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A bstract

This thesis examines the behaviour of a homogeneous and quasineutral, equal-mass (electron- 

positron) plasma in the presence of a constant magnetic field. Two sets of comparisons 

are made: between e“ e+ and e~-ion plasmas and between treatm ents of a progressively 

more relativistic nature.

Fundamental plasma quantities: plasma frequency, u>p; cyclotron frequency, fl; and 

Debye length, Ad , are briefly introduced in Chapter 1.

The peculiar features of electron-positron plasmas are illustrated in Chapter 2. Quan

tities defined in Chapter 1 are redefined for e- e+ plasmas. Examples of physical situations 

where e“ e+ plasmas may occur are given. The predictions of cold plasma theory for e“ e+ 

plasmas are summarized at the end of this chapter.

Chapter 3 embraces the kinetic theory upon which the remainder of the thesis relies. 

After explaining the need for a kinetic theory, the development of th a t theory is reviewed. 

The first part of the chapter shows the microscopic (Klimontovich) description. Next the 

necessary concepts from Gibbs’ and Boltzmann’s statistical theory are presented. These 

ideas are married in the BBGKY hierarchy. The lowest order expansion of the hierarchy 

gives the Vlasov equation. A dielectric treatm ent can then be carried out using the 

Vlasov equation and Maxwell’s equations. At this point the equilibrium conditions are 

stated. After some analysis general dispersion relations are found for both e- -ion and 

e- e+ plasmas. These expressions are general in the sense tha t they permit a choice of 

momentum distribution.

In Chapter 4 the momentum distribution function is the familiar Maxwellian distribu

tion function. The dispersion relations are then used to derive the (electrostatic) Bernstein



modes. Bernstein modes propagate perpendicular to  the magnetic field and resonate at 

electron cyclotron harmonics (u> «  nf2e). In an electron-ion plasma, there are seen to 

be gaps in the frequency spectrum away from nQe where these modes may not propa

gate. e- e+ plasmas are different: the theory leading to frequency gaps is exact and not a 

consequence of approximation. These relations are then illustrated.

Original work begins in Chapter 5. In this thesis, interest in a weakly relativistic plasma 

stems from the wish to observe the transition between the existing non-relativistic and fully 

relativistic kinetic treatments. The relativistic nature of these treatm ents is governed by 

the parameter a =  tuqc2/kT \ 10 < a < 100 corresponds to weakly relativistic conditions. 

Chapter 5 is concerned with weakly relativistic e~e+ plasmas. A novel combination of 

non-relativistic distribution function and otherwise fully relativistic dispersion relation 

leads to the dispersion relation for weakly relativistic e“ e+ plasmas. This expression is 

then prepared for inclusion in computer code: it is restated in dimensionless units and 

rearranged so tha t double quadrature becomes single quadrature with a special function.

The design of the computer code is discussed in Chapter 6. The resulting dispersion 

curves are shown and described in Chapter 7. It is demonstrated tha t, as for e“ -ion 

plasmas, the introduction of a weakly (or fully) relativistic treatm ent sees a broadening 

of the frequencies at which resonance occurs and a downshift in those frequencies. These 

results have been described briefly in conference proceedings [1,2]. This chapter goes on to 

consider the possibility of an approximate analytical approach and suggests the direction 

future work will take.

There are three appendices. They deal respectively with: the properties of certain 

special functions; contour integration; and a listing of the code which is described in 

Chapter 6.
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Chapter 1

Introduction

When a man gives himself up to the government of a ruling passion, — or, 

in other words, when his H o b b y - H o r s e  grows headstrong, — farewel cool 

reason and fair discretion!

Tristram Shandy, Laurence Sterne

While it is often remarked that plasma is the fourth state of m atter, it is certainly 

true tha t it is the least well-defined state. The consensus is th a t a plasma is an ionized 

gas in which collective behaviour dominates. Electrons and ions exchange energy and 

momentum with each other through their effects on, and reaction to, electromagnetic 

fields. The fields can be external or the result of the motions of the charged particles 

themselves, the so-called self-consistent field: often both types of field are involved.

This self-consistency is very important. Single particle interactions are treated as col

lisions: while the dynamics of a plasma are pictured as the superposition of two clouds, 

interacting only through the field to which both are coupled. If the coupling force is 

extreme enough to keep the clouds more or less together, their relative velocity is propor

tional to the electric current and the entire plasma is treated as a single, current-carrying 

fluid. The study of such plasmas is known as magnetohydrodynamics (MHD). Langmuir 

(or plasma) waves represent the other extreme: dynamics are so fast tha t the ions are 

essentially stationary -  all tha t oscillates is the electron cloud and with it the electric

10



1.1. PLASMA FREQUENCY

field.

Plasmas often possess significant thermal energy. Relativistic particle velocities are 

likely and complicate any kinetic description. This is especially true of low mass particles 

such as electrons which reach relativistic velocities at lower energies. Nevertheless in this 

investigation of electron-positron plasmas, we expect to  reveal simplifications due to  the 

nature of the plasma.

Throughout this work various assumptions have been made about the conditions under 

which the plasma exists. Namely, it is assumed that the plasma is locally neutral, homo

geneous and hot. Note that under these conditions collisional terms may be neglected, see 

Section 3.2.

The propagation of waves in a weakly relativistic e~e+ plasma perpendicular to a 

uniform equilibrium magnetic field is of particular interest. Kinetic theory seems the most 

appropriate approach to plasmas in this domain. The remainder of this chapter defines the 

basic terms used throughout this work, no assumption is made about the species present 

in plasmas.

1.1 Plasm a Frequency

At a simplistic level one may describe plasmas in the cold approximation. One takes a 

neutral assembly of negative and positive particles with a distribution which is initially 

uniform throughout. In addition one assumes tha t there is no thermal motion. Under 

such circumstances the effect of displacing a group of particles, say electrons, is to  make 

the plasma non-neutral around the displacement. The displaced particles store potential 

energy and have a tendency to return to their equilibrium positions. Once they reach the 

equilibrium position however the potential energy has converted to kinetic energy and the 

particles overshoot. Away from equilibrium again the motion of the particles induces (and 

is opposed by) an electric field. In a cold plasma there is no loss mechanism and once a 

perturbation has been introduced the oscillations in the plasma will carry on indefinitely. 

The root mean square of the frequencies of these fundamental plasma oscillations for each

11



1.2. DEBYE LENGTH

species, s, present is known as the plasma frequency and will be denoted ojp.

= £ <  = £ —  ( i- i)
. c £0m s0s s

In many electron-ion plasmas the ions may be treated as a stationary background to  the 

extent tha t ‘plasma frequency’ often refers to the electron plasma frequency, u)pe.

Note tha t up depends on both the properties of the particles themselves, qs and m so, 

and the parameters of the plasma, n so-

1.2 Debye length

a d = ( i -2)

The Debye length, Ad, can be pictured as the effective range of the Coulomb force in a 

plasma. It is calculated by coupling an electrostatic formulation of Poisson’s equation and 

the Boltzmann equation n (E ) = noe~E/ KT self-consistently through the charge density. A 

test particle at a distance greater than Ad is effectively screened from the field due to the 

source by intervening ambient particles.

The dominance of collective effects may be estimated from the typical number of 

particles in a Debye sphere (a sphere of radius Ad ) .  If the characteristic interparticle 

distance, n -1/3, is small in comparison to Ad many particles are close enough to one 

another that Coulomb forces are not shielded, the plasma must behave collectively. One 

criterion for a plasma, then, is a large JVd, where

Ad =  tiAd3

Coulomb collisions scale with the Debye length while large-angle particle collisions 

scale with interparticle distance. The former (long-range) force dominates in plasmas.

To behave as a plasma it is just as important tha t the Debye length be much less than 

the characteristic length of the plasma. That way the plasma may be considered as a 

continuum and effects may be treated locally.

12



1.3. CYCLOTRON FREQUENCY

1.3 Cyclotron Frequency

In the presence of a uniform magnetic field a single charged particle is accelerated in a 

circular path perpendictilar to the field. This circular motion has a frequency, the cyclotron 

frequency, given by

ft, = ^  (1.3)m s

Unlike the plasma frequency, the cyclotron frequency depends on particle parameters 

alone. Using this frequency one can create another useful quantity the characteristic 

cyclotron length or Larmor radius, r^. This is the radius at which the force due to the 

magnetic field is in balance with the centripetal force.



Chapter 2

Equal mass Plasm as

In an equal mass plasma the masses of the two species are equal while the charges are 

opposite. The study of equal mass plasmas is prompted by the possibility tha t mass 

equality will lead to substantially different phenomena. This in turn might permit insight 

into the physical behaviour of plasmas in general.

Mathematically there is a certain amount of cancellation in the calculation of dispersion 

relations.

For an exact equal mass plasma the only possibility is tha t of a particle-antiparticle 

plasma (Alfven calls this ambiplasma [3]). The ambiplasma with the lightest component 

species is the electron-positron plasma.

In reference [4] basic e- e+ pair processes are discussed. In particular Lightman gives 

a review of the various possible creation and annihilation reactions [5]: whilst Takahara 

explores the realm of magnetized, relativistic e“ e+ plasmas [6].

2.1 Electron-Positron Plasmas

The main positron annihilation path for positron temperatures above 100 eV is direct 

two-body collision annihilation (see [7]).

When discussing e“ e+ plasmas it will be seen tha t particles will generally have a great 

deal of therm al energy, so tha t relativistic particle velocities are likely. One might expect

14



2.1. ELECTRON-POSITRON PLASMAS

relativistic considerations to complicate the theory but by investigating electron-positron 

plasmas, one hopes that the symmetries inherent to an ‘equal-mass, opposite charge’ 

plasma will permit simplification.

Over a large range of conditions, a system of electrons and positrons is definitely a 

plasma. One important criterion is the number of particles in the Debye sphere, Ad - This 

is introduced on page 12. In the context of non-relativistic electrons and positrons the 

Debye length has a slightly different definition:

W lS  (2-i}

For a typical weakly relativistic temperature of around 108 K and electron (positron) 

density of say 1016m-3 , Ao~8m m and Ad~1010. Densities up to 103Om -3 still fulfill the 

Ad criterion.

At this point the special properties of the e“ e+ plasma may be illustrated by reviewing 

the definitions of fundamental plasma frequencies: the cyclotron frequency and plasma 

frequency. In the subscripts used e denotes electron and e represents positron quantities.

By definition (1.3) the electron cyclotron frequency, f le, is identical to the positron 

cyclotron frequency but has opposite sign.

^  =  ( - e ) B o  =  J + e ) B o  =  _ n _ (2 2)
m e TOe

The plasma frequency for the pure neutral e“ e+ plasma under consideration is given

by:

=  V (2-3)

In contrast to electron-ion plasmas the positrons certainly may not be treated as a sta

tionary background. The positron contribution is identical to tha t of the electron.

Electron-positron plasmas may be found in many places: in the atmospheres of pulsars; 

in extra-galactic jets; in the early universe; and recently, there has been an upsurge in 

interest in creating them in the laboratory, now tha t trapping techniques have been vastly 

improved.

15



2.2. PULSARS

2.2 Pulsars

2 .2 .1  W h a t is a pulsar?

The prevailing model of pulsars, the lighthouse model, assumes tha t a pulsar is a rapidly 

rotating neutron star. Its magnetic field is exceptionally strong. Often the magnetic and 

rotational axes do not coincide. Charged material is channelled along the tightly packed 

magnetic field lines. M atter streaming from the pulsar at the poles collides violently 

with m atter streaming into the pulsar. Large amounts of radiation are produced and this 

radiation in turn escapes from the vicinity of the pulsar. When observed from Earth the 

polar radiation will appear as a pulse, once for each revolution. This is illustrated in 

figure 2.1. The whole topic of pulsar magnetospheres is reviewed in many places including 

articles by Michel [8, 9] and Lominadze [10].

Crucial here is the nature of the m atter which streams from the pulsar; it consists 

of electrons and positrons. This streams through a dense plasma magnetosphere, also 

electron-positron (the presence of which was suggested by Sturrock as far back as 1971 

[11]). The interaction between streaming particles and the plasma is at the centre of the 

debate over the source of the exceptionally bright emission spectra of pulsars.

2 .2 .2  C urren t th eo r ie s

The presence of e~e+ pairs in pulsars was predicted in the earliest models. Reviews may 

be found in [8] and in more detail in articles by Arons [12] and Ray [13]. In outline the 

mechanism of pair creation is as follows: the strong magnetic field separates particles of 

opposite charge and leaves a layer immediately above the surface of the pulsar which is 

relatively free of particles. This charge separation leads to a strong electric field along 

which electrons are accelerated to very high energies. The electrons also experience the 

dipolar magnetic field of the pulsar and because they are forced to  move along these highly 

curved field lines they must radiate. This radiation in turn encounters the gap region and 

because of the electric field in that region produces pairs.

One of the major topics around pulsars is the mechanism of the radio emission observed

16



2.2. PULSARS

c—
Rotation

axis
* / s  y . y

Neutron
star

Charged particle flow

Figure 2.1: A diagram of the ‘lighthouse’ model of pulsars

from pulsars. In the seminal article by Arons [14] the theory of wave propagation in pulsars, 

i.e. in superstrong magnetic fields, is proposed. Many authors have worked on emission 

mechanisms: one good candidate is the two-stream instability, see for instance [15]. There 

are two regions in which researchers have considered this instability to take place: in 

the high polar gaps and in the pair production gaps. The la tter case is ruled out by 

Egorenkov [16]. Usov [17] describes the creation of conditions for a two-stream instability 

in the polar gaps. The production of pairs is strongly non-stationary -  thus electrons (and 

positrons) appear in clouds. These clouds disperse because of their velocity distribution 

and eventually, the author estimates at around 106m, the fastest particles from one cloud 

catch up with the slowest of the previous cloud. Thus there is the two-humped distribution 

necessary to cause the two-stream instability.

Lyubarskii too deals with the problem of the generation of pulsar radio emission [18]. 

He describes how emission due to the two-stream instability produces observable radio

17



2.3. EXTRAGALACTIC JETS AND GALACTIC NUCLEI

waves: induced scattering converts the original subluminal modes into superluminal waves. 

These superluminal waves then transform easily into the observed electromagnetic waves.

2.3 Extragalactic Jets and Galactic N uclei

Shrader [19] and Purcell [20] report the results from the Compton Gamma Ray Observa

tory in which galactic sources of annihilation line radiation are mapped for the first time. 

There is evidence for a central galactic emission bulge.

This is part of a body of evidence supporting the existence of e“ e+ plasmas in the 

nucleus of the galaxy [21, 22], The topic is reviewed in reference [4] in the contribution of 

MacCallum et al. [23].

Beyond this galaxy, observations of extragalactic jets suggest the presence of an e~e+ 

pair plasma [24]. The nuclei of other galaxies also appear to  have annihilation line sources 

[25].

Some current theories of black-holes include a surrounding medium which consists of 

electrons and positrons. Observations of black-hole candidates agree [26, 27, 28].

2.4 Laboratory e e+ Plasmas

As early as 1978, there was interest in observing the properties of an e- e+ plasma in the 

laboratory, see reference [29]. Here too can be found the first mention of the characteristic 

absence of Faraday rotation and thus whistler modes.

Since then the experimental work of groups specializing on positrons has made great ad

vances. In particular the Greaves/Surko group (at the University of California, San Diego) 

have produced one-component positron plasmas through a scheme of positron trapping 

and cooling [30, 31, 32, 33, 34]. They collect and trap  «  108 positrons and expose them 

to a beam of a similar number of electrons: this situation is however unstable.

At present laboratory equal mass plasmas are imperfect due to the presence of residual 

electrons. It is expected tha t the investigation of the properties of equal mass plasmas 

will be vastly improved with the creation of e“ e+ plasmas. As of 1997 [32], no true e~e+

18



2.5. ON COLD E~E+  PLASMAS

plasmas have been created in the laboratory.

That the creation of e~e+ plasmas in the laboratory is even considered is due to the 

recent improvements in trapping devices. The only trapping mechanism which might be 

able to trap both electrons and positrons simultaneously for long confinement times is the 

Paul trap  (reviewed in [35]).

2.5 On Cold e~e+ Plasmas

In broad terms, a plasma may be treated as a superposition of two fluids - by making a 

cold assumption. This gives the simplest picture of the behaviour of waves in a magnetized 

plasma. The well-known CMA diagram is useful in illustrating this behaviour. This is 

general in that it does illustrate the way a mode would propagate at any angle to the 

equilibrium magnetic field.

The specific case of cold electron-positron plasmas has already been described by Stew

art & Laing [36]. Using this research, one can plot the (now substantially simplified) CMA 

diagram (figure 2.2). For comparison, see the CMA diagram for a cold electron-ion plasma 

(figure 2.3). This simplification means th a t in e~e+ plasmas, Faraday rotation does not 

exist and consequently nor does the whistler mode [29, 36]. These phenomena occur as 

features of the difference in mass between plasma species. Any textbook will describe the 

theory of cold plasmas, for example [37, 38, 39]

Figure 2.2 illustrates distinct regions of parameter space. Here the ordinate is propor

tional to  the magnetic field strength, Bo , and the abscissa is proportional to the electron 

density, n eo- The marked regions correspond to

I High Frequency Electromagnetic Region

II  Transition Region

I I I  Highly Magnetized Region

IV  Alfven Wave Region

V  Stop Region

19



2.5. ON COLD E~E+  PLASMAS

0.5- -

1.50.5

Figure 2.2: The CMA Diagram for a cold electron-positron plasma

The Stop Region is so-called because no propagation may take place in this region of 

param eter space.
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2.5. ON COLD E~E+ PLASMAS

w

R =0

R  = *»

0 =

No so lu t ion  in 
th is  reg ion

S =0

Figure 2.3: The CMA Diagram for a cold electron-ion plasm a
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Chapter 3

M athem atical Formulation

Seh ich die Werke der Meister an,

So seh ich das, was sie getan;

Betracht ich meine Siebensache,

Seh ich, was ich h a tt’ sollen machen.

Johann Wolfgang von Goethe

3.1 A Brief Introduction to Kinetic Theory

The principal characteristic of hot plasmas which sets them apart from other plasmas is 

the comparative length of their mean free path, Amfp. Other scale distances, such as the 

dimensions of plasma devices or the wavelength of the mode to  be studied, are significantly 

smaller.

From the outset, this research was expected to deal with high frequency wave eflfects; 

partly because of the short characteristic time of pair annihilation and creation and partly 

because the main focus of study was the field of Bernstein modes. These conditions mean 

tha t the fluid approximation is not appropriate. Instead we require a more fundamental 

theory which accounts for combined distributions of all species, ion and electron, in both 

configuration and velocity space; the kinetic theory. In this common approach to  waves 

in plasmas, plasmas are treated as a special class of gases. Just like a gas, a plasma is a
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3.2. PLASMA CONDITIONS

collection of particles, each with its own velocity and position at a particular time.

[40] gives an example. Consider the characteristic speed of one gas particle, say 

100 ms-1 , and the corresponding characteristic interaction distance, 10- lo m. This gives a 

time scale of about 10-12 s. In this time the velocity and position of a particle will change 

abruptly. Now treat each collision between each particle in the gas and the exact solu

tion for all particles has become effectively impossible. This topic is introduced in many 

textbooks. The notation here follows tha t of [41]; the treatm ent from [40, 41, 42, 43].

3 .1 .1  M icro sco p ic  D e sc r ip tio n

Consider a gas of N  particles with coordinates X* = (x*,vt), with i =  1 ...N .  The 

microscopic number density of gas particles may be represented intuitively by

N

N (X .,t)  = J 2 S(X ~ X ‘(t )) where X  =  (x ,v )  (3.1)
i=1

In this way, iV (X ,t) will be 1 if there is a particle at (X ,t)  and zero otherwise. Inte

grating across all of six-dimensional /z-space will thus give the number of particles present 

in the volume. The microscopic number density is thus given by f  N ( X , t ) d v .

In addition an equation expressing the time dependence of this distribution can be 

introduced.

which is a shorthand for

d N  . d N  . d N  n
-9r+ x ' ^ + v ' 9 7  = 0 (3-3)

3.2 Plasm a Conditions

Plasma particles are charged. This single property ensures th a t plasmas behave rather 

differently to an ordinary gas. Commonly a plasma is modelled as an assembly of charged 

particles which is everywhere locally neutral. Non-neutral plasmas do exist but tha t 

subject lies outwith the ambit of this thesis.
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3.2. PLASMA CONDITIONS

Moving randomly, plasma particles interact with each other through (and indeed gener

ate) electromagnetic forces. External electromagnetic disturbances give rise to correspond

ing particle motion. This superposition of fields around plasma particles is expressed in 

the equations:

E (x ,t)  =  E e* t(x ,t) +  e (x ,t)  (3.4)

B (x ,t)  =  B ea?t(x ,t)  + b ( x , t )  (3.5)

The microscopic electric and magnetic fields (e, b) due to  the particles themselves may 

be written out explicitly using Maxwell’s equations.

V x e  = ~  (3.6)

V x b  = MoJ + ~  (3.7)

V - e  = f  (3.8)
€0

V b  = 0 (3.9)

where charge and current density are given respectively by:

p =  f  N ( X , t ) d v
s J

J  = /w ( X ,t ) v d v
s J

The x  and v  together define the motion of a particle. Assuming th a t acceleration of 

a plasma particle is due solely to electromagnetic forces, the equations of motion of tha t 

particle are given by

x  = v  (3.10)

v  = — (E +  v x B )  (3.11)
TYls

Assuming the particular case of a two-component locally neutral plasma, the Klimon-

tovich equation (3.3) with acceleration due to electric and magnetic fields can be written,

as proposed by Dupree, and described in [42]:

f + v ' f + ^ E + v x B ) - f  = ° <3-12)
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3.2. PLASMA CONDITIONS

For future work it is useful to separate this equation into single particle and multiple 

particle expression

^  + £ (X ) -  J  dX'V(X, X ')jV(X')

Here £ (X ) and V (X ,X ') are introduced. £ (X ) is the single particle operator:

r\ r\

C(X)  = v  • —— h -^ -(E ext +  v  x B ext) ’ t t - (3-14)
ax  m s av

V (X ,X ') expresses the two particle Coulomb interaction.

V (X ,X ') = | 4 e  +  v x b ) . A  (3.1.5)

3 .2 .1  T h e  S ta t is t ic a l A p p roach  o f B o ltz m a n n  and  G ib b s

The statistical properties of a system are completely determined by the distribution of its 

particles. Central to this approach is the concept of an average across equally probable and 

similar arrangements of the N  particles under the same macroscopic conditions {replicas). 

This is Gibbs’ ensemble. Replacing the single, impossibly random, 6N  dimensional T-

space point there is now a swarm of such points which is characterized by an average

point.

In his treatm ent Boltzmann divides 6 dimensional configuration-velocity space {p- 

space) into a number of small, finite cells of size w. The N  particles are then distributed 

amongst these cells so tha t there are n\ in uq, 712 in u 2 and so on. The smallness of 

the cells is still large enough tha t the n;s are large numbers. The number of ways, N, of 

distributing the particles amongst the cells to  give the same macroscopic conditions is

N\
7ii!n2! . . .

provided : ft; = N  and ^  =  E

Finding the maximum of M  will give the most probable distribution function. For large 

ft; this maximum is very sharp. We now identify this most probable distribution function 

with the equilibrium state. The identification is reasonable since almost the whole phase 

space volume belongs to tha t state.

A (X ) = 0 (3.13)
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3.2. PLASMA CONDITIONS

Now define the Liouville distribution function, D (q i, q 2 , . . . ,  qw> p i ,  P 2 , • • - P a t ,  t), in 

6 N  dimensions, with the normalization

D dq\dq2. . .dqiydpidp2. . .dpat =  1

This describes the distribution of replica T-space phase points.

We now need only know tha t a system is in a small phase space volume, ST. The 

initial microscopic state of an assembly, at to, is no longer given by a phase point. Now

I const : within ST(to) 
^ ( q i ,q 2 , - . - ,q N ,p i ,P 2 ,.. .p iv ,f )  =  < (3.16)

y 0 : outside ST(to)

In other words since we are treating particles of any one species as identical it suffices 

to know the number of particles which have velocities close to  v  at positions close to  x. 

The properties of any one such particle are assumed to be identical to those of any other 

‘nearby’ particle.

It is then hypothesized tha t the macroscopic properties of an assembly of particles are 

given by the average value across the ensemble.

(Q) = j  . . . J  Q Ddq1dq2. . .dqNdp-idp2. . .dpN (3-17)

By definition the distribution function and macroscopic properties are constant with 

respect to  time when the system is in equilibrium. Away from equilibrium phase points 

do not interact with each other and in fact the replica phase points behave much like an 

ideal gas. The time dependence of D is given by Liouville’s (continuity) equation:

8D ^ f d D  dD . \

^  + +  (3-18)

Note tha t (3.18) is time reversible - some further work is called for to add in, or at least 

argue for, an arrow of time. A solution to this problem is the coarse-graining treatm ent 

of Boltzmann and Gibbs. By arguing tha t while replica systems not at equilibrium will 

evolve freely from any one state to any other, the fact tha t a great m ajority of these states 

are equilibrium states means tha t it virtually never happens th a t a phase point evolves 

from equilibrium to a particular (rare) state. The net result is the apparent preference of 

systems for relaxation to equilibrium.
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3.2. PLASMA CONDITIONS

3 .2 .2  R ed u c ed  D is tr ib u tio n s

Now tha t both the Klimontovich and Gibbs approaches have been introduced the next 

logical step is to combine them so tha t there is a balance between microscopic detail 

and statistical practicality. Reduced distributions do just tha t. Averaging the products 

of successively more microscopic number densities gives a series of reduced distribution 

functions with far fewer variables than D. Of course they also contain less information.

Now we may adopt the statistical approach of (3.17) to the most basic microscopic 

property - the number density .

(N (X , t ) )  = J  .. . J  N ( X , t )  Ddqidq2- . .dqjvdpidp2. . .dppj = ^ i(X ,t)  (3.19)

where we introduce the single particle distribution function T \ . This by definition satisfies

J  ^ ( X u t)dX , = N  (3.20)

Thus T i ( X i , t ) d X i  describes how many single particles there are in the ^-space volume 

element d X i.

Likewise the average of the product of the microscopic number densities at two points 

in /z-space is given by

(N {X ,  t)N (X ',  t)) = JS (X , X ', t) +  8{X -  X ')^ i(X , t) (3.21)

The second term appears only if the two /z-space points are one and the same.

Now for number conservation to hold T 2 must satisfy:

J T 2( X u X 2, t ) d X 2 = (N  -  1 ) ? i ( X u t) (3.22)

Thus ^ 2 ( X i ,X 2 ,f) allows us to calculate how many pairs of particles there are such tha t 

X i is in the /z-space volume element dX  1 and X 2 is in the /z-space volume dX 2. This then 

is the two particle distribution function which governs the effects of two particle collisions.

This process could go on indefinitely for the products of successively more number 

density expressions.
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3.3. THE VLASOV APPROXIMATION

Now if we take the Lioiiville average of the (microscopic) Klimontovich equation (3.13) 

the averaged time-dependence of the number density is

^  +  £ (X j)  ^ ,( X 1) =  f d X 2 V(X 1 ,X 2 )/-2 (X 1 ,X 2) (3.23)

Had we chosen, a longer equation of the same type as the Klimontovich equation (3.13) 

could have been used:

A ( X ) i V ( X ' )  =

,  (3-24)
/  dX"  (V(X,X*) +  V (X ',X *)) N { X )N (X ')N (X " )

£  +  £ (X ) +  £ (X ')

This would translate to:

JP2 (X 1 ,X 2) =~  + C( Xt )  +  £ (X 2) -  (V (X !,X 2) +  V(X2, X i)) 

f  dX 2 (V(Xt , X 3) +  V(X2, X 3)) ^ ( X j , X 2) X 3) (3.25)

Taking this idea to an arbitrary number of such Klimontovich type equations will lead 

to  a series of equations known as the B B G K Y  hierarchy.

-  +  ^ £ ( X i ) - £ v ( X i,X 3)
4=1 i^j

^ .( X 1 , . . . , X , )  =

/< iX 3+1 V(Xi,X s+1 ) ^ +1 (X 1 , . . . , X s,X s+1) (3.26)
«=i ^

Here again C(Xi )  is the single particle operator:

d d
• — h (J£>ext +  V i X B ^ )  • 7:— -C/X̂ C/V ̂

And V (X i,X j) expresses the two particle Coulomb interaction.

V(Xj, Xj )  = — (e +  v; X  b) • d_
dvi

(3.27)

(3.28)

3.3 The Vlasov approximation

In an ordinary gas, the dominant effect is collision. This is still true for plasmas, however 

the dominant collision effect is fundamentally different. Whereas the forces between gas

28



3.4. DYNAMIC PROCESSES

particles fall off with separation as r~7 or r -8 , in plasmas the inter-particle (Coulomb) 

force falls much less steeply (as r~2). As a result plasma particles have a far greater chance 

of interacting with a large number of other particles at longer range. Collision in plasmas 

means Coulomb collision.

Arguments which hold when applied to gases lose their persuasiveness in the case of 

plasmas. The BBGKY hierarchy (3.26) is an attem pt to ground these equations more 

firmly.

In hot plasmas, thermal motion may be so energetic tha t even the effects of Coulomb 

collisions are negligible. In this case the most appropriate equation of motion has no 

collision term  at all! This is the Vlasov equation. It contains information only about the 

thermal behaviour of the plasma and the collective effect of external and self-consistent 

fields.

As mentioned in the introduction on page 12, a large number of particles in the Debye 

sphere is an essential criterion for the system to be considered a plasma. In the Vlasov 

approximation the number of particles in the Debye sphere, Ad , is very large (in the 

continuum limit where particles are ‘smoothed ou t’, Ad —> oo). Given the typical value 

of Ad found on page 15, the Vlasov approximation is entirely appropriate for a typical 

e- e+ plasma.

3.4 Dynam ic processes

Rather than describe the macroscopic properties of a plasma, (pressure, velocity, density, 

etc.) we wish to  investigate its (dynamical) microscopic properties. To do this appro

priately we produce distribution functions which are closely related to  the probability 

functions mentioned before. The requirement is to  approximately describe how many 

particles are in the phase space in the neighbourhood of a phase point X.

Relate the single particle distribution function / ( x ,  v , t) with the reduced single particle 

distribution function T \  in (3.19) by

= n0f  (3.29)
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3.4. DYNAMIC PROCESSES

In general we must describe the distributions of more than one species of particle. 

To tha t end we introduce the distribution function / s(x, v ,t) ,  where s is the label of the 

particle species. f s is such tha t nsofsdx.dv is the probable number of particles of species

s in the configuration-velocity space volume element dxdv  at time t , where n so is the

average particle density.

The usual fluid variables, density and fluid velocity etc., can be written as velocity 

moments:

ns{x ,t)  =  ns0 J  f s( x , v , t ) d v  (3.30)

„ a(x ,i)  =  / v / s(x, v ,t)d v  (3.31)

Furthermore for a homogeneous system this becomes

/ / s ( v ) d v  =  1

making it equivalent to a probability distribution function for velocity. In later chapters 

a different normalization is more appropriate:

/ ^ ( p ) d p  = 1 (3.32)

An informal approach to this problem is to state tha t particles in a system are con

served, even in a e~e+ plasma this is true at the short timescales of plasma waves. In 

other words the distribution obeys a six-dimensional analogue of the fluid equation for the 

conservation of mass.

! / .  +  * ' ! ;  ( / . )  +  v ~ ( / . )  =  °

Now r  = v  and v =  ^ - ( E  +  v x B )

the Vlasov equation for the velocity distribution function describing species s.
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3.5. BASE EQUATIONS

3.5 Base Equations

The earlier sections of this chapter have illustrated the argument which leads to a Vlasov 

equation expressed in configuration-velocity space (3.33). This form of the equation is ideal 

for the development of a broad range of nonrelativistic theories. When casting a relativistic 

theory, the most tractable form of the Vlasov equation is one where the distribution is 

normalized in terms of momentum:

BF BF BF
¥  + ^  +  ! ' (e  +  v x B ) ^  =  °  <3'34)

where Fs is the distribution in configuration-momentum space, Fs =  Fs(p ,x ,t ) .

Since we now wish all our expressions to be valid in a relativistic regime we must be 

wary of our notation. From this point on, we must distinguish between m s and the rest 

mass, m.so- ms = 7 ^ s 0 and therefore quantities which involve mass, such as the cyclotron 

frequency, f2s, have associated rest values, H5o-

_  qsB0 _  qsBp _  f Ijo 
m s 7  m s0 7

Our notation is now appropriate to the task. The first stage in shaping this relativistic 

theory is to consider our plasma to be at equilibrium with a small perturbation. This 

means linearizing Maxwell’s equations and (3.34) and gives a set of equations for each 

species coupled through self-consistent electric and magnetic fields.

Choose the equilibrium conditions to be:

E = 0  (3.35)

B = B 0 (3.36)

Fs = Fs0{ p) (3.37)

By convention the coordinate system is characterized by the direction of the equilibrium 

B field, i.e. Bo = ey-So- Throughout this work the directions parallel and perpendicular 

are relative to the direction of Bq.
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3.5. BASE EQUATIONS

At equilibrium, (3.34) becomes

B F
(p x B) • = 0 (3.38)

By expressing p in cylindrical polar coordinates (pjl,P||,^>) we find tha t the equilibrium 

conditions require tha t Fso be independent of <j> i.e. =  0. The Maxwellian distribution 

certainly fulfills this criterion.

Allowing small harmonic perturbations

E = Ei = Ekwe'<k-’t- “‘> (3.39)

3  = 8 0  +  8 !  = B 0 +  B ku,et'<klc-" 1) (3.40)

J’. = / ,rf(p) +  f ’, i (p ,x , i )  = i^o(p) +  Fsk„e«k- * - ^  (3.41)

Since a Fourier transform is implicit in the choice of expression for Fs, a further 

assumption is necessary to match the physical ‘arrow of tim e’. We must assume tha t 

there was no perturbation Fsi(t)  before t = 0. None of this is necessary if the time- 

dependence is treated with the Laplace transforms. Implicitly a Laplace transform deals 

only with t > 0. For the treatm ent given here this difference of rigour does not affect the 

outcome.

In (3.34) this gives to first order

^ r + v ' ^ i + 9 s ( E l + v x B i ) ' ^ + ? s (v x B o ) ' ^ 1 =  0 (3-42)

BF BF
-iu>Fskl/J +  v  • (ik)Fskuj + qs(E ku, + v  x B ku) • +  gs(v x B 0) • ^  u = 0 (3.43)

The next step is to deal with expressions. It is useful to switch from a linear 

(px ,Py,Pz) to a cylindrical coordinate system (p±,P||,^>). Now

BF _  BpL BF t Bp\\ BF  | B<f> BF
^Px,y,Z B Px,y,Z Bp±_ Bpx,yyz &P\\ B p Xfy,z B(f>
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3.5. BASE EQUATIONS

The switch in coordinate systems explicitly gives:

dF  dF  sin <f>dF
—  = cos (p —-----------------—  (3.45)
opx dpL p±_ d(p
dF  . dF  cos <j> dF
—  -  sin <j) ——  + ---------t t 7  (3.46)
dpy dpL p± d(j>
dF  _  dF  
dpz dp\\

Now due to (3.38) when F  = -Fso this becomes

(3.47)

dF  i dF
w *  =  cos^  (3-48)
^  . - dF
W y  =  S1D̂  (349)

(3.50)
dF  _  dF  
dpz dp\\

On the other hand for F  = Fskw the full expression must be used. This means th a t

the final expression on the left hand side of 3.43 can be rewritten:

/ t-» \ dFskw Qs / • i n ' -  i n  * \ dFsku
qs ( \  X B o ) - —5—  = — (p_L Sin 0  £ 0x  -  p± cos 0  B 0y)  • —- -----

dp m s dp
dFsku

=  ~ — B {" 0  r\ jm s d<p

Now return to Maxwell’s equations at equilibrium:

= °  = ” r  (3-51)
d f

—  x Bo = P'oY^^riso Fs0v d p  (3.52)

with the perturbed quantities this is

so that:

S X B > ’  “ ¥  (3'53)
d 1 dE   f

—  x B i = - Q f  +  ^ 0  ^ 2 q sns0 /  Fs 1V dp (3.54)

ik  x Eko, = i^Bkw (3.55)
1/OJ f

ik  x Bkw = ^ 2" -̂ ku; 4" fto /  ^ s'fi'sQ I F skwV dp (3.56)
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3.5. BASE EQUATIONS

(3.54) may be restated by expressing the perturbed B and Fs in terms of E. This is 

achieved by eliminating Bku; using (3.55)

2 p
k x (k x E) =  - -^ -E  + — ns0 /  ^kw P dp (3.57)

C % TTls J

Broadly this approach views (3.57) as a dielectric equation:

(jp1
k x (k x E) + —  c • E  = 0 (3.58)

where e is the dielectric tensor can be reduced even further to  the terse statement

H E  = 0 (3.59)

where the tensor 1Z contains all the physical information in the system. This becomes a 

useful formalism in chapters 4 and 5.

To find i^kc; one must likewise eliminate Bkw in (3.43)

-twF.1*, +  ik • v F *  + ?s(Ek„ + i v  X (k  x Ek„)) • ^  = 0 (3.60)

d 1 dF
(i(cj -  k • v) +  n s^ ) F skw = qs(E kw +  - v  x (k x E ku,)) • (3.61)

where the relativistic cyclotron frequency for species s, fl s, has been substituted for brevity. 

This quantity is introduced more formally on page 13.

In essence (3.61) is the first order partial differential equation:

r\

g y F stu, + X F sklJ = Y  (3.62)

where

and

x  = (3.63)

y  =  g ( E k„ +  l v  X (k  x Eta,)) • ^  (3.64)
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3 .5 .1  In te g ra tin g  F actor

The solution to  (3.62) is found through an integrating factor Xd<̂

^ eI* Xd*Flku) =  YeS*xd* (3.65)

Fs^  = e -S * x i * J *  Y e ! ' Xd<}> (3.66)

Since 7  appears in fis (fi5 = ^ SL) and 7  =  'y(p±,p\\) the integrating factor is calculated 

as follows:

X  = q-(w  — fc||V|| — k±v± cos <f>)
U L

thus

To clean up slightly introduce as =  k±vj_/Sl8 and a very useful identity:

00
e*i*.sint =  J 2  J „ ( a s ) e T ’" ^

n =  — 00

So

00
e±S*Xdtf> =  e±TT7(w- fciril)^ ^  ^ ( a ^ e ^

n = —00

3 .5 .2  T h e  rem a in in g  part o f th e  in tegran d

The term Y must similarly be dealt with:

Y  =
0 *

(  E x N  ̂ ^  COS <f)  ̂u; ~
/

M
(  E x N \ /  9  F \

dpx^sO

Ey + ^  s in  <f)Uf ~ X 0 X Ey • d 171

V E * )
V\\

\  i  y V V k \\ K E * J J K W z F s 0 1

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)
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The expression in the square brackets is

(  E x N ^ COS (f) ^UJ T f  - k {lE x ^

E y + s i n  <t> X k ± E z "I- k^Ex

K E z )
vii

V  i  ̂ k ± E y  j

which leads to

1  E x  N (

E y +

\ E z  ) V

- k- ^ E x + ^ s i n <pEv + ^ E i  

( - ^ c o s  4 > -k- V - ) E y 

\  /  \  ~ u ~ cus v E x +  ,~ ^ r sin ~ cos ^Ez

Or

(a; -  kn )Ex +  (k±vj_ sin (f))Ey +  (k±vL)Ez 

(u — k±vj_ cos <f> — k ^ E y  

(k\\v± cos (j>)Ex +  (k\\v± sin (f>)Ey +  (a; — k±v±  cos (f>)Ez 

Y now looks like this:

1
U)

J s _
fLU>

(a; -  k\\v\\)Ex +  (fciuj. sin <j>)Ey +  {k±vL )Ez 

(a; — k±v± cos (f> — k^v^)Ey 

(&||Ujl cos (f>)Ex +  (k^v± sin <f>)Ey +  (a; — k±v± cos (f))Ez

( cos ( f > W f  ^

sin (f>dFi

dpi.

9F,n
dpx.

\ 22* i\  d P  || /

And gathering terms in the components of Ekw

Y  = Qs
Q,su  

+

{
( j ^dFso dFso

dFs0 , . dFs0

cos <f)Ea

-  V n ) - ^ 7  + sin 4>Ey

+ dFs0 , ^dFso
(fcj_U|| COS +  (w  -  k ± v ±  COS <f>) E.. }

T hat is

Y  = J s _
O .a;

{U cos 4>EX +  U sin (j)Ey +  W E Z}

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)
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where

U = (W -  V l | ) f ^  + (3-78)

and

W  = (k±v\\ cos </>) y * °  -f Uo — k±v± cos <f>) ̂ -F s° (3.79)
11 ap_I op ||

3 .5 .3  S u b s titu t io n s

We have used the identity (A.4) on page 35. As may be seen in Appendix A this leads to 

two more identities:

sm 4 J„(aa) e ^  = ( - i ) J ’n{as)e^in* (3.80)
n~ —oo n = —oo

oo oo
J 2  ^ J nM e in* =  (cos<t>)Jn{a,)ein+ (3.81)

n = —oo 3 n = —oo

These two new identities (3.80) k  (3.81) are immediately useful. Placing the new 

expressions for the integrating factor (3.70) and Y (3.77) into (3.66) the expression for 

Fsku becomes

Fsku = e-?^ w“ fe||i;|l̂ e*a' sin*.

/
4>oo

Y '  Jn(as)7r-{Ucos</>Ex + Usm<t>Ey + W E i } e f c {w- km - nSi‘)‘l'd<t> (3.82) 

Look closer at the integral over 0. Applying (3.80) k  (3.81), gives a new expression
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for J * . . . :

[  E 7T~ IUr ^ - Jn(a°)E* -  W J L M E y  + WJn(a„)Es \ e '̂Vll
J  n = —oo { 1  ±  J

= E ^  l u - ^ - J n(as)Ex -  iUJ'n(as)Ey + WJn(as)E:s\  f̂ e *<“-Vir»n
rn— r̂r\  ̂ ^ S *■'

1 u j §?i U “s) W  *  N
E Qs 

il̂ LO ■%U Jn(as)
a

i(u> — ^11̂ 11 — n ils)

 ̂ W J n(as) y \  E z J  

(  V & U a . )  ^
OO

= Y 1  -iU J 'n(as)
n = —oo

y VF «/n(^,s) y

Now substitute (3.83) into (3.82)

Eku (u> — ^11̂ 11 — nils)
(3.83)

F'shui — £  if lj  smin <f>
10J E

(  U - ^ f z U a . )  ^ 

-iU J'n{a„)

Jnfas) y

Eka
( w  -  A?||V|| -  n i l s )

(3.84)

Thus (3.57) is written:

u r
k X (k X Ekw) — ^ 2  Eko

/ oo
ei ^ n , S ±  V

to; '

(  v f l k U * . )  N

iU Jn[(ie)

 ̂ F̂ Jn(ĵ e) J

Eko (w -  A5||V|| -  nOs)
pdp

(3.85)
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Its last term can now be expressed through (3.84)

/ oo
e;<..sin*9i V '

10J '
a n = —oo

=  - ^ Y l ~̂ns0 J J J  - - ■p±dpi-dp\\d(f)
The p integral is developed as follows:

V ^ t z U a s) N 

- iUJ'n {a ,)

 ̂ n̂(̂ s) J

Eko
y — tTKf)

(w  -  fc||V|| -  7 lf t s )
P dP

(  t t  nSls t  \
U k_Lvx Jn

-W J'n

W J r

Eke (U -  fc||U|| -  nCts)

(  p± COS (f> ^

P i  s in  0

J

p±dp±dP\\d<t>

\  P\\ )

-  / /  £ dP±dP\\

n ^ -o o  W -  *H®II -  n(l‘

(  t t  n Q a  j   ̂
U k±v± Jn

~W J'n 

\  W j n )

Ekeip±J'i

\  PLP\\Jl )

Note that

/•27T

/  ei(' - n)* d4> = 2  iriln
Jo

So the full expression for a general plasma

2   _2 roo roo 00 Q  . £ \

k x (k x Ekw) = — ^Eko; -  27TfjLo V — ns0 /  /  dpidpy Y ]   77-
c2  V ro* Jo J - 0 0

/*27T

Jo

(3.86)

where Qn is the tensor 

/  7 ~ x2Pi ( f S f l ) 2 u J n M  ~ V 2± ( £ . t ) Pi ( £ k )  w ^ K ) N

^ i  ( s S t )  PlV(J'n(as))2 ip \W J 'n{as)Jn(as)

-ip\\P±U Jn(as)Jn(as)PIIP1  ( l ^ t ) P\\P±WJ%(a8) j

(3.87)
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3.6 Assum ptions

If we are to make progress we must now characterize the plasma we wish to  study. W ithout 

going as far as using a unique expression for the distribution of momentum one may choose 

to investigate plasmas with isotropic distribution.

3 .6 .1  Iso tr o p y

Since subsequent sections deal with relativistic effects, the 7 -factor is introduced in the 

usual way: p  =  j m soV. One direct consequence of any isotropic distribution is tha t 

p\\U =  p±W .  This can be shown as follows:

P\\U — p± W  = /ym so(v\\U — vxW )

= irriso
dFs sOf 1 2 \u x so , / &Fi

M i - V h ) - ^ 7  +

+ (~t)|| +  ( - u v ±  +

= 7 m s0

dFs0

dFs0 dFs0 
^  dp±_ V± dp\\ _ 

dFs 0
9p\\l

(3.88)

(u> -  A:||U|| -  nCLs)

= (u) — fc||U|| — nQ,s)

W ith this isotropic distribution, Qn may be written:

/  A  Uj2n M  - i p l  ( £ k )  UJn{as)J'n{as) P ± n  ( ^ )  UPn{as) \

ip \  { t S Y )  UJn(as)Jn(as) p\ U {Jn{as))2 ipi_P\\UJ'n{(Ls)Jn{(Ls)

P\\P±. UJ%(as) -ip\\Pi.UJ'n(as)Jn(as) p*UJl{as) j

(3.89)

As stated in the introduction this is the case throughout this work. This expression 

for Qn is substituted in (3.86). All work presented here entails an isotropic distribution. 

In addition the novel work assumes an e“ e+ plasma.

V
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3.7. ELECTRON-POSITRON PLASMA

3.7 Electron-positron plasma

In a plasma of electrons and positrons in equal number densities and tem peratures, the 

mathematics may be simplified, as was pointed out in the introduction (see Section 2 . 1  on 

page 14 and references [36, 44, 45, 46]).

jPg0 =  Feo therefore U (defined at (3.78)) is independent of species. q$ =  |e| =  — qe and 

so fig =  — fie: similarly aj = —ae. In consequence the following results are true:

*̂ n(ae) ~  «̂ n(ae) (3.90)

Jn(cLe)J'n(ae) = -Jn(o ,e)J 'nM  (3.91)

( j ; ( a F) ) 2 = ( j ; ( a e ) ) 2 (3.92)

Here the basic Bessel function identities (A.2 ) and (A.3) are employed.

All this feeds in to the expression for the last term of (3.86)

e 2 ° ° '  roo roo
-27t//0— neo £  /  /  dp±dp\\ICn • Ekw (3.93)

m e  n = -o o  ^ - ° °

with )Cn:

(  P l { 0 z ) 2 U J l ( a , y  - i p \ { ^ z ) u u ^ ) j ' n{ a , ) a  PiP^ ( & )  UJ*(a , )6  

( e S t )  v J n(ae)J'n(ae)a- p\lJ{J'n{ae) f a  ipi_P\\UJ'n(ae)Jn{ae)S

V P||PJ. ( l ^ t )  - ip ^ p L UJ'n{ae)Jn{ae)S p ftJJ l(a e)<T j

(3.94)

where

1 1

oj — — n fie uj — A?||̂ || +  n fie

= 2 (a>- V | | )
(a; -  /j||U| | ) 2 -  (n ile ) 2

=_________ 1_______________ 1
u> — A:||U|| — nCte u  — /?||U|| +  nCte

_ __ 2n£le_______  . v
(u -  k\\v\\)2 -  (nf2e ) 2
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3.7. ELECTRON-POSITRON PLASMA

3 .7 .1  E lim in a tin g  th e  o ff-d iagon a l e le m e n ts  o f  K n

The sum over the n ’s, Ylm=-oo • • •> can separated into . . .  and '%2n=-i • • • an(  ̂^he

n=0 term. For the (xy,yx) and (xz,zx) elements of JCn the n=0 term  is itself zero. The 

two remaining parts exactly cancel one another, due to (3.90) & (3.91).

Rewriting (3.86), multiplied through by c2, now gives

2 2 oo />oo too
c2k x ( k x E b ) t  a. 2 Eku, = - 2 * 'loC 6  "e0 Y ' dp±dPi]Kn • Ek„ (3.97)

m e ,___  JO J —oo

The left hand side of this equation may be expanded:

c2 k  x (k x Eku,) +  E kw =

uj2 — c2fcjj 0  

0  u 2 — c2k 2

y c2 0 ur c2k2.I /

E.

\ E Z / kw
(3.98)

Some of the remaining elements of the tensors on both sides depend on fcy, this suggests 

tha t the case where fey—>-0 would be informative. In this choice the focus of this research 

has become Bernstein modes. These are wavemodes which propagate perpendicular to  the 

equilibrium magnetic field, B q.

3 .7 .2  P e r p e n d ic u la r  p ro p a g a t io n

Apart from the obvious disappearance of elements dependent solely on fey, the expression 

for U found at (3.78) is made simpler by this choice:

dFe o
U —* CJ-

dp .l
(3.99)

(  u 2

Overall this means that (3.97) may be written in the form:

\  /  \
0  0

0 E.. = -27r0  u)2 — c2k \

0 0 lo2 — c2k2. \  Ez /

1 1  OO
fjL0c z e * n e0

m f

w  roo roo

^ 2  dP±dP\\£n ’ Eko
Jo J —oo

ku;
(3.100)
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3.7. ELECTRON-POSITRON PLASMA

with K,n equivalent to:

(  P l 0  0

p2L U(J'n{ae))2G ipLP\\U Jn{ae)Jn(ae)6 

-ip\\Pi_UJ'n(ae)Jn(ae)8 p^U J 2(ae)a

\

J

(3.101)

while

2u
a —

8 =

to2 — (n€le ) 2 

2 nfL (3.102)

u 2 — (nfie ) 2

To make further progress we must also supply an isotropic expression for the equilib

rium momentum distribution.

3 .7 .3  R e la t iv is t ic  D is tr ib u tio n  F u n ctio n s

This section concentrates on the possible choices of distribution function. As mentioned in 

the preamble, the only plasmas which will be discussed here will have locally Maxwellian 

distributions. This still permits a degree of freedom of interpretation. The classical 

(homogeneous) Maxwellian momentum distribution function has the form:

F,(p) = v e ^ l 2m‘ kT (3.103)

The value of v  is defined by the choice of normalization. In this case equation (3.32) 

gives:

v  = (27rmso kT)  2 (3.104)

To facilitate discussion we define the dimensionless inverse temperature: a =  m eoc2/k T .  

As an illustration an a of 100 is the equivalent of a tem perature of 6 x l 0 7 K; a = 1 is 

equivalent to T  = 6 x l 0 9 K. Thus v  could be written in terms of this param eter, a.

v =
2 'Kmlc2 J  \ m g C 2

(3.105)
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3.7. ELECTRON-POSITRON PLASMA

The fully relativistic Maxwellian distribution is discussed in many textbooks including 

[43]. As they point out, for the same configuration-momentum space normalization, (3.32), 

the fully relativistic Maxwellian distribution is:

Fs( p) = v 'e -* 1 (3.106)

v '  is given by an expression involving the modified Bessel function of the second kind of 

order two ( ^ ( a ) ) :

( 3 , 0 , )

This distribution is also known as the Maxwell-Boltzmann-Juttner distribution. As 

usual 7  is defined by:

 ̂= (1 + ̂ ) 2 (3 -108)

For a non-relativistic plasma 7  = 1 and there is no momentum dependence at all; in which 

case the MBJ distribution is identical to the classical Maxwellian.

Rooney [44] used the MBJ distribution to produce a theory of fully relativistic e- e+

Bernstein modes. Rooney’s theory treated plasmas for which a < 10. The present study

of weakly relativistic plasmas (where 1 0  < a < 1 0 0 ) is explained by the desire to  bridge 

the gap between the unphysical classical Bernstein modes and Bernstein modes in more 

extremely relativistic plasmas.

Which distribution to adopt depends on the energy regime. The expression must ac

curately model the conditions and be easily incorporated in the analysis. In the weakly 

relativistic range there is little difference between the normalized classical and MBJ dis

tribution functions. This can be seen in figures 3.1 and 3.2.

The present development accepts tha t the factors most strongly affected by relativistic 

factors are dependent on mass through the cyclotron frequency. This shows in the common 

denominator of (3.102).

1

lo2 — (nO e ) 2
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3.7. ELECTRON-POSITRON PLASMA

— non-relativistic
- - relativistic

— non-relativistic
- - relativistic

Momentum, p 

Figure 3.1: a = 100

Momentum, p 

Figure 3.2: a =  10

It is essential to note that is not the rest cyclotron frequency. It can however be written 

in terms of the rest cyclotron frequency:

=
7

Furthermore note tha t because of this denominator the whole expression for any element of 

1Z resonates at frequencies close to the the relativistic cyclotron frequency and harmonics 

thereof. This becomes central in the appearance of modes such as the Bernstein modes.

One approach to the weakly relativistic regime, tha t taken by Robinson [47, 48] is to 

make an approximation for 7  in an MBJ distribution. This method invokes the binomial 

expansion of 7 ,

,2V
2  rriQC2

(3.109)

Other approximations are made which result in a dispersion relation which is classical at 

frequencies away from harmonics, u> ^  n£le0 , and finite at harmonics, u  =  nf2eo, where a 

classical theory would place discontinuities (n, an integer).

However the present treatm ent takes a different approach and retains just the non- 

relativistic Maxwellian, for reasons spelt out above. The strong relativistic effects are
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3.7. ELECTRON-POSITRON PLASMA

retained in treatm ent of the denominator of the py integrals in 1Z. Rather than make an 

approximation, this treatm ent retains the full relativistic expression for 7 .

It is useful to register that no m atter which expression is used for relativistic 7 , it is 

always an even function of momentum: this feature stems from the isotropic condition 

laid down in the early stages.

3 .7 .4  A  N e w  A pp roach

Up to this point we have developed a general theory and left certain decisions unmade. To 

advance in the theory of weakly relativistic wave propagation we must specify an additional 

set of conditions:

1 . fcy —> 0 (i.e. U

2 . Fe0 is a non-relativistic Maxwellian distribution

3. the denominator in (3.102) is expressed with a fully relativistic 7

This is an approach which has never been made before. These conditions immediately

mean that:

U = —u)vp±e (3.110)

where, as before

(3.111)

Now look at the yz element of /Cn , (3.101).

fp_i_py UJn(ae)Jn(ae)6

The zy element has the same expression except for a change in sign. Recall now tha t 

each of these elements is under a double integral. In each case the integrand is odd in py 

and the range of the py integral is (—0 0 , 0 0 ). Splitting the range at zero the contributions
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of the two parts of the integral exactly cancel. The )Cn of (3.101) is therefore equivalent 

to  a simpler form with no off-diagonal elements.

In summary (3.100) is

^ (  E x \(  U)2 0

0  u>2 — c2k2L

V o o LO — c2k2. \ E z /

II °° roo PO O

^ ^ f f o c e n *  Y ,  dp± dp[\IC n  ■ Efc,
n = —oo 0m e

(3.112)

where /Cn is equivalent to the expression in (3.101) with only the diagonal elements:

—ve 2moc2 2u>'
to2 — (nO e ) 2

V o o j%(ae) p p ±

3 .7 .5  D ia g o n a liz e d  TZ

Rearranging (3.112) into dielectric form (as in (3.59)) shows tha t the only non-zero ele

ments of 1Z are the diagonal elements. For perturbations of the electric field in the x-, y- 

and z-directions these correspond to three equations where the diagonal elements of 1Z are 

zero. When R xx =  0 the dispersion relation which results corresponds to the Bernstein 

modes. Likewise R yy = 0 to the Extraordinary mode and R zz =  0 to the Ordinary mode.

47



3.7. ELECTRON-POSITRON PLASMA

W ritten out these are:

.2ur0 0  POO p o o  /  Q  \  i  o p

^  =  /^ d p ir fP l lP i  ( j ^ - J  =  0

(3.113)
0 0  p o o  p o o

w - ” ~  - “  47rwJev ^ 2  dpjLdpftp3LJ'n(ae)2e
J 0 *7 00

iL„, = a; 2 -  c2/m -  47rw2 v I I dp\dp\\p3, J ' ( a e)2e 2Z ° 2 — — ^  ^  xn =  0
a;2 — (nO e ) 2

(3.114)
00 /*oo /“OO _  op2 2

=  w 2 -  c 2 f c i  -  4 T O 2e u  J Q J ^  d p ± d p n p ± p l J l ( a e ) e  ^  1 '(~n I i e ) a  =  0
(3.115)

3 .7 .6  In tr o d u c in g  D im e n s io n le ss  V ariab les

To simplify the expressions which follow (and the computer code which will eventually 

calculate the solutions) let us adopt dimensionless variables.

P i
u> = —  m«c i .  =

=  Fll ± fieo
u) =  ‘ " m ec I.. — n
UJPe n _ 0 9  II "2 — 1 _L ^2 I ^2

u P i

f^eO
Uve P ||

^eO
7 2

(3.116)

The argument of the Bessel functions is

k_l vjl fcic 7 Vim e0 r . / Q n - 7\
ae = - j r — = — ------------- = kLpL (3.117)

i le i le0 m e0c

It is convenient too to define a dimensionless element of 7Z, Ra = R n / fl20.

Now look at the integrand of R xx

A {ik)2 (3-118)
In particular

3 (  fle V  { &e0 j m e0v± \ 2 fS leome0\ 2 f m 2e0c2\  , 011f^

=p±{— ) =Pih r  ( 3 - 1 1 9 )
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and

L>* —
uj2   1 _  7 2

(nfi, ) 2 i - ^ ) 2

This leaves expressions for the three decoupled modes which correspond to j 

R .m = 0 and R zz = 0.

Rxx - C j 2 -
OO p qo p oo 2 2

/  dPLdPll(Jn(ae))2e-l%n? -r 1PL2.
n = —oo Jo  [ J 2 ~  g y j

where

_ 4 7 T 2 / a \ |  1 f a

\ k l J ~  Sl2e0Upe V * )  m3eOc3 V^ l

4tt 2 ( m 2e0c2

° °  r oo p oo

Aw = w2 -  fc?. -  V  /  /  dp±dp^p]_J,n{ae)
 JO J -o o

2 7 2e 2

’i'2 — (5)

^ - * 7  POO POO a P2 r y 2

R zz = U2 -  k \  -  4ir&lev  E  J  J  dP-LdP\\P±P\\Jl ( ae)e~Ŝ ~
7 2 - © '

(3.120)

' X X  — 0  5

(3.121)

(3.122)

(3.123)

(3.124)
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Chapter 4

Classical Bernstein M odes

The crucial equation in the following chapters is (3.59):

n - E  = o

As seen in Section 3.7.5 three independent modes of propagation are available: E x ^  0, 

E y ^  0, and E z /  0. The first of these means, since propagation is perpendicular: 

E  1  B and k || E  -  a longitudinal mode. Similarly E y ^  0 implies tha t E  1  B  and 

k  1  E - a  transverse mode. Finally E z ^  0 will give E  || B and k _L E - likewise, 

a transverse mode. The longitudinal mode corresponds to a purely electrostatic mode, 

whose dispersion relation is given by R xx = 0, the Bernstein mode. The two transverse 

modes are respectively R yy = 0, the Extraordinary, and R zz = 0, the Ordinary Modes.

4.1 Classical Bernstein M ode

The Bernstein mode propagates perpendicular to  the magnetic field and resonates at 

electron cyclotron harmonics (a; «  n fle, with n an integer). This mode was first described 

by Bernstein [49] and is treated in most textbooks, however all these textbooks endeavour 

to  treat only an electron-ion plasma. The usual static ion assumption is invoked early in 

the treatm ent, see [37, 38, 39, 42, 50, 51].

There is a whole body of research into Bernstein modes in electron-ion plasmas. As 

will be seen the e“ e+ modes are very similar in form to electron Bernstein modes. The
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equation for the latter is usually derived with the assumption of stationary ions. If this 

is not done, a low frequency phenomenon due to the ions must be accounted for - the 

ion Bernstein modes. Since some schemes of plasma heating in tokamaks rely on mode 

conversion into ion Bernstein modes, these modes are an im portant research topic, see for 

instance [52]. They are reviewed in a recent paper [53].

The early experimental work on Bernstein modes is described in reviews by Crawford 

[54] and Stix [55]. Recent experiments on NASA’s Space Shuttle show electron Bernstein 

modes very clearly in the E arth ’s ionosphere [56].

4.2 Dispersion Relations

4 .2 .1  E le c tro n -io n  p la sm a

The electron-ion result may be derived here from the general dispersion equation (3.86) 

with an isotropic distribution function — thus (3.89) holds.

If the ion contribution to the sum across species is neglected (the static ion assumption) 

the three modes approximately decouple for perpendicular propagation. Put another 

way the resistivity tensor is essentially diagonalized. This approximation is handled in 

textbooks.

For the present purpose note tha t the R xx element is decoupled from the other modes 

so it is sufficient to examine this element in isolation. Assuming the isotropic momentum 

distribution is the non-relativistic Maxwellian, U is defined at (3.110). Thus equation

(3.86) gives the following expression for R xx:

(4.1)

where as before v  is defined as

 ̂27rm(jc2 J  \m,QCi )

Now if low frequencies are avoided, the fact th a t ra;!>m e means th a t to  a good ap

proximation, the ion contribution to the sum over species is zero. Mathematically tha t
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is
2

r f V d p i ,  £  j 2 (« . )e- ^ = o
11 m e O « o io  J - oo "  f - L  “> -  Vll -  n f i e \ f c ± » ± /

 qp
--------  I   l .l~in.-\p

V ii
(4.3)

For perpendicular propagation (z.e. fey—>0) the last term from the equation above 

becomes:

The non-relativistic assumption has permitted the separation of the double integral. 

Taking each integral in turn:

 2

[  dp||e 2meoc2 =  I * = J — m e0c (4.5)

V(=bO V "

The very convenient identity mentioned in Appendix A applies directly to the p± 

integral — (A.10).

r d p & ± J i ( £ ^ - ) e ~ * S f r  =  (  1 exp -  kJo Uoroeo' 2 (^ )  I 4(*t?)J I2 toO\  \ 2mloc2J J

So tha t (4.3) is

u, 2

Using dimensionless parameters defined in (3.116) (so tha t for instance k±_ =  fcj_c/Deo) 

and introducing A = k \ /a , one can write out the whole expression for R xx = R xx/£tl0 =  0. 

Note tha t there has been a great deal of cancellation.

E !S 1 <4-8)
n = —oo

Figure 4.1 illustrates one example of the dispersion curves which result (here £)pe =  3).
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The Bernstein Mode in non-relativistic plasmas
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Figure 4.1: e -ion plasma 

Note too that

Figure 4.2: e e+ plasma

OO 9n l 00 „ 2  n
E  T T 7 » y J»(A) = E  T r w J»(A)
=  —oo v u /  n =  —oo Vu)/

(4.9)

So tha t (4.8) may also be written

u> _ . 2  e A n2In(A)
~ Upe A  2 ^  x _  / n \ 2 

n = -o o
(4.10)

4 .2 .2  E le c tr o n -p o s itr o n  p la sm a

For the e~e+ case on the other hand the static ion assumption is not valid, however the 

equal mass assumption is. To construct the non-relativistic equations one must return to 

the equation for the R xx (3.113). Recall tha t this equation comes after the adoption of 

the non-relativistic Maxwellian distribution and take the non-relativistic limit, i.e. 7 = 1 ,  

throughout.

° °  roo poo /  O  \   ̂ av
Rxx = W2 -  ± ™ 2vev n 2 ^  J  dpLdpl]Pl  J l ( ae)e 2mfi° c2 ^ “

where v  is defined in (4.2).

(n tley
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Now rearranged this is:

2 „ 2 f n eOm e0\ 2 ^  “ 2« 2 r r ° ° j  j , 2 ,R” = u  - 4T̂ V [ - k r )  ^  -  (nSl'0)2 Jo J _ J ^ dn P ^ n ^ >  2m‘ ° ‘

(4.11)

Note that the double integral here is exactly tha t found for the electron-ion case (4.4) 

and so may be replaced by the expression

27r mg0 c3 (  fc^c2\  /  k2L
a a V aSl2e0J n \a S l2e0

c
e x P  - t S t  r S r  ( 4 - 1 2 )

Switch to dimensionless parameters again (see (3.116)). The expression for the com

plete term involving the double integral now reads

- ^ ( 4 ) 1  MS) <4,s)
Now for clarity introduce A = k \ / a  and write out the whole expression for R xx =  

-Rrcc/^eO

A .,  .  -  4 „ 4 >  £  ( I )  * / f = £ . - * ( . ( * ,  ,4.14)
71= — OO '  '  1 VU>/

Gathering all the constants in the rightmost term above gives some reassuring cancel

lation.

n = —oo x 7 x VtW n = - o o  \u » /

When Ras = 0 for perpendicular propagation in an e- e+ plasma, the dispersion rela

tion for Bernstein Modes is given by

6 2 = C? 2e A ^  ™2 4 (A)*pe A £  (4-15)
71= — OO '7i2

This relation is illustrated in figure 4.2 and again in the diagrams of Section 4.2.

4 .2 .3  C om p arison  o f  e~-ion  and  e"e+ d isp ers io n  re la tio n s

Comparing the dispersion relations for each case (4.10) h  (4.15) shows tha t they are almost 

identical - the sole difference is a factor of two in (4.15).
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4.2. DISPERSION RELATIONS

A point in a dispersion curve corresponds to an oscillation at a permitted pair of 

frequency and wavenumber. When these points lie on curves in frequency-wavenumber 

parameter space, as they do here, each curve defines a mode.

For both types of plasma there is a critical frequency above which the shape of the 

Bernstein modes changes. Modes above this frequency display gaps in the frequency 

spectrum away from nHe; below this, the frequency spectrum is continuous. The special 

symmetry involved in the theoretical treatm ent of the e~e+ plasma still allows such fre

quency gaps to occur, though in this case the theory leading to these gaps is exact and

not a consequence of approximation. The only visible difference is the ‘doubling’ of the

critical frequency. As can be seen by comparing the figures 4.1 and 4.2 for the same plasma 

frequency.

It is instructive to  treat the low wavenumber/nonrelativistic limit: note th a t for a —> oo 

or k±_ —► 0 {i.e. A —> 0) — I± \ {K ) /K -^ l /2  and 7n(A)/A—>0 (for n ^  ± 1 ,0 ), (4.10) and 

(4.15) respectively reduce to simple equations:

=  ^pe + 1 (4-16)

and

w2 =  2 u,2e +  1 (4.17)

In both cases the result is the hybrid frequency, w = ,/w 2 +  f l2.

The hybrid frequency and the critical frequency are one and the same.

4 .2 .4  D isp e r s io n  cu rves

The diagrams which follow illustrate classical Bernstein modes in e“ e+ plasmas, as calcu

lated in (4.15). They show curves for different values of plasma frequency.
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4.2. DISPERSION RELATIONS
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Figure 4.3: A plot of u>ep =  1
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Figure 4.4: A plot of u ep =  1.5
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4.2. DISPERSION RELATIONS
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Figure 4.5: A plot of Coep =  2
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Figure 4.6: A plot of Coep =  2.5
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Figure 4.8: A plot of u ep =  3.5
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4.2. DISPERSION RELATIONS
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Figure 4.9: A plot of cDep =  4
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Chapter 5

Relativistic Bernstein Modes

All sorts of funny thoughts 

Run around my head:

“It isn’t really 

Anywhere!

I t’s somewhere else 

Instead!”

in Halfway down by A.A. Milne

For e“ -ion plasmas, the introduction of a weakly (or fully) relativistic treatm ent sees 

a broadening of the frequencies at which resonance occurs, and a downshift in those 

frequencies as thermal velocities become more relativistic. Waves at resonant frequencies 

are damped as a direct result of modifying the classical static ion dispersion relation to 

accommodate relativistic corrections [47, 48],

Previous work in e- e+ plasmas has handled the fully relativistic regime (where a < 

10)[44] but not a weakly relativistic regime (10<a<100).

The purpose of this chapter is to develop the novel treatm ent for weakly relativistic 

e“ e+ plasmas outlined earlier (see Section 3.7.4). Our goal is a treatm ent which results 

in figures which compare directly with those of chapter 4. At the risk of anticipating the 

theory, we present one such figure, figure 5.1.
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5.1. THE EXPRESSION FOR R Xx

10A 122 6 80
k

Figure 5.1: The Bernstein Mode in weakly relativistic e e+ plasma (a =  10)

The effects noted in the weakly relativistic e“ -ion plasma are mirrored in the e- e+ 

treatm ent. However no approximation dependent on the disparate masses of species is re

quired and the damping is consequently not present. Furthermore in the ultrarelativistic 

limit (a —» 0) of the weakly relativistic dispersion relation for e"e+ plasmas, the Bernstein 

modes are not present and only the plasma oscillation remains perpendicular to  the mag

netic field, consistent with the predictions of the fully relativistic analysis of [44]. In the 

classical limit, the dispersion relation can be shown to relax to the non-relativistic form.

5.1 The Expression for R xx

5 .1 .1  S im p lifica tio n

For now, le t’s narrow our interest to the expression for R xx found at the end of Chapter 

3 (3.121):

oo /*oo poo 2 2
R Xx = u 2 - C  V  n2 /  dpj.dp||(Jn(ae))2 e~ 2m2 c2 T p±

n = - o o  •'o  h 2 -  )
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5.1. THE EXPRESSION FOR R x x

where

47T o  I mZnC20 c2 \  _  4tt 2
Q2 Pe 
i4eOJeO \  "'X

Rearrange the part of the integrand in (3.120)

(% 2 _  , n i_ w2 ;  +  -,2

/_o_\ I 1 /  a
V2ti■) m l0c3 \fc 2

7

( t 2 -  £ )  ( t2 -  g )

n
— 1 +  ^ 2’ -.2 n

7  _  3*J
(5.1)

So that:

if™ = u> -
°°  /*oo /•oo

C V W  /  (m?oC3) # ± # | |P ± ( ^ n K ) )
 7 o  7 - 0 0

2 _a£i / . n 2

e 2 1 + p - /2 71
7

(5.2)

5 .1 .2  B e sse l Id e n tit ie s

To tidy up a few more items use the identity (A .l)

J - n (a) = ( - 1  )nJn(a)

Now the integrals are summed over index n; with the range (—0 0 , 0 0 ). Compare 

the parts of the sum ' ’ ’ an(  ̂ E i ^ - i  • • • ( »  =  0 gives zero). Since J l n(a) =

( _ l ) 2n j 2 (a) _  j 2 ( a) and all the other occurrences of n are of even order both parts will 

have identical elements.

X  -  = 2 E (5.3)
71=1

Thus

Rxx = 0? -

\2  - 2E e 2

0 0  f  roo poo

2(meOc3) CE  ^  /  dVLdV\\VL{Jn{ae))
n=l L J° J ~°°

4  roo roo -

+  ̂  /  /  dp±dp|| —— ^ - ( J n K ) )
W Jo 7 - 0 0  7 2 -  gy

Now 2 (TTCg0c3) ^ =  4o;2ea5/ 2/  ^\/27r fc2 ^ , which leaves:

2 - 2£l e 2

Rxx = U2 -  4(J2
2 - 2^. e 2

0 0  „  4  / • o o  /-OO ~ .2

+  X * ? /  I  dPLdP\\ 2n=1 w 7o 7 - o o  7 ^2
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5.2. THEORETICAL TREATMENT

Now examine the first sum: 

a* / j _ ' .2 op
e 2 (5.4)(4) s  ** r  i y ±d*"*±wu±))

The double integral may be simplified here. First deal with the pj| integral by quoting 

the identity:

f°° / 2 tT
L dp" e' 2 = v t

The p_l integral requires a different identity:

.2 1 - ( £ )  .  ( k \\ e 2 -  - e  \  / In I

(5.5)

roo ^

JO

Thus the whole double integral expression is:

r J Z
-  /  

-4 u >2 4 L
p V 2 tt

3(J2
/n I —  \ a

Now according to [57], there is a further identity

e -A/ n(A) 1
£
71=1

n
A

(5.6)

(5.7)

(5-8)

with A = k \ j a .  This means the first term of the sum becomes

2 _ol_ / _1_\ s f a  ( l  fc2̂
pe (5.9)

And so we have the expression

'  ‘ ' A2 /*oo

■R** = U2 ~  2 0>2pe 2 y dP||
7&J

(5.10)

5.2 Theoretical treatm ent

The integral part of the final term of (5.10) is a double integral in p± and p^:

°4
/■°° .  q p j e— 2
/  P±{Jn(k_LP_L)Ye 2 (5.11)

Jo J -oo ( 7 2 -  g j j
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5.2. THEORETICAL TREATMENT

Bearing this in mind we now aim to replace one of the parts of this double integral 

with a special function. In the event one special function is not enough but the principle 

is the same: there are good routines for calculating special functions which can then be 

adopted by the code.

Now it can been seen tha t the py integral has a discontinuity when 7 2 =  The 

denominator takes the form:

(5.12)

Two related quantities are defined here:

n  -— 1 if u) < n (5.13)

1 — if uj > n (5.14)

Three situations may arise 

C ase  I Cj < n and pj_ < bn 

C ase  I I  cD < n  and p± > bn 

C ase  I I I  u  > n

The first two cases must be considered together. Here d> < n  and bn is used. 

For each n the p± integral is split around bn:

correctly handled. On the other hand, for • • •] has no such problem, (5.12) may never 

be zero.

The third case is separate: again there are no singularities to worry about. is always 

greater than 0 by (5.14).

In the case of /□” [•••], case one, the denominator (5.12) may become zero. Conse

quently evaluating the py integral must be done by contour integration so th a t poles are
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5.2. THEORETICAL TREATMENT

5 .2 .1  C ase I: u  <  n  and  p\_ <  bn

a p  it
r b n   ̂ ap \  r o o  e ---- 2 "
/  P±(Jn(k±p± ))2e-  2 dp_I /    :

J O  J —o o  (  -y 2 — ^ 2 \ dh
7JJ

(5.15)

Of primary interest here is the behaviour around the zeros of the denominator (5.12). 

Make a change of variable: (32 =  bn 2 — p2L hence p±dp± =  —(3d(3 

The whole double integral is:

-2
-P||f bn / l \ 2  a(b2 - 82) roo p - - f -

I  p { U k ± M - P ) * j )  e -  2 dh (5.16)

Now the py integral may be written

r h  U-Um fJ-LP\ -  P2
(5.17)

As stated previously there is a discontinuity for pjj =  ft2 and contour integration is 

necessary.

The integral has two simple poles. Take a closed integration path as follows: a semi

circular path in the upper half of the complex plane; return along the real axis making a 

small semicircular indentation into the UHP above each pole (either ±(3). The residues 

at the poles are:

_ \P 2
Res p=p

e 2

2(3

Resp = _ 0

/
e 2

P \ ~ P 2

 a 82
e 2

Contour integration is described in more detail in Appendix B. Using the results 

described in tha t appendix for poles lying on the contour of integration means th a t the
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5.2. THEORETICAL TREATMENT

corresponding closed path integral may be calculated

r  e - ° t  r  e - 4  I e-*J- e-
L w ^ dp =  p L w ^ d h - " \ - ^ r + -

a/3 q/3
e 2 e 2

2(3

=  ( 5 - 1 8 )

The integral which corresponds to the integral in (5.17) is the principal part integral 

as defined in the appendix.

We intend to ‘cancel ou t’ the denominator of (5.17). To this end propose a new 

substitution, py = flu. This leads to

lim P  A e 2 fidu =  \ lim P  % * du =  1A  ( ( 5 . 1 9 )i~°° J - l I32«2 - P2 P *■->“ J - L ^ - l  P V 2 / v 1

If x = afl2 (2, this manipulation defines the function A ( x ), i.e.:

/ L p—xv?
—— -d u  (5.20)

. L u  ~ 1

The double integral is now written

[ ' ( U k L  { b l - P 2) * ) ) 2 e - ' - ^ ^ d / ) A  ( ^ )  ( 5 . 2 1 )

Taking the derivative of A (x ) with respect to x gives

9A( X)  f L o e ~XU2 1 /r— = lim P  /  —u —z— -d u  (5.22)
OX L—+oo J _ L ul — 1

so that

a . ‘J M  ,
dx  L—►oo J_ L v ' tt2 -  1

= — ^lim p j  e~xu2 du = (5.23)

Now show tha t A(0) =  0.

A (0 ) =  lim P  f  ~2~ -du  (5.24)
L-+ oo J _ L UL — 1
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5.2. THEORETICAL TREATMENT

Split the denominator by partial fractions

u2 — 1 u — 1 u + 1

Thus

A(0) = - lim P
L—>oo

f L 1 . f L 1
/  -du  — lim P  I  -du

J - L u  ~  1 L —kx> J  u + 1

(5.25)

(5.26)

Now the second term in the expression on the right hand side is identical to the first 

under a sign change in the dummy variable. That is to say
ru = L  i ru '——L i ru '—L  i

— lim P  /   -du  =  — lim P  /  — -— - i —du') = lim P  /  —— -du'
L->oo J u——L U + 1  L —*oo J ui- l  ~ u  + 1  L —*oo U — 1

(5.27)

Leaving just

A (0) = lim P  [  — —̂ du =  0
L—too J —h U 1

(5.28)

This is true because we can make a substitution /s = u — 1 giving an odd integrand. 

To solve (5.23) we propose an integrating factor. Try ex .

(5.29)

thus

A = e
* j f  7 P dx< + °

■  {L 'i-}
Finally, substitute x' = w2, and this becomes

A = -y/we~x j  
Jo

yfx ew2

W
( 2  wdw)

= —2^/xe x I ew dw
Jo

The full expression for the double integral is:

1 V 2 a ( b ^ - /3 2 ) af32
d/3 (5.30)

For computational purposes note that the integral function D{rf) is the Dawson inte

gral. The definition is given along with an illustration in Appendix A
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5.2. THEORETICAL TREATMENT

5 .2 .2  C a se  I I :  Cj < n  a n d  p± >  bT

a.p ||
roo  ̂ roo e — 2

/  VL(Jn{kLpL))2e-  2 dpL /   T \ dP\\ (5*31)
Jbn j - o o  ( j 2  _

Here as before the first stage is to change the variable p2L = b^ + 82 so tha t p±dp± =  SdS 

The py integral is now

•L *f°° e 2 f  e 2

pL ^ dh= <5-32)
To simplify this another change of variables is called for: py =  6u thus (5.32) becomes

*2 ..2f L  e- ^ L  1

£ S .  J - L p *  + p dh  =  ^  j  J _ L~ ^ r r du <5-33)

Using these variable changes together means tha t the double integral is re-expressed

as:

roo 1 a(b^+s‘) 1 rly e \ 2

L™oo J 0 6 ( J n ( k l - ( bn +  62) 2 ) ) 2e~ 2 dS  S j _ L 'u 2 + ~i ' dU ^ * 34^
i  ,  ° ( bn + ̂ 2 ) 1 f L  e (° 2  ) U

^ j m  / d ( . / „ ( f c i  (O'  +  d ' T

which simplifies to:

roo  j o (b ^+ 5 2 )  /

J  (J»(*i (6» + 52) *))2e“ B ( ^ - )  (5.35)

where

{ a82\  [ L e ~ ^ ~ ) u2
B  \ —— ) = lim /  — ^— -—du (5.36)

V 2 )  L—*oo J_L u2 + 1  K J

Now let y = an^ examine B(y)  on its own. W hat is 5(0)?

f L  1
B  (0) = lim / —z— -du  

W  L —>oo J _ [ JU2 +  1

rL i
Jo tt3 + l'

"L
= 2  lim I —̂ ——rdu

L—►oo

= 2  lim [tan - 1  Tl
L->oo L J

B  (0) -  7T
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5.2. THEORETICAL TREATMENT

Now take the derivative of B  with respect to y :

dB(y) rL
dy

It follows that:

/ l  e~y
(_ “ 2) ^ T T du (5'37)

■L u  +  1

* M - S { y ) =  lim f L -  1 ) ^ - d u  =  -  Urn f  du = - . / l  (5.38)
d y  L—*oo J_l K ' U2 + 1 L-+oo J_L \ y

Thus the problem is reduced to the differential equation:

As before the standard approach is to propose an integrating factor (here e~y) tha t 

way:

A y {e- VB) = - e- y J l  (5.40)

thus

B  -  ey
J 0v ^ w d y ' + C 'e*

= n e V < - ^ f o W d y ' + 1

Make one last substitution, y' = w2, and this becomes

1 fy/v e~w2 
—7= I  (2wdw)
V* Jo W

B  = irey < 1 —
y/* Jt

rVv 2

= X-^Io e~W'dWj
= irey ( 1  -  erf {y/y))

Note tha t in the final stage of this algebra, the error function, erf, appears. For more 

information about this function see Section A.4.1 in the appendix.

Write out the full expression

f ° °  - 1 ° ( bn + 's2)  „x2 (  Infj2\
j f  (Jn(kL (bl + 6>)>))>e-± ^ d S « e ^ ( l - e H U ^ - \ )  (5.41)

So tha t the final expression for the double integral is then

7r e = #  J ^ d S i U k L i b l  + S ^ f e - ' - ^ ^  / 1 -  erf ( \ / ^ )  } (5-42)
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5.2. THEORETICAL TREATMENT

5 .2 .3  C ase III: Cj >  n

The solution of this case is close to tha t of Case II. In this regime the quantity qn defined 

at (5.14) is appropriate. The double integral is

ap|
f  ^  A a f t P OO  g  2

/  VL{Jn{ki_PL))2e~ 2 dp J. /  -7---------- ^ p y  (5.43)
7 o  J - o o  ^ 7 2  _

Here as before the first stage is to change the variable p2 =  € 2 — <?2 hence p±dp±_ =  edc 

So tha t the py integral is now
.9 ,0

apfi apfi
*L — •/ °° e" 2 f  e” 2

<5'44)

To simplify this another change of variables is called for: py = e-u thus (5.44) becomes
,2 .,2

rL  e X  / - L e - ( ^ ) ^ 2
lim / - -dpy = lim -  / — ^— — du (5.45)

L —*oo J _ L € U +  € 11 L -+00 € J _ L U2 +  1

Using these variable changes together means tha t the double integral is re-expressed

as:

f ° °  ~ , 0  ox 1 o a( g2~<£) 1 f L e ~ ^ ~ } u2
lim /  e(Jn(fcj_ (c -  qn) 2)) e 2 de -  (5.46)

£-*oo 6 J —L

which simplifies to:

(JnCk 1  +  €2 ) 2 ))2 e~  ̂ n2 e c  (5.47)

where

. 2 \  r L -a-v
C ( ) = lim [  -—5— -—du (5.48)

V 2  ;  L- 0 0  7 _L u2 + 1  v ;

This C is identical to B ( y ) at (5.36).

C (z ) = Trez ( 1  — erf ( \ fz))  (5.49)

Write out the full expression

/ OO !  a (e 2 — q2 )  2 (  I n £ 2 \

(Jn(kL (e2 - q l Y ) f e -  2 de 7re ^ “ (1 -  erf ( y —  j ) (5.50)
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So tha t the final expression for the double integral is then

2 roo  ̂ j |

TTe-^  /  de(Jn(kj_ (e2 -  q l ) 1))2 < 1 -  erf

5.3 A Single Integral Form of R xx

Recall th a t the aim of the previous section was to  reformulate the expression for R xx. 

Q uadrature of a single integral with a special function is more efficient than quadrature of 

the original double integral in (5.10). The form of the dispersion relation used from this 

point on is:

4u 2 a f  n4
Rxx = U2 -  2u>pe -  ^ 2  {Case I +  Case II}n or {Case III}n (5.52)

k L ^ 2 7 r 71=1 ^

where the cases refer to (5.30), (5.42), & (5.51) respectively. Cases I and II arose from 

either side of p± = bn: as a result their contributions are summed. Which cases are 

involved is decided by the index value of the infinite sum, n, (i.e. whether it is greater 

than or less than the value of the frequency, o>).

(5.51)
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Chapter 6

The Computational Strategy

W ith expressions for the dispersion relations for e~e+ plasmas in both the non-relativistic 

and weakly relativistic cases, the next step is to plot the dispersion relations for a range 

of parameters. Naturally this job falls to the computer. Any code then must perform two 

tasks: it must calculate the value of an expression for R xx on a grid in (u), &j_) space; and 

it must locate the points at which that surface intersects the R xx =  0 plane. This code 

should take as input a set of basic parameters: ujpe and if necessary a =  me2/k T .  The 

output should be a series of (u>,fc_i_) pairs for which R xx = 0.

Such a program was eventually written in a modular form and can be found listed in 

Appendix C. The ‘front end’ is the module bmodes. c. The main function in bmodes. c calls 

functions in either of two function files non . c or w eakly. c depending on which routine is 

needed. In each of non .c  and w eakly.c there is a routine which calculates the value of 

R xx for a (u>, k±) pair.

While a regularly spaced grid of values of R xx is generated for pairs of parameters, the 

sign at each point on the grid is monitored. More precisely, for each k± column of tha t 

grid, any change of sign of R xx between sequential values of Cj denotes a potential intersect 

point. Provided R xx is continuous we can be certain tha t these values of a> bracket ro o t, 

which corresponds to the true intersection, R xx =  0.

Zero-finding is then performed by the routine z b re n tO  in z b re n t .c .  This routine is 

called in bmodes.c. The algorithm used in this routine, Brent’s algorithm, is a hybrid of
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one-dimensional methods: bisection and inverse quadratic interpolation. If the function 

behaves smoothly an inverse quadratic approach is very effective at zero-finding. As 

described in Numerical Recipes [58], the algorithm switches to  a bisection step if the 

function is not smooth.

In addition to  zero-finding this code makes use of a number of other Numerical Recipes 

routines, namely those for Bessel functions (standard and modified -  first kind), for the 

Dawson integral and for quadrature. The interaction of the various functions is summa

rized in 6 .1 :

W eakly  re la tiv is ticN o n re la tiv is tic
E nergy?

weakly, cnon.c

bmodes.h

zbrent.c

bmodes.c

Figure 6.1: Modular structure

6.1 The Front End

The code in this file deals with the user options and ensures tha t the correct routine 

(non-relativistic or weakly relativistic) is adopted.

Using command line information the program then opens and names a data file; adds 

informative comments; loops through wavenumber and frequency; finds and records the 

R xx =  0 contour in (fc±,o>) space; and all the while, tells the user what it is doing.

Some basic errors are trapped: if the datafile is unclosed for whatever reason at the 

end of an execution a warning is given; or, if too few or too many arguments are given at 

the command line, the usage message is given.
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6.2. THE CLASSICAL ROUTINE

On the very first pass through the k±_ loop, comments are written to the data file. 

That way an immediate record is made of the parameters under which the subsequent 

data was produced.

Each first pass through the u  loop skips all the commands in tha t loop due to the 

condition on check. On every other pass the values of two successive R xx{Ci)) are compared. 

If they are of opposite sign the zero finding routine is started and a best value for u>, ro o t, 

is found. Just in case this is a discontinuity (and not a zero) the value of R xx( r o o t )  is 

squared and only if that number is still less than 1 . 0  is the (fcj_,root) pair written to the 

data file.

6.2 The Classical Routine

non. c contains a routine tha t numerically calculates R xx for non-relativistic e~e+ plasmas. 

This section of code simply calculates:

71=1

This is a version of (4.15) with the sum truncated at n = 10.

6.3 The Weakly Relativistic Routine

w eakly .c contains a routine that numerically calculates R xx for weakly relativistic e~e+

plasmas. In particular this routine calculates a value of R xx for a given u:  the value of k±

is determined externally in the main routine.

The additional problem for the weakly relativistic routine is tha t of quadrature. The

expression for R xx ,  (5.52), contains three integrals which must themselves be performed.

To solve the equations (5.30), (5.42), & (5.51), a practical scheme had to  be devised.

This section of code calculates:
ACP" (12 ^  \ 7 7 ,4

Rxx =  U>2 -  2tipe -  J e- ^ 2  ~*2 { C a s e  1  +  C a s e  ° r  { C a s e  m } n

k L V 2ir  n = l  W

This is simply a statement of (5.52) with the infinite sum truncated at n  =  6 . Case I

refers to  (5.30); Case II to (5.42); and Case III to (5.51).
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6.4 Quadrature

The equations (5.30), (5.42) and (5.51) do not permit analytical solution in any obvious 

way. The next step is naturally to attem pt a numerical approximation to  the solution. 

The midpoint rule for integration was initially chosen because the limits of the integrals 

to be calculated were indefinite.

Quadrature is performed using the Midpoint routine (midpnt ( ) )  from Numerical Recipes 

[58].

6.5 Truncations

Our aim is to be able to plot the zeros of R xx for frequencies as high as 10fieo- We 

would rather not exclude any details of behaviour: neither do we wish to spend hours of 

computing time for details which are only marginally more accurate. A balance is struck 

between a swift program and an accurate one.

6 .5 .1  T ru n catin g  in fin ite  su m s

In both 6.2 and 6.3 the infinite sum must be truncated somewhere. The largest value for 

the index n is chosen as 10 in section 6.2. The factor In /{u)2 — n2) is only significant when 

(d>2 — n2) «  0 so the choice of a maximum frequency of 100eo also caps the indices which 

it will be necessary to sum over. Effects for larger index are only significant at frequencies 

greater than 10fleo.

The upper limiting influence in section 6.3 is the processing time. Runs of the code 

have been made at different maximum indices: 4, 6 , 7 and 8 . At n  =  8  the program took 

many hours to run (depending on the number of points on the grid). Comparing the results 

of code which used these different indices showed tha t very little detail was added in the 

jumps from 6  to  7 or 8  in the frequency range below n — 6 : a great difference was apparent 

in the n — 4 case. A decision was made to cap the index for the weakly relativistic routine 

at 6  since runs took the order of half an hour to complete yet all significant detail was 

retained in the frequency range of interest.
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6 .5 .2  C ase I

The simplistic statement of the case I integral is:

( j n{kL { b l -  D ( ^ y J  (6.1)

Here D ( x ) is the Dawson integral, (see Appendix A), defined as:

D (x ) =  e~x2 f  e*2dt 
Jo

There is a Numerical Recipes routine (in dawson.c) which swiftly calculates this integral. 

In the code this integral is treated as a special function.

The (3 integral, however, can only be evaluated numerically.

6 .5 .3  C ase II

This case deals with an integrand which includes an erfc(a;) function. This function is 

described in more detail in Appendix A. As illustrated there, for argument x greater than 

2, this function may be approximated as 0. The infinite limit of the integral is misleading 

since the overwhelming contribution comes when argument x is less than 2 .

Now the double integral (5.42) is:

j r e ^ “ j f  d6(Jn(kL (bl + S2) J ) ) V   ̂ "2  ̂ 1 1 — erf j
W ith virtually no loss of information this is now calculated as:

„=# f W .  K + <■) * ) ) V ^  | j  („ 2)

6 .5 .4  C ase I II

As in the previous case there is an erfc in the integrand. The difference lies in exactly 

where these cuts may be introduced.

Rather than take the upper limit of the integral as infinite one recalls th a t for arguments 

greater than 2, erfc(x) = 0. In this case the argument is y /a /2 t .  er fc(y /a /2 t) =  0 

corresponds to a value of t greater than y/8/a.

76



6.5. TRUNCATIONS

So in the code the integral which needs to be calculated is:

de(Jn(kL (e2 -  ? 2 ) f ) ) 2 j l  -  erf j (6-3)

6 .5 .5  I n i t i a l  v a lu e s  fo r  Cj

In addition to  the problems above there are computational limits. The initial value of the 

frequency, Cj , is bounded below by the presence, in each case, of the exponential factor: 

T  =  e_ab" /2. A quick calculation shows tha t if the computer can make no distinction 

between 1 0 - 4 0  and zero whenever T  < 1 0 ~ 40 the resulting code will be returned a zero. 

To avoid this, the initial value of Cj is never set below 0.5.

The problem is most pronounced for index n  =  1. exp(—ab^/2) < 10- 4 0  is equivalent 

to  ab^/2 > 92 and for n = 1 this is:

1 , 184
t -2 -  1 > ----us1 a

o a
uj < ----------

184 + a

This results in a less arbitrary lower limit for the initial value of Cj . For a =  10, 

Cj < 0.23 will effectively give T  =  0: the equivalent condition for a =  100 is Cj < 0.6.

In fact to improve computing time conditions have been placed on all such exponential 

factors so th a t when their exponent passes below 14 the result is taken to be zero. This 

is reasonable since such small contributions will be swamped out by those contributions 

with exponents greater than 14.

77



Chapter 7

Results

J I 6 om  CTeHy He n p o u in S e in b

You can’t break through a wall with your forehead

Russian Proverb

This chapter ties in strongly with the preceding chapters. The diagrams shown here 

are chosen to match those produced for the nonrelativistic case in Section 4.2. These 

diagrams contain the output from the program described in the previous chapter.

7.1 Dispersion Curves

The notation remains as before, see (3.116): Cj is the frequency in units of rest electron 

cyclotron frequency, Heo; k± is the perpendicular wave number normalized so th a t k± = 

c/ji/Oeo; and a = me2/k T .  Notice tha t when the phase velocity is equal to the velocity 

of light in a vacuum {i.e. uj/kj_ = c) C)/k± = 1.

The first series of plots deals with the behaviour of the Bernstein modes for a fixed 

plasma frequency (u)ep = 3). The inverse tem perature is changed across the “weakly 

relativistic” regime between a = 100 and a =  5, figures 7.1 -  7.5.
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7.1. DISPERSION CURVES
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Figure 7.1: Bernstein modes for a =
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Figure 7.2: Bernstein modes for a = 50 and u ep =  3
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7.1. DISPERSION CURVES

Figure 7.3: Bernstein modes for a =  20 and u>ep =  3
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Figure 7.4: Bernstein modes for a =  10 and u>ep =  3
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7.1. DISPERSION CURVES
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Figure 7.5: Bernstein modes for a = 5 and u>ep = 3
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7.1. DISPERSION CURVES

It is also informative to observe the way plasma frequency affects behaviour. Holding 

a = 10 and varying the plasma frequency in the range u>ep =  1.5 to 4.5 gives figures 7.6 -  

7.12.

\
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! Figure 7.6: Bernstein modes for a =  10 and u ep =  1.5
iI
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h

j

i Figure 7.7: Bernstein modes for a =  10 and u>ep =  2
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7.1. DISPERSION CURVES
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Figure 7.8: Bernstein modes for a =  10 and u>ep =  2.5
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Figure 7.9: Bernstein modes for a = 10 and Coep =  3
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7.1. DISPERSION CURVES

Figure 7.10: Bernstein modes for a =  10 and Cjev =  3.5

Figure 7.11: Bernstein modes for a =  10 and u>ep =  4
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7.1. DISPERSION CURVES
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Figure 7.12: Bernstein modes for a =  10 and u)ep =  4.5
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7.2. PHENOMENOLOGY

7.2 Phenom enology

It will aid interpretation of the results to  review the properties of the plasma. The initial 

conditions imposed go no further than a uniform B field, Bo, and local neutrality.

The theory we have developed handles the propagation of waves perpendicular to 

the magnetic field and in the case of the Bernstein modes longitudinal with respect to  

perturbations in the electric field. The plasma is e“ e+ and thus particles of both charges 

experience these fields at equal magnitudes and in opposite senses. In developing the 

theory needed we made the assumption that the plasma was locally isotropic; further tha t 

Feo is the non-relativistic Maxwellian distribution. Finally we did retain the relativistic 7  

where it made a significant contribution to the dispersion relation, i.e. where it appeared 

in the  cyclotron frequency.

The main reason a kinetic approach was needed was the short timescale. The cyclotron 

timescale in this plasma is not small in comparison to the timescales of dynamical effects, 

such as the propagation of Bernstein modes. On the other hand the annihilation-creation 

timescale is considerably shorter: typically by at least three orders of magnitude.

As for any plasma the characteristic interparticle spacing n - 1 / 3 is much less than the 

Debye length, \ p .

7 .2 .1  F eatu res o f  W ea k ly  R e la t iv is t ic  D isp e r s io n  R e la t io n s

Figures 7.1 - 7.12 share a few common features. At regular intervals of frequency a small 

gap appears between the lower branch of one pair of modes and the upper branch of the pair 

below it. These gaps are, it appears, associated with integer multiples of the relativistic 

cyclotron frequency. This might be predicted by comparison with the appearance of 

frequency gaps in the non-relativistic theory (see 4.2). The difference between weakly 

relativistic and non-relativistic gaps lies in the shape of the R xx =  0 curves. The form 

of R xx differs in the two regimes. The non-relativistic R xx has an intersection associated 

with a discontinuity at each cyclotron harmonic and thus R xx =  0 has only one branch 

between harmonics. In contrast the relativistic R xx has a further intersection in the place 

of a discontinuity and for each harmonic, R xx =  0 has a two branches, one on either side
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of the frequency gap.

Another change in the form of the dispersion relation occurs as soon as any degree of 

relativity is considered. For any (a, a>ep) pair there are just two superluminal modes (i.e. 

two modes for which the phase velocity is greater than the speed of light). When compared 

to the classical dispersion curves, the absence of most modes in the superluminal region 

and the absence of modes above the hybrid frequency mode are the most obvious new 

features.

There is, however, no damping of those modes which do remain: a result of the ex

act equal mass nature of the plasma. A classical Bernstein mode is undamped; due to 

mass effects relativistic Bernstein modes in e“ -ion plasmas are damped; however in e- e+ 

plasmas even the mass effects are balanced and these modes are undamped.

7.3 Diagnostic Applications

As has been described earlier, there are features of the dispersion curves which will act 

as diagnostics for certain parameters of astrophysical objects (a and neo), which could 

not otherwise be measured directly. The gaps between pairs of modes change according 

to the inverse temperature, a; as do the gaps between consecutive lower branches. The 

mapping of these features, which are illustrated in Chapter 7, is a numerically intensive 

task. It would be convenient if some method could be developed to approximate one or two 

principal features of these diagrams. This would give us yet another way of recognizing 

distant equal mass plasmas. For plasmas which can be identified as equal mass by some 

unrelated observation (the presence of annihilation radiation for instance), the diagnostic 

formulae should give an estimate of the electron density, neo and so on.

One way to progress is to  approach branches a pair at a time and approximate the 

dispersion curve of each pair. This is possible if one uses the full expression (5.10) on page 

63.
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7 .3 .1  F re q u e n c y  ra n g e  0 <  Cj  <  1

Our first step is to consider the behaviour for u> < 1. While this condition holds the third 

case integral is never encountered (see the conditions laid out in the weakly relativistic 

chapter). The other two integrals are both called upon. The sum over the index n  starts 

at n =  1 .

Equation (5.30) is the final version of the expression for case I.

1 , 2  .(«-<?)
-2 V 5 F  [ ' ( U h  {bl-P2)h) D ( 7 . 1 )

The Dawson integral notation, so helpful in the code, is less useful here. This integral 

may be rewritten as a relative of the error function. To show this requires a detour:

and

D(rj) = e 7,2 f  er 2 dr 
Jo

erf (y) = 4 = [ Ve - w2<h yTf Jo

( 7 . 2 )

From the latter it can be seen that:

eif{-iv)=̂ L
—17)

e~w dw

(7.3)

(7.4)

and then substituting r  = iw:

2  H  2 
erf(—ir]) = —-= /  eT (—idr) 

Jo
2 i_ n  

V n  Jo
eT dr (7.5)

Thus D(r}) may be rewritten in terms of the error function:

D(r)) =  e 71 .y/rr'
( 7 . 6 )

Thus the new form of the case I integral is:

—2y/ir . .A '
f o " { u k  i  ( ^ - / ? 2) b ) 2 e 2 e T f ( - i \ l -(3) d(3 (7.7)
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a b \  r b r

—'Ki e 2 jf “ (j»(k± K -  f )  h ) 2 d/3 (7.8)

Since erf(—z) = — erf(z) we finally have:

ab2 rbn .  ̂ \  2
iti e 2^ j  yJn{kL {b2n - ( 3 2) 2Yj erf (ip/3) dp (7.9)

where p is defined by /92 — -

7 .3 .2  E x p a n d in g  th e  B e sse l fu n ctio n

The series expansion of the square of a Bessel function «/n(£) is

J2(0 = ( | )  Q i )  { 1 “  2(^FT ) +  i 6(n +  ! ) ( „ + ! )  +  I6(„f+  1)2 +  0 ( f ) }

(7.10)

For small argument, £, one can neglect terms in higher orders of £. The lowest order 

in £ also depends on the index n. In the situation of an infinite sum of ‘squares of Bessel 

functions’, the requirement tha t terms are of low order in the argument will leave only a 

very few terms. Expansions for Bessel functions with the smallest indices naturally have

terms of lowest order in the argument. With n = 1 the lowest order in £ is £2; with n  =  2

the lowest order in £ is £ 4 and so on.

In the problem facing us, the argument is k±_ (&2 — (32) 2. To order k \ , only the n  =  1

expansion needs to be made. J 2 is:

kl { b \ - f ) + 0 { k \ )  (7.11)

giving an altogether more tractable expression for the integral:

L ^  (7'12). _ ^ k 2, rb1
tvi e  2

A useful set of identities can be derived from one core identity:

I.e r % t) d l  =  erf(/x6 )6 + ^ - - i -
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by integrating by parts then applying the chain rule the integral of any even power of t  

times erf can be calculated. Here we need only go as far as t 2 :

L

7TI

i o 3 3 3 y/ifp,3

thus the expression for the whole integral is

. k \  [2  3 . . 2h2 (  2b\ \  2b2 (  1 \  b2 1 Ii e 2 -j=-1 erf ) +  ep 1 I — pL— ) — ep 1 ( — „ )  pk 1------_  _ _ >
4 [3 \3yfjripJ \3 y /n i3p3 J yfxip Zy/Hi3p3 )

(7.13)

Leaving this for the moment, we must now include the contribution from the case II 

integral. This has a different initial form (5.42):

l \ 2
7re 2

,2 r°° /  i  \  2

* J  yJn(k± (bl + S 2) 2)J erfc(pS)dS (7.14)

On this occasion, J 2 is approximated by:

£ L ( i J - M 2) + 0 ( * l )  (7.15)

As before there are identities which simplify the procedure. They are:

1POO

/  eifc(p, t ) d t  
Jo

POO

I t 2e T ic (p t )d t
Jo

\pKp,
1

3 \pKpJ

The full case II expression for n  =  1 is:

« = # & / _ ! +  J U  (7.16)
4 \  3 y/ifp3 y/irp J

Note that there are terms in common between case I and case II. Indeed these terms 

cancel. This leaves one expression for the combined cases I and II for index n  =  1

v i e ~ ^ kf { erf(ip6l)} + ^ 'T  ©  + 3?) (7-17)

which gives an approximation to the dispersion relation in the frequency range 0  < u> < 1 

when included in the R xx = 0 equation (5.10). To make m atters slightly easier one can
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assume that for small values of 61 the first term (the erf term ) is negligible. The whole 

thing then looks like this:

_  9/N2 _  ^ pe a 2 —
pe k 2±

= 0

which simplifies to:

-  2Cj2pe -
tipe 2 a2 
Cj2 3 H +  -  = 0

Recall that b2 =  1 /C j2 — 1 and multiply the resulting expression by Cj6 to give:

d>° -  2Cj2£lo4 -  —  ( 1 -  ^  +  —  ) = 0
2 a2 UJ

(7.18)

(7.19)

By judiciously substituting Cj =  1 in the last expression (when Cj is raised to  powers 

higher than 2 )

W2 I 1 -  -  I -  1
a

= 0 (7.20)

and requiring tha t a is in the weakly relativistic regime, thus a 1 , means tha t 1 / a  —> 0 .

l - 2 u &  +  -u&a2 [*2 - l ]  = 0 (7.21)

and thus

3 p e

Make the substitution Cj =  1 — A uj and truncate the binomial expansion of Cj2.

1 -  2Cj 2

(7.22)

A uj

7 .3 .3  F req u en cy  range 1 <  Cj <  2

~Cj2 cl23 pe
(7.23)

Now we must extend the thinking from the beginning of the section. Useful information 

about gaps on the dispersion diagrams can only be gleaned if the next frequency range is 

also treated. Here 1 < Cj < 2, and the first case I and II integral contributions have index 

n = 2, in addition the contribution of the case III integral for n — 1 must be taken into 

account.
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However by demanding that the expression is second order (in fcj_), the same as for 

the branch in the previous frequency range (0 ,1 ), we reduce the expression to something 

very similar to the derivation in the previous section.

As before take cases I and II together. The expansion at the core of these integrals is 

th a t of J 2(- • • ) 2 (see equation (7.10)):

H - - - ) 2 = ^ ( - - - ) 2 + 0 ( k l )  (7.24)

Immediately the expressions for cases I and II are seen to be at least fourth order in

k±.  By calling for expressions of second order both cases are implicitly neglected.

This leaves just the case III expression evaluated for index n  =  1.

a<£ roo .  ̂ l \  2
7re 2 / ( J\(k±_ (e — <7i ) 2)J erfc(pe)de (7.25)

J qi

where p is defined by p2 =  | .

Now

(ji(fc_L (c2 -  q\ ) 5)) =  ^  (e2 -  q\) +  0 ( k \ )  (7.26)

Following the same method as in the previous section, a familiar expression is found:

Since — q\ = 6 2, we need no further algebra to find the form of R xx =  0: it is the same 

as equation (7.18).

7.4 Empirical Rules

By looking at the data set from which figures 7.1 -  7.12 derive one can pick out empirical 

rules. These rules in their turn can be used to elicit information about the plasma, given 

a certain set of features.

The frequency gap between branch pairs increases as the inverse tem perature, a, de

creases. This trend can be observed in figures 7.1 -  7.5. To assess the trend quantitatively,
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the data from which the figures are plotted is treated in a computer application such as 

EXCEL. The difference at any particular wavenumber was plotted for each value of a .

The frequency gap between the upper branch of the pair below Cj = 1 and the Cj =  1 

line (illustrated in figure 7.13) has the following rule:

Au; a  a ~ 0'7 (7.28)

0.1

A oj

0.01

10 100

Figure 7.13: A c j  for a range of values of a  (Cjep = 3)

The gap between the Cj = 1 fine and the lower branch of the pair above it can be shown 

to follow a similar rule:

A c j  oc a' - 0.7 (7.29)

These empirical rules restate the contents of the figures in Chapter 7: the previous 

section produced analytical rules which are substantially different. In the la tter case, i .e .

(7.23),

Acj oc a ~ 2 (7.30)
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Analytical solutions even to approximations of the problem need refinement. One 

way forward would be to introduce higher order terms in the approximate treatm ent. 

The additional error function terms which would then come into play may well be non- 

negligible.

7.5 The N ext Step

The common goal of the previous sections was draw predictive rules from the raw m ath

ematics. So in the case of Section 7.3 the equations governing the gaps between pairs 

of modes were derived from a series of approximations. Section 7.4 on the other hand is 

distilled from the same data that produced figures 7.1 -  7.12. Even at the first attem pt 

both the empirical rule and the approximate analytical rule predict wider gaps between 

branch pairs as the inverse temperature decreases (though they disagree on the exact 

dependence).

Further steps could be taken to treat higher branches in the approximate treatm ent 

in Section 7.3. This would certainly improve the prediction of behaviour of the e“ e+ 

Bernstein modes in general.

Such a predictive theory could be tested on spectra from astrophysical sources. These 

spectra may have harmonic features which are, at present, interpreted as cyclotron har

monic resonance peaks. A series of spectral peaks from a source which has a strong e~e+ 

component might be misinterpreted since this work suggests tha t an alternative conclu

sion should be drawn: tha t the peaks appear in pairs around the true (relativistically 

downshifted) cyclotron harmonics.

Now tha t the ground work for the theory of e“ e+ plasmas in this weakly relativistic 

regime has been carried out there are many potential avenues of continuing research.

• The other two modes, extraordinary and ordinary, are touched upon but not devel

oped in this work. The analytical work on these transverse modes is expected to  be 

similar to tha t performed here; the code being closely related too.

• This treatm ent runs parallel to that for electron-ion plasmas and it is appropriate

94



7.5. THE NEXT STEP

to consider developments made in that field, such as the treatm ent of slightly off- 

perpendicular propagation.

• Relatively minor changes could be made to the present work to  show its application 

to the study of other particle-antiparticle plasmas and of nearly equal mass plasmas.

• The research into wave propagation perpendicular to a uniform magnetic field in 

weakly and fully relativistic e“ e+ plasmas leaves unanswered questions. So, for 

instance, as there appears to be a smooth transition from weakly relativistic to fully 

relativistic dispersion relations, one might wish to demonstrate this transition in a 

single analytical relativistic treatm ent. Can such a treatm ent be constructed?

The next step in e_ e+ plasma research will certainly be an interesting one.



Appendix A

Special Functions

A .l  Basic Identities

The basic Bessel identities crop up repeatedly. A fuller description may be found in [59] 

and elsewhere. The identities used here are:

J . n(a) = (—1 )nJn(a) (A .l)

and

Jn( - a )  = ( - 1  )V n(a) (A.2 )

There is also an identity which covers the derivative of Jn(—a) with respect to its 

argum ent:

= J'Jfl) (A.3)

A .2 Infinite Sum Identities

In the kinetic treatm ent of hot plasmas infinite sums of Bessel functions crop up repeatedly. 

One identity is often invoked:
OO

ias sin <f> _  ^  (A.4)
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This identity is first required on page 35. One may use it to derive some other results. 

Take the derivative with respect to as,
OO

t s i n ^ 0' ™*  = Y  J 'nias ) ^ in* (A.5)
n =  —oo

where J'n(as) — so that
oo oo

Y  sin M .M e * " *  = Y  (A.6)
n = —oo n = —oo

Also if we use the recurrence relation for Bessel functions

71

— Jn—1 ( ® s )  *^n(®a) (■^■•'0ds

we can gain a relation which deals with the cos (j>:
oo oo

V  — Jn{as)ein^ = V  [ ^ ( o . )  -  j ; (o ,) ]  e<n**—'  a, z 'n— — oo 
oo

E  Jn-i(o,)e<n* -  E  J ' M e"
= —oo n = —oo

oo oo

E  .M « . y (”'+1)* -  E  J»(°*)e<
' + l = - o o  n = -o o

oo oo

Y  e i 4’J n ' ( a , y n''t’ -  Y  ( * sin<j>)Jn { a s ) e in ^
1——oo n = —oo

oo

Y  ( e ^ - i s in ^ ) J „ ( a , ) e in# (A.8 )

Thus
OO n

Y  - . /„ K )e ” * = E  (cos*)J„(a.)e<B* (A.9)
n =  —oo n =  —oo

A .3 Integral Identities

In the later development of the kinetic theory, integrals of the squares of Bessel functions 

appear. When feasible these integrals are restated in the form:

j H 'dVV{Jn{ k p ) f e - ^ -  = In ( 0 )  (A .10)

This identity can be found in Watson [60]. Often an expression involving the modified 

Bessel functions, / n(A), is simpler to calculate.
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A .4 Special functions

In the weakly relativistic treatm ent, both the Dawson integral and the error function 

appear. One stage in the numerical calculation of the Bernstein modes is the reduction 

of a double integral to a single integral containing these special functions. There are 

well known numerical routines for calculating such functions. It will be informative to 

illustrate the shapes of these integral functions as certain assumptions are made in the 

section describing the code.

A .4 .1  E rror fu n ctio n

The equation which defines the error function is:

erf(y) = - 7 = [  e~w2 dw (A. 11)
Jo

0.8

, f( z )  0.6

0.4

0.2

106 840 2
x

Figure A .l: The Error Function

As may be inferred from figure A .l for argument greater than 2, erf(z) «  1 . Along 

with the error function one can define the related complementary error function, erfc(cc), 

as 1 — erf(cc). Note tha t this complementary function tails off to  zero for x > 2.
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A .4 . 2  D a w so n  in te g ra l

The other special integral function is the Dawson integral. It has a similar definition to 

the error function:

D(r)) =  e -*2 P er2d r  
Jo

(A.12)

This integral is a special case of the familiar plasma dispersion function, which crops 

up in many different situations [61].

0.6

0.5

0.4

D(x) 0.3

0.2

4 6 8 1020

Figure A.2: The Dawson Integral



A ppendix B

Contour Integration

By using the residue, a useful approximation to the behaviour of a complex function at a 

pole can be made.

a  limw i  [ (z -* i )/(*)] _  Resz=a,
Z — Z\ Z — Z\

The residue theorem states tha t if f ( z ) (where 2  is complex) is analytic on and inside a 

closed contour C,  as shown in figure B.l,  except for a finite number of isolated singularities 

a,t z  = zi, Z2 , . . . ,  zn, which are all located inside C,  then
» n

® f ( z ) dz = 2iri Res*=*k ( /(* )) (B-2 )
k = i

This theorem allows the evaluation of some special types of improper integrals. The 

background to the analysis which follows was obtained from Stewart [62] and Butkov [63]. 

If we can specify the three following conditions:

1 . f ( z )  is analytic in the upper half-plane, > 0  except for a finite number of

singularities, none of which lie on the real axis

2 . On the semicircle Cr , of radius R , {R  x maximum value of |/(^ ) | on Cr  } tends to 

0 as R  —̂ 0 0

3. f ( x ) dx and J0°° f ( x ) dx both exist
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then

/ oo

f ( x ) dx = 2ni {residues at the poles with > 0} (B.3)
■oo

For the purposes of this work, this analysis must be extended to include functions 

which have a simple pole on the real axis, as shown in figure B.2 . As in the proof of the 

residue theorem this is achieved by making a semi-circular indentation in the contour into 

the upper half-plane. This semi-circle has radius r around the pole and removes the pole 

from the interior of the contour. For a pole at z = z\ the full contour integration is now:

<f f ( z ) d z  = [  f ( x ) d x  + [  f ( z )  dz +  f  f ( x ) d x  + [  f ( z ) d z  (B.4) 
J C  J —R  J C r  J z i + r  J C r

As r —> 0 the two integrals along the real axis can be combined to give a definition for

the principal value of the integral:

P  [ f ( x ) dx  = lim { f f ( x ) d x  + f f ( x ) d x \  . (B.5)
J —R  r ~ *0 [ J —R  J  z \ + r  J

If we assume condition 2 above is still valid, then the calculation is similar to  the one 

for a pole in the upper half plane but with the additional contribution from the semi-circle 

Cr , which is equal to —i7rResz=2l (f [ z )). The negative sign arises since CT is transversed 

in a clockwise, or negative, sense.

If on the other hand the alternative semi-circular contour is taken (i.e. below the real 

pole) the real pole contributes in a positive fashion but now there is a pole wholly within 

the closed contour. As might be wished the same contribution results. Taken together (as 

is the case in the analysis in Section 5.2.1) two real poles z = a and —a can cancel each 

other out.

So, in the limit r —> 0 and R  —* oo, the integral can thus be written as

j )  f ( z ) dz = P  J  f ( x ) d x  — iir ^ { R e sid u e s  at the simple poles lying on the real axis}

(B.6 )
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or, if we make use of the Residue Theorem (B.2), as

/ OO

f ( x ) d x  =  2tti y^{Residues at poles in upper half-plane}
-OO
+ 7ri ^^{Residues at the simple poles lying on the real axis}

-R

Figure B.l: A closed contour C  over which the function /  is integrated

Figure B.2 : A closed contour C with a simple pole lying on the real axis

(B.7)
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A ppendix C

The Code

There follows a listing of the code described in Chapter 6 .
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C .l. BMODES.C

C .l bmodes.c

#include <stdio.h>
#include <stdlib.h> /*definition of atoiQ */
#include <math.h>
#include <string.h>

#include "bmodes.h"

/♦Declarations
These variables are declared here so that they are global.
*/

/* plas - the plasma frequency */
/* This is user-defined and constant through one execution */

float plas;

/* plasma - the square of plas */ 

float plasma;

/* howrel - the degree of relativity (called ‘a ’ in notes) */
/* This is user-defined and constant through one execution */

float howrel;

/* Isrel - variable */
/* 0 - use non.c */
/* 1 - use weakly.c */
/* 2 - error */
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C.l. BMODES.C

/* This is user-defined and constant through one execution */

int Isrel=2;

/* execute - the name of the executable */
/* This is defined in the makefile */

char executeClO];

/* L - the Lambda or ‘wave number’ value */
/* This is a true global variable, it varies */
/* in steps in what_to_do() */ 

float L;

/♦Prototypes*/

void usage(char exec[],int verbose); 
void what_to_do(float (*choose)(float)); 
float Rxx(float); 
float Rel(float);

int main (int argc, char *argv[ ])
{
extern float plas; 
extern float howrel;

/* Isrel, choice of weakly relativistic (1) or nonrelativistic (0) */ 
/* default of 2 is chosen to be different again */ 

extern int Isrel;

/* should the usage message be verbose? (0 - No; 1 - Yes) */
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int verb=0;

/* is there a good entry for the plasma frequency? (0 - No; 1 - Yes) */ 
int good=0;

extern char execute[10];

/* execute is defined to be the name of the executable */
/* which in turn was defined in the makefile */ 

strcpy(execute,argv[0]);

while ((argc >1) && (argv[l] [0] == ’- ’)){ 
switch(argv[l] [1])

case ’n ’: /* nonrelativistic option is flagged */
lsrel=0; 
break;

case ’w ’ : /* weakly relativistic option is flagged */
if C(argv[l] [2]>=’0 ’) && (argv[l] [2]<=’9*)){

/* degree of relativity, howrel (a=mc~2/kT) is set */
Isrel=l;
howrel=atof (ftargv [1] [2]);

>
else {.

usage(execute,1); 
exit(8);

>

break;

case ’p * : /* plas, the plasma frequency is defined */
if ((argv[l] [2]>=,0 ’) && (argv[l] [2]<=,9* ) H  

++good;
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plas=atof(&argv[l] [2] );
>

else {
usage(execute,1); 
exit(8);

>

break;

case ’h ’: /* gives the verbose usage */
verb=l;
/* fall through */ 

default:
if (argv[l] [1] ! = *h’) printf ("-'/,c is a bad option\n" ,argv[l] [1]) ; 
usage(execute,verb); 
exit(8);

>

— argc;
++argv;

>

switch(Isrel)*C 
case 1:

/* Based on the value of Isrel. This passes the name of the weakly */ 
/* relativistic routine, Rxx to what_to_do() */ 

if (good>0)
printf ("(a, plas) is ('/,g, */,g)\n" , howrel, plas); 
what_to_do(Rxx); 

break;

case 0:
/* If however the nonrelativistic option is requested this will pass */ 
/* the name of the nonrelativistic routine, Rel to what_to_do() */
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if (good>0)
printf ("(plas) is ('/,g)\n" ,plas); 
what_to_do(Rel); 

break;

case 2:
printf("\n****** Please choose either -n or -w<howrel> flag ******\n\n"); 
/* fall through */

default:
if (good==0) printf("\n****** Please give a -p<plas> flag ******\n\n"); 
usage(execute,verb); 
exit(8);

>
return 0;

void usage(char exec[],int verbose)

printf ("Usage: */,s -n|-w<howrel> -p<plasraa frequency> [-h]\n\n" , exec) ; 
if (verbose==l){

printf(" either -n or -w<howrel>\n\n");
printf(" -n nonrelativistic routine\n");
printf(" -w weakly relativistic routine\n");
printf(" immediately followed by the float <howrel>\n\n");
printf(" -P initialises the plasma frequency\n");
printf(" immediately followed by the float <plas>\n");
printf(" -h shows this message\n");
>
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void what_to_do(float (*choose)(float))
{

/♦Global variables*/ 
extern float L; 
extern float plasma; 
extern int Isrel; 
extern float plas; 
extern float howrel; 
extern char execute[10];

/♦Local variables*/

/* collect - a pointer to a FILE is declared this will be the data file */ 
FILE *collect;

/* callname - the name of the data file */ 
char callname [40];

/* x - the angular frequency */ 
float x;

/* root - the value of x closest to a zero */ 
float root=0.0;

/* val - the current value of Rxx(x) (or Rel(x)) */ 
float val=0.0;

/* lastval - the value of Rxx(x) (or Rel(x)) on the last pass through */
/* the x loop */ 

float lastval=0.0;

/* f - the value of Rxx(root) (or Rel(root)) - should be close to zero */
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/* as long as there is no discontinuity */ 
float f;

/* count - simply counts the number of passes through the L loop */
/* check - counts the number of passes through the x loop */
/* flag - goes to 1 as soon as the first zero is found */ 

int count=0,check=0,flag=0;

/* plasma - this is where the value of plasma is first declared */ 
plasma=plas*plas;

if (lsrel==0){
printf("Processing for non-relativistic case .....\n");
printf ("\tplasraa frequency is '/,g\n\n",plas); 
sprintf ( callname, "non*/,. 2f. dat" ,plas);

>
else {

printf ("Processing for weakly relativistic case   (a='/,g)\n" , howrel);
printf ("Ytplasma frequency is */,g\n\n" ,plas); 
spr intf (callname, "F'/,. If . If. dat", howrel, plas);

>

/* This asks that a file named ‘callname* be opened and, if */
/* it already exists, appended to. */ 

collect=fopen(callname, "a");

for (L=0.l,count=l;L<=10.0;L+=0.1){ 
if (count==1) {

fprintf (collect,"# This data is from */,s, with parameters: \n",execute); 
fprintf (collect ,"#\t Howrel = If\tplasma freq. = ’/,e\n#\n",howrel,plas);

>

for (x=XINIT,check=0;x<XMAX;x+=XINC,check++){
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if (check!=0) { 
val=(*choose)(x); 
lastval=(*choose)(x-XINC);
if ( ( (lastval>0) && (val<0) ) I I ( (lastval<0) && (val>0) ) ) { 

root=zbrent((*choose),x-XINC,x,1.Oe-8); 
f=(*choose)(root);
if ( (f *f )<1.0) fprintf (collect,"'/,. If \t'/,e\n",L, root); 
flag=l;

>

>

>

if (flag==0) fprintf(collect,"\n"); /* No zero in the chosen range */ 
fprintf(collect,"\n");
if (count*/,5==0) printf("......'/,4.1f  \n",L); /* progress report */
count++;

>

if (fclose(collect) != 0)
printf ("Error in closing file '/,s\n", callname);

>
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C.2 non.c

/*********************♦♦♦♦♦*********♦**********************************

* This will calculate Rxx for non-rel. case for a e+e- plasmas *
* * 
* DAK started this on the 19th of April, 1996 *
* * * * * ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ /

/♦For all parameters and common libraries ♦/

#include "/usr/local/src/recipes_c-ansi/include/nr.h"
#include "/usr/local/src/recipes_c-ansi/include/nrutil.h"
#include "defs.h"

/♦Needed for Bessel I part of program^/

#define ACC 40.0 
#define BIGNO l.OelO 
#define BIGNI 1.0e-10

/♦Prototypes of the main parts of the Integrand^/ 
float Rel(float);

float Rel(float omega)

extern float L; 
extern float plasma; 
extern int Isrel;

float Rval,term,expL; 
int nu;
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lsrel=0; 

expL=exp(-L)/L;

term=expL*bessil(L)/(omega*omega-l.0); 
for (nu=2;nu<=10;nu++)

{
t erm+=nu*nu* expL*bes si(nu,L)/(omega*omega-nu*nu);

>

Rval=l.0-4.0*plasma*term;

return Rval;
>

float bessiO(float x)

float ax,ans; 
double y;

if ((ax=fabs(x)) < 3.75) { 
y=x/3.75; 
y*=y;

ans=l.0+y*(3.5156229+y*(3.0899424+y*(1.2067492 
+y*(0.2659732+y*(0.360768e-l+y*0.45813e-2)))));

> else { 
y=3.75/ax;
ans=(exp(ax)/sqrt (ax) )*(0.39894228+y*(0.1328592e-l 

+y*(0.225319e-2+y*(-0.157565e-2+y*(0.916281e-2 
+y*(-0.2057706e-l+y*(0.2635537e-l+y*(-0.1647633e-l 
+y*0.392377e-2))))))));

>

return ans;
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float bessil(float x)
■f

float ax,ans; 
double y;

if ((ax=fabs(x)) < 3.75) { 
y=x/3.75;

y*=y;
ans=ax*(0.5+y*(0.87890594+y*(0.51498869+y*(0.15084934 
+y*(0.2658733e-l+y*(0.301532e-2+y*0.3241le-3))))));

> else { 
y=3.75/ax;
ans=0.2282967e-l+y*(-0.2895312e-l+y*(0.1787654e-l 

-y*0.420059e-2));
ans=0.39894228+y*(-0.3988024e-l+y*(-0.362018e-2 

+y*(0.16380le-2+y*(-0.1031555e-l+y*ans)))); 
ans *= (exp(ax)/sqrt(ax));

>

return x < 0.0 ? -ans : ans;
>

float bessi(int n, float x)
■C

float bessi0(float x);
void nrerror(char error_text[]);
int j;
float bi,bim,bip,tox,ans;

if (n < 2) nrerror("Index n less than 2 in bessi"); 
if (x == 0.0)
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return O.O; 
else {

tox=2.0/fabs(x); 
bip=ans=0.0; 
bi=l.0;
lor (j=2*(n+(int) sqrt(ACC*n));j>0;j— ) { 

bim=bip+j *tox*bi; 
bip=bi; 
bi=bim;
if (fabs(bi) > BIGNO) { 

ans *= BIGNI; 
bi *= BIGNI; 
bip *= BIGNI;

>

if (j == n) ans=bip;
>

ans *= bessiO(x)/bi;
return x <  0.0 && (n & 1) ? -ans : ans;

>
>
#undef ACC
#undef BIGNO

** g CD H
i BIGNI

115



C.3. WEAKLY.C

C .3  weakly.c

^  3|e3fC3|C3|e3|C3|ca|C3tC3|C3|C3|C3|C3|C3|C3|C3|C3|C3|ca|C3|C3|C3|C3|C3|C3|C3|C3|C3fC3|C3|C3|C3|C3|C3fC3|C3|C3|C3|C34ca|C3|C3fc3|C34C3|C3|C34C3|C3|C3|C3|C3fC3|e3|C3|C39C3|C3fC3|C3fca|C3|C3|C3|ea|C3fca|ca|C3|C34c

* This will calculate Rxx for the weakly relativistic case *
* for e+e- plasmas *
*  * 
* DAK wrote this on the 24th of September, 1996 *
3|c:|e3|c3|c:|e3|e:|cj|e3|c3|c3ic3|c:|c3|c:|c3|e:|c3|e:|c3|e $ $ $ % $ $ $ $ $ $  $ $ £ $ $ $  £ & $ $ £ £ %  £ $ $ $ $ $ $  $ $ $ £ $ $  $ $ £ $ $ $  $ $ $ $ % $ $ $  f

/♦ In particular the function Rxx() calculates a value of Rxx for a 
given omega: the value of k_perp is determined externally from the 
main program ♦/

/♦For all parameters and common libraries ♦/

#include "/usr/local/src/recipes_c-ansi/include/nr.h"
#include "/usr/local/src/recipes_c-ansi/include/nrutil.h"
#include "defs.h"
#include "constant.h"

/♦Needed for Bessel J squared part of program^/

#define ACC 40.0 
#define BIGNO l.OelO 
#define BIGNI 1.0e-10

/♦Needed for Dawson Integral part of program^/

#define NRANSI 
#define NMAX 6 
#define H 0.4 
#define A1 (2.0/3.0)
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#define A2 0.4 
#define A3 (2.0/7.0)

/♦Needed lor Romberg Integration driver*/

#define EPS 1.0e-6 /* fractional accuracy required */
#define JMAX 16 /* no. iterations before exit (default 14) */
#define JMAXP (JMAX+1)
#define K 5 /* no. points used in the extrapolation */

/♦Needed for Midpoint rule integration*/

#define FUNCT(x) ((*func)(x))

/♦External variables*/

float howrel; 
int NU; 
float L; 
float plasma; 
float bb;

float integrandl(float); 
float integrandll(float);

float Rxx(float omega)

{
extern float howrel; 
extern int NU; 
extern float L; 
extern float plasma; 
extern int Isrel; 
extern float bb;
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float answerl, answerll, answerlll, cut; 
float q ,be ,All,Rvalue,Kperp,marker,expon;

Rvalue=0.0;
Isrel=l;
Kperp=L; 
q=bb=bc=0.0;
A11=0.0;
cut=sqrt(8.0/howrel);

/* Change this for accuracy of erf(x) ~= 0 */

for (NU=1;NU<7;NU++) <

bb=NU*NU/(omega*omega)-l.0; 
answerl=answerll=answerlll=0.0;

if (omega>NU){

q=sqrt(-bb);

/* printf ("III\tomega: 2f\tKperp: */,.2f\tNU: '/,d\n",omega,Kperp,NU);*/

if (q<cut) { 
answerlII=qromo(integrandll,q,cut,midpnt);

>

else answerlll=0.0;
/* printf ("ansIII is: '/,e\n",answerIII) ;*/

>

else {
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/* Omega is less them NU */ 

bc=sqrt(bb);

/* printf("I&II\tomega: .2f\tKperp: '/,.2f\tNU: '/,d\n",omega,Kperp,NU) ;*/

/* Case I */

answerI=qromo(integrandl,0.0,be,midpnt);
/* printf ("ansi is: '/.e\n", answerl) ;*/

/* Case II */

answer11=qromo(int egrandl1,0.0,cut,midpnt);

/* printf ("ansll is: */,e\n" ,answerll);*/

>

if (0.5*howrel*bb<P0W) expon=exp(-(0.5*howrel)*bb)*(answerll+answerlll); 
else expon=0.0;

A11+=NU*NU*NU*NU*(-answerl+O.5*sqrt(PI)*expon);

>

/* marker=omega*omega-2.0*plasma;
printf ("marker (*/,. 2 f 2 f ) is: '/,e\n", omega, Kperp, marker);

printf ("All is: */,e\n", All) ;*/

Rvalue=omega*omega-2.0*plasma-4.O*plasma*howrel*howrel* 
sqrt(2.0*howrel)*All/(omega*omega*Kperp*Kperp);

/* printf ("Rxx ('/, .2f,'/,. 2f) is: '/,e\n" , omega, Kperp, Rvalue) ;*/
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return Rvalue;
>

float integrandl(float alpha)

extern float howrel; 
extern int NU; 
extern float bb; 
extern float L;

float x ,easel,exponl,Kperp,arg,bessel;

casel=0.0;
Kperp=L;

x=sqrt(0.5*howrel*(alpha*alpha));

arg=sqrt(bb-alpha*alpha);

if (0.5*howrel*arg*arg<P0W)

exponl=exp(-0.5*howrel*arg*arg); 
if (NU==1) bessel=bessjl(Kperp*arg); 
else bessel=bessj(NU,Kperp*arg);

caseI=exponI*bessel*bessel*dawson(x);
>

else casel=0.0; 

return easel;
>

float integrandll(float delta)
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extern float howrel; 
extern int NU; 
extern float bb; 
extern float L;

float y ,casell,Kperp,arg,bessel;

casell=0.0;
Kperp=L;

y=sqrt(howrel*(delta*delta)/2.0); 

arg=sqrt(delta*delta+bb);

/♦printf ("y: '/.g\targ: '/.gYterfc: ’/.g\t",y,arg,erfc(y));*/

if (NU==1) bessel=bessjl(Kperp*arg); 
else bessel=bessj(NU,Kperp*arg);

casell=bessel*bessel*erfc(y); 
return casell;

>

float bessj(int n, float x)

void nrerror(char error_text[]); 
int j,jsum,m;
float ax,bj,bjm,bjp,sum,tox,ans;

if (n < 2) nrerror("Index n less than 2 in bessj"); 
ax=fabs(x);
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if (ax == 0.0) 
return 0.0;
else if (ax > (float) n) {
tox=2.0/ax;
bjm=bessjO(ax);
bj=bessjl(ax);
for (j=l;j<n;j++) {
bjp=j*tox*bj-bjm;
bjm=bj;
bj=bjp;
>

ans=bj;
> else { 
tox=2.0/ax;
m=2*((n+(int) sqrt(ACOn))/2); 
j sum=0;
bjp=ans=sum=0.0; 
bj=l.0;
for (j=m;j>0;j — ) { 
bjm=j*tox*bj-bjp; 
bjp=bj; 
bj=bjm;
if (fabs(bj) > BIGNO) {
bj *= BIGNI;
bjp *= BIGNI;
ans *= BIGNI;
sum *= BIGNI;
>

if (jsum) sum += bj;
jsum=!jsum;
if (j == n) ans=bjp;
>

sum=2.0*sum-bj;
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ans /= sum;
>

return x < 0 . 0 & & ( n & l )  ? -ans : ans;
>

float bessjO(float x)
{
float ax,z;
double xx,y,ans,ansi,ans2;

if ((ax=fabs(x)) < 8.0) { 
y=x*x;
ans1=57568490574.0+y*(-13362590354.0+y*(651619640.7 
+y*(-11214424.18+y*(77392.33017+y*(-184.9052456))))) ; 
ans2=57568490411.0+y*(1029532985.0+y*(9494680.718 
+y*(59272.64853+y*(267.8532712+y*l.0)))); 
ans=ansl/ans2;
} else { 
z=8.0/ax; 
y=z*z;
xx=ax-0.785398164;
ansl=1.0+y*(-0.1098628627e-2+y*(0.2734510407e-4 
+y*(-0.2073370639e-5+y*0.2093887211e-6) ) ) ; 
ans2 = -0.1562499995e-l+y*(0.1430488765e-3 
+y*(-0.691114765le-5+y*(0.7621095161e-6 
-y*0.934935152e-7)));
ans=sqrt(0.636619772/ax)*(cos(xx)*ansl-z*sin(xx)*ans2); 
>

return ans;
>

float bessjl(float x)
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{
float ax,z;
double xx,y,ans,ansl,ans2;

if ((ax=fabs(x)) < 8.0) { 
y=x*x;
ansl=x*(72362614232.0+y*(-7895059235.0+y*(242396853.1 
+y*(-2972611.439+y*(15704.48260+y*(-30.16036606)))))); 
ans2=144725228442.0+y*(2300535178.0+y*(18583304.74 
+y*(99447.43394+y*(376.9991397+y*l.0)))) ; 
ans=ansl/ans2;
} else {
z=8.0/ax;
y=z*z;
xx=ax-2.356194491;
ans1=1.0+y*(0.183105e-2+y*(-0.3516396496e-4 
+y*(0.2457520174e-5+y*(-0.240337019e-6)))) ; 
ans2=0.04687499995+y*(-0.2002690873e-3 
+y*(0.8449199096e-5+y*(-0.88228987e-6 
+y*0.105787412e-6)));
ans=sqrt(0.636619772/ax)*(cos(xx)*ansl-z*sin(xx)*ans2); 
if (x < 0.0) ans = -ans;
>

return ans;
>

float dawson(float x) 

int i,n0;
float dl,d2,e1,e2,sum,x2,xp,xx,ans; 
static float c[NMAX+l]; 
static int init = 0;
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if (init == 0) { 
init=l;
for (i=l;i<=NMAX;i++) c[i]=exp(-SQR((2.0*i-1.0)*H));
>

if (fabs(x) < 0.2) { 
x2=x*x;
ans=x*(l.0-Al*x2*(l.0-A2*x2*(l.0-A3*x2)));
> else { 
xx=fabs(x);
n0=2*(int)(0.5*xx/H+0.5);
xp=xx-nO*H;
el=exp(2.0*xp*H);
e2=el*el;
dl=n0+l;
d2=dl-2.0;
sum=0.0;
for (i=l;i<=NMAX;i++,dl+=2.0,d2-=2.0,el*=e2)
sum += c[i]*(el/dl+l.0/(d2*el));
eins=0.5641895835*SIGN(exp(-xp*xp) ,x)*sura;
>

return ans;
>

float qromo(float (*func)(float), float a, float b, 
float (*choose)(float(*)(float), float, float, int))

void polint(float xa[] , float ya[] , int n, float x, float *y, float *dy); 
void nrerror(char error_text []); 
int j; 
int fix;
float ss ,dss ,h[JMAXP+l] ,s[JMAXP+l] ;
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This is the function file which deals with the weakly relativistic case 
h[l] =1.0;
for (j = 1;j <=JMAX;j++) {

s[j] =(*choose)(func,a,b,j); 
/*********************************************************************** 

These have the value of the integration (midpoint) between a and b, 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

if (j >= K) {
polint(&h[j-K],&s[j-K],K,0.0,&ss,&dss);

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

The call above to the polint function feeds the offset arrays
h[j-K+l. . j-K+5] and s[j-K+1. . j-K+5] s.t. a 4th order polynomial P(h[i])
= s[i] is created, it returns a pair of values (by changing the contents 
of addresses) the value of P(0.0) = ss, and an estimate of error, dss. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

if (fabs(dss) <= EPS*fabs(ss)) return ss;
>

s[j + l]=s[j] ; 
h[j+l]=h[j]/9.0;

/* This 9.0 assumes step tripling and an even error series is used */
>

for (fix=l;fix<=JMAX;fix++H 
printf ("'/,d.\t'/,e\n" ,f ix,s[f ix] ); 

/*********************************************************************** 

This is a loop to print out consecutive values of s[fix] 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

>

nrerror("Too many steps in routing qromo");
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return 0.0;
>

void polint (float xa[] , float ya[] , int n, float x, float *y, float *dy)

/*********************************************************************** 

A little explanation is in order - Given arrays xa[l..n] and ya[l..n], 
and given a value x, this routine returns the value y, and an error 
estimate dy. If P(x) is a polynomial of degree N-l s.t. P(xa[i])=ya[i], 
i=l..n, then the returned value y = P(x). 
***********************************************************************/

int i,m,ns=l;
float den,dif,dift,ho,hp,w; 
float *c,*d;

dif=fabs(x-xa[l] );
c=vector(l,n);
d=vector(l,n);
for (i=l;i<=n;i++) {
if ( (dift=fabs(x-xa[i])) < dif) {
ns=i;
dif=dift;
>

c[i]=ya[i] ; 
d[i]=ya[i] ;
>

*y=ya[ns— ];
for (m=l;m<n;m++) {
for (i=l;i<=n-m;i++) {
ho=xa[i]-x;
hp=xa[i+m]-x;
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w=c[i+l]-d[i] ;
if ( (den=ho-hp) == 0.0) nrerror("Error in routine polint"); 
den=w/den; 
d[i]=hp*den; 
c[i]=ho*den;
>

*y += (*dy=(2*ns < (n-ra) ? c[ns+l] : d[ns— ]));

>

free_vector(d,1,n); 
free_vector(c,1,n);
>

float midpnt(float (*func)(float), float a, float b, int n)

{
float x,tnm,sura,del,ddel; 
static float s; 
int it, j ;

/* printf("I got here\n");*/ 
if (n == 1) {
return (s=(b-a)*FUNCT(0.5*(a+b)));
> else {
for(it=l,j=l;j<n-l;j++) it *= 3; 
tnm=it;
del=(b-a)/(3.0*tnm); 
ddel=del+del; 
x=a+0.5*del; 
sum=0.0;
for (j=l;j<=it;j++) { 
sum += FUMCT(x); 
x += ddel; 
sum += FUNCT(x); 
x += del;

128



C.3. WEAKLY.C

>

s=(s+(b-a)*sum/tnm)/3.0; 
return s ;
>

>

#undef FUNCT 
#undef EPS 
#undef JMAX 
#undef JMAXP 
#undef K 
#undef ACC 
#undef BIGNO 
#undef BIGNI 
#undef NRANSI 
#undef NMAX 
#undef H 
#undef A1 
#undef A2 
#undef A3
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