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Abstract

Since malignant plasma cells in myeloma patients home to the bone marrow, a study was 

undertaken firstly to define the phenotypic profile of a panel of myeloma cell lines and then 

to investigate their ability to adhere to various extracellular matrix molecules. The 

extracellular matrix molecules studied were- collagen, fibronectin and FN-RGD, a synthetic 

peptide consisting of multiple arginine-glycine-aspartic acid (RGD) repeats which mimics 

the part of the fibronectin molecule that binds to the integrin VLA-5, expressed on some 

myeloma cells. Adhesion blockade was attempted using monoclonal antibodies directed 

against various myeloma surface antigens in order to ascertain the importance or otherwise 

of these molecules in the binding of myeloma cells to members of the extracellular matrix. It 

was found that, although the panel of eight myeloma cell lines tested all expressed VLA-4 

and showed a varying expression of VLA-5, their ability to adhere to fibronectin differed. 

None of the cell lines tested adhered to FN-RGD or collagen. Adhesion blockade using anti- 

VLA-4 and anti-VLA-5 antibodies was only successful in half of the lines tested with a 

combination of the two antibodies resulting in improved blockade compared with either 

antibody alone.

It has been demonstrated that CD40 crosslinking on the surface of B cells and myeloma 

cells rescues them from apoptosis and induces IL-6 secretion. This is usually, but not 

always, accompanied by up-regulation of the bcl-2 gene. Since the Fas antigen has 

homology with CD40 and has been reported to act in opposition to bcl-2i it was decided to 

study these genes for mRNA and protein expression in myeloma cells in an effort to 

elucidate any potential link between expression of these antigens and the onset of multiple 

myeloma. A more complete knowledge of the interactions between EL-6, CD40 and its 

ligand, and the expression of bcl-2 or Fas and its ligand is necessary in order to determine 

possible improvements in treatment strategies for this disease.

The panel of eight myeloma cell lines used in this study was examined for CD40 and Fas 

antigen expression by flow cytometric analysis. All the myeloma cell lines tested positive for 

CD40 and Fas albeit at different intensities. It has been shown that resting tonsil B cells, 

expressing either low or absent levels of Fas, are induced to express Fas after ligation of 

CD40 using the CD40Lig-L culture system. Anti-Fas monoclonal antibody was shown to
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inhibit the later phases of CD40-induced B cell growth due to apoptosis. Fas ligation was 

shown to inhibit proliferation and immunoglobulin secretion of CD40 activated B cells in 

response to recombinant cytokines. This implies that engagement of CD40 antigen on B 

cells induces Fas expression and sensitises them to Fas-mediated apoptosis. It was decided, 

therefore, to investigate whether myeloma plasma cells could be stimulated to proliferate in 

the same manner and whether they, too, would be sensitive to Fas-mediated apoptosis.

It was noted from the literature that the myeloma cell lines resistant to apoptosis were 

mostly dependent on IL-6 and it was therefore proposed to investigate this further by 

broadening the study by looking at several myeloma cell lines and comparing IL-6 

dependent and independent passages of the same myeloma cell line (ANBL-6) for their 

susceptibility to Fas-mediated apoptosis. The fact that fresh myeloma samples were also 

resistant to activation induced cell death (AICD) is interesting since these are likely to be 

dependent on IL-6 for their growth also. It has previously been reported that Fas antigen is 

not expressed on normal plasma cells. Two culture systems originally established in an 

effort to generate factor-dependent B cell lines were adapted for the study of myeloma cell 

activation of proliferation via CD40 (and the cytokines IL-4 and IL-6) and induction of 

apoptosis via Fas activation. Although myeloma cell lines are obviously no longer 

dependent on stromal layers for their propogation it was decided that the use of the CD40 

and CD40Lig-L culture systems may potentiate the response to CD40 activation. Cross- 

linkage of this antigen on the surface of myeloma cells using mouse fibroblasts transfected 

with either the human immunoglobulin Fc receptor (FcyRII/CDw32) or with the human 

CD40 ligand constitute the CD40 and CD40Lig-L culture systems respectively. 

Interleukin-4 was used to test for proliferation as a comparison to interleukin-6 in these 

studies since it is a potent B cell stimulation factor.

It was initially attempted to establish a fast, reliable, cost-effective and informative method 

of assessing apoptosis and then to develop an effective assay system for Fas and CD40 

activation in myeloma cell lines. Finally, a comprehensive study was undertaken to examine, 

in these cell lines, the role of activation of CD40 and/or Fas with or without co-stimulatory 

cytokines (IL-6 and IL-4). Changes in the regulation of CD40, Fas, Bcl-2, IL-6, IL-6R 

protein or mRNA expression under different culture conditions were assessed using a 

combination of flow cytometric analysis, immunocytochemistry, reverse transcription
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polymerase chain reaction (RT-PCR) and in situ hybridisation. It was also attempted to 

establish whether myeloma cell lines co-expressed the ligands for CD40 or Fas antigen by 

RT-PCR and by in situ hybridisation using sequence-specific riboprobes (none of the lines 

tested were found positive for transcription or translation of these ligands). It was found 

that, although all of the myeloma cell lines tested expressed CD40 and Fas antigen, their 

intensity of expression varied, as did their susceptibility to Fas-mediated apoptosis. All the 

interleukin-6 dependent cell lines tested (as well as two IL-6 independent cell lines) proved 

to be resistant to AICD mediated by anti-Fas monoclonal antibody. The addition of IL-6 to 

these cultures had no effect on this resistance. In contrast, the remaining five myeloma cell 

lines tested (all IL-6 independent) were killed by Fas activation which was potentiated by 

CD40 stimulation. IL-6 together with CD40 ligation however, afforded a substantial 

protective effect on Fas-mediated cell death in these cell lines (50-90% of the cells were still 

viable following a 72 hour incubation with anti-Fas and IL-6 in the CD40Lig-L culture 

system). These results have important implications for the direction of future therapy 

regimes since, if myeloma plasma cells could be rendered insensitive to IL-6 and the Fas 

antigen on their surface activated via Fas ligand (e.g. as a targeted transgene) in vivo this 

may lead to extensive tumour cell death via apoptosis. Bcl-2 protein expression following a 

three day incubation with anti-Fas was found to be down-regulated in four out of five of the 

myeloma lines tested which were susceptible to Fas-mediated apoptosis. The fifth cell line 

was negative for Bcl-2 expression throughout whilst those cell lines non-susceptible to Fas- 

mediated cell death showed no change in Bcl-2 expression when incubated with IL-4, IL-6 

or anti-Fas with or without CD40 ligation. It will be crucial to further investigate these 

important findings and to study the possible role of some of the other rapidly emerging Bcl- 

2 family members as well as the recently discovered interleukin-1 beta converting 

enzyme (ICE) protease cascade with a view to discovering future treatment strategies 
for this disease.
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MULTIPLE MYELOMA: A STUDY OF THE FACTORS THAT CONTROL 

DEATH AND CELL SUVIVAL IN NEOPLASTIC PLASMA CELLS

Multiple myeloma is a malignancy of bone marrow plasma cells, with an incidence in the 

United Kingdom 4:100,000 (1). It is characterised by the proliferation of malignant plasma 

cells in the bone marrow (BM), an abnormal clonal immunoglobulin in the blood and lytic 

bone lesions. Plasma cells are terminally differentiated B lymphocytes responsible for 

secreting normal immunoglobulin, and in myeloma, the mutation of a single B lymphocyte 

leads to the proliferation of a clone of identical cells which will all secrete the same 

immunoglobulin molecule and which have the morphology of plasma cells (2). Malignant 

plasma cells from myeloma patients are rarely found in the circulation but monoclonal 

immunoglobulin (paraprotein) is present in the serum and/or urine in 98% of cases 

(monoclonal free light chain in the urine is termed Bence-Jones protein). The remaining 2% 

have non-secretory disease (1). The serum paraprotein may be of any other immunoglobulin 

class other than IgM, which, in multiple myeloma, occurs only as an extreme rarity.

The disease can present with a variable spectrum of features and at different stages of 

development. Patients initially diagnosed with monoclonal gammopathy of unknown 

significance (MGUS) can remain clinically stable for many years, whereas others may 

proceed rapidly from stage I (smouldering or indolent myeloma) to stage II disease. 

Anaemia, hypercalcaemia, and/or renal insufficiency are frequent in stage III myeloma (3).

The incidence of the disease varies. It is most rare amongst the Chinese population (1:100 

000). The incidence in white Americans is around 4:100 000, whilst it is most common 

amongst black American males, 10:100 000. The present incidence of myeloma is between 

1500 and 2000 cases per year in England and Wales with around 250 cases per annum in 

Scotland (1).

Myeloma is predominantly a disease of the elderly with the mean age at diagnosis around 60 

years (4). With the exception of chronic lymphocytic leukaemia, the disease shows the 

strongest age dependency of any neoplasm (5). Peak age of onset is between 65 and 75 

years of age with a male preponderance of 70-80% in the earliest reported cases (6). Since
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then, however, there has been a gradual shift towards an almost equal sex incidence (only 5- 

10% excess in male incidence) in newly diagnosed cases.

The longterm prognosis with this disease is not good - a median of around 30-36 months is 

typical although patients who respond well to therapy survive longer (7). Current therapy 

regimes consist of cytotoxic therapy or combination chemotherapy, the most commonly 

used drugs being Melphalan, dexamethasone, prednisolone, carmustine, doxorubicin and 

cyclophosphamide (1,8).

The vast majority of patients (80-90%) respond well to initial therapy with the majority of 

these showing a 75% reduction in tumour mass. Those responding to therapy generally 

manifest a rapid improvement in bone pain and reversal of symptoms of hypercalcaemia. 

Anaemia recovers gradually but bone lesions rarely heal (9). Depressed levels of normal 

immunoglobulins rarely improve and complete disappearance either of paraprotein or the 

monoclonal plasma cell infiltration of the bone marrow is very unusual. Stable patients have 

a low paraprotein level and remain in the "plateau phase" for long periods even when 

therapy is discontinued. Plateau phase is usually defined as 3-6 months of clinical stability, 

stable paraprotein levels and transfusion independence (8,10). It is either present at 

diagnosis or acheived by chemotherapy (smouldering myeloma).

All patients eventually relapse due to residual tumour cells. This can initially be treated with 

alkylating agents but myeloma becomes progressively drug resistant and patients die from 

renal failure, anaemia and infection. Myeloma cells from the bone marrow may spill over 

into the blood stream resulting in a plasma cell leukaemia at this stage.

Ultrastructurally, most myeloma cells ressemble normal or reactive plasma cells in that they 

are round or oval with a nucleus, small in relation to cell size and eccentrically placed. 

Myeloma plasma cells contain more nucloeli than normal plasma cells and bi- or multi- 

nucleate forms are frequently present. The cytoplasm is characterised by abundant rough 

endoplasmic reticulum and a highly developed Golgi apparatus in the paranuclear area. It 

has been noted that the cytoplasm of myeloma cells is disproportionately mature in 

comparison to the degree of nuclear differentiation and that this degree of asynchrony is 

proportional to the extent of the disease (11).
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The precursor cell in multiple myeloma is still a matter of debate but evidence suggests that 

it may be a plasmablast. Bakkus et al (12) have shown that the pre-myeloma cell is situated 

in the pre-switched but somatically mutated B cell compartment and that heavy chain 

switching can occur without further somatic mutation. They demonstrated that the VDJ 

(variable, diversity and joining) region of the myeloma immunoglobulin heavy chain gene is 

somatically hypermutated and antigen-selected without intraclonal variation or evolution in 

time supporting the theory that myeloma precursors develop from a late stage in B 

lymphocyte development. A number of workers have also found lymphoid cells in the 

marrow and blood of patients with myelomatosis which can be induced in vitro to 

differentiate into plasmablasts (13).

Multiple myeloma and interleukin-6

Studies of patients with plasma cell leukaemia and in vitro studies with long-term myeloma 

cell lines have shown that multiple myeloma is dependent on the cytokine, interleukin-6 (IL- 

6), for growth and proliferation (14,15). Most myeloma cells proliferate very slowly, 

however and the importance of IL-6 in these cases is not clear. Whether this growth factor 

is produced by an autocrine or paracrine loop is also a matter of debate. It may be that, in 

the initial stages of the disease, the myeloma cells require paracrine IL-6 production 

produced by the stromal cells of the bone marrow but as the disease becomes established, 

an autocrine loop takes over (16,17).

Interleukin-6 is a pleiotropic cytokine with a wide range of biological activities. It acts on B 

cells inducing terminal differentiation into antibody secreting cells (18-24). IL-6 is also an 

essential accessory factor for T-cell activation and proliferation (25,26). It stimulates 

production of acute phase proteins by hepatocytes (27-29) and has colony stimulating 

activity on haematopoietic stem cells (30-32), fibroblasts (33) and cells of the neural system 

(34). It is produced by many cell types including monocytes (35), fibroblasts (36), T cells 

and B cells (37), endothelial cells (38), and various tumour cells (39). Interleukin 6 is also a 

potent growth factor for murine plasmacytomas and B cell hybridomas (40) and for human 

multiple myeloma both in vivo and in vitro (41-45,52).
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Interleukin-6 initiates it's biological effects through binding to a high affinity receptor 

complex consisting of two membrane glycoproteins: an 80 kDa membrane bound receptor 

which binds IL-6 with low affinity (IL-6R,CD126) and a component with a molecular size 

of 130 kDa (gpl30,CDwl30) which is required for high-affinity binding and for signal 

transduction (46,47).

The signal is generated into the cell through gpl30 which acts as a transducer, not only for 

IL-6, but also for Oncostatin M (Kaposi's sarcoma growth factor), Leukaemia inhibitory 

factor (LIF), ciliary neurotrophic factor (CNTF) and IL-11 (47-52). This indicates that 

activation of the gpl30 IL6 transducer is a key signal for inducing myeloma cell 

proliferation. Increased and high levels of (soluble) sIL-6R are found in the plasma of 

myeloma patients as compared with age-related healthy controls (53). As a result of this 

sIL-6R is a powerful prognostic factor in multiple myeloma during the course of the 

disease, patients with high levels having the worst prognosis (54). Inhibition of IL-6R or 

gpl30 transducer chain by antibodies or other antagonists as a treatment regime would 

appear to be difficult since there are very high levels of soluble IL-6R and soluble gpl30 

circulating in plasma, and IL-6R and gpl30 are present on many cells.

In patients with multiple myeloma, malignant plasma cells proliferate and accumulate in the 

bone marrow in close proximity to stromal and haematopoietic cells (myeloid, monocytic, 

fibroblastic). It has been demonstrated that short-term in vitro cultures of bone marrow 

stromal and myeloma cells results in spontaneous myeloma cell proliferation (52). These 

short term cultures produce a variety of cytokines including IL-6, G-CSF (granulocyte 

colony stimulating factor), IL-11, IL-1, TNF and others. The addition of anti-IL-6 

antibodies almost completely inhibits the proliferation of these cultures indicating that IL-6 

is an essential myeloma growth factor in vitro.

In favour of the paracrine theory of initial IL-6 stimulation in myeloma patients is the 

observation that freshly isolated myeloma cells in culture without the addition of exogenous 

cytokines fail to proliferate (55). Furthermore, it has been shown that IL-6 production by 

stromal cells can be up-regulated by cytokines secreted by the myeloma cells, particularly 

IL-1 and TNF-a (56). Also, myeloma cell adhesion triggers IL-6 secretion by normal or 

myelomatous bone marrow stromal cells (BMSC) and related IL-6-mediated tumour cell
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growth (57,58). It would appear that this process requires cell to cell contact between 

tumour and BMSC's since paraformaldehyde fixation of the BMSC's prior to tumour cell 

adhesion was found to abrogate IL-6 secretion. This implies that BMSC's are the major 

source of IL-6-mediating paracrine myeloma cell growth with the adhesion of myeloma cells 

to BMSC's leading to the induction of IL-6 transcription in BMSC's. In contrast, there are 

data from in vitro studies of myeloma cell lines to suggest that myeloma cells themselves 

contribute to the production of excess IL-6 which implies an autocrine growth loop for 

tumour expansion. IL-6 has been detected in cell culture supernatants (17) and myeloma 

cell growth has been shown to be inhibited by anti-EL-6 monoclonal antibody and IL-6 

antisense oligonucleotides (17,59).

Adhesion molecule expression in Multiple Myeloma

During differentiation, leucocytes show a changing pattern of adhesive interactions with 

extracellular matrix proteins as well as with other cells. These adhesive properties are 

mediated by specific surface proteins designated as cellular adhesion molecules (CAM). 

Cellular adhesion molecules in general are widely distributed amongst many cell types and 

play an important role in guiding cell migration and localisation in embryonic development.

Adhesive interactions between neoplastic cells, endothelial cells and extracellular matrix 

(ECM) proteins are crucial for the localisation of tumours as well as their egress from sites 

of origin. The proteins of the extracellular matrix (ECM), fibronectin, collagen, laminin are 

components of the bone marrow microenvironment and tumour cells may adhere to these 

proteins via various adhesion molecules on their surface.

It is now recognised that adhesion between cellular elements and the intercellular matrix is 

mediated through molecules which belong to a number of major groups or families of 

molecules. These include the integrins, the immunoglobulin superfamily, the selectins, 

cadherins and cell surface proteoglycan (60). It may also be that surface adherent growth 

factors may contribute to cellular adhesion and subsequent activation.

Integrins are heterodimeric membrane glycoproteins expressed on diverse cell types and 

function as the major receptors for extracellular matrix and cell-cell adhesion molecules. As
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adhesion molecules, they play an important role in numerous biological processes such as 

platelet aggregation, inflammation, immune function, wound healing, tumour metastasis and 

tissue migration during embryogenisis. There is increasing evidence to implicate integrins in 

signalling pathways, transmitting signals both into and out of cells.

Three subfamilies of integrins can be distinguished by their beta subunits: these are known 

as the p i (CD29), P2 (CD 18) and p3 (CD61) integrins (61). Members of the p i integrin 

subfamily (VLA proteins) contain the betal subunit in association with at least 6 different 

alpha subunits and include receptors that bind to the ECMs fibronectin, laminin and 

collagen.

Fresh myeloma plasma cells have been found to strongly express the intercellular adhesion 

molecule, ICAM-1, the fibronectin receptor, VLA-4 (Betal/alpha4 integrin) and the 

lymphocyte homing receptor, CD44 on their surface (60,62,63). A similar phenotype was 

found in normal plasma cells, suggesting that these adhesion molecules, or at least some of 

them, are involved in the normal homing process of plasma cells in the bone marrow. The 

binding of the fibronectin receptor, VLA-4, to fibronectin has been shown to be an 

important event in IL-6-mediated proliferation of plasma cells in normal bone marrow (64). 

The integrin VLA-5, which also binds to fibronectin, has also been shown to be expressed in 

myeloma cell lines (65,66). VLA-5 binds to an RGD- (arginine-glycine-aspartic acid) 

peptide on the fibronectin molecule (66,67). Expression of surface fibronectin and 

fibronectin mRNA (detected by Northern blot analysis) has also been shown in these 

myeloma cell lines (66).

Initial investigation of marrow myeloma cells suggest that they lack alpha2/betal, 

alpha3/betal or alpha6/betal and have only variable expression of alpha4/betal integrins 

(68,69). The lack of alpha2/betal (VLA-2) and alpha6/betal (VLA-6) expression is 

consistent with their inability to invade endothelial basement membranes, which are 

composed of collagen type IV and laminin (65). Preliminary studies suggest that myeloma 

cells cannot bind to rat high endothelial venules (HEV), consistent with their lack of 

migration into peripheral blood (70). In contrast, plasma cell leukaemias do adhere to rat 

HEV, facilitating their exit into the circulation. Since some myeloma cells and cell lines
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express CD44 which binds to high endothelial venules these observations are somewhat 

contradictory however and require clarification.

Expression of CD44 which is a broadly distributed cell surface protein which is thought to 

mediate cell attachment to extracellular matrix components or specific cell surface ligands, 

has been correlated with lateral movement on the endothelium in VLA-4 positive cell lines 

(71). CD44 is the principal cell surface receptor for hyaluronate which is an important 

component of the extracellular matrix. A large fraction of newly diagnosed myeloma 

patients have been demonstrated to have elevated levels of serum hyaluronan (72) and 

CD44 is widely expressed on myeloma cell lines (65), and fresh marrow plasma cells (62).

Normal peripheral blood B cells express VLA-4 but the level of alpha4 subunit is almost 

twice the level of betal, suggesting that not all of the alpha4 subunit is associated with 

betal (73). Studies on myeloma cell lines (65) revealed that the levels of alpha4 and betal 

subunits are equivalent in contrast with normal B cells.

The adherence of VLA-4 to fibronectin can be partially blocked by anti-pi integrin or 

anti-a4 integrin monoclonal antibodies (65). Also, myeloma cell lines expressing VLA-4 are 

partially blocked from binding to fibronectin by the addition of RGD peptide, suggesting 

that their binding to fibronectin is mediated, not only by VLA-4 protein, but also by other 

receptors with fibronectin binding properties (eg VLA-5, vitronectin receptor or gpllbllla), 

(60,65).

These data suggest that the ability of myeloma cells to bind to fibronectin through VLA-4 

and RGD-dependent mechanisms (perhaps through VLA-5 although this integrin is not 

universally expressed on myeloma cell lines), (65), may contribute to their localisation in the 

bone marrow and, conversely, the loss of fibronectin receptors may lead to extravasation 

into the circulation. Recent migration studies of leukaemic cells suggest that VLA-4 may 

regulate adhesion whilst VLA-5 controls the motility of these cells (74).

Mature B and T cells do not express much fibronectin on their surface, so it is possible that 

adundant fibronectin expression on myeloma cells (66) is a specific and important 

phenomenon in the pathogenesis of the disease. Mature B cells circulating in the peripheral
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blood may not be able to bind to stromal cells or to the microenvironment because of a lack 

of fibronectin on their surface. The presence of fibronectin receptors on stromal cells (75) 

indicates that there may be an interaction between fibronectin on myeloma cells and FN 

receptors on stromal cells, allowing myeloma cells to localise in the bone marrow. It has 

also been reported that fibronectin itself may mediate FN-FN adhesion (76). Alternatively 

heparan sulphate may mediate binding to fibronectin, since heparan sulphate proteoglycans 

reportedly attach to fibronectin (66) and it has been suggested that heparan sulphate may 

mediate specific interactions between cells and their respective environments (77).

Kawano et al (78) reported that myeloma cells, freshly isolated from bone marrow could be 

divided into two sub-populations. CD38+VLA-5+ and CD38+VLA-5' cells were 

distinguished by their response to interleukin-6 induced proliferation. The VLA5' population 

consisted of mostly immature, IL-6 responsive cells whereas the VLA-5+ population were 

mature plasma cells which were not responsive to IL-6 stimulation in vitro.

Proteoglycans which also form part of the extracellular matrix, are named according to their 

glycosaminoglycan (GAG) side-chain and are also invoved in cell-matrix adhesion. The 

GAG side chains of proteoglycans in stromal cultures include heparan sulphate, heparin and 

chondroitin sulphate. Hyaluronic acid, another GAG present in the ECM, is not covalently 

bound to protein to form a proteoglycan (79). The chondroitin sulphates may play a part in 

the release of mature cells into the blood stream and in the premature release of leukaemic 

cells (80-82).

N-CAM (CD56), the neural cell adhesion molecule has been found to be strongly expressed 

by myeloma plasma cells in the majority of patients and is absent from normal plasma cells 

(62,83,84). The absence of N-CAM expression in some myeloma cell lines revealed 

N-CAM mRNA expression on subsequent analysis by northern blot analysis (85). It looks 

as if N-CAM expression in myeloma is regulated at the transcriptional level.

It is interesting to note that N-CAM is not usually expressed in circulating cells in patients 

with end stage myeloma and plasma cell leukaemia (63) and neither is it expressed in 

refractory myeloma patients. Patients positive for N-CAM prove to be more responsive to 

chemotherapy (62). It appears from these studies that this adhesion molecule is probably
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mostly downregulated with progressive disease and peripheral involvement, perhaps 

indicating that downregulation may facilitate detachment of tumour cells from the marrow 

environment into the circulation. This is in contrast to VLA-5 expression which appears to 

be upregulated during prolonged cell culture and in fresh myeloma bone marrow as the 

disease progresses and mature myeloma cells come into contact with bone marrow stroma 

(69,78).

In summary, multiple adhesive interactions are undoubtedly occurring as a dynamic process 

controlling the localisation and adhesion of myeloma plasma cells in the bone marrow. 

Adhesive interactions, in turn, appear to regulate cytokine production either from the 

plasma cells or the stromal cells providing a favourable environment for tumour cell 

expansion. Further investigation should explain why, in the minority of patients who 

proceed to develop plasma cell leukaemia, these malignant plasma cells eventually 

extravasate back into the general circulation.

Adhesive interactions of myeloma cells with bone marrow stroma - effect of CD40 

activation

Since it has been demonstrated that myeloma plasma cells express adhesion molecules 

(60,62,65,83,86,87) and that these are almost certainly linked to localisation of myeloma 

cells in the bone marrow, the ability of tumour cell adhesion-induced IL6 secretion was 

examined by blocking cell surface-associated molecules with monoclonal antibodies (57). 

Antibodies to CD29, VLA4, VLA5, CD18, C D lla, ICAM-2 ICAM-3 and CD44 failed to 

prevent IL-6 secretion. Activation of the pan-B cell marker CD40, which has also been 

demonstrated as being present on malignant plasma cells (88) but absent from normal 

plasma cells (89) on the other hand, has been demonstrated to result in IL-6 secretion by B 

cells (90) and myeloma cells (88). Cross-linking of cell surface CD40 on human B cells with 

a monoclonal antibody (MoAb) to CD40 (90,91,92), or cross-linking of CD40 with its 

ligand (CD40L) which is normally found on activated T cells, (90,93-96) results in B cell 

activation. Similar CD40 activation via anti-CD40 MoAb or through its ligand results in 

DL-6 secretion in myeloma cells, myeloma cell lines (88) bone marrow myeloma cells, bone 

marrow stromal cells (BMSC) and BMSC-derived cell lines (57). CD40 ligand has only 

been shown to be transiently expressed on activated T cells, especially the CD4+ T cell
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population to date (96). It may be either that myeloma cells or BMSC express CD40L or 

accessory cells within the marrow microenvironment (ie, activated T cells) mediate 

triggering of IL6 secretion by these cells.

CD40, a 50kDa surface glycoprotein, is a member of a family of surface molecules with 

homology to the low affinity nerve growth factor receptor, the two TNF-a receptors and 

the antigen Fas (89,97-104). It is crucial in normal B cell differentiation and activation with 

one of it s functions being to rescue germinal centre B cells from apoptosis when activated 

(105) and another (already mentioned) being induction of low-level IL-6 secretion by cross- 

linkage of CD40 in normal B cells with mAb (90).

Activation of CD40 results in the induction of homotypic adhesion amongst B cells 

mediated primarily through LFA-1 and ICAM-1 (106,107), proliferation (91,108), 

immunoglobulin heavy chain isotype switching - in conjunction with interleukin-4, isotype 

switches to IgE (109), immunoglobulin secretion (109-111) and rescue of B cells from 

apoptosis after somatic hypermutation in the germinal centre (105,112,113). Patients with 

the X-chromosome-linked disease Hyper-IgM syndrome who have an inability to synthesise 

IgG, IgA or IgE have been demonstrated to have a mutation in the gene encoding the CD40 

ligand, (114). Human CD40L, expressed transiently on activated T cells, is a 39kDa type II 

integral membrane protein with sequence homology to TNF (89). CD40L has mitogenic 

activity on human B cells comparable to that seen using MoAb to CD40. This effect is 

considerably enhanced in the presence of additional cytokines including IL-2, IL-4 and 

IL-10 (115). Since the adhesion molecules LFA-1 and ICAM-1 are also expressed on 

myeloma cells CD40 activation on the surface of myeloma cells could result, at the very 

least, in their localisation and aggregation in the bone marrow.

Urashima et al. (57) have recently reported that activation of CD40 on the surface of 

myeloma cell lines using NIH3T3 CD40 ligand transfectant (CD40LT) cells also resulted in 

increased surface expression of CD80, CD 18, CD 11 a, CD lib , and CD 11c. CD40 

stimulation is known to upregulate CD80 (B7-1) expression on normal and leukaemic B 

cells (116-118). CD80 is a ligand for CD28 expressed on T cells and its activation results in 

cytokine secretion by T cells, eg IL-2. Since activated T cells also stimulate B cell
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differentiation and proliferation it appears from these results that T and B cells exhibit a 

reciprocal amplification mechanism.

The intracellular signal transduction pathways utilised by CD40 to generate its diverse and 

potent effects on B cells are not yet clearly defined. It is likely that CD40 may be connected 

to different signalling pathways at different stages of B-cell differentiation. For example, 

whereas CD40 delivers a rescue signal to germinal centre B cells about to undergo 

apoptosis, it can actually promote programmed cell death in some B cell lymphoma lines 

(119). Also, CD40, generally thought to mediate signalling for B cell viability and growth, 

has been shown to induce surface expression of Fas and to promote susceptibility to Fas- 

mediated apoptosis (120-122).

The Cell Surface Antigen - Fas (APO-1).

The human cell surface antigen Fas (CD95) is a 50kD transmembrane protein expressed in 

many neoplastic and normal cells including lymphocytes, myeloid cells, liver, heart and 

ovary, myeloma cells, lymphoma cells and other tumour cells (101). Fas belongs to the 

tumour necrosis factor receptor (TNFR), nerve growth factor receptor (NGFR) and CD40 

antigen families (47).

The human Fas ligand (FasL) is a member of the TNF family and is expressed in activated 

splenocytes and thymocytes (123). It is involved in T cell mediated cytotoxicity (death by 

apoptosis or activation induced cell death). Fas antigen (APO-1) is also expressed on 

germinal centre cells which are IgD negative, but not on follicular mantle zone (surface) 

slgD positive lymphocytes (103). This is in complete contrast to Bcl-2 protein expression 

(102). An inverse relationship between the expression of Bcl-2 protein and Fas antigen in 

germinal centre cells and lymphoblasts has been demonstrated leading to the postulation 

that upregulated Fas antigen expression concommitant with downregulated bcl-2 expression 

may help to control apoptosis in vivo (102). The cytoplasmic domains of members of the 

NGFR/TNFR family consist of 36-221 amino acids and in the case of the CD40 system, this 

region is essential for signal transduction (104). The cytoplasmic domain of the Fas antigen 

is 41% homologous with the corresponding region of the CD40 antigen.
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The intracellular domain of Fas (145 amino acids) contains a region (“death domain”) which 

shows homology with the p55 TNF receptor (TNFR1) which is reported to be essential for 

transmission of the apoptotic signal (298). Signalling by the p55 tumour necrosis factor 

receptor and by Fas antigen is initiated by receptor clustering and self interaction via their 

structurally related death domains (298,299). TNF and Fas ligands occur as homotrimeric 

molecules and can therefore induce clustering of receptors merely by binding to them (300). 

Activation via the death domains of TNFR1 and Fas triggers apoptosis and activation of the 

transcription factor NF-kB (298,299). The death domain seems to modulate multimeric 

interactions between receptor-associated proteins that can induce apoptosis (300-305).

Two distinct classes of receptor-associated proteins have been described which appear to 

couple the TNF and Fas receptors to downstream signalling cascades. Three intracellular 

proteins have been described which contain death domains which interact with the death 

domains of Fas and TNFR1. TRADD (TNFR associated Death Domain) is a 34kD protein 

which interacts specifically with TNFR1 (301), whereas the 23kD Fas associated death 

domain, FADD (303,304) and the 74kD receptor interacting protein, RIP (305) interact 

with Fas. Death domains have been shown to be capable of both homotypic and heterotypic 

associations (301-304) suggesting that they may function as adaptors to couple some 

members of the TNFR superfamily to other signalling proteins. Overexpression of TRADD 

activates TNFR 1-like signalling pathways for both apoptosis and activation of the 

transcription factor NF-kB (301). Similarly, overexpression of FADD (303,304) or RIP 

(305) mimics Fas activation leading to activation induced cell death. The second family of 

signal transducing proteins utilised by the TNFR family are the TNFR-associated factors 

(TRAFs). TRAF1 (45kD) and TRAF2 (56kD) exist as a multimeric complex that interacts 

via TRAF2 with the signalling domains of both TNFR2 and CD40 (306,307). TRAF3 was 

identified by a yeast two-hybrid interaction cloning system as a CD40 associated protein of 

64kD (308,309). The three known TRAFs share a highly conserved C-terminal “TRAF 

domain” of about 150 amino acids, which is involved in oligomerisation and receptor 

association (306,307,309). Overexpression of TRAF2 but not TRAF1 or TRAF3, activates 

NF-kB and TRAF2 has been shown to be a common mediator of signal transduction by 

TNFR2 (p75) and CD40 (307). TRAF3 has also been shown to interact with the
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cytoplasmic C-terminus of EBV-LMP1 (310), suggesting that some of the pleiotropic 

effects of the LMP1 on cell phenotype and growth may be mediated through TRAF3.

Although ligation of CD40 expressed on the surface of B lymphocytes provides a potent 

survival signal, this molecule is also expressed in basal epithelial cells and in a number of 

different carcinomas where its function is unknown (311-313). It has been reported that, 

contrary to studies in normal B cells, CD40 ligation in some carcinoma cell lines and in 

normal primary epithelial cells results in growth inhibition and enhanced susceptibility to 

apoptosis induced by the anti-neoplastic drugs, TNF-a, Fas and ceramide (314). The 

expression of Bcl-2 did not affect growth inhibition induced by CD40 ligation in epithelial 

cells but its homologue EBV-LMP1 blocked the effect. It has been postulated from these 

experiments that CD40 regulates epithelial cell growth in a manner mimicked by LMP1 and 

TRAF3 has been implicated as a common mediator in the transduction of the growth 

inhibitory signals generated via the CD40 and LMP1 pathways.
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The role of Fas in the immune system is perhaps best exemplified in Ipr and gld  mice. These 

mice have either a point mutation in the gene encoding Fas ligand (mice homozygous for 

gld  - generalised lymphoproliferative disease), (124) or in the gene encoding the Fas antigen 

(mice homozygous for Ipr - lymphoproliferation). Both phenotypes lead to the development 

of lymphadenopathy and autoimmune disease (125). This may be explained by a failure of 

autoimmune cells to undergo apoptosis, ie Fas antigen has an important role in the negative 

selection of autoreactive T cells in the thymus.

In addition to the massive accumulation of abnormal T cells, Ipr and gld  mice produce large 

amounts of polyclonal IgG and IgM, indicating that B lymphocytes are also abnormally 

activated. Since activated, mature B cells express Fas, it seems that collaboration between T 

cells expressing FasL and activated B cells expressing Fas results in removal of the activated 

B cells. It could be postulated that myeloma plasma cells have escaped normal homeostatic 

control due to a defect in the Fas activation network. This could be manifested either by 

non-functional Fas antigen expression (rather than no expression since most myeloma cells 

and cell lines are strongly positive for Fas antigen expression as demonstrated by flow 

cytometry), (126 and personal findings), or possibly due to a mutation in Fas ligand 

expression as in gld  mice. Studies on the T cells of myeloma patients however, (126a), have 

shown that activated (HLA-DR+) T cells found in these patients co-expressed Fas but 

lacked Bcl-2. They also reported that there was a higher incidence of Fas positive T cells 

and a lower percentage of Bcl-2 positive T cells amongst myeloma patients as opposed to 

controls. The HLA-DR+ restricted T cells were sensitive to Fas-mediated apoptosis as 

opposed to other T cell subsets in these patients. They concluded that myeloma T cells have 

a dysregulated expression of Fas and bcl-2 antigens and that this is associated with an 

enhanced susceptibility to apoptosis amongst the T cell population. This could mean that T 

cells from myeloma patients are weakened in their ability to exert an anti-tumour response 

in vivo.

Normal B lymphocyte development

Since myeloma is a tumour of the B cell lineage a review of normal B cell lymphopoesis 

was undertaken with the view that there may be some similarities in the processes of cell 

activation and induction of, or protection from, activation-induced cell death (apoptosis).
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Germinal centres (GC) develop in secondary lymphoid tissue from primary lymphoid 

follicles as B cells respond to T-dependent antigenic stimulation (127). Analysis of the 

phenotype of human tonsillar germinal centre cells in situ identifies four distinct 

compartments - the inner dark zone, the basal light zone, the apical light zone and the outer 

zone, all of which are encompassed by the follicular mantle (128).

Upon antigenic stimulation, rapid B cell proliferation gives rise to the dark zone which 

contains centroblasts and is relatively devoid of T cells. These centroblasts undergo somatic 

mutation of their immunoglobulin variable (V) region genes. Maturing B cells then move 

into the basal light zone which also contains abundant follicular dendritic cells and some T 

cells. These centrocytes are then selected on the basis of their affinity for antigen presented 

by follicular dendritic cells, those with lower affinity being eliminated by apoptosis (death by 

neglect or programmed cell death). The high affinity centrocytes expressing IgM surface 

antibody then undergo isotype switching of their immunoglobulin heavy chain (129). Those 

cells, which would otherwise die (centrocytes and centroblasts, not selected by antigen), can 

be rescued from apoptosis by cross-linking surface CD40 with recombinant cell-bound 

CD40L (CV1-EBNA-CD40L),(112), by treatment with MoAb to CD40 or cross-linked 

anti-immunoglobulin (anti-Ig bound to sheep red blood cells),(130).

In the apical light zone the centrocytes (B blasts) can then follow one of two terminal 

differentiation pathways, becoming either a memory B lymphocyte or a plasmablast 

precursor to a plasma cell. Those cells selected via CD40 cross-linking (with subsequent 

induction of Bcl-2 protein expression) becoming memory cells whilst those selected via 

CD23 (low affinity receptor for IgE) + interleukin-la become plasmablasts (105,128,130- 

134). The B cells in the follicular mantle are long-lived resting cells which are resistant to 

apoptosis (133,135,136). It has been demonstrated that rescue from apoptosis by CD40 

cross-linking in germinal centre B cells is usually (105,130), but not always (112) 

accompanied by up-regulation of the bcl-2 gene.
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Fas ligation induces apoptosis of CD40-activated human B lymphocytes.

Fas is expressed at high levels on B cells in the germinal centres of secondary lymphoid 

follicles where massive B cell proliferation, somatic mutations within Ig variable region 

genes and antigen-driven selection of high affinity B cells occur (102,129,137,140,142). 

Germinal centre B cells are characterised by their rapid entry into spontaneous apoptosis, a 

process that can be prevented by CD40 ligation but accelerated by Fas triggering (121,130). 

Since resting B cells are virtually devoid of Fas and are not prone to apoptosis (102) and 

CD40-CD40L interaction appears to be necessary to induce germinal centre formation 

(138,139) it was investigated whether CD40 activation of B lymphocytes could modulate 

Fas expression and function (120). It was shown that CD40 engagement, using either a 

recombinant human CD40L or a cross-linked anti-CD40 MoAb, induces resting B cells to 

express high levels of Fas antigen and that ligation of such, using a monoclonal anti-Fas 

antibody (clone, CH-11), leads to apoptotic cell death (120,121). This resulted in inhibition 

of CD40-induced B cell growth and differentiation in response to recombinant cytokines 

(IL-2, IL-4 and IL-10) indicating that the function of Fas on B cells prevails over that of 

CD40 and is therefore likely to control the expansion of antigen-specific B cell clones and 

that none of these B cell trophic factors are able to inhibit Fas-induced death. It has been 

shown that the activation state of B cells is critical for their sensitivity to Fas (140,141). 

Although germinal centre B cells express high levels of the apoptosis-inducing antigen Fas 

this does not appear to be involved in antigen-specific selection (142).

Bcl-2 expression in Germinal centres and myeloma cells

Bcl-2 is a proto-oncogene expressed in normal and malignant cells of the lymphoid and 

myeloid lineages. The Bcl-2 protein acts by protecting cells against programmed cell death 

(apoptosis), and maintenance of B cell memory since there is a high level of Bcl-2 

expression in long-lived, recirculating, memory B cells (105,136,143). Bcl-2 is now known 

to inhibit apoptosis induced by a wide range of agents. Enhanced survival in the absence of 

cytokine (144) has been demonstrated for both normal and immortalised cells of several lineages 

(lymphoid, myeloid, neuronal). Substantial protection is also afforded against irradiation, 

genotoxic drugs, glucocorticoids, sodium azide, calcium influx, heat shock and reactive oxygen
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species (145). Thus, multiple pathways to cell death must converge on a step that can be 

regulated by Bcl-2.

The subcellular localisation of the Bcl-2 protein has been found, by subcellular fractionation 

studies, to be within the inner mitochondrial membrane (146) although some groups have 

demonstrated the Bcl-2 protein to be in the separated membrane fractions containing the 

nuclear envelope, plasma membrane and endoplasmic reticulum of t(14; 18) cells from 

patients with follicular lymphoma (147-150). These data suggest that Bcl-2 may belong to a 

group of proteins involved in import of precursors across membranes.

The bcl-2 gene was initially identified at the chromosome breakpoint of the t(14;18) 

translocation which is present in more than 70% of Follicular Lymphomas and involves a 

reciprocal translocation between chromosomes 14 and 18 (151). This brings part of the 

bcl-2 gene on chromosome 18 into juxtaposition with the immunoglobulin heavy chain gene 

locus on chromosome 14. Most breakpoints on chromosome 18 occur in the untranslated 

region of the bcl-2 gene, with the consequence that the portion of the gene encoding this 

protein remains intact (148,152-154).

Detailed studies by Korsmeyer of the B cells within the different compartments of germinal 

centres have revealed that the expression of the protein product of the bcl-2 proto­

oncogene (by immunohistochemical assessment) reflects the degree of apoptosis within 

these compartments (136). There is no Bcl-2 protein expressed in the centroblasts of the 

dark zone or centrocytes of the light zone, where these cells are dying by apoptosis. There 

is a very low level of Bcl-2 protein expression in the B blasts of the apical light zone where 

B cells differentiate into plasma cells or memory cells but there is marked Bcl-2 expression 

in cells of the follicular mantle which comprise long-lived, recirculating IgM+IgD+ B cells 

(see Figure 2.2.10a).

Comparison of bcl-2 mRNA and protein expression in germinal centres and in myeloma cell 

lines, by in situ hybridisation, immunohistochemistry and flow cytometry techniques 

indicates that bcl-2 mRNA is expressed throughout the germinal centre albeit in varying 

amounts, and in most myeloma cell lines tested but the protein product is only manifested in 

the follicular mantle, in normal plasma cells and in some myeloma cell lines
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(136,155,156,157 and personal findings). The bcl-2 gene has been reported to be 

downregulated at later stages of B lymphocyte differentiation (158, 159), although it has 

been demonstrated as present in normal plasma cells (156). It is of interest that the gene is 

consistently expressed in myeloma cell lines although not always translated (155, 156 and 

personal findings). In keeping with this, it has been reported that, whilst normal and 

neoplastic lymphoid cells express messenger RNA transcripts, translation does not 

necessarily follow implying that bcl-2 gene regulation is post-transcriptional (155,160).

It has been proposed that Bcl-2 plays a critical role in the growth and prevention of 

spontaneous or Dexamethosone-induced apoptosis in myeloma cell lines (161). It has also 

been reported that Bcl-2 is upregulated in fresh myeloma plasma cells with normal levels of 

expression in patients with monoclonal gammopathy of unknown significance (MGUS), 

(162). The role of bcl-2 in conferring resistance to drug-induced apoptosis in B cell 

malignancies, especially in Follicular Lymphoma has been examined (163). The frequency of 

t(14; 18) in myeloma is only 10-15% but several groups (156,161) have found that the 

majority of myeloma cell lines and freshly isolated myeloma cells express Bcl-2 protein. This 

suggests that Bcl-2 in myeloma may play a similar role to Bcl-2 in follicular lymphoma but 

in the absence of t(14;18) expression. Dexamethasone is one of the most effective drugs for 

the treatment of myeloma and has been shown to induce apoptosis in various myeloma cell 

lines (164), the extent of which was inversely correlated with intracellular levels of Bcl-2 

(161,165).

Apoptosis and T cell-mediated cytotoxicity

Apoptosis is a widespread biological phenomenon in which cells are deleted, during the 

course of their normal development, through a programmed response, rather than as a result 

of accidental injury (166). Apoptosis is an active process that provides an additional means 

of precisely regulating cell numbers and biological activities (167). It is a highly ordered 

process characterised by nuclear changes such as chromatin condensation, fragmentation 

and margination as well as intemucleosomal DNA cleavage into approximately 180 base 

pair segments (168). Ultrastructural changes also occur that include cytoskeletal disruption, 

cell shrinkage, cytoplasmic organelle compaction and membrane blebbing leading to 

fragmentation of the dying cell into numerous membrane-bound apoptotic bodies. These are
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subsequently engulfed by neighbouring cells or professional macrophages in the final 

resolution of the suicide process. Apoptotic suicide has many advantages over other forms 

of cell death, owing principally to the membrane integrity that is maintained throughout the 

entire process. There is no leakage of intracellular components, inflammation, or scar 

formation. The process is remarkably fast and can proceed to completion within a few 

hours. Necrotic cells, for example, leak their constituents into the surrounding extracellular 

space usually resulting in an inflammatory response.

Lymphocytes appear to be more susceptible to programmed cell death than most cell types, 

particularly at early stages of their development (169,170). Apoptosis of lymphocytes is likely to 

be regulated in multiple ways, most of which are still poorly understood. Death of mature 

lymphocytes by apoptosis frequently involves signalling through Fas antigen (170). Both Fas and 

the 551cDa TNF receptor share a distinctive cytoplasmic region (the "death box") essential for 

inducing apoptosis.

While not all cell types undergoing physiological cell death display every cardinal feature of 

apoptosis (171), the underlying chemical pathway may prove to be universal. The demonstration 

that enucleated cells can undergo cytoplasmic changes strongly ressembling those of apoptotic 

cells and that bcl-2 blocks this process (172) suggests that apoptosis may be orchestrated from 

the cytoplasm rather than the nucleus (see below, 173).

Recent studies have suggested that there are two distinct pathways of cell death: PCD 

which is a result of inadequate activation and is independent of Fas, and activation-induced 

cell death (AICD), which is induced by TCR engagement and is mediated by Fas-FasL 

interaction (174,175). It has been proposed that the survival genes bcl-2 and bcl-xi play a 

crucial role in protecting cells from PCD but not from AICD (174-179) but there are 

conflicting views on this however (102,180,181).

The Fas pathway is one of two lytic mechanisms utilised by cytotoxic T lymphocytes to kill their 

targets, perforin being the other (182,183). Fas-mediated cytotoxicity, which is calcium 

independent for its execution, requires the expression of Fas at the target cell surface (184) and 

of Fas ligand at the effector cell surface (185). The second mechanism, dependent on calcium for 

its execution, requires perforin and serine esterases (granzymes or fragmentins), (186,187). Fas-
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based T cell-mediated cytotoxicity is the main lytic mechanism in CD4+ MHC class II restricted 

T cell killing whereas CD8+ MHC class I restricted cytotoxic T lymphocytes use both the Fas 

and perforin pathways (188,189).

In the method of killing using cytotoxic granules the killing process is initiated by recognition and 

binding of the target cell to the cytotoxic T lymphocyte (CTL) and the transmission of signals, 

including calcium fluxes in the CTL. These signals result in rapid reorientation of the secretory 

apparatus of the CTL towards the target cell and the subsequent secretion of intracellular 

granules in the direction of the target contact area. Exocytosis of granules into the confined 

space of the contact area is the next event in the ensuing target-cell death (190).

Perforin is the critical and essential component for the initiation of target cell lysis. It is a pore- 

forming protein and belongs to the perforin family, together with the complement proteins C6, 

C7, C8 and C9 which may have arisen from a common ancestor. The presence of perforin- 

induced pores in the target cell membrane results in an immediate attempt at repair by 

endocytosis of the membrane patch together with the pore. This results in the uptake of a small 

amount of liquid from the surrounding medium (pinocytosis) including granzymes which are 

secreted proteins which may be associated with perforin via the proteoglycan complex or may be 

present in solution as a result of granule secretion. The internalisation of granzymes during the 

repair process leads to the initiation of nuclear disintegration and the combination of granzyme- 

and perforin-mediated lysis results in an unavoidable killing mechanism (190).

Fas based cell death is mediated by receptor-counter receptor interaction. CTLs express the Fas 

ligand which, upon interaction with Fas antigen on a target cell, mediates apoptosis (184,191). 

Paradoxically, Fas receptor triggering can also provide a proliferative versus an apoptotic signal 

(140,181,192) which suggests that in vivo Fas may play different roles depending on the context 

of its cellular interactions.

The ability of bcl-2 to block these two independent pathways has been studied (180,193) with 

conflicting results. Chiu et al. (193) suggest that bcl-2 may block apoptotic lysis induced by 

perforin plus granzymes, but not apoptotic lysis induced by the Fas-Fas ligand pathway, whereas 

Lee et al. (180) state that bcl-2 protects against Fas-based, but not perforin-based T cell 

mediated cytolysis. This would explain why over-expression of bcl-2 does not always protect
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cells from apoptosis. The role of Bcl-2 in Fas-mediated lysis triggered by Fas antibody is also 

controversial. An inverse relationship between levels of Fas and Bcl-2 is believed to regulate the 

ability of Fas to induce apoptosis (102,181) but others have reported that no such relationship 

exists in many non-haematopoeitic cells and tumour lines (175,179,193).

These controversial results may suggest differences in the mode of action and regulation of bcl-2 

and Fas in different cells. In addition, Fas-antibody may not have the same effects on Fas- 

signalling as membrane-bound Fas ligand expressed by cytotoxic lymphocytes. Since the Fas 

ligand acts as a trimer (194) and trimerises the Fas receptor for signalling, antibodies would be 

unable to act analogously. There is also the possibility that apoptosis is controlled by one of the 

other members of the bcl-2 family such as bcl-x (195), or Bax (196) although Strasser et al. 

(175) have recently reported that Fas signalling does not alter expression of Bcl-2, Bax or Bcl-x 

in a human lymphoblastoid cell line. These results don’t exclude the possibility that Fas signalling 

may interfere with bcl-2 function by other mechanisms such as post translational modification of 

Bcl-2 or Bax or by induction of other inhibitors but they raise the possibility that Fas signalling 

triggers death by a mechanism that bypasses bcl-2.

The increasing number of members of the bcl-2 family which are involved in the control of 

apoptosis in a range of different cell types include Bax (196), Bak (Bcl-2 antagonist/killer) 

which functions as an inducer of apoptosis (197), Bcl-xL, Bcl-xs (195), Al (198), Mcl-1 (199), 

Bad (200). Bag (201) is a Bcl-2-interacting protein which protects against AICD. Bcl-2 forms 

heterodimers with Bax and this is essential for Bcl-2 to exert its protective effect since mutations 

in the BH1 and BH2 binding domains of Bcl-2 result in a protein product which fails to 

dimerize with Bax with subsequent loss of its protective effect on apoptosis (202). Bcl-2 can also 

form heterodimers with B c I -x l ,  Bcl-xs, Bak and Mcl-1 (203,204). In contrast, Bax appears to 

only interact with Bcl-2 and Bcl-xL. B c I - x l  and Bcl-xs have opposing functions, with the former 

(47% homologous to Bcl-2) long form of Bcl-x acting as a cell death blocker, and the latter, 

short form of Bcl-x acting as a Bcl-2 and B c I - x l  antagonist by promoting apoptosis (195). Bcl-xL 

increases the cellular apoptotic threshold and is able to form stable complexes with Bax in vitro 

and in vivo (205). Overexpression of Bcl-xs does not alter the ability of Bax to heterodimerise 

with B c I - x l  in vivo. In other words, Bcl-xs does not appear to function by competitively 

disrupting the formation of dimers composed of other Bcl-2 family members.
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In addition to Bcl-xs, the Bax, Bad and Bak proteins function as promoters of cell death, whilst 

the Mcl-1 and Al proteins appear to be suppressors of cell death like Bcl-2 and B c I - x l .  Several 

homologues of Bcl-2 have also been discoverd in viruses, including the ElB-19-kD protein of 

adenovirus and the BHRF-1 protein of Epstein-Barr virus (EBV), both of which function as 

suppressors of cell death (206,207). The complexity of these interactions among Bcl-2 family 

proteins has undoubtedly evolved to provide multiple opportunities for fine-tuning the relative 

sensitivity or resistance of cells to apoptotic stimuli through differential regulation of the 

expression of various Bcl-2 family genes (200,208).

The ability of Bcl-2 to block programmed cell death by diverse cytotoxic agents (144,145) 

implies that it acts at a step common to many pathways. Genetic analyses of the programmed cell 

death of the nematode Caenorhabditis elegcms revealed that the ced-3 and ced-4 genes were 

both required for programmed cell death to occur (209,210). This could be blocked by the ced-9 

gene (which is homologous to both bcl-2 and bcl-x). ced-3 is related to the mammalian 

interleukin-lp (EL-ip) converting enzyme (ICE), a cytoplasmic cysteine protease that cleaves the 

cytokine precursor at specific aspartate (Asp) residues (211). ICE is involved in apoptosis 

induced by various stimuli, including Fas-mediated apoptosis (212-216). The activity of ICE can 

be inhibited by the product of crmA, a cytokine-response modifier gene encoded by the cowpox 

virus (212,214). Several homologues of ICE have recently been identified which are sub-divided 

into three groups (ICE-, CPP32- and Ich-l-like proteases), (217-226). It has recently been 

shown that specific inhibitors of ICE- or CPP3 2-like proteases (including crmA, and bcl-2) can 

inhibit Fas-mediated apoptosis (213,227,228). Enari et al. (227) have shown that Fas sequentially 

activates ICE- and CPP32-like proteases, both of which have different substrate specificities 

(224,225,229) and that downstream, CPP32 is sufficient to cause apoptotic DNA degradation in 

nuclei together with a component (or components) in the cytoplasm. One of CPP32’s substrates 

is PARP (poly (ADP-ribose) polymerase) which has been implicated in a variety of apoptotic 

events and has been claimed as the relevant “death substrate” in Fas-mediated apoptosis 

(230,231). It has been proposed that proteolytic cleavage of PARP inhibits most of its DNA 

repair activity leading to the demise of the cell.

Fas-mediated apoptosis proceeds without RNA or protein synthesis implying that the appearance 

of ICE- or CPP32-like activity is a post translational activation of these proteases. The fact that 

the typical features of apoptosis can be induced in enucleated cells suggests that nuclear
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Activation of CD95 recruits the Fas-associated death domain-containing molecule FADD 

(MORT1) which in turn binds and presumably activates the FADD-like ICE j 

(FLICE/MACH1/Mch5), a member of the ICE family of proapoptotic proteases 

(303,304,315). FLICE has homology to both FADD and the ICE family of cysteine 

proteases. It binds to the death effector domain of FADD and upon overexpression induces 

apoptosis that is blocked by the ICE family inhibitors, crmA and z-VAD-fmk. This provides 

evidence to link a death receptor physically to the proapoptotic proteases of the ICE/Ced-3 

family (315). FLICE is believed to be the enzyme responsible for activating a protease 

cascade after Fas receptor ligation, leading to cell death.



signalling and DNA fragmentation are not the critical events for Fas-mediated cell death. This 

would support the concept of an orchestrator of cell death localised to the cytosol (173). 

Shimizu et al. (228) have also shown that overexpression of Bcl-2 or Bcl-xL can inhibit ICE- and 

CPP32-like protease-mediated cell death, indicating that Bcl-2 and Bcl-xL act upstream of these 

proteases. These results strongly indicate that a death signalling pathway exists in vivo in which 

various death signals activate a protease cascade which may be blocked by members of the Bcl-2 

family of proteins. The presence of multiple mammalian ICE-proteases with partially overlapping 

but distinct activities suggests that this is a complex protease cascade which is induced upon Fas 

ligation. The precise role of single members of the ICE family in Fas-mediated apoptosis is still 

unclear (232). The regulation of a cell’s apoptotic threshold is likely to result from a complex set 

of interactions among Bcl-2 family members and other regulators of apoptosis.

One of the proteases in the perforin-mediated mechanism of cytotoxic lymphocyte killing is 

granzyme B. This protease has an unusual substrate site preference for Asp residues, a property 

which it shares with members of the ICE family of proteases (233,234). It has been shown that 

granzyme B is sufficient to produce all the key features of apoptosis, including the degradation of 

several protein substrates, when introduced into Jurkat cell-free extracts (235). This granzyme 

B-induced apoptosis could be neutralised by a tetrapeptide inhibitor of the ICE family protease 

CPP32 although a similar inhibitor of ICE had no effect. Granzyme B was found to convert 

CPP32, but not ICE, to its active form. The cowpox virus protein CrmA was found to inhibit 

granzyme B-mediated CPP32 processing and apoptosis demonstrating that CPP32 activation is a 

key event during apoptosis initiated by granzyme B. This indicates that both the Fas-mediated 

and perforin/granzyme-mediated cell death pathways could be linked through a common, final 

pathway of protease cascade activation.

Fas expression in myeloma cells and cell lines-correlation with IL-6 dependency and 

Bcl-2 expression

Studies of Fas expression in fresh myeloma plasma cells as well as established myeloma cell 

lines has revealed that Fas is constitutively expressed in both although the intensity of 

expression is variable (126,236,236a) which is typical of antigens whose expression varies 

with cellular activation status such as Fas expression on normal B cells (103,237). Normal 

plasma cells have been reported to be negative for Fas expression (103,238). Susceptibility
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to Fas-mediated apoptosis in freshly isolated myeloma samples and some myeloma cell lines 

was also variable but the majority (4/5 and 6/7 patient samples, Refs.236, 236a respectively) 

of those cell lines dependent on interleukin-6 were not killed by activation of Fas. The EL-6 

dependent myeloma cell line shown to be killed by Fas activation was not protected by 

addition of exogenous IL-6, nor did IL-6 treatment of these lines have any effect on Fas 

expression. No correlation between Bcl-2 expression and the susceptibility of myeloma cell 

lines to Fas-mediated apoptosis was observed (126,236), despite the fact that some groups 

have found that the intracellular levels of Bcl-2 may influence the susceptibility of cells to 

such Fas-induced cell death (136,181). An interesting observation made by Jelinek’s group 

(236) was that malignant plasma cells in freshly isolated bone marrow MNC cultures were 

resistant to Fas-mediated apoptosis but isolated plasma cells from the same patient were 

sensitive. This suggests that there may be a protective factor or signal derived from bone 

marrow MNC which prevents Fas-mediated cell death in fresh myeloma samples.

Research aims

Since malignant plasma cells in myeloma patients home to the bone marrow, a study was 

undertaken firstly to define the phenotypic profile of a panel of myeloma cell lines and then 

to investigate their ability to adhere to various extracellular matrix molecules. The 

extracellular matrix molecules studied were- collagen, fibronectin and FN-RGD, a synthetic 

peptide consisisting of multiple arginine-glycine-aspartic acid (RGD) repeats which mimics 

the part of the fibronectin molecule that binds to the integrin VLA-5, expressed on some 

myeloma cells. Adhesion blockade was attempted using monoclonal antibodies directed 

against various myeloma surface antigens in order to ascertain the importance or otherwise 

of these molecules in the binding of myeloma cells to members of the extracellular matrix 

(Chapter 3).

It has been demonstrated that CD40 crosslinking on the surface of B cells and myeloma 

cells rescues them from apoptosis (88,105) and induces IL-6 secretion (88,90). This is 

usually (105,130), but not always (112,239), accompanied by up-regulation of the bcl-2 

gene. Since the Fas antigen has homology with CD40 and has been reported to act in 

opposition to bcl-2 (102), it was decided to study these genes for mRNA and protein 

expression in myeloma cells in an effort to elucidate any potential link between expression
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of these antigens and the onset of multiple myeloma. A more complete knowledge of the 

interactions between EL-6, CD40 and it's ligand, and the expression of bcl-2 or Fas and it’s 

ligand is necessary in order to determine possible improvements in treatment strategies for 

this disease.

Jelinek's group at the Mayo Clinic described a new myeloma cell line (ANBL-6) which is 

IL-6 dependent, expresses CD40 on its surface and is sensitive to monoclonal antibodies to 

both CD40 and IL-6 (88). Activation of CD40, via a monoclonal anti-CD40 antibody or 

ligation with its ligand, was found to induce proliferation of this myeloma cell line with a 

resultant increase both in IL-6 secretion and in expression of IL-6 mRNA by the cells. This 

CD40-mediated proliferation was substantially inhibited by a neutralising monoclonal 

antibody to IL-6. These results indicate that the primary mechanism of anti-CD40 

stimulated proliferation of the ANBL-6 cells is the induction of autocrine EL-6 production 

and that perhaps CD40 expression in myeloma cells may play an important role in tumour 

cell expansion by induction of an autocrine DL-6 loop.

CD40 expression on fresh myeloma bone marrow samples has previously been reported as 

negative (86,240,241), or low (242) but it is not clear how the malignant plasma cells in 

these studies were defined and the number of patient samples were small. It is possible that 

previous failures to detect CD40 in myeloma cells may be due to differences in the 

monoclonal antibodies used for phenotyping and/or in staining or analysis protocols. 

Another possible explanation for these discrepancies could be that CD40 expression may 

have been lost by long term in vitro culture and that loss of CD40 expression may be 

associated with loss of IL-6 dependency in some cell lines. Loss of IL-6 dependency is 

common in long term myeloma cell lines.

The panel of eight myeloma cell lines used in this study was examined for CD40 and Fas 

antigen expression by flow cytometric analysis. All the myeloma cell lines tested positive for 

CD40 and Fas albeit at different intensities. Garrone et al. (120) have shown that resting 

tonsil B cells, expressing either low or absent levels of Fas, were induced to express Fas 

after ligation of CD40 using the CD40Lig-L culture system (see below). Engagement of B 

cell antigen receptor by immobilised anti-K and -X antibodies did not turn on Fas expression. 

Anti-Fas monoclonal antibody was shown to inhibit the later phases of CD40-induced B cell
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growth due to apoptosis. Fas ligation was shown to inhibit proliferation and 

immunoglobulin secretion of CD40 activated B cells in response to recombinant cytokines. 

This implies that engagement of CD40 antigen on B cells induces Fas expression and 

sensitises them to Fas-mediated apoptosis. It was decided, therefore, to investigate whether 

myeloma plasma cells could be stimulated to proliferate in the same manner and whether 

they, too, would be sensitive to Fas-mediated apoptosis.

It was noted from the literature that the myeloma cells lines resistant to apoptosis were 

mostly dependent on IL-6 (126,236,236a) and it was therefore proposed to investigate this 

further by broadening the study by looking at several myeloma cell lines and comparing IL-6 

dependent and independent passages of the same myeloma cell line (ANBL-6) for 

susceptibility to Fas-mediated apoptosis. The fact that fresh myeloma samples were also 

resistant to AICD is interesting since these are likely to be dependent on IL-6 for their 

growth also (55). It has previously been reported that Fas antigen is not expressed on 

normal plasma cells (103,238). Jelinek’s group have reported ANBL-6 (EL-6 dependent) to 

be negative for Fas antigen expression (236) and that this cell line was non-susceptible to 

Fas-mediated apoptosis.

Two culture systems originally established in an effort to generate factor-dependent B cell 

lines (108,120) were adapted for the study of myeloma cell activation of proliferation via 

CD40 (and the cytokines IL-4 and IL-6) and induction of apoptosis via Fas activation. 

Although myeloma cell lines are obviously no longer dependent on stromal layers for their 

propagation it was decided that the use of the CD40 (108) and CD40Lig-L (120) culture 

systems may potentiate the response to CD40 activation. Cross-linkage of this antigen on 

the surface of myeloma cells using mouse fibroblasts transfected with either the human 

immunoglobulin Fc receptor (FcyRII/CDw32) or with the human CD40 ligand constitute 

the CD40 and CD40Lig-L culture systems respectively. Interleukin-4 was used to test for 

proliferation as a comparison to interleukin-6 in these studies since it is a potent B cell 

stimulation factor (108).

The observation that the CD40 ligand also stimulates ANBL-6 cells into EL-6 mediated 

proliferation indicates that the natural ligand for CD40, which is expressed mainly on 

activated helper T cells (93-96), but has been reported as present on monocytes, natural
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killer cells, small intestine and fetal thymocytes (243), may play a role in the bone marrow 

microenvironment. Either CD40L+ activated T cells in the bone marrow or other stromal 

cells, yet to be identified, may provide the stimulus needed to activate autocrine IL-6 

production in myeloma cells. Alternatively, the CD40L-expressing cell may be stimulated by 

interaction with myeloma cells resulting in production of other cytokines increasing 

paracrine IL-6 secretion in myeloma patients. It was therefore deemed necessary to examine 

whether the ligands for CD40 and/or Fas antigen were expressed on the myeloma cells used 

in this study.

Although anti-CD40-driven proliferation of the ANBL-6 cell line primarily results from 

autocrine secretion of IL-6, treatment of the cells with a neutralising antibody to IL-6 did 

not completely inhibit CD40 stimulation of the cells. This suggests that there may be other 

mechanisms involved in the CD40 stimulated proliferation of myeloma cells, perhaps by 

activation of tyrosine- and serine- protein specific kinases or phospholipase- C (244,245).

In summary, due to the paucity of studies of human myeloma cells with relation to their 

expression of CD40 and Fas antigen and their susceptibility or otherwise to Fas-mediated 

apoptosis, it was decided to investigate these factors in a panel of myeloma cell lines. It was 

initially attempted to establish a rapid, reliable, cost-effective and informative method of 

assessing apoptosis (Chapter 4) and then to develop an effective assay system for Fas and 

CD40 activation in myeloma cell lines (Chapter 5). Finally, a comprehensive study was 

undertaken to examine, in these cell lines, the role of activation of CD40 and/or Fas with or 

without co-stimulatory cytokines (IL-6 and IL-4). Changes in the regulation of CD40, Fas, 

Bcl-2, IL-6, IL-6R protein or mRNA expression under different culture conditions were 

assessed. It was also attempted to establish whether myeloma cell lines co-expressed the 

ligands for CD40 or Fas antigen by reverse transcription polymerase chain reaction and by 

in situ hybridisation using sequence-specific riboprobes (Chapter 6).
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CHAPTER 2 

MATERIALS AND METHODS



2.1 MATERIALS

2.1.1 TISSUE CULTURE

All cell lines were obtained from their original source or, with the permission of their 

authors, from other researchers. The lines were all proved to be routinely Epstein Barr virus 

(EBV) and mycoplasma (2.2.23) negative following testing every 6 months. Cells were 

maintained in a humidifed atmosphere at 37°C with 5% C 02 in RPM3-1640 medium 

containing 10-20% foetal calf serum, 1% Penicillin/Streptomycin and 2% L-Glutamine as 

described.

Cell lines:

JEM-1, JEM-3 (Ref: 246) Description: IgA-lambda myeloma cell line.

JJN-3 (Ref: 247) Description: IgA-kappa myeloma cell line.

EJM  (Ref: 248) Description: IgG lambda myeloma cell line.

U266 (Ref:249) Description IgEA, myeloma cell line.

RPMI-8226 (Ref: 250) Description - IgGX myeloma cell line.

ANBL-6 (Ref: 251) Description - IgAA myeloma cell line

DoHH2 (Ref: 252) Description - Non-Hodgkin’s B cell line with a chromosomal 

translocation t(14;18) (q32;q21).

RK Epstein Barr virus negative myeloma cell line, monoclonal kappa light chain positve. 

Developed by MML, January 1994, unpublished.

JT  EBV negative, kappa positive myeloma cell line established January 1995 by MML, 

unpublished.
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IM9 (Refs: 253,254) Description - Monoclonal kappa light chain positive myeloma cell 

line.

L3055 (Ref: 255) Description - EBV negative ALL cell line.

LCDw32 (Ref: 108) Description - mouse fibroblastic Ltk' cells stably transfected with the 

human Fc receptor (FcyRII/CDw32).

CD40LigL (Ref: 120) Description - mouse fibroblastic Ltk' cells stably transfected with the 

human CD40 ligand (CD40Lig-L cells).

Media for propogation of cell lines:

1. JIM-1, JIM-3, JJN-3, EJM, U266, IM9, ANBL-6 (IL-6 independent passages 17/2, 

27/2, 6/3, 22/5), RPMI-8226, DoHH2, CD40Lig-L, L3055

RPMI 1640 containing: 2% L-Glutamine (200mM)

1% Penicillin/Streptomycin (5000IU-5000fig/ml)

10% heat inactivated Foetal Calf Serum (Hyclone)

Cells seeded at approximately 105/ml and fed 2-3 times per week.

JJN-3 and EJM have a 48-72 hour doubling time, the JIM cell lines have a 24 hour doubling 

time.

2. RK, JT, ANBL-6 (IL-6 dependent passages 16/1, 26/12, P32)

As above but supplemented with lng/ml of recombinant human IL-6 (generously donated 

by Serono Labs.)

3. LCDw32 cells

As above but supplemented with Hypoxanthine-Aminopterin-Thymidine (HAT) media 

supplement (Sigma) diluted 1:50.
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2.1.2 Plasmids

pBluescript (Stratagene) phagemid cloning and sequencing vector (Ref. 256)

CDM8 (Invitrogen) transient mammalian expression vector (Ref. 257)

pCRII (Invitrogen) linearised plasmid vector providing 3’ T-overhangs

ready for insertion of PCR products (Invitrogen)

pUC18 (Invitrogen) supercoiled (positive control) plasmid cloning vector

derived from pBR322 (Ref 258)

2.1.3 Bacterial strains

The bacterial strains used were derivatives of Escherishia coli

1. XLl-Blue (Stratagene), Source: Ref. 259

Genotype: recA\ end AX gyr A96 thi-\ hsdK 17 supE44 re I AX lac [F’ proAB

lacqZAM15 TnlO (Tet^]

2. MC1061/P3 (Invitrogen), Source: Ref. 257

Genotype: F',araD139 A(araABC-leu)1619 galU galK AlacX14 hsdR2 (rK’,mK+)

r p ^ S t r 11) thi-1 mcrB {P3: KanR,ampR(amber), tetR (amber)}

3. INVaF’ (Invitrogen), Source: Ref 260

Genotype: F\endAX recAX hsdRXl (rK',mK+) supE44 thi-\ gyrA96

re/Al<()80/tfcZAM15 A(lacZYA-argF)U 169
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2.1.4 Selection of bacterial transformants

The following antibiotics were used:

Kanamycin (50jig/ml), Tetracycline (7.5-10pg/ml), Ampicillin (30-100pg/ml)

XGal (40mg/ml in DMF), was added at 25 pl/plate

XGal (Gibco BRL) is the chromogenic substrate for beta galactosidase (y^Gal). E.Coli 

contains a segment of DNA encoding the >9Gal gene. When XGal is added to plates where 

plasmids containing the LacZ promotor (eg pBluescript) are growing, the plaques formed 

are blue. If the LacZ gene is interupted, ie if pBluescript contains an insert, the colonies 

formed are white.

2.1.5 dNTP stock solutions (lOOmM)

Stock solutions for dATP, dTTP, dGTP and dCTP were made by dissolving 60mg dNTP in 

0.8ml distilled water The pH was adjusted to 7.0 with 0.1M NaOH and the solutions were 

then made up to 1ml with distilled water and stored at -20°C.

2.1.6 Agarose gel loading buffer

Loading buffer consisted of 15% Ficoll, 0.25% Xylene cyanol, 0.25% Bromophenol Blue,

0.25% Orange G in distilled water. For PCR gel loading buffer the Bromophenol blue was 

omitted.

2.1.6a Agarose gel electrophoresis

Agarose gels (1-2%, according to the size of the expected product), containing ethidium 

bromide at 0.25pg/ml, were prepared in lxTBE buffer and electrophoresed in lxTBE buffer 

for around 90 minutes at 100 volts. Samples were visualised by illuminating the gel under 

ultraviolet light and photographing as a record.
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2.1.7 Autoradiography

For detection of radioactive signals, filters were partially dried, sealed in a heat-sealed bag 

and exposed to a Kodak XAR film at -80°C overnight or longer before developing flim.

2.1.8 Removal of probes from blots

In order to re-probe blots, the membrane was placed in a tray and covered with 1 litre of

0.1 . SSC, 0.1% SDS which had been brought to boiling point. This was shaken gently until 

the solution had cooled to room temperature. The blot was rinsed with 2xSSC, blotted dry 

on 3MM paper and stored at -20°C in a heat-sealed bag until ready for reprobing.

2.1.9 Phenol and Phenol/chloroform

Water-saturated phenol was purchased from Rathbum chemicals, buffered against 1M 

Tris/HCl, pH 8.0 and then stored under TE buffer. Phenol/Chloroform was prepared as a 

50% v/v mixture.

2.1.10 Buffers

1. TBE buffer, 0.045M Tris-borate, ImM EDTA

2. TBS, 0.05M Tris/HCl, 0.15MNaCl pH7.6

3. TE, lOmMTris, ImM EDTA, pH8.0

4. PBS, 20 PBS tablets (Oxoid Pharmaceuticals) added to 2 litres distilled water
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2.1.11 Solutions

1. DEPC treated water (DEPC.H20); 1ml DEPC added per litre of distilled water, left 

overnight with cap loose and then autoclaved.

2. DEPC.PBS; 1ml DEPC added per litre of PBS, solution autoclaved.

3. 20 x SSC; 3MNaCl, 3M Na3Citrate

4. 3M Sodium Acetate, pH7.0

5. Detection Buffer 1; 0.1M Tris.HCl, pH7.5, 0.15MNaCl

6. Detection Buffer2; bufferl + 3% BSA

7. Detection Buffer 3; 0.1M Tris.HCl, 0.1M NaCl, 50mM MgCl2, pH9.0

8. NBT/BCIP; 7.5% NBT in 70% DMF, 5% BCIP in 100% DMF and 0.02% levamnisole 

(Inhibits endogenous Alkaline Phosphatase activity).

9. Anti-Digoxygenin/AP conjugate (Boehringer Mannheim), 1:500 dilution in detection 

buffer 1 containing 20% NHS

Normal human serum obtained from "SAPU" (Scottish Antibody Production Unit). Filter 

sterilised through a 0.45pM filter and stored at -20°C in 500pl aliquots.

10. TJE,, 0.1% SDS buffer

11. 1M Tris.HCl, pH8.0 

12 0.5M EDTA, pH8.0

13. 10% SDS

14. Salmon sperm DNA (lOOmg/ml)
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2.1.12 Materials

All materials were purchased from the following companies except where stated otherwise.

General chemicals and organic solvents

Agar

Agarose

Biochemicals

Antibiotics

Agarose

Radio-isotopes

Nitrocellulose membranes

Nylon membranes

Antibodies

Restriction enzymes

Tissue Culture reagents

Cytokines

DNA preparation

DPX mountant for microscopy

Sigma, BDH, May & Baker

Life Technologies

Flowgen

Sigma

Sigma

Sigma

Amersham Life Sciences 

Sartorius,Amersham Life Sciences 

PALL

DAKO, Serotec, Becton Dickinson

Immunotech

Life Technologies, NBL

Gibco BRL

R&D Systems

Scotlab

BDH
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2.2 METHODS

2.2.1 DNA PREPARATION

DNA was prepared using the "Nucleon II", DNA extraction kit (Scotlab) according to the 

protocol supplied. Briefly: cells were lysed, deproteinised with sodium perchlorate, the 

DNA extracted with chloroform, separated by centrifuging through a silica suspension so 

that the DNA was left in the aqueous phase and it was then precipitated with ethanol. DNA 

samples were stored at 4°C.

2.2.2 RNA PREPARATION

All RNA samples prepared consisted of total cellular RNA.

Cultured cells:

At least 2 x 106 cells were required for each RNA preparation. Cells were washed in 15ml 

PBS/Dulbecco's and resuspended in 1ml RNAZOL (Biogenesis Ltd.)

Fresh tissue:

Fresh tissue sections, eg human tonsil, were snap frozen in liquid nitrogen and pulverised in 

a mortar dish previously chilled with liquid nitrogen. The sample was kept frozen by topping 

up the mortar dish with liquid nitrogen. The powdered sample, still frozen, was scraped into 

a test tube containing 10-20ml RNAZOL.

Fresh tissue and cultured cells:

Samples were vortexed vigorously for at least 30 seconds. A 1/10th volume of chloroform 

(CHC13) was added and the samples vortexed again (this results in shearing of residual DNA 

which is an important step in reducing DNA contamination). Samples were left on ice for 15 

minutes and then centrifuged at 10,000g for 10 minutes. The upper aqueous phase was 

removed into a fresh tube and an equal volume of propan-2-ol added. This was precipitated 

for 1 hour at -20°C then centrifuged at 4000rpm for 30 minutes to collect the RNA. The 

pellet was washed with 70% ethanol and then absolute ethanol. After air drying, the pellet 

was resuspended in DEPC treated water (50-400pl) and precipitated by adding a 1/10th 

volume of 3M Sodium acetate, pH7.0 and 3 volumes of ethanol. Samples were left at -20°C
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for at least 1 hour but could be stored indefmately at this stage. When continuing, the RNA 

was collected by spinning at full speed in the microfiige for 15 minutes. The pellet was 

washed with 70% ethanol and then absolute ethanol as above. The final pellet was air dried 

and resuspended in DEPC H20  at approximately 1 mg/ml. Samples were stored at -20°C.

2.2.3 PHENOL EXTRACTION OF NUCLEIC ACIDS

This procedure was used to purify RNA and DNA and remove residual enzyme activity 

following restriction digestion or in vitro transcription procedures. A 1/10th volume of 3M 

sodium acetate was added to digests with an equal volume of phenol:chloroform (CHC13). 

This was mixed for 5 minutes on a rotating mixer then spun in a microfuge for 5 minutes. 

The upper aqueous phase was extracted into a fresh microfuge tube and an equal volume of 

CHC13 added. This was mixed for 2 minutes then spun for 2 minutes to dissolve any residual 

phenol. The top phase was precipitated with 3 volumes of ethanol at -20°C overnight. The 

following day the sample was spun for 5 minutes, washed in 70% ethanol and then in 100% 

ethanol. The pellet was resuspended in 20p,l fresh, ribonuclease free DEPC-treated sterile 

distilled water.

2.2.4a PREPARATION OF SILANISED SLIDES AND COVERSLIPS

Silane, (3-Aminopropyltriethoxysilane), (Sigma Pharmaceuticals), Coated Slides were 

prepared by washing slides in 2% "Decon" detergent overnight. They were then washed 

thoroughly in running water (for approximately 2 hours), dried overnight, immersed in 2% 

Silane/Acetone for 5 minutes, rinsed in running water for 5 minutes and dried overnight. 

Sigmacoated (Sigma) coverslips were prepared by soaking coverslips in Sigmacote for 30 

minutes, air drying, rinsing in water x3 and air drying.

2.2.4 PREPARATION OF CYTOSPINS

Cytospins were prepared using previously coated silanised glass slides. Cell suspensions 

containing approximately 106 cells in 100-200pl medium were spun at 500rpm for 5 minutes 

using a Shandon cytocentrifiige.
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2,2.5 STAINING WITH WRIGHTS STAIN

For simple staining, cytospins were stained in an "Ames Haematek" slide Stainer with 

modified "Wrights" stain (type of Romanowsky Dye) containing methylene blue and eosin. 

The slides were then mounted under glass coverslips with DPX mountant.

2.2.6 IN SITU HYBRIDISATION

In situ hybridisation techniques (ISH) allow specific nucleic acid sequences to be detected in 

morphologically preserved tissue sections, cells or chromosome preparations. Four types of 

probe may be employed: Oligonucleotide probes, single- or double- stranded DNA probes 

or riboprobes. Oligonucleotide probes are prepared from deoxynucleotides by automated 

synthesis and are commercially available. They are resistant to RNases which eliminates 

some of the technical difficulties of the procedure and are small (20-40 bases) so they 

penetrate cells easily. Riboprobes are complementary RNAs prepared by RNA polymerase- 

catalysed transcription of mRNA in the 3' to 5' direction. They have the advantage that 

RNA-RNA hybrids are very thermostable and resistant to attack by RNases. This allows 

post-hybridisation digestion by RNases to remove non-hybridised RNA, thereby reducing 

background. Penetration of the probe into cells can be enhanced by controlled alkaline 

hydrolysis to produce probes of 50-150 bases.

In this study, commercial FITC-labeled oligonucleotide (DNA) probes were used to detect 

kappa ( k )  and lambda (X) immunoglobulin light chain mRNA in tonsil controls and 

myeloma cell lines. Light chain monoclonality as described in section 2.1.1 was confirmed 

using this method. Results are not shown. Digoxygenin-labeled sense and antisense 

riboprobes were synthesised (2.2.19) and used to attempt the detection of bcl-2,fas, Fas 

ligand, CD40, CD40 ligand and IL-6R mRNA in cytospins of cell lines (2.2.8).

An FITC-labeled Epstein Barr virus latent membrane protein (EBV-LMP) oligoprobe 

cocktail (DAKO) was also used to analyse the panel of myeloma cell lines used in this study 

for their EBV status by in situ hybridisation. An EBV positive human tonsil section was 

used as positive control. The method was as described in section 2.2.7. All myeloma cell
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lines were found to be negative for EBV-LMP as expected. A representative result showing 

the ANBL-6 cell line is shown in Figure 2.2.6.

ISH testing for bcl-2 transcription, using the B cell line DoHH2 (2.1.1) as a positive control 

showed that all myeloma lines tested were positive for bcl-2 mRNA expression although 

expression in JIM-3, IL-6 independent passages of ANBL-6 and RPMI-8226 was weak. 

Representative experiments showing bcl-2 positivity for the DoHH2 and JIM-1 cell lines are 

shown in Figures 2.2.6a and 2.2.6b.

No positive hybridisation indicating transcription of IL-6R, CD40L and FasL was detected 

in any of the myeloma cell lines tested despite repeated attempts at in situ hybridisation 

using specific Digoxygenin-labeled riboprobes. IL-6R mRNA was detected by RT-PCR 

however (Figure 2.2.11a), in JIM-1, JIM-3, U266, RPMI-8226 and the IL-6 independent 

passages of ANBL-6 but not in JJN-3 or IM-9. See discussion (chapter 7).

ISH results for fa s  and CD40 mRNA expression in myeloma cell lines cultured in the CD40 

system with and without culture additives are shown in section 6.5.

2.2.7 ISH for k  and X Oligonucleotide FITC-Labelled Probes (DAKO kits: K045. 

probes and K046, detection)

This is an adaptation of the supplied protocol.

Pretreatments:

A. Paraffin sections (eg Tonsil control)

These sections were immersed in wax and had to resume their water solubility in order to 

perform ISH. Slides were immersed in xylene for 2x5 minutes, in alcohol for 2x5 minutes, 

in methylated spirits for 5 minutes and then into DEPC-treated water for 5 minutes. Slides 

were then immersed in 0.2N HC1/DEPC for 20 minutes (this breaks the methylene bridges 

formed during the paraffin fixation step) and rinsed in DEPC/H20  with shaking.

B Cytospins

Cytospins (2.2.4) were immersed immediately in buffered formalin overnight to fix them, 

after which they were rinsed for 2x5 minutes in DEPC/H20.
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Figure 2.2.6

In situ hybridisation using an FITC-labeled LMP (EBV) oligoprobe cocktail (DAKO) to 
test for EBV status in a) positive tonsil control and b) myeloma cell lines (ANBL-6 22/5 in 
this example) - EBV negative. Counterstaining was with Light Green. Cytospins were 
subsequently incubated with a rabbit anti-FITC-AP conjugate with colourimetric detection 
using NBT/BCIP. Slides were viewed under light microscopy (magnification x 40).
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Figure 2.2.6a

In situ hybridisation showing bcl-2 mRNA expression in the B cell line DoHH2 using 
Digoxygenin-labeled sense (a) and antisense (b) riboprobes. Counterstaining was with Light 
Green. Cytospins were further labeled with anti-Dig-AP conjugate with colorimetric 
detection using NBT/BCIP. Slides were viewed under light microscopy (magnification x 
10).
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Figure 2.2.6b

In situ hybridisation showing bd-2  mRNA expression in the myeloma cell line JIM-1 using 
Digoxygenin-labeled sense (a) and antisense (b) riboprobes. Counterstaining was with Light 
Green. Cytospins were further labeled with anti-Dig-AP conjugate with colorimetric 
detection using NBT/BCIP. Slides were viewed under light microscopy (magnification x 
10).



Both paraffin sections and cytospins were then treated in the same way:

Slides were incubated in proteinase K (PK) solution at 37°C (80p.l/slide) for 30 minutes in a 

humidified atmosphere (the PK incubation serves to remove protein and unmask the 

mRNA). Slides were washed in 0.2% glycine/DEPC for 30 seconds (this is a PK inhibitor 

and stops digestion of proteins) and then in DEPC/H20 , for 5 minutes before post-fixing at 

4°C in 0.4% paraformaldehyde in DEPC/H20  for 20 minutes (this acts as a weak fixative, 

fixing RNA to the tissue section but not masking it so that probe will still be accessible). 

Slides were rinsed in DEPC/H20 , for 5 minutes, x2 before rinsing in Methylated spirits and 

allowed to air dry.

HYBRIDISATION

Probes ( k  and X) were diluted 1:1 in the negative control (hybridisation buffer) and 20pl per 

slide was added. Sections were covered with "Sigmacote" coated coverslips, and incubated 

at 37°C overnight in a humidifed atmosphere.

WASHING AND DETECTION

There was no need for DEPC-treated water from this stage as RNA was all bound. Cover 

slips were removed and slides washed in 2xSSC, for 5 minutes with shaking (this high 

stringency wash removes any unbound probe). Sections were then immersed in TBS (or 

PBS), 0.1% Triton X-100 for 10 minutes, with no shaking required. The slides were rinsed 

briefly in TBS x2 and were then incubated with 50pl of a 1:80 diluted FITC/AP antibody (in 

DEPC.PBS/1% Triton-X/3% BSA) at room temperature for 30 minutes before for 2x5 

minutes in TBS. Slides were washed in substrate buffer, pH9.0 for 5 minutes before 

incubating with diluted enzyme substrate (BCIP/NBT) + endogenous alkaline phosphatase 

inhibitor (levamnisol) for 60 minutes at room temperature. Slides were washed briefly in 

ddH20  x3 before counterstaining in Light Green for 3 minutes. Slides were washed in 

ddH20  x3 before mounting in DAKO “Glycergel” and observing under light microscopy.

2.2.8 ISH for Digoxygenin labeled probes:

Pretreatments, PK incubation and post-fixation were as described in section (2.2.7). 

Hybridisation buffer containing 30% formamide was used to dilute riboprobes. The probe 

dilution factor and PK concentration was determined by probe standardisation experiments.
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For example, for the bcl-2 sense and antisense riboprobes, a 1:500 probe dilution and PK20 

was used and 20pl probe was added per slide. Hybridisation and washing were as described 

(2.2.7) except that detection was with a 1:500 dilution of anti-Digoxygenin-labelled alkaline 

phosphatase (Dig-AP), (Boehringer Mannheim) for 2 hours at room temperature in a 

humidified atmosphere. Slides were washed in TBS (or PBS) for 2x5 minutes and then in 

substrate buffer for 5 minutes before immersing in NBT/BCIP detection buffer for 1.0-1.5 

hours at room temperature in the dark. Slides were observed for positivity (over-incubation 

with substrate solution causes it to precipitate), washed, stained and mounted in glycergel.

SOLUTIONS REQUIRED FOR ISH:

(See also section 2.1.11)

1. TBS,0.1% Triton X-100

2. TBS,0.1% Triton X-100,3% BSA Stored at 4°C, approx 1 week

3. Rabbit F(ab) anti-FITC/AP (alkaline phosphatase), (Dako code:K046): 1:80 dilution of 

antibody in TBS,0.1% Triton x-100,3% BSA.

4. Enzyme substrate (vial B - DAKO),NBT/BCIP - detects alkaline phosphatase activity, 

resulting in a blue-black precipitate. Diluted 1:50 with substrate buffer pH9.0

5. Substrate buffer containing: 0 .1M Tris/HCl, 0.1M NaCl, 50mM MgCl2, pH9.0

6. Proteinase K (PK) solution containing: Stock solution 500pg PK/ml in DEPC water 

aliquoted and stored at -20°C. Approriate dilutions of PK in digestion buffer (PK buffer 

made by varying PK concentrations for optimum detection of mRNA. Optimal [PK] for 

cytospins with most probes was found to be PK20 ie 20pg/ml.

7. PK diluting buffer containing: 0.1M Tris HC1, pH8.0, 50mM EDTA

8. DEPC.0.2N HC1

9. DEPC.0.2% Glycine

10. Levamnisol - endogenous alkaline phosphatase inhibitor

11. Hybridisation Buffer (30% formamide) containing: 0.1M Tris/HCl, pH 7.5, 12.5 x 

Denhardt’s solution (2% BSA, 2% Ficoll, 2% PVP), 2 x SSC, 0.5% SDS, 30% formamide, 

10% dextran sulphate, 2.5mg/ml salmon sperm DNA.
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2.2.9 FLUORESCENT ANTIBODY LABELLING OF CYTOSPINS

Cytospins were fixed in 5% acetic acid in ethanol at 4°C for 15 minutes, washed in PBS for 

5 minutes at 4°C and then stained with (for example) 20pl unconjugated mouse anti-human- 

kappa or -lambda antibody for 30 minutes at room temperature. Slides were washed in PBS 

for 3 x 5 minutes. Positive slides were detected by a second incubation with 20pl 1:10 

Diluted (PBS) goat anti-mouse-FITC labeled Immunoglobulin (F(ab')2) for 30 minutes at 

room temperature. Slides were washed for 15 minutes in PBS, mounted in glycergel and 

examined by fluorescence microscopy.

The myeloma cell lines used in this thesis were tested for monoclonal light chain expression 

using this method and the results were as described in section 2.1.1. A representative 

example is shown in Figure 2.2.9.

2.2.10 IMMUNOCYTOCHEMISTRY (ICC) OF MYELOMA CELL LINES - 

DETECTION OF CYTOPLASMIC BCL-2 PROTEIN

Cytospins of myeloma cell lines were immersed immediately in cytofix and left overnight 

(alternatively cytospins were air dried for at least I hour and then fixed in acetone for 10 

minutes before air-drying).

ICC Protocol

This is an adaptation of the method described by Malik DY and Damon ME (Ref. 260a) and 

describes a standard indirect alkaline phosphatase method of immunocytochemistry using 

New Fuschin Chromogen substrate for detection.

Cytospins were washed for 10 minutes in water and then in TBS at room temperature (RT). 

Non-specific binding was prevented by incubation with 50pl goat serum (1:5 dilution in 

TBS) in a humidified atmosphere for 15 minutes at RT. Cytospins were then incubated with 

50pl mouse anti-human Bcl-2 protein, diluted 1:50 in TBS for 2 hours at RT. Slides were 

washed for 10 minutes in TBS, dried and incubated with 50pl AP-conjugated goat anti­

mouse IgG (GAM-AP) diluted 1:20 in TBS with 5% NHS for 45 minutes at RT. Slides 

were washed in TBS for 10 minutes at RT then incubated with substrate solution (New
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Figure 2.2.9

Detection of monoclonal, cytoplasmic immunoglobulin kappa ( k )  light chains in the 
myeloma cell line RK following staining with a) anti-K and b) anti-A, monoclonal mouse- 
anti-human antibodies. Positive staining was detected using an FITC-conjugated goat anti­
mouse antiserum. Cytospins viewed under fluorescence microscopy (magnification x 40).
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flischin chromogen substrate), (Biogenix) for up to one hour until the colour was 

developed. Slides were then washed in water, counterstained in haematoxylin for 1 minute 

and rinsed in (STWS) until cytospins turned blue. Slides were dehydrated in histoclear and 

mounted in Harleco synthetic resin (HSR) dissolved in histoclear. Slides were observed 

under a light microscope, negative samples were blue with no red staining. Positive samples 

showed red staining mixed with blue counterstaining.

Note: an alternative method of ICC staining used for paraffin sections such as tonsil was a 

standard labeled-Streptavidin method. Slides were labeled with mouse-anti-human Bcl-2 as 

described above followed by goat anti-mouse antiserum conjugated to Biotin. The slides 

were then incubated with horse-radish peroxidase conjugated to Streptavidin and detection 

was with 0.04% Diaminobenzidine tetrahydrochloride (DAB). Positive samples were 

stained completely brown with blue nuclei and clear background staining of negative 

samples.

These two methods were used to test myeloma cell lines for Bcl-2 expression using tonsil 

sections as positive and negative controls with the non-Hodgkin’s B cell line DoHH2 

(2.1.1) as a further positive control. The protein was found to be expressed in all myeloma 

cell lines tested although their intensity of expression varied. Representative results for 

tonsil controls and the cell line JJN-3 are shown in Figures 2.2.10a and 2.2.10b respectively. 

Detailed studies of the B cells within the different compartments of tonsil germinal centres 

(136) have revealed that the expression of the protein product of the bcl-2 proto-oncogene 

is extremely localised. There is no Bcl-2 protein expressed in centroblasts of the dark zone 

or centrocytes of the light zone, where these cells are dying by apoptosis. There is a very 

low level of Bcl-2 protein expression in the B blasts of the apical light zone where B cells 

differentiate into plasma cells or memory cells but there is marked Bcl-2 expression in cells 

of the follicular mantle which comprises long-lived, recirculating IgM lgD + B cells (Figure 

2.2.10a).

Solutions for ICC:

STWS; 0.35% NaHC03, 2% M gS04
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Figure 2.2.10a

Immunocytochemistry showing Bcl-2 expression in human tonsil sections labeled with a) 
negative control mouse IgG antibody, b) mouse anti-human Bcl-2 followed by Biotin- 
conjugated goat anti-mouse antiserum. After then labeling with Horse-radish peroxidase 
conjugated to Streptavidin, detection was with DAB. Positive cells stained brown with 
negative cells having blue nuclei and a clear background. There is no positivity for Bcl-2 
within the tonsil germinal centres but intense staining in the follicular mantle and areas 
around the germinal centres containing long-lived, recirculating B cells.



Figure 2.2.10b

Bcl-2 expression in the myeloma cel! line JJN-3 detected by the standard indirect alkaline 
phosphatase method of immunocytochemistry using New Fuschin Chromogen substrate for 
detection. Cytospins were labeled with a) mouse IgG negative control or b) mouse anti­
human Bcl-2. Cells were viewed under light microscopy (magnification x 10). Positive cells 
are stained red.
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2.2.11 POLYMERASE CHAIN REACTION

This procedure was used to amplify cDNA encoding the genes of interest in this study in 

order to determine whether these genes were being transcribed in myeloma cell lines. 

Commercially synthesised sequence specific primers were used. In an initial step cDNA was 

produced from RNA by Reverse Transcription PCR (RT-PCR). The RNA was prepared as 

described in section 2.2.2.

The essential ingredients of a PCR reaction in order to amplify genomic DNA are:

DNA, a 3' (antisense) and a 5' (sense) primer, PCR buffer (containing Tris-HCl, KC1, 

MgCl2, and gelatin), deoxyribonucleotides (dNTP's- dATP, dTTP, dGTP, dCTP), and DNA 

polymerase.

The method used was as described in the GeneAmp RNA PCR kit protocol and samples 

were amplifed using a Perkin Elmer Cetus 9600 PCR machine. Sense and antisense PCR 

primers 20 base pairs in length were chosen for the genes of interest in this study {bcl-2, fas, 

FasL, CD40, CD40L) from their cDNA sequences (synthesised by Cruachem Ltd.), (Table 

2.2.11). Primers were selected with an average G+C content of 50% and a random base 

distribution. Primers were chosen which would result in a cDNA product which spanned 

introns to ensure that the product was not the result of DNA contamination of the RNA 

sample. IL-6 and IL-6R primers were purchased from Clontech Labs.Inc. RT-PCR 

reactions contained final concentrations of 5mM MgCb, lx PCR buffer II, ImM dNTP’s, 

lU/p.1 RNase inhibitor, 2.5U/pl reverse transcriptase, 2.5pM random hexamers, and < lpg 

total RNA. PCR reactions contained 2mM MgCh, 1XPCR buffer II, 2.5U/100ul Taq DNA 

polymerase and 0.15-0.2pM of each primer. The annealing temperature Ta was calculated 

as 5°C below the melting temperature (Tm).

The melting temperature (T.J is the temperature at which 50% of the double-stranded 

hybridised species have dissociated and can be calculated using the following formula:

Tm = 16.61og[M] + 0.41[Pgc] + 81.5 - Pm - B/L - 0.65[Pf]
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where:

M = the molar concentration of Na+, to a maximum of 0.5 (lx  SSC contains 0 .165M Na+) 

Pgc = % of G or C bases in the oligonucleotide probe (30-70%)

Pm = % mismatched bases, if known - each 1% mismatch will alter the Tm by 1°C on 

average.

Pf = the percent of formamide in the buffer, B = 675 for synthetic probes up to 100 bases, L 

= probe length in bases

Standard reverse transcription PCR reaction: In the first step reverse transcriptase was 

used to transcribe RNA into cDNA using random primers (hexamers). In the second step 

cDNA encoding the gene of interest was amplified by Taq polymerase using sequence 

specific primers (Table 2.2.11).

1. Reverse transcription of RNA samples:

MgCl2 (25mM) 
lOx PCR buffer II 
ddH20
dNTP’s (lOmM)
RNase inhibitor (20U/pl) 
Reverse transcriptase (50U/pl) 
Random Hexamers (50pM) 
RNA (1 mg/ml)

1 tube
4pl PCR reaction
2pl
1 pi 10 minutes at 25°C
2 pi (of each) 30 minutes at 42°C
lpl 5 minutes at 99°C
1 pi 5 minutes at 4°C
lpl
2pl Number of cycles = 1

2. cDNA amplifcation:

1 tube
MgCl2 (25mM) 4pl
lOx PCR buffer I 8pl
ddH20  65.5pl
DNA polymerase (2.5U) 0.5pl 
cDNA (from above) 20pl
primers (15-20pM) 1 pi of each

PCR reaction
1 minute at 94°C (denaturation)
1 minute at Ta (55-70°C) (annealing) 
1 minute at 72°C (extension)

Number of cycles = 25-30

The products of the second step PCR were visualised in a 1-2% agarose gel, containing 

ethidium bromide, depending on the size of the expected product. A molecular weight 

marker was run with the samples to determine the size of the products (2.1.6a).
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A panel of myeloma cell lines were tested by RT-PCR using a series of sequence-specific 

primers to determine levels of transcription of the genes IL-6, IL-6R, fa s , CD40 and bcl-2. 

Results are shown in Figures 2.2.1 l(a-d)

2.2.12 GENERATION OF cDNA PROBES

In order to synthesise riboprobes for use in in situ hybridisation or cDNA probes for 

Southern, Northern or dot blotting procedures, the cDNA encoding the gene of interest 

which had been previously cloned and inserted into a plasmid vector (eg pBluescript, pCRII 

or CDM8 plasmids,2.1.2), was transformed into competent E.Coli bacteria, grown to 

confluence and then harvested.. The plasmid containing the human cDNA insert was then 

extracted from the host bacteria (plasmid preparation). The cDNA was subsequently cut out 

of the plasmid by restriction enzyme digestion resulting in a cDNA probe. Alternatively, the 

plasmid containing insert was linearised, using an appropriate restriction enzyme, and the 

cDNA in vitro transcribed to manufacture an RNA probe (riboprobe) using the RNA 

polymerases T3 and T7 for pBluescript and T7 and SP6 for pCRII plasmids. Plasmid 

vectors containing the cloned and sequenced cDNAs of interest were generouly donated by 

the authors who cloned them for the bcl-2, fas, Fas ligand, CD40 and CD40 ligand genes. 

In order to generate a cDNA probe encoding the IL-6R gene, the p subunit of the 

interleukin-6 receptor (250 base pairs) was initially amplified by RT-PCR and the product 

cloned into the pCRII cloning vector. This was sequenced to verify authenticity of product, 

before subsequent amplification and restriction digestion (2.2.20).

cDNA inserts were transformed as follows; - those in the pBluescript vector were 

transformed into competent XL Blue (strain of E.Coli) - those in the CDM8 vector were 

transformed into competent MC1061/P3 (strain of E.Coli), (Ref. 261).

Probes were synthesised in this manner for the following human genes:

1) bcl-2 - cDNA encoding the complete open reading frame (850 base pairs) inserted into 

the EcoRI and Hindlll sites of the pBluescriptll SK+/- plasmid vector (2.96Kb) was 

generously donated by Dr Michael Cleary (Ref. 262).
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Figure 2.2.11a

Reverse transcription polymerase chain reaction (RT-PCR) detection of mRNA in myeloma 

cell lines using IL-6 and IL-6R sequence-specific primers (Clonetech). Expected products 

are 628bp and 25 lbp respectively. Marker (M) is MspI cut pBR322 DNA.

Sample (RNA) Products 

IL-6 IL-6R

+

+

+

+

1. JIM-1

2. JIM-3

3. JJN-3

4. U266

5. RPMI-8226

6. IM-9

7. ANBL-6 (22/5)

8. ANBL-6 (27/2)

9. ANBL-6 (6/3)

10. ANBL-6 (17/2)

11. IL-6 positive control RNA

12. IL-6R positive control RNA

13. no RNA

14. no reverse transcriptase+JIM-1 RNA

14 13 12 11 10 9 8 7 6 5 4 3 2 1 M

+

+

+

+

+ (weak)

+

IL-6

IL-6R

628bp

25 lbp

Marker Size

622
527
404
307
242
238
217
201
190
180
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Figure 2.2.11b

Detection of Fas mRNA expression in myeloma cell lines using a) sequence-specific primers

(product - 383bp) followed by nested PCR (product - 249bp). A 1:50 dilution o f the

products from (a) were amplified by primers chosen from within the original region of

amplified DNA using Taq DNA polymerase. Marker (M) is MspI cut pBR322 DNA.
See page 70 for marker sizes

ProductsSample (RNA)

1. JIM-1

2. JIM-3

3. JJN-3

4. U266

5. RPMI-8226

6. IM-9

7. ANBL-6 (22/5)

8. ANBL-6 (27/2)

9. ANBL-6 (6/3)

10. ANBL-6 (17/2)

11. SD-1

12. MOLT-4

13. KYO-1

14. no RNA

15. no reverse transcriptase+JIM-3 RNA

Fas Fas (nested)

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(ALL cell line)

(T cell leukaemia cell line) 

(CML cell line)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 M 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 M

a) Fas RT-PCR b) Fas nested PCR
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Figure 2.2.11c

Detection of CD40 mRNA in myeloma cell lines by nested PCR. a) RT-PCR of RNA using 

CD40-specific primers spanning intron 1 (product - 642bp). No products detected. Samples 

from (a) were amplified b) by nested PCR (product - 379bp) to determine whether the copy 

number of CD40 gene expression was too low to be detected by the initial PCR. This was 

found to be the case since products were detected for all samples following nested PCR. 

Marker was MspI cut pBR322 DNA. See page 70 for marker sizes

Sample (RNA)

1. JIM-1

2. JIM-3

3. JJN-3

4. U266

5. RPMI-8226

6. IM-9

7. ANBL-6 (22/5)

8. ANBL-6 (27/2)

9. ANBL-6 (6/3)

10 SD-1

11. MOLT-4

12. KYO-1

13. EJM

14. no reverse transcriptase+JIM-3 RNA

Products 

CD40 CD40 (nested)

+

+

+

+

+

+

+

+

weak

(ALL cell line)

(T cell leukaemia cell line) 

(CML cell line)

14 13 12 11 10 9 8 7 6  5 4 3 2 1 M 14 13 12 11 10 9 8 7 6 5 4 3 2 1 M

.'c:

379bp-

642bp

- m n m -
m;;

a) CD40 RT-PCR b) CD40 nested PCR
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Figure 2.2.1 Id

Detection of bcl-2 mRNA in myeloma cell lines by RT-PCR using bd-2 sequence-specific 

primers. Product - 269bp, marker - MspI cut pBR322 DNA. See Pa8e 70 f°r marker sizes

Sample (RNA) Products

b c l - 2

1. JIM-1 +

2. JIM-3 +

J . EJM +

4. JJN-3 +

5. U266 +

6. IM-9 +

7. RK +

8. ANBL-6 +

9. no RNA -

10 SD-1 +

11. MOLT-4 +

12. KYO-1 +

13. no reverse transcriptase+JIM-3 RNA -

14 no RNA _

bcl-2  RT-PCR
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2) CD40 - cDNA encoding the complete open reading frame (900bp) inserted into the Notl 

and Scfl sites of the CDM8 plasmid vector (4.4Kb) was generously donated by Professor 

Ivan Stamenkovic (Ref. 98). This CD40 cDNA was subsequently subcloned into 

pBluescriptll SK+/- in order to provide promotor sites for in vitro transcription.

3) CD40L - cDNA encoding the complete open reading frame (1.1Kb) inserted into the 

EcoRI site of the pBluescriptll SK+/- plasmid was generously donated by Dr RJ Armitage 

(Ref. 94).

4) fa s  - cDNA encoding the full length (pBLF58-1,2.6Kb) gene inserted into the Xhol site 

of pBluescriptll SK+/- was generously donated by Dr Shigekazu Nagata (Ref. 101).

5) Fas ligand - full length cDNA (970bp) inserted into the Xbal site of pBluescriptll SK+/- 

was generously donated by Dr S. Nagata (Ref. 263).

6) IL6R - 250bp cDNA encoding IL6R beta subunit (complete open reading frame 140lbp) 

was amplified by polymerase chain reaction using IL6R specific primers and cloned into the 

EcoRI site of the pCRII cloning vector (Invitrogen, section 2.2.20), (Ref. 264).

2.2.13 PREPARATION AND TRANSFORMATION OF COMPETENT E.COLI

A. Preparation of competent E.Coli This procedure was performed in a Category 1 

containment suite. All solutions were autoclaved or filter sterilised. A loopful of the XLBlue 

strain of E. coli was streaked onto a petri dish containing L-Broth (2.5%), agar (1.5%) with 

appropriate antibiotics and grown overnight at 37°C. A single colony was then transferred 

to a sterile universal container with 5ml L-Broth and expanded overnight at 37°C with 

shaking. This was then expanded further in 100ml L-Broth until the OD600 was between 0.2 

- 0.4. Cells were spun at 3000rpm for 10 minutes at 4°C, the pellet resuspended in 50ml ice- 

cold lOmM M gS04. and left on ice for 20 minutes. Cells were spun again and the pellet 

resuspended in 20 ml ice-cold 50mM CaCl2 and left on ice 30 minutes. After a further spin 

cells were resuspended in 1ml ice-cold 50mM CaCl2. and left on ice for at least 30 minutes.
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B. Transformation of competent £ . Coli with pBluescriptll SK+/- containing cDNA 

inserts.

This describes the transformation of E.Coli with the cDNA insert encoding the open reading 

frame of the bcl-2 gene inserted at the EcoRI and Hindlll sites of pBluescript. The same 

procedure was used to transform XLBlue with pBluescript containing insert cDNAs 

encoding human CD40L, fa s  and Fas ligand genes. In summary, a plasmid DNA suspension 

was prepared at 1-10ng/pl in transformation buffer consisting of lOmM Tris HC1, pH8.0, 

lOmM CaCl2 lOmM MgCl2 (total volume lOOpl). lOOpl competent E.Coli was added and 

the mixed suspension incubated on ice for 20 minutes. Cells were heat shocked at 42°C for 

2 minutes in order to render them susceptible to the uptake of plasmid DNA. Cells were left 

at room temperature for 10 minutes to ensure maximum uptake. After the addition of 2.5ml 

L-Broth to each tube, cells were incubated at 37°C for 90 minutes before plating out onto 

agar plates containing appropriate antibiotics. Plates were incubated at 37°C overnight. 

Routine transformation efficiencies of 1.5-1.8 x 105col/pg were obtained.

Method and calculation of transformation efficiency:

1. Dilutions of 0-10ng/pl plasmid DNA in lOOpl Transformation buffer of plasmid DNA 
were prepared as follows: tube 1: zero DNA

tube 2: lng/pl DNA 
tube 3: 5ng/pl DNA 
tube 4:1 Ong/pl DNA

2. lOOpl competent E coli (from A) was added to each of tubes 1-4,  mixed by inversion 

and left to sit on ice for 20 minutes.

3. Cells were heat shocked at 42°C for 2 minutes to allow plasmid DNA to be taken up by 

E.Coli and then allowed to stand at room temperature for 10 minutes.

4. 2.5ml L-Broth was added to each tube and tubes were incubated at 37°C for 90 minutes 

before plating out on agar plates with appropriate antibiotic to detect plasmid (pBluescript 

plasmid is Ampicillin resistant). Three plates per dilution were prepared (lOOpl/plate) and 

plates were incubated upside-down overnight at 37°C in oven (to avoid condensation 

dripping onto colonies and spreading them).

5. The number of colonies on each plate was counted to determine the average number of 

colonies per plate per dilution.
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The Transformation efficiency was calculated as follows:

Transformation Efficiency = number of colonies per microgram 
ie: (colony forming units/fig) = CFU/pg

ie CFU in control plate x 1 x 103ng x dilution factor
ng insert used in transformation pg

eg: plate 2 has lOng insert cDNA in Bluescript
average number of colonies for three plates at this dilution = 66
volume in which lOng added to produce these colonies = 2.7ml
(lOOpl competent XL Blue in 1ml CaCl2 added to lOOul diluted pBluescript plasmid 
containing insert, added to 2.5ml L Broth)

CFU =66, dilution factor =10 (lOng DNA in lOOpl transformation buffer), 
ng/ml insert used in transformation = 10/2.7 = 3.7

so. TE = 66 CFU x 1 x 103ng x 10= 1.78 x 102
3.7 ug

ie: lOng cDNA in 2.7ml = 3.7ng/ml total cDNA
lOOpl of this 3.7ng cDNA per ml = 66 colonies 
(lOOpl streaked per plate = 66 colonies) 

ie 0.37ng cDNA added per plate = 66 colonies 
number of colonies per ng = 66/0.37 = 1.78xl02 
number of colonies per ug = 1.78xl05 

ie Competent cells have a Transformation efficiency of 1.78 x 105col/pg

C. Transformation of competent MC1061/P3 strain of E.Coli with CDM8 plasmid 

vector containing the CD40 cDNA insert, (Ref.265). This was performed according to 

the Invitrogen protocol supplied.

Briefly, the already ultracompetent E coli provided in the kit were transformed with an

aliquot of the CDM8 plasmid vector containing the cloned insert of human CD40 cDNA as

described in section 2.2.12 as follows:

1. One aliquot of ultracompetent MC1061/P3 cells (0.3ml) was removed from -80°C freezer 

and thawed on ice and mixed gently by hand.

2. An aliquot of lOOpl of these cells was added to each of two pre-chilled 15ml Falcon 

tubes - lOOpl for CDM8 containing insert (CD40 cDNA) and lOOpl for the pUC18 positive 

control. The remaining cell suspension was stored at -80°C.
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3. 5pi 0.5M beta mercaptoethanol was added to each lOOpl aliquot and the tubes swirled 

gently. Incubation was continued on ice for 10 minutes, with swirling every 2 minutes.

4. lOng (lpl) CD40 cDNA in CDM8 vector or lOng of pUC18 control was then added and 

the tubes swirled evenly to mix DNA and cells. Cells were then incubated on ice for 30 

minutes.

5. Cells were then heat shocked by placing the tube in a 42°C water bath for 75 seconds, 

returned to ice and chilled for 2 minutes.

6. 900pl SOC (2.2.20) medium was added and the cells were incubated at 37°C with 

moderate agitation (225rpm) for 60 minutes.

7. lOOpl per plate was plated onto LBroth/agar plates with antibiotics as follows:

a) No antibiotics

b) Kanamycin (Kan) @ 50pg/ml

c) Kan, Tet (lOpg/ml), amp (30pg/ml) 

containing M CI061 + CDM8 insert.

d) Ampicillin only

Resultant growth expected (and found) 

lawn of growth 

lawn of growth 

discrete colonies

discrete colonies in positive control plate.

The positive control pUC18 plasmid (lng/pl) is ampicillin resistant and results in the 

formation of discrete colonies on plates containing only ampicillin.

E.Coli harbouring the plasmid P3 permit selection and maintainance of plasmids which 

encode the tRNA suppressor F gene (supF). The P3 episomal plasmid in MC1061 E.Coli 

encodes the kanamycin resistance gene as well as amber mutants of the tetracycline and 

ampicillin resistance genes. Therefore, strains which harbour P3 alone are resistant to 

kanamycin but sensitive to both tetracycline and ampicillin. When E.Coli carrying the P3 

plasmid are transformed with supF plasmids (eg CDM8), they are rendered resistant to both 

tetracycline and ampicillin by suppression of the amber mutations.
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2.2.14 PLASMID PREPARATIONS

Six individual plaques from B, plates containing ampicillin and tetracyclin (pBluescript 

containing insert in XLBlue) and C, plates containing kanamycin, tetracyclin and ampicillin 

(CDM8 containing insert in MC1061/P3), were picked and expanded in 5ml L Broth 

overnight at 37°C. The plasmid was then separated from EColi by plasmid preparation 

(Qiagen Ltd.) and digested with the appropriate restriction enzymes to verify that the 

correct cDNA insert had been selected (Figure 2.2.15d, see below). The best of the six 

plasmid minipreps was then selected for large scale expansion and plasmid preparation 

(Qiagen maxiprep DNA purification system) in order to either cut out cDNA insert and use 

directly as a probe or to linearise the plasmid and synthesise a riboprobe.

2.2.15 RESTRICTION DIGESTION OF PLASMID DNA

Restriction maps of all cDNA inserts were performed to verify authenticity of products 

following transformation and expansion in E.coli (Figures 2.2.15a, 2.2.15b and 2.2.15c). In 

all cases restriction products were as expected.

For example:

a) pBluescript plasmid (2.96 kilobases) contains a cDNA insert of human bcl-2 gene, 850 

base pairs in length. The cDNA insert was added by cutting the pBluescript II SK +/- at the 

EcoRI and Hindlll restriction sites. A restriction digest was set up to cut out the insert at 

these sites. The products were then run in an agarose gel to verify the size and purity of the 

plasmid preparartion.

b) CDM8 plasmid vector (4.4Kb) contains CD40 cDNA insert (900bp) which is cloned into 

the MC1061 strain of E.Coli at the Notl and Scfl sites. The insert can also be excised by 

cutting the plasmid at the Xbal or Xhol restriction sites.

Restriction digest of bcl-2 cDNA in pBluescript 1 Ox reaction buffer 2pl
ddH20  6pi

Master Mix: 1 reaction tube EcoRI 1 pi
Hindlll lpl
plasmid DNA (approx lug) lOpl
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F igu re  2 .2 .1 5 a
RESTRICTION MAPS OF CLONED GENES FOR USE AS PROBES

IL6R - open reading frame = 1401 bp (467 codons)
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specific primers, inserting
into pCR II vector  and amplifying in Ecoli
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F ig u re  2 .2 .15b
RESTRICTION MAPS OF CLONED GENES FOR USE AS PROBES

4) Fas L restriction map
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Figure 2.2.15c

Restriction map of fas in pBluescript cut with the following restriction enzymes:

Products*

1) Xbal+Xhol - 400bp, 700bp, 1.1 kb, 3kb

2) Xbal+Bamlll 400bp, 800bp, 4kb

3) Xbal 400bp, 1.1 kb, 4kb

4) Xhol 2.5kb, 3kb

5) BamHI 700bp, 5kb

6) uncut

Marker- EcoRI+Hindlll /UDNA.

*In all cases products of restriction digestion were as expected from restriction maps.

M 6 5 4 3 2 1 M

Marker siz e

I\J 0» = ;
£  9 « - f
N) (q :

j i
— O  g —  :sg | ;

i 21,227hp 
5l48bp 

4248bp 
3530bp 
2027bp 
1924bp 
1584bp 
1375bp 
974bp 
831 bp 
564bp
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Figure 2.2.15d

1. Restriction digest of mini plasmid preparations (samples 1-6) of human Fas ligand cDNA 

inserted into pBluescript following transformation into XLBlue, expansion and harvesting 

(2.2.14). Samples were visualised on a 1% agarose gel containing ethidium bromide and 

were digested with a) no enzyme, b) Notl (product is linearised plasmid containing insert, 

3.9kb) or c) Xbal (products are plasmid, 3kb and insert, 843bp). The marker was 

EcoRI+Hindlll X cut DNA. See page 81 for marker sizes
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2. Miniprep sample 2 (above) chosen to expand further in XLBlue for subsequent maxi 

plasmid preparation. Restriction digest of maxiprep cut with a) Xbal, b) Notl or c) no 

enzyme. Marker (M) was EcoRI^Hindlll AJDNA.
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Digests were performed for each of 6 tubes (plasmid preparations) and 6 control tubes 

containing no restriction enzymes. These were incubated in a water bath at 37°C for 1-2 

hours, then run in 1% agarose gel containing 0.25fig/ml ethidium bromide at 125 volts for 

30 minutes. The gel was observed under ultraviolet light and photographed. This procedure 

was used to isolate cDNA encoding all the genes of interest. Figure 2.2.15d shows the 

agarose gel visualising restriction digests of mini plasmid preparations and subsequent maxi 

plasmid preparation of the Fas ligand cDNA in pBluescript as an example.

Once product size and purity was confirmed :

A maxi plasmid prep of insert DNA was performed. The OD260/280 was calculated to assess 

the yield of purified CD40 cDNA. This was between 1.8-2.0 verifying the purity of the 

DNA preparation and enabled calculation of the DNA concentration.

In order to separate cDNA insert from plasmid to use as a cDNA probe a 200pl preparative 

digest using restriction enzymes which excised the insert was performed. Products were run 

in 1.2% low melting temperature agarose gel (containing EtBr), lOOv for approximately 2 

hours. The cDNA insert was excised under UV light stored at 4°C and used for subsequent 

Northern and Dot blotting experiments.

eg, For the bcl-2 insert:

200[il preparative restriction digest:

1 OX reaction buffer 20pl
ddH20  108.45pl
EcoRI 10pl
Hindlll lOpl
50ug (plasmid+£c/-2) DNA 51.55fil

Total 200pl

CALCULATION OF cDNA INSERT CONCENTRATION

Maxiprep DNA purification results in DNA preparation of: 

plasmid + insert

The following formula was used to calculate the overall DNA concentration: 

OD260 x dilution of sample x 50 = [DNA] of plasmid + insert in jig/ml
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eg: bcl-2 plasmid preparation:
OD260 = 1.94 (1:10 dilution) 

ie pBluescript + bcl-2 insert [DNA] = 1.94 x 10 x 50 (ig/ml
= 970pg/ml

200pl restriction digest to separate plasmid from insert contains 50^ig DNA (plasmid +

insert) ie 50jj,g DNA is equivalent to :

plasmid (pBluescript) 3000bp in length
insert {bcl-2) 850bp in length
total length__________________ 3850bp
Insert = (850/3850)% ie 22% of total

ie [insert DNA] = 22% of 50(j.g =1 l|ag

This is contained in the agarose cut out from the 200ul restriction digest = approx 2.5ml 

(the tube is weighed before and after adding DNA/agarose, 1 gram = approx lml, or 

alternatively, DNA/agarose could be melted at 65°C pipetted and the volume quantitated), 

ie 1 lpg  = 2.5ml, so 4.45pg = lml, ie 4.45ng/ul.

The bcl-2 cDNA probe is at a concentration of 4.45ng/ul.

2.2.16 SUBCLONING OF CD40 cDNA FROM CDM8 PLASMID VECTOR INTO 

PBLUESCRIPT

In order to provide two promotor sites for in vitro transcription CD40 cDNA was excised 

from CDM8 and subcloned into pBluescript by ligation with DNA ligase. The insert was cut 

out using the restriction enzymes Notl and Hindlll and ligated into the same restriction sites 

of pBluescript (the original insert was inserted at the Notl and Scfl sites of CDM8 but Scfl 

requires a temperature of 50°C with bovine serum albumin added to the restriction digest so 

Hindlll was used instead).

Preparative digests of CD40 cDNA in CDM8 plasmid vector and of pBluescript containing 

no insert were carried out. The pBluescript digest was phenol extracted (2.2.3) to remove 

any residual restriction enzyme activity which would interfere with the ligation reaction. The 

entire CDM8 digest was run in a 1% low melting agarose gel to separate CD40 insert from 

plasmid (no ethidium bromide was added to the gel since this, in combination with light,
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causes nicks in the DNA which reduces the transformation efficiency). The CD40 insert was 

cut out of the gel under UV light after staining for 10 minutes in ethidium bromide to 

visualise the product.

Preparative digest of CD40 cDNA from CDM8 plasmid vector

1. CD40 cDNA was cut out of CDM8 using the restriction enzymes Notl and Hindlll.

2. pBluescript plasmid DNA (vector DNA, no insert) was also cut at the Notl and Hindlll 

restriction sites of the multiple cloning site (MCS).

3. Competent XLBlue cells were prepared and kept on ice for transformation with ligation 

reaction products.

Restriction digests CD40 in CDM8 pBluescript fNo insert)

1 Ox reaction buffer 40pl 20pl
ddH20  46pl 160pl
Notl 1 Ojul 5 pi
Hindlll lOpl 5 pi
DNA (CD40 in CDM8,20pg) 294ul (pBluescript, 1 Opg) lOul

@68pg/ml @ 1 mg/ml
TOTAL 400pl 200pl

Samples were incubated at 37°C for one hour. Then a further 2pl of each restriction enzyme 

was added and samples incubated for a further hour (or overnight) to ensure complete 

digestion. Following electrophoresis, the excised CD40 cDNA was extracted from the low 

melting temperature agarose by electroelution using the dialysis tubing method as follows:

Dialysis tubing (Sigma) was boiled in 0.06% EDTA for 10 minutes. The gel containing the 

CD40 insert was inserted into this tubing containing lml TE buffer with a knot tied at both 

ends. The tubing was placed onto the platform of a gel electrophoresis tank containing lx 

TBE buffer and ethidium bromide and electrophoresed at 125 volts until all of the DNA had 

been eluted from the agarose into the TE buffer. This could be visualised under UV light. 

The polarity was reversed and electrophoresis continued for 10 minutes to collect any 

residual DNA which may have stuck to the walls of the dialysis tubing.. The extracted DNA 

in TE buffer was phenol extracted and the OD260/280 was calculated to assess the yield of 

purified CD40 cDNA. This was between 1.8-2.0 verifying the purity of the DNA 

preparation and enabled calculation of the DNA concentration.
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LIGATION OF CD40 cDNA INTO pBLUESCRIPT

Ligations containing 10-50ng CD40 cDNA and 10-50ng vector pBluescript DNA were set 

up with appropriate controls (uncut pBluescript, pBluescript cut with Notl only (+/- 

ligase), pBluescript cut with Hindlll only (+/- ligase)). Ligation was performed using T4 

DNA ligase and ligation buffer containing 50mM Tris.HCl, pH7.8, lOmM MgCh, lOmM 

DTT, ImM ATP, (New England Biolabs.). Reaction mixes were incubated at 20°C 

overnight.

Procedure:

1) Ligation of CD40 cDNA (1.14|ug in 400pl TE) into pBluescript cut with Notl and 

Hindlll (5pg in lOOpl TE). Ligations were set up containing 50ng, 20ng and lOng CD40 

cDNA + ligase (reactions 10+11+12).

Controls:

2) Uncut pBluescript with no insert DNA (reaction 1)
3) pBluescript cut with Hindlll only (+/- ligase) with no insert DNA (reactions 2+3)
4) pBluescript cut with Notl only (+/- ligase) with no insert DNA (reactions 4+5)
5) pBluescript cut with Notl+Hindlll (+/- ligase) with no insert DNA (reactions 6+7)
6) No pBluescript + insert DNA (+/- ligase), (reactions 8+9)

LIGATION

1 2 3 4  5 6 7  8  9 10 11 12

l Ox R. bufFer 27 5  25 25 25  2^5 25 25  25 25 25 25  25

D N A  1 (50ng/u l) l^xl1 l^ l2 l^xl2 l^xl3 l ^ 3 l^xl4 l^il4 - - Ijj.14 ljal4 l^ l4

D N A  2 ( 2 . 8 5 n g / u l ) .................................................................................................. 17 .5 |il 17.5^1 17.5^1 7\A 3.5*xl
(50n g) (2 0n g) (lO ng)

ddH 20  21.5^1 20 .5  21 .5  20 .5  21 .5  20 .5  21 .5  4 5 3 13.5 17

T4D N A  ligase(4U /u l) - lj il  - lj il  - l^xl - lf il  - lfil 1 |_tl 1 p.1 

TO TAL 25^x1 25y\ 25^x1 25^x1 25^1 2 5 ^ 2 5 v ^ 5 y T l5 v i\ 2 5 |ii 25^\ 25^x7

DNA 1 - pBluescript @ 50ng/pl 

DNA 2 - CD40 cDNA @ 2.85ng/pl

superscripts (DNA 1): 1 Uncut pBluescript
2 pBluescript cut with Hindlll only
3 pBluescript cut with Notl only
4 pBluescript cut with Notl and Hindlll 

Reaction mixes incubated at 20°C overnight (RT).
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Transformation of ligation reactions into XL Blue strain of E.Coli was carried out as 

described in section 2.2.12. Positive colonies were selected from L-Broth/agar plates 

containing approriate antibiotics and Xgal (Gibco BRL) as follows:

1. The contents of each ligation reaction (25fil) were added to 75pil transformation buffer, 

ie lOOpl total.

2. This lOOjil was added to 100p.l of competent XL Blue as previously described (2.2.12) 

and lOOjil plated out onto LBroth/agar plates (2 plates per ligation reaction, ie 24 plates in 

total) as follows:

a) L Broth/agar containing ampicillin @ lOOpg/ml

tetracycline @ 7.5 jag/ml

XGal* @ 40mg/ml, 25jil/plate

* Xgal results in the formation of white and blue colonies (2.1.4). White colonies contain 

insert and are therefore selected to perform plasmid preparations and assess whether insert 

is present following restriction analysis.

b) Control plates - LBroth/agar+tetracycline alone - show a lawn of growth as XLBlue is 

tetracycline resistant.

Results:

1. Uncut pBluescript, no ligase - colonies all blue (J3Gal gene not interrupted)
2. pBluescript cut with Hindlll + ligase - all blue colonies (pBluescript ligated back 
together)
3. pBluescript cut with Hindlll - no ligase - very few colonies, all blue
4. pBluescript cut with Notl + ligase - several colonies, all blue
5. pBluescript cut with Notl - no ligase - very few colonies, all blue
6. pBluescript cut with Notl and Hindlll + ligase - colonies all blue, not many as the MCS 
has been cut out
7. pBluescript cut with Notl and Hindlll - no ligase - no colonies
8. CD40 insert alone cut out of CDM8 with Notl and Hindlll + ligase - no colonies
9. CD40 insert cut out of CDM8 with Notl and Hindlll - no ligase -no colonies
10. pBluescript (double cut, 50ng) + CD40 (insert cut out,50ng) + ligase - blue and white 
colonies - white colonies contain pBluescript+CD40 insert
11. pBluescript (double cut,50ng) + CD40 (20ng) + ligase - blue and white colonies. White 
colonies contain insert
12. pBluescript (double cut,50ng) + CD40 (lOng) + ligase - blue and white colonies.
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Fourteen white colonies were picked from plates 10,11,12 and 14 mini plasmid 

preparations were performed. The resultant DNA was digested with the Notl and Hindlll 

restriction enzymes and the products run on a 1% agarose gel. This resulted in the 

visualisation of two bands - one band at 900bp (CD40 cDNA), one band at 3Kb 

(pBluescript). Control digests were performed by picking 3 blue plaques, performing a 

plasmid prep, and digesting the DNA with Notl and Hindlll. A resultant band at 3kb was 

seen following electrophoresis with an equivalent size to pBluescript without insert.

The best miniprep sample was chosen and the remainder of that expanded plaque grown up 

and used to perform a preparative (maxi) restriction digest.This was subsequently phenol 

extracted and used as a template for in vitro transcription.

2.2.17 RNA DOT BLOT HYBRIDSATION

The cDNA cut out of its plasmid vector using appropriate restriction enzymes was run in a 

low melting point agarose gel (2.2.16) until plasmid and insert were completely separated. 

The insert DNA cut out of the gel was used to synthesise a cDNA probe. cDNA probes 

were generated with 32P-dCTP using Random Hexamers by labeling isolated plasmid insert 

DNA with 32P-labelled dCTP using random hexamers as primers (Ref. 266).

Method:

cDNA probe preparation:

Excised cDNA (20ng) was heat denatured at 99°C for 10 minutes and added to a 50pl 

reaction mix containing lx oligo labeling buffer (OLB), 30pCi 32P-CTP and 5U Klenow 

Fragment. The mixture was incubated in a 37°C water bath for at least 1 hour or for several 

hours at room temperature. The product is smaller than the original 850bp cDNA in the 

case of bcl-2 as the Klenow fragment does not synthesise the entire strand but is of the 

order of 300-400 base pairs long. A microtitre grid template was prepared on a PALL 

Biodyne B Nylon Transfer Membrane which was wet in DEPC.H20 , then in 20 x SSC 

before blotting with 3MM paper and air dried.
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Doubling Dilution Assay: A stock solution of RNA in 20pl DEPC.H20  (500pg/ml for 

total RNA) was prepared, heat denatured at 65°C for 15 minutes and snap cooled on ice. 

20ul of each RNA sample was put into the first well of a microtitre plate and lOul ddH20  in 

wells 2-12. lOpl from well 1 was mixed with the contents of well 2, lOp.1 transfered to well 

3 with doubling dilutions continued up to well 12. 4pl of each sample was spotted onto the 

hybridisation filter and it was air dried. The filter was baked for 30 minutes at 80°C then the 

RNA was immobilised by cross-linking under UV light for 2 minutes.

Hybridisation with cDNA 32P-labeIled probe: Filters were prehybridised at 65°C in 10ml 

Aqueous Dextran Buffer. Heat denatured salmon sperm DNA (lmg\ml) was added just 

prior to pre-hybridisation to block non-specific binding of the labeled probe. The labeled 

probe was passed through a NICK Sephadex column (Pharmacia Biotech) to separate nick- 

translated DNA from unincorporated 32P-labeled nucleotides. It was heated to 99°C for a 

couple of minutes to dissolve the agarose prior to adding to the hybridisation tube. 

Hybridisation was at 65°C overnight. Filters were subsequently washed to a final SSC 

concentration of O.lx SSC and then autoradiographed. Figure 2.2.17 shows hybridisation of 

a human bcl-2 cDNA probe, prepared as described above, to dot-blotted RNA prepared 

from the myeloma cell lines; JIM-1, JIM-3, JJN-3, EJM, U266 and RK. RNA prepared 

from SD-1 (an acute lymphoblastic leukaemia cell line) and both granulocyte and monocyte 

RNA preparations of a normal control (JT) which were used as negative controls. A 32P- 

labeled 18S rRNA was used as a positive control probe. The cell lines JIM-1, JIM-3, JJN-3, 

EJM, U266, RK were all positive for bcl-2 mRNA expression with SD-1 and JT 

(granulocyte and monocyte preparations) all negative.

2.2.18 cDNA dot-blot hybridisation with Digoxygenin-labeled ribonrobes (to test 

specificity of probes following IVT). See Figure 2.2.18.

The cDNA products of RT-PCR reactions were dot-blotted onto Hybond-NT filters 

(Amersham Life Science) and hybridised with digoxygenin-labeled riboprobes (2.2.19) using 

“DIG Easy Hyb” (Boehringer Mannheim) hybridisation solution for nucleic acid blots using 

Dig-labeled probes according to the supplied protocol as follows:
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Figure 2.2.17

Dot-Blot hybridisation of RNA from myeloma cell lines with a ,?P-labeled human hcl-2 

cDNA probe (1). A ' "P-labeled 18S rRNA probe was used as a positive control (2).

( 1)
JIM-1 

JIM-3 

JJN-3 

EJM 

U266 

U266 

RK 

SD-1 

JT (gran)

JT (mono)

(2)
JIM-1 

JIM-3 

JJN-3 

EJM 

U266 

U266 

RK 

SD-1

JT (gran)*

El' (mono)*

All myeloma samples showed positive hybridisation to the 18S control probe. The cell lines; 

JIM-1, JIM-3, JJN-3, EJM (weak), U266 and RK were positive for bcl-2 RNA expression 

with SD-1 (an ALL control cell line) and normal controls JT (granulocyte preparation) and 

JT (monocyte preparation) all negative. *JT is not the same patient as the myeloma cell line 

JT used in the rest of this thesis. Two different RNA preparations of U266 were compared. 

The second one consisted of older RNA and was subsequently shown to be degraded (no 

hybridisation was observed in this dot-blot).

RK is a myeloma cell line developed by the author (2.1.1).
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Figure 2.2.18

Specificity of riboprobes tested using dot-blots of RT-PCR products.

A. In an initial step myeloma cell line RNA was reverse transcribed using sequence-specific 

primers and the products run on a 1% agarose gel. The primers used were specific for the 

following cDNAs; a) bcl-2 (product 269bp), b) CD40 (product 642bp), c) FasL (product 

453bp), d) fa s  (product 389bp). See photographs of gel electrophoresis. Markers- MspI 

cut pBR322 DNA and Hindlll cut ^DNA.

Summary of Results

Sample (RNA) RT-PCR Products

bcl-2 CD40 fas Fas

1. JIM-1 + - + -

2. JIM-3 + - + -

3. EJM + - + -

4. JJN-3 + - + -

5. U266 + - + -

6. IM-9 + + + -

7. RK + - + -

8. ANBL-6 + - + -

9. RPMI-8226 - -• - -

10. SD-1 + + + -

11. MOLT-4 + - + -

12. KYO-1 + - +

13. no reverse transcriptase+JIM-3 RNA - - - -

14. no RNA _ ~ - -
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Figure 2.2.18 fcont.)

a) bcl-2 RT-PCR

b) CD40 RT-PCR

c) FasL RT-PCR

d) Fas RT-PCR

14 13 12 11 10 9 8 7 6 5 4 3 2 1 M

-265bp

-642bp

-453bp

-389bp
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Figure 2.2.18 (cont.)

B) RT-PCR products were then dot-blotted onto nitrocellulose filters and hybridised with 

Digoxygenin-labeled riboprobes to test for specificity o f hybridisation (2.2.18) using:

a) bcl-2 sense, b) bcl-2 antisense, c) CD40 sense, d) CD40 antisense, e) FasL sense, f) FasL 

antisense, g) fa s  antisense and h) fa s  sense riboprobes. All probes (both sense and antisense) 

were found to bind specifically to positive dot-blots o f cDNA encoding the same genes. 

Sense probes also bound since the dot blot consisted of denatured, double-stranded DNA.

Dot-blots of CD40 (1) and bcl-2 (2) RT-PCR products (from A) hybridised with:

a) Digoxygenin-labeled bcl-2 sense riboprobe.

b) Digoxygenin-labeled bcl-2 antisense riboprobe

c) Digoxygenin-labeled CD40 sense riboprobe

d) Digoxygenin-labeled CD40 antisense riboprobe

1 2 3 4 5 6 7 8 9 10 11 12

a)

•  •  I  • %  •

b)
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Figure 2.2.18 (cont.)

Dot-blots o f fas  (1) and FasL (2) RT-PCR products from (A) hybridised with:

e) Digoxygenin-labeled FasL sense riboprobe

f) Digoxygenin-labeled FasL antisense riboprobe

g) Digoxygenin-labeled fas antisense riboprobe

h) Digoxygenin-labeled fa s  sense riboprobe

1 2 3 4 5 6 7 8 9 10 11 12

f)

0  i; • / O ^ -22

© ® •  9I •  % •
g)

r  ‘
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Preparation of dot-blots

RT-PCR products (5 pi of each sample) were alkaline denatured with 5 pi of 1M sodium 

hydroxide. 2pl was spotted onto identical Hybond 1ST filters, pre-wetted with distilled water 

and then 20xSSC before air drying. Filters were baked at 80°C for 2 hours and then UV 

irradiated for 2 minutes to cross-link the denatured DNA.

Hybridisation and detection

Filters were pre-hybridised at 50°C with 20ml/100cm2 of DIG Easy Hyb for 30 minutes with 

constant rotation. This was discarded and lml of each Digoxygenin-labeled riboprobe 

(@100ng/ml) in DIG Easy Hyb previously heated to 50°C was added. Hybridisation was 

allowed to continue overnight at 50°C. Filters were washed for 2 xlO minutes with 2x SSC,

0.1% SDS and then with O.lx SSC, 0.1% SDS for 2x 15 minutes before detection with anti- 

Dig-AP conjugate and NBT/BCIP as described in 2.2.19.

2.2.19 PREPARATION OF RIBOPROBES

Riboprobes are complementary strands of RNA prepared by an RNA polymerase-catalysed 

transcription of mRNA in the 3’ to 5’ direction. Riboprobes were generated from bcl-2, 

CD40, CD40L, fa s , and FasL cDNAs in pBluescript by in vitro transcription (IVT) of 

linearised plasmid using Digoxygenin-labeled-UTP (Boehringer Mannheim) incorporated 

into the RNA in vitro transcription kit (Stratagene) in place of a radioactively labelled-UTP. 

The protocol was followed as described by Stratagene using T3 and T7 RNA polymerases. 

Plasmids containing insert were linearised using the appropriate restriction enzymes and 

were then phenol extracted to purify the product and destroy any RNase activity prior to in 

vitro transcription.

This describes the method of preparation of the bcl-2 riboprobe. The same procedure was 

used to generate riboprobes from CD40, CD40L, fas, and FasL cDNAs in pBluescript as 

follows:

1. CD40 in pBluescript was linearised using Kpnl (and subsequently in vitro transcribed

(IVT) to produce a sense riboprobe using the RNA polymerase T3) and with SstI (in vitro 

transcribed with T7 to generate an antisense probe).
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2. CD40L in pBluescript linearised with Kpnl (IVT using T3 to generate a sense riboprobe) 

and with PstI (IVT using T7 to generate an antisense probe).

3. fa s  in pBluescript linearised with PstI (IVT using T7 to generate a sense probe) and with 

Kpnl (IVT using T3 to generate an antisense probe).

4. Fas ligand in pBluescript linearised with Hindlll (IVT using T3 to generate a sense 

probe) and with Notl (IVT using T7 to generate an antisense probe).

A bcl-2 riboprobe (RNA probe) labeled at both ends with digoxygenin was prepared by 

taking lOpg of pBluescript plasmid containing the human bcl-2 cDNA insert, linearising it 

using the restriction enzymes EcoRI and Hindlll in two separate restriction digests, and 

performing in vitro transcription of these digests using the RNA polymerases T7 and T3 to 

produce sense and antisense RNA probes respectively.

1. Two restriction digests of lOpg pBluescript bcl-2 plasmid preparation (@ 0.97mg/ml) 

were performed using the EcoRI and Hindlll restriction enzymes (RE).

2. The linearised plasmid containing the bcl-2 insert was then phenol extracted (2.2.3) to 

purify the product and destroy any RNase activity prior to in vitro transcription. The final 

pellet was resuspended in 20pl fresh, ribonuclease free DEPC treated sterile distilled water.

3. In vitro transcription of linearised plasmid containing the bcl-2 insert was performed 

using digoxygenin-labeled-UTP as follows:

a) Antisense riboprobe synthesis:

5x transcription buffer 50pl

DNA template (phenol extracted, Hindlll digest, lOug) 20pl

lOmM Dig-UTP lOx labeling mix* 25 pi

0.75M DTT lOpl

T3 RNA polymerase (20U,@10U/pl) 2pl

DEPC.H20  (up to 250pl) 143 pi

Total 250pl
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b) Sense riboprobe synthesis:

5x transcription buffer 50pl

DNA template (EcoRI digest, lOpg) 2 0 | li1

lOmM Dig-UTP,10X conc. 25 pi

0.75M DTT lOjLll

T7 RNA polymerase (20U,@10U/pl) 2 pi

DEPC.H20  (up to 250pl) 143 pi

Total 250pl

* The labeling mix also contained unlabeled ATP, GTP and CTP

Samples were incubated at 37°C for 30 minutes, then 10U additional RNA polymerase was 

added and samples incubated for a further 30 minutes at 37°C (to ensure that all of the 

substrate was used).

Purification of riboprobes:

Riboprobes were fractionated on a G25 sephadex column and eluted with T10E, buffer 

containing 0.1% SDS (destroying any ribonuclease activity in the column). Eluates 

(12x150(j.l) were dot blotted and labeled with anti-Digoxygenin antibody to assess which 

eluates contained labeled probe. Eluates were also run in a 1% agarose gel to detect which 

of them contained RNA and to check that these were the same samples which were positive 

by dot blotting. Samples were stored at -20°C until ready to perform dot-blots as follows:

Probe detection on nitrocellulose:

A nitrocellulose membrane was rinsed in distilled water and then washed in 20x SSC buffer 

in DEPC.H20  for 10 minutes before blotting and air drying, lpl of each eluate fraction was 

spotted onto the membrane which was then air dried and baked at 80°C for 2 hours. The 

membrane was rehydrated in detection buffer 1 (2.1.11) for 1 minute and then put in a heat 

seal bag with 20ml detection buffer 2 and incubated for 30 minutes at 37°C. A 1:1000 

dilution (20ml) of anti-Dig/AP/conjugate was added after removal of buffer 2 and the 

membrane labeled for 1 hour, with shaking, at room temperature. The membrane was 

washed x2 for 20 minutes in detection buffer 1 and then in detection buffer 3 for several
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minutes before detection using NBT/BCIP (2.1.11). Positive dots were observed after about 

30 minutes after which the reaction was stopped by wetting the filter in dH20  and storing it 

in the dark after blotting dry. Those fractions with intense reaction (2-3 dots) were pooled 

and freeze dried. Samples could be stored indefinately at -20°C in this state but were 

reconstituted in 50-200pl DEPC.H20  according to the intensity of the dot blots as required.

Figure 2.2.19 shows the dot-blots performed following in vitro transcription resulting in the 

generation of Fas ligand sense and antisense riboprobes as an example. Eluates 4,5 and 6 

contained Digoxygenin-labeled RNA by dot-blot analysis and this was confirmed by gel 

electrophoresis. Similar results were obtained following IVT of CD40, CD40L, fas, bcl-2 

and IL-6R sense and antisense riboprobes (results not shown).

2.2.20 PREPARATION OF INTERLEUKIN-6 RECEPTOR RIBOPROBE

The U266 myeloma cell line (Ref. 249) is known to express a large amount of interleukin-6 

receptor (IL-6R) on its cell surface (104 sites/cell), (Ref. 267).

RNA was prepared from the U266 cell line, and reverse transcribed using IL-6R-specific 

primers to provide enough cDNA to insert into a cloning vector. The IL-6R DNA was then 

cloned into the pCR™ vector using the TA cloning system (Invitrogen Corp.), sequenced 

and used to generate a Digoxygenin labeled riboprobe as previously described (2.2.18). The 

manufacturers protocol was used to perform the cloning procedure. Ligation of the IL-6R 

PCR product with the PCR vector was set up as a 1:1 molar ratio of vector:PCR insert. 

Following ligation the pCRII plasmid containing insert was transformed into competent 

INVocF’ cells. The pUC19 plasmid vector was used as a positive control (258). The SOC 

transformation recovery medium consisted of 2% Bacto tryptone, 0.5% Bacto yeast extract, 

lOmM NaCl, 2.5mM Kcl, lOmM MgCh, 10mM MgSC>4 and 20mM glucose. Positive 

colonies were selected from L-Broth/agar plates containing appropriate antibiotics and 

Xgal. Following sequencing the IL6R cDNA in pCRII was linearised and in vitro 

transcribed using Notl (+SP6 RNA polymerase to generate a sense probe) and Hindlll (+T7 

to generate an antisense probe).
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Figure 2.2.19

Riboprobes were fractionated on a G25 sephadex column and eluted with T10E, buffer 

containing 0.1% SDS. Eluates (12x150pil) were dot blotted and labelled with anti- 

Digoxygenin antibody to assess which eluates contained labelled probe (a). Eluates were 

also run in a 1% agarose gel to detect which of them contained RNA (b).

a) Dot-blot of 12 column eluates as in b)

C <e>

O 1  •  3 ______________________________

1 2 3 4 5 6 7 8 9 10 11 12

b) G25 column eluates of FasL IVT products of 1) FasL sense and 2) FasL antisense 

digoxygenin-'labeled riboprobes run on a 1% agarose gel.

1)

2)

12 11 10 9 8 7 6 5 4 3 2 1 EcoRI/Hindlll

See page 81 for marker sizes

r

1
i :

2
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RT-PCR

IL-6R cDNA was prepared from U266 RNA by RT-PCR as described in section 2.2.11 

using IL-6R specific primers (Clonetech). p2microglobulin primers were used as a positive 

control and a sample containing no RNA polymerase was used as a negative control. 

Amplification of the cDNA in a reaction volume of 50pl was as follows:

NB: It would normally be necessary to run a control RT-PCR reaction containing no RT to 

ensure there is no DNA contamination of the RNA ] preparation but, since these IL-6 

primers span the intron/exon boundaries, any amplified DNA would be larger than the 

amplified RNA so it was not necessary to run this control.

Correct product size was verified by running 5pi of the product in a 2% agarose gel.The 

positive control IL-6R DNA and the U266 cDNA product results in a band of 250 base 

pairs (See figure 2.2.11a). The size of the p2microglobulin product was 300bp.

The remaining 45pi (stored at 4°C) of amplified cDNA could then be used as an IL-6R 

cDNA probe or subsequently cloned into a suitable vector (pCRII, see below) and further 

amplified in order to generate a riboprobe.

CLONING OF IL-6R cDNA using the TA Cloning system 

dnvitrogen version 1.3).

The TA cloning system provides a quick, one-step strategy for direct insertion of a 

polymerase chain product into a plasmid vector. The procedure eliminates any enzymatic 

modifications of the PCR product such as Klenow or T4 Polymerase treatment to create 

blunt ends and it does not require the use of specifically designed primers containing 

restriction sites.

This cloning system takes advantage of the non-template dependant activity of thermostable 

polymerases used in PCR that add single deoxyadenosines to the 3' end of all duplex

45 seconds 
45 seconds 
2 minutes

94°C
60°C
72°C
72°C
4°C

Hold, 7 minutes 
Hold Cycle number = 35

100



molecules. These A-overhangs are used to insert the PCR product into a specifically 

designed vector providing single 3'T-overhangs at the insertion site. The vector is supplied 

with the kit as a linear molecule with the 3'dT-overhangs ready for insertion of PCR 

product.

1. Cloning of PCR product into pCR™ vector.

a) One vial of lyophilised TA Cloning vector - pCR™ vector was resuspended in 8.8pl TE 

buffer resulting in a final concentration of 25ng/pl

b) The transformation efficiency of the TA cloning "One Shot" cells is at least 5 x 107 

transformants per microgram supercoiled plasmid (positive control). The cells were tested 

by transformation of the supercoiled (SC) plasmid (pUC18 @ lOng/pl). The lyophilised SC 

plasmid was reconstituted in lOOul sterile water to prepare a lng/p.1 stock (Stored at -20°C). 

This was diluted 1:100 in TE buffer to a final concentration of lOpg/ul and lul was used 

instead of ligated PCR product by adding directly to competent E Coli and spread onto L- 

Broth plates containing Ampicillin.

c) Ligation of PCR product (IL-6R-cDNA, 10ng/p.l) with the pCR™ vector was set up as a 

1:3 molar ratio of vector:PCR insert. 50ng (2|il) of the resuspended vector was used per 

ligation.

Size of pCR™ plasmid = 3.9kb MW of 1 base pair = 660
M W ..............  = 3900 x 660

= 2.574 x 106

Size of IL-6R cDNA =250bp
MW " " " = 250x660

= 1.65 x 105

ie vector is 15.6x larger than the PCR product.

A 1:1 molar ratio of vector: product
= 50ng:3.2ng = 2|li1:0.3jli1 

A 1:3 molar ratio of vector: product
= 50ng:10ng 
= 2pl:l|al
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A TA cloning ligation reaction with varying molar ratios of vector:product was set up as 
follows:

Ligation reaction:
1 2 3 4

Sterile dH20 6 4.5 2 7 pi
lOx ligation buffer 1 1 1 lpl
pCR™ vector (25ng/ul) 2 2 2 2 pi
PCR product (~10ng/ul) 1 2.5 5 -pi
T4 DNA Ligase 1 1 1 lul
Total 11 11 11 llp l

1 Reaction 4 is self ligation control, plated onto L-Broth+Amp+X-Gal 

Reaction mixes were incubated at 12°C for 4 hours or overnight.

2. Transformation with competent E.Coli:

The pCR™ plasmid is ampicillin resistant (amp^. Competent E.Coli containing plasmid + 

insert were selected for by spreading the amp.Lbroth/agar plates with XGal (as described in 

section 2.2.16). The transformation reaction was performed according to the manufacturers 

protocol and was essentially as described in section 2.2.13.

Briefly, L-Broth/agar plates containing lOOpg/ml ampicillin and overlayed with 25pi X-Gal 

(40mg/ml) were prepared (1 plate for each TA cloning ligation reaction). The tubes 

containing the ligation reactions were spun briefly and placed on ice. 2pl of the 0.5M p-ME 

was added to a 50pl vial of competent INVocF’ E coli cells, one for each reaction, and 

mixed by tapping gently, lpl of each TA cloning ligation reaction (and lpl of diluted, 

supercoiled plasmid as a test of transformation efficiency) was pipetted directly into the 

competent cells and mixed by tapping gently. The remaining ligation mixture was stored at - 

20°C. The vials were incubated on ice for 30 minutes followed by 60 seconds at 42°C. Vials 

were removed from the water bath and replaced on ice for 2 minutes. 450pl pre-warmed 

SOC medium was added to each vial which were then shaken at 225rpm at 37°C for exactly 

one hour before replacing on ice. Aliquots of 25 pi and lOOpl from each transformation vial 

were spread on separate, labeled L-Broth plates containing amplicillin and X-Gal. After 

overnight incubation white colonies were picked for plasmid isolation and restriction 

analysis, PCR or sequencing.
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Colonies formed after overnight incubation at 37°C:

P l a t e 1 2 3 4  5  6
S p r e a d  2 5 j J  1 0 0 p ] 2 5 m_1 lO O fol 2 5 jj.1 1 0 0 ^ 1 2 5 p J  lO O p i  2 5 p l  lO O jil  2 5 |o l  lO O fol

C o l s .
B l u e 3  2 5 3 9  1 4 6  8 1 4 9  l a w n  o f  g r o w t h  1 0 3  > 3 0 0

W h i t e 1 2 0 4 7  2 7 0  9 0  0  -

T o t a l 4  4 5 8 6  4 1 6  1 7 1 4 9  1 0 3  > 3 0 0

REACTIONS:

1-3. Competent E.Coli transformed with ligations 1-3

4. Self ligation control (no PCR product added to ligation reaction). The percentage of 
white colonies on this plate should be less than 5% of the total number of colonies. Any 
blue colonies result from a T:T mismatch self-ligation of the vector.

5. SC plasmid control transformation plated onto L-Broth without Ampicillin.

6. SC plasmid control transformation plated onto L-Broth with ampicillin.

Calculation of Transformation efficiency:

Volume in transformation: Competent E Coli (INV alpha F)
P-ME
Vector + or - insert 
SOC buffer 
Total

1. Plate 6, SC plasmid (pUC18)

lOpg SC plasmid added in 503 pi to plate 6.
25 pi added to plate, 103 colonies on plate.

503pi = lOpg SC plasmid 
lOOOpl = 10 x (1000/503) = 19.88pg/ml 
ie, 25pl = 0.025ml contained 19.88 x 0.025 pg SC plasmid 

= 0.497pg SC plasmid/plate 
ie, 0.497pg SC plasmid resulted in 103 colonies, = 207.24 colonies/pg

= 2 x 108 cols/pg SC plasmid

(Expect at least 5 x 107 transformants per microgram supercoiled plasmid.)

50pl 
2pl 
lpl 

450ul 
503 pi
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2. Plate 1 - plasmid (pCR™) + ~10ng insert (IL-6R)

25pi plate:
503 pi = ~10ng insert DNA (lul of IL-6R PCR product) 
ie 19.88ng/ml insert x 0.025 = 0.497ng insert DNA/plate

0.497ng resulted in 4 colonies, 
ie 8 x 103 colonies per microgram insert DNA

lOOpl plate:
503 pi = ~10ng insert DNA 
ie 19.88ng/ml insert x 0.100 = 1.988ng/plate 

1.988ng resulted in 45 colonies, 
ie 2.26 x 104 colonies per microgram insert DNA

3. Plate 2 - plasmid + ~25ng insert (2.5pl)

25pl plate: Total of 86 colonies
ie 1.24ng insert DNA per plate produced 86 colonies.
ie 6.9 x 104 colonies per microgram insert DNA

lOOpl plate: 4.97ng insert DNA produced 41 colonies, 
ie 8.2 x 103 colonies per microgram DNA

4. Plate 3: - plasmid + ~50ng insert DNA (5pl)

25pl plate: Total 6 colonies, 2.4ng DNA produced 6 colonies 
ie 2.4 x 103 colonies per microgram insert DNA

lOOpl plate: Total 17 colonies, produced by 9.94ng insert DNA 
ie 1.7 x 103 colonies per microgram insert DNA

Expansion of white colonies - positive for insert cDNA

Twelve individual white colonies and two control blue colonies from plates 1 and 2 were 

expanded in 2.5ml of L-Broth containing ampicillin overnight. Plasmid minipreps were 

performed and the products verified by restriction analysis. Samples with 250 base pair 

insert and 3.9 kilobase plasmid bands on agarose gel were selected to perform a maxi DNA 

plasmid prep. If the bands were faint the DNA was phenol extracted and the digest 

repeated.

The samples selected with positive bands on agarose gel electrophoresis after phenol 

extraction and repeat EcoRI digest were 1,2,3,5,9,10,11,12 (Lanes 13 and 14 only
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generated bands of 3.9kb corresponding to plasmid without insert ie blue colonies on L- 

Broth plates). The remaining 40pl of the chosen miniprep sample (3) was phenol extracted 

prior to sequencing. Glycerol stocks of selected samples were stored at -80°C (200pl 

glycerol added to a 1ml sample). Sample number 3 from plasmid minipreps was sequenced 

and was proven to have the correct sequence for the 250 base pair segment of the IL-6R 

gene which had been amplified by PCR.

Sequencing was performed as described (2.2.21) using one reaction with the M l 3 -40mer 

and one reaction using the Ml 3 +40mer in order to sequence the IL-6R cDNA from both 

ends. Following sequencing the IL6R cDNA in pCRII was linearised using Notl (+SP6 

RNA polymerase to generate a sense probe) and Hindll (+T7 to generate an antisense 

probe).

2.2.21 DNA SEQUENCING (DOUBLE STRANDED TEMPLATE)

(Ref. 268)

Sequencing apparatus - Hoeffer "Poker Face II" nucleic acid sequencer.

Sequencing kit - United States Biochemical "Sequenase" kit, version 2.0

The Chain-Termination sequencing method was used. This involves the synthesis of a DNA 

strand by a DNA polymerase in vitro using a single-stranded DNA template. Synthesis is 

initiated at only one site where an oligonucleotide primer anneals to the template. The 

synthesis reaction was terminated by the incorporation of a nucleotide analogue which will 

not support continued DNA elongation. The chain-terminating nucleotide analogues are the 

2 \y  -dideoxynucleoside 5' triphosphates (ddNTP's). These lack the 3'-OH group necessary 

for DNA chain elongation. When proper mixtures of dNTPs and one of the four ddNTPs 

are used, enzyme-catalysed polymerisation is terminated in a fraction of the population of 

chains at each site where the ddNTP can be incorporated. Four separate reactions, each 

with a different ddNTP provide complete sequence information. A radioactively labeled 

nucleotide was also included in the synthesis, so that labeled chains of various length could 

be visualised by autoradiography after separation by high resolution electrophoresis.
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The pCR™ plasmid used to clone the IL-6R cDNA contains an M l3 replication origin so 

that the LL-6R insert could be amplified using the M l3 primer once it had been rendered 

single-stranded. The DNA synthesis was carried out in two steps. The first was the labeling 

step (using 35S-dATP) performed after annealing of the primer. The second being the chain 

termination step using dideoxynucleotides.

In the first step, the primer was extended using limiting concentrations of the 

deoxynucleoside triphosphates, including radioactively labeled dATP. This step continues to 

complete incorporation of labeled nucleotide into DNA chains which are distributed 

randomly in length from several nucleotides to hundreds of nucleotides. In the second step, 

the concentration of all the deoxynucleoside triphosphates is increased and a 

dideoxynucleoside triphosphate is added. Processive DNA synthesis occurs until all growing 

chains are terminated by a dideoxynucleotide. During this step, the chains are extended, on 

average, only several dozen nucleotides. The reactions were terminated by the addition of 

EDTA and formamide. They were then heat denatured and run on a polyacrylamide 

electrophoresis gel (PAGE).

Samples (double-stranded plasmid preparation, containing IL-6R insert) were alkaline- 

denatured, ethanol precipitated and redissolved in distilled water with "sequenase" reaction 

buffer and M l3 sequencing primer prior to commencing the labeling reaction.

Preparation of 8% Polyacrylamide sequencing gel (19:1):

A 19:1, acrylamide:bis-acrylamide gel mix (Boehringer Mannheim) was used

1. Calculation of volumes for 500ml of an 8% gel mix:

Va = A. Vt/40 where:
Va = Volume of PAGE 1™ Sequencing Gel Mix 
Vt = Total volume of gel-casting solution (ml)
A = Percentage acrylamide desired

Therefore, for 500ml of an 8% polyacrylamide gel:

Va = (8x500)ml/40 = 100ml
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2. Gel mix (Ref. 269):

100ml sequencing gel mix 
50ml lOx TBE buffer (10%)
180g urea(6M)
This was made up to 500ml in distilled water and filter steriled using a vacuum pump.

lml fresh 10% ammonium persulphate and 40pl TEMED were added for each 100ml of gel 

mix. which was poured immediately, ensuring no air bubbles or leakage. A "Shark Tooth" 

comb (62 wells) was inserted, flat side in towards gel and the gel left flat to set.

Sequencing reaction:

1) Alkaline denaturation of double-stranded template:

An equal volume 0.4M NaOH, 0.4mM EDTA was added to a 100 pi sample of pCRII- 

IL-6R (lpg) to give a final volume of 0.2M  NaOH, 0.2mM EDTA and this was incubated 

at 37°C for 30 minutes. The mixture was neutralised by adding 0.1 volumes (10pl) of 3M 

sodium acetate (pH4.5-5.5) and the DNA precipitated with 2-4 volumes (300pl) ethanol at 

70°C for 15 minutes. After spinning in a microfuge for 5 minutes samples were washed with 

70% ethanol and air dried before resuspending in 7pl distilled water.

2) Annealing template and primer:

a) For each set of 4 sequencing lanes (A,C,T,G), a single annealing (and subsequent 

labeling) reaction was used:

Primer (M13 -40mer or +40mer 1 pi
"Sequenase" reaction buffer 2pl
ssDNA (approx. l-5ug*) 7pi
Total lOpl

1. For single stranded control M13 (M13mpl8 @ 0.2pg/pl) DNA lpg was used, ie 5pl 

control DNA + 2pl water.

2. For plasmid DNA, l-5pg was used, ie 7pl above.

b) Reaction tubes were warmed for 2 minutes at 65°C, then allowed to cool slowly to room 

temperature over a period of about 30 minutes. Once the sample temperature reached 30°C 

samples were put on ice since annealing was complete. Samples were used within 4 hours.
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3. Labeling Reaction:

To the annealed template-primer (above) the following was added on ice:

Template-primer (above) lO.Opl
DTT(O.IM) l.Opl
Diluted labeling mix (dNTP’s) 2.0pl
[alpha-35S]dATP (lOpCi/pl) 0.5pl
Diluted sequenase 2.0pl
Total 15.5pl

This was mixed thoroughly, avoiding air bubbles and incubated for 2-5 minutes at room 

temperature or cooler (incubation for longer or warmer leads to sequence artifacts within 

100 bases of the primer).

4. Termination Reactions:

1. Four PCR tubes were labeled for each sample. 2.5pl ddGTP termination mix was added 

to a tube marked "G" and repeated for A,T and C. The tubes were capped and put in PCR 

machine at 37°C for at least one minute.

2. When the labeling reaction was completed, 3.5pl was added to each of the tubes labeled 

"G", "A", "C" and "T” and this was repeated for each sample. The tubes were mixed, 

centrifuged and the incubation continued at 37°C for a total of 3-5 minutes (to a maximum 

of 30 minutes).

3. 4pl of "Stop Solution" was added to each of the termination reactions, tubes were mixed 

thoroughly and stored on ice until ready to load the sequencing gel.

4. Immediately prior to loading the gel the samples were heated to 75-80°C for 2 minutes 

and then 2-3 pi was loaded into each lane.

5. PAGE (Polyacrylamide gel electrophoresis).

1. An 8% (19:1) gel was prepared and assembled in electrophoresis apparatus. 5pl tracking 

dye was added to two wells and the gel was pre-run at 1500-2000 volts for about 30 

minutes until it heated up to at least 55°C. This was to ensure that the samples remained 

denatured when running the gel.
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2. Samples were then added (stop solution contained marking dye) and the gel was run for 

1.5 hours at about 1800 volts. The electrophoresis was stopped at this point and a further 

3 pi of each sample (G,A,T,C) was added. Electrophoresis was continued for a further 90 

minutes. This means that a longer sequence could be read since the initial run allows 

resolution of sequences further up the DNA strand, whilst the second run of sample resolves 

the early sequence clearly.

3. The sequencing gel was removed and soaked in fixative for 15 minutes at room 

temperature without agitation (5% acetic acid, 15% methanol). The gel was dried onto 

3MM paper at 80°C for 1 hour, put in X-Ray cassette with fast film overnight at room 

temperature and the autoradiograph developed the next day in order to read the sequence. 

A comparison of the 250bp sequence obtained between base pairs 1143-1393 (complete 

open reading frame 1401bp) was found to be identical to the published sequence for IL-6R 

(264).

2.2.22 FLUORESCENT ANTIBODY CELL SORTING BY FLOW CYTOMETRY.

Cells from fresh blood or marrow samples or cultured cells were incubated with fluorescent 

monoclonal anti-human antibodies which were then analysed by flow cytometry. 

Fluorescent labels used to conjugate monoclonal antibodies in this study were: Fluorescein 

Isothyocyanate (FITC) and Phycoerythrin (PE).

Direct Immunofluorescent staining:

Cells (5xl05-106) were washed twice in 3-4ml Phosphate buffered saline (PBS) containing 

0.1 % azide, resuspended in 200pl PBS and incubated with 10-20pl of fluorochrome- 

conjugated mouse-anti-human monoclonal antibody for 20 minutes in the dark at room 

temperature. For dual labeling, antibodies conjugated to different fluorochromes were 

mixed in the same reaction tube. Negative controls consisted of either FITC- or PE-labelled 

mouse IgG, or IgG2. Labeled cells were washed x2 in PBS and resuspended in 400pl of 

PBS prior to FACS analysis.
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Indirect Immunofluorescent staining:

For unconjugated monoclonal antibodies a sandwich labeling technique was adopted.

Cells were incubated first with the unconjugated mouse anti-human antibody for 20 minutes 

with unconjugated mouse IgG as negative control. After washing, these cells were 

incubated for a further 20 minutes with a fluorochrome-labeled anti-mouse IgG before 

washing and analysing as above.

IL-6R expression on the surface of myeloma cells was detected by this sandwich labeling 

technique. Cells were initially labeled with mouse anti-human IL-6R MoAb and then, after 

washing, the cells were labeled with an FITC-conjugated monoclonal goat anti-mouse 

immunoglobulin. This procedure was necessary since a fluorescein-conjugated anti-IL-6R 

antibody was not commercially available. Results are shown in Figure 2.2.22a and are 

sumarised in Table 2.2.22.

Detection of cytoplasmic and nuclear antigens:

Cells were permeabilised prior to labeling by incubating them in 2ml of Ortho Permeafix 

(Ortho Diagnostic Systems Ltd.) for 40 minutes at room temperature. After centrifugation 

at lOOOrpm for 5 minutes cells were resuspended in PBS, incubated at room temperature 

for 5 minutes, spun and labeled with an FITC-conjugated antibody for 40 minutes at room 

temperature, washed again and analysed by flow cytometry.

Cytoplasmic Bcl-2 protein was detected using this method by permeabilisation of myeloma 

cells and labeling them with an FITC-conjugated, monoclonal anti-human Bcl-2 antibody. 

Results are shown in Figure 2.2.22b and are sumarised in Table 2.2.22.

Note: PE is too large to enter permeabilised cells therefore PE-labeled antibodies were not 

employed for this procedure.
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Figure 2.2.22a

IL-6R expression in Myeloma cell lines by flow cytometric analysis

J I M - 1 J I M - 3

Fluorescence Intensity

U 2 6 6

J J N - 3

E J M R P M I - 8 2 2 6

A N B L - 6  ( I L - 6  i n d e p e n d e n t )

A  p a n e l  o f  m y e l o m a  c e l l  l i n e s  w a s  a s s e s s e d  f o r  I L - 6  r e c e p t o r  e x p r e s s i o n  b y  l a b e l i n g  1 0 6 c e l l s  
w i t h  m o u s c - a n t i - h u m a n  I L - 6 R  M o A b ,  u s i n g  m o u s e  I g G  a s  n e g a t i v e  c o n t r o l  ( b l a c k  b a c k g r o u n d ) ,  
f o l l o w e d  b y  a n  F I T C - c o n j u g a t e d  g o a t  a n t i - m o u s e  a n t i s e r u m .  1 0 , 0 0 0  c e l l s  p e r  e x p e r i m e n t  w e r e  
a n a l y s e d .  J I M - 1 ,  J I M - 3 ,  J J N - 3  a n d  E J M  w e r e  n e g a t i v e  f o r  I L - 6 R  e x p r e s s i o n  w i t h  U 2 6 6 ,  
R P M I - 8 2 2 6  a n d  I L - 6  i n d e p e n d e n t  p a s s a g e s  o f  A N B L - 6  p r o v i n g  p o s i t i v e .
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Figure 2.2.22b

B c l - 2  e x p r e s s i o n  i n  M y e l o m a  c e l l  l i n e s  b y  f l o w  c y t o m e t r i c  a n a l y s i s

JIM-3

EJM

JJN-3

Forward Scatter

I)oHH2

Fluorescence Intensity

U266

ANBL-6 (IL-6 independent)

1 1  RPMI-8226

JIM-1

A  p a n e l  o f  m y e l o m a  c e l l  l i n e s  w  a s  a s s e s s e d  f o r  B c l - 2  e x p r e s s i o n  b y  l a b e l i n g  1 0 6 c e l l s  
w  i t h  F I T C  c o n j u g a t e d  m o u s e - a n t i - h u m a n  B c l - 2  M o A b ,  u s i n g  m o u s e  I g G - F I T C  a s  n e g a t i v e  
c o n t r o l  ( b l a c k  b a c k g r o u n d ) .  1 0 , 0 0 0  c e l l s  p e r  e x p e r i m e n t  w e r e  a n a l y s e d .  T h e  c e l l  l i n e  D o H H 2  
w  a s  u s e d  a s  p o s i t i v e  c o n t r o l .  A l l  t h e  m y e l o m a  l i n e s  t e s t e d  p r o v e d  t o  b e  B c l - 2  p o s i t i v e .  T w  o  
p o p u l a t i o n s  o f  A N B L - 6  c e l l s  w e r e  a s s e s s e d  ( R 1  a n d  R 2 ) .  B o t h  r e g i o n s  w e r e  f o u n d  t o  b e  p o s i t i v e  
f o r  B c l - 2  e x p r e s s i o n  w i t h  R 2  s h o w i n g  t h e  a p o p t o t i c  a n d  R 1  s h o w  i n g  t h e  v i a b l e  c e l l  p o p u l a t i o n s  
r e s p e c t i v e l y .  T h e  a p o p t o t i c  c e l l s  m a n i f e s t e d  a  d o w n r e g u l a t c d  B c l - 2  e x p r e s s i o n  c o m p a r e d  t o  
t h e  v i a b l e  p o p u l a t i o n .
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Table 2.2.22

Cell line Bcl-2 expression IL-6R expression

JIM-1 + -

JIM-3 + -

JJN-3 + -

U 266 + +

EJM + -

RPM I-8226 + +

ANBL-6 (IL-6 independent) + +

2.2.23 MYCOPLASMA TESTING OF CELL LINES:

Cell lines were mycoplasma tested twice a year using the method described by Chen TR, 

(Ref 269a). All lines were consistently found to test negative for mycoplasma. Cell-free 

medium from known positive cell lines (local to our laboratory) were used as positive 

controls. This method of detection was used by three other laboratories known to the 

author as the most reliable method of mycoplasma detection.

Hoechst 33258 staining for mycoplasma

Principle

Hoechst 33258 is a fluorescent stain for DNA. The method relies on the discrimination of 

extranuclear DNA staining as indicative of mycoplasma infection.

Outline

Fixed cells were stained in aqueous solution, wet mounted in buffer and examined by 

immunofluorescence. An indicator cell line such as NRK, Vero or 3T6 is used to incubate 

the medium from the cells under test. This line should, of course, be mycoplasma free.
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Protocol

NRK rat fibroblasts grown in Modified Dulbecco's medium containing 10% FCS were set 

up in 6cm petri dishes @ 104 cells per dish in 4ml fresh medium. One dish being the negative 

control. Cell free medium^ml) was added to each dish from cells to be tested which had 

been in contact with the cells for at least 2 days. Dishes were incubated for 3-4 days at 

37°C. After this period medium was removed and cells washed twice with PBS prior to 

fixation for 10 minutes. Fixative was removed and cells stained for 10 minutes with 5ml 

Hoechst 33258 in PBS (0.05pg/ml). Cells were rinsed twice in distilled water mounted in 

Mcllvaine's buffer (pH5.5) and examined by fluorescence microscopy. Negative cells 

showed fluorescent nuclei with no cytoplasmic staining. Small foci of cytoplasmic staining 

was observed in positive controls.

Reagents consisted of: Hoechst 33258 stain (2-[2-(4-hydroxyphenyl)-6-benzimidazolyl]-6- 

(l-methyl-4-perpazyl)-benzimidazol-trihydrochloride),stock solution @ 1 mg/ml in PBS, 

stored at -20°C was diluted 1:20,000 (lp l in 20ml PBS) for use; Fixative: 3 parts methanol, 

1 part glacial acetic acid; Mcllvaine's Buffer, pH5.5:0.2MNa2HP04,0.1M Citric Acid

2.2.24 ISOLATION OF PERIPHERAL BLOOD MONONUCLEAR CELLS (M N P

4ml of heparinised peripheral blood was layered carefully onto 8ml of lymphocyte 

separation medium (Flow laboratories) in a 15ml centrifuge tube and was spun at 400xg for 

30 minutes (approximately 1800rpm). The top layer containing plasma was discarded and 

the band at the interface between the serum and the separation medium containing the MNC 

was collected. The cells were washed in at least 7 volumes of PBS (sterile) by spinning for 

10 minutes at lOOOrpm, with a further wash in 10ml ice-cold PBS. Cells were resuspended 

in 5ml ice-cold PBS and counted using an automated counter or haemocytometer.
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CHAPTER 3 

MYELOMA CELL ADHESION ASSAYS
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MYELOMA CELL ADHESION ASSAYS

3.1 Introduction

Multiple adhesive interactions are undoubtedly occuring as a dynamic process controlling 

the localisation and adhesion of myeloma plasma cells in the bone marrow These, in turn, 

appear to regulate cytokine production from either the stroma or the myeloma cells to 

support tumour expansion. The proteins of the extracellular matrix (ECM), fibronectin, 

collagen, laminin are components of the bone marrow microenvironment and tumour cells 

may adhere to these proteins via various adhesion molecules. A summary of the phenotype 

of all the myeloma cell lines used in this thesis is shown in Table 3 and includes cytoplasmic 

Bcl-2 expression. Fibronectin is a multifunctional adhesive glycoprotein found as an 

insoluble form in extracellular matrices and basement membranes and as a soluble form in 

plasma. Expression of surface fibronectin and fibronectin mRNA (detected by Northern blot 

analysis) has also been shown on myeloma cell lines (66) which suggestes that homotypic 

FN-FN adhesion may also occur in the bone marrow stroma. Collagens constitute a highly 

specialised family of glycoproteins which are integral components of the extracellular 

matrix.

A striking feature of myeloma plasma cells is their tendency to remain in the bone marrow 

until the end stages of the disease with the onset of plasma cell leukaemia which results in 

circulating plasma cells. This indicates that the bone marrow stroma is of prime importance 

in the pathogenisis of the disease.

Betal/alpha4 integrins are strongly expressed on myeloma-derived cell lines, indicating that 

VLA-4 is the principal integrin on these cell lines (65,66 and Table 3). These myeloma cell 

lines adhere to fibronectin through VLA-4 as well as through arginine-glycine-aspartic acid 

(RGD)-dependent mechanisms. Both VLA-4 and VLA-5 bind to fibronectin. VLA-5 binds 

to an RGD peptide on the fibronectin molecule (66,67) although this integrin is not 

universally expressed on myeloma cell lines and the intensity of expression varies with
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repeated passage (66 and personal findings). Mature B and T cells do not express much 

fibronectin on their surface, so it is possible that adundant fibronectin expression on 

myeloma cells is a specific and important phenomenon in the pathogenesis of the disease.

The ability of myeloma cells to bind to fibronectin through VLA-4 and RGD-dependent 

mechanisms may contribute to their localisation in the bone marrow and, conversely, the 

loss of fibronectin receptors may lead to extravasation into the circulation. Recent migration 

studies of leukaemic cells suggest that VLA-4 may regulate adhesion whilst VLA-5 controls 

the motility of these cells (74).

It was decided therefore to investigate the adhesion of a panel of myeloma cell lines to 

various extracellular matrix molecules. It was hoped to determine which myeloma cell 

surface adhesion molecules were important in binding to individual stroma and whether or 

not this binding could be blocked by incubation with monoclonal antibodies against these 

molecules.

Pilot experiments using myeloma cell lines incubated in flasks were initially carried out 

(3.1.2). The adherent cells were removed by washing and then by vortexing and their 

phenotype before and after incubation on fibronectin, collagen or fibronectin-like engineered 

polymer (FN-RGD) was examined. Adhesion assays were subsequently set up with 

myeloma cell lines adhering to microtitre plates coated with the same ECM proteins (3.1.4) 

with or without previous incubation with monclonal antibodies against the cell surface 

receptor molecules (VLA-4, VLA-5) in an attempt at adhesion blockade.

3.1.1 Preparation of stromal layers in flasks

Flasks (F25 Falcon flasks) were coated with either fibronectin, collagen or the synthetic 

RGD peptide (FN-RGD).
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Preparation o f stromal layers

i) Collagen: (Sigma C-8919, type I, obtained from calf skin)

Stock solution at 0.1% was diluted 1:10 in sterile ddH20. Two millilitres were added per 

F25 flask and allowed to air dry overnight. The following day excess fluid was removed and 

the flask rinsed with sterile PBS before use.

ii) Fibronectin: (Sigma F2006 from human plasma)

A stock solution at 1 mg/ml in was made up in sterile ddH20 , diluted 1:50 in sterile PBS and 

lml added per F25 flask. Flasks were air dried for at least 45 minutes at room temperature 

before use.

iii) FN-RGD: (Sigma F5022, synthetic polymer)

A stock solution at lmg/ml (in Sigma diluent) was diluted 1:10 in sterile PBS and 2.5ml 

added per flask. The polymer was allowed to adhere for 1.5-2 hours at room temperature 

before removing excess fluid and immediately rinsing x2 with PBS.

Immediately prior to performing an adhesion assay flasks were incubated for 1 hour at 37°C 

with 2ml 1% BSA in PBS (which had been heat denatured @ 56°C for 30 minutes) to 

prevent non-specific binding. This solution was removed before addition of the cells.

3.1.2 Adhesion of myeloma cell lines to flasks coated with extracellular matrix 

proteins

i) The antigenic profile of cell lines was assessed prior to adhesion by immunophenotyping 

as described in materials and methods (2.2.22).

ii) Myeloma cells (2xl06) in 5ml medium were added per flask and the cells were incubated 

for 30 minutes at 37°C (fibronectin) or for 24 hours (collagen and FN-RGD).
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iii) After incubation the contents of the flasks were removed by gentle | pipetting and spun 

down (rinsed cells). A further 2ml of PBS was added to each flask before passing it over a 

vortex for 30 seconds. The contents were removed and the cells spun down (vortexed 

cells). These cells (rinsed and vortexed) were then immunophenotyped by flow cytometry.

Results Table 3.1.2

Results are expressed as percentage positivity of each antigen tested by flow cytometric 

analysis before (pre) and after (post) incubation in flasks coated with fibronectin, collagen 

or FN-RGD. Cells removed by rinsing flasks were compared with those harvested after 

vortexing flasks.

SURFACE
MARKER

CELL LINE

CD38 
PRE POST

R V

B-B4
PRE POST

R V

CD56 
PRE POST

R V

VLA-5 
PRE POST

R V

JIM-1
FIBRONECTIN
COLLAGEN
FN-RGD

95 98 98
98 NC
99 NC

100 96 96 
99 NC 
99 NC

75 84 72 
95 NC 
- NC

30 40 81 
45 NC 

- NC

JIM-3
FIBRONECTIN
COLLAGEN
FN-RGD

100 95 100 
98 NC 

100 NC

100 97 97
93 NC
94 NC

60 59 79 
42 NC 
- NC

10 21 60 
31 NC 

- NC

U266
FIBRONECTIN
COLLAGEN
FN-RGD

97 97 95
97 NC
98 NC

98 98 99 
98 NC 
98 NC

66 40 41
- NC
- NC

13 16 18
- NC
- NC

JJN-3
FIBRONECTIN
COLLAGEN
FN-RGD

96 98 97 
98 NC 
98 NC

99 99 97 
99 NC 
97 NC

42 32 48
- NC
- NC

31 17 50
- NC
- NC

ABBREVIATIONS:

R = rinsed, V = vortexed, NC = no cells, - = not tested
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Conclusion

In the fibronectin coated flasks the intensity of VLA-5 expression of JIM-1, JIM-3 and to a 

lesser extent JJN-3 increased significantly in those cells removed after vortexing the flask 

compared to those pre-adhesion and those removed by rinsing the flask. This effect was not 

observed with U266. CD56, B-B4 and CD38 antigen expression remained unchanged 

following incubation with these extracellular matrix molecules. There was almost a 100% 

recovery of the myeloma cells added after rinsing the flasks coated with collagen and FN- 

RGD following the incubation period. This indicates that VLA-5 on the surface of the 

myeloma cell lines JIM-1, JIM-3 and JJN-3 adheres to fibronectin but not to collagen or 

FN-RGD and CD56, B-B4 and CD38 do not contribute to the adhesion of myeloma cells to 

fibronectin..

3.1.3 Preparation of stromal layers in microtitre plates (Ref. 270)

In order to attempt to standardise adhesion assays, the method describes by Van Riet et al. 

(270) was adopted. Assays were performed by initially coating the surface of microtitre 

plate wells with commercially available extracellular matrix molecules fibronectin, collagen 

and FN-RGD (3.1.1). Myeloma cell lines were then allowed to adhere with or without 

previous incubation with monclonal antibodies against VLA-4 and VLA-5 to ascertain if 

these surface antigens were potentially responsible for myeloma cell adhesion to the 

extracellular matrix.

Preparation of stromal layers

Flat-bottomed 96 well microtitre plates (Nunc Immunosorb) were coated overnight with 

lOOpl of a solution of fibronectin (used @ 10-50pg/ml in PBS), collagen (used at a final 

concentration of O.lpg/ml or FN-RGD (used at lOpg/ml final concentration).
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3.1.4 Adhesion assay and adhesion blockade.

This describes the optimised method which was used following several experiments 

(detailed below) to obtain the best conditions for adhesion. Variations in this protocol are 

described for each experiment.

i) Before use, pre-coated plates and a negative control uncoated plate were washed with 

RPMI-1640 (no additives) and non-specific binding was blocked by incubation for 2 hours 

with lOOpl 1% BSA in RPMI-1640 (37°C). Myeloma cells, grown in a humidified 

atmosphere of 5% carbon dioxide in air, were washed x3 in RPMI-1640 medium without 

additives, resuspended at 2xl06 cells/ml and seeded at lOOpl/well into microtitre plates.

ii) To determine the functional involvement of the integrin receptors VLA-4 and VLA-5 in 

cellular attachment, cells were, prior to plate binding, incubated for 30 minutes at 37°C with 

monoclonal antibodies to the alpha-4 chain (Immunotech, The Binding Site, Birmingham, 

clone HP2/1) and the alpha-5 chain (Immunotech, clone SAM-1) using anti-CD51 

(Immunotech, clone AMF7), monoclonal antibody to the vitronectin receptor as control 

antibody. These antibodies (stock @ 0.2mg/ml) were added at a final concentration of 

20pg/ml.

iii) After incubation lOOpl of cell suspension per well was introduced to pre-coated 

microtitre plates and incubated overnight at 37°C. Thereafter wells were gently washed x5 

in RPMI-1640 to remove non-adherent cells.

iv) Adherent cells were fixed for at least 6 hours in lOOpl 3.5% formaldehyde in PBS at 4°C 

and then stained overnight at room temperature in lOOpl 1% toluidine blue in 3% 

formaldehyde/PBS. Toluidine blue stains mucopolysaccharides in human blood cells.

v) Excess stain was removed by 4 washing cycles in PBS (microplate washer (Organon 

Teknika Microwell system, washer 400), wells were blotted dry and adherent cells were
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permeabilised by addition of lOOfil IN hydrochloric acid (HC1). Before reading the optical 

density, the contents of each well was homogenised by intensive pippeting.

vi) The absorbance at 620nm was measured at intervals, using an Organon Teknika 

Microwell system plate reader, commencing with 15 minutes post HC1 addition in order to 

establish the optimum conditions for assessing the optical density. One to two hours proved 

to be the optimum time to read the OD620.

3.1.5 Comparison of cell adhesion to fibronectin between previously coated and 

freshly coated plates Adhesion blockade of myeloma cells adhering to fibronectin- 

coated plates.

A pilot experiment was performed to see whether plates coated more than one month 

before the adhesion assay affected results compared with freshly coated plates (1-3 days 

prior to assay).

Method

i) Wells of two microtitre plates coated with fibronectin @ lOpg/ml in PBS were prepared. 

One plate coated 6 weeks prior to the assay and the second plate was coated one day prior 

to the assay. A plate with no extracellular matrix (ECM) coating was used as a control.

ii) Myeloma cells at 2xl05/well, in lOOpl serum free medium were added in triplicate to 

plates after incubation with a 1:10 dilution of blocking or control antibodies for 30 minutes 

at 37°C.

iii) Plates were incubated for 30 minutes at 37°C, the medium removed and wells were 

washed x3 with serum free medium..

iv) Adherent cells were fixed overnight at 4°C with 100pl/well of 3.5% formaldehyde in 

PBS. Wells were stained with toluidine blue for 4 hours at 37°C.

vi) Plates were washed in a microplate washer x4 in PBS prior to addition of lOOjil IN HC1.

vii) The optical density at 620nm was read at intervals from 30 minutes to 20 hours 

following the addition of hydrochloric acid.
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Results

Plate 1: no ECM

O D 6 2 0  ( t i m e )

n e g a t i v e  c o n t r o l ,  n o  c e l l s  ( s u b t r a c t e d )

3 0  m i n s  

0 . 0 6 1

6 0  m i n s  

0 . 0 5 7

9 0  m i n s  

0 . 1 0 3

1 2 0
m i n s

0 . 1 7 9

1 5 0
m i n s

0 . 1 8 8

2 0  h o u r s  

0 . 1 1 2

A N B L - 6 0 . 0 9 9 0 . 1 7 0 0 . 1 6 5 0 . 0 9 9 0 . 1 1 6 0 . 0 0 6
J J N - 3 0 . 0 1 4 0 . 1 4 8 0 . 1 3 8 0 . 0 9 6 0 . 1 1 2 0 . 0 1 5

Plate 2: Fibronectin coated (fresh")

O D 6 2 o  ( t i m e )

n e g a t i v e  c o n t r o l ,  n o  c e l l s  ( s u b t r a c t e d )

3 0  m i n s  

0 . 1 7 7

6 0  m i n s  

0 . 2 0 0

9 0  m i n s  

0 . 2 0 3

1 2 0
m i n s

0 . 2 2 9

1 5 0
m i n s

0 . 2 3 2

2 0  h o u r s  

0 . 0 8 8

A N B L - 6  
n o  A b 0 . 0 9 9 0 . 2 3 4 0 . 1 4 5 0 . 1 4 4 0 . 2 5 4 0 . 1 8 4
n e g  ( m o u s e  I g G ) 0 . 1 5 3 0 . 2 8 0 0 . 3 2 4 0 . 2 3 8 0 . 3 1 4 0 . 2 8 8
a n t i - V L A 4 0 . 0 9 2 0 . 1 7 2 0 . 2 4 2 0 . 1 7 4 0 . 2 2 4 0 . 2 0 3
a n t i - V L A 5 0 . 2 3 9 0 . 2 6 2 0 . 2 8 3 0 . 2 7 2 0 . 2 8 3 0 . 3 2 5
a n t i - V L A 4 + 5 0 . 1 9 6 0 . 2 3 4 0 . 2 7 1 0 . 2 6 9 0 . 2 7 4 0 . 2 2 3
J J N - 3  
n o  A b 0 . 2 7 8 0 . 3 1 2 0 . 3 4 5 0 . 3 4 0 0 . 3 5 1 0 . 3 9 2
n e g  I g G 0 . 4 0 4 0 . 4 5 6 0 . 4 8 4 0 . 4 7 3 0 . 4 7 4 0 . 4 4 0
a n t i - V L A 4 0 . 2 8 7 0 . 3 1 0 0 . 3 2 4 0 . 3 2 2 0 . 3 3 5 0 . 2 9 5
a n t i - V L A 5 0 . 3 7 2 0 . 4 2 4 0 . 4 5 6 0 . 4 4 8 0 . 4 5 7 0 . 5 0 8
a n t i - V L A 4 + 5 0 . 3 2 1 0 . 3 8 2 0 . 4 1 2 0 . 4 0 6 0 . 4 2 5 0 . 3 8 0

Plate 3: Fibronectin coated (6 weeks previously)

O D 6 2 o  ( t i m e )

n e g a t i v e  c o n t r o l ,  n o  c e l l s  ( s u b t r a c t e d )

3 0  m i n s  

0 . 0 6 9

6 0  m i n s  

0 . 0 7 1

9 0  m i n s  

0 . 0 7 2

1 2 0
m i n s

0 . 0 7 7

1 5 0
m i n s

0 . 0 8 0

2 0  h o u r s  

0 . 0 8 8

A N B L - 6  
n o  A b 0 . 1 1 1 0 . 1 3 0 0 . 1 3 3 0 . 1 3 2 0 . 1 3 1 0 . 1 3 1
n e g  ( m o u s e  I g G ) 0 . 1 2 8 0 . 1 4 4 0 . 1 5 0 0 . 1 4 9 0 . 1 4 6 0 . 1 4 2
a n t i - V L A 4 0 . 0 7 0 0 . 0 7 8 0 . 0 8 0 0 . 0 7 9 0 . 0 7 5 0 . 0 6 8
a n t i - V L A 5 0 . 2 9 0 0 . 3 5 3 0 . 3 5 2 0 . 3 5 2 0 . 3 5 0 0 . 3 6 4
a n t i - V L A 4 + 5 0 . 1 3 8 0 . 1 5 5 0 . 1 5 4 0 . 1 5 2 0 . 1 5 0 0 . 1 5 4
J J N - 3  
n o  A b 0 . 2 9 4 0 . 3 2 1 0 . 3 3 9 0 . 3 4 2 0 . 3 4 2 0 . 3 5 8
n e g  I g G 0 . 2 3 7 0 . 2 6 0 0 . 2 7 5 0 . 2 7 7 0 . 2 7 6 0 . 2 8 0
a n t i - V L A 4 0 . 1 8 7 0 . 2 0 6 0 . 2 1 5 0 . 2 1 5 0 . 2 1 3 0 . 2 1 9
a n t i - V L A 5 0 . 2 2 3 0 . 2 2 5 0 . 2 3 4 0 . 2 3 6 0 . 2 3 5 0 . 2 4 1
a n t i - V L A 4 + 5 0 . 0 3 1 0 . 0 3 1 0 . 0 3 2 0 . 0 3 0 0 . 0 2 7 0 . 0 3 6
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Summary of results at 120 minutes post-addition of hydrochloric acid

OP620 (timg) 120 minutes

A N B L - 6  ( n o  E C I V D  0 . 0 9 9

( F N  c o a t e d ,  f r e s h )  n o  A b  0 . 1 4 4
n e g  ( m o u s e  I g G )  0 . 2 3 8

a n t i - V L A 4  0 . 1 7 4
a n t i - V L A 5  0 . 2 7 2
a n t i - V L A  4 + 5  0 . 2 6 9

( F N  c o a t e d . 6  w e e k s ')  n o  A b  0 . 1 3 2
n e g  ( m o u s e  I g G )  0 . 1 4 9

a n t i - V L A 4  0 . 0 7 9
a n t i - V L A 5  0 . 3 5 2
a n t i - V L A  4 + 5  0 . 1 5 2

J J N - 3  ( n o  E C M )  0 . 0 9 6

( F N  c o a t e d ,  f r e s h )  n o A b  0 . 3 4 0
n e g  ( m o u s e  I g G )  0 . 4 7 3

a n t i - V L A 4  0 . 3 2 2
a n t i - V L A 5  0 . 4 4 8
a n t i - V L A  4 + 5  0 . 4 0 6

( F N  c o a t e d .  6  w e e k s )  n o  A b  0 . 3 4 2
n e g  ( m o u s e  I g G )  0 . 2 7 7

a n t i - V L A 4  0 . 2 1 5
a n t i - V L A 5  0 . 2 3 6
a n t i - V L A  4 + 5  0 . 0 3 0

Conclusions:

1) The optimum time to read the OD620 is 2 hours after the addition of hydrochloric acid.

2) Myeloma cells still adhere to the plate previously coated with fibronectin and stored for 

one month at 4°C, ie adhesion is not adversely affected by coating plates up to one month 

prior to assay being performed.

3) In the previously coated plate only, for the cell line ANBL-6, anti-VLA-4 provides best 

adhesion blockade (50%) but a combination of anti-VLA-4+anti VLA-5 or anti-VLA-5 

alone do not block adhesion. For the cell line JJN-3, a combination of anti VLA-4 + anti- 

VLA-5 provides a 90% block in adhesion with either anti-VLA-4 or anti-VLA-5 alone
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resulting in only a 22% and 15% adhesion blockade respectively. These effects were not 

observed in the freshly fibronectin-coated plate.

3.1.6 Optimisation of adhesion assays.

A pilot experiment was performed to determine

1. The optimum fibronectin concentration for adhesion assays.

2. Whether toluidine blue staining overnight instead of for four hours results in higher 

optical density readings

3. Whether intensive pippeting of the contents of wells immediately prior to reading OD620 

results in higher readings.

Note: Vortexing of microtitre plates was also tried but no difference in optical density 

readings between vortexed and intensively pippeted cells was observed.

Method

a) Preparation of stromal layers

Three plates were prepared as follows:

1) No ECM

2) Fibronectin coated @ 10pg/ml

3) Fibronectin coated @ 50pg/ml

Plates were washed in serum free medium and incubated for 3 hours with 1% BSA in serum 

free medium (heat inactivated).

b) Adhesion assay

i) Myeloma cells at 2xl06/ml were washed x3 in serum free medium before incubating with 

a 1:10 dilution of blocking or control antibodies for 1 hour at 37°C.

ii) Cells were then plated (lOOpl/well) into triplicate wells of microtitre plates and incubated 

overnight at 37°C.
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iii) Wells were washed x5 with serum free medium, fixed for 6 hours at 37°C in 3.5% 

formaldehyde/PBS and stained with 100|41/well toluidine blue overnight at room 

temperature.

iv) After washing the plates x4 with PBS, wells were thoroughly dried by hitting the plate 

hard upside down onto a paper towel. The bottom of the plate was cleaned and dried before 

reading the OD620.

v) lOOpl of IN HC1 was added and the contents of the wells | pipetted vigourously prior to 

reading the optical density. Readings were taken at intervals from 30 minutes to 28 hours.

Results Plate 1: No ECM

OD620 (time)

n e g a t i v e  c o n t r o l ,  n o  c e l l s  ( s u b t r a c t e d )

30
mins

0 . 0 5 6

90
mins

0 .1 4 2

6
hours

0 .1 1 5

28
hours

0 . 1 1 6
I M - 9
n o  A b 0 . 0 0 8 0 0 . 0 1 6 0
n e g  ( m o u s e  I g G ) 0 . 0 0 6 0 0 . 0 0 4 0
a n t i - V L A - 4 0 . 0 1 0 0 0 0
a n t i - V L A - 5 0 . 0 0 9 0 0 . 0 0 2 0

A N B L - 6  ( I L - 6  i n d e p e n d e n t )
n o  A b 0 . 0 0 4 0 0 . 0 2 2 0
n e g  I g G 0 . 0 0 3 0 0 0
a n t i - V L A - 4 0 . 0 0 9 0 0 . 0 1 5 0 . 0 1 9
a n t i - V L A - 5 - - - -

J I M - 1
n o  A b 0 . 0 0 4 0 . 0 4 8 0 . 0 1 7 0
n e g  I g G 0 0 . 1 0 4 0 . 0 1 9 0 . 0 2 0
a n t i - V L A - 4 0 . 0 0 4 0 . 1 0 1 0 . 0 1 3 0 . 0 1 9
a n t i - V L A - 5 - - - -

J I M - 3
n o  A b 0 . 0 1 3 0 . 0 2 3 0 . 0 2 5 0
n e g  I g G 0 0 . 1 1 1 0 . 0 0 2 0
a n t i - V L A - 4 0 0 . 0 9 4 0 . 0 1 0 0 . 0 1 3
a n t i - V L A - 5 - - - -

-  =  n o t  t e s t e d

Conclusion: These myeloma cell lines do not adhere to uncoated plates and blocking 
antibodies obviously have no effect on this.
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Plate 2: Fibronectin @ lOttg/ml

OD620 (time) 30 90 6 28
mins mins hours hours

n e g a t i v e  c o n t r o l ,  n o  c e l l s  ( s u b t r a c t e d ) 0 .0 8 3 0 . 0 8 6 0 . 0 8 9 0 . 0 8 8

I M - 9
n o  A b 0 . 2 6 2 0 . 3 0 6 0 . 3 2 3 0 . 3 2 8
n e g  ( m o u s e  I g G ) 0 . 3 9 8 0 . 4 6 7 0 . 5 0 7 0 . 5 3 0
a n t i - V L A - 4 0 . 3 1 9 0 . 3 6 2 0 . 3 9 2 0 . 4 0 7
a n t i - V L A - 5 0 . 2 6 6 0 . 3 0 3 0 . 3 2 6 0 . 3 2 4

A N B L - 6  ( T L - 6  i n d e p e n d e n t )
n o  A b 0 . 3 0 9 0 . 3 8 3 0 . 4 2 8 0 . 4 6 2
n e g  I g G 0 . 2 6 9 0 . 3 2 6 0 . 3 7 2 0 . 3 9 6
a n t i - V L A - 4 0 . 2 7 6 0 . 3 3 9 0 . 3 8 9 0 . 4 1 3
a n t i - V L A - 5 - “ “ “

J I M - 1
n o  A b 0 . 4 4 2 0 . 5 3 4 0 . 5 9 3 0 . 6 2 4
n e g  I g G 0 . 2 7 8 0 . 3 5 1 0 . 3 9 9 0 . 4 3 3
a n t i - V L A - 4 0 . 3 5 9 0 . 4 4 6 0 . 5 0 5 0 . 5 4 4
a n t i - V L A - 5 - - - -

J I M - 3
n o  A b 0 . 4 4 6 0 . 5 0 3 0 . 5 5 1 0 . 5 7 4
n e g  I g G 0 . 3 7 9 0 . 4 3 8 0 . 4 8 2 0 . 5 1 3
a n t i - V L A - 4 0 . 3 5 3 0 . 4 1 4 0 . 4 6 0 0 . 4 8 8
a n t i - V L A - 5 - - - -

- = not tested

Conclusion

No significant adhesion blockade was achieved for ANBL-6, JIM-1 or JIM-3 with the 

blocking antibodies anti-VLA-4 or anti-VLA-5. A 23% blockade of IM-9 adhesion 

however, was observed with anti-VLA-4 and a 36% blockade of this cell line was achieved 

anti-VLA-5.
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Plate 3: Fibronectin @ 50ug/ml

OD620 (time) 30 90 6 28
mins mins hours hours

n e g a t i v e  c o n t r o l ,  n o  c e l l s  ( s u b t r a c t e d ) 0 . 0 8 9 0 . 0 9 6 0 . 0 9 7 0 . 0 9 5

I M - 9
n o  A b 0 . 3 5 6 0 . 4 4 1 0 . 4 7 3 0 . 4 9 2
n e g  ( m o u s e  I g G ) 0 . 2 9 6 0 . 3 5 6 0 . 3 7 8 0 . 4 0 0
a n t i - V L A - 4 0 . 2 3 1 0 . 2 8 7 0 . 3 0 4 0 . 3 1 7
a n t i - V L A - 5 0 . 2 1 9 0 . 2 6 5 0 . 2 8 8 0 . 2 9 5

A N B L - 6  ( T L - 6  i n d e p e n d e n t )
n o  A b 0 . 5 3 8 0 . 6 7 1 0 . 7 2 8 0 . 6 8 9
n e g  I g G 0 . 4 0 7 0 . 5 1 9 0 . 5 6 7 0 . 6 1 7
a n t i - V L A - 4 0 . 4 4 5 0 . 5 6 2 0 . 6 1 7 0 . 6 7 4
a n t i - V L A - 5 - - - -

J I M - 1
n o  A b 0 . 4 2 0 0 . 5 3 8 0 . 5 8 6 0 . 6 3 3
n e g  I g G 0 . 3 5 2 0 . 4 6 7 0 . 5 0 2 0 . 5 5 6
a n t i - V L A - 4 0 . 3 5 1 0 . 4 4 6 0 . 4 9 4 0 . 5 6 0
a n t i - V L A - 5 - - - -

J I M - 3
n o  A b 0 . 4 5 3 0 . 5 4 3 0 . 5 8 6 0 . 6 1 6
n e g  I g G 0 . 3 8 2 0 . 4 7 5 0 . 5 1 6 0 . 5 5 8
a n t i - V L A - 4 0 . 3 7 2 0 . 4 5 8 0 . 4 9 5 0 . 5 3 7
a n t i - V L A - 5 - - - -

- = not tested

Conclusion

In the cell line IM-9, 20% adhesion blockade (above negative) was achieved with anti- 

VLA-4 and 26% blockade achieved with anti-VLA-5. No blockade was achieved with 

either anti-VLA-4 or anti-VLA-5 with ANBL-6, JIM-1 or JIM-3.
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Summary: Comparison of O D ^ at 6 hours for 3 plates

CELL LINE IM-9 ANBL-6 JIM-1 JIM -3 NO
CELLS

No Ab 
no ECM 
FN (10iig/ml) 
FN (50jxg/ml)

0.016
0.323
0.473

0.022
0.428
0.728

0.017
0.593
0.586

0.025
0.551
0.586

0.115
0.089
0.097

IgG nee 
no ECM 
FN (lOpg/ml) 
FN (50ng/ml)

0.004
0.507
0.378

0
0.372
0.567

0.019
0.399
0.502

0.002
0.482
0.516

0.115
0.089
0.097

anti-VLA4 
no ECM 
FN (10iig/ml) 
FN (50ug/ml)

0
0.392
0.304

0.015
0.389
0.617

0.013
0.505
0.494

0.010
0.460
0.495

0.115
0.089
0.097

anti-VLA5 
no ECM 
FN (10ng/ml) 
FN (50ng/ml)

0.002
0.326
0.288

Results expressed as O D 62o, blanks (no cells) are already subtracted.

Conclusion:

Increasing the concentration of fibronectin to 50pg/ml, combined with increased staining 

time in toluidine blue and intensive pipetting of microtitre wells immediately prior to plate 

reading improves adhesion. No significant adhesion blockade of the myeloma cell lines 

ANBL-6, JIM-1 and JIM-3 was observed using the monoclonal anti-VLA-4 and -VLA-5 

antibodies. IM-9 was partially blocked (24-36%) by anti-VLA-5 but only 20-23% blocked 

by VLA-4 blockade.
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3.1.7 Comparison of different clones of antibodies used in adhesion blockade

The adhesion-blocking antibodies used in these assays were tested by flow cytometry for 

their ability to bind the cell surface adhesion molecules VLA-4, VLA-5 or CD51 

(vitronectin receptor control) on a myeloma cell line in order to establish whether different 

clones of monoclonal antibody directed against the same antigen but perhaps recognising a 

different epitope would result in differences in their ability to cause adhesion blockade.

Method

a) "Camfolio" antibodies directed against VLA-4 (clone L25.3) and VLA-5 (clone MAb.16) 

used in adhesion blocking in the previous experiments were compared with "Immunotech" 

anti-VLA-4 (clone HP2/1) and anti-VLA-5 (clone SAM-1) used in adhesion blocking by 

van Riet et al. (270) and "Serotec" FITC-labelled anti-VLA-4 (clone 44H6) and VLA-5 

(clone SAM-1). All of these antibodies were mouse anti-human MoAbs.

b) The myeloma cell line JJN-3 was chosen to compare detection of VLA-4 and VLA-5 

expression using these antibodies since it had been shown by flow cytometric analysis to 

express virtually 100% positivity for VLA-4 (65,66 and Table 3) and 30% positivity for 

VLA-5 (Table 3). 5x105 JJN-3 cells were washed x2 in PBS before staining for 15 minutes 

with 10-20pl of either a) FITC-labeled antibody (direct labeling) or b) unlabeled antibody 

followed by 2 washes in PBS and a further 15 minutes incubation with 4pl of FITC-labeled 

goat anti-mouse (GAM) MoAb (indirect labeling).
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Results

Cell line
JJN-3

1)
2)

3)

4)

5)
6)

7)

8) 

9)

FACS

neg, mouse IgG-FITC 
anti-VLA4-FITC
(Serotec, clone 44H6) 
anti-VL A4-FIT C
(Immunotech,HP2/1)
**anti-VLA5-FITC
(Serotec, SAM-1)

neg, mouse IgG+GAM-FITC 
anti-VLA4+GAM-FITC
(Immunotech, HP2/1)
anti-VL A4+GAM-FIT C 
(Camfolio, L25.3) 
anti-VLA5+GAM-FITC
(Immunotech, SAM-1)
*anti-CD5 l+GAM-FITC
(Immunotech, AMF7)

Result
(intensity of expression by FACS)

+ -

+(weak)

* Anti-CD51 is used as negative control antibody in adhesion assays.
** VLA-5 expression in JJN-3 had been shown to range from 31-62% using the Serotec 
antibody (Table 3) but the molecule was obviously not expressed above background (0- 
15%) on this occasion.

Conclusion

These results indicate that perhaps the Camfolio anti-VLA-4 blocking antibody was not 

binding to cell surface VLA-4 on myeloma cells as well as the Immunotech anti-VLA-4 

MoAb. Therfeore, the Immunotech anti-VLA-4 and -5 blocking antibodies were used in 

future adhesion assays (although the Camfolio anti-VLA-5 antibody was not tested in this 

experiment). It was decided that it would be more economical to purchase all the antibodies 

from the same source and the Immunotech anti-VLA-5 antibody had already been shown to 

have some effect on blocking adhesion in some, but not all, myeloma cell lines (Ref. 270).
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3.1.8 Effect of prolonged incubation with myeloma cell lines on fibronectin coated

plates

In order to try and improve the optical densities in these adhesion assays an assay was 

performed without any adhesion blockade. Myeloma cell lines were incubated for either 2 

hours or overnight in wells of microtitre plates coated with fibronectin @ lOpg/ml.

Method

a) Two plates each of the following were prepared:

1. no ECM

2. FN @ lOpg/ml poured 3 months previously (3m)

3. FN @ 10pg/ml poured 1 day previously (Id)

b) After blocking with BSA/RPMI, lOOpl/well of myeloma cells @ 2xl06/ml were added in 

triplicate to duplicate plates 1-6.

c) Plates 1-3

Cells were allowed to adhere for 2 hours before washing wells x5 in serum-free RPMI- 

1640, fixing overnight in formaldehyde/PBS and staining for 4 hours in toluidine blue at 

37°C.

Plates 4-6

Cells were allowed to adhere overnight before washing as above, fixing for 6 hours and 

staining overnight in toluidine blue at room temperature.

d) Plates were washed as described previously, adherent cells permeabilised and the optical 

density measured.
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Results expressed as OD62o with blanks subtracted.

C e l l  L i n e  

P l a t e T i m e  (O D 62o)

J I M - 1 J I M - 3 I M - 9 J J N - 3 A N B L - 6
( IL -6

indep.)

N e g  
n o  c e l l s

1  n o  E C M , I S  m i n 0 . 0 3 9 0 . 1 7 7 0 . 0 6 8 0 . 0 0 7 0 . 0 5 8 . 0 5 2
1  h r 0 . 0 3 8 0 . 1 9 0 0 . 0 4 0 0 . 0 0 5 0 . 0 6 6 . 0 5 4
2  h r 0 . 0 3 6 0 . 1 9 8 0 . 0 3 8 0 . 0 0 9 0 . 0 7 0 . 0 6 0

2  F N ,  3 m , I S  m i n 0 . 1 9 6 0 . 4 6 8 0 . 3 0 9 0 . 4 3 9 0 . 2 9 4 . 1 3 8
1  h r - - - - - . 0 8 2
2  h r 0 . 1 8 5 0 . 4 4 8 0 . 3 6 8 0 . 4 5 2 0 . 3 6 3 . 1 4 5

3  F N ,  I d I S  m i n 0 . 0 5 0 0 . 2 5 9 0 . 2 0 7 0 . 3 9 2 0 . 1 6 0 .0 5 3
1  h r 0 . 0 5 5 0 . 2 7 3 0 . 2 3 5 0 . 4 3 8 0 . 1 3 5 . 0 5 4
2  h r 0 . 0 6 6 0 . 2 9 1 0 . 2 3 6 0 . 4 6 0 0 . 1 3 6 . 0 5 0

4  n o  E C M , I S  m i n 0 . 0 1 4 0 . 1 7 0 0 . 0 5 8 0 . 0 1 4 0 . 0 4 7 . 0 7 2
1  h r 0 . 0 1 6 0 . 0 9 5 0 . 0 5 8 0 . 0 1 4 0 . 0 3 1 . 0 7 9
2  h r 0 0 . 1 0 7 0 . 0 2 0 0 . 0 0 2 0 . 0 8 8 .1 8 1

5  F N ,  3 m , I S  m i n 0 . 5 1 4 0 . 8 6 3 0.111 0 . 6 7 2 0 . 4 5 1 .0 9 1
1  h r 0 . 5 8 4 1 .0 9 5 0 . 1 2 3 0 . 8 1 7 0 . 6 1 5 .0 9 1
2  h r 0 . 5 7 9 1 . 0 4 4 0 . 1 4 9 0 . 8 2 3 0 . 6 8 9 .2 5 1

6  F N ,  I d I S  m i n 0 . 4 7 5 0 . 6 2 0 0 . 2 3 8 0 . 6 2 1 0 . 1 6 6 . 0 6 0
1  h r 0 . 5 6 2 0 . 7 9 1 0 . 2 8 2 0 . 7 2 5 0 . 4 4 0 . 0 9 1
2  h r 0 . 5 9 2 0 . 8 1 1 0 . 2 9 5 0 . 7 5 6 0 . 2 1 2 .0 6 3

F N  =  F i b r o n e c t i n ,  3 m  =  3  m o n t h s ,  I d  =  1 d a y

Conclusion

1. The best adherence was observed in plates 5 & 6 in which the cells were allowed to 

adhere overnight on fibronectin and then stained overnight with toluidine blue. There was a 

marked increase in adherence to fibronectin (coated either 3 months or one day previously) 

with JIM-1, JIM-3 and JJN-3 in these plates compared with those in which cells were only 

allowed to adhere for two hours. Adherence of ANBL-6 (IL-6 independent) in the 

fibronectin-coated plate coated 3 months previously was marked but not with the freshly- 

coated plate. IM-9 myeloma cells adhered less strongly to fibronectin with no significant 

increase in adhesion if cells were left to adhere overnight. Plates coated 3 months previously 

provided better adhesion than plates coated one day prior to the assay. This could be due to 

the freshly prepared fibronectin not being completely dissolved prior to coating the plates or 

the fibronectin was no longer functional due to repeated thawing. Therefore a new batch of 

lOx concentrated fibronectin was prepared, aliquoted into lOOul aliquots and stored at - 

20°C for all future assays.
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3.1.9 Adhesion blockade bv anti-VLA-4 of myeloma cell lines adhering to fibronectin-

coated plates

Freshly prepared fibronectin (@ 50jig/ml) was used to coat plates one day prior to this 

assay and compared with a control plate with no ECM. Adhesion blockade was attempted 

using Immunotech anti-VLA-4 with anti-CD51 as negative control at a final concentration 

of 20(ig/ml. Myeloma cells were allowed to adhere overnight at 37°C, washed, fixed for 6 

hours then stained overnight at room temperature with toluidine blue.

Results are expressed as OD62o, read after permeabilisation of cells with HC1, blanks have 

already been subtracted.

T i m e  a f t e r  p e r m e a b i l i s a t i o n  ( O D 620 )  
C e l l  l i n e

I S  m i n 1 h o u r 2  h o u r s 4  h o u r s

J I M - 1  n o  E C M  n o  A b 0 . 0 5 5 0 . 1 1 0 0 . 1 4 5 0 . 1 7 0
a n t i - V L A 4 0 . 0 4 9 0 . 0 6 9 0 . 0 7 9 0 . 0 8 9
a n t i - C D S l 0 . 0 2 5 0 . 0 4 2 0 . 0 4 0 0 . 0 4 5

J I M - 1  F N  n o  A b 0 . 1 2 8 0 . 1 3 3 0 . 1 3 5 0 . 1 3 4
a n t i - V L A 4 0 . 0 5 1 0 . 0 4 7 0 . 0 5 0 0 . 0 5 4
a n t i - C D S l 0 . 0 9 7 0 . 0 8 6 0 . 0 7 8 0 . 0 7 9

J I M - 3  n o  E C M  n o  A b 0 . 0 6 9 0 . 0 9 6 0 . 1 0 2 0 . 1 0 6
a n t i - V L A 4 0 . 0 6 0 0 . 0 8 9 0 . 0 9 5 0 . 1 0 0
a n t i - C D S l 0 . 1 4 5 0 . 1 8 2 0 . 1 9 1 0 . 1 5 6

J I M - 3  F N  n o  A b 0 . 3 0 3 0 . 3 7 9 0 . 4 2 7 0 . 4 6 1
a n t i - V L A 4 0 . 0 7 1 0 . 0 9 5 0 . 1 0 2 0 . 1 0 6
a n t i - C D S l 0 . 1 3 8 0 . 1 8 5 0 . 1 7 4 0 . 1 9 6

U 2 6 6  n o  E C M  n o A b 0 . 1 2 9 0 . 0 7 3 0 . 0 8 8 0 . 0 8 5
a n t i - V L A 4 0 . 0 7 4 0 . 0 8 9 0 . 1 0 0 0 . 0 9 9
a n t i - C D S l 0 . 0 2 5 0 . 0 2 4 0 . 0 2 0 0 . 0 2 2

U 2 6 6  F N  n o  A b 0 . 7 7 6 0 . 9 8 4 1 .0 4 1 1 . 1 5 8
a n t i - V L A 4 0 . 0 6 2 0 . 0 5 8 0 . 0 5 1 0 . 0 5 3
a n t i - C D 5 1 0 . 4 0 0 0 . 4 3 5 0 . 4 4 4 0 . 4 8 5

I M - 9  n o  E C M  n o  A b 0 . 2 1 7 0 . 1 4 5 0 . 1 5 4 0 . 3 0 1
a n t i - V L A 4 0 . 0 6 7 0 . 0 8 9 0 . 0 9 6 0 . 0 9 3
a n t i - C D S l 0 . 1 6 7 0 . 2 5 1 0 . 1 7 6 0 . 2 6 9

I M - 9  F N  n o  A b 0 . 4 1 2 0 . 3 6 6 0 . 3 8 0 0 . 4 0 0
a n t i - V L A 4 0 . 0 7 8 0 . 0 7 9 0 . 0 8 5 0 . 0 8 4
a n t i - C D S l 0 . 2 0 8 0 . 2 0 8 0 . 2 1 3 0 . 2 2 3

B l a n k  n o  E C M  ( s u b t r a c t e d ! 0 . 0 7 9 0 . 0 8 1 0 . 0 8 7 0 . 0 8 7
F N 0 . 1 0 5 0 . 1 3 1 0 . 1 3 9 0 . 1 4 9
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Conclusion

1. U266 adheres strongly to fibronectin with IM-9 adhering less strongly but adhesion of 

both these cell lines can be effectively completely blocked by prior incubation of the cells 

with anti-VLA-4.

2. JIM-1 and JIM-3 show only background adherence to fibronectin similar to that of the 

anti-Vitronectin control. Incubation with anti-VLA-4 has no significant effect on this.

Overall conclusion - Myeloma cell line adhesion assays

The myeloma cell lines tested, once the assay had been optimised IM-9, U266, JIM-1, JIM-

3. JJN-3 and ANBL-6 (IL-6 independent), were all shown to adhere to fibronectin but not 

to either collagen o r FN-RGD. Effective adhesion blockade was achieved with anti-VLA-4 

in the myeloma cell lines IM-9, U266, JJN-3 and IL-6 independent passages of ANBL-6, 

but not with JIM-1 or JIM-3. JJN-3 was most effectively blocked (90%) by a combination 

of anti-VLA-4 and -5, with only 15-20% blockade achieved with either antibody alone 

(3.1.5). Anti-VLA-5 did not induce adhesion blockade in any of the other myeloma lines 

tested which is consistent with their low VLA-5 expression (Table 3), with the exception of 

the IL-6 independent passages of ANBL-6. VLA-5 expression in these lines were shown to 

range from 16-97% positive indicating that expression of this antigen varies during 

continued passage. These passages had only become recently IL-6 independent, the IL-6 

dependent passages having a similar VLA-5 phenotype (25-84% positivity). It could be that 

expression of this antigen was low during these blockade experiments. Further experiments 

testing both IL-6-dependent as well as -independent passages of this cell line are warranted. 

The results in these assays were disappointingly inconsistent. The conclusions described 

here are only true for the individual experiments performed and should therefore not be 

extended to a general conclusion due to the variability in reproducibility in subsequent 

experiments.
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CHAPTER 4 

APOPTOSIS
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4.1 Introduction

Apoptosis is the description of the process of programmed cell death (PCD) or activation 

induced cell death (AICD) in which cells are deleted, during their normal course of 

development by a programmed sequence of events as described in the introduction. In order 

to standardise the technique of recognising apoptotic cell death, the method described by 

Gregory et al. was adopted (271). An EBV negative, acute lymphoblastic leukaemia cell 

line L3055 (courtesy of Dr Chris Gregory, Dept, of Immunology, University of Birmingham 

Medical School (272) was used. This cell line has been shown to be extremely sensitive to 

calcium ionophore-induced programmed cell death. The degree of apoptosis was assessed 

by a comparison of flow cytometric analysis and fluorescence (or light) microscopy.

4.2 Standardisation of method using the L3055 cell line - induction of apoptosis with 

Calcium ionophore

Cultures of L3055 cells were set up in RPMI-1640 medium with 10% FCS and cultured at 

37°C in a humidified atmosphere of 5% C 02 in air. Cells were harvested when growth was 

logarithmic and were resuspended in medium at 106/ml. An initial sample was taken to 

measure base line apoptosis before adding calcium ionophore (Calbiochem, final 

concentration lpg/ml, stock solution @ 1 mg/ml in DMSO). Samples were taken at hourly 

intervals from 1-6 hours and finally at 24 hours after the addition of calcium ionophore and 

assessed for the extent of apoptotic cell death.

The two methods employed were: Morphological quantitative analysis by Acridine 

orange fluorescence microscopy (4.2.1 below) and semi-quantitative flow cytometric 

90° light scatter analysis (4.2.2). The latter method of detection of apoptosis (4.2.2) 

does not distinguish between necrotic (background of 0-5%) and apoptotic cells since 

both lie within region R1 of the flow diagram. The extent of necrotic cell death in 

these experiments was always confirmed by morphological analysis however, and was 

found never to be above background level.
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Results:

The percentage of apoptotic L3055 cells was found by both methods to increase to >50% 6 

hours after addition of calcium ionophore with 100% apoptosis observed after 24 hours in 

culture (results not shown). These two methods were subsequently used concurrently to 

assess the degree of apoptosis of myeloma cell lines before and after treatment with various 

additives (anti-CD40, anti-Fas monoclonal antibodies, IL-4 or IL-6).

4.2.1 Acridine orange fluorescence microscopy:

Cells were fixed and stained with acridine orange and the percentage of apoptosing cells 

was scored upon examination under fluorescence microscopy (or by light microscopy after 

staining with Wright's stain, see note). Apoptotic cells were recognised by their 

characteristic features of membrane blebbing, cell shrinkage, condensation and 

fragmentation of chromatin and retention of cytoplasmic organelle structure. Necrotic cells 

were characterised by plasma membrane rupture, disruption of cytoplasmic organelles and 

absence of condensed chromatin. 2x 100 cells were examined for each slide if possible, and 

the percentage apoptosis was calculated.

Staining procedure:

(Acridine orange stock solution at lOmg/ml in PBS was used @ 10pg/ml).

1) 1 0 0 | L t l  cell suspension (approximately 1 0 6  cells/ml) was placed into a microfiige tube and 

spun briefly. The supernatant was removed and the cells were fixed in lOOpl of fixative 

(25% acetic acid, 75% methanol), for 10 minutes at 4°C.

2) The cells were dropped onto glass slides and allowed to air dry.

3) The slides were stained in acridine orange solution in a coplin jar for 10 minutes at room

temperature.

4) Slides were then rinsed in distilled water x2 and mounted in water.

5) The number of viable cells were assessed as those with rounded cell membranes and

normal nuclei, non-shrunken cytoplasm with no membrane blebbing compared to those 

which were dying by apoptosis which had fragmented DNA in their nuclei and cytoplasm
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with membrane blebbing. The percentage apoptosis was calculated by subtracting the 

background percentage of apoptotic cells in untreated control samples (which did not 

exceed 15%) from that obtained after induction.

Note: Cells (myeloma lines) in subsequent assays were also examined for signs of apoptosis 

by performing cytospins and staining with "Wright's" stain for examination by light 

microscopy. The percentage of apoptotic cells was found to be equivalent by both staining 

methods.

4.2.2. Flow cytometric light-scatter analysis:

Samples (0.5ml) taken concurrently with those for acridine orange staining were placed into 

sterile Falcon tubes and washed x2 in 5ml of PBS. Cells were then fixed in 1% 

formaldehyde (1/10 dilution of Becton Dickinson "Cell Fix" which contains 10% 

formaldehyde, 1% sodium azide in lOx buffered fixative). When all the samples had been 

collected, cells were washed in 5ml of PBS to wash off fixative and were resuspended in 

0.5ml of PBS. Assessment of apoptosis was performed by monitoring the forward and 90° 

light scatter (forward versus side scatter) characteristics of the cells by flow cytometry. For 

each sample, 4000 cells were analysed using the Becton Dickinson FACScan analyser. An 

arbritary axis was drawn to distinguish between live and apoptotic cells. Apoptotic cells 

have an increased 90° light scatter due to increased granularity and a decreased forward 

scatter due to a decrease in size (Figure 4.2.2).

4.3 Induction of apoptosis in myeloma cell lines incubated with calcium ionophore.

Method

A panel of 6 myeloma cell lines was incubated for 24 hours in the presence of calcium 

ionophore @ lpg/ml (final concentration). Samples of each cell line were taken at intervals 

from 0-24 hours and assessed by flow cytometry and acridine orange staining for signs of 

apoptosis.
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Figure 4.2.2
Demonstration of the difference in light scatter amongst live and apoptotic cells: 
Flow cytometric light scatter analysis o f the myeloma cell line IM-9 incubated for 
72 hours with either no additive (a) or with anti-Fas (clone CH-11) at a final 
concentration of lOOng/ml (b). Regions containing dead and viable cells are 
shown as R1 and R2 respectively (see experiment 4.4.3).

F o r w a r d  s c a t t e r  — > FSC-HNFSC-Height ------>

The method of scoring apoptosis by flow cytometric analysis was as follows. - -  no 
apoptosis, + = 50-70% apoptosis, ++ = 70-90% apoptosis, +++ = 100% apoptosis



Results Table 4.3, Figure 4.3

Table 4.3 Summary of results:

The degree of apoptosis. if any, assessed bv flow cytometry and acridine orange staining:

Time (hours) 

Cell line

J I M - 1

J I M - 3

I M - 9

J J N - 3

R P M I - 8 2 2 6

*  A N B L - 6  ( 1 7 . 2 . 9 5 )

*  A N B L - 6  ( 2 2 . 5 . 9 5 )

2 4

+

+

* These two are IL-6-independent passages of the originally EL-6-dependent ANBL-6

Figure 4.3 - As a representative experiment of all lines tested: flow cytometric light scatter 

analysis of the myeloma cell line RPMI-8226 is shown after a 24 hour incubation with 

calcium ionophore (lpg/ml). Samples (0.5ml) were harvested after 0, 1,2, 3, 4, 5, 6 and 24 

hours incubation and were analysed as described in 4.2.2. Apoptotic cells (region R l) were 

distinguished from live cells (region R2) by their decrease in size and increase in granularity. 

No apotosis was observed until the cells had been incubated with ionophore for at least 24 

hours.

Conclusion

Only a percentage (20-30%) of all the myeloma cell lines tested were killed 24 hours after 

the addition of calcium ionophore. No apoptotic cell death was observed in samples 

incubated with calcium ionophore for less than 24 hours.
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Figure 4.3
Flow cytometric light-scattcr analysis o f the myeloma cell line RFMl-8226 following a 24 hour incubation 
in the presence of Calcium Ionophore at a final concentration of lp.g/ml. Cells were harvested after 
1,2.3,4.5,6 or 24 hours and 4000 cells per sample were analysed b\ flow cytometry. Live and apoptotic 
cells arc found in regions R2 and R1 respectively.
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4.4 Expression of Fas antigen on myeloma cell lines and the effect (over a period of 20 

hours) of anti-Fas monoclonal antibody on the induction of apoptosis amongst these 

lines.

The expression of Fas antigen, activation of which has been demonstrated to induce 

apoptotic cell death in mature lymphocytes (170), was examined in a panel of myeloma cell 

lines (JIM-1, JIM-3, U266, IM-9 and IL-6 independent clones of ANBL-6) by flow 

cytometric analysis as described in 2.2.22. Cells were labeled with an FITC-conjugated 

mouse anti-human Fas monoclonal antibody and all the cell lines tested were found to 

express Fas antigen although JIM-1 showed a very weak expression (Figure 4.4a). These 

cell lines were then incubated over a 20 hour period in the presence or absence of anti-Fas 

agonistic antibody (Clone CH-11, Immunotech) in an effort to determine whether the cells 

could be induced to die by programmed cell death following activation of the Fas antigen 

on their cell surface. Samples were taken over this 20 hour incubation period and the degree 

of apoptosis, if any, assessed. Cells were incubated in microtitre plates previously coated 

with a CD32L transfected mouse fibroblast monolayer to determine whether any effect of 

anti-Fas would be potentiated by the presence of the human Fc receptor expressed by the 

CD32L cells (see chapter 5).

Method

1. 5x10s myeloma cells/well in lOOpl of medium were added to triplicate wells of microtitre 

plates previously coated with a monolayer of irradiated (30,000 rads) CD32L cells (105 cells 

per well in 100|il medium supplemented with HAT and were allowed to adhere for at least 

2 hours prior to addition of the myeloma cells).

2. Anti-Fas antibody at a final concentration of 200ng/ml was added and cells from triplicate

wells were harvested at intervals up to 20 hours. One aliquot was fixed with a 1:10 dilution

of "Cell Fix" (Becton Dickinson) and assessed by flow cytometry whilst the remainder was

fixed and stained with acridine orange for subsequent analysis by fluorescence microscopy.
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Figure 4.4a

Expression of Fas antigen on the surface of m yeloma cell lines by flow  
cytometric analysis. Myeloma cells (5x10-5) were labeled with an 
FITC-conjugated m ouse anti-human Fas monoclonal antibody.
10,000 cells per sam ple were analysed by FACS.

Fas antigen expression amongst myeloma cell lines

Cell Line________Fas expression by flow cytometric analysis
% positive (range)

JIM-1 15(2-23)

JIM-3 66 (30-83)

U266 91 (88-93)

IM-9 100

ANBL-6 (IL-6 independent) 66 (43-97)
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Figure 4.4

£00

Flow cytometric analysis of the myeloma cell line IM-9 incubated over 20 hours with anti-Fas at 
a Final concentration of 200ng/ml. Cells were incubated with either no additive or with anti-Fas 
and were harvested after 1.2,3,4 and 20 hours to assess any changes in side scatter.
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Results Table 4.4

Degree of apoptosis

T i m e  a f t e r  a d d i t i o n  o f  a n t i - F a s  

C e l l  l i n e

O h r s l h r 2 h r s 3 h r s 4 . 5 h r s 2 0 h r s

J I M - 1 - - - - - -

J I M - 3 - - - - - -

U 2 6 6 - - - - - -

I M - 9 - - - - - -

A N B L - 6  ( I L - 6  i n d e p e n d e n t ) - - - - - -

See also Figure 4.4 - flow cytometric analysis of the myeloma cell line EM-9 incubated over 

20 hours with anti-Fas. This figure is representative of all the myeloma lines tested.

Conclusion

Incubation of myeloma cell lines with the agonistic anti-Fas antibody (CH-11) at a 

concentration of 200ng/ml, up to a period of 20 hours, does not result in the induction of 

programmed cell death.

4.4.1 Dose effect of anti-Fas on myeloma cell lines over a 20 hour incubation period.

The same panel of myeloma cell lines (as in 4.4) were incubated with an increasing 

concentration of anti-Fas antibody to establish whether an increased dosage of anti-Fas 

would result in apoptosis of these cell lines over the same period of incubation.

Method

1. 5x105 myeloma cells/well in 1ml were added to 24 well plates with (CD32L) or without 

(in suspension) a confluent monolayer of irradiated (30,000 rads) CD32L cells.

2. Anti-Fas antibody at a final concentration of 0-500ng/ml was added and cells were 

harvested after 20 hours incubation. One aliquot was fixed with a 1:10 dilution of "Cell Fix" 

and assessed by flow cytometry whist the remainder was fixed and stained with acridine 

orange for subsequent analysis by fluorescence microscopy.
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Summary of results Table 4.4.1 Degree o f apoptosis

A n t i - F a s  ( n g / m l )  

C e l l  l i n e

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

J I M - 1  a )  i n  s u s p e n s i o n - - - - - -

b )  C D 3 2 L  c e l l s - - - - - -

J I M - 3  a )  i n  s u s p e n s i o n - - - - - -

b )  C D 3 2 L  c e l l s - - - - - -

I M - 9  a )  i n  s u s p e n s i o n - - - - - -

b )  C D 3 2 L  c e l l s - - - - - -

U 2 6 6  a )  i n  s u s p e n s i o n - - - - - -

b )  C D 3 2 L  c e l l s - - - - - -

A N B L - 6  a )  i n  s u s p e n s i o n - - - - - -

I L - 6  i n d e p .  b )  C D 3 2 L  c e l l s - - - - - -

See also Figure 4.4.1 - dose effect of anti-Fas on the myeloma cell line JIM-1 over 20 

hours (in suspension). This experiment is representative of all lines tested (± CD32L cells).

Conclusion

Incubation of these myeloma cell lines for 20 hours with anti-Fas monoclonal antibody up 

to a final concentration of 500ng/ml does not induce programmed cell death, nor is any 

change in effect observed by incubating the cells on a CD32L transfected mouse fibroblast 

monolayer.

4.4.2 Effect of prolonged incubation (3 days) of anti-Fas with myeloma cell lines

Two myeloma cell lines were chosen to observe the effect of Fas activation on the onset of 

activation induced cell death over a period of 3 days.

1 4 8
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Figure 4.4.1

Dose effect o f anti-Fas (OoOOng/ml) on the myeloma cell line JIM-1 over 20 hours. Cells were harvested 
after a 20 hour incubation with cither no additive or anti-Fas at a concentration of 100, 200, 300, 400 or 
500ng/ml and 4000 cells were analysed by flow cytom etric light scatter analysis. Similar profiles were 
observed for all the myeloma cell lines tested in this experiment.
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Note: This experiment was done retrospectively after further preliminary experiments using 

the CD40 system of cell culture (Chapter 5) had revealed that these two myeloma lines were 

susceptible to Fas-mediated apoptosis.

Method

1. The cell lines ANBL-6 (Passage 27.2.95, EL-6 independent) and IM-9 were used in this 

assay. Cells @ 5xl04/well were plated in triplicate wells of a Greiner microtitre plate in 

200|il medium.

2. Anti-Fas monoclonal antibody (CH-11) was added at a final concentration of lOOng/ml 

and the plate incubated in a humidified atmosphere containing 5% carbon dioxide at 37°C.

3. Triplicate wells were harvested at 6 hours, 24 hours, 48 hours and 72 hours after addition 

of anti-Fas and assesssed, by a combination of cell viability (trypan blue dye exclusion), flow 

cytometry (Forward vs Side scatter) and physical characteristics of cytospins stained with 

Wright's stain, for signs of apoptosis.

Results Table 4.4.2

-  =  n o  a p o p t o s i s ,  +  =  5 0 - 7 0 %  a p o p t o s i s ,  + +  =  7 0 - 9 0 %  a p o p t o s i s ,  + + +  =  1 0 0 %  a p o p t o s i s

L e n g t h  o f  i n c u b a t i o n  

( a n t i - F a s  @  l O O n g / m l )  

C e l l  l i n e

6 h r s 2 4 h r s 4 8 h r s 7 2 h r s

I M - 9 %  v i a b i l i t y 8 1 6 9 0 0

( F A C S )  a p o p t o s i s - + + + + + +

A N B L - 6 %  v i a b i l i t y 8 9 5 0 0 0

( F A C S )  a p o p t o s i s - + + + + + +

Note: Control experiments for both cell lines incubated without antibody were set up 

concurrently and showed 90-100% viability by trypan blue dye exclusion and flow 

cytometric analysis (results not shown).
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See also Figures 4.4.2a and 4.4.2b - flow cytometric analysis o f these cell lines.

Conclusion

Both of these myeloma cell lines are killed by incubation with anti-Fas antibody although an 

incubation of at least 48 hours is required for all the cells to be effectively killed. Apoptosis 

commences between 20-24 hours after addition of anti-Fas (see experiments 4.4 and 4.4.1) 

but a longer incubation is required for comprehensive cell death.

4.4.3 Effect of prolonged incubation and increasing doses of anti-Fas on myeloma cell 

lines.

Two myeloma cell lines were chosen to observe the effect of an increasing concentration of 

anti-Fas antibody on the onset of programmed cell death after a period of incubation of 3 

days.

Method

1. The same myeloma cell lines as in the previous experiment (4.4.2), ANBL-6 (27.2) and 

IM-9 @ 5xl04cells/well were plated in triplicate wells of a Greiner microtitre plate in 200ul 

medium.

2. Anti-Fas monoclonal antibody (CH-11) was added to triplicate wells at a final 

concentration of 0, 100, 200, and 300ng/ml and the plate incubated in a humidified 

atmosphere containing 5% carbon dioxide at 37°C for 3 days.

3. Triplicate wells were harvested 72 hours after the addition of anti-Fas and assesssed, by a

combination of cell viability (trypan blue dye exclusion), flow cytometry (Forward vs Side 

scatter) and physical characteristics of cytospins stained with Wright's stain, for signs of 

apoptosis.

1 5 1



0 _ _  5 0  100  150  C
F S C - H \ F S C - H e i g h t  - - - - - >Forward scatter

72hrs

G 5 0  1 0 0  1 5 0  £ 0 0  £ 5 0
Forward scatter >

 ,1
0  5 0  100  1 5 0  £ 0 0  £ 5 0

F S C - H \ F S C - H e  i  g h  t  >

0  5 0  1 0 0  150  £ 0 0  £5 0
F S C - H x F S C - H e i g h t  - - - - - >

0 5 0  100  150  £ 0 0
F S C - H \ F S C - H e i g h t  - - - - - >

Figure 4.4.2n and Figure 4.4.2h
Flow cytometric analysis of the myeloma cell lines IM-9. Figure 4.4.2a and A X R I,6  (27/2). Figure 4.4 2b. over a 72 hour 
lncubatu)” with anti-Fas at a final concentration of lOOng/ml. Cells were harvested after 6, 24 ,48  and 72 hours. Regions R1 
and K2 distinguish between apoptotic and live cells respectively.

Only background (0-15%) apoptosis was observed at 0 hours



Results Table 4.4.3

A n t i - F a s  ( n g / m l ,  7 2  h r  i n c u b a t i o n )  

C e l l  l i n e

0 1 0 0 2 0 0 3 0 0

I M - 9 %  v i a b i l i t y 9 7 1 4 7 0

( F A C S )  a p o p t o s i s - + + + + + + + +

A N B L - 6 %  v i a b i l i t y 9 2 1 2 0 0

( F A C S )  a p o p t o s i s - + + + + + + + +

-  =  n o  a p o p t o s i s ,  + +  =  7 0 - 9 0 %  a p o p t o s i s ,  + + +  =  1 0 0 %  a p o p t o s i s

See also Figures 4.4.3a and 4.4.3b - flow cytometric analysis of these cell lines.

Conclusion

Both of these cell lines are killed by anti-Fas after a 72 hour incubation. A concentration of 

lOOng/ml anti-Fas is sufficient to kill at least 85% of the cells with concentrations above 

200ng/ml resulting in 100% cell death.

Summary of results:

Following standardisation of the method of observation and assessment of the onset of 

programmed cell death using the cell line L3055 (4.2), it was discoverd that the myeloma 

cell lines tested could all be induced to die by AICD after treatment with l^ig/ml of calcium 

ionophore but this death was not initiated until an incubation of at least 24 hours had 

elapsed (4.3). Agonistic anti-Fas antibody up to a final concentration of 500ng/ml was 

unable to induce apoptosis in the myeloma cell lines tested when incubation was allowed to 

proceed for up to 20 hours (4.4, 4.4.1). Incubation periods for at least 24 hours however, 

with an anti-Fas concentration of lOOng/ml, resulted in the onset of cell death (4.4.2). This 

programmed cell death was most effective if the myeloma cells were incubated for at least 

48 hours (Figures 4.4.2a and 4.4.2b). Incubation of these cell lines with concentrations of 

anti-Fas at concentrations of 100-300ng/ml for 72 hours resulted in comprehensive cell 

death (4.4.3).
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CHAPTER 5 

ESTABLISHMENT OF THE CD40 AND 

CD40Lig-L CULTURE SYSTEM ASSAYS
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5.1 Introduction

Activation of CD40 has been shown to be crucial in normal B cell differentiation and 

activation (105-115) with one of it functions being to rescue cells from apoptosis when 

activated (105,112,113) and another being the induction of low-level IL-6 secretion by 

cross-linkage of CD40 in normal B cells with MoAb (90). It has also been found to be 

expressed on malignant plasma cells (88) although it has been reported as being absent on 

normal plasma cells (89,240).

Cross-linking of cell surface CD40 on human B cells with a monoclonal antibody to CD40 

(90,91,92), or cross-linking of CD40 with it ligand (CD40L) which is normally found on 

activated T cells, (90,93-96) results in B cell activation and IL-6 secretion. This effect hasi

been similarly observed in myeloma cells, myeloma cell lines (88) bone marrow myeloma 

cells, bone marrow stromal cells (BMSC) and BMSC-derived cell lines (57). It has also 

been shown that CD40 engagement, using either a recombinant human CD40 Ligand or a 

cross-linked anti-CD40 MoAb, induces resting B cells to express high levels of Fas antigen 

and that ligation of such, using anti-Fas mAb (CH-11), leads to apoptotic cell death 

( 120, 122).

Since myeloma is a tumour of the B cell lineage it was decided to investigate whether 

similar mechanisms of cell activation and induction of, or protection from, activation 

induced cell death may be employed in this disease. All the myeloma cell lines tested were 

found to express CD40 and Fas antigen at different intensities (Table 5.1). It was thus 

attempted to activate these antigens and observe whether they too, would be sensitive to a) 

proliferate further due to CD40 activation; b) the induction of Fas-mediated apoptosis and 

c) co-activation of CD40 and Fas resulting in any potentiation of effect. Previous studies of 

Fas expression in fresh myeloma plasma cells as well as established myeloma cell lines has 

revealed that Fas is constitutively expressed in both although the intensity of expression is 

variable (126,236).

Two culture systems originally established in an effort to generate factor-dependent B cell 

lines (108,120) were adapted for the study of myeloma cell activation of proliferation via 

CD40 (and the cytokines IL-4 and IL-6) and induction of apoptosis. Although myeloma cell
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Table 5.1
Flow cytometric analysis of CD40 and Fas antigen expression in a panel of myeloma 
cell lines. Cells were labeled with a combination of FITC-conjugated mouse-anti-human 
Fas antigen and PE-conjugated mouse-anti-human CD40. A dual labeled mouse IgG 
was used as negative control. 10,000 cells per sample were analysed.
Results are representative of at least 3 experiments.

Fas and CD40 protein expression amongst myeloma cell lines

Flow cvtometric expression bv FACS

Cell Line
% positive (range) 

Fas CD40

JIM-1 15(2-23) 15 (4-25)

JIM-3 66 (30-83) 13(10-16)

JJN-3 82 (70-94) 17(4-34)

U266 91 (88-93) 17 (7-28)

IM-9 100 100

RPMI-8226 79 (56-88) 94 (93-94)

ANBL-6 (P32) 44 80

ANBL-6 (26/12) 40 (21-58) 70 (59-81)

ANBL-6 (16/1) 40 (38-42) 36(11-60)

ANBL-6 (17/2) 64 (43-84) 10(9-10)

ANBL-6 (27/2) 91 (84-97) 26 (9-43)

ANBL-6 (6/3) 51 (33-68) 11 (8-14)

ANBL-6 (22.5) 58 (39-90) 10(3-14)

JT 66 (40-100) 51 (10-96)

ANBL-6 (26/12 and 16/1) are IL-6 dependent and were passaged from the original sample of ANBL-6 (P32% 
also IL-6 dependent, which was a generous gift from Dr Diane Jelinek o f the Mayo Clinic. The remaining passages of 
ANBL-6 (17/2,27/2,6/3 and 22/5) are all IL-6 independent and were derived from ANBL-6 (P32). JT is a myeloma cell 
line derived by myself from a patient who developed plasma cell leukaemia in Glasgow Royal Infirmary.(results not 
published).
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lines are obviously no longer dependent on stromal layers for their propogation it was 

decided that the use of the CD40 (108) and CD40Lig-L (120) culture systems may 

potentiate the response to CD40 activation. Cross-linkage of this antigen on the surface of 

myeloma cells using mouse fibroblasts transfected with either the human immunoglobulin Fc 

receptor (FcyRII/CDw32) or with the human CD40 ligand constitute the CD40 and 

CD40Lig-L culture systems respectively. Interleukin-4 was used to test for proliferation as 

a comparison to interleukin-6 in these studies since it is a potent B cell stimulation factor 

(108). Both the CD32L and CD40Lig-L transfected mouse fibroblast cell lines were a 

generous gift of Dr. J. Banchereau, Schering Plough Laboratories, Dardilly, France.

The experiments detailed in this chapter consist of a series of pilot experiments aimed at 

determination of the extent of CD40-, cytokine- and Fas- mediated activation possible using 

established myeloma cell lines and to determine the optimum conditions required for the 

assays. Chapter 6 describes the results of replicate, standardised assays using the conditions 

described in this method section (5.3).

5.2 CD40 culture system (Figure 5.2a)

As has been already stated, this culture system was developed by Banchereau et al. (108) in 

an effort to reproducibly generate factor-dependent human B cell lines. It was hypothesised 

that the immobilisation of anti-CD40 monoclonal antibody (MoAb) by cross-linking it on a

mouse fibroblastic cell line (Ltk") transfected with the human immunoglobulin Fc receptor, 

FcyRII/CDw32 (273) would represent an in vitro system as close as possible to the 

situation which occurs in vivo when B cells interact with cellular partners through surface 

antigens in germinal centres (274). Interleukin-4 (IL-4) and monoclonal antibodies to CD40 

(anti-CD40) are presented in a cross-linked fashion by these cells and this has enabled the 

establishment of factor-dependent, long-term human B cell lines. The stable CDw32L 

transfectants were prepared by cloning FcyRII cDNA into the Xhol restriction site of the 

mammalian cell expression vector pSRa296 and transfecting them into mouse Ltk' cells 

using the calcium phosphate precipitation technique. Successful transfectants were selected 

using HAT medium, subcloned by limiting dilution and assayed for FcyRII surface 

expression by immunofluorescence staining.
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5.2.1 The CD40 ligand-L cell culture system (Figure 5.2b)

In order to abrogate the requirement for anti-CD40 in the culture system by directly cross- 

linking B cells with the human CD40 ligand, Garrone et al. (120) transfected mouse L cells 

with the CD40 ligand gene (CD40Lig-L cells). Briefly, human CD40 ligand cDNA (243) 

was amplified by PCR. The product was then digested, gel purified and cloned into the 

expression plasmid pME18S-neo, which contains the neomycin resistance gene. Mouse L 

cells were then transfected with the resulting expression plasmid pME18S-neo-CD40Lig by 

electroporation. Neomycin-resistant L cells were selected in medium containing 0.5mg/ml 

G418 (Neomycin) and CD40Lig-expressing cells were further isolated by three rounds of 

sorting by FACS™ after staining with a CD40-Fc chimeric molecule (275).

5.3 Materials and Methods

a) Cytokines and culture medium:

CD32L cells were maintained in RPMI-1640 medium with 10% heat-inactivated FCS, 2% 

L-Glutamine, 1% Penicillin/Streptomycin, supplemented with 2% HAT. CD40Lig-L cells 

were maintained in the same culture medium excluding HAT. Purified recombinant rIL-4 

was used at a final concentration of lOOU/ml.

b) Antibodies:

Purified anti-human CD40 monoclonal antibody, (clone G28-5) a generous gift from 

Professor John Gordon, Dept, of Cellular Immunology, The Medical School, University of 

Birmingham, was used at a final concentration of 0.5pg/ml, unless otherwise stated. Mouse- 

anti-human anti-Fas MoAb (IgM, clone CH-11, Immunotec) was routinely used in assays 

at a final concentration of lOOng/ml. For flow cytometric analysis; a non-apoptotic FITC- 

conjugated mouse anti-human Fas MoAb (IgGb clone UB2), PE-conjugated mouse-anti- 

human CD40 MoAb (IgG,, clone B-B20,), PE-conjugated mouse IgG and dual-labelled 

FITC- and PE-conjugated mouse IgG negative control MoAbs, were used.

c) Myeloma cell lines:

The cell lines JIM-1, JIM-3, JJN-3, U266, RPMI-8226, IM-9 and IL-6 independent 

passages of ANBL-6 (17/2, 27/2, 6/3 and 22/5) were studied.
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d) Proliferation assays:

For proliferation assays myeloma cells in flat-bottomed 96 well microtitre plates (Greiner 

Labs.) were seeded at the specified number of cells/well in the presence of gamma-irradiated 

(15,000 rads, unless otherwise stated) CDw32L or CD40LigL cells (numbers varied in 

different experiments). L cells were allowed to adhere for at least 2 hours prior to the 

addition of myeloma cells. Cytokine and antibodies were added at the initiation of culture in 

a final volume of 200pl/well. Plates were incubated for, on average, 72 hours in a 

humidified incubator with 5% C 02 at 37°C. Each culture condition was performed in 

triplicate and proliferation was determined by uptake of tritiated thymidine, [3H]-TdR, after 

pulsing cells with lpCi/well (Specific activity lx37MBq) during the last 16 hours of culture. 

After harvesting cells on glass-fibre filters (Canberra Packard Harvester), [3H]-TdR 

incorporation was measured by standard liquid scintillation counting techniques using a 

Packard Matrix 96 Direct Beta counter.

e) Measurement of cell viability and apoptosis:

Triplicate wells were harvested after culture in the absence or presence of additives; IL-4, 

anti-CD40 or anti-Fas as described. Viable cells and cell counts were enumerated by Trypan 

Blue dye exclusion. Cell death was assessed as described in chapter 4 (271). Briefly, 

triplicate wells were harvested and the cells washed in PBS prior to flow cytometric light 

scatter analysis. An aliquot of the same cells was also used to prepare cytospins which were 

either stained with Wrights stain and examined under light microscopy, or with acridine 

orange and observed by fluorescence microscopy. The percentage of viable cells observed 

by counting at least 100 cells per cytospin was compared with the flow cytometric picture
9

after drawing an arbritary ax I s to distinguish between viable and non-viable cells.

f) Flow cytometric analysis: see section 2.2.22

For dual colour cytometric analysis of cell surface Fas and CD40 antigen expression, 

triplicate wells were harvested and labeled with FITC-conjugated anti human-Fas antigen 

and PE-conjugated anti human-CD40, using an isotype-matched FITC- and PE-conjugated 

negative control. Labeled cells were analysed using LysisII software on a FACScan flow 

cytometer (Becton Dickinson).

162



5.4 Initial stimulation of myeloma cell lines using the CD40 culture system 

In order to determine whether myeloma cell lines could be stimulated to proliferate in the CD40 

system, the cell lines JIM-1, JIM-3, JJN-3, U266, RPMI-8226 and IM-9 were incubated in 

triplicate wells of microtitre plates on irradiated CDw32L cells in the presence or absence of anti- 

CD40 MoAb.

Method

CD32L cells were gamma irradiated (30,000 rads.) and plated into microtitre wells at 

105cells/well. Myeloma cells at 2.5xl04/well were plated into triplicate wells in a total volume of 

200|il/well with either a) no additive or b) anti-CD40 (G28-5) at a final concentration of lpg/ml. 

Plates were incubated at 37°C for three days. Tritiated thymidine (1 |4,Ci/well) was added during 

the last 16 hours of culture after which, the cells were harvested and [3H]-TdR incorporation 

measured by liquid scintillation.

Results Table 5.4

Conclusion

Significant increase in proliferation induced by CD40 stimulation was only observed for JJN-3 

and JIM-1 amongst myeloma cells incubated on CD32L cells. The cell line IM-9 proliferates at a 

much greater rate than the other myeloma lines tested with or without CD40 activation as 

observed by the magnitude of tritiated thymidine uptake.. The extent of proliferation observed 

amongst these cell lines did not relate to the degree of CD40 expression detected by flow 

cytometry in this experiment.
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Table 5.4

Results expressed as mean (+/- %  variation) of triplicate determinants

3H-thymidine uptake over the last 16 hours of a 3 day culture of myeloma cell lines 

(2.5xl04/well) on irradiated CD32L cells (105/well). Results expressed as counts per minute 

(cpm). Baseline (blank) measured from 3H-thymidine incorporation in wells containing irradiated 

CD32L cells in medium only was 220cpm (subtracted).

Additive 

Cell line CD40 expression 

(see Table 5.1)

None (-)

cpm

Anti-CD40

cpm

% proliferation

JIM-1 15% 1161116% 2295 136% 98

JIM-3 13% 9777117% 8669 130% 0

JJN-3 17% 1119711% 1823813% 63

U266 17% 776417% 8821 16% 14

RPMI-8226 94% 4821 15% 5693 15% 18

IM-9 100% 472K17% 439K 12% 0

% proliferation = - [l-3H-TdR incorporation with anti-CD40/(-VI x 100
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5.4.1 Effect of CD40. CD40+IL-4 and Fas stimulation of myeloma cell lines in the 

CP40 system

Microtitre plates containing irradiated (30,000 rads) CD32L cells (105/well) were set up and 

the cell lines JIM-1, JIM-3, JJN-3, U266 and IM-9 (@ 2.5xl04/well) were added with or 

without additives: anti-CD40 (lpg/ml), anti-CD40+IL-4 (lOOU/ml) or anti-Fas (lOOng/ml). 

Plates were incubated for either 3 or 4 days and the effect of additives on stimulation or 

inhibition of proliferation was assessed by tritated thymidine uptake.

Results Table 5.4.1

Conclusion

Background (CD32L cells only) counts were very high most probably due to the use of too 

many L cells/well and incomplete irradiation of the L cells so that their proliferation 

overrided that of the myeloma cells and exhausted all the nutrients (especially after a four 

day incubation). There was no significant increase in proliferation observed amongst 

myeloma cells incubated with anti-CD40 with or without IL-4 with the exception of IM-9. 

There was, however, a significant relative decrease in uptake of tritiated thymidine observed 

for JIM-3 (3 day incubation) and IM-9 (3 and 4 day incubation) incubated with anti-Fas 

MoAb.
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5.4.2 Standardisation of assays with respect to ratio of L cells to myeloma cells and 

concentration of anti-CD40 required for stimulation.

In an attempt to standardise this assay after consultation with Dr John Pound of the 

Department of Immunology, The Medical School, University of Birmingham, it was decided 

to use anti-CD40 MoAb at a concentration of 0.5pg/ml and to use 10-fold less CD32L cells 

than myeloma cells per well. The myeloma cell lines (105/well), JIM-1, JIM-3, U266, 

RPMI-8226, IM-9, ANBL-6 (6/3) and mononuclear cells isolated from the peripheral blood 

of a normal control (MNC) were incubated in triplicate wells of microtitre plates. The plates 

were seeded at least 2 hours previously with irradiated (30,000 rads) CD32L cells (@ 

104/well). Myeloma cells were added, with or without additives (anti-CD40 @ 0.5pg/ml, 

IL-4 @ lOOU/ml, anti-Fas @ lOOng/ml), and the plates were then incubated for 72 hours at 

37°C.

Results Table 5.4.2 

Conclusion

The background counts in the blank were lower by using lOx fewer CD32L cells/well than 

in previous assays. Fresh mononuclear cells were stimulated to proliferate extensively by the 

addition of anti-CD40 antibody without any increase in effect induced by co-incubation with 

IL-4. No marked increase in proliferation amongst myeloma cell lines was observed with 

anti-CD40 ± IL-4. Incubation with anti-Fas MoAb had no apoptotic effect on JIM-1 and a 

proliferative effect on the MNC control. Fas ligation had some inhibitory effect (16-82% 

inhibition of proliferation) on the other cell lines tested. The strongest Fas-mediated 

inhibition of proliferation was observed in the myeloma cell line IM-9 ± anti CD40 (77-82% 

inhibition).
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5.4,3 Standardisation of time of irradiation required to reduce background thymidine 

uptake in CD40 system assays.

In order to determine the optimum dosage of radiation required for CD32L cells not to provide 

significant background thymidine uptake, duplicate plates were set up with CD32L cells at 

104/well and myeloma cells U266, RPMI-8226, IM-9 and mononuclear cell control cells at 

105/well. One plate was seeded with CD32L cells irradiated for 39 minutes (15,000 rads) and the 

second plate seeded with CD32L cells which had been irradiated for 78 minutes (30,000 rads). 

Additives were as in experiment 5.4.2. Culture was continued for 72 hours at 37°C.

Results Table 5.4.3

Conclusion

Irradiation of CD32L cells for 39 minutes (15,000 rads) was sufficient to result in low 

background for proliferation assays. Mononuclear cells under both conditions proliferated 

markedly when incubated with anti-CD40 and EL-4 but these cells were not found to be 

significantly inhibited by Fas activation. The myeloma cell lines IM-9 and RPMI-8226 were 

stimulated to proliferate by anti-CD40 with or without IL-4 whereas U266 was not except when 

incubated for 3 days on a monlayer of CD32L cells (irradiated at 30,000 rads) in the presence of 

anti-CD40+IL-4. Proliferation of IM-9 and RPMI-8226 was substantially inhibited when these 

lines were incubated with either a combination of anti-Fas and anti-CD40 or with anti-Fas alone, 

although the effect was potentiated by CD40 and Fas coligation. U266 showed a less obvious 

inhibition of proliferation induced by Fas activation of 0-33% and this could be background.
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5.5 Effect of Fas activation on CD40 antigen expression over time

A panel of myeloma cell lines was examined for the effect of Fas activation on CD40 antigen 

expression over time using a phycoerythrin labeled-anti-CD40 (clone B-B20) monoclonal antibody 

to detect CD40 on the cell surface of the myeloma cells.

Method

1. The IL-6 independent myeloma cell lines JIM-1, JIM-3, JJN-3, IM-9, ANBL-6 (Passages 17/2, 

27/2, 6/3 and 22/5), @ 105/ml were plated into triplicate wells of a Greiner microtitre plate in 200pl 

medium/well and incubated in the presence of anti-Fas (CH-11) monoclonal antibody at a final 

concentration of lOOng/ml.

2. Cells were harvested after Ohrs, 6hrs, 20hrs, 43hrs and 64hrs incubation at 37°C, washed x2 in 

PBS and labelled with PE-conjugated anti-CD40 monoclonal antibody using mouse-IgG-PE as a 

negative control.

3. 10,000 cells were analysed by FACS, results were plotted as histograms with CD40 expression 

(FL-1) versus side scatter.

Results Table 5.5 and Figures 5.5 (a-d)

Conclusion

Incubation with anti-Fas over 3 days resulted in an up-regulation of CD40 protein expression 

which was initially manifested after 20-43 hours in the myeloma cell lines JIM-3 and IL-6 

independent passages of ANBL-6 (17/2, 27/2, 6/3, 22/5). JIM-1 CD40 expression was slightly 

down-regulated after incubation with anti-Fas. IM-9 maintained 100% expression of CD40 

which was unaffected by Fas activation and JJN-3 CD40 expression was negative throughout 

this experiment and was unaffected by Fas-activation.
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Table 5.5

CD40 protein expression bv FACS™ following a 3 day incubation with anti-Fas

Intensity of CD40 protein expression with time on the surface of myeloma cell lines by flow 

cytometric analysis is shown during a three day incubation with anti-Fas MoAb. 105 myeloma 

cells/well were incubated in triplicate wells of a microtitre plate in the presence of anti-Fas at a 

final concentration of lOOng/ml. Cells were harvested after 0,6,20,43 and 64 hours, labelled 

with PE-conjugated mouse anti-human-CD40 MoAb and analysed by flow cytometry using a 

mouse IgG-PE as negative control.

Time after addition of anti-Fas

Cell line

0 hrs 6 hrs 20 hrs 43 hrs 64 hrs

JIM-1 ++ + + + +

JIM-3 - - + ++ +++

JJN-3 - - - - -

IM-9 +++ +++ +++ +++ +++

ANBL-6 (17/2) - - +/- + ++

ANBL-6 (27/2) - - + ++ +++

ANBL-6 (6/3) - - +/- + ++

ANBL-6 (22/5) - - +/- + ++

5.5.1 Effect of CD40 activation on Fas antigen expression over time

The same panel of myeloma cell lines was also examined using the same conditions as in experiment 

5.5 to examine the effect of CD40 activation on Fas antigen expression over time using a 

fluorescein labeled-anti-Fas (clone UB2) monoclonal antibody to detect cell surface Fas expression.

Results

No change in Fas antigen expression over time was observed for any of these myeloma cell lines 

incubated with anti-CD40 monoclonal antibody over a three day period with samples tested after 0, 

6, 20,43 and 64 hours incubation (results not shown).
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Figure 5.5a CD40 protein expression following Fas activation in the myeloma cell lines JIM-1 and JIM -3

CD-40 expression in myeloma cell lines following activation of Fas antigen. Cells were incubated in the presence of anti-Fas (lOOng/ml) 
for 64 hours, harvested at intervals (0hrs,6hrs,20hrs,43hrs and 64hrs) and 10,000 cells analysed for CD40 expression after labeling with 
anti-CD40-PE using mouse IgG-PE as negative control.
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Figure 5.5b CD40 protein expression following Fas activation in the myeloma cell lines JJN-3 and IM-9
CI)40 expression in myeloma cell lines following activation of l as antigen. Cells were incubated in the presence of anti 1'as (100ng/ml) 
for 64 hours, harvested at intervals (0hrs,6hrs,20hrs,43hrs and 64hrs) and 10,000 cells analysed for CD40 expression after labeling with 
antl-CD40-PE using mouse IgG-PE as negative control.
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F ig u r e  5.5d 0 ) 4 0  protein expression following Fas activation in the myeloma cell lines ANBL-6 passages 6/3 and 22/5

C'D-40 expression in myeloma cell lines following activation of Fas antigen. Cells were incubated in the presence of anti-Fas (lOOng/ml) 
for 64 hours, harvested at intervals (0hrs,6hrs,20hrs,43hrs and 64hrs) and 10,000 cells analysed for CD40 expression after labeling with 
anti-CD40-PE using mouse IgG-PE as negative control.
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CHAPTER 6

CD40 AND CD40LIG-L CULTURE SYSTEM 

ASSAYS - EFFECT OF ACTIVATION OF CD40 

AND FAS ANTIGEN IN MYELOMA CELL 

LINES ON PROLIFERATION, APOPTOSIS 

AND BCL-2 EXPRESSION.

177



6.1 Introduction

Pilot experiments having been completed, a number of replicate assays were then performed 

using the standardised method adopted as a result of the experiments performed in chapter 5. A 

comprehensive panel of IL-6-dependent and -independent myeloma cell lines were tested for 

their susceptibility to Fas-mediated apoptosis and CD40 activation with or without the cytokines 

IL-4 and IL-6 using the CD40- and CD40Lig-L- culture systems as a comparison. It was 

intended to ascertain which myeloma cell lines, if any, were repeatedly sensitive to CD40 

stimulation and/or the induction of Fas-mediated apoptosis, whether this would be potentiated by 

CD40 and Fas coligation and whether any lines were completely resistant.

The product of the proto-oncogene bcl-2 affords protection against apoptosis (105,136). 

Comparison of bcl-2 mRNA and protein expression in germinal centres and in myeloma cell 

lines, by in situ hybridisation, immunohistochemistry and flow cytometric techniques 

indicates that bcl-2 mRNA is expressed throughout the germinal centre albeit in varying 

amounts, and in most myeloma cell lines tested but the protein product is only manifested in 

the follicular mantle and in some myeloma cell lines (155,156 and personal findings). It has 

been demonstrated that rescue from apoptosis by CD40 cross-linking in germinal centre B 

cells is usually (105,130), but not always (112) accompanied by up-regulation of the bcl-2 

gene therefore experiments were carried out to examine Bcl-2 protein expression in 

myeloma cell lines before and after CD40 and Fas activation (6.6).

6.2 Materials and Methods

a) Cytokines and culture medium:

CD32L cells and CD40Lig-L cells were maintained in the culture conditions described in 

section 5.3. Purified recombinant human rIL-4 and rIL-6 were used at a final concentration 

of lOOU/ml and lng/ml respectively.

b) Antibodies:

Antibodies were as described in section 5.3 with the addition of: FITC-conjugated mouse- 

anti-human Bcl-2 (IgGi, DAKO clone 124) and FITC-conjugated mouse IgG negative 

control.
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c) Myeloma cell lines:

The cell lines JIM-1, JIM-3, JJN-3, U266, IM-9, RPMI-8226 and both IL-6 dependent 

(passages 26/12 and 16/1) and independent passages of ANBL-6 (passages 17/2, 27/2, 6/3 

and 22/5) were studied. The original clone (P32) of ANBL-6 (which was a generous gift of 

Dr Diane Jelinek of the Mayo Clinic, Rochester, Minnesota, also IL-6 dependent) and ‘JT’, 

a myeloma cell line derived by myself from a patient with plasma cell leukaemia were also 

tested in these assays. The results of experiments using P32 and JT are found in Appendices 

1.12 and 1.13 respectively.

d) Proliferation assays:

For proliferation assays myeloma cells in flat-bottomed 96 well microtitre plates (Greiner 

Labs.) were seeded at 5xl04cells/well in the presence of 5x103 gamma-irradiated (15,000 

rads) of either CDw32L or CD40Lig-L cells/well. L cells were allowed to adhere for at 

least 2 hours prior to the addition of myeloma cells. Cytokines and antibodies were added at 

the initiation of culture with a final volume of 200pl/well. Plates were incubated for 72 

hours in a humidified incubator with 5% C 02 at 37°C. Each culture condition was 

performed in triplicate and proliferation was determined by uptake of tritiated thymidine 

after pulsing cells with lpCi/well during the last 16 hours of culture as described in section 

5.3.

e) Measurement of cell viability and apoptosis:

Triplicate wells were harvested after 72 hours culture in the absence or presence of 

additives; IL-4, IL-6, anti-CD40 or anti-Fas as described. Viable cells and cell counts were 

enumerated by Trypan Blue dye exclusion. Cell death was assessed as described in section 

5.3).

f) Flow cytometric analysis:

Analysis was as described in section 5.3. For examination of Bcl-2 expression, cells were 

permeabilised (2.2.22) before labeling with an FITC-conjugated anti human-Bcl-2 mAb 

using an FITC-conjugated IgG negative control.

179



g) Standardised culture system assays

Duplicate or triplicate plates were set up and incubated for 72 hours at 37°C. One plate was 

pulsed with tritiated thymidine during the last 16 hours of culture and then the cells were 

harvested as described (5.3) with results expressed as mean counts per minute of triplicate wells. 

The second replicate plate was used to determine:

a) cell viability and cell counts (Trypan blue dye exclusion)

b) the extent of apoptotic cell death by acridine orange staining and fluorescence microscopy (or, 

alternatively, cells were stained with Wright’s stain and examined by light microscopy)

c) flow cytometric light-scatter analysis

The cells harvested from the third replicate plate were used to perform cytospins for in situ 

hybridisation analysis of CD40, bcl-2 or fa s  mRNA expression. A comparison was made of all 

these parameters by stimulating myeloma cells using:

1) no L cells (termed as “in Suspension”)

2) CD32L cells ± anti-CD40 MoAb (the CD40 system)

3) CD40Lig-L cells (no anti-CD40 required, termed the CD40Lig-L system).

The summarised results shown are the mean results of replicate experiments using myeloma cell 

lines cultured in the CD40Lig-L system. Results of tritiated thymidine uptake in individual 

experiments for each myeloma cell line and the comparative results for tritiated thymidine 

uptake, cell counts, percentage proliferation or inhibition of proliferation and percentage viability 

in replicate experiments performed using no L cells, CD32L cells and CD40Lig-L cells for each 

myeloma cell line are shown in Appendix 1. Representative flow cytometric light scatter analyses 

for all the myeloma cell lines tested using the CD32L culture system are also shown in Appendix 

2a (Figures 7.1a, 7.1b, 7.3a and 7.3b).

Note: The experiments detailed in the following two sections (6.3 and 6.3.1) were all 

performed with no knowledge of which myeloma cell lines, if any, would be repetitively 

susceptible to Fas-mediated apoptosis. The results have been split retrospectively into two 

sections 6.3 and 6.3.1 according to their non-susceptibility or otherwise to the onset of 

AICD.
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6.3 CD40Lig-L culture system assays in myeloma lines non-susceptible to Fas- 

mediated apoptosis.

Myeloma cell lines were incubated in microtitre plates as described (6.2) for 72 hours on 

irradiated CD40Lig-L cells with either no additive, IL-4, IL-6 or anti-Fas MoAb. Two 

duplicate plates were set up per experiment. The first plate was used to assess cell 

proliferation through tritiated thymidine uptake (6.2d). The second plate was used to assess:

• The percentage viability by morphology (Wright’s stain or Acridine Orange) and trypan 

blue dye exclusion.

• The percentage increase in proliferation by CD40 and cytokine stimulation or inhibition 

of proliferation by Fas activation (determined by cell counts ).

• The extent of apoptotic cell death by flow cytometric light scatter analysis.

Results are summarised in Table 6.3. Figure 6.3 and Figures 6.3(a-cJ

Figures 6.3a and 6.3b are representative photographs (JIM-1 and ANBL-6 passage 26/12, 

respectively) of the cell lines non-susceptible to Fas-mediated apoptosis.

Conclusion

The myeloma cell lines JIM-1, U266 (both IL-6 independent) and the IL-6-dependent 

passages of ANBL-6 proved consistently to be resistant to Fas-mediated apoptosis as 

shown by lack of inhibition of proliferation. This was indicated by:

• Tritiated thymidine uptake - no significant decrease in uptake was observed when these 

cell lines were incubated for 72 hours in the presence of anti-Fas MoAb. Raw data 

showing counts per minute due to tritiated thymidine uptake are depicted in graphical 

form in Figure 6.3. and are tabulated in appendix 1.

• Percentage viability by i) trypan blue dye exclusion and ii) morphology which remained 

normal in 85-100% of cells in spite of prolonged exposure to anti-Fas. Photographs 

(Figures 6.3a and 6.3b) revealed that the majority of cells were still healthy with only 

background signs of apoptotic cell death occurring (0-15%).
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Figure 6.3a

Wright’s staining of the myeloma cell line JIM-1 under light microscopy (magnification x 

40) following a three day culture in the CD40LigL system with additives a) IL-6 (lng/ml) 

or b) anti-Fas (lOOng/ml). Only background apoptotic cell death (< 15%) was observed 

under both conditions, 

a)



Figure 6.3b

Wright’s staining of the myeloma cell line ANBL-6 (26/12, IL-6 dependent) under 

light microscopy (magnification x 40) following a three day culture in the 

CD40Lig-L system with additives a) IL-6 (lng/ml) and b) anti-Fas (lOOng/ml). 

only background apoptosis was observed in both cases.
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Figure 6.3c
Flow cytometric light scatter analysis of the myeloma cell lines JIM-1, U266, ANBL-6 (passages 26/12 and 16/1) 
cultured in the CD40Lig-L system following a 3 day incubation with either no additive, IL-4, IL-6 or anti-Fas MoAb. 
Results for cytokine stimulation are not shown sinee they were the same as those for cells incubated with no additive. 
An arbritary axis was drawn to distinguish between live (R2) and apoptotic (R l) cells. 4000 cells per expeiiment 
were analysed. N o shift in scatter was observ ed in any of these cell lines indicating that Fas activation had no effect
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• As demonstrated by flow-cytometric light scatter analysis (Figure 6.3c) where no shift in 

scatter was observed between cells incubated with no additive or anti-Fas. There was no 

shift in scatter in any of the cell lines tested with either of the cytokines IL-4 or IL-6 

compared with cells incubated in the same experiment with no additive (results not 

shown).

The original clone of ANBL-6, P32, which is IL-6 dependent, was also cultured using the 

CD40Lig-L and CD32L systems with additives (IL-6+anti-Fas) and (IL-6+anti-CD40+anti- 

Fas) respectively. Tritiated thymidine uptake and percentage viability was found to be as 

great as, or greater than, that observed when these cells were incubated with IL-6±CD40 

ligation (Appendix 1.12). This indicates that, certainly in this IL-6-dependent cell line, 

activation of Fas antigen has no apoptotic effect either in the presence or absence of IL-6.

6.3.1 CD40Lig-L culture system assays in myeloma lines susceptible to Fas-mediated 

apoptosis.

Duplicate microtitre plates were set up with the myeloma cell lines JIM-3, JJN-3, IM-9, 

RPMI-8226 and the IL-6 independent passages of ANBL-6 (17/2, 27/2, 6/3, 22/5). These 

were incubated for 72 hours and harvested as described in section 6.3

Results are summarised in Table 6.3.1 and Figures 6.3.1(a-el

Figures 6.3.1b and 6.3.1c are representative photographs (IM-9 and JJN-3 respectively) of 

the cell lines susceptible to Fas-mediated apoptosis.

Conclusion

The myeloma cell lines JIM-3, JJN-3, RPMI-8226, IM-9 and the IL-6 independent passages 

of ANBL-6 proved to be consistently susceptible to Fas-mediated apoptosis as shown by 

inhibition of proliferation indicated by:

• Tritiated thymidine uptake - a significant decrease in thymidine uptake was observed 

when cells were incubated for 72 hours in the presence of anti-Fas MoAb. Results are 

shown as percentage inhibition of proliferation compared with thymidine uptake in wells
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Table 6.3.1

Summary of CD40Lig-L culture system assays in myeloma cell
lines susceptible to Fas-mediated apoptosis. 5x104 myeloma cells were 
incubated in the presence of 5x103 CD40Lig-L cells in triplicate wells of microtitre plates 
for 72hrs.

CULTURE No additive IL-4 IL-6 2Anti-l
CONDITIONS

CELL LINE ‘TEST
1) JIM-3 a)Trypanblue % viability 79 81 86 0

b)[3H-TdR] % proliferation 0 13
uptake % inhibition 38

c)Morphology % viability 75 79 89 10
d)Flow cyt ‘apoptosis +/- - - - ++

2) JJN-3 a)Trypanblue % viability 82 84 92 30
b)[3H-TdR] % proliferation 0 0

uptake % inhibition 22
c)Morphology % viability 78 76 82 15
d)Flow cyt apoptosis +/- - - - +

3) RPMI-8226 a)Trypanblue % viability 92 95 91 20
b)[3H-TdR] % proliferation 7 45

uptake % inhibition 47
c)Morphology % viability 84 92 90 16
d)Flow cyt apoptosis +/- - - - +

4) IM-9 a)Trypanblue % viability 95 94 94 6
b)[3H-TdR] % proliferation 0 2

uptake % inhibition 92
c)Morpho!ogy % viability 91 96 94 6
d)Flow cyt apoptosis +/- - - - ++

5) ANBL-6 a)Trypanblue % viability 89 90 93 0
(IL-6 independent) b)[3H-TdR] % proliferation 0 0

uptake % inhibition 90
c)Morphology % viability 92 97 86 5
d)Flow cyt apoptosis +/- - - - ++

1 S u m m a r y  o f  p e r c e n t a g e  v i a b i l i t y  b y  t r y p a n  b l u e  d y e  e x c l u s i o n  a n d  m o r p h o l o g y  ( e i t h e r  b y  a c r i d i n e  o r a n g e  o r  
W r i g h t ’ s  s t a i n i n g ) ,  p e r c e n t a g e  p r o l i f e r a t i o n  o r  i n h i b i t i o n  o f  p r o l i f e r a t i o n  b y  t r i t i a t e d  t h y m i d i n e  u p t a k e  a n d  c e l l  
d e a t h  a s s e s s e d  b y  f l o w  c y t o m e t r i c  l i g h t  s c a t t e r  a n a l y s i s .
2 N o n e  o f  t h e s e  c e l l  l i n e s  s h o w e d  a  m a r k e d  i n c r e a s e  i n  p r o l i f e r a t i o n  w h e n  i n c u b a t e d  w i t h  e i t h e r  E L -4  o r  I L - 6  
c o m p a r e d  t o  t h o s e  i n c u b a t e d  w i t h  n o  a d d i t i v e s .  A l l  c e l l  l i n e s  w e r e  i n h i b i t e d  ( 2 2 - 9 2 % )  w h e n  i n c u b a t e d  i n  t h e  
p r e s e n c e  o f  a n t i - F a s  a s  o b s e r v e d  b y  a  d e c r e a s e  i n  v i a b i l i t y  a n d  t h y m i d i n e  u p t a k e  a n d  o b s e r v a t i o n  o f  f l o w  
c y t o m e t r i c  a n a l y s i s .  D e c r e a s e d  u p t a k e  o f  t h y m i d i n e  w a s  n o t  a l w a y s  i n d i c a t i v e  o f  a p o p t o s i s  a s  s e e n  b y  t h e  
m o r p h o l o g i c a l  p i c t u r e  ( s e e  d i s c u s s i o n ,  c h a p t e r  7 )
3 S c a l e  -  t o  + +  i n d i c a t e s  e x t e n t  o f  d e v i a t i o n  i n  l i g h t  s c a t t e r  o b s e r v e d  b y  c e l l s  t r e a t e d  w i t h  v a r i o u s  a d d i t i v e s  ( s e e  
F i g u r e s  6 . 3 . I d  a n d  6 . 3 . l e ) .
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Figure 6.3.1b

W right’s staining o f  the myeloma cell line IM -9 under light m icroscopy (magnification x 40)

following a three day culture in the CD40LigL system with additives a) IL-6 (lng/ml) or b)

anti-Fas (lOOng/ml). Most of the Fas activated cells are dead by apoptosis as seen by their

shrunken size, membrane blebbing and condensed chromatin.
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Figure 6.3.1c

Wright’s staining of the myeloma cell line JJN-3 under light microscopy (magnification x 

40) following a three day culture in the CD40Lig-L system with additives a) IL-4 (lOOU/'ml) 

or b) anti-Fas ( lOOng/mi). Virtually all the Fas-activated cells are dead, 

a)

0
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Figure 6.3.Id
Flow cytometric light scatter analysis o f the myeloma cell lines JIM -3, JJN-3, IM-9, and RPM I-8226 cultured in the 
C’I)40Lig-L system following a 3 day incubation with cither no additive, IL-4, IL-6 or anti-Fas MoAb. Results for 
cy tokine stimulation are not shown since they were the same as those for cells incubated with no additive. An arbritary 
axis was drawn to distinguish between live (R2) and apoptotic (R l)  cells. 4000 cells per experiment were analysed.
A major shift in scatter, indicative o f  an increase in cell granularity and a decrease in cell size, was observed in all o f  
these cell lines indicating that Fas activation had a potent apoptotic effect.
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Figure 6.3.le
Flow cytometric light scatter analysis o f the IL-6 independent passages o f ANBL-6 (17/2,27/2,6/3 and 22/5) cultured 
in the CD40Lig-L system following a 3 day incubation with either no additive, IL-4, IL-6 or anti-Fas MoAb. Results for 
cytokine stimulation are not shown since they were the same as those for cells incubated with no additive. An arbiitary  
axis was drawn to distinguish between live (R2) and apoptotic (R l) cells. 4000 cells per experiment were analysed.
A major shift in scatter, indicative o f  an increase in cell granularity and a decrease in cell size, was observed in all o f  
these cell lines indicating that Fas activation had a potent apoptotic effect.
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containing no additive. Raw data showing counts per minute due to tritiated thymidine 

uptake are depicted in graphical form in Figure 6.3. la  and are tabulated in appendix 1.

• A decrease in cell count and percentage viabilty by trypan blue dye exclusion and 

morphology following prolonged exposure to anti-Fas. Representative photographs of 

IM-9 and JJN-3 (Figures 6.3.1b and 6.3.1c) were consistent with the fact that the 

majority of cells incubated with anti-Fas were dying by apoptosis characterised by 

specific morphological changes that include shrinkage of the cells, nuclear condensation 

and condensation of chromatin and cytoplasmic organelle compaction.

• Flow-cytometric light scatter analysis (Figures 6.3.Id and 6.3.le). A complete shift in 

scatter was observed in cells incubated with anti-Fas compared to those incubated with 

either no additive, IL-6 or IL-4 (analysis for cells incubated with IL-4 and IL-6 are not 

shown but were the same as that for cells incubated with no additive). This indicates that 

the cells incubated with anti-Fas had a marked increase in granularity (increased side 

scatter) and decrease in size (decreased forward scatter) characteristic of apoptotic cell 

death.

6.3.2 Summary of results for all myeloma cell lines cultured in the CD40Lig-L system 

(and CD40 system - see Appendix 1).

A summary of the results in sections 6.3 and 6.3.1 showing the percentage viability and 

extent of apoptosis following three days culture in the CD40Lig-L system of all the 

myeloma cell lines tested is shown in table 6.3.2.

Results Table 6.3.2

Conclusion

Both the CD40- (see Appendix 1) and CD40LigL- culture systems were found to be 

effective in potentiating CD40 activation in myeloma cell lines with a synergistic increase in 

proliferation achieved by the addition of either EL-4 or IL-6. IL-6 had the greatest 

proliferative effect on the IL-6-dependent passages of ANBL-6 as (demonstrated by a 

marked increase in tritiated thymidine uptake.

Not all the myeloma cell lines tested were found to be susceptible to Fas-mediated 

apoptosis. All of the IL-6 dependent lines tested - passages 26/12, 16/1 and the original
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Table 6.3.2

Summary of percentage viability and degree of 
apoptosis in myeloma cell lines following 3 days culture 
in the CD40LigL system

Anti-Fas

86

0
++
3 0
+

5 7

6
++
20
+
0

++
7 8

7 3

7 7

1 S u m m a r y  o f  p e r c e n t a g e  v i a b i l i t y  b y  t r y p a n  b l u e  d y e  e x c l u s i o n  a n d  c e l l  d e a t h  a s s e s s e d  b y  a  
c o m b i n a t i o n  o f  f l o w  c y t o m e t r i c  l i g h t  s c a t t e r  a n a l y s i s ,  m o r p h o l o g i c a l  c h a n g e s  a n d  t r i t i a t e d  
t h y m i d i n e  u p t a k e .
2 S c a l e  -  t o  + +  i n d i c a t e s  e x t e n t  o f  d e v i a t i o n  i n  l i g h t  s c a t t e r  o b s e r v e d  b y  c e l l s  t r e a t e d  w i t h  v a r i o u s  
a d d i t i v e s  ( s e e  F i g u r e s  6 . 3 . I d  a n d  6 . 3 . l e ) .
F o r  d i s c u s s i o n  o f  r e s u l t s  -  s e e  t e x t .
3 P 3 2  i s  t h e  o r i g i n a l  I L - 6  d e p e n d e n t  c l o n e  o f  A N B L - 6  k i n d l y  d o n a t e d  b y  D r  D . F  J e l i n e k  ( M a y o  
C l i n i c ,  R o c h e s t e r ,  M i n n e s o t a )  w h i c h  w a s  r e p o r t e d  t o  b e  n o n - s u s c e p t i b l e  t o  F a s - m e d i a t e d  
a p o p t o s i s .
4 J T  i s  a n  I L - 6  d e p e n d e n t  m y e l o m a  c e l l  l i n e  r e c e n t l y  e s t a b l i s h e d  b y  M M D  ( u n p u b l i s h e d ) .

CULTURE
CONDITIONS

CELL LINE 't e s t

No additive IL-4 IL-6

1 )  J I M - 1 %  v i a b i l i t y 9 0 9 1 8 8
2a p o p t o s i s  + / - - - -

2 )  J I M - 3 %  v i a b i l i t y 7 9 8 1 8 6
a p o p t o s i s  + / - - - -

3 )  J J N - 3 %  v i a b i l i t y 8 2 8 4 9 2
a p o p t o s i s  + / - - - -

4 )  U 2 6 6 %  v i a b i l i t y 6 2 8 3 8 3
a p o p t o s i s  + / - - - -

5 )  I M - 9 %  v i a b i l i t y 9 5 9 4 9 4
a p o p t o s i s  + / - - - -

6 )  R P M I - 8 2 2 6 %  v i a b i l i t y 9 2 9 5 9 1
a p o p t o s i s  + / - - - -

7 )  A N B L - 6 %  v i a b i l i t y 8 9 9 0 9 3
( I L - 6  i n d e p e n d e n t ) a p o p t o s i s  + / - - - -
8 )  A N B L - 6 %  v i a b i l i t y 8 2 7 9 8 6
( I L - 6  d e p e n d e n t ) a p o p t o s i s  + / - - - -
9 )  3A N B L - 6  ‘P 3 2 ’ %  v i a b i l i t y 8 5 8 2 8 7

1 0 ) 4J T
a p o p t o s i s  + / - - - -
% v i a b i l i t y 8 4 8 0 8 0
a p o p t o s i s  + / - - - -
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clone of ANBL-6 (P32) as well as JT which is an IL-6 dependent myeloma line developed 

by myself from the peripheral blood of a patient with plasma cell leukaemia - were found to 

be non-susceptible to activation induced cell death (AICD). The results for P32 and JT are 

shown in appendix 1. The IL-6 independent myeloma cell lines U266 and JIM-1 were also 

resistant which is interesting since the subclone of JIM-1, JIM-3 is susceptible to Fas- 

mediated apoptosis. The cell lines JJN-3, IM-9, RPMI-8226 and all IL-6 independent 

subclones of ANBL-6 tested (passages 17/2, 27/2, 6/3 and 22/5) were susceptible to AICD. 

JJN-3 and RPMI-8226 exhibited the least marked apoptotic response as observed by flow 

cytometric light scatter analysis and the fact that 20-30% of the cells were still viable 

following a three day incubation with anti-Fas. It was decided therefore, to investigate the 

levels of CD40 and Fas antigen expression in all these cell lines by flow cytometric analysis 

both in normal culture conditions and following a three day culture in the CD40Lig-L 

system with either no additive, IL-6 or anti-Fas MoAb. Data were not collected for IL-4 

stimulated cells due to financial shortages. It is worth noting that the intensity of Fas and 

CD40 expression in the cell lines grown under normal culture conditions will differ from 

that expressed in cell lines grown for three days in the CD40Lig-L culture system with no 

additives since the latter have obviously undergone CD40 activation during this period.

6,4 CD40 and Fas protein expression following three days culture in the CD40Lig-L 

culture system bv flow cytometric analysis.

Baseline protein expression of CD40 and Fas antigen in unstimulated myeloma cell lines was 

assessed by performing at least three replicate experiments and the results were compared 

to antigen expression following a three day culture using the CD40LigL system. Flow 

cytometric analysis was as described in section 5.3.

Results Table 6.4a and Table 6.4b

Conclusion

Expression of the cell surface antigens CD40 and Fas amongst the eight myeloma cell lines 

examined in this study was found to range from negative (2-25%) to 100% positive prior to 

activation of the cells (Table 6.4a). The ensuing culture techniques then enabled the effect
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Table 6.4a

Fas and CD40 protein expression amongst myeloma cell lines

FACS expression
% positive (range)

Cell Line Fas CD40

JIM-1 15(2-23) 15 (4-25)

JIM-3 66 (30-83) 13(10-16)

JJN-3 82 (70-94) 29 (21-34)

U266 91 (88-93) 17 (7-28)

IM-9 100 100

RPMI-8226 79 (56-88) 94 (93-94)

ANBL-6 (26/12) 40 (21-58) 70 (59-81)

ANBL-6 (16/1) 40 (38-42) 36(11-60)

ANBL-6 (17/2) 64 (43-84) 10(9-10)

ANBL-6 (6/3) 51 (33-68) 11 (8-14)

ANBL-6 (22.5) 58 (39-90) 10 (3-14)

ANBL-6 (27/2) 91 (84-97) 26 (9-43)

JT 66 (40-100) 51 (10-96)

ANBL-6 (P32) 44 80

197



A
N

B
L

-6(1-3), 
IL-6 

independent 
passages 

C
ell lines 

not 
underlined 

are 
susceptible 

to 
Fas-m

ediated 
apoptosis.

A
NBL-6 

(4,5) 
IL-6 

dependent 
passages 

C
ell lines 

underlined 
are 

not susceptible 
to 

Fas-m
ediated 

apoptosis

>  >  >  S- £= 33z  z  z  ^  §  -o
CD CD CD r  A ”r  r  r  Ca) w■ i i
o  CD o>

ro
cdo>CD

r~oo
roroo>

o> o>
to o> 
^  wIO ' ^  1*1 i—i N) CO *

ro
CDCD TJ

a.ro
Ol

<T> O

■s "S

(Q

CD 00 CDro 4̂  oo co n
U l S  W  M  O  O

o  Q)
Q .
Q .

CO
a

n
CD

00 CD CO ro  CD 
O  CD 03o

T l

T |

o

1 9 8

Table 
6.4b



of activation of these antigens on antigen expression, proliferation and induction of 

activation induced cell death to be established.

FACS analysis (Table 6.4b) of these lines following a three day incubation in the 

CD40Lig-L system with either no additive, IL-6 or anti-Fas demonstrated that, in those cell 

lines non-susceptible to Fas-mediated apoptosis. Fas protein expression was either low 

initially (no additive, 20-32%) and remained low following incubation with anti-Fas (22- 

24%) or was initially moderately high (no additive, 60-63%) and was down-regulated (30- 

49%) after incubation with anti-Fas. Similarly with CD40 antigen expression amongst these 

lines expression was either low (no additive, 18-34%) and remained low after stimulation 

with anti-Fas (17-29%) or was initially moderate (64-66%, no additive) and expression 

remained the same or was down-regulated following Fas activation (27-59%).

In contrast, in those cell lines susceptible to Fas-mediated apoptosis stimulation with anti- 

Fas antibody resulted in a marked up-regulation of CD40 and Fas protein expression unless 

their levels of expression were almost 100% before the introduction of additives, in which 

case expression remained high. An exception to this was that CD40 expression in JJN-3 and 

RPMI-8226 after incubation with anti-Fas was only moderate compared with pre­

stimulation in these two cell lines and it is interesting to note that they also have the least 

marked apoptotic response of all the lines tested for their susceptibility to Fas-mediated 

apoptosis. Levels of Fas and CD40 expression following IL-6 stimulation were similar to 

those in unstimulated cells in both those lines susceptible as well as non-susceptible to 

apoptosis (Table 6.4b). It is therefore postulated from these results that a high level of 

expression of both cell surface CD40 and Fas is required for a cell to be susceptible to the 

onset of AICD with a high level of Fas alone being insufficient to initiate the process. It 

could be that Fas activation in vivo is mediated through CD40. Fas and CD40 are both 

members of the TNF receptor family and share considerable homology with each other, as 

do their ligands which are both members of the TNF family.

6.5 Transcription of CD40 and fa s  genes in myeloma cell lines tested by ISH following 

a three day culture in the CD40 system. Comparison with RT-PCR results.

As a comparison with CD40 and Fas protein expression by flow cytometric analysis, the 

RNA expression of these genes was assessed by in situ hybridisation as described in section
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2.2.6 using CD40- and fas- sense and antisense riboprobes. Baseline expression of fa s  and 

CD40 mRNA by RT-PCR in myeloma lines is shown in section 2.2.11. All myeloma cell 

lines tested were positive by RT-PCR for fa s  mRNA expression using one set of sequence 

specific primers and all were also positive for CD40 mRNA expression after nested PCR, ie 

using two sets of sequence specific primers.

Myeloma cells, having been cultured in the CD40 system with or without various additives 

(IL-4, IL-6, anti-CD40±cytokines and anti-Fas±anti-CD40) were tested for CD40 and fa s  

mRNA expression by ISH, and for any noticable changes in expression due to the presence 

of additive. All myeloma cell lines were found to express CD40 mRNA with the strongest 

intensity observed in the IM-9, RPMI-8226 and IL-6 dependent cell lines (RK, JT, ANBL-6 

passages 26/12, 16/1 and P32) in unstimulated cells which is consistent with these lines 

exhibiting the highest protein expression of CD40 (Table 6.4a). Intensity of expression was 

stronger following incubation with anti-CD40 ± (IL-4 or IL-6) in all lines tested, with CD40 

expression, but no change in intensity, observed after incubation with anti-Fas MoAb ± anti- 

CD40. Fas mRNA expression was observed by ISH also in all cell lines tested with the 

weakest intensity amongst JIM-1 and the LL-6-dependent passages of ANBL-6. No change 

in expression was noticed following incubation with anti-CD40 ± cytokines but an increase 

in intensity was observed following Fas activation ± anti-CD40. Representative results 

demonstrating CD40 and fa s  in situ hybridisation for the cell lines IM-9, U266, RPMI-8226 

and ANBL-6 (22/5), IL-6 independent, are shown in Figures 6.5 (a-e).

6.6 Changes in Bcl-2 expression in myeloma cell lines stimulated via CD40, Fas or with 

exogenous cytokines.

In an attempt to assess the relationship, if any, between Bcl-2 expression in myeloma cells 

and activation of CD40 or Fas antigens, an initial study was carried out examining baseline 

Bcl-2 protein expression in myeloma cell lines. This was demonstrated by flow cytometric 

analysis - cytoplasmic Bcl-2 protein was detected by permeabilisation of myeloma cells and 

labeling with an FITC-conjugated, monoclonal anti-human Bcl-2 antibody as described in 

section 2.2.22. Expression of Bcl-2 found in the myeloma panel tested is summarised in 

Table 2.2.22 with flow cytometric analysis shown in Figure 2.2.22b.
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Figure 6.5a

In situ hybridisation showing CD40 mRNA expression in the myeloma cell line IM-9 using 
Digoxygenin-labeled sense (a) and antisense (b) riboprobes. Cells had been incubated for 
three days previously with anti-CD40 MoAb (0.5|ig/ml) in the CD40 culture system. 
Counterstaining was with Light Green. Slides were viewed under light microscopy 
(magnification x 40). Antisense positivity indicates that these cells are positive for CD40 
transcription.

f  ISllB
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Figure 6.5b

In situ hybridisation showing fas mRNA expression in the myeloma cell line IM-9 using 
Digoxygenin-labeled sense (a) and antisense (b) riboprobes. Cells had been incubated for 
three days previously with anti-Fas MoAb (lOOng/ml) in the CD40LigL culture system. 
Counterstaining was with Light Green. Slides were viewed under light microscopy 
(magnification x 40). Antisense positivity indicates that these cells are transcribing fas 
mRNA.
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Figure 6.5c

In situ hybridisation showing CD40 mRNA expression in the myeloma cell line U266 using 
Digoxygenin-labeled sense (a) and antisense (b) riboprobes. Cells had been incubated for 
three days previously with anti-CD40 MoAb (0.5jag/ml)+ LL-4 (lOOU/ml) in the CD40 
culture system. Counterstaining was with Light Green. Slides were viewed under light 
microscopy (magnification x 40). Antisense positivity indicates that these cells are weakly 
positive for CD40 transcription.



Figure 6.5d

In situ hybridisation showing CD40 mRNA expression in the myeloma cell line RPMI-8226 
using Digoxygenin-labeled sense (a) and antisense (b) riboprobes. Cells had been incubated 
for three days previously with anti-CD40 MoAb (0.5jag/ml)+ IL-4 (lOOU/ml) in the CD40 
culture system. Counterstaining was with Light Green Slides were viewed under light 
microscopy (magnification x 40). Antisense positivity indicates that these cells are strongly 
positive for CD40 transcription.

a)

b)

■ »

•  •

204



Figure 6.5e

In situ hybridisation showing fas  mRNA expression in the myeloma cell line ANBL-6 (22/5) 
using Digoxygenin-labeled sense (a) and antisense (b) riboprobes. Cells had been incubated 
for three days previously in the CD40 culture system with no additives Counterstaining was 
with Light Green. Slides were viewed under light microscopy (magnification x 40). The 
sense probe shows background light green staining only whereas the antisense probe 
indicates that these cells are strongly positive for fa s  mRNA expression.



Changes in Bcl-2 expression were then observed after stimulation of a panel of myeloma cell 

lines with various additives. The myeloma cell lines JIM-1, JIM-3, JJN-3, U266, IM-9, RPMI- 

8226, ANBL-6 (26/12), ANBL-6 (16/1), ANBL-6 (17/2), ANBL-6 (27/2), ANBL-6 (6/3) and 

ANBL-6 (22/5) and were incubated for three days in either the CD40- or the CD40Lig-L culture 

systems with either:

a) no additve,

b) IL-6 (± anti-CD40, CD40 system only) or

c) anti-Fas

Cells were harvested, permeabilised and analysed by flow cytometry for Bcl-2 expression.

Results are summarised in Table 6.6 with representative flow cytometric analysis shown 

in Figures 6.6(a-c)

Conclusion

Fas activation in those cell lines susceptible to Fas-mediated apoptosis (JIM-3, JJN-3, IM-9, and 

all interleukin-6 independent passages of ANBL-6 (6/3,22/5,17/2,27/2) resulted in down- 

regulation of Bcl-2 protein expression assessed by flow cytometric analysis (Figures 6.6a and 

6.6b show the results for IM-9 and ANBL-6 (6/3) as representative examples). Expression of 

Bcl-2 in RPMI-8226, also susceptible to Fas-mediated apoptosis however, remained negative 

throughout stimulation (Figure 6.6c). Bcl-2 expression in JIM-1 and U266, both non-susceptible 

to Fas-mediated apoptosis remained negative, ie unchanged, throughout stimulation. Bcl-2 

expresssion in the IL-6 dependent passage of ANBL-6 (26/12) was negative when cultured in 

the CD40 system for three days with or without Fas activation. Bcl-2 expression in ANBL-6 

(16/1), also IL-6 dependent, when cultured for three days in the CD40Lig-L system, was 

negative with no additive or with IL-6 added to the culture but became Bcl-2 positive when 

cultured for three days with anti-Fas. Results are summarised in Table 6.6.

Note: Figure 2.2.22b shows that JIM-1, U266 and RPMI-8226 are Bcl-2 positive by flow 

cytometric analysis of unstimulated cells. It is likely that expression of this gene changes through 

continual passage of cell lines.
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From these results it looks as if expression of the proto-oncogene bcl-2 is down-regulated in 

those myeloma cell lines which are susceptible to Fas-mediated apoptosis, or, in the case of 

RPMI-8226, Bcl-2 expression is negative and remains so following Fas activation. There are 

conflicting reports about whether Fas-mediated apoptosis is regulated by Bcl-2 (175,180). 

Strasser et al (175) state that the activation induced lymphocyte cell death induced by Fas 

activation is not regulated through Bcl-2 expression and Lee et al. (180) state that Bcl-2 protects 

against Fas-based T cell-mediated cytolysis. Two groups have examined Bcl-2 expression in 

myeloma cells with relation to Fas activation and both found no correlation between the 

expression of Bcl-2 and susceptibiliy to Fas-mediated cell death (126,236). It has recently been 

proposed that bcl-2 plays a critical role in the growth of myeloma cell lines and in their 

death by spontaneous or Dexamethasone-induced apoptosis (161) but it remains to be 

proven whether or not this proto-oncogene protects myeloma cells from Fas-mediated 

AICD.

Table 6.6 Summary of Bcl-2 protein expression by flow cytometric analysis following a three 

day culture in either the CD40- or the CD40Lig-L -systems with or without additives: IL-6, 

anti-CD40 (CD40 system only) or anti-Fas. Permeabilised myeloma cells were labeled with an 

FITC-conjugated mouse anti-human-Bcl-2 MoAb using an FITC-conjugated mouse-IgG as 

negative control. 10,000 cells per experiment were analysed for fluorescence intensity relating to 

Bcl-2 expression which is expressed on a scale from - to ++. See conclusion (6.6).

Additive 

Cell line

No additive IL-6 ± anti-CD40 Anti-Fas ± anti-CD40

JIM-1 - - -

JIM-3 ++ + -

JJN-3 _ j _ w e a k _ l _ w e a k -

U266 - - -

IM-9 ++ ++ -

RPMI-8226 - - -

ANBL-6 (26/12) - - -

ANBL-6 (16/1) - - +

ANBL-6 (17/2) + + -

ANBL-6 (27/2) _ l_ w e a k _ l_ w e a k -

ANBL-6 (6/3) + + -

ANBL-6 (22/5) ++ + _ l _ w e a k
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6.7 Transcription of CD40 ligand, Fas ligand and interleukin-6 receptor by ISH in 

myeloma cell lines following culture in the CD40 or CD40Lig-L systems -comparison 

with RT-PCR results and protein expression of IL-6R by flow cytometric analysis.

It was attempted to assess whether Fas ligand, CD40 ligand or the interleukin-6 receptor 

were transcribed in myeloma cell lines by in situ hybridisation. No positive hybridisation 

indicating transcription of IL-6R, CD40L and FasL was detected in myeloma cell lines 

cultured with or without CD32L or CD40Lig-L cells despite repeated attempts at in situ 

hybridisation using specific Digoxygenin-labeled riboprobes. It had already been established

(2.2.11) that RT-PCR was also negative for CD40L and FasL mRNA expression for all 

myeloma cell lines tested. CD40 ligand and Fas ligand expression has been reported to be 

restricted mainly to activated T lymphocytes so the failure to detect these transcripts by ISH 

or RT-PCR is not altogether surprising. RT-PCR analysis of IL-6R transcription, however

(2.2.11), has shown that the mRNA is transcribed in the myeloma cell lines JIM-1, JIM-3, 

U266 and RPMI-8226 and IL-6 independent passages of ANBL-6 (IL-6 dependent 

passages were not tested). Expression was absent by RT-PCR for JJN-3 and IM-9. It could 

be that ISH was not sensitive enough to detect non-amplified IL-6R transcripts or that the 

copy number was too low for detection. IL-6R protein expression has been detected by 

flow cytometry in U266, RPMI-8226 and IL-6-dependent passages of ANBL-6 and was 

negative for JIM-1, JIM-3, JJN-3 and EJM (Figure 2.2.22). Transcription of EL-6 by RT- 

PCR was only detected in the myeloma cell line U266 of all the lines tested (2.2.11). Failure 

to detect IL-6 transcription amongst the other IL-6-independent cell lines tested does not 

support the theory that these lines have developed an autocrine pathway of IL-6 production 

although nested PCR may reveal the presence of IL-6 transcription and this was not tested.
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Fieure 6.6a

Bcl-2 expression in the myeloma cell line IM-9 following a three day incubation in the CD40 
system with either no additive, anti-CD40+IL-6, antiCD40+anti-Fas or anti-Fas. Cells were 
permeabilised and labeled with an FITC-labeled mouse anti-human Bcl-2 MoAb. 10,000 cells 
were analysed per experiment. Bcl-2 expression is down-regulated following incubation w ith 
anti-Fas.
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Figure 6.6b

Bel-2 expression in the myeloma cell line ANBL-6 (6/3) following a three day incubation in the 
CD40 system w ith either no additive, anti-CD40, anti-CD40+IL-6, antiCD40+anti-Fas or anti- 
Fas. Cells were permeabilised and labeled w ith an FITC-labclcd mouse anti-human Bcl-2 MoAb. 
10,000 cells were analysed per experiment. Bcl-2 expression is dow n-regulated follow ing 
incubation w ith anti-Fas.
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Figure 6.6c
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CHAPTER 7 

DISCUSSION
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Discussion

This study into the mechanisms which control apoptosis in myeloma plasma cell lines has 

shown that Fas was almost universally expressed on all the myeloma cell lines tested. Pilot 

studies were then performed to determine whether any of these cell lines would be 

susceptible to Fas-mediated apoptosis. It was found that incubation with anti-Fas at a 

concentration of 200ng/ml for a period of up to 20 hours did not result in apoptosis in any 

of the cell lines tested (JIM-1, JIM-3, U266, IM-9 and IL-6 independent ANBL-6), see 

section 4.4. Increasing the concentration of anti-Fas to 500ng/ml had no effect on these 

results. However, it was found that prolonged incubation with anti-Fas (up to a period of 72 

hours) resulted in comprehensive activation induced cell death in certain cell lines at a 

concentration of anti-Fas as low as lOOng/ml. This death initially became obvious 24 hours 

following Fas ligation with a 30-50% reduction in cell viability but 100% cell death in 

susceptible cell lines was only observed following 48-72 hours of Fas ligation.

It was also found that there was a varying intensity of expression of CD40 and Fas in all the 

myeloma cell lines tested (Table 5.1) and that not all of those lines which were positive for 

Fas expression were susceptible to Fas-mediated apoptosis (Sections 6.3, 6.3.1). This is 

consistent with previous studies (126,236). This variability in susceptibility to apoptosis 

implies that even monoclonal plasma cells may represent a variety of differentiation stages 

(276-279). The culture techniques adopted in this study were aimed at examining the effect 

of activation of Fas and CD40 on antigen expression, proliferation and induction of 

activation induced cell death. Comparisons were made by assaying the cells with either a) 

no accessory L cells, b) CD32L cells or c) CD40Lig-L cells. A summary of the results of 

these assays is tabulated in appendix 1. The results for the CD32L system assays are 

summarised in graphical form in appendix 2, Figures 7.1-7.3, with representative examples 

of flow cytometric light scatter analyses shown in appendix 2a. The two methods adopted 

to detect apoptosis amongst this panel of cell lines proved to be rapid, informative and cost 

effective. The effect of stimulation of proliferation or alternatively inhibition of proliferation 

was also corroborated by the tritiated thymidine uptake although this was not always as 

informative as the morphological analysis and flow cytometric results.
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Both the CD40- and CD40Lig-L- culture systems were found to be effective in potentiating 

CD40 activation in myeloma cell lines with a synergistic increase in proliferation achieved 

by the addition of either IL-4 or IL-6. IL-6 had the greatest proliferative effect on the IL-6- 

dependent passages of ANBL-6 as well as the IL-6 dependent JT line (which is an IL-6 

dependent myeloma line developed by myself from the peripheral blood of a patient with 

plasma cell leukaemia) as demonstrated by a marked increase in tritiated thymidine uptake. 

Addition of IL-6 to cultures of IL-6 independent myeloma cell lines also enhanced 

proliferation. This enhancement of proliferation was potentiated by CD40 ligation (in both 

the CD32L and CD40Lig-L culture systems). This indicates that there is a synergistic 

proliferative effect on myeloma cells induced by a combination of CD40 activation and the 

presence of IL-6 which agrees with previous studies indicating that there may be a link 

between CD40 and IL-6 signalling pathways both in B cells (90) and in myeloma cells (88).

The CD40Lig-L culture system proved to be the most effective method of testing CD40 

stimulation since less additives were required than when using the CD32L system, the 

background tritiated thymidine uptake was much lower for the CD40Lig-L assays than with 

CD32L assays and an overall potentiation of the response was achieved by the use of L 

cells as opposed to no L cells. If, however, CD40 responses are to be compared with lack 

of CD40 activation, then the CD32L system would be preferable. Also, cross-linkage of 

CD40 on the surface of myeloma cells with it’s natural ligand on the surface of the 

CD40Lig-L cells better ressembles the in vivo situation. These assays have proved that 

myeloma cell lines can be effectively stimulated without accessory L cells but the 

proliferation rate and cell viability following three days culture is optimised in the CD40Lig- 

L system. The reason for the high background uptake of tritiated thymidine in the CD32L 

system assays is a mystery since the same number of both the CD40Lig-L and CD32L cells 

in the same volume of medium were irradiated for the same length of time in both systems. 

A recent study examining the effect of proliferation of a variety of B cell malignancies using 

the CD40 system (280) has shown that the presence of irradiated CD32L cells themselves, 

when cultured with fresh myeloma plasma cells resulted in a substantial increase in tritiated 

thymidine uptake compared with the same cells cultured in the absence of a CD32L 

monolayer. This implies that these CD32L cells not only function as Fc-receptor presenting 

cells, but also produce growth-promoting factors, or induce the production of paracrine or 

autocrine B cell-derived growth factors such as EL-6. Indeed, endogenously produced
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human IL-6 could be measured in supemantants of cultures consisting of CD32L cells and 

malignant B cells. Planken et al. (280) also showed that murine IL-6 was transcribed by the 

CD32L cells although the human IL-6 produced in this CD40 system assay must have been 

responsible for the observed proliferation since murine DL-6 has no proliferation enhancing 

effect on human B cells, and human IL-6 was measured in the supernatants. Moreover, 

anti-human-IL-6 antibodies (not cross-reactive with murine IL-6) considerably reduced the 

3H-thymidine incorporation in myeloma cells suggesting that the malignant B cells 

themselves, or accessory cells present in the system produced the IL-6 when co-cultured 

with the fibroblasts.

Not all the myeloma cell lines tested were found to be susceptible to Fas-mediated 

apoptosis. All of the IL-6 dependent lines tested - passages 26/12, 16/1 and the original 

clone of ANBL-6 (P32) as well as JT - were found to be non-susceptible to activation 

induced cell death. The results for P32 and JT are shown in appendices 1.12 and 1.13 

respectively. The IL-6 independent myeloma cell lines U266 and JIM-1 were also resistant 

which is interesting since the subclone of JIM-1, JIM-3, is susceptible to Fas-mediated 

apoptosis. The cell lines JJN-3, IM-9, RPMI-8226 and all IL-6 independent subclones of 

ANBL-6 tested (passages 17/2, 27/2, 6/3 and 22/5) were susceptible to AICD. JJN-3 and 

RPMI-8226 exhibited the least marked apoptotic response as observed by flow cytometric 

light scatter analysis (Figure 6.3.Id). Activation of the Fas antigen on the myeloma cells 

tested in these culture systems was potentiated by co-activation of CD40. Effective cell 

death was also observed, however, when cells were stimulated via anti-Fas antibody alone.

In those lines non-susceptible to Fas-mediated apoptosis (JIM-1, U266 and all IL-6 

dependent cell lines), the uptake of tritiated thymidine was similar when these cells were 

incubated in the presence of anti-Fas, with or without CD40 ligation (in both the CD32L 

and CD40Lig-L culture systems), to when they were incubated with no additive.

Total (100%) Fas-mediated apoptosis in the cell line JIM-3 was observed when these cells 

were cultured in the CD32L and CD40Lig-L systems, whereas only 40-50% cell death was 

observed when these cells were cultured with no L cells - as observed by the percentage 

viability assessed by morphology and trypan blue dye exclusion (appendix 1.2). Inhibition of 

proliferation however, as observed by tritiated thymidine uptake, was only 38% following
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CD40- and Fas- ligation with only 24% inhibition following Fas activation alone in the 

CD32L culture system. This indicates that the uptake of tritiated thymidine is not always 

indicative of the morphological picture.

JJN-3 exhibited no increased proliferation when cultured in either the CD32L or 

CD40Lig-L systems compared with cultures containing no L cells (appendix 1.3). The best 

inhibition of proliferation, however, was seen when these cells were cultured in the CD32L 

system with anti-Fas, with or without anti-CD40 (48-64% inhibition by tritiated thymidine 

uptake and 100% inhibition by morphological and cell count analysis).

The cell line U266, which was the only line tested shown to transcribe IL-6 mRNA by RT- 

PCR (Table 7) indicating autocrine production of this cytokine, exhibited similar viability 

and proliferation by tritiated thymidine uptake in all three culture systems (appendix 1.4). 

This is interesting since it has been postulated that the transfected mouse fibroblasts used in 

these assays may stimulate autocrine human IL-6 production in myeloma cells (280). Also, 

addition of exogenous IL-6 to cultures of U266 cells in all three culture systems did not 

significantly increase proliferation compared to those cultured with no additive. As a result 

of this observation, it is not altogether surprising that these cells are non-susceptible to Fas- 

mediated apoptosis since all the IL-6 dependent cell lines tested were Fas-resistant.

The cell line IM-9 exhibited the fastest proliferative rate of all the myeloma cell lines tested 

as seen by the extent of tritiated thymidine uptake observed (appendix 1.5). This was only 

slightly potentiated by CD40 ligation and co-stimulation through IL-6 in all three culture 

systems (no L cells, CD32L and CD40Lig-L cells). It is interesting to note that this cell line 

had the highest constitutive mRNA and protein expression of Fas and CD40 as observed 

by in situ hybridisation and flow cytometric analysis. Comprehensive Fas-mediated 

apoptosis was observed when these cells were incubated with anti-Fas with or without 

CD40 activation. The optimum increase (2-fold) in cell count as observed by trypan blue 

dye exclusion was found when these cells were cultured in the CD40Lig-L system with 

either IL-6 or IL-4.

RPMI-8226 was only effectively killed by co-activation of Fas and CD40 since incubation 

of this cell line with anti-Fas alone in the CD32L culture system or with no L cells only
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resulted in an 8% and 25% inhibition of proliferation respectively (appendix 1.6). Co­

ligation of Fas and CD40 in the CD40 and CD40Lig-L culture systems only resulted in a 

40-50% inhibition of proliferation as observed by uptake of tritiated thymidine indicating 

that this line was not completely susceptible to Fas-mediated apoptosis. This accords with a 

previous study by Westendorf et al. (236) which also estimated apoptosis by tritiated 

thymidine uptake. Extensive (70-80%) cell death was observed however by trypan blue dye 

exclusion and morphological analysis following CD40 and Fas stimulation in both of these 

culture systems.

ANBL-6 (passage 17/2, IL-6 independent) exhibited the best overall proliferation assessed 

by tritiated thymidine uptake when cultured with no L cells with an 80-90% increase in 

proliferation observed when cultured with exogenous IL-6, with or without CD40 co­

ligation (appendix 1.7). Nearly 100% Fas-mediated cell death was observed in cultures of 

ANBL-6 (passage 27/2, IL-6 independent) using the CD32L and CD40Lig-L systems 

compared with cultures containing no L cells in which Fas ligation resulted in only a 60- 

68% inhibition of proliferation (appendix 1.8). Cultures of ANBL-6 (passage 22/5, IL-6 

independent) indicated that the optimum cell counts (ie proliferation and viability) were 

observed in the CD40Lig-L system, the highest being with IL-6 co-stimulation (appendix 

1.9). This being despite the fact that uptake of thymidine was lowest in this system 

(optimum uptake was observed in CD32L assays).

ANBL-6 (passage 16/1, IL-6 dependent) was only cultured using the CD32L and 

CD40Lig-L systems due to insufficient cell numbers. All the IL-6 dependent myeloma cells 

tested in this study have an extremely slow doubling time (48 hours). Cell counts and 

uptake of thymidine was low except when these cells were cultured with IL-6 in the 

CD40Lig-L system (appendix 1.10). Fas-activation, with or without CD40 co-ligation, 

resulted in only a 5-10% (background) inhibition of proliferation with 80-90% of the cells 

still viable by cell count and morphological analysis. Similarly ANBL-6 (passage 26/12, IL-6 

dependent) cells, when tested in all three culture systems resulted in the optimum 

proliferation being observed in the CD40Lig-L system with IL-6 as an additive (appendix 

1.11). Despite the low thymidine uptake observed when both passages 16/1 and 26/12 were 

cultured with IL-4, or anti-Fas with or without CD40 ligation in the absence of IL-6 cell
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viability remained high and morphological analysis revealed the majority of the cells to be 

healthy.

The original passage of ANBL-6 (P32) was also studied using all three culture systems. 

Cultures using no L cells and CD40Lig-L cells exhibited a marked increase in proliferation 

caused by the presence of exogenous IL-6 with or without CD40 ligation (appendix 1.12). 

Despite background counts being high, culture using the CD32L system resulted in high 

thymidine counts with all additives, which were significantly enhanced by co-culture with 

IL-6 with or without anti-CD40. This effect could be due to the stimulation of autocrine IL- 

6 production by the ancillary CD32L cells (280). Activation of Fas in all three culture 

systems did not result in decreased viability amongst these cells. Co-incubation of ANBL-6 

(P32) with anti-Fas and IL-6 in the CD40 and CD40Lig-L culture systems resulted in a 

marked proliferative effect with no induction of apoptotis (see below). As in the other IL-6 

dependent myeloma cells tested viability in the absence of EL-6 remained high during a three 

day culture despite a low uptake of tritiated thymidine.

The myeloma cell line JT (IL-6 dependent) exhibited very slow growth which was only 

moderately enhanced by EL-6 co-stimulation as seen by cell counts and thymidine uptake in 

all three culture systems. As seen with the IL-6 dependent passages of ANBL-6, Fas- 

activation of these myeloma cells showed no effect on viability (appendix 1.13).

Mononuclear cells prepared from the peripheral blood of normal healthy donors were used 

as controls to test the efficacy of the culture systems (appendix 1.14). These were also used 

to compare the proliferative effect of trimeric soluble recombinant human CD40 ligand 

(consisting of the concentrated supernatant of cos cells which had been transfected with a 

leucine zipper CD40L construct) which was a generous gift of Dr. Richard Armitage of the 

Immunex Corporation in Seattle, USA. This form of CD40L has been shown to share all the 

activities of membrane-bound CD40 ligand. Although this trimer had a marked proliferative 

effect on both mononuclear cell controls and the myeloma cell lines tested, there was 

insufficient quantity to use in the replicate experiments required for this study.

ANBL-6 cells have previously been shown to die by apoptosis upon IL-6 withdrawal but 

this was seen to be a very slow process with no apoptotic effect observed until 4-5 days
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culture in the absence of cytokine (281). Only 70% of these cells were killed following a 

two week incubation without IL-6. Similarly, in the present study, IL-6 dependent passages 

of ANBL-6 cultured for 3 days in the absence of IL-6 showed a background uptake of 

tritiated thymidine and the cells looked viable under light microscopy although there was no 

evidence of mitosis occuring. Only background (15%) signs of apoptotic cell death were 

observed signifying that these cells were in growth arrest. Significant apoptotic cell death 

became evident only after 5 days in culture (results not shown).

IL-6 added to the IL-6-dependent passages of ANBL-6 was shown to have no effect on 

their resistance to Fas-mediated apoptosis (appendix 1.12). Addition of IL-6 to cultures of 

(IL-6 independent) myeloma cells normally highly susceptible to Fas-mediated apoptosis 

however, in the presence of CD40 co-ligation, resulted in a protective effect (50% of IM-9 

cells and 80% of ANBL-6 (22/5) cells were still viable following a three day incubation in 

the CD40Lig-L culture system with anti-Fas + IL-6). This effect was abrogated (completely 

in the case of IM-9 and partially in the case of ANBL-6) by the addition of anti-CD40 

(clone G28-5) to the culture system implying that this monoclonal antibody had a blocking 

effect on CD40 ligation between CD40 ligand expressed on the L cells and CD40 on the 

surface of the myeloma cells (Appendix 3, Figures 7.4,7.5).

It is also of interest that, although the IL-6 dependent passages of the myeloma cell line 

ANBL-6 studied in this thesis were found to be strongly positive for CD40 expression, this 

expression was down-regulated once IL-6 independence was achieved (Table 5.1). An 

upregulation of CD40 expression was observed when these IL-6 independent passages were 

stimulated by anti-Fas monoclonal antibody and the cells were rendered susceptible to Fas- 

mediated apoptosis (Table 6.4b). It has been reported (120) that activation of CD40 in 

resting B cells, which normally do not express Fas and are non-susceptible to Fas-mediated 

apoptosis (102,137), induces the expression of high levels of Fas antigen and renders these 

cells susceptible to Fas-induced cell death. This upregulation of Fas expression following 

CD40 activation was not observed in the myeloma cell lines tested in this study although all 

of them except JIM-1 expressed moderate to high levels of Fas without prior stimulation 

(5.5.1). It was interesting to note however, that Fas-ligation over a three day period 

resulted in the upregulation of CD40 expression in the majority of the myeloma cell lines 

which were susceptible to Fas-mediated apoptosis (except for IM-9 which expressed 100%
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positivity for CD40 throughout stimulation). This was manifested after 43 hours of Fas 

stimulation (5.5).

Jelinek et al (236) have also reported that ANBL-6 (IL-6 dependent) and U266 were 

resistant to Fas-mediated apoptosis (even after a three day incubation with anti-Fas at a 

concentration as high as 5pg/ml) and that RPMI-8226 was sensitive. They also found that 

not all the RPMI-8226 cells were killed by incubation with anti-Fas (only about 50% of the 

cells were killed following a 21 hour incubation with anti-Fas @250ng/ml). This group tried 

pre-treating U266 cells with interferon-y, which has been reported to enhance the cytocidal 

action of anti-Fas (126), but this had no effect on its resistance to Fas-mediated apoptosis. 

They also verified that the sequence of the cDNA encoding Fas in this cell line was wild 

type. Fas-positive myeloma cell lines which are resistant to Fas-mediated cell death could 

therefore be useful in studying intracellular signalling events initiated after cross-linkage 

with Fas. The authors found no correlation between Bcl-2 levels in the myeloma cell lines 

tested and their susceptibility to Fas mediated apoptosis. These results agree with previous 

findings by others both in myeloma cells (126) and other cell lineages (120, 175, 179, 181, 

193).

The same authors also looked at Fas expression in fresh myeloma, MGUS and primary 

amyloidosis samples. They found that 15 out of 28 myeloma samples expressed Fas 

(including 3 out of 4 patients with extramedullary involvement) compared to 3/6 and 2/7 

Fas positive cases of MGUS and primary amyloidosis respectively. They found that 

ANBL-6 was negative for Fas expression whereas U266 and RPMI-8226 were strongly 

positive. In the present study however, the EL-6 dependent passages of ANBL-6 were found 

to be weakly positive (40%) for Fas expression by flow cytometiy (Table 5.1). Interestingly, 

the IL-6 independent passages of ANBL-6, derived from the original clone P32, manifested 

an upregulated expression of Fas (50-90%). The presence of IL-6 in the IL-6 dependent 

cell lines tested by Jelinek et al. (including ANBL-6) during anti-Fas treatment had no effect 

on their apoptotic response, nor did it have any effect on Fas expression. These results were 

confirmed by this study when the original passage (P32, IL-6 dependent) of ANBL-6 was 

incubated in both the CD40- and CD40Lig-L -culture systems in the presence of CD40 

stimulation, anti-Fas and IL-6. Tritiated thymidine uptake was as high as, or higher than that 

observed when the cells were incubated with IL-6 ± CD40 activation (appendix 1.12). A
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similar picture was seen when these cells were examined under light microscopy. No 

difference in viability was observed between ANBL-6 (P32) cells incubated a) without anti- 

Fas, b) with anti-Fas or c) with (anti-Fas + IL-6 ± CD40 activation). The majority of the 

cells (85-95%) were still viable.

Shima et al. (126) have also investigated Fas-mediated apoptosis amongst fresh myeloma 

samples and myeloma cell lines and found that, although all the cell lines and the majority of 

patient samples tested were positive for Fas expression (at different intensities), they were 

not all susceptible to Fas-mediated apoptosis. RPMI-8226 was susceptible to Fas mediated 

cell death whilst U266 was not which is in keeping with both this study and previous studies 

(236).

The results shown in section 6.4 indicate that a high level of expression of both cell surface 

CD40 and Fas is required for a myeloma cell line at least, to become susceptible to the onset 

of activation induced cell death with a high level of Fas alone being insufficient to initiate 

the process.

The results of experiments performed in section 6.6 indicate that expression of the proto­

oncogene bcl-2 is down-regulated in those myeloma cell lines which are susceptible to Fas- 

mediated apoptosis, or, in the case of RPMI-8226, Bcl-2 expression is negative and remains so 

following Fas activation. There are conflicting reports about whether Fas-mediated apoptosis is 

regulated by Bcl-2 (175,180). Strasser et al (175) state that the activation induced lymphocyte 

cell death induced by Fas activation is not regulated through Bcl-2 expression and Lee et al. 

(180) state that Bcl-2 protects against Fas-based T cell-mediated cytolysis. It has recently been 

proposed that bcl-2 plays a critical role in the growth and in spontaneous or 

Dexamethasone-induced apoptosis in myeloma cell lines (161) but it remains to be seen 

whether or not this proto-oncogene protects myeloma cells from Fas-mediated AICD. Two 

previous studies (126,236) have indicated that the level of Bcl-2 expression in myeloma 

cells does not correlate with their susceptibility to undergo Fas-mediated apoptosis. 

Similarly, Bcl-2 expression has been reported not to correlate with the susceptibility of 

activated B cells to Fas-mediated apoptosis (181). This obviously requires further 

clarification since Fas-mediated apoptosis may be a Bcl-2 independent mechanism of AICD.
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None of these studies on myeloma cells have investigated the possibility that one of the 

other members of the bcl-2 family, such as bcl-x or Bax (195,196) may be responsible for 

regulating Fas-induced cell death in myeloma cells. Reports have shown that expression of 

Fas on the surface of lymphocytes does not necessarily correlate with sensitivity to Fas- 

mediated apoptosis (282,283). Klas et al. (283) have shown that Fas-induced cell death 

does not occur until late in the time course of activation of T cells (72 hours). Analysis of 

the time course of B c 1 - x l  expression following activation with anti-CD3 and anti-CD28 

antibodies has revealed that Bcl-xL expression peaks at 48 hours and then declines. That is, 

cells only become sensitive to Fas-induced cell death when Bcl-xL levels are declining (176).

Consistent with these findings in T cells, Fas activation has also been demonstrated to 

inhibit the later stages of CD40-dependent B cell proliferation (120), with maximal 

inhibition of CD40-mediated proliferation observed after 72 hours incubation in the 

CD40Lig-L culture system. In the present study, myeloma cell lines were not found to be 

completely susceptible to Fas-induced cell death until 72 hours post activation of Fas (4.4, 

4.4.1, 4.4.2) which would support the concept that perhaps there is a down-regulation of 

bcl-xi in Fas activated myeloma cells also. CD40 stimulation of B cells which renders these 

cells susceptible to Fas-mediated apoptosis has been reported not to result in Bcl-xL 

expression (284). Fas-induced cell death could be invoked when B cells were stimulated 

with CD40 ligand alone, but not when cells were stimulated with anti-p and CD40 ligand 

(121). It is only when cells were stimulated under conditions similar to the latter (anti-p + 

anti-CD40) that expression of Bcl-xL was induced in B cells (284). These results suggest 

that antigen binding (mimicked by anti-p or anti-Ig) results in a protective effect saving B 

cells from the onset of activation induced cell death and thus allowing an immune response 

to develop (285). There have been no comprehensive studies of bcl-2 homologue 

expression with relation to Fas activation induced cell death in myeloma cells to date and 

this is of great interest in future studies. Indeed, preliminary experiments are already 

underway by the author (MML).

The regulation and function of bcl-x has been studied during B cell development (286) and 

the protein product Bcl-x has been found to be expressed in pre-B cells but downregulated 

at the immature and mature stages of B cell development. Bcl-xL, but not Bcl-2 was rapidly 

induced in peripheral B cells upon surface immunoglobulin cross-linking and CD40
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signalling (284,286). Transgenic mice which over-expressed Bcl-xL within the B cell 

lineage exhibited marked accumulation of peripheral B cells in lymphoid organs with 

enhanced survival of developing and mature B cells. These studies demonstrate that Bcl-xL 

is developmentally regulated in the B cell lineage and functions to protect developing and 

mature B cells from apoptosis. The pattern of Bcl-xL expression is strikingly different from 

that of Bcl-2. Pre-B cells, a developmental stage in which Bcl-2 is down-regulated 

(135,136), expressed the highest levels of Bcl-xL. This indicates that these two proteins play 

different roles in B cell selection and homeostasis. It may be that Bcl-2 and Bcl-xL differ in 

their ability to counter death signals generated at specific stages during development. Both 

proteins share remarkable structural homology and localise to identical intracellular sites, 

suggesting that they inhibit cell death by a similar biochemical mechanism (287,288). The 

anti-apoptotic functions of Bcl-2 and Bcl-xL are controlled in part by several interacting 

proteins (196, 200,201), one of which (Bad), exhibits a differential ability to heterodimerise 

with Bcl-2 and Bcl-xL (200). It could be then, that the expression of the interacting partners 

of Bcl-2 and Bcl-xL is differentially regulated during B cell development.

Studies of murine myeloma cell lines have shown that those resisitant to cyclohexamide- 

induced apoptosis expressed increased levels of bcl-xL mRNA than those which were 

susceptible to apoptotic cell death (289). These results suggest a predominant role of bcl-xL 

in preventing, at least drug-induced, apoptosis in murine and possibly human myeloma cells 

and suggest that the expression of bcl-2 or bcl-xL genes in B cell tumours may depend on 

the differentiation stage of the precursor normal cell. No significant differences in the 

expression of bax, which was expressed in both, between cyclohexamide-susceptible and 

-resistant murine myeloma cells was observed. The protective role of bcl-XL may be related 

to its capacity to inactivate Bax and possibly other apoptosis-inducing proteins by forming 

heterodimers (196,200,204).

Schwarze and Hawley (290) have recently reported the up-regulation by IL-6 of bcl-xL but 

not bcl-2 gene expression in the mouse B9 hybridoma cell line. Myeloma cell lines have 

been cultured in vitro for many years and may have acquired, during this period, additional 

characterisitcs, such as rapid proliferation, which may compensate for their incapacity to 

resist apoptosis induction in vitro. Primary plasmacytoma cells initially grow very slowly in 

culture and are dependent on IL-6 for their propogation. It would be very interesting to
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examine bcl-xL and bcl-xs expression in these tumours and to follow their expression 

through progression of the newly established cell line into long-term passage and the 

development of IL-6 independence. The finding that all the murine primary plasmacytomas 

tested expressed bcl-xL indicates that the inhibition of apoptosis is probably an important 

step in the early development of myelomas as well as other tumours. The progression from 

IL-6 -dependence to -independence in human multiple myeloma cells cultured in vitro may 

involve activation of the bcl-xL gene.

Tian et al. (165) have studied the role of p53, bcl-2 and bax in Dexamethasone-induced 

apoptosis in a panel of multiple myeloma cell lines. They found that Bax transcripts were 

abundant in all the lines tested and therefore did not correlate with sensitivity to 

dexamethosone. Levels of p53 and bcl-2 varied and did not in every case correlate with 

dexamethosone-sensitivity. The myeloma cell lines IM-9, U266 and RPMI-8226 were all 

found to express p53, bax and bcl-2 by RT-PCR using sequence-specific primers. Loss of 

function of this tumour suppressor gene occurs in about 50% of all human cancers. p53 is a 

DNA-binding protein which can both induce cell cycle arrest and promote apoptosis, and 

functions, at least in part, as a transcriptional regulator. p53 appears, either directly or 

indirectly, to suppress bcl-2 gene expression leading to the speculation that p53 loss in 

human tumours may contribute to the high levels of abnormal patterns of Bcl-2 protein 

production observed in many types of cancer (291,292). In addition to inhibition of Bcl-2 

gene expression, p53 can also induce an increase in Bax gene expression (291). These 

effects of p53 on bcl-2 and bax gene expression can result in a marked decrease in the ratio 

of Bcl-2 to Bax protein, and therefore render these cells more susceptible to apoptotic 

stimuli. Bax is the first pro-apoptotic gene to be identified which is a direct transcriptional 

target of p53. This group have found that there is a marked downregulation of Bax protein 

levels in drug-resistant breast and ovarian tumours as well as leukaemias. They also found 

significant increases in Bcl-xL protein expression in association with drug-resistant 

leukaemias and solid tumours confirming that alterations in the expression of Bcl-xL may 

also be relevant to mechanisms of drug-resistance in some types of cancer.

Reed et al. (293) have proposed a model for Bcl-2 family protein interactions based on the 

current available evidence. They postulate that Bax promotes apoptosis, probably through 

the formation of homodimers. This is opposed when Bcl-2, Bcl-xL, Mcl-1, or possibly other
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homologues of Bcl-2 that have anti-death |activity (eg Al), heterodimerise with Bax thus 

neutralising its function. A second class of cell death promotors, which include Bcl-xs and 

Bad, indirectly induce apoptosis by binding to Bcl-2, Bcl-xL and probably other anti- 

apoptotic members of the Bcl-2 protein family, thus sequestering them and preventing them 

from heterodimerising with Bax. This leaves Bax homodimers unopposed. A recently 

described member of the Bcl-2 protein family, Bak (197), may function (similarly to Bax.

In situ hybridisation using CD40 and Fas riboprobes of myeloma cell lines following a three 

day culture in the CD40 system revealed that all the myeloma lines tested in this study were 

positive for both transcripts when unstimulated. The strongest expression of CD40 mRNA 

was observed in IM-9, RPMI-8226 and IL-6 dependent myeloma lines in unstimulated cells. 

The intensity of CD40 expression increased following incubation with anti-CD40 with or 

without IL-4 or IL-6. The intensity of CD40 RNA expression did not alter following a three 

day incubation with anti-Fas (with or without anti-CD40). The weakest intensity of Fas 

mRNA expression was observed in JIM-1 and the IL-6 dependent passages of ANBL-6 in 

unstimulated cells. No change in this expression was observed following incubation with 

anti-CD40 with or without cytokines but a stronger intensity of Fas RNA expression was 

observed in those cell lines following incubation with anti-Fas with or without CD40 

ligation (6.5).

A summary of the results determining transcription and translation of the genes of interest in 

this study are shown in Table 7. Since there is now a convenient method of estimating 

whether cells are producing endogenous IL-6 by flow cytometric analysis, it will be 

interesting to examine IL-6 protein expression in these myeloma cell lines in relation to their 

activation status. Previous methods of IL-6 detection by bioassay or enzyme linked 

immunosorbent tests were laborious and time-consuming.

In the majority of cases, the myeloma cell lines examined showed evidence of both 

transcription and translation of the genes encoding bcl-2, Fas and CD40. Exceptions to this 

were found in the IL-6 dependent passages of ANBL-6 in which translation of Bcl-2 was 

not always evident despite positive transcription. JIM-1 was also found not to translate the 

Fas and CD40 protein products despite transcription being detected by both ISH and RT- 

PCR. The U266 cell line was similarly found to express extremely low levels of CD40
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protein despite positive transcription. Translation of the IL-6 receptor was not detected by 

flow cytometry in JIM-1 or JIM-3 despite evidence of transcription occuring. These results 

are consistent with previous reports that, at least the bcl-2 gene, is consistently expressed in 

germinal centre B cells and myeloma cell lines but is not always translated (155,156). It 

could be that the regulation of these genes in this disease is post-transcriptional.

Fas ligand is normally only expressed in immunologically privileged tissues (testis, central 

nervous system and eye). These areas are known to accept grafts without rejection and 

grafts of these tissues placed at heterotopic sites are also not rejected. Histologic analysis 

suggests that normal testis grafts survive by inducing apoptosis in infiltrating leukocytes 

(294). These studies show that the lack of severe inflammation or immune responses in the 

testes and eye is at least partly because the Fas ligand present in these tissues kills 

lymphocytes that infiltrate the tissues and are activated to express Fas. Thus, Fas-FasL 

interactions are the principal mediators of immune j privilege in the testis and eye. These 

results also suggest that tissues engineered to express FasL (for example as a transgene) 

may be protected from rejection, since they will destroy invading lymphocytes.

Shima et al. (126) have discussed the question of how myeloma cells sensitive to anti-Fas 

may survive in vivo. They hypothesised several possibilities:

1. Apoptosis may occur in vivo but the cells may proliferate more rapidly than they undergo 

apoptosis.

2. Fibroblast conditioned medium has been shown to decrease the apoptosis of human 

immunodeficiency virus (HIV) infected mononuclear cells suggesting the possible existence 

of a factor that inhibited the apoptosis (295). In support of this theory, Westendorf et al. 

(236) observed that plasma cells in freshly isolated bone marrow (MNC) cultures were 

resistant to Fas-mediated apoptosis, but that isolated plasma cells were sensitive. This 

suggests that a bone marrow MNC-derived protective factor(s) may be secreted, or a cell­

cell mediated signal delivered which negates Fas-induced cell death. It has been postulated 

that there may be a soluble form of Fas antigen in vivo which could interfere with the 

interaction between Fas and its ligand (296).

3. Most myeloma cells express CD38 antigen and it has also been postulated that a signal 

through this molecule may protect cells from apoptosis (297).
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4. Impaired T cell cytotoxicity, including abnormal Fas ligand expression, may be involved 

in the pathogenisis of this disease.

Activation via the death domains of TNFR1 and Fas triggers apoptosis and activation of the 

transcription factor NF-kB (298,299). Since the adhesion of myeloma cells to BMSC has 

been shown to result in the induction of IL6 transcription in BMSC which is conferred 

through the NF-kB binding motif in the IL6 promotor (317) it is possible that IL-6 

interferes with the onset of Fas-mediated apoptosis in myeloma cells by inhibition at some 

point during its signaling pathway. The protective effect exerted by IL-6 in those IL-6- 

independent cell lines, normally susceptible to Fas-mediated AICD (Appendix 3) would 

support this theory.

Activation of CD95 recruits the Fas-associated death domain-containing molecule FADD 

which in turn binds and presumably activates the FADD-like ICE (FLICE), a member of the 

ICE family of proapoptotic proteases (303,304,315). FLICE has homology to both FADD 

and the ICE family of cysteine proteases. It binds to the death effector domain of FADD 

and upon overexpression induces apoptosis. A dominant negative derivative of FADD 

(FADD-DN) has been shown to disrupt the assembly of the Fas signalling complex (316). It 

is hoped that expression vectors containing bcl-2, bcl-xL, crmA and a dominant negative 

inhibitor of FADD (FADD-DN) will soon become available to this laboratory and that these 

tools will enable further study of the Fas signaling pathway in these cell lines. The FADD- 

DN construct inserted into myeloma cells will allow the Fas pathway to be blocked and the 

effect of IL-6 on this will be interesting to observe

All these possibilities remain to be fully explored and either proven or discounted. It is 

exciting to imagine that the aetiology of this disease, which has been relatively little 

researched compared to other forms of leukaemia, may be within reach. Multiple myeloma 

may eventually be treatable due to the rapid advances in the study of cell death mediated by 

a final common pathway of protease cascade activation which could potentially be blocked 

or triggered at various stages in its execution.
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Cell lines susceptible to Fas-mediated apoptosis: JIM-3, JJN-3, 

RPMI-8226, and all IL-6 independent passages of ANBL-6.

Flow cytometric light scatter analysis of myeloma cell lines cultured 

for three days in the CD40 system.
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susceptible to Fas-mediated apoptosis. Results of tritiated 
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Flow cytometric analysis of IM-9 and ANBL-6 (22/5) showing 

the protective effect of IL-6 and CD40 ligation on the onset of 

Fas-mediated apoptosis in these cell lines.
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APPENDIX 1

Effect on proliferation or inhibition of such by CD40 and Fas-ligation of myeloma cell lines 

with or without accessory cytokines. Comparison between the a) CD40, b) CD40Lig-L 

culture systems and c) culture with no accessory L-cells.

The results of replicate experiments are summarised using these three culture systems as 

follows:

1. By tritiated thymidine uptake with the percentage variation in counts between triplicate 

wells in brackets. The mean of replicate experiments is tabulated and the percentage 

proliferation or inhibition of proliferation calculated as follows:

* % proliferation = - [l-^H-TdR incorporation with anti-CD40 MoAb/(-)]xlOO 

% inhibition = [l-^H-TdR incorporation with anti-Fas MoAb/(-)]xlOO

(-) = counts per minute for myeloma cells cultured with no additive

* Proliferation due to cytokine co-stimulation ± CD40 ligation also calculated 

using this formula.

In all experiments the background uptake of tritiated thymidine has been subtracted except 

where otherwise stated. Background counts were those obtained when a row of twelve

wells of a microtitre plate were incubated for three days in the presence of medium alone

(no L cells), or medium in wells containing irradiated CD32L (CD40 system assays) or 

CD40Lig-L cells only.

2. Cell count (mean) by trypan blue dye exclusion (xlO6)

3. Average percentage viability calculated by cell counts and morphological analysis.
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Appendix 2a

Figure 7.1a

Flow cytometric light scatter analysis of the myeloma cell line JIM -1 cultured in the CD40 system 
follow ing a 3 day incubation with various additives. An arbritary  axis w as drawn to distinguish 
between live (R2) and apoptotic (R l) cells. 4000 cells per experiment were analysed. No shift in 
scatter w as observ ed with any of the additives indicating that Fas activation had no effect on their 
viability.

JIM-1

No additive Anti-CD40+IL-4anti-CD40

o 5 8  100 150 £ 0

Forward Scatter

Anti-CD40+IL-6 anti-CD40+anti-Fas
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Appendix 2a

Figure 7.1b

Flow cytometric light scatter analysis of the myeloma cell line U266 cultured in the CD40 sy stem 
following a 3 day incubation with various additives. An arbritarv  axis was drawn to distinguish 
between live (R2) and apoptotic (R l) cells. 4000 cells per experiment were analysed. No shift in 
scatter was observ ed with any of the additives indicating that Fas activation had no effect on their 
viability.
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Appendix 2a

Figure 7.3a

Flow cytometric light scatter analysis of the myeloma cell line JIM -3 cultured in the CD40 system 
following a 3 day incubation with various additives. An arb ritary  axis was drawn to distinguish 
between live (R2) and apoptotic (R l) cells. 4000 cells per experiment were analysed. A major shift 
in scatter, indicative of an increase in cell granularity and a decrease in cell si/e, was observed in 
those cells incubated with anti-Fas ± anti-CD40 indicating that Fas activation had a potent apoptotic 
effect w ith or w ithout CD40 co-ligation.
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Appendix 2a

Figure 7.3b

Flow cytometric light scatter analysis of the myeloma cell iine ANBL-6 (passage 17/2) cultured in the 
CD40 system following a 3 day incubation w ith various additives. An arb ritary  axis was draw n to 
distinguish between live (R2) and apoptotic (R l) cells. 4000 cells per experiment were analysed.
A major shift in scatter, indicative of an increase in cell granularity and a decrease in cell size, 
w as observ ed in those cells incubated w ith anti-Fas + anti-CD40 indicating that Fas activation had a 
potent apoptotic effect with or w ithout CD40 co-ligation.
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Appendix 3

Figure 7.4

Protective effect of IL-6 on IL-6 independent myeloma cell lines susceptible to Fas- 
mediated apoptosis. IM-9 and ANBL-6 (22/5) were incubated for three days in the 
CD40Lig-L culture system either without additives, or with IL-6 (lng/ml); EL-6 + anti-Fas 
(lOOng/ml); IL-6+anti-Fas+anti-CD40 (0.5|ig/ml) or anti-Fas alone.

Cell line

IM-9 Method of detection:

Additive Flow % viability % inhibition Morphology
cytometry ( T r y p a n  B l u e ) ( 3H - T d R  i n c o r p . ) ( W r i g h t ’ s  s t a i n )

n o  a d d i t i v e apo' 100 92%viable
I L - 6 apo' 73 0 90% viable
I L - 6 + a n t i - F a s *apo' apo+ 44 40 50% viable
I L - 6 + a n t i - F a s + a n t i - C D 4 0 ++apo 0 100 0% viable
a n t i - F a s ++apo 0 100 0% viable

Cell line

ANBL-6 (22/51 

Additive

n o  a d d i t i v e  
I L - 6
I L - 6 + a n t i - F a s
I L - 6 + a n t i - F a s + a n t i - C D 4 0
a n t i - F a s

Method of detection:

Flow
cytometry
apo'
apo'
*apo” apo+
*apo' apo+

+ +apo

% viability 
( T r y p a n  B l u e )

98
100
96
44
30

% inhibition 
(3H - T d R  i n c o r p . )

0
0
42
83

Morphology 
( W r i g h t ’ s  s t a i n )
90%viable 
92% viable 
80% viable 
50% viable 
35% viable

* Two populations observed
apo' = no apoptosis observed, apo+ = apoptosis observed, 
apo++ = virtually 100% apoptosis observed

Detection of apoptosis was using a combination of flow cytometric light scatter analysis, trypan 
blue dye exclusion, morphology under light microscopy after staining the cells with Wright’s 
stain and inhibition of proliferation assessed by tritiated thymidine uptake (3H-TdR 
incorporation).
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Appendix 3
Figure 7.5

Protective effect of IL-6 on (IL-6 independent) myeloma cell lines susceptible to Fas-mediated 
apoptosis as demonstrated by Flow cytometric light scatter analysis. IM-9 and ANBL-6 (22/5) 
are protected from Fas-induced AICD by co-incubation of IL-6 and anti-Fas, together with 
CD40 stimulation.

IM-9

no additive

Forward Scatter — > F SC=H'\F SC=He i gh t  ===

IL-6+anti-Fas IL-6+anti-Fas+anti-CD40

no additive

Forward Scatter
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FSC=H'-FSC=Hs i gh t  ===> FS C =hK F S C =H eig ht === > F S C -H ^ F S C -H e ia h t — >

Three day culture of the myeloma cell lines ANBL-6 (passage 22/5, IL-6 independent) 
and IM-9 in the CD40Lig-L system. 5xI04 myeloma cells/well were added to an irradiated 
monolayer (5xl03 cells/well) of mouse fibroblasts transfected with the human CD40 ligand 
gene in triplicate wells of a microtitre plate in a total volume of 200jil/well. Additives IL-6 
(lng/ml); anti-Fas (lOOng/ml) or anti-CD40 (0.5fig/ml) were added prior to incubation.
An arbritary axis was drawn to distinguish between live (R2) and apoptotic (Rl) cells. 
4000 cells per experiment were analysed. 2 5 4
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