
THE GABAa RECEPTOR 8 SUBUNIT GENE 

PROMOTER : CHARACTERISATION AND USE

Alexa Brett Roberts

Division of Molecular Genetics 
Institute of Biomedical and Life Sciences 

University of Glasgow 
Glasgow

A dissertation submitted for the degree of Doctor of 
Philosophy of the University of Glasgow

February 1998



ProQuest Number: 13818612

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818612

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



GIASGOW  UNIVERSITY 
LIBRARY

1 1 1 1 0  ( c o h O

f GLASGOW 1  
IUNIVERSITT I
[LQgAW I 



For my husband Stuart 

and for my children Ross and Ailie 

with love

Also to JR (Grandad) in loving memory



Preface

The work presented in this thesis was performed entirely by the author, except where 
acknowledged. I declare that my thesis contains unique work and will not be submitted for 
any other degree, diploma or qualification at any other University.

A. Brett Roberts
December 1997



Acknowledgements

I would like to thank Professor R.W. Davies for giving me the opportunity to study for 

this degree and for his help throughout the last three years. I would also like to thank my 

colleagues for their help and advice. Particular thanks go to the technical staff - - Lynn 

Loughlin (Supertech) for her help and friendship, Irene Houghton and Gareth Westrop, 

and to Team Scotland : Nicola Craig (for keeping me sane and making me laugh), Vicki 

Laird and Thora Glencorse.

I am especially indebted to Dr Thora Glencorse for her help, advice and encouragement.

I would also like to thank Prof. B. Clements and Dr A. MacLean (Dept, of Virology, 

Glasgow) for help with the virus work. Thanks also to Dr Jackie Campbell and Neil 

Bennett (Dept, of Anatomy, Glasgow University) for performing the stereotactic 

injections.

I acknowledge the Medical Research Council for supporting this work, and Glasgow 

University.

Special thanks go to my husband Stuart for all his support and encouragement throughout 

the last 3 years and my children for letting me be an absent Mum for so long.



Contents
Page

Preface i
Acknowledgements ii
Contents iii
List of Figures x
List of Tables xiv
Abbreviations xv
Summary xvii

Chapter 1 General Introduction 1
1.1 GAB A RECEPTORS 2

1.1.1 The GABAa receptor 3
1.1.2 Pharmacology of the GABAa receptor 4

1.1.2.1 The GAB A binding site 5
1.1.2.2 The benzodiazepine site 5
1.1.2.3 The barbiturate site 7
1.1.2.4 The steroid site 7
1.1.2.5 Picrotoxin/TBPS site 7
1.1.2.6 Other sites 8

1.1.3 Structure of the GABAa receptor 8
1.1.4 Molecular biology of the GABAa receptor 11

1.1.4.1 Receptor heterogeneity 11
1.1.4.2 Receptor subunit families 12

1.1.4.2.1 a-subunits 12
1.1.4.2.2 p - subunits 14
1.1.4.2.3 y-subunits 14a
1.1.4.2.4 5 - subunit 15
1.1.4.2.5 e-subunit 15
1.1.4.2.6 7i-subunit 15

1.1.5 GABAa receptor expression patterns 16
1.1.5.1 Cell - specific expression 16
1.1.5.2 Developmental expression 17

1.2 NEURON - SPECIFIC GENE EXPRESSION 18
1.3 GABAa RECEPTOR 8 SUBUNIT GENE 28

1.3.1 Gene structure 28
1.3.2 8 expression patterns 31

iii



1.3.3 Pharmacology 3 2
1.3.4 Chromosomal assignment of human GABAa receptor 8 subunit gene 3 3
1.3.5 Recent research developments 3 4

1.4 RESEARCH PROJECT 34

Chapter 2 Materials and Methods 36
2.1 MATERIALS 37

2.1.1 Bacterial growth 3 7
2.1.1.1 Bacterial strains 37
2.1.1.2 Bacterial media requirements 3 7

2.1.2 Restriction and modifying enzymes 38
2.1.3 Biochemicals and chemicals 38
2.1.4 Molecular size standards 38
2.1.5 Radionucleotides 3 8
2.1.6 Large scale DNA purification 38
2.1.7 Vectors 39
2.1.8 Oligonucleotide primers 40
2.1.9 DNA sequencing 44
2.1.10 RNA isolation 45

2.1.10.1 Total RNA isolation 45
2.1.10.2 mRNA isolation 45

2.1.11 Cell culture 45
2.1.11.1 Cell lines 45
2.1.11.2 Medium for cell lines 46

2.1.11.2.1 BHK21/C13 46
2.1.11.2.2 NB4 1 A3 46
2.1.11.2.3 CGR8.8 46

2.1.11.3 Solutions for gene targeting 47
2.1.11.3.1 Trypsin solution 47
2.1.11.3.2 Freezing medium 47

2.1.11.4 Solutions for cell transfections 47
2.1.11.5 P - galactosidase assays 47
2.1.11.6 Luciferase assays 48

2.1.12 Cerebellar granule cell cultures 48
2.1.12.1 Medium for granule cells 48
2.1.12.2 Solutions for granule cell cultures 48
2.1.12.3 Solutions for granule cell transfections 49
2.1.12.4 Solutions for granule cells -  histochemistry 49

2.1.13 Histochemistry of rat brains by X - gal staining 49
iv



2.2 METHODS 50
2.2.1 Basic molecular biology techniques 50

2.2.1.1 Bacterial growth 50
2.2.1.1.1 Bacterial transformation 50
2.2.1.1.2 Bacterial plasmid growth - large scale 51

2.2.1.2 Restriction enzyme digestion 51
2.2.1.3 DNA isolation 51

2.2.1.3.1 Small scale plasmid DNA isolation 51
2.2.1.3.2 Large scale plasmid DNA isolation 51

2.2.1.4 Ligation 52
2.2.1.5 Klenow reactions 52
2.2.1.6 Phenol extraction 52
2.2.1.7 Ethanol precipitation 52
2.2.1.8 Agarose gel electrophoresis 53
2.2.1.9 Radiolabelling of probes 5 3

2.2.1.9.1 Oligonucleotide probes 53
2.2.1.9.2 Random primed probes 53

2.2.1.10 Southern blotting 53
2.2.2 Subcloning of DNA from lambda clones 54
2.2.3 Sequencing of pBluescript double-stranded templates 54

2.2.3.1 Template DNA preparation 54
2.2.3.2 DNA sequencing of double-stranded templates 54
2.2.3.3 Analysis of DNA sequence data 55

2.2.4 The Polymerase Chain Reaction 55
2.2.5 RNA purification 55

2.2.5.1 Total RNA preparation 55
2.2.5.2 mRNA preparation 56

2.2.6 Oligo-capping 57
2.2.6.1 Removal of 5' -  phosphate 57
2.2.6.2 Removal of 5' -  cap 58
2.2.6.3 Ligation of r -  oligonucleotide 58
2.2.6.4 First strand cDNA synthesis 58
2.2.6.5 Amplification of 5' - end of cDNA 58

2.2.7 Production of recombinant viruses 59
2.2.7.1 Insertion of promoter-reporter gene cassettes into an HSV-1

shuttle vector 59
2.2.7.2 Recombination of shuttle vectors with an HSV-1 host 59
2.2.13 Isolation of single plaques from the recombinant virus stock 60

v



2.2.7.4 Screening for recombinant viruses 61
2.2.7.5 Large-scale viral DNA purification 61
2.2.7.6 Preparation of high titre viral stock 62
2.2.7.7 Titration of viral stocks 63

2.2.8 Gene targeting 64
2.2.8.1 Construction of vector 64
2.2.8.2 Growth of cells 64
2.2.8.3 Transfection of ES cells 64
2.2.8.4 Screening for targeted cell lines 65

2.2.8.4.1 Selection of resistant colonies 65
2.2.8.4.2 Freezing of selected colonies 66
2.2.8.4.3 Preparation of genomic DNA 66
2.2.8.4.4 Screening of genomic DNA 66

2.2.9 In vitro analysis of promoter-reporter constructs 67
2.2.9.1 Neuronal cell cultures 67

2.2.9.1.1 Preparation of cells 67
2.2.9.1.2 Transfection of cells 67
2.2.9.1.3 Harvesting of transfected cells 67
2.2.9.1.4 p - galactosidase assays of cell extracts 68
2.2.9.1.5 Luciferase assays of cell extracts 68

2.2.9.2 Cerebellar granule cell cultures 68
2.2.9.2.1 Preparation of cells 68
2.2.9.2.2 Transfection of cells 69
2.2.9.2.3 X - gal staining of granule cell cultures 70

2.2.10 Analysis of HSV-1 promoter constructs 70
2.2.10.1 In vitro analysis of cerebellar granule cells 70

2.2.10.1.1 Infection of granule cells 70
2.2.10.1.2 X - gal staining of infected cells 70

2.2.10.2 In vivo analysis by stereotactic injection into rats 70
2.2.10.2.1 Intracerebellar inoculation of animals 70
2.2.10.2.2 Histochemistry of extracted brains 71

Chapter 3 Characterisation of the GABAa Receptor 5 Subunit
Gene Promoter 72

3.1 INTRODUCTION 73
3.2 RESULTS 74

3.2.1 Subcloning of the promoter region for sequence analysis 74
3.2.2 Identification of transcription start sites 75
3.2.3 Sequencing of the 5' - flanking region 81

vi



3.2.4 Analysis of the 5' - flanking region sequence
3.2.5 Comparison of murine and rat 5' - promoter regions

3.3 DISCUSSION

88
92
97

Chapter 4 Generation of GABAa Receptor 5 Subunit Gene
Promoter Constructs 99

4.1 INTRODUCTION 100
4.2 RESULTS 100

4.2.1 Design and generation of reporter-gene vectors for promoter-deletion
constructs 100

4.2.1.1 Luciferase vector construction 103
4.2.1.2 Luciferase control vector construction 103
4.2.1.3 lacZ vector construction 103
4.2.1.4 lacZ control vector construction 104

4.2.2 Construction of promoter-deletion vectors 110
4.3 DISCUSSION 113

Chapter 5 Analysis of Promoter Constructs in vitro 116
5.1 INTRODUCTION 117
5.2 RESULTS 117

5.2.1 Expression of promoter - reporter constructs in cell culture 117
5.2.2 Expression of promoter - reporter constructs in primary cell cultures 121

5.3 DISCUSSION 122

Chapter 6 Herpes Simplex Virus as a Delivery System 124
6.1 INTRODUCTION 125

6.1.1 Herpes simplex virus type 1 125
6.1.2 Molecular biology of HSV-1 126
6.1.3 HSV-1 latency 127
6.1.4 Selection of viral vector 128
6.1.5 Choice of HSV-1 mutant 129
6.1.6 Choice of insertion site for GABAa 6 promoter - reporter gene

expression constructs 130
6.2 RESULTS 134

6.2.1 Generation of promoter construct - shuttle vectors 134
6.2.1.1 p35 and pBL promoter construct - shuttle vectors 134
6.2.1.2 pZ43 and pZLAT promoter construct - shuttle vectors 135

6.2.2 Generation of recombinant HSV-1 viruses 136
6.2.2.1 1764 viral variants 136

vii



6.22.2 1716 viral variants 142
6.2.2.2.1 pZ43 - 1.6 -  lacZ 142
6.2.22.2 pZ43 - 10.5 -  lacZ 147
6.2.2.2.3 Other pZ43 and pZLAT recombinant viruses 149

6.3 DISCUSSION 150

Chapter 7 Infection of cerebellar granule cell cultures and rat brains 
with HSV - 1 recombinant viruses 152

7.1 INTRODUCTION 153
7.2 RESULTS 153

7.2.1 Infection of cerebellar granule cells with recombinant viruses 153
7.2.2 Infection of rat brains with recombinant viruses 160

7.3 DISCUSSION 171

Chapter 8 Gene Targeting of the GABAa Receptor 8 Subunit Gene 173
8.1 INTRODUCTION 174
8.2 RESULTS 181

8.2.1 Construction of gene targeting constructs 181
8.2.1.1 pSSC - 8 construct 181
8.2.1.2 pNT - 5 construct 181

8.2.2 Establishment of recombinant cell lines 184
8.2.2.1 pSSC9 - 8 transfection 184
8.2.2.2 pNT - 8 transfection 184

8.3 DISCUSSION 188

Chapter 9 Genetic mapping of the GABAa Receptor 8 subunit gene
in  m ouse and  r a t  190

9.1 INTRODUCTION 191
9.1.1 Mouse consomic lines and EUCIB backcross 193
9.1.2 Rat somatic cell hybrid panel and interstrain backcross 194

9.2 RESULTS 194
9.2.1 Mouse Genetic Mapping 194

9.2.1.1 Chromosome localisation 194
9.2.1.2 Precise genetic mapping 195

9.2.2 Rat Genetic Mapping 199
9.2.2.1 Somatic cell hybrid screen 199
9.2.2.2 Precise genetic mapping 199

9.3 DISCUSSION 209



Chapter 10 General Discussion 212
10.1 INTRODUCTION 213
10.2 GENE REGULATION 213
10.3 VIRAL VECTORS 222

References 228

ix



List of Figures
Pagt

Chapter 1
Figure 1.1 Schematic presentation of the various binding sites

associated with GABAa receptors 8
Figure 1.2 Basic structure of the GAB Aa receptor subunits 9
Figure 1.3 Schematic diagram of regulatory elements in genomic

regions of a prototypical gene 19
Figure 1.4 Activation of gene expression by enhancer elements 21
Figure 1.5 Repression of gene expression from silencing elements 22
Figure 1.6 Activation of gene expression from intronic and 3’ - DNA

elements 25
Figure 1.7 Schematic presentation of possible methods of regulation

of expression of genes arranged in a cluster on a
chromosome 27

Figure 1.8 Primary structure of the GAB Aa receptor 6 subunit gene 28
Figure 1.9 Structure of the murine GAB Aa receptor 6 subunit gene 29
Figure 1.10 Consensus sequence for the binding site of BSFI in the rat

GABAa receptor 6 subunit gene promoter 31

Chapter 3
Figure 3.1 Genomic restriction map 74
Figure 3.2 PCR products produced by oligo -  capping 76
Figure 3.3 Histograms showing transcriptional start point data 77
Figure 3.4 Histogram showing combined transcriptional start point

data 78
Figure 3.5 Sequence showing the identified transcription start points 80
Figure 3.6 Sequence of 5' - upstream region of the GABAa receptor 5

subunit gene 83
Figure 3.7 Sequence comparison of mouse and rat 5' - upstream

region 94

Chapter 4
Figure 4.1

Figure 4.1a pGL3 basic plasmid 101
Figure 4. lb pNASS p plasmid 102
Figure 4.1c pGL3 control plasmid 102

Figure 4.2 Utility luciferase vector 105
Figure 4.3 Luciferase control vector 106

x



Figure 4.4
Figure 4.4a Utility lacZ vector 107
Figure 4.4b Utility lacZ vector 108

Figure 4.5 lac Z control vector 109
Figure 4.6 Range of promoter fragments inserted into reporter vectors 111
Figure 4.7 Alteration of promoter constructs 112
Figure 4.8 Pac I digestion of promoter - reporter constructs 115

Chapter 5
Figure 5.1

Figure 5.1a Experiment 1 - p-galactosidase activity ofNB41A3 cells
transfected with reporter construct set A 118

Figure 5.1b Experiment 2 - P-galactosidase activity ofNB41A3 cells
transfected with reporter construct set A 119

Figure 5.2 p-galactosidase activity of NB41 A3 cells transfected with
reporter construct set B 120

Figure 5.3 Graph showing the P-galactosidase activity of the three
transfection experiments combined 121

Chapter 6
Figure 6.1 Schematic representation of the HSV - 1 genome 126
Figure 6.2 Schematic representation of the LAT locus 128
Figure 6.3 HSV - 1 shuttle vectors 133
Figure 6.4 Schematic representation of the recombinant LAT -

GABA( 1.6) - lacZ locus 138
Figure 6.5 Dot blot analysis of putative recombinant LAT - GABA

(1.6) - lacZ viruses 139
Figure 6.6 Southern blot analysis of putative recombinant LAT -

GABA( 1.6) - lacZ viruses 140
Figure 6.7 Southern blot analysis of LAT - GAB A( 1.6) - lacZ

recombinant viruses 141
Figure 6.8 Schematic representation of the recombinant UL43 -

GABA( 1.6) - lacZ locus 144
Figure 6.9 Dot blot analysis of putative recombinant UL43 - GABA

(1.6) - lacZ viruses 145
Figure 6.101 Southern blot analysis of putative recombinant UL43 -

GABA( 1.6) - lacZ viruses 146
Figure 6.11 Dot blot analysis of putative recombinant UL43 - GABA

(10.5) - lacZ viruses 148

xi



Figure 6.12

Chapter 7
Figure 7.1

Figure 7.2 

Figure 7.3 

Figure 7.4 

Figure 7.5 

Figure 7.6 

Figure 7.7 

Figure 7.8

Chapter 8
Figure 8.1 
Figure 8.2 
Figure 8.3 
Figure 8.4

Figure 8.5

Figure 8.6 
Figure 8.7 
Figure 8 .8

Chapter 9
Figure 9.1

Figure 9.2 
Figure 9.3 
Figure 9.4

Southern blot analysis of putative recombinant UL43 - 
GABA(10.5) - lacZ viruses

Photomicrographs showing cerebellar granule cell cultures 
infected with recombinant viruses
Photomicrographs showing cerebellar granule cell cultures 
infected with recombinant viruses
Photomicrographs showing cerebellar granule cell cultures 
infected with recombinant viruses 
Photomicrographs showing sections of adult rat brains 
infected with the UL43-CMV-/acZ virus 
Photomicrographs showing sections of adult rat brains 
infected with the Ul43-NSE-/<2cZ virus 
Photomicrographs showing sections of adult rat brains 
infected with the Ul43 -GABA( 1.6)-lacZ virus 
Photomicrographs showing sections of adult rat brains 
infected with the LAT-GABA( 1.6)-lacZ virus 
Photomicrographs showing sections of uninfected adult rat 
brains used as experimental controls

Targeting vectors
Two - step strategies for gene targeting
Site - specific recombinase reactions
Targeted disruption of the GABAa receptor 5 subunit gene
using vector pSSC9
Targeted disruption of the GABAa receptor 5 subunit gene 
using vector pNT
Southern blot analysis of putative targeted cell lines 
Southern blot analysis of putative targeted cell lines 
Southern blot analysis of putative targeted cell lines

Chromosomal localisation of the mouse GABAa receptor 5 
subunit gene
PCR screening of EUCEB subset panel of DNAs 
Genetic map of mouse chromosome 4 
Chromosomal localisation of the rat GABAa receptor 5 
subunit gene

148

155

157

159

162

164

166

168

170

175
178
180

182

183
185
186 
187

196
197
198

200

xii



Figure 9.5 PCR analysis showing rat strain differences with Gabrd
primers 202

Figure 9.6 PCR analysis of the rat interstrain backcross using D5Mit7
primers 204

Figure 9.7 PCR analysis of the rat interstrain backcross using D5Mit9
primers 205

Figure 9.8 PCR analysis of the rat interstrain backcross using Gabrd
primers 206

Figure 9.9 PCR analysis of the rat interstrain backcross using D5Mgh9
primers 207

Figure 9.10 Genetic map of rat chromosome 5 209



List of Tables
Page

Chapter 1
Table 1.1 NRSE consensus sequences 23
Table 1.2 Distribution of 6 mRNA in CNS 31

Chapter 2
Table 2.1 Escherichia coli strain information 37
Table 2.2 Plasmid vectors 39
Table 2.3 Oligonucleotide primers for linkers 41
Table 2.4 Oligonucleotide primers for PCR amplification 42
Table 2.5 Oligonucleotide primers for sequencing 43
Table 2.6 Cell lines 45

Chapter 3
Table 3.1 Recognition sequences for transcription factors identified

in the 5'-upstream region of the GABAa receptor 8 subunit 
gene 88

Table 3.2 Transcription factors whose recognition sites have been
identified in the GABAa receptor 8 subunit gene 5' - 
upstream region 89

Table 3.3 Repeat sequences identified in the 5'-upstream region of
the GABAa receptor 8 subunit gene 91

Chapter 6
Table 6.1 p35/pBL promoter-reporter gene shuttle constructs 134
Table 6.2 pZ43/pZLAT promoter-reporter gene shuttle constructs 135
Table 6.3 Recombinant 1764 and 1716 viruses 149

Chapter 9
Table 9.1 Localisation of GAB AR genes in humans and mice 191
Table 9.2 Detection of the rat GABAa receptor 8 subunit gene in cell

hybrids 201
Table 9.3 Interstrain backcross mapping data 203
Table 9.4 Interstrain backcross mapping data 208

xiv



Abbreviations

A antisense
Amp ampicillin
BAP bacterial alkaline phosphatase
b-HLH basic helix loop helix
b-HLH-Zip basic helix - loop - helix - leucine zipper.
bZIP basic leucine zipper
BDNF brain-derived neurotropic factor
bp basepairs
BSF1 brain specific factor 1
BZ benzodiazepine
CAT chloramphenicol acetyl transferase
ChAT choline acetyl transferase
CMV cytomegalovirus
CNS central nervous system
c.p.e. cytopathic effect
Cys cystine
DBH dopamine p-hydroxylase
DG dentate gyrus
DMCM 6,7-dimethyl-4-ethylcarboline-3-carboxylate methyl ester
E early
ES embryonic stem cells
EST expressed sequence tag
G cerebellar granule cell
GABA y-aminobutyric acid

gc granule cell
g D glycoprotein D
GFAP glial fibrillary acidic protein
GFP green fluorescent protein

gl glial cell
GlyR glycine receptor
HMBA N,N hexamethylene bis-acrylamide
HSV herpes simplex virus
IE immediate early
IR internal repeat
I r inverted repeat
Kan kanamycin
Kb kilobase pairs

XV



L late
lacZ p-galactosidase
LAT latency associated transcript
LINES long interspersed elements
LTR long term repeat
Luc luciferase
M cerebellar molecular layer
mcs multiple cloning site
misc miscellaneous
nAChR nicotinic acetylcholine receptor
neor neomycin resistance
NRSE neural specific silencer element
NSE neuron specific enolase
ori origin of replication
P Purkinje cell layer
PBS phosphate buffered saline
pfu plaque forming unit
PGK phosphoglycerate kinase
PoDg posterior area of the dentate gyrus
Poly(A) polyadenylation site
PPE preproenkephalin
S sense
SINES short interspersed elements
SNc substantia nigra pars compacta
SP signal peptide
TAP tobacco acid phosphatase
TBPS tert-butylbicyclophosphorothionate
TF transcription factor
TH tyrosine hydroxylase
tk thymidine kinase
TM1-TM4 transmembrane domains
TR terminal repeat
UL unique long
Us unique short
V ventricles
ZF zinc finger



Summary

Viral vectors represent powerful tools in the rapidly developing field of gene therapy of 

the mammalian central nervous system. Interest in HSV -1 in particular as a vector relates 

primarily to its ability to establish long - term latent infections in neuronal cells. A goal of 

this research was the development of a safe HSV - 1 vector that would deliver a reporter 

gene to target cells in the CNS and restrict its expression to a specific cell - type by the 

use of a neuronal promoter. A second goal was to add to the present limited 

understanding of neuron - specific promoter structure.

The murine GABAa receptor 6 subunit gene promoter was selected for use as a prototype 

neuronal promoter as it is moderately expressed and has a well characterised restricted 

expression pattern in the CNS. Characterisation of the 5' - promoter region of the GABAa 

receptor 8 subunit gene was achieved by sequencing 10.5 kb of DNA from the 5' - 

upstream region. Analysis of this sequence revealed the presence of several putative 

recognition sites for transcription factors. Identification of the transcription start points 

showed two main clusters of start sites located 58 and 108 bases upstream from the 

translational start point. Comparison of about 3.5 kb of DNA sequence of the promoters 

of the rat and mouse genes showed a high degree of conservation of noncoding sequence 

between the species. The recognition site for a putative regulatory factor BSF 1 identified 

in the 5' - upstream sequence of the rat 5 gene was demonstrated to be absent in the 

mouse 5' - flanking sequence. Analysis of a range of promoter - reporter constructs in the 

NB4 1A3 cell line suggested the presence of a silencing element located between 4.5 kb 

and 6.3 kb upstream of the translational start point.

As a preliminary step to evaluating in vivo mutagenesis investigations of GABAa receptor 

8 subunit gene promoter function, targeted disruption of the GABAa receptor 8 subunit 

gene in embryonic stem cells was achieved. Two genomic DNA fragments from the 

GABAa receptor 8 subunit gene were selected and inserted into a simple replacement 

vector (pNT) containing the neomycin gene and the HSV thymidine kinase gene. A 

successful targeting event would result in the removal of the first exon, 4.5 kb of



promoter sequence and 2 kb of DNA from the first intron. Two targeted embryonic stem 

cell lines were isolated and can be used to make mice homozygous for the mutated gene. 

The GABAa receptor 6 subunit gene had previously been assigned to human 

Chromosome lp. Genetic mapping of the gene to rat chromosome 5 and mouse 

chromosome 4 was performed. These results agree with expected regions of synteny 

between human, mouse and rat.

A range of recombinant HSV - 1 viruses were produced which contained the E coli lacZ 

gene driven by different promoters. Two loci within the HSV - 1 genome were chosen as 

sites of insertion, LAT and Ul43 in two HSV - 1 viral variants, 1716 and 1764. Infection 

of primary cerebellar granule cell cultures with a range of these recombinant viruses 

revealed that the cerebellar granule cells were not readily infected by this viral variant. 

Stereotactic injection of the viruses into the cerebellum of adult rats failed to show 

specific P - galactosidase expression.

Nevertheless, the GABAa receptor 6 subunit gene promoter - lacZ fusion constructs can 

now be transferred to new HSV - 1 vectors with better growth characteristics thus 

furthering the original goal of this work.

xviii
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Chapterl General Introduction

For many tissues, for example liver, muscle and pancreas, DNA elements and their 

cognate transcription factors that mediate regulation of particular genes have been 

identified. The corresponding elements and transcription factors responsible for 

expression in the nervous system are still relatively unknown. The mammalian brain is 

the most complex vertebrate organ, comprising as many as 1000 different neuronal cell 

types (Jessell and Kandal, 1993). Understanding neuronal gene regulation is essential 

when investigating diseases of the central nervous system as abnormal regulation of gene 

expression is thought to underlie certain neurological conditions. In addition, changes in 

gene expression are thought to underlie some aspects of the plasticity of the nervous 

system, such as learning and memory (Black et al., 1987 ; Goelet et al., 1986).

1.1 GABA RECEPTORS

y-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian 

central nervous system (CNS) and has been shown to occur in about 30% of all central 

synapses (Bloom and Iversen, 1971). The actions of GABA are mediated by at least 3 

different receptor classes that have been defined pharmacologically : GABAa, GABAb 

(Bowery, 1993) and GABAc receptors. GABAa receptors form chloride - ion selective 

channels (Bormann, 1988; Silvilotti and Nistri, 1991) and are stimulated by GABA, 

muscimol and isoguvacine and inhibited by bicuculline and picrotoxin. GABAb receptors 

are 7 - transmembrane domain G protein - linked receptors that appear to be coupled to 

Ca2+ and/or K+ channels (Bormann, 1988; Bowery, 1993). They are stimulated by GABA 

and baclofen and are inhibited by phaclofen. A third class of GABA receptor, the 

GABAc receptors are stimulated by GABA, but are insensitive to both bicuculline and 

baclofen (Quian and Dowling, 1993; Feigenspan et al., 1993). These receptors are 

directly associated with CF ion channels. A subunit family recently identified contains 2 

members, pi and p2 (Cutting et al., 1991; Cutting et al., 1992) and is found mainly in the 

retina. Although the p subunits display 30% - 38% sequence homology to the GABAa 

receptor subunits, pharmacological studies show that these subunits differ from the 

GABAa receptor subunits in that they are insensitive to baclofen (Cutting et al., 1991, 

1992; Shimada et al., 1992) and as such have been classified as GABAc receptors.
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Chapterl General Introduction

1.1.1 The GABAa receptor

GABAa receptors belong to a superfamily of ligand - gated ion channels which includes 

nicotinic acetylcholine receptors (nAChR), glycine receptors (GlyR) and the 5-HT3 

receptor. It has been proposed that these receptors have evolved from a common ancestor 

by gene duplication and sequence mutation (Schofield et al., 1987). It is thought that the 

GABAa receptor and GlyR receptor families diverged from the original acetylcholine - 

gated ion channel (Arbas et al., 1991). Subsequently, the GABAa receptor itself diverged 

from an original single gene to give the present array of genes encoding subunit families 

and subunit isoforms within the families. The GABAa receptor has received attention as it 

is the site of action of a number of important centrally acting drugs. It forms a chloride - 

ion selective channel and contains specific binding sites for GABA, picrotoxin, 

barbiturates, benzodiazepines and anaesthetic steroids.

Due to the ubiquitous presence of GABAa receptors in the CNS, they have been 

implicated in the involvement of several neurological diseases which are thought to 

involve defects in inhibitory transmission e.g. epilepsy, panic disorder, anxiety and 

depression (Matsumoto, 1989). Several naturally occurring mutations of GABAa receptor 

subunit genes have been found in animals and these may be involved in some human 

diseases. Pcp mice with a 95% penetrant, recessive, neonatally - lethal clefl plate have been 

found to have a deletion of the cleft palate locus (cpl) on chromosome 7. This deletion 

has been found to include the genes encoding the GABAa receptor subunits a5, y3 and 

p3. (Culiat et al., 1993; Nakatsu et al., 1993). Mice containing a deletion which included 

the a5 and y3 subunit genes, but not the p3 subunit gene, developed a normal palate 

(Culiat et al., 1994). Furthermore, the cleft palate phenotype was rescued by introduction 

of a p3 subunit transgene, under the control of a P - actin promoter, into mice 

homozygous for the cleft palate deletion (Culiat et al., 1995). Thus it has been proposed 

that deletion of the P3 subunit gene contributes to the clefting defect in Pcp mice. The 

human counterpart of the region deleted in Pcp mice is Chromosome 15qll-ql3. It is 

possible that mutations occurring at this locus, especially those involving the p3 subunit 

gene, might contribute to familial or sporadic craniofacial abnormalities in man.
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Chapterl General Introduction

Another abnormality linked to human Chromosome 15qll-ql3 is Angelman Syndrome 

(AS) which is characterised by severe mental retardation, microencephaly, seizures, ataxia 

and craniofacial abnormalities (Angelmann, 1965; Magenis et al., 1990). It has been 

shown in some patients that deletion of the (33 subunit gene, but not the a5 subunit gene, 

results in AS (Sinnett et al., 1993). However, a single patient containing a translocation 

was found with an intact 03 gene (Reis et al., 1993). Also, an AS - like paternal 

imprinting has not been detected for the corresponding region of the mouse chromosome 

7 (Nicholls et al., 1993). Thus the involvement of GABAa receptor subunit genes in the 

aetiology of AS remains to be determined.

The receptor is comprised of 5 protein subunits arranged in a pentameric array around a 

central core which forms the ion channel (Nayeem et al., 1994). The exact identity of the 

5 subunits which form this array are unknown for any GABAa receptor in vivo. There are 

at least 7 distinct subunit classes and molecular cloning studies have revealed many 

subunit isoforms within these classes. Thus there exists a large family of closely related 

receptor subunits (a 1-6, 01-4, yl-4, 8, p 1-2, s and 7t) with properties that are similar but 

distinct; thus the possible number of receptor subtypes is immense.

1.1.2 Pharmacology of the GABAa receptor

Much of our understanding of the pharmacology of the GABAa receptor has been 

obtained from the study of neurones of the vertebrate CNS. As well as the GAB A binding 

site, for which a number of different agonists and antagonists are known, there are several 

other ligand binding sites. Barbiturates, neurosteroids, ethanol and general anaesthetics all 

act through their independent modulatory sites on the receptor to allosterically enhance 

the effect of GABA. Compounds acting at the benzodiazepine (BZ) binding site of the 

GABAa receptor can allosterically enhance the effect of GABA (BZ agonists), inhibit the 

effect of GABA (BZ inverse agonists) or simply inhibit the effects of agonists and inverse 

agonists (BZ antagonists). Also, picrotoxin and TBPS (t-butylbicyclophosphorothionate) 

act at a unique site at or close to the channel pore to inhibit the effect of GABA.
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1.1.2.1 The GABA binding site

GABAa receptors are activated by GABA and its structural analogues e.g. muscimol and 

THJP (4,5,6,7-tetrahydroisoxazolopyridin-3-ol). When GABA binds to the GABAa 

receptor it results in an increased chloride conductance of the supporting neuronal 

membrane (Curtis et al., 1968; Kelly et al., 1969). This increase is due to the opening of 

the ion channel of the GABAa receptor resulting in the passage of chloride ions into the 

cell. The agonist induced current decreases on continued exposure to high agonist 

concentrations as a result of receptor desensitisation (Mathers, 1987). The gating 

properties of the channel have been investigated using single channel current recording 

techniques (Hamill etal., 1981). The single channel currents, recorded from mouse spinal 

cord neurons in culture, show that for the main conductance state of the GABAa 

receptor, channels open either singly or in bursts of several openings. Increasing the 

concentration of GABA affects the receptor in several ways. It increases the frequency 

with which the channels open as well as increasing the time for which the channels stay 

open. It also results in an increased frequency of occurrence of bursts of channel openings 

(MacDonald et al., 1989a; Twyman et al., 1990).

Experimental evidence suggests that at least 2 molecules of GABA must bind to the 

receptor for full activation of the channel (Sakmann et al., 1983). Initially the properties 

of agonist binding sites of the GABAa receptor were studied using GABA, however the 

recognition site and the agonist recognition process were investigated using [3H] - GABA 

(Burch et al., 1983), and a number of different GABA analogues e.g. muscimol 

(Krogsgaard-Larson et al., 1979) and N - methyl GABA (Krogsgaard-Larson and 

Johnston, 1978). Bicuculline acts as a competitive antagonist at the GABAa receptor 

(Curtis et al., 1970; Barker et al., 1983). The phenylaminopyridazine, SR95531, also 

shows competitive inhibition of GABAa receptor mediated responses and is about 20 

times more potent than bicuculline (Mienville and Vicini, 1987).

1.1.2.2 The benzodiazepine site

The benzodiazepines (BZ) are the most frequently prescribed psychoactive drugs and are 

used largely for the treatment of anxiety and insomnia. They are also potent 

anticonvulsants and muscle relaxants (Martin, 1990). Studies have shown that the BZs
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produce a facilitation of GABAa receptor mediated transmission at both pre - and 

postsynaptic sites in the mammalian CNS (Haefely and Pole, 1983). They appear to 

increase the frequency of channel opening with little effect on the channel open time or 

channel conductance (Study and Barker, 1981). Single channel analysis has indicated that 

the increase in channel opening frequency is due to an increased occurrence of bursting 

activity, though the average duration of the bursts did not increase in the presence of the 

BZs (Twyman et al., 1989). Biochemical experiments demonstrated the existence of 

specific high affinity binding sites for BZs on brain membranes that are closely associated 

with GABAa receptors (Braestrup and Squires, 1977). Thus binding of [3H] - 

flunitrazepam to brain membranes was chloride - dependent and stimulated by GABA, 

muscimol (Tallman et al., 1978; Olsen, 1982) and a large selection of GABA analogues 

(Braestrup and Nielsen, 1983). This stimulation was blocked by bicuculline and other 

GABAa receptor antagonists.

Richards et al. (1983) have mapped the distribution of the BZ binding sites in the 

mammalian CNS in considerable detail, and have found that they have a similar 

distribution to the GABAa receptor binding sites. However, the match is not exact 

suggesting that not all GABAa receptors have an associated BZ binding site, although 

there appears to be a close association between the two recognition sites. Further studies 

have shown that purification of the BZ recognition site results in co - purification of the 

GABAa receptor indicating that the two recognition sites are located on a common 

protein structure.

Prior to cloning of the subunit cDNAs, GABA/BZ receptors were subdivided into two 

pharmacological classes BZI and BZII, which could be differentiated by their different 

binding affinities for the triazolopyridazine CL 218 872 and zolpidem (Squires et al., 

1979). BZI type receptors have a higher affinity for these compounds and constitute the 

predominant GABAa receptor class in the CNS. The low affinity type II receptors are 

found principally in the cortex, hippocampus and spinal cord (Olsen and Tobin, 1990). 

There are also known to be a large population of receptors in the cerebellum which bind 

the BZ inverse agonist Ro 15-4513 with high affinity but are insensitive to classical BZs 

e.g. diazepam (Sieghart etal., 1987).
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Photoaffinity labelling experiments have shown that the pharmacology of the BZ site is 

defined by the type of a  and y subunit present in the receptor (Stephenson et al., 1990).

1.1.2.3 The barbiturate site

Anticonvulsant and anaesthetic barbiturates potentiate the electrophysiological response 

to GABA but their mechanism of action differs from that of the BZs. At low 

concentrations they seem to facilitate GABA - mediated transmission by increasing the 

channel opening time, while having no effect on channel conductance or opening 

frequency (Study and Barker, 1981). Channel - gating studies have revealed that the 

barbiturates increase the channel burst duration but have no effect on bursting frequency 

(Twyman et al., 1989; Macdonald et al., 1989b). High concentrations of the barbiturates 

can directly activate GABAa receptors (Higashi and Nishi, 1982).

1.1.2.4 The steroid site

Steroids have been found to enhance GABAa receptor function e.g. 5a-pregnan-3a-ol- 

20-one (3a-OH-DHP) and 5ct-pregnan-3a,21-diol-20-one allosterically enhance the 

response to GABA (Puia et al., 1990; Hadingham et al., 1993) and this has been shown to 

be due to both an increase in the duration of channel opening and an increase in the 

frequency of openings (Twyman and MacDonald, 1992). Other steroids (e.g. 

pregnanolone sulphate) inhibit the response to GABA (Majewska et al., 1990).

1.1.2.5 Picrotoxin/TBPS site

Picrotoxin is a noncompetitive antagonist of the GABAa receptor and appears to act at an

allosteric site located close to the channel pore. It competitively displaces the cage

convulsant tert-butylbicyclophosphorothionate (TBPS) from its specific high affinity 

binding sites on brain membranes (Squires et al., 1983). Pribilla et al. (1992) showed that 

residues in the TM2 region of the glycine receptor P subunit were implicated in conferring 

picrotoxin resistance to heteromeric a/p glycine receptors and so it is possible that 

corresponding amino acids in the GABAa receptor TM2 region provide the binding site 

for picrotoxin. All recombinant forms tested so far are blocked by picrotoxin in a similar 

manner, and thus the contribution of different subunits to this site remains to be 

determined.
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1.1.2.6 Other sites

j  In addition to the major sites already listed, the GABAa receptor also appears to contain

| binding sites for a number of other modulators including Zn2+, avermectin and alcohols

| (Sieghart, 1992). Figure 1.1 (Stephenson, 1995) illustrates the complex pharmacology of

| the mammalian GABAa receptors, displaying a variety of allosteric interactions which lead
[
I to increases or decreases in GABA mediated transmission.

Benzo-

receptor

TBPS
Picrotoxin GABA 

Muscimol 
Bicuculline 
SR 95531

Barbiturates

Ro 5-4864
Icohols

Figure 1.1 Schematic presentation o f the various binding sites associated with 

GABAa receptors
I
! Abbreviations used : misc. = miscellaneous. (Adapted from Stephenson, 1995).
ii

1.1.3 Structure of the GABAa receptor

Purification of the GABAa receptor from bovine brain led to the isolation of cDNAs 

encoding the a l  and pi subunits (Schofield et al., 1987). The deduced amino acid 

sequences of the encoded polypeptides were found to share approximately 35% 

homology. Comparison of these amino acid sequences to those of the nAChR and glycine 

receptors, revealed structural similarities, leading to the proposal that these receptors are 

members of a ligand - gated ion channel superfamily (Barnard et al., 1987; Schofield et 

al., 1987).
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Figure 1.2 illustrates the basic structure of the GABAa receptor. The N and C terminal 

domains are thought to be extracellular. The N terminal region contains a number of 

putative N -linked glycosylation sites (Barnard et a l, 1987; Schofield et al., 1987) and a 

Cys - Cys loop which has been proposed to play a role in agonist binding (Cockcroft et 

al., 1990). There are 4 putative membrane spanning domains (TM1 - TM4), the second of 

! which is proposed to form the inner lining of the ion channel. Between the third and fourth
i

transmembrane domains is a hydrophilic cytoplasmic region of highly variable sequence

| containing phosphorylation sites that are in intracellular regulatory mechanisms (Schofield
[

et al., 1987; Olsen and Tobin, 1990).

COOH

TM4TM3TM1 TM2

Figure 1.2 Basic structure of the GABAa receptor subunits

A schematic diagram showing the basic structural features common to all the GABAa 

receptor subunit genes. The N and C terminal domains are thought to be extracellular.

The transmembrane domains are depicted as cylinders within the cell membrane. 

Abbreviations used are : NH2 = N terminal domain, TM1 - TM4 = transmembrane 

domains, COOH = C terminal domain.
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GABAa receptors have been solubilised from mammalian brain membranes using a variety 

of non-denaturing detergents. This solubilisation was followed by purification by BZ 

affinity chromatography (Stephenson, 1988). Analysis of purified GABAa receptors by 

SDS - PAGE revealed a multi-subunit structure. Initially it was thought that the purified 

receptor contained 2 major subunits, a  (53 kDa) and P (57 kDa) (Stephenson, 1988; 

Sieghart, 1991). However, based on an overall complex molecular weight of 220000 - 

240000 determined by radiation inactivation (Chang and Barnard, 1982) or by gel 

filtration chromatography (Sigel et al., 1983; Martini et al., 1982), it was proposed that 

the purified receptor was a hetero - oligomeric complex with a stoichiometry of a2p2 

(Casalotti et al., 1986; Mamalaki et al., 1987). Microheterogeneity of both bands was 

demonstrated by protein staining, photoaffinity labelling and immunoblotting (Bureau and 

Olsen, 1990; Fuchs et al., 1990; Park and deBlas, 1991).

Subsequent studies revealed the existence of 2 other a  subunits (Levitan et al., 1988). 

They also showed that by combining one of the a  subunits (a l, a2, a3) with the pi 

subunit in Xenopus oocytes, functional receptors could be produced. Levitan et al. (1988) 

were unable to demonstrate a robust benzodiazepine effect with these receptors, 

suggesting that an additional subunit, or factor, was required to produce GABAa 

receptors that had the full range of characteristics found in vivo.

cDNA clones encoding further GABAa receptor subunits were identified by using a 

degenerate pool of 23 - base oligonucleotides. One such clone encoded a polypeptide (y2) 

that shares about 40% sequence identity with the a l  and pi subunits. When y2 was co - 

expressed with the a l  and pi subunits in heterologous expression systems, the resultant 

receptor had a high - affinity binding site for benzodiazepines and showed potentiation of 

the GABA mediated response by BZ (Pritchett et al., 1989a; Ymer et al., 1989a, b).

Initially, 4 different GABAa receptor subunit families have been identified on the basis of 

sequence similarity and have been named a, p, y and 8. More recently a further two 

putative subunit families have been isolated - 8 and n (Davies et al., 1997: Hedblom and
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Kirkness, 1997).There is 30% - 40% sequence identity among the subunit families and 

greater than 70% sequence homology between members of the same family.

1.1.4 Molecular biology of the GABAa receptor

1.1.4.1 Receptor heterogeneity

A large number of GABAa receptor subunit cDNAs have been isolated. Initially, in the 

rat, 13 different subunits were identified, and these were divided into 4 families according 

to sequence homology i.e. a  (1-6), P (1-3), y (1-3) and 8 (Wisden and Seeburg, 1992). 

More recently, two novel GABAa receptor subunit classes have been identified. After 

screening an EST (expressed sequence tag) database with a peptide consensus sequence 

from known family members, a new class of subunit - s was identified (Davies et al., 

1997). The sequence of this EST was used to isolate a cDNA clone from a hippocampal 

library. This contained a large open reading frame which encoded a 506 amino acid 

polypeptide showing 38% - 43% amino acid identity to the y - subunits and 28% - 30% 

identity to the a  - subunits.

The other GABAa receptor subunit class recently identified has been named n (Hedblom 

and Kirkness, 1997). This was also identified by searching an EST database. The sequence 

from this EST was used isolate a cDNA clone from a pancreatic carcinoma library. The 

cDNA contains an open reading frame encoding a 440 amino acid polypeptide which is 

most closely related to the p - subunits (37% amino acid identity), the 5 subunit (35%).

Experimental work on GABAa receptors from non - mammalian species has shown a high 

degree of conservation through evolution. One example of this is the chicken a l  subunit 

which shows 98% homology to any mammalian a l  subunit (Bateson et al., 1991). Two 

novel subunits have been identified in the chick, P4 (Lasham et al., 1991) and y4 (Harvey 

et al., 1993). As yet these have not been identified for other vertebrate species.

The identification of alternate splice variants of some GABAa receptor subunits has 

further increased the pool of possible receptor subunit combinations. The y2 subunit exists 

in 2 forms which differ by the presence (y2L) or absence (y2s) of 8 amino acids in the
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region that lies between the 3rd and 4th transmembrane (TM) domains. This has been 

shown to be present in bovine, human (Whiting et al., 1990), mouse (Kofiiji et al., 1991) 

and chicken brains (Glencorse et al., 1990, 1992) and the 8 amino acid insertion present in 

the y2L variant is absolutely conserved between these species. Alternative splicing of the 

human p3 (Kirkness and Fraser, 1993) and rat a6 (Korpi et al., 1994) genes have also 

been identified. Splice variants of the chick P2 and P4 subunits have been shown (Bateson 

et al., 1991; Harvey et al., 1994). The insertion of 17 amino acids between TM3 and TM4 

distinguishes the p2L variant from the shorter P2S form (Harvey et al., 1994). The P4 

forms differ by the presence (P4') or absence (P4) of 4 amino acids in the region that lies 

between the 3rd and 4th TN domain (Bateson et al., 1991).

1.1.4.2 Receptor subunit families

Heterologous expression studies of recombinant receptors have identified specific roles 

for individual subunit classes. However, there are also many characteristics of the 

receptors that are specified by interactions between subunits of different classes.

1.1.4.2.1 a  - subunits

This is the largest subunit class comprising 6 members. It is believed that they specify the 

heterogeneity of the BZ binding site. Two types of BZ receptor were originally proposed 

on the basis of pharmacology and distribution. The BZI subtype is found throughout the 

brain and displays a high affinity for C1218-872 (a triazolopyridazine) and P - carbolines. 

The BZII subtype is found principally in the cortex, hippocampus and spinal cord. (Doble 

and Martin, 1992; Wisden and Seeburg, 1992). In heterologous expression systems, 

varying the a  subunit in combination with the P and y subunits suggested differences in 

BZ pharmacology, GABA - BZ interaction and steroid modulation of GABA responses, 

but not barbiturate, picrotoxin or bicuculline sensitivity. Ligand - binding studies, using ax 

pxy2 combinations, revealed a correlation between the presence of an a l  subunit with 

BZI pharmacology and a2 or a3 with BZII pharmacology (Pritchett et al., 1989b). 

Altering the particular p subunit present appeared to have no effect. It has also been 

shown that the a5 subunit can confer a BZII pharmacology different to that seen for the 

a2 or a3 subunits, demonstrating heterogeneity within the BZII receptor type. Receptors
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containing a5 show a lower affinity for zolpidem than those containing a2 or a3, and a 

higher affinity for C1218-872 (Pritchett and Seeburg, 1990). Receptors containing an a4 

or a6 subunit appear to constitute a subfamily of GABAa receptors with a distinct type of 

BZ pharmacology. a6 - containing receptors exhibit high affinity binding of muscimol, 

Ro 15-4513 and the inverse agonist DMCM (6,7-dimethyl-4-ethylcarboline-3-carboxylate 

methyl ester), but do not bind other BZs or p - carbolines (Ltiddens et al., 1990). The a6 

subunit is only expressed in the cerebellum and is selective for Ro 15-4513, an antagonist 

of alcohol induced motor incoordination and ataxia. Receptors containing the a4 subunit 

display pharmacological characteristics similar to those observed for subunit 

combinations containing the a6 subunit. Thus muscimol and Ro 15-4513 bind with high 

affinity, while diazepam, flunitrazepam or CL 218,872 do not bind (Wisden et al., 1991).

Using site-directed mutagenesis, a single amino acid change between a l  and a3 subunits 

has been shown to confer BZI or BZII pharmacology. Substitution of a single glutamate 

residue (Glu-201) in the a3 subunit by a glycine residue (Gly-210, which appears in the 

corresponding position of the a  1 subunit), confers on the hybrid receptor (a3G225EP2y2) 

high affinity for C1218-872, effectively changing the pharmacology of the receptor from 

BZII to BZI (Pritchett and Seeburg, 1991). Similarly, a specific histidine residue (His- 

100) present in some a  subunits (a2, 3 and 5, His 102 in a l)  has been shown to be 

necessary for high affinity BZ agonist binding (Wieland et al., 1992; Korpi et al., 1993).

GABA sensitivity appears to be altered depending on which a  subunit is combined with 

pi. The a4pi combination is less sensitive to GABA than a lp l  (Khrestchatisky et al., 

1989), while the a5pl combination is more sensitive than a lp l  or a3pi (Malherbe et 

al., 1990; Sigel et al., 1990). Addition of y2 seems to maintain or even increase the 

effects of the a  subunit present on GABA sensitivity (Sigel et al., 1990). The a  subunit 

also has an effect on the steroid action. Combinations of a ip i  or a3pi display greater 

potentiation than a2pi (Shingai et al., 1991).

A major role in determining the nature of binding sites for GABA and some of the 

allosteric effectors has therefore been assigned to the a  subunit.
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1.1.4.2.2 p  - subunits

The P subunits are highly sequence - conserved, do not have a hydrophilic C terminus 

and contain a larger intracellular domain than other subunits (Levitan et al., 1988). While 

all of the P subunits tested form GABA - responsive chloride channels when co - 

expressed with the a l  subunit, the p2 subunit has been shown to be the most prevalent 

(Benke et al., 1994). The markedly different mRNA distributions of the 3 p subunit 

isoforms in the mammalian CNS appear to suggest a functional significance for their 

existence (Wisden et al., 1992: Laurie et al., 1992a; Laurie et al., 1992b). They are 

known to play a role in the formation of part of the neurotransmitter binding site, as well 

as influencing receptor assembly and mediating some of the affects of protein kinase 

phosphorylation of GABAa receptors (Connolly et al., 1996; Moss and Smart, 1996). In 

vitro and in vivo phosphorylation studies suggested that p subunits all contain highly 

conserved phosphorylation sites for protein kinase A (PKA) within their major 

intracellular domains (Kano and Konnerth, 1992; Moss and Smart, 1996). However, 

McDonald et al. (1998) demonstrated that only the pi and P3 subunit -  containing 

receptors (but not P2) can be phosphorylated by PKA. They showed that the 

phosphorylation of either the pi or P3 subunits resulted in either reduced or enhanced 

GABA - activated currents Thus the differential behaviour of neuronal GABAa receptors 

.following phosphorylation by PKA can be accounted for by the presence of different P 

subunits in the receptor complex.

The initial pharmacological studies of GABAa receptors focused on the role of the a  and 

y subunits. In 1993, Hadingham et al. demonstrated that neither the affinity nor efficacy 

of a number of benzodiazepine binding site compounds, a barbiturate and several 

neurosteroids were influenced by the type of p subunit present in the receptor molecule. 

Thus they proposed that the p subunit did not significantly influence the benzodiazepine, 

barbiturate or steroid site pharmacologies of GABAa receptor subtypes. However, Hill - 

Venning et al. (1997) demonstrated that the general anaesthetic etomidate enhanced 

GABA - activated currents of recombinant GABAa receptors in a manner that was 

dependent upon the identity of both the a  and p subunit isoforms. They concluded that 

the subtype of p subunit influences the potency with which etomidate potentiates GABA-
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evoked currents. Thus while initial studies led to the belief that the P subunits played 

mainly a structural role in the GABAa receptor, while also forming with the a  and y 

subunits the GABA agonist binding sites, it now appears that they play more complex 

role in the GABAa receptor pharmacology.

1.1.4.2.3 y-subunits

There are clear differences in both the binding and the functional properties of 

recombinant receptors containing different y subunits. All 3 y subunits, when combined 

with a  or p subunits, can confer different BZ binding on recombinant receptor complexes 

(Knoflach et al., 1991; Pritchett et al., 1989b; Ymer et al., 1990). Some BZ effects, 

however, may be attributed to differential co-operative interactions between y and a  

subunits.

In recombinant receptors containing an a  and p subunit, the yl subunit produces a 

marked decrease in affinity for the antagonist Ro 15-1788 and inverse agonist DMCM in 

comparison to y2 - containing receptors (Ymer et al., 1990). In contrast, y3 - containing 

receptors show a marked decrease in BZ agonist affinity compared to y2 receptors, while 

both y2 and y3 have similar affinities for antagonists and inverse agonists (Herb et al.,

1992). Exchanging the y2 subunit for a yl subunit in aPy combinations changes the 

action of DMCM from that of agonist to antagonist (Puia et al., 1991). In general, the 

higher affinities of BZ ligands for y2 - containing receptors is reflected in increased 

modulation of GABA - gated currents (Herb et al., 1992; Knoflach et al., 1991; Puia et 

al., 1992).
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The y2L subunit alternative splice variant has been shown to be responsible for conferring 

ethanol enhancement in receptors expressed in Xenopus oocytes from recombinant clones 

and brain mRNA (Wafford et al., 1991). The previously proposed phosphorylation site 

within the 8 amino acid insert of the y2L subunit (Whiting et al., 1990) appears to be 

essential for this effect.

1.1.4.2.4 S subunit

The 8 subunit is discussed in detail in Section 1.3.

1.1.4.2.5 e-subunit

The pharmacological properties of this subunit have been investigated by in vitro-  

expression studies (Davies et a l, 1997). They showed that the 8 subunit behaves 

differently from the other GABAa receptor subunits. It was demonstrated that the 8 

subunit could assemble with other subunits and it appeared to confer an insensitivity to the 

potentiating effects of intravenous anaesthetic agents. It also abolishes the normal 

outward rectification of recombinant receptors in which it assembles. It is thus possible 

that the s subunit can confer additional pharmacological properties to GABAa receptors.

1.1.4.2.6 n-subunit

While GABAa receptors have been detected in non - neuronal cells, their precise function 

in these cells has not been determined. The n subunit has been detected in a number of 

different human tissues, but is particularly abundant in the uterus. The pharmacological 

properties conferred by the n subunit were examined by in vitro expression studies 

(Hedblom and Kirkness, 1997). Like the 8 subunit, the k subunit behaved differently from 

the other GAB Aa receptor subunits. It assembled with other subunits to form recombinant 

receptors with unique ligand - binding properties. In particular, the k subunit reduced the 

sensitivity of the receptors to the endogenous steroid pregnanolone, which has been 

proposed to regulate uterine motility by inhibiting contractions (Majewska and Vaupel, 

1991). The physiological significance of this effect has yet to be determined.
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1.1.5 GABAa receptor expression patterns

1.1.5.1 Cell - specific expression

The existence of 19 GABAa receptor subunit genes (to date) has led to much speculation 

about the molecular structure of the possible GABAa receptor types. It is probable that 

different combinations of subunits are present in different neuronal populations. Several 

approaches have been used to attempt to identify the structure of in vivo receptors, e.g. in 

situ hybridisation to determine the sites of gene expression, immunocytochemistry to 

identify the location of the receptor polypeptides and immunoprecipitation using subunit - 

specific antibodies.

Wisden et al. (1992) studied the expression pattern of 13 GABAa receptor subunit - 

encoding genes in the adult rat brain by in situ hybridisation. Each mRNA displayed a 

unique distribution ranging from ubiquitous (a l mRNA) to narrowly confined (a6 mRNA 

was present only in cerebellum granule cells). This work allows for some plausible 

deductions of possible receptor subunit combinations. The a l  and 02 mRNAs are most 

widely co - distributed in the brain. Also the y2 mRNA often co-localises with this pair. 

The al02y2 receptor which exhibits BZI pharmacology (Pritchett et al., 1989b), is 

proposed to be the major GABAa receptor subtype (Laurie et a l, 1992a ; Shivers et a l, 

1989 ; Wisden et a l, 1992). Similarly, the major receptors comprising the BZII subtypes 

are proposed to be a203y2, a30xy2 and a501y2 combinations (Wisden et a l, 1992). 

Another frequently occurring combination is that of a2 and 03 mRNAs, together with 

various y subtype mRNAs. The distribution and intensity of the a5 and 01 probe 

hybridisation signals appear to be identical throughout most of the brain, suggesting that 

they are co - expressed and may co assemble into receptors. In a large number of regions 

(principally the thalamic nuclei) the 6 subunit mRNA co - localises with the a l ,  a4 and 0 

2 mRNAs, although its distribution is more restricted. The 8 subunit expression pattern is 

discussed more fully in Section 1.3 of this chapter.

The expression pattern of the e subunit was determined by Northern blot analysis (Davies 

et a l, 1997). While little expression was evident in whole brain samples, there were higher 

levels of transcripts detected in amygdala, the thalamus and especially in the subthalamic
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nuclei. The latter is of particular interest as the transcripts of the y and 5 subunit are 

detected only at relatively low levels in the subthalamic nuclei which may suggest the 

possible involvement of alternative receptor subunits in this region.

1.1.5.2 Developmental expression

The role of the perinatal GABAa system appears to differ greatly from that in the adult 

CNS. In the foetal and neonatal hippocampus, GABA - activated chloride channels lead to 

marked membrane depolarisation (Ben-Ari et al., 1989). Furthermore, activation of 

neonatal GABAa receptors induces a rise in intracellular calcium concentration in both 

cerebellar and cortical neurones (Connor et al., 1987; Yuste and Katz, 1991). Increased 

intracellular calcium is an important factor in neuronal growth and differentiation (Kater 

and Guthrie, 1990; Spitzer, 1991). Consistent with the different roles of GABA in the 

neonate and adult, are the observed changes in the pharmacological properties of GABAa 

receptors during rat and primate brain development. For instance, the proportions of 

GABAa and BZ receptor subtypes alter, with low - affinity GABAa receptors appearing 

later than those of high affinity, and type II and I BZ receptors predominating in the 

neonate and adult respectively (Chisholm et al., 1983: Reichelt et al., 1991).

Laurie et al. (1992b) performed gene expression studies of GABAa receptor subunits 

during both embryonic and postnatal development in the rat brain. They observed that the 

expression of each GABAa receptor subunit gene changes during early development, and 

these changes appear to coincide with the alteration of GABAs role from excitatory, 

neurotrophic factor to inhibitory neurotransmitter.

Thus, each subunit appears to display a specific developmental expression pattern. The 

levels of the a2, a3, a4 and a5 subunit transcripts (Laurie et al., 1992b) are much higher 

in the brains of developing rats than in those of adult animals, whereas the a l  and a6 

subunit transcripts (Laurie et al., 1992b) are undetectable before birth and reach peak 

expression in the adult rat brain. The p2 and 8 subunit transcripts are also present 

predominantly in the adult rat brain (Laurie et al., 1992b). The alternative splicing of the y 

2 subunit transcript in the rat is also developmentally regulated, with levels of y2s - 

subunit transcripts remaining fairly constant from birth to adult while the y2L - subunit
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transcripts rise from being almost undetectable at birth to peak expression levels in the 

adult rat brain (Bovolin et al., 1992b).

Laurie et al. (1992b) have shown that in regions of the brain that express only a subset of 

GABAa receptor subunit genes, a developmental switch from one subunit combination to 

another can occur. For example, in the globus pallidus an a2/a302yl combination 

changes to that of an al(32yl/y2 combination (Laurie et al., 1992b). Such switches in 

expression are not universal however, with some brain regions and cell types displaying 

differential developmental profiles. Thus, in the cerebellum, the levels of a l ,  p2, P3 and y 

2 subunit transcripts in Purkinje cells did not alter from post - natal day 6 to adulthood 

(Laurie et al., 1992b). In contrast, the large number of transcript types detected in post - 

migratory cerebellar granule cells could be classified into those that showed little change 

in levels from post - natal day 6 to adulthood (a2, a3, pi, yl and y3 ), and those (a l, a6, 

p2, p3, y2 and 6) that showed a significant increase in their levels over the same time 

period (Laurie et al., 1992b). Thus in 2 different cell types of this brain region, the a l ,  p2, 

p3 and y2 subunit transcripts display differential developmental regulation.

1.2 NEURON - SPECIFIC GENE EXPRESSION

By comparison with other tissues (Johnston and McKnight, 1989; Struhl, 1991), neuron - 

specific gene expression probably occurs at the transcriptional level through the 

interaction of cis - acting regulatory sequences with gene regulatory proteins within the 

nervous system. Transcription of eukaryotic protein - coding genes is performed by RNA 

polymerase II (pol II), which combines with numerous auxiliary factors to form a “core 

transcription complex” (Gill, 1994). In many genes this transcription complex binds to a 

TATA box which is a consensus sequence that has been shown to be present in the 

promoter region of a large number of genes and lies about 30 bases upstream of the 

transcription start site. However, many genes lack TATA boxes and so in these genes, the 

pol II transcription complex must bind to, and initiate transcription from less well defined 

initiator elements (Gill, 1994).

All these initiator complexes appear to require additional factors to achieve in vivo gene 

transcription patterns. Thus numerous cis - acting regulatory DNA sequences which can
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mediate transcriptional activation (enhancers) or transcriptional repression (silencers) have 

been identified. These sequence - specific regions bind transcription factor proteins (TFs) 

and it is through these TFs binding to the DNA (protein - DNA interactions) and to each 

other (protein - protein interactions) that constitutive, inducible and tissue - specific 

regulation of gene expression can be achieved (Figure 1.3; Struhl,1991; Tjian and 

Maniatis, 1994).

Exon 2

Figure 1.3 Schematic diagram of regulatory elements in genomic regions of a 

prototypical gene.

Organisation of regulatory elements in the genomic region of a typical eukaryotic gene. 

Multiple positive and negative regulatory elements can be located in the 5' - upstream, 

intronic and 3' - regions. (Adapted from Grant and Wisden, 1997).

Structure - function studies of various cloned eukaryotic transcription factors have 

revealed a modular structure consisting of DNA binding and transcriptional activation 

domains combined, in some cases with specific homo - or heterodimer interfaces (Mitchell 

and Tjian, 1989). A comparison of amino acid sequences from several cloned genes has 

led to the identification of distinct structural motifs responsible for transcriptional 

activation, DNA binding and dimerization. Transcriptional activation domains appear to 

include various structural features for example, acidic helices and glutamine - rich, proline 

- rich and serine/threonine domains (Ptashne, 1988; Courey et al., 1989; Mermod et al., 

1989; Tanaka and Herr, 1990). These are however as yet poorly defined.

Characterisation of DNA binding domains has revealed more clearly defined structural 

features. These include zinc fingers, helix - turn - helix/homeo domains, basic leucine
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zipper (b-ZIP) proteins and a variety of other “basic” motifs (Miller et al., 1985; 

Kadonaga et al., 1987; Clerc et al., 1988; Hoey and Devine, 1988; Landschulz et al., 

1988; Muller et al., 1988; Sturm et al., 1988).

In addition to structural domains that form interactions with DNA, some regulatory 

proteins also contain protein - protein binding domains. In particular some classes of DNA 

- binding proteins rely on the formation of specific homo - or heterodimers to create a 

functional DNA recognition site. One dimerisation motif identified is the so - called 

“leucine repeat” of the b-ZIP class of DNA - binding proteins (Landschulz et al., 1988). 

This amphipathic a  - helix motif is characterised by the presence of a leucine residue at 

every seventh position. Two leucine repeats aligned in a parallel fashion are thought to 

form a coiled - coil structure resulting in either homodimers or heterodimers. Examples of 

this include the CCAAT/enhancer binding protein, Jun - Fos and GCN4 (Hope and Struhl, 

1987; Kouzarrides and Ziff, 1988; Landschulz et al., 1988 and 1989; O’Shea et al., 1989; 

Turner and Tjian, 1989).

Another class of DNA - binding and dimerisation domain identified is the helix-loop-helix 

(HLH) motif (Murre et al., 1989b). This motif has been found in a variety of enhancer 

binding proteins and putative transcription factors involved in the control of cellular 

proliferation and differentiation (Edmonson and Olsen, 1989; Mellentin et al., 1989; 

Murre et al., 1989b; Beckmann et al., 1990; Henthron et al., 1990). A distinct feature of 

HLH proteins is the ability to form heteromeric complexes with many different members 

of this large family. An example of this is with muscle - specific factors MyoD and 

myogenin which can form heterodimeric complexes with each other as well as 

homodimers (Murre et al., 1989b).

Another family of transcription factors identified is the basic helix-loop-helix-leucine 

zipper (b-HLH-Zip) family (or c-myc family). This includes many nuclear eukaryotic 

proteins e.g. Myc, Max, Mad, AP-4, TFEB, MiTF, USF and ADD1 (Amati and Land, 

1994; Baxevanis and Vinson, 1993; Tassabehji et al., 1994; Tontonoz et al., 1993; 

Henrion et al., 1996). Through binding to the target DNA as homo - or heterodimers, all 

these factors regulate a variety of genes involved in important cellular processes including
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differentiation, cell cycle regulation and apoptosis. Thus the combined action of different 

HLH proteins, leucine zippers and b-HLH-Zip proteins may provide an intricate network 

for directing eukaryotic gene transcription.

Many neuronal genes are expressed in more than one, but still a limited number of cell 

types. This restricted expression can be controlled by the presence of cell - specific 

positive enhancers (Figure 1.4). These bind transcription factors which are specific for 

each cell type in which the gene is expressed.

RNA 
Pol II

Exon 1

Figure 1.4 Activation o f gene expression by enhancer elements

The binding of TFs A, C and D to their respective DNA recognition sequences, and their 

intramolecular interactions with each other and the RNA pol II - protein complex results 

in activation of gene transcription. (Adapted from Grant and Wisden, 1997).

An example of this is found in the Drosophila FMRFamide neuropeptide gene promoter 

region (Schneider et al., 1993). This contains multiple discrete enhancer regions which are 

required for expression in different neuronal cell types in the fly brain. Another example of 

restricted expression is found in the olfactory system where genes encoding proteins 

involved in olfactory transduction are expressed exclusively in the sensory neurons of the 

olfactory system (Wang et al., 1993). Analysis of the regulatory regions of six of these

2 1



Chapterl General Introduction

genes identified a recognition sequence for a putative transcription factor binding site 

(Kudrycki et al., 1993; Wang et al., 1993). Kudrycki et al. (1993) showed that this region 

was sufficient to restrict reporter gene expression to the olfactory epithelium. The TF that 

binds to this motif (Olf-1) was isolated using a yeast one - hybrid system and belongs to 

the HLH class of TFs (Wang and Reed, 1993).

Unlike other tissue - specific genes, the majority of neuron - specific genes that have been 

studied to date appear to use negative regulation as a major mechanism for neuron - 

specific regulation (Mandel and McKinnon, 1993). The reasons for this are unclear, 

however it could be due to the fact that, to a much greater extent than other tissues, the 

nervous system contains thousands of distinct cell types within a single “tissue”. Thus, in 

addition to mechanisms specifying “brain - specific” gene expression, there must also be 

mechanisms in place to restrict expression to a particular subset of neurons. These two 

forms of negative regulation can be achieved with the use of silencers (Figure 1.5). 

Global silencing involves repression of neuronal genes in nonneuronal cells and restricted 

silencing results in the restriction of expression of a neuron - specific gene to only a subset 

of neurons (Grant and Wisden, 1997).

Exon 1

Figure 1.5 Repression o f gene expression from  silencing elements 

The binding of TF B to its recognition site sterically blocks the binding of TF C to its 

binding site. In addition, the presence of the TF B complex disrupts the RNA pol II - 

protein complex. Thus the D-A-C protein complex seen in Figure 1.4 is not formed and 

gene transcription is repressed (Adapted from Grant and Wisden, 1997).
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Several regions identified in the promoters of neuron - specific genes have been shown to 

act as silencers. One of these is the neural restrictive silencer element (NRSE). NRSEs 

from various genes (Table 1.1) have been shown to have some functional role in silencing 

the expression of neuronal genes in nonneuronal cells by binding a sequence - specific 

protein found in nonneuronal cells, but absent in neuronal cells (Kraner et al., 1992; Mori 

et al., 1992; Maui et al., 1990; Li et al., 1993).

Table 1.1 NRSE consensus sequences

Gene NRSE sequence Reference

SCG10 TTCAGAACCACGGACAGCACC Mori et al., 1992

N all TTCAGAACCACGGACAGCACC Maue et al., 1990

DBH AGCAGCTCCTCGGACCTCA-G Ishiguro et al., 1993

Synapsin TTCAGCACCGCGGACAGTGCC Li et al., 1993

oi3 NKA CTT AGCTTCTCGGTGG-CGCC Pathak et al., 1994

DNA consensus sequences for the neural restrictive silencer element for which a 

functional activity in nonneuronal cells has been demonstrated by deletion analysis and 

protein binding studies. (Table adapted from Grant and Wisden, 1997)

Abbreviations used : NRSE = neural restrictive silencer element, Na II = sodium channel 

type II, DBH = dopamine (3 - hydroxylase, a3 NKA = Na,K - ATPase a3 subunit.

Sequence analysis has identified putative NRSE sequences in other neuron - specific genes 

including the brain - derived neurotrophic factor (BDNF), synaptotagmin, glycine receptor 

subunit and the p2 neuronal nicotinic receptor subunit genes (Bessis et al., 1995; 

Schoenherr and Anderson, 1995; Schoenherr et al., 1996).

A cDNA encoding a zinc finger TF has been isolated by two different groups (Chong et 

al., 1995; Schoenherr and Anderson, 1995). The protein encoded by this DNA, neural 

restrictive silencer factor (NRSF) has been shown to bind NRSE sequences from SCG10, 

Na II channel, synapsin I and BDNF genes (Schoenherr and Anderson, 1995). It has also 

been shown to repress transcription, in PC 12 cells, from a reporter plasmid which contains
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an NRSE (Chong et a l, 1995; Schoenherr and Anderson, 1995). NRSF is expressed in a 

wide range of nonneuronal tissues, and while it has been found in neuronal progenitor 

cells, it is absent in fully differentiated neurons (Schoenherr and Anderson, 1995). Thus it 

is probable that NRSF plays a role in the silencing of some NSRE containing neuronal 

genes in nonneuronal cells.

Other regions identified as putative silencers are E boxes which are DNA binding sites for 

the basic helix - loop - helix (bHLH) class of transcription factors. The promoter region of 

the gene encoding the tyrosine hydroxylase (TH) enzyme has been demonstrated to 

contain an E box consensus site. A 23 bp segment of the upstream promoter region, 

important for tissue - specific expression, contains an AP-1 motif, which is the binding site 

for leucine zipper TFs such as c-fos and c-jun. This motif overlaps with a dyad symmetry 

element centred around an E - box consensus site (Yoon and Chikaraishi, 1992). They 

demonstrated that while reporter constructs containing only the AP-1 site were expressed 

in both neuronal and nonneuronal cells, constructs containing the AP-1 site and the region 

of dyad symmetry were expressed only in the neuronal cells. This data points to the E - 

box having some role in silencing expression of neuronal cells in nonneuronal tissue.

An example of restricted silencing is shown for the ChAT (choline acetyl transferase ) 

gene, which is expressed only in the cholinergic neurons in the nervous system. Li et al. 

(1993) demonstrated that the promoter region of the human ChAT gene contains two 

major silencing regions which act together to silence ChAT expression in noncholinergic 

cells. The proximal silencer element contains two E - box sequences both of which must 

be present to repress transcription in noncholinergic cells (Li et al., 1993).

Some genes utilise both forms of silencing. The glial fibrillary acidic protein (GFAP) is 

found in astrocytes and Schwann glial cells in the nervous system. Two silencing elements 

(GDR1 and GDR2) are present outwith the 5' - region. GDR1 acts as a global silencer and 

is responsible for brain - specific expression, while GDR1 and GDR2 act together to 

restrict expression to glial cells (Kaneko and Sueoka, 1993).
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While the examples given above have described using either activation or repression, 

many neuron - specific genes are regulated using both positive and negative regulatory 

regions (e.g. synapsin I gene, DBH gene, L7/pcp-2 gene). For example, a positive 

enhancer may be present in a gene that needs a complementary silencer to bring about the 

required expression pattern. However a different gene with the same positive regulatory 

element but different silencer elements can generate a different expression pattern. Thus a 

network may exist whereby the same regulatory elements and transcription factors can 

control different genes in different ways within the same cell.

Not all regulatory elements reside in the 5' - regions of genes. In many cases, regulatory 

enhancer/silencer regions are found in introns or 3' - to the polyadenylation site of the 

gene (Figure 1.6) (Echelard et al., 1994; Marshall et al., 1994; Zimmerman et al., 1994). 

For these regions to form interactions with the basal promoter complexes, some structural 

rearrangement of the gene (looping of DNA) must occur.

RNA 
Pol II

E x o n  1

E x o n  2

Figure 1.6 Activation o f gene expression from intronic and 3 f - DNA elements

The binding of TF E to its DNA recognition site causes a conformational change that 

brings the positive activating TF F which is bound to its 3' - DNA element, into contact 

with the RNA pol II complex and further activates transcription. (Adapted from Grant and 

Wisden)
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One example of this is the nestin gene. Zimmerman et al. (1994), demonstrated that 

sequences present within the 5' - region of the nestin gene were insufficient to correctly 

direct expression of the (3 - galactosidase gene. However, on inclusion of intronic regions, 

expression similar to that shown for the endogenous gene was observed. Thus the 5' - 

region appears to act only as a basal promoter while the regulatory elements that govern 

the cell - specific expression of the nestin gene reside in the intronic regions.

Expression of genes which exist as clusters in the genome (e.g. the globins, olfactory 

genes) may be subject to co - ordinate control. Two possible regulatory mechanisms have 

been proposed. (Figure 1.7a and b). Each gene in the array may possess a unique binding 

site for a specific TF. In a cell type that expresses only that particular TF, the gene in the 

cluster that contains the binding site for that TF will be the only one transcribed. This 

system has been proposed for the selection of sensory olfactory neuron - specific genes 

from a background of non - olfactory expressed genes by the positive olfactory - specific 

TF Olf-1 (Wang and Reed, 1993).

An alternative mechanism is demonstrated in Figure 1.7b. There may be a single control 

region which mediates transcriptional activation of all the genes in the cluster. These 

“locus control regions” (LCRs) have been demonstrated to be important in regulating the 

expression of specific genes from the human (3 - globin gene cluster (Orkin, 1995).
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Figure 1.7 Schematic presentation o f possible methods o f regulation o f expression 

o f genes arranged in a cluster on a chromosome.

a. Each gene is transcriptionally activated by its own unique cell - specific TF. 1 - 4 are 

the genes arranged in a cluster from which only one gene is expressed at any one 

time. Gene 1 will only be expressed in cells that express TF A, as this is the only 

gene present in the cluster that contains the TF A binding site. Similarly, gene 2 will 

only be expressed in cells that express TF B and so on.

b. The genes 1 - 4 are under the co - ordinate regulation o f an LCR residing 5' - to the 

cluster. The LCR is a site at which specific TFs bind. Looping o f the DNA can bring 

a proximal promoter element o f one o f the 4 genes into contact with the TF - bound 

LCR and thus cause activation o f that gene from the cluster. (Adapted from Grant 

and Wisden, 1997).
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Other mechanisms such as chromatin structure and differential methylation of CpG sites 

are also important in regulating differential gene expression (Bird and Tweedie, 1995; 

Grosschedl, 1995; McKnight and Schibler, 1993; Paranjape etal., 1994).

While the regulatory regions of a number of neuronal genes have been identified, the 

transcription factors and the associated proteins which act on them remain largely 

unknown. In fact, there are likely to be thousands of transcription factors needed for 

regulating gene expression in the brain (He and Rosenfeld, 1991; Twyman and Jones, 

1995).

1.3 GABAa RECEPTOR 5 SUBUNIT GENE

1.3.1 Gene structure

The cDNA encoding the GABAa receptor 5 subunit gene was isolated by screening a rat 

cDNA library with a degenerate oligonucleotide probe designed to a conserved region in 

the second transmembrane domain of GABAa receptors (Shivers et al., 1989). It was 

shown to belong to the GABAa receptor family by its structural similarity to other 

members. The cDNA encodes a 450 residue peptide whose primary sequence predicts an 

N - terminal signal peptide, a disulphide - bonded loop, a P - structural loop, two adjacent 

N - linked glycosylation sites in the putative extracellular domain and four transmembrane 

segments (Figure 1.8).

N|̂ B r j-------
SP S S TM 1 T M 2 T M 3

Figure 1.8 Primary structure o f the GABAa receptor S  subunit gene

The figure shows the main structural features found in all GABAa receptors. 

Abbreviations used : SP = signal peptide, TM = transmembrane domains, S-S = disulphide 

bonded loop, N = N - terminal, C = C - terminal.

TM 4
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There is a high degree of sequence conservation within the transmembrane regions 

between the 8 subunit, other GABAa receptors and the glycine receptor. There is a 

particularly low sequence conservation in the putative intracellular loop (between TM3 

and 4) of all subunits.

Shivers et al. (1989) looked at the functional expression of the 5 subunit. The 6 subunit, 

when transfected into human embryonic kidney 293 cells, was shown to co - assemble and 

form homomeric GABA - gated chloride channels, which were bicuculline and picrotoxin 

sensitive, but showed no BZ - mediated potentiation. Thus, the 8 subunit alone, is unable 

to form native receptors but is a constituent of heteromeric GABAa receptors.

The murine GABAa receptor 8 subunit gene was isolated from two mouse genomic 

libraries, and its structure determined (Sommer et al., 1990; Figure 1.9). The gene is 

contained within 13 kb of genomic DNA, and has 9 exons. The largest intron (8kb) is 

found between exons 1 and 2, while the smallest (70bp) lies between exons 3 and 4. An 

intron interrupts the coding sequence of the second transmembrane domain (TM2).

R P K P H H N K P  R HK P K P P R

Figure 1.9 Structure of the murine GABAa receptor S subunit gene

Exon assignment (upper line, 5' - 3') to the coding region (lower line, N - C) of the 8 

subunit cDNA. Abbreviations used : N = N - terminal, C = C - terminal, TM = 

transmembrane domain, S - S = disulphide bonded loop. Restriction enzymes : R = Eco 

RI, P = Pst I, H = Hind III, K = Kpn I, N = Not I. (Adapted from Sommer et al., 1990).

29



Chapterl General Introduction

The transcription initiation region was mapped to a region -131 to - 95 (where +1 is the 

position of translational initiation), by PCR analysis of the 5' - flanking region using 

murine cDNA as a template (Sommer et al., 1990). Sequence analysis of 800 bp of the 

immediate 5' - upstream region was performed. This revealed that the 8 promoter region 

lacks TATA and CCAAT boxes, and is rich in CpG dinucleotides. Although CpG islands 

(Bird, 1987) and promoters lacking TATA sequences are typical for so called 

"housekeeping" genes, they have been shown to be present in genes that are expressed in a 

tissue - specific manner as with the 8 subunit gene. Putative binding sites for the Spl and 

AP-4 transcription factors were also demonstrated. Other mammalian GABAa receptor 

subunit gene promoters identified to date, including the human P3 (Kirkness and Fraser,

1993) and the human a5 (Kim et al., 1997) have also been shown to lack TATA and 

CCAAT box sequences and to display a high CpG content and Py - rich initiator elements.

Partial gene characterisation of the rat GABAa receptor 8 subunit gene was performed 

(Motejlek et al., 1994). The positions of the exons were found to be well conserved with 

the exon positions of the murine 8 subunit gene (Sommer et al., 1990). The rat 8 

promoter region was also analysed and showed similarities to the murine gene promoter 

region, i.e. it lacks TATA and CCAAT boxes, is CpG rich and contains putative binding 

sites for the Spl and AP-4 transcription factors. The transcription initiation sites were 

mapped by RNase protection and primer extension. There appears to be a cluster of start 

sites over a 30 bp region about 78 - 107 bp upstream from the translational start site. This 

coincides with the area of transcriptional initiation identified for the murine GABAa 

receptor 8 subunit gene (Sommer et al., 1990).

The 5' - flanking region of the rat 8 subunit gene shows two extended purine nucleotide 

stretches, one of which includes binding sites for a novel brain - specific factor, BSF1 

(Motejlek et al., 1994). BSF1 was identified by bandshift assays using nuclear extracts 

from brain and liver, as a control. The binding site is represented seven times as tandemly 

repeated and partially overlapping 22 bp elements. A consensus sequence for the purine 

element is shown in Figure 1.10.
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GAGAGGGGAGAGGGGGGAGGGG

Figure 1.10 Consensus sequence for the binding site o f BSF1 in the rat GABAa 

receptor 8 subunit gene promoter 

Consensus sequence for the purine 22 bp repeat element identified in the 5* - flanking 

region of the rat GAB Aa receptor 8 subunit gene.

These repeat elements appear to be distantly related to several purine elements present in 

the promoter region of other genes e.g the Purkinje cell - specific Pcp-2 gene and the glial 

fibrillary acidic protein (Vandaele et al., 1991; Miura et al., 1990).

1.3.2 5 expression patterns

As previously mentioned, the expression pattern of 13 GABAa receptor subunit genes 

was determined in adult rat brain by in situ hybridisation (Wisden et al., 1992). Table 1.2 

lists the distribution of the 8 mRNA in the CNS. As can be seen, the 8 subunit is expressed 

fairly selectively, and is most abundant in cerebellar granule cells, dentate gyrus and in the 

neurones of some thalamic nuclei.

Table 1.2 Distribution of 8 mRNA in CNS

Tissue 8 mRNA

Olfactory bulb +

Neocortex +

Hippocampus ++

Basal nuclei +

Amygdala 0

Septum 0

Thalamus ++

Hypothalamus 0
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Tissue 8 mRNA

Midbrain 0

Inferior colliculi 0

Substantia nigra 0

Cerebellum +++

Summary of in situ hybridisation signals obtained with 35 S - labelled oligonucleotide 

probes on serial sections. +++ = intense, ++ = strongly positive, + = positive, 0 = not 

detectable.

Laurie et al. (1992b) investigated the developmental expression patterns of various 

GABAa receptor subunit genes as described in Section 1.1.5.2. Each subunit transcript 

showed specific temporal expression patterns, and in many neurons, showed specific 

regional expression patterns. The 5 mRNA appeared postnatally and increased in 

expression with age. In the cortex, the 5 mRNA appeared around PO and peaked in 

expression at PI2, whereas in the dentate gyrus, it was detectable at P12 with a gradual 

increase to peak expression in the adult. In the postmigratory granule and periglomerular 

cells of the olfactory bulb the lateral thalamic nuclei and the cerebellar granule cells, the 8 

mRNA was detected around P6 and reached adult levels by P I2.

1.3.3 Pharmacology

While GABAa receptor subtypes composed of a, p and y subunits have been studied, 

relatively little is known about the electrophysiological and pharmacological properties of 

GABAa receptor subtypes containing the 5 subunit. In situ hybridisation studies in rat 

brain suggest that the distribution of the 8 subunit in the brain resembles that of the high 

affinity GABAa receptor sites labelled with [3H] - muscimol and lacking BZ binding 

(Benke et al., 1991; Laurie et al., 1992a). Immunohistochemical mapping of GABAa 

receptor subtypes containing the 8 subunit in the rat brain have shown a similar 

distribution pattern as seen for the 8 subunit (Benke et al., 1991). In the hippocampal 

dentate gyrus granule cell, 8 subunit mRNA co - localises with a l ,  pi and y2L subunit
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mRNAs while in the cerebellum it co - localises with a l ,  a6, p and y2 subunit mRNAs 

(Laurie et al., 1992b).

The electrophysiological and pharmacological properties of functional recombinant 

GABAa receptors, expressed in L929 cells co - transfected with different combinations of 

a l ,  pi, y2L and 8 subunits, were examined (Saxena and MacDonald, 1994). a ip iy2L and 

a ip iy2L8 subunit combinations were functionally expressed with high efficiency, while a l  

P15 showed low but more detectable levels of expression of functional GABAa receptors 

than al5y2L and 8piy2L. The presence of the 5 subunit slowed the rate of acute 

desensitisation of GABA - evoked current during GABA application, and the rate of 

recovery of GABA - evoked current following GABA application.

These 3 different GABAa receptor subtypes also showed distinct pharmacological profiles 

with differential sensitivity to block by zinc. Zinc was found to be a potent blocker of a lp  

15 GABAa receptor channels, a moderate blocker of aipiy2L6 GABAa receptor 

channels, and did not block the a lp ly2L GABAa receptor channels. This suggests that the 

presence of the 8 subunit creates a site to which Zn2+ can bind, despite the presence of the 

y subunit, which has been shown previously to render aPy GABAa receptor complexes 

insensitive to Zn2+(Draguhn et al., 1990). Thus the 8 subunit could cause a change in the 

structure of the channel, which is consistent with the finding that the open channel 

duration of a ip iy2L5 subtypes is much longer than that of the a ip iy2L subtypes.

1.3.4 Chromosomal assignment of human GABAa receptor 5 subunit gene

The GABAa receptor 8 subunit gene has been localised to the short arm of human 

chromosome 1 (Sommer et al., 1990), by screening human - rat somatic cell hybrid cell 

lines. This demonstrates that the 5 gene does not form part of a cluster which has been 

seen for some of the other GABAa receptor subunits (Chapter 9).
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1.3.5 Recent research developments

Jones et al. (1997) have produced an a6 knockout mouse that appears to affect the 

production of the 5 subunit protein in cerebellar granule cells. They disrupted exon 8 of 

the mouse a6 subunit gene by homologous recombination, and investigated the levels of 

other subunits in a6 -/- cerebellar granule cells by immunoprecipitation, 

immunocytochemistry and immunoblot analysis. The 5 subunit was the only one affected. 

While the 5 subunit mRNA was shown to be present at wild - type levels in the mutant 

granule cells, the protein appeared to be absent. As the knockout would result in a 

truncated a6 subunit protein being produced, it is possible that .this sequesters the 5 

subunit protein in some way. Whether this binding would happen with the endogenous a6 

protein is unknown. Thus, Jones et al. (1997) have demonstrated a potential association 

between the a6 and 6 subunits in cerebellar granule cells. It should also be noted that 

these mice showed no abnormalities in motor behaviour.

Another group, Mihalek et al. (1997) have produced a targeted disruption of the 5 subunit 

gene. They have inactivated the gene by disrupting exon 8, in a similar manner to that 

described by Jones et al. (1997) for a6 gene disruption. They performed Western blot 

analysis to confirm the absence of the 8 protein. After further studies, they concluded that 

the mutant mice were viable, fertile and healthy and that the 8 subunit was not required for 

normal brain development.

1.4 RESEARCH PROJECT

The long - term goal of this project was the development of a safe HSV - 1 gene therapy 

vector for neuron - specific delivery. A second goal was to add to the present limited 

knowledge of neuronal promoter structure. Thus the two main requirements were the 

production of an HSV - 1 viral vector that could deliver DNA to neurons with minimal 

amount of cell killing, and the characterisation and incorporation of a neuron - specific 

promoter which could be used to drive cell - type restricted expression in neurons. The 

GABAa receptor 8 subunit gene promoter was selected as a protoype neuronal promoter 

as it has a well characterised restricted cell - type specific expression pattern in the CNS.
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The experimental goals necessary to achieve the above aims are described below. The 

characterisation of the 5' - upstream region of the GABAa receptor 8 subunit gene 

involved identification of transcription star sites and the sequence characterisation of an p< 

upstream region large enough to be likely to encompass the majority of cis - acting 

regulatory elements. Experimental localisation of putative cis - acting regulatory regions 

was performed by deletion analysis in transfected neuronal cell lines. This involved the 

assembly of a series of promoter fragments linked to a marker gene (lacZ) and their 

subsequent transfection into NB4 1 A3 cell cultures.

Using the knowledge gained about regulatory elements from the localisation studies, in 

vivo mutation analysis could be performed. As an initial experiment preparatoryJo in vivo >< 

analysis, a simple gene knockout experiment to create a null mutation of the GABAa 

receptor 8 subunit gene was performed using a basic replacement vector system.

The development of an HSV - 1 vector system involved the incorporation of the 8 

promoter - marker gene constructs into HSV - 1 vectors. Testing of the 8 - lacZ HSV - 1 

vectors for P - galactosidase activity in primary cell culture and in vivo was performed.
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Chapter 2 Materials and Methods

2.1 MATERIALS

2.1.1 Bacterial growth

2.1.1.1 Bacterial strains

Table 2.1 Escherichia coli strain information

Strain Description Genotype Reference

TG-1 a restriction and 

recombination 

deficient 

host for plasmids

supE, hsd5A, thi, A(lac-proAB), F[/raD36, 

proAB+, la c l\ /acZAM15]

Gibson, 1984

TG-2 a recombination 

deficient

derivative of TG-1

supE, hsdSA, thi, A(lac-proAB), A{srl-recA) 

306: :Tn 10(tef), F[traD36, proAB+, la c l\ 

lacZAMl5]

Sambrook, 

et al., 1989

DH5ct a recombination - 

deficient host for 

pBluescript plasmids

supE44, A/act/169(<j> 80, /acZAM15), 

hsdRll, recAl, endAl,gyrA96, thi-1, relAl

Hanahan,

1983

TOPIOF recommended host 

strain

for plasmid pZErO-2.1
TM

F\lacP , Tn 10(tef)\, mcrA, A(mrr-hsdRMS- 

mcrBC), <|> 80, /acZAM15, AlacA74, deoR, 

recAl, araDl39, A(ara-leu)1691, galU, 

galK,

rpsL, (stE), endAl, nupG

Grant, 1990 

Invitrogen

INVotF does not express the lacl 

repressor

F  endAl, recAl, hsdRll(rk', mk+), supE44, 

thi-1,gyrA96, relAl, ([) 80, /acZAM15, 

A(lacZYA-argF), t/169, 7s

Grant, 1990 

Invitrogen

Bacterial strains used in the work are indicated by name, description, genotype and are 

referenced. Media for growth of bacteria were made as in Sambrook et al. (1989).

2.1.1.2 Bacterial media requirements

For all bacterial strains, either L Broth (16 g/1 bactotryptone; 10 g/1 bacto-yeast extract; 5 

g/1 NaCl) or 2 x YT (10 g/1 bactotryptone; 5 g/1 bacto-yeast extract; 10 g/1 NaCl) were 

used. These were obtained from the Molecular Genetics prep. room. The antibiotics
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required by the plasmids were : Ampicillin (100 fig/ml), Kanamycin (50 |ig /ml) or 

Tetracyclin (50 |ig /ml).

2.1.2 Restriction and modifying enzymes

All restriction endonucleases and modifying enzymes were obtained from the following 

commercial sources: Gibco BRL, Promega, New England Biolabs, Boehringer Mannheim, 

Pharmacia, and Cambio. Restriction endonucleases were used according to the 

manufacturers' instructions or were buffered in One For All (Pharmacia). Modifying 

enzymes were used according to the manufacturers' instructions.

2.1.3 Biochemicals and Chemicals

All biochemical, chemical and molecular biological reagents used were of Analar or 

equivalent grade and were obtained from the following commercial sources: BDH, Sigma, 

Pharmacia, Fisons, Fischer and Gibco BRL.

2.1.4 Molecular size standards 

DNA Standards (sizes in base pairs)

1Kb Ladder 12216 11198 10180 9162 8144 7126 6108 5090 4072

(Gibco BRL) 3054 2036 1636 1018 506/517 396 344 298 220

201 154 134 75

lOObp ladder 2072 1500 1400 1300 1200 1100 1000 900 800 700

(Gibco BRL) 600 500 400 300 200 100

2.1.5 Radioactive deoxyribonucleotides

Radioactively - labelled deoxyribonucleotides [a-32P]dCTP (3000Ci/mmol), [y- 

32P]ddATP (3000Ci/mmol) and [35S]dATP (1250Ci/mmol) were supplied by DuPont 

NEN™

2.1.6. Large scale DNA purification

Large scale preparation of DNA plasmids was achieved using Qiagen DNA purification 

kits supplied by Qiagen. DNA purification from agarose gels was achieved using a Qiaex
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kit supplied by Qiagen. RNAse A (used in the small scale preparation of DNA) was 

supplied by Sigma.

2.1.7 Vectors

Table 2.2 Plasmid vectors

Name Description Use Reference/

Company

pBluescript II SK/KS(+) Phagemids derived from pUC19. 

Differ only in orientation of mcs. 

Ampr.

Cloning and 

sequencing

Messing, 1983; 

Yanish-Perron 

eta l., 1985. 

Stratagene

pGL3-Basic Modified from pGL2-basic 

vector for increased expression. 

Contains firefly luciferase gene, 

also mcs. Ampr

Construction of 

series of promoter - 

reporter plasmids.

Groskreutz et 

a l , 1995. 

Promega

pGL3-Control As above only contains SV40 

promoter and enhancer 

sequences upstream of the luc. 

gene. Ampr

Control plasmid for 

promoter constructs

Groskreutz et 

a l,  1995. 

Promega

pNSSA-p Promoter -less vector, contains (3

-galactosidase gene

Ampr

Source of lacZ gene 

for promoter 

constructs

MacGregor and 

Caskey, 1989 

Clontech

pZErO™-2.1 Contains the lethal E. coli gene, 

ccdB, fused to lacZa. Insertion 

of DNA disrupts lacZa -ccdB 

gene fusion permitting growth 

only of positive recombinants. 

Kanr

Inserted HSV - 1 

flanking sequences 

to enable production 

of recombinant 

HSV-1 

viruses.

Bernard et a l, 

1994

Invitrogen

pLitmus 29 Plasmid cloning vector, contains 

ColEl and M l 3 origins, 

contains mcs. Ampr

Cloning vector for 

constructs

Evans, et a l,

1995

NEB
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Name Description Use Reference/

Company

pSCC9 Contains neor gene driven by tk 

promoter, 2 tk genes driven by 

own promoters. Ampr

Gene Targeting Chauhan and 

Gottesman, 1992

pNT Contains neor gene driven by 

PGK promoter, tk gene driven 

by PGK promoter. Ampr

Gene Targeting W. Skames

(personal

comm.)

pCR2.1 Has single 3' deoxythymidine(T) 

residue. Contains mcs.

Ampr and Kanr.

For cloning PCR 

products

Clark, 1988; 

Mead et at., 

1991

Invitrogen

p35(Pacl) pGem vector backbone. Contains 

HSV-1 flanking sequences 

(91610-96751). Ampr

For recombination 

into UL43 region of 

mutant HSV-1.

MacLean et a l, 

1991a

pBL(Pacl) pGem vector backbone. Contains 

HSV-1 flanking sequences 

(118,774-119,675 and 121327- 

122023). Ampr

For recombination 

into LAT region of 

mutant HSV-1.

Coffin et al., 

1996

Vector name, description, use and source are listed.

Abbreviations used are : mcs = multiple cloning site, lacL = (3-galactosidase gene, Ampr = 

ampicillin resistance gene, Kanr = kanamycin resistance gene, tk = thymidine kinase, neor= 

neomycin resistance, PGK = phosphoglycerate kinase.

2.1.8 Oligonucleotide primers

All oligonucleotide linkers (Table 2.3), PCR primers (Table 2.4) and sequencing primers 

(Table 2.5) were synthesized by Cruachem or Gibco BRL.
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Table 2.3 Oligonucleotide primers fo r linkers

Primer

Name

Oligonucleotide Sequence Use Source

BRNK1 5'-CTAGCTGGACCTGTCCCGCGCAGGTAACCG 

GTAC-3' [S]

Construct Design BRL

BRNK2 5-CGGTTACCTGCGCGGGACAGGTCCAG-3' [A] Construct Design BRL

BRKPK 5'-CTTAATTAAGGTAC-3' Construct Design BRL

BROBPB 5'-GATCTTCCCTTAATTAGGGAA-3' Construct Design BRL

TAG117/8 5'-GATCTCCTTAATTAAGGA-3' Construct Design BRL

TAG138 5'-CTTAATTAACTCGAGTCTAGAGAATTCAAGC

TTGGATCCGCGATAAGAATGCGGCCGCGGT

GACCTGTAC-3'

Construct Design BRL

TAG139 5'-AGGTCACCGCGGCCGCATTCTTATCGCGGAT 

CC AAGCTTG AATT CTCT AG ACTCG AGTT AAT 

TAAGGTAC-3'

Construct Design BRL

TAG 119 5'-CTCCCCCGGGGGAATAAGAATGCGGCCGC 

T AAACT ATGCT AGCT AGG AGCT-31

Construct Design BRL

TAG120 S'-CCTAGCTAGCATAGTTTAGCGGCCGCATTCT 

T ATTCCCCCGGGGG AGGT A-3'

Construct Design BRL

TAG126 5'-CCCCAAGCTTCCC-3' Construct Design BRL

TAG127 5'-GGGAAGCTTGGGGGTAC-3' Construct Design BRL

BRXSE1 5’-TCGAGGACTAGTCGG-3' [S] Construct Design BRL

BRXSE2 5'-AATTCCGACTAGTCC-3' [S] Construct Design BRL

NSF 5'-TTTAATTAAACTAGTCTCGAGAGATCTTTAA

TTAAATGCA-3'

Shuttle Vector In House

NSB 5'-AAATTAATTTCTAGAGAGCTCTGATCAAATT

AATTTACGT-3'

Shuttle Vector In House

RNA Oligo 5'-GGAUCCUAAACAAUUAACCCUCAAA-3' [S] Oligo-capping Cruachem

Oligonucleotide name, sequence, procedural use and source are indicated. All probes are 

written 5' to 3'. Primers BRNK1/2, TAG138/139, TAG119/120, TAG126/127 and 

BRXSE1/2 are paired. Abbreviations used are: [S] = sense and [A] = antisense.
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Table 2.4 Oligonucleotide primers fo r PCR amplification

Primer

Name

Oligonucleotide Sequence Use Source

TAG135 5'-GAGACGGATCCTAAACAATTAACCCTCAAA-3' [S] Oligo capping C ruachem

BR501 5'-CCAGGATATTTCCAGGTTGGAGCCCACG-3' [A] Oligo capping C ruachem

BR006 5'-CATGGTGCGGCTGCGTGCAGAGCAGGAGCGCA 

GCAG-3' [A]

Oligo capping BRL

BROCI 5'-CTGAGATATGGTCAATGCTGGCCACCTC-3' [A] Oligo capping BRL

BROCII 5'-CACGTAGTCCCCAATGTCATTCATTGCC-3' [A] Oligo capping BRL

BRBSF3 5'-TATGGGTCTGTCTTTACCTC-3' [S] Rat mapping BRL

BRBSF4 5'-CAGAGCAAGAATAGGAGTG-3' [A] Rat mapping BRL

D5mgh9 5'-GTGGCAGCAGCACACAAG-3' [S] Rat mapping BRL

D5Mgh9 5'-GGCCAAGCTGGAGAATTACA-3' [A] Rat mapping BRL

D5Mit7 5'-CCCCCACTGTTTTTGTCTGT-3' [S] Rat mapping Research

genetics

D5Mit7 5'-TCTGTTATGGGATCTGATGCC-3' [A] Rat mapping Research

genetics

D5Mit9 5'- CTACTGGCCGTAGTGTTTGC-3' [S] Rat mapping Research

genetics

D5Mit9 5 '-CCACTGTGGTTGCTGTTCAG-3' [A] Rat mapping Research

genetics

Oligonucleotide name, sequence, procedural use and source are indicated. All listed 

probes are written 5' to 3'. TAG135 was paired with BR801 and BR006 (which are nested 

primers), and BROCI and BROCII (nested primers). BRORAT1 and BRORAT2 are 

paired primers. Abbreviations used are: [S] = sense and [A] = antisense.
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Table 2.5 Oligonucleotide primers fo r sequencing

Primer Name Oligonucleotide Sequence Use Source

M13 Forward 5'-TGTAAAACGACGGCCAGT-3' Sequencing BRL

M l3 Reverse 5'-AGCGGATAACAATTTCACACAGGA-3' Sequencing BRL

BR013FI 5'-GAGATAGCCAATAATAG-3' [S] Sequencing Cruachem

BR013RI 5'-CAACTTCCCTCATAAGA-3' [A] Sequencing Cruachem

BR013F2 5'-GAGATAGTCAATAATAGT-3' [S] Sequencing BRL

BR013R2 5'-CACCTTCCCTCATAAGAG-3' [A] Sequencing BRL

BR016F2 5'-GAGAAGATCAGAAGAAAGCT-3' [S] Sequencing BRL

BR017F2 5'-TACAGTGTTCTTGTACTA-3' [A] Sequencing BRL

BR016F3 5'-GGGTGTTCTTTAAGTATTTG-3' [S] Sequencing BRL

BR017F3 5'-GTATGGGTTAGGGGACCTGC-3 ’ [A] Sequencing BRL

BR017F4 5'-CCTGGTCCCACTGTTCTCAC-3' [A] Sequencing BRL

BR018F2 5'-GCATGGATAACAAAGCCC-3' [A] Sequencing BRL

BR018F3 5 '-GGG AAATGC ACT AAAT AC A-3' [A] Sequencing BRL

BR018F4 5'-CTAACCAAAGAGCTGTCAACCA-3' [A] Sequencing BRL

BR018F5 5'-TATGTGTGCTAATGTCTAAC-3' [A] Sequencing BRL

BR018F6a 5'-GAGTACTTCATACTCATCGT-3' [A] Sequencing BRL

BR018F7 5'-ACAGGTGACTGCAGAGCT-3' [A] Sequencing BRL

BR018F7a 5'-GGAACGACTGCTTAATTT-3' [A] Sequencing BRL

BR018F7b 5'-CAAACTTCTACAGGCCCA-3' [A] Sequencing BRL

BR018F8 5'-CAGGATGGCCTCGAACTCAG-3' [A] Sequencing BRL

BR018RI 5'-TCATTTCTCTGATGAAATAC-3' [S] Sequencing BRL

BROi8RIa 5'-AAACCTGCAGGCCAGTCATG-3' [S] Sequencing BRL

BR018R2 5'-ACTCTATCTGAAAATCACAAGA-3' [S] Sequencing BRL

BR018R3 S'-GTATAGGATCTCCTTAGCGC-S* [S] Sequencing BRL

BR018R4 5'-TGGCTAGCAAACCCTCACTG-3' [S] Sequencing BRL

BR018R5a 5'-CAGGACTTAAGCCCATGGGT-3' [S] Sequencing BRL

BR018X1 5'-CCACGGACTCTGGGCCTGTA-3' [S] Sequencing BRL

BR018X2 5'-GGATGGTGCAGCCACTTTGG-3' [S] Sequencing BRL

BR018X3a 5'-TGTGGATGCATGCAGCCA -3' [S] Sequencing BRL

BR018X3b 5'-AGCTCTGCAGTCACCTGT -3' [S] Sequencing BRL

BRO30F1 5'-CACAGCAGTGTTTAGCATCC-3' [A] Sequencing BRL

BRO30R1 5'-CTCTTTCACGTTGCCTCA-3' [S] Sequencing BRL
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Primer Name Oligonucleotide Sequence Use Source

BR031F1 5'-CATGCTTGCCTGGATGCTGC-3' [S] Sequencing BRL

BR031R1 5'-GACTCAGGTTACCTGCAGAG-3' [A] Sequencing BRL

BRO30F2a 5'- GTCGTGGG AT AG AACT AGGT-3' [A] Sequencing BRL

BRO30R2 5'-GGAATCAAGAACCAAAGGAT-3' [S] Sequencing BRL

BRO30R2a 5'-TATCTCAATATGCCAGTTGG-3' [S] Sequencing BRL

BR031F2 5'-CCTGGGAAGCTGACTGTT-3 ’ [S] Sequencing BRL

BR031R2 5-ATAGGAGGAAAGTAACAG-3' [A] Sequencing BRL

BR030F3 5'-GAAATCCTTTGGTTCTTGAT-3' [A] Sequencing BRL

BRO30R3 5'-GATGACTGCAGGGGATTTGG-3' [S] Sequencing BRL

BR031F3 5'-GCCAGCCTGGTCTACAAGTG-3' [S] Sequencing BRL

BR031R3 5'-ACGTATGTACGTACAGGCAA-3' [A] Sequencing BRL

BR03 lF3a 5'-TATCCCAGCACTTAGGAGGC-3' [S] Sequencing BRL

BRO30F4 5'-TACTATAGTGGGGATTATAC-3' [A] Sequencing BRL

BRO30R4 5'-TGTGCGGTGGGCACTCACTG-3' [S] Sequencing BRL

BR031R4 5'-GCACCAGGCATGCATGTTAG-3' [A] Sequencing BRL

BR03 lR4b 5'-AGAAGAAGGCATCAGATCTCC-3' [A] Sequencing BRL

BR031F5 5-AAGATGGTATCAGATCGCCT-3' [S] Sequencing BRL

BR031R5 5'-CGCCACCATGCCCAGCACAC-3' [A] Sequencing BRL

BR031F6 5'-CTTTCCTCCTATCTGGAACA-3' [S] Sequencing BRL

BR031R6 5'-TGTTCTCCTCGGTGTTTTCG-3' [A] Sequencing BRL

BR031F7 5'-CACAAGGATGAGTCAGAGAA-3' [S] Sequencing BRL

BR031R7 5'-CGATGAAAGTTCTACATCTT-3' [A] Sequencing BRL

Oligonucleotide name, sequence, procedural use and source are indicated. All listed 

probes are written 5' to 3'. Abbreviations used are: [S] = sense and [A] = antisense.

2.1.9 DNA sequencing

DNA sequencing was performed using an ABI373 Stretch automated sequencer 

(Applied Biosystems). Sequencing reactions were performed on a Perkin Elmer 9600 PCR 

machine using ABI Terminator Ready Reaction Mix (A-Dye Terminator, C-Dye 

Terminator, G-Dye Terminator, T-Dye Terminator, dITP, dATP, dCTP, dTTP, Tris -Hcl 

(pH 9.0), MgCl2, Thermal stable pyrophosphatase and AmpliTaq DNA Polymerase, FS).

44



Chapter 2 Materials and Methods

Acrylamide/bis/urea gel mix (6%) was supplied by Anachem. Ammonium persulphate was 

supplied by LBI and Temed was supplied by Sigma.

2.1.10 RNA isolation

2.1.10.1 Total RNA isolation

Total RNA was isolated from a variety of fresh and frozen tissues using Tri Reagent™ 

(Sigma). For the preparation of RNA and mRNA, all solutions (except those containing 

Tris) and plasticware (e.g. Eppendorf tubes, tips, polypropylene tubes) were treated with 

a solution of 0.1% DEPC (diethylpyrocarbonate) overnight and then autoclaved to

protect against residual RNases.

dT cellulose supplied by Sigma. The

0.1% SDS, 0.4 M NaCl pH 7.4

0.1% SDS pH 7.4

0.1% SDS, 0.1 M NaCl pH 7.4

2.1.11 Cell culture

2.1.11.1 Cell lines

Table 2.6 Cell lines

destroy the DEPC. Gloves were worn at all times to

2.1.10.2 mRNA isolation

mRNA was purified from total RNA using oligo -

following solutions were required :

Binding buffer 10 mM Hepes, 1 mM EDTA,

Elution buffer 10 mM Hepes, 1 mM EDTA,

Wash buffer 10 mM Hepes, 1 mM EDTA,

Cell line Description Use Reference

BHK21/C13 Baby hamster kidney 

cells

HSV-1 growth and 

manipulation

MacPherson and 

Stoker, 1962

NB4 1A3 Mouse C-1300 

Neuroblastoma

In vitro analysis of 

promoter constructs

Buonassisi et al., 1962

CGR8.8 Embryonic Stem Cell Gene targeting W. Skames, Personal 

Communication
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Cell lines used in this work are indicated by name and description. There experimental use -X 

is also noted and they are referenced.

All the cell lines were grown in a humidified atmosphere at 37°C with 5% C02, unless 

otherwise stated.

2.1.11.2 Medium fo r cell lines

Unless otherwise stated, all medium and components were supplied by Gibco BRL.

2.1.11.2.1 BHK21/C13

ETCio medium (Glasgow modified eagle’s medium, 10% newborn calf serum, 100 u/ml 

Penicillin/100 pg/ml Streptomycin, 10% Tryptose phosphate broth) was used for all cell 

culture work involving BHK21/C13 cells.

ETMCio medium (Glasgow modified eagle’s medium, 10% newborn calf serum, 100 u/ml 

Penicillin/100 pg/ml Streptomycin, 10% Tryptose phosphate broth, 1.5% carboxylmethyl 

cellulose sodium salt) was used as a semi - solid overlay to prevent virus spreading 

through the plate.

For the viral variant 1764 to plaque N,N - hexamethylene bis - acetamide (HMBA) was 

essential. It was added to the medium at a concentration of 3 mM.

2.1.11.2.2 NB41A3

Nut Mix F-10 with glutamax (2 mM), 15% horse serum, 5% calf serum, 100 u/ml 

Penicillin/100 pg/ml Streptomycin.

2.1.11.2.3 CGR8.8

1 x Glasgow medium, 0.2475% sodium bicarbonate, 1 x non-essential amino acids, 10 

mM sodium pyruvate, 10 x Glutamax, 1 mM P-mercaptoethanol (Sigma), 10% heat- 

inactivated foetal calf serum (Sigma), 44 pis of LIF (107 stock), 100 u/ml Penicillin/100 

pg/ml Streptomycin.
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For selective medium, the following was added : 0.02% G418 (made as a 20 mg/ml stock 

and filter sterilised, Boehringer-Mannheim) and 2 x 106M gancyclovir (Syntex).

2.1.11.3 Solutions fo r gene targeting

2.1.11.3.1 Trypsin solution

The trypsin solution used for passing the cells contained : 0.25% trypsin (Difco), 372 mgs 

EDTA, 1% chicken serum (Flow labs). This was filter-sterilised, aliquoted and stored at - 

20°C.

A 0.1% solution of gelatin (Sigma) was used to coat the tissue culture plates .

2.1.11.3.2 Freezing medium

DMSO (10%) in the standard medium was used to freeze down cells for storage.

2.1.11.4 Solutions fo r cell transfections

The transfection experiments were carried out in Opitem 1 with glutamax-1 (Gibco BRL), 

which is a serum free medium.

The transfection reagent used was DOTAP (Boehringer Mannheim).

The DNA for transfections was prepared using Qiagen tips (Section 2.2.1.3.2),

The DNA and DOTAP were diluted to working concentrations in 20 mM HEPES buffer 

(pH 7.4) - filter sterilised.

2.1.11.5 P  - galactosidase assays

Cell extracts were assayed using the Luminescent p - galactosidase Genetic Reporter 

System II detection kit from Clontech.

Cells lysis buffer 100 mM potassium phosphate (pH 7.8)

0.2% Triton - X - 100 

1 mMDTT
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2.1.11.6 Luciferase assays

Cell extracts were assayed using the Luciferase Assay System detection kit from Promega.

The p - galactosidase and luciferase reactions were measured with a Turner TD-20e 

luminometer.

2.1.12 Cerebellar granule cell cultures

2.1.12.1 Medium fo r granule cells

EBSS (Earle’s balanced salt solution, minus Ca2+, minus Mg2+) (Gibco BRL)

BME (Eagle;s basal medium, plus 200 mM L-Glutamine), 10% fetal calf serum (heat 

inactivated), 25 mM KC1, 100 u/ml Penicillin/100 pg/ml Streptomycin, 50 pg/ml 

Gentamicin.

2.1.12.2 Solutions fo r granule cell cultures

The following stock solutions were prepared in EBSS (w/out Ca2+ and Mg2+) and filter 

sterilised. Enzymes were prepared fresh on day of cell preparation.

Trypsin

Soyabean trypsin inhibitor 

Dnase I

Cytosine-p-arabinofuranoside 

Poly-D-lysine (Sigma)

100 mg/20 ml

26.6 mg/4 ml

3.52 mg/4 ml (This should be dissolved in 3.56 ml 

of EBSS and 0.44 ml of 1 M MgCl2 and filter - 

sterilised. Final concentration of MgCE is 5 MM 

after dilution with enzymes and cells).

100 mM

100 pg/ml (Tissue culture flasks and trays were 

treated with a 10 pg/ml solution, left at room 

temperature for 15 min, washed once with sterile 

water and allowed to dry).
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2.1.12.3 Solutions fo r granule cell transfections

Medium BME (Section 2.1.12.1)

Glutamate receptor inhibitor 1 mM Kynurenic acid, 10 mM MgCl2, 5 mM Hepes

(GRI) (pH 7.5) Filter sterilise

Calcium chloride 250 mM

HBS 137 mM NaCl, 5 mM KC1, 0.7 mM Na2HP(>4,

15 mM D-glucose, 42 mM Hepes, (pH 7.07) 

Glycerol 5 %

DMSO 2 %

2.1.12.4 Solutions fo r granule cells - histochemistry

Wash solution TBS (20 mM Tris (pH 7.4), 150 mM NaCl, 0.004 % SDS)

Fix solution 0.2 % gluteraldehyde, 20 mM Tris (pH 7.4), 150 mM NaCl

X - gal stain 0.2 M Sodium Phosphate buffer, 1 mM MgC12, 0.04 % SDS,

0.3 % X - gal (in DMF), 0.005 M potassium ferrocyanide,

0.005 % potassium ferricyanide

2.1.13 Histochemistry of rat brains by X - gal staining

Wash Buffer is used as the basis for most of the solutions.

1 x Wash Buffer 0.1 M disodium hydrogen phosphate (anhydrous),

0.1 M sodium dihydrogen phosphate. 1 H20, 0.02 M MgCl2.

Fix solution 0.2% gluteraldehyde, 0.005 M EGTA (pH 8.0) in 1 x Wash Buffer.

This should be stored at 4°C.

X - gal stain 0.005 M potassium ferrocyanide, 0.005 M potassium ferricyanide,

0.1% X - gal (in DMF) in 1 x Wash Buffer. This should be filtered 

(0.3 pm) and stored in foil at 4°C.

Neutral red 0.05 M sodium phosphate buffer (pH 3.3) with 1% (w/v) neutral

red dye.

TESPA solution is used to coat the slides used for sectioning the brains. It contains 

acetone with 2% TESPA (Sigma).
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Mounting of Slides Histoclear (National Diagnostics) and DPX (BDH) were used to

mount coverslips on the sectioned slides.

2.2 METHODS

2.2.1 Basic molecular biology techniques

Standard molecular biology techniques such as bacterial growth, restriction enzyme 

digestion, small scale plasmid DNA isolation, ligation, transformation, phenol extraction, 

ethanol precipitation, agarose gel electrophoresis, radioactive labelling of probes and 

Southern blotting were performed as modifications of those described by Sambrook et al. 

(1989).

2.2.1.1 Bacterial growth

2.2.1.1.1 Bacterial transformation

Overnight bacterial cultures were set up in glass universals, by innoculating 5 ml of 

medium (either L Broth or 2 x YT medium) with a single bacterial colony and then 

incubating in a 37°C shaker for 16 hours. 0.5 ml of this culture was then used to 

innoculate 50 ml of fresh medium and this was incubated at 37°C, with shaking, until the 

culture OD reached 0.4 - 0.6. The bacterial cells were harvested by centrifugation at 4000 

r. p.m. for 10 min in a Beckman J2-21.

The cell pellet was gently resuspended in 2 ml Transformation Buffer [10 mM MES buffer 

(pH 6.5), 100 mM rubidium chloride, 45 mM manganese chloride, 10 mM Calcium 

chloride, 3 mM hexaminecobalt chloride] and centrifuged as before. The cell pellet was 

resuspended in 1 ml of Transformation Buffer. To this was added 68 pi dimethyl 

formamide and 34 pi (3 - mercaptoethanol. The cells were incubated on ice for 15 min, and 

100 pi of cells were mixed with the DNA sample and incubated on ice for 30 min. After 

heat - shocking at 42°C for 90 sec, 800 pi of medium was added and the sample incubated 

at 37°C for 30 min. After centrifugation at 6000 r.p.m. for 5 sec, most of the supernatant 

was removed, the cell pellet was resuspended in the residual liquid and then plated out on 

L Broth plates containing the appropriate antibiotic.
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2.2. 1. 1. 2 Bacterial plasmid growth - large scale.

A flask containing 100 ml of the appropriate medium plus antibiotic was innoculated with 

a single bacterial culture and then incubated, with shaking, at 37°C overnight. The 

bacterial cells were harvested as described in Section 2.2.1.1.1 above.

2.2.1.2 Restriction enzyme digestion

Digestion of DNA was performed in either One For All buffer, or in the buffer provided 

with the enzyme. Unless otherwise stated, all DNA digestion was performed at 37°C.

2.2.1.3 DNA isolation

2.2.1.3.1. Small scale plasmid DNA isolation

DNA was purified using a modified alkaline lysis method (Bimboim and Doly, 1979). 1.5 

ml of bacterial culture was harvested in a microfiige at 14000 r.p.m. for 1 min. The 

supernatant was discarded and the cell pellet was resuspended in 200 pi of GTE 

(Glucose/Tris/EDTA), 300 pi of solution P2 (2M NaOH/0.1% SDS) was added and the 

sample mixed by inverting gently. 300 pi of P3 (3M K Acetate pH 4.8) was then added 

and the sample mixed by invertion until a white precipitate formed. After centrifugation at 

14000 r.p.m, the supernatant was transferred to a new tube containing 200 pg RNAse A, 

and incubated at 37°C for 20 min. 500 pi of chloroform : isoamyl alcohol (24:1 v/v) was 

added and, after mixing, the sample was centrifuged at 14000 r.p.m. for 3 min.

The upper aqueous phase was taken into a new tube containing 500 pi of propan - 2 -ol, 

mixed and the DNA precipitated by centrifugation at 14000 r.p.m. for 10 min. The DNA 

pellet was washed in 250 pi of 70 % ethanol and then, after centrifugation for 3 min and 

removal of the ethanol, the pellet was dried at 37°C for 10 min. The DNA was 

resuspended in 30 pi of sterile water and stored at -20°C.

2.2.1.3.2. Large scale plasmid DNA isolation

Large scale plasmid DNA isolations were performed using Qiagen 100 tips or 500 tips as 

described in the manufacturers protocol manual.
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2.2.1.4 Ligation

All ligations were performed in the same way. In general, 10 ng of vector DNA was used 

in a molar ratio of 1:3 with the insert DNA. The ligations were performed in a total 

volume of 10 pi with 50 mM Tris (pH 7.5), 10 mM MgCl2, 10 mM DTT, 1 mM dATP 

and 4 units of T4 DNA ligase, and incubated at 16°C overnight.

2.2.1.5 Klenow reactions

Digested DNA that was to be end - filled was phenol extracted, ethanol precipitated and 

resuspended in 16 pi of water. 2 pi of 10 x Klenow buffer, 2pl of 10 mM dNTPs, 10 units 

of Klenow enzyme and 10 units of T4 DNA Polymerase were added and the sample 

incubated at 37°C for 30 min. The enzymes were heat inactivated at 65°C for 10 min and 

placed on ice. The DNA was then ready for further manipulations.

2.2.1.6 Phenol extraction

Phenol extractions were performed using a solution of phenol : chloroform : isoamyl 

alcohol (25:24:1 v/v) (P/CHC13). An equal volume of P/CHC13 was added to the sample. 

After vortexing, the sample was left at room temperature for 5 min and re - vortexed 

before centrifugation at 14000 r.p.m. for 5 min. The upper aqueous phase was transferred 

to a new tube and the DNA was subsequently precipitated with ethanol (see Section 

2.2.1.7),

2.2.1.7 Ethanol precipitation

Unless stated otherwise, all ethanol precipitations were performed in the following 

manner. Sodium acetate (pH 5.2) was added to a final concentration of 0.3 M with 2.5 

volumes of absolute ethanol. The sample was placed at -20°C for 30 min and the DNA 

harvested by centrifugation at 14000 r.p.m. for 10 min. The DNA pellet was washed and 

dried as described in Section 2.2.1.3.1. The DNA pellet was resuspended in the 

appropriate volume of sterile water and stored at -20°C.
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2.2.1.8 Agarose gel electrophoresis

DNA was visualised on 1 x TBE agarose gels ranging from 0.5% for fragments of > 4 kb 

in length, to 2% for fragments of < 500 bp in length. 20 pg of ethidium bromide was 

added per 100 ml of gel solution.

2.2.1.9 Radioactive labelling o f probes

2.2.1.9.1. Oligonucleotide probes

Oligonucleotide probes were end - labelled using T4 Polynucleotide Kinase (PNK). 50 ng 

of oligonucleotide, 10 pC of [y-32P] ddATP, 3 pi of 10 x PNK buffer and 4 units of PNK 

were mixed with water in a final volume of 30 pi and incubated at 37°C for 30 min. The 

oligonucleotide probe was purified from the unincorporated radioactivity by separation on 

a G25 nick column (Pharmacia) according to the manufacturers’ instructions.

2.2.1.9.2. Random - primed probes

Linearised DNA fragments (50 ng) were randomly primed with 30 pC of [a -32P] dCTP 

using a Ready - to - Go kit (Pharmacia) according to the manufacturers’ instructions. The 

radioactively labelled probe was purified from the unincorporated radioactivity by 

separation on a G50 nick column (Pharmacia) according to the manufacturers’ 

instructions.

2.2.1.10 Southern blotting

All incubations were performed at room temperature. Gels containing DNA samples for 

Southern blotting were denatured (1.5 M NaCl/0.5 M NaOH) for 20 min for medium - 

sized gels and 30 min for large gels. The gels were neutralised (1.5 M NaCl/0.5 M Tris pH 

8) for the same time as the denaturing step and then soaked in 6 x SSC for 10 min. The 

gel was then inverted and the blot set up as shown in Sambrook et al. (1989). After 

blotting overnight, the nylon membrane (Micron) was washed in 6 x SSC to remove 

traces of agarose, and heat - baked at 80°C for 2 hours. The membrane was then pre - 

hybridised in 2 x Dextran hybridisation buffer (10% dextran sulphate, 3.34% Sarkosyl 

NL30, 33.4% 20x SCP [2 M NaCl, 0.6 M Na2HP04, 0.02 M EDTA pH 6.2]) for 2 hours
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at 65°C before the purified DNA probe was added. The hybridisation was left at 65°C 

overnight. The membrane was washed in :

2 x SSC/0.1% SDS for 15 min at room temperature 

2 x SSC/0.1% SDS for 15 min at 65°C 

0.1 x SSC/0.1% SDS for 30 min at 65°C.

The DNA bands were visualised by autoradiography with Fuji X - ray film at -70°C for 

the required time.

2.2.2 Subcloning of DNA from lambda clones

Lambda clones containing the whole of the GABAa receptor 5 subunit gene were isolated 

by Dr D. Livingstone. Subclones of the 5' - upstream sequence were required for DNA 

sequence analysis and also for the generation of a series of promoter - deletion constructs. 

Subcloning of the lambda DNA into pBluescript was performed using standard molecular 

biological techniques.

2.2.3 Sequencing of pBluescript double - stranded templates

2.2.3.1 Template DNA preparation

DNA from pBluescript subclones was prepared as described in Section 2.2.I.3.I., The 

DNA pellet was re - precipitated by adding NaCl (0.8M) and PEG (6.5%). The sample 

was incubated on ice for 20 min, centrifuged at 14000 r.p.m. for 20 min at 4°C and, after 

washing in 70% ethanol and drying, was resuspended in sterile water. The DNA was 

visualized by agarose gel electrophoresis to estimate the concentration of the DNA.

2.2.3.2 DNA sequencing o f double - stranded templates

Sequencing was performed using an ABI automated sequencer. Template DNA was 

mixed, in a thin walled PCR microtube (Costar), with 3.2 pmoles of the relevant 

sequencing primer and 8 pi of sequencing mix in a total volume of 20 pi. Amplification 

was achieved using 25 cycles, each cycle comprising : 10 sec denaturation at 96°C, 10 sec 

annealing at 50°C and 5 min extension at 60°C.
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The sequencing reactions were precipitated by adding sodium acetate [0.2 M (pH 4.5)] 

and 2.5 volumes of ethanol. The samples were incubated on ice for 20 min, centrifuged 

for 20 min at 14000 r.p.m. and after washing and drying, the pellets were resuspended in 4 

pi of formamide loading buffer. The DNA samples were denatured at 80°C for 2 min 

before being loaded onto the acrylamide gel. The sequencing gel apparatus was assembled 

and electrophoresis carried out according to the manufacturers’ instructions (ABI 373 

users manual, Applied Biosystems).

2.2.3.3 Analysis o f DNA sequence data

The sequence data was analysed using the sequence editor program (Seqed v 1.0.3, ABI) 

and using GeneJockey II (Biosoft). Further analysis of the sequence was performed using 

various computer programs:

TFSEARCH (http://pdapl.trc.rwcp.or.jp/research/db/TFSEARCH.html)

TESS (http://agave.humgen.upenn. edu/tess/index.htmml)

RepeatMasker 2 (www@flp.genome.washington.edu) and the EMBL database.

2.2.4 The Polymerase Chain Reaction

The polymerase chain reaction (Saiki et al., 1988), was performed for a number of 

different procedures. Two different PCR machines were used, either a Perkin Elmer 

GeneAmp System 9600 or a Perkin Elmer Cetus DNA Thermal Cycler. In all cases, Taq 

DNA polymerase (Promega) was used. The reaction conditions varied depending on the 

primers used, but all included a hot start whereby the samples are heated to 99°C for 10 

min before the addition of the Taq, and a 3 step amplification process involving a 

denaturation step, an elongation step and an extension step. The number of cycles of 

amplification varied according to the procedure involved.

2.2.5 RNA purification

2.2.5.1 Total RNA preparation

The tissue sample was homogenised in Tri Reagent (1 ml/100 mg of tissue) in a Polytron, 

and incubated at room temperature for 5 min. Chloroform (0.2 ml/100 mg of tissue) was 

added and the sample shaken vigorously for 15 sec before being incubated at room
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temperature for 2 - 15 min. The sample was centrifuged at 12000 x g for 15 min at 4°C. 

The upper aqueous phase was transferred to a fresh tube containing Propan - 2 ol (0.5 

ml/100 mg of tissue). The sample was incubated at room temperature for 10 min, and 

then centrifuged at 12000 x g for 10 min at 4°C. The supernatant was removed and the 

pellet washed in 1 ml of 70% ethanol. After centrifugation at 12000 x g for 10 min at 

4°C, the RNA pellet was dried briefly at room temperature before being resuspended in 

DEPC - treated water. If the RNA is to be stored, this should be performed in ethanol at 

-70°C. The expected yield of RNA from brain tissue using this method is 1 - 1.5 pg/mg 

of tissue.

2.2.5.2 mRNA preparation

The solutions used are described in Section 2.1.10.2. This method was adapted from 

Sambrook et al. (1989). The total RNA pellet (Section 2.2.5.1) was resuspended in 

elution buffer to a final concentration of 1 mg/ml. 0.4 M NaCl was added and the sample 

heated to 65 °C for 5 min prior to being applied to the oligo - dT cellulose column.

The column was prepared by resuspending 0.2 g of oligo - dT cellulose in 10 ml of 

binding buffer. This is then poured into a Disposocolumn (Biorad) and allowed to settle. 

The column is washed with :

0.1 MNaOH(lOml)

DEPC - treated water (10 ml)

Binding buffer (25 ml)

The RNA is heated to 65°C for 5 min and then applied to the column. The eluent is 

collected and then re - applied. This is repeated twice. The column is washed with :

Binding buffer (25 ml)

Wash buffer (10 ml)

The mRNA was eluted with 6 x 0.5 ml aliquots of elution buffer which had been heated 

to 65 °C. Each fraction was collected separately and the OD260 determined. The samples 

containing the mRNA were combined (generally fractions 2 to 5) and precipitated with
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100 mM NaCl and 2.5 vol. of ethanol at -70°C for 30 min. After centrifugation at 12000 

x g for 20 min, the mRNA was washed with 70% ethanol, dried briefly at room 

temperature and resuspended in 10 mM HEPES/ 0.005 M EDTA (pH 7.5) to give a final 

concentration of 0.5 mg mRNA/ml. At this stage, the sample was transferred to an 

Eppendorf tube. The mRNA was precipitated with 0.1 vol. of 3 M potassium acetate 

(pH5.2), 2.5 vol ethanol and stored at -70°C until required.

When required, the mRNA is centrifuged for 10 min, washed in 70% ethanol, dried 

briefly at room temperature and resuspended in DEPC - treated water.

2.2.6 Oligo - capping

This method has been modified from that used by Maruyama and Sugano (1994), and 

involves replacing the 5' - mRNA cap structure with a ribonucleotide oligomer ( r-oligo), 

amplifying the 5' - end of interest using RT - PCR and then sequencing the resultant 

product(s). The first few steps of this procedure were performed under RNAse - free 

conditions and in the presence of RNasin, an RNase inhibitor. Each purification step 

involved at least one phenol/chloroform extraction, with glycogen (20 pg/pl) added as a 

carrier, and then precipitation with 0.3 M sodium acetate (pH 5.5) and 2.5 volumes of 

ethanol.

2.2.6.1 Removal o f 5 ' - phosphate

mRNA was prepared as described in Section 2,2.5.. Approximately 5 pg of mRNA was 

treated with bacterial alkaline phosphatase (BAP) to remove the 5' - phosphate of any 

uncapped RNA molecules. 10 pi of 10 x dephosphorylation buffer, 150 u of BAP and 40 

u of Rnasin were added to the mRNA in total volume of 100 pi with DEPC - treated 

water. This was incubated at 42°C for 60 min. The BAP - RNA was phenol/chloroform 

extracted 3 times before being ethanol precipitated and resuspended in DEPC - treated 

water.
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2.2.6.2 Removal o f 5 ' - cap

The 5' - cap structure was removed by incubation with tobacco alkaline phosphatase 

[(TAP) Cambio]. 20 pi of 10 x TAP buffer, 5 u of TAP and 40 u of RNasin were added 

to the BAP - RNA in a total volume of 200 pi and incubated at 37°C for 60 min. This 

was followed by a single phenol/chloroform extraction, ethanol precipitation and then 

resuspension in DEPC - treated water.

2.2.6.3 Ligation o f ribo - oligonucleotide

A ribo - oligonucleotide was then ligated onto the 5' - end of any molecules that had a 5' - 

phosphate group, i.e. only those RNA molecules that had their cap structure removed. 1.5 

pg of TAP - RNA was incubated overnight, at 16°C, with 80 u RNasin, 1.5 pg of ribo - 

oligonucleotide, 10 pi of T4 RNA ligase buffer, 200 u of T4 RNA ligase and 50 pi PEG 

(50%) in a total volume of 100 pi. The r - oligo - RNA was phenol/chloroform extracted 

once, ethanol precipitated and then re - precipitated with 0.3 vol. of 7.5 M ammonium 

acetate (pH 7) and 2.5 volumes of ethanol.

2.2.6.4 First strand cDNA synthesis

This ligated RNA was used as a template for first strand synthesis. One third of the r - 

oligo - RNA (0.5 pg) was denatured at 95°C for 5 min, snap cooled on ice and incubated 

with 9 pg of random hexamers (Gibco BRL), 2.5 pi of 5 mM dNTP’s (Gibco BRL), 40 u 

of RNasin, 2 pi of 10 x Reverse Transcriptase buffer and 20 u of Superscript II Reverse

Transcriptase (Gibco BRL), in a total volume of 20 pi, at 23°C for 10 min, 42°C for 45

min and at 95 °C for 10 min.

2.2.6.5 Amplification o f 5*- end o f cDNA

The sequence of the 5' - end of the mRNA was amplified by RT - PCR using a 5' ■ 

oligonucleotide primer (TAG 135) whose sequence is complementary to that of the ribo - 

oligonucleotide and a 3' - oligonucleotide primer (BR051 or BROCI) specific for the 8 

GABAR subunit gene. A second round PCR was performed using varying concentrations 

of the first round product as template (1 pi of undiluted, 1 in 10 dilution and 1 in 100 

dilution). The same 5' - oligonucleotide primer but different (nested) 3' - oligonucleotide
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primers (BR004 or BROCII) were used in the second round PCR reaaction. The ,\; 

conditions for both rounds of PCR were as follows : denaturation of the template and 

primer at 94°C before the addition of Taq polymerase followed by 25 cycles, each cycle 

comprising 15 sec denaturation at 95°C, 30 sec annealing of primer to template at 60°C 

and 30 sec extension at 72°C. The final cycle included an elongation step of 2 min.

The second round products were visualised on 2% TBE agarose gels. A plug of gel 

containing each DNA band was removed with a yellow tip, placed in an Eppendorf tube 

containing 200 pi of water and heated to 95°C for 5 min. This was then used as a template 

for further PCR amplification of the products. These amplified DNA bands were then 

subcloned into a TA vector. This was performed using a TA cloning kit (Invitrogen). 

Blue/white selection was used to identify transformants with inserts and the DNA from 

these was prepared for sequencing (Section 2.2.3.1)

2.2.7 Production of recombinant viruses

2.2.7.1 Insertion o f promoter - reporter gene cassettes into an H SV  - 1 shuttle

vector

Insertion of the promoter - reporter gene cassettes (Chapter 4) into the HSV shuttle 

vectors was achieved using standard molecular biological techniques. The promoter 

constructs were designed to allow for the excision of the promoter - reporter cassette 

when cut with Pac I enzyme (NEB) and thus the HSV shuttle vectors were modified by 

insertion of a Pac I linker (Table 2.3).

2.2.7.2 Recombination o f shuttle vectors with an H SV  -1  host

All cell growth and medium requirements are described in Section 2.1.11.

The standard method for introducing HSV DNA into cells is the calcium phosphate 

precipitation/DMSO boost method (Graham and van der Eb, 1973; Stow and Wilkie, 

1976). Plasmid DNA was linearised (outwith the HSV sequences) and then purified by 

phenol extraction and ethanol precipitation. Two different molar ratios of plasmid DNA to 

viral DNA were used in the procedure : 5x and 20x. The following were mixed in an 

Eppendorf: HSV DNA (0.5 pg), 400 pi HEBS (130 mM NaCl, 4.9 mM KC1, 1.6 mM
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Na2HP04, 5.5 mM D - glucose, 21 mM Hepes, pH 7.05), carrier DNA (5 p,g of calf 

thymus DNA) and the appropriate quantity of linearised plasmid. Finally CaCl2  (130 mM 

final concentration) was added to the mixture. The sample was gently mixed and 

incubated at room temperature for 5 min, to allow a calcium phosphate precipitate to 

form.

BHK21/C13 cells (3 x 106 cells) were grown at 37°C to 70% confluence. After removing 

the medium, the DNA mixture was gently added to the cells and incubated at 37°C for 40 

min. The plates were overlaid with medium and incubated at 37°C for 4 hours. The 

medium was removed and the plates washed gently with medium. 1 ml of a HEBS 

solution containing DMSO (25%) was added to the plates and left for precisely 4 min 

after which it was removed and the cells washed immediately with medium. The cells were 

overlaid with medium and incubated at 37°C for 4 to 5 days until viral plaques formed.

The infected cells were scraped off the plate into the medium, transferred into a 15ml 

Falcon tube and centrifuged for 10 min at 2000 r.p.m. in a Beckman GPR centrifuge. The 

supernatant was removed and the pellet was resuspended in medium, transferred into a 

bijou and sonicated to disrupt the cells. This recombinant viral stock was stored at -70°C.

The 1764 viral variant requires a chemical - HMBA (N,N - hexamethylene bis - 

acetamide) for growth in vitro.

2.2.7.3 Isolation o f single plaques from  the recombinant virus stock

60 mM plastic Petri dishes were seeded with 3 x 106 BHK21/C13 cells and incubated at 

37°C until the cells reached 85% confluence. Ten fold serial dilutions of the recombinant 

viral stock (typically 10'2 to 10‘4) were prepared in medium or PBS + 5% calf serum. The 

medium was removed from the plates and 100 pi of each dilution was added to the cells. 

The plates were incubated at 37°C for 45 min, overlaid with ETMCio and incubated at 37 

°C until plaques formed.
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Plaques were picked (using a microscope at 10 x magnification) into screw - capped 

storage tubes containing 200 pi of medium. This viral stock was then stored at -70°C.

2.2.7.4 Screening fo r recombinant virus

Recombinant viruses were identified by preparing viral DNA from the above stocks. The 

DNA was then analysed by dot blots followed by Southern blotting analysis.

Twentyfour well plates were seeded with 5 x 105 BHK21/C13 cells and incubated at 37°C 

until the cells reached 85% confluence. Each well was infected with 100 pi virus (from the 

single plaque stock) directly into the medium and incubated at 37°C until plaques had 

formed (approximately 3 day). The medium was discarded and 250 pi of cell lysis buffer 

(0.6% SDS, 10 mM EDTA,10 mM Tris pH 7.5) + protease (500 pg/ml) was added to 

each well. The cells were transferred to an Eppendorf tube and lysed by incubation at 

37°C overnight. The DNA was then extracted with the addition of sodium perchlorate 

(100 mM), as described in Section 2.2.8.4.3,

The solutions for the dot blot and Southern blot analysis are the same and are described in 

Section 2.2.1.10, For the first round purification, one third of each DNA sample was 

loaded onto a dot blot apparatus. The membrane was then probed at high stringency 

(65°C) overnight (using radioactively labelled cDNA that had been randomly primed, 

Section 2.2.1.9.2), washed at high stringency and then the DNA bands visualised by 

autoradiography with Fuji X - ray film at -70°C for the required time. Any positive viruses 

were then verified by Southern blot analysis and further purified. Several rounds of 

purification are required to isolate a pure recombinant virus.

2.2.7.5 Large-scale viral DNA purification

BHK21/C13 cells were grown at 37°C to 90% confluence in roller bottles which hold 1 x 

108 cells. The cells were infected at a multiplicity of infection (moi) of 0.003 plaque 

forming units (pfu)/cell in a minimal volume of medium (20 ml). Each roller bottle will 

typically give a yield of 100 pg DNA. The incubation was then continued for 5 days at 

31°C until cpe (cytopathic effect) was complete. The cells were shaken into the medium
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and then transferred into 250 ml centrifuge tubes. The cells were pelleted by 

centrifugation at 2000 rpm for 15 min at 4°C in a Beckman GPR centrifuge. The 

supernatant was carefully removed and stored at 4°C.

Cytoplasmic virus was extracted from the cells by lysing the plasma membrane but 

keeping the nuclear membrane intact. This was achieved by resuspending the cell pellet in 

RSB (10 mM Tris-HCl, (pH7.5), 10 mM KC1, 1.5 mM MgCl2) + NP40 (0.5 % v/v) and 

incubating at 4°C for 10 min. The nuclei were pelleted at 2000 rpm for 10 min at 4°C and 

the supernatant combined with the cell supernatant. The pellet was then discarded. The 

virus was harvested from the supernatant, by centrifugation at 12000 rpm for 2 hours at 

4°C in a GSA rotor in a Sorvall RC5C centrifuge. The supernatant was disposed of and 

the viral pellet resuspended in NTE (10 mM Tris-HCl (pH7.5), 10 mM NaCl, 1 mM 

EDTA), transferred to a glass universal bottle and sonicated until the virus was completely 

resuspended.. Lysis of the virus was achieved by the addition of 2.5% SDS/10 mM EDTA 

and incubation at 37°C for 5 min.

The sample was then phenol extracted 4 times, chloroform/isoamyl alcohol extracted once 

and the DNA precipitated by the addition of 2 volumes of ethanol. After washing, the 

DNA pellet was dried briefly at room temperature before being resuspended in sterile 

water plus RNase A (10 pg/ml) and incubated overnight at 37°C. The viral DNA was then 

aliquoted and stored at -70°C until required.

2.2.7.6 Preparation o f high titre viral stock

For this purpose, 10 roller bottles were seeded with BHK21/C13 cells and grown at 37°C 

until the cells reached 80% confluence. The medium was removed from the bottles and 

replaced with 20 ml of medium containing 106 pfu of virus. The incubation was continued 

for 5 days at 31°C until cell lysis was complete. The cells were shaken into the medium 

and then transferred into 250 ml centrifuge tubes. The cells were pelleted by 

centrifugation at 2000 rpm for 15 min at 4°C in a Beckman GPR centrifuge. The 

supernatant was transferred into a fresh centrifuge tube, and the virus harvested from the
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supernatant by centrifugation at 12000 rpm for 2 hours at 4°C in a GSA rotor in a Sorvall 

RC5C centrifuge.

The supernatant was discarded, and the viral pellet resuspended in 5 ml of residual 

supernatant. The viral stock was sonicated, in a glass container, for 5 - 10 min until 

completely resuspended. The stock was then aliquoted and stored at -70°C.

2.2.7.7 Titration o f viral stocks

60 mM plastic petri dishes were seeded with 3 x 106 BHK21/C13 cells and incubated at 

37°C until the cells reached 85% confluence. Ten fold serial dilutions of the viral stock 

(typically 10'1 - 10'7) were prepared in medium or PBS + 5% calf serum. When preparing 

the dilutions, it is necessary to use fresh tips as the virus will stick to the tips and 

introduce inaccuracies in the titration.

The medium was removed from the plates and 100 pi of the serially diluted virus stock 

was added gently to the cells. After swirling gently to ensure even coverage of virus, the 

plates were incubated at 37°C for 1 hour to allow adsorption of the virus onto the cells.

The cells were overlaid with ETMCio and incubated at 37°C until plaques formed (usually 

2-3 days). The overlay medium was removed and the cells stained for a minimum of 2 

hours at room temperature with Giemsa. The stain was removed by washing, the plates 

drained and the plaques counted using a plate microscope.

It is best to count the dilutions with 20 - 200 plaques/plate, and to count duplicate plates. 

The titre can be calculated as follows :

10'7 plate = 20 plaques 

10*6 plate = 200 plaques

= 2 x 108 pfia in 100 pi inoculum.

Therefore the titre is 2 x 109 pfu/ml.

63



Chapter 2 Materials and Methods

2.2.8 Gene targeting

2.2.8.1 Construction o f vector

DNA fragments from the lambda subclones were introduced into the targeting vector 

using standard molecular biological techniques (Sections 2.2.1.1 - 2.2.1.4)

2.2.8.2 Growth o f cells

All cells were grown in flasks or plates treated with 0.1% gelatin for a minimum of 1 hour 

at 4°C. The amount of medium required depended on the size of tissue culture vessel 

used. The cells were grown at 37°C with 5% CO2 .

Initially, cells were grown from a stock frozen in liquid nitrogen. The vial was thawed
I

| quickly at 37°C. 1 ml of medium was added and the cells were transferred to a gelatinised

I 5 cm2 flask with 6 ml of medium. The cells were grown to about 80% confluence before

being split into a larger flask. The medium was removed and the cells washed twice in lx 

PBS to remove traces of medium which would inhibit the trypsin. 1ml of trypsin was

added and left for 2 - 4 min until the cells were observed coming off the flask. 5ml of
• •  •  2 medium was added to stop the trypsin, and the cells were pipetted into a 75 cm

gelatinised flask with 22 ml of medium.

The cells were grown to 80% confluence before again being split, this time into 2 x 150 

cm2 flasks. 50 ml of medium is required for growth of cells in these flasks. The cells were 

then ready for the transfection procedure.

2.2.8.3 Transfection o f ES cells

The DNA requires to be linear for transfection, therefore 50 ng of DNA was linearised|
j with the appropriate enzyme. This was confirmed by agarose gel electrophoresis. The

| digested DNA was then precipitated with 0.3 M sodium acetate (pH 5.2) and 2.5 vol. of

ethanol as described previously (Section 2.2.1.6). The removal of the 70% ethanol wash 

and the drying stage were performed in the hood for sterility purposes. The DNA was 

resuspended in 50 pi of sterile water and heated to 65°C.
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2 x 150 cm2 flasks of cells at 85% confluence were used for the transfection. The medium 

was removed and the cells were washed twice with lx PBS. The cells were treated with 

trypsin and transferred in 10 ml of medium, to 15 ml Falcon tubes. The cells were 

harvested at 1000 rpm for 1 min in a Jouan CR312 benchtop centrifuge. The medium was 

carefully removed and the cells were gently resuspended in lx PBS. The cells were again 

harvested at 1000 rpm for 1 min. This washing stage was repeated twice more. The cells 

were then combined in lx PBS to give a final volume of 0.8 ml.

The cells were transferred to the Eppendorf tube containing the denatured DNA and 

mixed gently being careful not to introduce air bubbles. This mix was then transferred to a 

0.2 ml cuvette and the cells electroporated with a single pulse of 0.8 Kv, 250 pFd, 600 

ohms. The cell/DNA mix was then incubated at room temperature for 20 min. The cells 

were transferred to a 50 ml Falcon tube containing 30 ml of medium and 2 ml of this were 

added to 15 gelatinised petri dishes. The volume was made up to 10 ml with medium and 

the cells were incubated at 37°C. After 24 hours, the cells were grown in medium 

containing G418 and gancyclovir. The medium was changed every day.

2.2.8.4 Screening fo r targeted cell lines

2.2,8.4.1 Selection o f resistant colonies

Initially, the cell growth was normal. After a few days a large amount of cell death was 

observed. It is critical to change the medium regularly as the presence of dead cells has a 

deleterious effect on cell growth. After about 1 0 - 1 2  days, resistant colonies could be 

seen and these were allowed to grow for several days before being picked.

The medium was removed and the cells washed twice in lx PBS. 7.5 ml of PBS was then 

added to the plate. The colonies of cells were picked using yellow tips and transferred to 

gelatinised 24 well plates. Each well of cells was treated with trypsin before adding 2 ml 

of medium and incubating at 37°C. The medium was changed after 2 days initially and 

then daily after that. When the cells were confluent, they were harvested. One third of the 

cells were frozen down and stored in liquid nitrogen. The rest were used to prepare DNA.



Chapter 2 Materials and Methods

2.. 2. & 4.2 Freezing o f selected colonies

The medium was removed from the wells, the cells washed twice in lx PBS and then 

treated with trypsin. 1ml of freezing medium was added to the wells and the cells were 

scraped off using a 1 ml pipette. 0.3 ml of cells were transferred to storage tubes, while 

the remainder of the cells were transferred to Eppendorf tubes. Only 20 wells were 

processed at one time as the DMSO in the freezing medium is toxic to the cells. The cells 

in the storage tubes were frozen slowly at -70°C before being transferred to liquid 

nitrogen. The cells in the Eppendorf tubes were harvested by centrifugation and the 

medium removed. The cell pellets were stored at -70°C.

2.2.8.4.3 Preparation o f genomic DNA

This method has been modified from the Nucleon genomic DNA isolation kit from 

Scotlab. The cell pellets were resuspended in 340 pi Solution B (400 mM Tris (pH 8), 60 

mM EDTA, 150 mM NaCL, 1% SDS). Sodium perchlorate (0.88 M) was added and the 

samples were incubated at 65°C for 10 min. 580 pi of chloroform : iso amyl alcohol 

(24:1) was added and the samples were incubated on a roller for 20 min at room 

temperature. The samples were centifuged for 5 min at 14000 rpm and the upper aqueous 

layer (400 pi) transferred to an Eppendorf tube using a cut blue tip. Two volumes of 

ethanol were added and the tubes gently inverted until the DNA precipitate was visible. 

After a 5 min centrifugation and wash with 70% ethanol, the DNA was dried briefly at 

room temperature and resuspended in 60 pi sterile water overnight at 4°C.

2.2.8.4.4 Screening o f genomic DNA

The DNA samples were screened by Southern blot analysis (Section 2.2.1.10), For each 

clone, one sixth of the DNA was digested with the appropriate enzyme in a volume of 100 

pi. The samples were then ethanol precipitated (Section 2.2.1.7) and resuspended in 20 pi 

of water plus loading dye. The digested DNA samples were separated by electrophoresis 

on 0.6% TBE agarose gels overnight at 25 volts. The gels were denatured, neutralised 

and blotted overnight. The blots were probed with random primed DNA fragments 

(Section 2.2.1.9.2) and visualised by autoradiography with Fuji X - ray film at -70°C for 

the required time.
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2.2.9 In vitro analysis of promoter -reporter constructs

2.2.9.1 Neuronal cell cultures

2.2.9.1.1 Preparation o f cells

The day prior to transfection, the cells were plated out in 6 well (35 mm) trays to yield a 

density of approximately 90% confluence at the time of transfection. Immediately before 

transfection, the cells were washed twice with 2 ml of Optimem 1. Finally, the cells were 

overlaid with 1 ml of Optimem 1.

2.2.9.1.2 Transfection o f cells

Each plasmid was transfected in triplicate. In total, 3 pg of DNA was transfected per well. 

This consisted of 2 pg of the lacZ constructs and 1 pg of the internal control plasmid. The 

ratio of DNA to DOTAP used was 1 pg of DNA per 6 pi of DOTAP.

3 pg of DNA was diluted to 0.1 pg/pl in Hepes buffer (30 pi). In a separate tube, the 

DOTAP (18 pi) was diluted to 60 pi with Hepes buffer. The DOTAP solution was added 

to the DNA and incubated at room temperature for 15 min. The DNA : DOTAP mix was 

added to the cells dropwise, and the plates swirled gently to ensure proper mixing. The 

cells were incubated at 37°C for 6 hours. The medium was removed and the cells were 

overlaid with 2 ml of medium (with serum). The cells were incubated for 42 hours post - 

transfection before being harvested.

2.2.9.L 3 Harvesting o f transfected cells

The medium was removed and the cells were washed 3 times with 1 x PBS. After removal 

of residual liquid, 80 pi of cell lysis buffer was added to each well. The cells were 

incubated at room temperature for 5 min and then scraped off and transferred into an 

Eppendorf tube. The cells were centrifuged for 1 min to pellet the cell debris and the 

supernatant was transferred to a fresh tube. The cell extract could be stored at -70°C at 

this stage.
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2.2.9.1.4 P - galactosidase assays o f cell extracts

30 p.1 of cell extract was mixed, in an Eppendorf tube, with 200 pi of (3 - galactosidase 

assay reagent. This was incubated, in the dark, at room temperature for 1 hour before 

being transferred to a tube for the luminometer.

The luminometer was set with a delay of 10 sec and to read for an integrate of 15 sec.

A reading was taken for each sample.

2.2.9.1.5 Lucif erase assays o f cell extracts

10 pi of cell extract was mixed, in a luminometer tube, with 100 pi of luciferase assay 

reagent and a reading taken immediately. The luminometer was set with a delay of 3 sec 

and to read for an integrate of 10 sec.

2.2.9.2 Cerebellar granule cell cultures

2.2.9.2.1 Preparation o f cells

Cerebella were removed from 7 - 9  day postnatal rats (Sprague - Dawley) and placed in a 

petri dish with EBSS (maximum of 10 per procedure). The cerebella were placed in a row 

in the lid of a petri dish, and triple chopped using a sterile double - edged scalpel. The 

cerebella were transferred to a 50 ml Falcon tube with 10 ml of supplemented BME 

medium. 10 ml of trypsin (0.25% w/v, final concentration, Section 2.1.12.2) was added to 

the cells and mixed 6 times by tituration. The cells were incubated at 37°C for 15 min.

1 ml of soyabean inhibitor (0.03% w/v, final concentration) was added and mixed for 1 

min by tituration. 1 ml of DNase I (0.004%, final concentration) was added and mixed for 

1 min by tituration. The cells were incubated at 37°C for 10 min.

5 ml of supplemented BME medium was added and the cells were mixed for 2 min by 

tituration. The cells were centrifuged at 1000 rpm for 90 sec, and the supernatant y 

collected in a fresh Falcon tube and maintained at 37°C. The cell pellet was washed and 

titurated in 10 ml of supplemented BME medium before being re - centrifuged at 1000

rpm for 1 min. This washing step was repeated 2 more times. The supernatants were
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pooled and maintained at 37°C. A 20 pi aliquot of cells was mixed 1:1 with trypan blue 

(0.4% stock) and counted using a Fuchs - Rosenthal counting chamber (depth 0.2 mm, 

1/16 mm2).

Cells were seeded at a density o f : 1.5 x 106 cells/12 well plate in 1 ml of supplemented 

BME medium and maintained in an incubator at 37°C with 5% CO2 .

This is day 1 of the granule cell cultures.

The medium was replaced after 48 hours with fresh supplemented BME medium 

containing 10 pM cytosine-P-arabinofuranoside to prevent division of non - neuronal 

cells.

The medium was supplemented with Glucose solution (5 mM) every 3 days.

2.2.9.2.2 Transfection o f granule cell cultures

Each plasmid was transfected in triplicate. 2 pg of DNA was transfected per well. This 

consisted of reporter constructs and pUC18 control DNA (added to standardise the DNA 

concentrations). This calcium phosphate precipitation method has be modified from that 

of Xia et al. (1996).The solutions for this are listed in Section 2.1.12.3.

The medium was removed from the wells and combined. Glucose (5 mM) was added to 

the medium and it was stored at 37°C until required (conditioned medium). 1 ml of BME 

+ GRI was added to the wells and the cultures incubated at 37°C for 1 hour.

The DNA was mixed with the CaCl2 and then this was slowly added dropwise to an equal 

volume of HBS. The DNA precipitate was allowed to form by incubation at room 

temperature for 25 min. The DNA mix was added to the cells dropwise and swirled gently 

to ensure proper mixing. The cells were incubated at 37°C for 1 hour. The cells were 

treated with a GRI/HBS supplemented with either 5 % Glycerol or 2 % DMSO for 2 min 

before being washed 3 times with BME. The cells were overlaid with 1.5 ml of 

conditioned medium and incubated at 37°C for 48 hours.
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2.2.9.2.3 X  - gal staining o f granule cell cultures

The medium was removed and the cells washed 2 times with 1 x PBS. The cells were 

fixed by incubation with fix solution for 5 min at room temperature. The cells were 

washed 3 times with TBS and then stained with X - gal solution by incubating at 37°C 

overnight.

2.2.10 Analysis of HSV - 1 promoter constructs

2.2.10.1 In vitro analysis in cerebellar granule cells

2.2.10.1.1 Infection o f granule cells

The viruses were diluted in BME to 1 x 108 pfu/ml. The cells were infected with 1 x 106 

pfu/well which gave a MOI of 1. Each virus was infected in duplicate wells.

The medium was removed and stored as described in Section 2.2.9.2.2 above 

(conditioned medium). The virus was added to the wells in 0.5 ml of medium and the cells 

incubated at 37°C for 1 hour. The medium was removed and replaced with conditioned 

medium. The infected cells were incubated at 37°C for the required time.

2.2.10.1.2 X -  gal staining o f infected cells

The medium was removed and the cells washed 2 times with BME (minus serum). The 

cells were fixed with 0.2 % gluteraldehyde in BME (minus serum) by incubating at room 

temperature for 5 min. The cells were washed 3 times with BME (minus serum) and 

stained by incubation at 37°C overnight with X - gal solution (Section 2.1.12.3)

2.2.10.2 In vivo analysis by stereotactic injection into rats

2.2.10.2.1 Intracerebellar inoculation o f animals

Approximately 1 x 105 pfu of each virus was stereotactically injected under Rompun/ 

Vetalar (1:2) anaesthesia into the cerebellum of 200 g - 300 g, adult male AO rats. The 

virus was injected over a period of 1 min in a volume of 1 pi. At day 5 post - injection, 

animals were sacrificed by decapitation. The brains were removed and frozen immediately 

on dry ice. The brains were stored at -70°C.
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2.2.10.2.2 Histochemistry o f extracted brains

Glass slides were treated with TESPA solution, washed twice in acetone and stored at 

4°C with dessicant.

Brains were removed from -70°C and mounted ready for sectioning. Brains were 

sectioned horizontally at 30 pm on a cryostat onto treated glass slides. The sections for 

histochemical staining were fixed with a gluteraldehyde solution for 30 min at room 

temperature. After washing 3 times in Wash Buffer, the sections were stained in X - gal 

solution overnight at 37°C. The slides were rinsed once in Wash Buffer, re - fixed for 30 

min, rinsed again in Wash Buffer and then counter - stained with neutral red for 20 min. 

Sections were dehydrated in steps : 70% ethanol, 95% ethanol, 100% ethanol and finally 

Propan - 2 - ol. The sections were treated with Histoclear, cover - slips were applied with 

DPX and then dried at room temperature overnight in the dark.
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3.1 INTRODUCTION

Early studies using a combination of in vitro mutagenesis and DNA - mediated gene 

transfer identified two distinct types of cis - acting regulatory sequences. Basal promoter 

regions are located close to the initiation site and act in a position - dependent manner, 

while enhancers and silencers, which can be located far from the initiation site, act in a 

position - and orientation - independent manner. Basal promoters can be subdivided into 

proximal elements, e.g. the cap site and the TATA box, and distal elements which can be 

spread over hundreds of base pairs. These cis - acting elements operate by interacting with 

protein factors. A combination of different interacting elements can generate various types 

of transcriptional control.

The GABAa receptor 5 subunit gene has been partially characterised for both the mouse 

and rat, and some analysis of the putative promoter regions for both animals has been 

performed. This information has been discussed in detail in Section 1.3.1. The GABAa 

receptor 5 subunit gene promoter lacks a TATA box and is rich in CpG dinucleotides. 

DNA recognition sequences have been identified for the Spl and AP-4 transcription 

factors. An area of transcription initiation has been identified in the mouse 5' - upstream 

region (Sommer et a l, 1990), and this coincides with transcription initiation sites that 

have been identified for the rat (Motejlek et al., 1994). Also in the rat, a region containing 

tandemly repeated purine elements has been identified as binding a novel element - BSF1 

(brain specific factor 1).

Recently, Dr D. Livingstone (Prof. R.W. Davies laboratory) performed analysis of short 8 

promoter fragments (close to the translational start site) driving luciferase gene expression 

in two cell lines, NB4 1 A3 and GT1 - 7. The results showed that the region containing the 

putative Spl binding sites is critical for expression.

Luscher reported in an abstract in 1993, the use of transgenic mice lines carrying a lacL 

gene driven by a 6.5 kb fragment from the rat 8 subunit gene 5' - flanking region to 

identify neuron - type specific regulatory elements. They reported faithful neuron - 

specific expression in most regions of the CNS but not in the cerebellum, thus they were 

unable to show the correct developmental profile of the native gene. They concluded
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therefore that the construct lacked sequences essential for the inherent developmental 

expression profile of the GABAa receptor 5 subunit gene.

In this chapter, a large region (10.6 kb) of the 5' - flanking region of the murine GABAa 

receptor 5 subunit gene has been sequenced and analysed. The transcription initiation 

points have been identified, as have several regions that could be involved in the 

regulation of the gene.

3.2 RESULTS

3.2.1 Subcloning of the promoter region for sequence analysis

The GABAa receptor 5 subunit gene was isolated from a murine 129 genomic DNA 

library (Dr D. Livingstone). Three overlapping lambda clones contained the whole gene 

(Figure 3.1a). Dr Livingstone mapped these clones by restriction analysis and found 

differences from the published data. In order to sequence the promoter region, 10.6 kb of 

5' - flanking DNA was subcloned into Bluescript SKII (+) and KSII (+) (Figure 3.1b).

a.
E E XhE KE X HXh N h E H N K  B X B E X h H K K E  K

II I I 11 11 I II- - - - - - 1— I— H I— I- - - - - 1- - - - I II 11- I  -I— l - l
I III lllll
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K E X HXh Nh HE HH Nb.

H=/find III 
B=BamHl 
K =Kpnl 
X = X bal 
Xh =Xho\ 
N = N otI
Nh =Nhe I 
E =Eco RI

Figure 3.1 Genomic restriction map

a. Restriction map of GABAa receptor 5 subunit gene genomic DNA, and 

overlapping lambda clones which contain the whole gene.

b. Promoter fragments (approximate sizes in base pairs) subcloned into pBluescript 

for sequence analysis.

The figure is not drawn to scale.

3.2.2 Identification of transcription start sites

Transcription start sites were identified using the oligo - capping technique (Section 2.2.6, 

Maruyama et al., 1994). The PCR reactions were performed (using the same conditions) 3 

times with different oligonucleotide primers. The products of the oligo - capping were 

visualised on a 2% TBE agarose gels, an example of which is shown in Figure 3.2. 

Initially, primers were designed to exons 2 and 1 (BR801, BR006, Table 2.4). 2 major 

products were obtained. These were subcloned into a TA vector (Promega) and 20 clones 

were analysed by sequencing (Section 2.2.2.3.2), These results have been presented in a 

histogram (Figure 3.3a). There appear to be several start sites, but 2 major clusters.

In the second experiment, the 3' - primers were designed to exons 3 and 2 (BROCI, 

BROCII, Table 2.4). 20 TA clones were analysed by sequencing and these results 

corroborated those of the first experiment i.e. several start sites with 2 main clusters 

(Figure 3.3b). The experiment was repeated a third time with a newly prepared 51 - 

oligonucleotide primer from Cruachem, and the BROCI and BROCII 3' - primers. Again 

20 clones were analysed by sequencing (Figure 3.3c). Figure 3.4 shows the results of the 

3 experiments combined. The overall positions of the transcription start sites and the 

primers used are shown in Figure 3.5,_________________________________________
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Figure 3.2 PCR products produced by Oligo - capping
2% TBE agarose gel showing second round PCR products from oligo-capping 

experiment. Lane 1 = no DNA control, Lanes 2 - 5 = single primer controls, with and 

without DNA, Lanes 6 - 8 = reactions using varying concentrations of DNA template. 

Primers used were TAG 135 and BROCII (Table 2.4). The 2 major products (and their 

sizes) are indicated with arrows.
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Figure 3.3 Histograms showing transcriptional start point data
a. Histogram showing results of the first oligo - capping experiment. PCR primers used 
were TAG135, BR801 and BR006. 2 major start site clusters were observed.
b. Histogram showing results of the second oligo - capping experiment. PCR primers 
used were TAG135, BROCI and BROCII. 2 major start site clusters were observed.
c. Histogram showing results of the third oligo - capping experiment. PCR primers used 
were TAG135, BROCI and BROCII. 2 major start site clusters were observed.
X - axis = 1 indicates the 5' - most start site identified. Y - axis = percentage of tsp 
identified at a specific base.
Abbreviations used : tsp = transcription start point.
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Figure 3.4 Histogram showing combined transcriptional start point data
Histogram showing the combined results of the three oligo - capping experiments. 2 major 
start site clusters were observed.
X - axis = 1 indicates the 5' - most start site identified. Y - axis = percentage of tsp 
identified at a specific base.
Abbreviations used : tsp = transcription start point



Figure 3.5 Sequence showing the identified transcription

start points



Figure 3.5 Sequence showing transcription start points

The sequence shows the position of the transcription start points identified by oligo - 

capping. There are two major start points (large arrows) and several minor ones (small 

arrows). The two sets of 3' - nested oligonucleotide primers used were :

BR081 (exon 2) and BR006 (exon 1)

BROCI (exon 3) and BROCII (exon 2) and these are indicated as solid lines above 

the sequence. Intron/exon boundaries are shown. Consensus sequences for the 

transcription factors AP-4 and Spl are in bold. +1 (base A) relates to the 5' - most 

transcription start point identified.



- 1 7  8 TGCGTCCTGGTCGTTTGTGCTCCAGGCAGACACGTGGAGGAACTTGTTTG

A P - 4
- 1 2  8 CAGACAGCAAGGGCCACAGCTGGAGGAGGGTCTGGGCCGCCTGACTTCTG

S p l
- 7 8  TGCGGCAGGGCGTGCGAGCGGGGGTGGGACTGTGGCGCGGGGCGGGGCGG

+1
- 2 8  GGCGGGGCGGGGCAGGCTCGACGTTCCATCCTCCCCCAGCGCCCGTTCCA

T TtT
+ 2 4  CTCTCCTTCGCGCTCCCGCCCTTCTGGTGCCGCCGCGCGGCCGCAGGCAA

T t

+ 7 4  AGCAACTTTGCTTGCGCTGGGGCTAGCTGGACCTGTCCCGCGCACAGCCC
T T T T

Bpnofi
+ 1 2 4  GCAAGGCCATGGACGTTCTGGGCTGGCTGCTGCTGCCGCTCCTGCTGCTC 

M D V L G W L L L P L L L L  
i n t r o n  1

______________ b b o c t t _______________

:agIgg+ 1 7 4  TGCACGCAGCCGCACCATGGCGCCAdGGCAATGAATGACATTGGGGACTA 
C T Q P H H G A R A M N D I G D Y

BROdl

+ 2 2 4  CGTGGGCTCCAACCTGGAAATATCCTGGCTCCCCAACCTGGATGGCTTAA 
V G S N L E I S W L P N L D G L

i n t r o n  2
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A E G Y A R N F R P G I G G A P V

^ ___________ m z i______________
+ 3 2 4  AATGTGGCGCTTGCCCTAGAGGTGGCCAGCATTGACCATATCTCAGAGGC 
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+ 3 7 4  AAACATG 
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3.2.3 Sequencing of the 5' - flanking region

Automated double - stranded DNA sequencing (Section 2.2.3) was used to sequence the 

5' - flanking region. The universal forward and reverse primers and also primers specific to 

the 6 promoter region were used to obtain sequence from both strands (Table 2.5). Two 

plasmids containing 6.3 kb (pBR502) and 10.6 kb (pBR702) (Chapter 4) of 5' - upstream 

DNA were used to sequence the overlapping region between the subcloned DNA 

fragments. In total, 10.6 kb of double - stranded sequence was obtained (Figure 3.6).
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GAB A A receptor 8 subunit gene



Figure 3.6 Sequence o f the 5' - upstream sequence o f the GABAa receptor 8 

subunit gene

The figure shows the complete sequence of approximately 10.6 kb of 5' - upstream region 

from the GABAa receptor 5 subunit gene. +1 relates to the 5' - most transcription start 

point identified and is indicated by a vertical arrow below the base (A). The sequences 

highlighted in red are recognition sites for known transcription factors. These are listed 

and described in Tables 3.1 and 3.2. The blue sequences are repeat regions e.g. SINES 

and LINES, and the regions highlighted in green are simple repeat sequences. These are 

listed and described in Table 3.3. The translational start point is indicated.



106 0 2  GGTACCTCTGCACTCCCTTCAGATACTTTGCCTGTGAAATACCACTGCAATACTGTATAGGTGTGTGTGT

10532  GGCTGGGGATCGAACCCAGGTGTTCTATAAGTTTAGAGCTTTGTGTATGGAAGCCGGATGTCCTAGTAAA 

10462  GCAATTTGGGAAAGATAGCCAGTTGGTTTGTAACCTTTAGCTGAGGGAGAATGTGAACTGGGCCTCCTAC 

103 9 2  TCTGGGTTGACCCTGGTATATGGCTGAGCAGAGAGGGTTGTGAAGTAACCATATCCAATACTAATATTTG

103 2 2  TGGTATGAAGTATAATCCCCACTATAGTAAAATAAGTGAATAAATTGGTCTTCTCTTTCACGTTGCCTCA

102 5 2  AATATTTGTTTACAGGGACAAAACTCTGACTAACACATGTAATTTTCTCTGGGGTATACTATACTCCTCT 

101 8 2  GTTAGGCTGGCCAAGCCTGTCAGGTATACATTAGGTTTGCCTCCCTTCCACTTTTTTTGTTTTGTTTTGT 

101 1 2  TTTTTGAGACAGGGTTTCTCTGTGCAGCCCTGGCTGTCCTGGAACTCACTCTGTAGACCAGGCTGGCCTC 

10042  GAACTCAGAAATCCACCTGCCTCTGCCTCCCAAGTGCTGGGATTAAAGGCGTATGCTACCATGCCCGGCT 

- 9  9 7 2 CCCTTCCACTTTTATCTCAATATGCCAGTTGGGAATCAAGAACCAAAGGATTTCTCAGTTCAATTCTTCT

- 9  9 0 2 TCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTT

- 9  8 3 2 CTTCTTCTTCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTTCTTTCCTCCTCCTTTTCTTCTT

- 9  7 6 2 CTTCTCCTTCTCCTTCTTCTCCTTCTTCTTCATCTTCTTCCTTCTTCGATCTCTCCAGCCCCTACTCAGT

- 9  6 9 2 TCAATTCTTTTTCCTCTGCTAATCAATCCAAGATGCCTACTAAATTTCTGGCGTACCTAGTTCTATCCCA

- 9  6 2 2 CGACTTTGAACTAGAGGACATGGGCTGACACCATTGGTGCAAGAAATGGTCTGAGAGAGATGACTGCAGG

- 9  5 5 2 GGATTTGGAAATGGGTTACTCACTGTCTGTTTGGCAACGAGGAGCCCTGCCTAAGCAGCATGTGAATTCC

- 9  4 8 2 TTGTCTTAAGGAAGCAGCTCATCTGTGAGACTTTTACCAGCAACAAATTGGAGTGGTAATTCCACTCCAC

- 9  412 CTGTAATTCAGTTGTATTAATACCCTACAGAGGGATCATGAAAAGTTGGAGGTCAGTAGGATGCTAACAC

- 9  3 4 2 TGCTGTGAAATCAGGTGTTGTCTTGGTAGTTGGTAGGAGCCTGATCTCTCACAGCGAAAGCAAAAGACAA

- 3 2 1 2  GCAAAGCCCGAGTAGGCTATTGAACAGGCTTTACCAAAACTAGGCCACAGTCCTAACCTGTGGACAGTAC 

- 9  2 0 2 CTGGGCCTGTGCGGTGGGCACTCACTGACACCCTTGTGTCCTTGAGTGTACGGCTGTCCAGACTCTGAAA

-9 1 3  2 TGACTTCAGAGCATTCCAAGGTAACTCCTGCCTTACTAGGAAGAGATAGCACCCCAAAATGTTCACGAAG

- 9  0 6 2 ACACAGTAGAGGTTTCTGCCCAGGGGTAACAAGATTCCCTTTGGTGCCTTATTTTAGCTCCTCTCCTGGT

- 8  9 9 2 TGCCATGAGGCCAATAAGCATCGAAATATTCTCTAGACAACTAATAAATAAAATCCACGGGGCTGCTGAC

- 8  9 2 2 TTGTACTGAACTCCCACACCCCAACCGACCAGATCAAACTGGAGCGATTCACACATCACCACAAAGAGCA

-8  8 5 2 GGGTGTTTATTTGACCTGAGAAACTGGGAAAGCAATGTGATAGCCAAGGAGTTTTACAAGTATCAAGGCA

- 8  7 8 2 AATAAATCAGGAAATGTCACACCAACACAAAATAAACAAACTGTGATGGTTTGTATGTGCCTGGCTCAGG

-8  712  GAGTGTGGCCTTGTTGGAGTAAGTGTGTCTTTTTGGGCGTGGGCTTTAAGACCCTACTCATAGCTTCTAG

- 8  6 4 2 CTCACTAGCAGCCCTCAGATGAAGATGTAGAACTTTCATCGATGCCTGCACCATGCTTGCCTGGATGCTG

- 8  5 7 2 CCCTGCTCCCACCTTGATGATGATGGACTGAACCTCTGAACCAGTAAGCCAGCCCCAATTAAATATCCTT

-  8 5 0 2 TATAAGACTTGCCTTGGTCATGGTGTCTGTTCACGGCAGTAAAACCCTAACTAAGACACAAACAGATAGA

-  8 4 3 2 AATAAGACATAAATAAAAACTCCTTAAAACAACCAAAGGAAAGGCCCAGTTTTACAGAGTGCACCAAGAG

-  8 3 6 2 AAACGGAGCCACACTCCAAGGGAGAGACATCCGAAAACACCGAGGAGAACAAGCAAAAGACAGACTGACT

- 8  2 9 2 GACAGGCTCACCAATAACCTAACGACCTATGCCCTGGGAAGCTGACTGTTGAAAATGAACACAATGTTAT



- 8  2 2 2 GGAATGCAAACCACTGGCAGTAAAGTTGTTTTTGTTTAAAAAATAATAGTTAGGCAAACGGTGTAGCTCA

- 8 1 5  2 GTTGACAGAGTGCTTGCCTAGCATGCACAAGACCCTCTGTTAAATCACTAACACTGCATAAAACAGGCAT

- 8  0 8 2 GGTGGCACTCACCATTAATCCCAGCACTTGGGAGACAGACAGGAGGATCAGAGTTCTGCATTATGCTTAA

- 8  012 TTACATAGTGAGTTTAAGGACATCCTGGGCTTCATGAGACCCTGTCTCAAAAAGCATAAATTTAAAAAGT

- 7  9 4 2 GTGTGTGTGCTGGGCATGGTGGCGCACGCCTTTTATCCCAGCACTTAGGAGGCAAAGGCAGGCAGATTTC

- 7  8 7 2 TGAGTTTTGAGGCCAGCCTGGTCTACAAGTGAGTTCCCAAGAACAGCCAGGGCTACAGAGAAACCCTGTC

- 7  8 0 2 TTGAAAAAAAAAGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGAGTGTGT

- 7  7 3 2 GTGTGTGTGTGTGTGAGTGTGTGTGTGAGTGTGTGTGTGTGCGTGCGTGTGTGTGCGTGCGTGTGTGTGT

-7  6 6 2 GTGTGTGCGTGCGTGCGTGTGTGCGTGTGTGTGTGTGTGTGTGTGTGTGCGTGCGCACACTCAGAGGTTA

-7  5 9 2 TGAGTGTTTTCTCAGAAAACCTAAGTTTGGTTCACACTCAGCACTTACACTGGGCAGCTTACAGCTGCCT

- 7  5 2 2 GTAACTTTAGCAACAGGTGTGGACACACCCTCTGGTCTCTGAAGGCACCTACATACACATGGCATATGCA

-7  4 5 2 CACACAGACATACACTCATATGTATAAATAAACATTACAAGTTAAAAAAAAATGAAGGGCTATAGAGATG

- 7  3 8 2 TCTCAGAGGTTAAGAGCACTTGCTGCTCTACCAGAGGACCACAGTTACGTTCCCAACACCCAAGTCAGTG

- 7  312 GCTCAAAACCCTCTGTAATTCCAGCTCCAGGAGATCTGATGCCTTCTTCTGGGCTCCGAAGGGAGCCTGA

- 7  2 4 2 ACACTCTCTCTCTCTCTCTCTCACACACACACACACACACACACACACACTTAAAAATAAAATTATTAAG

-7 1 7  2 GAAAAATAAATTTATCTTTACATTTATAATTTTTATGTTGTGTGTATGAGTGAGTGTTTTGCCTGTACGT

- 7 1 0  2 ACATACGTGTGCTAACATGCATGCCTGGTGCCTTCAGAAGTGAGAAGATGGTATCAGATCGCCTAAAACT

- 7  0 3 2 GGAGTCACAGATGTCTGTAAGCCACCATGTGGGCCCTGGGAACTGAATCCAGGATTTTTGTAAGAGCAAC

- 6  9 6 2 AAATGCTCCTAAGTGCTGAACCATATCTCTAGCCCCTAAAATAAATTTTAAAAGAAAATGAAGATGGATA

- 6  8 9 2 GGCAGTGTAACTTGTTGTGCAGCAATCATATATAGCCTGTGTAGGGCCCTAGAGAGCAACCTTCTGTGCT

- 6  8 2 2 GCAAAACATACAAATAAATACATGAAAAAATAAAGGGAAATTTCTGTTACTTTCCTCCTATCTGGAACAA

- 6  7 5 2 CTTTTAAAAACTGAACAAAACACACAAAGCAGTAACAGTTCTCAGTTATTGGGCATCAGGTCATCTTGGA

- 6  6 8 2 GATGGTAAGTGGGCGAGGGAGCCTATCTTAATTATTTTCATGTTGCCATAACAAAACACCATGATGTAGG

- 6  612 CAACTTATAGAAGAAAGCTTTTAGTTTGTATCTCACAGTTCCAGAGGGCTGGAGTCCATGACCAAAAATG

- 6  5 42 GTGGAGCATGGCAGCAGGCAGTCCAGGGGCTGGAGATGTAGCTGGGAACTAACATCTGACCCACAAGGAT

-  6 47 2 GAGTCAGAGAAGAGGAGCTCTGC AGGTAACCTGAGTCGGGAACACCCCTCCTCTAAAAAGGCCAC ACCTC

- 6  4 0 2 CTCATCCTTCCCAAACAGCTCCACCCAATGGGAACCGAGCATTCAAATATAGGACCCCATGGGAGCAATT

-  6 3 3 2 CTCATTCATACCACCACAGAGCCCTCAGACGATGCCAACTTCTACCAAGGAAAGTGTCCAGGCCATGTTT

- 6  2 6 2 GAGGCAAGAGAGCAGTAATAAAAGAAAATAGATGATGTGGCTTATTTAATAAAGATTAAAGATTCTGGGC

- 6 1 9  2 CAGTACAGTGTTGCCATGAGCCTTTAATCTCAGCACTCGAGAGACAGAGGTAGGAGGATCTCTGAGTTCG

-6 1 2  2 AGGCCAGCCTGGTCTACAGAGTGAGTTCTAGGACAGTTAGGGCTATGCAGAGAAGCCCTGTCTAGCAAAC

- 6  0 5 2 AAACAAACAAACAAACAAATGAAAACAACAAACTCTGGGCCTGTAAAAGTTTGGCTGAAATGGAAACTAA

- 5  9 8 2 ATAGAGAAGTCCCAGACTGGGCGAGAATATATGTAAAACATCTATCTGAAACAAACATAAGTACCCAGTT

-  5 912 C AATGAATAGGC AAATAACCTCATTATTTTACTTAGTAAGAAATTAAAAGTAAACACC AAAAAAGTTACT



- 5  8 4 2 CAGCATTTTATTCGTCGAAAAATTTCTCATTATATCTGTAACGAGATAGCACTACAGAGCTTTAGATTGG

- 5  7 7 2 TCCAAATTACAGATTTGCAAGGTTAATTGTCGGTGAGGAGGCGAGGCAACATGAGACCTCACACCTCTCT

- 5  7 0 2 TTAGGTGGGAGCATTGGATGGTGCAGCCACTTTGGAGAGCAGATTGGAAGTCTCTTGTAAATTAAGCAGT

- 5  6 3 2 CGTTCCCCTAAAACCCAACAATCCTACGCCTACATATTTATCCAAAAGAAATGAAAACATATGTCCACTC

- 5  5 6 2 CAGGACTTGTACTTGAACGTTCAAAGCACTTTTACTCATAATAGCCTAACGACTGCCAACAGGTGGGAAG

- 5  4 9 2 TTGAACCAATTAAAGTACATTCAGGGCAATGCAGTTCAGCCATAAAAATACTGCTGGTGGCCAGCCATGG

- 5  4 2 2 TCCCAGCTCTCAGGAGGCAAAGGTGGGCAGCTTTCTGTGAGTAAGGGTAAGAATCTATCGTCCTCCCCAG

- 5  3 5 2 CTCCCCCCCCCCCCAAATGTGGATGCATGCAGCCACTAAATGTTTGTTGGTTCCCAGCTCTGCAGTCACC

- 5  2 8 2 TGTCACCTGAGATTCAGGGGACTCAAGGGAAATTCAGGCTTATCCACCTTGAAATTCCATGAAAGGAGGG

- 5  212 GGCAGGATTCAGTTCCTCTATCCAGGGACTGGGGACTGGGGCTGAGGCTGAGGCTGGGGCTGGGGCTGAG

- 5 1 4  2 GCTGAGGGCTGAGGCTGAGGCTGAGGCTGGGGCTGAGGCTGAGGCTGAGGCTGAGGCTGAGGCTGAGGCT

- 5  0 7 2 GAGGCTGAGGCTGGGGCTGAGGCTGAGGCTGGGGCTGGGGCTGGGGCTGGGACTGGGGACTGGGGCTGAG

- 5  0 0 2 GCTGAGGCTGAGGCTGAGGCTGAGGCTGAGGCTGAGGCTGGGGCTGAGGCTGAGGCTGAGGCTGAGGCTG

- 4  9 3 2 AGGCTGAGGCTGGGGCTGAGGCTGAGGCTGGGGCTGGGGCTGGGGCTGGGGCTGAGGCTGAGGCTGAGGC

- 4  8 6 2 TGAGGCTGAGGCTGAGGCTGGGGCTGAGGCTGGGGCTGAGGCTGGGGCTGAGGCTGAGGCTGGGGCTGAG

- 4  7 9 2 GCTGGGGCTGAGGCTGGGGCTGGGGCTGGGGCTGGGGCTGGGGCTGAGGCTGGGGCTGGGGCTGAGGCTG

- 4  7 2 2 GGGCTGGGGCTGAGGCTGAGGCTGGGGCTGGGGCTGATGTCCCTCCTGGCTATGAGTATGTCAAAGCTAC

- 4  6 5 2 CCTCATTTACCTGGTCTGCCATCTGTCAGCTCACGATGAGTATGAAGTACTCTTCATCAGAGAATGGAAA

- 4  5 8 2 CACCAGATGTGCCTGCAGGACTTAAGCCCATGGGTCTTGTGACCAAAGAGATTCCTTTACACCCCAGGAA

- 4  512 TAGCACTGGGTCCAGATCCTATAAAGGGAAGCTGGCTTTAGGAACCCAAGGCAGGATCATTGGAAGCAAC

- 4  4 4 2 TTTGGAAGGCTACCTATACCAGGTTCATACTGTGTGACTCCATTTATAAAGTAAAAAGAAATGACAGCAA

- 4  3 7 2 CTTGTTATCTAAACTACAAGGCCTGGAACATGTAGCCCAGTTGGGTCTTGAACGCCTCCTGCCTCAGCCT

- 4  3 0 2 TCTGAGCGCTAGGATTGCAGGTATTCGCAACCATCCCTGGCTAGCAAACCCTCACTGACGTGTTAGACAT

- 4  2 3 2 TAGCACACATAATCAAAGAACCAGGGGGCTGGTGAGATGGCTCAGTGGGTAAGAGCACCCGACTGCTCTT

-4 1 6  2 CCGAAGGTCCAGAGTTCAAATCCCAGCAACCACATGGTGGCTCACAACCATCTGTGACAAGATCTGACGC

-4  0 9 2 CCTCTTCTGGAGTGTCTGAAGACAGCTACAGTGTACTTACATATAATAAATAAATAAATCTTAAAAAAAA

- 4  0 2 2 AAAAAAAAAGAACCAGGTCCAGGAGGCAGGCCAATGGCAAACCTTTCTCACAAGGTGCTCCAGGGCAGCC

-3  9 5 2 AC AGAAGTTCTGGTCTGACCCCTTGTATATTAAGTCTAGTATAGGATCTCCTTAGCGCCATTTTTAGGGG

-  3 8 8 2 TTTTAGAACATAGACCACTCATGCTAACATCTAGCATAGAGTATTTTTCACTGGTTGACAGCTCTTTGGT

-3  812 TAGAAATTTGTGTCCAACATTTTCTATCATGTGAAACACTTCAATATGTCACTTTCAAAACAGAATTTGA

-3  7 4 2 GAGTAGAAATTCAAATAATGGTACTTTACTTTGATGGCTGTCTTGCTCCGGGCAGAAATAAATGTTCTGG

-3  6 7 2 GTGTCCTGGGTAACTTTTCAGTGGGGCATGGGATTGAGATTATTGAAGAAGCGATAATTAAGCCCTTTTC

-3  6 0 2 TGAGCGGACTGCATGCTTTCTTTGAGCAGCCTGTGGAGTTCAGTCTGCTCTAAGTATTTTGCACTTGATC

-3  5 2 2 CTTTCTGCCAAGTTTCCCCTGCTTATCCAGATGAACAACTCTATCTGAAAATCACAAGATTAATAATTAC



-3  4 6 2 GCTCTAGGCTCAATGAAACCCTATTTGGATCACTGTCATTTTTTTTTTTTTGTATTTAGTGCATTTCCCC

-  3 3 9 2 AGGAAAATAGC AAAGC AACTTTATAAATGC ATC AGGC AAGGAAGGATTTTAAATTTAGCCCATTGTCGTT

-3  3 2 2 TCCTTTTGCAGGCTGTGTGACTCACCTCCACCTCCTGGGGCCAACCTGATGCAGTAATGGGCTTAGGCCA

- 3  2 5 2 GCTCCCCTGCCCTGGTCTCACGTTTGTACCATCCCTTCCCATGTGCTGTGTGCGCCGATAAAGTGAACGT

- 3 1 8  2 CCAAATCTAAGACAAAGAAACCTGCAGGCCAGTCATGATTAGTGAGCTGCCCAGAAGACCATACCTCTGT

- 3 1 1 2  GGCTTTGTCAGTGTCGCACGGGGCTTTGTTATCCATGCATAAACTGAGCTGATGGCTCCTGGGGTTGCCT

-3  0 4 2 ATGGAGGCAGAATTTTCAACCCTCCAGCTCTCCTGCTCAGCACCACATCAGGAGAACAGCATGCCTCTCT

- 2  9 7 2 CCCTGGAATGAAGAGGCCTTGATCATCCAACAACAGATTCTACCCAATGGAAATGCCAGAGTTTTGCATG

- 2  9 0 2 TCAAATAAGTAGTAGTGGACGTGATTTAGTGGTCTCATTTCTCTGATGAAATACCCGAAAGGACAGTTTA

- 2  8 3 2 AGGAAGAAAGAGTTTATTTTAGCTCACAGTTTAAAGGTGCGGTCCACCACAGTGGAGGAAGCTTGACAGT

- 2  7 6 2 GAGAACAGTGGGACCAGGAGCGAGGCAGCTGGTCACACTGCATCTGCAGTCAGGAGGAAGCATAGAGTCT

-2  6 9 2 CTCAAAGGTGCATCTCCTAGGCCATTCCAATCTAATCAAATGACAGTGAAAATCAGCCATGGGTGCCAGC

-2  6 2 2 CACTAAAGAACGCATAGCTCTGTGGAGATATGAGCAGGCATGAAGTCCTATGTTCATTTTCACTATTGCT

-2  5 5 2 ATGGTTTAAAGTTTTATATATTTTAACTTTTTTGTGCATGAATATTAGCATGCATGTATACAAGTGTACT

-2  4 8 2 ATGCATGCTTAGTGCCCGAGAAGATCAGAAGAAAGCTGTTGATCCCTGGAAACTAGTTTGTAAGATGCTA

-2  412 TGTGGATGCTGGGGCTCAAACTCATCTCCTCTGCAACTGTAGCAAGTGTTGTGGGGCAGTGGTGGTGCAT

-2  3 4 2 GCCTTTAATCCCAGCCCATGGGAGGCAAAGGCAGGCAAATCTCTGTGAATTCCAGGCCAGTCTGGTCTGC

- 2 2 1 2  AGAGCACGATCTAGCACAGCCAGTGTGACACACAGAAACTCTGCCTCAAAAAAAAAGAGAGAGAGAAAAG 

-2  2 0 2 AAAGAGAGAGTACCAATTGCTTTGAACCACTAAGACATCTCCCCAGCCCCACCTTACTACTGCTCTATCA

-2 1 3  2 GGGTAGCAGGTCCCCTAACCCATACCCTAGTCTTGGTTCACCTAAAGGGGGGGGGTGTTCTTTAAGTATT

-2  0 6 2 TGGAAAAGGATACACACCTCTGAGATGGACAGCCTTTCTGTGAGAAAGGCCTTGAGGTGTTAGACAGTGA

-1 9  9 2 GTGAGGCTCTCCCTCAGAGCAAGAATAGGAGTGGATGGAGAGATGGAGAGAGTACAAGAACAATCTATAG

- 1 9  2 2 TGTCTATAGTGGAAGAAGCAGGCCAGGCATGTTAGAAACAGCCTAAGAGGTCTGGAGAGATGGCTCAGAG

-1 8  5 2 GTTGAACACACTAACCGCACTTTCAGAGGTACTTGAGTTCAATTCCCAGCAACCACATGGAGGCTCACAA

-1 7  8 2 CCATCTGTAATATGACCTTGGTGCCCTCTTCTGGCGTGTAGTACAGAACACTGTACATAACAAACAAACA

-1 7 1 2  AATAAT AAATAAATAAATAATTTTTTTTT AAAAAAAGAAAAAGAAAAGAAAGAGCCAAAGACTATAAC AG

-1 6  4 2 CCGTGCAAGACCAAGGCTTTGTTTCCTGACCTTGGATGAGTCAGCTCCATAGTTATCTCTCCTAATTCCC

- 1 5  7 2 TGAGTCGAACCCAGGTCAGAGGTAAAGACAGACCCATAACTAGTTCAAAATGTATACATACAACCTATAT

- 1 5  0 2 ATGTATATGTGTAGGAAGGAACCAAAGCTCAGAAGCTACACACAAATCTTGCTAGGAACAAAATTTTGAA

- 1 4  3 2 AGCTTGTAACCCCGGGACTTGAGGCGAAGCCGGATGGGTGGCCAGTAGTTCAGAGTCATCCTTGACTATA

-1 3  6 2 TAGCAAGTTCAAAACCAGCCTGAACTTCATCAGACCCTGTCTGAAAAATGAAAACAAAACAAAACAAAAC

-1 2  9 2 AAAAAAAAAACCATATCTAAGCAGTTCCTTGTGCTAGAAGCTCTATAAGTCATCTTTTTCAACACACCTG

-1 2  2 2 ACTGGCCAGTTTCCAGGCATCCCCAGGGCACCTGAGCATAGGGCATCCTTACTATGTCGATTAGGCTGTA

- 1 1 5  2 TCTAAACCTCTCATCTTCTGCTTCAGTCTCTGAAGTAGCTGGAACTCCACGTGTTCACC ACTGGTGGGTG



1082  GGATCTGCTTATTTTAAAGTGTTTTCTGTGATCCCAGGCATCCAGTAAGGTCAATGAATGAGGTGAAACA

101 2  GGGGCTAAAGCTTGTGAGTAGCTTTTAAAAGGAATCCTTCAAAACTTTGTACTCAAAAGAATTAAAATGG

- 9  4 2 AAGATGTGTCCGGGGGAAGAGCATACTAATTGGTTTTCCAATATCAAATGGTCAGCCTTGAGAACAAAAT

- 8  7 2 ACAAAGTGGCATTATACAGACTGAGCCGGTTATAATTAGGAATATATATGTATATACATATTTGTATGTA

- 8  0 2 GCAACAATTAATGAAAAAAAAAAAGAGGCCATGAATTTGAAAGAGAGAAAAGAGTGGTGGTATACAGGAG

- 7  3 2 ATGCTGGAGGGAGGAAAGGGAGAAATGATAGAGTTGTAATTTCAAAAATAAAAAAGACAATTTAAAAAAG

- 6  6 2 ATAAAAGATGTGTGAGCCTTCTTTCCTATGGAGGGTCGATGTCAGCGTTGTCAGCAGGGCCTGTCCTGGT

- 5  9 2 TGGTATGGATAGGTAAGATGGGACCTGAGCACCCAGATTCAGGTATCAGTATCCTCTCTTGTCCAGTAGG

- 5  2 2 GTTTTCAAGTCAGAGAGATAGTCAATAATAGTATCTACCACTTTTCTCTCTTATGAGGGAAGGTGGAGGG

- 4  5 2 TGTCCAGGGAATGAAATGTGAGGAGGTGTCTGATATTCCCTGATAGAAGGAATGGTGGCTTCAGGAACGC

-3  8 2 CCCCTGCCTAGGCAACCCAAGCCTGAGACCCTCACAAACCTCTCAAGCAAGCAGGGCCTCAGGGATGAGG

-3 1 2  CTTTGCACTACCTGCAAAAGGGAATCCACTCGTCTTGCGTCCTGGTCGTTTGTGCTCCAGGCAGACACGT

- 2  4 2 GGAGGAACTTGTTTGCAGACAGCAAGGGCCACAGCTGGAGGAGGGTCTGGGCCGCCTGACTTCTGACAGC

-1 7  2 AATGGAGAGGACACAGTGTGCGAGGCTCTCGGAGCTCTCCGGAGCGCAGCGGAGCGACCACCGGGTGCTA

- 1 0  2 TGCGGTGCGCAGAAGCCTCCCCGCGTGCGGCAGGGCGTGCGAGCGGGGGTGGGACTGTGGCGCGGGGCGG
+ 1

- 3  2 GGCGGGGCGGGGCGGGGCAGGCTCGACGTTCCATCCTCCCCCAGCGCCCGTTCCACTCTCCTTCGCGCTC
t

+39 CCGCCCTTCTGGTGCCGCCGCGCGGCCGCAGGCAAAGCAACTTTGCTTGCGCTGGGGCTAGCTGGACCTG 

+ 109 TCCCGCGCACAGCCCGCAAGGCCATGGACGTTCTGGGCTGGCTGCTGCTGCCGCTCCTGCTGCTCTGCAC 

+ 179  GCAG ^  t r a n s l a t i o n a l  s t a r t  p o i n t
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3.2.4 Analysis of the 5f - flanking region sequence

The sequence was analysed using various computer programs e.g. TFSEARCH, TESS 

and RepeatMasker 2 (Section 2.2.3.3) designed to allow comparisons with known 

transcription binding factors and repeat regions and also to databases of known 

sequences, e.g. EMBL. Table 3.1 catalogues the identified recognition sequences that 

share homology with consensus sequences for transcription factor binding sites and 

Table 3.2 gives a brief description of the transcription factors. Table 3.3 lists the repeat 

regions identified.

Table 3.1 Recognition sequences for transcription factors identified in the 5 -  

upstream region o f the GABAa receptor 8 subunit gene

T r a n s c r ip t io n  

fa c t o r  

( o r ie n t a t io n  + / - )

P o s i t io n C o n s e n s u s

s e q u e n c e

A c t u a l  s e q u e n c e P e r c e n t a g e

m a tc h

S p l  ( + ) - 3 9  t o -1 5 KRGGCGKRRY GGGGCGGGGC 9 5 .2 %

A P -4  (+ ) 1 . - 1 1 3 YCAGCTGYGG ACAGCTGGAG 1 .9 7 .3 %

(+) 2 . - 2 7 3 8
GCAGCTGGTC 2 . 9 5 .8 %

U S F  ( - ) 1 .- 2 4 1 NCACGTGN CCACGTGT 9 8 %

(+ ) 2 . - 1 1 0 6
CCACGTGT

9 8 %

N - M y c  ( - ) 1 . - 2 4 0 NNNCACGTGNNN CTCCACGTGTCT 9 4 .7 %

(+) 2 . - 1 1 0 8
CTCCAGGTGTTC

9 3 .3 %

S 8  ( - ) 1 . - 9 0 6 NNANYYAATTANYNN AAAACCAATT AGT AT 9 4 .6 %

(+) 2 . - 5 4 9 1
TGAACCAATTAAAGT

9 7 .1 %

G A T A -1  (+) 1 . - 1 4 0 1 SGATAR GGATGG 9 4 .3 %

(-) 2 . -2 1 3 3
TGATAG

9 3 .9 %

A P -1  (+ ) 1 . - 1 6 0 6 TKAGTCAG TGAGTCAG 10 0 %

(+ ) 2 . -6 4 7 3
TGAGTCAG

10 0 %

H N F -3 b  ( - ) 1 . - 1 7 0 6 NNNTRTTTRYTY TATTATTTGTTT 9 4 .2 %

(+) 2 . - 1 0 2 5 3
AAATATTTGTTT

9 4 .8 %

C /E B P  (+ ) 1 . - 2 0 6 6 NNTKTGGWNANNN TATTTGGAAAAGG 9 4 .6 %

(+) 2 . -9 5 5 1
GATTTGGAAATGG

9 3 .1 %

N k x -2  ( - ) 1 . - 3 5 3 5 TYAAGTG TCAAGTG 10 0 %

(-)

(+)

2 . - 3 6 1 1

3 . - 8 0 1 6

TTAATTA 

I T  AATTA
9 4 .1 %

9 4 .1 %
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T r a n s c r ip t io n  

f a c t o r  

( o r ie n t a t io n  + / - )

P o s i t io n C o n s e n s u s

s e q u e n c e

A c t u a l  s e q u e n c e P e r c e n t a g e

m a tc h

M Z F 1  ( - ) 1 . - 5 3 4 4 NGNGGGGA GGGGGGGA 9 4 .8 %

(-) 2 . - 1 0 3 0 0
AGTGGGGA

10 0 %

M y o D  (+ ) -9 3 3 1 CAACTGAC CAGGTGTT 9 3 %

G A T A -2  (+ ) -8 8 1 5 WGATAR TGATAG 9 2 .5 %

p 3 0 0  (+ ) - 8 7 1 7 NNNRGGAGTNNNNS TCAGGGAGTGTGGC 9 5 %

C D P  C R  (+ ) -8 6 0 5 NATYGATSSS CATCGATGCC 9 5 .9 %

L y f-1  ( - ) 1. - 6 3 8 8 TTTGGGAGR TTTGGGAAG 9 4 .8 %

(+ ) 2 . - 1 0 4 5 8
TTTGGGAAA

9 3 .5 %

The table lists the recognition sequences for transcription factor binding sites that were 

identified in the 5' - upstream region of the GABAa receptor 5 subunit gene by sequence 

analysis using the TFSEARCH database. The location of the sites are given and relate to 

Figure 3.6, where +1 is equivalent to the 5' - most transcriptional start point. The 

consensus sequences for the various elements and the percentage match to that sequence 

is indicated. The actual sequences present are listed and the matches to the consensus 

sequence is indicated in bold

IUB code : R = A, G; M = A, C; W = A, T; Y = T, C; K = T, G; S = G, C; B = T, G, C; V 

= A, G, C; H = A, T, C; D = A, T, G.

Table 3.2 Transcription factors whose recognition sequences have been identified 

in the GABAa receptor Ssubunit gene S' - upstream region

T r a n s c r ip t io n

fa c t o r

P r o t e in  t y p e D e s c r ip t io n R e f e r e n c e

A P -1 b Z IP P o s it iv e  o r  n e g a t iv e  r e g u la t in g  fa c to r  o f  v a r io u s  

c e llu la r  a n d  v ir a l p r o m o te r s

Leeetal. ,  1987

A P -4 b -H L H -Z ip A c t iv a te s  b o th  c e llu la r  a n d  v ira l g e n e s Mermod etal.,  1988

C D P  C R H o m e o d o m a in  

p r o te in  w ith  3 

C U T  rep ea ts

C u t-lik e  h o m e o d o m a in  p r o te in  a c t in g  a s  a  

n e g a t iv e  r e g u la to r  o f  g e n e  e x p r e s s io n

Haradae/a/., 1995
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Transcription

factor

Protein type Description Reference

C/EBP bZIP Transcription factor family; bind as dimers; 

show tissue- and stage-restricted expression

Grange et al., 1991

GATA-1 ZF Developmentally regulated; plays a role in 

erythroid cell-specific transactivation. Activates 

globin genes.

Merika et al., 1993

GATA-2 ZF similar to GATA-1, but has a more restricted 

expression pattern.

Merika et al., 1993

HNF-3b FHD Involved in transcriptional activation of liver 

specific genes

Lai etal., 1990

Lyf-1 May be a general transcriptional activator for 

genes with restricted expression.

Lo etal., 1991

MyoD b-HLH Transcriptional activator Murreetal., 1989a

MZFI ZF May have role in regulating transcription during 

developmental process. Thought to be involved 

in regulating hematopoiesis

Morris etal., 1994

Nkx-2 b-HLH Transcriptional activator Chen etal., 1995

N-Myc b-HLH-Zip Belongs to myc family; involved in cell 

proliferation and differentiation.

Alex etal., 1992

p300 selectively binds DNA sequences related to the 

enhancer elements recognised by NF-kB

Rikitake et al., 1992

S8 HTH Homeobox gene involved in autoregulation and 

trans-regulation of other homeobox genes and 

unknown target genes.

de Jong etal., 1993

Spl ZF Developmentally regulated; participates in the 

assembly of active transcription complexes.

Briggs etal., 1986

USF b-HLH-Zip Upstream stimulatory factors implicated in the 

regulation of tissue-specific and developmentally 

regulated genes.

Carthew etal., 1985

The table lists the transcription factors whose recognition sequences have been identified 

in the 5 5' - upstream region (Table 3.1). The protein type and a brief description of the
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factor is included. They are referenced. Abbreviations used : ZF = zinc finger; bZIP = 

basic leucine zipper; b-HLH = basic helix loop helix; b-HLH-Zip = basic helix - loop - 

helix - leucine zipper; FHD = fork head domain.

Table 3.3 Repeat sequences identified in the 5' - upstream region o f  the GABAa

receptor S  subunit gene

Repeat Position (bp) Complete/Incomplete Strand

Bl-MM (SINE/Alu) -9974 to-10117 Complete Minus

(GAA)n (Simple repeat) -9716 to -9770 - Minus

(GGA)n (Simple repeat) -9771 to -9909 - Minus

ORR1A2 (LTR/MaLR) -8741 to -8445 Incomplete Plus

B4 (SINE/B4) -8159 to -7957 Incomplete Plus

Bl-F (SINE/Alu) -8089 to -7953 Incomplete Plus

Bl-MM (SINE/Alu) -7934 to -7791 Complete Plus

(CA)n (Simple repeat) -7990 to -7614 - Minus

B3A (SINE/B2) 1. -7603 to 7404 Incomplete Plus

2. -7396 to -7170 Incomplete Plus

B3 (SINE/B2) -7144 to -6927 Complete Minus

ORR1D (LRT/MaLR) -6659 to -6316 Complete Minus

Bl-MM (SINE/Alu) -6185 to -6046 Incomplete Plus

LlM4-orf2 (LINE/LI) -5990 to -5915 Incomplete Plus

L1M2 (LINE/LI) -5959 to -5517 Incomplete Plus

Bl-F(SINE/Alu) -5438 to -5386 Incomplete Plus

PB1D10 (SINE/Alu) -4343 to -4262 Incomplete Minus

B2 (SINE/B2) -4208 to -4011 Complete Plus

MTE (LTR/MaLR) -2865 to -2696 Incomplete Minus

B3 (SINE/B2) -2537 to 2363 Incomplete Minus

Bl-MM (SINE/Alu) -2359 to -2213 Complete Plus

B2 (SINE/B2) -1874 to -1660 Complete Plus

Bl-F (SINE/Alu) -1431 to -1309 Incomplete Plus

PB1 (SINE/Alu) -1138 to -1092 Incomplete Minus

Lx9 (LINE/LI) -929 to -679 Incomplete Plus
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The table lists the repeat sequences identified using the RepeatMasker 2 computer 

program. The position of the repeats is shown and relates to Figure 3.6 where +1 is the 5' 

- most transcription start point. The direction of the repeats is shown. The repeats account 

for 36.6% of 10.6 kb of 5' - upstream sequence. References : LINEs = Smit et al., 1995; 

SINEs -  Krayev et al., 1982; LTR/MaLR = Smit, 1993.

3.2.5 Comparison of murine and rat 5’ - promoter regions

As 3 kb of rat 5 subunit gene promoter DNA sequence was available on the data base 

(Motejlek et al., 1994, EMBL Accession no X69986), comparison of the rat and mouse 

sequences was possible. This was achieved using the GeneJockey II (Biosoft) software 

program (Figure 3.7). Putative transcription factor recognition sequences and repeat 

regions common to both sequences are indicated, as are the transcription start points.



Figure 3.7 Sequence comparison of mouse and rat 5' - 

upstream region



Figure 3.7 Sequence comparison o f  mouse and rat 5' - upstream region

3.75 kb of mouse 5' -upstream sequence was compared to 3 kb of rat 5' -upstream 

sequence using GeneJockey II (Biosoft). Homologous bases are indicated by a dash. 

Bases that differ are written. Sequence that is absent is indicated with a gap. Putative 

transcription factor binding sites that are common to both sequences are boxed. Repeat 

regions that are present in both sequences are underlined for rat, and overlined for mouse. 

The numbering system relates to Figure 3.5 where +1 is the 5' - most transcriptional start 

point.



-3 7 5 2  GAATTTGAGAGTAG AAATTCAAAT AATGGTACTTTACTTTGATGGCTGTCTTGCTCCGGGCAGAAATAAATGTTC m ouse 
-3 0 3 1   C -G A C T-T-CT-C A C T TC-AACA-TGGC--------------- AC------------------------ A---------------- C----------------  rat

-3 6 7 7  TGGGTGTCCTGGGTAACTTTTCAGTGGGGCATGGGATTGAGATTATTGAAGAAGCGATAATTAAGCCCTTTTCTGAG m ouse  
-2 9 5 4  -AAT C--------------- C - - T --------A - - T ----------G------------------ C------G----- C -T ---------------- A--------C--------------  rat

-3 6 0 0  CGGACTGCATGCTTTCTTTGAGCAGCCTGTGGAGTTCAGTCTGCTCTAAGTATTTTGC ACTTG m ouse
-2 8 7 7  T  C------------------  G-TGG-GTT— G -C — ATCCAAGTATTTTGT  rat

■3537 ATCCTTTCTGCCAAGTTTCCCCTGCTTATCCAGATGAACAACTCTATCTGAAAATCACAAGATTAATAATTACGCTC m ouse  
■2815 ---------------------------------------------------------------------------------------------------------c  a —  rat

-3 4 6 0  TAGGCTCAATGAAACCCTATTTGGATCACTGTCATTTTTTTTTTTTTGTATTTAGTGCATTTCCC CAGGAAAATAG m o u se  
-2 7 3 8  ------------------------------------------------------------------------------ C  A----------------------  rat

-  33  84  CAAAGCAACTTTATAAATGCATC AGGC AAGGAAGGATTTTAAATTT AGCCCATTGTCGTTTCCTTTTGC AGGCTGTG m ouse  
-2 6 6 8   A -G CT-C A TA -G -C-----------------   A----------G--------------C------------------ A - -  rat

-3 3 0 7  TGACTCACCTCCACCTCCTGGGGCCAACCTGATGCAGTAATGGGCTTAGGCCAGCTCCCCTGCCCTGGTCTCACGTT m ouse  
-2 5 9 5  ----------------------------T -------------------------------- T ---------------- C------------------ G-----------------------------A------------------A—  rat

-3 2 3 0  TGTACCATCCCTTCCCATGTGCTGTGTGCGCCGATAAAGTGAACGTCCAAATCTAAG ACAAAGAAACCTGCAGGCC m ouse  
- 2 5 1 9 -------------------------------- T ------------AG--------A----------C------------ C -A ------------------------ G-GC— T G TG -T-C -C C C -T  rat

-  315 4 AGTCATGATTAGTGAGCTGCCCAGAAGACCATACCTCTGTGGCTTTGTCAGTGTCGCACGGGGCTTTGTTATCCATG m o u se  
-2 4 4 2  c c — rat

-3 0 7 7  CATAAACTGAGCTGATGGCTCCTGGGGTTGCCTATGGAGGCAGAATTTTCAACCCTCCAGCTCTCCTGCTCAGCACC m ouse
rat

-  3 0 0 0 ACATCAGGAGAACAGCATGCCTCTCTCCCTGGAATGAAGAGGCCTTGATCATCCAACAACAGATTCTACCCAATGGA m ouse  
-2 4 3 8  C-------------- GCC-TT  A-G rat

- 2  9 2 3  AATGCCAGAGTTTTGCATGTCAAATAAGTAGTAGTGGACGTGATTTAGTGGTCTCATTTCTCTGATGAAATACCCGA m ouse  
-2 3 8 8  --A A A - rat

- 2  84 6 AAGGACAGTTTAAGGAAGAAAGAGTTTATTTTAGCTCACAGTTTAAAGGTGCGGTCCACCACAGTGGAGGAAGCTTG m ouse
rat

- 2  7 6 9 ACAGTGAGAACAGTGGGACCAGGAGCGAGGCAGCTGGTCACACTGCATCTGCAGTCAGGAGGAAGCATAGAGTCTCT m o u se
rat

-  2 6 95 CAAAGGTGCATCTCCTAGGCCATTCCAATCTAATCAAATGACAGTGAAAATCAGCCATGGGTGCCAGCCACTAAAGA m ouse
rat

-  2 615 ACGCATAGCTCTGTGGAGATATGAGCAGGCATGAAGTCCTATGTTCATTTTCACTATTGCTATGGTTTAAAGTTTTA m ouse
rat

-  2 5 3 8 TATATTTTAACTTTTTTGTGCATGAATATTAGCATGCATGTATACAAGTGTACTATGCATGCTTAGTGCCCGAGAAG m o u se
rat

-  2 4 61 ATCAGAAGAAAGCTGTTGATCCCTGGAAACTAGTTTGTAAGATGCTATGTGGATGCTGGGGCTCAAACTCATCTCCT m ouse
rat

-2 3  84 CTGCAACTGTAGCAAGTGTTGTGGGGCAGTGGTGGTGCATGCCTTTAATCCCAGCCCATGGGAGGCAAAGGCAGGCA m o u se
rat



- 23 07 AATCTCTGTGAATTCCAGGCCAGTCTGGTCTGCAGAGCACGATCTAGCACAGCCAGTGTGACACACAGAAACTCTGC m ouse
r a t

-2230  CTCAAAAAAAAAGAGAGAGAGAAAAGAAAGAGAGAGTACCAATTGCTTTGAACCACTAAGACATCTCCCCAGCCCCA m ouse
r a t

-2153 CCTTACTACTGCTCTATCAGGGTAGCAGGTCCCCTAACCCATACCCTAGTCTTGGTTCACCTAAAGGGGGGGGGTGT m ouse
r a t

-207 6 TCTTTAAGTATTTGGAAAAGGATACACACCTCTGAGATGGACAGCCTTTCTGTGAGAAAGGCCTTGAGGTGTTAGAC m ouse  
-2382  A------------G--------T r a t

-1999  AGTGAGTGAGG CTCTCCCTCAGAGCAAGAATAGGAGTGGATGGAGAGATGGAGAGAGTACAAGAACAATCTATA m ouse  
-2369  GA TGAGTAAGA--------------------------------------------------------- G------G--------ACACAG   r a t

-1 925  GTGTCTATAGTGGAAGAAGCAGGCCAGGCATGTTA GAAACAGCCTAAGAGGTCTGGAGAGATGGCTCAGAGGTTGA m ouse  
-2300   T -G C — A---------------------------------- GCAAA-TAA------------------------  G------------  r a t

- 1 8 4 9  ACACACTAACCGCACTTTCAGAGGTACTTGAGTTCAATTCCCAGCAACCACATGGAGGCTCACAACCATCTGTAATA m o u se  
-2 2 4 4  -T G ----- G - - T - - T G - - C — T T - A - C -   G r a t

-177  2 TGACCTTGGTGCCCTCTTCTGGCGTGTAGTACAGAACACTGTACATAACAAACAAACAAATAATAAATAAATAAATA m ouse  
-2 1 6 9  G -G T T --A ----------------------------- AA-C— G ------------------------------- T -T ------- TCTTG-GAG-GAG-GAG-GAG-GAG r a t

-1695 ATTTTTTTT m ouse
-2 0 9 3  -GAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGGAAGAAGGAAAGAAGAAAGGAAGGAAGGAAGGAAGGAAGGAAGAA r a t

m ouse
-2 0 1 6  GAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGA r a t

m ouse
-1939  AGAAGGGGGTTGGGGATTTAGCTCAGCGTAGAGCGCTTGCCTAGCCGAGACGGGCCCTGGGTTCAGTCCCCAGCTCC r a t

-1 6 8 6  TAAAAAAAGAAAAAGAAAAGA m ouse
-1863    AAGAAAGAAAGAAAGAAGAAGAAGAAGAAGAAGAAGACGACAGGGGAGAGGAGAGA r a t

-1665 AAGAGCCAAAG ACTA m o u se
-1787 GGGGAGAGAAGAGAGAGGGGAGAGGAGAGAGGAGAGAGGAGAGGGGAGAGGGGGGAGAGGAG------------ T ------T ------ C r a t

-1 6 5 0  TAACAGCCGTGCAAGACCAAGGCTTTGTTTCCTGACCTTGGATGAGTCAGCTCCATAGTTATCTCTCCTAATTCCCT m o u se  
- 1 7 1 0 --------------- A--------G--------------------C------------------GT----------GCA----- T ------------------------ G----- T --------G--------------  r a t

-1573  GAGTCGAACCCAGGTCAGAGGTAAAGACAGACCCATAACT A GTTCAAAATGTATACATACAACCTATATATGTAT m ouse  
-1635   AA--------------------G---------------------------------------------T -C -T ---------------- TA------------C------------A------- GC-------- r a t

-1498 ATGTGTAGGAAGGAACCAAAGCTCAGAAGCTACACACAAATCTTGCTAGGAACAAAATTTTGAAAGCTTGTAACCCC m ouse  
■1557 ------------------------------ T ------------------------ A—  - T — G-----------------------------------------------------------------  Gt --------------- r a t

-1421 GGGACTTGAGGCGAAGCCGGATGGGTGGCCAGTAGTTCAGAGTCATCCTTGACTA TATAGCAAGTTCAAAACCAGC m o u se  
-1481  A--------------------G------------A--------- A --A T ------G-----------   G TC-T-------------------------------G------A - r a t

-1345 CTGAACTTCATCAGACCCTGTCTGAAAAATGAAAACAAAACAAAACAAAA m ouse
-1410 T - - G  A G---------------------------------------------AT -TCGGGGG- TGGGGATTTAGCTCAGTGGTAGAGCGCTTAC r a t

-1295 CAAAAAAAAAAC CATATCTAAGCAGTTCCTTGTGC m ouse
•1333 CTAGGAAGCCGAAGGCCCTGGGTTCGGTCCCCAGCTCCGG--------------------GAAAA---------------CAG— AC----- C T r a t



-1 2 6 0  TAGAAGCTCTATAAGTCATCTTTTTCAACACACCTGACTGGCCAGTTTCCAGGCATCCCCAGGG CACC m ouse
-1 2 5 6  --------------------G--------------C--------------T -T G -------------------------------GGG--TTC--------T ------------GGCTTATGT-------- rat

-1 1 9 2  TGAGCATAGGGCATC--CTTACTATGTCGATTAGGCTGTATCTAAACCTCTCATCTTCTGCTTCAGTCTCTGAAGTA m ouse  
- 1 1 8 3 --------------GTA-G-CATT------------------------------------ T -------------------C -T C — G------------------------------ T ------- C-------- rat

-1 1 1 5  GCTGGAACTCCACGTGTTCACCACTGGTGGGTGGGATCTGCTTATTTTAAAGTGTTTTCTGTGATCCCAGGCATCCA m ouse  
- 1 1 0 6 ------------------T - - A C - -C ------------T C T --A ----------AC   T -  rat

-1 0 3 8  GTAAGGTCAATGAATGAGGTGAAACAGGGGCTAAAGCTTGTGAGTAGCTTTTAAAAGGAATCCTTCAAAACTTTGTA m ouse  
- 1 0 3 1 ------------------G --G ------CA-CTG---------------------- G------------------T ------T --------------G---------------- C--------------C-------- rat

-9 6 1  CTC AAAAGAATTAAAATGGAAG ATGTGTCCGGGGGAAGAGCATACTAATTGGTTTTCCAATATCAAATGGTC m ouse  
- 9 5 4  A-------------------------------------- GAAA----------------A----- A----- GCA*C---------------------- A— A -TA  C------------------  rat

-  8 8 9 AGCCTTGAGAACAAAATACAAAGTGGCATTATACAGACTGAGCCGGTTATAATTAGGAATATATATGTATATACATA m ouse  
-8 7 9   C-------------------------------- T --A A ------------------C---------------- A - - -------------------- T -------------------- G C -C -T ------ rat

-8 1 2  TTTG TATG TAGCAACAATTAATGAAAAAAAAAAAGAGGCCATGAATTTGAA m o u s e
-8 1 2  -A  -  -  TAATTATA------- TAAATATATATATGCACA-------------------------------------------------------------------------------------------- - rat

-  7 61 AGAGAGAAAAGAGTGGTGGTATACAGGAGATGCTGGAGGGAGGAAAGGGAGAAATGATAGAGTTGTAATTTCAAAAA m ouse  
-7 4 0  --------------------------------------------------------- ACA- A--------------------AG---------- A----- A----- C----------------------  rat

-6 8 4  T AAAAAAGACAATTTAAAAAAGATAAAAGATGTGTGAGCCTTCT T TCCTATGGAGGGTCGATGTCAGCGTTGT m o u se  
-6 7 1  -A --------------  A------------------------ G C-C------------------ T ------T ----------------------------- rat

-6 1 1  CAGCAGGGCCTGTCCTGGTTGGTA TGGATAGGTAAGATGGGACCTGAGCACCCAGATTCAGGTATCAGTATCCTCT m o u se  
-5 9 4  -------------------------------- A----------- GT------------------------ GA----- G----------C - - T ------------------------ C------------------------- rat

-  535 CTTGTCCAGTAGGGTTTTCAAGTCAGAGAGATAGTCAATAATAGTATCTACCACTTTTCTCTCTTATGAGGGAAG m ouse
-  5 1 7  T -   CGC-GG------------------G------------------  GC------------------ C -C ------------ G-CC rat

-  460 G TGGAGGGTGTCCAGGGAATGAAATGTGAGGAGGTGTCTGATATTCCCTGATAGAAGGAATGGTGGCTTCA m o u se
-  450 ATTCA-A-C— A------------------------ G --G G --------- G-------------------- T --------T -------------- G T-G -C A ------------------  rat

-  389 GGAACGCCCCCTGCCTAGGCAACCCAAGCCTGAGACCCTCACAAACCTCTCAAGCAAGCAGGGCCTCAGGGATGAGG m ouse
-  376 ------------------------------ G---------------------------------- T ---------------------------------------------------------------------------- G--------A rat

- 3 1 2  CTTTGCACTACCTGCAAAAGGGAATCCACTC GTCTTGCGTCCTGGTCGTTTGTGCTCCAGGC^GACACGTGGAGG 
-  299 T -------------------------- T -T ------------G----- T-A -A G ----------CT-------------------- C------------------------

N-mvc
m ouse

rat

-  2 2 2 -T-

AP-4
237 AACTTGTTTGCAGACAG CAAGGGC( IACAGCTGG, lGGAGGGTCTGGGCCGCCTGACTTCTGACAGCAATGGAGAGGA m ouse

rat

161 CACAGTGTGCGAGGCTCTCGGAGCTCTCCGGAGCGCAGCGGAGCGACCACCGGGTGCTATGCGGTGCGCAGAAGCCT m ouse  
145 -G -G ----------------------------G----------G-GGT----------T  C---------------------------------------------------- rat

S p -1
- 8 6  CCCCGCGTGCGGCAGGGCGTGCGAGCGGGGGTGGGACTGTGGCGCGGGGCCGGGCGGGGCGGGGCGGGGCAGGCTCG m ouse
-  78 ---------- A -TG ----------C---------------------------------------GA------- C rat

+1
-  7 ACGTTCCATCCTCCCCCAGCGCCCGTTCCACTCTCCTTCGCGCTCCCGCCCTTCTGGTGCCGCCGCGCGGCCGCAGG m ouse

rat

+ 71 CAAAGCAACTTTGCTTGCGCTGGGGCTAGCTGGACCTGTCCCGCGCACAGCCCGCAAGGCCATGGACGTTCTGGGCT m ouse  
+ 70 g ^ ----------------------------------------------- c ---------------------------------------------------------- 1------------------------------  rat

t r a n s l a t i o n a l  s t a r t  p o i n t
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3.3 DISCUSSION

Identification of the transcription start points (tsp) was achieved using the oligo - capping 

technique (Maruyama et al., 1994). This was performed 3 times. The first experiment 

used 3' - oligonucleotide primers from the 2nd and 1st exons. Two major and several 

minor start sites were identified. In the second oligo - capping experiment, 3' - 

oligonucleotide primers from the 3 rd and 2nd exons were used. It was possible that the 

primers used in the first experiment could miss some tsp e.g. if there was an alternative 

1st exon. Using primers from the 3rd and 2nd exons would eliminate that possibility. Again 

two major and several minor start sites were identified. Due to the large number of sites 

identified, a new column - purified 5' - primer (Cruachem) was used in the 3rd experiment 

to eliminate “wobble” at the 3' - end of the oligonucleotide. Twenty clones were 

sequenced and the same tsp were identified. However, 4 clones gave putative tsp at the 5' 

- end of exon 2. Further investigation of these sites and of intron 2 showed that these 

were errors.

When the data from the three experiments were combined (Figure 3.4), two major sites 

within two main clusters were identified. Only one of the sites coincided with those 

detected in the rat. The other major cluster at position + 73 (Figure 3.7) has not been 

identified in the rat.

The subcloning of small fragments of the promoter region into pBluescript allowed the 

sequencing of both strands of DNA to be carried out more easily. 10.6 kilobases of 

double - stranded DNA sequence were obtained for the murine 5' - flanking region of the 

GABAa receptor 8 subunit. Computer analysis of this sequence revealed the presence of 

several recognition sites for known transcription factors (Table 3.1). Many of these 

factors have been shown to be involved in the regulation of tissue - specific and 

developmentally - regulated genes. Gel shift assays, DNase I footprinting analysis and 

mutational analysis could be performed to test for their functionality.

A large percentage (36.6%) of the 5' - upstream region is composed of repeat regions 

(Table 3.3). While most of this will be junk DNA, recent evidence has suggested that 

these repeat regions may actually have some function. They may interact with
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surrounding sequences and nearby genes, serve as recombination hotspots, or may be 

involved in the stabilisation of chromatin structure. Several papers have described B1 or 

B2 elements affecting the transcription of genes. Arranz et al. (1994) demonstrated that 

two B2 sequences upstream from the MOK-2 promoter (a murine TFIIIA-related zinc - 

finger protein) exert a negative cis - acting effect. Also, Bladon and McBumey (1991) 

demonstrated that a B2 element present in the 5' -untranslated region of a reporter gene 

reduced expression, while in the 3’ - region, it increased expression.

j  As 3 kb of rat 8 subunit gene promoter DNA sequence was available on the data base

| (Motejlek et al., 1994, EMBL Accession no X69986 ), comparison of the rat and mouse
|
j  sequences was possible (Figure 3.7). There appears to be a high degree of homology

within the 5' - flanking regions. Several of the putative regulatory elements are common 

to both i.e. the Spl, AP-4 and N - Myc. A proposed binding site identified in the rat as 

binding BSF1 (Motejlek et al., 1994), is not present in the mouse promoter. Some 

interspersed repeat elements are present in both species - B2 (SINE B2), Bl-F (SINE 

Alu) and Lx9 (LINE LI). Conservation implies functionality and so it is possible that 

important regulatory regions are present in the large areas of homology that exists 

between the mouse and rat. Mutational analysis and subsequent gel shift assays involving 

these regions of conservation could be performed to determine their importance, if any, in

| gene regulation.
i
i
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Chapter 4 Results II

4.1 INTRODUCTION

All methods devised to study regulation of gene transcription rely on “reporter” 

constructs. These contain the putative DNA regulatory regions under investigation linked 

to a promoterless reporter gene. Examples of commonly used reporter genes are: P - 

galactosidase gene (lacZ), luciferase (luc), chloramphenicol acetyl transferase (CAT) and 

green fluorescent protein (GFP). These genes are expressed at very low or undetectable 

levels in the cells of interest and so the activation of the reporter gene can clearly be 

distinguished from the promoter activity of the endogenous gene. This approach has led to 

the identification of distinct promoter, enhancer and silencer elements in many eukaryotic 

genes and has characterised sequences which mediate cell - type specific expression.

Utility vectors were designed and constructed, in collaboration with Dr T. A. Glencorse, 

to allow for the insertion of a range of promoter fragments upstream of reporter genes to 

form transcriptional fusions. These promoter constructs could then be used to identify 

putative regulatory elements in the promoter fragments. Initially, all constructs would be 

made with the lacZ reporter gene. If there was a problem with endogenous P - 

galactosidase activity, then some of the constructs could be prepared with the modified 

luciferase vector. After construction of these vectors, a range of GABAa receptor 5 

subunit gene promoter fragments were introduced upstream of the lacZ gene. These were 

then used to investigate regulatory elements in neuronal cell lines (Chapter 5) and in the 

production of recombinant viruses (Chapter 6).

4.2 RESULTS

4.2.1 Design and generation of reporter - gene vectors for promoter - deletion 

constructs

A vector was selected (pGL3 basic; Promega) and modified to allow for the construction 

of transcriptional fusions with either the luciferase reporter gene (pTG22), or the P - 

galactosidase gene (pTG08). A control vector (pGL3 control; Promega) was also 

modified to produce control plasmids containing the SV40 promoter fused to either the 

luciferase (pTG34) or lacZ (pTG18) genes. Each reporter vector was subject to the same 

modifications. In this way any differences in expression would be due to the promoter 

fragments, and not to the presence of extraneous fragments of DNA.
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A luciferase vector - pGL3 basic (Promega, Figure 4.1a) was used to form luciferase 

fusions, and also as a backbone for p - galactosidase fusions whereby the luciferase gene 

was replaced by the lacZ gene from the pNASS p vector (Clontech, Figure 4.1b). 

Standard control vectors for the luciferase and lacZ constructs were designed using the 

pGL3 control vector as a backbone (Figure 4.1c).

Amp1
Not I

fl ori
Kpril

'Sad
Mlul
Nhel
Smal
X h o l
iB gR l
HindUl

pGL3-Basic 
Vector 

(4818bp)
luc+

SV40 poly (A) 
Signal

Xbal

Figure 4.1a pGL3 basic plasmid

The pGL3 basic plasmid (Promega) used in the construction of a utility luciferase vector, 

and as a backbone for the utility P - galactosidase vector.

Abbreviations used are : Ampr = ampicillin resistance gene, Poly (A) = polyadenylation 

site, luc = luciferase gene, ori = origin of replication.
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SV40
SD/SA

Smal

pNASSP
Vector
(6.6kb)

P galactosidase 
(lacZ) /

SV40poly (A)

Notl

Figure 4.1h pNASS pplasmid

The pNASS P plasmid (Clontech) used as a source of the lacL gene for construction of a 

utility lacL vector. Abbreviations used are : Ampr = ampicillin resistance gene, Poly (A) = 

polyadenylation site, ori = origin of replication, lacL = P-galactosidase gene.

NoA
fl ori

Kpnl 
SacJ 
Mlul 
Nhel 
Smal 
Xhol 

Promoter \  Bgin

pGL3-Control
Vector
(5256bp) SV40

BamYil
luc+

SV40
Enhancer

SV40 poly (A) 
Signal

Xba I

Figure 4.1c pGL3 control plasmid

The pGL3 control plasmid used in the construction of a luciferase control vector, and as a 

backbone for the lacZ control vector. Abbreviations used are : Ampr = ampicillin 

resistance gene, Poly (A) = polyadenylation site, luc = luciferase gene, ori = origin of 

replication.
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4.2.1.1 Luciferase vector construction

Figure 4.2 is a schematic diagram of the construction of the luciferase vector - pTG22, 

using the pGL3 basic plasmid (Promega, Figure 4.1a). Initially a Bgl II - Pac I - Bgl II 

linker (TAG117/8, Table 2.3) was introduced into the Bam HI site at the 3' - end of the 

luciferase gene. A Not I site was removed by restriction with Not I, filling in with Klenow 

fragment and then re - ligating. The multiple cloning site (mcs) was removed by restriction 

with Hind III and Sac I, filling in with Klenow and then re - ligating. A mcs (TAG138 and 

TAG139, Table 2.3) was inserted into the Kpn I site and orientated. The Xba I site in the 

mcs was replaced by an Spe I site by insertion of an Xho I - Spe I - Eco RI linker 

(BRXSE1 and BRXSE2, Table 2.3). All these alterations were confirmed by DNA 

sequencing.

4.2.1.2 Luciferase control vector construction

Figure 4.3 is a schematic diagram of the construction of the luciferase control vector - 

pTG34, using the pGL3 control plasmid (Promega, Figure 4.1c). Initially a Bgl II - Pac I 

- Bgl II linker (TAG117/8, Table 2.3) was introduced into the Bam HI site at the 3’ - end 

of the luciferase gene. A Not I site was removed by restriction with Not I, filling in with 

Klenow fragment and then re - ligating. The mcs was removed by restriction with Sac I - 

Bgl II, filling in with Klenow, and re - ligation. A mcs ( TAG138 and TAG139, Table

2.3) was inserted into the Kpn I site and orientated. The Xba I site in the mcs was 

replaced by an Spe I site by insertion of an Xho I - Spe I - Eco RI linker (BRXSE1 and 

BRXSE2, Table 2.3). The alterations were confirmed by DNA sequencing.

4.2.1.3 lacZ vector construction

Figures 4.4a and 4.4b are schematic diagrams showing the construction of the lacZ

vector - pTG08. Initially pBluescript KSII+ was altered by insertion of a Sac I - Nhe I -Not 

I - Sma I - Kpn I linker (TAG119 and TAG 120, Table 2.3). The lacZ gene was removed 

from pNASS (3 (Figure 4.1b) as a Sma I - Not I fragment and subcloned into the altered 

KSII+. The Not I site was then removed by restriction, end - filling with Klenow and re

ligation (Figure 4.4a). The altered luciferase vector (with the Bgl II linker and minus the 

Not I site (Section 4.2.1.1) was used as the backbone for the lacZ vector. The luciferase 

gene was removed by restriction with Kpn I and Xba I. The lacZ gene was excised as a
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Kpn I - Nhe I fragment from pBluescript and subcloned into the Kpn I - Xba I restricted 

luciferase backbone. A mcs (TAG138 and TAG139, Table 2.3) was inserted into the Kpn 

I site and orientated. The Xba 1 site in the mcs was replaced by an Spe I site by insertion 

of an Xho I - Spe I - Eco RI linker (BRXSE1 and BRXSE2, Table 2.3), (Figure 4.4b). 

All these alterations were confirmed by DNA sequencing.

4.2.1.4 lacZ control vector construction

Figure 4.5 is a schematic diagram showing the construction of the control lacL vector - 

pTG18. The altered pGL3 control plasmid (with the Bgl II linker and minus the Not I site 

(Section 4.2.1.2), was used as a backbone for this vector. The luciferase gene was 

removed as a Hind. Ill - Xba I fragment. A Kpn I - Hind III - Sma I linker (TAG126 and 

TAG127, Table 2.3) was inserted into the Kpn I and Sma I sites of the KSII+ - lacL 

plasmid (Section 4.2.1.3). The lacZ gene was excised from this as a Hind III - Nhe I 

fragment and subcloned into the Hind III - Xba I restricted luciferase control vector 

backbone. The Hind 111 site was removed by restriction, end - filling with Klenow and 

re-ligation. A mcs (TAG138 and TAG139, Table 2.3) was inserted into the Kpn I site and 

orientated. The Xba I site in the mcs was replaced by an Spe I site by insertion of an Xho I 

- Spe I - Eco RI linker (BRXSE1 and BRXSE2, Table 2.3). All these alterations were 

confirmed by DNA sequencing.
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Amp*

jSJjnI Ligation o f BgHl-Pacl-BgUl 
,&Kl linker into BamHl site

pGL3-Basic
Vector
(4818bp)

Amp
SV40 poly (A) 

Signal ICpnl

pTGOl
Removal of Notl site 
by restriction, end-filling 
and re-ligation

Bam Hi \

SV40 poly (A) 
Signal

Removal of mcs by 
restriction with Hindlll 
and SacI, end-filling and 
re-ligation.

pTG02

SV40 poly (A) 
Signal

pTO20

Ligation K pnl-Kpnl 
mcs linker

SV40 poly (A) 
Signal

KprH

Ligation o f
Xhol-Spel-EcoRl
linker

pTG21
Vector

KpnV

pTQ22
SV40 poly (A) 

Signal (4818bp)

I
| Figure 4.2 Utility luciferase vector

I Abbreviations used are : Ampr = ampicillin resistance gene, mcs = multiple cloning site,

Poly (A) = polyadenylation site, luc -  luciferase gene, ori = origin of replication.

i
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Kpni

Insertion o f  a
BglH-Pacl-BgHI
linker.

B g lll

SV40 poty (A) 
Signal

Kpril

Bgm

Removal o f Notl site by 
restriction, end-filling 
and re-ligation. ^ SV40 poly (A) 

Signal

Amp* X
Kpm
^  Removal o f  mcs by 
^  restriction with BglKand Sacl, 

end-filling and re-ligation.

pTG31

SV40 poly (A) 
Signal

Ligation o f 
Kpnl-Kpnl* 
mcs SV40 poly (A) 

Signal

SV40 poly (A)

pTG34

SV40 poly (A) 
Signal

ii

Figure 4.3 Luciferase control vector

I Abbreviations used are : Ampr = ampicillin resistance gene, mcs = multiple cloning site,
i  +
| Poly (A) = polyadenylation site, luc = luciferase gene, ori = origin of replication.
l
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Xbd$>d

Bluescriptll KS+ 
2.96kb

Insertion of 
a Sacl-Kpnl 
linker

&ri
ColEl ori

f l  ori

pTG03

ColEl ori

pNAŜJ
Vector
(6.6kb)

Restriction with 
Smal -Notl and 
ligation of lacZ gene

SV40 poly (A)
Excision of lacZ 
and ligation into 
modified KS

Smal NotI

fl orilacZ

lacZ

pTG04 Nhel

Removal of Notl site by 
restriction, end-filling 
and re-ligation. 'olEl ori

fl ori

pTG05

'olEl ori

Figure 4.4a Utility ladL vector

Abbreviations used are : Ampr = ampicillin resistance gene, mcs = multiple cloning site, 

Poly (A) = polyadenylation site, luc = luciferase gene, ori = origin of replication, lacZ = 

p-galactosidase gene.
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Removal of the 
luciferase gene by 
restriction with Kpnl 
and Xbal

'Amp'

pTG05

Kpnl
1Excision of the 

lacZ gene as a 
Kpril-Nhel fragment

Nhel

lacZ

Ligation o f the 
lacZ gene into 
the pGL3 restricted 
vector

pTO02

Amp*

Ligation of 
Kpnl-Kpnl*

SV40 poly (A) 
Sipul

Kpn]

pTG07

pTG08

Figure 4.4b Utility lacZ vector

Abbreviations used are : Ampr = ampicillin resistance gene, mcs = multiple cloning site, 

Poly (A) = polyadenylation site, luc = luciferase gene, ori = origin of replication, lacZ = 

(3 galactosidase gene.
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pTQ05pT031

Removal of the 
luciferase gene by 
restriction with HinSLH 
and Xbal

Insertion of 
a Kpnl-Smal 
linker

Excision of lacL 
and ligation into 
pGL3-control vector

me\

lacZ

Removal of 
HindlU site and then 
mcs by restriction, 
end-filling and re-ligation

Ligation of 
Kpnl-Kpnl*

Figure 4.5 lacZ control vector

Abbreviations used are : Ampr = ampicillin resistance gene, mcs = multiple cloning site, 

Poly (A) = polyadenylation site, luc = luciferase gene, ori = origin of replication, lacL = 

P galactosidase gene.
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4.2.2 Construction of promoter - deletion vectors

A range of promoter fragments from 1.2 kb up to 10.5 kb were used to form 

transcriptional fusions (Figure 4.6). For the 10.5 kb construct, the Pac I site had to be 

replaced at the 5' - end and so a Kpn I - Pac I - Kpn I linker (BRKPK, Table 2.3) was 

inserted into the Kpn I site.

A second set of promoter constructs were designed (Figure 4.7) to re - introduce a 

second cluster of transcription start sites located 3' - to the Not I site (see Discussion). 

Initially a 1.15 kb Hind III - Nco I fragment from the 5 promoter was subcloned into 

pLitmus 29 (Promega). An Nhe I - BstE II - Kpn I linker (BRNK1 and BRNK2, Table

2.3) containing 5 sequence was inserted between the Nhe I site in the 5 and the Kpn I site 

of pLitmus 29. The 6 promoter was then excised as a Hind III - BstE II fragment and 

subcloned into the lacZ (pTG08) vector. The other promoter fragments (Figure 4.6), 

were then subcloned into this construct using the Not I site at the 3' - end. For the 10.5 kb 

construct, the Kpn I - Pac I - Kpn I linker (BRKPK, Table 2.3) was inserted into the Kpn 

I site in order to replace the Pac I site.
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KpnI X hd  EccRl H intI I I  Kpri BanHl BanUl

N o t  ' *  NcA

Hin&m N col

1 15kb
pUI29-S 1.15 ® frlpneri

//z«dIII-JVcoI 
8 fragment 
subcloned into 
pLit 29

A/wI-ifa/EII-Miel 
5 linker was subcloned 
between Kpnl site of 
pLit29 and Nhel site in 8

f t

2.82kb

H indlll BstEll

pTG08- o 1.15 
(pBR102) nindm

SV40 poly (A)

plit29»61.15

Hindlll -BstEll 
8 fragment was 
subcloned from pLit29 
into pTG08

Other 8 promoter 
fragments were 
subcloned into 
pBR102

pBR202

pBR302

pBR402

pBR502

pBR602

pBR702

Notl Spe I

IcoRI

Nhel

bal

nl

Figure 4.7 Alteration o f promoter constructs

Abbreviations used are : Ampr = ampicillin resistance gene, mcs = multiple cloning site, 

Poly (A) = polyadenylation site, ori = origin of replication, lacL = p-galactosidase gene.
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4.3 DISCUSSION

As a detailed restriction map of the promoter region of the GABAa receptor 5 subunit 

gene was available (Figure 3.1), it was possible to design a range of promoter - deletion 

constructs that covered the available 10.5 kb of 5' - flanking DNA. Initially utility reporter 

vectors were constructed. These allowed for the insertion of a range of promoter 

fragments upstream of the reporter genes. Control plasmids were also constructed 

whereby the SV40 promoter was fused to the luciferase or p - galactosidase genes. The 

plasmid pGL3 basic (Promega) which was used as a backbone for both the luciferase and 

the lacZ reporter vectors, was modified extensively.

In the construction of the luciferase vector pTG22, the first modification of pGL3 basic 

was the insertion of a Bgl II linker. This served a dual purpose in that it resulted in the 

loss of the Bam HI site which was to be included in the multiple cloning site (mcs), and 

also it inserted a Pac I site at the 3' - end of the reporter gene. The Not I site was deleted 

as it was also to be included in the mcs. A large mcs was inserted which would allow for 

all the chosen promoter fragments to be subcloned. The mcs contained a Pac I site close 

to it’s 5' - end. This would allow for the excision of the promoter - reporter gene cassette 

as a Pac I fragment, if required. As there was an Xba I site at the 3' - end of the luciferase 

gene, the Xba I site in the mcs was replaced with an Spe I site which has ends compatible 

to Xba I and so would still allow for the insertion of Xba I promoter fragments

The lacZ vector pTG08 was constructed from two plasmids, pGL3 basic and pNASSp 

(Clontech). The p - galactosidase gene was first subcloned from pNASSp into a modified 

pBluescript vector. This altered the restriction sites at the 5' - and 3' - ends to allow for 

it’s subsequent insertion into the modified pGL3 basic vector. The other modifications 

were the same as those described previously for the luciferase vector.

The control vectors pTG34 and pTG18 were subject to the same alterations as described 

for the utility vectors.

Using the published information about the location of the transcription start sites (Sommer 

et al., 1990), the promoter fragments were subcloned into the lacZ reporter vector with
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Not I at their 3' - ends (Figure 4.6). However the results of the oligo - capping experiment 

described in Chapter 3 indicates a second cluster of transcription start sites just 3! - to the 

Not I site. Thus it was necessary to replace this region with a linker and re - subclone the 

promoter fragments (Figure 4.7). The 5' - and 3' - ends of the promoter fragments were 

sequenced to confirm that the junctions were correct. The promoter constructs were cut 

with Pac I to ensure that the promoter - reporter cassettes could be released from the 

vector backbone if required (Figure 4.8).
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Figure 4.8 Pac /  digestion o f promoter - reporter constructs
0.5% TBE agarose gel showing the release of the promoter - reporter gene cassttes from 

the plasmid backbone upon digestion with Pac I enzyme. The 3 kb plasmid backbone is 

indicated.
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5.1 INTRODUCTION

While it would be ideal to study the expression of neuronal promoters in vivo, it has 

proved extremely difficult to transfer DNA into neuronal cells and the methods available 

are expensive, time consuming and to a large extent unsuccessful. An alternative 

expression system available is the use of neuronal cell lines. The advantages of cell lines 

are speed, reproducibility and ease of application. A large number of promoter - 

constructs can be analysed in a relatively short time, to produce information about 

possible enhancer and silencer regions present in specific promoter fragments. Thus this 

method provides a preliminary screen for putative cis - acting regulatory regions.

Primary neuronal cultures can also be utilised, however they have proved difficult to 

transfect with DNA using standard methods. Modifications of current techniques do 

appear to be resulting in a higher percentage of transfected cells (Xia et al., 1996)

In this chapter, expression from the promoter - reporter plasmids (Chapter 4) was 

assayed using a neuronal cell line and primary cerebellar granule cell cultures. The cell line 

selected for expression studies was NB4 1A3 (Table 2.6), which had been previously 

shown to express the 5 subunit (Tyndale et al., 1994). Cerebellar granule cell cultures 

were established in collaboration with Dr T. Glencorse. Transfection of these cultures was 

attempted using the promoter constructs.

5.2 RESULTS

5.2.1 Expression of promoter - reporter constructs in cell culture

The construction of a range of promoter - deletion plasmids was described in Chapter 4. 

The transfection procedure is described in Section 2.2.9.1. The transfection procedure 

was repeated 3 times. Two separate DNA preparations (A and B) of each plasmid were 

used. For the first two experiments, the A set of plasmids was used and each plasmid was 

transfected in triplicate. For the third transfection, set B was used and each plasmid was 

transfected 5 times.

117



Chapter 5 Results III

Figure 5.1 shows the results of the 2 experiments involving the expression of one set (A) 

of purified promoter - reporter constructs in the NB4 1 A3 cell line.
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Figure 5.1a Experiment 1 - f-galactosidase activity o f  NB4 1A3 cells transfected 

with reporter construct set A 

The P-galactosidase activities have been corrected against an internal luciferase control 

using co - transfection with the pGL3-Control vector (Figure 4.3). The x-axis shows 5 - 

promoter constructs with increasing length from left to right. Values shown are from the 

means from one experiment where each plasmid was transfected in triplicate. Error bars 

represent standard errors of the mean.
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Figure 5.1b Experiment 2 - ^-galactosidase activity o f NB4 1A3 cells transfected 

with reporter construct set A

The P-galactosidase activities have been corrected against an internal luciferase control 

using co - transfection with the pGL3-Control vector (Figure 4.3). The x-axis shows 5 - 

promoter constructs with increasing length from left to right. Values shown are from the 

means from one experiment where each plasmid was transfected in triplicate. Error bars 

represent standard errors of the mean.
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Figure 5.2 shows the results of expression of the second set (B) of purified promoter - 

reporter constructs in the NB4 1 A3 cell line.
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Figure 5.2 j3-galactosidase activity o f NB4 1A3 cells transfected with reporter

constructs set B

The P-galactosidase activities have been corrected against an internal luciferase using co - 

transfection with the pGL3-Control vector (Figure 4.3). The x-axis shows 5 - promoter 

constructs with increasing length from left to right. Values shown are from the means 

from one experiment where each plasmid was transfected 5 times. Error bars represent 

standard errors of the mean.
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The 3 sets of data were combined and the results shown in Figure 5.3.
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Figure 5.3 Graph showing the galactosidase activity o f the three transfection 

experiments combined 

The P-galactosidase activities have been corrected against an internal luciferase control - 

pGL3-Control vector. The x-axis shows 6 - promoter constructs with increasing length 

from left to right. Values shown are from the means from three experiment where each 

plasmid was transfected a total of 11 times.

The data indicate that there is a reduction of activity between the plasmid constructs 

pBR402 and pBR502. Student’s t - distribution calculated between each pair of plasmids 

show this difference to be significant.

5.2.2 Expression of promoter - reporter constructs in primary cell cultures

This work was performed in collaboration with Dr T. Glencorse and Dr G. Westrop who 

performed most of the transfections. The culturing of the granule cells and their 

subsequent transfection is described in Section 2.2.9.2, Initially, 2 plasmid constructs 

were selected for transfection, BR202 and BR502. These were transfected using DOTAP 

or calcium phosphate precipitation. However both methods proved to be unsuccessful.
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There was a very high death rate with DOTAP. No blue cells were detectable upon fixing 

and staining the cells with X - gal. p - galactosidase activity of the harvested cell cultures 

was detected but did not differ significantly from the controls. Heating of the extracts to 

reduce endogenous p - galactosidase activity reduced all the readings to zero.

5.3 DISCUSSION

Expression of a range of promoter - reporter constructs (Chapter 4) was analysed in 

vitro. The neuronal cell line NB4 1A3 was transfected on 3 separate occasions with the 

plasmids and the p - galactosidase activity was assayed. Each transfection gave different 

levels of expression which made it difficult to combine the data. Overall, the pattern was 

similar. Student’s t - tests performed on the pairs of plasmids demonstrated that the only 

significant difference observed was between the plasmids pBR402 and pBR502. The 

promoter fragments in these two plasmids differ in that pBR502 contains an extra 1.8 kb 

of 5' - upstream sequence (-6157 to - 4363; Figure 3.6). It is possible that this effect is 

due to the presence, in this region, of a binding site for a regulatory element. However, as 

there was great variability between the transfections, these differences could also be 

caused by the quality of the plasmid DNA used in the transfections. Thus the 

transfections should be repeated with newly prepared high quality DNA.

Analysis of this sequence does not reveal any known neuronal silencer elements. Two 

recognition sites for known transcription factors have been identified in this region 

(Table 3.1) - MZF1 and S8. MZF1 (myeloid zinc finger gene 1) is a member of the C2H2 

zinc finger family of genes which are DNA binding proteins many of which have been 

demonstrated to have roles in regulating transcription during developmental processes. 

MZF1 is thought to play a role in hematopoiesis regulation (Morris et al., 1994). S8 (de 

Jong et al., 1993) is a murine member of the homeodomain protein family and is highly 

homologous to another murine homeodomain gene - MHox. They are expressed in a 

developmentally specific and tissue restricted manner. Thus while it is unlikely that these 

sequences provide recognition sites for MZF1 and S8, they could bind related proteins. 

Mutational analysis and subsequent gel shift assays using oligonucleotides designed to 

these sequences could provide answers about their functionality.
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possibility is that there is a recognition site in this region for a novel transcription factor. 

Oligonucleotide PCR primers could be designed to give overlapping products across this 

region which could then be used in DNA/protein binding assays.

The transfection of the granule cells has so far been unsuccessful. However, this work 

will continue with adaptations of the transfection procedures being attempted.

These results provide preliminary evidence about possible regulatory regions in the 

GABAa receptor 8 subunit gene upstream region. Expression of the plasmid constructs 

should be performed in another cell line e.g. GT1-7 as the differences observed may be 

attributable to factors present only in the NB4 1A3 cell line. Future work also will 

involve attempting to identify the putative recognition site for the proposed silencing 

element, possibly using gel shift assays, DNase I footprinting assays or mutational 

analysis.
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6.1 INTRODUCTION

The second main aim of this project was to develop an HSV - 1 viral vector system to 

deliver DNA to neurons, the eventual goal being the development of a safe HSV - 1 gene 

therapy vector for neuron - specific delivery. Most current gene therapy technology has 

involved the use of retroviral vectors. Retroviruses integrate their genomes into the 

chromosome of the host cell providing a method to stably introduce genes into cells 

removed from a patient which can then be returned by cell transplantation procedures 

following gene transfer. Retroviral vectors carrying therapeutic genes have proved useful 

for transferring genes to rapidly dividing neoplastic cells, fibroblasts and bone marrow 

stem cells (Anderson, 1992). However, as they require dividing cells to enter the nucleus 

and integrate the therapeutic gene, they cannot infect postmitotic cells such as neurons.

Both adenovirus (Alki, et al., 1993; Davidson et al., 1993; Le Gal La Salle et al., 1993) 

and HSV - based vectors (Anderson et al., 1992; Fink et al., 1992; Chiocca et al., 1990; 

Glorioso et al., 1992, 1994) possess a wide host cell range and can efficiently infect 

nondividing cells. HSV may be particularly useful for gene therapy to the CNS as it is 

naturally neurotropic and has evolved a mechanism for remaining latent in neurons. It can 

exist without expression of viral proteins or apparent cell damage. Genetic alteration of 

the HSV virus would be required to ensure that it could not express lytic functions and 

that it could efficiently express transgenes during the latent phase.

The other requirement for a neuronal gene therapy vector is a suitable neuronal - specific 

promoter which would restrict expression of the therapeutic gene to the required cell type. 

The GABAa receptor 5 subunit gene promoter serves as a protoype neuronal promoter as 

it has a well characterised restricted cell - type specific expression pattern in the CNS. We 

shall also examine the utility of GABAa receptor 5 promoter fragments for long - term cell 

specific expression in the context of a safe HSV - 1 vector.

6.1.1 Herpes Simplex Virus type 1

HSV - 1 has a large cloning capacity (McGeoch et al., 1988; Longnecker et al., 1988), 

remains episomal (which may be advantageous as integration could cause disruption of 

target cell genes) and can infect many types of neurons. It has a wide cellular host range,
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but during natural infection is neurotropic. The virus can be transported by retrograde and 

anterograde transport within neurons and can cross synapses to neighbouring neurons 

(Kuypers and Ugolini, 1990). In neurons, it may begin a cycle of lytic replication or enter 

a latent state in which the viral genome persists without the expression of any viral 

proteins (Rock and Fraser, 1983; Mellerick and Fraser, 1987; Stevens, 1989). While latent 

genomes can be reactivated, HSV - 1 vectors have been constructed where the ability to 

reactivate has been severely impaired (Robertson et al., 1992; Steiner et al., 1989). Also, 

vectors have been produced that are incapable of initial replication in the epithelium or in 

neuronal cells, but can establish latency.

6.1.2 Molecular biology of HSV - 1

The HSV - 1 genome is a linear double - stranded DNA molecule composed of two 

unique segments [unique long ( U l )  and unique short (Us)] each flanked by a pair of 

inverted repeats (Ir) (Figure 6.1).

Accessory
t r l % TRg

E s se n t ia l
3 3 3 3 3 3  3 §3 3 33  3 3l 3>

Figure 6.1 Schematic representation o f the H SV  -1  genome 

Diagram of the HSV - 1 genome showing the unique long (U l) and unique short (Us) 

regions bounded by inverted repeat elements (Ir). The non - essential or accessory genes, 

which may be deleted without preventing replication in vitro are indicated on the upper 

line. The essential genes which are required for viral replication in vitro, are indicated on 

the lower line (Figure adapted from Fink et al., 1996).
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More than 80 genes are encoded in the 152 kb genome and they are expressed in a well - 

ordered temporal cascade of immediate early (IE or a), followed by early (E or p) and 

then late (L or y) gene products (Honess and Roizman, 1974). The viral genes have been 

categorised as either essential or non - essential according to whether or not they are 

required for the production of infectious viral particles in vitro. Non - essential genes may 

however contribute to the ability of the virus to effectively replicate and spread in vivo. 

Deletion of non - essential genes could increase the potential cloning capacity of the virus, 

but may affect viral tropism.

6.1.3 HSV - 1 latency

HSV - 1 can enter a latent state in neurons. While no viral proteins can be detected during 

this phase, a region of the HSV - 1 genome does remain transcriptionally active, 

producing a family of latency - associated transcripts (LATs) (Croen et al., 1987; Deatly 

et al., 1988; Rock et al., 1987; Spivack and Fraser; 1987; Stevens et al., 1987). Three 

major LAT transcripts can be detected during latency - 2 kb, 1.5kb and 1.45kb (Spivack 

and Fraser, 1987; Spivack et al., 1991; Wagner et al., 1988). The major species is the 2 

kb non - polyadenylated RNA that remains intranuclear and is transcribed from the repeat 

regions flanking the Ul segment of the genome (Figure 6.2). It appears to be a highly 

stable intron spliced from a large (8.3 kb) poly (A)+ mRNA species (Devi-Rao et al., 

1991; Dobson et al., 1989; Farrell et al., 1991). However this putative 8.3 kb LAT 

transcript has yet to be identified in latently infected neurones.
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1.5 kb LAT 

1.4 kb LAT
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ICP4 (IE3)ICP34.5

^  8.3 kb LAT

Figure 6.2 Schematic representation o f the LAT locus

The diagram shows the structure of the LAT locus. The two LAT promoters (LAP) are 

indicated as are the products of LAT transcription and splicing. Other genes in the region 

are also shown.

There are two promoter elements (LAP1 and LAP2) upstream of the 5' - end of the 2 kb 

LAT (Dobson et a l , 1989; Goins et al., 1994). Expression studies using LAP1 and 2 to 

drive expression of the lacL reporter gene in trigeminal ganglia, have shown that both 

promoter elements are required for full expression (Goins et al., 1994; Lokensgard et al., 

1994; Margolis e ta l, 1993).

6.1.4 Selection of a viral vector

Two types of HSV - 1 viral vectors can be utilised, either replication - deficient viruses in 

which the viral genome can be manipulated (Post and Roizman, 1981), or plasmid - based 

amplicons which require helper virus for DNA replication (Spaete and Frenkel, 1982; 

Geller and Breakenfield, 1988; Geller et al., 1990). Replication - deficient viruses have 

essential genes deleted or inactivated and thus require growth in a complementing cell 

line. One problem is that reversion to wild - type could occur through the cell line 

complementing the deleted function. These viruses can accommodate up to 15 kb of
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foreign DNA and can be purified to relatively high titres (Breakenfield, 1993). However, 

the large size of the HSV - 1 genome makes production of these vectors difficult, and 

recombinant viruses can be cytotoxic (Johnson et al., 1992; During et al., 1994; Pakzaban 

and Chiocca, 1994).

HSV -1 recombinants have been successfully introduced, in vitro, into a range of cultured 

neurons derived from e.g. spinal cord, cerebellum, basal ganglia, hippocampus and 

neocortex of rats (Geller and Breakenfield, 1988; Gellar and Freese, 1990; Geschwind et 

al, 1994). In vivo, HSV - 1 recombinants containing reporter genes driven by either HSV 

- specific or foreign promoters have infected a variety of neuronal cell populations of the 

rat brain both at the primary injection sites and also at secondary sites (Anderson et al., 

1992; Kaplitt et al., 1994; Ridoux et al., 1994; Song et al., 1997).

Amplicons (Spaete and Frenkel, 1982; Geller and Breakenfield, 1988; Geller et al., 1990) 

are generated from plasmids that contain an expression cassette and minimal viral DNA 

sequences, including an HSV - 1 origin of replication and packaging sequence. The 

amplicons do however require helper virus to allow them to propagate. Thus one 

disadvantage of the amplicon system is that the vectors have to be purified away from the 

potentially cytotoxic replication competent helper virus.

Our choice of a replication - deficient HSV - 1 vector was determined by our eventual 

goal which was to develop a viral vector system suitable for use in gene therapy.

6.1.5 Choice of HSV - 1 mutant

Wildtype HSV - 1 causes a lytic infection in the CNS and this must be abolished without 

affecting the establishment of latency. Two attenuated viral mutants were selected for the 

generation of recombinant viruses : 1716 (MacLean et al., 1991b) and 1764 (Coffin et al., 

1996).

1716 lacks the ICP34.5 gene (Ackermann et al., 1986) which is located in the long repeat 

regions of the HSV - 1 genome (Figure 6.1). ICP34.5 is expressed late in infection and is 

implicated in neurovirulence (Ackermann et al., 1986; Choi and Roizman, 1986, 1990;
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Chou et al., 1990; Dolan et al., 1992; MacLean et al., 1991b). It is not required for 

replication in vitro or for the establishment of latency in vivo in at least some neuronal cell 

types. Deletion or mutation of this gene results in variants that are non - neurovirulent in 

mice (Bolovan, et al., 1994; Chou et al., 1990; MacLean et al., 1991b; Robertson et al., 

1992; Valyi-Nagy et al., 1994). The ICP34.5 mutants are replication - defective in sensory 

ganglia and the CNS of mice (Bolovan, et al., 1994; Chou et al., 1990; MacLean et al., 

1991b; McKie et al., 1994; Whitely et a l, 1993), but replication is normal in many (but 

not all) tissue culture cell types. Thus 1716 is capable of limited replication in the footpads 

of mice, but is replication - defective in the mouse peripheral nervous system (Robertson 

et al., 1992). It has been shown to establish latency in dorsal root ganglia (DRG), but is 

reactivation impaired (Robertson et a l, 1992).

A second HSV - 1 viral variant utilised was 1764. It also lacks the ICP34.5 gene and has 

an additional insertional mutation in the transactivational domain of the Vmw65 (U l48) 

gene (Batterson and Roizman, 1983; Campbell et al., 1984). Vmw65 is a virion protein 

which is required to transactivate HSV gene transcription after infection (Ace et al., 1989; 

Gerster and Roeder, 1988; McKnight et al., 1987; Preston, et al., 1988). These Vmw65 

mutants result in viruses that are unable to transactivate IE gene expression. Replication 

of these mutant viruses during infection is dependent on the multiplicity of infection 

(MOI) being high. Steiner et al., (1990) investigated the role of Vmw65 in vivo during 

primary infection, establishment of latency and explant reactivation from latently infected 

mouse trigeminal ganglia. Replication was not detected, however latency was established 

and reactivation was noted. Mutants lacking the Vmw65 gene can still be grown in culture 

as the transactivating activity can be complemented by the inclusion of hexamethylene 

bisacetamide (HMBA) in the medium (MacFarlane et al., 1992). Viral mutant 1764 was 

originally generated as it was hoped that its inherent inability to transactivate IE genes 

would force the virus into the latent pathway of infection, and would reduce the levels of 

potentially cytopathic IE gene products. Coffin et al. (1996) showed that 1764 produced 

similar effects to 1716 in the PNS and CNS.
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6.1.6 Choice of insertion site for GABAa 5 promoter - reporter gene expression 

constructs

Two loci within the HSV - 1 genome have been targeted as sites of insertion of promoter 

- reporter gene constructs : Ul43 and LAT (Figure 6.1). Our collaborators on the virus 

work : Prof Clements and Dr MacLean (Dept, of Virology, University of Glasgow) had 

viral vectors containing promoter - lacL constructs at the U l43 locus which were known 

to give successful lacZ expression in mouse dorsal root ganglia (DRG). U l43 is a non - 

essential gene situated within the unique long region of HSV - 1. Its role was investigated 

by MacLean et al. (1991a). They disrupted the gene by inserting the lacL gene into the 

Ul43 locus. They also isolated a Ul43 deletion mutant. They found that the absence of the 

Ul43 polypeptide appeared to have no noticeable effect on the virus phenotype in vitro or 

in vivo. Thus the function of the Ul43 gene product remains unknown. U l43 gene 

expression has been reported (Carter et al., 1996) and it appears to be transcribed for a 

short time during lytic infection.

The LAT locus has been discussed in Section 6.1.2 and may prove useful for long - term 

expression studies since it represents the only transcriptionally active region during 

latency. Shuttle vectors were available for insertion of promoter - reporter gene constructs 

into both the U l43 (p35) and the LAT (pBL) loci of the HSV - 1 genome by standard 

recombination methods. As the promoter constructs were designed to be excised as Pac I 

fragments (Chapter 4), the shuttle vectors were altered (Figure 6.3a and 6.3b) by 

insertion of Pac I linkers within the HSV regions of homology (Dr A. McGregor).

Only 3 GABA 6 promoter - reporter gene constructs were initially selected for insertion 

into HSV - 1 : 1.6kb - lacZ (pBR202), 4.5kb - lacZ (pBR402) and 10.5kb - lacZ 

(pBR702) (Chapter 4, Figure 4.7). It was hoped that these promoter fragments would 

provide information about the ability of the GABAa receptor 8 subunit gene promoter 

fragments to direct long - term neuron - specific expression.
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Figure 6.3 HSV -1  Shuttle Vectors



Figure 6.3 H SV  - 1 Shuttle Vectors

a. p35 {Pac I) vector : pGem - 2 backbone containing a 5.1 kb Bam HI -Eco RI DNA 

fragment (91610-96751) from the HSV - 1 UL43 gene. Oligonucleotide linker insertion at 

the Nsi I site generates the Pac I site required for insertion of promoter - reporter 

constructs.

b. pBL {Pac I) vector : pGem - 2 backbone containing 2 Not I DNA fragments - 1.2 kb 

(118439-119765) and 0.7 kb (122023-121327) from the HSV - 1 LAT region. 

Recombination with these fragments results in the loss of a 1.6 kb HSV fragment 

(121327-119675). Oligonucleotide linker insertion at the Bam HI site generates the Pac I 

site required for insertion of promoter - reporter constructs.

Abbreviations used : HSV = herpes simplex virus, Ampr = ampicillan resistance gene, 

TRl  = terminal repeat (long) region, TRs = terminal repeat (short) region, IRL = internal 

repeat (long) region, IRs = internal repeat (short) region, Ul = unique long region and Us 

= unique short region.
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6.2 RESULTS

6.2.1 Generation of promoter construct - shuttle vectors

6.2.1.1 p35 and pBL promoter construct - shuttle vectors

The construction of the promoter - reporter genes is described in Chapter 4. The 1.6kb 

and 4.5kb promoter - reporter gene cassettes were excised from the vectors pBR202 and 

pBR402 (Chapter 4) respectively as Pac I fragments and inserted into p35 (Pac I) and 

pBL (Pac I). It proved impossible to isolate a shuttle vector containing the 10.5 kb 

promoter - reporter gene cassette. Attempts to purify the cassette from the plasmid 

backbone prior to ligation and transformation were repeatedly unsuccessful, with only 

empty vectors or the original plasmid pBR702 being isolated.

The 1.8 kb NSE promoter fragment was isolated from vector pBluescript. It was 

subcloned upstream of the lacZ gene and the gene cassette was subsequently subcloned 

into the shuttle vectors.

Table 6.1 lists the promoter - reporter gene shuttle vectors prepared in p35 (Pac I) and 

pBL (Pac I).

Table 6.1 p35/pBL promoter - reporter gene shuttle constructs

Shuttle Construct Promoter Fragment Shuttle Vector

p35-1.6 lacZ GAB A 6 1.6kb p35 (Pac I)

p35-4.5 lacZ GABA6 4.5kb p35 (Pac I)

p35-NSE lacZ NSE 1.8kb p35 (Pac I)

p35-CMV lacZ * CMV p35 (Pac I)

pBL-1.6 lacZ GAB A 5 1.6kb pBL (Pac I)

pBL-NSE lacZ NSE 1.8kb pBL (Pac I)

Constructs marked with a star were prepared by Dr A. McGregor. Abbreviations used : 

CMV = cytomegalovirus promoter, NSE = neuron specific enolase promoter, lacZ = p- 

galactosidase gene.
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6.2.1.2 pZ43 andpZLA Tpromoter construct - shuttle vectors 

A second set of shuttle vectors were designed, using pZErO™-2.1 (Invitrogen) as a 

vector backbone, to overcome the problems encountered with isolation of the larger 

promoter - reporter cassettes (Section 6.2.1.1). This was performed in collaboration with 

Dr T.A. Glencorse. The 5.1kb Bam HI - EcoRl HSV fragment was excised from p35 

(Pac I) and inserted into the pZErO™-2.1 plasmid to form pZ43. The 2kb Not I HSV 

fragment was excised from pBL (Pac I) and inserted into pZErO™-2.1 to form pZLAT. 

These plasmids use Kanamycin selection as opposed to Ampicillin. This will prevent 

contamination of the ligation and transformation reactions by the original Ampicillan - 

containing plasmid backbone.

The 1.6kb and 10.5kb promoter - reporter gene cassettes were excised from the vectors 

pBR202 and pBR702 (Chapter 4) respectively as Pac I fragments and inserted into 

pZ43. The 1.6kb, 4.5kb and 10.5kb promoter - reporter gene cassettes were excised from 

the vectors pBR202, pBR402 and pBR702 (Chapter 4) respectively as Pac I fragments 

and inserted into pZLAT.

Table 6.2 lists the promoter - reporter gene shuttle vectors prepared in pZ43 and pZLAT 

Table 6.2 pZ43/pZLA Tpromoter - reporter gene shuttle constructs

Shuttle Construct Promoter Fragment Shuttle Vector

pZ43-1.6 lacZ GAB A 5 1.6kb pZ43

pZ43-10.5 lacZ GAB A 5 10.5kb pZ43

pZLAT-1.6 lacZ GAB A 5 1.6kb pZLAT

pZLAT-4.5 lacZ GAB A 8 4.5kb pZLAT

pZLAT-10.5 lacZ GAB A 6 10.5kb pZLAT

The table lists the shuttle constructs prepared, which promoter fragments were subcloned 

and which shuttle vector was used.

Abbreviations used : lacZ = (3-galactosidase gene.
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6.2.2 Generation of recombinant HSV - 1 viruses

6.2.2.1 1764 viral variants

Using standard recombination techniques (Section 2.2.1.2 \  the 1.6kb GABA - lacZ 

cassette was introduced into the HSV - 1 genome at the LAT locus. Figure 6.4 illustrates 

the banding pattern expected from Southern blot analysis of a recombinant LAT virus.

96 viral plaques were isolated and the DNA prepared from these (Section 2.2.7.4), The 

first 72 viruses were loaded onto a dot blot apparatus. The membrane was probed with a 

random primed lacL fragment. There were 4 strong putative positives : 27, 47, 52 and 62 

(Figure 6.5a). These positives were analysed by dot blotting again, along with samples 73 

- 96. The membrane was probed with a 1.2 kb Hind III - Not I GABA 6 fragment. 

Samples 27, 47 and 91 were positive (Figure 6.5b).

The positive viruses were further investigated by Southern blot analysis (Section 2.2.1.9), 

The positive viral DNA samples were digested with Bam HI and Southern blotted. The 

membranes were probed with a random primed HSV Bam HI b fragment.

Sample 47 appeared to be a recombinant, of about 20% purity (Figure 6.6). After 3 

rounds of purification by isolating single plaques, this virus was still a mixture of wild - 

type and recombinant. 4 further rounds of purification by isolating single plaques was 

required before the recombinant virus was pure (Figure 6.7). The banding pattern was 

consistent with the GABA - lacZ cassette having been inserted at both LAT loci. A high 

titre virus stock of this recombinant virus was prepared (Section 2.2.1.6). The titre of the 

1764 LAT (1.6) GABA - lacZ virus (1782) was calculated (Section 2.2.1.1) to quantitate 

the amount of infectious virus present in the stock. The viral titre is 1.77 x 109 pfu/ml.
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Figure 6.4 Schematic representation of the recombinant 

LAT- GABA(1.6) - lacZ locus



Figure 6.4 Schematic representation o f the recombinant LAT - GABA(1.6) - lacZ 

locus

a. The figure shows the expected recombination event. The location of the Bam HI sites 

in the LAT region, and the expected fragment sizes upon digestion with Bam HI are 

indicated. Bam HI b is the HSV - 1 probe used in the Southern blot analysis. This 

probe will also hybridise to Bam HI e due to the presence of homologous sequences.

b. The figure shows the structure of the recombinant LAT virus. The location of the 

Bam HI sites in the LAT region, and the expected fragment sizes upon digestion with 

Bam HI are indicated.

c. Expected banding pattern upon Southern blot analysis of recombinant viral DNA 

digested with Bam HI and probed with Bam HI b. The promoter/reporter cassette 

would be excised.

Abbreviations used : Ul = unique long, Us = unique short, B = Bam HI, N = Not I, Ampr

= ampicillin resistance gene.
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27 47

GABA

Figure 6.5 Dot blot analysis o f putative recombinant LAT-GABA( 1.6) - lac Z

viruses
Dot blots showing putative positive recombinant viruses for the LAT-GABA(1.6)-/ac Z 

construct.

a. The blot was probed with a random - primed lac Z DNA fragment. 4 viruses (27, 

47, 52, 62) gave strong signals and these are indicated with arrows.

b. The blot was probed with a 1.2 kb Hind III - Not I GABA fragment. 3 viruses 

(27, 47, 91) gave strong signals and these are indicated with arrows.



Figure 6.6 Southern blot analysis o f putative recombinant LAT-GABA(1.6)-lac Z 
viruses

The 3 positive viruses from the dot blot analysis were analysed by Southern blotting. 

They were digested with Bam HI and the blot was probed with an HSV-1 Bam HI b DNA 

fragment. The wild - type bands are indicated in bold, the mutant bands are indicated in 

italics. Only virus 47 showed recombinant bands. The 5.4 kb and 2 kb bands are less 

intense as they are not fully homologous with the Bam HI b probe (Figure 6.4)
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Figure 6.7 Southern blot analysis o f LA T-GABA(1.6)-lac Z recombinant viruses
The blot shows 4 viral DNA samples isolated after several rounds of purification. The 

viral DNA samples were digested with Bam HI and the blot was probed with a random 

primed HSV-1 Bam HI b DNA fragment. The mutant bands are indicated in italics. All 

samples isolated from this round of purification were recombinant.
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6.2.2.2 1716 viral variants

Using standard recombination techniques (Section 2.2.7.2), attempts were made to 

introduce promoter - lacZ cassettes - 1.6kb and 10.5kb into the HSV genome at the Ul43  

locus and promoter - lacZ cassettes - 1.6kb, 4.5kb and 10.5kb into the HSV genome at 

the LAT locus. Figure 6.8 illustrates the banding pattern expected from Southern blot 

analysis of a recombinant Ul43 virus

6.2.2.2.1 pZ43 - 1.6 - lacZ

For the pZ43 - 1.6 construct, 96 plaques were isolated and screened by dot blot analysis 

using the 1.2 kb Hind III - Not I GABA probe. 7 out of the 96 plaques were positive - 6, 

18, 27, 28, 29, 42 and 92 (Figure 6.9). These samples were further investigated by 

Southern blot analysis (Section 2.2.1.9). The positive viral DNA samples were cut with 

Bam HI, Southern blotted and probed with a random primed HSV Bam HI - Eco RI 

fragment.

All of the samples contained recombinant bands, however 2 samples - 6 and 18 appeared 

to be pure (Figure 6.10). Sample 6 was taken through 2 further rounds of purification by 

isolating single plaques before a high titre virus stock (Section 2.2.7.6) was prepared. The 

titre of the 1716 UL43 (1.6) GABA - lacZ virus (1787R) was calculated (Section 2.2.1.1) 

to quantitate the amount of infectious virus present in the stock. The viral titre is 2 x 1010 

pfu/ml.
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Figure 6.8 Schematic representation of the recombinant 

UL43 - GABA(L6) - lacZ locus



Figure 6.8 Schematic representation o f  the recombinant UL43 - GABA(1.6) - 

lacTj locus

a. The figure shows the expected recombination event. The location of the Bam HI sites 

in the U l43 region, and the expected fragment size upon digestion with Bam HE is 

indicated. Bam HI - EcoRl is the HSV -1 probe used in the Southern blot analysis.

b. The figure shows the structure of the recombinant Ul43 virus. The location of the 

Bam HI sites in the U l43 region, and the expected fragment size upon digestion with 

Bam HI are indicated.

c. Expected banding pattern upon Southern blot analysis of recombinant viral DNA 

digested with Bam HI and probed with the Bam HI - Eco RI HSV DNA fragment.

Abbreviations used : U l  = unique long, Us = unique short, B = Bam HE, E = Eco RI,

Ampr= ampicillin resistance gene.
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Figure 6.9 Dot blot analysis o f putative recombinant UL43 -GABA(1.6)-lac Z 

viruses
Dot blots showing putative positive recombinant viruses for the UL43-GABA(1.6)-/ac Z 

construct.

The blot was probed with a 1.2 kb Hind III - Not I GABA fragment. 6 viruses gave 

strong signals : 6, 18, 27, 28, 29, 42, 92 and these are indicated with arrows.
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6.64 kb

Figure 6.10 Southern blot analysis o f putative recombinant UL43-GABA(1.6)- 
lac Z viruses

The 7 positive viruses from the dot blot analysis were analysed by Southern blotting. 

They were digested with Bam HI and the blot was probed with an HSV-1 UL43 Bam HI- 

Eco RI DNA fragment. The wild-type band is indicated in bold, the mutant band is 

indicated in italics. All viruses showed the mutant band, samples 6 and 18 looked pure.
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6.2.2.Z2 pZ43 - 10.5 - lacZ

For the pZ43 - 10.5kb construct, 576 plaques were isolated and screened by dot blot 

analysis using the 1.2 kb Hind III - Not I GAB A probe. One virus gave a positive result 

from the dot blot (Figure 6.11). This was further analysed by Southern blotting. The 

DNA was cut with Bam HI, blotted overnight and then probed with a random primed 

HSV Bam HI - Eco RI fragment. The expected banding pattern would have seen the 

wild - type 6.64 kb band increase to 20,64 kb. However, it did not give the correct 

banding pattern (Figure 6.12) and was therefore discarded.



positive 
control

Figure 6.11 Dot blot analysis o f putative recombinant UL43-GABA(10.5)-lac Z 

viruses
Dot blot showing putative positive recombinant viruses for the UL43-GABA(10.5)-/ac Z 

construct. The blot was probed with a 1.2 kb Hind III - Not I GABA fragment. 1 virus 

(48) gave a strong signal.

10 kb 

6.64 kb

Figure 6.12 Southern blot analysis o f putative recombinant UL43-GABA(10.5) - 
lac Z virus

The putative positive virus (48), and several faint positive isolates, from the dot blot 

analysis were further analysed by Southern blotting. They were digested with Bam HI 

and the blot probed with an HSV-1 UL43 Bam HI - Eco RI fragment. The wild - type 

band is indicated in bold, the mutant band is indicated in italics. Virus 48 does not give 

the expected 20 kb DNA fragment. The smaller band results in all probability, from an 

aberrant recombination event.
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6.2.2.2.3 Other pZ43 and pZLA T recombinant viruses

pZLAT constructs - 1.6 kb - lacZ (100 viral DNAs) and 4.5 kb - lacZ (200 viral DNAs) 

were screened by dot blot analysis for recombinant viruses. No positive viruses were 

detected.

Table 6.3 lists the recombinant viruses isolated.

Table 6.3 Recombinant 1764 and 1716 viruses

Recombinant Viruses Viral variant Promoter Fragment Insertion Locus

1780 1764 CMV Ul 43

1781 1764 NSE Ul 43

1782 1764 1.6 GABA LAT

1783 1764 4.5 GABA Ul 43

1786 1764 gD Ul43

1780R 1716 CMV Ul43

1781R 1716 NSE Ul43

1782R 1716 1.6 GABA LAT

1783R 1716 4.5 GABA Ul43

1786R 1716 gD Ul43

1787 1716 1.6 GABA Ul43

Viruses in normal type were prepared by Dr A. McGregor. Viruses marked in bold were 

isolated by myself. Abbreviations used : CMV = cytomegalovirus promoter, NSE = 

neuron - specific enolase promoter, gD = glycoprotein D (HSV specific promoter), R = 

viruses were prepared by recombination between the 1764 mutants listed and the 1716 

HSV - 1 virus. This corrected the Vmw65 mutation and gave the recombinant 1716 viral 

mutants listed.
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6.3 DISCUSSION

There were several problems encountered during this work. Initially the promoter - 

reporter cassettes had to be subcloned into the shuttle vectors. While this was 

straightforward for the cassettes containing the smaller promoter fragments, it proved to 

be impossible for the larger promoter constructs. Eventually a second set of shuttle 

vectors based on the pZErO™-2.1 vector, were designed and constructed (in 

collaboration with Dr T. Glencorse). The advantage of this vector was that Kanamycin 

could be used for the selection of positive clones, and this successfully overcame the 

problems encountered with the original vector at the ligation stage with contamination 

from the promoter - reporter cassette backbone vector, which was ampicillin resistant. A 

positive clone containing the 10.5kb promoter - lacL cassette was eventually isolated for 

the U l43 and LAT shuttle vectors, with this system.

Another major problem encountered was with the purification of the recombinant viruses. 

Initially the 1764 viral variant was used. It proved difficult to purify recombinant viruses 

away from the wild - type virus. It took many rounds of purification to obtain the 1782 

(1.6 - lacZ into LAT locus) virus. With one virus, the 1.6 - lacL into U l43, even after 

repeating the transfection twice and going through numerous rounds of purification, I was 

unable to isolate a pure recombinant virus. Dr A. McGregor investigated different 

approaches for obtaining higher proportions of recombinant viruses. These were generally 

more successful (Table 6.3), however, he was also unable to completely purify this 

recombinant virus.

Another viral variant utilised was 1716. This virus, unlike 1764, does not require chemical 

help in order to plaque. However, it may produce more cytotoxic viruses. Recombinant 

viruses were isolated using this variant (Table 6.3).

I was unable to isolate a recombinant virus for the 10.5 kb promoter cassette. While one 

virus was positive when the DNA was analysed by dot blotting and was probed with a 

GABA fragment, this gave an aberrant restriction pattern upon Southern blotting (Figures

6.11 and 6.12). This suggests that deletions or rearrangements were occurring. Dr 

McGregor was also unable to isolate the 10.5 - lacL recombinant virus. Thus it may be
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necessary to delete some of the HSV - 1 genome to achieve insertion of the larger 

promoter cassette. However at 14 kb, the cloning capacity of HSV - 1 should not have 

been reached. It is possible that the actual sequence of the GABAa receptor 5 subunit 

gene promoter has caused these problems. Analysis of the 5' - upstream region (Chapter 

3) of the GABAa receptor 5 subunit gene revealed an imperfect repeat region (Figure 3.6; 

-5275 to - 4689) that is highly homologous to a region of the HSV - 1 genome. Thus it is 

possible that recombination events were occurring between the 5 and the HSV -1 DNA 

resulting in the observed deletions or rearrangements. Insertion of another large promoter 

cassette (e.g. GABAa receptor a6) would perhaps answer some of these questions.

In summary, there are two major problems with making recombinant viruses using the 

standard recombination method.. The first is the necessity to transfer promoter - reporter 

cassettes into shuttle vectors. The second is the low frequency of recombination 

encountered. The systems being developed by Dr A. McGregor will, to a certain extent, 

overcome these problems. One advantage of these new methods is that the shuttle vector 

stage can be omitted. Another is that there should be a lower background of non - 

recombinant viruses. These systems may be further improved by the use of directional 

cloning.

The purified recombinant viruses have been assessed for their ability to target specific 

neurons and for the expression of the various promoter fragments in rats and mice. This is 

discussed in Chapter 7.
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7.1 INTRODUCTION

The main aim of the viral work was to develop an HSV - 1 viral vector that would enter 

neurons, establish a latent infection and allow long - term expression of a reporter gene 

from neuron - specific promoters. A selection of the recombinant viruses (Chapter 6) were 

steroetactically injected into the cerebellum of adult male rats. The cerebellum was chosen ^  

as the site of injection of the viruses as it contains cells which express the GABAa 

receptor 6 subunit gene. The 5 gene has a restricted expression pattern in the cerebellum 

in that it is expressed only in the granule cells. The Purkinje cells will act as a negative 

control for neuron - specific expression from the 5 promoter as they do not express the 

endogenous gene. Thus it was hoped that cell - type specific expression would be 

observed with the 8 promoter, i.e. we would expect to see p - galactosidase expression 

restricted to the granule cells.

This chapter describes the infection of cerebellar granule cell cultures with recombinant 

HSV - 1 viruses and the stereotactic injection of the viruses into the cerebellum of rats.

The isolation of recombinant viruses was described in Chapter 6.

7.2 RESULTS

The methods for the introduction of the recombinant viruses into granule cell cultures and 

rat brains are described in Section 2.2.10,

7.2.1 Infection o f cerebellar granule cells by recombinant viruses 

This work was carried out in collaboration with Dr T. A. Glencorse and Dr G. Westrop. A 

selection of the purified recombinant 1716 viruses were introduced into cerebellar granule 

cells : 1786R (gD), 1780R (CMV) and 1782R (1.6 - 6) (Section 6.2.2.2), A 17+ (wild - 

type) gD - lacZ control virus was also used in the infection. There appeared to be no 

cytopathic effect of the viruses on the granule cells. They were fixed and stained 24 hours 

and 48 hours after infection. Figures 7.1 - 7-3 show the results of the infection. Only the 

wild - type gD - lacZ and 1716 gD - lacZ viruses showed specific P - galactosidase 

expression.
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Figure 7.1 Photomicrographs showing cerebellar granule 

cell cultures infected with recombinant viruses



Figure 7.1 Photomicrographs showing cerebellar granule cell cultures infected

with recombinant viruses

Cerebellar granule cell cultures were infected with wild - type HSV - 1 virus containing

the lacZ gene driven by the HSV gD promoter

a. Cells were stained 24 hours post - infection. lacZ expression can be seen in a glial cell

(magnification = lOx).

b. Cells were stained 48 hours post - infection. lacZ expression can be seen mainly in

glial cells. Some granule cells are positively stained, however these are connected to

stained glial cells (magnification = lOx).

c. A higher magnification of the cells shown in b. above. Cells were stained 48 hours 

post - infection. lacZ expression can be seen mainly in glial cells. Some granule cells 

are positively stained, however these are connected to stained glial cells, 

(magnification = 20x)

Abbreviations used : gc = cerebellar granule cells; gl = glial cells





Figure 7.2 Photomicrographs showing cerebellar granule 

cell cultures infected with recombinant viruses



Figure 7.2 Photomicrographs showing cerebellar granule cell cultures infected

with recombinant viruses

a. Cerebellar granule cell cultures infected with the HSV - 1 1716gD - lacZ recombinant 

virus. lacZ staining can be seen in a glial cell (magnification = lOx).

b. Cerebellar granule cell cultures infected with the HSV - 1 1716 CMV - lacZ 

recombinant virus. No lacZ staining can be seen (magnification = lOx).

c. Uninfected cerebellar granule cell cultures used as a control for infection. lacZ staining

can be seen. This is endogenous p - galactosidase activity (magnification = lOx).

Abbreviations used : gc = cerebellar granule cells; gl = glial cells





Figure 7.3 Photomicrographs showing cerebellar granule 

cell cultures infected with recombinant viruses



Figure 7.3 Photomicrographs showing cerebellar granule cell cultures infected

with recombinant viruses

Cerebellar granule cell cultures were infected with the HSV - 1 1716 UL43 - GABA( 1.6) 

- lacL virus

a. No lacZ staining was observed in the glial or granule cells (magnification = lOx).

b. No lacZ staining was observed in the glial or granule cells (magnification = lOx).

c. One positively stained cell was observed, however this was probably due to 

endogenous P - galactosidase activity as seen for the control cells (magnification = 

20x).

Abbreviations used : gc = cerebellar granule cells; gl = glial cells
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7.2.2 Infection o f the cerebellum o f rat brains by recombinant viruses

This work was carried out in collaboration with Dr A. MacLean and Dr A. McGregor

(Dept of Virology, University of Glasgow). Dr J. Campbell and Mr N. Bennett (Dept of

Anatomy) carried out the stereotactic injections and subsequent care and sacrifice of the

animals.

Recombinant viruses 1780R (CMV - lacZ), 1781R (NSE - lacZ), 1787 (Ul43 GAB A) 

and 1882R (LAT GAB A) (Chapter 6, Table 6.3) were stereotactically injected into the 

cerebellum (co - ordinates : AP 10.5mm, L 2mm, V 2mm from Bregma) of adult rats. The 

rats were monitored daily for abnormal behaviour or signs of distress. The rats were 

sacrificed after 5 days. Horizontal sections of the brain were stained for p - galactosidase 

activity. The results are shown in Figures 7.4 - 7.8. The staining pattern was similar for all 

the recombinant viruses with slight differences in intensity. As can be seen from the 

control sections, this was due to endogenous p - galactosidase activity. No P - 

galactosidase staining was observed in the cerebellar granule cells.
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Figure 7.4 Photomicrographs showing sections o f adult rat 

brains infected with the UL43-CMV-lacZ virus



Figure 7.4 Photomicrographs showing sections o f adult rat brains infected with the

UL43 - CMV - lacZ virus 

Horizontal sections were taken through adult rat brains infected (in the cerebellum) with 

the 1716 CMV - lacZ virus. Three regions are shown :

a. Cerebellum Section shows lacZ staining in cells in the Purkinje cell layer. No

staining was observed in the granule cells, (magnification = 40x)

b. Ventricles Section shows lacZ staining in the ventricles.

(magnification = 20x)

c. Hippocampus No lacZ staining was observed in the hippocampal cells,

(magnification = lOx)

Arrows indicate cells showing P - galactosidase activity.

Abbreviations used : G = cerebellar granule cells; P = Purkinje cell layer; M = cerebellar 

molecular layer; V = ventricles; DG = dentate gyrus; PoDG = posterior area of the dentate 

gyrus.
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Figure 7.5 Photomicrographs showing sections of adult rat 

brains infected with the UL43-NSE-lacZ virus



Figure 7.5 Photomicrographs showing sections o f adult rat brains infected with the 

UL43 - NSE - lacZ virus 

Horizontal sections were taken through adult rat brains infected (in the cerebellum) with 

the 1716 NSE - lacZ virus. Three regions are shown :

a. Cerebellum Section shows lacZ staining in cells in the Purkinje cell layer. No

staining was observed in the granule cells, (magnification = 40x)

b. Ventricles Section shows lacZ staining in the ventricles.

(magnification = 20x)

c. Hippocampus No lacZ staining was observed in the hippocampal cells,

(magnification = lOx)

Arrows indicate cells showing P - galactosidase activity.

Abbreviations used : G = cerebellar granule cells; P = Purkinje cell layer; M = cerebellar 

molecular layer; V = ventricles; DG = dentate gyrus; PoDG = posterior area of the dentate 

gyrus.
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Figure 7.6 Photomicrographs showing sections of adult rat 

brains infected with the UL43-GABA(L 6)-lacZ virus



Figure 7.6 Photomicrographs showing sections o f adult rat brains infected with the 

UL43 - GABA(1.6) - lacZ virus 

Horizontal sections were taken through adult rat brains infected (in the cerebellum) with 

the 1716 UL43 - GAB A( 1.6) - lacZ virus. Three regions are shown :

a. Cerebellum Section shows lacZ staining in cells in the Purkinje cell layer. No

staining was observed in the granule cells, (magnification = 40x)

b. Ventricles Section shows lacZ staining in the ventricles.

(magnification = 20x)

c. Hippocampus No lacZ staining was observed in the hippocampal cells,

(magnification = lOx)

Arrows indicate cells showing P - galactosidase activity.

Abbreviations used : G = cerebellar granule cells; P = Purkinje cell layer; M = cerebellar 

molecular layer; V = ventricles; DG = dentate gyrus; PoDG = posterior area of the dentate 

gyrus.
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Figure 7.7 Photomicrographs showing sections of adult rat 

brains infected with the LAT- GABA(1.6) - lacZ virus



Figure 7.7 Photomicrographs showing sections o f adult rat brains infected with the

L A T - GABA(1.6) - lacZ virus 

Horizontal sections were taken through adult rat brains infected (in the cerebellum) with 

the 1716 LAT - GABA( 1.6) - lacZ virus. Three regions are shown :

a. Cerebellum Section shows lacZ staining in cells in the Purkinje cell layer. No

staining was observed in the granule cells, (magnification = 40x)

b. Ventricles Section shows lacZ staining in the ventricles.

(magnification = 20x)

c. Hippocampus No lacZ staining was observed in the hippocampal cells, 

(magnification = lOx)

Arrows indicate cells showing P - galactosidase activity.

Abbreviations used : G = cerebellar granule cells; P = Purkinje cell layer; M = cerebellar 

molecular layer; V = ventricles; DG = dentate gyrus; PoDG = posterior area of the dentate 

gyrus.





Figure 7.8 Photomicrographs showing sections of 

uninfected adult rat brains used as experimental controls



Figure 7.8 Photomicrographs showing sections o f uninfected adult rat brains used 

as experimental controls 

Horizontal sections were taken through adult rat brains uninfected by virus. Three regions 

are shown:

a. Cerebellum Section shows lacZ staining in cells in the Purkinje cell layer. No

staining was observed in the granule cells.

b. Ventricles Section shows lacZ staining in the ventricles.

Arrows indicate cells showing p - galactosidase activity.

Abbreviations used : G = cerebellar granule cells; P = Purkinje cell layer; M = cerebellar 

molecular layer; V = ventricles; DG = dentate gyrus; PoDG = posterior area of the 

dentate gyrus.
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7.3 DISCUSSION

Recombinant viruses containing the lacZ gene driven by different promoters were used to 

infect cerebellar granule cell cultures and rat brains. It was hoped that they would yield 

information about the ability of neuronal promoters in HSV - 1 vectors to drive neuron - 

specific, long - term expression.

In the granule cell cultures, a wild - type virus (17+) which contained the lacZ gene driven 

by the gD HSV promoter was used as a positive control for the infection, p - 

galactosidase activity was detected with this wild - type virus, but mainly in the remaining 

glial cells. There was some blue staining in granule cells, but only in ones that were 

connected to the infected glial cells (Figure 7.1). The 1716 gD - lacZ virus gave blue 

staining of a few glial cells, but expression from the CMV and 6 promoters was not 

detected (Figures 7.2 and 7.3)

Brain sections from the stereotactically injected rats were fixed and stained for P - 

galactosidase activity. All the sections looked similar with only the 1716 CMV - lacZ 

virus giving a slightly more intense blue colour. The blue staining appeared to track 

through the brain to the ventricles, perhaps in blood vessels. Upon comparison with a 

control (uninfected) brain, the staining appeared to be due to endogenous p - 

galactosidase activity. Although the site of injection appeared visible on the surface of the 

brains, there did not appear to be needle tracts through the brains. There was no obvious 

necrosis of the tissue as might be expected from a viral infection.

There are several possibilities to explain these results. The lack of neuronal infection in the 

granule cells suggests that these viruses are possibly gliatropic and are not able to enter 

the granule cells except through connections to the glial cells. The lack of infection in the 

brains could be due to the several factors. If the co - ordinates were inaccurate then the 

viruses may not actually been inserted into the brain, but merely touched the surface. 

Another possibility is the titre of the viruses used to infect the brain being too low. It has 

been reported that HSV -1 only infects a very small percentage (~ 2%) of neurons in the 

rat brain. Therefore if the viral titre was ten or fifty - fold too low, then little or no
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infection would occur. The lack of tissue damage around the site of innoculation would 

indeed suggest that little viral infection has occurred.

A novel HSV - 1 gene has recently been identified (Ward et al., 1996) which maps 

antisense to the U l43 gene - Ul43.5. Other HSV - 1 gene pairs that are antisense to each 

other have been identified e.g. ORF P and ICP 34.5 (Lagunoff and Roizman, 1994); LAT 

2kb and 1.5kb and ICPO (Perry et al.y 1986). While it has been postulated that this 

antisense arrangement contributes to the regulation of gene expression, the mechanism of 

action is unknown. Thus it is possible that the presence of this antisense gene may 

interfere with the expression of the reporter gene in the Ul43 locus.. However, as the 

recombinant LAT virus gave similar results, this is not the only cause for lack of 

expression. In retrospect, the Ul43 site may not have been the best choice, however at the 

time of selection no opposing transcript was known.

The granule cell infections are being repeated and the cells analysed at a range of time 

points after infection. If any of the promoters are shown to drive expression from the lacZ 

gene, then further infections will be performed to allow for analysis of short - or long - 

term expression from the promoters. The stereotactic injections will be repeated. The co - 

ordinates will be altered and also a range of viral titres will be used. However, if these 

particular recombinant viruses infect only a specific type of neurons, and only a small 

percentage of those, then they are not particularly useful for use with neuronal promoters.
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8.1 INTRODUCTION

An alternative way to study neuronal gene regulation in the long term is to make genetic 

alterations in vivo. This is now feasible due to recent developments in gene targeting 

technology which are described below. As an initial experiment preparatory to 

undertaking the longer term goal, we decided to use gene targeting technology to create a 

mutation of the GABAa receptor 8 subunit gene that eliminated all protein production 

yielding information on 5 gene function, and eliminate all transcriptional activation to 

provide support for localisation of the transcriptional start points and identification of 

other basal promoter elements of the gene.

Targeted gene inactivation has been used to produce mouse models for a range of human 

genetic deficiency diseases. When DNA is introduced into mammalian cells, it primarily 

integrates at random. In gene targeting, mutations can be directed to specific mammalian 

genes by homologous recombination in mouse embryonic stem (ES) cells between DNA 

sequences residing in the chromosome and newly introduced DNA sequences contained in 

targeting vectors. Microinjection of the mutant ES cells into mouse blastocysts can then 

be used to generate germ - line chimaeras (Bradley et al., 1984). Finally, interbreeding of 

heterozygous siblings would lead to animals homozygous for the desired mutation.

Two types of vectors can be used for targeting mutations to individual loci : replacement 

vectors or insertion vectors (Figure 8.1) (Thomas and Capecchi, 1987). With replacement 

vectors, a positive - negative selection procedure is used to select against non - 

homologous recombination (Mansour et al., 1988). Thus the targeting vector may contain 

a neomycin resistance gene cassette (neo1) as a positive selection marker for transfection 

and a herpes simplex virus thymidine kinase gene (tk) as a negative selection against cells 

that have randomly integrated the vector into their genomes. The overall effect is to enrich 

for cells containing the targeted mutation. With insertion vectors, homologous 

recombination leads to the duplication of genomic sequences.

The rate of homologous recombination can be affected by certain factors. Higher rates 

are observed when larger regions of vector homology are used (Thomas and Capecchi,
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1987). Also, te Riele et al, (1992) observed that using DNA isogenic to the strain of mice 

from which the ES cells were derived promotes high recombination rates.

a. Replacement Vector

Genomic Locus 

Targeting vector 

Targeted Locus

b. Insertion Vector

Genomic Locus ------

1 2  3 4

2 3 TK

Targeting vector

Targeted Locus

Figure 8.1 Targeting Vectors

a. Replacement Vector and b. Insertion Vector. Shaded boxes represent exons, thin lines 

introns and thick lines plasmid DNA. Abbreviations used : Neor = neomycin resistance 

gene: TK = herpes simplex virus thymidine kinase gene. (Reproduced from Soriano, 

1995).

While the methods described above will generate mice with null alleles and allow for 

functional studies of genes, our longer term goal is to study gene regulation. This requires 

the ability to generate more subtle site - specific alterations of the genome, the goal being 

to create a mutation that in every other way mimics the normal expression pattern of the 

gene. Several methods have been devised to achieve this aim e.g. microinjection of DNA
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into cells; co - transfection where the targeting construct and the selectable marker are on 

different plasmids; using a two - step strategy in which the selectable marker gene is 

removed from the targeted locus by a second homologous recombination event. Several 

two - step strategies have been devised including the hit - and - run method (Hasty et al., 

1991) and the tag - and exchange method (Askew et al., 1993) (Figure 8.2).

More recently site - specific recombinases such as ere from bacteriophage PI and FLP 

from yeast have been utilised (Kilby et al., 1993) (Figure 8.3). These have the advantage 

of allowing for tissue - specific gene targeting by driving ere expression from tissue - 

specific promoters. If a mutation results in a lethal phenotype as a result of loss of 

expression in cells, then by restricting the mutation to a specific cell type, this lethality can 

be overcome. Both recombinases recognise short stretches of DNA in a sequence specific 

manner and catalyse the deletion or integration of DNA flanked by these recognition sites. 

The placement and orientation of these recognition sites determines the nature of the 

recombination event. For example, the ere recombinase can catalyze recombination 

between two loxP sites. If the loxP sites are in the same orientation, the intervening 

sequences will be deleted. If the sites are in opposite orientations, then the intervening 

sequences will be inverted.

This chapter describes the targeted disruption of the GABAa receptor 8 subunit gene. 

Two different vector backbones were used to generate replacement targeting constructs. 

Initially pSSC9 was selected as a vector (Table 2.2). It contains a neomycin resistance 

gene (neo1) driven by the HSV thymidine kinase (tk) promoter and also 2 copies of tk. It 

has several unique sites on either side of the neor gene for cloning of genomic DNA 

fragments. A second vector utilised was pNT (Table 2.2). This vector contains a single 

copy of tk and the neor is driven by the phosphoglycerate kinase promoter (PGK). This 

vector also contains unique sites flanking the neor for insertion of genomic fragments.



Figure 8.2 Two - step strategies for gene targeting



Figure 8.2 Two - step strategies fo r  gene targeting

a. Hit and run. (1) Targeting construct with two arms of homology to the locus 

and a selectable marker gene (hprt) that can be used for both positive and negative 

selection. The construct also has a mutation (*) in exon 3. (2) The endogenous locus. (3) 

The locus following targeted integration of the construct. Positive selection is used to 

identify recombinants carrying the marker gene. (4) Intrachromosomal recombination 

event results in the removal of the marker gene and duplicate sequence. Negative selection 

is used to identify recombinants that have lost the marker gene. (5) The locus following 

the second recombination event. The locus will either contain the original exon 3 or the 

mutated exon 3*.

b. Tag and exchange. (1) Targeting construct with two arms of homology and a 

selectable marker gene for positive and negative selection. (2) The endogenous locus. (3) 

The locus following targeted integration of the construct. . Positive selection is used to 

identify recombinants carrying the marker gene. (4) A second targeting construct which 

lacks a marker gene and carries the desired mutation (*) in exon 2. (5) The locus 

following the second recombination event. Negative selection is used to identify 

recombinants that have lost the marker gene and contain the desired mutation.
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Figure 8.3 Site - specific recombinase reactions



Figure 8.3 Site - specific recombinase reactions

a. Inversion. Site - specific recombination between two inverted target sites (lox) on 

a linear molecule inverts the intervening DNA. Before recombination the coding region of 

gene A was inverted with respect to the promoter (P). Cotransfecton with a plasmid that 

expresses ere results in recombination and activation of gene A.

b. Deletion. Recombination between two sites in direct orientation leads to excision 

of the intervening DNA.
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8.2 RESULTS

8.2.1 Construction of gene targeting constructs

8.2.1.1 pSSC  - 8 construct

Figure 8.4 illustrates the construction of the pSSC9 replacement targeting vector and the 

expected targeted disruption of the GABAa receptor 8 subunit gene. A 4kb Xba I - Nhe I 

promoter fragment was subcloned from lambda clone X2\ into the Xba I site of pSSC9. A 

5 kb Bam HI fragment (from the first intron) was then excised from lambda clone X21 and 

inserted into the Bam HI site. DNA was prepared using a Qiagen kit, and 50 \xg was 

digested with Sfl I in order to linearise the DNA prior to transfection.

8.2.1.2 pN T - 8 construct

Figure 8.5 illustrates the construction of the pNT replacement targeting vector and the 

expected targeted disruption of the 8 gene. A 2 kb Xho I fragment was subcloned from 

pSSC9 - 8 (Section 8.2.1.1) into the Xho I site of pNT. A 5 kb Bam HI fragment (from 

the first intron) was then excised from lambda clone X21 and inserted into the Bam HI 

site. DNA was prepared using the Qiagen kit, and 50 jig was digested with Kpn I in order 

to linearise the DNA prior to transfection.
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E E XhE K E X
I I II I I I

H X h Nh
I

E H N  K
A21

E H N  K B

A 27

B E HXh K K

XhX B TK

neo
TK pSSC9

S

E X hE K  E X H X h Xh K  B B E HXhK K
1 I________kiL.-------  J I I II I I S =S f l l

X = X bal 
Xh =Xho I

5 'Probe 0.7 kb 3 'Probe 1.6 kb K = KPn 1
E = Eco RI 
m^Nhel 
N = Not I 
H =H ind\l\

q  5 - probe 3 - probe

K E K Xh

11 kb

6 kb ■

— 13 kb
9 kb  _w

**— 7 kb 8 kb =►

14.8 kb

8 kb

Figure 8.4 Targeted disruption o f the GABAa receptor 8 subunit gene using vector 

pSSC9

a. 2 genomic fragments were excised from overlapping lambda clones and used in the 

construction of a replacement targeting vector.

b. The targeted locus of the GABAa receptor 5 subunit gene in which exon 1, 4.5 kb of 

promoter and 2 kb from the first intron were replaced by a tk - neo cassette. A 0.7 kb 

Pst I - Xba I 5' - fragment and a 1.6 kb Eco RI - Hind III 3' - fragment were used as 

probes.

c. Banding patterns expected from Southern blot analysis of a successful targeting event. 

Wild - type bands in bold, mutant bands in italics.______________________________
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Xh K

p S S C 9

a.

Vi
Amp1,

H N  K

T K X 2 7

B E HXh K K

N Xh B ,EXh XB TK
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b.
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   1 11
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BE HXhK K 
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M r 7 kb
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8 kb

X = Xba I 
Xh=XhoI 
¥L = K pnl 
E = Eco RI 
Nh = Nhe I 
N = M>/I 
H = Hin dill

Figure 8.5 Targeted disruption o f the GABAa receptor 8  subunit gene using vector 

pN T

a. A 2 kb Xho I fragment was excised from pSSC9 - 5 and a 5 kb Bam HI excised from 

a lambda clone and used in the construction of a replacement targeting vector.

b. The targeted locus of the GABAa receptor 6 subunit gene in which exon 1, 4.5 kb of 

promoter and 2 kb from the first intron were replaced by a PGK - neo cassette. A 0.7 

kb Pst I - Xba I 5' - fragment and a 1.6 kb Eco RI - Hind III 3' - fragment were used 

as probes.

c. Banding patterns expected from Southern blot analysis of a successful targeting 

event. Wild - type bands in bold, mutant bands in italics.
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8.2.2 Establishment of recombinant cell lines

The same transfection procedure was used for each construct (Section 2.2.8)

8.2.2.1 pSSC9-S transfection

330 G418 resistant colonies were isolated. The enrichment factor due to the counter 

selection was calculated by comparing the number of colonies obtained with G418 plus 

gancyclovir and with G418 alone. The enrichment factor was estimated to be about 

fourfold. The DNA from the clones was isolated (Section 2.2.8.4.3), cut with Kpn I and 

Xho I, and analysed by Southern blotting (Section 2.2.8.4.4), The blots were probed with 

a 1.6 kb Eco RI - Hind III DNA fragment from the 3' - end of the gene (Figure 8.6). 

Initially, 5 clones gave bands of the size expected for a successful targeting event, 

however the band intensities did not look correct.

These 5 DNAs were further analysed by Southern blotting using a 5' - DNA probe. They 

were cut with Eco RI and then probed with a 0.7kb Pst I - Xba I DNA fragment from the

5' - promoter region. These did not give the expected banding pattern for a successful

targeting event (Figure 8.7).

8.2.2.2 pN T - 8 transfection

368 G418 resistant colonies were isolated. There did not appear to be any enrichment of 

the transfection. The DNA from 300 of these clones was prepared (Section 2.2.8.4.3), 

and 240 samples were cut with Eco RI and analysed by Southern blotting (Section 

2.2.8.4.4), The blots were probed with a 0.7kb Pst I - Xba I DNA fragment from the 5' - 

promoter region. Two clones (89 and 102) gave the expected restriction pattern. (Figure 

8.8).
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7 k b  ►

Figure 8.7 Southern blot analysis o f putative targeted cell lines
Southern blot of 2 (samples 6 and 7) of the putative positive clones selected after first 

round screening using a 3' - probe (Figure 8.6). These samples were digested with Eco 

RI and the blot was probed with a 0.7 kb Pst I - Xba I 5' - DNA fragment. Only wild - 

type bands were visible.
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8.3 DISCUSSION

Initially, the pSSC9 plasmid was selected as a targeting vector due to its apparent 

convenience. The availability of restriction sites in the plasmid allowed for relatively 

straightforward cloning of suitable genomic DNA fragments. The two fragments selected 

for insertion (Figure 8.4) would result in the removal of 7 kb of DNA including the first 

exon, 4.5 kb of promoter sequence and 2 kb from the first intron.

The transfection of this construct resulted in 330 G418 resistant colonies. However, upon 

Southern blot analysis these proved to be non - recombinant cell lines. One reason for 

this could be due to the selection procedure. The conditions used in the selection process 

had actually been optimised for the PGK - neomycin cassette. It was assumed that these 

would also be suitable for the tk promoter. However, the tk promoter is a weak promoter 

and it is possible that, under the selection procedure, cell lines containing a single 

neomycin insertion were sensitive to the G418. This would result in mainly aberrant 

recombinant events. Another possibility is that this is a low frequency recombination 

event and too few colonies were analysed. As the reason for the lack of recombinant ceil 

lines was not obvious, we decided to construct a new targeting vector as opposed to 

repeating the transfection per se.

A second targeting vector was then selected. In this vector, the neomycin gene is driven 

by the strong PGK promoter. The same 3' - DNA fragment was used as the long arm for 

recombination, but only 2 kb of the 5' - fragment was used as the short arm due to the 

limited availability of sites. Recombination with this construct (Figure 8.5) would yield 

the same targeting event as described for the pSSC9 vector i.e. the removal of 7 kb of 

DNA including the first exon, 4.5 kb of promoter sequence and 2 kb from the first intron.

Transfection with this construct resulted in 368 neomycin resistant colonies being 

isolated. The negative selection procedure using gancyclovir to select against the 

presence of the HSVTK gene did not appear to work. Thus, there was no enrichment for 

targeted clones. DNA was prepared from 300 of these colonies of which 240 were 

analysed by Southern blotting. Only 2 clones - 89 and 102 (Figure 8.8) gave the expected 

banding pattern with the 5' - probe. The wild type and recombinant bands were of equal
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intensity as expected for a successful targeting event. The DNA from these putative 

positive cell lines will be further analysed using the 3' - probe indicated in Figure 8.5, to 

confirm that the correct homologous recombination event has occurred.

The targeted ES cells containing the mutated 8 gene will then be used to produce mice 

homozygous for the mutation. The cell lines will be injected into host blastocycts which 

will be introduced into pseudopregnant female mice to generate chimaeric founder mice. 

Subsequent mating of these chimaeras with wild - type mice will establish if the mutation 

has gone germ - line. Germ - line progeny will be crossed to obtain mice homozygous for 

the mutated GABAa receptor 8 subunit gene. These null mice (if they survive) can then 

be assessed for phenotypic effects caused by the deletion of the gene, and may yield 

information about the functionality of the 8 gene.

Recently, Jones et al. (1997) demonstrated that a knock - out of the GABAa receptor a6 

subunit gene appeared to affect the production of the 8 protein in cerebellar granule cells. 

Analysis of the expression of all the GABAa receptor subunit genes in 8 knock - out mice 

would perhaps verify any association between the 8 and a6 genes, or indeed between the 

8 and any other subunit.

Future work would involve achieving the long term goals which are to use gene targeting 

technology for studying gene regulation. This would require the use of a two - step 

strategy as described earlier. Several putative transcription factor recognition sites have 

been identified in the 5' - upstream sequence of the 8 gene (Chapter 3). If experimental 

studies indicated that any of these sites were involved in regulation, then their 

functionality in vivo could be assessed using this technology.
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9.1 INTRODUCTION

Most of the GABAa receptor subunit genes (GABAR) have been assigned to specific 

chromosomes in man and the mouse (Glencorse and Davies, 1997). To date however, no 

GABAa receptor subunit genes have been mapped in the rat. Table 9.1 contains a list of 

the localisation of GABAR subtypes to chromosomes in humans and mice.

Table 9.1 Localisation o f GABAR genes in Humans and Mice

G A B A aR  su b u n it  

su b ty p e

H u m a n  C h ro m o so m e M o u se  C h ro m o so m e R e fe r e n c e s

a l 5q33 11A2-B1 (19) B u ck le  e ta l.,  1989  

K eir  e ta l ., 1991

a2 4pl3-12 5C-E2 (35) B u ck le  e ta l ., 1989  

D an ciger  et al., 1993

a3 Xq28 XA6-B (32) B e ll  e ta l ., 1989

a4 4pl4-ql2 7 (26.9) M cL ean  et al., 1995  

D an ciger  et al., 1993

a5 15ql1-13 7C-D3 (29) K n oll e ta l., 1993

a6 5q31.1-35 11(23) H ick s e ta l ., 1994

PI 4pl3-12 5C-E2 (35) D ea n  e ta l.,  1991  

D an ciger  et al., 1993

P2 5q34-35 ? R u ssek  and Farb, 1994

P3 15ql 1.2-12 7C-D3 (30) W a g sta ff et a l, 1991a  

W a g sta ff e ta l ,  1991b

yl 4pl4-q21.1 ? W ilco x  e ta l ., 1992

y2 5q31.1-33.2 11A2-B1 (19) W ilco x  e ta l .,  1992  

B u ck w alter et al., 

1992

y3 15qll.2-12 7 P h illip s e ta l .,  1993

5 lp ? Som m er e ta l .,  1990

Pi 6q 14-21 4A1-A5 (13) C utting e ta l ., 1992

p2 6q 14-21 4A1-A5 (13) C utting e ta l ., 1992
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The table lists the chromosomal localisation of the GABAa receptor subunit genes on 

human and mouse chromosomes. Human chromosomes are divided into 2 regions : p and 

q. All 19 autosomal mouse chromosomes, including the X chromosome, are telocentric. 

The figures given in brackets are the map positions in centimorgans (cM).

As can be seen from the table, with the exception of the p subunit genes (GABRR1 and 

GABRR2), the a3 subunit gene (GABRA3) and the 5 subunit gene (GABRD), the other 

known GABAa receptor subunit genes appear to be clustered on chromosomes in both 

man and mouse. Distinct a-P-y gene clusters are located on human chromosomes 4 

(GABRA2, GABRB1, GABRA4 and GABRG1), 5 (GABRA1, GABRA6, GABRB2 and 

GABRG2) and 15 (GABRA5, GABRB3 and GABRG3), and mouse chromosomes 5, 11 

and 7 respectively. These observations correlate well with known regions of conserved 

synteny between man and mouse (Nadeau, 1989).

Although the origin of these gene clusters is unknown, it has been suggested that they 

have arisen from the duplication and translocation of an ancestral cluster, and in fact, gene 

clustering has also been shown for other ligand - gated ion channel superfamilies 

(Conley et al., 1996). Thus it is possible that the original GABAa receptor subunit gene 

cluster consisted of one a - , one P- and one y- subunit as is found on human 

Chromosome 15. Duplication of an ancestral cluster would have preceded the 

translocation to different chromosomes (Russek et al., 1994). Whether the duplication of 

the a  gene occurred prior to the translocation or as a result of tandem duplication of a  

genes of two a-P-y clusters located on two different chromosomes is unknown, although 

the former would appear more likely.

The fact that GABAa receptor subunit genes have remained in clusters indicates that there 

could be some sort of co-ordinate expression occurring. An example of this is seen for the 

developmental expression of the genes clustered on human Chromosome 4. Here the a4, 

pi and yl subunit mRNAs are the only ones expressed in the undifferentiated 

neuroepithelium at embryonic day 13 (Ma et al., 1993). During postnatal development, a 

region - specific depletion occurs such that these subunit mRNAs become barely
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detectable. It is possible that these patterns of co - expression occur due to there being 

common regulatory elements between genes within a cluster. However, it has been shown 

that there is independent regulation of transcription of clustered genes. The a4 subunit 

mRNAs are very strongly expressed in the thalamus, while the a2, pi and yl mRNAs are 

barely detectable (Wisden et al., 1992). While it is plausible to accept the argument for 

duplication and translocation, it still does not fully explain the presence of the 5 subunit 

gene on human Chromosome 1 or the a3 gene on the X Chromosome. It is possible that 

this occurred due to fragmentation of a cluster and subsequent translocation of genes not 

under co - ordinate control.

This chapter describes the localisation of the GABAa receptor 5 subunit gene to 

chromosome 4 in mouse and chromosome 5 in rat. The mouse mapping was achieved by 

PCR screening of consomic mouse lines, and the rat by PCR screening of a rat/mouse 

somatic cell hybrid panel. These methods utilise simple sequence length polymorphisms 

(SSLP), or “microsatellites” (short tandem repeats e.g. (CA)n or (CAG)n randomly 

distributed along the genome) as genetic markers. They are highly abundant (106 copies 

for CA repeats), are usually found in non - coding regions, are stable throughout 

generations and can be typed with simple PCR based assays.

9.1.1 Mouse consomic lines and EUCIB resource

The consomic mouse lines were provided by Guenet (personal communication). These 

were generated by crossing 2 mouse strains : C57BL/6 and Mus spretus over several 

generations until populations of C57BL/6 mice were produced that contained fragments 

of specific Mus spretus chromosomes. Thus mouse line sets were generated whereby each 

C57BL/6 chromosome contained fragments of Mus spretus chromosomes, a large 

proportion of the Mus spretus genome being represented in 19 consomic lines.

A subset panel of DNAs from the European Collaborative Interspecific Backcross 

(EUCIB) were used for precise localisation of the mouse gene on a particular 

chromosome. EUCIB DNAs have been genotyped using panels of genetic markers which 

provide whole genome coverage. This then allows for the stepwise refinement of the map
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position of a particular gene by selecting subset panels which demonstrate recombination 

events within a region of interest.

9.1.2 Rat somatic cell hybrid panel and interstrain backcross

A somatic cell hybrid panel (Szpirer et al., 1984) was generated by fusing rat and mouse 

cell lines from parental strains : mouse - BWTG3 and rat - HRSD until a panel of mouse 

cell lines containing fragments of specific rat chromosomes was obtained (Table 9.2). 

This panel could then be used to assign genes to rat chromosomes by PCR screening for 

the presence of a specific marker on a particular chromosome.

The interstrain backcross (AS/AGU x BN) FI x AS/AGU (Shiels et al., 1996) was 

generated as follows :

AS/AGU BN

mate back mate
BN/AGU

Fj generation

This was used for precise genetic mapping of the gene.

9.2 RESULTS

9.2.1 Mouse Genetic Mapping

9.2.1.1 Chromosome localisation

PCR analysis of consomic mouse lines (Guenet, personal communication.) was used to 

assign the mouse GABAa receptor 5 subunit gene to a chromosome. A B2 repeat element 

has been identified in the 5' - promoter sequence of the 5 gene (Chapter 3). It has been 

established that these elements can be polymorphic between different strains of animals 

(Krayev et al., 1982). PCR primers (BR018F4 and BR018R4, Table 2.6) were therefore 

designed around this region. Amplification of genomic DNA templates of the 2 parental 

mouse strains (C57BL/6 and Mus spretus) used in generating the consomic lines and
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EUCIB DNAs demonstrated that this element was present for C57BL/6 but not for Mus 

spretus. Sequencing of the 2 PCR products confirmed this.

Nineteen members of a consomic mouse line set from parental strains C57BL/6 and Mus 

spretus were used in the initial screen. For the PCR reaction, 50 ng of each primer was 

used with 120 p,M deoxyribonucleotides, 100 ng/ml genomic DNA template, 1 mM Mg2+, 

1 x thermophilic DNA polymerase buffer and 0.2 units of Taq polymerase in a final 

volume of 10 pi. The samples were denatured for 10 min at 94°C and, after the addition 

of Taq, 25 amplification cycles were performed (denaturation 94°C for 15 sec; annealing 

65°C for 30 sec; extension 72°C for 30 sec). A final elongation step was performed at 

72°C for 2 min. PCR products were visualised on 2% TBE agarose gels (Figure 9.1).

7 members of the line set (1, 2, 13, 16, 17, 18 and 19) demonstrated heterozygosity for 

these alleles. The mouse GABAa receptor 5 subunit gene was assigned to chromosome 4.

9.2.1.2 Precise genetic mapping

Precise genetic mapping of Gabrd to known markers on chromosome 4 was achieved 

using a subset panel of DNAs from EUCIB. A EUCIB subset panel of 10 members was 

selected. The recombination events between anchor markers for these animals had been 

well characterised and subdivided chromosome 4 into 6 regions. PCR based genotype 

analysis was performed on these DNAs as described in Section 9.2.1.1. 4 members of the 

panel (LB057, LB 117, LB 169 and LB298) demonstrated heterozygosity of these alleles 

(Figure 9.2). The location of Gabrd would appear to be telomere distal to marker D4DsiI 

(64cM). Dr Martin (Pasteur Institute, Paris) performed PCR analysis on further subset 

panels of DNAs in the D4DsiI - DNdsI6 (82 cM) range and mapped Gabrd to a 2 cM 

region between markers D4MU209 and D4Ndsl6.

A diagram of the linkage map of mouse chromosome 4 with respect to Gabrd is shown in 

Figure 9.3.
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products

Figure 9.1 Chromosomal localisation of the mouse GABAa receptor 8 subunit 

gene
2% TBE agarose gel showing PCR products resulting from PCR analysis of some 

members of consomic mouse lines derived from parental strains C57BL/6 and Mus 

spretus. Par = Mus spretus genomic DNA. 1, 13-19 = represent 8 out of 19 members of a 

consomic mouse line set. The PCR primers used were BR018F4 and BR018R4 (Table 
2.6). The PCR products are indicated and are approxim ately 450 bp (upper band- 

C57BL/6) and 260 bp (lower band-Mws spretus) in size. 1, 13, 16-19 dem onstrated 

heterozygosity for these alleles.
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Figure 9.2 PCR screening o f EUCIB subset panel o f DNAs
2% TBE agarose gel showing PCR products resulting from PCR analysis of a EUCIB 

subset panel of 10 animals. M sp = Mus spretus genomic DNA, B6 = C57BL/6 genomic 

DNA. The PCR primers used were BR018F4 and BR018R4 (Table 2.6). The PCR 

products are indicated and are approximately 450 bp (upper band- C57BL/6) and 260 bp 

(lower band- Mus spretus) in size. LB057, LB 117, LB 169, LB298 dem onstrated 

heterozygosity for these alleles.
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Centromere

D4Mos

D4Tyrpl

D4MU54

D4Dsil (64 cM)

D4MH209 (81.18 cM) 
D4Ndsl6 (83 cM)Gabrd

Figure 9.3 Genetic map o f mouse chromosome 4

This map is based on the EUCIB MBx database (http://www.hgmp.mrc.ac.uk/MBx/ 

MBxHomepage.html) and shows the location of the GABAa receptor 8 subunit gene. It 

has been mapped to a 2 cM region between markers D4MU209 and D4Ndsl6.
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9.2.2 Rat Genetic Mapping

9.2.2.1. Chromosome localisation

PCR analysis of a somatic cell hybrid panel (Szpirer et al., 1984) was used to assign the 

rat GABAa receptor 5 subunit gene to a chromosome. Ten members of the somatic cell 

hybrid panel were used in the PCR screen. PCR primers (BRBSF3 and BRBSF4 - Table 

2.5) were designed to the rat GABAa receptor 8 subunit gene promoter region to amplify 

a region containing incomplete di- and tri-nucleotide repeats (Motejlek et al., 1994). This 

region had previously been shown to show length variation between rat and mouse as the 

repeat region is absent in the mouse sequence (Chapter 3).

For the PCR reaction, 50 ng of primers were used with 120 pM deoxyribonucleotides, 

100 ng/ml genomic DNA template, 1 mM Mg2+, 1 x thermophilic DNA polymerase buffer 

and 0.2 units of Taq polymerase in a final volume of 10 pi. The samples were denatured 

for 10 min at 94°C and, after the addition of Taq, 30 amplification cycles were performed 

(denaturation 94°C for 15 sec; annealing 58°C for 30 sec; extension 72°C for 30 sec). A 

final elongation step was performed at 72°C for 2 min. PCR products were visualised on 

2% TBE agarose gels (Flowgen) (Figure 9.4). Three members of the panel (161, 630 and 

600) gave both rat and mouse PCR products and so the rat GABAa receptor 8 subunit 

gene was assigned to chromosome 5 (Table 9.2).

9.2.2.2 Precise genetic mapping

Precise genetic mapping was performed on the interstrain backcross (AS/AGU x BN) FI 

x AS/AGU (Shiels et al, 1996) by screening progeny from the backcross for strain 

differences by PCR. Initially, PCR analysis (using the Gabrd primers) of the rat strains 

involved in the backcross (AS/AGU, BN, F344) showed strain differences between 

AS/AGU and BN (Figure 9.5). These primers could thus be used to precisely map the 

GABAa receptor 8 subunit gene in the rat.
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Figure 9.4 Chromosomal localisation o f rat GABAa receptor 8 subunit gene

2% TBE agarose gel showing PCR products resulting from PCR analysis of a rat/mouse 

somatic cell hybrid panel. PCR primers used were BRBSF3 and BRBSF4 (Table 2.5). 
The PCR products are indicated and are approximately 950 bp (upper band-rat) and 450 

bp (lower band-m ouse) in size. 3 members of the panel (LB 161, LB630, LB600) 

demonstrated the presence of the rat allele.
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Figure 9.5 PCR analysis showing rat strain differences with Gabrd primers
2% Nusieve 3 :1 agarose gel showing product length variation between rat strains : 
AS/AGU and BN. The GABA 8 primers used were BRBSF3 and BRBSF4 (Table 2.5). 
The PCR products are indicated. The sizes of the bands are approximately 950 bp (upper 

band) and 920 bp (lower band).
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59 progeny were screened using BRBSF3 and BRBSF4 (Gabrd) primers and 2 sets of 

markers, D5Mit7 and D5Mit9 (Table 2.5), which were known to give different product 

lengths for the parental rat strains. The PCR reactions were essentially as described in 

Section 9.2.2.I. For the D5Mit7 marker, the annealing temperature was 53°C and the 

PCR products were visualised on 4% Nusieve 3.1 agarose gels (Figure 9.6). The 

annealing temperature for D5Mit9 was 55°C and the PCR products were visualised on 

4.5% Nusieve 3:1 gels (Figure 9.7). The Gabrd primers were used as described in 

Section 9.2.2.1 (Figure 9.8). The results of the analysis are shown in Table 9.3. A score 

of less than 50% indicates that the markers may be linked, 50% or greater means that they 

are unlikely to be linked.

Table 9.3 Interstrain backcross mapping data

Locus 1 Locus 2 Number of 

recombinants

Genetic Distances 

(cM)

D5Mit7 Gabrd 18/59 30.5cM +/- 9.9

D5Mit9 Gabrd 30/59 50.8cM +/- 10,7

D5Mit7 D5Mit9 24/59 40.7cM +/- 10.6

The table shows the results of the genetic mapping of Gabrd with respect to two other 

markers : D5Mit7 and D5Mit9. 59 progeny were screened with each marker primer pair.

These results indicated that Gabrd may be linked to marker D5Mit7, but it is unlikely to 

be linked to D5Mit9 and so a third marker pair D5Mgh9 (Table 2.5) was selected to 

screen the above progeny. The PCR annealing temperature for this was 63 °C and 6% 

Nusieve 3:1 gels were used for analysis (Figure 9.9). The results of this are shown in 

Table 9.4.
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Figure 9.6 PCR analysis o f rat interstrain backcross using D5Mit7 primers
4% Nusieve 3.1 agarose gel showing PCR products resulting from PCR analysis of 

members of a rat interstrain backcross (AS/AGU x BN)F1 x AS/AGU (Shiels et al., 
1996). Primer set used was D5Mit7 (Table 2.5). The PCR products are indicated and are 

approxim ately 180 bp (upper band-AS/AGU) and 160 bp (lower band-BN) in size. 

AS/AGU, BN and AGU/BN are parental DNAs. 364, 367, 370 and 402 dem onstrated 

heterozygosity for these alleles.
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Figure 9.7 PCR analysis o f rat interstrain backcross using D5Mit9 primers
4.5% Nusieve 3.1 agarose gel showing PCR products resulting from PCR analysis of 

members of a rat interstrain backcross (AS/AGU x BN)F1 x AS/AGU (Shiels et al., 
1996). Primer set used was D5Mit9 (Table 2.5). The PCR products are indicated and are 

approximately 140 bp (upper band-AS/AGU) and 130 bp (lower band-BN) in size. 42, 47 

and 50 demonstrated heterozygosity for these alleles.
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Figure 9.8 PCR analysis o f rat interstrain backcross using Gabrd primers
2% Nusieve 3.1 agarose gel showing PCR products resulting from PCR analysis of 

members of a rat interstrain backcross (AS/AGU x BN)F1 x AS/AGU (Shiels et al., 
1996). Primers used were BRBSF3 and BRBSF4 (Table 2.5). The PCR products are 

indicated and are approximately 950 bp (upper band- AS/AGU) and 920 bp (lower band- 

BN). 352, 354, 356, 359 and 363 demonstrated heterozygosity for these alleles.
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Figure 9.9 PCR analysis o f rat inter strain backcross using D5Mgh9 primers
6% Nusieve 3.1 agarose gel showing PCR products resulting from PCR analysis of 

members of a rat interstrain backcross (AS/AGU x BN)F1 x AS/AGU (Shiels et al., 
1996). Primers set used was D5Mgh9 (Table 2.5). The PCR products are indicated and 

are approximately 170 bp (upper band-AS/AGU) and 160 bp (lower band-BN) in size. 

314, 316, 322, 324, 325 and 327 demonstrated heterozygosity for these alleles.
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Table 9.4 Interstrain backcross mapping data

Locus 1 Locus 2 Number of 

recombinants

Genetic Distances 

(cM)

D5Mit7 Gabrd 20/61 32.8cM +/- 9.9

D5Mgh9 Gabrd 0/61 0.00

D5Mit7 D5Mgh9 20/61 32.8cM +/- 9.9

The table shows the results of the genetic mapping of Gabrd with respect to two other 

markers : D5Mit7 and D5Mgh9. 61 progeny were screened with each marker primer pair. 

No recombinants were observed for the Gabrd and Mgh9 markers.

These results indicate that Gabrd and D5Mgh9 could be closely linked, however only a 

small pool of animals was tested. A further 37 progeny were screened with the Gabrd and 

D5Mgh9 markers and still no recombinants were observed. A diagram of the linkage map 

of chromosome 5 with respect to Gabrd is shown in Figure 9.10.
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Centromere

D5MU9 (33.7cM)

40.6 cM +/-10.6 cM

D5MU7 (71.2 cM)

32.8 cM +/- 9.9 cM

D5Mgh9 (118.6 cM) 
Gabrd

Figure 9.10 Genetic map o f rat chromosome 5

This map is based on Jacob et al. (1995) and shows the location of the GABAa receptor 5 

subunit gene. The distances shown with the markers are from this map. The distances 

given on the right are based on recombination estimates of the Gabrd locus typed using an 

interstrain backcross (AS/AGU x BN) F ix  AS/AGU.

9.3 DISCUSSION

The mouse GABAa receptor 5 subunit gene has been localised to chromosome 4 by PCR 

analysis of consomic mouse lines (Guenet, personal communication). Mouse chromosome 

4 is estimated to be about 82cM in length (Mouse Genome Database, 

http:/www.informantics.jar.org/). A subset of DNAs from the European Collaborative
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Interspecific Backcross (EUCIB) was used for precise genetic mapping of gabrd relative 

to known markers on chromosome 4.

A schematic diagram of mouse chromosome 4 is shown in Figure 9.3. The gene/marker 

order on mouse chromosome 4 is : centromere - D4Dsil -D4MU209 - Gabrd - D4Nds 16

The rat GABAa receptor 8 subunit gene has been localised to Chromosome 5 by PCR 

analysis of a somatic cell hybrid panel (Szpirer et al., 1984). Rat Chromosome 5 is 

telocentric and has been estimated to be 136 cM in length (Jacob et al., 1995). The 

percentage coverage by the established linkage groups is 87.4%. An interspecies 

backcross (Shiels et al., 1996) was used for mapping of the rat gene in relation to other 

known markers for Chromosome 5. All the markers used for the mapping were taken 

from Jacobs et al. (1995). These results are approximations and were from only a small 

pool of animals tested.

The 2 markers selected for the mapping (D5Mit7 and D5Mit9) were linked, and had been 

placed on the chromosome at 71.2 cM and 33.7 cM respectively. Gabrd was shown to be 

linked to D5Mit7 but not to D5Mit9. Thus we were able to place Gabrd downstream of 

D5Mit7 at position 101.7 cM +/- 9.9 cM. Another marker, D5Mgh9 was selected in order 

to obtain a three point cross. This marker was known to be linked to D5Mit7 and had 

been placed at position 118.6 cM on the chromosome. Our results placed Gabrd and 

D5Mgh9 at the same position on the chromosome within the limits of this analysis.

A further 37 progeny were screened for Gabrd and D5Mgh9 with no recombinants being 

scored. A schematic diagram of chromosome 5 is shown in Figure 9.10. The gene/marker 

order on chromosome 5 is centromere - D5Mit9 -D5Mit7 - D5Mgh9/Gabrd - telomere.

These results agree with expected regions of synteny between human, mouse and rat i.e. 

regions of human Chromosome lp, mouse chromosome 4 and rat chromosome 5 have 

been shown previously to be syntenic. In fact, upon comparison of the available mapping 

data for human and mouse, the position of human GABRD may be more precisely mapped 

to Chromosome lp35-36. The mapping of the rat GABAa receptor 8 subunit gene is
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significant as it is the only GABAa receptor subunit gene, as yet, to be genetically mapped 

in the rat.
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10.1 INTRODUCTION

In the past 10 years, gene therapy has progressed from molecular and cellular biology to a 

broad field of experiments in mammals and even to clinical trials for conditions ranging 

from cancer to cystic fibrosis. Despite recent advances, technical problems remain, such as 

the need to target the foreign gene to the appropriate tissues or cells, long - term 

expression and the necessity to overcome the immune response related to some of the 

vectors. Viral vectors are the preferred method of gene transfer into target cells of the 

CNS. The HSV vectors are of particular interest as they can transduce neurons (Horellou 

et al., 1994). Improvement of current vectors is vital in order to overcome current 

problems concerning the spread of the virus in vivo, and also to remove viral - induced 

cytotoxic functions (Johnson et al., 1992).

Current strategies to limit expression to a specific class of neurons depends largely on the 

use of cell - type specific promoters. In this work we chose to use the GABAa receptor 5 

subunit gene promoter to drive expression of the p - galactosidase gene, as it has a well 

characterised restricted expression pattern in the mammalian brain. While much is now 

known regarding the gene structure and function of GABAa receptor subunits, little is 

known about the regulation of subunit gene expression.

10.2 GENE REGULATION

Gene regulation can be achieved at several different levels e.g. mRNA stability, RNA 

editing, DNA methylation, chromatin structure, gene copy number, transcriptional 

initiation, elongation and termination and translational efficiency. However, transcriptional 

control has been implicated as the major method by which eukaryotic gene regulation is 

achieved (He and Rosenfeld, 1991; Struhl, 1991). Expression of all GABAa receptor 

subunit genes occurs in a regional -, developmental - and cell - type specific pattern 

(Laurie et al., 1992; Wisden et a l, 1992). Furthermore, GABAa receptor gene expression 

varies in response to chronic exposure to ligands including GAB A (Montpied et al., 

1991), certain benzodiazepines (Primus and Gallager, 1992) and NMD A (Memo et al., 

1991). The localised expression of different subunit combinations is likely to involve a 

complex system of gene regulation. However, little is known of these processes and even
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less is known of the regulatory elements involved in the control of expression of the 

GABAa receptor subunit genes, or any neuronal genes.

j  Partial characterisation of several GABAa receptor subunit gene promoters has been

I performed : human and chick a l  (Kang et al., 1994; Bateson et al., 1995), human a5
[■
I (Kim et al., 1997), human and rat p3 (Kirkness and Fraser, 1993), mouse and rat a6
|

(Jones et al., 1996) and mouse and rat 5 (Sommer et al., 1990; Motejlek et al., 1994) in 

an attempt to understand how this regulation is achieved.

The 5' - flanking regions of the rat, chick and human GABAa receptor a l  subunit genes
|
I were sequenced (Ultch et al., 1990; Bateson and Paetsch, 1993; Kang et al., 1994) and

| show extensive sequence homology. Kang et al. (1994) looked for minimal promoter

1 elements in the human a l  gene 5' - region. Initially they assayed promoter - deletion
|

plasmids fused to the luciferase reporter gene in primary cell cultures and identified a 60 

bp region located within 250 bp of the translational start point as being essential for 

promoter activity. Bateson et al., (1995) identified a single transcription initiation site in 

the chick a l  by primer extension and RNase protection, and this corresponds to the 60 bp 

promoter region identified for the human a l  gene. A putative TATA box ( -24 to -30, 

where +1 relates to the transcription initiation point) and reverse CAAT box (-69 to -65) 

were also identified in both the human and chick sequences as were recognition sites for 

the Spl transcription factor (-70 to -75) and a classic cAMP response element (CRE, -2 

to -8). However, deletion of the CAAT and Spl sequences in the human a l  did not 

significantly alter the promoter activity (Kang et al., 1994) suggesting that they are non - 

functional. Gel mobility shift assays were performed using the identified 60 bp promoter 

fragment and nuclear extracts from HeLa cells. One specific band was identified which 

could be competed for by oligonucleotides containing the sequences for GRE 

(glucocorticoid response element), TFIED and CREB (cyclic AMP responsive element 

binding protein). However, little can be deduced from these assays as only nonneuronal 

extracts were utilised.
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More recently, Gerner et al. (1997) investigated the effects of CREB and GR binding to 

the GABAa receptor a l  subunit gene basal promoter. They inserted the 60 bp region into 

a plasmid that contained the luciferase gene under the control of a MMTV promoter in 

which a hormone response element (HRE) had been deleted. Analysis of luciferase activity 

in neuronal and nonneuronal cell lines revealed that a neuronal factor which can be 

activated by forskolin interacts with this region and suppresses expression of the adjacent 

gene. As the 60bp region contains a CRE element, it is possible that this repression is 

caused by a CRE binding protein interacting with this site. Gel mobility shift assays were 

performed with nuclear extracts from neuronal cells. While specific binding was observed, 

competition with a CRE oligonucleotide did not affect this binding. Also, an antibody 

against CREB did not bind to the DNA - protein complex. Mutation of the CRE sequence 

resulted in a weaker binding complex and deletion of the sequence upstream of the CRE 

element gave the same binding pattern as observed with the non - mutated sequence. 

Deletion of sequence 3’ to the CRE element resulted in DNA - protein binding that could 

be competed by CRE oligonucleotides. Unfortunately, antibody binding to this complex 

was not reported. This could possibly have confirmed their conclusions that a CRE 

binding protein was associated with another factor as a heterodimer and that in the 

complex, this cofactor was covering the antigen site for the CREB antibody. Leach et al. 

(1997) identified an 18 bp silencer element in the human a l  promoter that represses 

promoter activity in nonneuronal cells. They have also isolated a REST - like transcription 

factor that binds to this element.

Kirkness and Fraser (1993) investigated the 5' - regions of the human and rat GABAa 

receptor 03 subunit genes. They found a high degree of sequence homology between the 

two genes in the 5' non - coding region. This conservation suggests functionality, for 

example the sequence may be involved in the maintenance of DNA or RNA secondary 

structures. They also revealed the existence of an alternative first exon, exon la. This 

displayed little sequence homology to exon 1, but was a similar length and also had 

characteristics of a signal peptide (von Heijne, 1990). The relative abundances of the 

transcripts of exons 1 and la were investigated in various brain tissues. While the 

transcripts of exon la were the minor product in all regions, transcript levels were found 

to vary between brain samples. Exon la transcripts were found to be enriched in foetal
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brain, but depleted in adult hippocampus. It could therefore be concluded that the 

expression of the two mRNAs is selectively controlled, but the mechanism of control is 

unknown.

The transcription start sites for exon 1 were identified by RNase protection. Transcription 

is initiated from multiple sites within a pyrimidine - rich region located about 100 to 180 

bp upstream of the translational start point. Analysis of the immediate 5' - region revealed 

the absence of TATA and CAAT boxes and showed that the region is rich in GC 

sequences. While the TATA box is the principal core element of many gene promoters, in 

a variety of genes this motif is known to be replaced by an initiator element (Roeder et al., 

1991). Initiator elements have been found in pyrimidine - rich sequences, although 

comparison of sequences of initiator regions of several different genes displays little 

homology (O’Shea - Greenfield and Smale, 1992).

The minimal sequence requirements for functional promoter activity were investigated. 

Initially, promoter - deletion constructs fused to the chloramphenicol acetyltransferase 

(CAT) gene were assayed in several cell lines (HeLa, GT1-7, PC 12, 293). This revealed 

strong promoter activity within a 143 bp region (-191 bp to -49 bp, where +1 relates to 

the ATG of exon 1). Binding of nuclear factors to this region in DNase I footprinting 

experiments resulted in protection of a 23 bp segment (B3F1) which included the 

transcription start sites and also an inverted recognition sequence for the Spl transcription 

factor. Further analysis by gel mobility shift assays was performed using a variety of 

oligonucleotides that contained binding sites for common transcription factors and also for 

B3F1. This data showed that both the Spl and B3F1 sequences caused band shifts which 

were unrelated to each other. This would suggest that if Spl is involved in transcription, it 

binds to the promoter at a different location. To date, information about the basal 

promoter region of exon la has not been published.

The 5' - upstream region of the human GABAa receptor a5 subunit gene was 

characterised (Kim et a l, 1997), and three alternative first exons (1A, IB and 1C) were 

identified. These share little sequence homology with each other, however exons IB and 

1C show a high degree of homology to the equivalent regions in the rat a5 gene
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(Malherbe et al., 1990). Exon 1A does not reveal any significant sequence homology to 

the rat gene, implying that either the corresponding rat exon 1A has not been identified or 

that exon 1A is species - specific. A single major transcription start point was identified by 

primer extension for each of the three mRNA isoforms. No TATA or CAAT boxes were 

observed but recognition sites for the Spl transcription factor were present, the initiation 

regions were pyrimidine - rich and the basal promoter region was rich in CpG 

dinucleotides. Expression studies showed that all three mRNA isoforms were expressed in 

the brain, and that their expression varied significantly in different brain regions.

The 5' - regions of the rat and mouse GABAa receptor a6 subunit genes were sequenced 

and their transcription start points identified (Jones et al., 1996) by RACE and RNase 

protection. A cluster of transcription start points were noted for both the rat and mouse 

within roughly the same region. The a6 upstream region bears little sequence homology 

to the other GABAa receptor genes, but comparison of 500 bp of rat and mouse upstream 

sequences revealed a high degree of homology, as has been observed for the upstream 

regions of the other characterised GABAa receptor subunit genes. TATA and CAAT 

boxes are absent as are recognition sites for Spl transcription factors. This is unusual as 

all the other genes have at least one Spl site close to the area of transcription initiation, 

although only the 5 subunit gene Spl sites have been shown to be essential for expression 

(Dr D. Livingstone, pers. comm.). Recognition sites for several other transcription factors 

were identified including homeobox - containing proteins, a CK8mer motif and an E - 

box.

The 500 bp promoter fragment was assayed for activity using transgenic mice (Jones et 

al., 1996). The rat fragment was linked to a lacZ gene and randomly integrated into the 

mouse genome. Fourteen independent founder mice were generated of which only four 

expressed (3 - galactosidase. Only one of these founder mice gave almost the expected 

expression pattern with predominant expression in the cerebellar granule cells. P - 

galactosidase expression was also observed in the inferior colliculi, with the rest of the 

brain being negative. This transgene also differed from the native a6 gene in that 

expression varied between the cerebellar lobules. The other 3 founder mice gave neuronal 

but ectopic expression._____________________________________________________
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Little can be deduced from these transgenic experiments. The observed expression 

patterns could be due to a number of factors. The regions of insertion of the transgenes 

were not identified and are likely to have influenced expression patterns. Also, the use of 

rat sequence in a mouse background is not ideal. While there is a high degree of homology 

between species, real differences have been observed between the rat and mouse 5 

promoters (this work) and could be affecting expression in this instance.

The knowledge of the 5' - upstream region of the 8 subunit gene prior to my work was 

discussed in detail in the General Introduction (Section 1.3). While most of the 

characterised GABAa receptor subunit gene promoters share several common features, 

they display little sequence homology. There is however a high degree of sequence 

conservation of the different subunits between species. It is possible that this high 

sequence conservation in noncoding DNA suggests an important regulatory function for 

this region, which may have been conserved during the course of evolution. The putative 

core promoter regions of the various genes have similarities and differences. The 8, (33 

and a6 have multiple transcription start points, while the a l  and a5 genes have a single 

start point. The 8, (33 and a5 genes all lack TATA and CAAT boxes, are rich in CpG 

dinucleotides, and contain potential transcription factor binding sites for Spl. Pyrimidine - 

rich initiator elements are also present. The a6 gene also lacks the TATA and CAAT 

boxes, but is not CpG - rich and does not contain putative Spl binding sites. The a l  

promoter exhibits TATA and CCAAT box sequences in the 5' - proximal region.

What conclusions, if any, can be drawn from the above information about the regulation 

of the various GABAa receptor subunit genes, and the 8 gene in particular? The 8 subunit 

is the only isoform of its class and as such may form functionally unique GAB Aa receptor 

subtypes (Shivers et al., 1989). It has been found to co - exist with the a l ,  a3, [32/3 and 

y2 subunits (Mertons et al., 1993) and Quirk et al. (1994) found an exclusive co - 

localisation of the 8 with the a6 polypeptide in the cerebellum. Thus if it forms cell - type 

specific receptor subtypes with these subunits, it may be postulated that they are co - 

regulated and as such share regulatory elements. An alternative theory is that the 8 gene is 

regulated in a manner distinct from the other GABAa receptor subunit genes. Many of the
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GABAa receptor subunit genes appear to be clustered on chromosomes e.g. in humans, 

a5, P3 and y3 are found on Chromosomel5; a2, pi, a4, yl on Chromosome 4 and a l ,  

a6, p2 and y2 on Chromosome 5, while the 5 gene is situated on the short arm of 

Chromosome 1. It has been proposed that the clustering of the genes facilitates co - 

ordination of gene expression. Thus the transcriptional regulation of the 5 gene would 

differ from the other subunit genes. Arguments for and against co - ordinate regulation 

can be drawn from the information available. The p3 and a5 genes are clustered on 

Chromosome 15 and share several similarities including the presence of alternative exon 

Is. Conversely, the a l  and a6 subunits which reside on Chromosome 5 have promoters 

that are distinct from each other.

While some characterisation of the first 800 bp of the murine GABAa receptor 5 subunit 

gene promoter had been performed (Sommer et al., 1990), only basal promoter elements 

were identified. In the rat, similar elements were detected (Motejlek et al., 1994). Dr D. 

Livingstone (Prof. RW Davies laboratory) performed in vitro expression studies using 

luciferase fusions with short (< 2 kb) 5 promoter fragments. Using a series of promoter - 

deletion constructs in 2 cell lines, GT1 - 7 and NB4 1A3, he found that the Spl sites were 

critical for expression.

In this work a total of 10.5 kb of GABAa receptor 8 subunit gene 5'- upstream sequence 

was isolated and analysed and the transcription start points were identified. Thirty six 

percent of the upstream region was composed of repeat sequences, and several putative 

transcription factor binding sites were identified. 3.75 kb of this sequence (spanning the 

transcription start points (tsp) and putative core promoter) showed significant homology 

upon comparison with 3 kb of previously published rat sequence (Motejlek et al., 1994). 

This conservation between species has also been observed for the other subunits, only 

over much smaller regions. No significant regions of sequence homology were observed 

between the GAB Aa receptor subunit gene promoters characterised to date.

A novel cis sequence element and associated DNA binding protein, BSF1, were identified 

in the 5' - region of the rat 5 gene (Motejlek et al., 1994). From analysis of the sequence,
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a 22 bp purine repeat element was identified as being present in seven tandem copies 

located at the 3' - end of a large purine repeat region. A consensus sequence for this 

element was generated. Examination of other GABAa receptor subunit gene promoters 

revealed related sequences in the mouse y2, rat a l ,  human P3 and rat a6 genes. Protein 

binding to this element was investigated by bandshift assays using nuclear extracts from 

brain and liver tissue. Using an oligonucleotide probe that matched the consensus 

sequence exactly, two bands were detected. A single base change to the probe resulted in 

only one of the bands being detected. This alteration still left the probe with a 100% 

match to the consensus sequence. A second alteration which changed the sequence from 

the consensus resulted in loss of all bands. Not suprisingly, no binding was detected for 

the other GAB A probes used, a l  and y2. The various binding experiments are not 

conclusive due to the presence of many extraneous bands, many of which are attributed to 

single - stranded binding proteins. Also, the sequences of the oligonucleotide probes used 

were altered by the addition of extra bases at each end to allow for future ligation 

experiments. It is highly probable that these alterations to the consensus sequences would 

affect binding of proteins.

Sequencing of the mouse upstream region revealed that this sequence element is absent in 

the mouse. If the BSF 1 protein is a specific binding protein for this sequence, there are 

several reasons to explain its absence. The binding sequence could be present in another 

area of the gene e.g. further 5', in an intron or at the 3' - end of the gene. This could be 

investigated by probing mouse genomic DNA with oligonucleotides designed to hybridise 

to the BSF 1 recognition sequence. Another possibility is that the BSF 1 factor could bind 

to another sequence present in the mouse. Binding assays with mouse DNA and the BSF 

1 protein would determine if it is binding to an alternative sequence. Finally, if this factor 

is specific to the rat, it is possible that its role in regulation is controlled by a related factor 

in the mouse

Having the sequence of a large promoter region will hopefully allow the identification of 

novel control elements. Analysis of the mouse sequence using databases (EMBL), 

highlighted regions of homology with other genes. Most of these homologous regions 

were repeat sequences (LINES, SINES) found throughout the mammalian genome. It has
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been proposed that these sequences can play a role in gene regulation. By comparing 

genes that contain these particular repeats, it may be possible to draw conclusions about 

their functionality or cell - type specificity.

In vivo promoter analysis has been performed by a number of groups using DNA 

transgenics. Luscher et al. (1993) analysed 8 promoter activity using transgenic mice. 

They illustrated neuron - specific expression from a 6.3 kb promoter fragment driving 

lacZ expression in most regions of the CNS, but were unable to show the correct 

developmental profile of the native gene. Thus this region lacked important regulatory 

elements. An a6 knock - out mouse has been produced in which the mutation appears to 

affect the 8 subunit protein (Jones et al., 1997). Homologous recombination in embryonic 

stem cells was used to create a mouse line in which the a6 subunit gene was disrupted at 

exon 8. Translation of a6 subunit mRNA from the mutant allele should terminate after the 

TM2 region resulting in a 300 amino acid protein. Thus this is not a true gene knockout 

and it is likely that the truncated protein is binding to the 8 subunit protein in some way. 

Mihalek et al. (1997) recently reported the generation of a 8 knock - out mouse, but have 

not yet examined the effects, if any, on the other GABAa receptor subunit genes.

In this work, in vitro analysis of a range of promoter - reporter constructs in a neuronal 

cell line identified a 1.8 kb region (between 4.5 kb and 6.3 kb upstream) that appeared to 

downregulate expression of the lacZ gene. Examination of the sequence of this region 

revealed several putative transcription factor binding sites. Several repeat regions are also 

present in this fragment. Future work will involve identifying the putative binding site(s). 

This can be achieved in several ways. Oligonucleotides may be designed to the identified 

transcription factor binding sites and these can then be tested for functionality in DNA 

binding assays (gel retardation and DNA footprinting). PCR oligonucleotides primers 

could also be designed across putative control regions and the resulting PCR products 

also tested in gel shift assays.
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10.3 VIRAL VECTORS

The major difficulty in studying neuron - specific gene expression in vivo is transferring 

the DNA into the cells. Two techniques being developed for effective gene transfer in vivo 

are transgenics and viral vectors. While the viral vectors may be useful for studying gene 

expression it should be noted that there may be the possibility of interference from the 

viral genes and their promoters. On a wider scale, they are particularly relevant for gene 

therapy. To date, 18 gene therapy trials have been agreed in the UK, with a further 5 still 

under review (Oxford BioMedica). A range of different viral vector systems which include 

retroviruses (RV), adenoviruses (AV), adeno - associated viruses (AAV), herpes simplex 

viruses (HSV), parvoviruses (PV) and more recently lentiviruses are currently being 

developed as viral vectors.

We chose to develop an HSV - 1 viral vector as a gene transfer vehicle given its ability to 

establish long - term latent infections in neuronal cells. Gene transfer to neurons using 

HSV - 1 vectors has significant potential advantages for gene therapy for neurological 

diseases. It has a potentially large cloning capacity, it remains episomal and it is largely 

neurotropic. Investigations with HSV -1 based vectors have not yet reached the stage of 

human phase I trials. Further manipulation of the HSV genome is required, to ensure a 

truly apathogenic vector is engineered.

Several groups employing HSV - 1 mediated gene delivery have reported significant 

cellular cytotoxicity with these viral vectors (Anderson et al., 1992; During et al., 1994; 

Pakzaban and Chiocca, 1994) most likely attributable to the simultaneous expression of a 

number of viral products. Thus to establish an effective HSV vector system, it is necessary 

to remove virally induced cytotoxic functions including those required for lytic replication 

and to promote the establishment of latency without the possibility of reactivation. In an 

effort to reduce cytotoxicity, HSV - 1 vectors have been constructed in which the 

pathogenicity of wild - type HSV - 1 has been reduced. These have either been based on 

disabled viruses in which essential genes have been deleted and which require growth in a 

complementing cell line, or on defective viruses (amplicons) (Geller et al., 1990; Johnson 

et al., 1992; Ho et al., 1993; Geschwind et al., 1994). Although the use of amplicons 

should eliminate the toxicity associated with viral gene products, the presence of helper
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virus in amplicon stocks complicates this goal as it must also be disabled in some way. 

Presently disabled and helper virus systems do give a low level of reversion to a 

pathogenic phenotype by recombination of the disabled viral DNA with overlapping 

integrated helper sequences. Future studies on the source of HSV - 1 mediated 

cytotoxicity and improved vector development are required before this viral vector 

system can be used for gene therapy.

Development of vectors that contain appropriate gene - specific promoter - enhancer 

elements to achieve long - term gene expression is also necessary. Early studies 

demonstrated that HSV - 1 vectors carrying the E coli lacZ gene can infect many 

neuronal populations both in vitro and in vivo (Geller and Breakefield, 1988). Later 

reports appeared demonstrating physiological effects resulting from HSV - 1 - mediated 

gene delivery. An example of this was demonstrated by During et al. (1994). They 

reported that an HSV - 1 - derived vector expressing tyrosine hydroxylase (TH) could 

rescue, both behaviourally and biochemically, the effects of a 6 - hydroxydopamine 

lesion in rats when delivered to the partially denervated striatum. More recently, 

replication - deficient HSV - 1 vectors have been used for overexpression of the 

apoptosis - inhibitory protein Bcl-2 in primary cultures of hippocampal neurons and in 

the hippocampus in vivo. This resulted in the protection of neurons from oxygen radical 

accumulation in vitro and adriamycin toxicity and focal ischemia in vivo (Lawrence et al., 

1996).

While the HSV - 1 vector systems had been shown to transduce neurons in the brain 

(Geller and Breakefield, 1988; Dobson et al., 1990), they had not been capable of 

targeting expression of foreign genes to a specific type of neuron. Several groups have 

used cell - type specific promoters in an attempt to target recombinant gene expression to 

specific neuron populations.

Anderson et al. (1992) generated a recombinant HSV-1 virus containing the Ecoli lacZ 

gene under the control of a rat NSE promoter (1.8 kb) inserted within the HSV - 1 

thymidine kinase (tk) gene. To determine whether the NSE promoter would retain its 

selective expression in neurons, the NSE - recombinant virus was used to infect a number

223



Chapter 10 General Discussion

of different cell types in culture including neuronal, nonneuronal and primary cultures. 

Another recombinant virus that contained the lacZ gene under the control of an HSV - 1 

promoter was used as a control for neuron - specific expression. With the NSE - virus, 

only neuroblastoma cells and cells resembling neurons in the primary cultures showed p - 

galactosidase staining 3 days after infection, whereas the control virus showed staining in 

all cell types infected. When the neuroblastoma cell line was infected with each virus, 

both gave p - galactosidase stained cells after 3 days. However the NSE - virus gave 10 

fold fewer blue cells than the control virus at a comparable multiplicity of infection (moi 

= 1). To acertain whether this was due to the differing strengths of the promoters or to the 

lack of viral infection, the NSE - virus was used at a moi =10.  All cells even those 

showing no blue staining showed marked cytopathic effects after 3 days indicating that 

lack of detectable lacZ expression did not reflect failure of the virus to infect the cells. 

Infection of a variety of neuron - enriched primary cultures with these viruses gave p - 

galactosidase staining. Rat dorsal root ganglion (DRG) cultures infected with the NSE - 

virus showed p - galactosidase staining at 3 and 14 days post - infection, as opposed to 

the control virus which showed staining at 3 days but not at 14 days.

Expression was also studied in vivo by stereotactic injection of the viruses into the frontal 

lobe of the brains of adult male rats. With the NSE - virus, p - galactosidase staining was 

observed along the needle tract in neuronal - like cells at 30 days post - inoculation. This 

P - galactosidase expression pattern was confirmed by immunocytochemical staining 

with antibodies to lacZ. When the control virus was injected using comparable titres, 

blue staining was observed at 3 days, but not 14 days post - infection. While many of the 

p - galactosidase stained cells appeared to be neuronal based on size and morphology, it 

was not shown conclusively that the virus was actually entering neurons. No co - 

localisation studies were performed making it difficult to evaluate true cell - type 

specificity of expression. However, this NSE - recombinant virus was the first described 

to use a mammalian promoter to obtain extended expression of a foreign gene in the adult 

mammalian CNS.

Another group (Kaplitt et al., 1994) utilised an HSV - 1 amplicon vector to study 

expression from a foreign gene in the mammalian CNS. They selected the rat
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preproenkephalin (PPE) promoter (2.7 kb) to drive expression of the lacL reporter gene. 

PPE was chosen as it has a well characterised cell - type specific expression pattern in the 

brain, including the caudate nucleus, amygdala, piriform cortex, olfactory tubercle and 

ventromedial hypothalamus (Khachaturian et al., 1983; Harlan et al., 1987). The defective 

PPE virus was stereotactically injected into regions of the rat brain that normally express 

endogenous PPE mRNA. Two regions that contain few cells that express endogenous 

PPE mRNA were also injected as negative controls. They noted that P - galactosidase 

staining was observed in several cells in regions where the endogenous gene is expressed. 

The efficiency of expression in these regions was 1 - 5% which did not differ significantly 

from the efficiencies observed with studies using the CMV promoter (Kaplitt et al., 1991). 

Very few cells were stained in regions where endogenous PPE transcripts are not 

normally found. P - galactosidase - positive cells were also observed two months after 

injection. This indicates that HSV - 1 amplicon - based vectors are stable for at least two 

months and that long - term expression can be achieved through the use of specific 

promoters.

More recently, a defective HSV - 1 vector was constructed that contained the rat tyrosine 

hydroxylase (TH) promoter (6.8 kb of 5' upstream sequence) linked to the lacL gene 

(Song Song et al., 1997). The TH promoter was selected to see if it could target 

expression of a foreign gene to catecholaminergic neurons in a specific brain region, such 

as the substantia nigra pars compacta (SNc). The expression of p - galactosidase from the 

TH promoter was analysed in vitro and in vivo. Cell lines both positive and negative for 

TH were used as were primary cultures. They showed that expression in TH positive cells 

was 20 fold higher than in TH negative cells. Stereotactic injection of the virus into the rat 

midbrain demonstrated mainly catecholaminergic cell - type specific expression up to six 

weeks after infection, although some aberrant expression was noted. One reason for this 

lack of specific expression could be that the 6.8 kb TH promoter fragment lacks some of 

the regulatory elements required for cell - type specific expression. Another cause could 

be interference from the HSV - 1 vector or helper virus. It is possible that specific HSV - 

1 proteins that are either present in the HSV - 1 particle or transiently expressed from the 

helper virus may interact with the TH promoter or regulatory elements in the cells. A
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helper - virus free packaging system has recently been developed and initial results show 

an improved cell - type specific expression from the same TH promoter fragment.

The three examples given above demonstrate that either replication - deficient or HSV - 1 

defective viral vectors can be used for long - term expression of a foreign gene by a non 

HSV - 1 promoter. However they have been unable to show faithful cell - type specific 

expression from these promoters. This could be due to the promoters themselves lacking 

specific regulatory elements or to interference from the viral genes.

In this work, we utilised two attenuated HSV - 1 viral mutants for the generation of 

recombinant viruses. The first variant (1716) lacked the ICP34.5 gene which expressed 

late in infection and is implicated in neurovirulence, but is not necessary for replication in 

vitro or for the establishment of latency in vivo. The ICP34.5 mutants have been shown to 

be replication defective in sensory ganglia and the CNS of mice (Bolovan, et al., 1994; 

Chou et al., 1990; MacLean et al., 1991b; McKie et al., 1994; Whitely et al., 1993), but 

replication is normal in most tissue culture cell types. Another variant (1764) also lacked 

the ICP34.5 gene and contained a second mutation of the Vmw65 (Ul48) gene. This gene 

causes transactivation of immediate early (IE) genes and inactivating it should force the 

virus into the latent pathway of infection.. It was hoped that this would reduce the levels 

of cytopathic IE gene products as compared with 1716. Replication of these mutant 

viruses during infection is dependent on the multiplicity of infection being high. These 

variants had previously been shown to allow short - term expression of the P - 

galactosidase gene after footpad or intracranial inoculation of mice (Coffin et al., 1996).

In this work, many problems were encountered with both viral variants used. It proved 

extremely difficult to purify recombinant viruses away from the wild - type variants, and 

the frequency of recombination was very low (< 1 %to < 0.01%). Generation of a 

recombinant virus containing a large promoter fragment linked to the lacZ gene proved 

impossible. Out of 600 viruses screened, only one gave a positive signal with a GABA 

probe. Southern blot analysis revealed that this virus contained a deletion of the promoter 

fragment. This may have been due to the actual sequence of the GABAa receptor 6 

subunit gene promoter. A large incomplete repeat region that is highly homologous to an
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HSV - 1 sequence is present in the promoter about 5 kb upstream from the transcriptional 

start sites. It is possible that some aberrant recombination was taking place between the 

HSV -1 and 5 promoter sequences. Infection of cerebellar granule cell cultures and 

stereotactic injection of these viruses into rat brains showed that these viruses were 

unable to target the cells of interest and little transgene expression was observed. While 

the GABAa receptor 8 subunit gene promoter is only a moderately strong promoter, even 

the use of the strong HSV - 1 gD promoter or the CMV promoter failed to give specific 

lacL expression. Thus while it is obvious that the particular HSV - 1 variants used in this 

work are unsuitable for further development in this area, other vectors are being 

developed that do appear to have targeted neurons and have allowed expression of 

reporter genes from foreign promoters

The GABAa receptor 8 subunit gene promoter - lacL fusion vectors constructed in this 

work have been designed in such a way that with very little manipulation they can be 

inserted into other vectors. Thus, they can now be transferred to new HSV - 1 vectors 

with better growth characteristics thus furthering the original goal of this work.
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