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A bstract

The cross section for the photoproduction of events containing three high transverse 

energy jets with a three-jet invariant mass of M zj > 50 GeV has been measured with 

ZEUS at HERA. The data are compared with two different types of QCD prediction; 

0 { a a 2s) pQCD calculations which are leading order for the process under consideration 

and parton shower models which resum leading logarithms to produce multi-parton 

final states. The magnitude of the three-jet cross section is in good agreement with 

the 0 ( a a 2) pQCD calculations; the parton shower models underestimate the cross 

section by 20 to 40%. The angular distribution of the three jets is inconsistent with 

a uniform population of the available phase space. In contrast, parton shower models 

and 0 ( a a 2) pQCD calculations are able to describe the three-jet dynamics. W ithin the 

parton shower model the relative contribution to three-jet production from initial and 

final state radiation has been studied and the effect of colour coherence on the angular 

distribution is demonstrated for the first time.



Preface

The data collected at the HERA e+p collider at DESY in Hamburg comprise a wealth 

of different interactions which have much to reveal on the structure of m atter. In 

particular, the strong interaction between coloured partons, fundamental constituents 

of m atter, can be investigated in detail. As an example, studies have been made of 

events where one or two high transverse energy jets of particles are observed in the 

final states of deep inelastic scattering and photoproduction interactions. These have 

allowed tests of QCD, and extracted information on, amongst other things, the structure 

of jets, the QCD evolution of the initial and final states, the structure of real and virtual 

photons and the gluon density of the proton.

These investigations have been taken further at the TEVATRON pp collider, where 

events containing three or more high transverse energy jets have enabled experimenters 

to go beyond the leading order two-jet final state and test current QCD calculations at 

higher order.

The data recorded by the ZEUS experiment at HERA has grown year-by-year 

since 1992. The 1995 and 1996 data samples have yielded a significant number of 

photoproduction events with three high transverse energy jets in the final state and 

a high three-jet invariant mass, M$j  > 50 GeV. As at the TEVATRON, the study of 

multijet final states provides im portant tests of perturbative QCD based calculations at 

and beyond leading order which are able to deepen our understanding of photon induced 

reactions at HERA and reveal universal factors which are im portant in determining the 

structure of the three-jet final state. A further motivation for this study is th a t this 

knowledge could be used to evaluate the type of QCD multijet background th a t might 

be expected in high energy hadronic interactions.



This thesis constitutes the first direct study of multijet events in photoproduction 

at HERA. The cross section for the production of three high transverse energy jets 

with a high three-jet invariant mass, M$j  > 50 GeV, is measured and the dynamics of 

three-jet production are investigated.

Chapter 1 describes briefly the underlying theory with particular emphasis on 

obtaining reliable QCD predictions. Also introduced are some of the physics processes 

studied at HERA and the contribution that they can make to the understanding of 

multijet final states. Details of the HERA accelerator itself are given in chapter 2  along 

with a description of the detector components and data selection procedures of the 

ZEUS experiment considered im portant for this study.

Chapter 3 describes in more detail the types of physics events recorded by the 

Jets and High E t  working group within the ZEUS Collaboration. The procedures 

employed to monitor the data quality after offline reconstruction, a task for which I 

was responsible during the 1996 and 1997 run periods, are also discussed.

The specific event selection used in this study is described in chapter 4; in particular 

the jet finding algorithm is presented and the criteria which define the three-jet event 

sample are motivated.

Monte Carlo event generators are used to provide simulated events which can yield 

information on the effects of the detector on the measured data  such tha t they can be 

corrected for. The event generators used are discussed in chapter 5 and their ability to 

describe the raw ZEUS data is demonstrated. The event samples used are detailed in 

appendix A.

Chapter 6  describes the procedures carried out to correct the data for energy 

losses in the detector and for detector acceptance. The corrected data are shown in 

chapter 7 along with a study of the variation of the results when steps of the analysis 

were systematically changed. The corrected data with statistical and full systematic 

uncertainties are listed in tables in appendix B.

Chapter 8  compares the data to calculations from two groups of authors; Harris & 

Owens and Klasen. Also shown for comparison are the predictions of various Monte 

Carlo models. The conclusions drawn from these comparisons are summarised in 

chapter 9.



The main results of this study have been accepted for publication in Physics 

Letters B. Preliminary versions of these results have been presented at the Sixth 

International Workshop on Deep Inelastic Scattering and QCD (DIS ’98) [1] and at the 

International Conference on High Energy Physics, Vancouver [2] by Dr L. E. Sinclair.

A previous study of colour coherence effects in multijet final states, in which I took 

part, was shown at the Future Physics at HERA Workshop [3]. The contribution to 

the proceedings is included as appendix C.

Another earlier study of multijet final states was presented at the Photon ‘97 

conference [4]. My contribution to the proceedings constitutes appendix D.
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Chapter 1

Introduction

1.1 Particle Physics and the Structure of Matter

The belief tha t the universe is structured in an orderly way and the desire to understand 

more about that order, have been prime motivators in scientific research for thousands 

of years. This century has seen dramatic scientific progress in both theoretical and 

experimental physics which has allowed us for the first time to see deep into the 

structure of m atter.

At the turn of the century only two forces were recognised to  play a part in the 

workings of the universe: gravitation and electromagnetism. Several m ajor discoveries 

had just been made, such as X-rays, radioactivity and the electron, which greatly 

excited the scientific community. In 1911 Rutherford showed tha t the atom consisted 

of a small nucleus surrounded by clouds of electrons. He tested the structure of the 

atom by scattering alpha particles (the probe) off gold atoms (the target). He discovered 

tha t the pattern of the deflected alpha particles was consistent with scattering from a 

small, compact object within the atom, the nucleus. The principle of using particles to 

probe further into the structure of m atter has been used ever since in particle physics 

experiments in search of deeper levels of substructure. The spatial resolution which 

can be studied is limited by the wavelength of the probe particles, A =  h/p,  where p is 

the momentum of the particle and h is Planck’s constant. Thus higher particle energies 

are required to see finer details of substructure, as illustrated in figure 1 .1 .

1
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atom

4 MeV

-10
-10 m -15

-10 m

Figure 1.1: Testing the stricture of the atom  and of the proton using particle probes. Here the 

a  particles have energies of a few MeV but the electrons need to have energies of several GeV.

Today, the  known elem entary  particles and th e ir in teractions m ake up th e  ‘S tan d a rd  

M odel’ of partic les physics, a description of which can be found in m ost tex tb o o k s, for 

exam ple, ‘Q uarks and L eptons’ by F. Halzen and  A. M artin  [5]. O f th e  four known 

fundam ental forces only three are included in th e  S tan d a rd  M odel: e lec trom agnetism , 

the  weak force which governs rad ioactive decay, and th e  stro n g  force which binds 

p ro to n s and neu trons together in the  nucleus. G rav ity  is weaker by far even though  it 

was th e  first force to  be recognised. Its ap p a ren t s tren g th  lies in its cum ulative effect 

and on th e  fact th a t  we live in the vicinity of a  very m assive body, th e  E a r th . T he 

g rav ita tio n a l force acting betw een elem entary  partic les a t close distances is negligibly 

sm all in com parison to  the o th er th ree  forces.

E lem entary  partic les can be grouped in to  th ree  categories: lep tons, quarks and 

gauge bosons. Leptons and quarks can be considered to  consist of th ree  ‘g en e ra tio n s’ 

of partic les. For lep tons, the  first generation  consists of th e  fam iliar electron and  th e  less 

fam iliar electron neu trino  which is produced in /3 decay. F u rth er generations contain  

th e  / 1 and  r  partic les, essentially heavy electrons, and their corresponding neu trinos.

E xperim ents a t the  S tanford  Linear A ccelerator (SLA C) in th e  la te  1960’s probed 

th e  s tru c tu re  of th e  pro ton  w ith 20 GeV electron beam s. T hey discovered th a t  electrons 

sca tte red  strongly  off pointlike ob jects w ithin th e  p ro ton  [6] in a process know n as 

‘Deep Inelastic S ca tte rin g ’ (D IS) illustra ted  in figure 1.2(a). These co n stitu en ts  of 

th e  p ro to n , or ‘p a r to n s ’, tu rn ed  ou t to  be the  ‘q u a rk s’ th a t  had  been p o s tu la ted  by 

Gell-M ann[7] and Zweig[8] to  describe the  profusion of short lived baryons and  m esons

proton

20 GeV
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which had been discovered in scattering experiments in the 1950’s and 60’s. Further 

experiments confirmed the existence of six quarks grouped, like the leptons, into three 

generations: up and down (the lightest quarks), charm and strange, and top and bottom  

(the heaviest).

e(k)
r(q) ° r z1

Figure 1.2: Leading order diagrams for DIS showing (a) neutral current where a photon or Z° 
is exchanged and (b) charge current where a W  is exchanged and the incident electron changes 

to a neutrino. The normal nomenclature for the four-momentum is indicated.

Finally, the electromagnetic, weak and strong interactions between all of these 

particles can be described by the exchange of gauge bosons associated with the 

interaction. Momentum and energy are conserved at the vertices where bosons are 

emitted and absorbed. The exchanged particles can exist for a limited time (from the 

uncertainty principle of quantum mechanics) but without the well-defined mass of a 

real particle, and are said to be ‘virtual’.

The electromagnetic force acts on all electrically charged particles, such as electrons 

and quarks, through the exchange of photons. Electromagnetic interactions are 

described by the theory of quantum electrodynamics (QED) which arose from the 

application of quantum and relativistic principles to the way in which charged particles 

interact with the electromagnetic field. The static potential has the form — a / r  where 

r is the distance between particles and a  (~  1/137) is the coupling constant. In order 

to calculate the behaviour of a given pair of interacting particles one must consider all 

possible processes, and the exchange, emission or absorption of more than one photon 

will be suppressed by further factors of a. QED cannot be solved with infinite precision
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but since a  is small any process can be described perturbatively by an expansion in 

terms of cc, where higher orders are neglected. This approximation is so good tha t QED 

is the most precise and well-tested theory ever formulated, as discussed in [9 ].

The momentum transfer in an interaction due to the exchange of a boson is denoted 

q, see for example figure 1.2, and a kinematic variable Q2 =  — q2  can be defined. This 

can be thought of as the negative invariant mass squared of the exchanged boson and is 

also referred to as the ‘virtuality’. As Q 2  increases the photon probes deeper through 

the e+ e“ pairs produced by the vacuum which shield the charge on the electron, an 

effect known as vacuum polarisation. The result is tha t the coupling a  is not constant 

but varies with Q 2  and can be written as

a(Q 2) ~ --------------------------------------------------------(1 .1 )

for Q 2  »  m 2  where m  is the mass of the electron. The extra term in the denominator 

which depends on Q 2  causes a  to rise as Q 2  increases but for all presently attainable 

Q2, a  remains small enough that the perturbative approach is valid.

The weak force, which acts on all leptons and quarks, is mediated by the massive W ± 

and Z°  particles. The DIS diagrams in figure 1.2 show tha t electron-quark scattering 

can occur not only through exchange of a photon but also through exchange of a W  

or Z°  boson. At small Q 2  the strength of the weak interaction (a ^  ~  10-6 ) is much 

lower than tha t of the electromagnetic interaction since the probability of producing 

virtual W  or Z°  particles is much less than of producing a photon of the same energy. 

However it has been shown tha t as the energy of the interaction increases the weak 

coupling strength increases. The result is tha t when the interaction energy is high 

enough for W  or Z°  exchange to be im portant the weak and electromagnetic couplings 

strengths are similar [10]. In fact, in the Standard Model the weak and electromagnetic 

interactions are manifestations of a common electroweak force [1 1 ].

The strong force arises through the exchange of gluons, the quanta of the colour field, 

between coloured partons such as quarks. The attribute of colour is analogous to the 

electric charge of the electromagnetic force and the theory of quantum chromodynamics 

(QCD) was developed to describe the way in which coloured particles interact.

QCD differs from QED in a crucial aspect; unlike photons, which are electrically
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neutral, gluons carry colour charge and can couple to themselves. The contribution 

from the self-coupling of gluons in vacuum polarisation effects causes the behaviour of 

the strong coupling constant, a s, to differ significantly from tha t of a. a s is given by

M Q 2) * ------------ — — - o r -  ( 1 -2 )
(33 — 2Nj)  log j ? —

Q C D

where N / ( = 6 ) denotes the number of flavours and Aq c d  is a fundamental param eter 

of QCD, the value of which is not predicted but has been determined experimentally 

to lie in the range 200-500 MeV.

The outcome of this form for a 3 is tha t a s —► 0 as Q 2  —> oo , a consequence known as 

‘asymptotic freedom’ [1 2 ] since partons which are close together act as if no attraction 

exists between them. Another result is that a s —> oo as Q 2  —*■ A qcd-  effect, this 

means tha t at small momentum transfers, or large distances, o;s is so large th a t the 

attractive force between partons keeps them confined inside hadrons. This is termed 

‘infrared slavery’, as summarised in [13], and is thought to explain why free quarks 

have never been observed.

In practice the confrontation of QCD predictions with experimental observations 

is complicated. Since the coloured partons remain confined inside colourless hadrons 

a way must be found to isolate the behaviour of the asymptotically free quarks inside 

the hadrons from the confining mechanism. This can be achieved through scattering 

experiments between hadrons and a beam of probe particles. In DIS the resolution of 

the scatter has a 1 /Q  dependence; thus in high Q2 (hard) scattering the exchanged par

ticle becomes capable of resolving individual partons inside the hadron and interacting 

with them independently of the confinement mechanism. Lepton-hadron scattering 

tests electromagnetic and weak structure while hadron-hadron scattering provides 

information on the strong interaction. At Q 2  ~  3 GeV2 a s ~  0.2 so perturbative 

QCD (pQCD) can predict the high Q 2  kinematic region.

To a good approximation, the cross section for any high Q 2  scattering process can 

be ‘factorised’ into a long distance, non-perturbative part describing the distribution of 

partons in the hadron and a short distance subprocess, perturbatively calculable from 

first principles, which describes the parton-parton or photon-parton scattering. The 

principle behind this factorisation is discussed in [14]. The distribution of partons in
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the proton is a function of x , the fraction of the hadron’s momentum carried by a given 

parton. The measured distributions have been shown to be ‘universal’. For example, 

the proton structure is found to be the same whether calculated from ep, pp  or up 

scattering. The quark and gluon compositon of a particular hadron, once measured, 

can be used to describe any hard interaction experienced by tha t hadron.

As Q 2  increases, levels of structure within the hadron involving gluon emission 

and absorption and the creation of qq pairs can be identified. The evolution of the 

parton’s observed structure with Q 2  is perturbatively calculable in QCD using the 

DGLAP evolution equations [15]. Any divergent contributions to the cross section can 

be absorbed into the definition of the parton distribution functions with the result that 

a dependence on Q 2  as well as x is acquired. This prediction has been experimentally 

verified by the ZEUS and HI collaborations in measurements of the proton structure 

function, F2  [16].

The final state of any hard scattering which produces quarks and gluons is also 

complicated by the confinement of quarks and gluons in colourless hadrons. Consider 

a high Q 2  process where a qq pair is produced. As the particles move away from the 

interaction point and, more importantly, from each other, the potential energy in the 

colour field between them increases. At a certain point the creation of an additional 

qq pair from the vacuum becomes energetically favourable. The new quarks interact 

with each other through gluon exchange. This process continues until the remaining 

energy is insufficient to create further partons and a s is large enough tha t partons bind 

together into hadrons. The fragmentation of the original q and q thus forms jets of 

hadrons [17] which are collimated around the original direction of the partons. The 

summed momenta of the hadrons in the jets also bears a close resemblance to  tha t of 

the original parton. This correspondence between partons and jets of hadrons forms 

the basis of the local parton-hadron duality principle [18].

The factorisation property discussed earlier can be expressed in the representation 

of the cross section for hard scattering processes. Figure 1.3 shows the interaction of 

partons a and 6 which carry respectively a fraction x a and xb  of their parent hadron’s 

momentum with a probability f a/A(xAiQ2) and fb/B(x B->Q2)- The scattering between 

a and b produces partons c and d in the final state which manifest themselves as jets
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of hadrons. The cross section for the process can be represented as

dcr(AB —»■ j e t s ) = £ / /  dxAdx Bfa/A(xA,Q 2) fb/B(x B , Q 2)da(ab -»■ cd) (1.3)

where dcr(ab —> cd) is the perturbatively calculable cross section for the hard scattering 

partonic subprocess and the summation is over all possible subprocesses. The to tal 

cross section therefore consists of two parts; the structure functions of the hadrons in 

question, in which is included all the non-perturbative aspects of QCD and which are 

experimentally determined, and the perturbatively calculable hard QCD subprocess.

jets

Figure 1.3: Schematic diagram of an interaction between two hadrons with jets produced in the

final state.

1.2 t p Physics at HERA

The Hadron Elektron Ring Anlage (HERA) is the world’s first ep collider and was 

built with the intention, amongst other things, of studying the structure of the proton 

through high Q2 deep inelastic ep scattering, DIS, as shown above in figure 1 .2 . The 

range of available Q2 values, from close to 0 GeV2 up to 105 GeV2, enables investigation 

of the proton structure at different scales. This section describes some of the wide range 

of physics processes which take place at HERA. HERA itself will be described in more 

detail in the following chapter.

The final state of a DIS event at leading order (LO), is indicated in figure 1 .2 . 

A scattered lepton (electron for neutral current or neutrino for charged current) with 

high transverse momentum (px) is accompanied by a quark which is struck out of 

the proton and fragments into a jet of hadrons which balance the lepton in px- The
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spectator partons in the proton also form a jet of hadrons concentrated around the 

original proton direction, known as the proton ‘rem nant’. The Q2 of the scatter can be 

calculated from the energy and angle of the scattered electron,

Q 2  =  2EeE*e(l  +  cos#g) (1.4)

where E e and E'e are the energies of the initial and scattered electron and 0'e is the 

angle of the scattered electron with respect to the proton beam direction.

The cross section for ep scattering has a 1/Q 4  dependence hence low Q2 processes 

dominate. The electron beam is therefore also the source of a large flux of almost real 

photons making HERA the ideal place to study photon-nucleon interactions, referred 

to as ‘photoproduction’. HERA provides 7 p centre-of-mass energies of up to about 300 

GeV, an order of magnitude greater than previous fixed target 7 p experiments.

Photoproduction processes occur in several different ways due to the complex nature 

of the photon. In the simplest case, the photon can interact directly with a parton in the 

proton as shown in figure 1.4(a). Here, although the virtuality of the photon is almost 

zero, a hard scale in the event can be provided by the invariant mass of the mediating 

quark propagator. Unlike DIS where the scattered electron and a single, p^-balanced 

quark jet are found at LO, the final state in LO direct photoproduction consists of 

two high pt  quark or gluon jets balanced in p x , the beam electron scattered through a 

small angle together with the proton remnant. The process is of order 0 ( a a s) due to 

the photon-quark and quark-gluon couplings.

At low photon virtuality the lifetime of a fluctuation into a qq pair is significant and 

the photon can acquire a hadronic structure. The first studies at photon-nucleon fixed 

target experiments revealed that the photon behaved essentially as a vector meson, such 

as a p, u  or (f> meson, with the same quantum numbers as the photon. This behaviour 

inspired the Vector Meson Dominance model (VMD), reviewed in [19]. However, the 

existence of high transverse energy qq fluctuations without the formation of a bound 

state was predicted by QCD and was observed in measurements of the photon structure 

function in two photon reactions at e+e_ collider experiments, reviewed in [20]. This 

perturbative component becomes increasingly dominant as the virtuality of the photon 

increases and the time available is insufficient to create a bound state. The photon
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7 Q

(a) (b)

Figure 1.4: Leading order photoproduction diagrams showing examples of (a) direct (QCD

Compton) and (b) resolved processes.

structure is thus modelled by a combination of two components, a perturbatively 

calculable ‘anomalous’ part and a non-perturbative VMD part which must be measured 

experimentally, and has an a / a s dependence.

Photoproduction events where the photon acts as a source of partons are termed 

‘resolved’; an example of one such process is shown in figure 1.4(b). The final state 

differs from direct photoproduction in that a photon ‘rem nant’ formed by the quarks 

and gluons not involved in the hard scatter is present. The resolved hard scatter has 

the same form as at hadron-hadron colliders and has order 0 { a 2s). The a / a s factor 

from the photon structure function gives G (aas) overall with the result tha t resolved 

and direct processes are of the same order theoretically.

The separation between direct and resolved photoproduction, though well defined at 

leading order, is blurred at higher order. As an illustration, figure 1.5 presents a 2 —► 3 

scattering process in two slightly different ways. The first diagram, figure 1.5(a) could 

be considered a next-to-leading order (NLO) direct process. The second diagram shows 

the photon fluctuating into a qq pair where the high relative px  of the q and q preclude 

the formation of a bound state. One of the partons then interacts with a parton from 

the proton. This would be considered a LO anomalous resolved process. The terms 

‘direct’ and ‘resolved’ can thus only refer in a simple manner to LO diagrams.

The fraction of the photon’s momentum taking part in the hard scatter, ar7, is
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Q 12 = Q;

a (b)

Figure 1.5: Photoproduction diagrams showing examples of (a) next-to-leading order direct and 

(b) leading order anomalous resolved processes.

naturally equal to 1 for LO direct and less than 1 for LO resolved events. An 

experimental observable x°bs can be introduced which gives the fraction of the photon’s 

momentum participating in the production of the final state jets,

obs T , j , t , E 3Tete x p ( - V>et) 
7  “  2

(1.5)

and rj êt are the transverse energy and pseudorapidity1 of the jets and E 7  is the 

energy of the photon. x°bs is well defined and calculable at the parton level to  all orders 

in perturbation theory. At LO replacing the sum over jets with the sum over the two 

final state partons reduces x°bs to x7.

An operational separation of direct and resolved events can be made on the basis of 

x°bs. Figure 1 .6  shows the x°bs distribution of ZEUS photoproduction data where two 

jets are identified in the final state [21]. The data show a clear peak at x°bs ~  0.9 and a 

tail to low values. The histograms represent the sum of the LO direct and LO resolved 

processes for a QCD based model. The shaded histogram indicates the contribution 

for the LO direct process only. It is evident that the peak at high x ^ s is associated 

with LO direct photoproduction while the events at low x ^ s come mainly from LO 

resolved processes. Applying a cut on x°bs (at 0.75 in figure 1.6) provides a means for

1The pseudorapidity is defined as ij =  —ln(tan | ) ,  where the polar angle 6 is taken with respect to 

the proton beam direction.
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Figure 1.6: x°bs distribution  for 1995 ZEUS dijet photoproduction data . Shown for com parison 

are the predictions of the leading order Monte Carlo event generator HERW IG. The shaded 

histogram  shows the contribution from LO direct processes only.

separa ting  the d a ta  sam ple into direct and resolved enhanced subsam ples. Resolved 

pho top roduction  is dom inant in the  low E ^ 1 region while d irect p h o to p ro d u c tio n , in 

which all th e  p h o to n ’s energy con tribu tes, dom inates a t high E ^ .

E7 in equation  1.5 can be ob ta ined  from  E^ — E e — E e — y E e w here y is th e  fraction  

of the  e lec tron ’s m om entum  taken  by th e  photon , y can be determ ined  from  the  

sca tte red  electron

Ve ~  1 “  ~~cos6>^

where the m ass of th e  electron is neglected. In m ost p h o top roduction  events, however, 

th e  sca tte red  electron is no t observed. In this case y can be reco n stru c ted  from  the  

hadronic energy flow in the  final s ta te  using the  ‘Jacquet-B londel’ m ethod  [22].

_ £*(£* -  P zi) E i
VJB = ------------  - j r  =  y

ZH/ e £j£
(1 .7)

w here E t is th e  energy of a  partic le  or detec to r cell, pz{ is th e  longitud inal m om entum  

and th e  sum runs over all particles or cells in the  final s ta te .
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Finally, the multiparton nature of the proton and of the photon in resolved 

photoproduction leads to the possibility that secondary interactions may take place 

between the partons from the proton and photon, as illustrated in figure 1 .7  [23]. 

M ultiparton interactions are not included in any LO or NLO pQCD photoproduction 

calculations but can be modelled in the LO Monte Carlo event generators described in 

section 5.1. Their effect, if present, is that a QCD subprocess may be accompanied by 

a secondary or ‘underlying’ process whose energy flow is mainly at low E t  but which 

may also have a high E t  component.

Figure 1.7: Schematic diagram of a resolved photoproduction interaction where two independent 

hard scatters take place between the constituents of the photon and proton.

1.3 QCD Coherence

QCD colour coherence describes phenomena arising from the interference of soft gluon 

radiation emitted between colour connected partons. Colour coherence is implemented 

in the parton shower in the Monte Carlo event generators discussed in section 5.1. For 

more detailed reviews see [24].

Physically, the main consequences can be separated into ‘in tra je t’ and ‘in terjet’ 

coherence. The term ‘in tra je t’ refers to  the way in which a je t evolves from an initial 

parton. The complex multiparton system that develops can be viewed as a sequence 

of parton branchings as shown in figure 1.8. For illustrative purposes, a q and q are 

produced with high transverse energy in the final state with an opening angle of 9\ . A 

gluon is then radiated from the quark with an angle 92 relative to the quark. In the case
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Figure 1.8: Schematic diagram showing the development of a shower of coloured partons and

the angular ordering effect.

where 8 2  > 8 \ the gluon cannot resolve the q and q as separate particles and behaves 

instead as if it were radiated from the parent gluon (which produced the qq pair), 

assumed to be on shell. In general, this means that the description of the evolution 

of a jet in terms of successive parton splittings requires an angular ordering condition, 

0 i > 8 2  > 8 3  . . . ,  in order that each quark or gluon can resolve the parton from which 

it was emitted.

Interjet coherence refers to the manner in which the angular distribution of gluon 

radiation is affected by the colour flow in an event. In a high p t  hadronic interaction 

there is a background of soft particles, in addition to the gluon radiation involved in 

the evolution of the final state jets, whose behaviour depends on the colour topology 

of the whole event. A good example of this type of coherence is the string (or drag) 

effect observed in e+e_ —* 3 jets interactions [25, 26].

Figure 1.9(a) shows the final state of the reaction e+e“ —> qq7 . The q and q carry 

colour charge and a ‘string’ can be drawn between them representing the colour field. 

The event is further illustrated in figure 1.9(b) with a gluon replacing the photon. Now 

the strings connecting the colour partners must be drawn between q — g and q — g', 

there is no colour connection between the qq pair. In the three-body plane the particle 

multiplicity in the region between the qq pair is lower in qqg final states than in the 

corresponding qqj  events. This suppression of gluon radiation, which can be visualised 

by way of strings indicating the colour fields, is due to quantum mechanical interference
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q

q

(a) (b) (c)

Figure 1.9: Schematic diagram showing the colour flows in (a) the final state of e+e~ —► qqy, 
(b) the final state of e+e~ —► qqg and (c) in a resolved photoproduction event.

effects. The predictions of particle distributions obtained from QCD taking into account 

colour flow are qualitatively similar to the predictions of the Lund string model [27] 

discussed further in section 5.1.

The signal of interjet colour coherence effects in particle distributions obtained from 

the final state in e+e“ —► 3 jets interactions is particularly clear due to the simple colour 

flows involved. An example of a hard scatter in resolved photoproduction, essentially 

the same as in hadron-hadron collisions, is shown in figure 1.9(c). Here the colour flow 

is more complicated and the strings connecting colour partners are shown linking initial 

and final state partons. Many processes with very different colour flows make up the 

to tal hard photoproduction cross section thus obscuring specific effects arising from the 

colour flow in an event.

In an attem pt to overcome these difficulties the CDF and D 0 experiments at the 

TEVATRON pp collider studied events containing high E t  jets where the soft radiation 

was itself hard enough to form secondary jets [28, 29]. Studying the spatial correlations 

between the softest jet in the event and the leading jets is similar to studying patterns 

of hadron multiplicity as was done in the final states of e+e“ collisions. It was found 

th a t coherence was required in models to describe the data satisfactorily. A Monte 

Carlo study was carried out to investigate the sensitivity of such a study in hard 

photoproduction at HERA to colour coherence effects [3] and is included as appendix C.
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1.4 Multijet Final States

Inclusive jet and dijet studies of hard photoproduction at HERA have established the 

existence of direct and resolved processes [30], tested QCD predictions [31, 32, 33, 34, 35, 

36] and extracted information on the structure of real and virtual photons [37, 38, 39], 

the underlying event [40] and the structure of jets [41]. The study of multijet final 

states provides tests of pQCD at and beyond leading order, in particular providing a 

direct test of O (aa^) pQCD calculations. It should also increase the knowledge of the 

type of multijet production mechanisms dominant in photoproduction.

Figure 1.10: Two different ways of producing a three-jet final state in hard photoproduction.

A three-jet event of the type shown in figure 1 .1 0 (a) contains two hard scales, Q\ and 

Q2 which are similar in magnitude. A 2 —> 3 0 (a a l)  calculation, while next-to-leading 

order (NLO) for dijet photoproduction, is the lowest order of QCD calculation which 

could be used to describe this process. Figure 1.10(b) shows a three-jet event where the 

hard scatter is essentially a 2  —»• 2  process and the third jet is formed by gluon radiation 

from one of the partons involved in the hard scatter. Provided that the scale of the 

gluon radiation is much less than tha t of the hard scatter the gluon radiation from 

a parton can be described by DGLAP evolution. This approach for approximating 

higher order m atrix elements using a 2  —> 2  matrix element and an evolved ‘parton 

shower’ mechanism can be implemented using Monte Carlo techniques as detailed in
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section 5.1. Confronting the predictions of these two methods with experimental data 

should shed light on the multijet production mechanisms which are im portant in hard 

photoproduction.

Multijet final states can be characterised by a set of kinematic parameters which 

span the multijet parameter space, facilitate the interpretation of the data within pQCD 

and simplify comparisons of events with different numbers of jets in the final state [42]. 

Measurements of such parameters have already been made for two-jet production at 

HERA [43] and for events containing three or more jets at the TEVATRON [44]. Here 

they are presented for inclusive three-jet photoproduction for the first time.

The variables chosen to describe the three-jet final state are the three-jet invariant 

mass, M34 5 , and four dimensionless variables, cos $3, 03, A 3 and X 4  which are defined 

in the three-jet rest frame as :

n   Pbeam ’ P3  / - i  o \COS #3 =  — r - j -  (1.8)

_  (P3  X  Pbeam) ' (P4  X  p 5 )

\PZ X Pbeam I \P4 x fs\
2 E 3 2 E 3

E3 + E 4  +  E$ M345

2 E 4 2 E 4

(1.9)

A 3 =  ~  , * - - =  — -2- ( 1 .1 0 )

a 4 =  - — -  - =  - f p -  ( 1 .1 1 )
£ 3  +  E4 +  e$  M 3 4 5  

where E  and p are the energies and three-vectors of the jets in the three-jet rest frame. 

The jets are labeled 3, 4 and 5 in order of descending energy, ie the highest energy 

jet in the three-jet rest frame is labeled ‘3’ and so on. Pbeam is the three vector of 

the resultant beam direction, here (0,0,Ep — E e), where Ep and E e are the proton and 

electron beam energies.

Figure 1.11 shows a schematic definition of the angular variables cos 03  and -03- In 

the three-jet rest frame 0 3  is the angle between the highest energy jet and the average 

beam direction. This is similar to the angle 8 * used in dijet studies [43] which represents 

the angle between the jets and the beam direction in the dijet centre-of-mass. Since 

cos $3  depends on the highest energy jet only it should not be very sensitive to  the
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third jet in the event. The distribution is therefore expected to resemble the shape 

of the cos0* distribution in dijet events and follow the Rutherford scattering form 

~  (1  — cos#3 ) - 2  when the exchanged parton has spin 1 .

Three—body Rest Frame 1 + 2 —> 3  + 4 +  5

•earn

Figure 1.11: Schematic definition of angles used to describe the three-jet system in the three-jet

rest frame.

V>3 is defined as the angle between the three-jet plane and the plane containing the 

highest energy jet and the average beam direction. It is undefined for dijet events and 

its shape may be considered as driven mainly by the properties of the third jet. In the 

case where the third highest E ^  jet comes from QCD radiation from one of the initial 

state partons involved in the hard scatter, the coherence property of QCD will tend to 

orient the third jet close to the plane containing the beam and the highest energy jet. 

The two planes will therefore tend to coincide leading to a distribution which peaks 

at 0  and 7r.

X 3  and X 4  are energy-sharing variables which show the fraction of the available 

three-jet centre-of-mass energy taken by the highest and second highest energy jet 

respectively. They are normalised so tha t X 3  + X 4  -f X& =  2 and energy conservation 

restricts their range to |  < X 3  < 1, |  < X 4  < 1 and 0 < X 5 < | .

The study of these multijet observables directly enhances our understanding of 

the strong force by providing a valuable test of QCD beyond leading order. It also 

extends our insight into the multijet production mechanisms im portant in photon- 

induced reactions.



Chapter 2

H ERA and the ZEUS D etector

2.1 HERA

HERA (Hadron Elektron Ring Anlage) is situated at the Deutsches Elektron Syn

chrotron (DESY) in Hamburg, Germany and, as mentioned previously, is the world’s 

first lepton-nucleon collider. Protons and electrons or positrons1 are accelerated to 

820 GeV and 27.5 GeV respectively in two independent rings. These rings are 

approximately circular and are 6.3 km in circumference. Experimental halls are situated 

at four equidistant points along the circumference of the ring as shown in figure 2 .1 . 

The general purpose experiments HI and ZEUS are located in the north and south 

halls respectively. At these points the two beam pipes merge and the counterrotating 

beams are brought to collide. Resulting centre-of-mass energies of around 300 GeV are 

obtainable. There are also two beam-target experiments HERMES and HERA-B which 

are situated in the east and west halls respectively. HERA-B uses an internal target 

in the proton beam to study CP violation in the B system. HERMES measures the 

spin distributions of the quarks and gluons in the proton and neutron with an internal 

target in the HERA electron beam. Both ZEUS and HI have been operational since 

1992. Data-taking in HERMES started in 1995 and HERA-B is due to start taking 

data  in 1998.

Electron energies of 27.5 GeV can be obtained by an acceleration complex which

1From 1994 - 1997 HERA operated with positrons only. For the rest of the study, unless stated 

otherwise, the term electron is taken to refer also to positrons.

18
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Figure 2.1: A schematic diagram showing the layout of the HERA accelerator complex.

consists of a combination of new and previously existing machines. Firstly 500 MeV 

electrons from a linear accelerator are injected into a small storage ring. They are 

then accelerated to 7 GeV in DESY II, an electron synchrotron, and transferred to 

PETRA II, the former PETRA e+e~ storage ring rebuilt to  act as a preaccelerator for 

electrons and protons. The process is repeated until PETRA is filled with 70 bunches 

of electrons. The bunches are spaced 28.8 m apart, the spacing they will have in the 

HERA ring. From PETRA the electrons are injected into the HERA ring and the 

process repeats until HERA contains 210 electron bunches.

The proton acceleration starts with a 50 MeV linear accelerator which accelerates 

negatively charged hydrogen ions. The electrons are stripped from the ions upon 

injection into DESY III, a proton synchrotron, and the protons are captured into 11 

buckets, again 28.8 m apart. After being accelerated to 7.5 GeV the protons are injected 

into PETRA II and accelerated to 40 GeV. Up to 70 bunches are accumulated before 

transfer to the HERA ring.
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Position monitors located ± 7 m  from the interaction point are used to centre the 

beam. Timing information from the interaction point, IP, in the east hall is used to 

collide the beams accurately at the interaction point in the north and south halls with 

a time interval between bunch crossings of 96 ns.

Some bunches are left unpaired to study non-ep background processes which include 

the interactions of electrons and protons with the residual gas molecules in the beampipe 

and cosmic ray events. In 1995 there were 174 paired ep bunches, 15 e and 6  p  unpaired 

bunches. The remaining bunches were left empty.

2.2 ZEUS Detector

The detection and study of the wide variety of physical processes which are produced 

at HERA provides many complex challenges. An experiment flexible enough to study 

known ep interactions, such as those described in chapter 1 , and also to  search for 

unknown processes must be able to detect and identify the products of these reactions. 

This places many different requirements on the experiment. The position, momentum 

and identity of charged particles must be known accurately. The energies of particles 

should be measured with excellent resolution over a wide range of energies for hadrons 

as well as electrons and photons. Fine segmentation is needed to provide good angular 

resolution. There should be full solid angle coverage such tha t few particles of interest 

escape undetected. The detector should also be capable of dealing with large fluxes of 

particles in the proton direction due to the large momentum imbalance between the 

incoming proton and electron beams. A number of different detector components are 

necessary to satisfy all these requirements.

A view of the longitudinal cross section through the ZEUS detector is shown in 

figure 2.2. In the ZEUS coordinate system the 2  axis follows the line of the beam 

direction. The nominal interaction point is taken as the origin and 2  is positive in the 

proton direction. The polar angle, 0, is measured with respect to the proton direction. 

The x and y axes point to the centre of the HERA ring (x ) and directly upwards (y ). 

The azimuthal angle, </>, is measured with respect to the x axis in the x — y plane.
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Figure 2.2: A schematic diagram showing a longitudinal section through the components which

make up the ZEUS Detector.

The innermost detectors are the vertex detector, VXD 2, and the tracking detectors 

CTD and FDET. The CTD tracks charged particles in the central region while the 

FDET encompasses a range of tracking detectors in the forward and rear regions. A 

solenoid surrounds the tracking detectors providing the magnetic field required for 

their operation. The main calorimeter, which measures particle energies, encircles 

the solenoid and is divided into forward, central and rear components, FCAL, BCAL 

and RCAL. This in turn is enclosed in the backing calorimeter, BAC. Finally muon 

chambers, FMUON, BMUO and RMUO, surround the detector. Much of the instru

m entation is situated in the proton direction due to the high concentration of particles 

resulting from the asymmetry in the beam energies.

Additional detectors not shown in figure 2 .2  are located downstream of the electron 

and proton beams to tag particles produced at small angles to the beam direction and 

help reject background. The luminosity monitor (LUMI) and beam pipe calorimeter 

(BPC) are situated downstream of the electron beam and measure small angle electrons.

2The VXD was removed at the end of the 1995 data-taking period.
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The LUMI also measures photons. The leading proton spectrometer (LPS) and the 

forward neutron calorimeter (FNC) are located downstream of the proton beam and 

measure high energy protons and neutrons. The C5 counter and the vetowall are 

situated respectively 3.2 m and 7.3 m from the interaction point upstream of the 

proton beam and are used to reject background interactions. The C5 counter measures 

the timing of the positron and proton bunches and detects proton beam interactions 

upstream of the IP. The vetowall protects the main detector from particles from the 

beam halo which accompanies the proton beam.

The main components used for this study were the calorimeter, the central tracking 

detector and the luminosity monitor (not shown). These will be detailed in the following 

sections. A full description of the ZEUS detector is given in [45].

2 .2 .1  C a lo r im eter

The ZEUS calorimeter [46] is designed to measure the energy of particles with an 

excellent resolution over a wide range of energies. It provides full angular coverage, fine 

segmentation for good position determination and has a fast reponse time.

Particles entering a calorimeter interact with the detector medium producing 

secondary particles. These in turn generate more particles until all, or nearly all, 

of the incident particle energy is used up to give ionisation or excitation of the detector 

medium. A sampling of this ionisation or other excitation energy can then be used 

as a measure of the initial particle energy; this is the principle behind a sampling 

calorimeter. For example, layers of scintillating material placed alternating with the 

absorbing material emit light due to the interaction with the ionising particles. This 

light signal can be used to measure the energy of the incident particles.

Different incident particles, however, interact with the detector medium in different 

ways. An electron, upon contact with a dense material, experiences deceleration 

due to the electric field of the atomic nuclei and radiates high energy photons 

by bremsstrahlung. The photons in turn produce e+e“ pairs which also undergo 

bremsstrahlung, and so a shower develops. After travelling a distance of X Q, the 

radiation length of the medium, the energy of the electron is reduced on average by a 

factor of e. The shower of particles continues to grow until the loss of energy through
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ionisation dominates and no further radiation occurs. Eventually almost all of the 

energy of the shower is used up to produce ionisation in the medium. The shower from 

an electromagnetic particle can be contained in a small volume by use of a material 

with small X 0  as the absorbing medium.

The interaction of hadrons with the detecting medium is somewhat different. An 

incident hadron collides inelastically with the nuclei of the medium with the production 

of secondary hadrons. These in turn undergo inelastic collisions and a hadronic shower 

develops. This type of shower differs from an electromagnetic shower in several ways.

Firstly, the longitudinal development of the shower is determined not by X 0  but by 

the nuclear absorption length, A. The differences between electromagnetic and hadronic 

showers can be used for particle identification; the best results are obtained when the 

absorbing medium is made from a heavy element. In this case A is large compared to 

X 0  (A ~  25X0) so much more material is required to contain a hadronic shower than 

for an electromagnetic shower.

Secondly, ~30% of the energy of the incident hadron is taken up by the break-up 

of nuclei and nuclear excitation [47]. This means that the output signal obtained for a 

hadron is typically lower than that of an electromagnetic particle of the same energy. 

The situation is further complicated in that 7r0 ,s produced in hadronic showers decay 

electromagnetically to two photons which give rise to electromagnetic showers. The 

response of the calorimeter to hadrons will therefore vary as a function of the number 

of 7r0 ,s produced.

One way of overcoming these problems is to find a mechanism which ‘compensates’ 

the energy losses in hadronic showers. This is achieved in the ZEUS calorimeter by the 

use of depleted U238 as the absorbing medium. Plates of uranium are interleaved with a 

hydrogenous scintillating material (SCSN-38) which samples the shower development. 

The extra energy released by the fast neutron fission of the U238 and neutron-proton 

scatters in the hydrogenous detector make up for energy losses due to  nuclear break-up. 

The relative thickness of the absorber and scintillator plates is adjusted to obtain equal 

energy response to  both electromagnetic and hadronic showers to within 1 -2 %.

The calorimeter (CAL) is divided into three overlapping sections which cover the 

forward (FCAL), barrel (BCAL) and rear (RCAL) regions. These components cover the
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Figure 2.3: A diagram of an FCAL module.

polar angles (pseudorapidity) 2.2° < 9 < 39.9° (3.95 > r\ > 1.01), 36.7° < 9 < 129.1° 

(1.10 > 77 > —0.74) and 128.1° < 9 < 178.4° (—0.72 > 77 > —4.27) respectively and 

provide a solid angle coverage of 99.8% in the forward hemisphere and 99.5% in the 

backward hemisphere. The resolution achieved has been measured in test beams to be

0.18<*E

E yjE

cte 0.35 
~ E = V E

B 0 .0 1  for electrons3 

© 0 .0 2  for hadrons

(2.1)

(2.2)

where E  is measured in GeV.

3© denotes addition in quadrature
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Each of the CAL components has a modular structure to obtain good spatial 

resolution. One such module, from the FCAL, is illustrated in figure 2.3. The module 

is constructed of towers which are divided longitudinally into electromagnetic (EMC) 

and hadronic (HAC) sections which are read out separately. Uranium and scintillator 

plates are interleaved to a total depth of 1 A in EMC sections and 6-3A in HAC sections 

depending on the position of the module. Thicker calorimetry is required in areas 

where a large flux of very energetic particles are produced, such as around the FCAL 

beampipe. The HAC is therefore thickest in the FCAL (6 A) and in the BCAL (4A) and 

is read out in two separate sections in these components.

The position resolution is governed by the dimensions of the scintillator tiles used. 

Electromagnetic showers are well collimated so the granularity is finest in the EMC 

where the typical cell size is 5x20 cm2. Since hadronic showers are broader than 

electromagnetic showers HAC cells can be larger; the typical size is 20x20 cm2. In 

to tal there are almost 6000 cells to read out. Wavelength shifters placed along both 

sides of the cell engineer the transmission of light out of the system. The light travels 

along the shifters by internal reflection and is converted into an electronic signal by 

photomultiplier tubes. Photomultiplier tubes generate random noise; therefore to 

obtain a reliable signal each cell is read out by a photomultiplier at each end and 

coincidence of both is required. Accidental coincidence rates are small due to  excellent 

timing resolution. The rapid rise time of pulses from the scintillator allows the time to 

be measured to better than 1 ns for incident particle energies above 4.5 GeV.

The natural radioactivity from U23S also gives rise to a signal from the photomulti

pliers. The uranium plates are encased in steel as a safety measure and to reduce this 

signal to a level where it does not interfere with the measurement. The residual signal 

from the uranium is known to better than 0 .2 % and enables a continuous calibration 

of the gain of the photomultiplier tubes at a 1 % precision.

2 .2 .2  C en tra l T rack ing D e te c to r

Charged particle trajectories and momenta are measured by the Central Tracking 

Detector (CTD) [48]. This is a cylindrical drift chamber covering the polar angles 

from 15° to 164°. Charged particles pass through a gas-filled chamber ionising the
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gas molecules to produce electrons. The composition of the gas is 90% argon, 8 % 

carbon dioxide and 2% ethane. The ionisation electrons drift according to the electric 

and magnetic fields acting upon them giving rise to pulses on sense wires tha t they 

come into contact with. A pulse is considered to be a ‘h it’ if its amplitude exceeds a 

particular threshold. The sense wires are arranged into nine superlayers consisting of 

eight wire layers. Five superlayers (‘axial’) have their wires parallel to the axis while 

the other four have wires positioned at a small angle (5°) to the axis (‘stereo’). Layers 

are alternately axial and stereo. The stereo wires allow the z  coordinate of a particle 

to be measured with a resolution of 1 mm. Wires in superlayers one, three and five 

are read out at each end of the chamber. The difference in time of the arrival signals 

at both ends of the chamber can be compared to obtain a fast measurement of the z 

position of the original hit. Hits in a superlayer and their associated drift times are 

used to construct track vectors. Track vectors from different superlayers are then linked 

together to reconstruct the charged particle’s trajectory.

The momentum of a charged particle can be calculated from the curvature of its 

motion in a magnetic field. Since charged particles produced in ep collisions at HERA 

can have high transverse momenta a large magnetic field is required to produce a useful 

degree of curvature. A magnetic field of 1.4 T is applied and the resulting curvature 

gives a transverse momentum measurement with a resolution of

^  = o.005pt  © 0.016 (2.3)
PT

for px  in GeV, for particle momenta of greater than 150 MeV where the track passes 

through all nine superlayers. The first term  is due to the spatial resolution of hits while 

the second arises from multiple Coulomb scattering.

2 .2 .3  L u m in o s ity  M ea su rem en t

The luminosity at HERA is measured via the rate of the bremsstrahlung process 

ep —► ep'). The luminosity monitor (LUMI) consists of two separate detectors - one 

of which measures the scattered electron and the other the photon [49].

A lead-scintillator sampling electron calorimeter, situated 35 m from the interaction 

point in the electron direction, measures the energy of electrons scattered at small angle



CH APTER 2. HERA AND THE ZEUS D ETECTO R 27

to  the beam direction. It detects electrons with d'e < 6  mrad with an efficiency greater 

than 70% for 0.35Ee < E e < 0.6bEe. A sample of photoproduction events can be 

isolated where the electron has been scattered with 0 'e < 6  mrad and is detected in 

the LIJML An upper limit of Q 2  < 0.002 GeV2 is set on the virtuality of the photon 

for these events from the maximum angle an electron can have while still escaping 

along the beam pipe, i.e., 6  mrad. The LUMI tagged photoproduction events provide 

a well characterised sample which can be used to find ways of reducing background in 

photoproduction events where the electron is not detected.

A photon detector is located close to the proton beam 107 m downstream of the 

interaction point in the direction of the electron beam. A carbon filter is used to absorb 

synchrotron radiation, a Cerenkov counter vetos charged particles and finally a lead- 

scintillator sampling calorimeter measures the energy of the photon. The geometrical 

acceptance is 98% for the process ep —»• ep j and is independent of the energy of 

the photon. The luminosity measurement is obtained from the rate of photon events 

measured in this calorimeter corrected as follows :

Rep =  Rtot — Runp~T^~ (2-4)
J-unp

where R t0t is the total rate, R unp is the rate in unpaired electron bunches, I tot is the 

to tal current and I unp is the current in unpaired electron bunches. This corrects for 

beam gas backgrounds. The value of the integrated luminosity in 1995 and 1996 was 

measured to an accuracy of ±  1.5%.

2.3 Online Data Selection

An experiment must be able to select good physics events while rejecting the back

ground events which may dominate the desired signals by a factor of 103-105 [50]. At 

HERA, the bunch crossing time of 96 ns is much less than the time taken for the detector 

to come to a decision on a particular event. Crossings occur at a rate of 10.4 MHz yet 

only a few events per second can be written out and stored. In this situation every 

bunch crossing must be analysed and the detector must be able to discriminate quickly, 

and without dead-time, between background and events containing useful information. 

Several types of background are present:
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n o n -ep b ack g ro u n d  The main contributions occur from the interaction of beam 

particles with the molecules of gas remaining in the beam pipe. Cosmic rays 

also give rise to background.

u n w an ted  ep p rocesses At the design luminosity of 1.5 X  1031 cm-2 s-1 the rate of 

ep collisions is around 200 Hz [51] and is dominated by soft photoproduction. 

Not all of these events are of interest and only a fraction can be written to tape. 

Decisions must be taken online to ensure that rare interactions of interest for 

study are saved. Interesting processes whose analysis is not statistically limited 

are prescaled, i.e. only a fraction of the accepted events are written out. The 

remaining ep processes must be rejected.

The data selection process is organised into three stages with more time and 

information available at each successive stage to make a decision. A schematic overview 

of this process is shown in figure 2.4.

F irs t  Level T rig g er (F L T ) The time between bunch crossings, 96 ns, is much less 

than the time needed even to read out all the components of the detector. A 

pipeline 52 bunch crossings in length is set up to store data while the decision to 

continue to process or to reject the event is made. D ata from each component 

are processed in parallel and then brought together for a global FLT decision 

(GFLT). Quantities available at this stage of processing are necessarily roughly 

measured due to the time constraints - only 5 jus are available from the bunch 

crossing to the decision arriving at the front end electronics. Nevertheless, the 

FLT manages to define an event rate at ~  1 kHz with strong background rejection 

applied through timing cuts (see section 4.1).

S econd Level T rigger (SLT) The SLT accepts data at a rate of 1 kHz. Again the 

detector components process the data in parallel before a global decision is made 

(GSLT). The data are pipelined (16 bunch crossings long) and 10 ms, taking into 

account the lower event rate and the data pipeline, are available to analyse the 

event. This enables more detailed processing and reduces the rate by a further 

factor of 10.
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Figure 2.4: A schematic diagram of the processes which make up the ZEUS three-level trigger

system.

T h ird  Level T rigger (T L T ) Events satisfying the SLT are reconstructed by the 

Event Builder, which has access to the full event record, and are then passed 

to the TLT. Selection algorithms similar to those used in offline analysis can be 

implemented at the TLT, for example, jet finding and electron finding algorithms 

are applied. Events are written to offline storage at a rate of less than 10 Hz 

which is imposed by the DESY data transfer and storage limitations.
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The online selection used to obtain the data presented in this study is shown in detail 

in section 4.1.

The criteria used to select events have become more sophisticated through experi

ence gathered over the past years of data-taking. Increases in the delivered luminosity 

since data-taking began have led to a higher rate of ep interactions. It is therefore 

essential to review continually the priorities of the data selection to ensure tha t the 

most im portant events are available for analysis. Figure 2.5 shows the FLT, SLT and 

TLT rates for 1993, 94, 96 and 97 as a function of luminosity. Although the luminosity 

has increased by a factor of 20 the TLT rate was only slightly higher in 1997 than it 

was in 1993.

2.4 Summary

The ZEUS experiment consists of a sophisticated, highly complex group of detector 

components. These provide information on particle energies, momenta and identity 

which are necessary to obtain insight into the physical processes which produced them.

Several components are particularly im portant for the analysis presented here. The 

calorimeter enables high transverse energy jets to be constructed with excellent position 

and energy resolution. The CTD provides a measurement of the position in space at 

which the interaction occured and helps reduce background. The LUMI photon and 

electron calorimeters provide an accurate determination of the luminosity delivered and 

tag a sample of pure photoproduction events.

The online data  selection consists of a three-level trigger system which rejects 

background and selects particular types of physics processes reducing the rate from 

100 kHz to less than 10 Hz.

The following chapter will deal with further offline data selection procedures and 

monitoring the quality of the data selected by the TLT.
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Figure 2.5: Trigger rates from the first, second and third level triggers as a function of luminosity 

and data-taking period. The different symbols used indicate different trigger levels and different

data-taking periods.



Chapter 3

D ata Selection and D ata Quality 

M onitoring

3.1 Offline Data Processing

Chapter 2 described the three-level online data selection procedure employed by the 

ZEUS Experiment. A further stage of data selection is applied offline to facilitate 

data  analysis. Events passing the TLT are fully reconstructed here. Complex and 

time-consuming algorithms, such as track-fitting, are applied to the data  at this stage 

when up-to-date calibration constants are available. During the reconstruction it is also 

possible to flag events which have passed a particular selection at the TLT. The flag 

given is known as a D ata Summary Tape (DST) bit and information summarising the 

DST bits set is available for each event. An analysis can look then at the subsample 

of the data corresponding to a particular DST bit rather than examining the complete 

data  set, thus saving computer time. There is also the opportunity to apply additional 

cuts to  the data when setting the DST bit rather than changing the TLT selection. A 

subsample of the data containing events which are considered particularly im portant 

and interesting can also be selected during the offline reconstruction. These ‘hotline’ 

events are written immediately to disk enabling rapid analysis.

Responsibility for the recording and analysis of particular types of physics within the 

ZEUS Collaboration was divided between four working groups. This work was carried

32
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out in the Jets and High E t  Phenomena (JHET) working group which encompasses 

a wide range of studies of jets in deep inelastic scattering and photoproduction and 

of particle distributions in hadronic final states. These analyses seek to test QCD 

and extract information on, amongst other things, jet structure, QCD evolution of the 

initial and final state, the structure of real and virtual photons and the gluon density 

of the proton.

During the 1996 run period 23 different physics filters, also referred to in the 

following as TLT branches, were applied by the JHET group at the TLT. In addition 

to general cleaning cuts each filter involved specific requirements aimed at selecting the 

variety of physics events requested for the analyses tackled by the group. The most 

widely used quantities for triggering are energy deposits in the CAL and the transverse 

energy (E ^e<) and pseudorapidity (r fet) of jets. Hits in BPC, FNC and LPS tagging 

detectors are also used. A brief description of the more im portant selection criteria of 

these filters follows:

V ery  H igh  E t : Ej?ne > 25 GeV, where E ^ ne is the transverse energy deposited in

the CAL outwith a cone of 10° around the FCAL beam pipe.

Inc lu siv e  J e t :  At least one jet with E ^  > 10 GeV and r fet < 2.5.

These two branches are particularly useful for the measurement of inclusive high E t  

jet quantities.

H igh  p t  T rack  I: At least one vertex fitted track.

H igh  p t  T rack  II: At least one vertex fitted track with p t  > 2 GeV and an electron 

tagged in the LUMI detector with E e > 5 GeV.

H igh  p t  T rack  I I I : At least one vertex fitted track with p t  > 4 GeV.

H igh  p t  T rack  IV : At least one vertex fitted track with p t  > 5 GeV - disabled for

most of the run period.

H igh  p t  T rack  V : At least one vertex fitted track and strangeness enhancement.

The branches requiring high pt  tracks are aimed at studying heavy flavour production.
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FN C  Inclusive Jet: A hit in the FNC and at least one jet with E ^  > 4 GeV and

r]je t  <  2.5.

FN C  D ijet: A hit in the FNC and at least two jets with E ^  > 4 GeV and r f et < 2.5. 

These branches study jet production in events containing a leading neutron.

B P C  Inclusive Jet: A hit in the BPC and at least one jet with E j f > 4 GeV and

rj iet <  2.5.

B P C  Dijet: A hit in the BPC and at least two jets with > 4 GeV and r fet < 2.5.

The requirement that the scattered electron be tagged in the BPC enables the study 

of intermediate Q2 processes which should extend our understanding of the transition 

region between DIS and photoproduction.

Very High LRG: E j ne > 1 1  GeV and no energy in the region around the FCAL 

beampipe.

D ijet LRG: At least two jets with E ^e< > 4 GeV and r fet < 2.5 and no energy in the 

region around the FCAL beampipe.

LRI: At least two jets with E ^ 1 > 4 GeV and r f6* < 2.5 and rf{et — rf2et > 3.

These three branches select events containing rapidity gaps to enable the study of 

diffractive processes.

Very High LPS: A hit in the LPS and E f ne > 8 GeV.

D ijet LPS: A hit in the LPS and at least two jets with E ^  > 4 GeV and rj^et < 2.5.

Jet production can be studied in events where the proton does not dissociate and is 

tagged in the LPS.

Low E t  D ijet: At least two jets with E ^ 1 > 4 GeV and rfiet < 2.5.

High E t  Dijet: At least two jets with E ^  > 6 GeV and rj^et < 2.5 or E > 4 GeV 

and rĵ et < 1.5.

General purpose jet triggers for the study of low and high E t  dijet cross sections.
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P rom pt Photon: E j ne > 8 GeV and an electron with E j i ec >  4 GeV.

Triggers events where the found ‘electron’ indicates the presence of large deposit of 

energy in the electromagnetic calorimeter (EMC) which could prove to be a high E t  

photon.

D IS Inclusive Jet: An electron with E ^ ec > 6 GeV and at least one jet with 

E JTet >  3 GeV and 1.5 < r f *  < 3.5.

D IS G luons I: An electron with Efpec >  6 GeV and at least two jets with E ^e< > 3 GeV 

and -3.5 < r f et < 3.0.

D IS G luons II: An electron with E ^ ec > 6 GeV and at least two jets with E ^e< > 4 GeV 

and -3.5 < r f et < 3.0.

D IS a s : An electron with E ^ ec > 8 GeV and at least two jets with E ^  > 3 GeV and 

-3.5 < r j iet < 3.5.

These four branches are aimed at studying jet production in DIS.

25 DST bits were available to the JHET group, 21 of which were used to flag events 

passing the above TLT branches. Since there were 23 TLT filters in to tal the High 

PT Track branches I and II were combined as were DIS Gluons I and II. No further 

cuts were applied giving direct correspondence between the TLT and DST levels of 

selection.

The rate at which each type of DST event is recorded is shown in figure 3.1. It 

should be noted tha t the High pt  Track branches I, III and V were prescaled by 100, 25 

and 125 respectively and would have dominated the event rate were they not prescaled.

It can be seen from figure 3.1 that the largest selection of events written out by the 

JHET group contain two low E t  jets. Raising the E ^ 1 cut or requiring an electron in 

the CAL or a rapidity interval between the jets reduces the rate further. Events with 

hits in one of the taggers close to the beam are relatively rare, as are events with no 

energy around the FCAL beampipe. It is clear that the rate from the LPS High E t  

branch is quite high. The LPS TLT was in fact disabled for much of the 96 run period 

due to problems with high rates.
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Figure 3.1: The event rate for events passing each Je ts  and High E t  TLT branch.

T he rem aining four DST bits were used to  flag hotline events w ith th ree  bits assigned 

to  p h o top roduction  and one to  DIS. T he following types of events were chosen:

H otline  I: Very High ET w ith  E cTone >  50 GeV.

H otline  II: An .OR. of High E j  D ijets prescaled by 100 and  LR.I.

H otline  III: An .OR. of B PC  D ijets, FN C  D ijets, LPS D ijets, P ro m p t P h o to n  and  

High pt  T rack III.

H o tlin e  IV : An .OR. of DIS Inclusive Je ts , DIS G luons I, DIS G luons II and  DIS a s.

T he p h o top roduction  hotline events were also required to  pass an add itiona l series of 

cleaning cu ts to  reduce con tam ination  from  beam  gas events and  from  DIS.

3.2 D a ta  Q uality  M onitoring

An im p o rtan t role of th e  reconstruction  procedure is the  d a ta  quality  m onito ring  

(D Q M ) which is carried ou t on events passing the  DST selection. T he  DQM  tests
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the functioning of the detector components and the online three-level trigger. It also 

checks tha t the data have been written out properly and tha t the non-ep background is 

low. DQM histograms are produced during the offline reconstruction and are checked 

for each run. In this way problems can be spotted quickly and resolved without wasting 

months of data-taking. By checking the data quality run-by-run it is also possible to 

identify problematic runs which can then be eliminated from the list of ‘good’ runs for 

analysis.
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Figure 3.2: General data quality histograms: (a) t p c A L  — t R C A L  versus I r c a l  and (b) t p c A L

versus zverix.

Several quantities are used to check the general quality of the data taken. Figure 

3.2(a) shows the difference in the timing measured in the FCAL and the RCAL, 

t F C A L  ~ t R C A L ,  plotted versus the time measured in the RCAL. The timing in the 

FCAL and RCAL is calibrated such that particles produced from an ep collision at 

the interaction point (IP) hit the FCAL and the RCAL at 0 ns. Particles from 

an interaction which took place upstream of the IP, z < 0 cm, would arrive at the 

RCAL(FCAL) before(after) particles from an interaction at the IP and would thus 

have a negative(positive) time in the RCAL(FCAL). This gives the correlation shown 

by the diagonal line. The dots show tha t the data are clustered round zero, indicating
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tha t the timing is well calibrated. Proton beam gas interactions which generally take 

place upstream of the IP would be expected to have large negative tRCAL and lie in 

the top left-hand corner of the plot. It is clear from figure 3.2(a) tha t the proton beam 

gas contamination is small.

Figure 3.2(b) shows the FCAL timing versus the z coordinate of the vertex position, 

z v e r tx• The intersection between the lines show where an event would lie if produced 

at the IP. The data are slightly shifted in the negative z  direction indicating tha t the 

e and p beams do not collide at the nominal vertex. The data  are equally distributed 

between positive and negative t p c A L  showing tha t the calorimeter timing is correctly 

calibrated. This is an im portant check as the timing is used during the event selection 

to cut out background whose timing is not consistent with tha t of an ep event.

Run 22861
co

>N0.9
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0.80.2 0.4 0.6
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Figure 3.3: y j s  versus V l u m i  f°r events with an electron tagged in the LUMI detector.

The correlation between y calculated using the energy of electrons tagged in the 

LUMI electron calorimeter and yjB  calculated from energy deposits in the calorimeter 

is shown in figure 3.3 for those events with a LUMI tag. If the energy of the particles 

were reproduced perfectly by the CAL, yjjJMl would equal y j s , indicated by the line. 

The data indeed show a linear correlation. However the correlation is slightly shifted 

due to energy losses in inactive material in front of the CAL, a problem which must be



C H A P T E R  3. D A T A  S E L E C T I O N  A N D  D A T A  Q U A L I T Y  M O N I T O R I N G 39

corrected  for in the  subsequent analysis and is discussed in ch ap te r 6.
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Figure 3.4: E  — pz d istributions calculated offline for each DST bit.

P ro to n  beam  gas events typically have a  large am ount of track  ac tiv ity  parallel to  

th e  beam  direction and only a  sm all am ount of transverse  track  activity . Sum m ing 

over all th e  cells in th e  CAL, the  observable E — pz , w here E  is th e  energy and  pz th e  

long itud inal m om entum , tends to  be of the  order of a  few GeV for beam  gas events 

since E  ~  pz »  px ,py.

A cu t of E — pz > 8  GeV is applied a t th e  SLT and  th e  E — pz d istribu tions
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are checked offline to ensure that the trigger is functioning correctly and the offline 

quantities bear close resemblance to those applied online at the SLT. The E  — pz 

distributions of each DST bit are shown in figure 3.4. The High px  Track IV branch 

was disabled and is not shown. There are very few events with E  — pz ~  0 in any of 

the plots in figure 3.4 indicating that the cuts applied to the E  — pz calculated at the 

SLT succeed in suppressing the beam gas background.

The E  — pz distributions can also provide insight into the different types of event 

selected by each TLT branch. In DIS the scattered electron is detected in the CAL 

giving rise to a peak in the E  — pz distribution at around 55 GeV, i.e. twice the 

electron energy. This peak is clearly shown in the plots in figure 3.4 corresponding 

to the three DIS DST bits. A lower cut on E  — pz is implemented in these branches 

to minimise contamination from photoproduction events. The photoproduction filters 

which require a large transverse energy deposit in the CAL have an approximately 

uniform E  — pz distribution. Requiring a jet introduces a peak at E  — pz ~  55 GeV due 

to the acceptance of DIS events, as can be seen in all ‘Inclusive J e t’ and ‘Dijet’ triggers. 

Exceptions are the BPC jet branches where the scattered electron is detected in the 

BPC rather than the CAL. Further work must therefore be done in an analysis of jets 

in photoproduction to remove the DIS background. The ‘Prompt Photon’ branch also 

has a large peak at E  — pz ~  55 GeV. The ‘Prompt Photon’ filter at the TLT is aimed 

at detecting events containing a large isolated deposit of energy in the EMC. In many 

cases this energy has come from an electron thus the trigger accepts many DIS events. 

Much work is required to extract the prompt photon signal from this background [35].

Several other quantities are checked to monitor the data quality of each DST bit 

individually. Four of these are presented in figure 3.5 for the ‘Dijet Low E r ’ branch 

which contains the data used in this study. The bunch crossing number (BCN) is 

shown in figure 3.5(a). As mentioned in section 2.1 a number of electron and proton 

bunches are left unpaired or empty to estimate the contribution from non-ep background 

processes. The structure in the BCN demonstrates that very few events are produced 

from unpaired or empty bunch crossings. The fact tha t these bins are not completely 

empty means however tha t some background is present. Figures 3.5(b) and (c) show 

two quantities used during the TLT event selection, the transverse energy in the CAL
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Figure 3.5: Several quantities used in the d a ta  quality m onitoring shown for the ‘D ijet Low E t ’ 

branch: (a) bunch crossing num ber, (b) E t  outw ith a cone of 10° around the FCAL beam pipe,

(c) pz / E  and (d) z position of vertex.

ou tw ith  a  cone of 10° around th e  FCA L beam pipe, £ |? ne, and pz / E.  T he shape of the  

d istribu tions of these quan tities is checked to  ensure th a t  th e  in fo rm ation  on which th e  

trigger decision is based in th a t th a t  run  is sensible. F igure 3 .5(d) shows th e  vertex  

position , zvertx• A cu t of l^ertx l <  60 cm is applied a t th e  T LT in all p h o to p ro d u ctio n  

filters and the  few events w ith |zvertx | >  60 cm illu stra te  th e  slight differences betw een 

qu an tities  calculated  on- and offline.

T he vertex  d istribu tion  also provides inform ation  on sa tellite  bunches, secondary  

clusters of partic les which precede and  follow the  m ain bunch of partic les. In te rac tions
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Figure 3.6: z position of vertex for the ‘DIS Inclusive Je ts’ branch for runs 22861 and 21356.

between these secondary bunches give rise to events whose zvertx is offset from zero. 

This effect cannot be observed in events selected with photoproduction triggers due to 

the |zvertx| < 60 cm cut. No such cut is applied to the four DIS branches and figure 3.6 

shows the vertex distribution for the ‘DIS Inclusive Je ts’ branch for two different runs. 

In a typical run, figure 3.6(a), the vertex distribution has a central peak at zvertx =  0 

associated with ep interactions from the main bunches. The satellite bunches give rise 

to events with |2ver.te| > 40 cm. The number of particles in the satellite bunches is 

generally small compared to the main bunch as can be inferred from the scarcity of 

events with \zvertx\ > 40 cm. However, some runs in 1996 had large proton satellite 

bunches. For example, figure 3.6(b) demonstrates that the satellite bunch preceding 

the main proton bunch in run 21356 contained large number of protons. The satellite 

protons collided with the electron bunch at ~70 cm downstream of the IP causing 

a secondary peak. It is im portant tha t the effect on the vertex distribution from 

collisions involving the satellite bunches is understood and is properly accounted for in 

the detector simulation which is applied to Monte Carlo events, discussed in section 5.1.

Offline, jet and electron quantities calculated at the TLT are reexamined to check 

tha t the TLT accepts only events which pass the selection criteria. Events which fail 

the selection are flagged and indicated in the DQM plots as entries in a designated bin. 

In addition to checking the TLT operation this procedure also checks tha t data  tables
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Figure 3.7: Q uantities used to select different types of photoproduction events a t the TLT.

filled online have been w ritten  out to  disk correctly.

T he E j l and Tjiet d istribu tions for ‘Inclusive J e t ’ and  ‘D ije t’ p h o to p ro d u ctio n  

branches, shown in figure 3 .7 (a ),(b ),(c ) and (d ), illu stra te  th e  E j l cut-offs applied 

a t 4 and  10 GeV for ‘Inclusive J e ts ’ and a t 4 GeV for ‘D ije ts’ and  th e  rj êt <  2.5 

requirem ent. T he ^ et d istribu tions presented in figure 3.7(e) and  (f) should be flat in
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<p*etm, any structure is a sign of problems elsewhere. The transverse energy of the electron 

candidate from the Prompt Photon branch is shown in figure 3.7(g) and indicates the 

cut-off applied at 4 GeV. The pseudorapidity distribution of the electron candidate, 

figure3.7(h), shows a large peak at negative values, indicative of DIS processes, and a 

flat region extending to rjelec ~  1 which is more likely to arise from prompt photon 

production. Lastly, the pseudorapidity interval employed to  select ‘LRP events is 

shown. The TLT requires Ap =  rf(et — r]̂ et > 3 as illustrated in figure 3.7(i).

3.3 Summary

The Jets and High E t  group is responsible for a wide range of DIS and photoproduction 

analyses. Twenty-three different selection algorithms are used at the TLT. During the 

1996 and 1997 data-taking periods I was responsible for the offline DST selection and 

for monitoring the quality of the data selected. Offline the data  are reconstructed fully, 

having access to the complete event record, and are subject to further data  selection 

procedures. Each event is given a flag denoting which TLT branches it passed which 

speeds up and simplifies offline data analysis. In addition, rare, interesting events which 

are required for immediate analysis are written out to disk as ‘hotline’ events.

D ata quality monitoring histograms for each run are also produced during the 

reconstruction. The DQM histograms check tha t the components and data-taking 

procedures are functioning accurately, the data written out correctly and the beam 

conditions good. This is vital to avoid errors which could result in months of wasted 

data-taking. The level of background events present can also be checked. Problem runs 

can be identified and eliminated from further analysis.

In general, the DQM confirms tha t the online data selection reduces the amount 

of non-ep background to a low level. It also demonstrates tha t there is a considerable 

degree of overlap between events selected by the photoproduction and DIS jets TLT 

branches. An analysis of jets in photoproduction must therefore take steps to remove 

the DIS events and the small amount of non-ep background events present in the data 

sample. The data selection criteria applied in this study are discussed in detail in the 

following chapter.



Chapter 4

Three-jet Selection

The general data taking procedures of the ZEUS Experiment are described in chapters 

2 and 3. This chapter discusses the online and offline data selection criteria specific to 

this study.

At HERA, in addition to interactions from ep collisions there is a significant 

background from beam gas events, where the beam particles interact with residual 

gas molecules in the beam pipe, and also from cosmic rays. Photoproduction processes 

also have to be separated from other ep processes such as Deep Inelastic Scattering.

Section 4.1 describes the quantities available at each stage of the three-level online 

trigger and how these can be used to reduce the background. More time and information 

is available to make decisions offline and therefore more detailed cuts can be applied 

as shown in section 4.2. The algorithm used to find jets is discussed in section 4.3. 

Finally, the three-jet event selection is motivated in section 4.4.

4.1 Online Data Selection

4 .1 .1  F irst L evel T rigger

The time available for decision making at first level trigger, as discussed in section 2.3, 

is limited to < 5 ps. Events containing jets would have sizeable energy deposits in 

the CAL and this characteristic is used to select events rather than running a time 

consuming jet finding algorithm. The energy deposit required is

45
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• total energy in the CAL > 15.0 GeV

• or to tal energy in electromagnetic CAL > 10.0 GeV

• or total energy in the BCAL > 3.4 GeV

• or total energy in the RCAL > 2.0 GeV

• or total transverse energy in the CAL excluding the two innermost rings around 

the FCAL beampipe > 1 1 .6  GeV

There is also a requirement tha t > 42% of tracks in the event come from the nominal 

vertex. Timing information from detectors upstream of the proton beam, i.e. the C5 

counter and the vetowall, is used to reject events where the timing is not consistent 

with the signals having come from an ep interaction.

4 .1 .2  S eco n d  L evel T rigger

Events which pass the FLT selection proceed to the second level trigger. At this stage 

a vertex from the CTD is required, unless there is no CTD SLT information. The 

nominal vertex of (cc, y , z) =  (0 , 0 , 0 ) is used to calculate quantities such as longitudinal 

and transverse momenta. Further selection criteria select events where a hard scatter 

has occurred

• the sum of the transverse energy on the calorimeter cells, excluding the first ring 

round the FCAL beampipe, > 8  GeV

and reduce proton beam gas background

• the to tal energy minus the total longitudinal momentum summed over all CAL 

cells, E  — pz , > 8  GeV

• if E  — pz < 12 GeV then pz / E  < 0.95

4 .1 .3  T h ird  L ev e l T rigger

At the third level trigger there is enough time to apply a jet finding algorithm. A cone 

based algorithm is used which looks for jets with transverse energy, E ^et, greater than
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3 GeV, pseudorapidity, r]̂ et, less than 2.5 and a cone radius of 1.0. In the trigger used 

for this analysis, an event is selected if it has

• two jets with E ^ f > 4 GeV and r fet < 2 .5

• E  — pz < 75 GeV

• less than 6  bad tracks1

• a vertex with a z position of \zvertx \ < 60 cm

The vertex position as measured by the CTD is used by the jet finding algorithm and in 

calculating longitundinal and transverse momenta. This TLT jet selection is shown in 

section 6.2.1 to be very efficient. Events passing all three levels of online data  selection 

are then analysed offline in more detail.

4.2 Offline Data Selection

The TLT cuts the event rate from 100 kHz to ~  3-5 Hz using quantities which can

be calculated in the time available to make a decision online. Offline, more time is

available and complete information from all data-taking components is accessible.

Photoproduction events where the electron is scattered at small angles to the

beam pipe are tagged by the LUMI detector. These comprise a sample of pure and

background-free photoproduction events events which can be studied to enable the

background from beam gas interactions, cosmic rays and also from other ep processes

such as DIS to be further reduced.

The contribution from DIS was estimated using events generated with the Monte

Carlo event generator DJANGO [52]. The number of events is normalised to  the

integrated luminosity represented by the data.

Dijet events with E ^  > 5 GeV and r fet < 2.5 are selected from those passing the

TLT. The subsample of the dijet events tagged by the LUMI detector or established as

*A bad track is defined as one which has 5° <  9 <  70°, p r  >  200 MeV, enough measured points to 

give more than 20 degrees of freedom in the fit, more than 5 axial or stereo hits and distance of closest 

approach along the 2-axis <  -75 cm.
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beam gas or cosmic ray events from the bnnch crossing information are also identified. 

Comparisons between the data and the DIS Monte Carlo events are shown in this section 

to motivate the cleaning cuts used to reduce background. The effect of applying each 

cut is studied individually.

The distribution of y j s , defined in 1.7, is shown in figure 4.1 for the inclusive dijet 

data sample. Also shown are the LUMI tagged and proton beam gas subsamples and 

the DIS events. The dijet sample shows two peaks at ~  0 .2  and ~  0.9. It is evident 

tha t the dominant contribution at high yjB  comes from DIS background. Requiring 

0.15 < yjB  < 0.65 removes most of the background while retaining most of the good 

photoproduction events.

10

0.70.3 0.5 0.6 0.8 0.90 0.1 0.2 0.4
yJB

Figure 4.1: yjB distribution for the dijet data sample (dots), LUMI tagged (stars) and proton 

beam gas (dot-dashed histogram) subsamples and DIS Monte Carlo events (dotted histogram).

The electron in photoproduction is scattered at low angles to the beam pipe and 

is not detected in the CAL. Nevertheless, some highly collimated jets consisting, for 

example, of mainly 7r°’s may give rise to large deposits of energy in the EMC and none 

in the HAC and could be mis-identified as electrons by the electron finding algorithm. 

The number of electrons in an event is shown in figure 4.2(a) for the dijet events, LUMI 

tagged subsample and the DIS Monte Carlo prediction. The data show tha t a large 

fraction of dijet events contain one or more electrons and tha t this is not entirely due 

to contamination by DIS events. For events containing at least one electron, ye as
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defined in 1.6 is shown in figure 4.2(b). It is clear tha t the peak in the dijet data 

at low ye comes predominantly from DIS contamination. The dijet data  also peak 

at high ?/e? as do the LUMI tagged data, while the contribution from DIS has died 

away. High ye values arising from scattered electrons are very rare since the cross 

section varies as l / y 2. The conclusion tha t the ‘electrons’ with high ye are in fact 

mis-indentified 7r°’s or other mesons that decay electromagnetically to two photons is 

supported by the DIS and LUMI tagged photoproduction events. A cut of ye > 0.7 

for events containing an ‘electron’ selects almost pure photoproduction events with a 

minimum of DIS background.
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Figure 4.2: The number of electrons found (a) and ye for events containing an electron (b). The 

inclusive dijet data are shown by dots, the LUMI tagged data by stars and the DIS Monte Carlo

events by the dotted histogram. The total number of events in each sample is shown.

Figure 4.3(a) shows the number of events which have a well-defined vertex. As 

expected, beam gas or cosmic ray events are less likely to  have a well-defined vertex 

since they do not come from ep interactions. Therefore, requiring a vertex in an event 

reduces the background. Figure 4.3(b) shows the 2  position of the vertex for dijet and 

beam gas events. The data are peaked near zero and are concentrated in a region of 

±  30 cm. A cut of ±  60 cm is applied at the TLT. Events shown here with \z\ > 60 cm 

are caused by slight differences in offline and online quantities. Applying a cut of

Iz\ <J50 cm reduces ^ejbackgrouiffl6fnamcbeam gas events. . , c .
1 1 The number of bad tracKs, jv00*” ™ , in The event is shown m figure 4.4(a)
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(a ) No. v er tices  (b ) z vertex  (c m )

Figure 4.3: The number of vertices found (a) and the z position of the vertex (b). The inclusive 
dijet data are shown by dots, the LUMI tagged data by stars, proton beam gas by the dot- 
dashed histogram, electron beam gas by the solid histogram and cosmic rays by the dashed

histogram.

for the dijet sample and LUMI tagged and proton beam gas subsamples of events. 

The data are peaked at zero and decrease sharply with increasing ]\[badtrackt The 

tail at N badtrack > 3  can be accounted for by proton beam gas events. Requiring 

jybad track ^  3  reduces the background with the loss of few real physics events.

The missing transverse momentum normalised to the square root of the to tal E t  in 

the event, t f / y / E x ,  is shown in figure 4.4(b) for the dijet and LUMI tagged events. The 

data  are peaked at zero with a tail extending to 6 . The pure photoproduction events lie 

almost exclusively in the y/Ex < 2  region while the tail of the distribution is likely

to come from charged current DIS events where a neutrino rather than an electron is 

produced in the final state giving rise to a large amount of missing p x -

In summary, the additional offline cuts which are applied to the data are:

•  Vj b  < 0.65

• no electron found or ye > 0.7

•  y / E x  <  2

to reduce DIS background and
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Figure 4.4: The number of bad tracks found in an event (a) and the missing pt normalised to 

the total transverse energy in the event (b). The inclusive dijet data  are shown by dots, the 

LUMI tagged data by stars and proton beam gas by the dot-dashed histogram.

• 0.15 < y jB

• a vertex found and \zvertex\ < 50 cm

• number of bad tracks < 3

to reduce contamination from beam gas and cosmic ray events. A Monte Carlo study 

given in section 6.2.1 shows that only 2% of good photoproduction events are rejected 

by these cleaning cuts.

4.3 Jet Finding Algorithms

Jets observed in hadronic final states are features of the event which, although closely 

related to the final state partons which create them by hadronisation, require an 

operational definition. When studying jet quantites, what is measured depends on 

the jet definition used.

To enable comparison of results between experiments and between experiment and 

theory it is im portant to use standard jet finding algorithms. The 1990 Snowmass 

Workshop [53] stated that any jet definition should be simple to implement in an
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experimental analysis and in theoretical calculations, should be defined at any order of 

perturbation theory, and should yield a finite cross section at any order of perturbation 

theory tha t is also relatively insensitive to hadronisation.

Energy deposits in calorimeter (CAL) cells or tracks in the central tracking detector 

(CTD) can be used to  find jets in ZEUS data (detector level). In theoretical calculations, 

jets can be found from partons from the hard scatter (parton level) (at LO each parton is 

identified with one jet) or, using events from QCD Monte Carlo events generators, from 

partons from the parton shower (parton shower level) or final state hadrons (hadron 

level). In order to compare experimental data meaningfully with theoretical predictions 

it is essential to have a good correspondence between jets at all levels. An im portant 

aspect of this is tha t the chosen jet definition should be applied to  experimental and 

theoretical quantities in a consistent way.

Two types of algorithm are in general use at present: a cone-type algorithm related 

to the Sterman-Weinberg treatm ent of QCD radiation [54] and a clustering algorithm 

of the type first used by the JADE Collaboration [55].

4.3.1 Cone Algorithms

Cone algorithms search for jets by trying to maximize the amount of transverse energy 

inside a cone of fixed radius, R 0 , in the 77 — <p plane. The choice of variables ensures 

invariance under boosts along the beam direction, an essential property of any algorithm 

used in hadron-hadron collisions.

In general, the algorithm proceeds by choosing any particle or cell, i, and summing 

over all particles/cells with R{j =  — f]j) 2  +  (<Pi — <Pj) 2  < Ro , evaluates the total

E t  in the cone and the 77 and (f> coordinates of the jet axis according to

E t“  = E E Ti
iejet

=  E r m

The jet axis is now taken as the centre of a new cone and the process iterated until 

a stable jet axis is obtained. Cones with E t  above a given threshold are selected as
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jets. A new seed direction is then chosen and the process repeats. Not every particle 

is assigned to a jet but some can be assigned to two or more when the cone of one jet 

overlaps with tha t of another.

Experimentally, the issue of overlapping cones is dealt in different ways. At the 

CDF experiment [56], two cones are merged if they share 75% (50% at D0[57]) of 

their energy. Otherwise they are split with the particle/cell energy being assigned to 

the nearest jet. However the same criteria cannot be applied to final state partons 

from QCD calculations. This can lead to big differences between parton, hadron and 

detector level jets and has been the subject of much discussion [58, 59, 60].

4 .3 .2  C lu ste r in g  A lg o r ith m s

Clustering algorithms have been widely used for many years in e+e~ collisions [55] and 

differ significantly from cone-type algorithms. Several changes have been incorporated 

to allow this type of algorithm to be used in hadron-hadron collisions [61, 62].

Generally, groups of particles close together in phase space are sought and merged. 

For each particle in the final state, i , the variable dn, is defined as the transverse energy 

squared,

dib = Ej*i

For all pairs of particles, i and j , a closeness, dij is calculated.

R 2-
dij = min{E%i,E%j )- j±

where R 2j = (rjj — rji) 2  +  (ipj — <p>i) 2  and R  is a parameter of order 1. This dij reduces 

to kj*, for small opening angles between particles, where kx  is the relative transverse 

momentum of one particle with respect to another. The expressions for d^  and dij are 

longitudinally boost invariant, an im portant property when the centre-of-mass of the 

hard scatter is not the same as the lab frame.

The minimum value of all the calculated dij and dn is found and labeled as dmin . 

If this minimum value refers to the relative kx  of two particles then the particles are 

merged into a single cluster, or ‘protojet’, according to a particular recombination 

scheme. If on the other hand dmin is the px  of a particle then tha t particle is removed
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from the sample and is included in a list of complete jets. This process is repeated 

for all particles/protojets not included in the list of jets until all objects are associated 

with a complete jet. In effect, the softest particle in the event is repeatedly merged 

with its nearest neighbour in angle. The recombination scheme used in this analysis is

E n j  =  Exi +  Exj

ExiVi +  Exjrij 
Vii ~  E Tij

ExWi 4- Exj<-pj 
v a  = ------F —---------Exij

The variables used in the resolution and recombination steps are chosen to ensure 

invariance under boosts along the beam direction. The algorithm satisfies the re

quirements of infra-red and collinear safety. For vanishingly small energies and angles 

dij —► 0 ; adding extra soft particles or replacing one particle with two or more collinear 

ones does not affect the jets that emerge from the algorithm.

4 .3 .3  A lg o r ith m  u sed  in  th is  s tu d y

The kx  algorithm described above is well defined to all orders in perturbation theory and 

can be applied in exactly the same way at parton, parton-shower, hadron and detector 

levels. It has several advantages over a cone algorithm for a study of multijet events in 

photoproduction. Particles are merged in a strictly defined way if they are close enough 

together, in contrast with the cone algorithm which seeks only to maximise the energy 

in a cone of fixed radius. The use of the kx  resolution variable means tha t the algorithm 

is sensitive to the shape and size of the jet; characteristics tha t can be affected by the 

hardness of a jet and the colour flow of the hard subprocess. The algorithm is however

insensitive to soft particles on the edges of jets, which cone algorithms tend to have a

problem dealing with unambiguously. This should lead to smaller hadronisation and 

detector corrections and less model dependence. In addition, there are none of the 

splitting-merging uncertainties evident with overlapping cones in cone algorithms since 

each particle is assigned unambiguously to one jet.

The results of applying this algorithm to data are illustrated in figures 4.5 and 4.6 

for 180 nb-1 of ZEUS data where the online data selection described in section 4.1 was
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applied. Only jets with tranverse energy, E™1, of more than 3 GeV and pseudorapidity, 

r)cal, between ±  3 are considered. The superscript cal denotes tha t the energies and 

positions of calorimeter cells were used by the algorithm to find jets.

Z

10 3 

102 

10 

1

0 1  2 3 4 5 6 7 8 9  10
Number of jets

Figure 4.5: The number of jets per event with E ™ 1 >  3 GeV and r]cal <  3.0. The kx algorithm 

is applied to the data passing the online and offline selection cuts.

Figure 4.5 shows that the majority of events have two or more jets. The E ^ 1 

distribution, figure 4.6(a), peaks at the threshold value of 3 GeV, falls steeply with 

increasing E ^ 1 and reaches out to 40 GeV. Figure 4.6(b) shows tha t the jets are 

concentrated in the region where T)cal > 0, as would be expected from the strong 

boost in the proton direction due to the asymmetry in the proton and electron beam 

energies. The dip in the distribution at r fal ~  1 is due to  the limited acceptance of 

the detector in the join between the BCAL and FCAL. The TLT requires two jets with 

E ^ 1 > 4 GeV and rjcal < 2.5; thus jets with rj êt > 2.5 will only occur in events with 

three or more jets. This appears as a depletion rather than an abrupt drop at r f et =  2.5 

since the jet algorithms used on- and offline are different; a cone algorithm was used at 

the TLT and a clustering algorithm offline.

: i i i i 1 i i i i I i i i i I i i i i I i M i 1 i i i i I i i i i I i i i i I i i i i I i i i i
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Figure 4.6: (a) E j , a l  and (b) T]c a l  for jets found by applying the algorithm to the data  after

online and offline selection cuts.

4.4 Three-jet Event Selection

After application of all online and offline selection cuts, two jets are selected with 

E ™ 1 > 5 GeV and r]cal < 2.4, and a third jet with E ^ 1 > 4 GeV and rjcal < 2.4 is 

also required. These Efj? 1 cuts for the three-jet selection are designed to obtain a cross 

section which is perturbatively calculable while maximising the available statistics. As 

shown in figure 4.6, with these cuts the E ™ 1 distribution of jets falls off rapidly with 

increasing E The three-jet observables of interest in this study were introduced 

in section 1.4. The effect of the jet selection cuts should be investigated to ensure 

tha t the observables are sensitive to the dynamics of the processes studied and are not 

determined predominantly by the jet selection criteria.

As stated above, requiring a high tranverse energy tends to reject jets produced 

at small angles to the beam line, i.e. events with high cos #3 . Setting a minimum 

E t 1 can therefore bias the cos #3 distribution at high |c o s 0 3 |. The variation in this 

effect with the three-jet invariant mass, Mgj , is shown in figure 4.7 for three-jet events 

with the above selection cuts. At low M |j  the cos 6 3  distribution is clearly biased; at 

M£jl < 25 GeV part of the cos O3  range is completely excluded. As M ^ } 1 increases the 

proportion of events passing the E ™ 1 cuts with high |cos#3 | increases. This suggests 

tha t applying a cut on the three-jet invariant mass may allow cos #3 to be measured
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without serious suppression at high | cos #3 ! arising from the E ™ 1 threshold.
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Figure 4.7: cos 6 3  vs M$j for three-jet events passing the above E!j? 1 and rjcal cuts.

Studying the Mgj distribution in bins of |cos#3 | shows the effectiveness of a cut 

on M |j  at reducing the effect of the jet E j l thresholds. Figure 4.8 shows the Mgj 

distributions of two different three-jet data samples, one using the above selection 

cuts and the other requiring three jets each with E ™ 1 > 3 GeV and r)cal < 2.4. 

At low Mgj the distributions are very different showing the sensitivity to the E ™ 1 

threshold. However, at high M |j  the distributions begin to merge indicating th a t the 

E ™ 1 threshold no longer has any effect. The value of Mgj at which the distributions 

coincide rises as |cos#3 | increases until for 0 .8  < |cos#3 | < 1 .0  the two never fully 

merge. Restricting the measured region to Mgj > 42 GeV and | cos #3 ! < 0.8 maximises 

the number of events available while reducing the effect of the E ™ 1 cut on the cos O3  

measurement.

As mentioned in chapter 1 , A 3 is defined as twice the fraction of the to tal three- 

jet centre-of-mass energy taken by the highest energy jet in the centre-of-mass. It is 

allowed to range between | ,  where all three jets have an equal share of the energy, and 

1 , where the highest energy jet takes all the energy available to it, i.e. fully half of the 

total energy. In this analysis A 3 is required to be less than 0.95 to limit the fraction of 

the energy taken by the highest two energy jets and make more available to the third

I 1 1 1 1 i . n  1 *L 1 i*r
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Figure 4.8: M ^f  distribution in bins of | cos #3 ! for three-jet events with three jets with Etj? 1 > 
3 GeV and rj <  2.5, dots, and with three jets with E j? 1 >  5 GeV and 77 <  2.5, stars.

In summary, at detector level after all online and offline selection criteria described

in sections 4.1 and 4.2, three-jet events are defined by

• two jets with E ^ 1 > 5 GeV and r fal < 2 .4

• a third jet with E ™ 1 > 4 GeV and r)cal < 2 .4

• M |j  > 42 GeV, | cos #3 ! < 0.8 and X 3 < 0.95

This selection will be used in chapter 5 to study the characteristics of three-jet events. 

Details of the number of events obtained after correction for energy losses in inactive 

material in the detector are given in chapter 7.



Chapter 5

D ata Description by M onte Carlo 

M odels

Computer calculations can be used to simulate ‘events’ from ep collisions. In general, 

event generators build the events from the parton distribution functions, m atrix 

elements for particular processes, a mechanism for QED and QCD radiation from 

partons and a hadronisation scheme. A probabilistic approach is used with random 

number generators deciding the nature of each event based on the probability of a 

particular process or subprocess occurring. These events can be passed through a 

simulation of the ZEUS detector and data selection process. Knowing the ‘true’ hadron 

level and ‘detector’ level properties of these events a correction can be made for the 

effect of the detector on the measured ZEUS data.

This approach relies on a good description of the data by the models. Ideally, the 

correction should be independent of the model used to obtain it in order tha t it can be 

applied meaningfully to the data. To check the model-dependence, two different event 

generators, PYTHIA 5.7 [63] and HERWIG 5.9 [64], are used and compared.

In section 5.1 the event generators used in this study are discussed. The following 

sections 5.2, 5.3, 5.4 and 5.5 test the ability of the Monte Carlo events to describe the 

raw ZEUS data.

59
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5.1 Event Generators

The aim of an event generator such as PYTHIA and HERWIG, as mentioned earlier, 

is to produce physics ‘events’ which resemble as closely as possible those created in 

experiments. To do this they make use of the factorisation property of QCD; any hard 

QCD process can be broken down into a series of elements which can be dealt with 

individually and brought together to complete the description of the event.

H a rd  S u bprocess: This is computed exactly in perturbation theory to fixed order. 

At present, matrix elements for leading order 2 —► 2 direct and resolved photo

production processes are available. The hard scale of the interaction also acts as 

a boundary condition for the initial and final state parton showers as discussed 

in [63, 64].

P e r tu rb a t iv e  In itia l an d  F in a l S ta te  Show ers: Gluon and photon radiation from 

the partons involved in the hard scatter could give rise to potentially large 

corrections to the leading order matrix element. These corrections become 

increasingly im portant as the available energy rises. The analytical calculation of 

these corrections is not practicable due to the large numbers of gluons involved. 

Instead the effect is approximated by a parton shower where partons involved in 

the hard scatter radiate gluons by the splitting of one parton into two according 

to DGLAP evolution. An initial state parton with low space-like virtuality, Q2, 

radiates time-like partons thus increasing its virtuality. The upper Q 2  limit on 

the parton shower is given by the Q2 of the hard scatter. A virtual parton in the 

final state radiates partons with lower virtuality thereby decreasing Q2 with each 

successive emission. The shower evolution is term inated at a lower cut-off, Qo, 

which is typically ~1 GeV2 for QCD radiation.

H ad ro n isa tio n : Partons are not observed individually due to the confinement prop

erty of QCD which keeps them confined in colourless hadrons. For the prediction 

of an event generator to be useful the coloured partons produced by the hard 

scatter and the parton shower must be turned into colourless hadrons. The 

hadronisation process takes place with low momentum transfer, and pQCD does
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not apply due to the large value of a s at this scale. Instead a phenomenological 

model must be used to associate partons with hadrons.

Two event generators, PYTHIA and HERWIG, were used in this study. Both are 

general purpose QCD event generators which contain a wide range of hard subprocesses 

at LO and use parton showers to approximate higher order m atrix elements. The 

main differences between the two lie in the evolution of the parton shower and the 

hadronisation model used.

The parton shower algorithm implemented in HERWIG takes into account interfer

ence between soft gluons which gives rise to colour coherence in the parton shower. The 

choice of suitable evolution variables leads naturally to the restriction of the phase space 

available for further branching to an angular ordered region, a consequence of colour 

coherence. In PYTHIA, by contrast, the evolution of the parton shower is governed by 

the virtuality, Q2. The angular ordering property of colour coherence is simulated by 

prohibiting non-ordered emission.

The Lund string model [27] as implemented in JETSET [65] was used by PYTHIA 

to fragment partons into hadrons. The string model is motivated by the physical picture 

of confinement. Take, for instance, the case where a qq pair is produced in an e+e~ 

collision. As the partons move away from the interaction point the potential energy 

in the colour field between them increases. This can be modelled as a string which 

is stretched between the partons. Once the potential energy reaches a certain level a 

qq can be produced by the field. The system then splits into two new colour singlet 

systems. A radiated gluon can be regarded as a kink in the string. One can consider 

two strings, one stretched between the q and g and the other between the g and q, which 

fragment in the same way as a qq string. In hadron collisions colour strings can also 

connect the final state partons with the hadron remnants. The string model has been 

generally successful in describing the data. There are however many free parameters 

which have had to be constrained from e+e~ data.

HERWIG uses a cluster hadronisation model which is much less sophisticated than 

the Lund string model. It is local in colour and independent of the hard process and 

the energy. The model takes the partons produced by the parton shower and splits
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the gluons into qq or diquark-antidiquark pairs. Clusters are then constructed by 

connecting a quark to the nearest neighbouring q or diquark tha t will form a colour 

singlet. Light clusters are simply taken to be hadrons while heavier clusters decay 

isotropically into lighter hadrons. A small fraction of clusters, usually those containing 

the partons from the hard scatter, are so heavy that isotropic decay is not a reasonable 

assumption. In this case the cluster fragments into two smaller clusters according to 

a ‘fission’ model whereby the products of the splitting move in the direction of the 

original cluster in its centre-of-mass system. In this respect the ‘fission’ model is not 

unlike string fragmentation. The smaller clusters are then free to decay isotropically 

into lighter hadrons.

In addition to generating physics events, Monte Carlo techniques can be used to 

simulate the behaviour of particles in a detector, for example, how they shower in the 

calorimeter, spiral in magnetic fields or even if they end up in inactive material and 

are not detected. At ZEUS the detector simulation is carried out by MOZART (Monte 

Carlo for ZEUS analysis, reconstruction and trigger) which is based on the GEANT 

program [66]. The output from MOZART is presented as tables of data which have the 

same format as the data recorded by the ZEUS experiment. In this way ZEUS data 

and PYTHIA and HERWIG events which have been subjected to the ZEUS detector 

simulation can be reconstructed and analysed using identical procedures. The Monte 

Carlo events contain additional information on the ‘true’ particles produced by the 

events. In the following, quantities based on information from particles produced by a 

generator are referred to as ‘hadron level’ while quantities reconstructed from simulated 

detector information are denoted ‘detector level’. Hadron and detector level quantities 

can then be compared to extract information on the effects of the detector on the data 

and correct for these effects.

In this study PYTHIA and HERWIG events were generated and passed through the 

ZEUS detector simulation, MOZART. The GRV [67] and CTEQ [68] parametrisations 

were used for the photon and proton structure functions respectively. Secondary 

interactions between the photon and proton remnants, as discussed in section 1.2, 

were simulated in the HERWIG events. Direct and resolved events were generated 

separately and combined according to their cross sections. Details of the event samples
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used in this study are given in appendix A. The following sections show the raw ZEUS 

data compared with detector level Monte Carlo predictions. The event selection used 

is as described in section 4.4 for both data and Monte Carlo events.

5.2 Initial Selection Variables

Global energy quantities are shown in figure 5.1. The to tal energy deposit in the CAL,

(a), and the total energy deposited in the FCAL, (b), show the data systematically 

shifted to energies higher than the PYTHIA and HERWIG predictions. This feature 

of the data has previously been seen by both the HI [37] and ZEUS [69] collaborations 

and is not yet fully understood. The BCAL and RCAL energies are shown in figure 

5.1(c) and (d) respectively. The BCAL energy is peaked at around 20 GeV with a tail 

extending to 80 GeV. The PYTHIA and HERWIG predictions agree reasonably well 

with the data. The RCAL energy is peaked at zero as the events are strongly boosted 

in the proton direction. Energy deposits in the RCAL are likely to  come from the 

photon remnant only. The agreement between the data and Monte Carlo in the lowest 

bin suggests that the relative proportions of LO direct to LO resolved processes in the 

Monte Carlo is similar to that in the data.

Figure 5.2(a) shows the transverse energy deposits outwith a cone of 10° (77 =  2.44) 

around the forward beam pipe. The data range between 20 and 100 GeV and are peaked 

at 40 GeV. In contrast to the total energy in the CAL the data  here are well described 

by PYTHIA and are reasonably well described by HERWIG prediction. This illustrates 

tha t the forward energy discrepancy is confined to a small area around the beam pipe 

and will not affect this analysis in an im portant way. The reasonable description of the 

global energy distributions by PYTHIA and HERWIG supports the understanding on 

the online trigger efficiencies using Monte Carlo events, section 6.2.1.

A quantity used in the SLT is pz/E ,  shown in figure 5.2(b) for events with 

8  < E  — pz <  1 2  GeV. The data are peaked at 0.9 and are well described by both 

Monte Carlo models.

y jB , shown in figure 5.3(a) is an im portant quantity for defining the event sample 

and cutting out contamination from non-photoproduction events. The Monte Carlo
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Figure 5.1: Comparison between data and Monte Carlo for some global energy variables 

normalised to the area. ZEUS data are shown by black dots, PYTHIA by open circles and 

HERWIG by stars. Only statistical errors are shown.

reproduces the general shape of the distribution. ye is shown in figure 5.3(b) for events 

containing an electron which may be a 7r° or 77 meson which decayed electromagnetically 

to two photons, producing a narrow electromagnetic shower which led to its misidenti- 

fication as an electron. As dicussed in section 4.2, DIS events generally have low values 

of ye and it is clear that the events selected here with ye > 0.7 are not DIS background. 

The good description of the data by the photoproduction Monte Carlo events shows it 

is possible that photoproduction events contain 7T° or 77 mesons which are reconstructed 

at detector level as electrons. It is to avoid losing these events tha t the ye > 0.7 cut is 

applied.
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Figure 5.2: Comparison between data and Monte Carlo for some global energy variables 

normalised to the area. ZEUS data are shown by black dots, PYTHIA by open circles and 

HERWIG by stars. Only statistical errors are shown.
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Figure 5.3: Comparison between data and Monte Carlo for y j B  (all events) and y e (only events 

containing an electron) normalised to the area. ZEUS data are shown by black dots, PYTHIA 

by open circles and HERWIG by stars. Only statistical errors are shown.

Other quantities used in the initial selection cuts are the 2  position of the vertex 

(figure 5.4), the missing px  in the events normalised by the square root of the total 

transverse energy (figure 5.5(a)) and the number of bad tracks (figure 5.5(b)) which 

are also well described by both Monte Carlos.
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normalised to the area. ZEUS data are shown by black dots, PYTHIA by open circles and 

HERWIG by stars. Only statistical errors are shown.
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Figure 5.5: Comparison between data and Monte Carlo for the the missing pr in the events 

normalised by the transverse energy and the number of bad tracks. ZEUS data are shown by 

black dots, PYTHIA by open circles and HERWIG by stars. Only statistical errors are shown.

5.3 Jet Characteristics

Figure 5.6(a),(c) and (e) shows the transverse energies of the three highest E ^ 1 jets 

in the lab frame labeled 1, 2 and 3 in order of decreasing Ej?1- The selection criteria
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stated in 4.4 require that E ™ 1 > 5 GeV for the highest two E ^ 1 jets and E ^ 1 > 4 GeV 

for the third jet and the Efj? 1 distributions would be expected to fall steeply from these 

thresholds. In practice the selected data peak at 17 GeV for the highest E je t, at 13 

GeV for the second highest and although the E ™ 1 distribution of the third highest E!j? 1 

jet does peak at the threshold it does not fall off exponentially as might be expected. A 

combination of the M ^j 1 > 42 GeV and the | co s^ l < 0.8 cuts, designed to  reduce the 

bias on the angular distributions as shown in section 4.4, restrict the phase space for 

low E t  jet production. Since the resulting E ™ 1 distributions do not peak at threshold 

the angular distributions should be fairly insensitive to the E t  selection criteria. The 

pseudorapidity distributions of the three highest E ^ 1 jet are shown in figure 5.6 (b),(d) 

and (f). The data are concentrated in the 77 > 0 region due to the large boost of most 

of the QCD subprocesses in the proton direction; the dip at 77 «  1 arises partly from 

the detector and partly from the event selection. Both the jet transverse energies and 

pseudorapidities are well described by the Monte Carlos. The PYTHIA description of 

the data is generally better than the HERWIG for r fal 3 while HERWIG is better than 

PYTHIA at reproducing Ej?13.

Photon remnants in dijet events with two jets with E t  > 6  GeV and 77 < 1.6 have 

been studied at ZEUS [70]. A third cluster, associated with the photon remnant, was 

found to have a mean E t  of 2 GeV and an 77 distribution peaked at -2. In the present 

study the third highest E ^ 1 jet has a mean E ™ 1 of 8  GeV with a tail extending to 

20 GeV. The jets are concentrated in the forward direction and the 77 distribution 

extends back to only ~  -1.5. It would therefore be unreasonable to associate the third 

highest Ej ? 1 jet in this analysis with the photon remnant.

x°b2 j ,  shown in figure 5.7, is obtained from

.<*. -  y '  E f ‘ exp (-» /“ ')
3  je t s

where the sum runs over the three highest E!j? 1 jets in the event. The data are peaked 

at =  0.9 with a tail extending down to 0.2 and are in general agreement with

PYTHIA and HERWIG. The PYTHIA prediction for the LO direct process only is 

shown as the shaded histogram and is concentrated at x°b3sj  > 0.8. At LO, resolved 

processes are therefore required to describe the low x°b3J part of the distribution. Note

=  e  t : :  v  ’ (s-i)2 VJBEe
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Figure 5.6: Comparison between data and Monte Carlo for the transverse energies and pseudo

rapidities of the three highest E ^ ] jets in the lab frame. The jets are ordered 1, 2 and 3 in 

order of decreasing E!j?1. ZEUS data are shown by black dots, PYTHIA by open circles and 

HERWIG by stars. Distributions are shown normalised to the area and only statistical errors

are shown.

tha t LO resolved processes also make a non-negligible contribution to the x °b3j  > 0 .8  

region.

The invariant mass of the three-jet events is shown in figure 5.8. The data  are 

peaked at the threshold, 42 GeV, and fall off exponentially with increasing M 3 j 1 . The 

distribution extends to 140 GeV and the shape is well described by PYTHIA and 

HERWIG.
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Figure 5.7: Comparison between data and Monte Carlo for x°b̂ j. ZEUS data are shown by 

black dots, PYTHIA by open circles and HERWIG by stars. The PYTHIA prediction for the 

direct process only is indicated by the shaded histogram. Distributions are shown normalised 

to the area except for the PYTHIA direct only which is normalised to show the correct fraction 

of PYTHIA events which come from the direct process. Only statistical errors are shown.

5.4 Jet Profiles

Jet profiles provide a means to study the distribution of transverse energy in and 

around a jet as a function of pseudorapidity and azimuth, as illustrated in figure 5.9. 

The distance in 77 or ip between each cell in the calorimeter and the centre of the jet 

is calculated, A 77 = Tjc e l 1  — 1f al, A (p = ipc e l 1  — cpcal. The E t  profile as a function of Arj 

is obtained by plotting A 77, weighted by E^ u, divided by the bin width, for each cell 

in a band of A (p < 1 around the jet centre, as shown in figure 5.9(a). Similarly, the 

Acp profile is obtained by plotting Acp, weighted by E ^ 11, divided by the bin width, for 

each cell in a band of A 77 <  1 around the jet centre, figure 5.9(b).

Figure 5.10 shows the A 77 and A <p profiles of the highest E ™ 1 jet in three different 

bins of 7], 7/ < 0.5, 0.5 < rj < 1.5 and 1.5 < r\ < 2.5. The A ip profiles show the 

data  concentrated around zero, the core of the jet, with two secondary peaks at ± 7 r 

corresponding to the other jets in the event. The data are well described by the Monte 

Carlo. The 77 profiles of the highest E ™ 1 jet, (b), (d) and (f), again show the energy 

deposits concentrated around the core of the jet with a pedestal of lower energy deposits
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Figure 5.8: Comparison between data and Monte Carlo for the invariant mass of the three 

jets. ZEUS data are shown by black dots, PYTHIA by open circles and HERWIG by stars. 

Distributions are shown normalised to the area and only statistical errors are shown.
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Figure 5.9: An illustration of the method employed to make jet profiles.

in the forward direction. There is good agreement between the data and the Monte 

Carlo.

The <p profiles, figures 5.11(a), (c) and (e), and 77 profiles, figures 5.11(b), (d) and 

(f), of the second highest E jet are similar to those of the highest E ™ 1 jet. They 

are well described by the Monte Carlo except perhaps for the most forward jets, figure 

5.11(e), where HERWIG appears to underestimate the amount of transverse energy in
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Figure 5.10: Comparison between data  and Monte Carlo for the transverse energy je t profiles of 

the highest E™1 je t as a function of Arj and A<p. ZEUS data are shown by black dots, PYTHIA 

by the solid histogram and HERWIG by the dashed histogram.

the region between the jets.

Figure 5.12 shows the p> and 77 profiles of the third highest E ^ 1 jet. The p> profiles,

(a), (c) and (e), show the secondary peaks have moved closer to the jet core. Moving 

from the highest E ^ 1 jet to the third highest, the secondary peaks just within ± 7r move 

to much smaller Acfr values. This indicates tha t the highest and second highest E ™ 1 

jets tend to  have a roughly opposite balancing jet but tha t the third highest Etj? 1 jet 

is much more randomly oriented in <f> with respect to the other two. The 77 profiles,

(b), (d) and (f), also show secondary peaks where another jet tends to lie close to the
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Figure 5.11: Comparison between data and Monte Carlo for the transverse energy jet profiles of 
the second highest Ej? 1 jet as a function of Arj and A<p. ZEUS data are shown by black dots, 

PYTHIA by the solid histogram and HERWIG by the dashed histogram.

third jet in azimuth. Again the data are reasonably well described by PYTHIA and 

HERWIG.

The good agreement between the data and the Monte Carlos for all three jets 

confirms tha t the three-jet events in the Monte Carlo have similar jets and energy flows 

to those in the data. The Monte Carlo thus models the data well and is suitable for 

correcting the data to hadron level.
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Figure 5.12: Comparison between data and Monte Carlo for the transverse energy jet profiles of 
the third highest Ej? 1 jet as a function of Arj and A<p. ZEUS data are shown by black dots, 

PYTHIA by the solid histogram and HERWIG by the dashed histogram.

5.5 Centre-of-Mass Observables

In order to calculate the three-jet angular variables, cos 6 3  and 'ip, and the energy- 

sharing variables, X 3  and X 4 , it is necessary to boost the three-jet system to the 

centre-of-mass of the three jets on an event-by-event basis. The distribution of the 

x, y and z  components of this boost are shown in figure 5.13. The boost is given by 

tanh - 1  Px,ytZ, where (I is the velocity of the centre-of-mass frame with respect to the lab 

frame, reflecting tha t the centre-of-mass and lab frames in photoproduction analyses
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are related by a simple shift in pseudorapidity. As expected the main contribution to 

the boost is in the positive z direction, since the incoming partons are approximately 

collinear to the beam axis and the parton from the proton generally has more energy 

than the parton from the photon. The z component of the boost, figure 5.13(c) is 

peaked around 1.2 and ranges from 0.2-2.2. However, there is also a small transverse 

boost shown by the x and y components in figure 5.13(a) and (b). These range between 

± 0 .1  and are peaked at zero. The Monte Carlo reproduces the data  distributions well.
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Figure 5.13: Comparison between data and Monte Carlo for the components of the boost to the 

three-jet centre-of-mass. ZEUS data are shown by black dots, PYTHIA by open circles and 

HERWIG by stars. Distributions are shown normalised to the area and only statistical errors

are shown.
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Figure 5.14 shows the angular variables cos 6 3  and ^ 3  , and the energy-sharing 

variables, X 3 and X 4 . The cos 6 3  distribution is peaked at ±  0.8 with the data favouring 

small scattering angles as, for example, in Rutherford scattering. The data are generally 

well described by PYTHIA and HERWIG, with the exception of the lowest and highest 

HERWIG bins. There is a slight asymmetry in the distribution which could be due to 

some residual bias from the E or r fal cuts.

As pointed out in chapter 1 , ^ 3  is undefined for two-jet events and its shape may 

be considered as driven mainly by the properties of the third jet. The ^ 3  distribution 

shows the data having a minimum around V>3 =  1*6 radians, peaking at ~  0.4 and 2.8 

radians and dropping down again in the lowest and highest bins. The dip at 0 and 

7r radians is due to the residual bias from the E ™ 1 and r fal cuts and also in part to 

the restrictions imposed on the angular separation of jets by the jet finder. The peaks 

in the distribution at low and high values of V>3 show tha t the third highest E ? 1 jet 

lies close to the beam direction suggesting that it comes from initial state radiation. 

The data are reasonably well described by PYTHIA. HERWIG seems to have more 

pronounced peaks than the data at high and low ^ 3  but the description of the data  is 

also reasonable.

The X 3  distribution is shown in figure 5.14(c). As mentioned in section 1.4 this is 

constrained to lie between |  and 1 due to energy conservation. The data are peaked at 

the cut-off of 0 . 9 5  indicating that the highest energy jet has a tendency to  take close 

to the maximum amount of energy available to it. HERWIG describes the data  well 

while PYTHIA underestimates the number of jets taking large fractions of energy.

The X 4  distribution, figure 5.14(d) is constrained to lie between |  and 0.95. The 

data are peaked at ~  0.7 and have quite a broad distribution. PYTHIA and HERWIG, 

while in general agreement with the data, seem to have a slightly narrower, more peaked 

distribution.

5.6 Summary

In summary, it has been shown that the simulation of the ZEUS detector works well 

and tha t events from the LO matrix element plus parton shower Monte Carlo event
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Figure 5.14: Comparison between data and Monte Carlo for the angular variables cos 6 $ and ^ 3  

and the energy-sharing variables X 3  and X 4 . ZEUS d ata are shown by black dots, PYTHIA by 

open circles and HERWIG by stars. Distributions are shown normalised to the area and only

statistical errors are shown.

generators PYTHIA and HERWIG provide a reasonable description of the raw three-jet 

ZEUS data. General event features used to select good photoproduction events are well 

described. The properties of jets such as transverse energy, pseudorapidity, transverse 

energy flow and three-jet invariant mass are also reproduced satisfactorily by PYTHIA 

and HERWIG. Finally, the three-jet dimensionless quantities cos #3 , ^ 3 , ^ 3  and X 4  are 

all well described by at least one model.

The good agreement between the shapes of the data  and Monte Carlo distributions



CH APTER 5. DATA DESCRIPTION B Y  M O NTE CARLO MODELS 77

demonstrates the suitability of the Monte Carlo events for correcting the data  for 

detector effects. Since PYTHIA gives a better description of the angular distributions 

it will be used for the basic correction. The correction procedure will be discussed in 

the following chapter.



Chapter 6

Correcting for D etector Effects

The aim of this chapter is to give an account of a procedure based on Monte Carlo 

events which can correct measured ZEUS data to the hadron level, thus facilitating 

comparison with theory. Chapter 5 showed that after simulation of the ZEUS detector 

the Monte Carlo event generators PYTHIA and HERWIG described the ZEUS data 

satisfactorily. This demonstrates that a Monte Carlo based method can be used to 

correct the data from detector to hadron level. The PYTHIA and HERWIG event 

samples described in appendix A were used in the following analysis.

For any distribution a bin-by-bin correction method can be employed such tha t

c o r r e c t e d  / -\ . d e t e c t o r  i • / MOUte CarlohadrOU bin(i) //t _Data btn(i) = Datadetect0T bm(i) • —  —  ■ , . .— , ; \  '  (6.1)
w  w  Monte Carlodetector bin(i) v '

provided tha t the shape of the measured distribution is well described by the Monte 

Carlo detector level distribution and that each bin at detector level corresponds closely 

to the same bin at hadron level to minimise bin-by-bin migrations. Section 6.1 examines 

the agreement between hadron and detector level quantities while section 6 . 2  shows the 

correction factors obtained using the above bin-by-bin method.

6.1 Jet Energy Corrections

Ideally, a detector would be able to measure particle positions and energies exactly. 

However detectors have finite angular and energy resolutions and other factors such

78



CHAPTER 6. CORRECTING FOR D ETECTO R EFFECTS 79

as energy losses due to dead material in the detector, loss of low pt  hadrons and 

detector response varying with the energy of the incident particles also impair the 

correspondence between detector and hadron level quantities. This can be improved 

by studying, and correcting for, the differences between detector level and hadron level 

jets obtained by applying the kx  jet finder described in section 4.3 to both CAL cells 

and final state hadrons of Monte Carlo events which have been subjected to a full 

simulation of the ZEUS detector.

6 .1 .1  T ran sverse  E n erg y  C orrection

Events are selected which pass a three jet selection at both detector and hadron level 

of

• 2 detector level jets with E ™ 1 > 5 GeV, a third jet with E ™ 1 > 4 GeV and 

r)cal < 2.5 for all jets.

• 2 hadron level jets with Exad > 6  GeV, a third jet with Ej'ad > 5 GeV and 

r)cal < 3.0 for all jets.

• Mgj > 42 GeV and M $ f  > 50 GeV.

In this way the E t  correction is obtained from events which are representative of 

the final analysis selection. Detector level jets with E ™ 1 > 5 GeV and rjcal < 2.5 are 

selected and a matching hadron level jet sought with > 4 GeV and i]had < 3 .0 . 

Jets are considered to match if the distance between them in the 7] — plane, 

R  = yj{r)cal — 7]h a d ) 2 +  ((pcal — (phad)2 < 1 . The distance separating matching jets is 

shown in figure 6 .1 (a), the peak near zero showing tha t in most cases a good match 

been detector and hadron level is achieved. If more than one jet satisfies these criteria 

the closest is chosen. The fraction of detector level jets matching zero or two hadron 

level jets is shown in figure 6 .1 (b) and is of the order of 2 %.

Once pairs of matched detector and hadron level jets have been found the differences 

in the angular and energy variables can be studied. Figures 6 .2(b),(d) and (f) show 

scatter plots indicating how the energy and angles of matched jets are distributed. The 

resolutions shown in figures 6 .2 (a),(c),and (e), fitted by Gaussian functions, show how
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Figure 6.1: (a) The distance in the i j  — <p plane between m atching detector and hadron level 

jets and (b) the fraction o f detector level jets which are m atched with zero (points) or two 

(histogram ) hadron level jets for PYTH IA events.

well the  quan tities  for hadron  level je ts  are reproduced by th e  d e tec to r variables. I t  can 

be seen th a t  the angu lar variables 77 and are well correlated  betw een d e tec to r and 

hadron level with no system atic  shift and good resolution. T he  je t transverse  energy, 

on the o th er hand , shows a system atic  shift which m ust be corrected  for w ith E™1 being 

on average 15% less th an  Ej?d.

T he dependence of the  difference in 7 7, and E j  betw een d e tec to r and  had ron  level 

je ts  on Tjcal, ipcal and E ™ 1 is shown in figure 6.3. = <phad — <pcal, is flat in rical, (fcal

and E™1 and is cen tred  on zero. A 77 = r/had — r/cal, is also flat in 1pcal and E j an d  is 

centred  on zero b u t shows some dependence on r/cal. However, as th e  varia tion  w ith 

rjcal of ab o u t ±  0 . 0 2  is m uch less th an  th e  w idth  of th e  77 reso lu tion , 0.08, it can  in 

effect be considered independent of r]cal. No corrections are required  for r]cal or (fcal 

and in fu tu re  r]cal =  r]cor = 77 and (fcal = (fcor = w here cor ind icates the  value of a 

variable afte r correcting for detec to r shifts.

A E j  = E ^ad — E j 1, becomes larger as E™1 increases and  also varies w ith  77 so a 

correction procedure is em ployed which varies w ith E ^ 1 and 7 7 . Two different correction  

procedures have been studied , one to  be used in the  m ain analysis and  the  o th e r as a 

system atic  check of th e  E t  correction m ethod .
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Figure 6 .2 : Resolutions for (a) 77, (c) <p and (e) E t  for PYTHIA events and correlations between 

(b) 77, (d) <p and (f) E t  for matching pairs of detector and hadron level jets.

The event sample is divided into 12 bins of 77 and 5 bins of transverse energy 

according to the resolution and the available statistics. The first procedure studied, in 

future referred to as correction method 1 , involves plotting { E ^  /  E ^ 1) of a matched 

pair of jets as a function of E™1. These distributions are fitted by a function of 

the form F ( E t ’1) =  A  +  exp(B  +  C  • E ^ 1) to give a multiplicative correction factor 

which can be applied on a jet-by-jet basis to give the corrected transverse energy of 

a jet, Ej?t ( E t 1, vi) =  F  • E™1- The correction functions obtained by fitting PYTHIA
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the error on the mean.

distributions are shown in figure 6.4. A reasonably good fit is obtained.

In the second E t  correction procedure, in future referred to as correction method 2, 

Efj? 1 is plotted as a function of E ^ad for pairs of matched jets. The distributions are 

fitted with a function of the form E ™ 1 = A  +  B  • Ej,ad from which the corrected E t  

of the jet is obtained, E ^ r =  Figure 6.5 shows tha t good fits to the PYTHIA

distributions are obtained neglecting the lowest E t  point which is affected by the E t
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thresholds applied when selecting the jets. The linear fit neglects any change in the 

amount of E t  correction as a function of E t , only the change with 77 is taken into 

consideration.

As this correction method relies heavily on simulated Monte Carlo events it is 

im portant to check whether it is sensitive to model-dependent effects. Since the 

correction depends mainly on the energy and position of the jets and not on the internal 

structure the model dependence involved in correcting for detector effects to hadron
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Figure 6.5: E™] vs E^ad fitted by a function E ™ 1 =  A +  BEj.ad to obtain the je t energy

correction functions using PYTHIA events.

level is not expected to be large. The correction functions obtained from PYTHIA and 

HERWIG events, which differ mainly in the treatm ent of the parton shower and the 

hadronisation process as discussed in section 5.1, are shown in figure 6.6 for correction 

method 1 and in figure 6.7 for correction method 2, in order to illustrate their functional 

form. The correction functions are very similar with the differences between them less 

than 5%.
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Figure 6 .6 : Jet E^al correction functions obtained from HERWIG (solid line) and PYTHIA

(dashed line) by method 1 .

The ability of the correction functions to correct from detector to hadron level can be 

checked by correcting PYTHIA detector level jets with correction functions obtained 

from HERWIG, and vice versa, and plotting (E^ad/ Ej?T) against Ej?r , as shown in 

figures 6 . 8  and 6.9. This confirms that the corrected jet energy can be obtained to 

within ±  5% of the true hadron level jet energy using correction functions obtained 

from either event generator.
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(dashed line) by method 2 .

6 .1 .2  R e so lu tio n s

The primary objective when applying a correction to the transverse energy of a jet is 

to  reproduce the hadron level E t  from the detector level jet. Figure 6.10 shows the E t  

resolution before, (a), and after, (b) and (c), application of the two E t  corrections 

obtained in section 6.1.1. The correction succeeds in shifting the mean difference 

between the detector and hadron level transverse energies from 15% to within 2 % 

without reducing the resolution with the result tha t there is now a good correspondence
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Figure 6 .8 : Ej>ad/  Ej?r in bins of E!jfr for pairs of matched PYTHIA jets where E!j?1 has been 

corrected with HERWIG correction functions.

between detector and hadron level.

Another quantity which is likely to be affected by the shift in the tranverse energy 

is the three-jet invariant mass, i.e. the centre of mass energy of the three-jet system. 

The invariant mass resolution is shown in figure 6.11 before, (a), and after, (b) and 

(c), the two E t  corrections. The E t  correction shifts the mean difference between 

detector and hadron level from 16% to less than 1 % without significantly reducing the 

resolution. This is particularly im portant since the invariant mass distribution of the 

three-jet events, shown in figure 5.8, falls steeply from the threshold value used in the
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Figure 6.9: E^ad/ E ^ r in bins of Ej?r for pairs of matched HERWIG jets where E% ? 1 has been 
corrected with PYTHIA correction functions.

event selection and is therefore particularly sensitive to migrations between hadron and 

detector level bins.

It is also im portant to check the correspondence between detector and hadron level 

of the angular variables, cos O3  and ip3 , and the energy-sharing variables, X s  and X 4 . 

The resolutions of these quantities before the E t  correction are shown in figure 6.12. 

Since cos 0s and ips are angular variables to a good approximation they are unaffected 

by the difference in the E t  at hadron and detector level, giving resolutions which are 

centred on zero. Likewise, since X s  and X 4  are energy ratios, the correspondence
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Figure 6 .1 1 : M3 J  resolution (a) before, (b) after E t  correction method 1 and (c) after E t
correction method 2 .

between detector and hadron level is good and the resolutions are centred on zero. The 

M3J, cos 0 3 , 03, X 3  and X 4  resolutions sets a limit on the minimum useful bin size for 

future measurement.

6 .1 .3  T h r e e -je t  S e le c tio n  C u ts

After applying corrections to the transverse energy of the jets the full three-jet data 

selection is changed to take into account the shift between E ^ 1 and E ^ T and Mgj and 

M |jr . The following three-jet selection criteria replace those stated in section 4.4 for 

any data to which a jet transverse energy correction has been applied.

• 0.15 < yjB < 0.65

• two jets with E f T > 6  GeV, a third with E ^ r > 5 GeV and rj < 2.4 for all three 

jets

• Af|Jr > 50 GeV, | cos 03 1cor < 0.8 and X$>T < 0.95
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X 4  before E t correction applied.

6.2 Acceptance correction, efficiencies and purities

There are two stages in obtaining a hadron level measurement which can be compared 

to theoretical predictions. The previous section, 6.1, illustrated the correction of jet 

transverse energies and other quantities to  give good correspondence between detector 

and hadron level. The next stage, presented in this section, is to correct for the limited 

acceptance of the detector to the particular type of events to be measured.
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6 .2 .1  E ffic ien cies  and  P u r it ie s

It is interesting to observe the effect tha t different stages of event selection at detector

level have on ‘true’ hadron level PYTHIA three jet events. Figure 6.13 shows the

fraction of hadron level events passing the full three jet selection

• Q 2  < 1 GeV2 and 0 . 2  < y < 0.8

• two jets with E j ad > 6  GeV, a third with E ^ad > 5 GeV and rj < 2.4 for all three

jets

r h a d  \  cn I o h a d \  /  n Q v h a d• Mgj > 50 GeV, | cos 0$ \ < 0.8 and X%ad < 0.95

which also pass the different levels of online and offline selection which are applied 

to the events at detector level. The efficiency is shown as a function of M ^ jd. The 

bin widths chosen for M%jd reflect the resolution of M3J. The three levels of online 

selection, (a), (b) and (c), are almost 1 0 0 % efficient, leading to a cumulative efficiency 

after the TLT of ~  95%. The additional offline cleaning cuts, (d), described in section 

4.2, are also efficient, reducing the cumulative efficiency to ^  93%. Application of 

the three-jet selection given in 6.1.3, (e), reduces the number of hadron level events 

significantly. The cumulative efficiency drops to 50% for M%jd — 50 GeV rising to 75% 

for M ^ jd > 60 GeV. Finally, requiring that M%jd and M ^jr lie in the same bin, (f), 

reduces the cumulative efficiency still further to rsj 30% for <  80 GeV and ~  50% 

for M £ jd > 80 GeV. This is known as the bin efficiency.

The bin efficiency, defined as,

_  . number of events generated and reconstructed in bin(i)
Bin Efficiency =  ------------------ — ^ -------------    ■ ■■■: ■ ----^

number of events generated m bin(i)

is an interesting quantity to examine since it gives the fraction of ‘true’ hadron level

events which are reconstructed at detector level in the same bin. The higher the

efficiency, the greater the fraction of hadron level events which are measured by the

experiment in the same bin of the distribution. This minimises the extrapolation of

the measurement into unmeasured regions.

The bin purity is defined as

^  . number of events generated and reconstructed in bin(i)
Bin Purity =  --------------- ,------------------------------------------------------- ^

number ol events reconstructed m bm(i)
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Figure 6.13: Efficiency of different levels of event selection shown for PYTHIA events, i.e. the 
fraction of hadron level three-jet events which also pass (a) the FLT, (b) the SLT, (c) the TLT, 

(d) the offline cleaning cuts, (e) the three-jet selection given in 6.1.3 and (f) have M%jd and
M |jr lying in the same bin.

and gives the fraction of the events reconstructed experimentally which actually have a 

corresponding ‘true’ hadron level event in the same bin of the distribution. High purities 

indicate tha t the contamination of the sample from events migrating from other bins 

is small. The terms efficiency and purity will be taken to mean bin efficiency and bin 

purity respectively for the rest of this study.

Figure 6.14 shows the efficiency and purity as a function of M sj  for events passing 

the three-jet event selection detailed above. As described previously the efficiency varies
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between 30 and 50% being lower at low M z j . The purity is also lower at low M zj and 

varies between 30 and 50%.
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Figure 6.14: Bin efficiency and purity shown for PYTHIA events as a function of Mzj .

The efficiency and purity of the cos #3 and ^ 3  distributions are shown in figure 6.15 

to be approximately flat in cos 6 3  and ife and around 35-40%.

Figure 6.16 shows the efficiency and purity of the X 3  and X 4  distributions. The X 3  

efficiency and purity are around 20% in the lowest bin and rise gradually to 40% over 

the rest of the range. The X 4  efficiency is ~  30% in the central part of the distribution 

and 15-20% in the lowest bin and highest two bins. The purity is flat and ~  30%.

6 .2 .2  C o rrectio n  F actors

A measured distribution can be corrected from detector to hadron level by applying the 

Monte Carlo based bin-by-bin method shown in equation 6.1 provided tha t the Monte 

Carlo describes the data and can account for migrations between bins. The correction 

factor is equivalent to the ratio of purity to efficiency.

Figure 6.17 shows the correction factors which should be applied to the data  M |jr , 

cos^3°r , ^ 3 °r , X%°r and X |or distributions to obtain hadron level quantities. The 

correction factors for zos9<̂r and ^ or vary between 0 .8 -1 . 2  and are reasonably flat as 

a function of cos 0^or and /ip̂ or. The correction factors for X ^ or and X ^ OT also vary for 

the most part between 0 .8 -1 . 2  except in the lowest bin of X£or and the highest bin of
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Figure 6.15: Bin efficiency and purity shown for PYTHIA events as a function of cosO3 and ^ 3 . 

X |or. The correction factors for M |jr are also relatively flat and around 1 .

6.3 Summary

In summary, it has been shown that it is possible to apply a correction to the transverse 

energy of detector level jets which compensates for energy losses in the the detector 

to within 5% thus minimising bin migrations from detector to hadron level. This 

correction relies on Monte Carlo events and the ZEUS detector simulation. Comparison 

between the Monte Carlo event generators PYTHIA and HERWIG has shown th a t the 

correction method does not depend heavily on the particular model chosen to create
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Figure 6.16: Bin efficiency and purity shown for PYTHIA events as a function of X 3  and X 4 .

events. Correction method 1 is now applied at all stages in the subsequent analysis 

with correction method 2  employed as a systematic check.

It has also been shown tha t there is a good correlation between detector and hadron 

level for the observables of interest, M3J, cos #3 , ^ 3 , X 3  and X 4 .

Correction factors have been obtained which can correct the measured distributions 

bin-by-bin for detector acceptance to give hadron level quantities. The data corrected 

to hadron level are shown in chapter 7 along with details of the systematic checks 

performed. The corrected data are compared to various hadron and parton level 

theoretical predictions in chapter 8 .
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Chapter 7

Corrected D ata and System atic  

Checks

7.1 Corrected Data

The corrected data distributions are obtained by applying the correction precedures 

described in chapter 6  to the measured data. Firstly the transverse energy correction, 

section 6.1, corrects for energy losses in the detector. Three-jet events are then selected, 

as stated in section 6.1.3, with

• two jets with E ^ r > 6  GeV and a third jet with E ^ r > 5 GeV where rj < 2.4

• M3c7  > 50 GeV, | co s0 fr | < 0.8 and X f r < 0.95

These are the criteria used in section 6.2 when calculating the correction for the detector 

acceptance.

After all the selection cuts 2821 events remain from 16.0 pb - 1  of data. 425 of these 

events contain four jets , 56 events have five jets, 3 events have six jets and one event 

has seven jets. The additional jets in these events have Ej?r > 5 GeV.

The background from beam gas and cosmic ray events is negligible. The contam

ination due to DIS and prompt photon events has been estimated using Monte Carlo 

events to be < 1 % and < 0 .1 % respectively.

97
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The corrected differential cross section for three-jet production in bin(i) of an 

observable X  is then calculated to be

number o f  events in bin(i)
(7.1)

C • bin width

where C{bin{i)) is the multiplicative factor obtained in section 6 . 2  to correct for detector 

acceptance and £  is the integrated luminosity of the data analysed.

*o

- 1

- 2

140 1 60
M *  ( G e V )

1 2 080 1 0 060

Figure 7.1: The cross section da/dMzj. The corrected ZEUS data are plotted at the mean 

Mzj of the bin and are shown by black dots for the first analysis and by circles for the second 

analysis. The error bars show the statistical error.

Two independent analyses have been performed: the first was performed by

the author and is the subject of this thesis, while the second was performed by 

Dr L. E. Sinclair. This is conformity with the ZEUS Collaboration rules tha t all work 

for publication must be checked in its essential features by a second person.

The differential three-jet cross sections with respect to M3J , cos #3 , ^ 3 ? X 3  and X 4  

are shown in figures 7.1 and 7.2. Statistical errors only are shown. The main difference 

between the two analyses lies in the correction for detector effects. PYTHIA is used 

to correct for detector acceptance in the first analysis while HERWIG is used for the
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corrected ZEUS data are plotted at the centre of the bin are shown by black dots for the first 

analysis and open circles for the second analysis. The error bars show the statistical error.

second. The first analysis corrects the transverse energies of the jets with a method 

tha t takes into account variations in the energy loss with E™1 and 7 7 (see correction 

method 1  in section 6 .1 ) while the second applies a flat correction of E j r =  1 .2 E™1.

Figure 7.1 shows the cross section do /d M sj  measured by the two analyses while 

figures 7.2 shows the cross sections d o / d cos#3 and da/d'ip3 and d o / d X 3 and d a j d X \  

respectively. Since the correction for detector acceptance is approximately flat in cos $3 , 

X 3  and X 4  the shapes of these distributions are the same as those observed in the 

raw data in figure 5.14. Figure 7.3 shows the difference in percent in the cross sections 

measured by the two analyses for dcr/dX 3 , dcr /dX 4 , d a / d  cos #3 , do /d ip 3  and d a / d M 3 j .
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Figure 7.3: The difference between the values of the differential cross sections obtained by the 

two analyses is shown normalised to the cross section from the first analysis for X 3 , X 4 , cos 8 3 , 
ip3  and M3 J. The errors bars indicate the statistical error.

There is good agreement between the analyses except where PYTHIA and HERWIG 

differ in their description of the raw data and are expected to produce differences. 

The cos 6 3  and ip3 distributions shown in figure 5.14 are good examples of this. The 

effect on the distributions of changing the event selection and correction procedure 

systematically is detailed in the following section.

In addition, the three-jet cross sections obtained from 1995 and 1996 data  individ

ually were compared as a consistency check. Figure 7.4 demonstrates tha t the 1995 

and 1996 cross sections do not differ significantly. The ratio of the cross sections,
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<j(95)/<j(96), is centred on 1 and is approximately flat in M 3j , cos 03, -03, X 3  and X 4 .

7.2 Systematic Studies

The systematic uncertainty on the measurements was studied by making changes in 

the selection and correction procedures. The results of this study are shown in figures 

7.5 to 7.13 for the data points (shown from left to right) obtained in the following ways

1. Default analysis selection

• two jets with Ej?r > 6  GeV, a third with Ej?r > 5 GeV and 77 < 2.4

• M 3J > 50 GeV, | cos 031 < 0.8 and X 3 < 0.95

• [E^ad/ Excal) vs E ™ 1 (method 1 ) jet transverse energy correction

• PYTHIA used for acceptance correction

• GRV photon structure function and CTEQ proton structure function used 

in PYTHIA

2. Energy scale of the CAL in detector simulation raised by 5%

3. Energy scale of the CAL in detector simulation lowered by 5%

4. cut lowered by the width of the E t  resolution so tha t two jets with 

E ^ r > 5.5 GeV and a third of E ^ r > 4.5 GeV were required

5. 77 cut raised by the width of the 77 resolution so tha t 77 < 2.5

6 . Upper yjB  cut raised by width of the resolution to yjB < 0.7

7. E ™ 1 vs Ej<ad jet transverse energy correction used (method 2)

8 . LAC1 photon structure function [71]

9. MRS(A) proton structure function [72]

10. HERWIG used for acceptance correction

1 1 . M 3j  cut lowered by the width of the M 3j  resolution to M 3j  > 46 GeV
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12. cos #3 cut raised by the width of the resolution to | c o s^ l < 0.825

13. X s  cut raised by the width of the resolution to X 3  < 0.975.

These systematic changes can be grouped into several different categories. Sys- 

tematics 2 and 3 are designed to show the effect on the cross section of changing the 

energy scale of the CAL in the detector simulation by ±  5%, the level of uncertainty 

on this quantity. Systematics 4-6 and 11-13 show the effect of events migrating into the 

data  sample from outwith the kinematic range of interest. The remaining systematic 

checks are related to the model dependence of the correction procedure, i.e. changing 

the event generator used to produce Monte Carlo events from PYTHIA to HERWIG, 

changing the photon and proton structure function used by PYTHIA and changing the 

parametrisation of the jet transverse energy correction.

Figure 7.5 shows the percentage difference between each systematic check and the 

default value of da jdM ^j  in each bin of M$j.  The numbers on the x-axis refer to 

the systematic checks detailed previously. Clearly the main effect on the cross section 

comes from raising(lowering) the CAL energy scale in the detector simulation by 5% 

(labeled ‘2’ and ‘3’ in figure 7.5) thereby increasing(decreasing) the cross section in 

each bin, a systematic shift which is completely correlated between bins.

The systematic differences in bins of cos6 3  are shown in figure 7.6 for da fd  cosQ3 . 

In addition to the energy scale uncertainty, correcting for the detector acceptance with 

HERWIG rather than PYTHIA events also has a large effect on the cross section. This 

is due to differences between the PYTHIA and HERWIG cos 6 3  distributions which 

affect the correction factors obtained, da/d fa ,  shown in figure 7.7, also shows signs 

of sensitivity to the HERWIG correction at low and high V>3 where the PYTHIA and 

HERWIG -03 distributions differ. d a /d X 3  demonstrates slight sensitivity to the E t  

correction applied to  the jets, figure 7.8, while daJdX\  is also affected by the HERWIG 

correction, figure 7.9.

The effects of the systematic variations have also been studied for the area nor

malised distributions. Here the energy scale uncertainties should have a negligible 

effect since they change only the magnitude of the cross section and not the shape of 

the distribution.
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Figure 7.10 shows systematic variations for l / a d a /d co s 9 3  in bins of cos 6 3 . As 

expected the energy scale uncertainty is not now im portant. On the other hand, differ

ences between the PYTHIA and HERWIG acceptance correction are more noticeable 

and are in fact the dominant source of systematic uncertainty. The same pattern  is 

observed in figures 7.11 and 7.13 which show the systematic changes for l /crda/dfa  

and 1 /a d a / d X 4 .  Figure 7.12 shows that the shape of the A 3 distribution is slightly 

sensitive at high and low X 3  to the E t  correction applied to the jets.

In summary, the major uncertainty on the cross section measurement comes from 

the lack of knowledge of the CAL energy scale. It has however a negligible effect on the 

shape of the distributions. The use of HERWIG rather than PYTHIA to correct for 

detector effects is the only other systematic which has a significant effect on the cross 

section. This effect is generally smaller than tha t due to the energy scale uncertainty 

and arises from the differences between the PYTHIA and HERWIG predictions. These 

differences were observed for the uncorrected data in figure 5.14. The effect of the 

HERWIG correction on the shape of the area normalised distributions is however the 

major systematic for the 1 /crchr/d cos #3 , 1 / ada / d ^ 3  and 1 / ada/dX±  measurements. 

The dependence on the structure functions used in the Monte Carlo models is, in 

contrast, very small despite the differences between the photon structure functions 

GRV and LAC1 which have been observed elsewhere [33, 34, 37].

The three-jet cross section is measured as

V th re e - je t  = 162.4 ±  4.1 (stat.) (sys .) {energy scale) pb

Numerical values for da /dM 3 j ,  da /dcos 6 3, dcr/dfo, d a f d X 3  and d a / d X 4  measure

ments are given in tables B.1-B.5 in appendix B. Also given are the statistical errors, 

systematic uncertainties (excluding the energy scale uncertainty) and the energy scale 

uncertainties. Numerical values for the area normalised distributions are given in tables 

B.6-B.9 in appendix B along with statistical and systematic errors.

7.3 Comparing Parton and Hadron Level Jets

The data have been corrected to hadron level using hadron and detector level Monte 

Carlo events to correct for detector effects. LO QCD calculations for three-jet processes
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however contain only three partons in the final state, each of which would be associated 

with a jet. An estimate of the relation between parton and hadron level quantities can 

be obtained from PYTHIA Monte Carlo events. In each event jets are studied before 

and after hadronisation, tha t is jets found respectively from partons from the QCD 

scatter and parton shower, and from the hadrons. This of course can only be an estimate 

of the correspondence between the parton level of the theoretical calculations and 

hadron level since PYTHIA contains only 2 —»2 QCD m atrix elements, although initial 

and final state radiation are modelled as discussed in section 8.3. The multipartonic 

final state produced by the parton shower is only an approximation of higher-order 

calculations.

The three-jet cross sections as a function of M^j,  cos #3 , ^ 3 , A 3 and X 4  for events 

found with parton and hadron jets are shown in figure 7.14 to  be very similar, the 

ratio crfhadron jets]/cr[parton jets] being ~  0.95. The right hand column shows tha t 

this ratio is approximately flat for all distributions.

Figure 7.15 demonstrates that there is very little difference between the shapes of 

the distributions shown by l /ada/dcosO^, 1 /adofdtyz, 1 / a d a / d X 3 and 1 / ada /  dX± 

obtained using hadron or parton jets. Again the right hand column shows tha t the 

ratio is approximately flat for all distributions.

7.4 Summary

The corrected cross sections do /dM $j , da/d  cos #3 , da/d fa ,  da /dX z  and d a / d X 4 have 

been shown in section 7.1 for two independent analyses. There is good agreement 

between the analyses.

The systematic uncertainty in the measurement has been studied in section 7.2. 

The uncertainty in the CAL energy scale gives rise to a ±  20-30% uncertainty in the 

to tal cross section. The model uncertainty, estimated by performing the correction 

with both PYTHIA and HERWIG, also a major source of systematic error both for the 

to tal cross section and for the area normalised distributions.

Hadronisation effects have been estimated in section 7.3. The ratio of the cross 

sections cr[hadron jets]/ a [parton jets] was found to be ~  0.95. The shapes of the
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distributions are largely unaffected.

The corrected data will be compared to the predictions of various theoretical models 

in the following chapter.
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the systematic value and the nominal result is shown together with the statistical error from 

the nominal result. The line at zero refers to the position of the nominal value.
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: 0 < ^ 3< k ^  ^

:i " 1 - 1 + 11 i l l 'I l l l i l l  111
;  f  ̂ <̂ 3<ff?T
-i +1 ++1 I 1 1

i hn<1>3<TK  

:i i l l l i l h l l:tj t | t Ttt tt"

“1 1 1 1 1 1 1 II 1 1 1 1

Ttt T ft Tft

~l 1 1 1 1 1 1 1 1 1 1 1 1

:t TfTTft |t"

“1 1 1 1 1 1 II 1 1 1 1 1

:T| t"'t ft t TT

n i l .............11
« -  cm k )  ^  in  to  oo a y  o « -  cs ro  * -  cs t o  m  <o oo o i  o  cm m  * - c N f o ^ i o < o r ^ c o a » o * - c N r o  cs fo  io  to  oo o> o « - cn ro

-1 In iW ^lil
E nrT<V'3<f^
-1 u H u i l H

; f̂ <V'3<̂ 7T
-i l U i l i

: TSlJ<i'3<T'K

-J +i+iii h i:t| t t t t t t  tfT

“1 1 1 1 1 II 1 1 1 II 1

it| fT̂ MTtT-T̂

n 1 1 1 1 1 1 1 1 1 1 1 1

:tj T T t J T t j" "

“1 1 1 1 1 1 1 II 1 1 1 1

;tj Tt Tt t t |  V

~\ 1 1 1 1 1 1 1 1 1 1 1 1
«-cMK>*io<or̂ ooa>o*-cMK> «-ojKwmcor>»coo>o*-f>iK) i-cNjrô MOtor̂ oocnô -cNro *-oiKWiotof̂ coo>o*-<MK)
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Figure 7.7: Summary of systematic uncertainties for da/dty3 . The difference in percent between

the systematic value and the nominal result is shown together with the statistical error from
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i-01fÔ IOtONOOOJO»-CSfO

: 0 .6 5 < X 4< 0 .7  
♦

■+— +t++tt + + +

4 0

20

0

-2 0

- 4 0

4 0

20

0

-2 0

;0 .5 5 < X 4< 0 .6

I I I II I I 1 I 1 I I I
* -c N K ) '* in u 3 r ^ c o a > o * - o < K )

. 4 0   ................. I ....................... I 1 0-̂cMrô -incor̂ ooô ô cNK)
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T-cvirô inior^oocnoi-cNfO

Figure 7.9: Summary of systematic uncertainties for dcfdX^.  The difference in percent between 

the systematic value and the nominal result is shown together with the statistical error from 

the nominal result. The line at zero refers to the position of the nominal value.



CH APTER  7. CORRECTED DATA AND SYSTEM ATIC  CHECKS 111

i— 0.8<cosi?3< —0.7 

"i + 4 i 4 + 1 1 . U

i—0 .7 <cos'i?3< — 0.6 

~ 4 i  i A l i  + l i  4 1 4

i~0.6<costf3< - 0 .5

:4 4 l l + l i 4 4 ^ + 4 i

0 .5 < cost53< - 0 .4

i iU f  H u l l-T"¥ f " T T f f

” 1 1 II 1 1 1 1 1 1 1 1 1

i t  f f  TTT^T t  r

“ 1 1 1 1 1 1 1 1 1 I 1 1 1

: T ? t t  t y*T T ' t

"I II I I I I I I I I I I

i t  T|TT t T t t  f t  t f

"I I I I I I .................
*- cm to m co p>- co cn o c m  m cm in N-in co co o» o »-cm m «- in to n- m co r* oo o> o  *- cn to cm to N- 10co oo a> o «- cm to

i^ 0 .4 < cos$ 3 < -0 .3 r ^ 0 .3 < c o s t f 3< ^ -0 .2

r u h i i ^ w  h i

i ^ 0 .2 <cos'i> 3< - 0 . 1 H -0 -1 < c o s ^ 3 < P

ri U i i i h i  h i

................................ I l l

; l  t  J | * T t  TT

"II 1 1 1 1 1 1 1 II  1 1

^ y * T

“ I I I I I I I I I I I I I

;T " t |  I I  ‘ TT

"I I I I I I I I I I I I I
r- cm m n-in co r» oo cn o  r- cm 10 r- cm to n- m co i*. oo cn o «- cm m *-cm m n-in co r'. oo cn o «-cm to *- cm io n- m co r- oo cn o «- cm io

i0 < c o s t f 3< 0 .1  

El l U l i i  i i M i l

|0 . 1 < c o s ^ 3< 0 . 2

= i i + i 4i i i i  i i i

i0 .2 < c o s t f 3< 0 .3  

= l J + +1 L + + 1 i l l

iG .3 < c o s ^ 3< 0 .4  

=1 + 11 1  + ̂  | 1 ^ 1  H:ttTttT|tt T*t
"I L I_ U J J _ L L L L L L

ETtTt'tttt ttr
~i i i i i i i i i t i i i "i i i i i i i i j i i j i .

E*Tf tt * ft ttt
"1 1 1 1 1 1 1 1 1 1 1 1 1

« -  cm n  M- in  co co cn o  i -  cm io  « -  cm io  m- m  co oo 01 o » -  cm io  * - c N i O N - i n < o r ^ o o c n o » - c N i o  » -  cm to  m- in  co oo cn o  * -  cm io

i0 .4 < c o s i> 3< 0 .5

= 1 1 + 1 1 1 1 + 1 1 + 1 1

iG .5 < co s i> 3< 0 .6  

= 11 l l l l ^  + l  + 1 1

iG .6 < c o s tf3< 0 .7  

: l l  I + + 1 i l i  + i  1 +

i0 .7 < cos# 3< 0 .8  

:1 i a 44 4  + 1 4 i l l
i t t ' t f  t  t T i T

"i i i i i i i i i i i i i

i t  + t f t f  T t  T t t

r  f
-i 11111 .i 111111 =1111111111111

- T ? f T T T ^ T f T f T

=1111 ..............I l l
i - c M « o M - i n « o i ^ o o o i o ^ < N K 5  cm 10 m - in  co co < n o  i - n h  i - c M < O M - i n ( O N o o o > o > - ( M n  ^ - t N i o N - i n i o f ' - o o m O ' - c N i o

Figure 7.10: Summary of systematic uncertainties for \ /ada/dzosB^.  The difference in percent

between the systematic value and the nominal result is shown together with the statistical error

from the nominal result. The line at zero refers to the position of the nominal value.
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Figure 7.14: The left column shows the three-jet differential cross sections with respect to M$j , 

cos #3 , ip, X 3  and X 4  for jets of hadrons (solid histogram) and partons (dashed histogram). The 

right column shows the ratio of the hadron to the parton level three-jet cross sections.
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Chapter 8

Interpretation

8.1 O(aâ ) pQCD Calculations and the Parton Shower 

Model

Theoretical pQCD calculations for photoproduction cross sections at 0(cxa2) are 

available from two groups of authors, Harris & Owens [73] and Klasen [74]. These 

calculations include 2 —> 3 processes as illustrated in figure 1.10. Since three partons are 

produced in the final state the calculations can be used to describe three-jet production 

at leading order for the processes currently under consideration. The theoretical 

uncertainty on the calculation is estimated at ±  30-40% and is particularly associated 

with uncertainty in the QCD scale [75].

PYTHIA and HERWIG use the LO matrix elements for 2 —* 2 scattering processes 

while the multiparton final state produced by the parton shower approximates some 

of the higher-order matrix elements. The event samples compared to  the data  in this 

chapter were generated with a minimum pt  of the hard scatter of 8  GeV. Direct and 

resolved processes were combined according to their relative cross sections.

The measured three-jet differential cross section d a /dM s j  is compared to these 

different models of three-jet production in figure 8.1. The data  are peaked at the 

threshold of 50 GeV and decline exponentially with increasing M$j.  Above 90 GeV the 

statistical errors dominate. The 0 { a a 2s) calculations agree well with the data  despite 

being only LO for this process. Both parton shower models significantly underestimate 

the cross section for three-jet production, HERWIG more so than PYTHIA.
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Figure 8 .1: The cross section da/dM^j.  The corrected ZEUS d a ta  are plo tted  a t the mean 

of the bin and are shown by black dots. The inner error bars show the sta tistica l error while 

the outer indicate the statistical and system atic errors added in quadrature . The shaded band 

represents the uncertainty on the m easurem ent due to  raising and lowering the CAL energy 

scale by 5%. Shown in comparison are three-jet cross sections from LO QCD calculations and

from PY THIA and HERW IG.

Figure 8 . 2  shows the  X$ and X 4 d istribu tions a rea  norm alised  and com pared  to  

0 ( a a 2s ), figures 8 .2 (a) and  (b ), and to  P Y T H IA  and H ER W IG , figures 8.2(c) and  (d). 

In add ition  to  th e  QCD based calculations the  result due to  th ree -p a rto n  phase-space 

alone (fixed m atrix  elem ent) is shown in figures 8 .2 (a) and  (b).

T h e  Ar 3  d istrib u tio n  shown in figure 8 .2 (a) illu stra tes  th a t  th e  highest energy je t in 

th e  th ree -je t rest fram e tends tow ards tak ing  the  m axim um  am oun t of available energy. 

T he energy fraction  of th e  second highest energy je t ,  X 4 , can range betw een 0.5-0.95. 

T he d a ta , shown in figure 8 .2(b), are peaked a t ~  0.65 ind icating  th a t  the  th ird  je t  also 

takes a significant fraction  of th e  available energy.
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Figure 8 .2 : Shown are (a) l /odo/dX^  and (b) l/ffdcr/dX^ comparing the corrected ZEUS data 
to 0 (a a 2) pQCD calculations. Also shown are the PYTHIA and HERWIG predictions in (c) 
l/adcr/dX^ and (d) X/adcr/dX^. The corrected ZEUS data are plotted at the centre of the bin 
and are shown by black dots. The inner error bars show the statistical error while the outer 

indicate the statistical and systematic errors added in quadrature.

There is excellent agreement between the 0 ( a a 2) calculations and the data  for 

both X 3  and X 4  as shown by figures 8.2(a) and (b). Figure 8.2(c) demonstrates that 

HERWIG also describes X 3  reasonably well while PYTHIA underestimates the amount 

of events where the highest energy jet takes a large fraction of the available energy. Both 

PYTHIA and HERWIG underestimate slightly the fraction of events where the second
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highest energy jet takes a large share of the available energy, figure 8.2(d). It is clear 

however tha t the prediction due to phase space alone is remarkably similar to the QCD 

based calculations, indicating that the energy-sharing variables are relatively insensitive 

to  the QCD m atrix element.

The area-normalised distributions of the angular variables, cos #3 and ips are 

shown compared with O (aal)  calculations, 8.3 (a) and (b), and also to PYTHIA 

and HERWIG, 8.3 (c) and (d). The result obtained from three-parton phase-space 

alone is shown in figures 8.3(a) and (b) to be quite different from the QCD based 

predictions. The shape of the cos 6 3  and ^ 3  distribution must therefore be sensitive to 

the QCD m atrix element. The phase space prediction for cos #3 is relatively flat, the 

slight asymmetry arising perhaps from the E t  and angular cuts applied. The data, in 

contrast, peak sharply at cos 6 3  =  ±  0 .8  indicating that the the highest energy jet in the 

centre-of-mass is likely to be produced at small, rather than large, angles to the beam 

direction. This indicates tha t, as in Rutherford scattering, glancing collisions between 

partons are more likely than head-on-collisions. The 0(aa>l) pQCD and parton shower 

calculations, which take into account the dependence of the distribution on the quark 

and gluon spins, are in excellent agreement with the data. The success of the parton 

shower models in describing the data is not overly surprising since cos 6 3  is determined 

from the highest energy jet only, has a form similar to cos 9* in dijet events [43] and 

may not be particularly sensitive to the third jet in the event.

The -03 distribution shows the angle in three-jet centre-of-mass frame between the 

plane containing the highest energy jet and the beam, and the plane containing the 

three jets. In contrast to cos 6 3 , $ 3  has no equivalent for dijet events. Its behaviour 

is therefore expected to be sensitive to the orientation of the third jet. Figure 8.3(b) 

demonstrates the suppression of the phase space for three-jet production at ^ 3  =  0  or 

7r due to restrictions on the angular separation of jets imposed by the jetfinder and 

the E t  cut. This can be expected to be a general feature of ^ 3  distributions. Taking 

this suppression into consideration suggests tha t the data are peaked at ^ 3  =  0  or 

7r, a configuration where the third jet tends to lie relatively close to the plane that 

contains the highest energy jet and the beam direction in the centre-of-mass. The 

production of a third jet at large angles to the beam is weaker. Again the O (aa l)
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Figure 8.3: Shown are (a) l /ada/ dcosOz and (b) l /ada/dfo  comparing the corrected ZEUS 
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pQCD calculations provide a good description of the data. It is interesting tha t the 

parton shower predictions from PYTHIA and HERWIG are also able to reproduce the 

data adequately. There appears to be a discrepancy between PYTHIA and HERWIG 

predictions in figure 8.3(d) with the third jet in HERWIG events more likely to lie close 

to the beam direction. A more detailed discussion follows in section 8.4.
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8.2 Multiparton Interactions

In any interaction involving two hadrons the possibility exists of a secondary hard 

scatter occuring between the constituent partons of these hadrons. Models of these 

multiparton interactions (MI) are available in the PYTHIA and HERWIG event 

generators. M ultiparton interactions have been shown to improve the agreement 

between HERA data and theoretical predictions by increasing the energy flow in events 

particularly near the proton direction [37, 34, 41].

PYTHIA and HERWIG predictions with and without multiparton interactions 

are compared with the measured cross sections da/dcosB3 and d a /d ^ 3  in figure 8.4 

and da /dX z  and d a /d X \  in figure 8.5. It is clear that the addition of multiparton 

interactions to either model does not significantly improve the agreement with the 

data. Indeed the cross sections with and without MI are very similar for PYTHIA and 

almost identical for HERWIG. It may be concluded that the third jet in our selection 

of events does not come from an independent hard scatter.

8.3 Initial and Final State Radiation

Within the parton shower model, gluon radiation from partons from the proton and 

photon involved in the hard scatter is referred to as initial or final state, depending 

on whether it is radiated from an incoming or outgoing parton. PYTHIA provides 

the opportunity to study the effects of different classes of radiation by allowing either 

or both of the initial and final state radiation to be switched off. In the complete 

calculation, of course, there is interference between the inital and final state diagrams. 

In figure 8 .6  the data are compared to three PYTHIA predictions: the default PYTHIA, 

PYTHIA with initial state radiation only (ISR) and with final state radiation only 

(FSR).

It is clearly seen that ISR is the dominant mechanism for producing a third jet 

within the parton shower model.

The type of three-jet events produced by ISR and FSR is also different. The third 

jet produced by ISR shows a strong tendency to lie close to the beam direction. This is



C H A P T E R  8. I N T E R P R E T A T I O N 122

•  ZEUS Data 
—  HERWIG

HERWIG with Ml

.a
CL

^ 2 5 0

g 200 
o

\  1 5 0
b 

~o

9 0

8 0

7 0

6 0

5 0

4 0

3 0

2 0

1 0

0

9 0

8 0

7 0

6 0

5 0

4 0

3 0

2 0

1 0

0

~o
o

.O

K)

u

b
*o

- 0 . 5  0  0 .5
(a ) c o s ^ 3

"O
o
v_

\
_Q
^Q.

"O

b
■D

- 0 . 5  0  0 .5
(c )  C0 S^3

0 7t/ 2  7T
(b )  V'j ( r ad )

0 7t/ 2  7T
(d ) V'j ( ra d )

Figure 8.4: da /d  cos 0% and da / dip3 . The corrected ZEUS d a ta  are p lo tted  a t the centre of the 

bin and are shown by black dots. The inner error bars show the sta tistica l error while the 

outer indicate the sta tistical and system atic errors added in quadrature . The shaded band 

represents the uncertainty on the m easurem ent due to raising and lowering the CAL energy 

scale by 5%. Shown in com parison are the predictions from PY TH IA  and HERW IG w ith and

w ithout m ulti-parton interactions.

also illu stra ted  in figure 8 .7(d) which com pares th e  shapes of th e  ips d istrib u tio n s. T he 

angu lar d istribu tion  of the  th ird  je t from  FSR  closely follows th a t  of th e  phase space 

prediction  shown in figure 8.3(b) im plying a m ore iso tropic d istribu tion .

T h e  A' 3  and  X 4 d istribu tions, figure 8 .7(a) and  (b ), show th a t  w hen th e  th ird  je t is

PYTHIA
PYTHIA with Ml

: •  ZEUS Data
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Figure 8.5: da/ dXs and da/dX4 . The corrected ZEUS data are plotted at the centre of the 

bin and are shown by black dots. The inner error bars show the statistical error while the 

outer indicate the statistical and systematic errors added in quadrature. The shaded band 

represents the uncertainty on the measurement due to raising and lowering the CAL energy 

scale by 5%. Shown in comparison are the predictions from PYTHIA and HERWIG with and

without multi-parton interactions.

produced by FSR  th e  highest two energy je ts  take relatively larger am oun ts of energy, 

leaving less for th e  th ird  je t,  th an  when ISR produces th e  th ird  je t. F igure 8.7(c) 

indicates th a t  th e  cos # 3  d is tribu tion  is insensitive to  th e  ty p e  of p a r to n  shower. This 

would be expected since the  highest energy je t comes directly  from  th e  hard  sc a tte r  in 

the m ajo rity  of cases and is largely unaffected by th e  p arto n  showering.

•  ZEUS Data 
—  HERWIG 
- - -  HERWIG with

-  •  ZEUS Data 
L —  PYTHIA 
: ---- PYTHIA with
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Figure 8 .6 : da/dxp^. The corrected ZEUS data are plotted at the centre of the bin and are 

shown by black dots. The inner error bars show the statistical error while the outer indicate 

the statistical and systematic errors added in quadrature. The shaded band represents the 

uncertainty on the measurement due to raising and lowering the CAL energy scale by 5%. 

Shown in comparison are the predictions from PYTHIA with and without initial and final state

radiation.

In conclusion, com paring th e  p arto n  shower predictions w ith  the  d a ta  d em o n stra tes  

th a t  w ithin th e  p a rto n  shower m odel th e  th ird  je t comes from  ISR QCD rad ia tio n  in 

a  large fraction  of events. T his is particu larly  clear in th e  ip3  d is trib u tio n  which is 

sensitive to th e  o rien ta tion  of the  th ird  je t.

8.4 Colour Coherence

QCD coherence effects arise due to  interference of soft gluon rad ia tio n  am plitudes which 

results in a restric tio n  of th e  phase space available for soft gluon em ission. T he  te rm  

‘so ft' here is relative to  th e  hard  sca tte r. In th e  p a rto n  shower m odel, as discussed in
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Figure 8.7: (a) Ifada/dXa,  (b) l/cre/c/dX j, (c) 1/vda/ dcosdz and (d) l / ada/dV>3. The 

corrected ZEUS data are plotted at the centre of the bin and are shown by black dots. The 

inner error bars show the statistical error while the outer indicate the statistical and systematic 

errors added in quadrature. Shown in comparison are the predictions from PYTHIA with and

without initial and final state radiation.

section 1.3, in addition to the familiar angular ordering effect, the colour flow in an 

event restricts the angular region into which a parton can be emitted. This approach 

is implemented in HERWIG. PYTHIA also implements coherence as a restriction on 

the angular region into which a parton is radiated; however the restrictions can be 

removed to produce ‘incoherent’ PYTHIA events. Some degree of coherence is still
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present in th e  incoherent sam ple due to  coherence in the had ron isa tion  process from  

string  frag m en ta tio n  [27]. T he use of je t variables which are relatively insensitive to  

the  had ron isa tion  m odel used should reduce sensitiv ity  to  th is.

1 0 0

ZEUS Data PYTHIA90
  PYTHIA Incoherent HERWIG

a .  8 0

7 0
X}
\  60 
b
’D 50 :

40

30

20

Figure 8.8: da/dip3 compared with the predictions from HERWIG, PYTHIA and PYTHIA 

without angular ordering. The corrected ZEUS data are plotted at the centre of the bin and 

are shown by black dots. The inner error bars show the statistical error while the outer indicate 

the statistical and systematic errors added in quadrature. The shaded band represents the 

uncertainty on the measurement due to raising and lowering the CAL energy scale by 5%.

F igure 8 . 8  shows do/di \ ) 3  again, com paring the  d a ta  to  th ree  different im plem en

ta tio n s of colour coherence: H ERW IG , P Y T H IA  and ‘in co h eren t’ PY T H IA . A lthough 

the incoherent cross section values roughly agree w ith th e  d a ta , th e  u n ce rta in ty  in 

the  theo re tical norm alisation  m eans th a t  th e  agreem ent in itself canno t be tak en  as a 

confirm ation of th is m odel. T he th ree-je t cross sections for th e  m odels w here colour 

coherence is included in th e  p a rto n  shower are lower th a n  in th e  incoheren t m odel 

showing th a t  coherence has reduced the phase space available for th ree -je t p roduction . 

This reduction  in phase space particu larly  affects large angle em issions as shown by the
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Figure 8.9: 1/ada/dX3 , (b) l /vda/dX^,  (c) 1/ad<r /  dcosOz and (d) \/<rdcr/ d03- The corrected 

ZEUS data  are plotted at the centre of the bin and are shown by black dots. The inner error 

bars show the statistical error while the outer indicate the statistical and systematic errors 

added in quadrature. The shaded band represents the uncertainty on the measurement due to 

raising and lowering the CAL energy scale by 5%. Shown in comparison are the predictions 

from HERWIG, PYTHIA and PYTHIA without angular ordering.

dip in the coherent cross sections at ^ 3  =  |  rad. The more restrictive the coherence 

effects, the more likely the third jet is to lie close to the beam direction ( ^ 3  =  0  or 

7r rad) since ISR is the dominant mechanism for producing a third jet. Figure 8.9(d) 

illustrates this clearly; the shape of the HERWIG ^ 3  distribution is peaked towards
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ip3  = 0 and 7r, while the incoherent PYTHIA prediction is approximately flat and 

the default PYTHIA prediction lies in between. Only the models which include colour 

coherence in the parton shower succeed in describing satisfactorily the orientation of the 

third jet in the data. The data however are not precise enough to discriminate between 

the models of coherence implemented in PYTHIA and HERWIG. As expected, the 

variables which are less affected by the parton shower, cos 6 3 , X 3  and X 4 , are insensitive 

to colour coherence effects.

8.5 Summary

The study of three-jet events in photoproduction presented here has enabled a number 

of features of QCD to be demonstrated. O(aa^)  pQCD calculations from two groups 

of authors have been shown to provide an excellent description of both the three-jet 

differential cross section da /dM 3 j  and the shapes of the angular and energy-sharing 

observables, cos #3 , tp3 , X 3  and X 4 . The X 3  and X 4  distributions closely follow the 

prediction due to phase space alone but both the cos #3 and ip3  distributions prove to 

be sensitive to the use of the QCD matrix element.

The parton shower model of three-jet production as implemented in PYTHIA 

and HERWIG also succeeds in describing the shape of the three-jet distributions but 

underestimates the cross section by 20-40%.

Within the parton shower model the insensitivity to multiparton interactions 

indicates tha t the third jet is not the result of an independent hard scatter to any 

significant extent. A study of the jets produced separately from initial state or final 

state radiation shows that initial state radiation is responsible for the third jet in most 

three-jet events while final state radiation has a relatively minor effect with the jet 

selections employed here. Coherent parton emission is required in the parton shower 

to provide a satisfactory description of the data.



Chapter 9

Summary

In this analysis the production of three high tranverse energy jets has been measured for 

the first time for hard photoproduction events. The data were taken from e+p collisions 

during the 1995 and 1996 HERA running period and correspond to an integrated 

luminosity of 16 pb-1 .

A clustering type algorithm was employed to find jets and detector corrections were 

applied to obtain hadron level differential cross sections. The cross section was defined 

inclusively requiring at least three jets with 77 < 2.4, two of which with E t  > 6  GeV and 

a third with E t  > 5 GeV. Additional selection criteria of M$j  > 50 GeV, | cos #3 ! < 0.8 

and Xz  < 0.95 permit the study of the angular observables cos 6 3  and ^ 3  by reducing 

the effect of the E t  thresholds on these distributions. The energy-sharing variables X 3 

and X 4  were also studied.

0 ( a a 2) pQCD calculations for photoproduction, which are leading order for three- 

jet production, were compared with the data. Parton shower Monte Carlo event 

generators such as PYTHIA and HERWIG which employ LO 2 -* 2 photoproduction 

m atrix elements but which add to this a separate modelling of initial and final state 

radiation as part of the parton shower can also approximate multiparton final states. 

These models can, in addition, provide full hadronisation of the process and allow 

different aspects of the process to be turned on and off.

The three-jet cross section for events with the above characteristics was measured 

to  be

&three—jet = 162.4 ±  4.1 (stat .) (sys .) (energy scale) pb

129
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Comparison of the data with the theoretical predictions yielded the following conclu

sions:

1. The O (aa l)  pQCD calculations were shown to describe the data  extremely well, 

both in absolute cross section and in shape, despite being only LO for three-jet 

production.

2. The parton shower approach also provided a remarkably good description of the 

shape of the three-jet distributions but underestimated the to tal cross section by 

20-40%.

3. Within the parton shower model secondary interactions in resolved photoproduc

tion events were shown to have a negligible effect on the three-jet distributions 

indicating tha t the third jet is not produced by an independent hard scatter.

4. Also within the parton shower model it was shown tha t the third jet is produced 

predominantly by initial state radiation.

5. QCD colour coherence in the parton shower was found to restrict the phase space 

available for three-jet production. The orientation of the third jet was found to 

be sensitive to coherence effects; only models which include colour coherence in 

the parton shower succeed in describing the data satisfactorily.

This first study of three-jet final states in photoproduction has broadened our 

understanding of QCD at higher orders. It has also provided an im portant test of the 

ability of the parton shower extension to fixed order pQCD to reproduce key aspects 

of multijet final states such as the orientation of jets and the distribution of energy. 

Multijet final states still have much to tell us and future work promises to reveal further 

im portant information on QCD and photon induced processes.
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M onte Carlo Event Samples

Monte Carlo events are used to correct measured ZEUS data for detector effects. 

The to tal number of these Monte Carlo events which pass the three-jet detector level 

selection should be considerably greater than the number of data events so tha t the 

statistical error in the correction factor is much smaller than the statistical error in the 

data.

The type of events measured, discussed in section 4.4 has three jets with a relatively 

low transverse energy threshold, E ™ 1 > 5 GeV for the highest two E!j? 1 jets, and a 

high invariant mass, M gj > 45 GeV. Since the E ? 1 distribution of the highest E!j? 1 

jet extends down to only ~  10 GeV generating events with a p t  m in  = 4 GeV is 

completely safe. This however produces many events with low invariant mass which 

are not required by the analysis. Generating all events with such a low p t  m in  would 

be very inefficient in that of the events generated, few would pass the detector level 

selection cuts.

This problem can be avoided by generated events with increasing p t  m in  values. 

Four different event samples were generated with the following hadron level selection 

criteria:

•  P t  m in  =  4 GeV and three jets with Ej<ai > 5 GeV, E ^  > 4 GeV, E ^  > 3 

GeV and 77 < 3 .0  - filter 1

•  P t  m in  — 6  GeV and three jets with E j â  > 7 GeV, EjP^ > 6  GeV, E ^  > 3 

GeV and r) < 3 .0  - filter 2

131
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•  P t  m in  = 8  GeV and three jets with E ^ad > 10 GeV, E ^ad > 8  GeV, E ^ad > 3 

GeV and rj < 3.0 - filter 3

• P t  m in  = 8  GeV, three jets with Ej<ad > 10 GeV, E ^  > 8  GeV, E ^ad > 3 GeV

and r) < 3.0 and M ^ jd > 60 GeV - filter 4 
A small amount of luminosity was generated using filter 1 which was 100% efficient,

that is, all events passing the three-jet detector level selection also pass the hadron

level filter selection. Since this sample is ~  100% efficient tighter cuts were used to

generate further event samples which increase the available statistics in the high E ^ad

and M ^ jd regions, filters 2,3, and 4. Not all detector level three-jet events will pass the

hadron level selection of these higher p t  m in  filters. The events from all four filters can

be combined, however, to reproduce the shape and absolute cross section of filter 1 .

Details of the numbers of events generated for each filter and process are shown in 

tables A .l for PYTHIA and A.2 and A.3 for HERWIG.

The effectiveness of combining samples of events generated with different selection 

criteria is demonstrated in figure A .I. Filter 1 has px min =  4 GeV and three relatively 

low J5j.od jets. Filter 4 on the other hand not only has a higher px m in  ( 8  GeV) and 

higher E ^ad jets but is also enriched in high M ^jd events. Figure A. 1(a) shows that 

the M ^ jd distribution of the events in these samples is clearly different. Figure A. 1(b) 

shows the three-jet cross section as a function of M ^ jd for events from filter 1 and also 

from filters 1 and 4 combined. The combined sample was obtained by reweighting each 

event according to the cross section and luminosity for the filter selection it passed so 

that events at high M ^jd were given lower weights than those at low M ^ jd. The validity 

of this approach is confirmed by the observation that the cross section of the filter 1 

events is reproduced closely by the combined sample which also has smaller statistical 

errors at high M ^jd.

The comparison of hadron-level quantities with data corrected to hadron-level is 

considerably simpler. Since only hadron-level quantities are presented it is not necessary 

to generate efficiently all detector-level jets. The Monte Carlo samples compared to 

the data in chapter 8  were thus generated with px min =  8  GeV. Compared to an event 

sample generated with px m in  — 4 GeV this represents a reduction in three-jet hadron- 

level cross section of less than 5 %.
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P T  m in

(GeV) (GeV) (GeV) (GeV)

M % jd

(GeV)

Process Number of 

Events x 10- 3

Luminosity

(pb"1)

4.0 5.0 4.0 3.0 0 .0 direct 30 6 .8

4.0 5.0 4.0 3.0 0 .0 resolved 150 6 .0

6 .0 7.0 6 .0 3.0 0 .0 direct 40 22.4

6 .0 7.0 6 .0 3.0 0 .0 resolved 70 9.4

8 .0 1 0 .0 8 .0 3.0 0 .0 direct 15 2 0 .0

8 .0 1 0 .0 8 .0 3.0 0 .0 resolved 40 16.6

8 .0 1 0 .0 8 .0 3.0 60.0 direct 5 34.0

8 .0 1 0 .0 8 .0 3.0 60.0 resolved 1 0 23.5

Table A.l: PYTHIA events generated with different filter requirements and simulated for the

ZEUS detector in 1996.

P T  m in

(GeV)

E j ad

(GeV)

E j ^2

(GeV)

E f r 3d 

(GeV)

M ^ j d

(GeV)

Process Number of 

Events x 10- 3

Luminosity

(pb"1)

6 .0 7.0 6 .0 3.0 0 .0 direct 2 0 10.4

6 .0 7.0 6 .0 3.0 0 .0 resolved 60 9.4

8 .0 1 0 .0 8 .0 3.0 60.0 direct 5 40.8

8 .0 1 0 .0 8 .0 3.0 60.0 resolved 1 0 27.3

Table A.2 : HERWIG events generated with different filter requirements and simulated for the

ZEUS detector in 1995.

P T  m in

(GeV)

l ̂ h&cL 
& T  i

(GeV)

jphad,
T  2

(GeV)

jphad 
T  3

(GeV)

M ^ j d

(GeV)

Process Number of 

Events x 10- 3

Luminosity

(Pb"1)

4.0 5.0 4.0 3.0 0 .0 direct 30 5.7

4.0 5.0 4.0 3.0 0 .0 resolved 1 0 0 4.5

6 .0 7.0 6 .0 3.0 0 .0 direct 40 2 0 .8

6 .0 7.0 6 .0 3.0 0 .0 resolved 1 2 0 18.8

8 .0 1 0 .0 8 .0 3.0 60.0 direct 5 41.7

8 .0 1 0 .0 8 .0 3.0 60.0 resolved 2 0 53.3

Table A.3: HERWIG events generated with different filter requirements and simulated for the
ZEUS detector in 1996.
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Figure A.l: (a) M ^fd distributions for direct and resolved PYTHIA events from filter 1 (open 

circles) and filter 4 (stars). Total number of events in each sample is shown, (b) d<r/dM^jd is 

shown for filter 1 (open circles) and filters 1 and 4 combined (open stars).
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Tables o f D ata

M 3 j  range ( M 3 j )  <r(± stat. syst. Escale)[pb/GeV]

[50,55] 52.35 12.57 ± 0.535 +  1.566  
- 0 . 5 1 1

+ 2 . 3 3 0
- 1 . 6 8 6

[55,60] 57.34 6.855 ± 0.364 + 0 .4 4 3
- 0 . 2 4 4

+  1.222  
- 0 . 9 8 7

[60,65] 62.18 4.733 ± 0.325 + 0 .8 8 4
- 0 . 2 1 9

+ 0 .6 4 9
- 0 . 9 1 3

[65,72] 68.30 2.455 ± 0.176 + 0 .1 8 0
- 0 . 0 7 2

+ 0 . 8 0 5
- 0 . 3 6 1

[72,80] 75.82 1.575 ± 0.142 + 0 .1 5 1
- 0 . 1 6 3

+ 0 . 4 0 6
- 0 . 3 0 8

[80,90] 84.73 0.535 ± 0.074 + 0 .1 1 4
- 0 . 0 9 1

+ 0 .1 1 5
- 0 . 0 8 4

[90,100] 94.58 0.305 ± 0.055 + 0 .0 3 1
- 0 . 0 2 7

+ 0 . 1 1 3
- 0 . 0 6 1

[ 1 0 0 , 1 2 0 ] 107.0 0.158 ± 0.031 + 0 .0 0 9
- 0 . 0 5 6

+ 0 .0 7 5
- 0 . 0 3 8

[120,160] 142.3 0.023 ± 0 . 0 1 1
+ 0 .0 0 5
- 0 . 0 0 8

+ 0 .0 0 0
- 0 . 0 0 6

Table B.l: The measured cross section da/dM3j  with statistical, systematic (excluding the 

energy scale uncertainty) and energy scale uncertainties.

X 3  range <r(± stat. syst Escale)[pb] X 3  range <r(± stat. syst Escale)[pb]

[0.67,0.71]

[0.71,0.75]

[0.75,0.79]

[0.79,0.83]

74.26 ±  13.0

207.0 ±  22.1

328.0 ±  26.5

456.1 ±  32.3

+  14.4  + 1 9 .2  
- 1 4 . 4  - 1 3 . 3

+ 2 7 .3  + 4 2 .6  
- 1 1 . 4  - 3 3 . 0

+ 2 5 .4  + 8 4 . 3  
- 2 3 . 4  - 5 8 . 0

+ 5 8 . 3  + 5 3 .2  
- 3 8 . 0  - 5 4 . 2

[0.83,0.87]

[0.87,0.91]

[0.91,0.95]

736.5 ±  42.9 

1017. ±  52.5 

1315. ±  62.3

+ 8 3 . 2  + 1 3 6 .  
- 5 5 . 7  - 1 0 6 .

+ 8 6 . 0  + 2 2 9 .  
- 6 4 . 6  - 1 6 5 .

+ 5 8 . 6  + 2 6 8 .  
- 5 0 . 7  - 2 0 3 .

Table B.2: The measured cross section d a f d X 3 with statistical, systematic (excluding the energy

scale uncertainty) and energy scale uncertainties.
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X 4  range c (±  stat. syst. Escale)[pb] X 4  range (r(± stat. syst. Escale)[pb]

[0.5,0.55] 43.56 ± 11.9 + 6 .7 2
- 5 . 2 5

+  11.0 
- 3 . 7 5 [0.75,0.8] 480.5 ± 30.8 + 1 2 0 .

- 5 2 . 9
+ 9 3 .6
- 6 1 . 3

[0.55,0.6] 268.5 ± 24.3 + 5 1 .2
- 9 . 9 8

+ 4 5 .8
- 4 1 . 6 [0.8,0.85] 484.0 ± 35.6 + 2 2 . 0

- 8 1 . 8
+ 9 8 . 9
- 8 7 . 5

[0.6,0.65] 498.5 ± 32.1 + 6 8 .2
- 2 7 . 6

+ 9 6 .4
- 7 0 . 8 [0.85,0.9] 270.5 ± 30.3 + 4 2 . 7

- 3 2 . 2
+ 5 2 .1
- 4 6 . 7

[0.65,0.7] 637.9 ± 34.9 + 7 8 .6
- 3 0 . 3

+  134.  
- 9 2 . 1 [0.9,0.95] 17.69 ± 9.55 +  15.9  

- 4 . 6 5
+ 2 .3 2
- 2 . 3 8

[0.7,0.75] 596.2 ± 35.3 + 4 7 .8
- 5 7 . 5

+  120. 
- 1 0 4 . [0.95,1.0] 0.000 ± 0 . 0 0

+ 0 . 0 0
-0.00

+ 0 . 0 0
-0.00

Table B.3: The measured cross section da/dX 4  with statistical, systematic (excluding the energy 

scale uncertainty) and energy scale uncertainties.

cos0 3  range cr(± stat. syst. Escale)[pb] cos# 3  range <r(± stat. syst. Escale)[pb]

[-0.8,-0.7] 197.2 ±  13.0

[-0.7,-0.6] 141.3 ±  11.7

[-0.6,-0.5] 95.31 ±  9.17

[-0.5,-0.4] 86.78 ±  9.14

[-0.4,-0.3] 69.50 dh 8.36

[-0.3,-0.2] 45.44 ±  5.90

[-0 .2 ,-0 .1] 59.90 ±  7.89

[-0 .1 ,0 .0 ] 49.90 ±  6.38

+ 3 4 .9
- 7 . 4 9

+ 4 6 .6
- 2 6 . 8 [0 .0 ,0 .1 ] 59.74 ± 7.63 + 1 4 .9

- 7 . 7 0
+  13.5  
- 9 . 1 9

+ 8 . 5 7
- 1 7 . 8

+  19.6 
- 2 5 . 9 [0 .1 ,0 .2 ] 58.56 ± 7.79 + 4 .3 6

- 1 5 . 2
+  13.4  
- 9 . 4 0

+ 2 1 .2
- 8 . 6 4

+  15.9 
- 1 4 . 4 [0.2,0.3] 86.29 ± 10.3 + 4 . 5 8

- 8 . 0 4
+ 2 1 . 6
- 1 5 . 5

+ 5 .2 8
- 1 . 4 9

+  10.2 
- 8 . 5 6 [0.3,0.4] 73.62 ± 8.45 + 2 3 . 8

- 6 . 2 0
+  13.1 
- 1 0 .0

+ 9 . 8 3
- 7 . 6 5

+  13.2 
- 1 1 . 9 [0.4,0.5] 85.68 ± 9.41 + 8 .9 1

- 4 . 2 3
+  19.3  
- 1 4 . 4

+ 2 3 .2
- 2 . 6 5

+ 1 2 .7
- 6 . 8 6 [0.5,0.6] 119.5 ± 1 2 . 0

+ 1 3 . 2
- 2 7 . 4

+ 2 2 .6
- 2 3 . 4

+ 9 .9 9
- 5 . 1 5

+ 1 5 .3
- 1 2 . 5 [0.6,0.7] 159.9 ± 12.9 + 2 3 .9

- 8 . 0 7
+ 2 8 . 9
- 1 7 . 4

+ 2 1 .5
- 2 . 2 0

+  11.6 
- 5 . 3 8 [0.7,0.8] 242.2 ± 17.1 + 3 5 . 4

- 4 1 . 5
+ 4 4 . 9
- 3 9 . 8

Table B.4: The measured cross section do-/d cos 6 3  with statistical, systematic (excluding the 

energy scale uncertainty) and energy scale uncertainties.

■03 range <r(± stat. syst. Escale)[pb/rad] ^ 3  range cr(± stat. syst. Escale)[pb/rad]

[0 .1 ^ ] 48.33 ± 5.10 + 1 0 .7
- 3 . 8 2

+ 8 .1 3
- 8 . 8 6 34.66 ± 4.04 + 8 . 0 4

- 4 . 5 9
+ 6 . 8 4
- 3 . 6 6

[A 7̂ ] 54.53 ± 5.33 + 2 3 .5
- 2 . 7 1

+  10.2 
- 6 . 4 1

r 9 _  5 _ i
L16 >8 J 48.35 ± 5.04 + 6 .4 5

- 5 . 6 1
+ 8 . 1 3
- 7 . 9 2

[&>&*] 54.63 ± 5.78 +  11.1 
- 5 . 5 8

+  15.0 
-10 .8

r 5 _  11 _ i
L 8 ’ 16 J 52.36 ± 5.21 +2.68

- 7 . 5 2
+ 8 . 8 7
- 7 . 0 5

59.31 ± 5.73 + 9 .2 1
- 2 . 7 0

+  10.3  
- 9 . 0 2

r 11 _  3 1 
1-16 >4 J 55.42 ± 5.15 + 5 . 5 7

- 3 . 5 5
+  10.6 
- 8 . 7 5

[?7r>A7r] 50.11 ± 5.07 + 8 .3 5
- 2 . 9 5

+  1 0 .0  
- 6 . 2 5

r3 _  13 _ i
U  > 16 J 60.45 ± 5.57 + 6 . 4 4

- 4 . 0 1
+ 1 1 .1
- 9 . 3 0

35.03 ± 4.06 + 4 .0 2
- 0 . 8 3

+8.02
-6 .02

r 13 _  7 j
l 16 ’ 8 J 67.48 ± 6 . 0 1

+ 8 .3 0
- 1 . 3 8

+  16.6  
- 1 0 . 4

NH
S

CO loo 35.75 ± 4.17 + 4 .1 4
- 6 . 3 3

+ 7 .2 4
- 6 . 2 9 [ i ^ i f ’T] 72.05 ± 6.49 + 4 . 1 8

- 5 . 7 0
+  14.0  
-1 1 .0

t iW ’H 41.60 ± 4.72 + 6 .1 3
-6 .12

+ 9 .3 4
- 5 . 4 0 [ l l 7r>7r] 58.51 ± 5.40 +10.6

- 9 . 3 7
+  11.6 
- 9 . 3 1

Table B.5: The measured cross section dafdtyz with statistical, systematic (excluding the energy

scale uncertainty) and energy scale uncertainties.
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X 3  range er(± stat. syst.)[pb] X 3  range cr(± stat. syst.)[pb]

[0.67,0.71]

[0.71,0.75]

[0.75,0.79]

[0.79,0.83]

0.449 ±  0.078 

1.251 ±  0.134 to°o76 
1.983 ±  0.160 

2.758 ±  0.195 ±g;|?g

[0.83,0.87]

[0.87,0.91]

[0.91,0.95]

4.453 ±  0.259 ± g ;i || 

6.151 ±  0.318 t o i t i  

7.954 ±  0.376 ±g'.ggg

Table B.6 : The measured distribution 1/crda/dX3  with statistical and systematic uncertainties.

X 4  range <r(± stat. syst.)[pb] X 4  range <r(± stat. syst.)[pb]

[0.5,0.55] 0.264 ± 0.072 + 0 .0 5 5
- 0 . 0 4 9 [0.75,0.8] 2.915 ± 0.187 + 0 . 4 4 7

- 0 . 1 9 1

[0.55,0.6] 1.629 ± 0.147 + 0 .2 1 8
- 0 . 1 1 3 [0.8,0.85] 2.936 ± 0.216 + 0 . 0 3 6

- 0 . 4 4 6

[0.6,0.65] 3.024 ± 0.195 + 0 .1 7 4
- 0 . 0 5 9 [0.85,0.9] 1.640 ± 0.184 + 0 .1 3 6

- 0 . 2 1 9

[0.65,0.7] 3.869 ± 0 . 2 1 2
+ 0 .1 5 8
- 0 . 0 5 7 [0.9,0.95] 0.107 ± 0.058 + 0 . 1 0 3

- 0 . 0 3 4

[0.7,0.75] 3.616 ± 0.214 + 0 .221
- 0 . 5 9 8 [0.95,1.0] 0 . 0 0 0  d: 0 . 0 0

+ 0 . 0 0
- 0 . 0 0

Table B.7: The measured distribution l/crda/dX * with statistical and systematic uncertainties.

cosd3  range <r(± stat. syst.)[pb] cos0 3  range <r(± stat. syst.)[pb]

[-0.8,-0.7] 1.209 ± 0.080 + 0 .111
- 0 . 0 4 4 [0 .0 ,0 .1 ] 0.366 ±  0.047 + 0 . 0 5 7

- 0 . 0 3 9

[-0.7,-0.6] 0 . 8 6 6 ± 0.072 + 0 .0 2 0
- 0 . 1 7 1 [0 .1 ,0 .2 ] 0.359 ± 0.048 + 0 .0 2 2

- 0 . 1 1 2

[-0.6,-0.5] 0.584 ± 0.056 + 0 .0 7 5
- 0 . 0 4 1 [0.2,0.3] 0.529 ± 0.063 + 0 .0 3 4

- 0 . 0 9 1

[-0.5,-0.4] 0.532 ± 0.056 + 0 .0 5 0
- 0 . 0 4 5 [0.3,0.4] 0.451 ± 0.052 + 0 . 1 1 7

- 0 . 0 3 8

[-0.4,-0.3] 0.426 ± 0.051 + 0 .0 2 2
- 0 . 0 3 9 [0.4,0.5] 0.525 ± 0.058 + 0 .0 3 5

- 0 . 0 3 1

[-0.3,-0.2] 0.279 ± 0.036 + 0 .1 1 9
- 0 . 0 1 9 [0.5,0.6] 0.732 ± 0.074 + 0 .0 8 1

- 0 . 2 1 4

[-0 .2 ,-0 .1 ] 0.367 ± 0.048 + 0 .4 5 6
- 0 . 0 5 0 [0.6,0.7] 0.981 ± 0.079 + 0 .0 7 6

- 0 . 0 2 4

[-0 .1 ,0 .0 ] 0.306 ± 0.039 + 0 .1 0 3
- 0 . 0 1 5 [0.7,0.8] 1.485 ± 0.105 + 0 .1 0 5

- 0 . 2 1 4

Table B.8: The measured distribution l/<rd<r/dcos03 with statistical and systematic uncertain

ties.
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i/>3 range c (±  stat. syst.)[pb/rad] ^ 3  range cr(± stat. syst.)[pb/rad]

[ 0 >1 6 * 1 0.297 ± 0.031 + 0 .0 4 7
- 0 . 0 3 1 0.213 ± 0.025 + 0 .0 3 1

- 0 . 0 2 2

Its 0.335 ± 0.033 + 0 .1 1 2
- 0 . 0 2 2 [& *.§*] 0.297 ± 0.031 + 0 .0 2 1

- 0 . 0 3 1

0.336 ± 0.036 + 0 . 0 4 7
- 0 . 0 4 5 [§ * .» * ] 0.332 ± 0.032 + 0 . 0 1 8

- 0 . 0 6 7

r-2 -L16 0.365 ± 0.035 + 0 .0 3 1
- 0 . 0 2 4 0.341 ± 0.032 + 0 .0 2 6

- 0 . 0 2 1

0.308 ± 0.031 + 0 .0 2 8
- 0 . 0 2 0 [Wre*] 0.371 ± 0.034 + 0 .0 1 1

- 0 . 0 2 3

L16 7r)f 7r] 0.215 ± 0.025 + 0 .0 2 5
- 0 . 0 1 7 0.415 ± 0.037 + 0 . 0 3 7

- 0 . 0 1 4

CO 
loo 0 . 2 2 0 ± 0.026 + 0 .0 1 5

- 0 . 0 5 2 I W & ] 0.443 ± 0.040 + 0 .0 1 5
- 0 . 0 5 6

r x  
L16 0.256 ± 0.029 + 0 .031

- 0 . 0 5 3 [ if  7r)7r] 0.360 ± 0.033 + 0 .0 3 6
- 0 . 0 4 8

Table B.9: The measured distribution l/ada/dipz with statistical and systematic uncertainties.
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A b s tra c t: Colour coherence in hard photoproduction is considered using 

the Monte Carlo event generators PYTHIA and HERWIG. Significant 
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and resolved photon induced reactions. The particle flow in the interjet 

region of direct processes shows a strong influence of string fragmentation 

effects.
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C .l Introduction

Colour coherence is an intrinsic property of QCD. Its observation is im portant in the 

study of strong interactions and in the search for deviations from the Standard Model

[24]. It is interesting to look for colour coherence effects in hard photoproduction 

processes at the ep-collider HERA where large momentum transfers can be achieved 

and both direct (Fig. C .l(a)) and resolved (Fig. C .l(b)) photon induced events occur. 

In Section C.2 multijet observables are studied which reveal coherence at the parton

(a) (b)

Figure C.l: Examples of (a) direct and (b) resolved photoproduction

shower level for both direct and resolved photoproduction. In Section C.3 consideration 

of the particle flow in direct photoproduction shows colour coherence effects at the 

fragmentation stage of hadron production.

C.2 Multijet observables

The effects of colour coherence on the emission pattern of jets in e+e“ collisions are 

well known and intuitive. However in hadron-hadron collisions the large number 

of possible colour flows involved in jet production complicates the identification of 

variables sensitive to coherence. Here, radiation patterns in 7 p collisions are studied 

by considering events where soft radiation is hard enough to form a jet. This reduces 

the effect of secondary interactions in resolved photoproduction.

The effects arising from different implementations of coherence were studied using 

500 pb - 1  of events generated with PYTHIA 5.7 [63] and HERWIG 5.8 [64]. Direct
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and resolved events were generated separately and combined according to their cross 

sections. Events were generated with a minimum px  of 20 GeV using the GRV 

proton and photon structure functions [67], Two event samples were generated using 

PYTHIA: the PYTHIA Coherent sample and the PYTHIA Incoherent sample which 

was obtained by switching off the coherence in the parton shower and the initial- 

final state coherence. HERWIG represents an alternate implementation of coherent 

processes. Jets of particles were found using the KTCLUS [61] algorithm in covariant 

px  mode with radius equal to 1. Three jet events with at least two jets of transverse 

energy (E /e<) satisfying E{et > 30 GeV and a third jet of E{et > 3 GeV were selected. 

The jets are ordered by E].et decreasing and referred to as “first” , “second” and “third” 

jet acccordingly in the following. Two scenarios were considered, one to reflect the 

acceptance in jet pseudorapidity (r fet) of the present ZEUS detector, |77je<| < 2.5, and 

one to show the possibilities with an extended acceptance, |i}iet\ < 4. In addition the 

events satisfied 0.2 < y < 0.85 and P 2  < 4 GeV2, where P 2 is the negative of the 

four-momentum squared of the photon.

An overall drop in cross section is observed between incoherent and coherent event 

samples. For example, with a luminosity of 250 pb-1 and the standard detector 

acceptance, |^jet| < 2.5, 2600 multijet events are predicted by PYTHIA Incoherent, 

1728 by PYTHIA Coherent and 1665 events by HERWIG. For comparison in the 

extended acceptance scenario, |77je*| < 4, 3012 multijet events are predicted by 

HERWIG.

The angular distribution of the third jet is also affected. Following [28] the angle 

a  is defined as the azimuthal angle of the third jet about the second jet in the T) — <p 

plane. Here, however, we use centre-of-mass (c.m.) variables so a  =  arctan(A if/|A v?|) 

where A H  =  sign( 7 7 3 ™ )(773  -  772) and rj^71 =  772 -  1 / 2(772 -  771) and A (p =  ip3 -  <p2 . rji, 

772 and 773 refer to the pseudorapidities in the lab frame of the first, second and third 

jets respectively and positive 77 is in the direction of the incoming proton. A (p is the 

difference in azimuth (y>) between the second and third jets (in radians). The definition 

of a  is illustrated for a typical event geometry in Fig. C.2(c). The distribution of a  

as shown in Fig. C.2 (a) is broader for coherent events. This is consistent with our 

understanding tha t for coherent processes radiation is generally suppressed in regions
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t j  0-16 HERWIG
HERWIG with detector  
PYTHIA Coherent 
PYTHIA Incoherent^>0.14 2>0.14

~o 0.12 - o  0.12
t
<P

V ->

Figure C.2 : a distributions (a) with the present acceptance and (b) with extended acceptance, 

(c) illustrates the definition of a for a typical event geometry. Jets are ordered by EJt et

decreasing.

far from the directions of the incoming coloured partons. In addition, reducing the bias 

on the distribution by increasing the acceptance from [77̂ et| < 2.5 to |?7je*| < 4 produces 

a more pronounced depletion in the central region for coherent events (Fig. 0.2(b)).

Canonical detector effects were simulated by smearing the HERWIG jet quantities 

with Gaussian distributions of varying widths. A resolution of 20% (10%) was used to 

smear the E{et of jets with E{et < 10 GeV (E^et > 10 GeV). The width of the difference 

between generated and detected values of r]3et and p jet was taken to be 0.1. As shown 

in Fig. 0.2(a) such detector effects should not seriously hinder the measurement of a  

distributions.

The coherent emission of soft radiation does not have a strong effect on the jet 

profiles of the first and second jets. For instance, in Fig. 0.3(a) the transverse energy 

profile of the second jet is shown. This is the distribution of £772 = rjpaTt — 772, where 

r f art is the 77 of a particle within one radian of p  of the jet centre, weighted by the 

transverse energy of the particle, as illustrated in Fig. 0.3(c). For this the extended 

acceptance scenario particles are considered with absolute 77 up to 5. The profile of the 

third jet is shown in Fig. 0.3(b). The occurrence of two peaks outside the je t core is 

due to partial overlap in p  of the first or second jet. A strong effect of coherence is 

apparent; it leads to less energy in the core of the third jet.

One of the anticipated effects of colour coherence is that radiation from an incoming 

parton should be inhibited in regions far from the initial partons direction. Therefore
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Figure C.3: Jet profiles for (a) the second and (b) the third highest E{ei jets for the extended 

acceptance scenario. The definition of the je t profile is illustrated in (c) for the second jet.

in direct photoproduction events, where the single coloured parton in the initial state 

has positive 77, the coherent emission pattern should be at relatively higher 77 than the 

incoherent emission. We have selected a subsample of events which is enriched in direct 

photon events by requiring z 7  > 0.8 where x7 =  (52jeta E 3t ei e~r)3et)/{2E^). The sum 

runs only over the two highest jets and E 7  is the energy of the incoming photon. 

The 77 of the third jet in the c.m. frame, 773™ = 773 — 1 / 2(772 — 771), is shown for this 

selection in Fig. C.4(a). The expected effective-enhancement of radiation at large 773™ 

can clearly be seen.

E 0.18 
°£0.16 
^ 0.14 
21 0 . 1 2  

^  0 . 1  

\ 0.05 
0.06 
0.04 
0 . 0 2  

0

=— HERWIG 
=  - PYTHIA Coh.: 

PYTHIA Incolh
=_ (a)
E_xr> 0.8 :"H

-4

"I

1 1 1 1 1 1 1 1

Vs
4

cm

E 0.16 
0.14 

\ 0.12 
0.1 

z  0.08 
^  0.06 
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0.02 

0

xT< 0 . 8

77 -*
-2 0 2 4

cm
Vz

Figure C.4: 773™ distributions separated by an xy cut of 0.8 into (a) direct and (b) resolved 

samples for the extended acceptance scenario of Jt/7et| < 4. In (c) the definition of rjg71 is

illustrated.

Resolved events, with incoming coloured partons from both the 7  and p  directions,
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should show an effective enhancement of radiation in coherent processes both at higher 

positive and at more negative pseudorapidities in comparison to incoherent emission. 

This effect is evident as shown in Fig. C.4(b). Note that the extended acceptance 

scenario must be employed in order to see the relative enhancement of radiation at 

high 77 in resolved events.

To summarize this section, a high integrated luminosity (~  250pb_1) is desirable 

in order to accumulate statistics in multijet events at high E 3et. However luminosity 

upgrades which involve a significant reduction of forward acceptance are not worthwhile 

for this study. They destroy the sensitivity to colour coherence without significantly 

improving the statistical uncertainty.

C.3 Interjet string effects in direct photoprocesses

Colour coherence effects which lead to a change in particle flow N  distributions in the 

interjet region should be rather pronounced in the direct photon induced processes 

such as QED Compton on quark (QEDC), QCD Compton (QCDC) and Photon Gluon 

Fusion (PGF). These distributions are considered here using the PYTHIA [63] generator 

with string (SF) or independent parton fragmentation (IF) into hadrons. Using SF is 

equivalent to taking into account the coherence effects at the hadronization phase of 

event generation. The flow N  depends on the string topology and colour antennae 

which are different for the three direct processes as shown in Fig. C.5(left).

The calculation at the generator level was done using the GRV proton structure 

function [67] and minimum p t  equal to 2.0 GeV. The HI detector simulation was taken 

into account as well. A jet-cone algorithm [53] with radius equal to 1 was used for the 

selection of two jets and gamma-jet events with E l e t O T ' 1 > 3  GeV and jet (or final 7 ) 

emission angles 25 — 155°. This procedure corresponds to the selection of mainly direct 

processes. The calculated flow of charged particles with pt > 0.2 GeV emitted at angles 

of less than 20° to the reaction plane is shown in Fig. C.5(right) as a function of the 

scale angle 12. 12 is defined [76] as the ratio of the particle angle Oh to the angle between 

partons. 12 =  0  corresponds to the direction of the initial state photon; 12 =  1 -  the 

final state quark; 12 =  — 1 -  the final state 7 , gluon or antiquark for QEDC, QCDC or
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Figure C.5: Left: Topology of direct photoproduction processes in the 7  — parton c.m. frame. 

The double line is the proton remnant, dotted - strings. 9q and Oh are quark and hadron 

emission angles. Right: Charged particle flow N  normalized to 1 a t the quark emission angle 

vs the scale angle Q. Solid line - generator level SF, dashed line - generator level IF, dark 

circle - HI simulation SF. In the regions I - IV Q is changing within the limits: 0 <  H <  1 (I), 

1 < Q <  2 (II), - 1  < Q < 0 (III), —2 < Q < - 1  (IV).
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PG F respectively; Q = — 2 or 2 -  the proton remnant.

It is seen that in the scale angle region between 1 and 2 (region II in Fig. C.5) 

SF (solid histogram, generator level) and IF (dashed histogram, generator level) give 

different predictions for N . SF taking into account colour forces leads to  a suppression of 

particle flow which is especially strong for QCDC process. The HI detector simulation 

(dark circles, SF) weakly distorts the generator level N  distribution except for directions 

close to remnant proton emission where detector acceptance is rather low. Thus colour 

coherence effects can be observed at the detector level.

It is interesting to consider ratios of particle flows N  for different processes since the 

ratio is less sensitive to experimental errors. The ratios R  = N (Q C D C )/N (Q E D C ), 

R * = N (Q C D C )/N (P G F ) are shown in Fig. C.6. Fig. C.6 displays more clearly the 

role of colour coherence which leads to drag effects in particle distributions. It is seen 

tha t for the case of SF the suppression in N  for QCDC is more pronounced than for 

QEDC and PGF. At 0  =  1.7 the suppression reaches a factor of ~  3. It has been 

found tha t misidentification of quark and gluon jets for QCDC does not change this 

conclusion.

0.5

n

Figure C.6 : Ratios R  and R* in the scale angle region 1 <  Q < 2. Notations are as in Fig. C.5.

To observe colour coherence at the fragmentation stage of hadron production in 

direct processes it is necessary to distinguish these processes from resolved photopro

duction and to separate QEDC, QCDC and PGF from each other. The jet selection 

procedure used here enriches the data sample with direct processes. Further enrichment
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can be achieved by going to larger E 3t etov7 and by choosing events with x7 close to 1. 

Since the direct processes cross section is low we expect ~  230 QEDC events at the 

detector level for an integrated luminosity of ~  100 pb-1 . So higher luminosity is 

needed to study interjet coherence.

C.4 Conclusions

The observation of colour coherence in photoproduction processes is an im portant 

challenge, particularly given the unique opportunity at HERA to study direct as well 

as resolved photon induced reactions. Since the cross sections of multijet events or 

of prompt photon reactions are small high luminosity ep-collisions are necessary for 

their study. 250 pb-1 would appear to be barely sufficient for these studies; however 

in upgrading to 1000 pb-1 it is essential that the forward acceptance should not be 

reduced.
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Jet shapes and m ultijet events in quasi-real photon-proton collisions have been 

studied using the ZEUS detector at HERA. Measured je t shapes are compared 

to a LO parton shower Monte Carlo prediction, with and without m ulti-parton 

interactions, and NLO QCD calculations. The distribution and 3-jet to 2-jet 

inclusive production ratio are shown for events with multijet final states.

148



APPEND IX D. CONTRIBUTION TO PHOTON ‘97 CONFERENCE 149

xt  E  T2yEe (D-1)

D .l Introduction

The study of e+p collisions at HERA provides many opportunities to study quasi-real 

photon-proton collisions. At leading order (LO) QCD, the photon can either interact 

directly with a parton from the proton (direct process) or fluctuate into a hadronic 

state which acts as a source of partons which scatter off those in the proton (resolved 

process).

Jets observed experimentally correspond to a reasonable approximation to final 

state partons, enabling comparison with theoretical calculations to be made. Experi

mentally, in the case of events with two or more jets, it is possible to define an observable

quantity, x°bs, jet jet
,obs _  t  e

je ts

which is accessible experimentally, well-defined at higher orders and can be interpreted 

at lowest order as the fraction of the photon’s momentum which goes into the hard 

scatter.

Two analyses by the ZEUS Collaboration are presented here. The first investigates 

the internal structure of jets as a means to probe the mechanism responsible for 

changing a final state parton into an experimentally observed jet; the other studies 

some features of events with multijet final states.

D.2 Jet Shapes in Hard Photoproduction

Jets are searched for with a cone algorithm with radius R  = 1 in pseudorapidity1 (77) - 

azimuth(y?) space and selected with transverse energy, E ^ 1, > 14 GeV and -1  < r fet < 

2. In this study, pairs of overlapping jets are merged together if the common energy 

exceeds 75% of the total energy of the lower energy jet. The jet shape, r ), is defined 

by [58]:

1The pseudorapidity is defined as r) =  —ln(tan%),  where the polar angle 9 is taken with respect to 

the proton beam direction.
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where R is the radius of the jet defining cone, E x(r)  is the transverse energy within an 

inner cone of radius r and N jets is the total number of jets in the sample.

Figure D .l shows reasonable agreement between measured jet shapes and predic

tions from the LO parton shower Monte Carlo event generator PYTHIA [63] in the 

region -1 < r]jet < 1. In the forward region, however, the data are significantly 

broader than the predictions. The PYTHIA predictions based on a LO calculation 

and subsequent fragmentation of single partons using the LUND string model [27] are 

significantly narrower than the data, indicating tha t, at the transverse energies studied 

here, the shape of jets is strongly dictated by parton radiation and cannot be explained 

by hadronization alone.

The evolution of the jet shape at r=0.5 with r}̂ et and E jf* is shown in Fig. D.2. The 

data show tha t jets become broader as i f et increases, becoming less quark-like and more 

gluon-like. The addition to PYTHIA of multi-parton interactions (MI), a model which 

allows more than one interaction between the partons from the proton and photon, 

improves the agreement with the data in the two high r)jet bins. Figure D.2(b) shows 

tha t the measured jet shape becomes narrower as E 3̂ 1 increases, a possible effect of 

decreasing a s .

At LO QCD, a jet is associated with one parton only and therefore has no internal 

structure. The lowest non-trivial order contribution to the jet shape is given by next- 

to-leading order (NLO) QCD calculations for the reaction A B  —►jet +  X .

Figure D.3 compares the data with NLO QCD calculations of jet shapes [77, 78, 79]. 

On the theoretical side, an attem pt was made to simulate the merging and overlapping 

procedures of the experimental jet algorithm by introducing at the parton level a 

parameter R s e p  [58] which is related to the separation of two partons in rj — <p space. 

In the region E ^  > 1 7  GeV the jet shapes are reproduced well by the calculations 

with R s e p  = 1*4. The magnitude of the uncertainty in the theoretical expectation is 

given by the spread of the calculations with R s e p  — 1-4 and 2.0.
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Figure D.l: The measured jet shapes, xl>(r), for jets in the EyCt range above 14 GeV in different 

jjjet regions are shown and compared to PYTHIA. The predictions of PYTHIA without initial 

and final state parton radiation are also included (‘LUND Fragm ent’).

D.3 Multijet Events in Hard Photoproduction

Dijet studies in hard photoproduction have extensively tested QCD predictions and 

studies of multijet events would provide a means of testing QCD at higher order. Here, 

jets are found using the kx  algorithm [61, 62] and events selected with 3 high E x  jets: 

E ^  > 6 GeV and r)iet < 1.5.

Figure D.4(a) shows the uncorrected x ^ s distribution defined using the three highest 

E x  jets in the event. The data are peaked at high x ^ s with a tail to low values and 

are in general agreement with PYTHIA predictions. The slight differences at high and
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Figure D.2 : ■0(r=O.5), left (a), as a function of r fet for jets with E ^  >  14 GeV and compared 

to predictions from PYTHIA for quark jets only, gluon jets only and all jets (also shown with 

multi-parton interactions - PYTHIA MI) and right (b), as a function of E ^  for jets with -1

< rfet < 2 .

low x°ba may be due to higher-order processes relevant to 3-jet production which are 

not included in the Monte Carlo. The low x ^ s tail shows the need to include resolved 

processes.

The inclusive 3-jet to 2-jet ratio as a function of [80] 1S shown in Fig

ure D.4(b),

<73 _  <r(7 p ->  n je ts  + X ; n  > 3)
<72 &{lP —► n je ts  +  X ; n > 2)

where the sum is over all jets passing the selection cuts. The data  rise initially due 

to the increase in the phase-space available for 3-jet production and then level off.

The prediction from PYTHIA is in broad agreement with the data within the large

systematic errors.



APPEND IX D. CONTRIBUTION TO PHOTON ‘97 CONFERENCE  153

ZEUS 1994

* 1

0.8

0.6

0.4

0.2

^  0  
k .

V  1 

0.8 

0.6 

0.4 

0.2 

0

Figure D.3: The measured jet shape, ip(r) ,  for jets in the range -1 < r f et <  2 in different 

regions. Also shown are the predictions for the jet shapes based upon the NLO QCD 

calculations by M. Klasen and G. Kramer with various values of R s e p •

D.4 Conclusions

Comparison between data and PYTHIA show that jet shapes in photoproduction are 

governed strongly by QCD parton radiation. Their description by PYTHIA is improved 

by the addition of multi-parton interactions. NLO QCD calculations agree with the 

data using an R s e p  parameter of «  1.4.

Photoproduced multijet events have been observed. Comparison with a LO parton 

shower Monte Carlo indicates that both direct and resolved events are needed to 

describe the x°ba distribution. It is hoped that development of a NLO Monte Carlo and
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increased statistics will enable further studies to discriminate between the predictions 

of different models.
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