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ABSTRACT

Neuroblastoma is a biologically diverse and clinically challenging tumour. 
At one end of the clinical spectrum, children with localised, low risk disease, 
can survive with little or no therapy. Spontaneous resolution of this tumour 
has been seen and children have survived despite residual macroscopic 
tumour remaining at the end of therapy.

In contrast, the majority of children present with widespread metastatic 
disease and are rarely curable. Paradoxically this is an aggressive form of 
disease despite appearing sensitive to both chemotherapy and radiotherapy. 
The majority of these patients relapse and only 20% survive 2 years.

This thesis is concerned only with the management of stage 4 patients and 
concentrates on 3 main areas.

Firstly, the role of control of the primary tumour was considered, in this 
essentially systemic disease. It was shown that complete surgical resection 
of the primary reduces local relapse and improves survival. Prognostic 
factors for stage 4 patients were examined during this analysis and the 
identification of prognostic subgroups was possible.

Secondly a retrospective analysis of all stage 4 patients treated within this 
centre was completed, to determine the usefulness of external beam 
radiotherapy in the palliation of advanced disease.

The final part of this thesis is experimentally based. Factors that may 
improve the clinical effectiveness of 13lI-meta-iodobenzylguanidine (I31I- 
mlBG) were investigated. This molecule is a targeting agent, which, when 
administered systemically, is selectively accumulated by tumours of neural 
crest origin. In clinical practice the individual tumour uptake can be variable 
and the optimum timing of administration is still undetermined.

Initially a new formulation of 131I-mIBG was investigated. This ‘no carrier 
added’ (nca) formulation meant that smaller quantities of drug could be 
administered and tumour specific accumulation increased. Before clinical 
studies could be contemplated, laboratory investigations had to be 
completed, to determine if this new preparation behaved similarly to the 
traditional formulation. The work documented in this thesis confirms this is 
the case.

Another aim of this thesis was to examine biological factors that may 
modulate specific tumour accumulation of this agent. The effect of pre­
dosing neuroblastoma cells in culture, with chemotherapy agents, resulted in 
a 2-5 fold increase in specific type 1 tumour accumulation. This may be a 
very significant finding for the future administration of 131I-mIBG in 
combination therapy regimens. Unfortunately the combination of elevated 
temperature and 131I-mIBG exposure resulted in decreased tumour 
accumulation of 131I-mIBG.
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CHAPTER 1 NEUROBLASTOMA
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1.1. HISTORY

1.1.1. Earliest Reports

The first description of neuroblastoma was believed to be by Virchow 

(1846) and he suggested the tumour was of glial origin.

By 1879, Morgan documented a further case describing a baby with a hard 

lump over the left acromion. Within days, the child developed multiple bone 

and subcutaneous deposits. Thereafter, the child rapidly became unwell with 

increasing abdominal distention and died at the age of only seven weeks. At 

post mortem tumour affected multiple sites including the left adrenal, 

kidneys, liver and heart. Morgan believed the primary tumour to be the 

original subperiosteal deposit that he had observed, but the 

histopathological description of the small round cells, suggests that this was 

in fact a primary adrenal neuroblastoma with multiple metastases.

Six years later Dalton (1885) published a description of a baby with 

abdominal distention who was otherwise well at birth. The child’s abdomen 

continued to enlarge until death. Post mortem examination revealed a small 

left adrenal tumour ‘the size of a hen’s egg’ and a liver almost completely 

replaced by tumour. Dalton postulated that the adrenal was in fact the 

primary and the liver involvement was a secondary phenomenon.
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Dr. William Pepper (1901), from The University of Pennsylvania, described 

a similar case of a female infant who died aged six and a half weeks, with an 

abdominal mass and a right adrenal tumour. On reviewing the literature and 

by identifying five similar cases, he established the constellation of disease 

now described in The International Neuroblastoma Staging System (INSS) 

as Stage 4S disease, although he believed he was dealing with a 

lymphosarcoma of the adrenal gland.

Hutchison (1907), from The London Hospital of Sick Children, reviewed a 

series of ten older children, seven his own cases. These children had multiple 

sites of disease, especially osseous metastases. In retrospect, this is the first 

collection of patients corresponding to INSS Stage 4 disease. This author 

however also misdiagnosed the disease as sarcomatous.

Finally Homer-Wright (1910) observed the characteristic histopathological 

rosette-like arrangement of neuroblastoma cells (now named the Homer- 

Wright rosette) and concluded that the tumour was neural in origin. He 

reviewed several cases, including those of Pepper and Hutchison, and 

observed that despite these widely differing clinical entities, they were in 

fact the same histopathological disease. He named it neuroblastoma.

1.1.2. Historical Review of Treatment

During the 1920’s neuroblastoma was perceived as a hopeless condition and 

treatment of any kind was rarely attempted. Blacklock confirmed this,



25

having reviewed 136 published cases, all of whom died within a few months 

(Blacklock 1934).

More encouragingly, Cushing and Woolbach (1927) first observed the 

phenomenon of spontaneous differentiation of neuroblastoma. Less than ten 

years later, Ladd and Gross noted a favourable survival rate in patients with 

liver involvement and localised disease (Ladd and Gross 1941). Lehman, 

provided the first documented cure of neuroblastoma, by reporting the case 

of a child treated 15 years previously by surgical excision. This had been 

performed by Dr. Bartlett in St. Louis in 1916 (Lehman 1932).

Radiotherapy was introduced in 1928 but had made little impact on survival 

figures (Holmes and Dresser 1928). Wittenborg (1950) however, published 

results demonstrating an effective radiation response with doses as low as 

400cGy, in a patient with Stage 4S disease. As a result, post operative 

radiotherapy became fashionable.

Around the same time, Gross (1953) noted the clinically favourable factor of 

young age. Soon afterward, chemical screening tests to detect 

neuroblastoma and monitor catecholamine levels became available (Kaiser 

and Von Studnitz 1961).

Single agent chemotherapy was introduced around 1960 (Tan, Dargeon and 

Burchenal 1959; Kontras and Newton 1961). Later, the combination of
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multiple agents improved disease free survival but again this modality had 

little impact on overall survival (James et al, 1965).

The first widely accepted clinical staging system was introduced in 1971 

(Evans et al,). This meant that, for the first time, different prognostic 

groups became apparent, in a disease previously universally perceived as 

fatal. Young children with localised disease did well and interest developed 

in minimising therapy to maintain good response rates and reduce treatment 

related morbidity.

By 1980, the prognosis of disseminated neuroblastoma remained poor. It 

was clear that the survival of children with widespread metastatic disease 

had changed little, despite the improvements in survival in other paediatric 

malignancies.

Combination chemotherapy, however, was becoming more sophisticated 

and drugs with different cell cycle specificities and non overlapping 

toxicities were used sequentially to improve response rates (Hayes, Green 

and Mayer 1977). The addition of cisplatin and epipodophyllotoxins (Hayes, 

Green and Casper 1981; Shafford, Rogers and Pritchard 1984) continued to 

improve overall initial response rates and it became possible to induce 

disease regression in up to 80% of patients. Cheung published a meta­

analysis of 44 published clinical trials and indicated that the response rate, 

median survival and event free survival correlated strongly with the overall 

dose intensity of agents (Cheung and Heller 1991). Studies were piloted,
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demonstrating the use of haemopoetic support enabling high dose therapy 

(Pritchard, McElwain and Graham-Poole 1982).

Besides using different agents in dose intensive regimens, new modalities 

became available during the late 1980’s including mIBG. Antibodies, with 

radioactive nuclides attached, were also developed to specifically target 

neuroblastoma cells. Interest developed in agents such as retinoic acid, 

which induced differentiation in neuroblastoma cells in vitro and these were 

tried clinically.

The current management of poor prognosis neuroblastoma therefore is 

intensive, multimodality therapy including many of the above agents in an 

attempt to induce complete response rates in as many children as possible, 

since otherwise cure remains elusive.
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1.2. EPIDEMIOLOGY

1.2.1. Introduction

Cancer is relatively rare in children, with an estimated incidence of 12 per 

100,000 children per year in The United States (Miller et al., 1995). This is 

nevertheless a significant cause of childhood death. Neuroblastoma is the fourth 

most common malignancy. As the table below shows, the annual incidence has 

remained relatively unchanged over the last twenty years at 0.9 per 100,000 

(Miller eta l, 1995).

Table 1.1. Trends in age adjusted incidence rates per 100,000 for Children 

Aged 0-14 years, 1973-1987. (Milleretal., 1995)

Tumour Type 1973-1977 1978-1982 1983-1987

All tumour types 12.0 12.2 13.1

Leukaemia 3.8 3.7 4.1

Lymphomas 1.6 1.5 1.6

CNS 2.1 2.1 2.4

Neuroblastoma 0.9 1.0 1.0

Renal tumours 0.7 0.8 0.8

Soft tissue sarcoma 0.8 0.9 0.9

Bone tumours 0.5 0.7 0.7

Epithelial tumours 0.5 0.5 0.5

Germ cell 0.4 0.4 0.4

Retinoblastoma 0.3 0.3 0.3

Hepatic 0.1 0.1 0.2
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1.2.2. Age

Twenty five percent of patients are aged less than one year at diagnosis and 

ninety percent less than 5 years (Kinnier-Wilson and Draper 1974). 

Neuroblastoma is the commonest tumour to present in the first month and the 

first year of life. The median age at diagnosis is 2.5 years (Hayes and Green 

1983). Occasional adult cases have been documented (Lopez, Karalousis and 

Roa 1980; Aleshire e ta l , 1985; Kaye etal, 1986).

Several studies report a slight male predominance of neuroblastoma cases 

(Fortner, Nicastri and Murphy 1967; deLorimier et al, 1969; Grosfield and 

Baehner 1980; Halperin and Cox 1986; Huddart etal, 1993).

The aetiology of neuroblastoma is largely unknown. The geographical variation, 

with the apparent lack of cases diagnosed in sub Saharan Africa, is probably due 

to inadequacy of diagnostic services (Lucas and Fischer 1990).

A genetic basis is likely since neuroblastoma has been associated with a number 

of congenital abnormalities: neurofibromatosis (Bowland and Towler 1970), 

Beckwith-Wiedemann syndrome (Emery et al, 1983) nisidioblastosis (Grotting, 

Kassel and Demler 1979) and fetal hydantoin syndrome (Pendergrass and

1.2.3. Sex

1.2.4. Aetiology
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Hanson 1976). It is occasionally associated with congenital heart disease, skull 

defects, soft tissue sarcomas and ependymomas. Osteosarcoma, fibrosarcoma, 

thyroid and renal cell carcinoma are occasionally seen in treated patients.

As with other childhood tumours, familial cases have been noted in 

monozygotic twins (Mancini etal, 1982); siblings (Gerson, Chatten and Eisman 

1974); cousins (Plochf Kasser and Klien 1976); half siblings and parent child 

relationships (Khushner et al, 1986). Both maternal and paternal affected 

parents are equally likely, although the poor prognostic factor of NMYC 

amplification in advanced neuroblastomas is more likely to be inherited from the 

father due to genomic imprinting of this allele (Cheung et al, 1994). Knudson 

suggests that 25% of neuroblastomas could be inherited in an autosomal 

dominant manner, with two hits necessary for malignant transformation 

(Knudson and Strong 1972). This risk to siblings of affected children is 6% to 

8%. Familial cases are more likely to have multiple primary tumours (23% 

compared to 5% unselected cases) and present at an early age. In a review of his 

own and published familial cases, Kuschner and colleagues (1986) noted a 

median age at diagnosis of nine months compared to 2.5 years in non familial 

cases, with sixty percent of cases presenting before the end of the first year of 

life compared to twenty five percent at less than one year in unselected cases. 

The oldest familial neuroblastoma was in a thirteen year old child (Gunby 1920). 

Familial cases do not differ from unselected cases in presentation and ultimate 

survival (Kuschner et al, 1986).
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In the literature there are anecdotal reports suggesting an association between 

maternal exposure to diuretics, alcohol and sex hormones and neuroblastoma 

(Kramer et al, 1987; Mandel et a l, 1994).

1.3. PATHOLOGY

1.3.1. Introduction

Neuroblastoma originates from the neural crest Different degrees of 

differentiation can exist within the same tumour giving a spectrum of 

pathological entities, neuroblastoma, ganglioneuroblastoma or ganglioneuroma.

1.3.2. Embryology of Neuroblastoma

After fertilisation the ovum passes through the morula to the blastula stage when 

the conceptus is a ball of cells. During the third week the gastrula embeds within 

the endometrium and tissue differentiation begins

Figure 1.1. The human conceptus at 12 days {modifiedfrom. A Companion 
to Medical Studies eds. R. Passmore and J.S. Robson. 2nd 
edition)
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The development of the nervous system begins at the neurula stage when the 

neural plate, the forerunner of the nervous system, becomes established. This 

consists of a thickened plate ectoderm overlying the notochord process which 

acts as a primary inductor. A midline groove forms, creating a neural fold on 

each side. Each neural fold rises up and enfolds the neural plate forming the 

neural tube The neural tube eventually forms the brain and spinal cord. As the 

neural folds fuse, some of the neural ectoderm at the lateral edges of the neural 

plate is not included within the neural tube. This is called the neural crest.

Figure 1.2. The development of the neural crest (modifiedfrom: Grays 
anatomy 38th edition).

The cells on the dorsal surface of the neural crest migrate and eventually form 

melanocytes. Those from the ventral surface develop into the spinal ganglia, the 

sympathetic chain, prevertebral ganglia, chromaffin bodies and cells of the amine 

precursor uptake and decarboxylation (APUD) system.



33

The cells migrating to the sympathetic nervous system also migrate to the 

adrenal medulla and the paraganglia of Zuckerkandl at the bifurcation of the 

aorta. Differentiation of these cells starts in the tenth week of gestation but 

continues into adulthood.

Figure 1.3. The migration of neural crest cells, (modified from: Grays 
anatomy 38th edition).

1.3.3. The Pathological Features of Neuroblastoma

The primary site of disease is commonly the adrenal medulla but any site of 

sympathetic tissue can be affected. Macroscopically the tumour appears 

grey or pink and friable. This may vary in size from a small deposit to a 

large cystic mass, which is often well delineated, rather than encapsulated. 

The cut surface of the primary tumour is characteristically grey with 

multiple areas of cystic degeneration, haemorrhage and calcification.
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Figure 1.4. The macroscopic appearance of neuroblastoma (Reproduced 

with kind permission from Dr Alan Howatson, RHSC, 

Glasgow).

The tumour spreads locally within the retroperitoneum infiltrating around and 

encasing critical vessels and organs. In the mediastinum, the tumour may expand 

and permeate the vertebral bodies and ribs. Metastatic spread occurs rapidly 

with dissemination to the lymph nodes. Haematogenous spread is responsible 

for bone marrow infiltration, bone metastases and widespread visceral 

involvement.

Microscopically the tumour can vary depending on the degree of differentiation 

of the tissue. The undifferentiated tumour is composed of sheets of small round 

blue cells with scanty cytoplasm. The nucleolus is prominent and, in its most 

primitive form, the cells show minimal cohesion. In more differentiated tumours 

cells show clustering, large nuclei and cytoplasmic processes called neurofibrils. 

In a third of neuroblastomas, fibrils arranged at the centre of these aggregates
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form a rosette type structure. These are named ‘Homer-Wright’ rosettes and 

are classical of neuroblastoma.

Figure 1.5. The microscopic appearance of neuroblastoma (Reproduced

with kind permission from Dr. Alcm Howatson, RHSC,

Glasgow)

By E M  studies cytoplasmic granules 100-500j.tm in diameter are seen. These 

are thought to contain catecholamines.

1.3.4. The Pathological Features of Ganglioneuroblastoma

This tumour has an equal sex incidence and usually occurs before the age of 

ten years. Symptoms can be a result of local pressure effects or the release 

of vasoactive peptides. Macroscopically, the tumour may be well 

encapsulated and the cut surface demonstrates a glistening tan like 

appearance with focal areas of necrosis and haemorrhage.
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Ganglioneuroblastoma is composed of mature sympathetic cells, neuroblasts, 

intermediate cells and schwann cells. Two prognostically distinct histological 

patterns are discernible, called ‘complex’ and ‘composite’ types.

A complex ganglioneuroblastoma has a lobular type appearance. Neuroblasts 

are mixed with intermediate and ganglion type cells within the same lobule. The 

composite arrangement is typified by the same mixture of cells but scattered 

throughout the whole sample. 65% of composite ganglioneuroblastomas remain 

localised compared to 18% of the complex type.

Figure 1.6. The microscopic appearance of ganglioneuroblastoma.

(Reproduced with kind permission from Dr. Alan Howitson, 

RHSC \ Glasgow).

1.3.5. The Pathological Features of Ganglioneuroma

Ganglioneuroma consists of mature cells and represents the benign end of the 

clinical spectrum, occurring later in life, usually in adults aged 30 to 40 years
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old. The primary can be found in similar sites to neuroblastomas but atypical 

sites such as the gut, uterus, ovary and skin can also be affected. Patients may 

be asymptomatic or present with nonmetastatic complications, for example, 

hypertension. Macroscopically, lesions vary’ in size ranging from small non­

encapsulated lesions to large extra adrenal capsulated masses. The cut surface 

has a grey-white appearance and is composed of mature ganglion cells, sheathed 

neurites and schwann cells, encased in a compact oedematous stroma infiltrated 

by lymphocytes. The prognosis for ganglioneuroma is generally better than 

ganglioneuroblastoma and neuroblastoma. However, quite undifferentiated 

elements may exist within the same tumour and ultimately influence metastases 

and hence prognosis (Beckwith and Martin 1968).

Figure 1.7. The microscopic appearance of ganglioneuroma (Reproduced

with kind permission from Dr Alan Howatson, RHSC, 

Glasgow).
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The Shimada classification is a prognostic system based on the pathological 

appearances of the tumour and is discussed later (Shimada et a!., 1981).
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1.3.6. Neuroblastoma in situ

Small clusters of neuroblastoma cells have been frequently documented in the 

adrenal glands of infants aged less than 3 months old. The incidence of this 

phenomenon, called neuroblastoma in situ, varies. Turkel and Itabashi (1967) 

noted its presence in 100% of fetal adrenal glands. Beckwith and Perrin (1963) 

also noticed the frequent appearance of neuroblastoma nodules, in 3 month old 

infants, when post mortem examination was performed for other reasons, and 

estimated the frequency to be 40 times greater than that of neuroblastoma. The 

majority of these tumours must therefore spontaneously differentiate or 

degenerate.

1.3.7. Summary

Neuroblastoma and related tumours may be found anywhere along the 

craniospinal axis. Their propensity for extensive local infiltration and early 

widespread metastases make the management of this disease difficult. Different 

degrees of differentiation may be apparent within the same tumour. In general, 

the more undifferentiated the tumour, the greater the probability of spread and 

the poorer the prognosis. Neuroblastoma is composed of small round blue cells 

but signs of differentiation include cytoplasmic processes and neurofibril 

formation. The classical pathological feature of neuroblastoma is the ‘Homer 

Wright’ rosette.
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1.4. CLINICAL PRESENTATION

1.4.1. Introduction

Besides the non-specific symptoms of disseminated malignancy, presenting 

clinical symptoms may vary greatly. They depend on the site of the primary 

tumour, the presence of metastases and the production of metabolically active 

substances.

1.4.2. Primary Sites of Disease

As a result of their embryological origin, neuroblastomas are commonly found 

at sites of spinal and sympathetic ganglia (Figure 1.8).

Figure 1.8. The sympathetic nervous system and primary sites of

neuroblastoma. (With permission from Cancer in Children 

Clinical Management. Eds. P. A. Voute, A Barrett, H. J.G. 

Bloom).
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The most common primary site of tumour is in the abdomen, either the adrenal 

gland (40%) or the paraspinal ganglia (30%). Less commonly affected sites are 

the thorax (14%) pelvis (4%) and neck (2%). Occasionally the primary site of 

disease cannot be found and the child presents with widespread metastatic 

disease

Caution must be taken when interpreting data from older series of patients, as 

modem imaging techniques and diagnostic criteria did not apply. Table 1.2. 

below represents a summary of the incidence of the site of primary in previously 

published series of patients.

Table 1.2. Primary sites of disease in published series (% of cases)

adrenal retroper
itoneal

thorax neck pelvic unknown total reference

50 19 8 3 4 14 98 Fortner
1967

43 17 3 4 4 144 Stella 1970

39 33 4 180 Carslen
1985

58 17 25 36 Perez 1967

63 16 2 3 11 212 deLorimier
1968

40 5 11 2 6 16 217 Gross 1959

71 15 2 7 6 55 Halperin
1986

60 25 10 2 2 1 160 Grosfield
1980

42 29 14.4 2.2 4.18 7.9 mean
values
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Table 1.2. Primary sites of disease in published series (percentage of 

cases)

adrenal retroper
itoneal

thorax neck pelvic unknown total reference

50 19 8 3 4 14 98 Fortner
1967

43 17 3 4 4 144 Stella 1970

39 33 4 180 Carslen
1985

58 17 25 36 Perez 1967

63 16 2 3 11 212 deLorimier
1968

40 5 11 2 6 16 217 Gross 1959

71 15 2 7 6 55 Halperin
1986

60 25 10 2 2 1 160 Grosfield
1980

42 29 14.4 2.2 4.18 7.9 mean
values

Clinical signs vary, depending on the site of primary. For example, disease 

originating in the cervical region can be mistaken for lymphadenopathy, but in a 

very young child experiencing difficulty in feeding or with respiratory distress, 

neuroblastoma is a distinct possibility. In this area, the signs of Homers 

syndrome may be present (unilateral ptosis, narrowing of the palpebral fissure, 

meiosis, enopthalmus and anhidrosis). Since sympathetic innervation is 

associated with development and maintenance of normal eye colour, the subtle 

sign of heterochromia of the iris may indicate a cervical neuroblastoma.
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Thoracic tumours generally arise in the posterior mediastinum and may be 

discovered on routine chest x-ray. When large, symptoms of dyspnoea or 

repeated respiratory infection can warn of mediastinal disease. Abdominal 

disease is the commonest presentation and the tumour can become large before 

giving symptoms of abdominal pain or renal complications from displacement 

and obstruction of the renal tract.

Pelvic disease usually presents with altered micturition or defecation or a 

palpable mass. This may invade through the sacro-sciatic notch and present as a 

lump in the gluteal region. Paravertebral tumours arise mainly in the cervical and 

thoracic region. They can extend through the intravertebral foramina in a 

classical dumb-bell configuration, to cause compression of the spinal cord. 

Symptoms of back pain, weakness, difficulty in walking and bowel and bladder 

dysfunction are suggestive of this complication requiring urgent treatment. With 

intraspinal disease 40% of cases may not be clinically apparent at presentation 

but the possibility of this unfortunate complication should always be considered 

since the prognosis for patients with dumb-bell tumours is otherwise good.

In some patients, a primary tumour cannot be found. This is less common in the 

days of modem imaging techniques but a favourable sub-group INSS stage 4S 

(Brodeur et a l , 1988) represent a group of young children with a small or 

undetectable primary site and metastatic disease confined to the liver, skin or 

bone marrow, without bone involvement.
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1.4.3. Patterns of Metastatic Disease

50% of infants and 70% of older children, present with metastatic disease. 

Distinct patterns of metastatic disease are seen and these are of prognostic 

significance.

Due to foetal circulation, patients with INSS stage 4S neuroblastoma, have 

disease which is confined to the liver, skin and bone marrow. The liver, in this 

situation, often bears the brunt of metastatic deposition, resulting in massive 

hepatomegaly which can cause respiratory embarrassment and death. Despite 

this, the majority of patients have an extremely good outcome with minimal or 

no therapy; Spontaneous resolution is seen. However, occasionally, very young 

children, usually those aged less than six weeks, succumb to these mechanical 

complications. Skin nodules, when present, can demonstrate a bluish tone and 

blanch on pressure, due to the local release of vasoconstrictive noradrenaline. 

This is called ‘the blueberry muffin’ sign (Evans et al., 1980).

This category of stage 4S disease is fascinating, in a tumour where metastatic 

disease is otherwise incurable. It is postulated that this condition arises from 

aberrant neural crest cells forming the entire peripheral autonomic nervous 

system. The resulting abnormal migration of these cells results in the widespread 

pattern of skin nodules and focal deposits of disease encountered above. It is 

thought that these abnormal cells remain at least partially under regulatory 

mechanisms, which induce spontaneous maturation of these deposits. This is 

known as ‘the neurocristopathy hypothesis’.
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In contrast, the older child presents with a wider pattern of metastatic disease. 

Lymphatic spread results in both local and regional lymphnode involvement. 

Haematogenous spread results in visceral involvement and bone marrow 

infiltration results in pancytopenia. Neuroblastoma has a predilection for the 

bones and soft tissues of the skull, particularly those of the orbital area. 

Infiltration results in periorbital swelling, ecchymosis and proptosis causing a 

‘racoon type’ facies. The brain, heart and lungs are rarely sites of metastatic 

disease except in advanced cases, when involvement is a result of spread by 

lymphatics or direct extension through the meninges or diaphragm.

1.4.4. Non Metastatic Complications of Disease

The excretion of urinary catecholamines for example, homovanillic acid (HVA), 

vanillymandelic acid (VMA) and dopamine (DA) can suggest the diagnosis of 

neuroblastoma. Their production can result in episodic sweating, flushing, 

tachycardia, tachypnoea, pallor, headache, irritability, fatigue and hypertension 

(Mason et al, 1957). These symptoms have been reported in pregnant women, 

in the last month of pregnancy, who later gave birth to children with 

neuroblastoma (Voute et al, 1970).

In 2% of patients, a form of cerebellar encephalopathy, polymyoclonia- 

opsoclonus syndrome, often described as ‘dancing eyes, dancing feet’ is seen. It 

is characterised by progressive myoclonic jerking movements of the hands and 

feet, truncal ataxia, titubation of the head and conjugate jerking movements of
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the eyes (Bray et al, 1969; Moe and Nellhaus, 1970). This condition is often 

associated with localised disease of otherwise good prognosis. It is therefore 

unfortunate that 80% of the children, with this rare complication, have 

permanent symptoms of progressive dementia, extrapyramidal disease or 

recurring ataxia (Senelick et al, 1973; Koh et al, 1994). The cause of this 

syndrome is not known but it is unlikely this is associated with elevated levels of 

catecholamines as these are raised in 90% of children with neuroblastoma and 

this presentation is relatively rare. It is more likely to be due to an auto immune 

response to a common neurological antigen. This would explain its persistence 

in children apparently free of tumour.

Profuse diarrhoea is also occasionally seen as a non-metastatic complication, 

and is due to an excessive production of vasoactive intestinal peptide, a gut 

hormone and neurotransmitter.

1.5. CLINICAL EVALUATION

1.5.1. Introduction

In 1986, an international group of researchers representing every major 

oncology group in the world, agreed the minimum criteria necessary for the 

diagnosis of neuroblastoma (Brodeur et al., 1988).
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1.5.2. Diagnostic Criteria

Ideally, a biopsy of tumour tissue, analysed by standard histopathological 

techniques, provides an ‘unequivocal’ diagnosis. This would also provide 

material necessary for the biological characterisation and hence prognosis of the 

individual tumour.

The majority of children have metastatic bone marrow involvement at diagnosis 

and patients often embark upon intensive chemotherapy before radical surgery. 

Therefore for practical purposes, an ‘unequivocal’ diagnosis of tumour cells in 

the bone marrow and increased urinary metabolite levels is sufficient for the 

diagnosis, if tumour tissue is not available. A radiological diagnosis of tumour, 

even in the presence of elevated catecholamines is however insufficient as 

ganglioneuroma (Hayes et a l , 1989), phaeochromocytoma (Samaan et al., 

1988) or peripheral neuroepithelioma can present this way.

Histologically, neuroblastoma is composed of small round blue cells and must be 

distinguished from rhabdomyosarcoma, Ewing's sarcoma, neuroepithelioma, 

acute megakaryoblastic leukaemia and non-Hodgkins lymphoma. Neuronal 

differentiation may be demonstrated by conventional light microscopy but in 

addition electron microscopy or immunohistological methods involving 

antibodies against neurone specific enolase (Dhillon et al, 1982), synaptophysin 

(Gould et a l , 1987) and chromogranin A (Helman et al, 1988) may be 

necessary.
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Both the measurement of homovanillic acid (HMA) and vanillylmandelic acid 

(VMA) is necessary. In undifferentiated tumours, urinaiy or serum dopamine 

may be a more sensitive measure. Measurements must be corrected to per 

milligram creatinine and to be considered positive, be greater than 3 standard 

deviations above the mean value for that age group.

1.5.3. Assessment of Disease Extent

The greater the number of clinical investigations performed, the more accurate 

but extensive the initial extent of documented disease. In order to standardise 

staging and therefore ensure comparable groups of patients, a recommended 

minimum requirement for determining extent is recommended.

Site, volume and extent of the primary tumour or large metastases can be 

delineated by CT or MRI scanning. Ultrasound is considered inferior at 

providing the necessary three dimensional measurements, particularly with 

abdominal disease.

Liver involvement or lymphadenopathy may be demonstrated by standard CT or 

MRI imaging. The opportunity for histopathological confirmation of nodes 

arises at surgery when any node greater than 2cm within the operative field 

should be biopsied.

The standard means of detecting bone metastases is by 99mTc-diphosphonate 

scintigraphy in centres (for example United States and Japan) where mIBG
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scanning is not available. It is however recommended that mIBG should be 

used as it appears to be more sensitive at distinguishing active, rather than 

inactive disease involving cortical bone (Voute et al, 1985). It must be noted 

that any bone abnormality in a growing child should be confirmed by plain x-ray. 

In addition to bone deposits, any sites of occult tumour would simultaneously be 

demonstrated on mIBG scan. A disadvantage is that not all neuroblastomas 

accumulate mIBG, in which case " “Tc-diphosphonate should be used.

The likelihood of detecting bone marrow involvement increases when bone 

biopsy rather than aspirate is performed and with an increased number of 

samples taken. The recommended number of samples is therefore four, two 

bone marrow aspirates (at least 1cm of bone marrow) and two bone biopsies 

from each posterior iliac crest (Franklin and Pritchard 1983). One positive 

sample from four can confirm bone marrow disease but all samples should be 

negative to exclude involvement.

Both stage 4 and 4S disease may involve the bone marrow but have a strikingly 

different prognosis. Patients with stage 4S disease are commonly less than one 

year old at diagnosis and have a limited stage primary. They should also have 

limited bone marrow disease, less than 10% of the marrow infiltrated. For 

practical purposes, this should be less than 1% of the bone marrow containing 

infiltration. If a patient has a heavily contaminated marrow, even if the primary 

tumour otherwise fulfils the criteria of stage 1 or 2, the patient should be 

regarded as having stage 4 disease.
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1.5.4. Definitions of Response

The overall response is determined by both the primary tumour and metastatic 

sites. When investigations are positive on initial assessment, they should be 

repeated. An interim assessment can be performed at two months after 

treatment but four months is recommended. If surgery to the primary is 

necessary, this should be completed before the final evaluation at the four month 

period but before any transplant procedure or maintenance therapy.

The response should be defined as one of the six categories proposed by the

INRC (Brodeur etal., 1993), as follows: Complete response (CR); Very good

partial response (VGPR); Partial response (PR); Mixed response (MR); No 

response (NR) and Progressive disease (PD).

Table 1.3. Definitions of response to treatment.

CR A complete response indicates a complete clearing of disease from both 
the primary sites and sites of metastatic disease. The catecholamine 
levels should have returned to normal if they were raised previously.

VGPR A very good partial response indicates 90%to 99% volume reduction in 
the primary tumour with complete resolution of disease at other sites, 
other than bone. Bone lesions however should be healing, improved 
from previous scans and no new lesions evident. Catecholamines 
should be normal.

PR There are no new lesions. The tumour volume and sites of metastatic 
disease have decreased in volume by 50%. Bone lesions should be 
healing with no new lesions. One residual positive marrow or biopsy is 
permitted if the extent is less than previously documented. 
Catecholamines should be reduced from 50-90%.

MR There are no new lesions. A mixed response indicates a greater than 
50% response at some sites but less than 50% response at others. For 
example, a large primary may respond less well than metastases and 
surgical excision could convert this category to one of the above.

NR There are no new lesions. There is less than 50% reduction of all sites 
and any site of disease does not increase in size by more than 25%.

PD There are new lesions. Any previously present lesion has increased in 
size by more than 25%.
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1.6. STAGING

1.6.1. Introduction

For many years the lack of a commonly agreed staging system between 

countries prevented the reliable comparison of data. By 1988, there were three 

major classification systems, The Children’s Cancer Study Group (CCSG) 

(Evans et a l , 1971); The St. Jude Children’s Research Hospital (SJCRH) 

(Hayes et al, 1983) used by the Paediatric Oncology Group (POG). This was 

later modified by both the Italian Co-operative Working Group (1987) and the 

Malignant Tumour Committee of the Japanese Society of Paediatric Surgeons 

(Nagahara et al, 1990). Another major staging system, the TNM classification 

was implemented by the UICC in 1987.

1.6.2. The Children’s Cancer Study Group Staging System

The first widely accepted staging system was that of Evans (Evans et al, 1971) 

who defined the extent of disease clinically and radiologically. The surgeon's 

assessment of the disease extent at the time of surgery was also included. 

Previous staging systems relied heavily on the extent of surgical resection 

achieved but this is dependent on the particular surgeon’s skill and experience 

(Pinkel 1968).

The CCSG system took account of the previously documented better survival in 

patients less than one year old. Because this applied to all stages, the group did 

not impose an age restriction to their categories. A special subgroup of patients,
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was however defined. Children with a localised primary (stage I or II) and 

disease dissemination only to the liver, skin and or bone marrow were 

categorised as stage IVS (S denotes special). These patients have a good 

prognosis with 75% two year survival compared to 7% two year survival in the 

original series of 100 patients. This group of researchers also stressed the 

prognostic significance of the primaiy mass crossing the midline, which remains 

a powerful prognostic indicator (Evans et al, 1990).

The Evans staging system, by allowing prognostic stratification, provided a 

major stimulus to research in the field. It soon became clear however that 

although it could separate low risk patients from those needing intensive 

treatment, more detailed definitions of localised disease were required.

Table 1.4 Children's Cancer Study Group staging classification (Evans et 
al, 1971).

Stage 1 Tumours confined to the organ of origin.
Stage II Tumours extending in continuity beyond the organ or structure 

of origin but not crossing the midline. Regional lymph nodes 
on the homolateral side may be involved

Stage HE Tumours extending in continuity beyond the midline. 
Regional lymph nodes may be involved bilaterally.

Stage IV Remote disease involving the skeleton, organs, soft tissues, or 
distant lymph nodes groups

Stage IV-S Patients who would otherwise be Stage I or II, but who 
have remote disease confined only to one or more of the 
following sites: liver, skin, or bone marrow (without 
radiographic evidence of bone metastases on complete 
skeletal survey).
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1.6.3. The Paediatric Oncology Group Classification.

In an attempt to further define groups with localised disease, Hayes et al, in 

1983 developed a surgical pathological system stressing the importance of 

resection and lymph node involvement. Based on an analysis of 254 children 

treated at St. Jude Children's Research Hospital, Memphis, Tennessee, she 

found a difference in survival in patients with no regional node involvement 

(87%) compared to those with node dissemination (33%). The prognostic 

significance of involvement of lymph nodes has been confirmed (Evans et a l , 

1990). This only holds if the tumour does not infiltrate beyond the midline. If it 

does, then the latter becomes the overwhelming factor. In addition, this system 

fails to distinguish between bone and bone marrow involvement. Both these 

factors may explain why, although useful, this system is a less powerful 

discriminator than that of the CCSG (Halperin and Cox 1986; Evans et 

a l , 1990). In clinical practice this system was never very widely used.

1.6.4. The TNM Classification

This is a complicated system, based on clinical and radiological investigations 

but with a separate post surgical histopathological component. The rationale for 

this, is that the stage at presentation is often different from that at surgery, after 

intensive chemotherapy. It has the major disadvantage the tumour has both a 

clinical and separate pathological description. These bear no relationship to one 

another and give rise to sixteen different possible categories of disease. This 

system also fails to consider factors such as age and patterns of metastases. For 

these reasons, this system was not widely used in clinical practice.

Table 1.5. The UICC TNM staging system (UICC 1987).
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Clinical Staging System Pathological Staging System

T0: not detected pT0: no tumour
T,: tumour<5cm PT,: complete excision
T2: tumour 5-10cm pT2: incomplete removal
T3: tumour>10cm A: microscopic residue
T4: multi-centric tumour B: microscopic residue

C: biopsy alone
pT4: multi-centric

N0: normal lymph nodes pN0: normal lymph nodes
N,: abnormal regional lymph nodes pN,: abnormal regional lymph nodes
Nx: no available information A: complete removal

on lymphnodes B: incomplete removal
Mo; no metastases no information
Mi: distant metastases present pNx: no metastases

pMo: distant metastases present.
pM^

CSI: T,,N0,Nx.Mo PSI: pT,. pN0iX. pMo
CSH: T2N0NxMo PSH: pTi. pN]a. pMo
CSIII: T,,2,3,Nô Mo PSIIIA: pT3A.pNo,i Â .pMo
CSIV: T 1,2,3,. PSfflB: pTo,l,3A/B- pNo,lA/Bpc- pMo
CSV: T4. No,i„x. Mo,i. psmc: pT^. pNo,iA/B4t-pMo.

PSIV: pTl3A/B/C. pNo,lA/B,x. pM],
PSV: pT4. pN0 ] a/bjc. pMoj.

1.6.5. The International Neuroblastoma Staging System.

Each system had the power to divide patients prognostically, but there were 

several areas of differences and one group within one system could not be 

directly compared with that of another. The major areas of contention were:

• The prognostic significance of tumour crossing the midline.

• The importance of the involvement of ipsilateral and contralateral lymph 

nodes.

• The importance of resectability of the tumour.

During November 1986, an international consensus was reached through a

collaboration of delegates from every major oncology group in the world. The 

result was a universally agreed set of criteria for the diagnosis, assessment and 

staging of neuroblastoma. These were termed the International Neuroblastoma 

Response Criteria (INRC) and the International Neuroblastoma Staging System
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(INSS) respectively (Brodeur et al, 1988). These were subsequently modified 

slightly in 1993 (Brodeur etal, 1993).

Stage 1 and 4 were similar to previous staging systems. Stage 1 was however 

later modified to include a resected specimen with adherent positive nodes if 

they were fully resected. Stages 2A and B in total account for only 10%-15% of 

neuroblastoma cases. The significance however of positive regional lymph 

nodes remains a contentious issue and by initially separating these categories it 

was hoped to determine if stage 2B more closely resembled that of stage 2A or 

stage 3 disease. Stage 3 was carefully defined as those tumours infiltrating ‘by 

contiguous invasion to or beyond the opposite side of the vertebral bodies’. 

Finally the stage 4S disease category was maintained but limited to those 

patients less than one year old with bone marrow infiltration of less than 10%.

Table 1.6. International Neuroblastoma Staging System (Brodeur et al, 
1993).

Stage 1 Localised tumour confined to the area of origin; complete gross excision, 
with or without microscopic residual disease; Identifiable ipsilateral and 
contralateral lymph nodes negative microscopically (nodes attached to and 
removed with the primary tumour may be positive).

Stage 2A Unilateral tumour with incomplete gross excision; Identifiable ipsilateral 
and contralateral lymph nodes negative microscopically.

Stage 2B Unilateral tumour with complete or incomplete gross excision; with 
positive ipsilateral regional lymph nodes; Identifiable contralateral lymph 
nodes negative microscopically.

Stage 3 Tumour infiltrating across the midline with or without regional lymph 
node involvement; or unilateral tumour with
contralateral regional lymph node involvement; or midline tumour with 
bilateral regional lymph node involvement.

Stage 4 Dissemination o f tumour to distant lymph nodes, bone, bone marrow, 
fiver, skin and/or other organs (except as defined in stage 4S).

Stage 4S Localised primary tumour as defined for stage 1,2A or B,
with dissemination limited to liver, skin and/or bone marrow, (limited
to infants less than one year of age).
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1.6.6. Summary

The widely used staging system of Evans in 1971 provided the first clear 

identification of prognostic groups and as a result provided a major stimulus to 

research interest in this apparently fatal tumour. The large number of non 

directly comparable staging systems, however, were inhibiting the direct 

comparison of data between different centres. The need for consistent criteria 

for diagnosis, staging and assessment of cases led to the internationally 

developed and agreed staging system (INSS). This has been adopted widely and 

is the staging system used for this thesis unless otherwise stated.

Present systems concentrate on anatomical prognostic factors. Biological 

features are however assuming greater significance and may be incorporated 

into future classifications.

Homer-Wright when naming neuroblastoma noted its clinical diversity. Initially, 

prognosis was based on clinical features. Biological research has however 

identified better predictors of prognosis. These are crucial, in identifying those 

children who need minimal or no therapy, since the majority of neuroblastoma 

patients are very young children who are therefore even more vulnerable to the 

long term morbidity of treatment.

1.7. PROGNOSTIC FACTORS

1.7.1. Introduction
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1.7.2. CLINICAL PROGNOSTIC FACTORS

1.7.2.1. Age

This remains the most powerful prognostic factor as children aged less than one 

year at diagnosis, regardless of stage, do well. Thurman (1967), and later Evans 

(1971), devised separate prognostic groups for children less than one year old. 

In the original CCSG retrospective analysis of 100 patients, 82% of infants 

survived compared to 10% of children aged two or more at diagnosis (Evans et 

al, 1971) regardless of stage.

1.7.2.2. Stage

Children with localised disease have a better prognosis. Patients with stage 1 

disease had a prognosis of 80% compared to 7% in the original review by 

(Evans etal, 1971).

1.7.2.3. Site

Tumours in the mediastinum or cervical area are associated with a better 

outcome. This is not, however, entirely independent of stage. For example 62% 

of abdominal primaries have widespread metastatic disease at the time of 

diagnosis compared with 26% of thoracic cases (Evans et al, 1971). Age, stage 

and site are however inter-related prognostic factors, since young children tend 

to present with localised disease and localised disease often presents earlier in 

non-abdominal sites.
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1.7.3. BIOLOGICAL PROGNOSTIC FACTORS

1.73.1. Chromosomal Abnormalities

Chromosomal abnormalities are often found in malignant cells and often 

increase with each subsequent relapse (Feder and Gilbert 1983). Translocations, 

deletions, duplications or areas of gene amplification are seen. Homogeneously 

staining regions (HSR) and double minutes (DM) are chromosomal and 

extrachromosomal areas of gene amplification. In neuroblastoma, HSR and DM 

contain amplified copies of the N-myc oncogene (Shwab et al., 1983). 

Abnormalities of the MDR1 gene are also frequently detected and, interestingly, 

vary inversely with N-myc expression (Nakagawara et al, 1990). Loss of 

heterozygosity of lp, 4p, 1 lq, 14q, and 17q occur in neuroblastoma (Srivistan 

etal, 1991).

N-myc amplification is present in 30% of neuroblastomas and is associated with 

advanced stage (Brodeur et al., 1984) and rapid progression. N-myc 

amplification of 1 copy, 1-3 copies and greater than 10 copies is associated with 

a 70%, 30% and 5% eighteen months disease free survival respectively (Seeger 

et al., 1985). In 1983 Shwab et al, and Kohl et al, simultaneously but 

independently isolated an amplified nucleotide sequence that shared homology 

with the cellular and v-myc gene. N-myc is located on chromosome 2p23-24, 

and consists of three exons. Four nuclear peptides are generated by means of 

differential gene splicing. These range from 58 to 64 ldlodaltons in size and

1.7.3.2, N-AfTC
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consist of three distinct regions: a DNA binding region, a helix loop helix 

structure and a leucine zipper motif This suggests this short lived nuclear 

protein has a role in nuclear transcription. The C terminal certainly has structural 

hallmarks consistent with a binding site for a transcription factor. The helix- 

loop-helix and leucine zipper motif appear essential for the coupling of N-/wyc 

protein to other nuclear proteins such as the Max protein and RBI nuclear 

protein (Wenzel et al, 1991). The N-myc and Max proteins probably bind 

together and bind to DNA enhancing transcriptional activation.

Figure 1.10. The human myc protein structure (Adapted from The 
Oncogene Facts Book ed. Robin Hesketh 1995).

Leucine
Trans -activation Acidic Basic /.ipper

V20-H

In normal cells, the level of myc protein is finely controlled. Therefore in the 

presence of gene amplification and deregulated expression, this fine balance is 

upset. The extra copies of myc protein possibly also bind to the RBI suppresser 

gene product, lowering its critical nuclear concentration and hence inhibitory, 

antiproliferative effect on the cycling cells.

Figure 1.11. Tanscriptional regulation by myc and max proteins (Adapted 

from The Oncogene Facts Book. ed. Robin Hesketh 1995)
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Recent work indicates that multidrug resistance associated protein (MRP) gene 

expression correlates with N-myc gene expression. The evidence for this is that 

when N-myc oncogene expression is downregulated, using antisense constructs, 

MRP expression, determined by both polymerase chain reaction (PCR) and 

Western blotting techniques, is also downregulated (Norris et al., 1996).

The genes regulated are, at present, not fully elucidated but it has been shown 

for some time, that there is a correlation between the down regulation of N-myc 

RNA and induced differentiation of SMS-KCNR neuroblastoma cells (Thiele et 

al, 1985).

I.7.3.3. 1-p Deletion

Deletion of the short arm of chromosome 1 is seen in 70% of neuroblastomas 

(Gilbert 1984). Ip deletion is often found alone in tumours. If present, in 1, 2, or 

4S disease, it can identify high risk cases. A number of studies support the 

observation of N-myc amplification and lp deletion occurring together in the 

same tumour sample. Both abnormalities are usually present in advanced cases, 

stage 3 and 4. Interestingly, in this situation, the lp deletion is significantly 

larger, and the loss of the lp paternal allele is usually due to genomic imprinting 

(Caron etal., 1996).

When the lp deletion is present without N-myc amplification the lp alleles lost 

were of maternal origin and smaller (Caron et al, 1994). This data suggests that 

of the two tumour suppresser genes present at this breakpoint area, one is 

susceptible to genomic imprinting, the other not. The area of the lp deletion is 

at present being extensively mapped with gene probes. The deleted locus occurs
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in the region of Ip32.12-lp32.6 (Fong et al, 1992). There may be as many as 

2-4 tumour suppressor genes in this area, but they have yet to be fully identified.

The site of the translocated material is often the 17q area but LOH of 

chromosome llq  and 14q have also been observed (Srivistan et al, 1991). 

These are also the site of potential suppressor genes and the focus of current 

research (Van Roy et al, 1996)

1.7.3.4. Ha-ms Gene

The Ha-ras protein is widely expressed in neural tissue. Expression of this gene 

can be determined by immunoperoxidase staining by means of an antibody 

directed towards the RNA C terminal region. Ras point mutations are rarely 

seen in neuroblastoma, but when present, a high Ha-ras expression appears to 

correlate with greater disease free survival (Taneka et al, 1994) the converse of 

the relationship between N-myc and survival.

1.7.3.5. DNA Ploidy

In neuroblastoma, an abnormal DNA content of tumour cells is associated with 

a poor outcome. Ghering, in 1993, noticed stage 3 and 4 tumours were 

associated with near diploid or tetraploid DNA content. This was associated 

with 20% of samples having coexistent N-myc amplification and a higher 

proportion of 'S' phase cells. In clinical practice, these prognostic features were 

partly age dependent (Look et a l , 1991). Diploidy was a predictor of early 

treatment failure in all children less than two, whereas hyperdiploidy indicated 

poor prognosis in half those aged between one and two years. In children older

than two, with metastatic disease, these factors did not predict outcome which

was dismal. It is possible that these common molecular abnormalities indicate a
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multistep transformation in carcinogenesis. The following is a model proposed 

by Tonini (1993).

Figure 1.12. Model of multistep transformation in neuroblastoma
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I.7.3.6. Nerve Growth Factor

The trk gene encodes for high affinity nerve growth factor. It is expressed in 

good prognosis tumours. The lack of nerve growth factor expression is a sign of 

poor prognosis neuroblastoma (Suzuki et al, 1993). Survival varies from as 

much as 74% to 0% in the presence or absence of the NGF receptor gpMO1*

1.7.3.7. CD44

CD44 is a cell surface glycoprotein and an independent prognostic factor, 

associated with a favourable outcome. This correlates with histological 

differentiation but inversely with N-myc expression (Terpe et al, 1994).

1.7.3.8. Neurone Specific Enolase

This is an enzyme which exists in dimeric form. The isoenzyme y/y is specific for 

tissue of neuroendocrine origin. It is not particularly specific as increased levels 

have been reported with Wilms tumour, Ewing’s sarcoma, NHL, soft tissue
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sarcoma and acute leukaemia (Cooper et al, 1987). 96% of children with 

metastatic disease have elevated levels of the enzyme. A level greater than 

lOOng/ml is associated with a 2 year survival of 14% compared with 34% with 

low levels of NSE. The effect is particularly marked if children less than 1 year 

old are considered (25% compared with 100%) (Zelter 1983).

1.7.3.9. Ferritin

Ferritin may be present in the serum due to many mechanisms. It is unusual for

children with low stage disease to have elevated levels. In addition the level will 

decrease to normal with successful treatment. In children aged less than one 

year, there is a 72% disease free survival with normal levels compared with no 

survival in infants with ferritin levels greater than 142ng/ml (Hann 1985).

1.7.3.10. GD2

This is a cell membrane bound ganglioside. It can be measured in serum or from 

the tumour sample. The level will decrease with successful treatment and has 

been noted to increase on relapse of disease (Ladishc and Wu 1985).

1.7.3.11. Shimada Classification

Developed in 1984, (Shimada et al, 1984) this prognostic staging system was 

based on histopathology from 295 surgically resected primary tumours. Patients 

underwent surgery before any chemotherapy or radiotherapy. Analysis was 

focused on primary tumour samples rather than biopsy of metastatic tissue. 

Therefore it is possible that this selection has concentrated on better prognosis 

patients. Despite this, it has remained a useful prognostic indication of survival
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of neuroblastoma patients (Evans et al, 1987). Shimada and colleagues 

published a flow diagram in the original paper to summarise their findings.

Figure 1.13. Flow Diagram of the Shimada prognostic staging system.

(Overall survival)
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Since both the neuroblastoma cells and its supporting tissues originate from the 

neural crest, the organisational pattern of the supporting stromal tissue is 

included in the evaluation. In the stromal poor group, neuroblasts at various 

stages of differentiation are separated by small amounts of fibrous tissue. 

Thereafter the cells themselves are examined for any signs of neuronal maturity. 

The mitosis-karyorrhexis index (MKI) is determined by counting the number of 

mitoses and karyhorrhexes in a field of 5,000 cells and a high index is usually 

associated with aggressive cell pathology. This, in addition to the patients age,
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helps subclassify the pathology into prognostic groups. The survival of the 

groups is noted in brackets.

In the stromal rich group, the stroma is well developed consisting of Schwann 

cell sheaths, peri and endo neural components and even satellite cells. The well- 

differentiated group exhibited well-formed neuroblasts resembling mature 

ganglioneuromatous cells. The intermediate group showed variably 

differentiated neuroblasts. The nodular classification was ascribed if foci of 

stroma poor tissue were evident. This is significant since the survival of the 

nodular group is significantly poorer (18% compared to 100% well 

differentiated and 92% intermixed.)

1.7.3.12. Summary

Initially prognosis was determined by clinical factors, but biological features are 

becoming increasingly important. Patients can be stratified into prognostic 

groups on the basis of a combination of both clinical and biological 

characteristics. These are summarised below.

Table 1.7. Risk groups for neuroblastoma.

LOW RISK INTERMEDIATE RISK HIGH RISK

Hyperdiploid/Triploid 

no lp LOH

near diploid/tetraploid 

+/- lp LOH, 14q LOH

diploid/ tetraploid 

lpLOH

N-myc amplification 

TRK-A low/ absent

no N-myc amplification no N-myc

high TRK-A expression low TRK-A

< 1 year old 

INSS stage l,2or4S 

NSE<20 

90% cure

stage 3 or 4 

NSE 20-100 

25-50% cure

>1 year< 10 years 1-5 years 

stage 3 or 4 

NSE >100 

<10% cure
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1.8 TREATMENT

1.8.1. Localised Disease

The role of surgery in localised disease is well established. Surgery is known to be 

curative in INSS stage 1 and 2A disease. The addition of radiotherapy does not 

improve survival, even if residual gross or microscopic disease is present (Matthay et 

al, 1989). The addition of chemotherapy similarly confers no survival advantage 

(Evans et a l, 1984). For more advanced disease, stage 2B and 3, complete surgical 

resection improves survival (Ninane et al, 1982; Hayes et al, 1983; Rosen et al, 

1984 and Haase et al, 1989).

Post surgical treatment is reserved for special circumstances, such as spinal cord 

compression but may be considered if the tumour has homolateral lymph node 

involvement, that is, INSS stage 2B, or poor biological prognostic factors (Neider 

and Gauderer 1991). If the child is less than six months old, this point is less clear 

due to the otherwise better prognosis of children aged less than one year. The 

addition of cyclophosphamide and vincristine (Ninane et al, 1982; Hayes et al,

1981) leads to a survival of greater than 75% (Rosen et a l, 1984).

Chemotherapy is the principal modality of treatment for children with more 

advanced disease. In stage 3 disease, large primary tumours infiltrate across midline 

structures usually rendering the tumour inoperable at presentation. Curative surgery 

is delayed until either systemic chemotherapy or mIBG therapy has "down staged" 

the primary, making surgical resection easier. If possible, radical surgery is desirable
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(Hasse 1989). The prognosis of this group is variable (40-70%) depending on the 

completeness of surgical resection (Le Toumeau 1985). Additional post operative 

radiotherapy is indicated for gross residual disease (Koop and Schnaufer 1975; 

Castleberry 1991).

1.8.2. Metastatic disease

Children with true stage 4S disease have an inherently good prognosis. By definition 

they should have good biological prognostic features for example: no N-MYC 

amplification or bone marrow contamination limited to less than 5% of cells obtained 

from aspirate and trephine. If poor biological risk factors are present, the patient 

would be more appropriately treated with intensive therapy. A number of these 

tumours regress spontaneously and therefore treatment is usually directed toward 

controlling symptoms. It should be noted, however, that a number of these patients 

subsequently relapse.

Multi-agent chemotherapy is indicated in children with stage 4 disease at 

presentation. Five chemotherapeutic agents are used, etoposide, cisplatin, 

cyclophosphamide, adriamycin and vincristine. Combinations of these drugs can be 

extremely effective, producing a partial or complete response in 80%-90% of 

children (Shafford et al, 1984). The dose intensity of the first four agents appears 

important in the overall clinical response rates, but prolonged treatment is not 

necessary (Cheung and Heller 1991).

Large tumour bulk, high mitotic rates and frequency of multi-drug resistance (MDR) 

in neuroblastoma led to the rationale of dose intensive modem chemotherapeutic
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regimens (using the highest tolerable dose delivered in the shortest possible time 

scale). Drugs are used with differing cell cycle specificity, in the optimum cell cycle 

combination, with non-overlapping toxicity.

Surgery at presentation is contraindicated in patients presenting with widespread 

metastatic disease unless a histological diagnosis cannot be obtained from tissue 

elsewhere, and biopsy is appropriate. The contribution of the extent of surgical 

resection to residual sites of disease, after induction chemotherapy, to overall 

survival is unclear. The need for aggressive surgery has been questioned until 

chemotherapy can definitely eliminate disease from all metastatic sites (Matsumura 

etal, 1988).

In an attempt to clear any microscopic or small volume residual disease, and 

improve long term survival, consolidation chemotherapy, with or without TBI 

regimens, involving bone marrow transplant, has been tried. Large doses of 

chemotherapeutic agents are used, limited only by their non-haematological toxicity. 

Improved two year survival varies from 20% to 40% (Phillip et al, 1991).

Despite this intensive therapy and apparent improvement in short term survival, 

longer term progression free survival drops from 40% to 25% to 13% survival at 

two, five and seven years respectively for patients undergoing high dose therapy in 

CR or VGPR Unfortunately those with residual disease do less well. The two and 

seven year survival rates are 40% and 37% respectively in the same analysis (Phillip 

et al, 1989). There appears to be little difference in success rates regardless of 

which drugs are used or if TBI is added.
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1.8.3. mIBG

Neuroblastomas differ markedly in their selective uptake of mIBG (Moyes et al., 

1989) but encouraging responses have been seen. Voute and colleagues noted a 

58% total response rate in previously heavily treated patients with refractory disease 

(Voute et al, 1991). mIBG can also be used in combination with TBI, where the 

specific properties of mI-mlBG are used to target metastases 2-5mm in diameter 

(GazQetal, 1995).

1.8.4. Radiolabelled Antibody

Monoclonal antibodies can be manufactured specifically to target neuroblastoma 

cells and some types are also radiolabelled. UJ13A is a radiolabelled monoclonal 

antibody directed against neuroblastoma cells. There is however, heterogeneous 

expression of the antigen and the disadvantage that the reticuloendothelial cells 

accumulate the antibody.

1.8.5. Differentiating Agents

Retinoic acid is an analogue of vitamin A 13 -cis retinoic acid is the form of retinoic 

acid given clinically. This is converted to the biologically active tram isomer, which 

binds to nuclear retinoic acid receptors and cellular retinoic acid binding proteins. In 

vitro studies have shown that this agent induces differentiation and inhibits growth in 

neuroblastoma cells in culture (Hill 1986).

1.9. Screening

The majority of patients with neuroblastoma present with advanced disease. The 

recognition that prognosis is much improved in the minority of patients presenting 

with early stage disease, particularly those aged less than one year at diagnosis, lead 

to the anticipation that screening for neuroblastoma would be of benefit. 91% of 

neuroblastoma tumours excrete vanillylmandelic acid (VMA) and or homovanillic
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acid (HMMA). Urine screening was simple and safe, resulting in a specificity of 

>99.99% and a predictive value of 50% (Woods etal, 1994).

Mass screening was therefore implemented in some countries with enthusiasm,

unfortunately without the benefit of detailed pre-screening epidemiological studies.

This partly explains the continuing confusion as to whether screening is of value in

this condition.

Screening the urine of six month old infants has been undertaken in Kyoto, Japan 

since 1974 (Sawada et al, 1982). This was expanded to a nation-wide basis, in 

1985. This resulted in a dramatic increase in incidence of the disease, partly due to 

‘fiie halo effect’ of increased awareness and registration of neuroblastoma, but also 

due to the increased detection of early stage tumours. The screened population from 

1985 resulted in 73% (438/598) of cases with prognostically favourable stage 

disease 1,2 or 4S. As a result of this, an impressive overall survival rate of 97% has 

been quoted for neuroblastoma in Japan (Sawada et al, 1994). Screening, however, 

detected patients with favourable prognostic criteria, aneuploidy, absence of lp 

chromosome deletion and N-myc cellular oncogene non amplification (Hayashi et 

al, 1988; Kaneko et al, 1990; Nakagawara et al, 1991). Some of these screen 

detected tumours regressed spontaneously when left untreated (Matsumura et al, 

1991).

In contrast, a significant number of cases, with poor prognostic criteria, developed 

after one year in infants previously screened as negative (Nishi et al, 1989). Since it 

is speculated that the biological prognostic factors above remain constant throughout 

the life span of the tumour (Brodeur et al, 1984) screening therefore appears 

unsuccessful in detecting poor prognosis neuroblastoma.
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The failure to identify the poor prognosis group may lie in the timing of screening. 

Screening infants at six months means that only a small proportion of patients 

present before this age and those that do, are likely to have a good prognosis 

(Huddart et al, 1993). However, it has been suggested that delaying screening for 

example until the eighth or twelfth month of life may increase the number of 

poor prognosis neuroblastoma cases detected (Kerbl et al, 1993).

In summary, therefore, screening programmes have been less rewarding at 

detecting poor risk patients than hoped. They have however yielded additional 

prognostic information so that, if combined with recent advances in identifying 

poor risk groups by molecular analysis changes in timing or repeated testing 

may improve its effectiveness. Certainly high risk neuroblastoma is not reliably 

detected by screening infants aged less than one year.

1.10. Conclusion

Favourable neuroblastoma, with favourable biological characteristics, sometimes 

requires minimal therapy. Similarly children aged less than one year have a good 

prognosis regardless of their stage due to the same favourable biology. 

Unfortunately the majority present with widespread metastatic disease and 

unfavourable biological risk factors. This is precisely the group that remain 

incurable and which screening has failed to detect.
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CHAPTER 2 mIBG
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2.1. HISTORY

2.1.1. The Historical Development of mTBG

mIBG is the result of a systematic search for radiopharmaceuticals to image 

the human adrenal medulla which began in the 1960’s by the prestigious 

Ann Arbour group in Michigan, USA. First attempts involved 

radiolabelling catecholamines and their precursors. Dopamine and 

noradrenaline appeared initially promising, but later proved inadequate 

(Morales et al., 1976)

A complete change of approach, reasoning that adrenal medulla cells could 

be regarded as adrenergic neurons proved successful. These cells have the 

same property as APUD cells (amine precursor uptake and 

decarboxylation) where a specific reuptake of neurotransmitter from the 

synaptic cleft terminates the synaptic message.

Figure 2.1. The reuptake mechanism (adaptedfrom Neuroblastoma:

mIBG in its Diagnosis and Management, eds. J.Moyes,

V.R. Me Cready and Ann Fullbrook. Springer Verlag).

NA



The adrenergic blocking drugs, bretylium and guanethidine, were therefore 

studied. Guanethidine itself cannot be readily iodinated but Korn was 

successful in the initial iodination of bretylium analogues (Korn et al, 

1977). The search for more effective anti-hypertensives resulted in 

bethanidine. This is formed as a result of fusing the o-bromobenzyl portion 

of bretylium with guanethidine (Boura et a l, 1961). Derivatives of this 

molecule were subsequently synthesized and investigated. The resulting 

aralkylguanidine compounds, in contrast, were easily radiolabelled with 

iodine. The next year, Weiland demonstrated good concentration of ortho- 

iodobenzyldimethyl-2-hydroxyethylguanidine in the canine adrenal medulla 

(Wieland etal., 1979) and he continued his study of its three stereoisomers 

ortho-, meta- and para-iodobenzylguanidine (Weiland 1980).

Figure 2.2. Chemical structure of catecholamines, adrenergic neurone 

blockers and meta-iodobenzylguanidine (adaptedfrom 

Neuroblastoma: mIBG in its Diagnosis and Management. 

eds. J.Moyes, V.R. Me Cready and Ann Fullbrook. Springer 

Verlag).
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2.1.2. The Three Stereo-isomers of Iodobenzylguanidine

mIBG soon proved to be the superior agent. It had a five times greater 

affinity than o-IBG for the adrenal medulla. In addition the peak level of 

mIBG accumulation within the medulla was four times greater than the 

other isomers, leading to better images. mIBG also proved to be more 

resistant to the in vivo dehalogenation suffered by p-IBG and therefore had 

less thyroid accumulation. Finally, m-IBG is excreted by the urine, rather 

than the gall bladder, as o-IBG, avoiding a potentially confusing image.

2.2. THE CHEMICAL MANUFACTURE OF mIBG

2.2.1. The Traditional Method

The original synthetic method by Wieland (Wieland et al, 1980) used the 

precursor metaiodobenzylamine hydrochloride which was reacted with 

cyanamide to produce mIBG. This product was then refluxed in a solution 

of 125I-sodium iodide for 72 hours. During this period, the radioactive 

iodine atom exchanged for the stable isotope on the mIBG molecule. The 

unreacted radioiodine is then removed by means of ion exchange 

chromatography. This yielded mIBG with a specific activity of 30MBq and 

a radiochemical yield of 70%. Attempts to increase the specific activity by 

this method resulted in a decreased radiochemical yield. The long 

incubation period is also inadequate for the production of 123I-mIBG, 

therefore alternative methods of synthesis were developed.



Manger was able to reduce the exchange period to 2 hours (Manger et al,

1982). The thermal decomposition of an ammonium salt in air provided 

acidic conditions for this reaction which was completed at 150°C. A further 

modification enabled the reaction time to be shortened by one hour (Mock 

and Weiner 1988).

All of the above methods involve an iodide exchange step. Any exchange 

method will result in a lower specific activity preparation where ‘cold’ non­

radiolabelled carrier molecules, are inextricably mixed with the active 

radiolabelled molecules. This leads to a poor therapeutic differential 

between target and non-target tissues. Even with the relatively high specific 

activity preparations used in clinical practice, the specific activity remains 

>l.llGBqmg'1 and in this preparation approximately one of every 2,000 

molecules is radiolabelled.

2.2.2. No Carrier Added (n.c.a.) mIBG

An exciting breakthrough in 1993 by Vaidyanathan and Zalutsky (Duke 

University, USA) resulted in a new chemical method of manufacture where 

almost all of the molecules of mIBG were labeled with the appropriate 

isotope (Vaidyanathan and Zalutsky 1993). This became known as no 

carrier added (n.c.a.) preparation.

Tumour uptake occurs by two processes: specific, high affinity, active 

transport (uptake 1) and passive diffusion (uptake 2). Most normal tissues,



unless sympathetically inervated, will concentrate the drug by uptake 2 

mechanisms. The uptake 1 process will predominate at low concentrations 

of mIBG whereas nonspecific accumulation of 131I-mIBG will occur at high 

concentrations. Therefore high specific activity preparations will exploit 

type one uptake and be more specifically accumulated by the tumour.

The iododesilylation method (Vaidyanathan and Zalutsky 1992) involves 

the addition of Na131I and N-chlorosuccinimide to m- 

trimethylsilybenzylguanidine (Figure 2.3). This reaction continues over 5 

minutes at room temperature and gives excellent radiochemical yields of 

98%.

Figure 2.3. mIBG synthesis by the iododesilylation method of 

meta-trimethylsilylbenzylguanidine.

NH NH

c —n—cc —N—C
NHn h 2 n - c h l o r o s u c c i n i m i d e

1 2

Figure 2.4 shows the synthesis of mIBG from a metadiazo derivative of 

benzylguandine. The reaction time necessary is similar to the 

iododesilylation method outlined above but the radiochemical yield is much 

lower, 13.4% compared to >98% by the iododesiylation method outlined 

above (Mairs et al, 1994).
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Figure 2.4. The synthesis of mIBG from a metadiazo derivative of

contains at present 5mg of cold carrier mIBG molecules and plasma levels 

reach lOOnM. The same radiation dose, if the n.c.a. preparation is used, 

would be 50pg in comparison with an equivalent plasma dose of InM. The 

n.c.a. preparation has at present reached the stage of clinical imaging in 

The Beatson Oncology Center, Glasgow.

The first published report of mIBG use in neuroblastoma describes a case 

report of a two and a half year old child with strong localisation in an 

abdominal neuroblastoma (Kimmig et al, 1984). One year later, Geatti 

published ten cases where the uptake seemed so high that therapy appeared 

possible (Geatti 1985). Soon reports documenting localization in other

benzylguandine
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A typical therapy dose (7.4GBq) of commercially produced 131I-mIBG

2.3. IMAGING WITH mIBG
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tumours of neural crest origin were commonplace (Endo et a l , 1984; Smit 

et al, 1984; Von Moll et al., 1987). These are listed below.

Table 2.1. Tumours imaged with 1-mIBG (Von Moll et al, 19870

Hoefnagel in 1991 reviewed over 2400 published cases where 131I-mIBG 

had been used for diagnostic purposes. The high sensitivity (81%-91%) and 

specificity (95%-100%) of mIBG with phaeochromocytoma and 

neuroblastoma diagnostically led to its use as an imaging agent and later for 

therapy.

Table 2.2. The sensitivity of mIBG scintigraphy ( Hoefnagel et a l, 

1991).

phaeochromocytoma 

merkel cell skin cancer 

medullary thyroid cancer 

carcinoids

chemodectomas 

small cell carcinoma 

schwannoma 

choriocarcinoma

2.4. SENSITIVITY AND SPECIFICITY

DIAGNOSIS PATIENTS SENSITIVITY

Phaeochromocytoma

Neuroblastoma

Carcinoid 237

841

>1000

91.0%

69.8%

88 .2%

Medullary thyroid carcinoma 

Neural crest tumours

178

144

34.5%

39.6%
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Table 2.3. The specificity of mIBG scintigraphy in neuroblastoma 

(Hoefnagel e ta l, 1991).

SCINTIGRAM

NEUROBLASTOMA POSITIVE NEGATIVE

True 109 5

False 0 16

Total 109(95.6%) 21(4.4%)

2.5. PATIENT ADMINISTRATION

2.5.1. Storage and administration

The major contaminant of any 1-mIBG solution is free iodine. This must 

constitute less than 5% of the injected dose. Decomposition occurs more 

rapidly in the light and with elevated temperature. Therefore clinical 131I- 

mlBG is stored frozen and thawed by immersing it in a waterbath one hour 

beforehand. It is diluted in 0.9% saline and given as a slow iv. bolus 

injection since theoretically 131I-mIBG can displace catecholamines and 

result in a hypertensive crisis.

2.5.2. Thyroid blockade

Any free iodine will be avidly accumulated by the thyroid gland. Lugols 

iodine should be administered 48 hours beforehand and continued for 5-7 

days. Despite this precaution, even in fully compliant patients, thyroid 

accumulation is seen in 80% of therapy doses (Moyes et a l , 1985).
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2.6. PHARMACOKINETICS

2.6.1. Pharmacokinetics

mIBG biodistribution can be described by an open three compartment 

model. Clearance follows a bi-exponential pattern, with a rapid initial phase 

and terminal mean biological half life of 35 to 37 hours (Ehninger et al, 

1987; Lashford 1988).

Clearance is predominantly renal (132 ml/min./m2); However the total body 

clearance of 189ml/min/m2 represents the renal excretion, plus other routes. 

This is probably the dissipation of the drug from the plasma to the tissues. 

To support this, the volume of distribution of the drug is large (3071/min_1) 

suggesting that much of the 131I-mIBG is sequestered in tissues and then 

slowly released (Ehninger e ta l, 1987).

2.6.2. Biodistribution

In the rapid initial phase, renal levels peak at 5 minutes but drop to a third of 

the value within five minutes. This is the major route of excretion over the 

next 24-48 hours. This means that urine passed by the patient will be 

contaminated, which has implications for false positive scanning, and, if 

urine is spilled, radiation protection.
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Hepatic activity also rises over the first five minutes and thereafter remains 

constant due to the volume of the organ and blood flow. The liver has no 

specific uptake and the rapid increase in dose within the first five minutes is 

probably due to avid binding to non specific mucopolysaccharide molecules. 

Evidence to support this has been shown in the laboratory situation, where 

mIBG binds avidly to gels and interacts with small molecules.

Cardiac levels also peak rapidly but fall again within half an hour. The 

accumulation in heart tissue is inversely proportional to the level of 

circulating catecholamine in the plasma and blood. The peak levels, 

however, can be significant and this is the major barrier to the use of 211As- 

mABG. This problem is the subject of intense research at present as 

blockers of cardiac uptake are being developed.

Table 2.4. The human biodistribution of mIBG represented as

organ uptake with time after injection (Feine et al., 1987).

ORGAN 30 minutes 6 hours 24 hours 48 hours

SALIVARY
GLANDS

- -H- ++ +

LUNGS + + _

LIVER + ++ -H- +

SPLEEN _ _ _ _

KIDNEY ++ _ _ _

ADRENALS _ + + +

HEART ++ ++ +

TUMOUR + + ++ ++

Tumours are usually visible in scintigraphy between 24 and 72 hours post 

injection. Pulmonary uptake appears at 1-4 hours and is thought to be due
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to passive type 2 uptake by endothelial cells. Interestingly splenic uptake is 

not seen in children but does occur, over time, in adults due to sympathetic 

innervation of this organ. It is not clear how mIBG reaches the lumen of the 

bowel but mIBG can be localised to the small bowel 18 hours post dose and 

later in the large bowel at 24 hours. This could be due to swallowed saliva 

or alternatively due to the autonomic innervation of the bowel. Incidentally, 

the salivary gland uptake mentioned is mediated by neuronal mechanisms 

since reduced uptake is seen in Homers syndrome (Nakajo et al, 1984).

2.6,3. Metabolism

The biodistribution is unchanged at 72 hours but 60% is excreted after 24 

hours, and only 10-25% remains after four days. The majority of product 

remains unmetabolised due to the guanidine side chain. Below is a summary 

of the urinary metabolites and their relative amounts (Manger et al., 1986). 

Extremely small amounts (1-4%) are excreted in the faeces, saliva, sweat 

and exhaled breath.

Table 2.5. The urinary metabolites of mIBG
URINARY METABOLITE RELATIVE AMOUNT COMMENT

mIBG 84-89% some in vivo 
deiodination does 
occur

131I-Iodide 2-6% can be high if 
catecholamine levels 
high

131-I-metaiodohippuric acid 2-10%

1311-metaiodobenzoic acid and

131'-I-4-hydroxy-3-
iodobenzylguanidine

<2%
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2.6.4. Serum Concentrations

Peak serum concentrations during therapeutic infusions are one tenth the 

saturating concentration of ljiM. Animal experiments confirm that using 

doses of 0.003 to 30|iM does not change the above biodistributions 

(Shapiro and Gross 1987).

In vitro studies suggest that short exposures to high concentrations of 

mIBG would optimize loading of mIBG. The rapid plasma to tissue 

translocation and early renal clearance results in short lived exposure but 

estimates of tumour accumulation by therapy doses of 131I-mIBG suggest 

tumour concentrations of 3-30Gy are possible (Moyes et al., 1989., Smets 

and Rutgers 1991).

It must be borne in mind that non target tissues are exposed despite this 

tumour specificity. In view of this, Lou Smets and Maria Rutgers suggest 

pre-dosing with unlabelled mIBG could block these non target tissues 

(Smets and Rutgers 1991). In contrast the n.c.a. preparation with small 

concentrations of 1-mIBG exploit the specific uptake mechanism and reduce 

normal tissue exposure.
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2.6.5. Toxicity

Transient elevation of blood pressure at 6hrs has been seen in some patients 

but this returned to normal 2 hours later (Hartmann et al, 1987). There are 

no reported cases of hypotension although mIBG was originally developed 

from an adrenergic blocking agent. Short lived nausea is seen commonly and 

lasts for 2-3 days (Treuner et al., 1987). Transient elevation of liver function 

enzymes occurs within one week of treatment (Hartmann et al., 1987).

As expected, bone marrow depression resulting in thrombocytopenia and 

leucocytopenia is seen. Despite normal tissue accumulation of mIBG in the 

liver, adrenal gland, heart and salivary glands, no long term toxicity of these 

organs have been reported in the literature.

This specific type of uptake is used to terminate the synaptic signal and is 

characteristic of APUD cells and cells of the adrenal medulla. It is suggested 

that more differentiated cells express this type of uptake (Montaldo et al., 

1991). mIBG is accumulated via the noradrenaline transporter which 

permits effective accumulation of the drug, in fact thirty times that possible 

by passive diffusion. This type of uptake predominates at low 

concentrations of mIBG but becomes saturated at concentrations greater 

than IjiM(Smetsetal., 1989).

2.7. THE CELLULAR UPTAKE OF MIBG

2.7.1 Type 1 Uptake



This process, however, is saturable, temperature, sodium and oxygen 

dependent and can be blocked by specific inhibitors of sodium-potassium 

dependent ATPase transport mechanisms, and monoamine reuptake 

inhibitors such as ouabin and desmethylimipramine. Noradrenaline is taken 

up by the same pathway and competitively inhibits uptake of mIBG if it is 

present in excess (Jaques et a l, 1984; Jaques et al, 1987; Buck et al, 

1985; Gasnier et a l, 1985; Smets et a l, 1989; Ivaronne et al, 1991; 

Montaldo e ta l, 1991; Armour et al, 1994).

2.7.2. The Noradrenaline Transporter

The human noradrenaline transporter has been isolated from SK-N-SH 

cells (Pachoiczyk, Blakely and Amamra 1991). The cDNA sequence 

predicts a protein 617 amino acids long, with a relative molecular mass of 

69 kilodaltons. The N and C terminals are located on the cytoplasmic side 

of the membrane. The molecule contains 12-13 highly hydrophobic regions 

each 18-25 amino acids long which probably represent membrane spanning 

domains. The resulting structure also presents three possible glycosylation 

sites extracelluarly (Figure 2.5).

Figure 2.5. The noradrenaline transporter structure (modified from 
Pachoiczyk et al, 1991).



The molecular sequence bears striking homology to the GAB A transporter. 

46% of DNA sequence is identical (68% allowing for conservative amino 

acid substitutions). These common areas are responsible for accumulating 

neurotransmitters against concentration gradients by means of coupling to 

the transcellular gradients of Na and Cl. The properties of this transporter 

are characterised by type 1, active uptake.

2.7.3. Type 2 Uptake

This form of uptake is, in contrast, unsaturable and sodium independent. It 

is however temperature dependent (Armour et al, 1994). This is not non 

specific binding since the uptake increases linearly and is prominent at very 

high concentrations of 131I-mIBG. This is probably due to the accumulation 

of small charged ions by electrochemical gradients (Lampidis e ta l, 1989).

2.7.4. Type 3 Uptake

Experiments have indicated that, in the heart, non-neuronal mechanisms 

may account for 13-61% of cardiac uptake (Sisson et a l, 1987). Little is 

known at present about this type of uptake, but it appears only to occur 

when type 1 and type 2 uptake mechanisms have been blocked in 

pharmakokinetic studies of the rat heart. It may be due to passive diffusion 

mechanisms and intracellular binding (DeGrado, Zalutsky and 

Vaidyanathan 1995).
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2.7.5. Neuroblastoma Cell Lines

Many neuroblastoma cell lines including SK-N-LO, IMR32, (Buck et a l, 

1985), LNB-1, LA-Ni, CHP-212, NiE115, NB4A3, Neuro-2A, (Smets et 

al, 1989). SK-N-MC, N18 (Geurreau et al, 1990), GI-LI-N AND GI-CA- 

N (Montaldo et a l, 1991) show no ability for active uptake of mIBG. SH- 

N-SH and its subclones, SH-SY-5Y and SH-EP (Buck et al, 1985; Smets 

et al, 1989; Geurreau et a l, 1990), NB-100 (Smets et al., 1989) NB-G 

(Paffenholz et al, 1989), LAN-5 (Montaldo et al, 1991) and SKNBE(2c) 

(Montaldo et al, 1991) demonstrate both active and passive uptake.

2.7.6. Storage and Retention

The radiobiological effect depends on the dose and time exposure of the 

therapy dose given. Therefore the intracellular storage location of the 

mIBG molecule is important. In phaeochromocytoma and the normal 

adrenal medulla mIBG is stored in the neurosecretory granules (Gasnier et 

al, 1986; Smets et al, 1989). In neuroblastoma cell lines however, the 

cytoplasmic location of mIBG suggests it may not be stored in this way 

(Geurreau et al., 1990) but extragranularly, associated with the 

mitochondrion (Gaze et al, 1991). This has obvious implications for the 

type of radioisotope used as the nucleus would be the obvious radiation 

target.



The other implication is that if 131I-mIBG is stored differently within 

tumour and normal cells, there exists a possibility of exploiting this 

difference e.g. giving reserpine to deplete normal tissues or finding a 

pharmacological agent that will specifically block egression from tumour 

cells.

The intracellular level of mEBG is a result of a dynamic equilibrium of 

uptake and passive leakage from the cell. The level is not depleted by 

reserpine nor is exocytosis induced by acetylcholine or membrane 

depolarisation. Similarly this is oblivious to changes in calcium and 

potassium.

2.8. The METABOLIC EFFECTS OF mIBG

In clinical practice, the lethal effect of the radionuclide mIBG is due to the 

radioisotope attached. However, mIBG is itself cytotoxic when 

concentrations greater than lOmM are used (Bruchelt et al., 1988). The 

cytotoxic effect is not limited to neural crest cells and appears mediated 

dependent upon the guanethidine side chain. The target is the cytoplasm 

(Smets, Bout and Wissel988). The effects are primarily upon 

mitochondrial respiration. mIBG appears to interfere with glucose 

metabolism, by stimulating anaerobic glycolysis resulting in an increase in 

lactate production. The degree of cytotoxicity seems proportional to the 

degree of disruption of this glucose metabolism (Loesberg et al, 1990).



Studies in isolated mitochondria show that mIBG selectively inhibits 

complex 1 of the mitochondrial respiratory chain, but that oxidative 

phosphorylation remains intact.

2.9. TREATMENT WITH mIBG

2.9.1. Refractory Neuroblastoma

mEBG was used for therapy for the first time in 1985 (Lumbroso et al, 

1985). In 1986 an international conference was held in Rome as clinical 

experience increased. From 76 heavily pretreated patients, 12 (16%) had 

responses of 90% or more. 14 (18%) had a response of over 50%; 50 

patients (66%) had tumour shrinkage but less than 50% of the original size 

of tumour (Mastrangelo and D’Angio 1987). Groups have continued to 

treat patients with refractory disease. The main findings are that prolonged 

responses are seen, improving survival with little toxicity (Hutchinson et al., 

1991). In general patients with bone marrow involvement respond poorly 

and suffer toxicity (Matthay et al, 1991)

The encouraging results in heavily pretreated patients with limited toxicity 

led clinicians to use mIBG in fitter patients, pre-chemotherapy. 

Mastrangelo (Mastrangelo et al., 1993) still concerned about possible bone 

marrow suppression, used mIBG in 3 stage 3 patients. These patients have 

no bone marrow involvement by definition. He found that one patient had a



complete response with the two others showing a considerable reduction in 

tumour mass. There was no mIBG uptake in residual disease. Subsequent 

publications from this group indicate that these tumours, on relapse, still 

did not uptake mGBG suggesting that the mIBG effectively eradicated the 

mIBG sensitive clones. This group, encouraged by the lack of toxicity, 

went on to treat stage 4 patients.

2.9.2. Localised Disease

Strong radiobiological reasons exist for using mIBG when the patient first 

presents (See chapter 3). Hoefnagel and his colleagues therefore used 

mIBG when the patients first attended and found it rendered 80% of 

tumours surgically resectable (Hoefnagel et al., 1991). There was some 

hesitation initially in using this approach for stage 4 patients, since 

widespread disease of varying size is present, and 131I-MIBG is certainly 

suboptimal for very small tumour deposits, less than 1mm.

2.9.3. Combination Therapy

Meta-iodobenzylguanidine has also been used in combination with high 

dose chemotherapy and bone marrow rescue. (Corbett et al, 1991). The 

rationale behind this is outlined in chapter three.
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2.9.4 Palliative Therapy

When needed, mIBG can be effective in the acute palliation of symptoms, 

Treuner noted resolution of bone pain and fever as soon as 3 days 

(Treuner eta l, 1987).

2.10. Types of Radionuclide

Three types of radiolabelled isotopes of iodine exist for imaging and 

therapy. More recently astatine has been investigated.

Table 2.6. The properties of different isotopes

nuclide decay Tl/2 energy (kV) emission comment

131-I y,b 8.05 d 637, 723 B69-190KeV compromise

123_I y,electron 
capture

13.2 hr 159 low energy 
electron

Near ideal 
problems expense 
and supply

m-I y,electron 
capture

60 days 35 auger electron

211 As y,electron 
capture

7.2 hr 6.87 5.9 MeV high LET therapy

2.10.1 ‘“ r-mlBG

I-mIBG has been used primarily for biodistribution studies, where its 

long half life and low photon energy have practical advantages. The 14-21 

low energy auger electrons emitted, have a path length of 1pm (Charlton et 

al, 1978) and may be useful for therapy delivering selective radiation to



the cells accumulating the agent rather than irradiating neighbouring, 

possibly normal cells.

2.10.2 1231-mIBG

Both the half life and emission characteristics of 123I-mIBG make it 

attractive for scanning and therapy. The short half life results in high 

activity being delivered to the tumour while the favourable gamma energy 

emitted is 159keV. This is sufficient for therapy and imaging, being free of 

p  emissions and is similar to the gamma energy of 99mTc (140keV) so that 

123I-mIBG can be imaged easily with modem gamma cameras and the 

extremely sensitive SPECT (Single Photo Emission Computer 

Tomography) without additional shielding and radiation protection 

precautions. It has been confirmed in clinical studies that 123I-mIBG is a 

superior imaging agent to 131I-mIBG (Shapiro et al, 1983). The major 

limitation of 123I-mIBG at present is that, since it is manufactured in a 

cyclotron, it is expensive and not readily available. In addition, the short 

half life demands same day production and transportation of the agent for 

clinical use. A further disadvantage is that because of the short life 

prolonged scanning would not be possible.

2.10.3. i32I-mIBG

131I-mIBG represents a compromise between the three isotopes and is most 

widely used in clinical practice. The energy of the emissions is rather high,



364keV, requiring additional collimators to be fitted to the gamma cameras 

if imaging is desired. The same emission is efficient at cell kill but the range 

of the particle is such that neighboring cells are irradiated in a cross fire 

effect. The length of the half life allows for satisfactory tumour 

accumulation of radiation and repeated scanning to be performed if 

required.

2.10.4. 211 As-mABG

This isotope has a half life of 8 hours and is potentially the most lethal 

isotope, emitting high LET radiation, in the form of auger electrons, with a 

path length of 60pm in water. Impressive spheroid growth delay is seen 

with the above preparation, however preliminary animal studies 

demonstrate severe cardiac toxicity as well as tumour regression (Zalutsky 

e ta l, 1994).

2.11 Summary

mIBG was deliberately synthesised in the search for an agent to image the 

adrenal medulla. Specific accumulation by neuro-endocrine tumours led to 

imaging then therapeutic use. The n.c.a. formulation should enable 

enhanced tumour specific uptake.
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CHAPTER 3 THE

RADIOTHERAPY

OF

NEUROBLASTOMA
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3.1. INTRODUCTION

3.1.1. Radiotherapy in Neuroblastoma

The use of radiotherapy in neuroblastoma has traditionally been limited. In 

children with metastatic disease chemotherapy can induce effective remission. 

It is unnecessary in completely excised, node negative tumours but its role in 

incompletely surgically excised tumours is less clear.

Modem radiotherapy techniques include the use of total body irradiation and 

targeting agents. The regimens are based on scientific evidence and 

radiobiological modelling. They are used, in combination with other agents, in 

the setting of advanced metastatic disease.

3.1.2. The Radiobiology of Neuroblastoma

Radiobiological values are derived from in vitro work on human tumour 

cell lines and must therefore be interpreted carefully due the inherent 

limitations involved with doing so, but mean inactivation dose and SF2 

parameters, in particular, correlate well with clinical radioresponsiveness 

(Fertil and Malaise 1985). SF2 is the fraction of cells surviving after a 

radiation dose of 2 Gy. This is clinically useful since it is more 

representative of a single radiotherapy treatment and more representative 

of the initial part of the slope of the cell survival curve (Deacon, Wilson 

and Peckham 1985; Steel and Wheldon 1991).
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Table 3.1. Radiosensitivity parameters of cell lines (Fertil and Malaise 
______  1985)________________ ________ ___________ _____
Group Radio­

sensitivity
a  (Gy1) P (Gy'1) D o  (Gy) mean

inactivation
dose

sf2

1 high 0.54 7.6 1.35 1.52 0.27
2 moderate 0.38 4.2 1.47 2.1 0.43
3 low 0.28 4.6 1.16 2.49 0.51

Human neuroblastoma cell lines, in vitro, vary from one cell line to another but 

overall values of D0, Dq, n and SF2 indicate that they are highly radiosensitive 

and have little capacity for the accumulation of sublethal damage (Ohnuma et 

al, 1977; Deacon et al, 1985; Wheldon et al, 1986; Plowman 1986; 

Holmes et al, 1990). D0, Dq, n are values defined in the multitarget model of 

radiobiology.

Do indicates the radiation dose required to reduce a cell colony to 0.37 of 

the previous value; Dq (the quasi-threshold dose) indicates the point at 

which the cell survival curve crosses the x axis. If this value is large, this 

indicates that the cell line can accumulate or repair SLD (sub-lethal 

damage) well, n is another mathematical parameter which indicates the 

number of critical DNA hits a cell can accumulate before cell damage is 

irreparable.

Holmes performed split dose recovery experiments on neuroblastoma cells, 

and found that this radiosensitivity was not due to poor repair mechanisms. 

Post radiation repair in some neuroblastoma cell lines can be greater than 

even radioresistant lines (Peacock et al, 1988; Yang et al, 1990; Holmes 

et al, 1990). Radford, from his DNA neutral filter elution studies, 

suggested that the damage incurred by radiation may be greater (Radford et 

al, 1986). Therefore, for neuroblastoma, this results in a higher incidence 

of both irreparable lethal as well as, reparable, potentially lethal damage 

(PLD).

This high susceptibility, of neuroblastoma, to single hit, lethal damage 

suggests that multiple small fractions, could induce significant tumour kill,



particularly that of critical late responding tissue. Theoretically therefore, 

on the basis of the above radiobiological evidence, it would seem that 

radiotherapy treatment of neuroblastoma should be by many small 

fractions. It is essential that the treatment time should not be excessively 

prolonged, to avoid repopulation of the tumour by clonogenically still 

active cells.

Extending this reasoning, it should be particularly suitable for targeting 

radiotherapy, as continuous low dose rate radiation could exploit the 

sensitivity of neuroblastoma cells to irreparable damage while minimising 

the effect to normal tissues. There is a critical dose rate effect however, 

since neuroblastoma cells, although radiosensitive, are not necessarily 

deficient at repair (Peacock 1988).

Traditional external beam treatment is given at dose rates of about lGy per 

minute. In targeted radiotherapy, the dose rate kinetics of dose delivered to 

the tumour deposit depend on the pharmacokinetics and 

pharmacodynamics of the carrier molecule as well as the properties of the 

radionuclide. In general, dose rates are low <20-3OcGy per hour.

3.I.2.I. Repair and Repopulation

Repair of PLD has been observed in neuroblastoma cells in culture when 

dose rate falls below 2cGy per min (Holmes et al., 1990). However 

repopulation only occurs when dose rates fall to much less.
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3.1.2.2. Redistribution

During low dose rate therapy, cells blocked in the cell cycle redistribute 

into more radiosensitive parts of the cycle. This usually enhances the effect 

of the radiation but inevitably the effect will be influenced by repopulation. 

In practice this contributes little to outcome over the treatment period.

3.1.2.3. Reoxygenation

Hypoxic cells dominate the response of tumours to repeated large fractions 

of radiotherapy. In protracted courses of radiotherapy, these cells may 

gain access to more oxygen through redistribution of blood flow and 

because of lower oxygen utilisation. This makes this relatively hypoxic 

group of cells more sensitive. There is insufficient time for reoxygenation 

to occur during targeted therapy but the oxygen enhancement ratio for low 

dose rate therapy is small anyway. Therefore redistribution and 

reoxygenation, usually favourable factors, enhancing sensitivity to 

radiation, are of little benefit here.

3.2.1.4. Fractionation

The advantage of fractionation in sparing late responding tissues is limited 

in this situation since low dose rate radiation already does this. The 

exception would be if repeated dosing up-regulated the uptake of the 

mIBG. Clincal evidence suggests that repeated doses of mIBG do not this.
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3.2. THE RADIOTHERAPY OF NEUROBLASTOMA

3.2.1, Radical Radiotherapy

The role of radiotherapy is best reserved for the post operative setting in 

those with INSS stage 2B, 3 or 4 disease (Jacobson et a l, 1983; Jacobson 

e ta l, 1984; McGuire et al, 1985; Castleberry etal., 1991). Indications for 

treatment would be incomplete resection, spilled tumour at surgery and 

node positive disease.

Doses required for external control are however age related. Jacobson 

noted on review of 58 patients, treated with radiotherapy, that effective 

local control could be achieved with 15 Gy in children less than one year 

(Jacobson et a l , 1984). Earlier reports suggested local control could be 

established with smaller doses. Jacobson used 12 Gy, but in this particular 

series a four month old child treated died one month after treatment of 

sepsis with documented residual disease at post mortem (Jacobson et a l, 

1983). Doses as low as this may therefore be inadequate to effectively 

control disease. For children aged one to two years, 15-25 Gy is required 

for tumour control. Older children appear to require larger doses: 40 Gy 

for children less than five years old and 50 Gy for older children (Jacobson 

et a l, 1984). Neuroblastoma in older patients probably represent a more 

biologically aggressive end of the spectrum, as older children are also more 

likely to harbour tumours of advanced stage disease with poorer biological 

risk factors.
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3.2.2. Palliative Radiotherapy

Stage 4S patients are a heterogeneous group but a proportion of patients 

are destined to do well, with little or no treatment. However, gross 

hepatomegaly, if present, can induce respiratory compromise, inferior vena 

caval obstruction and compromise renal perfusion. Radiotherapy is 

reserved if organ function is threatened. Small doses, such as 4.5 Gy in 

three fractions, are adequate to induce tumour involution. This dose is too 

small to kill all the tumour cells but appears to provoke maturation.

Radiotherapy is given in small fractions of 1.5. to 1.8 Gy. This is an 

attempt to reduce late normal tissue damage. It should be noted that this 

strategy may not always be successful in very young children where growth

and proliferation are continuing (Steel and Wheldon 1991).

In patients with incurable disease, treatment is less constrained by the long 

term potential morbidity of radiotherapy and the radiosensitivity of 

neuroblastoma can be exploited to control soft tissue and bone metastases 

effectively in one or two fractions of 6-8Gy (Halperin and Cox 1984).

3.2.3. Total Body Irradiation

Philip and Pinkerton (1989) reported a 20% 2 year survival, in a selected

group of patients with recurrent neuroblastoma treated with intensive



therapy, compared to 0% in the control group. The use of megatherapy 

with or without TBI is based on this study. The European Bone Marrow 

Transplant Registry has reviewed 439 intensive therapy procedures (with 

bone marrow transplant) and concluded that TBI based procedures lead to 

a similar survival but that toxicity was greater, 16% in the TBI and 

chemotherapy group, compared to 8% in those ablated with chemotherapy 

alone (Landenstein and Philip 1992). Regimens using TBI are based on the 

following assumptions, o^O.SScGy'1; P^XObScGy'1 and finally, that total 

body irradiation, delivered in 7x2 Gy fractions results in a 6 log cell kill. 

Calculations suggest that this should be sufficient to sterilise small deposits 

of radiosensitive neuroblastoma cells of less than 1mm in diameter. The 

above regimens must therefore be unable to completely sterilise every 

potential neuroblastoma cell.

3.3. TARGETED RADIOTHERAPY OF NEUROBLASTOMA

3.3.1. Introduction

Radiation dose can be selectively delivered to tumours by carrier 

substances with radionuclides attached. This strategy depends on the target 

tissues being able to concentrate the carrier molecule to a high degree 

Ideally this would result in a high tumour dose, limited total body dose and 

therefore low normal tissue toxicity. The therapeutic efficiency of the dose 

given depends on the radiosensitivity of the neuroblastoma cells, the 

growth kinetics of the individual tumour and the dose rate profile of the
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radiopharmaceutical used. The characteristics of the emitted radiation must 

also be considered.

3.3.2. Clinical Examples

Anti-neuroectodermal monoclonal antibodies have been developed for 

neuroblastoma targeted radiotherapy but unfortunately, cells other than 

those of the tumour also express the target epitopes resulting in a cross 

reaction with normal surface antigens. Differences between malignant and 

normal cells are therefore quantitative rather than qualitative. In addition, 

diffusion of macromolecular targeting agents into large tumour masses may 

be limited (Mairs et a l , 1992). Radiolabelled mIBG engineered for adrenal 

imaging, is dependent upon specific accumulation by a noradrenergic 

reuptake mechanism (Chapter 2).

In vitro studies of neuroblastoma cells expressing nerve growth factor 

(NGF) receptor have been shown uptake to preferentially 125I-NGF (Mairs 

et a l, 1991). 13iodine labelled epidermal growth factor (EGF) although 

internalised and rapidly degraded, also shows enhanced killing of those 

cells that express EGF receptor (Capala and Carlsson 1991). Eventually it 

is hoped that targeting agents with specificity for cancer cell genes will be 

found.
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3.3.3. Radionuclides

The effectiveness of any targeted therapy depends on the uptake of the 

agent, the site of its accumulation within the cell, and the range of the 

emitted radiation. Radioactive decay particles have a characteristic mean 

path length, over which distance potentially cytotoxic ionisations take 

place. There is an optimum size of metastases curable which is determined 

by the path length of each nuclide (Humm 1986.)

Table 3.2. Summary of characteristics of radioactive isotopes used in 
targeted radiotherapy.

RADIONUCIDE HALF LIFE EMITTED
PARTICLE

RANGE OPTIMUM
SIZE

123 j 15 hrs auger 1pm 1pm

125 j 60 days auger 1pm 1pm

211 At 7 hrs a 0.5mm 600pm

199 Au 3.1 days P 0.3mm 400pm

131 j 8 days P 0.8mm 2mm

90 y 2.7 days P 5mm 4cm

Theoretically small tumour deposits have a small number of clonogenic 

cells and therefore require a small dose to sterilise them. Supposing the 

mean path range of the decay particle is greater than the size of the deposit, 

most of the disintegration radiant energy is deposited in surrounding tissue, 

outwith the tumour, contributing nothing to cure but causing toxicity. In a
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larger metastases the majority of the ‘crossfire’ radiation is absorbed 

within the tumour.

Figure 3.1. Model showing absorption of disintegration energy of 
isotopes in tumour deposits of various sizes.

There is an optimum size of deposit, where most of the radiation 

accumulated by the tumour cells is absorbed efficiently by the 

micrometastases and cure is likely. This is represented below (Figure 3.2.).

Figure 3.2. Diagram showing probability of tumour cure and tumour
diameter (from Wheldon 1994)
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Within any tumour, there is heterogeneity of uptake between cells and 

therefore between areas of tumour. If the path length of the emitter is 

sufficiently long areas that have not accumulated the targeting agent can 

still be irradiated. The path length of some P emitters can be several 

millimetres. With short range emitters, e.g. Auger emitters where the path 

length is short, the emitted disintegration energy of the isotope is absorbed 

within a single cell. To be of any benefit, an Auger emitter has to be 

delivered to the DNA of the cell.

As tumour size becomes larger, the number of clonogenic cells increases, 

and the dose required for cure goes up. Since the maximum absorbed dose 

accumulated in large necrotic and hypoxic areas may be limited, the chance 

of cure decreases. In vitro work with 131 I-mIBG using spheroids of 

different sizes supports the above observations (Gaze et al., 1992). Despite 

these unique characteristics and the specificity of targeted radiotherapy the 

use of mIBG as a single therapeutic agent would not be sufficient to 

eradicate all disease. (O'Donoghue eta l, 1991).

3.4. COMBINATION THERAPY

3.4.1. Introduction

Ablation of all sites of disease is a prerequisite for cure in neuroblastoma. 

Combination therapy for neuroblastoma exploits the complimentary 

characteristics of each modality.
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Figure 3.3. Log kill versus tumour diameter for all components of 
combination therapy.
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3.4.2. TBI Component

TBI is needed to ablate extremely small metastases, <lmm in diameter.

The dose of total body irradiation is determined by the intrinsic 

radiosensitivity of the tumour type. For neuroblastoma a minimum dose of 

2 x 2Gy is sufficient (Amin et al, 1993). The dose is also limited by whole 

body tolerance and in clinical practice 7 x 2 Gy has been tried (Gaze et al., 

1995). This probably results in overkill of very small single cell metastases. 

For neuroblastoma there may be an advantage for reducing the TBI 

component in order to increase the mIBG component. TBI should be 

fractionated to spare normal late tissues without compromising tumour cell 

kill.

3.4.3. mIBG

The optimum mIBG dose also depends on tumour radiosenstivity, uptake 

of targeting molecules, and the contributions from the external beam dose.



It is important that the critical tolerance of normal tissues is not exceeded. 

A total body dose of 2 Gy should not be exceeded. Typically 0.005 - 0.015 

percentage uptake per unit mass of the injected radioactivity is absorbed by 

the tumour, over a period of two to three days. After this time, the dose 

rate will be too low for tumouricidal effect resulting in a proportion of the 

dose being wasted.

3.4.4. External Beam

External beam dose depends on the site and size of any residual local 

tumour and is limited by normal tissue tolerance. Doses in the range of 35- 

50Gy are used.

3.5. CONCLUSION

Local radiotherapy treatments are effective but used less commonly 

because of concern of long term morbidity from radiotherapy.

The prognosis for stage 4 neuroblastoma patients aged older than one year 

at diagnosis is poor. Relapse occurs within a predictable period (Collins, 

Loeffler and Tivey 1956). This implies the presence of occult disease in 

either the primary or metastatic sites. The combination strategy designed 

above covers both micro and macroscopic disease with encouraging 

results. Of the five poor prognosis patients treated, 2 were still alive at 17 

and 18 months at the time of publication (Gaze et a l, 1995).
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CHAPTER 4 CONTROL OF THE

PRIMARY SITE IN

METASTATIC

NEUROBLASTOMA
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4.1. INTRODUCTION

In 1982, a database of patients, treated at major paediatric oncology centres in 

Britain and Europe, was established by the United Kingdom’s Children’s 

Cancer Study Group (UKCCSG). For several years, relevant data, primarily 

concerning patient treatment, has been collected and the information obtained 

used to form the basis of research and clinical trials. The patients for the 

following analysis were obtained from this source enabling a substantial number 

of cases of this relatively rare tumour to be studied.

Only stage 4 patients were studied. This population of patients therefore 

represents a selected group of poor prognosis patients from specialist centres. 

This, however, is precisely the population of children with neuroblastoma in 

which cure rates remain poor and intensive research is still required.

The following chapter therefore performs a retrospective analysis of this 

sample population, with particular concentration on the effectiveness of local 

treatments in controlling the primary site in what is essentially a metastatic 

disease. During the analysis, it was also possible to examine prognostic factors 

influencing disease progression and survival.

The following results section is therefore divided into the following sections:

1. A description of this population of stage 4 patients.



2. An examination of the effectiveness of surgery and radiotherapy in 

controlling the primary site.

3. The sites and importance of residual disease after standard therapy.

4. Relapse and prognostic sub-groups.

5. Survival.

4.2. MATERIALS AND METHODS

4.2.1. Data Source

The original source of data was from details of patients registered within the 

United Kingdom Children’s Cancer Study Group (UKCCSG) and European 

Neuroblastoma Study Group (ENSG) ‘survey’ data base. Additional 

information for complete analysis was obtained by surveying the participating 

centres directly.

The UKCCSG was formed in 1977 by a group of paediatric oncologists within 

the United Kingdom, with the aim of improving the management of children 

with cancer. The group is now much larger and includes interested 

pathologists, scientists and epidemiologists. Data managers have collected 

information on all patients with childhood cancer in Britain. Childhood 

tumours, being relatively rare, benefit from this clinical collaboration. The 

data collected is used to propose treatment protocols and to design future 

clinical trials.



The European Neuroblastoma Study Group is an independent European 

society with a specific interest in designing trials concerning the treatment of 

neuroblastoma. The survey database was initiated in 1982 and stored in the 

UKCCSG offices. It is, therefore, not a true population based registry but a 

database resulting from this international collaboration of clinicians from 

specialist centres. Basic patient details and proposed management were 

registered regardless of whether the patient was subsequently treated and 

followed up in a separate trial.

By May 1993, over 1,200 patients were registered but only those satisfying the 

criteria for Evans Stage IV (Evans et al, 1971) or INNS stage 4 (Brodeur et 

al, 1988) were selected for further study.

The database contained information on patient age, pattern of disease at 

presentation, disease extent and initial treatment. Details of surgical resection 

and pathological assessment of the surgically resected specimen were obtained 

by contacting the participating centres directly (Appendix 1). If it was indicated 

on this questionnaire that radiotherapy had been given, a separate 

questionnaire, asking for planning details was issued (Appendix 2). Non 

replying centres were subsequently re-contacted to increase the response rate. 

Follow up information was acquired from ENSG trial follow up forms along 

with the above sources.

This information, having been noted on specifically designed forms, was then 

entered on to a computer data spreadsheet (QPRO) and entry data checked



three times in total against the original patient data form. Details were 

converted to either categorical or continuous variables and a total of fifty seven 

variables listed for each patient. The types of variables used are summarised in 

Appendix 3.

4.2.2. Definitions

The extent of disease at presentation, after therapy and on relapse, was defined 

according to standard clinical diagnostic methods (Brodeur et al., 1988).

The completeness of surgical resection for each patient was assessed by both 

the surgeon and pathologist, each independently examining the same resected 

specimen.

The extent of surgical resection was defined by the surgeon, according to three 

categories. Firstly, a complete surgical excision was defined by the surgeon as 

complete macroscopic removal of all visible tumour and involved nodes during 

the operative procedure. Pathological examination obviously later confirmed 

whether this was complete or incomplete. Partial excision was estimated by an 

assessment of the amount of residual tumour, for example 75%-99%. There 

was a separate category for less than 75% of tumour removed at the time of 

operation.

The pathologist was asked to examine the same resected tissue and comment 

on completeness of excision, firstly by macroscopic examination of the tumour



and nodes, then microscopically determining the extent of tumour at resection 

margins. In addition, the histopathology of the tumour was described. For 

statistical analysis, the most primitive tumour elements present were noted 

rather than the predominant component.

The documentation of residual disease at the primary site was based on the 

pathologist’s assessment of surgical resection. Hence residual disease in the 

primary site could vary from microscopic residual disease through macroscopic 

residual disease to macroscopic non-resectable tumour.

The calculation of the external beam dose assumed a=0.85cGy, p=0.065cGy 

with a doubling time of 2 days.

Consolidation treatment was described as high dose chemotherapy, with or 

without radiotherapy, with bone marrow transplantation.

The end of treatment outcome defines the status of patient after initial 

chemotherapy and surgical excision, before additional high dose 

chemoradiotherapy, if appropriate.

Relapse was defined as a recurrence of disease, preferably histologically 

proven, in a patient previously free of neuroblastoma. The date of relapse 

provided an estimate of the time period from date of diagnosis to date of 

relapse and information on disease free survival. The length of time from date 

of diagnosis to death provided an estimate of the overall survival.
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4.2.3. Statistical Analysis

Statistical analysis was performed by using a BMDP package (Dixon 1988) 

and graphical representation using Harvard Graphics. An initial examination of 

the data involved checking and examining the completeness of the data 

accumulated. ‘Unknown’ variables were, if possible, corrected. Otherwise 

missing data were checked for sources of error but were determined to occur 

in a randomly distributed manner.

Preliminary data analysis determined the basic characteristics of the study 

population. General information on age at diagnosis, sex and patterns of 

disease presentation and relapse were obtained in this way. These patterns were 

examined for sources of error, and checked. For example it was important to 

check if the patients in one subgroup had the same prognostic factors as the 

group(s) under direct comparison.

The next step involved a univariate analysis of variables e.g. relapse and death. 

Categorical variables were first cross tabulated and tested using the chi squared 

test. Ordinal variables, that is discrete variables connected in a specific order, 

for example patterns of metastases, were analysed using special chi-squared 

techniques. This type of information can be of limited use. For example, it is 

more informative to note not only whether or not, but how long it took to 

relapse. In this situation the disease free survival (dfs) indicates this variable 

more appropriately.
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Continuous data were tested using Student's ‘t ’ test but an ‘anova’ test was 

necessary if more than two groups of variables were involved. Survival 

between different groups was compared using the ‘Mantel HaenzeF test 

enabling two or more curves, rather than isolated points on a graph, to be 

compared Prognostic factors were determined using ‘Cox’ multivariate 

analysis. These factors: age; sex; presence of bone marrow metastases at 

presentation and BMT were carefully considered throughout the analysis to 

ensure the variables were randomly distributed and did not result in bias.

4.3. RESULTS

4.3.1.1. Population of ENSG Stage 4 Patients

There were 727 patients registered, from 17 British and 12 European Centres, 

with the ENSG survey database from 1982 until May 1993. On average 60 

cases were notified per year with no significant difference in the incidence of 

annual registered cases.

Figure 4.1. The number of ENSG Stage 4 patients recruited from
each centre
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4.3.1.2. Age

The mean age (SD) was 3.52 (2.76) years, with a range of 0-22.34 years. 73 

(10.4%) children presented aged less than one year old at diagnosis. 80.6% of 

children presented before the age of five years and 20 children (2.8%) 

presented after the age of 10 years.

Figure 4.2. The age distribution of ENSG Stage 4 neuroblastoma patients.
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Children aged less than one presented as follows: 25 patients less than six 

months; 12 aged six to eight months and 36 aged between eight months and 

one year.

4.3.1.3. Sex

There were 402 boys compared to 304 girls in this series, indicating a slight 

male preponderance of 1.32:1.
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4.3.1.4. Primary Sites of Disease

The abdomen was the site of primary disease in 601 patients (82 .6%). This was 

followed by thoracoabdominal (38, 5.2%); thoracic (32, 4.3%); multiple (12, 

1.6%); pelvic (10, 1.4%) and cervical (5, 0.6%) respectively.

In those aged less than one year at diagnosis the thoracic cavity was more 

commonly affected by the primary. In this series of stage 4 patients, the site of 

primary was not of prognostic significance.

Figure 4.3. Primary sites of disease.
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4.3.1.5. Metastatic Sites.

Bone (67.2%), bone marrow (76.6%) and lymphnodes (15%) were common 

sites of metastatic disease. The liver was involved in 20.4% of cases but never 

in the small number of cervical sites of primary. Similarly the pleura was an 

unusual site of spread, documented as 7.8% in this series and only in those 

cases of thoracic and thoracoabdominal sites of primary. A single bone
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metastasis was seen in 8.4% of cases. The category defined as ‘other’ included 

various sites such as CNS, skin, testes and pancreas (15.8%),

Figure 4.4. Metastatic sites at presentation
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There was no specific pattern of metastatic disease associated with the site of 

primary. The presence of bone or bone marrow metastases at presentation was 

associated with a poor outcome (p=0.002).

The number of metastatic sites involved at presentation was also found to be of 

prognostic significance (p=0.002).

Table 4.1. Correlation between the number o f metastatic sites involved at

presentation and outcome.

Number of 
met. sites

Alive NED Alive with 
disease

Dead

0 2(50%) 1(25%) 1(25%)

1 27(36.5%) 3(4.1%) 44(59.5%)

2 26(13.6%) 25(13.1%) 140(73.3%)

3 19(12.9%) 11(7.5%) 117(79.6%)

4 16(20.3%) 4(5.1%) 59(74.7%)

5 3(13.0%) 2(8.7%) 18(78.3%)
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4.3.1.6. Treatment

It was not a major aim of this study to analyse the systemic therapy given, 

nor was it necessary to treat the registered patient according to ENSG 

protocol. 495 patients received radical chemotherapy and 81% were 

treated by ENSG protocol. The remainder received similar regimens.

4.3.1.7. Population Summary

Children with neuroblastoma, present usually with an abdominal primary 

and widespread metastatic disease affecting the bone, bone marrow and 

lymphnode sites

Features of prognostic significance in this population are

1. Aged less than one year at diagnosis (p<0.0001)

2. The presence of bone or bone marrow disease (p=0.002)

3. The number of metastatic sites involved at presentation (p=0.002)
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4.3.2. Local Therapy For ENSG Stage 4 Patients

4.3.2.1. Surgery

In 510 cases, details of surgery are known. At the end of induction

chemotherapy, surgery was still not possible in 175 (34.3%). The primary

was considered technically unresectable or surgery contraindicated by the 

persistence of metastatic disease. Occasionally parental consent was refused 

or no visible tumour visualised by standard radiological means. The group 

receiving surgery is therefore comparatively selected, as it excludes those 

children who progressed, or died before completing chemotherapy or as a 

result of chemotherapy.

Figure 4.5. The surgeons estimate of the feasibility of surgical resection

CO M PL ETE NIL V ISIB LE U N R E SE C T A B L E  SPILLAGE OF

E X T E N T  OF  S U R G I C A L  R E S E C T I O N

311 (61.9%) patients had a surgical procedure performed to the primary 

site. 24 patients (4.7%) had surgery attempted at initial diagnosis. There 

was no difference in outcome if the surgery was performed ‘upfront,' before 

any chemotherapy. Therefore for the analysis all patients undergoing surgery 

were considered as one group. Considering only the 335 cases who received 

surgery, the surgeon felt complete resection had been achieved in 53% of
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cases; 75-99% of the tumour had been removed in 33% and less than 75% 

of the tumour in 10%. No tumour deposits were visible at laparotomy, after 

chemotherapy, in 13 cases (4%). This indicates a good surgical selection o f 

cases.

4.3.2.2. A Comparison of the Extent of Surgical Excision

A comparison was made between the extent o f surgical resection and its 

effect on progression free and overall survival. It was found that the 

surgeon’s estimate of completeness of resection, at the time of laparotomy, 

had prognostic significance concerning overall survival (p=0.047).

The pathologist's opinion on the same resected specimen was also noted and 

this showed, as expected, more extensive disease than the surgeon could 

estimate. This resulted in significant disagreement between the pathologist’s 

and the surgeon’s estimate of the extent of resection (kappa=0.351).

Figure 4.6. A comparison of estimates of complete resectio
In 276 cases, the extent o f surgical resection, estimated by 
the surgeon at the time o f surgery and the histological extent 
o f surgical resection, determined independently by the 
pathologist were compared. A kappa value o f <0.4 indicates 
significant disagreement.
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This point has been made since statistical analysis showed that the 

pathologist’s estimate o f the extent of surgical clearance was a more 

accurate predictor of outcome (p<0.0001 for progression free survival and 

p=0.0032 for survival). The pathologists estimate o f the extent o f resection 

is used to determine the extent of residual disease. The following categories 

therefore refer to complete resection, microscopic residual disease and 

macroscopic disease.

The graph below demonstrates the prognostic significance of the 

pathologists estimate of the extent of the surgical resection.

Figure 4.7. The effect of completeness o f surgery on survival.
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A multivariate analysis was used to determine the importance of each 

category of resection. Table 4.2. demonstrates that the categories of 

‘complete’ and ‘microscopic residual disease’ groups have similar ‘p’ 

values. There is however, a larger difference if the surgeon leaves residual 

macroscopic disease, the outcome being similar to the non-resected group. 

This means therefore, that it is essential to obtain as complete a resection as 

possible.

Table 4.2. The significance of the extent of surgical excision

CATEGORY APPROX. CHI SQ. P-VALUE
complete resection 15.81 0.0001
microscopic residual 0.04 0.0625
macroscopic residual 0.5 0.477
non resectable 0.00 0.9647

This series of patients was large enough to determine the importance of 

complete excision in those patients undergoing a high dose consolidation 

procedure. The result was determined by comparing three groups of 

patients: Those with completely resected disease; Those with microscopic 

residual disease and finally those with macroscopic tumour remaining after 

surgery. For each of these three categories, patients were divided into those 

undergoing a transplant procedure and those not. The results showed that 

there was no significant additional advantage from the extent of surgery 

when comparing those in the transplant group (p=0.12).
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Figure 4.8. The effect of the completeness of resection on patient 

outcome correlated with transplant.

For each o f the above, histologically defined categories, 2 

groups o f patients are compared directly: those patients 

having a high dose consolidation procedure and those not.
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4.3.2.3. Histology of Resected Specimens.

The pre-chemotherapy histology was known in 213 cases, with 

neuroblastoma predominating in 70% of cases. 25% of cases had 

ganglioneuroblastoma at presentation and only 5% ganglioneuroma. At the 

time of surgical resection, the majority of patients had been exposed to 

chemotherapy resulting in a different composition of histological types.



e 4.3. The histology of resected specimens

TYPE NUMBER (PERCENTAGE)

neuroblastoma 55 (34%)

ganglioneuroblastoma 41 (25%)

ganglioneuroma 25 (16%)

no viable tumour 23 (14%)

differentiated 14 (9%)

The histology of the resected specimen was an important prognostic 

variable with no viable tumour and ganglioneuroblastoma being associated 

with the best outcome (p=0.0002 for overall sur/ival).

Figure 4.9. The relationship between histology o f the resected tumour 

and survival.

In 155 cases the complete histopathological and survival 

details were known.
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4.3.2.4. External beam radiotherapy

Data was available for only 17 patients. Therefore no firm conclusions could 

be made. A graphical representation suggested that the greater the degree of 

cell kill the more likely was control of the primary site.

Figure 4.10. Control of the primary correlated with cell kill
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A greater degree of cell kill was achieved the larger the dose. Figure 4.11.

below indicates clinical practice in that most children received doses greater that 

2000cGy.

Figure 4.11. The relationship between dose and local control.
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4.3.2.S. The Effect of Clearing the Primary Site

To observe the effect of clearing the primary site of tumour, an analysis was 

performed concerning two groups of patients. Firstly those children who are 

clinically and radiologically free o f tumour and secondly, those children who 

have residual disease at the primary site but are free o f disease elsewhere.

44.6% of those with residual disease in the primary site progressed at the 

primary site, compared to only 18.9% of those in whom the primary site was 

microscopically free of tumour (p<0 0005). Therefore clearing the primary site 

reduces the chance of local relapse.

Figure 4.12. The effect of clearing the primary site.

Two groups o f patients are compared directly, those with a 

histologically confirmed clearance o f the primary and those 

with residual disease at the primary site.
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4.3.2.6. Summary of Local Treatments

• The surgical selection of cases is good.

• There was no difference in outcome if surgery was performed 

‘upfront.’

• The surgeon’s estimate of the extent of resection has prognostic 

value (p=0.047).

• The pathologist’s estimate of resection has much greater prognostic 

value (p<0.003).

• The surgeon and pathologist often disagree as to the extent of 

clearance (k=0.351).

• It is important to achieve as complete resection as possible as 

complete resection reduces local relapse and improves dfs and 

overall survival (p=0.001).

• The sample of patients having radiotherapy to the primary was small, 

therefore no firm conclusions could made.

• A surgical clearance of the primary site reduced local relapse from 

44.6% to 18.9%.

• The histopathology of the resected specimen has prognostic 

significance (p=0.0002).

• Consolidation therapy and complete resection are independent 

prognostic factors.
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4.3.3. Residual Disease

Patient disease status was assessed at this point after completion of induction 

chemotherapy and after surgical resection of the residual primary site, if this had 

been possible. Within this group of patients 145 underwent a high dose 

procedure involving bone marrow transplant. The status of metastatic sites was 

determined by standard radiological means. The status of the primary was 

determined by the pathologist's estimation.

Table 4.4. Sites of residual disease after induction therapy and surgery

SITES OF DISEASE NUMBER OF 
PATIENTS

PERCENTAGE OF CASES

DISEASE FREE 359 61%

BOTH PRIMARY AND 
METASTATIC DISEASE

133 22.6%

PRIMARY SITE ONLY 79 13.4%

METASTATIC SITE ONLY 17 2.9%

4.3.3.1. Sites of Resid ual Disease

The primary site therefore appeared to be the commonest site of residual disease 

(62.3%) but this included a range of patients from those with unresectable, 

gross disease to those with microscopic residual disease. Metastatic involvement 

remains in (40.9%) of cases. Bone (23.5%) and bone marrow (23.7%) are 

frequently involved. Children aged less than one year had the same incidence of
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involvement and pattern of sites of residual disease despite having a better 

outcome.

Figure 4.13. Sites of residual disease.

Sites o f residual disease in patients after chemotherapy and 

surgery. The numbers are expressed as the percentage o f cases 

where these details were known for each category.

PfclMARY METS LYMPH NOt-E ABT NODE OTH NOC‘E LIVES BONE BONE MABF.OW PLETJSA OTH5F

SITE OF DISEASE
TOTAL CASES 406 445  410 419 422 4 2 6  43 0  427 4 2 6  427

The ‘other’ category consisted of skin, orbital, CNS and pancreatic metastases 

and this accounts for 4.2%. Liver and pleura were sites of residual disease in 

3.5% and less than 1% respectively.

4.3.3.2. Residual Disease and Survival

The presence of residual disease, at any site, adversely affected both the disease 

free survival (p<0.0001) and overall survival (p<0.0001).
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Figure 4.14. The presence of residual disease and survival.

This graph demonstrates the survival outcome o f those patients 

grouped in table 4.4.
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The burden of residual disease was also important regarding the probability of 

relapse. If disease is present at any site, primary or metastatic, only 15 .6% of 

patients survive compared with 34.2% (p<0.0001).

Table 4.5. Number of residual sites of disease and outcome.

Number of
residual
sites

Alive NED Alive with 
disease

Dead p value

0 38 (34.2%) 13(11.7%) 60(54.1%)

1 14(15.6%) 14(15.6%) 62(68.9%)

2 5(9.1%) 4(7.3%) 46(83.6%)

3+ 0(0%) 3(6%) 47(94%) <0.0001
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4.3.3.3. Summary of Residual Disease

• Common sites of residual disease are the primary, bone and bone 

marrow.

• The presence of residual disease adversely affects survival. (p<0.0001)

• The bulk of residual disease is important.(p<0.0001)

• Residual disease in the bone or bone marrow particularly adversely 

affects survival.(p<0.002)

4.3.4. Relapse

246 patients (70%) of those who achieved complete remission with induction 

therapy or high dose chemoradiotherapy, relapsed. Only 114 (15.7%) of the 

total number of patients remain free of disease. 52 (7.1%) died during treatment 

either due to tumour progression or as a result of therapy. 133 (18.3%) suffered 

progressive disease or progression after a response. 11 cases were censored.
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4.3.4.1 . Collins Risk Principle

The median follow up time was 1.31 years (range 0-14.62 years). Collins (1956)

proposed a mathematical model for the risk period for relapse for paediatric

malignancy. This was based on the observation of the growth rate of tumours. For

neuroblastoma and other tumours this was the patients age at diagnosis plus 9

months. The application of the Collins risk period showed that only six patients

developed a late recurrence or tumour progression beyond the Collins risk period of

age at diagnosis plus nine months. There were no special characteristics of these

patients.

Figure 4.15. The Collins risk period of relapse for ENSG stage 4 patients. 
(Please note both these axes are months)
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4,3.4.2. Sites of Relapse or Progressive Disease

Metastatic sites remained the most common sites for relapse or progressive disease, 

particularly bone (42.6%) and bone marrow (40.8%). Lymph nodes were a site of 

recurrence in 12.3% of cases. The liver, CNS and pleura were relatively uncommon 

sites, 7.5%, 5.6% and 2.5% respectively. The primary site was a common site for 

relapse and progressive disease 39.8%. These findings show a similarity to those 

sites of residual disease. This indicated that sites difficult to clear of disease e.g. 

bone or bone marrow were also common sites of relapse.

Figure 4.16. Sites of relapse.

PRIMARY M FTS ABD. NODE O T R  NODE U V ER BONE BONE MARROW  PI-EURA CNS OTHER

SITE OF RELAPSE
TOTAL CASES 440 445 359 413 437 444 441 439 442 437

The factors of age (p<0.0001), residual disease (p<0.0001), bone marrow transplant 

(p<0.001) and extent of surgical resection (p<0.0001) were significant factors for 

progression free survival. There were sufficient cases in these groups to analyse 

their pattern of relapse separately.
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4.3.4.3. Age

This group of patients were checked for bias but they were well distributed for 

all major variables. There was no difference in the pattern of metastatic disease 

and residual disease at the end of standard therapy in these children. One 

important difference was however that they were less likely to relapse. The 

difference was most marked in the bone and bone marrow sites. All sites of 

relapse were less frequently involved except CNS sites, in 16% of cases 

compared to 7% of older children. This probably reflects the different biology of 

neuroblastoma in children aged less than one.

Figure 4.17. A comparison of sites of relapse, in ENSG Stage 4 

neuroblastoma patients of different age groups.
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4.3A4. Consolidation therapy

This group of patients showed a reduction in relapse in the primary site. The 

bone and bone marrow are also less commonly affected, but the pattern of

relapse did not differ from that of the general group. CNS relapse was more

frequent in this group. This is important as CNS relapse becomes more 

important as control of systemic disease improves.

4.3.4.5. Residual Disease and Relapse

These factors have already been examined but briefly, the pattern of relapse for 

those children with disease remaining in the primary site was no different from 

that of the group as a whole. This implies that disease in the primary site 

eventually re-seeds to metastatic sites.

4.3.4.6. Summary

• The Collins Risk Principle holds for ENSG stage 4 patients.

• Sites difficult to clear of disease are often sites of relapse.

• Children aged less than one year and those having consolidation therapy 

are less likely to relapse but when they do so the pattern of relapse is 

the same.

• Achieving complete removal of the primary reduces local relapse and 

improves disease free and overall survival.
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4.3.5. Survival

The median time of follow up was 1.31 years range (0-14.62yrs). At this time 

the number of patients alive with no evaluable disease was 117 (16.1%). 71 

(9.8%) were alive but with disease. 509 children (69.9%) had succumbed to 

their disease. For 31 (4.3%) status is unknown.

The overall survival of this group of patients remains poor. Two, five and ten 

year survival was 38%, 20% and 18% respectively. In this series of patients 

there are no long term survivors beyond fifteen years.

Figure 4. 18. The survival of ENSG Stage 4 neuroblastoma patients
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4.3.5.1. Summary

In this series the following factors affected overall survival.

• age p<0.0001

• high dose chemoradiotherapy p<0.0001

• presence of residual disease p<0.0002

• histopathology of resected specimen p=0.0002

• completeness of surgical resection p=0.003

• surgery attempted p<0.0001.
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4.4 DISCUSSION

4.4.1. Population

This collaboration from ENSG members has the advantage of a significant 

number of cases of this rare tumour. The population characteristics of age, sex 

and distribution of primary site are similar to previously published, comparable 

series of patients (Rosen et a l , 1984; Shortner et a l , 1995).

On average 60 patients were entered to the ENSG survey each year. The 

number of referrals did not significantly vary over the ten year time period. The 

survey started in 1982 and patient details were collected in May 1993. The small 

number of patients from 1992 merely reflects the delay in notification of 

registration.

4.4.2. Age

As with other series, the majority of patients presented before the age of five. 

This emphasises the therapeutic challenge in this very young group within 

paediatric oncology.

Over this 11 year period 73 children presented, aged less than one year ,with 

Stage 4 disease. Of this group, only 25 presented aged less than six months, and 

12 aged between six and eight months. The remainder, half of the group, 

presented after this period. This has implications for screening. The effectiveness 

of screening to detect neuroblastoma, remains a contentious issue. Its 

widespread implementation in Japan resulted in a large increase in incidence of



low stage, biologically favourable tumours. It is suggested that a significant 

number of these would have spontaneously resolved or been cured effectively 

with standard therapy. More seriously, a significant number of advanced, poor 

prognosis, tumours subsequently developed despite being screened as negative 

when children were tested at six months old (Nishi et al., 1989; Nakagawara et 

a l, 1991). It is proposed that delaying the screening of infants from six to eight 

months may increase the number of clinically significant tumours detected 

(Kaneko et a l, 1990; Kerbl et al, 1993).

Although the biological characteristics of this series of patients are not known, 

they are a group accrued from specialist clinical centres and the clinical 

characteristics of the sample are representative of other series of stage four 

patients. If screening was endeavouring to detect these patients and resources 

are limited, then it would appear that only 37 patients with stage four disease 

would have been detected, before the age of eight months over the 11 year 

period. These data therefore would support the delay of screening in the hope of 

detecting the patient with the poorer outlook.

Age remained a powerful prognostic indicator and as with other series, those 

aged less than one at diagnosis, even with stage 4 disease, had a significantly 

improved survival (Evans et al, 1971; Grosfield 1980; Rosen et a l, 1984; 

Kretchmar et al, 1984; Carslen et al, 1985). This group was examined closely 

in an attempt to determine if there were any obvious explanations for this: The 

prognostic features are the same as for the general population. The thoracic site, 

prognostically a more favourable site, was more common, but insufficient to



explain this marked difference in survival. The response to therapy was identical 

to the group as a whole and sites of residual disease were identical to those 

older patients after therapy.

The difference in this group, however, was that they had a striking reduction in 

incidence of relapse. On relapse, the common sites of relapse (primary, bone and 

bone marrow) are affected but interestingly more unusual sites e.g. CNS are 

affected to a disproportionately larger degree. These unusual sites e.g. testes and 

CNS may be sanctuary sites for chemotherapy. These findings must be 

explained by the difference in biology of the disease in those aged less than one 

year.

It has been suggested that those children aged older than six years also have 

longer survival (Finklestein et al, 1979 ) and this is attributed to favourable 

biological features (Blatt et a l , 1995). In this series there was no evidence to 

support this.

4.4.3. Pattern of Primary

In this series the site of primary was not of prognostic significance, since a 

favourable primary site is associated with young age and limited stage disease. 

The population characteristics were comparable to stage 4 patients contained 

within the following series.
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Table 4.6. Population characteristics of previously published series of 

patients.

Series adrenal % abdomen % thorax % pelvis % neck % other % total

Gross'59 41 13 12 6 2 27 217

Bodian'59 37 32 11 8 5 7 129

Stella 70 29 43 17 3 3 4 143

Wilson 1974 23 32 16 7 0 22 487

Rosen'84 < 1 year 40 25.5 22.5 2.5 2.5 7.5 40

Rosen > 1 year 37 28 19 4 4 4 78

Fortner' 67 50 19 8 4 2 17 133

Common sites affected by metastatic spread were the lymphnodes, bone and 

bone marrow. The pattern of metastatic spread in metastatic neuroblastoma is 

not random and is of prognostic significance. Specific sites of predilection have 

been described (Pepper 1901; Hutchison 1907 and De la Monte et al, 1983). 

The patterns of metastases on presentation were analysed to determine whether 

or not a specific pattern of metastases is associated with an individual site. No 

correlation was found, highlighting the systemic nature of this disease.

The number of metastatic sites affected was of prognostic importance 

particularly if two or more sites were affected (p=0.0002). Table 4.6. indicated 

successively poorer survival with an increasing number of metastatic sites
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affected by disease; This would indicate that the bulk of disease is also important 

in this illness.

4.4.4. Control of the Primary Site

The role of surgery in metastatic neuroblastoma has traditionally been limited to 

biopsy, determination of the extent of disease and provision of histological 

material for prognostic testing. The necessity for complete resection remains 

controversial (Ogita, Tokiwa and Majima 1985; Losty et al., 1993;). Several 

authors demonstrated no survival advantage in comparing the extent of 

resection and survival (Sitarz et al, 1983; Matsumura et al, 1988; Shorter et 

a l, 1995).

Surgery can often be difficult, needing considerable expertise on the part of the 

surgeon. The length of a surgical procedure varied from one to ten hours, in 

one series from an experienced group (Kiely 1989). A complication rate of 

18%-21% has been quoted (Haase et al, 1991) and this appears greatest when 

resecting advanced tumours in small babies (Azizkhan et a l, 1984).

Neuroblastoma can infiltrate beyond the midline, encasing neurological, vascular 

and other vital organs. Operative and anaesthetic techniques involving 

haemodilution, hyperthermia and cardiopulmonary bypass may be required for 

the dissection of large central tumours. Special equipment, lasers or microwave 

knives, facilitate this hazardous dissection. The cavitron ultrasonic aspirator 

(CUSA; Cavitron, Stamford, CT) allows the fragmentation, irrigation and



aspiration of friable necrotic tumour tissue. This allows tissues, high in water 

content, to be selectively fragmented and aspirated while tissues high in collagen 

and elastin, blood vessels and pseudocapsular walls are spared (Loo et al, 

1988). Urological injury and haemorrhage are common complications (Fortner 

et a l , 1968; Azizkan et al, 1985). Nephrectomy, if necessary, results in poorer 

survival (Tsuchida et al, 1991). This may be because more advanced tumours 

are more difficult to resect but in addition potential post operative treatment 

may be compromised by inadequate renal function. Vascular accidents involving 

major vessels may result in haemorrhage or infarction of critical organs (Priebe 

and Clartworthy 1967; Azizkhan et al, 1984). Thoracic duct damage and 

brachial plexus injury have also been described (Filler et al, 1972). Wound 

infections or sepsis, urological injury and bowel obstruction secondary to 

adhesions have also been noted (Haase et al, 1991).

Despite these difficulties, evidence is now accumulating that complete tumour 

resection is beneficial in prolonging disease free survival (Losty et al, 1991) 

and overall survival (Tsuchida etal., 1991; Haase et al, 1991; Yokoyama et al, 

1994; La Quaglia et al, 1994).

In this series, there was no difference in outcome whether surgery was 

performed as a primary or delayed procedure. This is consistent with previously 

published data (Tsuchida et al, 1991; Haase et al, 1991; Yokoyama et al, 

1994; Shorter ef al, 1995).



A delayed surgical procedure however has the advantage that it can downstage 

an inoperable tumour into one which is surgically resectable. The tumour itself 

may become less friable, less vascular and more fibrous, facilitating easier 

dissection (Azizkan and Haase 1993). Shamberger suggests that surgical 

complications can be reduced if the operation is delayed until after 

chemotherapy (Shamberger et al, 1991).

The surgeons in this series achieved complete macroscopic resection in 52.8% 

of cases resected and in 85.3% more than 75% the tumour was resected. This 

indicates a good selection of cases. Overall the group undergoing surgery had 

better survival than those who did not. Any surgical group, in a retrospective 

analysis such as this, are of course selected. The only way to avoid this bias 

would be to prospectively randomise patients to surgery, or not, before any 

treatment is given.

The surgeon’s estimate of the completeness of surgical resection at laparotomy 

predicted survival (p=0.047) but with less accuracy than the pathologist could 

achieve by study of the resected tumour (p=0.0032). Previous studies failing to 

demonstrate a survival advantage for complete resection have used the surgeons 

estimate for analysis (Sitarz et al, 1983, Matsumura et al, 1988; Shorter et al, 

1995).

This study indicates incomplete agreement between the surgeons and the 

pathologists (kappa=0.36) as to the extent of resection. Since previous studies 

are based on surgical estimates of resection, this may explain why these fail to



show value as a prognostic index. This does not seem unreasonable since we do 

not rely solely on the surgeon’s estimate of clearance for other malignancies e.g. 

breast and colonic cancer.

Previously published analyses have compared only two categories-complete 

versus incomplete excision. From the ENSG series of patients, if the degree of 

surgical resection is analysed more closely, there is evidence for a large variation 

in outcome between the three groups, particularly between those with 

macroscopic and microscopic residual disease, while the outcome is much less 

different between complete and microscopic residual disease. This may be 

another explanation for the continued controversy.

This data confirms that effective control of the primary reduces local relapse. 

Tsuchida noted that complete resection reduced local relapse rates to 17% 

compared to 55% in the partially resected group (Tsuchida et al, 1991). Ikeda 

also noted that effective local control reduced the local relapse rate to 17% 

(Ikeda et al., 1992). The local relapse rate in this series was 18.5%.

This study confirms a difference in disease free and overall survival with 

complete resection. This is in keeping with other studies (Tsuchida etal, 1991; 

Haase et al., 1991; Yokoyama et a l , 1994; LaQuaglia et al, 1994). Previous 

authors had speculated that surgical excision may be more important in certain 

subgroups, but had a insufficient number of patients to confirm this. This study 

indicates however there is no additional advantage in those patients proceeding 

to transplant. There, survival advantage is conferred by clearance of the primary
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site and an additional separate survival advantage conferred for a transplant 

procedure.

Matsumara concluded that ablation of metastatic disease was much more 

important than the extent of surgical resection (Matsumura et a l, 1988; 

LeToumeau et al, 1985). He based his conclusions on the observation that 

patients with complete macroscopic removal of the primary but with residual 

metastatic disease had a median survival of eleven months, while those with 

incomplete resection of the primary but free of metastases survived a median of 

23 months. In this series, only 17 patients fulfilled the criteria of having 

metastatic disease only, therefore a direct comparison could not be done. It does 

not, however, contradict Matsumura’s findings, who stated that residual disease 

in the primary site is also associated with a poorer outcome than when complete 

remission is achieved. Perhaps he did not demonstrate the above finding due to 

the broad grouping of surgical groups of less than 50% resected, more than 

50% resected, and complete macroscopic excision and relying on the surgeons 

estimate of disease only.

Studies involving high dose intensity chemotherapy before surgery noted that 

not only was surgical excision easier but a clear survival advantage based on the 

extent of surgical excision was also evident in their patients, who achieved a 

higher incidence of complete remission pre-surgery (Tsuchida et al, 1991; La 

Quaglia et al., 1994).



The Philadelphia experience also failed to show a difference in survival with the 

extent of surgical resection and attributed this to the spread of favourable 

biological characteristics, within the incompletely resected groups (Shorter et 

al, 1995). This study does not contradict this finding since no biological data 

were available for analysis. Indeed it supports the importance of the type of 

disease resected since the histopathology of the resected specimen also proved 

to be a powerful prognostic factor. The authors believe that the underlying 

biology of the tumour, will determine its response to therapy, e.g. favourable 

tumours will respond well to chemotherapy enabling ablation of metastases and 

easier dissection of the primary.

Insufficient information was available for multivariate analysis, to determine if 

the extent of resection or the pathology of the resected specimen was more 

important.

In summary, the extent of surgical excision does have a statistically significant 

importance in progression free and overall survival. It may be however that the 

histology of the resected specimen may be more important than the amount of 

tumour left behind.

Access to those children who received radiotherapy was limited, as despite re­

surveying only a small number of patients were identified. Previous literature 

suggests that the response of neuroblastoma to radiation depends on the age and 

stage of the patient, in addition to normal radiotherapy considerations. Figures 

4.10 and 4.11 merely demonstrate current clinical practice.
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4.4.5. Residual Disease

The bone and bone marrow, commonly affected at presentation, remained 

involved after treatment in a substantial proportion of cases and these are also 

common sites of relapse. The outcome gets progressively worse with the 

increasing amount of residual metastatic disease. This is disappointing, more 

effective induction regimens are required to induce remission in metastatic sites 

and to downstage the primary as much as possible, to make surgery feasible.

4.4.6. The Collins Risk Period

Collins (1956 ) proposed a mathematical model for the risk period for relapse 

for paediatric malignancy. Rosen confirmed this finding in his published series of 

patients (Rosen et al, 1984). This suggests that latent disease predictably 

recurs. There were no unusual features about the children regarding their 

presentation, response to therapy nor pattern of relapse. Recurrences have been 

seen after many years with neuroblastoma (Richards et al, 1976). Jaffe (1973) 

reported a 7 year old, treated with chemotherapy, who relapsed in the bone 

three years later. This was cured but the patient again relapsed and died of 

disease 22 years later. Other reports in stage 4 patients document relapse after 

several years (Hinton ef al, 1968) but Hata (Hata et al, 1991) reports one case 

and reviews a further 12. He suggests that those patients induced into remission 

with minimal treatment are especially susceptible to late recurrences. Other 

reports concern late relapse in children aged less than one year.
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4.4.7. Relapse

The bulk of residual disease, regardless of site, is an important factor for relapse. 

Those patients with disease left only in the primary site have an identical pattern 

of relapse to the group as a whole. This implies that the primary eventually 

reseeds to metastatic sites.

A prognostically distinct group is composed of those patients aged less than one 

year at diagnosis. These patients had the same presentation characteristics and 

the same response to therapy. There was no difference between the bulk of 

disease or the sites of residual disease after induction therapy. They were, 

however, much less likely to relapse. This must be attributed to the favourable 

biology of the tumour in young patients.

The transplant group, on relapse, had the same relapse pattern as the group as a 

whole. They were also however less likely to do so. This finding was determined 

by comparing transplant patients with residual disease in the primary, with those 

clear of disease at the time of transplant. The additional therapy is likely to have 

increased control at all sites.

The overall survival of ENSG stage 4 patients was poor. The same prognostic 

factors were present for overall survival as disease free survival, since once the 

patient relapsed death was inevitable.
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4.5. Conclusion

• This analysis did not have access to biological information. There was 

insufficient information to determine accurately the most important factor for 

survival in these patients.

• Patients aged less than one year at diagnosis have a better prognosis. They 

behave as other patients but they relapse less often and when they do so 

atypical sites are affected for example: CNS.

• For Stage 4 patients as a group: The presence of bone or bone marrow 

disease at presentation is a sinister prognostic factor. These sites were 

commonly affected, difficult to clear and frequent sites of relapse. More 

intensive chemotherapy regimens are necessary to induce complete remission 

in these sites.

• Effective control of the primary can be achieved by aggressive surgery, and 

reduce the incidence of local relapse. This improves overall survival. The 

histopathology of the tumour, after standard therapy, may be more 

important.

• The volume of residual disease is important. Residual disease in the primary 

will eventually reseed into metastatic sites and the outlook becomes poorer 

with increasing amounts of residual disease.

• This study therefore confirms the good prognosis of those aged less than 

one year and suggests that for older patients, intensive aggressive therapy of 

the primary and metastatic disease is necessary to improve outcome.
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CHAPTER 5 PALLIATIVE 

RADIOTHERAPY 

IN METASTATIC 

NEUROBLASTOMA
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5.1. INTRODUCTION

The majority of children with metastatic disease will die: less than 20% 

survive two years (Rosen et al, 1984). It is common clinical practice among 

clinical oncologists to palliate symptoms from bone and soft tissue masses 

with external beam radiation in patients with end stage disease. There is, 

however, little in the literature to document the effectiveness of this in 

neuroblastoma.

A retrospective analysis of all patients with neuroblastoma treated 

palliatively with external beam radiation within The Beatson Oncology 

Centre, Glasgow was completed to examine the effectiveness of this therapy 

and, in addition, to determine whether a dose-response relationship could be 

established.

5.2. PATIENTS AND METHODS

The case notes of all children receiving palliative radiotherapy between 

1980 and 1995 were reviewed. Staging was defined by INSS criteria 

(Brodeur et al, 1988). Details of doses, fractionation schemes and sites of 

disease were obtained from radiotherapy records. Patient details were noted 

including information on analgesic requirements, response to treatment, and 

the simultaneous administration of low dose oral etoposide, which was 

commonly used in patients with relapsed disease.
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Treatment was given for localised pain or loss of function from bone or soft 

tissue metastases by single field or parallel opposed pair of fields, depending 

on site.60Cobalt and 4MeV or 5MeV linear accelerators were usually used. 

300kV was used for three treatments. The different dose fractionation 

schedules used were compared directly by an equivalent radiobiological 

total dose given as 2Gy fractions, assuming the a/p ratio for neuroblastoma 

tissue is lOGy.

The principal pain measure was a regular clinical assessment of pain relief at 

the irradiated site by the clinician. In addition as a more quantitative 

assessment, the child’s analgesic requirement (type and quantity) was noted 

and converted into a pain score. A complete response was defined as a total 

resolution of symptoms enabling all analgesia, in this advanced stage of 

illness, to be discontinued. Since radiotherapy is a local treatment, a 

reduction in analgesia was not always appropriate due to disease 

progression elsewhere. Often, when possible, this was not attempted in this 

‘terminal care’ setting. Therefore a separate category was noted for those 

children who experienced relief in symptoms but in whom analgesia was not 

discontinued. A functional assessment of any painful or neurologically 

affected site was attempted. If functional impairment was due only to pain 

affecting motor function, improvement in clinical power (MRC scale) was 

graded. In more complicated cases of spinal cord compression where
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additional sensory, bowel or bladder function were involved, the 

improvement of these respective functions had to be considered. The speed 

of onset of relief of symptoms was documented as the length of time to 

maximum response from the first day of treatment. A return of pain to any 

irradiated site before death is documented as a relapse.

Data was analysed by a non parametric test and significance values obtained 

by means of Kruskal-Wallis one way ANOVA analysis (Conover 1980). 

The distribution of survival time after treatment was estimated using the 

Kaplan-Meier actuarial method (Cox and Oakes 1984).

5.3. RESULTS

5.3.1. Patient Characteristics

From 1980 to August 1995, sixty-six children with histologically proven 

neuroblastoma were treated at The Royal Hospital for Sick Children, 

Glasgow and The Beatson Oncology Centre, Glasgow. Of these, fifteen 

patients received thirty-two palliative radiotherapy treatments.

The mean age of the study population was 4.57 years, at diagnosis, with a 

range of six months to 14 years 9 months.
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Figure 5.1. The age distribution of patients 
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Fourteen Stage 4, and one Stage 4S patient received radiation for the

control of painful bone or soft tissue metastases accounting for 42.4% of

treatments, spinal cord compression 33.3%; orthopnoea or recurrent

respiratory tract infection 15.2%, headaches from intracranial metastases 6.1%

and nerve involvement 3%.

Figure 5.2. Sites irradiated in palliative treatments.
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5.3.2. Treatment Details

Patient details are summarised in table 5.1.

Table 5.1. Patient characteristics of all BOC neuroblastoma patients 
treated with palliative radiotherapy.

PATI AGE SITE SIZE FIELD ENERGY DOSE FRACT DAYS RESP RESPON ETOPOSIDE DURATION
ENT IONS ONSE SE OF

TIM E RESPONSE
(Yrs) (an) (MeV) (Gy)

A L 2.7 facial 5.5X7 single 4 30 10 12 CR >1 month ETOPOSIDE
spine 5X9 par. pan- 1.33 8 1 1 PR >1 month NO
spine 7X12 par. pair 5 8 1 1 PR >1 month NO < 1 month
pelvis 5X5 par. pan- 4 8 1 1 CR >1 month ETOPOSIDE < 1 week
pelvis 10X12 par. pan- 300 kV 20 5 5 PR <1 month ETOPOSIDE < 1 month

A M 0.6 axilla NA NA 24 13 17 PR <1 month NO < 1 month
AK. 4.4 facial 10X16 single 1.33 20 5 5 PR >1 mcnth ETOPOSIDE < 1 month

thorax 11X11 par. pan- 1.33 20 5 5 PR >1 month ETOPOSIDE < 1 month
limb 6X12 single 1.33 8 1 1 CR >1 month ETOPOSIDE < 1 week
limb 6X12 single 1.33 8 1 1 CR >1 month ETOPOSIDE < 1 week
limb 5X13 single 5 20 5 5 CR >1 month ETOPOSIDE < 1 month

AS 2.7 CNS 8X8 single 5 30 15 19 PR <1 month ETOPOSIDE < 1 month
B.H 3.0 spine 8X10 par. pan- 1.33 6 1 1 PR <1 month NO < 1 month

limb 6X10 par. pan- 1.33 6 1 1 CR >1 month ETOPOSIDE < 1 month
pelvic 6X10 single 1.33 8 1 1 CR >1 month ETOPOSIDE < 1 week

C.G 3.8 facial 5X5 single 300 kV 6 1 1 PR >1 month NO < 1 week
spine 6X19 par. pan- 300 kV 6 1 1 PR >1 month NO < 1 week

E.B 3.9 thorax NA single 4 30 10 14 CR >1 month NO < 1 week
F.H 4.0 facial 4X4 par. pan- 1.33 10 2 PR >1 month NO < 1 week

spine 7X17 par. pan- 1.33 20 5 5 CR >1 month NO < 1 week
thorax 8X10 single 1.33 25 5 NA >1 month ETOPOSIDE NO RESPONSE

I.R 4.8 spine 7X12 par. pan- 1.33 8 1 1 PR < 1 month NO < 1 week
spine 6X10 par. pan- 1.33 6 1 1 NO >1 month NO NA

J.T 2.2 CNS 18X13 single 4 20 5 5 PR NA NO NO RESPONSE
K.E. 6.5 pelvic 8.5X9 par. pan- 1.33 8 1 1 PR >1 month NO NO RESPONSE
M.R 3.9 spine 7X10 par. pan- 1.33 15 4 4 PR >1 month ETOPOSIDE NA
S.T 2.7 facial 4X4 par. pan- 1.33 12 2 2 NO <1 month NO < 1 week

facial 6X6 par. pan- 1.33 20 5 7 PR >1 month NO < 1 month
TMc
w

9.4 spine 5X7 par. pan- 1.33 12 3 3 PR >1 month NO NO RESPONSE
IN.

spine 5X7 par. pan- 1.33 12 3 3 PR >1 month NO < 1 week
W.M
N

14.9 spine 15X17 par. pan- 1.33 23 7 9 CR >1 month NO < 1 month
IN

spine 8X18 par. 1.33 20 10 12 CR >1 month NO < 1 month
pair

All treatments were short, simple and well tolerated. 50% of treatments 

consisted of two fractions or less. Therapy was given either with a single 

field or by a parallel opposed pair of fields, depending on site.
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Total doses ranged from 6Gy or 8Gy given in one fraction to 30Gy 

administered in 15 fractions over 19 days for central nervous system 

treatments.

Patients often had multiple treatments. Infact two children had five palliative 

treatments, each to different sites of disease, throughout the advanced 

stages of their illness. Despite frequent multiple treatments, retreatment of a 

site of disease was only required in two instances.

Table 5.2. The number of treatments per patient

No. of Treatments 1 2 3 4 5

No. of Patients 7 4 2 0 2

Of the two patients retreated, one had a further 8Gy treatment to a painful 

tibial metastasis eight months after an initial successful single 8Gy 

treatment. Thereafter the patient remained pain free for the remainder of 

his life.

The remaining re-treated patient had chemoresistant Stage 4 disease. He 

experienced no pain relief after a single 8Gy treatment to his lumbar spine 

and similarly no benefit from a single 6Gy retreatment twenty three days 

later.
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One patient initially diagnosed with Stage 4S disease was included in this 

series. This seven month old child had incompletely resected local disease, 

which progressed during treatment with OPEC chemotherapy. Palliative 

treatment was given for brachial nerve plexus involvement. Pain relief 

occurred within twenty four hours and a measurable shrinkage o f visible 

tumour mass was noted, after 2405cGy had been given, in thirteen fractions 

over seventeen days. Unfortunately recurrence o f pain and regrowth of 

mass occurred within three weeks.

A complete response to symptoms, enabling all analgesia to be 

discontinued, occurred in 33.3% of cases. In 57.5% the local site treated 

was controlled clinically and the analgesic requirements decreased or left 

unaltered due to disease elsewhere.

Figure 5.3. Time after first day of radiotherapy until onset o f effect.
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36% of cases experienced rapid relief of pain within one week, from the first 

day of treatment and the remainder within one month. No pain relief first 

occurred after this time.

Figure 5. 4. The relationship between dose per fraction and onset of 
analgesic effect.
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Complete functional recovery in some instances, as for example treated 

spinal cord compression, took longer and for this reason the eventual 

response was noted.

Figure 5.5. Functional improvement after palliative radiotherapy
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A functional improvement of 50% or more occurred in 66.6% (12/18) of 

cases where there was functional impairment due to pain or neurological 

involvement.

There was no statistical difference in outcome, analgesic effect or speed of 

onset of relief, depending on site irradiated (p=0.47), total dose (p=0.08) or 

dose per fraction (p=0.74). Therefore no dose response could be 

determined.

Figure5.6. Total dose and symptom control.
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Half the children were receiving simultaneous palliative etoposide 

administration. There was no difference in outcome between the two groups 

nor was any additional toxicity experienced in the etoposide group.
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The duration of response was usually life long. However there was a return 

of discomfort to six of the thirty two treated sites. This is strictly defined as 

any intensity of pain. The range of time to return of pain varied from 22 

days to eight months.

Survival of each patient from the first treatment date is summarised in figure

5.7.. This demonstrates a median survival time of 2.16 months (95% 

confidence interval of 1.08, 3.74 months). The mean survival time was 5.21 

months (S.E.=1.56). Obviously those patients living longer had multiple 

treatments.

Figure 5.7. Survival of all patients from first day of first treatment.
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5.4. DISCUSSION

Neuroblastoma cell lines are radiosensitive in vitro (Deacon, Wilson and 

Peckham 1985; Wheldon et al, 1986). Clinically, however, variable 

responses are seen. Historically there is documentation of tumour response 

in vivo to doses as low as 400 rads (4Gray) (Farber 1940; Wyatt and Farber 

1941; Wittenbourg 1950) .

In the radical setting, a number of series indicate that local control of the 

primary site by local radiation is age, stage and dose dependent (Jacobson et 

al., 1983; Jacobson, Sause and O’Brien 1984; Rosen eta l, 1984).

Clinically external beam radiotherapy provides highly effective palliation of 

bone and soft tissue metastases (Perez et al., 1967; Halperin and Cox 1986; 

Dobbs, Barrett and Ash 1992). More recently, mIBG has been used to 

palliate pain (Hoefhagel 1991(b); Westlin 1995) . There is however little in 

the literature to highlight the effectiveness of the role of palliative 

radiotherapy in neuroblastoma and no dose response has been 

demonstrated.

A retrospective analysis of all patients, treated within this centre, from 1980 

was performed to ascertain the effectiveness of our palliative regimens and 

see whether a dose response relationship was observed.
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The age and stage composition of this population reflects the characteristics 

of children with poor prognosis neuroblastoma. Treatment regimens were 

simple, quick to complete and well tolerated. The concomitant

administration of etoposide did not alter the effectiveness nor add side

effects.

Short simple regimens, lx8Gy or 2-5 fractions of 4-5Gy appear as effective 

as longer dose fractionation schedules. Extended fractionation was generally 

used for larger volumes to minimise normal tissue side effects which have 

not been specifically analysed here. Although different sites, doses and field 

sizes require different fractionation schedules, they could be compared 

directly by calculating the radiobiological equivalent dose. A critical dose 

response relationship could not be determined for this group of patients. 

This could be due to the small numbers involved or the inherent

radiosensitivity of neuroblastoma that the fraction sizes used are too large 

to detect any critical threshold level for control. The small number of 

treatments whose effect was not life long did not differ significantly in any 

of the above criteria.

A major advantage is that the effect of the treatment was rapid. The

subcutaneous dose of morphine was able to be reduced within 24 hours in 

one patient. 40% of patients had relief within one week of the first day of
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treatment. All patients who responded did so within four weeks of the first 

day of treatment.

Complete pain relief was achieved in 33.3% of treatments and all analgesia, 

usually opiate, was able to be discontinued. In 57.5% of treatments, an 

improvement in symptoms or partial reduction in analgesic requirements 

was seen. These results are therefore similar to that of a large series of 

patients reported previously, in which the effectiveness of palliation of bone 

metastases in adults was assessed (Tong, Gillick and Henderson 1982). 

Halperin and Cox, performing a similar analysis, noted a total response rate 

of 65% with a relapse rate of 23% although doses used are not given. 6 

(19%) of treatments failed to produce a complete disappearance of 

symptoms for the remainder of the child’s life. In this series this relapse was 

defined as any return of pain to the treated site. This is more stringent than 

other studies where relapse was defined as a return of discomfort to the 

original pain intensity at the treated site (Halperin and Cox 1986). Half of 

these were successfully retreated. Two had a transient response of one 

month but both patients quickly deteriorated and died before retreatment 

was contemplated.

In all patients experiencing 50% or more improvement in function a 

significant increase in mobility was seen.
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Any response obtained was usually sustained for the remainder of the 

patient's life. This was usually short. The median survival time after the 

treatment for pain relief was 2.16 months (95% C.I. 1.08, 3.74). This 

emphasises that the long term morbidity normally associated with 

radiotherapy in the young child can be largely ignored in this group of 

patients. The majority of patients having multiple treatments had different 

sites irradiated during the course of their illness and benefited from 

considerable pain relief, reduction in analgesic requirements and increase in 

mobility and improvement in quality of life.

5.5. Conclusions

The aim of palliative radiotherapy should be effective, simple treatments 

with a limited number of fractions causing minimal upset to the patient. Half 

of the regimens consisted of three fractions or less. There was no additional 

outcome benefit from protracted dose fractionation schedules and relief of 

pain to painful bony or soft tissue sites of disease was possible in 90.8% of 

treatments attempted. In a third of cases, complete pain relief enabling the 

discontinuation of opiate analgesia in the advanced stages of disease was 

seen. Treatments were well tolerated and the incidence of side effects low. 

No patient required increased analgesia as a direct result of the radiation 

therapy. Simultaneous oral etoposide therapy, used currently for palliation 

of systemic disease, could be continued without any additional toxicity.
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The effect was usually sufficiently rapid in onset to be beneficial and 

sustained for the remainder of the patient's life. A dose response relationship 

could not be determined, possibly due to the small number of patients. 

However, it can be concluded that the palliation of painful metastases with 

small doses in one or two fractions appears to provide effective long lasting 

control, with the possibility of retreatment if necessary.

This mode of palliative treatment may not be considered where the 

radiotherapy department is separate from the children’s hospital. However, 

any patient with localised persisting pain may well achieve long term 

effective pain control with one or two treatments.
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6.1. INTRODUCTION

Laboratory studies confirm that neuroblastoma is responsive to both 

chemotherapy and radiotherapy in vitro. For children with advanced disease 

m-IBG is unlikely to be curative and is therefore often used in combination with 

other therapies (Voute et al, 1995; DeKraker et al, 1995; Mastrangelo et al, 

1995; Gaze et al, 1995). In the United Kingdom, a multicentre study o f 131I- 

mlBG, used as the initial agent followed by multi-agent chemotherapy, has 

recently begun (Gaze and Wheldon 1996).

Several radiobiological arguments exist to consider the use of m'I-mlBG before 

other therapies (Gaze and Wheldon 1996).

• Problems of heterogeneous tumour accumulation, due to poor 

tumour vascularity or variable cellular uptake, are minimised by the 

‘crossfire effect’ of the attached isotope. This results in neighbouring 

cells within the path length range of the isotope being irradiated. For 

example, 131I-mIBG would be most effective against deposits 2-5mm 

in diameter.

• Neuroblastoma is both chemosensistive and radiosensitive, but famed 

for acquired multiple drug resistance. 131I-mIBG is not affected by 

this.

• Encouraging clinical response rates, with minimal toxicity, have been 

observed when this is used before conventional chemotherapy 

(Mastrangelo 1993; Hoefiiagel et a l, 1994).
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It is known that the administration of other therapeutic agents can alter the 

ability of neuroblastoma cell lines to accumulate 131I-mIBG in culture. For 

example Smets et al, (1991) demonstrated that 5Gy of external beam 

irradiation stimulated 131I-mIBG uptake by neuroblastoma cell lines in culture 

conditions. In addition, neuroblastoma cells exposed to y-interferon induced 

morphological differentiation and an increased transcription of the noradrenaline 

transporter gene (Montaldo et al, 1992).

Mastrangelo et al., (1995) reported a small group of patients treated with 13 *1- 

mlBG in combination with cisplatin (CDDP). Although haematological toxicity 

was significant, treatment was reasonably well tolerated with no serious 

sequelae and encouraging results.

On a scientific level, the effect of previous chemotherapy exposure on mIBG 

uptake has not been investigated. The purpose of this study was to investigate 

the effect of exposure to cisplatin, etoposide, vincristine, cyclophosphamide 

drugs from the widely used OPEC regimen (Shafford, Rogers and Pritchard 

1984) on 131I-mIBG cellular accumulation.

6.2. MATERIALS AND METHODS

6.2.1. Cell Culture

SK-N-BE(2c), a neuroblastoma cell line with a high capacity for mIBG uptake 

(Mairs et al., 1994) was used. This cell line was derived from the bone marrow
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of a patient with progressive neuroblastoma following chemotherapy and 

radiotherapy (Biedler et al, 1978). A2780, a variant of the cell line 

NIH OVCAR-3, was used as a non neuronal control (Hamilton et al, 1983). 

These cell lines were routinely screened for mycoplasma contamination and 

routinely refrozen and fresh batches taken, to prevent repeated selection on 

repeated subculture.

They were grown at 37°C and maintained in a 5% carbon dioxide environment. 

Both cell lines were kept in a RPMI-1640 medium with 25mM HEPES buffer 

and supplemented with 10% foetal calf serum; 100 IU ml'1 penicillin and 

streptomycin; 2mM L-glutamine; 2mM amphoteracin and 2mM non essential 

amino acids. A2780 required 0.1%(v/v) insulin (Boehringer Mannheim). All 

media and supplements were purchased from Gibco (Paisley, UK) unless 

otherwise stated.

6.2.2. Reagents

131T-meta-iodobenzylgunaidine (131I-mIBG) (specific activity 37-185mBqmg'1) 

was obtained from Amersham International (product code IBS 6711). 

Desmethylimipramine hydrochloride (DMI) was purchased from Sigma (Poole, 

Dorset, UK). 4-hydroperoxy-cyclophosphamide, the pro-drug of 4-hydroxy- 

cyclophosphamide was used. The active agent is quickly generated in aqueous 

solution. This was donated from Dr. Jorg Pohl, Asta Medica Pharmaceuticals, 

Germany, and was stored at -20°C, in the dark.
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The drug concentrations of chemotherapeutic agents employed were 

determined from repeated clonogenic assay experiments. A concentration x 

time exposure of drug was chosen to induce at least one log kill of cells, but 

which enabled the cell population to re-establish consistently in culture. Final 

concentrations of 2pM cis-dichlorodiammine-platinum II (cisplatin), lpM 

etoposide, lOnM vincristine, 2.5pM 4-hydroperoxycyclophosphamide and 

lOpM non-radiolabelled m-IBG were used.

The values obtained were similar to previously published values where available. 

For example, 50% survival levels for LAN-1, CHP100, and CHP212 were 25- 

50ng per ml (8-16nM) for cisplatin and 5-20ng per ml (8-16pM) for VM26 

(Pritchard, Whelan and Hill 1985). All drug solutions were freshly prepared 

before each assay, by dissolving them in normal saline aided by heating at 25°C 

for 30 minutes and by filtering finally. Etoposide was dissolved initially in 

200pL of dimethylsulphoxide (DMSO) and then diluted in medium, to the 

required concentration.

6.2.3. Treatment of Cells with Cytotoxic Drugs

When in exponential growth, cells were harvested by means of trypsinisation. 

Cells were then subcultured into 25cm2 plastic tissue culture flasks. Once 

established and at least 50% confluent, these cells were then incubated with a 

single chemotherapeutic agent for a maximum of 24 hours.
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Preliminary experiments indicated SK-N-BE(2c) had rapid growth in culture 

with a doubling time of 15.5 hours. In addition, the density of the cell 

population had a dramatic effect on the values obtained for the mI-mIBG 

uptake assay. Experimental conditions therefore had to be strictly defined to 

ensure that the cultures remained well nourished and in exponential growth at 

all points during the assay. If the cell number in the tissue flask became greater 

than one million, the experiment was terminated.

6.2.4 /J/I-mIBG Uptake

100 flasks per cohort were incubated with the appropriate chemotherapeutic 

agent. The monolayers were exposed to chemotherapy for this first 24 hours of 

the experiment. Cells were assayed for mCBG uptake at Ohrs, 2hrs and 24hrs 

after meticulous washing to remove the agent. The monolayers were then 

assayed thereafter every 24 hours for as long as the cells remained viable or the 

ambient conditions satisfactory for analysis as defined in section 6.3.1.

At the time of assay, the agent was removed by repeated washing with sterile 

phosphate buffered saline. Cells were then incubated with or without 1.5mM 

DMI for 30 minutes. This time period and concentration of DMI was previously 

shown to cause maximal inhibition of the active, type 1 uptake system (Mairs et 

al, 1991). At the end of this period the medium was removed and replaced by 

medium containing 0.1 mM 131I-mIBG with or without DMI. The cell cultures 

were then incubated at 37°C for two hours.
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In order to measure the 131I-mIBG uptake, the process was first terminated by 

washing with ice cold phosphate buffered saline. The radioactivity was then 

extracted from the cells by two washes of 0.5mls aliquots of 10% (w/v) 

trichloroacetic acid and measured in a sodium iodide crystal gamma counter 

(Canberra Packhard, Berkshire, UK). The mean number of cells per flask was 

calculated and 131I-mIBG uptake quoted as picomoles of mIBG accumulated 

per million cells. This is expressed graphically as percentage uptake of the 

control.

6.2.5. Cell Viability Experiments

Clonogenic survival was assessed by colony forming assay. Trypan blue staining 

gave an immediate indication of the integrity of the cells.

For clonogenic assay, cells were plated at an initial concentration of 1,000 cells 

per flask. Once established and 70% confluent, they were incubated for 24 

hours with the drug. This was then removed by repeated washing with 

phosphate buffered saline. The cells were sub-cultured immediately and then 

grown at 37°C, in the above media, in 5% C02, until colonies were formed. 

Colonies were counted after 11 days growth. The surviving fraction was 

calculated as the number of colony forming cells in a treated group, relative to 

the control cells, that were not exposed to the drug, then corrected for cell 

number. A minimum of six replicates were taken for each concentration of drug 

and each time point, for both clonogenic assays and trypan blue assays.
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6.2.6. Statistical Analysis

Each uptake experiment was repeated a minimum of three times and six 

replicates taken for each uptake point in the assay, or for each clonogenic flask. 

The points documented are the mean of uptake in picomoles of mI-mIBG per 

million cells. Values are expressed as a percentage of the control, un-exposed 

cells, +/- 2 standard deviations.

6.2.7. RT-PCR Analysis of Noradrenaline Transporter Gene 

Expression

6.2.7.I. First Strand cDNA Synthesis

Total RNA was extracted from lx lO"6 control and cisplatin treated cells: prior 

to treatment, at the time of cisplatin removal and 24 hours later. The RNA was 

isolated according to the guanidine thiocyanate method and purified according 

to standard procedures (Maniatis 1990). The RNA concentration of the sample 

was measured by spectrophotometric analysis at 260nm. lpg of the purified 

RNA was reverse transcribed using the commercial kit ‘Gibco Superscript 

Preamplification System’ (Paisley, UK) according to the manufacturer’s 

protocol.
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6.2.7.2. Amplification of cDNA

cDNA was PCR amplified using primers specific for the transporter sequence. 

The sense primer was 5 ’-CTGGTGGTGAAGGAGCGC AACGGC-3 ’ and the 

antisense primer was 5’-ATGTCATGAATCCCGCTGCTCTCG-3’ (Montaldo 

et al., 1992). This amplification generated a 590 base pair PCR product. Semi­

quantitation was achieved by comparison of the target signal with the signal 

generated by co-amplification of a reference sequence glyceraldehyde-3- 

phosphate dehydrogenase (GAPDH). The GAPDH primers were 5’- 

GC ATTGCTGATGATCTTGAGGC-35 (sense) and 5’-

TCGGAGTCAACGGATTTGG-3 ’ (antisense). These generated a 300 base 

pair PCR product. Coamplification of the target cDNA sequences was 

performed in lOx synthesis buffer (pH 8.3) containing lOOmM Tris-HCL; 

1.5mM MgCl2; 500mM KC1; lOnM of dNTPs; 20picomoles of each reference 

and GAPDH primer and 2 units of Taq polymerase. Thirty five amplification 

cycles, completed in a standard thermocycler in the following steps: one minute 

denaturation at 94°C; one minute annealing at 65°C and one minute extension at 

72°C. Products were electrophoresed through a 2% agarose gel in TBE buffer 

(Maniatis 1990). These were densitometrically scanned using Quality One 

Image Analysis software.

6.2.8. Observation of SK-N-BE(2c) with Chemotherapy

Cells were observed daily by light microscopy. In addition trypan blue staining 

was performed. The number of cells and surviving fraction was noted daily.
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Morphological evidence of differentiation was noted by a change in cell shape 

and the development of neurite outgrowth. An increase in number and length of 

neurites was used as a marker of neuroblastic differentiation.

6.3. RESULTS

6.3.1. Preliminary Experiments Defining the Model System

Conditions.

6.3.1.1. Cell Growth

Preliminary experiments showed that SK-N-BE(2c) had rapid growth in culture 

with a mean doubling time of 15.5 hours, in exponential growth.

Figure 6.1. The cell doubling time of SK-N-BE(2c) in culture.
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6.3.1.2. The effect of cell density on 131I-mIBG uptake

Chemotherapy exposure resulted in large fluctuations in cell number. Initial 

experiments therefore explored the effect of cell density on 131I-mIBG uptake 

and nor-adrenaline expression. The density of the cell culture dramatically 

affected the activity of both active and passive uptake of 131I-mIBG. High 

culture densities resulted in a progressive decline in 131I-mIBG accumulation. 

This finding has been noted previously (Montaldo et ah, 1992).

Figure 6.2. The effect of cell density on total 131I-mIBG uptake.

The cell density is expressed as the number o f cells in the 

culture dish The mean 131I-mIBG uptake is expressed as 

picomoles o f lslI-mIBG accumulated per million cells. Data 

points represent six replicates for each point o f a series o f three 

independent experiments on successive sub-cultured 

populations.
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It shows two things, firstly, the large variability of uptake with very sparse 

cultures of low cell number, less than lxlO'5. For example total 131I-mIBG 

uptake varies from 250 picomoles of 131I-mIBG accumulated, per million cells,
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when 2.5 x 104 cells are present to 1050 picomoles of 131I-mIBG per million 

cells accumulated by lxlO'5, a 4.2 fold difference in cellular accumulation. In 

addition, low levels of 131I-mIBG uptake occur in dense cell cultures, less than 

200 picomoles per million cells, in cultures greater than 1 million in cell number. 

This is due to the large number of dying cells in a nutritionally depleted, acidic, 

hypoxic environment of overcrowded cultures as specific uptake is oxygen, 

energy and electrolyte dependent. This graph also illustrates the uptake 

characteristics of repeatedly sub-cultured populations of SK-N-BE(2c) and 

demonstrates little variability of 131I-mIBG uptake in daughter populations.

PCR analysis confirmed the reduction in 131I-mIBG uptake, with increasing cell 

culture density, was due to a decreased expression of the noradrenaline 

transporter gene (Table 6.1).

Table 6.1. The effect of culture density on noradrenaline transporter 

expression in SK-N-BE(2c) Cells. (Final result obtained by 

Shona Cunningham).

Target to reference ratios were calculated from the intensity o f 

PCR signals measured by scanning o f ethidium bromide 

stained gels. R= reference sequence (GAPDH) and T= Target 

sequence (Noradrenaline transporter).

Culture Density
(cell number X 10‘5 per cm2)

Target: Reference Ratio

0.09 0.96
0.16 1.01
0.19 0.82
0.37 0.45
0.65 0.32
0.86 0.25
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Figure 6.3. The effect of cell density on passive mI-mIBG uptake

The cell density expressed as the number o f cells in the culture 

dish. The mean I51I-mIBG uptake is expressed as picomoles o f 

13II-mIBG accumulated per million cells. Data points represent 

six replicates for each point o f a series o f three independent 

experiments on successive sub-culturedpopulations.
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Passive uptake accounts for a small proportion of 131I-mIBG uptake, less than 

10%. This accumulation however also drops with increasing cell number again 

due to the large number of dying cells in an overcrowded culture environment.

6.3.I.3. Clonogenic Assays to Determine Chemotherapy Dose

Repeated colony assay experiments indicated the concentration of each 

chemotherapeutic agent for each cell line that would reproducibly cause at least 

one log cell kill.
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Figure 6.4. Effect of 24 hours exposure of cisplatin on clonogenic survival 

of SK-N-BE(2c).

Results represent a mean value obtained from six replicates 

over a series o f three independent experiments.
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A 24 hour exposure of 4pM of cisplatin reduced the clonogenic potential of the 

population to 10% of the previously unexposed cells. The chemotherapy 

experiments were actually conducted within the range of lOnM to 5pM 

cisplatin.
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Figure 6.5. Effect of 24 hours exposure of

4-hydroxyperoxycyclophosphamide on 

clonogenic survival of SK-N-BE(2c).

Results represent a mean value +/- 2 SD, obtained from six 

replicates over a series o f three independent experiments.
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10pM cyclophosphamide reduced the number of surviving cells to 10% of the 

control values. However, repeated colony assays predicted that a lower 

concentration, 2.5pM cyclophosphamide exposure would reliably induce cell 

kill but enable the remaining cell population to re-establish.
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Figure 6.6. Effect of 24 hours exposure of vincristine on clonogenic

survival of SK-N-BE(2c).

Results represent a mean value +/- 2 SD, obtained from six 

replicates over a series o f three independent experiments.
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lOnM vincristine was the concentration used to reduce the cell number from

2.32xl0'5 to 0.74xl0‘5.
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Figure 6.7. Effect of 24 hours exposure o f etoposide on clonogenic

survival of SK-N-BE(2c).

Results represent a mean value +/- 2 SD, obtained from six 

replicates over a series o f three independent experiments.
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lpM etoposide proved sufficient to effectively reduce the cell concentration to 

10% of the control values.
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Figure 6.8. Effect of 24 hours exposure of m-IBG on clonogenic survival of

SK-N-BE(2c).

Results represent a mean value +/- 2 SD, obtained from six 

replicates over a series o f three independent experiments.
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10pM mIBG was noted to reduce the surviving fraction of cells to one tenth of 

the unexposed sample.

6.3.2. Cell Population Effects After Exposure to Cytotoxic Drugs

The chemotherapy agent was present in the medium for the first 24 hours. The 

cells continued to grow exponentially, regardless of the drug incubation. The 

cell culture consists of a heterogeneous population of dividing cells, distributed 

in different parts of the cell cycle, relatively quiescent cells and cells resistant to 

the drug used. For cell cycle specific agents, those cells in parts of the cell cycle 

past the block will proceed to division and increase the cell number. In addition 

there will be a number of cells unaffected by the drug.
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The surviving fraction, a measure of the clonogenic ability of the population, 

drops noticeably at 2 hours with all agents then drops further at the end of the 

drug exposure period. For example, with cisplatin, the surviving fraction of SK- 

N-BE(2c) decreased from 1, in non-exposed cells, in these conditions, to 0.45 

(SD 0.003) at 2 hours and 0.216 (0) at 24 hours. During the first day of the 

experiment, the cell number continues to increase despite these observations due 

to the unaffected cells continuing to divide rapidly. For 24 hours after the 

removal of the drug, there is a continued expression of cell damage with cell 

numbers continuing to fall, the surviving fraction remaining low and the 

proportion of trypan blue stained cells high. The cells after chemotherapy 

exposure became quite precarious and meticulous attention to their cell culture 

conditions was needed to ensure their survival. Medium was changed therefore 

twelve hourly during this period. By day 3, the monolayers show signs of 

recovery and quickly re-establish.

Trypan blue staining, indicating metabolically incompetent cells, increased to a 

maximum value of 46.7% at day 2, 24 hours after the removal of the drug from 

the medium. Ffigh levels of trypan blue staining persist but the cells are 

recovering by day 3, when for example the trypan blue values fall dramatically 

to 17% and 24% respectively. At this time the cell number stabilises and then 

continues to increase exponentially. After this critical 24 hour period, treated 

cells often showed ,with all OPEC agents, a stabilisation of cell number and 

constant surviving fraction. These observations often correlated with 

morphological evidence of differentiation.
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Table 6.2. The cell population effects of OPEC drug exposure

Data points represent a mean value +/-2 SD obtained from six 

replicates from a representative experiment over a series o f 

three independent experiments.

0
hours

2
hours

24 hours 48 hours 72
hours

96 hours

CLSPLATIN
CELL NUMBER (SD) 0.116

(0.013)
0.11
(0.006)

0.499
(0.002)

0.254
(0.006)

0.438
(0.006)

0.633
(0.05)

SURVIVING
FRACnON(SD)

1
(0.006)

0.454
(0.003)

0.216
(0.00)

0.17
(0.003)

0.216
(0.001)

TRYPAN BLUE + 0% 1.5% 40% 46.7% 17% 24%

CYCLOPHOSPHAMIDE
CELL NUMBER (SD) 0.285

(0.1)
0.285
(0.016)

0.534
(0.16)

0.31
(0.05)

0.965
(0.07)

1.2
(0.01)

SURVIVING
FRACHON(SD)

1
(0.006)

0.21
(0.006)

0.21
(0.001)

0.188
(0.003)

0.2
(0.001)

TRYPAN BLUE+ 0% 5% 40% 55% 57%

ETOPOSIDE
CELL NUMBERED) 0.285

(1)
0.29
(0.07)

0.517
(0.019)

0.292
(0.134)

1.1
(0.108)

1.7
(0.016)

TRYPAN BLUE 0% 16.6% 32% 27% 13.4%

VINCRISTINE
CELL NUMBERED) 0.285

0 )
0.251
(0.037)

0.564
(0.160

0.261
(0.049)

0.583
(0.052)

0.9
(0.01)

SURVIVING
FRACTION(SD)

1
(0.006)

0.663
(0.01)

0.323
(0.004)

0.216
(0.004)

1.24
(0.003)

TRYPAN BLUE+ 0% 5% 30% 24.6% 15% 26%

6.3.3. 131I-mIBG Uptake

6.3.3.I. The Effect on 131I-mIBG Uptake with 2pM Cisplatin

The cells were incubated with cisplatin for 24 hours. In the presence of the 

drug, type 1 uptake of 131I-mIBG remains unaffected. On day 2 of the 

experiment, 24 hours after removal of the drug, the active type 1 uptake, 

increases dramatically from 104 to a mean of 574.08 picomoles of 131I-mIBG 

per million cells (95% CI= 605-495 picomoles of 131I-mEBG per million cells).
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This represents a 6.8 fold increase in uptake. If a correction factor is applied to 

compensate for the difference in cell number between the two populations, this 

dramatic increase is still real.

Figure 6.9. 131I-mIBG uptake and cisplatin exposure.

Results represent a mean value +/- 2 SD, obtained from six 

replicates over a series o f three independent experiments. 

Uptake is expressed as a percentage o f the umxposed control 

value.
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Additional experiments suggested a concentration dependent stimulation of 

active incorporation of 131I-mIBG. These results are summarised below.
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Table 6.3. The effect of cisplatin concentration, type 131I-mIBG uptake 

and noradrenaline transporter expression.

These data represent SK-N-BE(2c) cells 24 hours after 

cisplatin removal lslI-mIBG total uptake values represent 

mean value from three experiments in triplicate. Values are 

expressed as percentage o f 13II-mIBG accumulated and 

compared to the control 0 hours value. The noradrenaline 

transporter gene expression is expressed as the ratio o f 

intensity o f target sequence to intensity o f the reference 

sequence. The values are expressed as the percent o f control 

values o f non-drugged cells(+/- 2SD).

Cisplatin (pM) 131I-mIBG Uptake 

(% of control)

Noradrenaline Transporter Expression 

(% of control)

24 hours 48 hours

0.02 171% (p<0.001) 115 (+/-) 6.2 89(+/-) 11.2

0.2 162% (p<0.001) 120 (+/-) 7.5 94 (+/-) 8.4

2 355% (p<0.001) 129 (+/-) 7.9 134 (+/-) 9.3

20 431% (p<0.001) 125 (+/-) 8.2 165 (+/-) 10.6

Cisplatin induces a dose dependent stimulation of expression of the 

noradrenaline transporter molecule. This is assessed at the 24 hour time point, 

when the drug is removed and at the 48 hours time point, when the increase in 

mI-mIBG accumulation is observed. At 0.02pM and 0.2jiM  levels of cisplatin, 

the induced enhancement is not maintained after the removal of the drug. At 

2pM and 20pM however the effect was prolonged. The findings above suggest
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that the increased uptake of 131I-mIBG was due to the increased synthesis of 

receptors rather than increased activity of existing receptors.

6.4. ADDITIONAL EXPERIMENTS

6.4.1. Inhibitor Studies

DMI, an inhibitor of type 1 uptake, enabled the contribution of passive uptake 

to be estimated. Results suggested that the increased accumulation was due to 

type 1 accumulation.

During the first 24 hours there was a rise in passive accumulation of 131I-mIBG 

which peaked at 30% at the end of incubation. 24 hours after drug exposure, on 

day 2, when there was a dramatic increase in total 131I-mIBG uptake, this 

passive uptake returned to normal values (<10%). SKF550 was used in 

monolayers, with or without DMI, in an attempt to define if type 3 uptake was 

present. The was no demonstrable type 3 uptake in SK-N-BE(2c) cells.

6.4.2. Retention Studies (completed by Shona Cunningham)

SK-N-BE(2c) cells have no storage mechanism for 131I-mIBG. They retain a 

high intracellular level by a dynamic equilibrium of diffusion and re-uptake of 

the drug. To determine if this increased cellular accumulation was due to 

decreased egresion of the drug from the cells or storage in granules, reserpine
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was used, which depletes these No difference was found in these experiments 

between the cisplatin and control cells (Data not shown, Armour et al., 1997).

6.4.3. The Effect of Pre-dosing SK-N-BE(2c) With OPEC

Chemotherapy

Figure 6.10. The effect of pre-dosing SK-N-BE(2c) With OPEC 

chemotherapy.

The following values were taken from a representative 

experiment and correlate with the population data o f table 6.1. 

The following agents were present for the first 24 hours o f the 

experiment: 2pM cisplatin; 2.5pM cyclophosphamide; lpM  

etoposide; lOnki vincristine. ; 1311-mIBG uptake was assayed at 

0, 2, and 24 hours time point. The drugs were then removed 

and assays repeated on the surviving cell popidatiom. Each 

point represents a mean value +/- 2SD, obtained from six 

replicates for every point o f the assay and expressed as 

percentage o f the control.
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Cyclophosphamide, another alkylating agent gave similar results to cisplatin 

above with total uptake increasing from 104.4 picomoles per million cells to a 

mean of 633.6 picomoles per million cells, 95% CI=660.14-607.06 picomoles 

per million cells. This represents an increase of 608% in radionuclide 

accumulation.

Etoposide, a cell cycle specific agent also provoked a 620% increase in type one 

uptake, from 104.4 to 648.3 (95%CI= 676.38-620.22) picomoles per million 

cells., interestingly at 24 hours when specific uptake accounts for only 60.7% of 

the control value. Similarly, lOnM vincristine elicited a specific type 1 increased 

accumulation of 340% (mean, 356.1 picomoles per million cells, 95% CI= 

367.19-345.01 picomoles per million cells 24 hours after the drug is removed, 

but at 24 hours, type one accumulation accounts for only 37.8% of the control 

value.

6.4.4. The Passive Uptake of 13II-mIBG in SK-N-BE(2c) with All

OPEC Drugs

Type 2 passive uptake accounts for less than 10% of the total 131I-mIBG 

accumulated by SK-N-BE(2c), under normal conditions. However, on exposing 

the cells to the individual OPEC agents, there was an increase in this non­

specific uptake which reached a maximum value at the end of drug exposure 

when it accounts for a mean value of 29.5% (range 22%-33.98%) of total 

uptake. The simultaneous low cell number, surviving fraction and high degree of 

trypan blue staining suggested the chemotherapy induced damage was
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expressed maximally at this point. The increased passive uptake returned to 

normal control values, 24 hours later, when the large increase in type 1 uptake 

was seen.

Figure 6.11. The passive uptake of SK-N-BE(2c) with all OPEC drugs .

The data is expressed as a mean o f six replicates, taken from 

the same representative experiment outlined in table 6.1 and 

graph 6.10.
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6.4.5. The Effect of 131I-mIBG Uptake with mIBG Exposure

Predosing with mIBG showed an apparent reduction in specific type 1 uptake at 

2 hours. This value remained low for the rest of the assay period. Passive uptake 

remained less than 10 picomoles per million and less than 10% of the total 131I- 

mlBG accumulated. The amount of passive uptake peaks at 24 hours when it 

accounted for 15 picomoles per million cells (33% of total uptake). The total 

amount of uptake must be interpreted with caution since the presence of any
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unlabelled m-IBG will ultimately compete for receptor molecules and interfere 

with the assay.

Figure 6.12. Total and passive uptake of 131I-mIBG with 10pM m-IBG.

Each point represents the mean and 95% confidence intervals 

obtained from six replicates at each point in the assay.

T n f a l  and  P a s s i v e  I  I n t a k e
<n
8
ci
E

it/>t>
•
E

1
*>
%
m.o

TIME (Pays)

1311-mllG UPTAKE 
I  H if h/L»w 

— Tata I Uptake 
—•■Passive Uptake

6.4.6. The Effect of Chemotherapy Exposure on Non-neuronal

Control Cells.

Predosing non-neuronal control cells, A2780, with chemotherapy had no effect 

on the cellular accumulation of niI-mIBG Notably there was no increase in 

passive accumulation of 131I-mIBG at 24 hours as with the SK-N-BE(2c) cells.

Table 6.4. Total and passive uptake o f ' 1'l-mIBG of A2780 cell

(picomoles per million cells) after exposure to lOnM vincristine.

0 Hours 0.08
Hours

24 Hours 48 Hours

MEAN TOTAL UPTAKE (SD) 9.27 (0.87) 8.78
(0.43)

3.2 (0.4) 4.2 (0.015)

MEAN PASSIVE UPTAKE (SD) 6.77(1.95) 8.2 (0.2) 1.75 (0.2) 1.22 (0.25)
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6.4,7. Morphological Change in SK-N-BE(2c) After Drug

Exposure.

Often after drug exposure, the cell population became fragile and the cell culture 

would fail to re-establish. Occasionally however, the cell number would remain 

stable, individual cells became less adherent and distinct neurite formation was 

seen. The following photographs were taken on day 4 of the experiment, 3 days 

after the removal of the drug. It must be stressed that these are preliminary 

observations and no firm semiquantitation e.g. serial neurite: cell body length 

measurements were applied.

Figure 6.13. The morphological change of SK-N-BE(2c) cells

A= control; B=with lOnM Vincristine
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6.4.8. Summary of Results

• Preliminary experiments confirmed the rapid growth of SK-N-BE(2c) 

in culture. This resulted in a reduction of type 1 uptake and decreased 

expression of the noradrenaline transporter.

• Cisplatin exposure resulted in an increased specific accumulation of 131I- 

mlBG. RT-PCR studies confirmed a concentration dependent 

enhancement of noradrenaline transporter gene expression.

• There was no increase in type 2 uptake nor increased retention of 131I- 

mlBG, to explain this increased accumulation. Type 3 uptake was not 

demonstrated in SK-N-BE(2c) cells.

• This increased specific accumulation was observed when other OPEC 

agents were used.

• There was a transient increased passive accumulation of 131I-mIBG at 

24 hours but this has returned to normal 24 hours later.

• No effect was seen on non neuronal cells.

• The effect of predosing SK-N-BE(2c) with mIBG remains unclear.
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6.5. DISCUSSION

6.5.1. Background

At present 131I-mIBG is used in the transplant setting, against micrometastatic 

disease, but recent radiobiological modelling suggests that this may not be 

optimal. The exposure of neuroblastoma cells to the OPEC agents was 

investigated to determine if their prior exposure affected the specific type 1 

accumulation of 131I-mlBG.

6.5.2. The Experimental System.

A cell culture monolayer system was examined to determine the effect of 

chemotherapy exposure on the purely cellular uptake, isolated from the 

additional pharmacokinetic and pharmacodynamic factors involved in 

chemotherapy in vivo. The reported series of experiments were conducted over 

a period of several months. Preliminary experiments therefore were necessary to 

ensure the accuracy of the final results.

Firstly, theoretically, phenotypic variations are possible within a cell culture line 

within this period. Repeated freezing and changing of cell stock minimised the 

risk of this phenomenon. As well as these precautions, preliminary experiments 

confirmed that over the average length of each experiment, there was no 

difference in the 131l-mIBG uptake ability of the cells (figure 6.1 and figure 6.2).



198

Secondly, specific 131I-mIBG uptake is mediated through NalC ATPase pump. 

It has been demonstrated in retinal pigment epithelium and other neuroblastoma 

cell lines, that the expression of this type of pump is inversely correlated with 

cell density (Burke et al., 1991; Montaldo et al, 1992). Preliminary studies 

indicated that this was also true for the SK-N-BE (2c) cell line and the 

environmental conditions during the assay had to be strictly maintained and 

results discarded when the cultures became too dense.

The concentrations of agents used to predose the cells were, in some cases, 

clinically achievable concentrations but were primarily chosen to achieve at least 

one log cell kill in a population and to enable the resulting survivors to re­

establish. This was an attempt to mimic the effects of repeated cycles of 

chemotherapy. In practice, slightly lower drug concentrations were necessary 

to allow the monolayers to re-establish but the cells exposed were reduced to a 

maximum of half their previous control values. The results summarised in table 

6.1 indicate a representative degree of cell kill achieved in a typical experiment.

6.5.3. The Effects of Chemotherapy

During the 24 hour incubation period and for 24 hours afterwards, there is an 

increase in trypan blue staining, suggesting deficiency in the metabolic integrity 

of the cell. But more importantly, the falling cell number and reduced surviving 

fraction indicate the expression of chemotherapy induced damage.
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6.5.4. Increased Active Uptake

The neuroblastoma cells pre-incubated with 2pM cisplatin, a clinically relevant 

concentration (Rosenberg 1985), more efficiently concentrated 131I-mIBG than 

the control, un-drugged cells. This enhanced accumulation does not appear to 

be due to enhanced type 2 or 3 uptake, nor to a greater degree of storage of the 

molecule, since inhibitor studies with DMI, SKF550 and reserpine respectively, 

do not affect this enhanced uptake. These observations were also made when 

other OPEC agents, cyclophosphamide, etoposide and vincristine, were 

examined.

The OPEC agents differ in their modes of action and cell cycle specificity. The 

fact that all agents, regardless of their cellular target or cell cycle specificity up- 

regulated the accumulation of 131I-mIBG suggested that this was a result of 

nuclear damage.

The next phase of experiments examined the expression of the noradrenaline 

receptor, which mediates type 1 uptake. Much is known about the cellular and 

nuclear effects of cisplatin and this drug was therefore chosen for further study. 

This was to determine if the increased accumulation of 131I-mIBG was due to an 

increased expression of receptor or increased function of the remaining 

receptors. Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) 

analysis confirmed a concentration dependent enhancement of expression of this 

noradrenaline transporter gene.
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It is known that chemotherapy, including cisplatin, disrupts signal transduction 

pathways (Tritton and Hickman 1990) and as a result, alters cell growth and 

differentiation. Cisplatin interestingly, initiates a cascade mechanism where 

DNA is degraded, in an attempt to protect the chromosomes from further DNA 

damage. The decoy DNA is probably sacrificed, in an attempt to neutralise the 

reactive cisplatin molecule in a similar manner to cellular glutathione and 

methionine (Scanlon 1990). This results in a transient change in gene expression 

associated with a change in expression of nuclear oncogenes and DNA repair 

enzymes.

There is evidence for increased DNA polymerase expression within 9 hours of 

cisplatin exposure (Scanlon et al, 1991). The change in gene expression 

therefore occurs rapidly. DNA damage is usually expressed maximally at 48 

hours post exposure (Pritchard etal., 1985).

The mode of cell death induced by cisplatin is complex and dose dependent. At 

supra-lethal concentrations (IOOjjM) rapid apoptotic death occurred in a murine 

leukaemic cell line, whereas lower concentrations (l-10pM) caused G2  arrest 

followed by slow non-apoptotic death (Ormerod et al, 1994). Others have 

shown that in human lymphoblastoid cells, DNA damage, by cisplatin, may 

result in p53 mediated apoptosis if cells are in Gl/S phase or p53 independent 

apoptosis of p53 mutant cells in G2/M phase of cell cycle (Allday et al, 1995). 

It has been demonstrated previously that SK-N-BE(2c) cells respond to 

cisplatin treatment by undergoing G2/M blockade and subsequent apoptosis 

(Piacentini etal, 1993).
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Ionising radiation, interferon y and phorbol esters enhance the uptake of 131I- 

mlBG in neuroblastoma cells (Montaldo et al, 1992; 1996; Smets et al, 1991). 

These agents, in common with cisplatin up-regulate p53 expression. 

Furthermore cisplatin can induce the expression of p53 dependent genes such as 

the CIP1 gene, encoding for the cell cycle kinase inhibitor p21 (El-Deiry et al, 

1994). It may be postulated, therefore, that the increased accumulation of 131I- 

mlBG results from the transcriptional transactivation of the noradrenaline 

transporter gene via a putative p53 consensus sequence in the promoter.

In addition to the activation of apoptosis by the formation of DNA adducts 

(Dole et al, 1995; Cece et al, 1995) cisplatin may inhibit the growth of 

neuroblastoma cells by virtue of its capacity to promote differentiation.

Cytotoxic agents including epirubicin and gamma irradiation (Rocchi et al, 

1987; 1993) have been shown to induce biochemical as well as morphological 

evidence of differentiation in vitro. Importantly cisplatin has been shown to 

induce neurite outgrowth at concentrations of 0.4 to 13.2jiM (Konigs et a l, 

1994). This was found to be dose dependent and maximal at 3.3pM cisplatin. It 

is interesting that the cultures of neuroblastoma cells, exposed to 2pM cisplatin 

showed some features of differentiation, although these were not quantified.

SK-N-BE(2c) represents an intermediate (I) type of cell line. Different 

differentiating agents can cause it to differentiate towards either a ‘N’ neural, or 

‘S’ substrate adherent type phenotype (Ross et al, 1994; Spengler et al, 1994).
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N type cells are characterised by small round bodies and short bipolar neuiites 

and adhere poorly to the culture vessel. An ‘S’ cell in contrast is flat, adherent 

and expresses markers of schwann cell, glial or melanocyte precursors. It has 

been suggested that a neuroblastic (N) type phenotype is associated with a 

higher type 1 accumulation of mIBG. (Iavarone et al, 1991).

Not all differentiating agents causing maturation in neuroblastoma cultures,

• 131increase I-mIBG accumulation. Montaldo performed a series of experiments 

noting the expression of the noradrenaline receptor using RT-PCR He noted an 

increased expression of the noradrenaline receptor on treating LAN-5 

neuroblastoma cells with a variety of differentiating agents (Montaldo et al, 

1996). LAN-5 shows a moderate constitutive level of mIBG incorporation. 

Accumulation doubled after a 48-72 hour exposure to interferon-y (IFN) and 

there was a transient increase with TPA (a phorbol ester). Retinoic acid, a well- 

known differentiating agent, failed to show any increased expression and 

accumulation despite inducing differentiation in cells.

This may be explained by different cell signal transduction pathways being 

affected by the different agents. This is interesting since phorbol esters mediate 

gene induction (c-fos) via the transcription factor AP2 whereas interferon and 

cisplatin induce the metallothionine DA gene via a different signal transduction 

pathway (Scanlon etal, 1991).

In fact differentiation is commonly seen in neuroblastoma cells but not all 

neuroblastoma cells are capable of maturing. Ambrose using paraffin non­
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isotopic in situ hybridisation (PNISH) found that cells with lp deletion exhibited 

no evidence of differentiation and postulated that a gene in this area is 

responsible for maturation.

In the population of cells that survived cisplatin treatment, the relative 

proportions of cycling cells, quiescent cells, clonogens and doomed cells are not 

known. Therefore the sub-population that displayed the increased capacity for 

active uptake of 131I-mIBG cannot be assigned with certainty. From a 

therapeutic perspective, this is less relevant since it is possible that even those 

cells which are destined to die as a result of cisplatin exposure, could still 

contribute to the radiation crossfire effect by virtue of the increased uptake of 

the radiopharmaceutical and hence ‘cross fire’ effect.

Recently cisplatin has been used in combination with 131I-mIBG in patients with 

relapsed disease. Cisplatin, administered in two consecutive weekly treatments, 

followed 24 hours later by 131I-mIBG, resulted in an impressive response rate of 

67% (Mastrangelo et al., 1995). It is tempting to speculate that these in vitro 

findings may be relevant. Further spheroid and in vivo studies are necessary.

6.5.5. Passive Uptake

During drug exposure, the increase in passive, type 2 uptake by mIBG is 

significant, regardless of the agent used. With 2pM cisplatin, this increased from 

11.3-37.82 picomoles per million cells (10% to 36%) and similar values were 

seen for the other drugs including the alkylating agent, cyclophosphamide (11.3
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to 25.32 picomoles per million cells). This was a transient phenomenon and 

importantly had completely resolved 24 hours later as figure 6.14 clearly 

demonstrates. This has potentially significant implications, for systemic therapy, 

since this non-specific uptake is common to all cells, and this would lead to 

increased accumulation in non target tissues. The mechanism is probably due to 

a non specific membrane effect. Pioneering clinical work by Mastrangelo 

however at present administers 131I-mIBG at this point and no significant 

sequelae have been noted. In addition on assessing the effect of cisplatin pre­

dosing on a non-neuronal ovarian cell line no such increase was documented. 

The control line A2780 showed no such significant difference in 131I-mIBG 

accumulation throughout the period of the experiments. This must be 

interpreted with caution however, since the uptake by these tissues is very low, 

so it is possible that any increase was too subtle for this assay to identify.

6.5.6. mIBG Pre-dosing

The effect of pre-dosing SK-N-BE(2C) cells with mIBG remains unclear. In the 

method of assay used, the mIBG exposed to the cells inevitably competed with 

the labelled 131I-mIBG in the assay. Using different radiolabelled isotopes would 

be unlikely to solve this problem due to the inherent radiosensitivity of 

neuroblastoma cells.
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6.6. CONCLUSIONS

The effect of acute exposure of chemotherapeutic agents on mIBG cellular 

accumulation has never before been investigated but appears to result in a five 

fold increased accumulation of specific, target tissue uptake of 131I-mIBG.

Inhibitor experiments indicated that this was an increase in specific type 1 

uptake. This was confirmed by RT-PCR analysis which indicated a 

concentration dependent stimulation of noradrenaline receptor expression. 

Preliminary observations suggested the cells had a more differentiated 

phenotype but the population of cells responsible for this increased 

accumulation are not readily identifiable.

Increased accumulation of 131I-mIBG occurred with all OPEC agents. This 

means that eventually, if this effect is clinically relevant, the non-myelotoxic 

agents of cisplatin or vincristine may be preferred, in the sick, stage 4 patient, 

rather than the myleosuppressive agents of cyclophosphamide and etoposide. 

This is important since the major concerning toxicity of 131I-mIBG, at present, 

appears to be that of the bone marrow.

131I-mIBG therapy looks promising but its place in the multimodality therapy of 

neuroblastoma is not fixed. Theoretically the use of 131I-mIBG ‘upfront’, before 

any chemotherapy would be optimal. Clinical studies suggest the administration 

of cisplatin and 131I-mIBG 24 hours later is feasible. The above experiments, 

performed on neuroblastoma cell monolayers need further evaluation, with



206

spheroid and xenograft models. If relevant, 131I-mlBG administration 24 hours 

after OPEC agent may increase the radionuclide uptake by the tumour in vivo 

several fold. This is an exciting breakthrough for targeted 131I-mIBG therapy.

Children with neuroblastoma at present have a high chance of relapse. This 

suggests the presence of occult disease after intensive multimodality therapy. It 

would be reasonable therefore to use all therapies available to their maximum 

effectiveness in optimal combination to maximise cell kill.
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CHAPTER 7 EVALUATION 

OF A NOVEL 

MIBG

PREPARATION
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7.1 INTRODUCTION

The cellular uptake mechanisms of mIBG have been described in detail in 

chapter 2. Briefly, specific uptake is mediated via a high affinity, energy, 

oxygen, Na K ATPase dependent mechanism, via the noradrenaline 

transporter. This accumulates mIBG in high concentrations and 

predominates over passive diffusion, at low plasma concentrations of less 

than lpM.

No carrier added (n.c.a.) m-IBG is a new formulation where every mIBG 

molecule is radiolabelled with a radionuclide in contrast to the currently 

available commercial preparation where only 1 of 2,000 molecules is 

radiolabelled. Theoretically, there should be a greater differential of 131I- 

mlBG accumulation between target and non-target tissues if 131I-mIBG 

were given as a low concentration, carrier free preparation, than if the same 

total activity were administered as the standard preparation.

Before any clinical studies could be contemplated however, laboratory 

investigations had to be completed to determine if this new preparation 

behaved similarly to the traditional formulation on a cellular level.

Initial experiments examined the mIBG uptake characteristics of the well 

characterised cell line SK-N-BE(2c) with A2780 as the non neuronal control. 

The high potency accumulation of SK-N-BE(2c) has been well documented but 

the ovarian cell line completely lacks the noradrenaline receptor. Therefore any
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drug accumulation will be by passive diffusion. Finally, uptake of n.c.a. mIBG 

was tested in a panel of neuroblastoma cell lines. Other members of the group 

determined the cytotoxicity and biodistribution of n.c.a. 131I-mIBG to 

ensure its safety before clinical studies could be contemplated.

7.2. MATERIALS AND METHODS

7.2.1. Chemicals

Reagents were obtained from Aldrich Chemical Company (Dorset, UK). 

131I-sodium iodide and 131I-mIBG (specific activity 37-185MBq mg'1 or 

>1110MBq mg'1) were supplied by Amersham International

(Buckinghamshire, UK) (product code IBS 6711). Non radiolabelled mIBG 

was synthesised from meta-iodobenzylguanidine hydrochloride according to 

the method of Wieland (Wieland et al., 1980). No carrier added (n.c.a.) 

131I-mIBG was synthesised by iododesilylation of 

metatrimethylsilybenzylguanidine (Vaidyanathan and Zalutsky, 1993) then 

purified by solid phase extraction (Mairs et al, 1994). These were supplied 

by Dr. R. Mairs and Miss Shona Cunningham. n.c.a. 131I-mIBG was 

prepared as a dry powder following the evaporation of the methanolic 

solvent. The drug was reconstituted in phosphate buffered saline. 

Desmethylimipramine hydorchloride (DMI) was purchased from Sigma (Poole, 

Dorset, UK).
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7.2.2. Cell Culture

A panel of neuroblastoma cell lines were used: SK-N-BE (2C) (Beidler et 

al, 1978); SK-N-SH (Beidler et al, 1973); NB1-G (Carachi et al, 1987) 

and IMR-32 (Tumilowicz eta l, 1970). A2780, a variant of NIH:OVCAR-3 

(Hamilton et al, 1983) was used as a non neuronal control. All cell lines 

were screened for mycoplasma contamination and routinely refrozen where 

fresh batches of cells were used in experiments. This was done to ensure 

repeated selection did not occur with repeated cell culture. They were grown at 

37° C and maintained in a 5% carbon dioxide environment.

NB-1 and SK-N-SH required MEN medium but all other cell lines enjoyed a 

RPMI-1640 medium with 25mM HEPES buffer. All media were supplemented 

with 10% fetal calf serum; 100 IU ml'1 penicillin and streptomycin; 2mM L- 

glutamine; 2mM amphotericin and 2mM non essential amino acids. A2780 

required 0.1%(v/v) insulin (Boehringer Mannheim). All media and supplements 

were purchased from Gibco (Paisley, UK) unless otherwise stated.

When in exponential growth, cells were harvested, SK-N-BE(2c) and A2780 

by means of trypsinisation, otherwise cells were readily dislodged from the 

culture vessels by shaking. Cells were then subcultured into six well plates. 

Once established, and at least 70% confluent, they were assayed for mIBG 

uptake.
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7.2.3. /J/I-mIBG Uptake

All chemicals and media were first heated to the desired temperature. Half of 

the cells were then incubated with the inhibitor DMI for 30 minutes. This time 

period and concentration of inhibitor was previously shown to cause maximal 

inhibition of the active, type 1 uptake system (Mairs et al, 1991). At the end of 

this period, the medium was removed and replaced by medium containing both 

the drug at the same final concentration and n.c.a. 131I-mIBG.

In order to measure the 131I-mIBG uptake, the process was first terminated after 

2 hours, by washing with ice cold phosphate buffered saline. The radioactive 

lysate was then extracted from the cells by two washes of 0.5mls aliquots of 

10% (w/v) trichloracetic acid and measured in a sodium iodide crystal gamma 

counter (Canberra Packhard, Berkshire, UK). The mean number of cells per 

well was calculated and mI-mIBG uptake quoted as picomoles of mIBG 

accumulated per 105 cells unless otherwise stated.

7.2.4. Uptake Inhibitors

In experiments comparing these two formulations, the uptake is expressed as 

the ratio of specific type 1 uptake to the total amount of mIBG accumulated by 

the cell. 1.5fiM desmethylimpramine effectively inhibits specific uptake of 

mIBG (Tobes et al, 1985. Lashford, Hancock and Kemshead 1991). The 

quoted value is therefore obtained by subtracting the DMI inhibited uptake from 

the total value accumulated.
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Temperature dependence was determined by incubating cultures at 4°C. The 

sodium dependency of uptake was investigated in two ways firstly by using 

medium containing 125mM lithium chloride instead of sodium chloride and 

secondly by using ImM ouabin, an inhibitor of NaTC ATPase (Jaques et al, 

1987). The effect of dissolved oxygen and energy dependence was determined 

by the addition of 1.5mM sodium dithionite to the medium (Buck et al, 1985).

The effect of the competitive inhibitors, noradrenaline, dopamine and 

imipramine was observed by incubating with a range of concentrations (10'3 to 

10*3M) of these drugs. Finally the uptake of 131I-mIBG was tested in a panel of 

neuroblastoma cell lines.

7.2.5. Statistical Analysis

Each experiment was repeated a minimum of three times and six replicates 

taken for each uptake point in the assay. The points documented are the mean 

of uptake in picomoles of 131I-mIBG per million cells. Error bands represent two 

standard deviations from the mean. The data was analysed using Student’s t 

test.

7.3. RESULTS

7.3.1. Characteristics of n.c.a. 131I-mIBG Uptake

Figure 7.1 below demonstrates the uptake reduction of SK-N-BE(2c) cells 

with various inhibitors of specific type one uptake.
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Figure 7.1. The inhibition of n.c a. n iImIBG uptake.

SK-N-BE(2c) cells were incubated under the following 

conditions for 2 hours then assayed for l3II-mIBG uptake. 

The following results are mean values, taken from six 

replicates for each point and expressed as a percentage o f a 

control, non drugged sample.
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Sodium depletion of the medium resulted in the SK-N-BE(2c) cells 

accumulating only 10.2% of their previous values. Reducing the ambient 

temperature of the cells to 4°C also reduced the uptake to 5.5% of the 

control SK-N-BE(2c) cells. ImM ouabain, a specific inhibitor of ATPase 

effectively reduced the uptake to 7.5% of the control value. Oxygen 

depletion similarly reduced ''i-m lB G  uptake to 6.8%. This indicates that 

for SK-N-BE(2c) the majority of drug amassed was due to specific type one 

uptake.
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7.3,2. n.c.a. 131I-mIBG Uptake in The Presence of Inhibitors

Increasing amounts of the biogenic amines dopamine, noradrenaline, 

imipramine and serotonin were incubated with n.c.a. mEBG. As the 

concentration of these compounds increased within the medium, the uptake 

of n.c.a.131I mIBG reduced, suggesting that the new formulation was also 

competitively inhibited by these compounds. The degree of inhibition was 

50% inhibition with 85nM imipramine; 190nM dopamine; 304nM 

noradrenaline and 80|oM serotonin and is consistent with previously 

published evidence with low specific activity 131I-mIBG (Lashford et al, 

1991).

Figure 7.2. The competitive inhibition of type 1 131I-mIBG uptake.

SK-N-BE(2c) cells were incubated with increasing 

concentration o f the competitive inhibitors noted below. 

After 2 hours they were assayed for 1311-mIBG uptake. The 

following results are mean values, taken from six replicates 

for each point and expressed as a percentage o f a control, 

non drugged sample.
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7.3,3. n.c.a. 131I-mIBG in Neuroblastoma Cell Lines.

The degree of specific uptake was determined in a panel of neuroblastoma 

cell lines and the rank order of accumulation was noted in table 7.1.

Table 7.1. The specific uptake of n.c.a.131ImIBG

The following results are mean values (+/-SD), taken from  

six replicates for each point.

CELL LINE DMI INHIBIT ABLE UPTAKE 
(cpm xlCT3 per million cells)(SD)

SK-N-BE(2c) 114(8)
SK-N-SH 107(10)
NB1-G 26(4)
IMR-32 12(2)

7.3.4. Uptake of n.c.a. 131I-mIBG and Low Specific Activity

Preparation by SK-N-BE(2c) Cells

At lkBq, both drug preparations are accumulated in similar amounts. As the 

radioactivity and hence amount of drug, added to the cells increases, the 

accumulation differs significantly. As the amount of radioactivity added 

increases, the uptake of n.c.a.13 ̂ -mlBG by type one uptake accounts for 

94% of total uptake while that of the commercial preparation is much less, 

only 13% at 9MBq. This is due to competitive inhibition by non­

radiolabelled molecules in the commercial preparation.
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Figure 7.3. The uptake of n.c.a. 131I-mIBG and low specific

activity 131I-mIBG. Uptake in SK-N-BE(2c) Cells. (Open 

circles commercial 131I-mIBG; closed circles n.c.a. 131I- 

mlBG
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7.3.5. Uptake of n.c.a. 131I-mIBG and Low

SpecificActivity 131I-mIBG by A2780 Cells.

There was no difference between the cellular accumulation of the two 

preparations. As the concentration of both 131I-m-IBG preparations 

increased, the cellular accumulation of both increased linearly.
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Figure 7.4. The uptake of n.c.a. 131I-mIBG and low specific activity

131I-mIBG in A2780 cells. (Open circles commercial 1311- 

mlBG; Closed circles n.c.a.1511-mIBG)
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7.3.6. Summary of Results.

Inhibitor studies confirmed that nca 131I-mIBG is accumulated 

by type 1 uptake in SK-N-BE(2c) cells.

nca 131I-mIBG is competitively inhibited by biogenic amines 

suggesting accumulation by the noradrenaline receptor, 

nca 131I-mIBG is accumulated in a predictable way by a panel 

neuroblastoma cell lines.

For increasing amounts of specific activity the accumulation of nca 

131I-mIBG is greater than the present commercially used 

formulation.

There was no increased accumulation of nca 131I-mIBG in the non­

neuronal control cell line.
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7.4, DISCUSSION

Interference of the sodium dependent ATPase pump by ouabin or depletion 

of sodium from the medium resulted in a reduction in total uptake to 7.8% 

and 10.2% respectively. The method of high accumulation uptake, 

characteristic of SK-N-BE(2c) cells, also appears inhibited by a reduction in 

temperature to 4°C (5.5%) and oxygen depletion of the medium by sodium 

dithionite (6.8%). This suggests that this mechanism of n.c.a. 131I-mIBG 

uptake is via the type 1 uptake characterised in a number of neuroblastoma 

cell lines (Jaques et al, 1984; Buck et al, 1985; Gasnier et al, 1986; 

Ivaronne et al, 1991; Lashford et al, 1991; Mairs, Gaze and Barrett 1991; 

Montaldo eta l, 1991).

Type 1 uptake of m-iodobenzylguanidine is thought to occur via the 

noradrenaline receptor. It is not unexpected therefore that the structurally 

similar compounds of noradrenaline and dopamine competitively inhibit the 

type 1 accumulation of m-IBG. Platelets accumulate 131I-mIBG via the 

serotonin receptor. Serotonin appeared less effective at competitively
Q v- V

inhibiting uptake in the neuroblastoma cell lines, probably due its differing 

structure. The order of effectiveness of inhibition, imipramine>dopamine> 

noradrenaline> serotonin corresponds to that of published studies in the 

same cell line, by low specific activity 131I-mIBG (Lashford et a l, 1991) and 

by HeLa cells transfected with the noradrenaline receptor (Pacholczyk et 

al, 1991). Therefore n.c.a. mIBG appears to be accumulated by type 1 

uptake via the noradrenaline receptor.
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The active, type 1 accumulation was tested in a panel of neuroblastoma cell 

lines with varying, but well documented 131I-mIBG capacity. This rank 

order of uptake is compatible with known uptake ability and correlates with 

noradrenaline transporter gene expression (Mairs et al., 1994).

The non specific uptake of mIBG, is in contrast, non saturable and sodium 

independent. It is however temperature dependent (Armour et al, 1994) 

and is probably mediated via the facilitated diffusion of small ions (Lampidis 

eta l, 1989).

Passive uptake was studied in the ovarian cell line A2780, which has no 

noradrenaline receptor (Figure 7.3). There was no difference in passive 

accumulation between the neuroblastoma cell line and ovarian cell line 

accumulation.

On examining the specific type 1 uptake in detail, in the SK-N-BE(2c) cell 

line, increasing doses of radioactivity are applied to the cultures. At lkBq, 

the accumulation of mIBG is similar for both preparations (98% v 96% of 

total uptake). Over a large range of doses up to lOOMBq, the amount of 

nca mIBG accumulated by type 1 uptake remains high at 94%. In contrast 

however, when low specific activity 13II-mIBG is used, the proportion of 

131I-mIBG accumulated by this specific uptake falls to 13%. This is as a 

result of saturation of the receptor by non-radiolabelled cold molecules 

contaminating the low specific activity preparation. Bruchelt (Bruchelt et
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al, 1988) made similar observations comparing 131I-mIBG of differing 

specific activities in SK-N-SH and SK-N-LO cells.

Bruchelt exposed both cell lines to 131I-mIBG preparations of differing 

specific activity. SK-N-SH is a cell line with a high capacity for mIBG 

accumulation. In both cases lOOpCi was used. The amount of radioactivity 

incorporated by SK-N-SH, on exposure to the low specific activity 

preparation was 5.2% of the amount of radioactivity accumulated using the 

high specific activity preparation.

7.5. CONCLUSIONS

The n.c.a.13̂ -mlBG preparation represented an exciting breakthrough in 

mIBG targeting therapy. It enabled much smaller quantities of drug to be 

administered for each dose of radiation given. These laboratory studies 

indicate that, at a cellular level, the mechanism of 131I-mIBG incorporation 

by neuroblastoma cell lines appears to be identical to the traditional low 

specific activity preparation. The new formulation, n.c.a. 131ImIBG, is taken 

up via the noradrenaline transporter by an energy, temperature, ATPase 

dependent mechanism. The high specific activity of the n.c.a. preparation 

exploits the specific uptake mechanism relative to the traditional low 

specific activity preparation where the noradrenaline transporter becomes 

saturated with the non-radiolabelled molecules at higher doses.
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MODULATION 

OF mI-mIBG 

UPTAKE BY 

HYPERTHERMIA
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8.1. INTRODUCTION

The critical requirement for any form of targeted radiotherapy is preferential 

uptake of the targeting agent by tumour cells relative to normal tissues. For 

mIBG therapy this would require high active uptake (type 1) in 

neuroblastoma cells relative to passive (type 2) uptake, as type 2 uptake 

occurs in normal as well as tumour cells. Clinically neuroblastomas differ 

widely in their capability for active uptake (Moyes et al, 1989) making them 

of variable suitability for systemic 1311-mIBG treatment.

The effect of combining 131 I-mIBG with elevated temperature had not been 

evaluated at the time of this study but there was a sound theoretical basis for 

exploring the potential effect of combination of both of these modalities.

8.1.1. Historical

At the beginning of this century several investigators using dilution assays, 

defined doses of heat that could inactivate tumour cells. By 1903 it was 

known that rat sarcoma cells could be inactivated by heating fragments of 

tumour at 45°C for 30 minutes (Loeb 1903). In 1912 Lambert, by culturing 

tumour or normal connective tissue cells in plasma drops, demonstrated that 

normal tissue cells were more resistant to hyperthermia and that for both 

tissues, the degree of damage sustained depended on the height of 

temperature and duration of heating.

In 1921, Rodenburg and Prime demonstrated the synergistic effect of heat 

and radiation by dilution assays involving mouse sarcoma tumours. Later it
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In 1921, Rodenburg and Prime demonstrated the synergistic effect of heat 

and radiation by dilution assays involving mouse sarcoma tumours. Later it 

was found that cycling cells appeared more sensitive to the effects of heat 

(Bucciante 1928) and that with repeated heating, thermotolerance would be 

observed (Crile 1961).

Systemic hyperthermia has been hampered for technical reasons but there are 

reports in the German literature dating back to 1888 of the regression of 

tumours with concomitant erysipelas infection (Busch 1888; Bruns 1928). A 

New York surgeon, Coley, chief of the Sloan Kettering Memorial Hospital 

Bone tumour service, reported in 1893, ten patients whose advanced 

tumours responded to an erysipelas induced fever. One patient in particular 

had a ‘persistent small round cell sarcoma’ still locally recurrent after five 

resections and this resolved completely during the long period of associated 

fever. The patient remained disease free at the time of reporting, seven years 

later. For hyperthermia to be effective, sustained high temperatures appeared 

necessary (De Courcey 1933; Nauts 1953). This could be achieved by many 

methods including the injection of bacterial toxins but had the major 

disadvantage that heating was inhomogeneous and uncontrolled.

8.1.2. Clinical Aspects

Localised tumours can be heated by a variety of methods including cautery, 

electromagnetic and ultrasound heating of tissues and these are reviewed 

well elsewhere (Meyer 1984). Methods used to induce whole body
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hyperthermia include paraffin wax, hot air and radiofrequency techniques. 

Alternatively the patient can be heated by water perfused blankets or suits or 

by heated extracorporeal circuits. Whole body hyperthermia, treating to 

temperatures of 42°C is now technically feasible but not without toxicity. 

Possible clinical toxicities are summarised below.

Table 8.1. Clinical toxicity associated with hyperthermia.
Cardiac arrythmias Liver necrosis.
Agitation, seizures, coma. Adult Respiratory Distress Syndrome 

(ARDS).
Low Mg Ca, K. Second degree bums.
Vomiting and Diarrhoea. Fatigue.
Coagulopathies, 
thrombocytopenia, anaemia.

Observed cardiac arrythmias appear to be associated with acidosis. This can 

be reduced by ventilating the patient during treatment (Van der Zee et al., 

1983). Arrythmias and the neurological side effects of agitation and seizure 

are probably partly explained by the common electrolyte disturbances (These 

are not fully explained by renal or gastrointestinal losses). Cerebral oedema, 

ARDS and liver necrosis have been seen when tumour contaminates these 

sites.

Many early clinical studies appeared to support enthusiasm for systemic 

hyperthermia for deep seated tumours, but these are poorly defined by 

modern clinical investigation standards. In any case with the arrival of 

chemotherapy in the 1940’s and megavoltage radiotherapy in the 1950’s, 

interest inevitably waned in this field. There remains however, a small group 

of scientists and clinicians dedicated to this therapeutic modality as scientific
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evidence and sound theoretical reasoning suggest that the combination of 

hyperthermia and radiotherapy appear to be synergistic.

8.1.3. Rationale for the Combination of mlBG and
Hyperthermia

There are three main reasons to consider combining systemic mlBG therapy 

and whole body hyperthermia.

• Hyperthermia is effective in radioresistant cells.

• Hyperthermia potentiates the effect of radiotherapy.

• Heating can improve the delivery of mlBG to the tumour cell.

8.1.3.1. Hyperthermia Targets Different Cells.

It is debatable whether malignant cells are more sensitive to hyperthermia per 

se (Cavaliere et ah, 1967; Kim et al., 1974; Hahn 1982) but there is 

evidence that those cells in a poorly nutrient (Hahn 1979; Li et ah, 1980), 

acidic environment (Overgaard and Bichel 1977) typical of tumours may be 

more susceptible to the effects of radiation.

The effectiveness of radiotherapy has traditionally been limited by hypoxic 

and ‘S’ phase cells (Gray et ah, 1953; Sinclair and Morton 1965) but these 

are equally sensitive to heat (Hahn 1974 ; Gerweck, Gillette and Dewey 

1975).
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Figure 8.1 Survival of hypoxic and aerobic cells with 
hyperthermia (from Hahn 1974).
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Figure 8.2. The effect of elevated temperature and cell 
cycle (from Gerweck et ah, 1975).
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8.1.3.2. Hyperthermia Acts Synergistically with Radiation

Hyperthermia acts synergistically with radiation mainly through the inhibition 

of repair of potentially lethal damage and sublethal damage by heat (Ben Hur 

et ah, 1974; Hahn 1974; Gerweck et al., 1975; Suit and Gerweck 1979). 

This is demonstrated in figure 8.3, where the survival curve of Chinese
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hamster cells becomes straighter with increasing temperature, signifying the

expression of more irreparable damage.

Figure 8.3. The effect of increasing temperature and repair 
(from Ben-Hur, Elkind and Bronk 1974).
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Theoretically the above is particularly appealing as systemic mlBG can be 

compared with low dose rate radiotherapy. Recalling the radiobiological 

arguments outlined in chapter three, targeted therapy is effectively low dose 

rate radiotherapy. In this situation, the cells have the potential to repair and 

most of the cell kill is mediated through lethal non repairable damage. 

Neuroblastoma cells have a high sensitivity to this kind of single hit, lethal 

damage but can infact repair PLD and SLD extremely well.

Therefore the advantages are two fold. Hyperthermia should potentially 

enhance low dose rate radiotherapy by inhibiting repair, prominent in low
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dose rate therapy in general but this is especially relevant with this particular 

tumour type where the capacity for this phenomenon is high.

8.1.3.3. The Delivery of the Radiopharmaceutical

The erratic disorganised blood flow of tumours, rather than resulting in a 

decreased perfusion of tumours can, due to poor homeostatic control 

mechanisms, create a ‘heat sink’ effect. This can lead to the tumour receiving 

prolonged effective heating regardless of blood flow.

Unlike external beam radiation, targeted radiotherapy is characterised by low 

dose rate irradiation which is delivered over a relatively long period of time. 

Whether the DNA damage induced is sufficient to sterilise tumour cells 

depends on a number of factors, including the cellular uptake and retention 

of the targeting agent. There is however, evidence that hyperthermia 

improves the effectiveness of chemotherapy by means of increased drug 

uptake, increased drug utilisation, and decreased repair of chemotherapy 

induced DNA damage (Field and Bleehan 1979). Therefore it is theoretically 

possible that heating could increase the delivery and uptake of m-IBG.

8.2. MATERIALS AND METHODS

8.2.1. Cell Culture Conditions

Two cell lines, SK-N-BE(2c) (Biedler et at., 1978) and IMR-32 (Tumilowicz et 

at., 1970) were used. mI-mIBG uptake is well characterised in both. These lines
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were chosen as they represent extremes in mlBG uptake ability. A2780, a variant 

of the cell line N1H OVCAR-3, was used as a non neuronal control (Hamilton et 

al., 1983). Cell culture conditions were as those described in section 7.2.2. Once 

established, and at least 70% confluent, cell cultures were assayed for 131I 

-mlBG uptake at 37°C, 39°C and 41°C respectively.

8.2.2. Reagents

131T-meta-iodobenzylgunaidine (131I-mIBG) (specific activity 37-185mBqmg'1) 

was obtained from Amersham International (product code IBS 6711). 

Desmethylimipramine hydorchloride (DMI) was purchased from Sigma (Poole, 

Dorset, UK).

8.2.3. 7JiI-mIBG uptake

All chemicals and media were first heated to the desired temperature. The cell 

cultures were then incubated at 37°C, 39°C or 41°C with or without DMI, for 

two hours. Cells were then assayed for 131I-mIBG uptake under the conditions 

described in section 7.2.3. The temperature of the flasks was meticulously 

checked throughout the experiments.

8.2.4. Cell Viability Experiments

Cell survival was assessed by two methods, clonogenic assay and trypan blue 

staining in the manner described in section 6.2.5.
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8.2.5. Statistical Analysis

Each experiment was repeated a minimum of three times and six replicates taken 

for each uptake point in the assay or for each clonogenic flask. The points 

documented represent the mean of uptake in picomoles of 131I-mIBG per million 

cells. Error bands represent two standard deviations from this mean. The data 

was analysed using Student’s t test.

8.3. RESULTS

At 37°C, comparison of the incorporation o f 1311-mIBG, at a concentration of

0.1 mM, into SK-N-BE(2C) cells in the presence or absence of 1.5mM DMI 

indicated that 98% was due to active uptake (figure 8.4). At higher temperatures 

there was a dramatic, statistically significant reduction in type 1 intracellular drug 

accumulation (p<0.001). The inhibitory effect of the 41°C incubation on type 1 

uptake was slightly greater than that of 39°C (p<0.02). DMI was added to the 

medium to obtain inhibition of specific transport. Elevated temperature had no 

significant effect on the non-specific uptake by SK-N-BE(2c). It appears the 

temperature mediated decrease in 131I-mIBG uptake, by SK-N-BE (2c) was 

mediated by thermal denaturation of the mlBG transporter molecule.

The IMR-32 cell line has low level acquisition of 131I-mIBG: approximately 10% 

of SK-N-BE(2c) levels throughout the two hour time course of the experiment. 

In this cell line, we observed a three fold increase in drug accumulation at 39°C 

compared with that at 37°C after 1.5 hours (p<0.001).
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A2780 was used as a non-neuronal control and therefore has no type one mlBG 

uptake ability. A similar but less pronounced increase in 131I-mIBG entry into 

these cells was seen. The increase in accumulation at 39°C compared with that at 

either 37°C or 41°C was nonetheless highly significant (p<0.001).

Clonogenic survival studies indicate that there was no temperature dependent 

survival difference for all three cell lines in the range of 37°C-41°C.

Figure 8.4. The modulation o f13 ̂ -mlBG uptake and elevated

temperature. A=SK-N-BE(2c); B=IMR 32; C=A2780.
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8.4. DISCUSSION

The cell line SK-N-BE(2c) demonstrated active, specific type one uptake o f131I- 

mlBG which has been well characterised (Lashford et al, 1991). Neuroblastoma 

cells retain high intracellular levels of mlBG by a dynamic equilibrium of diffusion 

and re-uptake (Smets et al, 1990). If mlBG therapy, given with hyperthermia, 

resulted in heat denaturation of the monoamine receptor ATPase, this might, if 

irreversible, diminish tumour uptake or inhibit re-uptake of the egressed drug.

The experiments showed that the active uptake of mlBG was markedly reduced 

by elevated temperature. This suggests that the transport protein may have been 

structurally altered at 39°C and 41°C. This is plausible as it has been shown that 

some membrane proteins can undergo thermotropic change at temperatures as 

low as 39°C (Verma et al, 1977).

In addition, the functional ability of the Ca-ATPase of sarcoplasmic reticulum has 

been shown to be reduced at 40-45°C (Cheung et al, 1987). Na-K-ATPases 

(Smigielski and Janiak, 1978) as well as other membrane transport systems 

(Kwock et al, 1978) have been shown to be inhibited at temperatures greater 

than 43°C.

The effect of temperature alteration on the radiopharmaceutical uptake by the 

cell line JMR-32 was less clear. These cells have poor uptake 1 capacity. The 

elevated temperature dependent enhancement of mlBG uptake was observed 

both in the presence, and absence of the monoamine transporter inhibitor DMI.
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Therefore the increased accumulation of mlBG at 39°C must involve non­

specific uptake mechanisms.

A similar effect of temperature elevation has been noted for passive molecular 

transport in Ehrlic ascitic tumour cells (Strom et al., 1973). These exhibit an 

exponential increase in passive diffusion of radiolabelled uridine across the cell 

membrane with increasing temperature. Although the effects were marked at 

44°C, the data also support increased passive diffusion at 41°C and below.

Mechanisms of mlBG uptake which do not involve the noradrenaline transporter 

are not yet well elucidated but may involve electrochemical gradients (Lampidis 

et al, 1989). It has been shown that an abrupt reduction of membrane potential 

associated with increased alkali cation permeability occurs at temperatures 

greater than 38°C in human erythrocytes (Mikkelson and Wallach 1977). As 

mlBG exists in cationic form at physiological pH, some of the entry into cells 

incubated at temperatures greater than 37°C could be due to electrophoretic 

migration mediated by altered electrochemical gradient.

It is of concern that the observed increase in accumulation of the 131I-mIBG at 

elevated temperatures occurred in IMR-32 and the control cell line. This 

suggests a non specific general effect affecting the integrity or function of the cell 

membrane. The membrane effects of hyperthermia have been extensively studied 

and are reviewed well (McLaren and Pontiggia, 1990; Marcocci and Mondovi 

1990). In summary, these changes are mediated by a change in membrane 

proteins rather than by changes in lipid motion or order (Lepock 1982).
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Although elevated non-specific accumulation of 131I-mIBG may appear to be 

encouraging for clinical practice for those tumours that poorly accumulate 

mlBG, it is far outweighed by the disadvantage of increased accumulation of 

mlBG by normal cells. This phenomenon would result in a lower specificity of 

mlBG for the tumour cell. At 41°C, uptake of mlBG is poor in all cell lines. This 

is probably due to the denaturation of critical membrane proteins.

8.5. CONCLUSIONS

The experimental evidence above indicates that hyperthermia should not be 

combined with targeted 131I-mIBG in tumours where a good uptake of mlBG is 

anticipated as this will lead to an increased accumulation in non target tissues and 

hence a lower therapeutic differential.
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SUMMARY AND CONCLUSIONS

Neuroblastoma is a rare illness, affecting young children. The 

majority present with metastatic disease, but different biological and 

prognostic patterns exist. For example, Stage 4S disease, affecting 

children less than one year, has no serious molecular abnormalities, 

responds to minimal therapy and has been seen to spontaneously 

differentiate. In contrast, older patients, with systemic disease, are at 

present incurable. Predictable relapse ensues, due to multiple drug 

resistance and the rapid repopulation of tumour from occult disease, 

remaining at the end of treatment. Screening protocols have failed to 

detect these older patients with multiple chromosomal abnormalities 

but have provided a wealth of biological information, enabling 

patients to be divided into low, intermediate and high risk 

categories.

The ENSG database, initiated by the UKCCSG in 1993 and 

analysed in chapter 4, represents the largest collection of 

neuroblastoma patients ever established.

The primary reason for the analysis was to determine if complete 

surgical resection of the primary site could affect survival, in this 

essentially systemic disease. This contentious issue was complicated 

by the fact that previously published studies had been small, relied
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on the surgeons estimate of the completeness of resection and used 

broad categories to describe the extent of surgical resection. The 

data from this series determined that there was significant 

disagreement between the surgeon and pathologist when estimating 

the extent of residual disease and that the pathologist could more 

accurately determine the presence of residual disease. Secondly, if 

the description of the resection category was too large, important 

differences could be missed. The subsequent analysis, considering 

these factors, showed that complete surgical clearance of the 

primary site reduced local relapse and improved survival. It also 

suggested that if residual disease remained at the primary site, it 

would eventually re-seed to other metastatic sites.

Despite the large number in this database, it was not possible to tell 

if the histology of the resected specimen was more important than 

the extent of the resection. Shortner, (Shortner et ah, 1995) had 

access to biological information and concluded that this was more 

important. The findings do not contradict this, since biologically 

favorable disease will be more likely to respond to induction therapy 

and hence be more amenable to surgical resection. Indeed the 

biology of this disease is important and demonstrated by the 

increased survival of those aged less than one year.

The bulk of disease in this illness is, however, also important since 

the number of metastatic sites affected at presentation and the
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presence of residual disease adversely affects survival. It is 

interesting that high dose consolidation therapy reduces the 

incidence of relapse, presumably due to the greater control of occult 

disease. Incidentally there are no published studies to examine the 

effect of surgical resection in those patients receiving a consolidation 

procedure. This series had sufficient numbers to do so and found 

that complete surgical resection and high dose consolidation are two 

independent prognostic variables.

The predictable relapse is the most crucial aspect of neuroblastoma. 

Current chemotherapy regimens are capable of inducing remission in 

the majority of patients, but the patient often relapses within a 

predictable time period. Patients, who are free of disease at the end 

of standard therapy, or who have a high dose consolidation, have a 

reduced incidence of relapse.

It is disappointing that at the end of standard induction regimens one 

third of patients are still unresectable. A series of Japanese papers 

currently advocate intensive chemotherapy regimens with aggressive 

surgery (Sawaguchi et al., 1990; Tsuchida et a l, 1992 and Iwafiichi 

et al, 1996). It would seem logical to conclude that more intensive 

regimens are necessary to ablate metastatic disease and enable 

complete surgical resection to be achieved.
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The effectiveness of external beam radiotherapy was examined in 

two settings. Control of the primary site probably requires greater 

than 2000cGy but its usefulness in the palliative setting, as short 

simple, painless effective therapy was demonstrated.

The experimental agent mlBG was investigated. This is a targeting 

agent that can be administered systemically and accumulated by 

tumour cells specifically. The disadvantage is that the tumour uptake 

can be extremely variable. Since the tumour cell uptake had been 

well characterised, the aim of this experimental project was to 

examine factors that may enhance the tumour uptake. Two main 

areas were studied successfully:

1. A new nca preparation of mlBG

2. Biological factors that may influence the cellular environment of 

the cell.

In 1993, 13 years after the original manufacture of 131I-mIBG, 

Zalutsky and his colleagues, discovered a method of preparation 

resulting in every m-IBG molecule being radiolabelled. This meant 

that for every amount of dose required, a much smaller quantity of 

drug could be given. Theoretically, tumour specific accumulation of 

the drug could be exploited. The experiments in chapter 6 confirmed 

that this new formulation had the same cellular accumulation 

characteristics as the low specific activity preparation and that on a 

cellular level, there was preferential accumulation of nca 1311-mIBG. 

High specific activity nca 131I-mIBG is now being used, on a trial
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basis, for diagnostic scans at The Beatson Oncology Center, 

Glasgow.

The pre-administration of chemotherapy before the administration of 

131I-mIBG resulted in a dramatic, reproducible, increased 

accumulation of the targeting agent. Future work will concentrate 

on this interesting observation. Additional PCR studies confirmed 

the logical conclusion, that the increased uptake was by increased 

noradrenaline transporter molecules and not enhanced storage 

retention of the radiopharmaceutical or increased function of the 

existing receptor molecules.

Future studies should therefore examine if this effect, observed in an 

isolated cell monolayer system, is still observed in spheroids, where 

the cells are more crowded and more representative of a small 

metastasis. If still present and significant, then xenograft models 

would examine the effectiveness of this in vivo.

The observation that the cells differentiated was also exciting, cis- 

retinoic acid causes differentiation but no increased accumulation of 

131I-mIBG. It is known that retinoic acid causes differentiation along 

different signal transduction pathways. The further examination of 

the mechanisms behind the induction of differentiation and cell death 

induced by the OPEC agents, may unlock another critical
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differentiation pathway as observed in more biologically favourable 

forms of this disease.

At present many agents are combined in the treatment of 

neuroblastoma. Either these must be combined in a more efficient 

manner, exploiting each agent to its maximum use or other methods 

of inducing differentiation in the remaining occult disease must be 

found.

On the basis of this thesis I would conclude that higher dose 

intensity chemotherapy is desirable, combined with aggressive 

management of all sites of disease. 131I-mIBG, at present combined 

with TBI in the consolidation phase of the treatment should be 

considered before chemotherapy, or 48 hours after the first bolus. I 

feel intensive research should be directed to a genetic level to find 

the crucial differentiation pathway, responsible for the 

differentiation or apoptosis of the cell, since all of the above 

intensification of management may still fail to eradicate all occult 

disease.
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APPENDIX 1 Questionnaire Requesting Details of Surgery

PATIENT NAME

WAS SURGICAL RESECTION 
COMPLETE IN THIS PATIENT?

SURGICAL RESECTION

PATHOLOGICAL EXAMINATION 
OF THE RESECTED SPECIMEN

TUMOUR HISTOLOGY AT 
RESECTION

DATE OF BIRTH 

YES/NO

1. 100%
2. 75 - 99%
3. LESS THAN 75%

1. MACROSCOPIC 
RESIDUAL DISEASE

2. MICROSCOPIC 
RESIDUAL DISEASE

3. CLEAR RESECTION 
MARGINS

1. NEUROBLASTOMA
2. GANGLIONEUROBLASTOMA
3. GANGLIONEUROMA
4. NO VIABLE TUMOUR

APPENDIX 2 Questionnaire Requesting Details 
of Radiotherapy

NAME

DATE START OF TREATMENT

DATE TREATMENT END

DOSE

SITE

ENERGY

DID THIS PATIENT HAVE LOCAL 

RELAPSE?

DATE OF BIRTH

NUMBER OF FRACTIONS 

FIELD SIZE
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APPENDIX 3 Categories of Variables Listed About ENSG
Stage 4 Patients

ENSG NUMBER DATE OF BIRTH DATE OF DIAGNOSIS

ENSG CENTRE 

SITE OF PRIMARY

RESPONSE OF 

PRIMARY TO

CHEMOTHERAPY

TYPE

RESIDUAL 

DISEASE 

(PRIMARY AND 

METASTATIC 

SITES)

PATH RESECTED 

SPECIMEN

DATE OF RELAPSE

SITES OF RELAPSE 

(PRIMARY AND 

METASTATIC)

SEX

PREOPERATIVE

CHEMOTHERAPY

POST OPERATIVE 

CHEMOTHERAPY

SURGEONS 

ASSESMENT OF 

SURGICAL 

EXCISION

RADIOTHERAPY

GIVEN

HISTOLOGICAL 

CONFIRMATION OF 

RELAPSE

DATE OF DEATH

STATUS

SIZE OF PRIMARY 

(PREOP AND POST 

OP)

RESECTION SIZE

PATHOLOGICAL 

ASSESMENT OF 

EXCISION

RELAPSE

DATE OF RELAPSE

CAUSE OF DEATH
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APPENDIX 4 Papers published

1. Armour, A.A., Mairs, R.J., Gaze, M.N. and Wheldon, T.E. (1994). 
Modification of meta-iodobenzylguanidine uptake in neuroblastoma cells 
by elevated temperature. British Journal o f Cancer, 70, 445-448.

2. Armour, A.A., Cunningham, S.H., Gaze, M.N., Wheldon, T.E. and 
Mairs, R.J. (1997). The effect of cisplatin pretreatment on the 
accumulation of MlBG by neuroblastoma cells in vitro. British Journal 
o f Cancer, 75, 470-476.

3. Mairs, R.J., Cunningham, S.H., Russell, J., Armour, A., Owens, J., 
McKellar, K. and Gaze, M.N. (1995). No carrier added iodine-131- 
mlBG: Evaluation of a therapeutic preparation. The Journal o f Nuclear 
Medicine, 36, 1088-1095.

Abstracts presented and published

Armour, A., Mao, J.H., Barrett, A. on behalf of members of the UKCCSG. 
The role of surgical resection of the primary tumour in stage 4 
neuroblastoma. Clinical Oncology, 8, 203.

Cunningham, S., Armour, A., Mairs, R.J., (1997). Cytotoxicity of 
1231/1251/13II labeled mlBG to neuroblastoma cells in vitro. Clinical 
Oncology, 8, 202.

Abstracts presented

The role of surgical resection of the primary tumour in stage 4 
neuroblastoma. Armour, A., Mao, J.H., Barret, A. on behalf of members of 
the UKCCSG Advances in neuroblastoma research meeting, 
Philadelphia, USA. May 1996

The role of surgical resection of the primary tumour in stage 4 
neuroblastoma. Armour, A., Mao, J.H., Barret, A. on behalf of members of 
the UKCCSG
The United Kingdom Children’s Cancer Study Group: Annual 
Scientific Meeting, Cambridge, 15th November, 1995.

Papers in preparation

Armour, A., Barret, A., Mao, J.H., Brewis,E and Simpson, E.
(1997).Palliative radiotherapy in the management of advanced 
neuroblastoma.
Submitted to Pediatric Haematology /Oncology.

Armour, A. Mao, J.H., Barrett, et al.,The role of control of the primary site 
in metastatic neuroblastoma- in preparation.
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