total decays may 

go through a metastable state of [8 0 Se] of energy 0.654 MeV above the ground state. 

The remainder, 13.8%, of the decays go through a metastable [8 0 Kr], falling to the 

ground state by the emission of a y-ray of energy 0.62 MeV, scW^ac \.S .\.

[8 2 Br] decays entirely by (T emission (end point energy 0.444 MeV) to a high
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energy metastable state of [8 2 Kr] which decays to the ground state by a series of 

internal transitions shown in scheme 1.3.2.

—

- 2.648

* 2.094

- 1.821

Total energy

• 1.475 3.092 MeV.

- 0.777

Stable [8 2 Kr]

Scheme 1.3.2. Radioactive decay of [8 2 Br].

[8 2 Br]

[8 2 *Kr]

0.444(100%)

0.827 0.5541
0.25

0.35

J
1.317 1.044i i i

0.777

0.698

_ L

1.475

1.4 Preparation of [^BrJ-Bromine Labelled Dibromine and Hydrogen 

Bromide.

Nuclear reactor regulations state that, no liquids are permitted into the core of 

the reactor for irradiation purposes, hence it was not possible to irradiate dibromine to 

form [8 2 Br]-bromine labelled dibromine. The bromine salt, ammonium bromide, was
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therefore placed into the core of the reactor for irradiation. After irradiation, the 

ammonium bromide could be converted into dibromine.

[8 2 Br]-Bromine labelled dibromine was prepared by the addition of 98% 

sulphuric acid to [8 2 Br]-bromine labelled ammonium bromide. A new route had to be 

postulated for [8 2 Br]-bromine labelled hydrogen bromide, as the standard routes for the 

formation of hydrogen bromide, shown in table 1.4.1, were found to be unsuitable.

Table 1.4.1. Methods for the preparation of hydrogen bromide

Methods of preparation. Comments.

Direct synthesis from the

elements, without catalyst. slow combination at 523K

rapid combination at 773K

From inorganic bromides

phosphoric acid laboratory method

98% sulphuric acid some decomposition through oxidation.

Reduction of dibromine

Water vapour rapid 773K, over charcoal

hydrocarbons tetralin, rapid at 293K

red phosphorous laboratory method

Both direct synthesis from the elements and reduction of dibromine involve 

making [8 2 Br]-bromine labelled dibromine before any attempt to make [8 2 Br]-bromine 

labelled hydrogen bromide can proceed. Since there is an inefficiency in converting 

NH4 82Br into [8 2 Br]-bromine labelled dibromine, due to formation of H82Br and the 

solubility of dibromine in 98% sulphuric acid, further inefficiencies resulting in the loss 

of more [8 2 Br] activity have to be minimised.

In the reaction of [8 2 Br]-bromine labelled dibromine with tetralin, equation

1.4.1, half of the active bromine is lost in brominating the hydrocarbon.
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00
Br

+ 4Br2

Br
+ 4HBr

Br
equation 1.4.1

Formation of 82BrBr has an approximate efficiency of 70% conversion of NH482Br to 

8 2 BrBr, so the activity of [8 2 Br] in hydrogen bromide will be approx 35% of the starting 

activity. The reaction of dibromine with red phosphorous [20], equations 1.4.2a & 

1.4.2b, may become violent and explosions have occurred.

P4  + 6 Br2   ► 4PBr3  equation 1.4.2a.

PBr3  + H20 -------> HP03  + 3HBr equation 1.4.2b.

The hydrogen bromide formed will react to some extent with phosphorus, equation 

1.4.3.

2P + 3H20  + HBr 4----- ► PH4Br + H3 P0 3  equation 1.4.3.

Reaction of 98% sulphuric acid or phosphoric acid with ammonium bromide is a 

more direct method of hydrogen bromide preparation. Sulphuric acid readily oxidises 

hydrogen bromide to form dibromine [21], equations 1.4.4a and 1.4.4b, so this method 

is more suitable for 82BrBr than for H8 2 Br.

H2 S0 4  + NH4Br  > NH4 HS04  + HBr equation 1.4.4a.

2HBr + H2 S0 4 2H20  + Br2  + S0 2 equation 1.4.4b.
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Dibromine was formed even on the slow addition of sulphuric acid to the ammonium 

bromide. Sulphur dioxide formed during the oxidation of hydrogen bromide is an 

additional disadvantage and is difficult to separate from the hydrogen bromide in a fast 

and efficient manner.

Syrupy phosphoric acid gives a good yield of hydrogen bromide, without any 

significant by-products, equation 1.4.5.

H3 PO4  + NH4Br -------- >  NH4 H2 PO4  + HBr equation 1.4.5.

The main disadvantages of this method are I) its high viscosity and II) the reaction 

mixture requires to be heated before reaction occurs.

The most successful method used to produce [8 2 Br]-bromine labelled hydrogen 

bromide, is to react ammonium bromide with trifluoromethanesulphonic acid (triflic 

acid), equation 1.4.6.

CF3 SO3 H + NH4B r  > NH4 CF3 SO3  + HBr equation 1.4.6.

The advantages of this method are I) it can be carried out in the same apparatus as that 

used for the production of [8 2 Br]-bromine labelled dibromine, II) the reaction is rapid 

at room temperature, HI) a very good yield is obtained; most of the [8 2 Br] activity 

(approx 100%) is found in the hydrogen bromide and IV) there are no observable by­

products. Experimental details of the methods used for H82Br and 82BrBr synthesis are 

discussed in chapter 2 .
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1.5 Br<J>nsted-Lowry Definition of Acids and Bases.

The Br<|>nsted-Lowry definition of acids and bases was proposed independently 

in 1923 by the Danish chemist, J.N.Br<J>nsted [22] and the British chemist, T.M.Lowry 

[23]. Their aim was to attempt to broaden the scope of acid/base systems to cover all 

protonic solvents. The advantage of the Bnf>nsted-Lowry system was that a base need 

not contain hydroxyl ions, as is the requirement for the Arrhenius concept. Acids are 

defined as proton donors and bases as proton acceptors and every acid has a conjugate 

base, equation 1.5.1.

Acid ------ > Conjugate base" + H+ equation 1.5.1.

The ionization of hydrogen bromide in water is an example of a Br<f>nsted 

acid/base system, since the hydrogen bromide donates protons to the water and the 

bromide ion is the conjugate base, equation 1.5.2.

HBr + H20  -------> H3 <3 + + B r equation 1.5.2.

In a solid acid, the conjugate base is a site which will accept a proton and the 

conjugate acid a protonated surface site. The catalytic activity of homogeneous and 

heterogeneous Br<|>nsted acids is dependent on the ability of the Bnjmsted acid to lose a 

proton. This ability should be related, at least approximately, to the dissociation 

constant of the acid. Unfortunately the dissociation constants of Br<j)nsted acids are 

measured in aqueous medium, and do not apply directly to heterogeneous systems. 

However, the dissociation constant is the equilibrium constant for the deprotonation of a 

conjugate acid into a proton and conjugate base. For a Br^nsted acid site on y-alumina 

(-OA1-OH) the ratio of the equilibrium constants, shown in equation 1.5.3, is equal to 

Ka, equation 1.5.4.



-O-Al-O-H ------- * H+ + -O-Al-O- equation 1.5.3.

k Specific rate of reaction of O-Al-O-H
Ka =   =-----------------------------------------------------

k' specific rate of reaction of H+ + O-Al-O'

equation 1.5.4.

The specific forward and reverse reaction rates k and k' are not separable, 

therefore Br<|>nsted [24] suggested the approximate relationship

K h a  = GKax equation 1.5.5

where Kjja is the catalytic co-efficient of the Br<j>nsted acid with dissociation constant 

K^, and G and x are constants for a given reaction.

In homogeneous catalytic reactions [25], the stronger the acid the greater the 

catalytic activity. This property may be applied to solid acids which contain Bnjmsted 

acid sites. Therefore, enhancement of Bnj>nsted acidity in a solid catalyst will enhance 

the catalytic activity towards reactions that require a protonation step in a catalytic 

process. The use of promoters to enhance the Bn|>nsted acidity of a solid support, such 

as CCI4  and HC1, will also promote the catalytic activity of the support.

1.6 Lewis Acid-Base Concept.

The role of the electron lone pair is the basis of the definition of acids and bases 

proposed by G.N.Lewis in 1923. The Lewis definition of an acid substance is a 

compound 'which can employ a lone pair of electrons from another molecule in 

completing the stable group of its own atoms', and a basic substance is a compound
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’which has a lone pair of electrons which may be used to complete the stable group of 

another atom' [26]. Neutralisation of these acids and bases corresponds therefore to the 

formation of a co-ordinate bond. The forward acid base reaction is shown in equation

1.6.1, where A is the acid species and B the base

A + : B  > A : B equation 1.6.1

Lewis proposed that the main functional criterion of an acid is that a stronger 

acid will displace a weaker acid from its acid base complex. Equations 1.6.2 to 1.6.4 

outline the related heterolytic processes which follow from the fundamental relationship 

outlined in equation 1.6.1. In the following equations the acidity relationship is A’>A” 

and the basicity relationship is B’>B".

A1 + A":B -------- > A”+ A':B equation 1.6.2

B '+ A:B"  > B"+ A:B' equation 1.6.3

A’:B’ + A":B” ----► A':B”+ A”:B' equation 1.6.4

The Lewis acid/base concept can be used for a typical Br(j»nsted-Lowry 

acid/base definition, as outlined in equation 1.6.1, where the proton in equation 1.6.5 

represents the Lewis acid.

B’ + H+:B" ------ » B” + H+:B' equation 1.6.5

The advantage of the Lewis acid/base concept is that it can classify aprotic 

molecules as acids or bases. The disadvantage of the concept is that it is not yet a 

quantitative approach; the Lewis acid/base is made variable by the dependence upon the 

reaction or method for their evaluation. To quantify Lewis acid/base reactions the
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hard/soft, acid/base formalism of R.G.Pearson [27] has to be adopted.

Although the original Lewis acid/base concepts were based on homogeneous 

systems, they can be applied to gas/solid reactions if the acid-base definitions are 

restated as follows

A Lewis acid site on a solid surface is a site which has an unoccupied orbital 

with a high affinity for an electron pair. When such a site shares an electron pair 

donated by an adsorbed Lewis base molecule there is a decrease in the orbital energy of 

the system. Lewis base sites on the surface are those which have electron pairs 

available and a decrease in the orbital energy results if they share this electron pair with 

an adsorbed electron pair acceptor.

1.7 Montmorillonite K10.

Montmorillonite was the name given to a clay mineral found near Montmorillon, 

France in 1874. The name montmorillonite became associated with expanding clays 

and was for many years used generically to describe the group. The term expanding 

clay is due to the clays ability to swell in one dimension by the reversible uptake of 

water. To avoid confusion the group of expanding clays has now been renamed 

smectites, of which montmorillonites, bentonites and Fuller's earth are members. As a 

clay, montmorillonite, general formula MyI[Al2 -y Mgy(OH) 2  S i^ ^ .x l^ O ,  belongs to 

a family of layered silicate compounds which also includes talc, veimiculite, micas and 

pyrophyllite [28].

The structure of all layered silicate compounds is based upon an oxygen cubic 

close packed lattice. The idealised silicate structures are split into several categories, 

the first based on the number of interstitial layers present in the structure i.e. a 2  layered 

or 3 layered structure. The two layered structure, figure 1.7.1, is made up of 3 oxygen 

layers, ABC, and two interstitial layers consisting of silicon in tetrahedral environments
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and a metal cation in octahedral environments.

Figure 1.7.1. Two layered silicate structure.

The 3 layered structure, figure 1.7.2, is made up of 4 oxygen layers, ABCA, and three 

interstitial layers consisting of 2 layers of silicon in tetrahedral environments and one 

layer of metal cations in octahedral environments.

Figure 1.7.2. Three layered silicate structure.

The cationic interstitial layers are split into two categories, trioctahedral 

(brucite-type layers) and dioctahedral (gibbsite-type layers). The brucite-type layer, 

figure 1.7.3, which is based on Mg(OH)2, has the Mgn cation in all the octahedral 

interstitial sites, an example of this being talc [N ^ C O H ^ S i^ ^ )] -  The gibbsite type



Figure 1.7.3. Brucite type structure.

Lower layer oxygen

Top layer oxygen
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structure, figure 1.7.5, is based on Al(OH)3 and has the A l111 cation in 2/3 of the 

octahedral sites available; pyrophyllite [A l^CO H ^Si^jg)] is an example of this. In the 

gibbsite type structure partial replacement of the A l111 by Mgn , on a one to one basis, 

leads to a partial negative charge within the layers. To counter balance this negative 

charge, hydrated M1 or Mn cations can be incorporated between the plates, figure 1.7.4-, 

to give an overall electrically neutral system. These hydrated cations are known as 

exchangeable cations and control, to a large extent, the hydration properties of 

expandable layer silicates [29-32],

Figure 1.7.4. Incorporation of hydrated cations between the basal planes.

Montmorillonites with a trioctahedral (3 layered) system and a gibbsite type 

structure have the property of absorbing cations between the plates figure 1.7.4, and 

holding them strongly. As cations are positively charged, it can be assumed that the 

montmorillonite plates have a net negative charge, resulting from the replacement of 

Alm with Mgn . In the mineral montmorillonite Alm is replaced by Mgn in the 

approximate ratio of 6 to 1. This gives the montmorillonite plates a net negative charge 

(table 1.7.1), unlike talc and pyrophyllite which are both electrically neutral.



Figure 1.7.5. Gibbsite type structure.

Lower layer oxygen

Top layer oxygen

O  Alm
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Table 1.7.1. Electronic charges in smectites.

Talc Montmorillonite Pyrophyllite

302- -6 302- -6 302” -6
2Si4+ + 8 2Si4+ + 8 2Si4+ + 8

202 +(0H)- -5 202-K0H)“ -5 202 +(0H)- -5
3Mg2+ +6 1.67Al3++0.33Mg2+ +5.67 2A13+ +6
202 +(0H)- -5 202-+(0H)- -5 202-+(0H)- -5
2Si4+ + 8 2Si4+ + 8 2Si4+ + 8

302" -6 302- -6 3Q2- -6

Net charge 0 -0.33 0

In montmorillonite the hydrated cations between the plates are most commonly 

Na1 and Can . Fuller's earth is a montmorillonite in which the principal exchangeable 

cation is calcium. The pronounced cation exchange properties of Fuller's earth enable it 

to be converted, by exchanging the calcium with sodium, to sodium-montmorillonite.

Sodium-montmorillonite is commonly referred to as bentonite, but this is not 

strictly correct, as bentonite refers to a rock mineral which comprises mainly of sodium- 

montmorillonite; montmorillonite refers to a clay mineral. Since the stoichiometries of 

both bentonites and sodium-montmorillonites vary depending on where they originated, 

it is impossible to differentiate one from the other by chemical analysis.

The montmorillonite used in this work was montmorillonite K10, which is a 

montmorillonite which has been acidified [33]. The acidification process leads to the 

removal of aluminium from the gibbsite layer in the clay, figure 1.7.6, resulting in the 

collapse of the montmorillonite structure. This idealised model of montmorillonite 

contains only octahedral aluminium species but 2 7 A1-MAS NMR studies have shown, 

chapter 3, that with montmorillonite K10 there are also tetrahedral aluminium species 

present. The use of pyridine as a probe molecule, chapter 6 , has shown that there are 

both Lewis acid and Br<f>nsted acid sites present in montmorillonite K10.
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*g e 1.7.6. The structural collapse of montmorillonite after removal of aluminium.
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1.8 Phases of Alumina.

Aluminium oxide has only one stoichiometric form [34], AI2 O3 , but this simple 

form contains both polymorphs and several hydrated species [35]. These polymorphs 

and hydrated species are important as the catalytic behaviour of alumina is dependent 

upon the mode of preparation. Classification of the polymorphs based upon the 

crystallographic structures of the alumina has been implemented.

Alumina forms three distinguishable series (a, P, y), based on the close packed 

oxygen lattices, with aluminium ions in octahedral and tetrahedral interstices. The cx- 

series with hexagonally close packed lattices schematically ABAB...., the p-series with 

alternating close packed lattices, schematically ABAC-ABAC or ABAC-CABA, and 

the y-series with cubic packed lattices schematically ABC ABC....

The sole representative of the a-series, a-alumina, is obtained in the form of 

stable corundum or as the decomposition product of diaspore [36]. The p-series is 

represented by alkali or alkaline earth oxides containing p-alumina and the 

decomposition products of gibbsite (% and K-alumina) which have related structures 

[37]. The y-series is prepared from the decomposition products of the hydroxides 

bayerite, nordstandite and boehmite or by flame hydrolysis of aluminium(lll) chloride. 

In this work the low temperature phase of y-alumina was used [38].

The unit cell of a spinel (AB2 O4 ) is formed by a cubic close packing of 32 

oxygen atoms with 16 trivalent atoms in half of the octahedral interstices and 8  divalent 

atoms in tetrahedral holes [39]. Powder X-ray diffraction has established that y-alumina 

crystallizes with a spinel-related structure [36] in which 32 oxygen atoms per unit cell 

are arranged exactly as in a spinel but with 2 1  & aluminium atoms distributed over the 

24 cation positions available [40], giving on average 2  V? vacant cation sites per unit 

cell. Electrical neutrality is partially achieved by the occurrence of these vacant sites. 

The crystallite surface containing hydroxyl groups, in place of oxygen ions, further 

contributes to the electrical neutrality of the y-alumina crystallite.
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The cleavage plane of boehmite is parallel to any array of parallel rows of 

oxygen atoms. The (110) face of boehmite is the cleavage plane, since y-alumina 

maintains the spinel form of a cubic close-packed oxygen lattice. Cleavage of the (100) 

and ( 1 1 1 ) faces would result in a hexagonal close-packed stacking of oxygen atoms as 

in T|-alumina [41]

During dehydration, the array of oxygen atoms remains in the spinel form, hence 

these parallel rows stack exclusively to form a cubic close-packed lattice resulting in the 

fairly well ordered oxygen lattice of y-alumina. Two repeating types of layers can be 

derived from the ( 1 1 0 ) face of the spinel unit of y-alumina (figure 1 .8 .1 ), and 

represented schematically as CDCD... The C-layer has equal numbers of tetrahedral 

and octahedral sites (figure 1.8.2), but the D-layer has only octahedral Alm ions (figure 

1.8.3). The occurrence of sharp diffuse lines in the X-ray pattern of y-alumina indicated 

that the lattices are strongly disordered [42], a disorder caused strictly by the 

aluminium. The cation distribution of y-alumina was determined by Fourier Synthesis 

of the electron diffraction patterns [43] and it was found that the octahedral aluminium 

sublattice is fully occupied and hence the necessary vacant sites must be distributed 

randomly over the tetrahedral interstices. Figures 1.8.1,1.8.2 and 1.8.3 are, in the case 

of y-alumina, idealised structures with all the tetrahedral aluminiums in place.

It is the surface of y-alumina which is important in catalysis and since y-alumina 

occurs in the form of lamellae, it is most probable that one type of surface plane is 

predominant. For the reasons discussed above the predominant surface plane is likely 

to be the (110) plane [36].

1.9 Fluorination and Chlorination of y-Alumina and Montmorillonite K10.

The rapid hydrolysis of COF2  at room temperature [44], on the surface of y- 

alumina results in increased Br<|>nsted acidity of the surface due to the hydrolysis



Figure 1.8.1. The (l 10) face of the spinel unit cell.



oxygen

Figure 1.8.2. (llO) Face of y-alumina 'C-layer



oxygen

Figure 1.8.3. (l 10) Face of y-alumina 'D-layer'
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product HF. Promotion of Br<J)nsted acidity by other fluorides, for example BF3  and 

NH4F has also been noted [45]. The room temperature interaction of SF4  however 

results in the enhancement of Lewis acidity [44].

The chlorination of y-alumina results in the enhancement of acidic sites on the 

surface of the alumina. The nature of this acidity depends on the chlorinating reagent 

used, chlorination of y-alumina using anhydrous HC1 leads to the enhancement of 

Br<jmsted acidity [46], whereas chlorination of y-alumina using CCI4  or OCCI2  leads to 

enhanced Br<f>nsted and Lewis acidity [47]. A study by A.G .Goble and P.A.Lawrance 

[48], indicated that the basic chlorination reaction involves an exchange of two chlorine 

atoms for each surface oxygen atom, resulting in the formation of Lewis acid sites. 

Isomerisation was considered to occur on a 'localised dual site' consisting of the Lewis 

acid site and an adjacent metal site. Goble and Lawrance [48] also discovered that 

hydrogen chloride and certain organic chlorine containing compounds gave rise to a 

catalyst that was inactive towards low temperature isomerisation, table 1.9.1.

Hydrogen Chloride HQ

Methyl Chloride CH3 CI

Sym-tetrachloroethane CHCl2 CHCl2

1,2-Dichloroethane CH2 C1CH2 C1

Tetrachloroethylene CC12 =CC12

Acetyl Chloride CH3 COCI

Table 1.9.1. Chlorine containing compounds which result in inactive low 

temperature isomerisation catalysts.

whilst other organic chlorine containing compounds gave catalysts active towards low 

temperature isomersation, table 1 .9 .2 .



Figure 1.9.1. Chlorine species present on y-alumina after the interaction of hydrogen 

chloride.

oxygen

chlorine

Figure 1.9.2. Chlorine species present on y-alumina after the interaction of carbonyl 

chloride.



2 0

Carbon Tetrachloride CC14

Chloroform CHCI3

Methylene Chloride c h 2 c i 2

Difluorodichloromethane c f 2 c i 2

Table 1.9.2. Chlorine containing compounds which result in active low 

temperature isomerisation catalysts.

By using the radiotracer chlorine-36, it has been shown that the types of site can be 

differentiated. Chlorine associated with Br<J>nsted sites is labile with respect to [3 6 C1] 

exchange with H3 6 C1 at room temperature, whereas chlorine associated with Lewis sites 

is inert to exchange with H3 6 C1 [45].

One explanation of the enhancement of Br<j>nsted acidity observed after the 

treatment of calcined y-alumina with anhydrous HC1 is the formation, due to 

dissociative adsorption, of new acid sites. This involves the replacement of a terminal 

hydroxyl group by a chlorine atom and the protonation of a neighbouring bridged 

oxygen species [45].

H
, 0  yOH HC1 A ,C l

Al Al ------------ ► Al Al equation 1.9.1.

The replacement of the terminal hydroxyl group by the chlorine is possible for 

octahedral and tetrahedral Al111 environments, both of which are illustrated in figure 

1.9.1. The enhancement of Bnjmsted acidity is due to the protonation of the bridged 

oxygen species. Since the chlorine atom is larger than the OH, the coordinately 

unsaturated Al111̂  surface species is effectively saturated and is thus not expected to 

exhibit Lewis acidity.
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Reactions involving CCI4  and OCCI2  with y-alumina are similar. This is not 

surprising as OCCI2  is a reaction intermediate in the CCI4  chlorination process, 

equation 1.9.2.

Whereas the interaction of HC1 with y-alumina takes place at room temperature, the 

interaction of CCI4  with y-alumina is minimal below 473K [49]. The initial reaction is 

believed to involve the replacement of terminal hydroxyl groups by chlorine, with the 

formation of OCCl2  HC1 , equation 1.9.3a, the carbonyl chloride then reacts further 

to give C 0 2  and HC1, equation 1.9.3b.

The hydrogen chloride formed in these reactions can then react with the surface as 

described previously. The chlorination reactions at this point involving both the 

anhydrous H Q  and CCI4 , appear to be very similar, but the Q  exchange reactions [49] 

show the chlorine species on the two surfaces to be very different. It has been 

postulated that the chlorination process involving CQ 4  and OCQ 2 , involves both 

terminal hydroxyl groups and inplane oxygens that bridge three Alm atoms; two of 

these are surface atoms, and one lies immediately below the surface, figure 1 .9 .2 .

It must be pointed out that figures 1.9.1 and 1.9.2 are based on the assumption of 

a perfect (110) spinel surface, and that y-alumina is in fact a defect spinel. Figure 1.9.2,

2  ( Al— Q  ) +■ OCQ2  equation 1 .9.2.

J K  / aAT Al'Al + OCQ 2  + HQ equation 1.9.3a

/ Q  / Q
^  Al XA1 + CO2  +■ HQ equation 1.9.3b
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does emphasise that the replacement of an inplane oxygen bridge by two chlorines, one 

terminal and one bridging, has a considerable disruptive effect on the lattice and hence 

requires a greater expenditure of energy than is required for chlorination using HQ.

The chlorination of montmorillonite K10, described in section 2.2.10, has not 

been as well documented as that of y-alumina. Results obtained in this work have 

shown both similarities and differences between chlorinated montmorillonite K10 and 

chlorinated y-alumina. Qilorination of montmorillonite K10 was carried out under the 

same conditions as that for y-alumina. Infrared analysis of the vapour phase after the 

chlorination process has shown that CO2  and HQ are present, as with y-alumina, but 

results from neutron activation analysis (chapter 2) show a chlorine content of 7mg 

atom Q  gr1, double that of y-alumina. The nature of the acidity of the chlorinated 

montmorillonite K10 was investigated (Chapter 6 ) using pyridine as a probe molecule. 

The chlorinated montmorillonite exhibited both Lewis and Br^nsted acidity. The 

chlorinated montmorillonite is air sensitive (experiment 6.2.9), evolving hydrogen 

chloride when exposed to air. 2 7 A1MAS-NMR investigations, Chapter 3, provided 

evidence for both octahedral and tetrahedral aluminium environments.

At the outset of this work it was assumed that bromination of y-alumina would 

lead to analogous situations as those encountered in the chlorination study carried out 

previously [46-49]. However this assumption proved to be unjustified; these findings 

were to influence greatly the work that was undertaken.
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CHAPTER 2

2.1 Experimental.

The experimental work involving air sensitive materials was carried out in a 

Pyrex vacuum line, and involatile reactants transferred into the reaction vessels in a 

nitrogen atmosphere glove box. This ensured anhydrous and oxygen free conditions.

2.1.1 The vacuum system.

The vacuum line (figure 2.1.1) was an enclosed Pyrex glass structure consisting of 

a manifold, a constant volume manometer and a Vacustat, all of which were individually 

isolable. A rotary oil pump (Edwards high vacuum or Genevac) in series with a mercury 

diffusion pump (Jencons) provided a vacuum of lO ^Torr. The pumps were protected from 

volatile material by a series of waste traps, before and after the mercury diffusion pump, 

which were cooled in liquid nitrogen. The Vacustat was used to measure the vacuum 

achieved by the pumps.

The constant volume manometer was used to measure pressures of gases in the 

manifold, with a precision of i  0.5 Torr. The manifold had various B14 ground glass 

sockets, isolable from the line using high vacuum stopcocks (J.Young). Vacuum vessels 

(figure 2.1.2) and ampoules (figure 2.1.3), equipped with high vacuum stopcocks 

(J.Young) and B14 cones, were attached to the manifold sockets using Kel-F grease. The 

line and the vessels were flamed out, while the system was pumping, using a gas/oxygen 

flame.
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High vacuum stopcock (J. Young)

B14 Cone

Figure 2.1.2. Pyrex Reaction Vessel.



High vacuum stopcock (J.Young)

B14 Cone

Figure 2.1.3. Pyrex Ampoule.
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2.1.2 The inert atmosphere box.

A nitrogen atmosphere glove box (H2 0<4ppm) was used when handling and 

storing all samples. The box contained an analytical balance, allowing the samples to be 

weighed precisely in a dry atmosphere.

2.2 Preparation and Purification of Reactants.

2.2.1 Preparation of [8 2 Br]-bromine labelled ammonium bromide.

The 82Br isotope was prepared using the SURRC reactor facility at East Kilbride. 

Ammonium bromide (NH4 Br, 2mg) was placed in a polythene ampoule (figure 2.2.1), 

which was then wrapped in aluminium foil. The ampoule was transported to the Reactor 

Centre, where it was irradiated. Typical irradiation conditions were 3 hours, at a flux of 

3.6 x 1 0 1 2  neutron cm 'V 1, giving an activity of 1 0 0 (xCi.

The irradiation process produced 3 major radioactive isotopes, 8 0 Br(t1 / 2  18m), 

80mBr(t!y2 4.5h) and 8 2 Br(tjy2  35.5h). The isotopes [8 0 Br] and [8 0 mBr] have relatively 

short half-lives in comparison with the [8 2 Br], and could be discounted, since the irradiated 

sample was collected 48h after the irradiation process, leaving the one major radioisotope 

[8 2 Br].

Safety precautions when handling radioactive bromine involved; I) wearing latex 

gloves and a finger monitor, II) conducting all experiments in a fumehood, HI) handling 

[8 2 Br]-bromine labelled ammonium bromide over a spill tray and IV) conducting all 

experiments behind a 1 0 cm lead shield.



Figure 2.2.1. Polythene ampoule.
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2.2.2 Preparation of [82Br]-bromine labelled hydrogen bromide.

[8 2 Br]-Brorriine labelled hydrogen bromide was prepared by the addition of 

trifluoromethanesulphonic acid (triflic acid) CF3 SO3 H (Fluorochem Ltd) to [8 2 Br]- 

bromine labelled ammonium bromide.

Vessel A (figure 2.2.2) was attached to the vacuum line, via a right angled adaptor. 

The manifold and vessel were checked for leaks, by closing tap A on the vessel and 

opening taps B and C. The vessel was then evacuated, by opening tap D on the manifold, 

until the pressure gauge, attached to the manifold, returned to its original setting; at this 

point the pressure gauge was set to zero. The manifold was isolated from the vacuum line, 

but not from the pressure gauge. After 20min the pressure was read; if the pressure in the 

manifold had increased by more than 3-4 Torr then the usual procedure for finding leaks 

was undertaken until the change in pressure in the manifold was < 3-4 Torr over 20 

minutes. Vessel A was isolated from the manifold by closing tap C, air was allowed into 

the vessel by opening tap A, then tap B was replaced by a glass funnel. Vessel B, the 

collection vessel (figure 2 .1 .2 ), was attached to the manifold and evacuated.

Ammonium bromide (Analar, BDH, l.Og) was loaded into vessel A using the glass 

funnel. The radiolabelled ammonium bromide (2mg) was removed from the lead castle, 

with the aid of tweezers, and placed on a tray covered with a paper towel. The aluminium 

foil surrounding the ampoule was then removed. The ampoule was opened carefully and 

the radiolabelled ammonium bromide loaded into vessel A. A mini-monitor was used to 

check for any spillages of radioactive material and for contamination of the tweezers.

Once all the ammonium bromide had been loaded, tap B was replaced and closed. 

Triflic acid (approx 3cm3) was added to the vessel through tap A. The vessel was 

evacuated by closing tap A and opening tap C, with the manifold open to the vacuum line. 

A Dewar flask containing liquid nitrogen was placed around vessel B. The manifold was 

then isolated from the vacuum line and tap B opened, allowing triflic acid to react with 

ammonium bromide. The hydrogen bromide evolved was condensed, using liquid nitrogen, 

into vessel B. After 20min tap C was closed and the manifold opened to the vacuum line.
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Vessel B (containing the [8 2 Br]-bromine labelled hydrogen bromide) was then closed and 

the contents stored at 77K.

When the mini-monitor was placed next to the triflic acid in vessel A, after the 

reaction, only a background count was detected (10 count s"1). Counting vessel B with the 

mini-monitor gave counts > 2 0 0 0  count s'*.

2.2.3 Preparation of [82Br]-bromine labelled dibromine.

[8 2 Br]-bromine labelled dibromine was prepared by the addition of 98% sulphuric 

acid (H2 SO4 ), to [8 2 Br]-bromine labelled ammonium bromide.

In preliminary experiments undertaken in the formation of dibromine, from 

ammonium bromide, the solubility of dibromine in 98% sulphuric acid was such that the 

dibromine could not be distilled out of the solution at standard temperature and pressure. 

There were two options available; either increase the temperature or decrease the pressure, 

the latter being chosen as a safer option. The apparatus used to prepare the [8 2 Br]-bromine 

labelled dibromine was similar to that used to prepare [8 2 Br]-bromine labelled hydrogen 

bromide. The preparation of the apparatus, for example checking for leaks, was identical 

for both preparations.

Ammonium bromide (0.75g) was loaded into vessel A using the glass funnel. The 

radiolabelled ammonium bromide (2 mg) was removed from the lead castle, with the aid of 

tweezers, and placed on a tray covered with a paper towel. The aluminium foil surrounding 

the ampoule was then removed. The ampoule was opened carefully and the radiolabelled 

ammonium bromide loaded into vessel A. A mini-monitor was used to check for any 

spillages of radioactive material and contamination of tweezers.

Once all the ammonium bromide had been loaded, tap B was replaced and closed. 

98% Sulphuric acid (3cm3) was added to the vessel through tap A. The vessel was 

evacuated by closing tap A and opening tap C, with the manifold open to the vacuum line.
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A Dewar flask containing liquid nitrogen was placed around vessel B. The manifold was 

then isolated from the vacuum line and tap C closed. The sulphuric acid was added to the 

ammonium bromide by opening tap B. After 2min tap C was opened and the [8 2 Br]- 

bromine labelled dibromine evolved was condensed into vessel B. After 20min, vessel B 

and tap C were closed, and the manifold opened to the vacuum line. Vessel C (storage 

vessel) containing P2 O5  was attached to the manifold and evacuated. A Dewar flask 

containing dichloromethane and dry ice, at 236K, was placed around vessel B before 

opening the vessel to the vacuum line to remove HBr and SO2  formed during the reaction. 

The manifold was then isolated from the vacuum line and a Dewar flask containing liquid 

nitrogen placed around vessel C. Vessel C was opened and the [ 8  2 Br]-bromine labelled 

dibromine condensed into vessel C.

2.2.4 Purification and storage of dibromine.

98% Sulphuric acid (5cm3) was loaded into a glass reaction vessel (figure 2.1.2), 

which was then transferred to a vacuum line and the contents degassed. An aliquot of 

dibromine was loaded into a separate glass reaction vessel and the contents degassed; this 

dibromine was then condensed into the vessel containing sulphuric acid and allowed to 

warm to room temperature. After 30min the dibromine was condensed into a storage 

vessel containing P2 O5 . The contents of the storage vessel were degassed at 236K to 

remove any trace amounts of hydrogen bromide and hydrogen chloride that may have been 

present.
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2.2.5 Preparation and storage of dibromomethane, bromochloromethane and 

tribromomethane.

The halogenating reagents dibromomethane, bromochloromethane and 

tribromomethane were all prepared and stored in the same manner.

An aliquot of dibromomethane (Analar, Aldrich, approx 5cm3) was loaded into a 

glass reaction vessel (figure 2 .1 .2 ), transferred to a vacuum line, and the contents of the 

vessel degassed. A separate glass reaction vessel containing activated 3 A molecular sieves 

was attached to the vacuum line. The dibromomethane was condensed into this second 

reaction vessel and stored under vacuum.

2.2.6 Purification of pyridine and 2,6-dimethylpyridine.

The purification process used for pyridine (Analar, BDH) and 2,6-dimethylpyridine 

(Analar, Aldrich) was identical. An aliquot of pyridine (5cm3) was loaded into a glass 

reaction vessel, transferred to a vacuum line, and the contents of the vessel degassed. A 

second vessel, containing KOH pellets, was attached to the vacuum line and the contents 

degassed. The pyridine was condensed, at 77K, into the second vessel and stored under 

vacuum.

2.2.7 Calcination of y-alumina

The Y-alumina used in this work was high purity Degussa 'C\ The standard 

pretreatment involved loading the y-alumina to be calcined (generally lOg) into a glass 

vessel and attaching to the vacuum line. An electrical heater fitted with a vertical thermo­
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couple was fixed around the vessel. The y-alumina was pretreated by calcining in vacuo at 

523K for 6  hours under dynamic vacuum. After the pretreatment was complete, the 

calcined y-alumina was transferred to a dry box and stored under nitrogen.

2.2.8 Calcination of montmorillonite K10.

Montmorillonite K10, produced by Sud-Chemie A.G, Munich, Germany is a 

sulphuric acid-leached montmorillonite [35] and was supplied by the Aldrich Chemical 

Company Ltd. The standard pretreatment involved loading the montmorillonite K10 to be 

calcined (generally 5g) into a glass vessel, and attaching to the vacuum line. Due to the 

physical nature of the montmorillonite K 1 0 , special precautions were taken to avoid 

drawing the powder into the vacuum manifold. Precautions included fitting a specially 

designed piece of apparatus, figure 2.2.3, onto the calcination vessel, in order to trap any 

montmorillonite K10, before slowly degassing the vessel over a period of 2h. The 

montmorillonite K10 was preteated by calcining at 523K for 6 h under dynamic vacuum. 

After the preteatment was complete the calcined montmorillonite K10 was transferred to a 

dry box and stored under nitrogen.

2.2.9 Chlorination of y-alumina

The calcined y-alumina sample (generally lg) was loaded into a Monel bomb, 

under a nitrogen atmosphere in the glove box. The bomb was attached to the vacuum line 

and pumped for lOmin to remove all nitrogen. The bomb was cooled to 77K, using liquid 

nitrogen, before an aliquot of COCl2  was condensed into the bomb by vacuum distillation. 

An electrical heater was fitted around the bomb, and the bomb heated at 523K for 6 h.



to vacuum manifold

B14 cone

sintered glass disc

B 14 socket

to calcination vesselI
Figure 2.2.3. Apparatus used to avoid the carriage of montorillonite K10 into the 

vacuum manifold during calcination.
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After the pretreatment was complete, the contents of the bomb were degassed before the 

chlorinated y-alumina was transferred to a dry box and stored under nitrogen.

2.2.10 Chlorination of montmorillonite K10.

The calcined montmorillonite K10 sample (generally lg) was loaded into a Monel 

bomb, under a nitrogen atmosphere in the glove box. The bomb was attached to the 

vacuum line and pumped for lOmin to remove all nitrogen. The bomb was cooled to 77K, 

using liquid nitrogen, before an aliquot of COCl2 was condensed into it by vacuum 

distillation. An electrical heater was then fitted around the bomb, and the bomb heated at 

523K for 6h. After the pretreatment was complete, the contents of the bomb were 

degassed before the chlorinated montmorillonite K10 was transferred to a dry box and 

stored under nitrogen.

2.2.11 Fluorination of y-alumina.

The calcined y-alumina sample (approximately lg) was loaded into a Monel bomb, 

under a nitrogen atmosphere in the glove box. The bomb was transferred to a Monel 

vacuum line and pumped for lOmin to remove all nitrogen. One aliquot of SF4 (1 mmol) 

was condensed onto the y-alumina and allowed to warm to room temperature for 30min, 

after which time the contents of the bomb were pumped for 60secs to remove any volatile 

products. Another aliquot of SF4 (1 mmol) was condensed into the bomb and the process 

repeated. This sequence was repeated a total of five times.
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2.3 Infrared Spectroscopy

2.3.1 Transmission infrared spectroscopy in the vapour phase.

To obtain a vapour phase spectrum, the gas cell, figure 2.3.1, with KBr windows 

and a pathlength of 7cm, was evacuated and a background spectrum accumulated, usually 

10 scans. Vapour phase infrared spectra of reaction products were obtained by attaching 

the reaction vessel and the gas cell to a vacuum line manifold and evacuating both. 

Vapour was expanded into the manifold to the desired pressure,, usually 50 Torr. The cell 

was isolated from the manifold and the manifold evacuated, allowing the cell to be 

removed. A spectrum was then accumulated, usually for 10 scans.

Two spectrometers were used to obtain these vapour phase spectra; I) Philips PU 

9800 FT-IR Spectrometer, with a DELL SYSTEM 2 0 0  computer and II) Perkin Elmer 

16PC FT-IR with an EPSON EL3s computer.

2.3.2 Diffuse reflectance infrared fourier transformed spectroscopy (D.R.I.F.T.S.).

Reflectance spectroscopy differs from absorbance spectroscopy in that using 

reflectance spectroscopy, the radiation being analysed is reflected off the surface of the 

analyte, figure 2.3.2. In absorbance spectroscopy the radiation as passed completely 

through the sample.

I.R. beam

surface of analyte

Figure 2.3.2. Reflectance spectroscopy.



High vacuum stopcock (J. Young)

B14 Cone

KBr windows

Trough to contain solids

Figure 2.3.1. Gas Cell.
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Diffuse reflectance spectroscopy reflects the infrared beam off an ellipsoid mirror, figure 

2.3.3, and onto the sample. A blocker device (A) prevents radiation reflected without 

penetrating the sample from reaching the collection mirror. The diffusely reflected 

radiation (B) penetrates into the sample and is able to reach the collection mirror.

blocker device A

ellipsoid mirror

I.R. beam Bvessel 2.3.2

Figure 2.3.3. Diffuse reflectance cell.

Diffuse reflectance measurements provided a very simple method of obtaining 

infrared spectra of solids. To obtain a DRIFT spectrum, vessel 2.3.2 was loaded with KBr 

to give a 'flat' surface and a background spectrum was accumulated. The KBr was 

removed and the powder under investigation was loaded into the vessel. The vessel was 

placed into the spectrometer and several scans (usually 50) were obtained. The powders 

investigated were generally moisture sensitive, so handling and scanning times were kept 

to a minimum. Attempts at using an inert atmosphere shroud failed to produce acceptable 

spectra; noise levels were very high with respect to signals, even after 10000 scans. The 

spectrometer used for the DRIFTS analysis was a Nicolet 5DXC FT-IR Spectrometer with 

a Nicolet Auxiliary Experiment Module attached.
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2.3.3 Photoacoustic spectroscopy (P.A.S.).

Photoacoustic spectroscopy, like DRIFTS, is a technique used for obtaining 

infrared spectra from the surface of solid materials. The photoacoustic technique involves 

placing the powder under investigation into the photoacoustic cell, figure 2.3.4, then 

purging the cell with helium for 10-20sec to remove all air from the system. The signal 

obtained from the powder is amplified through the helium medium before being picked up 

by the microphone. The signal is then processed by the computer and a spectrum obtained.

helium atmospheremicrophone

I.R. beam

sample holder

Figure 2.3.4. Photoacoustic cell.

Spectra were obtained by loading a carbon black disc into the photoacoustic cell, 

purging the cell with dry helium gas for lOsecs and a background spectrum accumulated. 

The carbon black disc was removed and the powder under investigation loaded into the 

vessel, figure 2.3.2. The vessel was transferred to the PAS cell, and the cell purged with 

helium for lOsecs. After purging, several scans (usually 20) were obtained.

The PAS analysis was carried out, with the help of Malcolm Littlewood, at Nicolet 

Instruments limited, Warwick and also at Strathclyde Police Headquarters, Glasgow, using 

a Nicolet 510 spectrometer.
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2.4 Gas Chromatography.

All analysis involving gas chromatography and gas chromatographic mass 

spectroscopy was carried out at The Associated Octel Company Ltd, Ellesmere Port. An 

HPS crosslinked 5% Ph-Me-Silicone (5m x 0.32mm x 0.52micrometres) column was used 

for these analyses. Typical ran conditions were; Initial Temp: 373K, Final Temp: 653K, 

Initial Time: Omin, Final Time : 20min, Rate: lOK/min and Injection Temp: 623K.

2.5 Radiochemistry.

2.5.1 Statistical errors.

Decay of a radioisotope is a random process and is therefore subject to fluctuations 

due to the statistical nature of the process. If a source of radioactivity is measured several 

times, the number of disintegrations observed during a fixed time will not remain constant, 

even allowing for half-life decay. The probability W(m) of obtaining m disintegrations in 

time t from No original radioactive atoms is given by the binomial expression (equation 

2.5.1):

No!Wm =   pn\l-p )No-m
(No-m)!m!

equation 2.5.1.

where p is the probability of a disintegration occurring within the time of observation [51]. 

From this expression it can be shown [52,53,54,] that the expected standard deviation for 

radioactive disintegration 0 is given by equation 2.5.2.
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e i equation 2.5.2.

In practice the observation time t is short in comparison to the half-life so that t is 

small, reducing equation 2.5.3 to :

where m is the number of counts obtained. In this work all errors quoted on radiochemical 

measurements are the combination of the uncertainty in the physical measurement, such as 

weight of sample and pressure of gas, and the uncertainty in the count obtained.

2.5.2 Scintillation counting.

[8 2 Br]-Bromine decays (100%) by the emission of a p particle (end-point energy 

0.444MeV). This decay adjusts the amount of neutrons and protons present, in the nucleus 

by converting a neutron to a proton, equation 2.5.4.

neutron ----------------► proton + P“ equation 2.5.4.

The emission of p“ leaves the mass number of the isotope unchanged, but the 

atomic number increased by one, therefore [8 2 Br] decays to a high energy metastable state 

of [8 2 Kr], equation 2.5.5.

e equation 2.5.3,

[8 2 Br] [8 2 *Kr] equation 2.5.5.

[8 2 *Kr] decays to the ground state [8 2 Kr] by internal transitions (figure 1.3.2), with 

the emission of a range of high energy y-radiation. The y-rays produced in the internal



36

transitions were counted using a Tl/Nal scintillation counter, attached to an SR7 scaler 

ratemeter. The most widely used inorganic scintillator is Nal activated with 0.1-0.2% 

thallium. The high density (3.7gcm-̂ ) of Nal and the high Z value of iodine make this a 

very efficient y-ray detector. To produce one photon from the Nal scintillation crystal 

requires approximately 30eV. On average 10 photons are required to release one 

photoelectron at the photo-cathode of the multiplier. These photoelectrons are then 

accelerated, by an electrical potential gradient, to the first electrode, where each 

photoelectron produces approximately 4 more photoelectrons. These secondary electrons 

are similarly accelerated, so that in a 1 0  stage photomultiplier tube there is a gain of 1 0 4. 

The resulting pulse is then fed into an amplifier and then to a scaler, where it is recorded.

To achieve a maximum pulse the scintillator crystal is surrounded by a reflector. 

The space between the crystal and the photomultiplier is filled with high viscosity paraffin 

or silicone oil, to improve the light transmission. The scintillation counter and scaler were 

calibrated before use, using a [^Co] source which emits y-rays of energy 1.33MeV. A y- 

ray spectrum of [8 2 Br] was obtained by monitoring the counts from the source while 

varying the applied threshold, figure 2.5.1. y-Ray spectra were also obtained for [8 2 Br], 

[80mgrj [8 0 3 r] using the GeLi counter at SURRC, figure 2.5.2. The GeLi counter has 

a higher efficiency and a greater resolution than the Nal counter.

2.5.3 Half-life and decay corrections.

The half-life, is the time interval required for a measured activity A to decrease 

by one half of its original value. The half-life was conveniently determined from a plot of 

InA versus t (time) and is related to the decay constant by equation 2.5.6. The half-life of 

[8 2 Br] was determined, from figure 2.5.3, to be 35.0h (literature value 35.3h [55]).
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ln2

t1 / 2  = ------  equation 2.5.6.
X

The activity of a radioactive species decays according to equation 2.5.7. Since 

significant decay occurred in the time taken to carry out an experiment, all data obtained 

were corrected to zero time before being analysed.

At = e '^  equation 2.5.7.

where; X = decay constant in h 1

At = count rate of sample at time t 

A„ = count rate of sample at time t=0.

2.5.4 [8 2 Br]-Bromine counting cells.

Reactions involving [8 2 Br]-bromine labelled Br2  and HBr were monitored using 

single limbed counting vessel, figure 2.5.4, to measure the specific activity of the samples. 

A double limbed counting vessel, figure 4.2.1, was used to follow uptakes of [8 2 Br] at 

room temperature and a round bottomed reaction vessel, figure 4.2.3, was used to follow 

bromine uptakes at temperatures up to 353K.



Figure 2.5.4. Single limbed counting vessel.
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2.5.5 Determination of specific count rate of [82Br]-bromine labelled hydrogen 

bromide.

The specific count rate of [8 2 Br]-bromine labelled hydrogen bromide was 

determined by reacting a measured quantity of hydrogen bromide with sodium hydroxide 

and counting the sodium bromide salt.

Solid sodium hydroxide (l.Og) was placed in a single limbed counting vessel, 

figure 2.5.4, and a few drops of water added. The counting vessel was transferred to a 

vacuum line and degassed for 5secs. The vessel was closed then cooled using liquid 

nitrogen. The manifold and pressure gauge were isolated from the vacuum pump. An 

aliquot of [8 2 Br]-bromine labelled hydrogen bromide was then released into the manifold, 

and the pressure noted. The single limbed vessel was opened to the manifold, and the 

hydrogen bromide condensed into it. The single limbed vessel was closed after 30 

seconds, and the pressure noted. From the known pressure, i.e. difference between the 2 

readings, the amount of [8 2 Br]-bromine labelled hydrogen bromide condensed into the 

limb could be calculated. The single limbed vessel was then placed into the Nal counter 

and a minimum of 10 individual counts taken, each in excess of 100000 counts. From the 

count rate and the known amount of hydrogen bromide present, a specific count rate could 

then be calculated, i.e. counts per mmol. Representative data for the calculation of the 

specific count rate of [8 2 Br]-bromine labelled hydrogen bromide shown in section 4.3.6.

2.5.6 Determination of specific count rate of [82Br]-bromine labelled dibromine.

The specific count rate of [8 2 Br]-bromine labelled dibromine was determined by 

condensing dibromine into chloroform, then counting the solution.

Analar chloroform (2cm3) was decanted into a single limbed counting vessel. The 

vessel was transferred to a vacuum line manifold and a Dewar flask containing liquid
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nitrogen placed around it. When the chloroform had frozen, the vessel was opened to the 

vacuum line and degassed. The chloroform was degassed a further 3 times. The manifold 

was isolated from the vacuum line but not the pressure gauge, and the pressure gauge set to 

zero. An amount of [8 2 Br]-bromine labelled dibromine vapour was then introduced into 

the manifold and the pressure noted. The single limbed counting vessel, in a liquid 

nitrogen bath, was opened and the [8 2 Br]-bromine labelled dibromine allowed to condense. 

After 60secs the vessel was closed and the pressure in the manifold noted again. The 

known amount of [8 2 Br]-bromine labelled dibromine was then placed in the Nal counter 

and a minimum of 10 individual counts taken, each in excess of 100000 counts. From the 

count rate and the known amount of [8 2 Br]-bromine labelled dibromine, a specific count 

rate could be calculated. Data for the calculation of the specific count rate of [8 2 Br]- 

bromine labelled dibromine are similar to that shown in section 4.3.6.

2.5.7 Neutron activation analysis.

Bromine and chlorine uptakes on both y-alumina and montmorillonite K10 were 

determined using neutron activation analysis, (N.A.A.). N.A.A. is a non-destructive 

analytical technique based on the activation of stable isotopes to radioactive isotopes in a 

beam of neutrons. The identities of the isotopes formed are deduced from the energy of 

gamma-rays emitted from the sample. By observing the intensity of the gamma emissions 

with time, a count is obtained for the isotopes of interest. Since the gamma-emission 

spectrum was observed, self absorption was not a problem and uptakes of bromine and 

chlorine on y-alumina and K10 were obtained directly from the count rate data.

If unknown samples are irradiated with samples of known bromine and chlorine 

content using identical flux, the quantity of bromine or chlorine present in an unknown 

sample can be obtained by proportion, equation 2 .5 .8 .
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X in sample _ Counts from X in sample
X in standard Counts from X in standard equation 2.5.8.

(where X  = Br or Cl)

Standards were selected (NI^Br for bromine and MgC^.bf^O for chlorine) to obtain an 

approximate quantity of bromide and chloride content, that would compare with the 

estimated bromide or chloride content of the sample.

The formation of the radioisotopes is governed by the first order rate laws:-

Rate of formation 

where n

a  

♦

na<|>

number of nuclei of stable isotope 

neutron capture cross section (bam) 

irradiation flux (neutrons cm"2 s_1)

Rate of decay 

where N

X

X

t1/2

NX

number of nuclei formed 

decay constant of product 

In2 /tj/2

half life of isotope formed

Overall

8 N
St

na<j>-NX

N nq<b
( l - e 11)

similarly

where

A

A

na<j>(l-e“xt)

activity at the end of irradiation (Bq)
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Samples were irradiated in the Scottish Universities Research Reactor, East 

Kilbride using the 'rabbit loop'. Weighed samples were contained in sealed plastic vials 

(figure 2.2.1) which were placed in the rabbit. The rabbit, shown in figure 2.5.5, consists 

of a cylindrical plastic container which may be transferred between the laboratory and the 

reactor by means of an evacuated loop. Care was taken to ensure that each were subject to 

an identical flux.

Typical irradiation conditions for the N.A.A. of bromine were lOsecs at 300kW 

power (approximate neutron flux 3.6 x 1 0 1 2  neutrons cm 'V 1). During irradiation 80Br (t1 /2  

= 17.4 min), 80mBr (t1 /2 = 4.4h) and 82Br (tI /2  = 35.4h) were produced by the process 

7 9 Br(n,y)8 0 Br, 7 9 Br(n,X-ray) and 8 1 Br(n,y)8 2 Br. The [8 0 Br] and [8 2 Br] gamma-emission 

peaks (Table 2.5.1) of the irradiated samples were counted on a germanium-lithium 

counting system (ORTEC 7030) and compared with a known quantity of N l^B r (typically 

O.lmmol) as a standard at the same time.

Table 2.5.1. % Emission from radioisotopes of bromine.

Energy (keV) Isotope % e

554 [8 2 Br] 80
617 [SOBr] -

619 [* Br] 50
6 6 6 [80Br] -

698 [^Br] 33
776 F B r] 1 0 0

827 [8 2 Br] 30

Typical irradiation conditions for the N.A.A. of chlorine were 25secs at 300kW 

power. During irradiation 3 8 Cl(t1 /2 = 37.3 min) was produced by the process 3 7 Cl(n,y)3 8 Cl. 

The 3 8 C1 gamma-emission peak (1642 keV) of irradiated samples was counted on the 

ORTEC 7030 and compared with a known quantity of MgCl2 .6 H2 0  (typically O.lmmol) 

as a standard at the same time.



Figure 2.5.5. 7 1 3 6 6 1 1 ' used in neutron activation analysis.
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2.6 ^AI-MAS-NMR.

The 2 7 A1 magic angle spinning nuclear magnetic resonance spectroscopy 

investigation was carried out at the Industrial Research Laboratories of the University of 

Durham, using a Varian UXR-300/89 NMR spectrometer. This instrument is dedicated to 

solid-state NMR work and is equipped with a 7.0 Tesla superconducting magnet with 

89mm vertical bore. It operates at 300 MHz for and at 78.152 MHz for 2 7 A1 nuclei. 

The MAS-NMR spectrum was obtained using a pulse width of 15 degrees and decoupling 

the protons. Typically 1 |isec pulses were used with between 2000-4000 repetitions. The 

spectra were obtained using a probe which was aluminium free and gave no background 

signal. Chemical shifts were recorded, with aluminium(III) chloride serving as the 

external standard. Samples were contained in a 300 microlitre(fll) zirconia tube. The 

response of the samples under a single-pulse excitation combined with magic-angle 

spinning at between 10.8-12.8 KHz was used to obtain time domain data which were 

Fourier transformed for frequency domain information.
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CHAPTER 3

Reaction of Halomethanes with y-Alumina and Montmorillonite K10.

3.1 Introduction.

As discussed in chapter 1, fluorination or chlorination of y-alumina results in the 

promotion of acidity on the surface. In both cases the nature of the surface obtained 

depends on the reagent used. Fluorination of y-alumina using SF4  leads to the formation of 

strong Lewis acid sites which are capable of dehydrochlorinating CH3 CCI3  at room 

temperature [44]; other covalent fluorides, for example BF3  [45] or F2CO [56] result in the 

enhanced Br<)>nsted acidity as judged by the type of reactions catalysed. Chlorination of y- 

alumina with anhydrous HC1 at room temperature produces enhanced Br<j>nsted acidity, 

whereas reactions between y-alumina and CC14  or Cl2CO at 523K [47,49] result in the 

formation of both Br<|>nsted and Lewis sites, the latter catalysing CH3 CCI3  

dehydrochlorination [47]. Using the radiotracer chlorine-36, it has been shown that the 

type of site can be differentiated, since chlorine associated with Br<)>nsted sites is labile 

with respect to [3 6 C1] exchange with ^ ^ 1  at room temperature, whereas chlorine 

associated with Lewis sites is inert to exchange with H3 6 C1 [49].

The original objective of the work described in this chapter was to prepare 

brominated y-alumina with enhanced surface Lewis acidity. As bromine is less 

electronegative than both fluorine and chlorine little, or no work appears to have been 

reported concerning the effects of bromination on a y-alumina surface. However, such a 

study affords the opportunity of testing postulates made about the nature of surface 

halogenated sites. The previous studies made of y-alumina suggest that chlorinating
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reagents bearing an even number of Cl atoms enhance Lewis acidity, so replacement of an 

in-plane O atom of y-alumina (figure 1.9.2) requires a concerted reaction, scheme 3.1.1.

a j >a
a.
a

c=o

a
A1 A1 \ C\

A1

a
I

A1

Scheme 3.1.1. Replacement of an in-plane O atom of y-alumina with cblorine.

Reactions involving reagents with an odd number of Cl atoms leads to replacement of Al- 

OH(ter) groups and dissociative addition of HQ, with the formation of Br<j>nsted sites 

scheme 3.1.2.

o / OH
H

o a
^A1 SA1

Scheme 3.1.2. Interaction of halomethane, with an odd number of halogen atoms, 

with y-alumina.

It should be noted, however, that this apparently clear cut situation does not apply to F2 CO 

which appears to behave simply as an HF precursor.
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The reagent chosen for bromination was CH2 Br2  since it contains two bromine 

atoms and is a reagent manufactured by the collaborating body (The Associated Octel 

Company Ltd). The substrates were Degussa 'C' y-alumina, chlorinated y-alumina and 

acidified montmorillonite; the latter material was chosen because it is established that 

y-alumina chlorinated with Cl2CO is more acidic than y-alumina and montmorillonite K10 

has been widely used in recent work where an acidic surface is required [57-69]. It would 

be expected therefore that the three materials would behave differently.

The products obtained from reactions that were performed initially suggested that 

dismutation of CH2 Br2  might occur, therefore another potential brominating agent CHBr3  

and the potential bromochlorinating agent CH2BrCl were also examined. It has been 

shown, chapter 5, that chlorine present at the inpurity level in Degussa 'C' y-alumina is 

displaced when dibromine is allowed to react with the material. The possibility therefore 

exists that similar behaviour may occur when chlorinated oxides, y-alumina and 

montmorillonite K10 are brominated using other reagents. The use of CH2ClBr offers the 

possibility of examining chlorination and bromination of y-alumina under competitive 

conditions, in order to throw further light on what appears at first sight to be an unexpected 

'reverse' halogen exchange process.
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3.2 Experimental.

3.2.1 Reaction of dibromomethane with Degussa 'C' y-alumina.

Calcined Degussa 'C' y-alumina (0.8g) was loaded, in the dry box, into a Monel 

bomb. The bomb was transferred to a vacuum line and the contents degassed. The bomb 

was cooled to 77K and dibromomethane (60mmol) was condensed into the bomb, which 

was placed in an electrical furnace. The contents of the bomb were then heated at 523K 

for 120h. The bomb was allowed to cool to room temperature. The gaseous material from 

the bomb was expanded into a manifold containing a gas cell to give a pressure of 50 Torr, 

and a gas phase FT1R spectrum obtained. The contents of the bomb were degassed and 

transferred to the dry box, where the alumina was transferred to a storage vessel. A sample 

of brominated alumina (0.0159g) was loaded, in the dry box, into a polythene ampoule 

which was then sealed. The ampoule was transferred to the SURRC at East Kilbride for 

neutron activation analysis (section 2.5.7).

Calcined y-alumina (approx 0.2g) treated with dibromomethane at 523K for 120h 

was loaded into a holder (figure 2.3.3) and transferred into the DRIFTS cell; a spectrum 

was obtained, under atmospheric conditions, using 50 scans. The procedure for the 

investigation of the Lewis acidity of y-alumina treated with dibromomethane was to load 

1,1,1-trichloroethane (50 Torr) into a gas IR cell (figure 2.3.1) attached to a degassed 

vessel containing brominated alumina. An FTTR spectrum was then obtained for the 1,1,1- 

trichloroethane. The brominated alumina was introduced to the gas cell and a spectrum of 

the reaction mixture taken immediately. Spectra were recorded every 10 minutes for the 

next hour.
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3.2.2 Reaction o f bromochloromethane with Degussa 'C' y-alumina.

The experimental procedure for the interaction of bromochloromethane with 

calcined y-alumina at 523K is the same as that described for the interaction of 

dibromomethane with calcined y-alumina (section 3.2.1). Two samples of the halogenated 

alumina (0.0113g for bromine analysis and 0.0299g for chlorine analysis) were loaded, in 

the dry box, into polythene ampoules for neutron activation analysis.

3.2.3 Reaction of bromoform with Degussa 'C ' y-alumina.

Calcined Degussa 'C1 y-alumina (0.8g) was loaded into the Monel reaction vessel. 

The vessel was transferred to a vacuum line manifold, containing the bromoform storage 

vessel, and the contents degassed. A Dewar flask containing liquid nitrogen was then 

placed around the reaction vessel, cooling the vessel to 77K. The manifold was isolated 

from the vacuum pump and the bromoform storage vessel opened. The bromoform was 

allowed to condense into the reaction vessel for lOmin after which time the reaction vessel 

was closed. An electrical furnace was then placed around the reaction vessel and the 

contents heated at 523K for 120h. Identification of the reaction product vapour phase and 

the subsequent handling and storage of the solid was the same as that described in section 

3.2.1. A sample of brominated alumina (0.0274g) was loaded, in the dry box, into a 

polythene ampoule for neutron activation analysis.
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3.2.4 Reaction of dibromomethane with Degussa 'C' y-alumina treated carbonyl 

chloride.

The experimental procedure for the reaction of dibromomethane with calcined y- 

alumina treated with carbonyl chloride at 523K for 12h is the same as that for the reaction 

of dibromomethane with y-alumina, section 3.2.1. Two samples of the 

brominated/chlorinated y-alumina (0.0400g for bromine analysis and 0.0314g for chlorine 

analysis) were loaded, in the dry box, into polythene ampoules for neutron activation 

analysis.

3.2.5 Reaction of bromochloromethane with Degussa *C’ y-alumina treated carbonyl 

chloride.

The investigation involving the reaction of bromochloromethane with calcined y- 

alumina, treated with carbonyl chloride at 523K for 12h, was the same as that described in 

section 3.2.1. Two samples of the halogenated y-alumina were taken for neutron activation 

analysis (0.0279g for bromine analysis and 0.0206g for chlorine analysis).

3.2.6 Reaction of bromoform with Degussa ’C  y-alumina treated carbonyl chloride.

The experimental procedure for the reaction of bromoform with calcined y-alumina 

treated with carbonyl chloride at 523K for 12h, was the same as that for the interaction of 

bromoform with calcined y-alumina, section 3.2.3. Two samples of the halogenated y- 

alumina were taken for neutron activation analysis (0.0312g for bromine analysis and 

0.0334g for chlorine analysis). Another sample (approx 0.4g) was loaded into a polythene



49

ampoule for ^Al-M AS-NM R analysis.

3.2.7 Reaction of dibromomethane with calcined montmorillonite K10.

Calcined montmorillonite K10 (l.Og) was loaded into a Monel bomb in the dry 

box. The bomb was transferred to a vacuum line manifold containing the dibromomethane 

storage vessel, and the contents degassed. The bomb was then cooled to 77K allowing 

dibromomethane (75mmol) to be condensed in. An electrical furnace was placed around 

the bomb and the contents heated at 523K for 120h. On allowing to cool to room 

temperature, gaseous material from the bomb was expanded into a manifold containing a 

gas cell to give a pressure of 50 Torr, and a gas phase Kl JLR spectrum obtained. The 

contents of the bomb were then degassed and transferred to the dry box, where the 

montmorillonite K10 was transferred to a storage vessel. A sample of brominated 

montmorillonite K10 (0.0265g) was taken for neutron activation analysis (chapter 2.5.7).

3.2.8 Reaction of bromochloromethane with montmorillonite K10.

The experimental procedure for the above investigation is the same as that 

described for the reaction of dibromomethane with calcined montmorillonite K10, section 

3.2.7. Two samples of the halogenated montmorillonite K10 were taken for neutron 

activation analysis (0.0445g for bromine analysis and 0.0396g for chlorine analysis).
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3.2.9 Reaction o f bromoform with m ontm orillonite K10.

Calcined montmorillonite K10 (l.Og) was loaded into the Monel reaction vessel. 

The vessel was transferred to a vacuum line manifold, containing the bromoform storage 

vessel, and the contents degassed. A Dewar flask containing liquid nitrogen was then 

placed around the reaction vessel, cooling the vessel to 77K. The manifold was isolated 

from the vacuum pump and the bromoform storage vessel opened. The bromoform was 

allowed to condense into the reaction vessel for lOmin after which time the reaction vessel 

was closed. An electrical furnace was then placed around the reaction vessel and the 

contents heated at 523K for 120h. The identification of the reaction product vapour phase 

and subsequent storage and handling of the halogenated solid was the same as that for the 

reaction of bromoform with calcined montmorillonite K10. A sample of the halogenated 

montmorillonite K10 (0.0292g) was loaded, in the dry box, into a polythene ampoule for 

neutron activation analysis.

3.2.10 Reaction of dibromomethane with montmorillonite K10 treated carbonyl 

chloride.

The investigation involving the reaction of dibromomethane with calcined 

montmorillonite K10 treated with carbonyl chloride at 523K for 12h, was the same as that 

described in section 3.2.7. Two samples of the brominated/chlorinated montmorillonite 

K10 were taken for neutron activation analysis (0.0250g for bromine analysis and 0.0280g 

for chlorine analysis).
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3.2.11 Reaction of bromochloromethane with montmorillonite K10 treated carbonyl 

chloride..

The experimental procedure for the reaction of bromochloromethane with calcined 

montmorillonite K10 treated with carbonyl chloride at 523K for 12h, is the same as that 

described in section 3.2.7. Two samples of the halogenated montmorillonite K10 were 

taken for neutron activation analysis (0.0341g for bromine analysis and 0.0237g for 

chlorine analysis).

3.2.12 Reaction of bromoform with montmorillonite K10 treated carbonyl chloride.

The experimental procedure for the reaction of bromoform with calcined 

montmorillonite K10 treated with carbonyl chloride at 523K for 12h, is the same as that for 

the reaction of bromoform with calcined montmorillonite K10, section 3.2.9. Two samples 

of the halogenated montmorillonite K10 were taken for neutron activation analysis 

(0.0339g for bromine analysis and 0.0472g for chlorine analysis). Another sample (approx 

0.4g) was loaded into a polythene ampoule for 2 7 A1-MAS-NMR analysis.
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3.3 Results.

3.3.1 Reaction of dibromomethane with Degussa 'C ' y-alumina.

The products from the reaction of dibromomethane with calcined y-alumina were 

identified using an FTIR spectrometer. The experiments were carried out at 523K for 

between 48 and 120h. The infrared peak assignments for the products identified are 

tabulated below (table 3.3.l(c>5).

Table 3.3.1(g) Peak assignments for the volatile reaction products from the 

interaction of dibromomethane with calcined y-alumina.

Band (cm-1) Assignment Compound

2986-2960 C-H(str) CH3 B r& CH 2 Br2

2700-2400 H-Br(str) HBr
2240-2040 C-O(str) CO
1320-1294 C-H(def) CH3Br
1 2 0 0 C-H(def) CH2 Br2  (*)
650 C-Br(str) CH2 Br2  (*)
620 C-Br(str) CH3Br

(* starting material)

The relative intensities of the peaks in table 3.3.1(b) were estimated from % 

transmittance. All spectra were measured in the gas phase at a pressure of 50 Torr.
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Table 3 .3 .1 (b) A comparison of relative peak intensities observed in the vapour 

phase products.

Bands 48 hours 96 hours 1 2 0  hours

2700-2400cm-1 6 9 14
2240-2040cm-1 5 1 1 16
1320-1294cm-1 24 41 49
1 2 0 0 cm- 1 60 72 58
650cm-1 87 8 8 72
620cm-1 36 36 48

Neutron activation analysis carried out on the y-alumina after the 120 hour reaction 

indicated the quantity of bromine present to be 0.8mg atom Br g“l (table 333(c)). The 

DRIFT spectrum obtained of the y-alumina after the interaction with dibromomethane, at 

523K for 120h, showed an absorption band at 1625cm-1 corresponding to y-alumina. 

Bands were also observed at 3000-2875cm-l, 1460cm-1 and 1380cm-1 corresponding to a 

carbonaceous laydown on the surface of the solid (figure 3.3.1). On the introduction of

1.1.1 trichloroethane to the brominated y-alumina the IR spectrum of the volatile materials 

showed only bands due to the presence of 1,1,1 trichloroethane. After 90min no evidence 

was observed for the formation of 1 , 1  dichloroethene (dehydrochlorination product of

1.1.1 trichloroethane), indicating that no strong Lewis acid sites had been generated on the 

y-alumina surface.



Table 3.1 AU) Halogen contents o f solid supports, obtained by neutron activation analysis.

Support

Ilalogenating

reagent

Element

analysed ppm mg atom g" 1 % E rror

y-alumina dibromomethane Br 6 . 2 0 . 8 6 . 8

y-alumina tribromomethane Br 4.3 0.5 5.7

y-alumina bromochloromethane Br 0 . 8 0 . 1 9.0

y-alumina bromochloromethane Cl 2.9 0 . 8 5.8

y-alumina hydrogen bromide Br 2.4 0.3 6.7

y-alumina HBr + but-l-ene Br 6.3 0 . 8 5.6

Cl-alumina dibromomethane Br 8 . 0 1 . 0 5.2

Cl-alumina dibromomethane a 5.4 1.5 3.2

Cl-alumina tribromomethane Br 2 . 2 0.3 10.5

Cl-alumina tribromomethane a 14.7 4.1 2.3

Cl-alumina bromochloromethane Br 3.0 0.4 8 . 1

Cl-alumina bromochloromethane Cl 2 . 6 0.7 4.9

K10 carbonyl chloride a 25.0 7.1 2 . 0

K10 dibromomethane Br 9.9 1 . 2 5.3

K10 tribromomethane Br 2.3 0.3 5.2

K10 bromochloromethane Br 4.3 0.5 7 1

K10 bromochloromethane a 1 . 8 0.5 5.4

C1-K10 dibromomethane Br 1 0 . 0 1 . 2 5.2

C1-K10 dibromomethane a 2.5 0.7 4.9

C1-K10 tribromomethane Br 1 1 . 0 1.4 4.9

C1-K10 tribromomethane a 16.8 4.8 2 . 2

C1-K10 bromochloromethane Br 4.6 0 . 6 9.0

C1-K10 bromochloromethane Cl 8.4 2.4 2.7
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3.3.2 Reaction o f bromochloromethane with Degussa ’C ’ y-altimina.

Bromochloromethane was allowed to heat at 523K in the presence of y-alumina for 

5 days, after which time it was allowed to cool to room temperature. An infrared spectrum 

was obtained of the vapour phase reaction product mixture and the results are tabulated 

below (table 3.3.2).

Table 3.3.2. Peak assignments for the volatile reaction products from the 

interaction of bromochloromethane with calcined y-alumina.

Band (cm-1) Assignment Compound

3100-2700 HCl(str) HQ
2700-2400 HBr(str) HBr
2240-2040 CO(str) CO
1294 C-H(def) CH3Br
1239 C-H(def) CH2ClBr (*)
1225 C-H(def) CH2ClBr (*)
1 2 0 0 C-H(def) CH2 Br2

740 C-Cl(str) CH2ClBr (*)
650 C-Br(str) CH2 Br2

621 C-Br(str) CH3Br
610 C-Br(str) CH2ClBr (*)

(* starting material)

These results reveal the formation of dibromomethane and methyl bromide from 

the chlorobromomethane but not their chlorine analogues, dichloromethane and methyl 

chloride. The formation of the other reaction products; carbon monoxide, hydrogen 

bromide and hydrogen chloride was expected, as similar reaction products were observed 

after the interaction of dibromomethane with calcined y-alumina. Neutron activation 

analysis of the halogenated y-alumina indicated the quantity of bromine present to be 

O.lmg atom Br g" 1 and of chlorine to be 0.8mg atom Cl g 1 (table 33. Kc)).
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3.3.3 Reaction of bromoform with Degussa ’C’ y-alumina.

Bromoform was allowed to heat at 523K in the presence of y-alumina for 5 days, 

after which time it was allowed to cool to room temperature. An infrared spectrum was 

obtained of the reaction product mixture in the vapour phase and the results are tabulated 

below (table 3.3.3).

Table 3.3.3. Peak assignments for the volatile reaction products from the 

interaction of bromoform with calcined y-alumina.

Band (cm-1) Assignment Compound

3130-2880 C-H(str) c h 4

2240-2040 CO(str) CO
1 2 0 0 C-H(def) CH2 Br2

1148 C-H(def) CHBr3  (*)
6 6 8 C-Br(str) CHBr3  (*)
650 C-Br(str) CH2 Br2

(* starting material)

Neutron activation analysis of the halogenated y-alumina indicated the quantity of 

bromine present to be 0.5mg atom Br g_ 1  (table 3S.|(c)).
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3.3.4 Reaction of dibromomethane with Degussa 'C ' y-alumina treated with 

carbonyl chloride.

Dibromomethane was allowed to heat at 523K in the presence of chlorinated y- 

alnmina for 5 days, after which time it was allowed to cool to room temperature. An 

infrared spectrum was obtained of the reaction product mixture in the vapour phase and the 

results are tabulated below (table 3.3.4).

Table 3.3.4. Peak assignments for the volatile reaction products from the 

interaction of dibromomethane with chlorinated y-alumina.

Band (cm-1) Assignment Compound

3100-2700 HCl(str) HQ
2700-2400 HBr(str) HBr
2240-2040 CO(str) CO

Unlike the previous experiments, reaction of dibromomethane with chlorinated 

y-alumina, showed no evidence for the presence of dibromomethane (the brominating 

reagent) or any other halomethanes in the reaction product vapour phase. Neutron 

activation analysis of the halogenated y-alumina indicated the quantity of bromine present 

to be l.Omg atom Br g_1 and of chlorine to be 1.5mg atom Cl g ' 1 (table 3 3 .\(<}).
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3.3.5 Reaction of bromochloromethane with Degussa 'C ' y-alumina treated with 

carbonyl chloride.

The infrared analysis of the volatile products after a 120h exposure, at 523K, of 

bromochloromethane to a sample of calcined y-alumina treated with carbonyl chloride at 

523K for 12h, indicated absorbances due to the formation of hydrogen chloride, hydrogen 

bromide, carbon monoxide and dibromomethane (table 3.3.5). Neutron activation 

analysis, carried out on the y-alumina after the reaction, indicated the quantity of bromine 

and chlorine present to be 0.4 and 0.7mg atom g 1 respectively (table 3.3.\(<S).

Table 3.3.5. Peak assignments for the volatile reaction products from the 

interaction of bromochloromethane with chlorinated y-alumina.

Band (cm-1) Assignment Compound

3100-2700 HCl(str) HQ
2700-2400 HBr(str) HBr
2240-2040 CO(str) CO
1239 C-H(def) CH2ClBr (*)
1225 C-H(def) CH2ClBr (*)
1 2 0 0 C-H(def) CH2 Br2

740 C-Cl(str) CH2ClBr (*)
650 C-Br(str) CH2 Br2

610 C-Br(str) CH2ClBr (*)

(* starting material)
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3.3.6 Reaction o f brom oform  with Degussa 'C' y-alumina treated with carbonyl

chloride.

The infrared analysis of the volatile products after a 120h exposure, at 523K, of 

bromoform to a sample of calcined y-alumina treated with carbonyl chloride at 523K for 

1 2 h, indicated absorbances due to the formation of hydrogen chloride and carbon 

monoxide (table 3.3.6).). Neutron activation analysis, carried out on the y-alumina after 

the reaction, indicated that the bromine content (0.3mg atom Br g-1) was significantly less 

than the chlorine content (4.1mg atom Cl g"1), table 3.1A (c\

Table 3.3.6. Peak assignments for the volatile reaction products from the 

interaction of bromoform with chlorinated y-alumina.

Band (cm-1) Assignment Compound

3100-2700 HQ(str) HC1
2240-2040 CO(str) CO
1148 C-H(def) CHBr3  (*)
6 6 8 C-Br(str) CHBr3  (*)

(* starting material)

In the 2 7 A1-MAS NMR spectrum of the halogenated y-alumina, figure 3.3.2, the 

two signals observed were due to an octahedral aluminium environment, 4 . 4  ppm, and a 

tetrahedral aluminium environment, 52.2 ppm. These chemical shifts were with reference 

to A1C13.
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Figure 3.3.2. *7 A1 MAS NMR spectrum of brominated/chlorinated y-alumina
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3.3.7 Reaction of dibromomethane with montmorillonite K10.

The infrared analysis of the volatile products after a 120h exposure, at 523K, of 

dibromomethane to a sample of calcined montmorillonite K10, indicated absorbances due 

to the formation of hydrogen bromide and carbon monoxide (table 3.3.7). Neutron 

activation analysis, carried out on the montmorillonite K 1 0  after the reaction, indicated a 

bromine content (1.2mg atom Br g '1), table 333(0, much greater than that observed in the 

dibromomethane/y-alumina experiment.

Table 3.3.7. Peak assignments for the volatile reaction products from the 

interaction of dibromomethane with calcined montmorillonite K10.

Band (cm-1) Assignment Compound

2700-2400 H-Br(str) HBr
2240-2040 C-O(str) CO
1 2 0 0 C-H(def) CH2 Br2  (*)
650 C-Br(str) CH2 Br2  (*)

(* starting material)
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3.3.8 Reaction o f brom ochlorom ethane with montmorillonite K10.

The infrared analysis of the volatile products after a 120h exposure, at 523K, of 

bromochloromethane to a sample of calcined montmorillonite K 1 0 , indicated absorbances 

due to formation of the dismutation products dibromomethane and dichloromethane and 

also due to the formation of hydrogen chloride, hydrogen bromide and carbon monoxide 

(table 3.3.8). Neutron activation analysis carried out on the montmorillonite K10 after the 

reaction, indicated similar bromine and chlorine contents (both 0.5mg atom g '1), table 

33.1(c). These results differ once again from the comparable y-alumina experiment which 

resulted in preferential chlorination of the solid.

Table 3.3.8. Peak assignments for the volatile reaction products from the 

interaction of bromochloromethane with calcined montmorillonite K 1 0 .

Band (cm-1) Assignment Compound

3100-2700 HQ(str) HQ
2700-2400 HBr(str) HBr
2240-2040 CO(str) CO
1275 C-H(def) c h 2 c i 2

1261 C-H(def) c h 2 c i 2

1239 C-H(def) CH2ClBr (*)
1225 C-H(def) CH2OBr (*)
1 2 0 0 C-H(def) CH2 Br2

740 C-Cl(str) CH2ClBr (*)
650 C-Br(str) CH2 Br2

610 C-Br(str) CH2ClBr (*)

(* starting material)
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3.3.9 Reaction of bromoform with m ontm orillonite K10.

The infrared analysis of the volatile products after a 120h exposure, at 523K, of 

bromoform to a sample of calcined montmorillonite K10, indicated absorbances due to 

formation of hydrogen chloride, hydrogen bromide and carbon monoxide (table 3.3.9). 

There was no evidence for the presence of the brominating reagent bromoform, or any 

other halomethanes. Data obtained from neutron activation analysis of the 

montmorillonite after the reaction indicated the presence of only a small amount of 

bromine (0.3mg atom Br g-1), table 3.2.l(c^

Table 3.3.9. Peak assignments for the volatile reaction products from the 

interaction of bromoform with calcined montmorillonite K10.

Band (cm-1) Assignment Compound

3100-2700 HCl(str) HQ
2700-2400 HBr(str) HBr
2240-2040 CO(str) CO

3.3.10 Reaction of dibromomethane with montmorillonite K10 treated with carbonyl 

chloride.

The infrared analysis of the volatile products after a 120h exposure, at 523K, of 

dibromomethane to a sample of calcined montmorillonite K10 treated with carbonyl 

chloride at 523K for 12h, showed absorbances due to formation of bromochloromethane, 

hydrogen chloride, hydrogen bromide and carbon monoxide (table 3.3.10). Data obtained
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from neutron activation analysis of the montmorillonite K 1 0 , after the reaction, indicated a 

bromine content (1.25mg atom Br g-1) almost twice that of the chlorine (0.7mg atom Br g" 

1), table 3.2 AlC).

Table 3.3.10. Peak assignments for the volatile reaction products from the

interaction of dibromomethane with chlorinated montmorillonite K 1 0 .

Band (cm-1) Assignment Compound

3100-2700 HCl(str) HQ
2700-2400 HBr(str) HBr
2240-2040 CO(str) CO
1239 C-H(def) CH2ClBr
1225 C-H(def) CH2OBr
1 2 0 0 C-H(def) CH2 Br2  (*)
740 C-Cl(str) CH2ClBr
650 C-Br(str) CH2 Br2  (*)
610 C-Br(str) CH2ClBr

(* starting material)

3.3.11 Reaction of bromochloromethane with montmorillonite K10 treated with 

carbonyl chloride.

The infrared analysis of the volatile products after a 120h exposure, at 523K, of 

bromochloromethane to a sample of calcined montmorillonite K10 treated with carbonyl 

chloride at 523K for 12h, showed absorbances due to formation of dichloromethane, 

hydrogen chloride, hydrogen bromide and carbon monoxide (table 3.3.11). Neutron 

activation analysis, earned out on the montmorillonite K 1 0  after the reaction, indicated a 

bromine content of 0.6mg atom Br g 1 and a chlorine content of 2.45mg atom Cl g 1, table 

33.lfr}.
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Table 3.3.11. Peak assignments for the volatile reaction products from the 

interaction of bromoform with chlorinated montmorillonite K10.

Band (cm-1) Assignment Compound

3100-2700 HCl(str) HQ
2700-2400 HBr(str) HBr
2240-2040 CO(str) CO
1275 C-H(def) c h 2 c i 2

1261 C-H(def) c h 2 q 2

1239 C-H(def) CH2ClBr (*)
1225 C-H(def) CH2ClBr (*)
740 C-Cl(str) CH2OBr (*)
610 C-Br(str) CH2OBr (*)

(* starting material)

3.3.12 Reaction of bromoform with montmorillonite K10 treated with carbonyl 

chloride.

The infrared analysis of the volatile products after a 120h exposure, at 523K, of 

bromoform to a sample of calcined montmorillonite K10 treated with carbonyl chloride at 

523K for 12h, showed absorbances due to formation of hydrogen chloride, hydrogen 

bromide, carbon dioxide and carbon monoxide (table 3.3.12). The results of neutron 

activation analysis, carried out on the montmorillonite K10 after the reaction, indicated 

much greater bromine (1.4mg atom Br g_1) and chlorine (4.8mg atom Cl g_1) contents than 

observed in previous experiments in this section. In the 2 7 A1-MAS NMR spectrum of the 

halogenated montmorillonite, figure 3.4.1, the two signals observed were due to an 

octahedral aluminium environment at -1.7 ppm, and a tetrahedral aluminium environment 

at 67.8 ppm. These chemical shifts were with reference to AICI3 .
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Table 3.3.12. Peak assignments for the volatile reaction products from the 

interaction of bromoform with chlorinated montmorillonite K 1 0 .

Band (cm-1) Assignment Compound

3100-2700 HCl(str) HC1
2700-2400 HBr(str) HBr
2400-2300 CO(str) co2
2240-2040 CO(str) CO
6 6 8 CO(str) co2

3.4 Discussion.

3.4.1 Bromination of y-alumina.

Dibromomethane does not react with y-alumina to an appreciable extent below 

523K and even at this temperature the reaction is slow. The products identified by IR 

spectroscopy after 48h reaction time at 523K were methyl bromide, hydrogen bromide and 

carbon monoxide. The spectroscopic features used for identification purposes are given in 

table 3.3.1^. The components in the reaction mixture were identified by comparison with 

those of authentic samples and library spectra [72]. These products were always obtained 

irrespective of the reaction time used. Even after 120h the gas phase infrared spectrum of 

the product mixture indicated that a substantial quantity of CH2 Br2  was still present. In 

view of the very slow reaction no attempt has been made to analyse quantitatively the 

composition of reaction product mixture but relative intensities (expressed as %
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transmittance) for reactions of 48, 96 and 120h duration are given in Table 3.3. lfe). 

Neutron activation analysis of the solid for the 120h reaction indicated that its bromine 

content was 0.8mg atom g"*. For comparison, chlorination of y-alumina with Cl2CO for 

6 h at 523K led to chlorine contents in the range 3-4mg atom g_1 [73].

The formation of CH3Br suggested that the dismutation, equation 3.4.1, is a 

possibility, provided that CHBr3  reacted further with y-alumina. As dismutation reactions 

involving chlorofluorocarbons have been observed on y-alumina [74].

2CH2 Br2  ----------► CH3Br + CHBr3  equation 3.4.1

However the reaction between CHBr3  and y-alumina, at 523K, leads to the formation of 

CH4, CO, CH2 Br2  and unchanged CHBr3  (table 3.3.3). Consequently, if bromination of y- 

alumina with dibromomethane involves the dismutation product bromoform, equation

3.4.1, it would be expected that bromine uptake onto the y-alumina should be greater in the 

bromoform reaction. The experimental results, table 3.33ft demonstrate that this is not the 

case.

A more detailed insight into the relationship between the bromination and 

dismutation processes is revealed by the behaviour of bromochloromethane as the 

brominating reagent (experiment 3.2.2). The formation of CH2 Br2  is consistent with a 

dismutation reaction occurring, equation 3.4.2, but only if CH2 Q 2  reacts further, 

presumably with the y-alumina, as it is not observed in the volatile phase.

2CH2ClBr -------- ► CH2 Br2  + CH2 C12  equation 3.4.2.

This dismutation process would occur on the surface of the y-alumina as shown in scheme

3.4.1. In this reaction scheme bromochloromethane interacts with calcined y-alumina to 

give either I) brominated y-alumina with a CH2 C1 adsorbed species, or II) chlorinated 

y-alumina with a CH2Br adsorbed species. The interactions I) and II), as indicated, are 

most likely to be reversible steps. These initial type of interactions could also give rise to
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Scheme 3.4.1. Interaction of bromochloromethane and solid support, with the formation 

of dismutation products.
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the dismutation products, dichloromethane (HI) and dibromomethane (IV), if the adsorbed 

CH2 C1 interacted with the adsorbed Cl species, and the adsorbed CH2Br interacted with 

the adsorbed Br. Neutron activation analysis carried out on the y-alumina after the 

interaction of bromochloromethane indicated, table 3 .1 1 (c), that the chlorine content is eight 

times that of the bromine. This contrast between the bromine and chlorine contents 

coincides with the lack of evidence for the presence of the chloromethanes CH2 C12  and 

CH3 CI in the volatile reaction product mixture, suggesting the reaction pathway for the 

chlorination of the ^-alumina is favoured over that for the formation of the 

chloromethanes.

The formation of methyl bromide implies that CH2 Br2  and/or CH2 ClBr, which 

require the substitution of a halogen by a hydrogen, react with the surface of the solid, as 

this is the most likely source of hydrogen. A possible reaction scheme which results in the 

formation of methyl bromide and an increased chlorination of the surface is given in 

scheme 3.4.2.

H
Br H N'C = 0  + CH,Br

• \  /  „  /  J

H~<r̂ rH VC\ --------* ro a h  0

 iTi_______  I

Scheme 3.4.2. Possible mechanism for the formation of methyl bromide.

This interaction of bromochloromethane with or CH^Br^g^ leads to the

formation of the reaction product methyl halide and also a HXCO species (where X = Cl or 

Br), scheme 3.4.2. The reaction of halomethanes on y-alumina, leading to the oxidation of 

the halomethane to carbon monoxide, requires the removal of an oxygen species from the 

y-alumina. Recent work [75] has shown that the reaction of CH3 CI with y-alumina
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produces CO and HC1; in the present work CH2ClBr also forms CO and HX (where X is 

Cl or Br). The formation of these species appears concomitant and may be due to the 

decomposition of HXCO species, as work published recently [76] has shown these types of 

species (where X is F or Cl) are unstable.

The lack of dehydrochlorination when 1,1,1-trichloroethane is added to brominated 

y-alumina, experiment 3.3.1, suggests that, unlike its chlorine analogue, brominated 

y-alumina does not have sufficiently strong Lewis acid sites to perform this reaction. 

However, this does not mean that there is no Lewis acidity present on the brominated 

y-alumina.

3.4.2 Bromination of chlorinated y-alumina.

As discussed in section 3.4.1, the chlorine content of chlorinated y-alumina is much 

greater than the bromine content of brominated y-alumina. In chapter 5 it was noted that 

chlorine present at the impurity level in Degussa 'C' y-alumina was displaced when 

dibromine was allowed to interact. A similar exchange process when a bromine containing 

species is reacted with chlorinated y-alumina was investigated, as a possible route to 

increasing the bromine content in y-alumina.

The reaction products from the chlorination process, described in chapter 1, include 

C0 2  and HQ. Since the chlorinating agent, Cl2 CO, does not contain protons itself, the 

formation of hydrogen chloride must involve the removal of a hydrogen species from the 

y-alumina. Hence, although the chlorination process enhances Br<|>nsted acidity, the extent 

of hydroxylation on the surface of the chlorinated y-alumina must be less than that for 

calcined y-alumina. The chlorination process provides several different chlorine species 

on the surface of alumina (figures 1.9.1-1.9.2). Radiotracer experiments [49] have shown 

that the dissociative adsorption of hydrogen chloride on to y-alumina produces a labile 

chlorine species which can undergo exchange reactions with HC1. It is this chlorine
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species that is most likely to be involved in exchange with the bromine.

The products for the interaction of dibromomethane with chlorinated y-alumina 

(experiment 3.3.4), identified by FTIR spectroscopy, were hydrogen chloride, hydrogen 

bromide and carbon monoxide. The formation of these hydrogen halides together with the 

neutron activation analysis data (bromine content l.Omg atom g ’ 1 and chlorine content 

1.5mg atom g-1), table 3.3. l(<), are indicative of bromine/chlorine exchange processes 

occurring on the surface of the chlorinated y-alumina. The products identified from the 

reaction of bromoform with chlorinated y-alumina were; hydrogen chloride, carbon 

monoxide and bromoform. Surprisingly no hydrogen bromide was identified. This 

deficiency of hydrogen bromide in the product vapour phase can be explained if the 

bromoform mechanism is different from dibromomethane mechanism. A possible 

mechanism for this interaction is alpha elimination, discussed in section 3.4.4, which 

results in the formation of CO without the production of hydrogen bromide. The hydrogen 

chloride observed in the product vapour phase is therefore probably evolved from the 

surface of the y-alumina and not from a HC1CO species. Neutron activation analysis of the 

y-alumina after this experiment indicated only a small uptake of bromine onto the 

y-alumina (0.3mg atom g 1), with no significant reduction in chlorine content (4.1mg atom 

g"1)-

In the bromination reaction involving bromochloromethane (experiment 3.3.5) 

dibromomethane is observed along with hydrogen bromide, hydrogen chloride and 

bromochloromethane. Using scheme 3.4.2 the expected reaction products for the 

interaction of bromochloromethane with chlorinated y-alumina would be dichloromethane, 

methyl bromide and methyl chloride. The lack of evidence for the formation of these 

postulated reaction products indicates that the adsorbed species on chlorinated y-alumina 

reacts differently from those on calcined y-alumina. The postulated mechanism for the 

formation of HXCO, scheme 3.4.2, therefore has to be modified to account for the lack of 

formation of methyl halides. A possible mechanism is shown in scheme 3.4.3.
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Scheme 3.4.3. Interaction of adsorbed CH2Br species with chlorinated y-alumina.

In this reaction scheme for the formation of HXCO on chlorinated y-alumina, it is 

postulated that CH2 X(ads) reacts with the chlorine present on the surface of the chlorinated 

y-alumina. This is opposed to the reaction postulated in scheme 3.4.1, resulting in the 

formation of hydrogen chloride as opposed to methyl chloride. There are two possible 

routes for the formation of dibromomethane :- 1) the chlorinated y-alumina catalyses the 

dismutation process, equation 3.4.3, to give dibromomethane and dichloromethane, this 

route is flawed however as there is no evidence for the formation of dichloromethane,

or II) the dechlorination of bromochloromethane to give a CH2Br intermediate, scheme 

3.4.4. This intermediate then undergoes either:- a) a chlorination reaction to form the 

starting reagent bromochloromethane, or b) a bromination reaction to form 

dibromomethane. The second scheme is considered to be the most likely reaction 

pathway.

2CH2ClBr CH2 C12  + CH2 Br2 equation 3.4.3.
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Scheme 3.4.4. Dechlorination of bromochloromethane on y-alumina resulting in

the formation of a CH2Br intermediate.

The 2 7 A1MAS-NMR spectrum of brominated/chlorinated y-alumina (experiment 

3.2.2) is presented in figure 3.3.2. Two resonances were observed in the spectrum, a main 

broad peak at 4.4ppm, attributed to octahedral aluminium environments and a smaller 

resonance at 52.2ppm, with reference to AICI3 , attributed to tetrahedral aluminium 

environments. Chlorination of y-alumina with CCI4  [47], resulted in two resonances which 

are assigned to octahedral aluminium, chemical shift of 5.2ppm with reference to AICI3 , 

and tetrahedral aluminium 69.8ppm. In this work the main factor for determining nuclear 

shielding and hence chemical shift of the 2 7 A1 was ligand substitution [77]. Ligands high 

in the nephelauxetic series cause greater shielding than those that have a lower 

nephelauxetic effect (nephelauxetic effect being the ability of a ligand to expand the 

valence cloud of a metal). In the nephelauxetic series shielding of the aluminium^) 

increases down the halogen group. With the brominated/chlorinated y-alumina both the 

octahedral and tetrahedral aluminium resonances have chemical shifts upfield from the 

comparable signals obtained from the chlorinated material. This movement in the 

chemical shift is indicative of increased shielding which the nephelauxetic series predicts if 

the aluminium is brominated.
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3.4.3 Halogenation o f montm orillonite K10.

The vapour phase reaction products from chlorination of montmorillonite K10, 

using caibonyl chloride, were the same, when analysed by Fl'lR, as those identified from 

the chlorination of y-alumina, namely carbon monoxide, carbon dioxide, hydrogen chloride 

and unreacted carbonyl chloride. There was however an extra absorption band observed at 

621cm-1 (figure 3.4.4), which was not observed in the chlorination of y-alumina and has 

been assigned to V3  (F2  fundamental) of SiCl4  [78]. NAA data from the chlorinated 

montmorillonite K10 indicated (table 33.\(<)) a chlorine content of 7.1mg atom g-1, double 

that of chlorinated y-alumina [73]. Studies using pyridine as a probe molecule, chapter 6 , 

and [8 2 Br] radiotracer studies, chapter 4, have indicated an increase in the acidity of 

montmorillonite K10 after chlorination.

The 2 7 A1MAS-NMR spectrum of calcined montmorillonite K10 is presented in 

figure 3.4.2. Two resonances are observed in this spectrum, a main peak at -1.2ppm, 

attributed to octahedral aluminium environments and a smaller broad resonance at 

67.2ppm, with reference to A1C13, attributed to tetrahedral aluminium environments [79- 

81]. On chlorination of montmorillonite K10, the aluminium^) resonance shifts 0.6ppm 

downfield with reference to calcined montmorillonite K10, figure 3.4.3, whereas the 

ahiminium^t) resonance remains unchanged. The small movement in the chemical shift 

is not of great significance as the aluminium^^^ has a broad resonance signal covering 

several ppm, limiting the precision with which the chemical shift may be measured. The 

2 7 A1 MAS NMR spectrum of brominated/chlorinated montmorillonite K10, experiment 

3.2.12, is presented in figure 3.4.1. This spectrum indicates a movement upfield in the 

chemical shift in the alum inium ^) resonance signal of 0.5ppm. This movement in 

chemical shift is of greater significance than that of the a lum inium ^ resonance, as this 

resonance has a stronger sharper signal resulting in greater precision with which the 

chemical shift may be measured. The movement in chemical shift of the alum inium ^) 

resonance signal is due to increased shielding of the aluminium which the nephelauxetic 

series predicts if the chlorinated aluminium in the montmorillonite K10 is then brominated.
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Figure 3.4.1. 2 7 A1 MAS NMR spectrum of chlorinated montmorillonite K10 treated 

with bromoform.
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Figure 3.4.2. 2 7 A1 MAS NMR spectrum of calcined montmorillonite K10.
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Figure 3.4.3. 2 7  A1 MAS NMR spectrum of calcined montmorillonite K10 treated with 
carbonyl chloride.
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Figure 3.4.4. F l lK spectrum of the vapour phase after the 523K interaction of carbonyl 
chloride with y-alumina (spectrum A) and montmorillonite K10 (spectrum B).
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The idealised model of montmorillonite, figure 1.7.6 top structure, contains only 

octahedral aluminium environments, but as can be seen in the 2 7 A1MAS-NMR, the 

montmorillonite K10 and halogenated montmorillonite K10 contain both tetrahedral and 

octahedral aluminium environments. The tetrahedral aluminium environments in 

montmorillonite K10 are probably formed due to the collapsed nature of the 

montmorillonite K10 structure, figure 1.7.6, and aluminium environments at the edge of 

the basal planes. FTTR data obtained from the reaction product vapour phase of the 

chlorination of montmorillonite K10 allied with the 2 7 A1 MAS-NMR data, indicates that 

the structure of chlorinated montmorillonite K10 differs from that of calcined 

montmorillonite K10. A possible reason for this difference in structure may be due to the 

formation of silicon tetrachloride during the chlorination process. A postulated mechanism 

for the formation of silicon tetrachloride is given in scheme 3.4.5. In this mechanism the 

reaction occurs at the edge of the basal plane, as this site will be less sterically hindered 

than sites located away from the edge of the basal plane. In the reaction scheme four 

carbonyl chloride molecules are required to form one silicon tetrachloride molecule. A 

consequence of the formation of silicon tetrachloride is the formation of Si-Q and Al-Q 

groups at the edge of the basal plane.

Ai A1

COCl2
t

ci
\ /

Si
si— a

Si COCl2
| si—a 
oCl

/ + SiCl4 /
AlAl

Scheme 3.4.5. The formation of SiCl4  during the chlorination of 

montmorillonite K10 with carbonyl chloride.
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Data from neutron activation analysis carried out on montmorillonite K10 after the 

halogenation reactions, indicate that brominadon with dibromomethane (experiment 3.3.7), 

as in y-alumina experiments, results in a bromine content ( 1 .2 mg atom g"*) much lower 

than the comparable chlorine content (7.1mg atom g-1) after chlorination with Q 2CO for 

6 h at 523K. The data also indicates similar bromine and chlorine contents (0.5mg atom g~

1) result from the interaction of bromochloromethane with calcined montmorillonite K10 

(total halogen content of l.Omg atom g_1), table 33.1(<\ This impartial halogenation of the 

montmorillonite K10 affords the formation of the dismutation products dichloromethane 

and dibromomethane, shown in scheme 3.4.6.

2CH2x y  c h 2x 2 +  c h 2y 2

y c h 2 x  x c h 2 yI ** I I * J

lere X and Y are either chlorine or bromine)

Scheme 3.4.6. Formation of dismutation products on calcined 

montmorillonite K10.

Calcined montmorillonite K10 treated with bromoform results in a bromine content of 

0.3mg atom g*1, a value much smaller than those obtained by either the dibromomethane 

or bromochloromethane reactions.

The interaction of dibromomethane with chlorinated montmorillonite K10 

(experiment 3.3.10) leads to the formation of bromochloromethane. Neutron activation 

analysis of the clay indicates a bromine content of 1.25mg atom g_ 1 and a much reduced 

chlorine content, in comparison with chlorinated montmorillonite K10, of 0.7mg atom g '1. 

This lack of chlorine on the montmorillonite K10 may be attributed to the formation of the 

chlorine containing species bromochloromethane and hydrogen chloride, equation 3 .4 .4 .



C1-K10
CH2B r2 --------------------► C H 2ClBr + HC1 + Br-KlO equation 3.4.4.

Chlorinated montmorillonite K10 treated with bromoform (experiment 3.3.12) results in 

the formation of hydrogen chloride, hydrogen bromide, carbon monoxide and carbon 

dioxide, with no evidence for the presence of bromoform or the formation of any 

dismutation products. The lack of bromoform in the reaction product vapour phase and 

neutron activation analysis indicating a high bromine content (1.4mg atom g"1), suggest 

that the reaction has gone to completion.

The interaction with bromochloromethane leads to the formation of 

dichloromethane, equation 3.4.5.

C1-K10
CH2 ClBr ----------------------- ► CH2 CI2  equation 3.4.5

Neutron activation analysis of the montmorillonite K10 indicates a bromine content, 

approximately half that of the dibromomethane reaction, at 0 .6 mg atom g - 1  and the 

formation of reaction products follows a similar trend to that of the dibromomethane 

interaction, equation 3.4.6.

^ 2 ^m®ra ---------------^  CH2 Clm+1Brn _ 1 equation 3.4.6

Thus interactions of dibromomethane and bromochloromethane with chlorinated 

montmorillonite K10 appear to be very similar.
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3.4.4 Com parisons am ong the Halogenating Reagents.

The halogenation of y-alumina and montmorillonite K10 indicates many 

similarities between the dibromomethane and bromochloromethane reagents. These 

include halogen uptake values (chlorine + bromine) on y-alumina (0 .8 -0 .9 mg atom g"1) and 

montmorillonite K10 (1.0-1.2mg atom g"1), and formation of reaction products with the 

same number of halogens incorporated. The work in this section does however indicate 

that bromination of these supports with bromoform occurs via a different mechanism to 

that employed by dibromomethane and bromochloromethane. Possible reasons for this 

difference include; I) the formation of a CHBr2  intermediate as opposed to the CH2Br 

intermediate postulated in scheme 3.4.1, or II) an alpha elimination [82,83] which requires 

alkaline hydrolysis (equations 3.4.7a-3.4.7d).

CHBr3  + OH-

CBr3-

CBr2

CBr2  + X'

equation 3.4.7a

-------------w B r + CBr2 equation 3.4.7b
„ c o  + HCo 2- equation 3.4.7c

------------ *> CBr2 X- equation 3.4.7d

Although this work concentrates on the acidic nature of y-alumina, there is dissociative 

adsorption of hydrogen chloride [49] and hydrogen bromide (section 4.2.1) onto the 

surface. The nature of this adsorption necessitates basic sites, although whether or not the 

basic sites are strong enough for alkaline hydrolysis is not known. Alpha elimination 

involving dibromomethane or bromochloromethane is extremely unlikely however, as the 

formation of the carbene, equations 3.4.8a- 3.4.8b, would require the formation of an H" 

ion.

I) CH2 Br2  + OH" ----------- ► CHBr2" + H20  equation 3.4.8a

II) CHBr2"  ^  CBr2  + H" equation 3.4.8b
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3.4.5 Com parisons am ong the Halogenated Solids.

The work in this chapter has shown that the bromination of y-alumina with 

dibromomethane is not, as was postulated at the outset of this work, similar to that of the 

chlorination of y-alumina with carbonyl chloride. Halogen content data obtained by N.A. A 

consistently indicates chlorine contents 2-3 times greater than those observed for bromine. 

Whereas chlorination of y-alumina with carbonyl chloride leads to the enhancement of 

both Br<|>nsted and Lewis acidity, there is no evidence for any enhancement of Lewis 

acidity via the interaction with dibromomethane. The interaction of carbonyl chloride with 

y-alumina leads to the formation of hydrogen chloride. This interacts with the y-alumina 

by dissociative adsorption enhancing Bn|>nsted acidity. In most of the reactions 

investigated in this chapter hydrogen halides (chlorides and bromides) are produced. It is 

therefore probable that the bromination of y-alumina with bromomethanes enhances the 

Br<f>nsted acidity, to some degree, through the dissociative adsorption of hydrogen 

bromide.

From this work it is postulated that these bromination reactions are not just due to 

the ability of the supports to undergo -OH/halogen exchange but also occur by organic 

mechanisms. The differing abilities for -OH/halogen exchange are highlighted by the fact 

that the reaction products observed differ for each individual support. The difference in 

organic mechanisms employed by halomethanes is discussed earlier, in section 3.4.4. The 

results from the reactions of bromochloromethane with the y-alumina and montmorillonite 

K10 give an insight not only into the dismutation processes involved, but also into the 

competitive nature of the halogenation of these solids by bromine and chlorine. In the 

reactions involving y-alumina, N.A.A. data indicates y-alumina is more readily chlorinated 

than brominated (table 3 3 .1(c)), whilst montmorillonite K10 appears to have similar bromine 

and chlorine contents after the reaction. The results from this chapter also indicate that the 

halogen content of halogenated montmorillonite K10 is usually greater than those of 

halogenated y-alumina. The prior chlorination of either the y-alumina or montmorillonite 

K10 does not result in increased bromine content after bromination.
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The general trend of reaction products for y-alumina can be summed up by 

equation 3.4.9.

C H ^  ----------► CHnrtXm.! equation 3.4.9.

In this equation the reaction product contains one more proton than the starting material. 

This is observed in all the reactions carried out over calcined y-alumina. Previous work 

[84] has shown what appears to be the opposite reaction occurring, by converting methyl 

chloride into bromochloromethane, equation 3.4.10.

CH3 Q  + Br2  ► BrCH2Cl + HBr equation 3.4.10.

It was expected that y-alumina treated with carbonyl chloride, with its enhanced 

Br<J)nsted acidity in comparison with calcined y-alumina, would follow equation 3.4. 9 and 

convert dibromomethane and chlorobromomethane to methyl bromide and methyl 

chloride. The fact that this does not occur suggests that the enhanced Br<J>nsted acid sites 

on the chlorinated y-alumina are not involved with the interaction of the halomethane.

This would be similar to the interaction of carbonyl chloride with y-alumina (section 1.9) 

which, it is postulated, results first in the removal of terminal hydroxyl groups. The 

preferential formation of dibromomethane over its chlorine analogue dichloromethane, 

after the treatment of chlorinated y-alumina with bromochloromethane, is a major surprise 

and cannot be readily explained.

The halogenation of montmorillonite K10 with bromochloromethane leads to an 

equal bromine/chlorine content on the clay. A consequence of this impartial halogenation 

is that the reaction products contain the dismutation products dichloromethane, which was 

not observed in any of the alumina reactions, and dibromomethane. The neutron activation 

analysis results combined with the dismutation products observed indicate that the 

y-alumina and montmorilloniteK 10 react in different manners with the brominating 

reagents. The y-alumina is more readily chlorinated than brominated whilst the
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montmorillonite K10 tended to be more impartially halogenated, resulting in similar 

bromine and chlorine contents.
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CHAPTER 4

Interaction of Hydrogen Bromide with Solid Supports and Their Effects on 

Hydrobromination Reactions.

4.1 Introduction.

Contrary to the impression often given in introductory organic text books [85-87], 

the electrophilic addition of hydrogen halides across olefinic bonds is fraught with a 

number of experimental difficulties. In the case of hydrogen chloride, addition does not 

occur at a preparatively useful rate unless the olefin is I) highly substituted [88-90] or II) 

strained [91-97]. The addition of hydrogen bromide, to an olefin, results in both
I

Markovnikov and anti-Markovnikov reaction products. Formation of anti-Markovnikov 

reaction products is due to free radical addition [98], in which the main regioselective 

factor appears to be steric: CH2=CHR is preferentially attacked at CH2  regardless of the 

identity of R [99]. The observed orientation in both kinds of hydrogen bromide addition, 

Markovnikov (electrophilic) and anti-Markovnikov (radical) is, therefore, determined by 

the formation of the secondary intermediate, which in the electrophilic case is more stable 

than the primary intermediate and in the radical case is sterically preferred. These dual 

reaction products are rarely observed in hydrogen chloride additions and never observed in 

hydrogen fluoride or hydrogen iodide additions.

In recent years there has been considerable interest in catalytic reactions by 

inorganic reagents supported on high surface area inorganic materials. Kodomari [100]
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has shown enhanced selectivity in the bromination of methylbenzenes with CuBr2  when 

the CuBr2  is supported on alumina. Recent studies into the hydrohalogenation of alkenes 

and alkynes [1 0 1 ,1 0 2 ], have shown that the presence of inorganic supports can both 

enhance the rate of reaction and alter the regiochemistry of the reaction. These reactions 

often proceed with greater selectivity and under milder conditions than analogous 

homogeneous reactions. The work in this section investigates the interaction of anhydrous 

hydrogen bromide with modified high surface area y-aluminas and clays, using neutron 

activation analysis and radiotracer techniques. The potential of these clays and y-aluminas 

as catalysts for the hydrobromination of olefins, using both 48% hydrobromic acid and 

anhydrous hydrogen bromide as the brominating agent, were investigated in this work.

The olefins selected for these reactions were isomers of butene and 1,9-decadiene. Butene 

was chosen as it has a low boiling point/high vapour pressure (at stp) resulting in a gas 

phase interaction with the inorganic support, and 1,9-decadiene was chosen as it has a high 

boiling point/low vapour pressure (at stp), which results in a liquid phase interaction with 

the inorganic support. The double bonds in 1,9-decadiene are sufficiently far apart to 

eliminate any conjugate effect.
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4.2 Experimental.

4.2.1 Interaction of hydrogen bromide with calcined Degussa *C' y-alumina at 523K.

Calcined y-alumina (0.8g) was loaded into a Monel bomb, 75cm3  capacity, in the 

inert atmosphere glove box. The vessel was then transferred to a vacuum line and the 

contents degassed. The bomb was cooled to 77K using liquid nitrogen, before a measured 

aliquot of hydrogen bromide (approx 60mmol) was condensed into it. The bomb was then 

placed in an electrical furnace and the contents heated to 523K for 120h, before being 

allowed to cool to room temperature. Gaseous material from the bomb was expanded into 

a manifold with a gas cell attached, to give a pressure of 50 Torr, and a gas phase FTER. 

spectrum obtained.

A sample of the brominated alumina (0.054g) was loaded, in the dry box, into a 

polythene ampoule which was then sealed. The ampoule was then transferred to the 

SURRC at East Kilbride for neutron activation analysis (section 2.5.7).

4.2.2 Interaction of [8 2 Br]-bromine labelled hydrogen bromide with calcined 

Degussa 'C ' y-alumina at room temperature.

Calcined y-alumina (approximately O.lg) was transferred into a double limbed 

counting vessel (figure 4.2.1) and accurately weighed; this process was undertaken in an 

inert atmosphere glove box. The counting vessel was then transferred to a vacuum line 

manifold and the contents degassed.

A known quantity of [ 2̂ Br]-bromine labelled hydrogen bromide, measured using a 

Heiss pressure gauge, was condensed into the limb of the double limbed counting vessel, 

that did not contain alumina. The [ 2̂ Br]-bromine labelled hydrogen bromide was allowed
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to warm to room temperature and the count rate determined sing a time period sufficient to 

accumulate approximately 10000 counts. Tap X was then opened, allowing the [8 2 Br]- 

hromine labelled hydrogen bromide to interact with the y-alumina, and the y-alumina was 

counted immediately. The contents of both limbs were counted alternately until the uptake 

of [8 2 Br] on to the alumina had ceased, at which point tap X was closed and the vessel 

transferred to the vacuum line where another measured aliquot of [8 2 Br]-bromine labelled 

hydrogen bromide was condensed into the vessel and the process repeated. The reaction 

was halted when further additions of [8 2 Br]-bromine labelled hydrogen bromide did not 

lead to any further uptake of radioactivity.

These count rates were compared with the specific count rate of a known quantity 

of [8 2 Br]-bromine labelled hydrogen bromide which had been reacted with solid sodium 

hydroxide, section 2.5.5. The [8 2 Br]-bromine labelled hydrogen bromide was from the 

same bulk stock in each case.

4.2.3 Interaction of [8 2 Br]-bromine labelled hydrogen bromide with brominated 

Degussa 'C ' y-alumina at room temperature.

The procedure to investigate the interaction, at 293K, of anhydrous gaseous [8 2 Br]- 

bromine labelled hydrogen bromide with calcined y-alumina treated with anhydrous 

gaseous hydrogen bromide and but-l-ene at 373K, was the same as described in section

4.2.2.
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4.2.4 Interaction of [82Br]-bromine labelled hydrogen bromide with chlorinated 

Degussa 'C' y-alumina at room temperature.

The procedure to investigate the interaction, at 293K, of anhydrous gaseous [8 2 Br]- 

bromine labelled hydrogen bromide with calcined y-alumina treated with anhydrous 

gaseous carbonyl chloride at 523K for 12h, was the same as described in section 4.2.2.

4.2.5 Interaction of [82Br]-bromine labelled hydrogen bromide with uncalcined 

montmorillonite K10 at room temperature.

The experimental procedure for the room temperature interaction of [8 2 Br]- 

bromine labelled hydrogen bromide with uncalcined montmorillonite K10 was the same as 

that described for the interaction of [8 2 Br]-bromine labelled hydrogen bromide with 

calcined y-alumina, section 4.2.2.

4.2.6 Interaction of [82Br]-bromine labelled hydrogen bromide with calcined 

montmorillonite KIO at room temperature.

The experimental procedure for the room temperature interaction of [8 2 Br]- 

bromine labelled hydrogen bromide with montmorillonite KIO heated to 523K for 12h, 

was the same as that described for the interaction of [8 2 Br]-bromine labelled hydrogen 

bromide with calcined y-alumina, section 4 .2 .2 .
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4.2.7 Interaction of [82Br]-bromine labelled hydrogen bromide with chlorinated 

montmorillonite KIO at room temperature.

The procedure to investigate the interaction, at 293K, of anhydrous gaseous [8 2 Br]- 

bromine labelled hydrogen bromide with calcined montmorillonite KIO treated with 

anhydrous gaseous carbonyl chloride at 523K for 12h, was the same as that described in 

section 4.2.2.

4.2.8 Reaction of [8 2 Br]-bromine labelled hydrogen bromide with but-l-ene in the 

presence of calcined Degussa 'C ' y-alumina at 373K

Calcined y-alumina (approximately O.lg) was transferred into the counting limb of 

the counting vessel, figure 4.2.2, and accurately weighed; this process was undertaken in 

an inert atmosphere glove box. The counting vessel was then transferred to a vacuum line 

manifold and the contents degassed.

A known quantity of [8 2 Br]-bromine labelled hydrogen bromide was condensed
I

into the bulb of the counting vessel. A similar quantity of but-l-ene was also condensed 

into the bulb, before allowing the bulb to warm to room temperature. Tap X was then 

opened, to allow the reaction mixture to interact with the y-alumina, and the limb 

containing the y-alumina was counted. The limb containing y-alumina was counted until 

the uptake of bromine had ceased. The limb was then placed in an electrical furnace, 

heated to 373K for 12h, then counted as it cooled. Counting continued until the uptake of 

bromine ceased.
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4.2.9 Reaction o f [82Br]-brom ine labelled hydrogen bromide with but-l-ene in the

presence o f calcined m ontm orillonite K10 at 373K.

The experimental procedure for the investigation of the reaction involving [8 2 Br]- 

bromine labelled hydrogen bromide with but-l-ene, at 373K, in the presence of 

montmorillonite K10, preteated by heating to 523K, under vacuo, for 12h is described in 

section 4.2.8.

4.2.10 Interaction of [82Br]-bromine labelled hydrogen bromide with 

montmorillonite K10, treated with pyridine, at room temperature.

The experimental procedure for the investigation of the interaction of [8 2 Br]- 

bromine labelled hydrogen bromide with montmorillonite K10, pretreated with anhydrous 

pyridine vapour at room temperature (section 6.2.5), was the same as that described for the 

interaction of [8 2 Br]-bromine labelled hydrogen bromide with y-alumina, section 4.2.2.

4.2.11 Interaction of [82Br]-bromine labelled hydrogen bromide with chlorinated 

montmorillonite K10, treated with pyridine, at room temperature.

The experimental procedure for the investigation of the interaction of [8 2 Brj- 

bromine labelled hydrogen bromide with montmorillonite K10, pretreated with anhydrous 

gaseous carbonyl chloride at 523K for 12h and then anhydrous pyridine vapour at room 

temperature (section 6.2.6), was the same as that described for the interaction of [8 2 Br]- 

bromine labelled hydrogen bromide with y-alumina, section 4 .2 .2 .
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4.2.12 Reaction o f hydrogen brom ide with but-l-ene at 373K.

The reaction vessel, a Monel bomb, was attached to a vacuum line manifold and 

evacuated. The bomb was cooled to 77K, using liquid nitrogen, before condensing into it a 

measured aliquot of hydrogen bromide (approx 60mmol), then a similar quantity of but-l- 

ene. The bomb was then placed in an electrical furnace and heated at 373K for 12h, before 

being allowed to cool to room temperature. The gaseous material from the bomb was 

expanded into a manifold with a gas cell attached, to give a pressure of 50 Torr, and a gas 

phase h i IK spectrum obtained.

4.2.13 Reaction of hydrogen bromide with but-l-ene (mol ratio 3:2) in the presence of 

calcined Degussa 'C f y-alumina at 373K.

Calcined y-alumina (approximately 0.8g) was loaded into a Monel bomb, in the 

inert atmosphere glove box. The vessel was then transferred to a vacuum line and the 

contents degassed. The bomb was cooled to 77K, using liquid nitrogen, before condensing 

into it a measured aliquot of hydrogen bromide (approx 60mmol), then a similar quantity 

of but-l-ene. The bomb was placed in an electrical furnace and heated at 373K for 12h, 

before being allowed to cool to room temperature. The gaseous material from the bomb 

was expanded into a manifold with a gas cell attached, to give a pressure of 50 Torr, and a 

gas phase FTIR spectrum obtained. The volatile materials from the bomb were then 

condensed into a collection vessel, which was sealed and sent to Associated Octel for G.C. 

analysis.
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4.2.14 Reaction of hydrogen bromide with but-l-ene (mol ratio 1:1) in the presence of 

calcined Degussa 'C ' y-alumina at 373K.

The experimental procedure for the above investigation is described in section

4.2.13. A DRIFT spectrum of the halogenated alumina was obtained after the reaction (see 

section 2.3.2).

4.2.15 Reaction of hydrogen bromide with but-l-ene (mol ratio 1:1) in the presence of 

dibromomethane brominated y-alumina at 373K.

The experimental procedure for the reaction of hydrogen bromide with but-l-ene 

(mol ratio 1:1), at 373K, in the presence of y-alumina treated with dibromomethane at 

523K for 120h (section 3.2.1), is the same as that described in section 4.2.13. No GC 

analysis was carried out on the volatile reaction products.

4.2.16 Reaction of hydrogen bromide with but-2-ene (mol ratio 3:2) in the presence of 

calcined Degussa *C* y-alumina at 373K.

The experimental procedure for the above investigation is described in section

4.2.13.
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4.2.17 Reaction of hydrogen bromide with but-2-ene (mol ratio 1:1) in the presence of 

calcined Degussa 'C ' y-alumina at 373K.

The experimental procedure for the above investigation is described in section

4.2.13.

4.2.18 Reaction of hydrogen bromide with but-2-ene (mol ratio 2:3) in the presence of 

calcined Degussa 'C ' y-alumina at 373K.

The experimental procedure for the above investigation is described in section

4.2.13.

4.2.19 Reaction of hydrogen bromide with but-2-ene (mol ratio 1:1) in the presence of 

chlorinated y-alumina at 373K.

The experimental procedure for the reaction of hydrogen bromide with but-2-ene 

(mol ratio 1 :1 ) in the presence of calcined y-alumina, treated with carbonyl chloride at 

523K for 12h, is the same as described in section 4.2.13. No GC analysis was carried out 

on the volatile reaction products.
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4.2.20 Reaction o f 1,9-decadiene with 48% hydrobrom ic acid in the presence o f

uncalcined Degussa 'C' y-alumina.

1,9-Decadiene (0.48mol) was transferred into reaction vessel A, shown in figure

4.2.3, containing uncalcined Degussa 'C' y-alumina (2.37g). 48% Hydrobromic acid 

(2.06mol) was added to the reaction mixture, which was then warmed to 363K, and stirred 

for 70 minutes. A sample of the organic phase of the final reaction mixture was taken and 

a gas chromatogram obtained.

4.2.21 Reaction of 1,9-decadiene with 48% hydrobromic acid in the presence of 

calcined Degussa 'C* y-alumina.

1,9-Decadiene (0.47mol) was transferred into reaction vessel A, shown in figure

4.2.3, containing calcined Degussa 'C' y-alumina (2.75g). 48% Hydrobromic acid 

(1.95mol) was added to the reaction mixture, which was then warmed to 363K, and stirred 

for 330 minutes. Samples of the organic phase of the reaction mixture were taken at set 

times and gas chromatograms obtained.

4.2.22 Reaction of 1,9-decadiene with 48% hydrobromic acid in the presence of 

calcined acidic, Brockmann 1 standard grade alumina.

1,9-Decadiene (0.49mol) was transferred into reaction vessel A, figure 4.2.3, 

containing calcined acidic, Brockmann 1 standard grade alumina (13.0g). 48% 

Hydrobromic acid (1.95mol) was added to the reaction mixture, which was then warmed to 

363K, and stirred for 330 minutes. Samples of the organic phase of the reaction mixture
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were taken at set times and gas chromatograms obtained.

4.2.23 Reaction of 1,9-decadiene with 48% hydrobromic acid in the presence of 

calcined montmorillonite K 1 0 .

1,9-Decadiene (0.48mol) was transferred into reaction vessel A, figure 4.2.3, 

containing calcined montmorillonite K10 (10.6g). 48% Hydrobromic acid (1.93mol) was 

added to the reaction mixture, which was then wanned to 363K, and stirred for 330 

minutes. Samples of the organic phase of the reaction mixture were taken at set times and 

gas chromatograms obtained.

4.2.24 Reaction of 1,9-decadiene with hydrogen bromide gas, at 318K, in the presence 

of calcined Degussa 'C ' y-alumina.

1,9-Decadiene (0.24mol) was transfened into reaction vessel A, figure 4.2.4, 

containing calcined Degussa 'C' y-alumina (2.6g) and a solvent, carbon tetrachloride 

(300cm3). The reaction mixture was warmed to 318K and stirred for 40 minutes, whilst 

hydrogen bromide was sparged into the vessel at a rate of 0.1671 min-*, measured using a 

gas flow meter. A sample of the final reaction mixture was taken and a gas chromatogram 

obtained.
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4.2.25 Reaction o f 1,9-decadiene with hydrogen bromide gas in the presence o f

calcined Degussa 'C' y-alumina.

1,9-Decadiene (0.26mol) was transferred into reaction vessel A, figure 4.2.4, 

containing calcined Degussa 'C' y-alumina (2.72g) and a solvent, carbon tetrachloride 

(250cm3). The reaction mixture was stirred for 165 minutes, whilst hydrogen bromide was 

sparged into the vessel at a rate of 0.1671 m in 1. Samples of the organic phase of the 

reaction mixture were taken at set times and gas chromatograms obtained.

4.2.26 Reaction of 1,9-decadiene with hydrogen bromide gas in the presence of 

calcined montmorillonite K 1 0 .

1,9-Decadiene (0.29mol) was transferred into reaction vessel A, figure 4.2.4, 

containing calcined montmorillonite K 1 0  ( 1 1 .2 g) and a solvent, carbon tetrachloride 

(250cm3). The reaction mixture was stirred for 120 minutes, whilst hydrogen bromide was 

sparged into the vessel at a rate of 0.1671 min-1. Samples of the organic phase of the 

reaction mixture were taken at set times and gas chromatograms obtained.

4.2.27 Reaction of 1,9-decadiene with hydrogen bromide gas.

1,9-Decadiene (30mmol) was transferred into a round bottomed, 100cm3, glass 

reaction vessel (figure 4.2.5). The vessel was transferred to a vacuum line and the contents 

degassed, before condensing in hydrogen bromide (lmmol) at 77K. The vessel was 

allowed to warm to room temperature before being attached to a shaker and shaken for 

12h. The vapour phase of the reaction products was analysed by FITR, while the liquid



Figure 4.2.5. Round bottomed reaction vessel.
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phase was sent to the Associated Octel Company for GCMS analysis.

4.2.28 Reaction of 1,9-decadiene with hydrogen bromide gas in the presence of 

chlorinated y-alumina.

y-Alumina (0.23g), treated with carbonyl chloride at 523K for 12h, was placed into 

the reaction vessel (figure 4.2.5). 1,9-Decadiene (30mmol) was then decanted into the 

reaction vessel. The vessel was transferred to a vacuum line and the contents degassed, 

before hydrogen bromide (lmmol) was condensed in, at 77K. The vessel was allowed to 

warm to room temperature before being attached to a shaker and shaken for 12h. The 

vapour phase of the reaction products was analysed by PT1R, while the liquid phase was 

sent to the Associated Octel Company for GCMS analysis.

4.2.29 Reaction of 1,9-decadiene with hydrogen bromide gas in the presence of 

brominated y-alumina.

The experimental procedure for the reaction of 1,9-decadiene with hydrogen 

bromide gas in the presence of calcined y-alumina treated with dibromine at 523K for 

1 2 0 h, was the same as that described in section 4.2.28.
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4.2.30 Reaction o f 1,9-decadiene with hydrogen bromide gas in the presence o f

chlorinated m ontm orillonite K10.

The experimental procedure for the reaction of 1,9-decadiene with hydrogen 

bromide gas in the presence of montmorillonite K 1 0 , treated with carbonyl chloride at 

523K for 12h, was the same as that described in section 4.2.28.

4.2.31 Reaction of 1,9-decadiene with hydrogen bromide gas in the presence of 

uncalcined bentonite.

The experimental procedure for the above investigation is described in section

4.2.28.

4.2.32 Interaction of [82Br]-bromine labelled hydrogen bromide and decadiene 

solution with montmorillonite K10 and decadiene at room temperature.

Montmorillonite K10 (O.lg) was loaded into one limb of a double limbed counting 

vessel. Equal quantities of 1,9-decadiene (2.0g) were decanted into each limb of the 

double limbed counting vessel, which was then transferred to a vacuum line and the 

contents degassed. Tap X was closed and a measured amount of [8 2 Br]-bromine labelled 

hydrogen bromide condensed, at 77K, into the limb not containing montmorillonite K10. 

On warming to room temperature, the count rate of the limb containing [8 2 Br]-bromine 

labelled hydrogen bromide was determined, using a time period sufficient to accommodate 

approximately 10000 counts, before tap X was opened. The contents of both limbs were 

counted alternately for 36h.



Figure 4.3.3. Coloured rings observed on the addition of [82Br]-bromine labelled 
hydrogen bromide to y-alumina treated with carbonyl chloride.
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4.3 Results.

4.3.1 Interaction of hydrogen bromide with calcined Degussa 'C ' y-alumina at 523K.

The infrared analysis of the volatile products after a 12h exposure, at 523K, of 

hydrogen bromide to a sample of Degussa 'C' y-alumina calcined at 523K, indicated 

absorbances at 2700-2400 cm- 1  due to hydrogen bromide. Neutron activation analysis 

carried out on the alumina, after the reaction, indicated a bromide content of 0.3 mg atom 

g-1. The 2 7 A1-MAS NMR spectrum of the y-alumina after the interaction with hydrogen 

bromide, figure 4.3.1, indicated two resonance signals due to A l^ ^  at 5.0ppm and Al(tet) 

at 51.9ppm, with reference to AIQ 3 .

4.3.2 Interaction of [8 2 Br]-bromine labelled hydrogen bromide with calcined 

Degussa 'C' y-alumina at room temperature.

The results of this experiment indicated an immediate interaction between 

hydrogen bromide and y-alumina, at room temperature. There was an initial rapid increase 

in the count rate of the solid, followed by a more gradual increase levelling to a plateau 

after 0.5h. Three aliquots of [8 2 Br]-bromine labelled hydrogen bromide, 0.46mmol, 

0.61mmol and 0.81mmol [each with a specific count rate of 2 0 1 . 8  ± 0 . 7  count s_1 (mg atom 

Br)~l, ascertained by the reaction of a measured quantity of [8 2 Br]-bromine labelled 

hydrogen bromide with solid sodium hydroxide, section 2.5.5], were allowed to interact 

successively with the calcined y-alumina (0.13g). The second aliquot of [8 2 Br]-bromine 

labelled hydrogen bromide was added only after the count rate of the y-alumina showed no 

further increase. The count rate of the y-alumina, after the final addition of [8 2 Br]-bromine 

labelled hydrogen bromide, was measured at 33.1 count s 1; this figure was corrected for



cn(Hcno
in

100 PPM100

Figure 4.3.1. ^7A1 MAS NMR Spectrum of y-alumina after the interaction of hydrogen 

bromide at room temperature.
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decay to 57.6 ± 0.6 count s-1, table 4.3.1. To ascertain the bromide content of the y- 

alumina the gas phase count must be subtracted. This was measured at 15.1 count s-1, 

corrected for decay to 27.2 ± 0.4 count s-*. The bromide content of the y-alumina therefore 

corresponded to 30.2 ± 0.6 count s' 1 (corrected for decay), indicating a bromide uptake of 

l.lm g atom g_1. The y-alumina was then degassed under vacuo for 5min, after which a 

count rate of 23.6 ± 0.3 count s 1 (corrected for decay) was obtained, indicating bromide 

retention of 0.9mg atom g_1. Typical data obtained from this type of reaction and their 

treatment for determination of specific count rates and bromide uptakes are given in 

section 4.3.6.

4.3.3 Interaction of [8 2 Br]-bromine labelled hydrogen bromide with brominated 

Degussa ’C 1 y-alumina at room temperature.

The results of the interaction of [8 2 Br]-bromine labelled hydrogen bromide with y- 

alumina pretreated with hydrogen bromide and but-l-ene (section 4.2.14), at room 

temperature, indicated an immediate interaction with a rapid increase in the count rate of 

the solid, followed by a more gradual increase, levelling to a plateau after lh  (figure 4.3.2). 

The [8 2 Br]-bromine labelled hydrogen bromide, 1.21mmol [specific count rate of 811.0 ±

2.7 count s_ 1  (mg atom Br)-1], interacted with the y-alumina (0.1 lg) resulting in a count 

rate, for the solid, of 323.0 ± 2.9 count s 1 (corrected for decay) after 46.7h. The count rate 

for the gas phase of 207.1 ±2.1 count s" 1 (corrected for decay), was subtracted from this 

solid count rate. This indicated a bromine uptake of 1.3mg atom g_ 1  (table 4.3.1). The 

brominated y-alumina was pumped on a vacuum line for 5min, after which time a count of

109.6 ± 1.1 count s_1 (corrected for decay) was obtained, indicating bromide retention of 

1 .2 mg atom g-1.
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4.3.4 Interaction of [8 2 Br]-bromine labelled hydrogen bromide with chlorinated 

Degussa ’C' y-alumina at room temperature.

The results of the interaction of [8 2 Br]-bromine labelled hydrogen bromide with 

calcined y-alumina pretreated with carbonyl chloride at 523K for 12h, were a rapid 

increase in the count rate of the solid, followed by a more gradual increase levelling to a 

plateau after 2h. Two aliquots of [8 2 Br]-bromine labelled hydrogen bromide, 1.19mmol 

and 1.08mmol [specific count rate of 260.8 count s 1 (mg atom Br)_1], were allowed to 

interact with chlorinated y-alumina (0.15g). The count rate from the y-alumina, after 

24. lh, was measured at 89.9 -  0.9 count s_1 (corrected for decay), whilst the the count rate 

of the gas phase was measured at 63.4 ± 0.6 count s_ 1 (corrected for decay), giving a count 

for the solid of 26.5 ± 0.9 count s_1, indicating a bromide uptake of 0.7mg atom g '1, table 

4.3.1. The y-alumina was then degassed on a vacuum line for 5min after which a count of

27.0 ± 0.3 count s 1 (corrected for decay) was obtained indicating bromide retention of 

0.7mg atom g-1. Further experiments indicated that there was no significant increase in the 

bromide uptake onto chlorinated y-alumina by increasing the reaction time from 23h to 

98h. One peculiarity in this reaction was the formation of multi-coloured rings in the 

alumina, figure 4.3.3, probably due to different surface species.

4.3.5 Interaction of [8 2 Br]-bromine labelled hydrogen bromide with uncalcined 

montmorillonite K10 at room temperature.

The results of this experiment indicated an immediate interaction between the 

hydrogen bromide and the uncalcined montmorillonite K10 (figure 4.3.4), involving an 

initial rapid increase in the count rate of the solid, followed by a more gradual increase 

reaching a plateau after 6 min. Two aliquots of [8 2 Br]-bromine labelled hydrogen bromide, 

1.02mmol and 1.02mmol [specific count rate of 675.1 ±1.5 count s_ 1 (mg atom B r)1],
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were allowed to interact with uncalcined montmorillonite K10 (0.3lg). The count rate of 

the montmorillonite after 23.Oh was 126.3 count s' 1 corrected for decay to 326.7 ±3.1 

count s-1, indicating a bromine uptake of 1.8mg atom g 1. An aliquot of unlabelled 

hydrogen bromide ( 1 .0 2 mmol), was then condensed into the gas phase limb and allowed to 

interact with the halogenated montmorillonite K10. After 26h the count rate from the 

montmorillonite had dropped from 334.0 ± 3.4 count s 1 (corrected for decay) to 196.4 ±

2.0 count s_ 1 (corrected for decay), whilst the gas limb had increased from 1.5 ± 0.1 count 

s_1 (corrected for decay) to 52.2 ±1.4 count s_ 1 (corrected for decay). For this exchange 

reaction the initial and final count rates (A0  and At) were converted into specific count 

rates (SG and St), equations 4.3.1 and 4.3.2.

Aq count s_ 1 334
SQ = ■ =   = 673.39 count s' 1 (mg atom Br)"l

mg atom 82Br 0.496

equation 4.3.1

Aj count s_ 1 196.4
St = --------------------   ■■ = 395.97 count s 1 (mg atom Br) _1

mg atom 82Br 0.496

equation 4.3.2.

The exchange factor (f) was then calculated using these specific count rates, equation

4.3.3.

So - St

So

equation 4.3.3.

S calculated specific count rate assuming complete exchange.
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initial count rate

therefore:

f

mg atom 82Br on surface + mg atom Br added to system

A0  count s- 1

mg atom 82Br + mg atom Br

673.39 - 395.97

673.39 - 334/(0.496 + 1.02) 

f = 0.61 * 0.05

The montmorillonite was then pumped on a vacuum line for 20 min, the count rate falling 

from 218.0 i  2.1 count s' 1 (corrected for decay) to 84.2 ± 0.9 count s_1 (corrected for 

decay), a drop of 61.4%, indicating a bromine loss, after pumping, of l.lm g atom g_1.

4.3.6 Interaction of [82Br]-bromine labelled hydrogen bromide with calcined 

montmorillonite K10 at room temperature.

The results of this experiment indicated an immediate interaction between the 

hydrogen bromide and the montmorillonite K10 (figure 4.3.5), involving an initial rapid 

increase in the count rate of the solid, followed by a more gradual increase reaching a 

plateau after 4h. Three aliquots of [8 2 Br]-bromine labelled hydrogen bromide, 0.85mmol, 

1.02mmol and 1.02mmol [specific count rate of 675.1 i  1.6 count s'* (mg atom Br)-*], 

were allowed to interact with calcined montmorillonite (0.25g). The specific count rate 

was determined using the data in table 4.3.2a, where a known pressure of H82Br (41 Torr) 

was reacted with excess NaOH. The molar quantity of hydrogen bromide was then



Table 4.3.2a. Count rates determined from the interaction o f [82Br]-bromine labelled

hydrogen bromide with solid sodium hydroxide.

Time/h Count Count rate s- 1 Phase

Corrected 

Count rates

4.05 10451 361.6 NaOH 391.0 + 3.8

4.07 20113 364.4 NaOH 394.0 + 2.8

4.08 20354 362.8 NaOH 392.5 + 2.8

4.12 22645 365.8 NaOH 396.0 + 2.6

4.15 20580 370.8 NaOH 401.7 + 2.8

4.17 20134 368.8 NaOH 399.6 + 2.8

4.93 20209 369.4 NaOH 406.3 + 2.9

4.97 25461 370.6 NaOH 407.8 12.6

5.45 21626 359.8 NaOH 399.612.7

5.48 23599 365.9 NaOH 406.6 + 2.6

12.27 20562 340.4 NaOH 431.1+3.0

12.30 21350 335.2 NaOH 424.7 ± 2.9

12.33 20968 336.6 NaOH 426.5 + 2.9

22.08 20082 298.4 NaOH 456.5 + 3.2

22.18 100079 297.3 NaOH 455.711.4

24.60 100125 286.1 NaOH 459.4 + 1.5

24.72 100094 283.8 NaOH 456.8 11.4

25.57 265181 277.8 NaOH 454.610.9

27.35 131465 250.8 NaOH 424.611.2

45.92 100030 193.5 NaOH 468.4 + 1.5

46.07 101289 194.1 NaOH 471.2+1.5

49.42 158773 180.9 NaOH 468.3 + 1.2

52.72 100229 170.7 NaOH 471.111.5

53.95 100031 165.3 NaOH 467.011.5
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calculated using equation 4.3.4.

PV = nRT equation 4.3.4.

PV 41 * 310
n

RT 6.26 * 104  * 293

n = 0.695mmol

The average of the corrected count rates was then determined. As the count rate continued 

to increase for at least 27.5h only the last 5 count rates (a total of 560352 counts with 

0.13% error) were used, equation 4.3.5.

468.4 + 471.2 + 468.3 + 471.1 + 467.0 
Average count rate  --------------- ----- ---------------------------------

equation 4.3.5.

469.2 count rate s' 1

therefore

0.695mmol = 469.2 count rate s_ 1

so l.OOOmmol = 675.1 count rate s_1

All count rates determined from the interaction of montmorillonite K10 with [8 2 Br]- 

bromine labelled hydrogen bromide are given in table 4.3.2b. The count rate of the 

montmorillonite after 51.3h was measured at 140.4 count s '1, corrected for decay to 379.0 

± 3.6 count s 1. From this the bromine uptake was calculated, equations 4.3.6 & 4.3.7, at 

2 .2 mg atom g_1.

count rate of solid 3 7 9

---------------------- - =   = 1516 count rate g 1

weight of solid 0.25g

equation 4.3.6.



1 0 0

count rate g- 1  1516
—---------------------  =    = 2.2mg atom Br g 1

specific count rate 675.1

equation 4.3.7.

An aliquot of unlabelled hydrogen bromide (1.02mmol), was then condensed into the gas 

phase limb and allowed to interact with the halogenated montmorillonite K10. After 28h 

the count rate from the montmorillonite had dropped from 343.8 ± 2.3 count s- 1  (corrected 

for decay) to 172.8 ±1.7 count s- 1  (corrected for decay), whilst the gas limb had increased 

from 3.6 ±0.1 count s' 1 (corrected for decay) to 61.9 ±1.4 count s- 1  (corrected for decay). 

For this exchange reaction the initial and final count rates (A0  and At) were converted into 

specific count rates (SG and St), equations 4.3.8 and 4.3.9.

S0  =
Aq count s 'l 343.8

mg atom **2Br 0.55
= 625.09 counts- 1  (mg atom Br) - 1

equation 4.3.8.

St =
\  count s- 1  172.8

mg atom 82Br 0.55
= 314.18 counts-* (mg atom Br) - 1

equation 4.3.9.

The exchange factor (f) was calculated using these specific count rates, equation 4.3.10.

f = s° ~ s‘
S0  - S

equation 4.3.10.

therefore:

625.09 - 314.18 
f = —  ----

625.09 - 343.8/(0.55 + 1.02)



Table 4.3.2b. Count rates determined from the interaction o f montmorillonite K10 with

[82Br]-bromine labelled hydrogen bromide

Time/h Count Count rate s" 1 Phase

Corrected 

Count rate s- 1

0.85mmol H&2Br introduced into the system.

0 . 0 0 10016 60.7 Gas 60.7 ±0.6

0.04 10024 6 6 . 2 K10 66.3 ±0.7

0.07 10311 85.6 K10 85.8 ±0.8

0.09 10215 93.4 K10 93.6 ±0.9

0 . 1 2 11282 98.7 K10 99.1 ±0.9

0.14 10033 104.5 K10 105.0 ±1.0

0.15 10023 105.4 K10 105.9 + 1.1

0.17 10055 108.7 K10 109.3 ± 1.1

0.19 10027 110.9 K10 1 1 1 . 6  + 1 . 1

0 . 2 1 10028 114.5 K10 115.3 + 1.2

0.25 13923 116.7 K10 117.6 + 1.0

0.35 10143 118.1 K10 119.4 + 1.2

0.37 10031 116.6 K10 118.0 ± 1 . 2

0.39 6108 33.9 Gas 34.3+0.4

0.55 10206 118.8 K10 120.9 ±1.2

0.57 21906 121.7 K10 123.9 ±0.8

1 . 0 1 72875 127.3 K10 129.9 ±0.5

1 . 1 2 67675 131.8 K10 134.8 ±0.5

1 . 2 1 10625 133.1 K10 136.7 ±1.3

3.57 10351 147.2 K10 158.9 ±1.6

3.59 16229 145.0 K10 156.6 ±1.2

4.11 10272 151.9 K10 164.7 ±1.6



Table 4.3.2b cont’d

Time//? Count Count rate s- 1 Phase

Corrected 

Count rate s- 1

4.13 10040 150.1 K10 162.8 ± 1 . 6

4.15 22045 37.1 Gas 40.3 + 0.3

5.10 25807 58.5 K10 64.6 ± 0.4

1.02mmol H82Br introduced into the system.

5.19 11049 185.1 Gas 205.3 ± 2.0

5.20 12546 181.0 Gas 200.9 ± 1.8

5.23 20065 230.1 K10 255.2 + 1.8

5.25 2 0 2 0 0 233.3 K10 258.9 ±1.8

5.35 20132 248.2 K10 276.4 +1.9

5.37 20242 247.2 K10 275.4 +1.9

5.39 24049 104.3 Gas 116.5 + 0.8

5.42 20081 244.6 K10 273.0 + 1.9

11.33 87117 198.8 K10 248.3+0.8

11.41 25443 202.9 K10 254.1 + 1.6

11.43 20054 208.5 K10 261.2+1.8

11.46 24660 211.5 K10 265.3 ± 1.7

11.49 27613 2 1 2 . 6 K10 266.9 +1.6

11.51 22688 214.0 K10 268.9 ±1.8

1 2 . 0 0 20127 218.1 K10 274.8 ± 1.9

1 2 . 0 2 20067 77.2 Gas 97.6 ±0.7

12.07 29704 218.1 K10 275.4 ±1.6

1 2 . 1 0 20726 2 2 2 . 8 K10 281.7 ±2.0

1 2 . 1 2 26294 2 2 0 . 6 K10 279.0 ±1.7

12.14 20882 223.1 K10 282.3 ± 2.0

20.03 12907 144.7 K10 212.9 ±1.9



Table 4.3.2b cont'd

Time /h Count Count rate s- 1 Phase

Corrected 

Count rate s- 1

20.05 10752 149.3 K10 219.8 ± 2 . 1

20.55 11836 182.4 K10 272.8 ±2.5

20.57 46906 57.9 Gas 87.2 ± 0.4

2 1 . 1 1 10618 172.6 K10 259.6 ±2.5

2 1 . 1 2 11288 175.8 K10 264.5 ± 2.5

21.14 10834 173.1 K10 260.5 ± 2.5

2 2 . 0 0 10872 181.8 K10 277.7 ± 2.7

2 2 . 0 2 13309 183.3 K10 280.2 ± 2.4

24.00 10044 143.3 K10 227.4 ±2.3

24.02 10296 80.3 Gas 128.4 ±1.3

1.02mmol H82Br introduced into the system.

24.06 10849 177.3 K10 281.9 ±2.7

24.07 39043 181.8 K10 289.2 ±1.5

24.49 11695 206.3 K10 332.6 ±3.1

24.50 22827 204.9 K10 330.5 ±2.2

25.22 20335 203.1 K10 331.1 ±2.3

25.31 20953 2 0 2 . 2 K10 330.6 ±2.3

45.21 48765 143.6 K10 343.9 ±1.6

45.27 27115 142.2 K10 341.0 ±2.1

45.31 22930 143.1 K10 343.8 ±2.3

51.28 30041 125.5 K10 338.2 ± 2.0

1.02mmol unlabelled HBr introduced into system.

51.34 11080 140.4 K10 379.0 ± 3.6

51.36 10117 136.7 K10 369.2 ± 3.7

51.37 10429 137.2 K10 370.7 ± 3.6



Table 4.3.2b cont'd

Time /h Count Count rate sr1 Phase

Corrected 

Count rate s_ 1

51.39 10806 136.6 K10 369.3 ± 3.6

51.41 10937 135.9 K10 367.5 ± 3.5

51.47 10294 136.2 K10 369.0 ± 3.6

51.49 904 1.3 Gas 3.6 ±0.1

52.00 10064 128.7 K10 350.2 ± 3.5

52.02 10147 127.5 K10 347.1 ±3.4

52.18 10561 120.4 K10 329.6 ± 3.2

52.20 1050 3.5 Gas 9.7+ 0.3

52.25 1 0 1 0 0 117.9 K10 323.3 ± 3.2

52.40 10048 111.4 K10 307.1 ±3.1

53.48 1 0 0 2 2 92.7 K10 261.2 ± 2 . 6

53.50 3112 12.3 Gas 35.0 + 0.6

53.55 10208 91.5 K10 258.5 + 2.6

54.15 10092 87.8 K10 249.4 + 2.5

79.15 10042 38.0 K10 174.6 + 1.7

79.20 10759 37.5 K10

+i0
0

<N

79.25 2041 13.0 Gas 61.9+1.4

103.14 10037 24.1 K10 176.1 ± 1.8

Sample degassed under vacuum for 15min.

103.35 4167 6.9 K10 50.410.8
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f  = 0.77 ± 0.05

The montmorillonite K10 was pumped on a vacuum line for 20 mins, the count rate falling 

from 176.1 count s- 1  (corrected for decay) to 50.4 count s_1 (corrected for decay), a drop of 

71.4%, indicating a bromine loss, after pumping, of 1.5mg atom g"1.

4.3.7 Interaction of [82Br]-bromine labelled hydrogen bromide with chlorinated 

montmorillonite K10 at room temperature.

The results of this experiment indicated an immediate interaction between 

hydrogen bromide and montmorillonite K10 pretreated with carbonyl chloride at 523K for 

1 2 h, involving an initial rapid increase in the count rate of the solid, followed by a more 

gradual increase reaching a plateau after 2h. Two aliquots of [8 2 Br]-bromine labelled 

hydrogen bromide, 1.19mmol and 1 .0 2 mmol (specific count rate of 260.8 ± 0 . 9  count s_1 

(mg atom Br)-1), were allowed to interact with the chlorinated montmorillonite K10 

(0.17g). The count rate of the chlorinated montmorillonite K10, after 24.2h, was measured 

at to 113.2 ±1.2 count s_1 (corrected for decay), whilst the count rate of the gas phase was 

measured at 41.2 + 0.5 count s_1 (corrected for decay), giving a count for the solid of 72.01

1.2 count s 1, indicating a bromide uptake of 1.6mg atom g '1, table 4.3.1. The 

montmorillonite K10 was then degassed under vacuo for lOmin after which a count of 48.4 

± 0.5 count s' 1 (corrected for decay) was obtained, indicating bromide retention of 1.1 mg 

atomg-1.
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4.3.8 Reaction o f [82Br]-brom ine labelled hydrogen bromide with but-l-ene in the

presence o f calcined Degussa 'C' y-alumina at 373K.

The results of the interaction between [8 2 Br]-bromine labelled hydrogen bromide 

and but-l-ene, in the presence of calcined y-alumina, (figure 4.3.6), involved an initial 

rapid increase in the count rate of the solid, followed by a more gradual increase. An 

aliquot of [8 2 Br]-bromine labelled hydrogen bromide, 2.0mmol [specific count rate of

584.1 ±1.5 count s 1 (mg atom Br)-1], and an aliquot of but-l-ene, 2.0mmol, were 

condensed into the reservoir bulb and warmed to room temperature. The reaction mixture 

was then allowed to interact with the calcined y-alumina (0 .1 0 g) present in the counting 

limb. The count rate of the y-alumina after 22h, at room temperature, was measured at

767.2 ± 5.2 count s_1 (corrected for decay), indicating a bromide uptake of 13.1mg atom g" 

1 (table 4.3.2). The counting limb of the reaction vessel was then heated at 373K for 7h. 

The count rate obtained from the y-alumina, immediately after this treatment, was 

measured at 68.2 ± 0.7 counts- 1  (corrected for decay), indicating a decrease in bromide 

content to 1.2mg atom g-1. The reaction mixture was left for a further 50h, at room 

temperature, after which time the count rate obtained from the y-alumina was measured at

394.2 ± 2.8 count s- 1  (corrected for decay), indicating that the bromide content had 

increased to 6.7mg atom g-1. The reaction vessel was transferred to a vacuum line and its 

contents degassed under vacuo for 60mins, resulting in a count rate of 35.3 ± 0.5 count s- 1  

(corrected for decay) for the y-alumina, indicating a bromide retention of 0 .6 mg atom g-1.

During this reaction process the y-alumina present in the counting limb went 

through a series of colour changes. Initially the y-alumina was off-white, but after the 

room temperature interaction of hydrogen bromide and but-l-ene, for 2 2 h, the y-alumina 

had become brilliant white in colour. On heating the contents of the counting limb at 

373K for 7h, the colour of the y-alumina had changed from brilliant white to faint purple. 

The brilliant white colouration returned after the reaction mixture was allowed to stand, at 

room temperature, for 50h. After degassing the contents of the reaction vessel, the y- 

alumina once again changed colour from brilliant white to faint purple. These colour
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changes could be correlated with the count rates observed; the highest count rates were 

observed when the y-alumina was brilliant white and the lowest observed when the y- 

alumina was faint purple.

4.3.9 Reaction of [82Br]-bromine labelled hydrogen bromide with but-l-ene in the 

presence of calcined montmorillonite K10 at 373K.

The experimental procedure for the investigation was the same as for the 

interaction between [8 2 Br]-bromine labelled hydrogen bromide and but-l-ene, in the 

presence of y-alumina. The results from this investigation have shown similar trends to 

those observed in the y-alumina experiment, table 4.3.3. The initial bromine uptake value 

at 4.3 mg atom Br g" 1 was lower than that observed for y-alumina, however after heating to 

373K the bromine retention values were very similar. Unlike the y-alumina experiment, no 

significant colour changes were observed in the montmorillonite K10 interaction.

4.3.10 Interaction of [82Br]-bromine labelled hydrogen bromide with 

montmorillonite K10, treated with pyridine, at room temperature.

The results of this experiment indicated an immediate interaction between the 

hydrogen bromide and the montmorillonite, involving an initial rapid increase in the count 

rate of the solid, followed by a more gradual increase levelling to a plateau. Two aliquots 

of [8 2 Br]-bromine labelled hydrogen bromide, 1.22mmol and 1.36mmol [specific count 

rate of 199.6 i  0.7 count s'* (mg atom Br)-*], were allowed to interact with 

montmorillonite K10 (0.13g) pretreated with pyridine. The count rate of the 

montmorillonite K10 was measured at 86.0 ± 0.9 count s-* (corrected for decay), after
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60sec, whilst the gas phase count rate was measured at 14.2 ±-0.2 count s_1 (corrected for 

decay), indicating a hydrogen bromide uptake of 2.8mg atom g_1, table 4.3.3. After 1.8h 

the count rate of the montmorillonite K10 had risen to 103.2 i  1.0 count s-* (corrected for 

decay), whilst the gas phase count rate was measured at 15.4 ±-0.2 count s 1 (corrected for 

decay), indicating an increase in bromide content to 3.4mg atom g '1. The second aliquot 

of [8 2 Br]-bromine labelled hydrogen bromide was then introduced resulting in initial count 

rates for the montmorillonite K10 of 142.8 ±1.4 count s_ 1  (corrected for decay), and 42.11 

0.4 count s_ 1  (corrected for decay) for the gas phase indicating a bromide content of 3.9mg 

atom g_1. The reaction mixture was then allowed to stand at room temperature, for 16h, 

after which time the count rates were measured at 149.7 ± 1.5 count s_ 1  (corrected for 

decay) for the montmorillonite K10 and 37.9 ± 0.4 count s_ 1 (corrected for decay) for the 

gas phase, indicating a bromide content of 4.3mg atom g'l. The counting vessel was then 

placed on a vacuum line and the contents degassed under vacuo for lOmin, before the final 

count rate of the montmorillonite was measured, 56.2 ± 0.6 count s_ 1  (corrected for decay), 

indicating bromide retention of 2 .2 mg atom g_1.

4.3.11 Interaction of [82Br]-bromine labelled hydrogen bromide with chlorinated 

montmorillonite K10, treated with pyridine, at room temperature.

The experimental procedure for this investigation of the was the same as for the 

interaction between [8 2 Br]-bromine labelled hydrogen bromide and calcined 

montmorillonite K10 pretreated with pyridine. The results from this investigation have 

indicated greater bromine uptake values at 4.8 and 3.1 mg atom Br g-1, table 4.3.3, than 

those observed in experiment 4.3.10.
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4.3.12 Reaction o f hydrogen bromide with but-l-ene at 373K.

The vapour phase reaction products from the interaction between hydrogen 

bromide and but-l-ene, at 373K for 12h, were analysed using FTIR spectroscopy. The 

reaction product vapour phase included absorption bands due to 2 -bromobutane, but-l-ene 

and hydrogen bromide, table 4.3.4.

4.3.13 Reaction of hydrogen bromide with but-l-ene (mol ratio 3:2) in the presence of 

calcined Degussa 'C ' y-alumina at 373K.

Infrared analysis of the reaction product vapour phase indicated absorption bands 

due to the presence of 2-bromobutane and but-2-ene, table 4.3.4. Gas chomatography 

mass spectroscopy carried out on these volatile products confirmed the FTTR data, showing 

peaks due to the presence of 2-bromobutane (93.0%) and butene (5.0%), table 4.3.5. It 

was not possible to resolve the different butene isomers by the GCMS technique.

4.3.14 Reaction of hydrogen bromide with but-l-ene (mol ratio 1:1) in the presence of 

calcined Degussa 'C ' y-alumina at 373K.

Infrared analysis of the reaction product vapour phase indicated absorption bands 

due to the presence of 2-bromobutane and but-2-ene (table 4.3.4), whilst GCMS analysis 

of the volatile products confirmed the FTIR data by indicating the presence of 2- 

bromobutane (92.2%) and butene (7.1%), table 4.3.5. Neutron activation analysis of the 

y-alumina, after the reaction, indicated a bromide content of 0 .8 mg atom g '1, table 3 .2 .1 .

In the 2 7 A1-MAS NMR spectrum of the brominated y-alumina, figure 4.3.7, two
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resonance signals were observed due to an alum inium ^) environment, at 4.69ppm, and aa 

aluminiuni(tet) environment, at 52.8ppm with reference to AICI3 . DRIFTS analysis of the 

brominated y-alumina (figure 4.3.8) indicated bands at 1647cm"* and 1550cm-*, due to the 

presence of organic species adsorbed on the surface.

4.3.15 Reaction of hydrogen bromide with but-l-ene (mol ratio 1:1) in the presence of 

dibromomethane brominated y-alumina at 373K.

The vapour phase reaction products from the interaction between hydrogen 

bromide and but-l-ene in the presence y-alumina, treated with dibromomethane at 523K 

for 120h, at 373K, were analysed using FTIR spectroscopy. This analysis of the reaction 

product vapour phase indicated absorption bands due to 2-bromobutane, table 4.3.4. There 

was however no evidence for the presence of any butenes.

4.3.16 Reaction of hydrogen bromide with but-2-ene (mol ratio 3:2) in the presence of 

calcined Degussa 'C' y-alumina at 373K.

Infrared analysis of the reaction product vapour phase indicated absorption bands 

due to the presence of 2-bromobutane (table 4.3.4), whilst GCMS analysis of the volatile 

products also indicated the presence of 2-bromobutane (95.5%), table 4.3.5. There was no 

evidence for the presence of any unreacted but-2 -ene.
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Figure 4.3.7. 2 7 A1 MAS NMR Spectrum of Y-alumina after the interaction of hydrogen 

bromide and but-l-ene at 373K.
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4.3.17 Reaction o f hydrogen brom ide with but-2-ene (mol ratio 1:1) in the presence of

calcined Degussa 'C' y-alumina at 373K.

Infrared analysis of the reaction product vapour phase for the interaction of 

hydrogen bromide with but-2-ene, in the presence of calcined Degussa 'C' y-alumina, at 

373K showed absorption bands due to the presence of 2-bromobutane and but-2-ene, table

4.3.4. GCMS analysis of these volatile products indicated the presence of 2-bromobutane 

(72%), butene (16%), CgH1 6  isomers (10%) and chloromethane (2%), table 4.3.5. This 

formation of CgH1 6  oligomers suggests more than a simple hydrobromination reaction was 

occurring in the presence of y-alumina.

4.3.18 Reaction of hydrogen bromide with but-2-ene (mol ratio 2:3) in the presence of 

calcined Degussa 'C ' y-alumina at 373K.

The procedure and results for the interaction of hydrogen bromide with but-2-ene 

(mol ratio 2:3), in the presence of calcined Degussa 'C  y-alumina, at 373K are similar to 

those described in section 4.3.17. The results from the gas phase infrared analysis are 

given in table 4.3.4 and the GCMS analysis in table 4.3.5.

4.3.19 Reaction of hydrogen bromide with but-2-ene (mol ratio 1:1) in the presence of 

chlorinated y-alumina at 373K.

Infrared analysis of the reaction product vapour phase for the interaction of 

hydrogen bromide with but-2 -ene (mol ratio 1 :1 ) in the presence of y-alumina treated with 

carbonyl chloride at 523K for 12h, at 373K, showed absorption bands due to the presence
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o f 2-bromobutane, hydrogen chloride, hydrogen bromide and but-2-ene, table 4.3.4.

4.3.20 Reaction of 1,9-decadiene with 48% hydrobromic acid in the presence of 

uncalcined Degussa 'C ' y-alumina.

The results from this experiment indicate, from GC analysis (table 4.3.6), a large amount 

of unreacted 1,9-decadiene (76.1 mol%) still present in the reaction mixture after 70min. 

The reaction products from the hydrobromination of 1,9-decadiene with 48% hydrobromic 

acid, in the presence of uncalcined y-alumina, included the formation of the 2,9- 

dibromodecane (3.3 mol%) and 2,8-dibromodecane (3.4 mol%) isomers, in an approximate 

1:1 ratio. Several bromodecene isomers (2.0 mol%) were also detected.

4.3.21 Reaction of 1,9-decadiene with 48% hydrobromic acid in the presence of 

calcined Degussa 'C ' y-alumina.

The results from the interaction of 1,9-decadiene with 48% hydrobromic acid in the 

presence of calcined Degussa C' y-alumina indicated, from GC analysis (table 4.3.6), a 

large quantity of unreacted 1,9-decadiene (75.1 mol%) present in the reaction mixture after 

330 mins. The reaction products included the 2,9-dibromodecane (12.6 mol%) and 2,8- 

dibromodecane (7.1 mol%) isomers, in the approximate ratio of 2:1, and also several 

bromodecene isomers (5.3 mol%).
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4.3.22 Reaction o f 1,9-decadiene with 48% hydrobromic acid in the presence o f

calcined acidic, Brockmann 1 standard grade alumina.

The procedure for the interaction of 1,9-decadiene with 48% hydrobromic acid in 

the presence of calcined acidic, Brockmann 1 standard grade alumina was similar to that 

for the reaction of 1,9-decadiene with 48% hydrobromic acid in the presence of calcined 

Degussa 'C' y-alumina, section 4.3.21. The results of the GC analysis from the reaction 

product are given in table 4.3.6.

4.3.23 Reaction of 1,9-decadiene with 48% hydrobromic acid in the presence of 

calcined montmorillonite K1 0 .

The procedure for the interaction of 1,9-decadiene with 48% hydrobromic acid in 

the presence of calcined montmorillonite K 1 0  was similar to that for the reaction of 1 ,9 - 

decadiene with 48% hydrobromic acid in the presence of calcined Degussa ’C’ y-alumina, 

section 4.3.21. The results of the GC analysis from the reaction product, given in table 

4.3.6, indicate that montmorillonite K10 was the most efficient of the solid supports in 

catalysing the hydrobromination of 1 ,9 -decadiene.

4.3.24 Reaction of 1,9-decadiene with hydrogen bromide gas, at 318K, in the presence 

of calcined Degussa 'C f y-alumina.

The results from the interaction of 1,9-decadiene with sparged hydrogen bromide 

gas, at 318K, in the presence of calcined Degussa 'C  y-alumina indicated, from GC 

analysis (table 4.3.6), that a large quantity of unreacted 1,9-decadiene (76 mol%)
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remained in the reaction mixture after 70min.

4.3.25 Reaction of 1,9-decadiene with hydrogen bromide gas in the presence of 

calcined Degussa 'C ' y-alumina, at room temperature.

The results from the interaction of 1,9-decadiene with sparged hydrogen bromide 

gas, in the presence of calcined Degussa 'C' y-alumina, at room temperature show from GC 

analysis (table 4.3.6), that only a small quantity of unreacted 1,9-decadiene (24.7 mol%) 

was present in the reaction mixture after 165min. This hydrobromination of 1,9-decadiene 

resulted in the formation of 2,9-dibromodecane (20.9 mol%) and 2,8-dibromodecane (2.4 

mol%) isomers, in the approximate ratio of 8 :1 , and also a quantity of bromodecene 

isomers (38.4 mol%).

4.3.26 Reaction of 1,9-decadiene with hydrogen bromide gas in the presence of 

calcined montmorillonite K 1 0 .

The results from the interaction of 1,9-decadiene with hydrogen bromide gas in the 

presence of calcined montmorillonite K10, indicated, from GC analysis (table 4.3.6), that 

none of the 1,9-decadiene remained after 45mins of sparging with hydrogen bromide. The 

results of the GC analysis from the reaction product after 120min indicated only a trace 

amount of bromodecene (0.4 mol%) present. The major constituents were the 2,9- 

dibromodecane (62.1 mol%) and 2,8-dibromodecane (27.9 mol%) isomers. These results 

suggest that under dry conditions montmorillonite K10 was the most effective solid 

support in catalysing the hydrobromination of 2 ,9 -decadiene.
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4.3.27 Reaction o f 1,9-decadiene with hydrogen brom ide gas in the presence of

calcined m ontm orillonite K10.

The results of the interaction of 1,9-decadiene with hydrogen bromide gas in the 

presence of calcined montmorillonite K10, indicated, from GCMS analysis (table 4.3.7), 

that a large quantity of unreacted 1,9-decadiene (73.2 mol%) and several isomers of 

decadiene (6 . 6  mol%) were present in the final reaction mixture. This was expected as 

there was a large excess of 1,9-decadiene in the initial reaction mixture. The main 

hydrobromination products were 9-bromodec-l-ene (10.1 mol%), with several other 

isomers of bromodecene (4.6 mol%), the 2,9-decadiene (1.3 mol%) and 2,8- 

dibromodecane (0 . 2  mol%) isomers along with a small quantity of tribromodecane isomers 

(2.95 mol%).

4.3.28 Reaction of 1,9-decadiene with hydrogen bromide gas in the presence of 

chlorinated y-alumina.

i The experimental procedure for the interaction of 1,9-decadiene with hydrogen 

bromide gas in the presence of calcined y-alumina, treated with carbonyl chloride at 523K 

for 12h, is similar to those for the interaction of 1,9-decadiene with hydrogen bromide gas 

in the presence of calcined montmorillonite K10. The results from the GCMS analysis of 

the reaction products, given in table 4.3.7, show the product composition to be similar to 

that from the calcined montmorillonite K10 experiment (expt 4.3.27)
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4.3.29 Reaction o f 1,9-decadiene with hydrogen bromide gas in the presence o f

brominated y-alumina.

The experimental procedure for the interaction of 1,9-decadiene with hydrogen 

bromide gas in the presence of calcined y-alumina treated with dibromine at 523K for 

1 2 0 h, was the same as for the interaction of 1 ,9 -decadiene with hydrogen bromide gas in 

the presence of calcined montmorillonite K10. The results from the GCMS analysis of the 

reaction products, given in table 4.3.7, show the product composition to be similar to that 

from the calcined montmorillonite K10 and chlorinated y-alumina experiments.

4.3.30 Reaction of 1,9-decadiene with hydrogen bromide gas in the presence of 

chlorinated montmorillonite K10.

The experimental procedure for the interaction of 1,9-decadiene with hydrogen 

bromide gas in the presence of calcined montmorillonite K 1 0 , treated with carbonyl 

chloride at 523K for 12h, was the same as for the interaction of 1,9-decadiene with 

hydrogen bromide gas in the presence of calcined montmorillonite K10. Although the 

results from the GCMS analysis of the reaction products, given in table 4.3.7, show the 

product composition to be similar to the previous reactions (expt 4.3.27-29), the 

composition of the decadiene in the reaction product was significantly different. Only 46.9 

mol% was 1,9-decadiene and 28.3 mol% isomers of decadiene other than 1,9-decadiene. 

This increased quantity of decadiene isomers suggests that although the chlorinated 

montmorillonite K10 does not increase the hydrobromination process it does catalyse the 

isomerisation process.
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4.3.31 Reaction o f 1,9-decadiene with hydrogen bromide gas in the presence o f

bentonite.

The experimental procedure for the interaction of 1,9-decadiene with hydrogen 

bromide gas in the presence of bentonite, was the same as for the interaction of 1,9- 

decadiene with hydrogen bromide gas in the presence of calcined montmorillonite K10. 

The results from the GCMS analysis, given in table 4.3.7, indicate that bentonite was the 

least successful solid support for catalysing the hydrobromination reaction, with 91.5 

mol% 1,9-decadiene remaining in the reaction product. It was noted in this experiment 

that on opening the reaction vessel a white vapour was evolved (hydrogen bromide); this 

did not occur with any of the previous experiments (expt 4.3.27-30) in which a greater 

degree of hydrobromination occurred.

4.3.32 Interaction of [S2Br]-bromine labelled hydrogen bromide and decadiene 

solution with montmorillonite K10 and decadiene at room temperature.

The results from this experiment (figure 4.3.9) indicated a gradual transferal of the 

[8 2 Br]-bromine labelled hydrogen bromide from the limb containing [8 2 Br]-bromine 

labelled hydrogen bromide and 1,9-decadiene to the limb containing 1,9-decadiene and 

calcined montmorillonite K10. The limb containing [8 2 Br]-bromine labelled hydrogen 

bromide and 1,9-decadiene was opened to the limb containing 1,9-decadiene and 

montmorillonite K 1 0 ; after 2 0 mins the surface of the montmorillonite had an orange 

colour. The count rate from the montmorillonite limb was measured at 338.2 ±1.8 count s" 

* (corrected for decay), whilst the count rate for the 1 ,9 -decadiene limb was measured at 

605.5 ± 2.8 count s-* (corrected for decay). After 2.1h the count rates had almost 

converged at 430.4 ±.2.2 count s"l (corrected for decay) for the montmorillonite and 464.2 

±.2.1 count s- 1  (corrected for decay) for the 1,9-decadiene. After a further 14h the count
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rate for the montmorillonite had increased to 671.0 ±-3.1 count s-* (corrected for decay), 

whilst the count rate for the 1,9-decadiene had fallen to 381.7 £2.4 count s-* (corrected for 

decay). The final count rates, 1202.2 £ 3.8 count s_ 1  (corrected for decay) for the 

montmorillonite and 302.4 ±1.2 count s_ 1 (corrected for decay) for the 1,9-decadiene, were 

measured 116h after the experiment began, indicative of the slow but continues uptake of 

bromine by the montmorillonite K10 through the 1,9-decadiene.

4.4 Discussion

4.4.1 Interaction of [82Br]-Bromine Labelled Hydrogen Bromide with Solid 

Supports.

The [8 2 Br]-bromine labelled hydrogen bromide tracer experiments have shown that 

hydrogen bromide, unlike dibromomethane, interacts readily with clays and y-aluminas at 

room temperature. This minors the chlorine analogue experiments [49] where chlorination 

via hydrogen chloride is by dissociative adsorption whereas chlorination using carbonyl 

chloride requires removal of an oxygen from the solid. The fact that hydrobromination, 

like hydrochlorination, occurs at room temperature suggests that dissociati/e adsorption is 

occurring, figure 4.4.1.

The [8 2 Br]-bromine labelled hydrogen bromide tracer experiments usually involved 

the addition of [8 2 Br]-bromine labelled hydrogen bromide in three separate aliquots. In all 

cases the first aliquot leads to a rapid initial uptake of bromine onto the solid, followed by 

a more gradual uptake, in the case of y-alumina (expt 4.3.2) for approximately lh, after



hydrogen

bromine

oxygen

Figure 4.4.1. Postulated bromine environments present on the surface of y-alumina after 

the room temperature interaction of hydrogen bromide.
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which time the count rate of the solid remains static. With the second aliquot of [8 2 Br]- 

bromine labelled hydrogen bromide the initial uptake is not as rapid as for the first aliquot, 

but the count rate of the solid increases gradually for a further 5h. The addition of the third 

aliquot made no significant difference to the count rate of the solid, suggesting the surface 

of the solid had been saturated with hydrogen bromide. Degassing the brominated solid on 

a vacuum line leads to a decrease in the count rate of approximately 10%. These 

radiotracer experiments have shown that although calcined montmorillonite K10 (2.5mg 

atom g 1) and uncalcined montmorillonite K10 (1.8mg atom g '1) have greater [8 2 Br]- 

bromine contents than y-alumina (l.lm g atom g_1) before degassing; after the samples are 

degassed the bromine contents in all the samples appear to be veiy similar, with no real 

significant difference. NAA data for the interaction of hydrogen bromide with y-alumina 

at 523K, expt 4.2.1, indicated a bromine content, after degassing, of 0.3mg atom g '1. Half 

the figure observed from the room temperature interactions.

The lability of this bromine species adsorbed, at room temperature, on the surface 

of both calcined and uncalcined montmorillonite K 1 0 , with respect to exchange with 

gaseous hydrogen bromide, was investigated in experiments 4.3.5 & 4.3.6. These studies 

indicated that there was a slight difference in behaviour between the 'hydrogen bromide' 

brominated calcined montmorillonite K10 and the 'hydrogen bromide' brominated 

uncalcined montmorillonite K10. The exchange factor for the calcined material was 

measured at 0.77, whereas the uncalcined material gave a value of 0.61. These results 

suggest that although the calcination process increases the number of available sites for the 

adsorption of hydrogen bromide, the process must increase, to a greater extent, the number 

of labile sites in comparison to inert bromide sites. These results differ from those in the 

'hydrogen chloride' chlorinated y-alumina which has a 1 0 0 % exchange rate with gaseous 

H3 6 C1 [49].

Prior chlorination of y-alumina made no significant difference to the [8 2 Br]- 

bromide uptake in comparison with y-alumina, but prior chlorination of montmorillonite 

K10 led to an increase in the bromine content obtained after degassing, from 0.7mg atom 

g_1 to l.lm g atom g_1. This difference between the chlorinated y-alumina and
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montmorillonite K10 is consistent with the results in chapter 3, where it was shown that 

montmorillonite K10 has no preference between chlorination and bromination, whilst 

y-alumina is preferentially chlorinated. For this reason, exchange reactions between 

hydrogen bromide and the chloride species on the solid are more likely to occur on 

montmorillonite K10 than on y-alumina.

The interaction of [8 2 Br]-bromine labelled hydrogen bromide with y-alumina 

treated with but-l-ene and hydrogen bromide, experiment 4.2.3, leads to a large uptake of 

[8 2 Br] onto the surface of the y-alumina, 1.3mg atom g 1. This increase in bromide content 

of the y-alumina, in comparison with calcined y-alumina, may be explained by two 

reasons, I) this method of bromination gives rise to organics on the surface of y-alumina 

(discussed later in this chapter), which may be brominated, or II) NAA data of the 

brominated y-alumina indicates a bromine content of 0.8mg atom g"1. The increase of 

[8 2 Br]-bromide species on the y-alumina may be due therefore to a bromine exchange 

reaction occurring.

The results of the interaction of [8 2 Br]-bromine labelled hydrogen bromide with 

montmorillonite K10 treated with pyridine (table 4.3.3), indicated a rapid uptake of 

hydrogen bromide onto the clay, resulting in an immediate colour change from blue to 

orange. This rapid uptake is probably due to the formation of pyridinium bromide species, 

discussed in chapter 6 , as many of the characteristic infrared absorption bands for pyridine 

were shifted during the hydrobromination process. The final uptake figure of [8 2 Br]- 

bromine labelled hydrogen bromide on pyridine treated montmorillonite K10 was 4.3mg 

atom g 1 reducing to 2 .2 mg atom g_ 1  after degassing, a significantly larger bromine content 

than that for calcined montmorillonite K10. The results of the interaction of [8 2 Br]- 

bromine labelled hydrogen bromide with chlorinated montmorillonite K10 treated with 

pyridine (experiment 4.2.11), indicated, like the montmorillonite K10 treated with 

pyridine, a rapid uptake of hydrogen bromide onto the clay. The bromine uptake figures 

for the chlorinated montmorillonite K10 treated with pyridine, 4.9mg atom g ' 1 dropping to 

3-lmg atom g' 1 after degassing, are significantly greater than those for the montmorillonite 

K10 treated with pyridine. A possible reason for this could be the chlorination process,
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which enhances both Bnjmsted and Lewis acidity. If the chlorination of montmorillonite 

K10 enhances both the Bnjmsted and Lewis acidity of the clay, then the number of pyridine 

probe molecules adsorbed on the surface should increase. This increased pyridine content 

causes the [**2B r]-b ro m in e  labelled hydrogen bromide uptake onto the montmorillonite to 

increase. If this supposition is correct then this may be a route for comparative 

quantitative measurement of the acidity of solid supports.

4.4.2. Reaction of hydrogen bromide with butenes in the presence of acidic solid 

supports.

re-Electrons in alkene systems are polarisable and therefore subject to attack from 

electron seeking species called electrophiles. Although this addition can be both 

regioselective and stereospecific this work will investigate the regioselectivity of these 

reactions. The regioselectivity of the hydrobromination of alkenes is not just governed by 

Markovnikov's rule which states that 'the reaction pathway with the most stable carbonium 

intermediate is the reaction pathway most likely to be followed', figure 4.4.2. The 

regioselectivity is also governed by free radical mechanisms.

H ©

y\ HBr

Figure 4.4.2. Possible reaction intermediates in the hydrohalogenation of 

asymetric alkenes.



There are two possible hydrobromination products for but-l-ene, 2-bromobutane 

(Markovnikov addition) and 1-bromobutane (anti-Markovnikov addition), figure 4.4.3,

Br
HBr Br

Figure 4.4.3. Possible reaction products from the hydrobromination of but-l-ene.

but only one possible reaction product for but-2-ene, 2-bromobutane, figure 4.4.4.

Figure 4.4.4. Possible reaction products from the hydrobromination of but-2-ene.

The impression often given in introductory organic text books is that the 

hydrohalogenation of alkenes should be a fast and efficient reaction. Without the presence 

of a promoter or enhancer, however, the reaction proceeds very slowly. The interaction of 

hydrogen bromide with but-l-ene, at 373K for 8 h, results in the formation of 2- 

bromobutane, and various products detected by b ilk . The main spectral features however 

are due to unreacted but-l-ene. The addition of calcined y-alumina to the system results in 

the formation of but-2-ene and the hydrobromination product 2-bromobutane. In this 

interaction there is no evidence for the presence of but-l-ene. The use of excess hydrogen 

bromide made no significant difference to the reaction products, table 4.4.1, compared 

with those from the 1:1 mol ratio reaction. The most interesting result arises from the use

Br

Bi



1 1 9

of calcined y-alumina treated with dibromomethane (section 3.2.1) as a support. As with 

previous reactions 2 -bromobutane is observed but unlike these reactions no butene isomers 

are detected in the reaction products. It is concluded from these investigations that i) due 

to the formation of Markovnikov addition products, the reaction mechanism must be ionic, 

and ii) due to the isomerisation of but-l-ene to but-2 -ene in the presence of the supports, 

the but-l-ene may adsorb and desorb from the surface without hydrobromination 

occurring. However, this is not the case when the y-alumina is treated with 

dibromomethane. As only hydrobromination products are observed it is postulated that the 

adsorption of but-l-ene onto the treated y-alumina results in the hydrobromination process.

The interaction of hydrogen bromide with but-2-ene (1:1 mol ratio) in the presence 

of calcined y-alumina affords the formation of a CgH1 6  oligimer product ( 1 0 .0 mol%) and 

the expected hydrobromination product 2-bromobutane (72.0mol%). This oligomer 

product and 2 -bromobutane are observed again when an excess of but-2 -ene is used in the 

reaction. However, when an excess of hydrogen bromide is used, the only reaction product 

detected by GCMS is 2-bromobutane (95.5mol%). This interaction when carried out in the 

presence of y-alumina treated with carbonyl chloride results in the formation of both 2 - 

bromobutane and 2-chlorobutane. As this process of chlorination results in the adsorption 

of hydrogen chloride onto the surface of the support, the formation of 2 -chlorobutane is not 

unexpected. The presence of hydrogen chloride in the reaction product vapour phase is 

surprising and indicates that a halogen exchange process is occurring.

DRIFTS analysis of y-alumina after the hydrobromination reaction, figure 4.3.8, 

indicated that there are organic species present on the surface of the y-alumina. The 27AL 

MAS NMR spectrum of y-alumina after the treatment with hydrogen bromide and but-l- 

ene, figure 4.3.7, shows two resonances. A main broad resonance at 4.7ppm, attributed to 

Al(oct) and a smaller resonance at 52.8ppm attributed to Al(tet) environments, with 

reference to AICI3 . These chemical shifts are similar to those observed previously in this 

work (section 3.4.2), in which bromination of y-alumina has occurred. Neutron activation 

analysis of this sample indicates a bromine content of 0.8mg atom g"1. This figure is 

greater than that observed for the room temperature adsorption of hydrogen bromide onto
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y-alumina (experiment 4.2.1), which resulted in a bromine content of 0.3mg atom g_1. The 

increase in bromine content is probably due to bromo-organic species (R-Br) present on 

the surface of the y-alumina, figure 4.4.5.

HBr +  i f
/   ► RBr

////////////S ' / / / / / / / / / / / / / / '

Figure 4.4.5. Interaction of hydrogen bromide with butene on a solid support.

[8 2 Br]-Bromine labelled hydrogen bromide tracer studies (experiment 4.2.8) 

indicate that the uptake of bromine onto the y-alumina, in the presence of but-l-ene, 

increases gradually for 24h. This results in a bromine content of 13.1mg atom g_ 1  and the 

Y-alumina takes on a brilliant white appearance. After heating at 353K for 7h, the y- 

alumina acquired a faint purple hue with a decrease in bromine content to 1 .2 mg atom g"1. 

On allowing the reaction mixture to stand at room temperature for a further 50h the 

brilliant white appearance of y-alumina returned and the bromine content rose to 6.7mg 

atom g"1. After degassing on a vacuum line for 60min, the faint purple hue of the y- 

alumina returned. It is postulated that the faint purple colour is an initial organic bromide 

layer attached to the surface of the alumina. The brilliant white appearance of the y- 

alumina is due to the interaction of hydrogen bromide and but-2 -ene, to form 2 - 

bromobutane, on the original 'faint purple' organic bromide layer. At room temperature 2- 

bromobutane builds up gradually on the y-alumina, over a period of 24h, which results in 

the brilliant white appearance. On heating, at 373K for 7h, 2-bromobutane desorbs leaving 

the original 'faint purple' organic bromide layer exposed, figure 4 .4 .6 .
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C4H9Br(g)

solid support

Figure 4.4.6. Desorption of 2-bromobutane from the surface of y-alumina.

On allowing the mixture to stand for a further 50h at room temperature, the unreacted 

hydrogen bromide and but-2-ene interact on the y-alumina, turning it brilliant white. The 

y-alumina is finally pumped under vacuo, which removes the volatile 2 -bromobutane, 

figure 4.4.7.

RT. ^ C4 H9 Br pumped

' '•' •RBr • HBr + Butene ’■ , • undervacuum RBr . '  •''•

mtvMzk
Figure 4.4.7. Build up and desorption of 2-bromobutane from the surface of 

y-alumina.

4.4.3. Reaction of hydrogen bromide with 1,9-decadiene in the presence of acidic 

solid supports.

There are several possible reaction pathways for the interaction of hydrogen 

bromide with 1,9-decadiene, each of which result in different reaction products. If
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hydrobromination proceeds via Markovnikov addition the product will be the 2,9- 

dibromodecane isomer, figure 4.4.8. The reaction could also proceed via anti- 

Markovnikov addition resulting in formation of the 1,10-dibromodecane isomer. If, 

however, the reaction mechanism is a mixture of Markovnikov and anti-Markovnikov 

additions, then the products formed will be the two dibromodecane isomers mentioned 

previously, along with the 1,9-dibromodecane isomer. The interaction is further 

complicated by the ability of acidic supports used in this work to isomerise alkenes 

[103,104], as illustrated in the previous section with but-l-ene.

Br
1 ,1 0 -dibromodecane 

(Anti - Anti)

Br

Br

A A A A ^
1 ,9 -decadiene

Br

Br

1 ,9 -dibromodecane 
(Anti - Markov)

2 ,9 -dibromodecane 
(Maikov - Markov)

Br Br
2 ,8 -dibromodecane 

(Maikov - Maikov)

Figure 4.4.8. Possible hydrobromination products of 1 ,9-decadiene.

The hydrobromination reactions examined in this work can be divided into three 

categories: I) those using 48% aqueous hydrobromic acid as the hydrobrominating reagent, 

II) those using hydrogen bromide gas as the hydrobrominating reagent and IH) those using 

hydrogen bromide gas with excess 1,9-decadiene. The standard experiments for the 

hydrobromination of 1,9-decadiene, table 4.4.2, were carried out by Dr C.Tattershall at the 

Associated Octel Company Ltd. These experiments were conducted under similar 

conditions to those described in experiment 4.2.18, with the exception that hydrogen 

bromide was also sparged into the reaction mixture. Hydrobromination of 1,9-decadiene 

was complete after 5h. The addition of Teepol as a surfactant makes a significant
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difference to the reaction products formed. Without Teepol the hydrobromination occurs 

via an anti-Markovnikov addition to give 1,10-dibromodecane, but with Teepol present 

hydrobromination occurs almost exclusively via Markovnikov addition.

Hydrobromination reactions involving 48% aqueous hydrobromic acid, in the 

presence of acidic solid supports (experiments 4.2.20-23), lead to the formation of 2,9- 

dibromodecane and 2 ,8 -dibromodecane, indicating that the reactions proceed via 

Markovnikov addition. These reactions are slow; in the case of Brockmann alumina, after 

5h at 363K, 88.7mol% 1,9-decadiene remains unchanged, and with y-alumina 75.1mol% 

remains unchanged. The most efficient of the solids examined is montmorillonite K10. In 

this reaction only 39.6mol% 1,9-decadiene remained after lh at 363K. The least efficient 

solid support, Brockmann alumina, is slightly more selective towards the formation of 2,9- 

dibromodecane over 2,8-dibromodecane. The product ratio is 2:1, compared with 

montmorillonite K10 and y-alumina where the product ratios are both 1.8:1.

Hydrobromination reactions in which hydrogen bromide was sparged into the 

reaction mixture (experiments 4.2.24-26) proved to be much faster than the 

hydrobromination reactions involving aqueous hydrobromic acid. Using y-alumina, after 

2.75h at room temperature, only 24.7mol% 1,9-decadiene remained unreacted, but using 

montmorillonite K10 there is no evidence for the presence of 1,9-decadiene after lh at 

room temperature.

The ability of montmorillonite K10 to adsorb hydrogen bromide rapidly is 

illustrated in the [ 2̂ Br]-bromine labelled hydrogen bromide tracer experiments. This 

ability is illustrated again in experiment 4.2.26. In this experiment, under sparging 

conditions, the addition of hydrogen bromide gas into the reaction mixture would be 

expected to displace air already in the system, unless the reaction between hydrogen 

bromide and the decadiene is very rapid. As the reaction of hydrogen bromide with 

decadiene does not occur readily without the presence of an acidic support (experiment 

4.3.27), the hydrogen bromide must adsorb onto the surface before reacting with the 

decadiene. When montmorillonite K10 is used as the support, for the initial lOmin of 

sparging no air is displaced, therefore the hydrogen bromide must rapidly adsorb onto the
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surface. This ability for the montmorillonite K10 to adsorb hydrogen bromide is also 

demonstrated under static conditions. In this reaction a double limbed vessel, figure 4.2.1, 

is charged with decadiene in one limb and decadiene/montmorillonite K10 in the other.

decadiene. Within 3h of allowing the the vapour phases to interact, the count rates in each 

limb are equivalent. Within 20h the [8 2 Br]-bromine species is almost exclusively in the 

limb containing montmorillonite K10. This experiment indicates that the montmorillonite 

K10 is drawing the hydrogen bromide from the original decadiene solution into the 

decadiene/montmorillonite K10 solution.

The significant difference between the two types of hydrobromination reactions 

investigated is that the aqueous hydrobromic acid reactions involve aqueous and organic 

phases. These therefore require a medium to cany the hydrogen bromide from the 

aqueous phase to the organic phase. In the sparging experiments the hydrogen bromide is 

introduced straight into the decadiene solution. The solid supports may also be less 

efficient in an aqueous medium due to the blocking the Bnjmsted acid sites by water, via 

hydrogen bonding.

In the experiments 4.2.27-31, hydrogen bromide gas is introduced into an excess of

1,9-decadiene (3:1 mol ratio). These experiments were designed to determine whether, 

during the course of the reaction, both alkene groups were hydrobrominated on the surface 

at the same time, or whether a single hydrobromination occurred, followed by the 

desorption of the bromodecene, figure 4.4.9.

[8 2 Br]-Bromine labelled hydrogen bromide is condensed into the limb containing

HBr Br
Br

Figure 4.4.9. Proposed interaction of 2,9-decadiene with solid supports.
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The results from these experiments indicate a correlation between the formation of the 

dibromodecanes and bromodecenes (table 4.4.2). This indicates that most of the y- 

aluminas and montmorillonite KlOs have a ratio of decadiene to bromodecene similar to 

that of bromodecene to dibromodecene. This is indicative of a single hydrobromination 

occuring followed by the desorption of the bromodecene. Bromodecene, in order to 

undergo further hydrobromination, has to compete with unreacted decadiene for the active 

sites on the acidic supports. Bentonite has proven to be the exception, with an 

approximate bromodecene to dibromodecene ratio of 2 : 1  but a decadiene to bromodecene 

ratio of 50:1. This suggests that the bentonite holds the bromodecene species tighter than 

the y-alumina and montmorillonite K10, thus allowing further hydrobromination of the 

bromodecene, figure 4.4.10.

Figure 4.4.10. Proposed interaction of 2,9-decadiene with bentonite.

Montmorillonite K10 and chlorinated montmorillonite K10 produce the highest 

levels of isomerisation in decadiene. This does to not necessarily lead to the expected 

higher levels of 2,8-dibromodecane isomer. Chlorinated y-alumina, with a much lower 

level of decadiene isomerisation, has the highest percentage of 2 ,8 -dibromodecane present. 

It is possible, therefore, that these acidic supports have different abilities to complex and 

add hydrogen bromide to internal double bonds. It would appear that chlorinated y- 

alumina is effective at adding to internal double bonds, but not at isomerising the terminal 

double bonds, figure 4.4.11.

HBr Br Br Br
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4.4.4. Alkene isom erisation in the presence o f acidic solid supports.

The scarcity of but-l-ene, and evidence for the presence of but-2-ene, in the 

reaction product vapour phases after the hydrobromination of but-l-ene over y-alumina, 

are indicative of isomerisation occurring. This isomerisation process does not occur in the 

absence of the solid support and is not reversible, as but-l-ene is not detected in the 

hydrobromination of but-2-ene. This process probably occurs on the y-alumina due to the 

Br<(>nsted acid nature of its surface, figure 4.4.12.

Figure 4.4.12. Isomerisation of alkenes on an acidic surface.

The isomerisation products in the 1,9-decadiene experiments varied with the nature 

of the solid supports used. Due to the excess of 1,9-decadiene in the experiments 4.2.27- 

31, the isomerisation process was not limited to the hydrobrominated species but included 

decadiene itself. This equates with the but-l-ene hydrobromination reactions where but-2- 

ene is observed. As a standard, a sample of 1,9-decadiene was analysed (table 4.4.2) and 

found to contain 1.7mol% of impurities in the form of decadiene isomers. The general 

trend for the isomerisation of decadiene is that the more active a solid support is at 

catalysing the hydrobromination reaction, the more active it will be at catalysing the 

isomerisation process. The least active of the solid supports is the clay bentonite. 

Decadiene analysed after this reaction contains 2.9% decadiene isomers (table 4.4.2) that 

are not 1,9-decadiene, an increase of 1.2% on the standard decadiene. In the case of
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chlorinated montmorillonite K10, GCMS analysis of the decadiene after the reaction 

indicates that 45.8% is in the form of isomers other than 1,9-decadiene. Unfortunately this 

analysis could not identify the individual decadiene isomers present.

It is not surprising that, with so many decadiene isomers present in the reaction 

mixture, there are also many bromodecene and dibromodecane isomers present. There is, 

however, a significant quantity of tribromodecane isomers observed in some reaction 

products, notably in the reactions involving brominated alumina ( 1 .8 mol%), 

montmorillonite K10 (2.9mol%) and chlorinated montmorillonite K10 (3.0mol%). It is 

postulated that these species may be formed via I) the formation of a decatriene species, or 

II) the oxidation of HBr to Br2  followed by addition of bromine to the alkene bonds. A 

pointer to which of these postulates may be correct is obtained from experiment 4.3.32, 

where after a short period of time the surface of montmorillonite K10 obtained an orange 

hue, the colour expected if a small amount of dibromine is present.

Recent publications [101,102] have shown that the use of appropriate alumina or 

silica gel surfaces facilitates hydrohalogenation of alkenes and alkynes. These surface- 

mediated additions afford selectivity unattainable in solution. The work undertaken in this 

chapter has investigated the surface interactions that afford these hydrobromination 

reactions. This work has shown, through gas phase interactions, that the most efficient 

supports are the ones which adsorb the hydrogen bromide most rapidly, as illustrated by 

montmorillonite K10. These interactions also indicate, by the isomerisation products 

observed, that not all alkenes that adsorb onto the surface undergo hydrobromination 

reactions before desorption occurs.
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CHAPTER 5

Interaction of Dibromine with Solid Supports and the Effects of Solid Supports in 

Bromination Reactions.

The bromination of organic compounds, using dibromine, has been well 

documented. These bromination reactions occur by either free radical or ionic 

mechanisms. Typical free radical brominations include the bromination of propane, 

equation 5.1.1a, resulting in the formation of 2-bromopropane and the bromination of 

toluene, equation 5.1.1b, resulting in the formation of benzyl bromide. Light must be 

present for all such free radical reactions.

5.1 Introduction.

Br

+ H Br equation 5.1.1a.

CH2Br

*♦“ HBr equation 5.1.1b.

Typical ionic brominations include the bromination of propene, equation 5.1.2a, resulting 

in the formation of 1,2-dibromopropane and the bromination of benzene, equation 5.1.2b, 

resulting in the formation of bromobenzene.
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Br

equation 5.1.2a.

H Br I

0
Br

& Br

+ Br2 + HBr equation 5.1.2b.

Recent work has shown [105-113] that the addition of a solid support to a reaction 

mixture changes the reaction products observed. Kodomari [100] has shown that the 

addition of alumina to a CuBr^toluene system affords much greater selectivity, scheme

Scheme 5.1.1. The enhancement of product selectivity by the incorporation of 

alumina into a reaction system.

A study by Vega and Sasson on the selective, liquid phase bromination of toluene 

catalysed by zeolites [114] has shown that different solid supports afford different product 

ratios.

The work in this section investigates the vapour phase interaction of anhydrous 

dibromine with modified high surface area clays and aluminas, using radiotracer 

techniques. It has been shown, in chapter 4, that these modified clays and a l u m i n a s  have 

potential for hydrobromination reactions; their potential as possible catalysts for the

5.1.1.

CuBr^A^C^

CH2Br



bromination of aromatic compounds and for the a-bromination of hexanoic acids is also 

investigated in this section.

5.2 Experimental.

5.2.1 Interaction of dibromine with Degussa 'C ' y-alumina.

Calcined y-alumina (0.3g) was loaded into the reaction vessel shown in figure

2.1.2, in the inert atmosphere glove box. The vessel was transferred to a vacuum line and 

the contents degassed; care was taken to avoid carriage of alumina into the manifold. 

After degassing, an aliquot of dibromine was condensed onto the alumina and left at room 

temperature for 24 hours. The volatile materials were then condensed into a collection 

vessel leaving the alumina pale yellow in colour. A gas phase (15 Torr) FTTR spectrum 

was obtained of the volatile materials. The bromination process was repeated a further 

three times using the same alumina, but a fresh aliquot of bromine on each occasion.

5.2.2 Interaction of [8 2 Br]-bromine labelled dibromine with Degussa 'C f y-alumina.

Calcined y-alumina (O.lg) was transferred into a double limbed counting vessel 

(figure 4.2.1) and accurately weighed; this process was undertaken in an inert atmosphere 

glove box. The counting vessel was then transferred to a vacuum line manifold and the 

contents degassed.
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A measured pressure, using a Heiss pressure gauge, of [8 2 Br]-bromine labelled 

dibromine vapour was introduced into the calibrated manifold. This dibromine was 

condensed, using liquid nitrogen, into the limb of the double limbed vessel that did not 

contain y-alumina, and allowed to warm to room temperature. The [8 2 Br] count rate was 

determined over a time period sufficient to accumulate approximately 10000 counts. Tap 

X was then opened, allowing the [8 2 Br]-bromine labelled dibromine to interact with the y- 

alumina, and the alumina counted immediately. The contents of both limbs were counted 

alternately until the uptake of [8 2 Br] on to the alumina had ceased. The vessel was 

transferred to a vacuum line and degassed, allowing the count rate for the [8 2 Br] retained 

on the alumina to be measured.

These count rates were compared with the specific count rate of a known quantity 

of [8 2 Br]-bromine labelled dibromine in chloroform solution, section 2.5.6.

5.2.3 Interaction of [8 2 Br]-bromine labelled dibromine with montmorillonite K10.

The procedure to investigate the interaction, at 293K, of anhydrous [8 2 Br]-bromine 

labelled dibromine with calcined montmorillonite K10, was the same as the procedure 

described in section 5.2.2.

5.2.4 Interaction of [8 2 Br]-bromine labelled dibromine with dibromomethane 

brominated Degussa 'C* y-alumina.

The experimental procedure for the room temperature interaction of anhydrous 

[8 2 Br]-bromine labelled dibromine with calcined y-alumina pretreated with 

dibromomethane at 523K, for 120h (section 3.2.1), was the same as that described for the
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interaction o f anhydrous [82Br]-bromine labelled dibromine with calcined y-alumina.

5.2.5 Interaction of [8 2 Br]-bromine labelled dibromine with hydrogen bromide 

brominated Degussa ’C’ y-alumina.

The procedure to investigate the interaction, at 293K, of anhydrous [8 2 Br]-bromine 

labelled dibromine with calcined y-alumina treated with hydrogen bromide at 523K, for 

120h (section 4.2.1), was the same as the procedure described in section 5.2.2.

5.2.6 Interaction of [8 2 Br]-bromine labelled dibromine with chlorinated Degussa 'C' 

y-alumina.

The procedure to investigate the interaction, at 293K, of anhydrous [8 2 Br]-bromine 

labelled dibromine with calcined y-alumina treated with anhydrous carbonyl chloride at 

523K for 12h, was the same as the procedure described in section 5.2.2.

5.2.7 Interaction of [8 2 Br]-bromine labelled dibromine with chlorinated 

montmorillonite K 1 0 .

The experimental procedure for the room temperature interaction of anhydrous 

[8 2 Br]-bromine labelled dibromine with calcined montmorillonite K10 pretreated with 

anhydrous carbonyl chloride at 523K for 12h, was the same as that described for the 

interaction of anhydrous [8 2 Br]-bromine labelled dibromine with calcined y-alumina
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(section 5.2.2).

5.2.8 Interaction of [8 2 Br]-bromine labelled dibromine with fluorinated Degussa 'C' 

y-alumina.

The experimental procedure for the room temperature interaction of anhydrous 

[8 2 Br]-bromine labelled dibromine with calcined y-alumina treated at room temperature 

with several aliquots of SF4  (section 2.2.11), was the same as the procedure described in 

section 5.2.2.

5.2.9 Interaction of [8 2 Br]-bromine labelled dibromine with Kel-F.

The experimental procedure for the above investigation was the same as that 

described for the interaction of anhydrous [8 2 Br]-bromine labelled dibromine with calcined 

y-alumina.

5.2.10 Reaction of anisole with bromine supported on Degussa 'C ' y-alumina.

Calcined y-alumina (0.28g) was loaded into the reaction vessel shown in figure

2.1.2, in the inert atmosphere glove box. The vessel was transferred to a vacuum line and 

the contents degassed. An aliquot of dibromine (1.07g) was condensed onto the alumina 

and allowed to react at room temperature for 24h.

Anisole (0.77g) was vacuum distilled onto the brominated alumina (77K) and 

allowed to react at room temperature for 24h. It was noted, after this time, that a purple
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solid had formed. The purple solid was washed with dichloromethane to separate any 

organics from the y-alumina. The resulting purple solution was filtered into a round 

bottomed flask and the dichloromethane removed by bubbling nitrogen gas into the 

solution via a pipette. The volatile purple material was analysed by NMR 

spectroscopy.

5.2.11 Reaction of hexanoic acid with dibromine using phosphorus trichloride as a 

promoter.

Dibromine (0.47mol) was transferred to reaction vessel A, figure 5.2.1, containing 

hexanoic acid (0.44mol) and stirred. Phosphorus trichloride (O.Olmol) was added slowly 

and the reaction mixture warmed gradually to 363K. After 180min the reaction mixture 

had changed in colour from a dark red bromine colouration to orange, and the evolution of 

HBr had ceased. The orange reaction mixture, on cooling to room temperature, was 

washed with distilled water, the organic layer removed, and the aqueous layer washed with 

dichloromethane. The combined organic fractions were shaken with an aqueous potassium 

metabisulphite solution, the organic layer removed, and the aqueous fraction washed with 

dichloromethane. Sodium sulphate was added to the combined organic fractions and the 

mixture stirred vigorously for 30 minutes then allowed to stand. After several hours the 

sodium sulphate was filtered off, leaving a clear yellow solution. The solvent, 

dichloromethane, was removed by Rotavapor leaving a golden yellow solution, which was 

distilled into three colourless fractions. Samples of the three fractions were taken for G.C. 

analysis.
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5.2.12 Reaction o f hexanoic acid with dibromine in the presence o f calcined Degussa

'C' y-alumina.

Dibromine (0.39mol) was transferred to reaction vessel A, figure 5.2.1, containing 

hexanoic acid (0.18mol), calcined y-alumina (3.36g) and dichloromethane (30cm3). The 

reaction mixture was warmed to 363K and stirred for 150min, after which time the 

reaction mixture was allowed to cool to room temperature and a sample taken for G.C. 

analysis.

5.2.13 Reaction of hexanoic acid with dibromine in the presence of uncalcined 

montmorillonite K 1 0 .

Dibromine (0.39mol) was transferred to reaction vessel A, figure 5.2.1, containing 

hexanoic acid (0.16mol), uncalcined montmorillonite K10 (14.25g) and dichloromethane 

(30cm3). The reaction mixture was wanned to 363K and stirred for 150min, after which 

time the reaction mixture was allowed to cool to room temperature and a sample taken for 

G.C. analysis.

5.2.14 Interaction of hexanoic acid with chlorinated Degussa fCf y-alumina at 293K.

Calcined y-alumina (0.1 Og), treated at 523K for 12h with anhydrous carbonyl 

chloride, was loaded into a Monel bomb in the inert atmosphere glove box. An aliquot of 

hexanoic acid (2 cm3) was added to the bomb, which was then transfened to a vacuum line 

manifold. The bomb was allowed to stand for 30min, at room temperature, before gaseous 

material from the bomb was expanded into the manifold containing a gas cell to give a
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pressure of 50 Torr, and a gas phase FTTR spectrum obtained.

5.2.15 Interaction of hexanoic acid with chlorinated montmorillonite K10 at 293K.

The experimental procedure for the room temperature interaction of hexanoic acid 

with calcined montmorillonite K10 treated with carbonyl chloride at 523K for 12h, was the 

same as the procedure described in section 5.2.14

5.2.16 Reaction of hexanoic acid with dibromine in the presence of chlorinated 

Degussa 'C' y-alumina at 363K.

Calcined y-alumina (0.1 Og), treated with carbonyl chloride at 523K for 12h, was 

loaded into a Monel bomb in the inert atmosphere glove box. The bomb was then 

transferred to the vacuum line manifold and the contents degassed.

Bromine (15g, 0.094mol) was transferred into the mixing vessel, figure 5.2.2, in a 

fume hood. Hexanoic acid (lOg, 0.086mol) was added to the mixing vessel and the vessel 

closed then shaken vigorously for 60sec. The vessel was transferred to the vacuum line 

manifold and degassed several times. The bromine/hexanoic acid mixture was allowed to 

warm to room temperature before the mixing vessel was attached to the valve on the 

Monel bomb, using PTFE Swagelok fittings. The bromine/hexanoic acid mixture was 

decanted into the Monel bomb, which was then placed in an electrical furnace and the 

contents heated at 363K for 8 h. The bomb was allowed to cool to room temperature 

before gaseous material from the bomb was expanded into a manifold containing a gas cell 

to give a pressure of 50 Torr, and a gas phase FTIR spectrum obtained. The volatile 

contents of the bomb were collected in a storage vessel and the non-volatile products



B14Cone
High vacuum stopcock (J.Young)

PTFE Swagelok fitting

To Monel bomb

Figure 52 2 ,  Hexanoic acid/dibromine mixing and degassing vessel.
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transferred to the dry box and placed in a sample bottle.

5.2.17 Reaction of hexanoic acid with dibromine in the presence of chlorinated 

Degussa 'C' y-alumina at 293K.

The experimental procedure for the room temperature interaction of hexanoic acid 

with dibromine in the presence of calcined y-alumina treated with carbonyl chloride at 

523K for 12h, was the same as that described in section 5.2.16, with the exception that the 

reaction vessel was not heated.

5.2.18 Reaction of hexanoic acid with dibromine in the presence of chlorinated 

montmorillonite K10 at 273K.

The experimental procedure for the room temperature interaction of hexanoic acid 

with dibromine in the presence of calcined montmorillonite K10 treated with carbonyl 

chloride at 523K for 12h, was the same as that described in section 5.2.17.
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5.3 Results.

5.3.1 Interaction of dibromine with Degussa ’C’ y-alumina.

The infrared analysis of the volatile products after a 24h exposure, at room 

temperature, of dibromine to a sample of Degussa 'C  y-alumina calcined at 523K, 

indicated that reduction of dibromine to hydrogen bromide had occurred. Absorbances at 

3100-2700 cm- 1  due to hydrogen chloride and 2700-2400 cm- 1  due to hydrogen bromide 

were observed. Infrared analysis of the volatile products from the further additions of 

dibromine to the calcined y-alumina indicated the continuing formation of hydrogen 

bromide, whilst the formation of hydrogen chloride diminished with each exposure of 

dibromine. Infrared spectra showed that only a trace amount of hydrogen chloride was 

present after the fourth addition, figures 5.3.1a-d.

5.3.2 Interaction of [82Br]-bromine labelled dibromine with Degussa 'C' y-alumina.

The results of this experiment indicated an immediate interaction between the 

dibromine and the y-alumina (figure 5.3.2), characterised by a gradual increase in the count 

rate of the solid which reached a plateau after approximately 120h. The aliquot of [8 2 Br]- 

bromine labelled dibromine, 1.36mmol [specific count rate of 58.2 count s" 1 (mg atom Br)' 

1], formed a liquid reservoir in the limb of the counting vessel, the vapour of which was 

then allowed to interact with calcined y-alumina (0.065g). The count rate of the y-alumina 

after 119h was 4.9 count s-* corrected for decay to 47.7 i  0.7 count s-*, indicating a 

dibromine uptake of 17.1mg atom Br g"1.

The lability of dibromine adsorbed on y-alumina was investigated by brominating a
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28003000 24002600 cm

Figure 5.3.1(a). PTiR spectrum of the vapour phase after the room temperature 
interaction of dibromine with y-alumina.

50-r

3 0 -

2400 cm2800 26003000

Figure 5.3.1(b). PTIR spectrum of the vapour phase after the room temperature 
interaction of the second aliquot of dibromine with y-alumina.
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Figure 5.3.1(c). FTTR spectrum of the vapour phase after the room temperature 
interaction of the third aliquot of dibromine with y-alumina.
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3000 2800 24002600 cm

Figure 5.3.1(d). FTTR spectrum of the vapour phase after the room temperature 
interaction of the fourth aliquot of dibromine with y-alumina.
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sample of y-alumina with [8 2 Br]-bromine labelled dibromine for a period of 18h. It was 

not possible to investigate the lability of dibromine adsorbed after lOOh as the activity of 

the [8 2 Br] on the y-alumina was too weak for accurate analysis. After 18h, the count rate 

of the brominated alumina was measured at 326.9 i0 .6  count s"1, corrected for decay, 

indicating a bromine content of 6.02mg atom Br g '1. The y-alumina was then pumped 

under vacuo for lOmin, resulting in a count rate for the solid of 79.9 ± 0.6 count s"1, 

indicating a bromine content of 1.47mg atom Br g '1. Unlabelled dibromine (1.34mmol) 

was condensed onto the [8 2 Br]-brominated y-alumina and allowed to react, at room 

temperature, for 20h. The y-alumina was once again pumped under vacuo for lOmin, 

resulting in a count rate of 12.7 i  0.1 count s '1, corrected for decay.

For the calculation of the exchange factor the initial and final count rates (A0  and 

At) were converted into specific count rates (S0  and St), equations 5.3.1 and 5.3.2.

Aq count s' 1 79.9
SG = --------------- — =    543.54 count s_ 1  (mg atom 8 2 Br) _1

m gatom 82Br 0.147
equation 5.3.1

At counts" 1 12.7
St = ___________  =  = 86.39 count s" 1 (mg atom 8 2 Br) _ 1

mg atom 82Br 0.147
equation 5.3.2.

The exchange factor (f) was then calculated using these specific count rates, equation 

5.3.3.

So - St 
S0  " S

equation 5.3.3.

calculated specific count rate assuming complete exchange.
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A0  count s' 1

mg atom 82Br + mg atom Br

therefore:

543.54 - 86.39
f = -------------------------------------

543.54 - 79.9/(0.15 + 2.72) 

f = 0.89 ±0.05

5.3.3 Interaction of [82Br]-bromine labelled dibromine with montmorillonite K10.

The aliquot of [8 2 Br]-bromine labelled dibromine, 1.67mmol [specific count rate of

58.2 count s" 1 (mg atom Br)'1], formed a liquid reservoir in the limb of the counting 

vessel, the vapour of which was allowed to interact with calcined montmorillonite K10 

(0.10g). The count rate of the montmorillonite K10 after 17. lh  was 26.1 count s' 1 

corrected for decay to 36.2 ± 0.4 count s '1, indicating a dibromine uptake of 8.4mg atom 

Br g-1. A further count was taken after 118.8h giving a count rate of 7.5 count s' 1 

corrected for decay to 73.4 ± 0.8 count s_1, indicating a dibromine uptake of 17.0mg atom 

g '1. The montmorillonite K10 was then pumped on a vacuum line for 30min, before a 

final count of 0.4 count s" 1 corrected for decay to 3.9 i  0.2 count s' 1 was taken. This final 

count indicated a dibromine uptake of 0.9mg atom Br g-1.
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5.3.4 Interaction of [8 2 Br]-bromine labelled dibromine with dibromomethane 

brominated Degussa 'C ' y-alumina.

The aliquot of [8 2 Br]-bromine labelled dibromine, 1.36mmol [specific count rate of

53.4 count s 1 (mg atom Br)"1], formed a liquid reservoir in the limb of the counting 

vessel, the vapour of which was allowed to interact with a sample of y-alumina (0.1 Og), 

which had been treated with dibromomethane at 523K over a 120h period. The count rate 

of the brominated y-alumina after lOOh was 11.6 count s' 1 corrected for decay to 85.2 ±1.1 

count s '1, indicating a dibromine uptake of 15.8mg atom Br g '1. On pumping the 

y-alumina, in vacuo, for 5min the count rate dropped to 14.0 ± 0.5 count s" 1 (corrected for 

decay) indicating bromine retention of 2 .6 mg atom g '1.

5.3.5 Interaction of [8 2 Br]-bromine labelled dibromine with hydrogen bromide 

brominated Degussa 'C* y-alumina.

The aliquot of [8 2 Br]-bromine labelled dibromine, 1.36mmol [specific count rate of 

43.8 count s ' 1 (mg atom Br)'1], formed a liquid reservoir in the limb of the counting 

vessel, the vapour of which was then allowed to interact with a sample of y-alumina 

(0.1 Og), which had been treated with hydrogen bromide at 523K over a 120h period. The 

count rate of the brominated y-alumina after 43.3h was 205.9 count s ' 1 corrected for decay 

to 486.3 ±4.9 count s '1, indicating a dibromine uptake of 17.1mg atom Br g"1.
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5.3.6 Interaction o f [82Br]-brom ine labelled dibromine with chlorinated

Degussa 'C' y-alumina.

The aliquot of [8 2 Br]-bromine labelled dibromine, 1.02mmol [specific count rate of

52.25 count s" 1 (mg atom Br)'1], formed a liquid reservoir in the limb of the counting 

vessel, the vapour of which was then allowed to interact with a sample of y-alumina 

(0.10g), which had been treated with carbonyl chloride at 523K over a 12h period. The 

count rate of the chlorinated y-alumina after 18.15h was 7.8 count s ' 1 corrected for decay 

to 11.2 ± 0.2 count s '1, indicating a dibromine uptake of 4.2mg atom Br g '1. The count 

rate of the chlorinated y-alumina after 113.4h was 2.8 count s 1 corrected for decay to 26.0 

± 0.5 count s_1, indicating an increase in dibromine uptake to lO.Omg atom Br g"1.

Fl'lR analysis of the product vapour phase following the interaction of unlabelled 

dibromine with chlorinated alumina, indicated that neither hydrogen chloride nor hydrogen 

bromide were evolved.

5.3.7 Interaction of [8 2 Br]-bromine labelled dibromine with chlorinated 

montmorillonite KIO.

The aliquot of [8 2 Br]-bromine labelled dibromine, 1.09mmol (specific count rate of

52.25 count s" 1 (mg atom Br)"1), formed a liquid reservoir in the limb of the counting 

vessel, the vapour of which was then allowed to interact with a sample of montmorillonite 

K10 (0.10g), which had been treated with carbonyl chloride at 523K over a 12h period.

The count rate of the chlorinated montmorillonite K10 after 16.8h was 25.9 count s ' 1 

corrected for decay to 36.0 + 0.4 count s '1, indicating a dibromine uptake of 3.2mg atom 

Br g 1. The count rate of the chlorinated montmorillonite K10 after 112.45h was 11.1 

count s" 1 corrected for decay to 100.9 ±1.3 count s '1, indicating an increase in the 

dibromine uptake to 9.2mg atom Br g '1.
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5.3.8 Interaction o f [82Br]-brom ine labelled dibromine with fluorinated Degussa 'C'

y-alumina

The aliquot of [8 2 Br]-bromine labelled dibromine, 2.92mmol (specific count rate of

338.6 count s" 1 (mg atom Br)'1), formed a liquid reservoir in the limb of the counting 

vessel, the vapour of which was then allowed to interact with a sample of y-alumina 

(0.50g), which had been treated with SF4  at room temperature. The count rate of the 

halogenated y-alumina after 21h was 562.5 count s' 1 corrected for decay to 865.9 ± 8.7 

count s '1, indicating a dibromine uptake of 5.1mg atom Br g"1. On pumping the y-alumina, 

under vacuo, for lOmin the count rate dropped to 355.0 ±3.6 count s" 1 (corrected for 

decay) indicating bromine retention of 2 .1 mg atom g '1.

5.3.9 Interaction of [8 2 Br]-bromine labelled dibromine with Kel-F

The interaction between [8 2 Br]-bromine labelled dibromine and Kel-F powder was 

studied as Kel-F powder is a high surface area inert material, affording no sites for the 

bromine to react with. The interaction should therefore involve only physisorbed 

dibromine species. The Kel-F powder was generously supplied by Dr J.Pola, Institute of 

chemical process fundamentals, Academy of Sciences of Czech Republic, Prague, Czech 

Republic.

The aliquot of [8 2 Br]-bromine labelled dibromine, 1.87mmol (specific count rate of

338.6 count s' 1 (mg atom Br)-1), formed a liquid reservoir in the limb of the counting 

vessel, the vapour of which was then allowed to interact with a sample of Kel-F (0.198g). 

The count rate of the Kel-F after 96h was 21.2 count s' 1 corrected for decay to 139.6 ±1.4 

count s"1, indicating a dibromine uptake of 2.1mg atom Br g '1. On pumping the Kel-F 

under vacuo, all the activity was removed from the solid.
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5.3.10 Reaction o f anisole with bromine supported on Degussa 'C' y-alumina

NMR analysis, figure 5.3.3, of volatile purple material deposited on the 

calcined y-alumina, after the bromination of anisole, indicated that several reaction 

products were present. When the spectrum was compared to a reference *H NMR 

spectrum of anisole [115], figure 5.3.4, it was found that the signals at 3.74ppm, 6.9ppm 

and 7.3ppm were due to anisole. Evidence of an AABB1 spin system was detected in the 

signal observed at 6.72ppm, the most likely candidate for this would be para-brominated 

anisole. The signal observed at 7.62ppm is a deshielded aromatic proton, this was assigned 

to the meta proton of an aromatic ring brominated in the ortho and para positions i.e. 2,4- 

dibromoanisole.

The product ratio was determined from the integral of the methyl signals. The 

product ratio 2,4 dibromoanisole, para bromoanisole and anisole was in the order of 

50:30:20 respectively. The same reaction products were observed when dibromine was 

reacted with the anisole without the presence of y-alumina.

The reaction was repeated but with anisole added to the alumina before the addition 

of dibromine. The results indicate, from lH NMR analysis, figure 5.3.5, different reaction 

products to those previously observed. Although anisole was present, several new signals 

were observed. The signal at 5.8ppm was identified as the proton from the hydroxyl group 

of phenol, with the aromatic protons evident at 6 .8 ppm and 7.3ppm. A further signal at 

2.67ppm was identified as methyl bromide.

5.3.11 Reaction of hexanoic acid with dibromine using phosphorus trichloride as a 

catalyst.

The results from this experiment show, from GC analysis (table 5.3.2), that 

fractions two and three contained mainly 2 -bromohexanoic acid (92.9mol% and 9 5 .7 mol%
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Figure 5,33. 1H NMR spectrum of purple material formed after the interaction of 
anisole with brominated alumina.



Figure 5.3.4. Reference 1H NMR spectrum of anisole.
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Figure 53.5. *H NMR spectrum of reaction products formed after the interaction 
of anisole/alumina with dibromine.
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respectively). A gaseous material was evolved during the reaction but was soluble in the 

water scrubbers, to give an acidic solution. Although no spectroscopic information was 

available for the gaseous material, it was believed to be hydrogen bromide.

FUR analysis of the vapour phase from the interaction of hexanoic acid with PCI3 , 

figure 5.3.6, without the presence of dibromine, indicates absorbances in the region 3100- 

2700cm"1 due to the presence of hydrogen chloride.

5.3.12 Reaction of hexanoic acid with dibromine in the presence of calcined Degussa 

'C* y-alumina.

The results from this experiment show, from GC analysis, that no bromohexanoic 

acid was formed during the reaction, and that the final reaction mixture consisted of 

hexanoic acid and dibromine. There was no evidence for the formation of hydrogen 

bromide during the reaction.

5.3.13 Reaction of hexanoic acid with dibromine in the presence of uncalcined 

montmorillonite K10.

The results from this experiment showed, from GC analysis, that no 

bromohexanoic acid was formed during the reaction, and that the final reaction mixture 

consisted of hexanoic acid and dibromine. There was no evidence for the formation of
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hydrogen bromide during the reaction.

5.3.14 Interaction of hexanoic acid with chlorinated Degussa 'C' y-alumina.

The infrared analysis of the volatile products after a 30min exposure, at room 

temperature, of hexanoic acid to a sample of chlorinated y-alumina indicated the presence 

of hydrogen chloride, with absorbances in the region 3100-2700cm_1.

5.3.15 Interaction of hexanoic acid with chlorinated montmorillonite K10.

The infrared analysis of the volatile products after a lOmin exposure, at room 

temperature, of hexanoic acid to a sample of chlorinated montmorillonite K10 indicated 

the presence of hydrogen chloride. The hydrogen chloride was detected despite the fact 

that on addition of hexanoic acid to the chlorinated montmorillonite K10, in the dry box, 

white fumes were observed.

5.3.16 Reaction of hexanoic acid with dibromine in the presence of chlorinated 

Degussa fC' y-alumina at 363K.

The infrared analysis of the volatile products after a 8 h exposure, at 363K, of 

hexanoic acid to a sample of chlorinated y-alumina indicated a reduction of some 

dibromine to hydrogen bromide. Absorbances at 3100 2700cm"1 due to hydrogen 

chloride, 2700-2400cm_1 due to hydrogen bromide, 2400-2300cm_1 due to carbon dioxide
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and 2240-2040cm_1 due to carbon monoxide were observed. Several weak absorbances 

were also detected between 1200-600cm'1. On removal of the volatile products from the 

reaction vessel a black sludge remained.

5.3.17 Reaction of hexanoic acid with dibromine in the presence of chlorinated 

Degussa ’C' y-alumina at 293K.

The infrared analysis of the volatile products after a 8 h exposure, at room 

temperature, of hexanoic acid to a sample of chlorinated y-alumina indicated a reduction of 

some dibromine to hydrogen bromide. Absorbances at 3100-2700cm-1 due to hydrogen 

chloride and 2400-2300cm"1 due to carbon dioxide were observed. Several weak 

absorbances were detected between 1200-800cm_1 which were similar, but not identical, to 

the corresponding region in the reference spectrum of hexonyl chloride [72].

5.3.18 Reaction of hexanoic acid with dibromine in the presence of chlorinated 

montmorillonite K10 at 293K.

The infrared analysis of the volatile products after a 8 h exposure at room 

temperature, of hexanoic acid and dibromine to a sample of chlorinated montmorillonite 

K10 indicated a reduction of some dibromine to hydrogen bromide. Absorbances at 3100- 

2700 cm- 1  due to hydrogen chloride and 2700-2400 cm- 1  due to hydrogen bromide were 

observed. The absorbances observed at 1820-1810 cm- 1  and 857-850 cm- 1  were assigned 

to the chlorinating agent carbonyl chloride. Several weak absorbances were detected 

between 1200-800cm 1 which, as in the analogous chlorinated alumina experiment, were 

similar but not identical to the corresponding region in the reference spectrum of hexonyl
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chloride [72].

5.4 Discussion.

5.4.1 Interaction of [8 2 Br]-Bromine Labelled Dibromine with Solid Supports.

The [8 2 Br]-bromine labelled dibromine tracer experiments have shown that 

dibromine interacts with both aluminas and clays at room temperature. These radiotracer 

experiments usually involved the addition of a [8 2 Br]-bromine labelled dibromine reservoir 

to one limb of the double limb counting vessel and allowing the dibromine vapour phase to 

interact with the solid. As a result of using this reservoir method it is not possible, as it is 

in the [8 2 Br]-bromine labelled hydrogen bromide experiments (chapter 4), to measure and 

subtract the gas phase count rate. The error by not subtracting the gas phase in this case is 

small as the vapour phase of dibromine in the system (approx 2 0 0 Torr) accounts for 

approx 0 .0 2 mmol dibomine, < 2% of the dibromine present in the system.

The uptake of [8 2 Br]-bromine labelled dibromine onto the solid supports is a slow 

reaction. This is partly due to the process of bromination which requires the dibromine to 

condense from the counting limb, containing the dibromine reservoir, to the solid support 

held in the second counting limb. These dibromine uptake times, over lOOh in some cases, 

are very much slower than the times observed for the uptake of [8 2 Br]-bromine labelled 

hydrogen bromide (section 4.3.1 - 4.3.7) onto similar supports. This contrast in uptake 

times is due mainly to the fact that hydrogen bromide is completely in the vapour phase, 

unlike the dibromine liquid reservoir, hence the reaction time does not depend on the 

evaporation and condensation of a hydrogen bromide reservoir.
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The addition of uniabelied dibromine to y-alumina affords the formation of 

hydrogen bromide. In recent work involving the bromination of zeolites [116] a model for 

the formation of hydrogen bromide in this type of reaction is given, scheme 5.4.1.

H
\  j ®r2 \  i
- S i  6  A1 --------------- ► - S i ------6 .........A1 + HBr
/

Scheme 5.4.1. The formation of hydrogen bromide from dibromine on a zeolite 

structure.

This model for the formation of hydrogen bromide can be applied to y-alumina, as the 

surface of y-alumina possesses bridging hydroxyl groups, scheme 5.4.2.

H Br

A1 A1
Bn

/ ° \  
Al A1 + HBr

Scheme 5.4.2. A possible route for the formation of hydrogen bromide from 

dibromine on the surface of y-alumina.

This speculative model for the formation of HBr is debatable as the brominated species is 

effectively an hypobromite, and hypobromites (including hypobromous acid) are known to 

be unstable and decompose [117]. A possible route for the formation of hydrogen bromide 

is the interaction of dibromine with water present on the surface of alumina as OH' and H+ 

groups, for although the alumina is calcined, the calcination process does not lead to the 

complete removal of all the surface hydroxyl groups [118,119]. Dibromine is stored over
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the drying agent P2 O5 , in this work to avoid the formation of hydrogen bromide. A more 

likely route for the formation of hydrogen bromide is the bromination of terminal Al-OH 

groups by dibromine, equation 5.4.1.

Al-OH + Br2  ----- ► Al-Br + HOBr equation 5.4.1.

Hypobromous acid is unstable, with two main competing modes of decomposition both of 

which result in the formation of hydrogen bromide, equations 5.4.2a & b.

2HOBr------ ► 2HBr + 0 2  equation 5.4.2a

3HOBr------► 2HBr + H+ + B1O 3 " equation 5.4.2b

Hydrogen chloride is an unexpected reaction product identified from the interaction 

of y-alumina and dibromine. With each successive addition of dibromine to the y-alumina 

the evolution of hydrogen chloride decreases. It is postulated that trace amounts of 

chloride are present in the y-alumina, due to its formation by flame hydrolysis of AICI3 . 

The chloride is displaced on addition of dibromine, by bromide, resulting in the evolution 

of hydrogen chloride. The fact that hydrogen chloride formation decreases over several 

additions of dibromine indicates that its formation is not rapid, and may be similar to that 

of hydogen bromide, equations 5.4.3a and 5.4.3b.

Al-Cl + Br2   ► Al-Br + BrCl equation 5.4.3a

Al-OH + B rC l ►Al-Br + HOC1 equation 5.4.3b

The hypochlorous acid may then undergo similar interactions to those expressed in 

equations 5.4.2a and 5.4.2b, to form hydrogen chloride. Similar interactions between 

dibromine and y-alumina chlorinated with carbonyl chloride do not result in the formation
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of hydrogen chloride, suggesting that chloride present originally at the impurity level is 

more labile, in exchange with bromide, than the chloride present after chlorination with 

carbonyl chloride.

The results from the interaction of [8 2 Br]-bromine labelled dibromine with various 

modified clays and aluminas, table 5.3.1, show that bromine uptakes for these interactions 

are much greater than the uptake values observed from similar hydrogen bromide 

experiments (section 4.3.1 - 4.3.7). Although after pumping under vacuo the bromine 

retention values are similar for both types of interaction. Lability studies carried out on 

brominated y-alumina, where the y-alumina is firstly brominated with [8 2 Br]-bromine 

labelled dibromine before an aliquot of unlabelled dibromine is introduced, indicate an 

exchange factor of 0.89. It is postulated from this exchange factor value that there are two 

types of bromine species present on the support; I) a Br species chemisorbed on the surface 

of the support that is inert to Br exchange, and II) dibromine physisorbed onto the support 

which is labile towards Br exchange. The physisorbed dibromine would make up 90% of 

the bromine on the surface of the y-alumina. This would explain the high bromine uptake 

onto the supports and also the sizeable reduction in bromine content on pumping under 

vacuo. Similar interactions with the chemically inert Kel-F powder indicated a slow 

bromine uptake, but on pumping under vacuo, and hence removing the physisorbed 

dibromine, the [8 2 Br] count rate is reduced to zero.

The prior bromination of the supports, with HBr and CH2 Br2, makes no significant 

difference to the bromine uptake, when compared to the calcined material. The prior 

chlorination however, results in a decrease in bromine uptake, onto both the y-alumina and 

montmorillonite K10, by a factor of 1/2. This decrease in bromine uptake onto chlorinated 

y-alumina is due to the chlorination process reducing the surface area of the y-alumina 

[73], thus reducing the amount of dibromine able to physisorb onto the surface. In the case 

of montmorillonite K10 there have been no studies into surface area determination after 

the chlorination process, but the reduction in bromine uptake from calcined 

montmorillonite K10 to chlorinated montmorillonite K10 is indicative of a reduced surface 

area, similar to that found between calcined and chlorinated y-alumina. This work has



1 5 2

shown that the bromine uptake onto solid supports, using dibromine, is much greater than 

was anticipated.

5.4.2 Interaction of dibromine with anisole in the presence calcined Degussa V  y- 

alumina.

The activated ring system of anisole, resulting in 5’ charges at the ortho and para 

positions, allows for bromination via electrophilic substitution of the ring system [1 2 0 ], 

scheme 5.4.3.

Br Br

(I) (II) (IB)

Scheme 5.4.3. The electrophilic bromination products from the bromination of

anisole.

The interaction of anisole with dibromine, in the presence of calcined y-alumina, 

indicates that the order in which the reagents are added to the y-alumina affects the 

reaction products obtained. When anisole is added to a mixture of dibromine and 

y-alumina, the reaction products (I) & (HI) are similar to those obtained for the interaction 

of anisole with dibromine without the presence of alumina. However, when dibromine is 

added to a mixture of anisole and y-alumina, the reaction products are no longer 

brominated anisoles but phenol and methyl bromide.

The addition of dibromine to calcined y-alumina, as discussed in section 5.4.1, 

results not only in the formation of chemisorbed bromine species on the surface but also
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physisorbed dibromine. It is this physisorbed dibromine species, coating the y-alumina, 

that hinders any interaction between the anisole and solid, thus allowing only the 

interaction between dibromine and anisole which is probably responsible for the different 

reaction products observed.

A mechanism for the formation of phenol and methyl bromide from anisole is 

given in scheme 5.4.4. In this reaction mechanism the oxygen of the anisole is protonated 

by a Br<|>nsted acid site on the surface of the y-alumina. The methyl is then cleaved from 

the anisole resulting in the formation of phenol and methyl bromide [1 2 1 ].

Br

-CH, _oY*-—- ĉ °-“ * ch=b'
H

W ////////6

Scheme 5.4.4. Mechanism for the formation of methyl bromide and toluene from 

anisole.

5.4.3 Interaction of dibromine with hexanoic acid in the presence of modified solid 

supports.

In this section the Lewis acid properties of modified montmorillonite K10 and y- 

alumina are investigated to ascertain whether they will promote the a-bromination of 

hexanoic acid (Hell Volhard Zelinsky reaction), scheme 5.4.5. The Hell Volhard Zelinsky 

method [122-126] uses a Lewis acid, in this case PCI3 , to promote the reaction. The 

reaction mechanism, scheme 5.4.5, involves the formation of an acid chloride (B) from the 

carboxylic acid (A). It is this acid chloride which catalyses the reaction by undergoing a-
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bromination.

O

R-CH2 -C-OH

(A)

P C I ,

O
II

R-CH2 -C-C1

O
R-CH-C-OH

Br (d)

o
II

R-CH2 -C-C1

(b)

o
II

R-CH2 -C-OH

ĉ h
r

R-CH=C-C1
J

A
Br-Br

O

R-CH-I-C1 
Br (C)

Scheme 5.4.5. The Hell Volhard Zelinsky reaction mechanism for the a- 

bromination of hexanoic acid.

The a-brominated acid chloride (C) undergoes a nucleophilic substitution reaction with 

hexanoic acid to form 2-bromohexanoic acid (D) and a further acid chloride, which will 

undergo an a-bromination thus continuing the reaction process. The evolution of 

hydrogen bromide gas from the reaction mixture, as a result of the reduction of dibromine, 

is a good indicator that a-bromination is proceeding.

The work in chapter 6  has shown that calcined y-alumina and montmorillonite K10 

both possess Bnj>nsted and Lewis acid sites. The presence of Br<|>nsted acid sites was not 

expected to promote the bromination reaction, as the reaction mechanism in scheme 5.4.5 

uses PCI3  (a Lewis acid) to promote the reaction. It was postulated however that Lewis 

acid sites on these supports may behave in an analagous fashion to scheme 5.4.5, thus 

promoting the reaction. Unfortunately all attempts to promote the reaction using these 

supports (expt 5.3.12 -5.3.13) failed to produce any evidence for the formation of 2- 

bromohexanoic acid. If calcined y-alumina and montmorillonite K10 are to be used to 

promote the reaction, and the intermediate which catalyses the reaction is an acid chloride, 

then the most logical approach is to chlorinate the y-alumina and montmorillonite K10, 

thus increasing the possibility of acid chloride formation on the surface.

Treatment of both chlorinated y-alumina and chlorinated montmorillonite K10 with
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hexanoic acid, at room temperature, affords the formation of hydrogen chloride gas. This 

initial finding is suprising as hydrogen chloride is a stronger acid than hexanoic acid. This 

formation of hydrogen chloride is mostly likely due to surface rehydration of the 

chlorinated supports, scheme 5.4.6.

H

H<\  o + h a
AI A1
I I

Scheme 5.4.6. The surface rehydration of chlorinated calcined y-alumina.

There are two possible sources of this water, I) a small quantity present in the hexanoic 

acid and/or EL) the interaction of hexanoic acid with the solid support resulting in the 

formation of an acid chloride and water, scheme 5.4.7.

O
O

R-C-O-H R-C jO-H R-C-Cl

■b

H
a La

+
h 2o

\ /    ► ai/  \ i /   ► Xa i /
I I  I I  I I

Scheme 5.4.7. The interaction of hexanoic acid with a chlorinated support 

resulting in the formation of an acid chloride and water.

Conditions for the treatment of hexanoic acid with dibromine in the presence of 

chlorinated y-alumina, at 363K for 8 h, are too harsh for the hexanoic acid resulting in its
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decomposition. This decomposition is so complete that no liquid is observed in the 

reaction products, even when a substantial volume of reagent (15cm^) was used.

Formation of carbon monoxide and carbon dioxide in the reaction products not only 

suggests that the hexanoic acid is oxidised under these conditions, but also that the 

alumina, which is recovered as a black sludge, has decomposed since it is the only source 

of oxygen in the reaction system. There is only indirect evidence for the occurrence of a 

bromination reaction and that is the formation of hydrogen bromide, as observed earlier in 

previous Hell Volhard Zelinsky reactions.

The treatment of hexanoic acid with dibromine in the presence of chlorinated y- 

alumina and chlorinated montmorillonite K10, at room temperature, proved to be more 

successful than the 363K treatment. FTER analysis of the vapour phase product from the 

interaction with chlorinated alumina suggests the formation of the Hell Volhard Zelinsky 

reaction intermediate hexonyl chloride and hydrogen bromide. Although the formation of 

the hexonyl chloride is a positive step towards promoting the reaction, the formation of CO 

and CO2  indicates that the reaction conditions are still too harsh and decomposition of the 

hexanoic acid is still occurring. In the presence of chlorinated montmorillonite K10 there 

is again evidence for the formation of hexonyl chloride and hydrogen bromide, there is 

also evidence for the presence of the chlorinating agent carbonyl chloride. Since the 

chlorinated montmorillonite K10 is pumped for lOmin after the chlorination process and 

no carbonyl chloride has been detected previously in any reaction involving chlorinated 

montmorillonite K10, the supposition must be that carbonyl chloride is formed during the 

reaction possibly as a decomposition product of hexonyl chloride, scheme 5.4.8.

O O O
>  R-C-O-H ------- ► R-C-Cl

I I* *  R - i - a

a
a c i

W ////' coci2 *f?

Scheme 5.4.8. Postulated mechanism for the formation of carbonyl chloride.
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Although the work in this section has given no conclusive proof that the chlorinated 

alumina and montmorillonite K10 will promote the Hell Volhard Zelinsky reaction to the 

same extent as PCI3 , the work does indicate that these chlorinated supports have the 

potential to catalyse the Hell Volhard Zelinsky reaction at room temperature or below.
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CHAPTER 6

Infrared Analysis of Pyridine and 2,6-Dimethylpyridine Adsorption on Solid 

Supports.

6.1 Introduction.

The important structural characteristic of acidic solid supports, such as y-alumina 

and montmorillonite K10, in catalysis is the surface [127]. Spectroscopic techniques for 

analysis of these Br<)>nsted and Lewis acid sites is fraught with difficulties. Solid state 

NMR is an ideal technique for the analysis of solid materials but unfortunately this 

technique analyses the bulk as well as the surface. This results in the swamping of the 

required surface resonances by those of the bulk. Although infrared techniques can 

identify hydroxyl groups on the surface of the supports (Br<j)nsted acid sites) [118,119], IR 

cannot be used for the identification of Lewis acid sites as these possess no infrared active 

functional groups.

The characterisation of acidic sites therefore has to be determined via an indirect 

method involving the adsorption of basic probe molecules onto the acidic sites, followed 

by the analysis of these probe molecules. Since NMR and infrared spectroscopy are the 

techniques most frequently used to study these probe molecules, they must possess strong, 

easily defined infrared absorption bands and/or a basic functional group containing an 

atom with a nuclear spin, allowing NMR techniques to be employed. There is an extensive 

range of probe molecules which fit these criteria and are used in this type of work. For 

NMR studies the probe molecules usually contain nitrogen (^N ) or phosphorus (^P); it is 

these atoms that interact with the different types of acidic surface species (figure 6 .1 .1 ),
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resulting in several different environments for or 31pf which can then be characterised 

by NMR.

0

,A1

Figure 6.1.1. Interaction of basic probe molecules with acidic surface groups.

Typical probe molecules for this type of NMR analysis are ammonia [128,129], pyridine 

[129-131], trimethylphosphine [132] and trimethylamine [128,129].

For infrared studies the most common probe used is pyridine [130,133-145], since 

its organic ring structure is ideal for infrared adsorption techniques. The infrared spectrum 

of pyridine coordinately bonded to the surface is markedly different from that of the 

pyridinium ion, permitting the differentiation of acid type on the surface, figure 6 . 1 .2 .

H H
O

coordinately 
bonded pyridine

pyridinium H-bonded
pyridine

Figure 6 . 1.2. Adsorbed pyridine and pyridinium species.

In this work the pyridine derivative 2,6-dimethylpyridine is used as a probe 

molecule. With 2,6-dimethylpyridine the nitrogen is sterically hindered by the two
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adjacent methyl groups, in comparison to the nitrogen in pyridine. As a result of this, 2,6- 

dimethylpyridine fails to react with the sterically hindered BMe3  acid [146], whereas the 

less hindered, weaker base pyridine, does. The 2,6-dimethylpyridine should therefore 

interact with Bnjmsted acid sites more readily than pyridine but interact with the sterically 

hindered Lewis acid sites less readily than pyridine.

The work in this section involves infrared analysis, using DRIFTS and PAS 

techniques, of adsorbed pyridine and 2 ,6 -dimethylpyridine on pretreated y-alumina and 

montmorillonite K10. The pyridine and 2,6-dimethylpyridine vapour were adsorbed at 

room temperature under their own vapour pressures.

6 . 2  Experimental.

6.2.1. Infrared analysis of the adsorption of pyridine onto calcined Degussa 'C' y- 

alumina.

Calcined y-alumina (0.2g) was loaded in the dry box into a reaction vessel, figure

2.1.2. The vessel was transferred to a vacuum line manifold with an ampoule of dried 

pyridine, and the contents degassed. The ampoule was then opened to the manifold 

allowing the pyridine vapour to interact with the y-alumina. After lOmin the reaction 

vessel was closed to the manifold and left at room temperature for 24h. The vessel was 

then opened to the vacuum pump and the y-alumina degassed for lOmin. The contents of 

the reaction vessel were transferred, in a dry box, to a storage vessel. A sample of y- 

alumina/pyridine (approx 0.05g) was analysed by the DRIFTS technique (section 2.3.2).
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6.2.2. Infrared analysis o f the adsorption o f pyridine onto dibrom ine brom inated

Degussa fC' y-alumina.

The procedure to investigate the adsorption of pyridine onto calcined y-alumina 

pretreated with anhydrous dibromine at 523K for 120h, was the same as that described in 

section 6.2.1. Two samples of brominated y-alumina/pyridine (both approx 0.05g) were 

taken and analysed by DRIFTS and PAS (section 2.3.3) techniques.

6.2.3. Infrared analysis of the adsorption of pyridine onto calcined montmorillonite 

K10.

The experimental procedure for the investigation of the adsorption of pyridine onto 

calcined montmorillonite K 1 0  was the same as that described for the adsoiption of 

pyridine onto calcined y-alumina. A sample of montmorillonite K 10/pyridine (approx 

0.05g) was analysed by the DRIFTS technique.

6.2.4. Infrared analysis of the adsorption of pyridine onto chlorinated 

montmorillonite K 1 0 .

The experimental procedure for the investigation is described in section 6.2.1. The 

calcined montmorillonite K10 sample was pretreated with anhydrous carbonyl chloride at 

523K for 12h. Two samples of chlorinated montmorillonite/pyridine (both approx 0.05g) 

were taken and analysed by DRIFTS and PAS techniques.
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6.2.5. Infrared analysis o f the interaction o f hydrogen bromide gas with pyridine

adsorbed onto m ontm orillonite K10.

Calcined montmorillonite K10 (O.lg) was loaded into the reaction vessel, figure

2.1.2. The vessel was transferred to a vacuum line manifold with an ampoule of dried 

pyridine, and the contents degassed. The pyridine ampoule was opened to the manifold 

allowing the pyridine vapour to interact with the montmorillonite. After approx lOmin the 

reaction vessel was closed to the manifold and left, at room temperature, for 24h. The 

vessel was then opened to the vacuum pump and the montmorillonite degassed for lOmin. 

A Dewar flask, containing liquid nitrogen, was placed around the reaction vessel and 

hydrogen bromide (2.5mmol) condensed into the vessel, which was then allowed to warm 

to room temperature. The hydrogen bromide was left to interact with the 

montmoriUonite/pyridine for 24h. A sample of the brominated montmorillonite/pyridine 

(0.05g) was taken to be analysed using DRIFTS.

6.2.6. Infrared analysis of the interaction of hydrogen bromide gas with pyridine 

adsorbed onto chlorinated montmorillonite K1 0 .

The experimental procedure for the interaction of hydrogen bromide with calcined 

montmorillonite K10 treated with carbonyl chloride at 523K for 12h and pyridine vapour 

at room temperature for 24h, was the same as that described in section 6.2.5. A sample of 

chlorinated montmorillonite/pyridine (approx 0.05g) was analysed by the DRIFTS 

technique.
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6 .2 .7 . Infrared analysis of the adsorption of 2 ,6 -dimethylpyridine onto chlorinated 

Degussa 'C  y-alumina.

The calcined y-alumina sample was pretreated with anhydrous carbonyl chloride at 

523K for 12h. The chlorinated y-alumina (0.2g) was loaded in the dry box into a reaction 

vessel, figure 2.1.2. The vessel was transferred to a vacuum line manifold with an 

ampoule of dried 2,6-dimethylpyridine, and the contents degassed. The ampoule was then 

opened to the manifold allowing the 2,6-dimethylpyridine vapour (3-4 Torr) to interact 

with the chlorinated y-alumina. After 20min the reaction vessel was closed to the manifold 

and left at room temperature for 24h. The manifold was then opened to the vacuum pump 

and the chlorinated y-alumina degassed for lOmin. The contents of the reaction vessel 

were transferred, in a dry box, to a storage vessel. Two samples of chlorinated y- 

alumina/2,6-dimethylpyridine (approx 0.05g) were taken and analysed by DRIFTS and 

PAS techniques.

6.2.8. Infrared analysis of the adsorption of 2,6-dimethylpyridine onto calcined 

montmorillonite K 1 0 .

The experimental procedure for the above investigation is described in section

6.2.7. Two samples of montmorillonite/dimethylpyridine (both approx 0.05g) were taken 

and analysed by DRIFTS and PAS techniques.
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6.2.9. Infrared analysis of the adsorption of 2,6-dimethylpyridine onto chlorinated 

montmorillonite K10.

The procedure to investigate the interaction, at 293K, of 2 ,6 -dimethylpyridine with 

calcined montmorillonite treated with anhydrous carbonyl chloride at 523K for 12h is 

described in section 6.2.7. Two samples of chlorinated montmorillonite/2 ,6 - 

dimethylpyridine (both approx 0.05g) were analysed by DRIFTS and PAS techniques.

6.3 Results.

6.3.1. Infrared analysis of the adsorption of pyridine onto calcined Degussa 'C' 

y-alumina.

DRIFTS analysis of the y-alumina after the room temperature vapour phase 

interaction, indicated the presence of characteristic pyridine absorption bands in the 1700- 

1400cm-1 region, figure 6.3.1, which are listed in table 63.1.
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Figure 6.3.1. DRIFT spectrum of pyridine adsorbed on calcined Y-alumina.
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6.3.2. Infrared analysis o f the adsorption o f pyridine onto dibrom ine brominated

Degussa 'C' y-alumina.

The interaction of pyridine vapour with calcined y-alumina, pretreated with 

dibromine at 523K for 120h, was followed using both DRIFTS, figure 6.3.2a, and PAS, 

figure 6.3.2b, techniques. The results of these analyses, table 6.3.1, show I) the presence 

of both Br<)>nsted and Lewis acid sites (the IR criteria for these sites, table 6.4.1, is 

discussed later in this section) and II) that absorption bands determined photoacoustically 

differ only marginally from those determined by diffuse reflectance spectroscopy.

6.3.3. Infrared analysis of the adsorption of pyridine onto calcined 

montmorillonite K 1 0 .

DRIFTS analysis of the calcined montmorillonite after room temperature 

interaction of pyridine vapour, figure 6.3.3a, indicated the presence of adsorbed pyridine 

species on the surface of the clay, when compared with the spectrum of calcined 

montmorillonite K10, figure 6.3.3b. Four main absorption bands were identified in the 

1400-1700cm1 pyridine finger print region, table 6.3.2, and correspond to Lewis (1443 

and 1490cm-1) and Br<|>nsted (1490, 1598 and 1639cm"1) acid sites.
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Figure 63.2a. DRIFT spectrum of pyridine adsorbed on brominated y-alumina.
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Figure 6.3.2b. PA spectrum of pyridine adsorbed on brominated y-alumina.
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Figure 6.3.3a. DRIFT spectrum of pyridine adsorbed on calcined montmorillonite K10.
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Figure 6.3.3b. DRIFT spectrum of calcined montmorillonite K10.



Table 6.3.2. Assignments for the spectral features observed from the adsorption of 

pyridine onto modified montmorillonite KlOs.

Assignment K10 KlO + HBr CI-K10 CUK10 + HBr

Py (C.B.) 1443

Py (CB.) 1457 1457

Py (C.B.) + PyH 1483 1483 1483

Py (C.B.) + PyH 1490

PyH 1523

PyH 1530

PyH 1536 1536 1536

PyH 1550

PyH 1556

Py (CB.) 1576

Py (h .b .) 1598

Py (H.B.) 1609

Py (H.B.) 1616 1616

PyH 1639 1640 1636 1636

(Py = pyridine, PyH = pyridinium, H.B. = hydrogen bonded, C.B. = coordinately bonded)

all values in cm- 1
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6.3.4. Infrared analysis o f the adsorption o f pyridine onto chlorinated

m ontm orillonite K10.

DRIFTS analysis of calcined chlorinated montmorillonite after room temperature 

interaction with pyridine vapour, figure 6.3.4a, like the calcined montmorillonite 

interaction, indicated the presence of pyridine species adsorbed on the chlorinated 

montmorillonite, when compared with the spectrum of chlorinated montmorillonite, figure 

6.3.4b. Although, like the spectrum of pyridine adsorbed on calcined montmorillonite 

K10, four main absorption bands were identified in the 1400-1700cm-1 region, table 6.3.2, 

none of these bands possessed the same wavenumbers as found in the calcined 

montmorillonite/pyridine spectrum. There were no absorption bands observed in the 1430- 

1456cm-1 region, associated with chemisoibed pyridine (Lewis acid site).

6.3.5. Infrared analysis of the interaction of hydrogen bromide gas with pyridine 

adsorbed onto montmorillonite K10.

The results of the DRIFTS analysis, figure 6.3.5, are tabulated in table 6.3.2. They 

indicated that the acid hydrogen bromide interacted with the base pyridine on the surface 

of the clay, resulting in the shifted wavenumbers observed. Although none of the 

wavenumbers observed after this interaction correspond with wavenumbers observed from 

the interaction of pyridine with montmorillonite K10, some do match those observed in the 

interaction of pyridine with chlorinated montmorillonite K10 (1483 and 1536cm-1).
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Figure 6.3.4a. DRIFT spectrum of pyridine adsorbed on calcined montmorillonite K10 

treated with carbonyl chloride at 523K for 12h.
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A
bs

or
ba

nc
e

1.2-

1.0 «

1536cm'

0 .8 -
1550cm'1 1 1523cm'

1483cm'

0 .6 -

1457cm'

0.4

0.2

0.0
1767 1394 1022 650

Figure 6.3.5. DRIFT spectrum of pyridine adsorbed on calcined montmorillonite K10, 
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6.3.6. Infrared analysis o f the interaction o f hydrogen bromide gas with pyridine

adsorbed onto chlorinated montmorillonite K10.

The DRIFT spectrum obtained of the montmorillonite, after the interaction, is 

shown in figure 6.3.6. Eight main absorption bands were identified in the 1400-1700cm'1 

pyridine finger print region, table 6.3.2. Of these absorption bands, four were also 

observed in the montmorillonite K10 hydrogen bromide interaction (expt 6.3.5.) and three 

in the spectrum of pyridine adsorption on chlorinated montmorillonite K10 (expt 6.3.4).

6.3.7. Infrared analysis of the adsorption of 2,6-dimethylpyridine onto chlorinated 

Degussa ’C’ y-alumina.

The interaction of 2,6-dimethylpyridine with y-alumina pretreated with anhydrous 

carbonyl chloride at 523K for 12h, was investigated using both DRIFTS, figure 6.3.7a, and 

PAS, figure 6.3.7b. The results of the DRIFTS analysis, table 6.3.3, indicated six 

absorption bands due to pyridinium species in Bnjmsted acid sites, but there were no 

absorption bands detected in the 1443-1490cm-1 Lewis acid region. PAS analysis of the 

solid showed only one major absorption band at 1641cm-1.

6.3.8. Infrared analysis of the adsorption of 2,6-dimethylpyridine onto calcined 

montmorillonite K10.

The interaction of 2,6-Dimethylpyridine with calcined montmorillonite K10, was 

investigated using both DRIFTS, figure 6.3.8a, and PAS, figure 6.3.8b. The DRIFT 

spectrum obtained of the clay after the interaction with 2 ,6 -dimethylpyridine was very
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Figure 6.3.7a. DRIFT spectrum of 2,6-dimethylpyridine adsorbed on calcined y-alumina 

treated with carbonyl chloride at 523K for 12h.
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similar to that obtained from the 2 ,6 -dimethylpyridine/chlorinated y-alumina interaction, 

table 6.3.3, with the exception that no absorption band was observed at 1558cm"1. The 

spectrum obtained by PAS analysis indicated two absorption bands (1635 and 1649cm"1) 

in the pyridinium region.

6.3.9. Infrared analysis of the adsorption of 2,6-dimethylpyridine onto chlorinated 

montmorillonite K10.

DRIFTS analysis of calcined chlorinated montmorillonite after room temperature 

interaction with 2,6-dimethylpyridine vapour, figure 6.3.9a, like the calcined 

montmorillonite interaction, indicated the presence of 7 absorption bands, table 6.3.3.

Two of these absorption bands (1558 and 1639cm"1) did not correspond to bands observed 

in the calcined montmorillonite K10 interaction and must have been a result of the 

chlorination process. The spectrum obtained from PAS analysis, figure 6.3.9b, showed 

one absorption band at 1636cm"1, in the ’pyridine ring region’, table 6.3.3, and also 

indicated the presence of gaseous hydrogen chloride.
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6.4 Discussion.

6.4.1. The adsorption o f pyridine onto modified solid supports.

The use of the base pyridine as a probe molecule adsorbed onto catalytic surfaces, 

to determine the acidic nature of these surfaces, has been well established [129-131,133- 

145]. The room temperature introduction of pyridine vapour to acidic supports results in a 

surface coverage of approximately 17%-20% [143]. In this work the surface coverage is 

analysed using Fl'lR techniques (DRIFTS and PAS) to determine different pyridine- 

pyridinium species present on the surface. The spectroscopic region found to be most 

useful for this determination was the ’ring frequency region', 1700-1400cm-1. Although 

the assignments for the pyridine absorption bands in this region are well documented, there 

are a few discrepancies. The assignments most often used for these absorption bands are 

given in table 6.4.1, and were used as guide lines for the assignments of absorption bands 

observed in this work.

A comparison between the spectrum obtained for the pyridine adsorbed on calcined 

y-alumina with that of pyridine adsorbed on brominated y-alumina indicates that there is no 

substantial difference in adsorbed pyridine species. There is however a small shift in 

wavenumber, from 1530cm-1 to 1540cm-1. This band, in a pyridinium absorption region, 

table 6.4.1, may be due to the formation of pyridinium bromide, [Py-H]+B r as opposed to 

pyridirtitwj in the case of calcined y-alumina. The fact that there are only minor differences 

between the pyridine absorption spectrum on calcined y-alumina and brominated y-alumina 

correlates with previous work (section 3.3.13) which found that brominating y-alumina, 

unlike chlorinating, does not result in enhanced acidity.

Data for pyridine uptake onto calcined montmorillonite K10 shows coordinately 

bonded pyridine, hydrogen bonded and pyridinium species present, indicative of the 

presence of both Lewis and Br<|>nsted acid sites. The coordinately bonded pyridine is 

associated with Lewis acid sites; as these sites are coordinately unsaturated they are most



Table 6.4.1. Assignments most often designated for pyridine absorption bands observed on 

the interaction of pyridine with solid supports.

Bands (cm-1)

Coordinately 

Bonded Pyridine Pyridinium

H-Bonded

Pyridine

1438 5

1440 1

1445 4 2

1450 2,5

1456 3

1485 1 1

1490 2,4,5 2,4,5

1499 3 3

1540 1,3

1545 4 5

1550 2

1577 5

1580 2

1593 5,2

1614 5

1620 2,5 2,5

1635 2

1638 5

Key to table 6.4.1.

Number Author Reference Number

1 E.Parry 133

2 D.W.A.Sharp 136

3 FJR.Cannings 141

4 R.S.Drago 144

5 M.R.Basila 140
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likely found at the edges of the basal plane. The hydrogen bonded pyridine is associated 

with terminal hydroxyl groups, whereas the pyridinium species is associated with bridged 

hydroxyl groups, figure 6.1.2. Figure 6.4.1 shows an idealised model of the surface of 

montmorillonite, indicating possible Br<j>nsted and Lewis acid sites with which pyridine 

may interact. The introduction of anhydrous hydrogen bromide gas to the system results in 

a doubling of absorption bands observed in the infrared spectrum, table 6.3.2. None of the 

new absorption bands correspond to those of pyridine adsorbed onto calcined 

montmorillonite K10, and radiotracer experiments (section 4.3.10) indicate an increase in 

bromine uptake in the presence of adsorbed pyridine. It is concluded, therefore, that 

hydrogen bromide interacts with all the different pyridine species adsorbed onto the 

surface. The hydrogen bromide could interact with the adsorbed pyridine by either I) 

brominating the pyridine ring (discussed later in this section) or II) formation of 

pyridinium bromide.

Bromination of the pyridine ring system is unlikely as the standard methods for the 

bromination of pyridine and its derivatives [147-151] usually involve acidic conditions and 

the heating of the reaction mixture, with dibromine as the brominating agent, scheme 6.4.1.

H 2 S O 4 /5 7 3 K

Br-» SN *
I

H

Scheme 6.4.1. Standard method for the bromination of a pyridine ring system.

A characteristic of these reactions is the insertion of bromine at the (3-position. In this 

work, although acidic conditions are present on the surface of the solids, and pyridinium 

species are observed, bromine is only present as a nucleophile whereas the reaction 

mechanism requires bromine as an electrophile. It is therefore postulated that no ring 

bromination is occuring during the interaction of hydrogen bromide with the adsorbed 

pyridine and that all new absorption bands are due to the formation of pyridinium bromide
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type species.

DRIFTS data for pyridine uptake onto chlorinated montmorillonite K10 indicate 

the presence of both hydrogen bonded pyridine and pyridinium. The evidence for the 

presence of coordinately bonded pyridine is inconclusive, as the band observed at 1483cm" 

1 lies in a region where both pyridinium and coordinately bonded pyridine absorptions 

occur. This band is also a spectral feature from the interaction of hydrogen bromide with 

pyridine adsorbed onto montmorillonite K10. As the addition of hydrogen bromide to 

supports does not afford Lewis acid sites it is unlikely that this band is due to coordinately 

bonded pyridine, but due to either hydrogen bonded pyridine or a pyridinium species. The 

lack of absorption bands due to coordinately bonded pyridine suggests that Lewis acid sites 

present in the calcined montmorillonite K10 have, during the chlorination process, been 

sterically hindered or neutralised, thus not allowing the pyridine to interact. If these 

proposed Lewis acid sites are at the edges of basal planes, figure 6.4.1, chlorination of 

these sites could affect the chemical environment of terminal hydroxyl groups also present 

at the edges of basal planes, figure 6.4.2. This would result in the observed change in 

wavenumber for hydrogen bonded pyridine from 1598cm"1 to 1609cm"1. Evidence from 

2 7 A1 MAS NMR of montmorillonite K10 and chlorinated montmorillonite K10 (chapter 4) 

indicates that chlorination of montmorillonite K10 does not affect the tetrahedral 

aluminium environments. As the chlorination of y-alumina with carbonyl chloride requires 

the removal of terminal hydroxyl groups [47], it is postulated that the tetrahedral 

aluminiums present either have no terminal hydroxyl groups or the chlorination process 

affects only terminal hydroxyl groups bonded to Si.

On introducing anhydrous hydrogen bromide to the pyridine/chlorinated 

montmorillonite K10, five new absorption bands were observed. Of these new absorption 

bands three (1530, 1556 and 1576cm-1) are observed in the pyridinium region, one 

(1616cm-1) in the hydrogen bonded region and one (1457cm-1) in the coordinately bonded 

pyridine region. It is postulated that this absorption band although in the coordinately 

bonded region is not due to this species. This absorption band occurs on the addition of 

hydrogen bromide to pyridine adsorbed on either calcined montmorillonite K10 or
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chlorinated montmorillonite K10 and is not observed under any other conditions. The 

band must therefore be a direct consequence of hydrogen bromide addition. For pyridine 

to coordinately bond to a Br species on the surface of montmorillonite K10, figure 6.4.3, 

an electrophilic bromine species is necessary. As the only source of bromine present is 

bromide, a nucleophile, it is very doubtful that this coordinately bonded species occurs. A 

more plausible postulate is that the hydrogen bromide interacts with pyridine adsorbed on 

the surface to form pyridinium bromide.

Figure 6.4.3. Pyridine coordinately bonded to Br species on the surface of 

montmorillonite K10

In the case of pyridine adsorbed onto calcined montmorillonite K10, the coordinately 

bonded pyridine (1457cm"1) interacts with hydrogen bromide, scheme 6.4.2; this (1457cm"

/✓
Br &

*) absorption band does not appear after the interaction. The addition of hydrogen bromide 

also appears to facilitate the presence of a hydrogen bonded absorption band at 1616cm"1 

for pyridine adsorbed on both calcined and chlorinated montmorillonite KlOs.

HBr 0

6«-  

Si

Scheme 6.4.2. The interaction of hydrogen bromide with coordinately bonded 

pyridine to form pyridinium bromide.
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The work in this section has shown that the adsorbed pyridine species on 

brominated y-alumina do not differ greatly from adsorbed species on calcined y-alumina. 

This indicates that the bromination process does not alter the acidic surface properties 

significantly.

The pyridine adsorption experiments on calcined montmorillonite K10 and 

chlorinated montmorillonite K10 have led to a few unexpected results. None of the 

spectral features observed for pyridine adsorbed onto calcined montmorillonite K10 are 

observed for pyridine adsorbed on chlorinated montmorillonite K10. This suggests that the 

chlorination process affects all acidic sites present on calcined montmorillonite K10. 

Spectral features observed for pyridine adsorbed on chlorinated montmorillonite K10 give 

no indication for the presence of coordinately bonded pyridine, associated with Lewis acid 

sites. The interaction of hydrogen bromide with pyridine adsorbed on montmorillonite 

K10, scheme 6.4.2, gives an insight into why coordinately bonded pyridine is not observed 

on montmorillonite K10 treated with carbonyl chloride. In this reaction scheme the 

coordinately bonded pyridine is displaced, and the Lewis acid site brominated with 

hydrogen bromide. The pyridine then interacts with the adsorbed bromine to form 

pyridinium bromide. During the chlorination of montmorillonite K10, with carbonyl 

chloride, hydrogen chloride is evolved. If this interacts with the montmorillonite K10 in 

the same manner as hydrogen bromide, then pyridinium chloride would be observed on the 

surface and not coordinately bonded pyridinium. One final aspect of the addition of 

hydrogen bromide to pyridine adsorbed onto montmorillonite K 1 0  is the increase in the 

number of absorption bands odserved in the pyridinium region. This increase suggests that 

the addition of hydrogen bromide to the montmorillonite K10 results in the increase of 

acidic surface features present. This pattern is also observed on the addition of hydrogen 

bromide to pyridine adsorbed onto montmorillonite K10 treated with carbonyl chloride.
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6.4.2. The adsorption o f 2,6-dimethylpyridine onto modified solid supports.

The pyridine derivative 2,6-dimethylpyridine is used as a probe molecule because 

the sterically hindered nitrogen atom should interact with Br<J>nsted acid sites present on 

the surface and not with the more sterically hindered Lewis acid sites, scheme 6.4.3.

Br<|>nsted Lewis

Scheme 6.4.3. The interaction of 2,6-dimethylpyridine with Br<j)nsted and Lewis 

acid sites.

In these comparative studies for the adsorption of 2,6-dimethylpyridine onto 

modified supports all the absorption bands observed, table 6.3.3, are in the pyridinium 

region, table 6.4.1. The DRIFTS analysis for the adsorption of 2,6-dimethylpyridine onto 

calcined montmorillonite K10 and chlorinated montmorillonite K10 show similar spectral 

features, but with differing relative intensities. The five absorption bands observed in the 

interaction with calcined montmorillonite K10, although very much less intense, are all 

observed in the interaction with chlorinated montmorillonite K10. The chlorinated 

montmorillonite K10 has two further absorption bands at 1558cm"1 and 1639cm"1 which, it 

is postulated, belong to dimethylpyridinium chloride species, figure 6 .4 .4 .
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^  &
y  H

Cl f- CU-

Figure 6.4.4. Proposed dimethylpyridinium chloride species on the surface of 

chlorinated montmorillonite K 1 0 .

DRIFTS analysis for the adsorption of 2,6-dimethylpyridine onto chlorinated y-alumina, 

like that of chlorinated montmorillonite K 1 0 , show similar spectral features to those 

observed in the calcined montmorillonite interaction, table 6.3.3. Like the chlorinated 

montmorillonite K10, the chlorinated y-alumina has an absorption band at 1558cm-1 

relating to a dimethylpyridinium chloride species, figure 6.4.4, but unlike the chlorinated 

montmorillonite K10 there is no absorption band at 1639cm-1. It is postulated therefore 

that the absorption band at 1558cm-1 corresponds to a dimethylpyridinium chloride species 

in which the chloride is adsorbed onto an aluminium atom and the absorption band at 

1639cm-1 corresponds to a dimethylpyridinium chloride species in which the chloride is 

adsorbed onto a silicon atom, figure 6.4.4.

The photoacoustic analysis of the adsorption of 2,6-dimethylpyridine onto the solid 

supports has not conferred the same spectral definition as the DRIFTS analysis. 

Photoacoustic analysis has shown though the detection of hydrogen chloride gas, section 

6.3.9, that this technique for analysing the surface of materials can also identify volatile 

materials above the surface. This evolution of hydrogen chloride suggests that exposure to 

a small amount of moisture results in the dechlorination of the surface. This observation is 

not surprising as the Si-Cl bond is readily hydrolysed in the presence of water [152], 

equation 6.4.1.

N ^SiC l + H2 O ------  » Me3 SiOH + HC1 equation 6.4.1.
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CHAPTER 7

Conclusions: The Nature of Brominated Oxides and their Catalytic Functions.

In this work the interactions of both calcined y-alumina and calcined 

montmorillonite K10 with a variety of brominating agents have been investigated. These 

brominating reagents include dibromomethane, hydrogen bromide and dibromine. Results 

from these investigations indicate that each of the reagents used interacts with the supports 

in its own distinct manner. Consequently the nature of the bromine species adsorbed onto 

the supports differs for each reagent used. A common factor in all these cases is hydrogen 

bromide, as this species is formed as a result of both the dibromomethane and the 

dibromine interactions. It seems reasonable to assume therefore that dissociatively 

adsorbed hydrogen bromide, figure 7.1, by analogy with HC1 [49], will be present on the 

surface of solid regardless of brominating agent employed.

The interaction of dibromomethane with calcined y-alumina and calcined 

montmorillonite K10 (sections 3.3.1 & 3.3.7) appears on first inspection to be similar to 

that of carbonyl chloride with these oxides. The latter of these processes is believed to 

involve the replacement of inplane oxygens by chlorine atoms, figure 1.9.2. Similarities 

between the dibromomethane and carbonyl chloride interactions with y-alumina include:- 

I) a reaction temperature of 523K, below which neither the chlorination nor bromination 

process occurs to any great extent, II) the formation of hydrogen chloride or bromide, and 

HI) the formation of carbon dioxide or carbon monoxide, indicating the removal of oxygen 

from the surface of the support. One further similarity between the chlorination and 

bromination processes is that halomethanes with an odd number of halogens react



hydrogen

oxygen

bromine

Figure 7.1. Postulated bromine environments present on the surface of y-alumina after 

the room temperature interaction of hydrogen bromide.
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differently than halomethanes with an even number of halogens. Although the reaction 

conditions and vapour phase products are similar in both reactions, the nature of the 

supports after the reactions are dissimilar. Whereas the interaction with carbonyl chloride 

increases the Lewis acidity of the support [47] the interaction with dibromomethane 

(page 67) does not. The chlorination process results in a halogen content 2-3 times greater 

than that of the bromination process even when greatly reduced reaction times are used. 

82BrBr Radiotracer studies (sections 5.3.2 - 5.3.9) have suggested that whilst the 

interaction of carbonyl chloride reduces the surface area of y-alumina, the interaction of 

dibromomethane does not. DRIFTS analysis of the supports after the halogenation 

reactions show organics present after the reaction with dibromomethane; there are however 

no organics detected after the interaction of carbonyl chloride. It is postulated, from these 

observed similarities and dissimilarities, that the interaction of dibromomethane with y- 

alumina is slower and less efficient than the carbonyl chloride due to the larger size of the 

bromine atom. On this basis y-alumina is preferentially chlorinated as the smaller chlorine 

atom causes less disruption to the lattice structure than the larger bromine. With 

montmorillonite K 1 0 , it is postulated that the reaction with carbonyl chloride results 

mainly in the chlorination of species at the edge of the basal plane (page 171). When 

bromochloromethane reacts with montmorillonite K10 similar bromine and chlorine 

contents are observed. If, as postulated, the halogenation occurs at the edge of the basal 

plane then, unlike y-alumina, the difference in size of the bromine and chlorine will not 

have such a marked affect on the halogenation process, as these sites are sterically less 

hindered. The fact that the surface Lewis acidity of y-alumina after treatment with 

dibromomethane is not enhanced may be due also to the larger size of the bromine. 

Following the model used to account for strong Lewis acidity after chlorination with 

carbonyl chloride in which the formation of -AICI2  groups are postulated, leads to the 

suggestion that surface Alm in -AlBr2  groups is sterically too hindered to function as an 

effective Lewis acid, figure 7.2.



Figure 7.2. Postulated bromine species present on y-alumina after the interaction

of dibromomethane.

The interaction of hydrogen bromide with solid supports (sections 4.3.1-7), unlike 

that of dibromomethane, occurs readily and rapidly at room temperature. The resulting 

bromine content, approximately l.Omg atom g '1, is similar to that of the dibromomethane 

interaction. The interaction of hydrogen bromide with montmorillonite K10 has proven to 

be the most interesting. Exchange reactions with radiolabelled hydrogen bromide indicate 

that there are several types of bromine species present on the support (page 115), one of 

which is labile to exchange with hydrogen bromide at room temperature, the other inert. 

These labile and inert species were detected on both uncalcined and calcined 

montmorillonite K10. The presence of at least two types of bromine species on the surface 

is supported by the pyridine adsorption experiments (chapter 6 ). In these investigations the 

addition of hydrogen bromide to pyridine adsorbed on calcined montmorillonite K10 

resulted in the formation of seven absorption bands (section 6.3.5) not observed in pyridine 

adsorbed on calcined montmorillonite K10. Using the idealised model of montmorillonite 

K10 there are several possible sites for the dissociative adsorption of hydrogen bromide. 

One of these sites, figure 7.3(i), is on the surface plane of the clay, where the bromide is 

adsorbed onto a surface Si and the hydrogen to a neighbouring surface oxygen. Two other, 

sterically less hindered, sites are at the edge of the basal plane. Using these sites the
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bromine can adsorb on either a Si atom, figure 7.3(ii), or on an A1 atom, figure 7.3(iii), 

with the hydrogen being located on a neighbouring oxygen. One further possibility is the 

adsorption of bromide onto a tetrahedral aluminium. Although the idealised model of 

montmorillonite K10 does not contain tetrahedral aluminium environments, ^7A1 MAS 

NMR (section 3.4.3) have shown this species to exist. There is no precise description for 

dissociative adsorption of hydrogen bromide onto montmorillonite K10 at the present time 

and therefore which of these sites results in labile bromine and which in inert bromine 

cannot be stated.

OH

H 1 1

Br \ X111o

0 - - -H
O ! 1

^ A l —OH
1

Al— Br

( 0 (ii) (iii)

Figure 7.3. Postulated bromine species present on montmorillonite K10 after the 

interaction of hydrogen bromide.

Pyridine adsorption investigations (chapter 6 ) have shown the complex nature of 

the acidic surfaces of the supports after the interaction of hydrogen bromide and carbonyl 

chloride. The assignment of all the spectral features observed in these interactions to 

specific adsorbed species is difficult. The fallibility of these assignments is shown for the 

montmorillonite K10 treated with carbonyl chloride (table 6.3.5). This chlorinated 

montmorillonite K10 enhances a Lewis acid reaction, but the pyridine adsorption 

experiments indicated no coordinately bonded pyridine present (section 6.3.4). The Lewis 

acid sites on montmorillonite K10 must therefore be assigned a pyridinium species. 

Adsorption of pyridine onto montmorillonite K10 treated with carbonyl chloride results in
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the formation of only 4  new absorption bands, when compared with pyndine adsorbed on 

calcined montmorillonite K 1 0 .

In contrast to the systems summarised above, the interaction of dibromine with the 

oxides results in substantial bromine uptake onto the supports (section 5.3.2-7). The room 

temperature interaction of dibromine with both calcined montmorillonite K10 and 

y-alumina results in bromine contents 15 times greater than those observed for the other 

halogenating reagents. Most of the bromine is easily removed by pumping the solid under 

vacuo, resulting in bromine retention of approximately 1 . 0  mg atom g_1, a value similar to 

the bromine uptake found in the dibromomethane and hydrogen bromide interactions. 

From this it is concluded that there are two bromine species on the surface; a physisorbed 

species, probably dibromine, and a chemisorbed species (section 5.4.1), figure 7.4. It is 

this chemisorbed species which is retained on the support after pumping under vacuo. The 

interaction of dibromine with powdered Kel-F polymer underlined this finding. As with 

montmorillonite K10 and y-alumina dibromine adsorbs onto Kel-F powder. As Kel-F 

powder is inert to chemical attack the bromine present on the surface can be only 

physisorbed dibromine. On pumping all [8 2 Br] activity is removed from the powder, 

consistent with physisorbed dibromine.

Br—Br Br—Br B r—Br m  physisorbed bromine
/  ' ' ,  .

/  / 1< v iBr * Br / Br
! Br | Br 1 Br ■ chemisorbed bromine
1 i 1 I 1 i

A1 A1 XA1 A1 A1

Figure 7.4. Postulated bromine species present on y-alumina after the interaction 

of dibromine.
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In summary, of the three brominating agents investigated in this work, the support 

with the least potential is that resulting from the interactions of dibromomethane. It had 

been hoped at the outset of this work that this bromination process would result in a 

support which possessed enhanced Lewis acidity, enabling the promotion of bromination 

reactions in situations when chlorinated supports could not be used, for example where 

cross contamination of the halogens might occur. This bromination process has however 

resulted in a brominated y-alumina with properties closer to that of calcined y-alumina than 

y-alumina treated with carbonyl chloride. The rapid uptake of hydrogen bromide onto the 

solid supports, although small, has proved to be very useful in promoting 

hydrobromination reactions, as discussed below. The quantity of dibromine which can be 

adsorbed onto both calcined y-alumina and montmorillonite K10 is surprising. Although 

this phenomenon may be a hindrance at times, such as in the anisole experiment 

(experiment 5.3.10), where the order of addition of reagents determines the products 

obtained, large dibromine contents may be beneficial if the dibromine can be leached 

slowly from the solid.

The use of calcined y-alumina and montmorillonite K10 to enhance or promote 

reactions, in this work, has proved to be successful. Modifications to the supports have 

been required in some cases before promotion of the reaction occurs. In this work the 

supports were used to promote a Lewis acid catalysed reaction, Hell Volhart Zelinsky, and 

a Br<j>nsted acid catalysed reaction, the hydrobromination of butenes and decadienes. The 

ability of y-alumina and montmorillonite K10 to promote the Hell Volhart Zelinsky 

reaction was investigated initially. Although pyridine adsorption studies (sections 6.3.1 & 

6.6.3) have indicated the presence of Lewis acid sites, there is no evidence that these sites 

enhance or promote this reaction. The Hell Volhart Zelinsky is promoted however by the 

use of y-alumina and montmorillonite K10 treated with carbonyl chloride. This is an 

indication that these treated supports are a good source of Cl" ions. While the reactions 

employing chlorinated supports are not as efficient as the original PCI3  enhanced reaction, 

it must be pointed out that these reactions occurred at room temperature and under static 

conditions, whereas the original PCI3  experiment was run under constant agitation at
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373K.

Whereas the promotion of the Hell Volhart Zelinsky requires the modification of 

the supports, the promotion of the hydrobromination reactions merely required the calcined 

supports to be kept dry. This work has shown, using [8 2 Br]-bromine labelled hydrogen 

bromide, that the hydrobromination of the alkenes is a surface dependent reaction 

(chapter 4). The ability of the hydrogen bromide to rapidly adsorb onto the supports has 

therefore proved to be of great benefit in these reactions, as shown by a recent publication 

[101]. Even under aqueous conditions the supports enhance the hydrobromination reaction 

but with greatly reduced efficiency. Hydrobromination reactions may proceed via radical 

(anti-Markovnikov addition) or ionic (Markovnikov addition) mechanisms. These 

supports enhance the selectivity of the interactions as all hydrobromination reactions, 

involving the supports, occur via the ionic mechanism.
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