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Abstract

Understanding the dynamics of plasmas presents a formidable challenge in theoretical physics. Being
governed by a complicated set of non-linear equations, analytic descriptions of their behaviour are
only possible in the simplest of cases and therefore numerical methods are essential to understand
any realistic situation. This thesis presents an application of the lattice Boltzmann (LB) method to
the solution of the magnetohydrodynamic (MHD) equations, which model the low frequency motions
of plasmas.

The lattice Boltzmann method, which has been developed over the past decade or so, is a
kinetic model of fluid like systems, derived from the statistical mechanics of lattice gas cellular au-
tomata. In chapter 1, after a brief derivation of the equations to be modelled and discussion of
standard numerical methods, the basic ideas of cellular automata (CA) are reviewed along with
some examples. Special attention is given to lattice gas models of hydrodynamics and magnetohy-
drodynamics (MHD), with a discussion of the particular problem that an MHD model faces, namely
the representation of the essentially non-local Lorentz force, and how this was overcome.

In chapter 2 the lattice Boltzmann method is discussed in some detail. The LB models of two
dimensional hydrodynamics and magnetohydrodynamics are explained and the Navier-Stokes and
MHD equations are derived from these models. The derivation is standard in the literature and bears
important similarities to the theory discussed in chapter 1 despite, in the case of the MHD model,
the fundamentally different means by which the interactions between the particles and magnetic
field are represented. An improvement of the MHD model is proposed and a linear stability analysis
is carried out. Alternative methods of discretising the lattice Boltzmann equation are also discussed.

Various tests are presented in chapter 3. The simulations of Hartmann flow confirm previously
published results, although we also model the evolution of the flow towards a steady state in the case
of an unmagnetised fluid. Damped Alfvén waves are also modelled. Both of these linear problems
show good agreement between the numerical lattice Boltzmann solutions and the analytic solutions.
Simulations of a non- linear reconnection problem are also presented, namely the coalescence of
magnetic islands. The simulations reproduce correctly the qualitative features of island coalescence
found in the literature.

The lattice Boltzmann method is applied to a practical problem in chapter 4, namely the
shedding of vortices in the wake of an obstacle. This problem is relevant to the dynamics of solar
active regions, in which the photosphere is either stirred by or drags along an erupting magnetic
flux tube. The observed vorticity in such regions is greater than can be accounted for by the action
of the Coriolis force on the upwelling or downwelling fluid. The effect of a magnetic field on the
vortex shedding process is investigated, and it is found that if the magnetic field is strong enough,
then Alfvén waves transport vorticity sufficiently fast to supress the vortex shedding process. In the
case of a perpendicular magnetic field, reconnection iszaleso observed in the wake.

Generalisations of the lattice Boltzmann MHD model are proposed in chapter 5. A thermal



MHD model and a three dimensional model are presented, and the thermal model is tested by
simulating magnetosonic waves, which show good agreement with the analytic solutions.
Conclusions and suggestions for future work are discussed in chapter 6. The computer code for

the numerical simulations is contained in the appendix.
The original work for this thesis is the modification of the lattice Boltzmann MHD model in

section 2.4.4, the stability analysis of section 2.4.5 and the work which appears in chapters 3,4 and 5.
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Chapter 1

Introduction

The aim of this chapter is to provide an overview of the equations of magnetohydrodynamics and
some of the numerical methods which are used to solve them. There will be particular ermnphasis on
cellular automata and lattice gases, from which their continuum counterpart, the lattice Boltzmann
method is derived. We shall also discuss briefly the derivation of the MHD equations from kinetic
theory, since the derivation has many important similarities to the proof that the lattice Boltzmann
method approximates the behaviour of fluid dynamics and magnetohydrodynamics in certain situa-
tions. This will set the scene for the later chapters where the lattice Boltzmann method is described
in detail, and then used to model MHD flows in a number of situations and the model of Martinez

et al [1] is generalised to three dimensional and thermal MHD.

1.1 Magnetohydrodynamics: Basic Theory

Magnetohydrodynamics is the theory of electrically conducting fluids in the presence of magnetic
fields and can be used to describe a wide range of phenomena in liquid metals and low frequency
plasma motions. The derivation of the equations of MHD can be found in many standard texts [2].
However, since analogies will later be drawn between lattice Boltzmann methods and kinetic theory,

it is worthwhile to outline the arguments here.

1.1.1 Fundamental Physics

A plasma is essentially a collection of particles, a significant number of which carry electric charge.
Here we consider one of the simplest cases, where the particles are categorized into two species,
namely singly charged positive ions (hydrogen nuclei or protons, for the sake of argument) and
negatively charged electrons. What follows can be generalised to include other particles such as

positrons, neutral atoms, multiply charged ions etc.
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The particles move under the influence of an electromagnetic field and hence their motion is

described by the Lorentz force:
F = ¢(E+v x B) (1.1)

The behaviour of the electromagnetic field is determined by Maxwell’s equations [3]:

vV.E = P (1.2)
€0
1 E . '
V-B = 0 (1.4)
0B
_ = 1.
VxE+ 5 0 (1.5)

One gramme of ionized hydrogen contains 6 x 10%® protons and the same number of electrons.
To consider an equation of motion for each particle, and calculate the resulting electromagnetic field
is clearly unfeasible and so statistical methods must be employed.

We introduce the particle distribution function, f;(x,p,t). fs(x,p,t)dxdp is the number of
particles of species s, which, at time ¢, are contained in the region of phase space [x,x+6x] x [p, p+

dp]. The evolution of each f; is described by the Boltzmann equation [2]:
f . Of . Of <af, )

F- =
+v + En

ot 0x dp (16)

where p = m,v(l — Z—z)‘% = m;Vv, since we shall only consider non-relativistic motions.

The left hand side of this equation describes the particle motion under the Lorentz force; the
right hand side takes care of collisions which randomize the particle motions. If a fully ionized
plasma is treated as collection of individual particles, collisions need not be considered separately as
they are adequately described by the Coulomb force as two charges approach each other. However,
in the kinetic treatment, fs is generally smoothed, and so does not contain sufficient information
about individual particle positions to tell when two particles are closely approaching each other. It
is for this reason that the collision term must be retained.

It is straightforward to show that if (%’;—s) = 0 and f; is a summation of delta functions,
fo =N 63(x —xi(t))83(p — pi(t)), then the Bocltzmann equation is equivalent to the N equations

of motion for N particles:
Vi = X;
Fi = pi.

The collision term must, of course, satisfy the laws of conservation of mass, momentum, energy

o5,
/<0ft>cmsd3p =0 (27)

and charge so that:
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Z/(af’> &Pp = 0 (1.8)

Z/(af‘> 2 #p = 0 (1.9)
Z/(af’> &#p = 0 (1.10)

If particle species are not conserved (ie. we have recombination, ionisation etc.) then equation 1.7

should be summed over s.

3t
0, then the Boltzmann equation is known as the Vlasov equation. In a fully ionized plasma, the

Several forms for the collision term are possible. If collisions can be neglected, so that (—L> =

collisions are the result of many small Coulomb deflections, and the usual approach is to use the
Fokker-Planck collision term. Define (v, Av) to be the probability that a particle with an initial
velocity v, undergoing many small deflections, acquires an increment of velocity Av in a time At.

Now let

<Av> = /¢Avd3Av (1.11)
<AvAv > = / YAvAvdiAv (1.12)
Then the Fokker-Planck collision term is [4]
of\ . 1] @ 1 &
((’)t )c_AlgTOE l: 6 (fs < Av >)+2a v (fs<AVAV >)] (113)

1.1.2 The Fluid Equations

So far, we have considered the microscopic dynamics of a plasma and stated the equations governing
the evolution of the particle distribution function. For many purposes this contains more information
than is necessary and further simplification can be achieved by regarding the plasma as a fluid. The
macroscopic fluid quantities, namely the density and velocity are defined by taking moments of the

distribution function:

/fs d%p (1.14)

n, =
nsu; = /fsvdsp (1.15)
The mass density, ps for a species is simply ny;m;. It is also useful to define the stress tensor:
II, :/fs(v—us)(v—us)d3p (1.16)

By taking moments of the Fokker-Planck equation we obtain fluid equations for the different
particle species:

On,
ot

+V (nsus) = 0 (1.17)
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Oug,

5 + (u, -V)us] = ¢n;(E+u; xB)-V I, +P; (1.18)

msn

where P, represents the rate of change of momentum of species s as a result of collisions with
all other species. If the distribution function takes the form of a Maxwellian, (ie. we have local
thermodynamic equilibrium) then —V - II = —Vp, a pressure gradient. If there is a small departure
from a Maxwellian, then a viscous term is introduced: V - (uVu) + VeV - u, p and pp begin the
shear and bulk viscosities respectively.

It can be seen from these equations that taking a moment of the Fokker-Planck equation to
obtain a fluid equation introduces the next highest moment of the distribution function. Continuing
this approach indefinitely would result in infinitely many equations, and therefore it is necessary to
postulate some approximation which closes the system of equations. The appropriate approximation
will naturally depend on the problem under study. A common choice is to postulate that a particular
moment of the distribution function vanishes. For example, if this moment is the heat flux vector
(f imf(v = u)*(v —u) d®p, which is the trace of the third moment as measured in the local rest
frame of the fluid), then the second order moment of the Boltzmann equation reduces to an adiabatic

energy equation:

ot

where v = 5/3 for a monatomic gas. Other possibilities are to postulate an isothermal equation of

(£+u-v>pp"’=0, (1.19)

state, if the gas is a good thermal conductor:

‘% = constant (1.20)

or incompressibility, if sound waves are unimportant (among other conditions):
p = constant. (1.21)

If the gas is strongly collisional, that is when the mean free path of a particle is small compared
to the characteristic length scales of the macroscopic fields (a necessary condition for the MHD
equations to be valid), then an important method for closing the system of equations is the Chapman-
Enskog procedure. This essentially assumes that to lowest order the distribution function is locally
in equilibrium, ie is a Maxwellian, which results in a set of inviscid equations. The first order
perturbation of the distribution function is then calculated directly from a multi-scale expansion of
the Boltzmann equation and the moments of this perturbation provide the dissipative terms in the
fluid equations. The Chapman-Enskog procedure is the standard method used in deriving the fluid
equations of a lattice Boltzmann model and will be discussed in some detail in chapter 2.

Now we take the special case of a fully ionized hydrogen plasma, and, noting that m; > m,, n. ~
n; = n, define the mass density

p=nm; + neme X nm;, (1.22)
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the charge density

pc =e(ni —ne) =0, (1.23)
the velocity .
v= ;(nimmi + nemeue) & ; (1.24)
and the current density
J = e(niu; — neue) & ne(u; — ue). (1.25)

It is now easy to show that the equation of mass conservation is

e}
ot
A simple expression for the ion-electron collision terms, P; = —P, can be derived using the

resistive Ohm’s law, E = nj. This gives us
P. = nenj = n’e’n(u; — u.) l (1.27)

It can also be shown that _ -
P. = nmeve;(u; — u,) (1.28)

where ve; is the electron-ion collision frequency, and we obtain the relationship between resistivity

and collision frequency:
MeVei

7= . (1.29)

ne?

The first order moment equations can be combined in two different ways to give different single

fluid equations. Writing them out explicitly as

au,‘

min (3; + (ui - V)u,-) = en(E+u; x B) — Vp; (1.30)
Ou,
men (W + (ue - V)ue> = en(E+u. xB) - Vp, (1.31)

and adding, we obtain
0
n g(miui + meue) + mi(u; - V)ug + me(ue - V)ue | = en(u; —ue) x B—V(pi +pe) (1.32)

Since p = p; + pe, and using the above definitions for p, v, j and the approximation m, <« m;, we

get the momentum equation:

p(g—:+(v-V)v):ij—Vp (1.33)

Another linear combination of the first order moment equations gives us:

mimen <%(u,~ —ue) + (ui - V)u; — (ue ~V)ue>
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= en(m; + m¢)E + en(meu; + miue) X B —m,Vp; + m;Vp + (m; + me)P; (1.34)

This can be simplified by assuming that the convective terms are small, m, < m; and using the
definitions of p, v, j to give

me 0]

1. 1 .
— 5 =E+vxB- —jxB+ —Vp, —1nj (1.35)
ne? Ot ne ne

which is a generalized Ohm’s law.

1.1.3 The Magnetohydrodynamic Approximation

Magnetohydrodynamics, which underlies the problems addressed in this thesis, is an approximation
of Maxwell’s equations 1.2, 1.3, 1.4, 1.5, 1.26, 1.33 and 1.35 , which describes low frequency, long
wavelength phenomena. Under these conditions we can neglect the displacement current, the electron
mass, the Hall emf and the electron pressure gradient.

Equation 1.3 then reduces to Ampeére’s law:
V x B = poj (1.36)

and equation 1.35 reduces to:
E+vxB=m (1.37)

Taking the curl of equation 1.37 and applying Ampére’s law and Faraday’s law of induction
(equation 1.5} yields:
aa—? —V x (v xB)+ %VQB (1.38)
neglecting variations in 1. From now on, we shall scale the magnetic field so that po = 1.
Notice that in the magnetohydrodynamic approximation, the electric field and current density
can be expressed algebraically in terms of the other fields. Thus, we need only consider the evolution

of p,p,v and B and our equations of magnetohydrodynamics are:

dp _
gtV lv)=0 (1.39)
p ('aa—‘;‘ + (V . V)V) =-Vp+ (V X B) xB+ V- (‘qu) + V(#bv . v) (140)
0B
E:VX(VXB)+17V2B (1.41)
vV-B=0 (1.42)

plus an equation of state which will depend on the particular problem which concerns us.
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1.2 Numerical Methods

Having derived the MHD equations in the previous section, we now turn our attention to methods
of solving these equations. The non-linear nature of the MHD equations means that for the vast
majority of problems, the solutions have to be found numerically, except in the simplest problems
where there is a high degree of symmetry, or the non- linear terms are negligibly small.

The basic procedure of all numerical methods is to replace the set of partial differential equations
by a set of approximations, thereby reducing the system with infinitely many degrees of freedom
to one with finitely many. The most common procedures for doing this are the finite difference
(FD) method, the finite element method and the spectral method. The finite difference method
calculates the dependent variables at a discrete set of points and replaces the partial derivatives by
finite difference approximations. The finite element method tesellates the computational domain
into small elements, and uses basis functions to represent the dependent variables and derivatives
of the basis functions are substituted into the PDEs. The spectral method, on the other hand,
transforms the equations into Fourier space (or some other orthogonal representation) and solves
the equations for a truncated set of Fourier modes.

All methods have their relative advantages and disadvantages. For instance, the finite difference
method is generally the simplest and results in the most efficient code. The finite element method is
considered more accurate than the finite difference method, especially in problems involving complex
geometries, but is more complicated and requires more computation time.

The simulations in this thesis model MHD using a lattice Boltzmann equation, which is discre-
tised using the finite difference method and therefore we shall discuss the finite difference method in
detail here. It is best to consider how the finite difference method is applies to a couple of examples,

such as the one dimensional diffusion equation:

¢ %9
— a4 1.43
ot ~ “oz? (1.43)
or the convection equation:
d¢ 0¢
—4+u—=20 1.44
ot + Ox ( )
The dependent variable ¢ is evaluated at a set of discrete points zq,zo,...,z; and at the times
t1,t9,...,tn. The discretisation of the domain can be quite arbitrary and chosen to suit the partic-

ular initial and boundary conditions, but here we shall take it to be uniform, so that z;.1 —z; = Az,

_ . .. n_ ) as|1™ _ o ' . . .
tat1 — o = At. Writing ¢7 = é(z;,tn), —Qm = —Qm (z;,ts) etc., the approximations of the partial
j

derivatives are calculated from Taylor series of ¢(z,1), so for example:

T = ¢z + Azt,)
n 6¢ " 1 82¢ " 2 3
9+ |52] A+ 3| gea] Axtotas (1-49)
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n _ .n_ |99 " 1 32¢]n 2 3
i1 = 95 l:——'ax]j Az + 2 [_—81:2 ; Az® + O(Az®) (1.46)
so that
081" - dr, ,
[ax]j = oA, Tl (1.47)
32(]5 " _ ¢;'7'+1 _2¢?+¢?—1 2
[W]J = A2 +O(A.‘E ) (1.48)

and substituting the approximations into the diffusion equation gives

95 — 47 41207 H o5

X7 =« a7 (1.49)
so that ¢ can now be calculated at all points (z;,t,), given the initial and boundary conditions,
by applying the above equation recursively. This is the essence of the finite difference method.
The subtleties lie in the particular choice of approximations of the partial derivatives. The key
considerations are accuracy and the resulting equation should be stable, ie. small errors in the
solution should not grow as the cor'nputationr prdgresses (provided, of course, that this property
is satisfied by the original PDEs). For example, consider two distinct FD approximations of the

convection equation:
ntl _ 4n -
97— Sinm e
At 2Az

+0(At,Az?) =0 (1.50)

and

e B
A7 +u XL + O(At,Az) =10 (1.51)

The first approximation may appear to be a better choice, as o7 should converge to the correct
solution faster as Az — 0. However, if we take a discrete Fourier transform of the above equation

(ie let ¢7 = 3, ¥ge’?), then we get the following solutions for a particular mode:

n RI7AV 2 n
Pyt = [1 — i, sin 0] (2 (1.52)
for the first approximation, and
n+1 - 1 _ 'U.At _ . At . n ’
A [ AL (1 —cosb) e siné| ¢ (1.53)

for the second. Now, since the convection equation is linear, the errors in the solutions also sat-
isfy these equations, and we can see that the errors in the first approximation grow in amplitude,
whilst those in the second are damped, provided that 0 < uAt/Az < 1. In particular, the fastest
growing mode in equation 1.52 is that which has # = 7/2. Thus although equation 1.50 models
the long wavelength modes more accurately than equation 1.51, the numerical solutions will even-

tually become swamped by short wavelength modes growing without bound, and so equation 1.50
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cannot be used to solve the convection equation. Equation 1.51 does not suffer from this problem;
accuracy is sacrificed in favour of stability. The stability constraint that 0 < uAt/Az < 1 is called
the Courant-Friedrichs- Lewy condition (or CFL condition) and is frequently encountered in explicit
FD approximations of hyperbolic PDEs. For instance, another FD approximation of the convection

equation is the Lax-Wendroff approximation:

+1 n
¢.? _qs.? + ¢?+1_¢?_1 _1 2At .7+1“2¢;+¢J_1 =0 1.54
At YTTOA 2 Az? N (1.54)
The truncation error for the %? term is %}?%, and applying %t = —u%% = %}? = uz%%, we can

see that it cancels the diffusive term which has been introduced. Thus this is an order O(At?, Az?)
approximation. A Fourier analysis shows that numerical stability requires that the CFL condition
| uAt/Az |< 1 be satisfied.

The stability constraints on equation 1.49 are more restrictive. Analysis shows that 0 < 225 <
%. Note that unconditional stability cannot be achieved by an explicit method; to do so requires an

2
implicit method where g—z‘g etc. are evaluated at ¢,,41, le

1 n
g — 67 _ a¢;-‘:} — 297+ 4 ¢7H]
At Azr?

(1.55)

This approximation is unconditionally stable. The main advantage of implicit methods is that
they allow a larger At. However, they also require more computational work, and since accuracy
considerations often demand At be small anyway, they are more advantageous for equations such
as the diffusion equation, for which the stability constraints on explicit methods can be particularly

severe [5].

1.2.1 Cellular Automata and Lattice Gases

A relatively new approach to the modelling of fluid equations is the cellular automaton (CA) [6,
7, 8, 9]. This concept was originally conceived by John von Neumann as an environment for the
simulation of von Neumann machines [10, 11, 12] - machines which are capable of self-replication in
a manner analogous to the DNA molecule. Since then numerous CA have been found for modelling
a wide variety of complex systems from fluids to artificial life, for example, John Conway’s Game of
Life [13], which, despite its apparent simplicity, can exhibit some startlingly complex behaviour.
Formally, a cellular automaton is an array of cells, each of which can be in a one of a finite
number of states. The state of each cell evolves in discrete time steps, the new state of a cell being
entirely determined by the previous states of a small neighbourhood of cells. The local nature of a
cellular automaton, where the neighbourhood of a cell generally consists of its nearest and next to
nearest neighbours, is one of its most powerful features, allowing it to be modelled highly efficiently

on a parallel computer.
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Figure 1.1: Evolution of the Game of Life from a random configuration, witli one fifth of the cells
initially switched on. On-cells are represented in white, off-cells in black. The array shown is 100
cells square. Boundary conditions are periodic, ie the neighbourhoud of a cell at an edge includes
cells at. the opposite edge. The figures show from left to right the initial state of the Life Universe,
the state after 30 time steps and the state after 300 time steps.

The Game of Life

This is probably the most famous example of a CA, and is the one most often quoted in texts [14,
15, 6, 13]. The cells are arranged in a 2-dimensional, square lattice, the neighbourhood of a cell
consisting of the cell itself and its eight closest neighbours. The set of cellular states is {(), 1}, so
that a cell is either ‘on’ or ‘off’ depending on whether it is in state 1 or 0. The updating rules are
such that if exactly two neighbours of a cell (excluding itself) are on, the cell will remain unchanged;
if three are on the cell will be turned on; any other number and the cell will be turned off.

To appreciate the remarkable complexity arising from these simple rules, it is best to watch the
Game of Life evolving in real time on a fast computer. An initially random state will begin with
frenzied activity, eventually settling down to a quiescent state with bursts of new activity arising
occasionally. A typical example of this is shown in figure 1.1

Close examination of a number of such cases reveals that similar features occur repeatedly
from almost any initial state [14]. Typical examples are gliders (figure 1.2), eaters and blinkers. A
particularly interesting configuration is one known as the r-pentomino (figure 1.3). This starts from
five on-cells arranged in an r-shape, and after several hundred time steps evolves into a complicated
pattern from which many gliders emerge.

More interesting examples are discussed at length in several texts [14, 13]. For instance, it
has been discovered that a particular ‘collision’ of thirteen gliders results in a ‘glider gun' which
produces new gliders indefinitely. It has also been shown that there are configurations that behave
like logical AND, or and ~or gates when gliders collide with them in a particular way. Thus, if we
regard gliders as being analogous to electrical signals which can be produced by a glider gun, we
have all the necessary ingredients to embed a computer in the life ‘universe’. This, together with

the ability of gliders to collide and produce more gliders can be shown to allow the existence of von
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Figure 1.2: Motion of a glider

Figure 1.3: The r-pentomino. From the initial configuration of five on-cells (left), this evolves into
a complicated pattern, producing many gliders (right - after 400 time steps).

Neumann machines [10]

Lattice Gases

Of more interest to physicists is a class of cellular automata known as lattice gases. As the name
suggests these are used to model fluid like systems. The first, lattice gas model originally proposed by
Hardy eta al [16] (the HPP lattice gas) is modelled on a square lattice, with a cell’s neighbourhood
consisting of the cells immediately to the north, south, east and west. The cellular states are
characterised by a set of four occupation numbers, representing particles moving in each of the four
directions. Each occupation number can only take on the value zero or one.

The updating rule is a two step process. Firstly the particles are streamed, so that a particle
moving north will be located in the next cell to the north at the subsequent time step. Secondly
the particles are scattered in such a way to preserve particle number and momentum. IL is easily
seen that there are only two configurations which will be changed by scattering, namely when a
cell contains exactly two particles which are moving in opposite directions. After scattering, their
momenta will have rotated by ninety degrees, so that,, for example, two particles moving north and
south will emerge moving east and west..

This simple scheme models the particle nature of a gas in a very intuitive way. An example

of the model in action is shown in figure 1.4. This begins with an initial uniform density of 2
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Figure 1.4: A Sound Wave Progpagating in a Lattice Gas. From the initial configuration (left), with
a density enhancement on a uniform background, the wavefront propagates isotropically through the
gas despite the anisotropy of the lattice. Cells containing more than two particles are white, others
are black. The above lattice is 200 cells square, and periodic boundary conditions are applied.

particles per cell, except in the center of the lattice where we have 4 particles per cell. This density
enhancement gives rise to a sound wave which propagates through the gas. Notice that, despite the
anisotropy of the lattice and particle velocities, the wavefront propagates isotropically.

Despite the isotropy of the pressure in the lattice gas described above, it can be shown that
the viscosity is not isotropic [16]. This problem was solved by Frisch et al [17], using a hexagonal
lattice each cell being linked to its six neighbours (the FHP lattice gas). A detailed analysis of the
statistical mechanics of lattice gases forms the basis of the lattice Boltzmann method and will be

discussed at length in chapter 2.

Lattice Gas Magnetoliydrodynaniics

If the lattice gas model is to be extended to model MHD, there is a apparent problem to be overcome,

namely the non-local nature of the Lorentz force. Recall that

Vx1B=j (1.56)
Since V «B = 0, we can write B in terms of a vector potential:

B=VxA (1-57)

On choosing a particular guage for A, for instance the Coulomb guage where V- A = (J, equation 1.56

becomes

V~A+j =0 (1.58)

Lxplicit solutions of equation 1.58 can be found [2] and are given by

/' i(x'>0
( 7

1 >0.3/
A(x70 = Fanf T -77d x (1-59)
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It should be apparent from inspection of equation 1.59 that the magnetic field is non-locally
dependent on the current density, thus threatening the potential of a lattice gas to model MHD.
Even if the displacement current is retained in Ampere’s law, thus technically restoring locality in a
physical sense, the behaviour is still effectively non-local for our purposes since the velocity at which
information propagates (ie ¢) is several orders of magnitude greater than the fluid velocity.

This problem is only an apparent one, however, because the above argument has naively ne-
glected the effect of the magnetic field on the current density. Examination of the full MHD equations
reveals that when the resistivity is negligible, the magnetic field lines move as if they are frozen into
the fluid, and disturbances in the magnetic field propagate at the Alfvén speed. Therefore, provided
that the Alfvén speed is not greater than the lattice speed, locality can potentially be restored.
The apparent contradiction with the previous paragraph can be resolved by noting that a change in
current density at one point in space, instantaneously affects the magnetic field at all other points
in space. This change in the magnetic field then, by Faraday’s law, induces an electric field which
causes a change in the current density, since the plasma is a conducting medium. Thus the current
density at one point cannot change without instantaneously affecting the current density everywhere.
It is this feedback between B and j which renders the dynamics effectively local.

Montgomery and Doolen [18, 19] made first attempt to formulate an MHD lattice gas scheme
by introducing additional degrees of freedom to account for the vector potential. The updating rule
for the vector potential required the evaluation of some space averaged quantities, thus destroying
the essential feature of locality. Furthermore, the model is intrinsically two dimenional, due to the
method of representing the magnetic field.

Chen and Matthaes [20] and Chen et al [21] later developed a model which did not suffer from
the pitfalls of the Montgomery and Doolen scheme. We shall discuss the scheme here in some detail,
since modified versions of its lattice Boltzmann generalization [22, 1] are used in this thesis.

Firstly, we introduce the Elsésser variables [23], defined by
zf=v+B (1.60)

in units where p = 1. Then, neglecting the pressure terms
o _ Ov 0B
ot ot ot
~ —-v-Vv+B- VBB -Vvyv- VB
= —-v-V(vB)xB-V(vtB)
= —(vF¥B)-V(viB)
= —zF . Vgt (1.61)
Equation 1.61 suggests that each Elsasser variable is advected by the other, implying that the v
and B fields should be treated on a more equal footing. The model of Chen and Matthaeus [20] uses

this concept and assigns to each particle two vectors, e, ey, where e, = (cos 2wa/6,sin 2ra/6), e, =
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(cos 2mb/6,sin27wb/6) and a,b =1,...,6 on a 2D hexagonal lattice. The particle now does not have
a well defined velocity, but executes a random walk across the lattice, at each time step having
a probability 1 — |P,s| of moving in the direction e, and a probablity of |Pg| of moving in the
direction epPgp/|Pas|. The collision rules are chosen so as to conserve particle number, momentum
and magnetic field which are defined as follows. If N, is the occupation number of a particle state

{eq,es}, then the fluid density at a lattice point is the sum of the N4, at that point:

p= Na (1.62)
a,b

The fluid velocity is defined by

pv = {(1 - |Pasl)ea + Pases} Nab (1.63)

a,b
where (1 — |Pup|)eq + Paves is the expectation value of the velocity of the state {es,ep}. Since
the vectors e, e, are analogous to the Elsasser variables, a linear combination of them is used to

construct the magnetic field:

pB = Z {Qabeb + Rabea} Ny (164)
a,b

The 6 x 6 tensors Pgp, Qqp and Rgp are constrained by demanding that the fields n, v and B obey,
as closely as possible, the equations of MHD. Derivation of suitable P, @qp, Rap and the MHD
equations from the updating rules is rather complicated [21], and the analytic theory is considerably
simplified anyway by generalising the lattice gas CA to the lattice Boltzmann method which will be

discussed in chapter 2.

1.3 Applications

1.3.1 Controlled Fusion

The understanding of MHD instabilities is crucial to the problem of magnetically confining fusion
plasmas. There are many experiments experiments around the world exploring various approaches
to this problem, eg JET at Culham, Oxfordshire, TFTR at Princeton, JT-60U in Japan. Strictly
speaking the plasma parameters of a tokamak plasma, are outwith the ranges required to satisfy the
MHD approximation. However, it can be shown that low frequency motions perpendicular to the
toroidal field are well approximated by 2D incompressible MHD.

An important example of an MHD application in tokamaks is the modelling of disruptions,
where resistive instabilities give rise to reconnection events which release large amounts of energy.
Disruptions are a serious problem in tokamaks because they can limit the central temperature of
the plasma, thus limiting the potential for fusion to take place; they can lead to the termination

of the discharge and they can even cause damage to the experimental apparatus. In fact, if viewed
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in terms of the power output per unit volume, major tokamak disruptions can be the most violent
events in the solar system.

The other approach to controlled nuclear fusion, namely inertial confinement, is to compress a
small pellet of fuel by bombarding it with high intensity laser light. MHD is of little relevance in
this case, since the main processes of interest are the interactions of electromagnetic waves with the
plasma and the short time scale evolution of the plasma. Such phenomena cannot be modelled in

the MHD approximation.

1.3.2 Astrophysical and Geophysical Plasmas

Naturally occurring plasmas are widespread, and magnetohydrodynamics is used to describe them
in many situations, from the earth’s magnetosphere to galactic jets.

Close to home, MHD dynamo theory is used to explain the origin of the earth’s magnetic field
as a result of currents within the molten iron core. Studies of the interaction between the earth’s
magnetosphere and the solar wind provide clues to the general model of a planetary magnetosphere.

The sun perhaps provides the richest source of MHD phenomena to study. As for the earth,
dynamo theory is applied to exp'lairn its magnetic field. The most fascinating processes, however,
appear at the surface. (Perhaps they are selected as such by our inability to peer at more fascinating
processes occurring inside.) Here we can observe arcs of plasma, projecting out of the surface and
supported against their own weight by a magnetic field. Such structures, which are probably formed
by turbulent processes beneath the surface, can persist for months before suddenly releasing huge
amounts of energy in a dramatic flare.

Outside the solar system nearly all the matter which we can see in visible light is in the plasma
state. As well as the obvious generalisations of solar MHD to other types of stars, MHD turbulence
has been invoked to explain the anomalous viscosities in accretion disks and the jets of active galactic

nuclei have been modelled using the relativistic generalisation of MHD.
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Lattice Boltzmann Statistics

2.1 Problems with the Lattice Gas Approach

In Section 1.2.1, we presented the HPP lattice gas [16], which is a simple CA model for a fluid in two
dimensions and demonstrated qualitative similarities between the model and real fluid behaviour.
This model, however, suffers from some deficiencies which can be overcome by more sophisticated
approaches.

Firstly, it can be shown that the HPP gas only obeys the Navier-Stokes equations approxi-
mately [16]. Although the fluid pressure is isotropic, it can be shown that the viscosity is not, so
that transport is preferred parallel to the lattice vectors. This problem is solved by the FHP gas {17],
which uses a hexagonal lattice, as opposed to a square one, with six directions rather than four.
Wolfram [24] discusses this model in considerable detail. The macroscopic equations which this gas

obeys are, to second order [24]:

dp
(—9?+V-(pv)—0 (2.1)
Opv 1 (2 1o o] _ 1 ST T
T + e (v»V)v+v(V'v)—§Vv ——§VP—§PCV v v—38 (2.2)
where
1 1
= = v(v- V) (pe®) = 50"V (pe®) + (v- V) (ped) — 5(V - V)V (pey) (2.3)

and ¢(?, c(vz) are determined from the statistical mechanics of the lattice gas.

The equation of mass continuity is thus obeyed to second order. The momentum equation is
similar in structure to the Navier-Stokes momentum equation, with a number of unphysical features:
there is a pressure like term —%sz giving a velocity dependent equation of state; the coeflicient
of the non-linear terms p{(v - V)v + v(V - v)] is not unity and the expression = does not appcar in

the Navier-Stokes equations.

16
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In addition to these unphysical effects, lattice gases also suffer from numerical noise and in order

to obtain smooth macroscopic fields, spatial averaging over a large lattice is required.

2.2 The Lattice Boltzmann Method

All the problems mentioned in the previous section can be overcome by the lattice Boltzmann (LB)
method [25, 26]. The formalism is identical to cellular automata, but where traditionally CA have
used discrete, integral states, the LB method uses the continuum of real numbers to define the
cellular states. Thus, in our gas model, instead of dealing with particle numbers which can assume
non-negative, integral values, we use a distribution function which can have any non-negative real
value.

This method retains the essential advantages of CA, namely the simplicity of the microscopic
dynamics and the local nature of the iteration scheme allowing parallel implementation of the com-
puter code. There are also number of additional advantages over finite state CA [26, 27]: numerical
noise is eliminated since the distribution function, unlike particle number, is not prone to statistical
fluctuations; there is no need to impose an exclusion rule, thus allowing greater freedom of choice
in the collision operator and more control over the transport co-efficients; the form of the collision
operator can be expicitly specified, allowing the transport co-efficients to be calculated more easily;

all the unphysical features of the CA fluid can be eliminated to second order.

2.3 Lattice Boltzmann Hydrodynamics

Since the microscopic dynamics are more intuitive, we shall dicuss the lattice Boltzmann method
for hydrodynamics [28, 29, 26, 30], before the MHD model, and demonstrate that it obeys the

Navier-Stokes equations:

9p _
STV lv)=0 (2.4)
Ov 2
p(Fr+ (V- VIV ) ==V uV?pv + usVV - (pv) (2.5)

2.3.1 Microscopic Dynamics

The fluid is modelled on a hexagonal lattice. The cellular states are specified by seven non-negative
real numbers fo, ..., fs, which specify the expectation values of the number of particles of given
momenta; fy is the mean number of particles at rest in a lattice site, f, is the mean number moving
in the direction e, = (cos &,sin F'),a=1,...,6,e0 = (0,0).

The macroscopic variables are defined as moments of the distribution function f:

p=1 fa (2.6)
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6
pv = Zfaea (2.7)
a=1

Another useful quantity to define is the momentum flux tensor:

6
=) feee, (2.8)
a=1

As for a CA gas, the updating rule is a two step process: particles are streamed to the neigh-
bouring sites and are then subjected to collisions which conserve particle number (and therefore

mass) and momentum. This is described by the following equations:
fa(x,t) = fa(x —eg,t — 1) + Qa(x — €q,t — 1), a=0,...,6 (2.9)

The conservation laws impose the following constraints on the collision operator €2:

6

> Q=0 (2.10)
a=0

. .
> Que. =0 (2.11)
a=1

In order that the second law of thermodynamics be obeyed, the collisions must cause the dis-
tribution function to relax to an equilibrium, f(®4), at which point the collision operator, 2 must
vanish. Since fluid approximations usually depend on the gas being close to thermal equilibrium, €2
can be Taylor expanded to first order about f(®4), so that [31, 32]:

Q=3 Mas(fo = £°V) +0 (7 - £°)?) (2.12)
b

This is usually the most general collision operator which is of interest in the lattice Boltzmann
method. The full non-linear collision operator can, in principle improve the stability of the lattice
Boltzmann method, but requires much more computational work. Furthermore, the higher order
terms are negligible in a collision dominated fluid, so do not affect the derivation of the Navier-Stokes
equations. Since the microscopic dynamics of a lattice gas are a considerably simplified version of
those of a real gas, we would expect the higher order contributions to be unphysical in any case.
The collision operator can be simplified still further by assuming a single time scale, Mg, = — %Jab,
so that

1
Q=-2 (f_f(eQ)> (2.13)
which is known as the Bathnagar-Gross-Krook (BGK) collision operator. It is easy to show that
numerical stability requires that = > %

The choice of f(eq) can also be quite arbitrary and we shall it take to be quadratic in e,. The

most general form satisfying equations 2.10 and 2.11 is

fo(eq) =p (1 NG ) _;_ trc(2)> (2.14)



CHAPTER 2. LATTICE BOLTZMANN STATISTICS 19

fleq) _ g [c(l) +ov-e, +c® eaea} (2.15)

where the scalar ¢(!) and symmetric second rank tensor ¢(?)

can be chosen later, in order that p,v

satisfy the Navier-Stokes equations.

2.3.2 The Continuum Limit and Macroscopic Equations

Having defined the microscopic dynamics, we now demonstrate that equations 2.9 give rise to the
Navier-Stokes equations. If f varies sufficiently slowly over the lattice, then we can take a Taylor
expansion of equations 2.9, truncated after first order [24]:
8fa
ot

which 1s called the lattice Boltzmann equation. Notice the similarity in structure to the Boltzmann

tes Vi=Q (2.16)

equation 1.6 with F = 0, the most important difference being that we have a continuum of velocities
in equation 1.6, but only seven discrete velocities in equation 2.16.
In an analogous fashion to section 1.1.2, macroscopic equations are obtained by taking moments

of equation 2.16. The zeroth order moment immediately gives the continuity equation:

0
P4V (pv) =0, (2.17)
ot
and the first order moment gives a momentum equation:
8(6ptv) 4V =0 (2.18)

It 1s straightforward to show that for equation 2.18 to be equivalent to equation 2.5, in the ideal
limit, we must have
IT = pI + pvv. (2.19)

If f is a slowly varying function of space and time (a condition for equation 2.16 to be valid),

we can say that f~ f (eq)’ and so equation 2.19 imposes further constraints on f (€d) 5o that

1
g (c(l) + 1 trc(2)> =p, (2.20)
4£c(2) = pvv (2.21)
If we have an equation of state for an isothermal, ideal gas, so that
p=cip (2.22)
where the isothermal sound speed, ¢;, must be chosen so that f > 0 over a sufficiently wide range
of v, then
7,V = o1 - 2¢2 — v?) (2.23)
rulea) _ P l2ct— v 4 2veq +4(v - ea)?] (2.24)

Thus we have a scheme, which models an ideal, isothermal gas to first order.
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2.3.3 The Chapman-Enskog Expansion and Transport Coefficients

In order to derive the coefficients of viscosity, we must include higher order terms in our macroscopic
equations, by employing a Chapman-Enskog procedure.

Firstly, we Taylor expand equation 2.9 to second order:

8, 8(fa + 0a)
B +es V(fat+Q)—es-V 5 Qg
10°Q, 1 0 10 fa _
“5 g 3% VWUt Q)+ Hm - o5 =0 (2.25)

The essence of the Chapman-Enskog procedure is to assume that the dependant variables can be
written as functions of multiple time scales, t; = €et, t = €* and z, = ez, so that f(z,t) =
f(z1,t1,t2) = f(ex,et,e?t). This means that we write the differential operators in the following
way (1, 33, 34]:

(2.26)

V= eVl, (227)

where € is the expansion parameter assumed to be small, implying that ¢, is a slower time sale than
t1, and will be associated with diffusion effects. Since V is only being expanded to first order, we
can drop the subscript from V; without confusion. The distribution function is expanded, assuming

small departures from equilibrium:

Fa=fO 4 efV 42D 4 (2.28)
where f(go) = fa(eq)) so that the collision operator is

Qu = —%(cf,ﬁl) PO (2.29)
Replacing these expansions into equation 2.25, we get to order ¢:

afs” ©_ L
6t1 +ea'vfa ’——;fa (230)

and to order €2:
oY of” 105"

6i1 6t2 T 8t1

+%f§2) - %(e V20—,V

1
+ea VI - —ea VLY

£ 10248
at, 2 o2

=0 (2.31)

From equation 2.30 we also get

170 1 {0250 ©
3 (5 + oo 9) 580 = =3 (T w200 2y er w2 (2.32)
2 \ a2 ot
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Substituting equation 2.32 into equation 2.31 then gives us
Bf(o) 1 6f(1) a 1
a - a . V) = —2f(2)
6t2 ! 2r 6t1 e Vfa Tfa (233)

Summing equations 2.30 and 2.33 over @, and using » fél) =3, féz) = 0, we recover the continuity

equation:

—8£+V(v)—0 (2.34)

ot PV} = ‘
Similarly, taking the first moment of 2.30 and 2.31, and using ), fﬁl)ea =3, ff)ea =0, we get

Aev) | g m=o, (2.35)

ot
where .
- 1
= (0) — =)D
=" eqe, [fa +e (1 QT) £ ] (2.36)

a=1

Since f£°) = fa(eq) has already been chosen to satisfy, to lowest order, the ideal Navier-Stokes

equations, we can write equation 2.35 as

p(g—:+v-Vv> =-Vp-v.m (2.37)
where II(1) is the first order correction to the momentum flux tensor. Using equation 2.30, we have
° (8
o = -—TZ (51—]" +eq - Vl) fgo)eaea (2.38)
a=1

and inserting expression 2.24 for féo) we get

M0 = {2V - (pv) + 2vVp + A (Vp)v = V- (pvwv)} = T{ Vi (o)1 + Vi (o) + [V (o] }

(2.39)
which, on choosing ¢? = }T’ gives us the following momentum equation:
p (?)—: +Von) = ——chp
1 1 1
+Z (T - 5) V- (pVv)+ (T - 5) V- (pvvv) (2.40)

Comparing this with equation 2.5, we can see that the viscosity is given by:

v=1 <r-%), (2.41)

Thus, the condition for positive viscosity is the same as the condition for numerical stability, namely

T > %, so that the v can be made arbitrarily small by choosing 7 sufficiently close to % The non-

linear term V - (pvvv) was considered in detail by Qian and Orszag [35], who showed that it scaled
as the second power of the Mach number, thus limmiting the lattice Boltzmann method to the low

Mach number regime.
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2.3.4 Further Extension of Lattice Boltzmann Hydrodynamics
Hydrodynamics in Higher Dimensions

There also exist lattice Boltzmann schemes for modelling three dimensional hydrodynamics. One
problem however, is that there does not exist a 3D lattice which will allow a single speed model
with isotropic transport coefficients. There are a couple of ways round this. One is to extend
the method to four dimensions and use a face-centred, hypercubic lattice [36], the particle velocities
being permutations of (1, £1,0,0) which gives 24 moving states. Using the same procedure detailed
above, it can be shown that this method yields the Navier-Stokes equations in four dimensions, and
three dimensional hydrodynamics can be modelled as a projection onto a 3D hypersurface.

The other way of getting isotropic transport, is to allow links beyond nearest neighbours on
a 3D body-centred cubic lattice [37]. The particle velocities are (%1, =+1,+1) and permutations
of (+2,0,0), giving 14 moving states. The advantages over the 4D method are that there is no
redundant, unphysical dimension and there are fewer particle states per cell, thus making less demand

on computer memory and time.

Thermohydrodynamics

The models discussed so far have been restricted to an isothermal equation of state, and have ignored
energy conservation. This is because the moving particles can only have a single speed.
To include an energy equation, multi-speed models must be used [38, 34]. On a 2D, hexagonal

lattice, the particle velocities are e, = o(cos Z2,sin%2), a = 1,...,6, ¢ = 0,..., N. Collisions

3 3
conserve mass, momentum and energy, which are defined by:

p= Z foa (2.42)

pv = Z foa€oa (2.43)
1
E = meiega (2.44)

The Chapman-Enskog procedure then gives, with appropriate choice of f (eq)’ the equations

of thermohydrodynamics, with an ideal equation of state.

2.4 Lattice Boltzmann Magnetohydrodynamics

Modelling of magnetohydrodynamics by a lattice Boltzmann scheme is a harder problem than ordi-
nary hydrodynamics. The major problem is the non-local nature of the Lorentz force, j x B. Any

changes in the magnetic field, which result from changes in the current density, propagate through
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the plasma at the speed of light, which is infinite in the MHD approximation. However, as we dis-
cussed in section 1.2.1 and was originally demonstrated by Chen and Matthaeus [20], this problem
is illusory.

Early lattice gas and lattice Boltzmann methods [18, 19, 39] incorporated additional degrees of
freedom into the basic hydrodynamic scheme, to account for the vector potential. To update the
dynamics, some space average quantities need to be evaluated, which destroys the local nature of
the algorithm.

In section 1.2.1, we described a purely local MHD lattice gas model [20, 21] which uses 36 pairs
of lattice vectors (eq,ep) to specify the particle states, and in which the streaming rule makes the
particles undergo a random walk across the lattice, with a specified probability of moving in either
the direction of e, or e,. This method has been extended to the lattice Boltzmann scheme by Chen
et al [22] and further simplified to reduce the number of particle states by Matinez et al [1]. This is

the model which we shall describe here.

2.4.1 Microscopic Dynamics and Moments of the Distribution Function

As with the pure hydro model, we use a 2D hexagonal lattice, with the nearest neighbour links being

the vectors e, = (cos 5*,sin ), @ = 1,...,6. The moving particle states are specified by pairs of
lattice vectors, (eq,ep), wherea=1,...,6,b=a=% 1.

Macroscopic variables are defined as moments of the distribution function:

p="Jo+) fa (2.45)
a,b
pv =" fal(1—plea+pes] =D fasvas (2.46)
a,b a,b
pB = Zfab [qeb + rea] = Z fabBab (247)
a,b a,b

Where p, q, r are parameters to be chosen later. Also useful to define are the momentum flux tensor

and the magnetic momentum flux tensor:

II= Zfabvabvab (248)
a,b

A= Z fabBabvab (249)
a,b

In one time step, a particle has a probability 1 — p of moving in the direction e,, and p of

moving in the direction e,. So the updating rules, with collisions are:

folx,1) = fo(x,t — 1) + Qo(x,t — 1) (2.50)
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fao(x,8) = (1 = p) [fan(x — €q,t — 1) + Qap(x — €4, — 1)]
+p [fao(x — €b,t — 1) + Qqp(x — €5, — 1)] (2.51)

The collision operator, € is chosen to conserve mass, momentum and magnetic field:

> Q=0 (2.52)
a,b
> Qupvas =0 (2.53)
a,b
> QusBa =0 (2.54)
a,b

As usual Q will represent a linear relaxation to equilibrium:

Q= —L(f - plea)y (2.55)
;
If we choose f(eq) to be quadratic in (eg, €p), so that it is of the form:

falfeQ) =) 4@ -eq + c® -ep + @ eqe, + c®) eqep + (. erep (2.56)

3)

where ¢(1) is a scalar, ¢(?), ¢®) are vectors, ¢(¥), ¢(3), ¢(®) are tensors and ¢(*) and ¢(®) are symmetric,

then, in order that equation 2.52, 2.53 and 2.54 be satisfied, we must have:

p= féeq) +12¢M 46 tre™ 4 3 tre® + 6 tre® (2.57)
pv = (6 — 3p)c® + (3 4 3p)c® (2.58)
B = (3¢+ 6r)c(2) + (69 + 31“)0(3) (2.59)

2.4.2 Macroscopic Equations

Following the same procedure has section 2.3.2, the first order Taylor expansion of equations 2.50

and 2.51, gives the lattice Boltzmann equations:

0fo
— =0 2.
h g, (260)
0fa
gtb +Vab - Vfab = Qab (2.61)
The zeroth order moment of equations 2.60 and 2.61 gives us the continuity equation:
0
-(;5 +V-(pv)=0 (2.62)

There are two first order moment equations, got by multiplying equation 2.61 by either v, or Bgp
and summing over a and b. These are

d(pv)
ot

+V.-TI=0 (2.63)
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ﬂgti)+v-A:0 (2.64)

In order for these to be equivalent to equations 1.40 and 1.41, in the limit constant p and negligible

v and 7 we must have )
m® = (P + 5B°)1+p(vv - BB) (2.65)

A = p(Bv — vB) (2.66)

Inserting expression 2.57 into the above equations, we get the conditions

3 3p 15p?
= _ 2y (1) 25, 0 (4)
I [(6 6p + 6p?) ¢ +<2 5t )trc
2 2
+ §—+—3p—}-3p2 tre® + E—Gp-‘r@ tre® |1+ (3-3 _3 c®
4 4 4 2
3 -3 3p?
+ (Z —-3p+ 3p2> <c(5) + (c(5))T) + (T + 6p — %) c(® (2.67)

2 4

3¢ 3pg  3r 3pr ) 3¢  3pg | lor (6)
+<—4+2+4 5 ) tre” (o + = 3pr ) tre®

+<§—q—3pq+3r—§’2’—r)c(4)+ <——3q+§ﬂ+3—r+3pr>c(5)

3¢ . 3 3
A= [(3(; + 3pg + 6r — 3pr) ) + (Z" +3pg+ = — ﬁ) trc)

2 4 2 4
15q 3r  3pr (5T 3¢ 3pg 3r (6)
+< 2 3pg + 7 5 )(c )+ 5 + 5 5 +3prc (2.68)
The required form of ¢(1), ..., ¢(®) can now be found on equating expressions 2.67, 2.68 with 2.65

and 2.66. Firstly we note that the term involving c(!) in equation 2.68 would give rise to an unphysical
pressure like term in the induction equation. Demanding that this term disappear gives us the
constraint .
+p

=—qg— 2.69

L (2.69)

In order to obtain a correctly structured induction equation, it is necessary that the symmetric

component of 2.68 vanish. Denoting the symmetric part of ¢(® by 5(0(5)), after substituting ex-
pression 2.69 and simplifying, we are left with )

(2p = p?)c™@ + (2p — 1)S(c®) + (p* = 1)l = 0 (2.70)

The pressure like term in 2.68 involving tre(®) tre®) | tre(® should also vanish. This constraint turns
out to be equivalent to the trace of equation 2.70. The last condition arising from equation 2.68 is
that the anti-symmetric component should equal p(Bv — vB) which gives us

2(2-p)
9qC P

Ae®) = (Bv — vB) (2.71)
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where A(c(®)) is the anti-symmetric component of ¢(®) and C = 2(p* — p+1).

From equation 2.67 we can see that

2 2
<3 —3p— 3%) c® 4 (% +3p— 3p2> c® 4 (—g +6p— 3%) c® =p(vv—BB)  (2.72)

3 3 15p?
(6 — 6p+ 6p%) M) + (5 . i) tre®)

2 4
2 1
+ 3_ 3p+ 3p? ) tre®) + L 6p + 1597 tre(®) = P 4 ~pB? (2.73)
4 4 4 2
We now have all the equations we need to choose f(geq) e e(8) in order to satisfy the MHD

equations. Arbitrarily choosing ¢(*) = 0, we get the following form for the equilibrium distribution:

)2
f(f?q)__p'—[ 12 +i<vab‘v+(2 P) Bab'B

s TI|at12" C 3¢*
+4(ﬁc—_1_) [(es - v)? — (es - B)?]
+@ [(ea - v)(es - v) = (ea - B)(es - B)]
+ 2228 e, v)(es B) - (e Bl(es - v)
_(QP_%(Q_p)vz_pz_épﬂBg)} (2.74)
fea _, [a:m B %vz} (2.75)

It will be shown later that in order to eliminate certain unphysical second order terms, it is

necessary to have p = 0,1 or % Martinez et al [1] choose p = %,

better choice). This simplifies the distribution function to the following form:

(although p = 0 is probably a

50 = 45 | + 5 (v v+ BB
+2((ex-v)(es -v) ~ (ea - B)(es - B)]
2
+Jglew V)fen B) = (e B )+ 7] (276)
2V =0 <_af12 - %v2> (2.77)

2.4.3 Transport Coefficients

The procedure for finding the transport coefficients is identical to that of section 2.3.3. The second
order Taylor expansion of equation 2.51 is:
of, S (fab + Q4 10%Q,
ab + Vb - v(fab + Qab) — Vab - VM - Q(Lb - ETQQ

ot ot
1 0 10°f,
—5 [(1 = pleceq +peses] : VV(fap + Q) + 2 = 5 5{;’ =0 (2.78)
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The differential operators are expanded in the same way as equations 2.26, 2.27, 2.28 and 2.29, which

gives us the following equations to order ¢ and ¢?:

(0)
1
gtb +vas - VO = —;fié) (2.79)
ofy) | 01y 0l 1 )
ot T o, TV Vot v Vie
1 o 1 05y 19755 _ 1.
——[(1- a - — 4 —__ 2.
9 [( )eae +Pebeb] Vv r 6t1 9 at12 Tfab ( 80)
Operating on equation 2.79 with aih + vap - V we obtain:
1[0 02
2 (gt— + Vb - V) fii) = ( 5tfzb + 2vgay - V22 f + VabVab : vacgg)) (2.81)
which can be combined with equation 2.80 to get
0fyy 1Y (9 o
Bt, + 1—§ at, +Vab'vfab
1- 1
_ - P) (e — e5)(ea — €5) - vV = -3 2) (2.82)
Taking the various moments of equations 2.79, 2.82 and using
S =S A=
a,b a,b
we obtain the following macroscopic equations:
0 1-
6/1) + 7 (pv) = X 5 r) Y (e — ev)(ea —eb) : VYL (2.83)
a,b
Wev) | g ;= Z VYY) 2.84
ot + : = Va —eb ——eb). fab ( . )
‘a,b
d(pB
%—)+V-A = ZBab o —ep)(ea —ep) : VY (2.85)
a,b
where
1
II = Zvabvab [fég) +¢ (1 — ;) f‘(li):l (286)
a,b
1
A=Y Buva [fgg) te (1 - ;) fﬁ},)] (2.87)

a,b
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Inserting the expression for f‘gg) (equation 2.76) into equation 2.83, we get the following continuity

equation:

_3_ 2p(1 = p) 6 2
TR e a+12v”+c2 (pv™)+

2wr—2p—1

o (2V - (pvv) + V(pB?) — 2V - (pBB)) (2.88)

Any non-zero value of p, therefore, gives rise to unphysical terms in the mass continuity equation.
There are several contributions to the viscous and resistive terms in the momentum and induc-

tion equations. Again, using equation 2.76, we find that

E(—I;—pl Zvab(ea - eb)(ea ot eb) VVf(O) =

a,b

’

P28 fo(c - )V V- ()] + (C +3)V2(pv)}

+v3(2p - 1) {2V [V - (pB)] - V*(pB)} (2.89)

ZBG,, o —es)(ea —ep) 1 VY =

Wéc—‘)(ma ) {291V (pv] - Tov))

+% {-2(C - 3)V[V- (pB)] + +3(C — 1)V*(pB)} (2.90)

The other contributions, which are controllable through 7, come from

1) _ 1 (1)
) (SO (1 - E) gvabvabfab (2.91)
1) _ 1 (1)
A = (1 - g) ;Babvabfab (2.92)
with fi;) =7 (% + Ve - V) fég). We obtain
v.-oth. = (r - %) [(% - cf) VIV -(pv)] + %VZ(pv)] ~ 2V vV (2.93)
vl = (r- ) S (-v B+ Evim) (294)

The macroscopic equations can now be written:

o B?
p<a—‘t’+vAVv> =-v (P+”T)+pB.VB+Bv.(pB)

—i—[(T—%) %+p(180 )(C+3)] 2(pv)
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- (7‘— %) 2V - vVp (2.95)
1) () + Mgl s] ot
+?P(l—pg2p— 1) {2V [V - (oB)] — V2(¢B)} (2.96)
%BJFV.(,,BV_,;VB):

(--3) % #5250 v] v

-[(--3) § -0 v om

+%§p(1 —p)C(Qp— 1) (29 [V - (pv)] = V¥(pv)} (2.97)

where P is the mechanical pressure. The unphysical terms in equations 2.95 and 2.97 can be

eliminated by setting p = %, implying C' = % This gives us the following values for the transport

coefficients:

3
3r (1 3 1 9

o= 7(Z+a+12>_2(1+a+12) (2.99)
9 4

— (T _ 5) (2.100)

1
T —§(3T—2) (2.101)

It can be seen that in equations 2.95 and 2.97, that there are unphysical appearances of p in
the terms which involve the magnetic field. This limits the validity of the model to flows where
p =~ constant. This constraint is not an intrinsic feature of the model, but arises from the definitions
of B and A by equations 2.47 and 2.49 respectively. A simple solution to this problem is discussed
in chapter 5.1. As it stands, however, the method does have the simplifying advantage that the
local Alfvén speed is equal to the magnitude of the magnetic field. Furthermore, we have neglected
some higher order terms in the above equations which are similar to the the higher order terms in
equation 2.40. Unsurprisingly, these restrict the validity of the model to low Mach number, high g

regimes.

2.4.4 An improved streaming process in the MHD model

The expressions 2.98,.. 2.101, which we have derived for the transport coefficients, reveal a potential
shortcoming of the particular model which we have discussed here and was also noted in [1]. We

have already mentioned that = > % 1s a necessary condition for numerical stability which implies
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that v > 5% and 7 > % This is unfortunate as it means that high Reynolds number flows must be
modelled on a large lattice therefore increasing the computational expense of a simulation. As we
noted in section 2.3.3, this problem does not arise in the ordinary hydrodynamic model, since the
condition for numerical stability is the same as the condition for positive viscosity.

The origin of the problem in the MHD model is entirely due to the bi-directional streaming
rules 2.51, which give rise to the positive definite contributions to the transport coefficients via the
terms on the right hand sides of equations 2.84 and 2.86. This was in fact suggested by Martinez
et al [1] as a possible cause, although no solution was proposed. The solution is in fact very
straightforward: simply set p = 0 thereby restoring the model to a single streaming one.

Although the argument presented in this chapter and in [1] might appear to suggest that
by setting p = 0, we are abandoning the essential feature of the model which distinguishes it
from the hydrodanmic LB method, there are a couple of points which should be borne in mind,
which show that this is not the case. Firstly, although we now have a single streaming model,
the particle states are still characterised by pairs of lattice vectors e,,e,. This is necessary to
ensure that we have sufficient degrees of freedom to allow arbitrary macroscopic fields. Secondly,
our ability to include the Lorentz force in the momentum equation and also model the induction
equation depends on our ability to specify a distribution function which gives rise to the second
order moments 2.65, 2.66, which again results from the fact that we have retained sufficient degrees
of freedom at the microscopic level.

The updating rule for our MHD model is now given by 2.9, except that f and € each have
two subscripts corresponding to the lattice vectors e,,e,. The subsequent derivation of the MHD
equations is identical to section 2.4, but now that p = 0, the Chapman-Enskog procedure is simplified
considerably, the positive definite contributions to v and 7 no longer appear and we also have the
added bonus of eliminating the unphysical terms which.appeared in equation 2.88. All that remains

for us to do is simply state the new form of the equilibrium distribution, and the transport coeflicients:

7o = [a f:w - vz] (2.102)
559 = L | g + 2 e v 4 B B2 (e )2 - (o5 BY)
+2[(eq - v)(es - v) — (eq - B)(ep - B)]
2 2 1 2
+ﬁ [(eq-v)(er-B) — (eq-B)(es - v)] +v° — 3B >] (2.103)

(7’ - %) (2.104)
%+@>(T_§) (2.105)

1
4
I/(;:(
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n o= % (r— %) (2.106)
% <7— - %) (2.107)

w = —

2.4.5 Numerical Stability

In order that a numerical scheme be capable of producing accurate approximations to the solutions
of the equations in question, it is necessary to show that the scheme does not allow the growth of
any errors which may creep into the calculations. Establishing necessary and sufficient conditions
for the numerical scheme can be a formidable task, especially for a set of non-linear equations like
the lattice Boltzmann equation. A von Neumann stability analysis can, however, provide a useful set
of necessary conditions for local, linear stability. Sterling and Chen [40] performed such an analysis
for various hydrodynamic lattice Boltzmann methods, and here we apply it to the MHD model.

Let f(%) be a particular solution of the lattice Boltzmann equation, so that

tea VIO =~ (A9 — Fu(/®) (2.108)

where the function F maps f(o) to the equilibrium distribution with the same conserved quantities.
Suppose also that f(®) 4 f’ is another solution of the lattice Boltzmann equation, where f’ is small

so that F can be linearised about the solution f(°). Then

af L%
ot 8

1
tea VI tea Vi =~ (fff’) + fo = Fa(£) Z = () fb) +O(f) (2.109)
Taking the difference of these two equations, and neglecting the higher order terms leaves us with

0fa +e. Vfg=—= (fa Z 6F“ (f© fb) (2.110)

ot

The derivatives of f, can now be replaced by discrete approximations. The original lattice

Boltzmann method used

0fa _ Jfalx, t 4 AL) — fa(x,1)
5 (1) = A7 (2.111)
es Vii(x,1) = f“(x’t)_fi’;_me“’t) (2.112)

with At = Az = 1 We will also use a Lax-Wendroff scheme for the advection operator, so that

fa(z + Az, y,t) — fo(z — Az, y,1)
2Ax

= (folz + Az, y,t) — 2fa(2,y,1) + fo(z — Az, y, 1)) (2.113)

Ofa _

eaxgg(.z,y,t) =
Ate

Az 3

and similarly for e, 8fa z,y,1).
Y oy
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A complete analysis of the stability of equation 2.110 is not possible, as it requires prior knowl-
edge of f(® - a solution which we are attempting to find. However, conditions for local stability
can be found if we assume that f(°) is sufficiently slowly varying that we can regard the quantities
%—I;:(f(o)) as constants.

Before proceeding further, it is useful to note the following result. If F : R* — R" is a
differentiable function, such that F(x) = F (F(x)) for any x (ie F is idempotent under composition of
functions), then the eigenvalues of the derivative of F' at x (ie the matrix DF (x), whose components
are the partial derivatives g;F]%(x)) are either 0 or 1. The proof is as follows.

By the definition of a derivative,

F(x + ¢y) = F(x) + eDF(x)y + O(¢?) (2.114)
and so,
F(F(x+ey)) = F(F(x)+eDF(x)y+O0(c)
= F(F(z))+ ¢DF(x)%y + O(c?) (2.115)
Also, since F is idempotent,
F(F(x+ey)) = F(x+ey)
= F(x)+ eDF(x)y 4 O(¢?) (2.116)

Equating the above expressions for F (F(x + ey)) and letting ¢ — 0, we have DF(x)%y =
DF(x)y. In particular, if y is an eigenvector of DF(x), with eigenvalue A, then this implies that
A%y = \y. Therefore, since y # 0, A> = A so that A =0 or 1.

It is obvious from its construction that the function which maps a distribution to the corre-
sponding equilibrium distribution with the same conserved quantities, is itself idempotent, and so
the matrix of partial derivatives has eigenvalues 0 or 1. Furthermore, we can readily find the multi-
plicity of these eigenvalues. Let f’ be an eigenvector of %(f(o)) with eigenvalue 0, so that f’ is in
the null space of %(f(o)). Then

PUD+ef) = FUO) -+ + 0
= F(fOYy+0(?) (2.117)
Using the conservation of mass, we have
Y SO tefs = D F(fO +ef)
a = Z F(f) + 0(¢")

= Y 40 (2.118)
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so that

> efs =0(e) (2.119)

a

and

Y fi=0 (2.120)

on letting ¢ — 0.

Similarly, conservation of momentum and magnetic field implies
PR
a
> fiBa = 0 (2.121)
a

0

Il

(This also shows that the O(e?) term in 2.118 vanishes)

In general, f’ is an element of a 13 dimensional space. Furthermore, the conservation laws
imply that if f’ is null vector of %—?‘:(f(o)) then it satisfies 5 independent linear equations, and
so is a member of 13 — 5 = 8 dimensional subspace. Thus, since the null space of g_l;:(f(o)) is 8
dimensional, then eigenvalue 0 has a multiplicity of 8. Provided that %‘l(f( )) is not defective, (ie it
has 13 linearly independent eigenvectors), then the eigenvalue 1 has a multiplicity of 5. In general, if
there are n components of the distribution function, and ¢ independent, conserved quantities, then
the eigenvalue 1 has a multiplicity of ¢ and the eigenvalue 0 has a multiplicity of n — c.

We are now in a position to explore the conditions for linear stability. Firstly, we shall analyse
the stability of solutions of the continuous lattice Boltzmann equation. Expanding f’ in terms of a

Fourier series, we get the following equation for the amplitude of a particular Fourier mode:

d—&——l Z f<° Vil —ik-eqf. (2.122)
dt 1 b @sa '
which we rewrite as a matrix equation
df’
T =Mf (2.123)
where . 5F
la = —7 1% - ==2(fO@ —tk- ada .
Map - I:(S b 6fb (f )] 1 e b (2 124)

The solution of the above matrix equation is thus
" = exp(tM)f} (2.125)

where f§ is the initial value of f/. A necessary and sufficient condition for the stability of these
solutions is that the real parts of all the eigenvalues of M should be negative or zero. In particular,
if k = 0 (ie. the perturbations are uniform), then it is easy to sce that the eigenvalues of M are 0,

with a multiplicity of 5, and —% with a multiplicity of 8. The eigenvectors of M are the eigenvectors
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of %(f(o)). Thus, our first stability constraint is —1 < 0, so 7 > 0. (7 = co is, in principle, also
allowed.) This condition is already satisfied by the physical constraint that the viscosity be positive.

For k # 0,7 = 00, the eigenvalues of M are ¢k - e, are purely imaginary, and therefore auto-
matically satisfy the stability requirements. If k # 0 and 7 is finite, it is not possible to find general
expressions for the eigenvalues of M as it requires finding the roots of a 13th order polynomial.
Instead, we find the eigenvalues of M numerically. There are 8 independent parameters which de-
termine the eigenvalues of M, namely «, vz, vy, Bz, By, kz, ky and 7, but since k can be rescaled with
the substituition k = %k’, the stability constraint is independent of 7, so without loss of generality,
we can set 7= 1.

Experimentation suggests that the stability constraints on v and B are severest for the Fourier
modes with small, but non-zero k. This should be expected as high k modes are more stongly
affected by viscosity and resistivity. (If k = 0, then stability is guaranteed.) Figs 2.1- 2.16 show the
boundary of stability on various 2D slices through the 7D parameter space. Fig 2.1 suggests that
a =~ 0.62 maximises the region in which v satisfies the stability requirements. On the other hand,
the stability region for B is greatest for small . However, when o = 0.62, v = 0, B is constrained to
be less than about 0.5, which is by no means too severe, as we would expect the lattice Boltzmann
model to be inaccurate for large B anyway.

In figs 2.5, 2.6 we can see that the stability of a particular Fourier mode is more or less inde-
pendent of the component of v orthogonal to k. Furthermore, since the stabililty constraint must
be satisfied for all k regardless of direction, this implies that the overall stability does not depend
on the direction of v. Further experimentation suggests that the optimal value of « is about 0.6 and
that v and B should be smaller than about 0.3.

These are conditions for stability of solutions of the continuous lattice Boltzmann equation. The
improved stability of the large k Fourier modes may be ascribed to the greater effects of viscosity
at small length scales. It is tempting to regard the instabilities at large v as being indicative of the
growth of shocks in a supersonic fluid. However, note that the above analysis strictly holds for linear
perturbations about a uniform flow, and uniform flows in real fluids do not form shocks, regardless
of the Mach number. Therefore, these instabilities at large v and B are simply indicative of the
inaccuracy of the lattice Boltzmann method in those regimes.

Further instabilities may arise due to the discretisation of the lattice Boltzmann equation. Since
only explicit finite difference schemes are used in this thesis, we shall write the discretised lattice
Boltzmann equation for the pertubations as

f;z+1 _ fn

a n___l n 6Fa (0)y n
S+ Dfy = T(f,, ;afb(f )fb) (2.126)

where D, is the finite difference form of the differential operator e, - V. The equation for a particular
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Figure 2.1: The stability boundary with k; = .01,ky = vy = By = By = 0. The
is below the line.

Fourier mode of f, is then

Writing this in matrix form as

where

then the solutions are

Stability Boundary

= (1-5 - Dk ))5

s po)

fn-{—-l — an

fn - MnfD
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region of stability

(2.127)

(2.128)

(2.129)

(2.130)

and the stability condition is that the magnitudes of the eigenvalues of M should all be less than

or equal to 1. For the mode k = 0, the eigenvalues of M are 1, with a multiplicity of 5 and 1 — &t
with a multiplicity of 8. This gives the stability condition that 0 < At < 27. In fact, it is better to

have 0 < At < 7 so as to avoid oscillations in the finite difference solutions which are not exhibited

in the continuous solutions.

The parameter space is now larger, since the finite differencing introduces the new parameters

At, Az, Ay. By rescaling At = TAt', we can arbitrarily set 7 = 1. Also, since the discretisation

means that high wave number modes are not resolved, we can impose the restrictions 0 < k. Az <,

0<kyAy <.
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Stability Boundary

Figure 2.2: The stability boundary with k; = .01, ky = v, = vy = By, = 0.

Stability Boundary
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Figure 2.3: The stability boundary with o = 0.6, ky = vy = B, = B, = 0.
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Stability Boundary

Figure 2.4: The stability boundary with o = 0.6, k; = .01, ky = B, = By = 0.

Stability Boundary

-

-

Figure 2.5: The stability boundary with « = 0.6, k, = .01, k, = .01, B, = B, = 0.
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Stability Boundary
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Figure 2.6: The stability boundary with o = 0.6, k; = .01, ky = —.01, B, = B, = 0.

Stability Boundary

Figure 2.7: The stability boundary with a = 0.6, k2 + k; =.001,B, = B, =0.
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Stability Boundary

Figure 2.8: The stability boundary with o = 0.6, ky = vy = vy, = By = 0.

Stability Boundary
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Figure 2.9: The stability boundary with & = 0.6, ky = vy = vy = By, = 0.
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Stability Boundary

Figure 2.10: The stability boundary with o = 0.6, k; = .01, ky = v; = vy, = 0.

Stability Boundary

Figure 2.11: The stability boundary with o = 0.6, k; = .01, ky = .01, v, = v, = 0.
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Stability Boundary

Figure 2.12: The stability boundary with a = 0.6, k2 + kg =.001,v, = vy, = 0.

Stability Boundary

Figure 2.13: The stability boundary with o = 0.6, k; = .01, ky = v, = B, = 0.
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Stability Boundary

Figure 2.14: The stability boundary with o = 0.6, k2 + k2 = .001,v, = By = 0.

Stability Boundary

Figure 2.15: The stability boundary with o = 0.6, k, = .01, %k, = v, = B, = 0.
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Stability Boundary

Figure 2.16: The stability boundary with o = 0.6,k2 + k2 = .001,v, = B, = 0.

43
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2.5 Other Discretisions of the Lattice Boltzmann Equation

We have already seen that a necessary condition for numerical stability of the lattice Boltzmann
method is the 7 > %, and more detailed analysis indicates that the method should become unstable in
certain flow regimes, especially when 7 is close to %, and indeed various simulations have confirmed
this [32, 41]. The stability could, in principle be improved by modifying the collision operator,
(eg. stability is guaranteed if Q@ = 0). However, the simplicity of the collision operator is one of
the appealing features of the lattice Boltzmann method, and a more fruitful approach has been
discovered by Cao et al [41], which they applied to the hydrodynamic LB model, and here we shall
apply their arguments to the MHD scheme.
We have already shown how the LB updating rule:

fa(x,1) = fa(x —eg,t = 1) + Qu(x — €q,t — 1) (2.131)
approximates, to lowest order, to
%+ea.vfa=9a (2.132)

It has been noted [42, 41] that equation 2.131 is in fact an explicit, upwind, finite difference
approximation to 2.132, with ||eq|| = At = Az = 1. Cao et al have developed this idea further,
approaching the problem from a subtely different angle, by regarding equation 2.132 as describing
the fundamental processes, and equation 2.131 as a particular means of solving equation 2.132.

From this point of view, the lattice Boltzmann technique becomes a far more general approach to
solving fluid like equations, since we are no longer restricted to using equation 2.131 as our updating
rule and any suitable approximation can be applied. Indeed, as described by Cao et al [41], and
as we shall see, the points at which we calculate the values of f, need not even correspond to the
lattice points at which the particle collisions take place, but can be chosen to suit the geometry of
the flow region.

With this change of emphasis, it may be more appropriate to regard the lattice Boltzmann
method as an economical kinetic theory rather than the ensemble average of CA lattice gases. It
should be borne in mind however, that we are still not solving the real kinetic equations, partly
because of the small velocity space, and especially so in the MHD model due to the unusual repre-
sentation of the magnetic field.

Returning to equation 2.132, we note that it is a set of linear, hyperbolic equations, coupled
via the collision operator 2. The stability of such equations is a standard problem in computational
fluid dynamics and as was discussed in section 1.2 a common constraint on a wide class of explicit
methods is the Courant-Friedrichs-Lewy (CFL) condition: %8t < 1, where u is a characteristic
speed of the system (eg a convection speed, a wave speed etc.) [5]. In equation 2.131, we have
u = ||eq|| = At = Az = 1, so that the CFL condition is only marginally satisfied, hence instabilities

as T — % should be expected and have been observed by several authors [32]. Multi-speed lattice
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Boltzmann methods, which model thermal flows [34], are even more severely constrained by stability
considerations [43, 41] and are restricted to flows with a rather narrow range of temperature.

By adopting the approach of Cao et al, we can relax the restriction At = Az = 1 and apply
any standard technique to discretise the linear convection equation. In their paper, Cao et al use a
central difference formula for e, - V f, on a rectangular grid:

o Jivne—fimuk fiwg1— fi, k-1
Ca VN e T T Ay

which lead to an unconditionally unstable method if employed along with a simple forward difference
approximation for %:L (ie. -[LA‘:L.), but can be stabilised by using a Runge-Kutta method to advance

f forward in time.

2.5.1 A Lax-Wendroff discretisation of the lattice Botzmann equation

We shall firstly discuss this approach in relation to a simple 1D, lincar convection equation and then
apply it to the lattice Boltzmann equation.

If we consider one of the simplest discretisations of

of  of _
Fruz =0 | (2.133)

namely the forward-time, centred-space approximation:

BYSp LS
At 2 Az o

(2.134)

we note that it has two major drawbacks.

Most importantly, and fatally, it is unconditionally unstable. To see this, we apply a Fourier
analysis to the equation obeyed by the errors in f, (which is equation 2.134, since it is linear), so
that Jf]'-”’l x Geijgdf}‘, Then

G-1 eif _ o—if

SO A
G=1- iEA—?}sinH (2.136)

For stability, we require that §f remain bounded so that |G| < 1 for all 8, which clearly cannot
be satisfied by 2.136.

An additional drawback is that while the centred-space approximation of g‘é is of order O(Az?),
the forward time approximation of %{ is only of order O(At), so that expanding 2.134 and keeping

the lowest order truncation errors, we have:

TN AN
_37+ 2At 312 +u(91: + GUA.’B 503 =0 (2.137)
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The Lax-Wendroff FD approximation introduces additional terms to 2.134 in order to cancel
the term of order O(At) appearing in 2.137. Noting that if f satistifes 2.133, then it also satisfies

Of _ 22t (2.138)

2L
ot? Jz?
so that a second order scheme can be obtained by discretising the equation

of  Of 1, ,0°f _

- — - Atu“— =0 2.139
at +u(91' 2ot B ( )
Using the usual approximations for %f, %5 and g—z% gives us the FD formula
f}LH—fjn - 1 [ =217 + 7y
— CAtu?E J__ O(At?, Az?) =0 2.140
YY" gt Az T O(AL, AT (2.140)

A Fourier stability analysis gives us the expression for the amplification factor G:

G=1+C*cosf —1)—iCsinf (2.141)
where C = Y&t and |G| < 1, for all 6, if |C| < 1. The above approach is easily extended to more
dimensions and in 2D, the stability constraint is C2 + C; <1, where C; = %, Cy = uzﬁf’. If we

discretise the lattice Boltzmann equation using this method, we get the following:

n+1
fajk - r:ljk e fc?j—&—lk_f:j—lk

At o 2 Az
ajk+1 — Jaje—1 R fajvie — 2Fa50 + faj—
teay 2 Ay 58 Cas Az?
1 Sajks1 — 27 ajk + iy L., eq)”
_iAt egy - ixg = =7 ( ajk — f(Ej,g) ) (2.142)

The trunctation error of this discretisation is

2
lA1t< 0 fa —2ea-V9a+ZaQ“Qb>
b

9=t | CorCay 5L oy s

The final term in the truncation error can be simplified by applying the conservation laws. If we
use the generic symbol Cy to represent the conserved quantities p,pv etc and cqx the corresponding
microscopic quantity, then by using the fact that the equilibrium distribution is a function of the

conserved quantites we have

0, o Vg,
Qp = Qp—r ———=
257, ; Yofs T

b

! 0fs°Y C; f
:—;Qaﬁ-;ﬂbz’i: aC E (2'143)

Now

Cr = faCak (2.144)
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so that 5C
k
—_— = 2.14
of (2.145)
On substitution into 2.143 we have
0% 1 afieD
E Q = —-=Q, E Q E
bafbb T+bbkackcbk
1
— _;Qa (2.146)

after changing the order of summation and applying the conservation laws. This discretisation is
of lower order than 2.140, but it does have better stability properties than the traditional lattice
Boltzmann scheme and, as we shall see, proves to be quite an effective means for solving the lattice
Boltzmann equation. The order O(At) trunctation errors can be cancelled by introducing additional
finite difference terms into the equation, but since they involve the % operator, this necessitates

a larger neighbourhood for each grid point, and is thercfore computationally more expensive.



Chapter 3

Simulations of Standard MHD

Problems

Now that we have discussed in detail the lattice Boltzmann method for MHD we now turn our
attention to the some standard problems which can be modelled by the method so that the results

can be compared with the analytic solutions or with the results of established work.

3.1 Flow down a channel

3.1.1 Analytic solutions

Incompressible flow down a channel is one of the simplest problems in MHD and one of the few
problems which can be solved exactly without the need of linear approximations, because the non-
linear terms vanish. The particular examples which we shall examine here are Hartmann flow [44]

and time dependent Poiseuille flow [45].

Hartmann flow

This is a standard problem in magnetohydrodynamics [44] and was originally used by Matrinez et
al [1] to test the lattice Boltzmann MHD model. The fluid is forced by a uniform, constant total
pressure gradient, down a channel with walls at y = &L, and a uniform magnetic field is applied
perpendicular to the walls. Our boundary conditions are v =0 and B = (0, By) at y = £L. We
shall look for steady state solutions of the form v = (v(y),0) and B = (b(y), Bo).

With these considerations, the MHD equations reduce to

d%v db ‘
VW+Boa§+f =0 (3.1)

48
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d%b dv
—+By— = 0 2
"zt Py (3:2)
where the constant f is the pressure gradient and the units are chosen so that p = 1.

It is easy to show that the solution of this pair of equations, which satisfies our boundary

oly) = 1L \/7 coth(H [ C°j:$%"’)] (3.3)

fL [smh Hy/L) y]

By | sinh(H) L

conditions is:

(3.4)
where the Hartmann number H = BoL/,/v7.

Time dependent Poiseuille flow

The situation here is that of the previous section, except that we impose B = 0 and we now look
for time dependent solutions of the form v = (v(y,t),0), with the initial condition v(y,0) = 0. The
reason for switching off the magnetic field will be made clear later.
There is now only one equation to solve:
v v
— —Vv— = 3.5
ot Oy? f (3.5)
In order to find the general solution of equation 3.5 we firstly need a particular solution. It is

easily shown that one such solution is

Wy, t) = fQL: [1 - (%)2} (3.6)

which is expression 3.3 in the limit By — 0.

The next step is to find the general solution of the homogeneous equation

Ov 0%v

We can take a Fourier expansion of 3.7 to get the following ODE in the Fourier coefficients:

dv,

T = —kiyvn (38)

where k, = nm/2L. The solution of the above equation is then
Uy = Ve kvt (3.9)

and so the general solution of 3.7 is

:ZVne

00 k7w { cos(kny) if nisodd (3.10)

sin(kny) if n is even
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If a non-zero magnetic field were included, and a similar analysis performed to solve the equations,
then it turns out that the eigenfunctions which satisfy the boundary conditions v(+L,t) = b(£L,t) =
0 are not orthogonal, thus greatly complicating the task of finding the relevant coefficients.

The general solution of 3.5 1s the sum of the particular solution 3.6 and the general solution 3.10
of the homogeneous equation 3.7. To find the constants V,,, which satisfy the initial condition

v(y, 0) = 0, we require the Fourier expansion of 3.6
f y\?] _ f 8(—1)"7" cos(kny)
2wL? L (L) T vL? Z (nm)3 (3.11)
oddn
and it is easily checked that the solution of 3.5 with the required initial and boundary conditions is

) = 5 [1—(2)2— 5 AHT ek .12

e L ot (nm)3

3.1.2 Lattice-Boltzmann simulations

Simulations were carried out on a lattice, 60 cells wide, in the y-direction, and, since the problem is
independent of z, 1 cell long, with periodic boundary conditions in the z-direction. The boundary
conditions at y = +L were achieved simply by setting the values of the distribution function to the
appropriate equilibrium distribution.

To implement the pressure gradient, an additional procedure was included in the code, which
redistributes the distribution function after the streaming step and before the collision step. This is

equivalent to the inclusion of an additional term in equation 2.51:
far(x,1) = (L = p) [far(x —eq,t = 1)+ .. ]+p[. ]+ F (3.13)

An appropriate form for F' can be derived from the considerations that in one timestep Ap = 0,
Apv) = (£,0), A(pB) =0 [1]:

Fap = fCab (3.14)
where
Cll = Clz = —041 = —C42 =1 (315)
_ _3-p
Cs1 = —Coz = 5 p (3.16)
_3-=2p
Cs2 = —Co1 = 5— » (3.17)

The values of f must be kept small, so that deviations from the equilibrium distribution do not
become too large, thereby affecting the accuracy of the lattice-Boltzmann method. A value of
2 x 107° was used in our simulations. The Hartmann number H was varied by varying the strength
of the magnetic field. The results of the simulations are shown in figures 3.1- 3.3. As with the tests
of Martinez et al [1], the graphs show good agreement between the lattice Boltzmann results and
the analytic solutions for both the steady state Hartmann flow problem and the time dependent

Poiseuille flow.
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Figure 3.1: Velocity profile of Hartmann flow, for H = 0,1.5,3,6.5,15. The solid lines show the
analytical results; the symbols show the results of the lattice Boltzmann simulations. The other

parameters for these runs are: L = 59%1@, f=2x10"% 7 =1 and the streaming parameter p = %
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Figure 3.2: Magnetic field profile of Hartmann flow, for H = 1.5 (4 symbol), H = 3 (O symbol)
and H = 15 (x symbol). The solid lines show the analytical results; the symbols show the results

of the lattice Boltzmann simulations. The other parameters for these runs are: L = égﬁ@,f =

2x107% 7 = 1 and the streaming parameter p = %
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Figure 3.3: Evolution of Central flow velocity of time dependent Poiseuille Flow. The solid lines
show the analytical results; the symbols show the results of the lattic Boltzmann simulations. This
simulation corresponds to the situation in figure 3.1 with H = 0. The final velocity profile (as
t — oo) is shown in figure 3.1. ’
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3.2 Damped Alfvén waves

3.2.1 The linearized equations and the dispersion relation

As a result of the interaction with the electromagnetic field, plasmas can support a much richer
variety of wave motion than neutral fluids. The simplest example is the shear Alfvén wave, which
results from the magnetic tension and is analogous to a wave travelling along a taut wire.

We consider small perturbations of a homogeneous, incompressible plasma, which is at rest and
permeated by a uniform magnetic field, Box. Writing the perturbed velocity and magnetic fields as

v, b, and assuming any non-linear terms to be negligible, the MHD equations become

ov b 9
ob  _ Ov 9

Since the plasma is incompressible, V - v = 0, on taking the divergence of equation 3.18, we

obtain
V2(p' + Bobg) =0 (3.20)

where p’ is the pressure perturbation. Since p’ and b must remain bounded over all space, it follows

from harmonic function theory that p’ + Byb, must be constant. So equation 3.18 becomes

ov _ _ 0b 2
5 = Bog TvVv (3.21)

If we look for solutions of the form ef(k*~%t) then we get
—iwv = iBoksb — vk?v (3.22)
—iwb = —nk?b + iBok,v (3.23)

which can be rewritten as the following matrix equation

zw —vk®  iBok, v 0 (3.24)
iBoky  iw — nk? b

In order that the solutions the solutions be non-trivial, the determinant of the 2 x 2 matrix must be

zero, which gives us the following dispersion relation

w= {:t [Bokw—ik4(u—n)2]i+i%k2(l/+n)} (3.25)

and the relationship between the amplitudes of the velocity and magnetic perturbations:

w + wk?
b= —— .
FBq v (3.26)



CHAPTER 3. SIMULATIONS OF STANDARD MHD PROBLEMS 55

3.2.2 Simulations

As for the simulations of flow down a channel, a lattice one cell long in the z-direction was used.
Periodic boundary conditions were applied across the z and y boundaries and the initial conditions

were chosen to specify a sinusoidal variation in the perturbed magnetic and velocity fields, so that
b(z,y,0) = (bo cos(ky),0) (3.27)

u(z,y,0) = (ug cos(ky — ¢),0) (3.28)

In order to satisfy the periodic boundary conditions, we must have k = ZL'% for some integer n,
where Ly is the size of the lattice in the y-direction. The unperturbed magnetic field is set to be
By = (Bysin#, By cos §) where 8 is the angle between the ambient field and the wave vector.

The results of two such simulations are shown in figures 3.4- 3.6. As with the simulations of

1D channel flow, the lattice Boltzmann results compare well with the analytic solutions. Figure 3.6

shows the fractional error, (defined as (foL”(sz + Ab%)dy/ fOL”(v2 + bz)dy) * where Av, Ab are
the differences between the analytic and LB solutions.and v and b are the analytic solutions) in the
simulations. The larger fractional errors of figure 3.6 may be attributed to the fact that the waves in
this simulation are more strongly damped, so that the wave amplitude becomes small very quickly.
The errors are also observed to oscillate at twice the frequency of the Alfvén wave itself. The reason
for this 1s that the LB model is valid only in the incompressible limit and does not strictly obey an
incompressible equation of state. There is thus a non-linear coupling between the incompressible,
transverse Alfvén wave and the compressible, longitudinal wave. The longitudinal mode is forced by
the oscillations in the magnetic pressure, which, due to its quadratic dependence on the magnetic

field, results in the observed frequency at twice the frequency of the linear wave.
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Figure 3.4: These graphs show the evolution of the perturbed fields of a standing Alfvén wave at a
fixed point in space. By = 0.1, bg = 0.001, ug = 0, k = 7r/500\/§, 7 = 1. The analytic solution is
indicated by the solid line, the lattice Boltzmann results by the symbols.
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Figure 3.5: These graphs show the evolution of the perturbed fields of a standing Alfvén wave at a
fixed point in space. By = 0.1, bg = 0.001, ug = 0, k = 7r/250\/?_>, 7 = 1. The analytic solution is
indicated by the solid line, the lattice Boltzmann results by the symbols.



CHAPTER 3. SIMULATIONS OF STANDARD MHD PROBLEMS

0.025

0.020

0.015

0.010

Fractional Error

0.005

0.000

vvvvvvvvv

0.08

0.06

AL L

0.04

T

Fractional Error

0.02

0.00 .. ..

v by oy T

0 1.0x10%  20x10%  3.0x10%

Time step

5.0x10%

58

Figure 3.6: This graph shows the evolution of the fractional error between the lattice Boltzmann
results and the analytic solution for each of the two Alfvén wave simulations. The error oscillates at
twice the frequency of the Alfvén wave due to a non-linear coupling between the Alfvén wave and

the longitudinal compression wave.
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3.3 Coalescence of magnetic islands

An area of considerable interest in plasma physics is the process of magnetic reconnection. Plasmas
in both laboratory and astrophysical situations are sometimes observed to persist in apparently
stable states for relatively long periods of time until a considerable amount of energy is released in
a sudden burst. In the solar atmosphere, for instance, this process is manifested as solar flares and
coronal mass ejections. In a tokamak plasma, such disruptions can lead to a loss of confinement and
thus are a major obstacle to the achievement of controlled fusion.

The basic mechanism behind such sudden discharges of energy is magnetic reconnection. Throu-
ghout most of the plasma, Ohmic dissipation is generally negligible, so that the magnetic field lines
are frozen into the fluid. This has important implications, which are most easily understood in two
dimensions, for then the frozen flux condition implies that the topology of the field lines cannot
change. Thus, it is possible for the plasma to be found in a configuration in which it is unable to
relax to a state of minimum energy because to do so would require a change in the field line topology.
This can constrain the plasma to persist in a state of high magnetic energy. However, the frozen
flux condition is, of course, an approximation, and in general there will be regions where Ohmic
dissipation is significant. These regions appear as thin current sheets, which form when field lines
of opposite sense are compressed together. Within these current sheets, the frozen flux condition
no longer applies, and the field lines are able to break and reconnect with a different topology,
thus enabling the sudden discharge of energy. In three dimensions, the process is not so readily
understood in terms of field line topology, but the same basic process occurs, with the formation of
thin current sheets enabling the energy discharge.

Here we apply the lattice Boltzmann method to an example of a reconnecting system, namely
the coalescence of magnetic islands. The basic configuration consists of a magnetic field, uniform
as y — 00, which reverses direction in a thin current sheet. There are two types of reconnection
process which can occur in this system, tearing and coalescence [46]. Tearing produces topologically
disconnected magnetic islands, which correspond to local enhancements in the current density. These
magnetic islands experience a mutual attraction, much like the magnetic forces between current
carrying wires, which pulls the islands together, forcing reconnection to take place and allowing
the islands to coalesce. The tearing mode is a comparatively slow process, its linear time scale
generally being at least two orders of magnitude greater than the Alfvén time scale. Coalescence is
much faster. Its time scale is only one order of magnitude longer than the Alfvén time scale and is
quite insensitive to the value of the resistivity, since the instability is driven by ideal processes [47].
Magnetic island coalescence is therefore a convenient problem with which to test the lattice Boltzman
method in more complex situations.

The linear stability of island coalescence was studied analytically by Finn and Kaw [48], and
numerical models of the reconnecting system have been conducted in the linear and non-linear
regimes by Pritchett and Wu [47] and Biskamp and Welter [49]. It will be useful to use their results
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for comparison with the lattice Boltzmann simulations. The system is described by the magnetic

potential
¥ = Bgalog(cosh(y/a) + ecos(z/a)), (3.29)

where the magnetic field is B = (%3;—, —%’f). The Lorentz force is balanced by the pressure field

) B, cosh(y/a)

P=Poo = Boo t cosh(y/a) + ecos(z/a)’ (3-30)

The configuration describes a current sheet of width a, in which there is a chain of magnetic islands,
whose width w is give by cosh(w/2a) = 1 + 2¢. Finn and Kaw [48] showed, via the energy principle
that this equilibrium is linearly unstable for € > 0.12. The later numerical work of Pritchett and
Wu [47], showed that there is no threshold value of ¢, below which the system is stable. The
discrepancy with the results of Finn and Kaw was attributed to the trial function they used, which
was insufficiently general and did not include the most unstable modes. Pritchett and Wu also
modelled the non-linear evolution of the instability and observed the eventual coalescence of the
islands when the resistivity was non-zero. The reconnecting process was studied in more detail by
Biskamp and Welter [49]. They focussed their attention on the current sheet which forms between
the islands during coalescence, and deduced various scaling laws for the upstream and downstream
fields and the dimensions of the current sheet.

The perturbation was calculated in a similar manner to that employed by Pritchett and Wu: a
traditional finite difference code was used to evolve the linearised set of MHD equations until the
solution was swamped by the fastest growing mode. The solution was then multiplied by a small
factor (typically .01/ maxv) to give the initial perturbation. Pritchett and Wu found that with the
distant boundary at y = 5a and a magnetic Reynolds number (S = By a/7n) of 200, the growth rate
was 0.132 By, /a. For the same conditions, our growth rate was 0.129 B, /a, the small discrepancy
presumably being due to differences 1n the details of the finite difference codes. The inclusion of a
viscosity v = /3, (which is necessary for the lattice Boltzmann simulations) marginally reduced the
growth rate to 0.125 By, /a.

The full simulations were carried out on a grid of 320 x 161 points, using the Lax-Wendroff
FD discretisation of the lattice Boltzmann equation described in section 2.5.1. The evolution of the
system with S = 200 is shown in figures 3.7, 3.8. As was observed by Pritchett and Wu, the islands
accelerate towards each other and enter a reconnection phase which leads to eventual coalescence.
The velocity field is seen to reverse direction after this stage, which is due to the island vibrating
under the action of the magnetic tension, in an analogous manner to the vibrations of a soap bubble
or drop of liquid.

Examination of the reconnection phase in detail reveals that the reconnection occurs within a
thin, intense current sheet (figure 3.9). At sufficiently high S, this current sheet is itself prone to
tearing instabilities [49, 50]. Figure 3.10 shows such an example at S = 800. A profile of the current

density at © = 27 shows that the current sheet is poorly resolved. Biskamp [46] remarks that such
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poor numerical resolution is likely to result in the tearing instability being observed in a current
sheet which should really be stable, so this particular simulation should not be taken too seriously.
A total of 5 simulations were performed at values of S between 200 and 400. Figures 3.11- 3.12

show the scaling laws obeyed in the current sheet, which are

B ~ SO.27:E0.03

u o~ §05%01
v o~ §0-39£0.07
§ ~ G§TO902 (3.31)

Where B is the upstream magnetic field, u the upstream velocity, v the downstream velocity and &

the current sheet thickness. For comparison, the scaling laws observed by Biskamp and Welter [49]

were
B ~ S§3%
Uu ~ S—%
v ~ §3
§ ~ §°3% (3.32)

The width of the current sheet A was independent of S in both our simulations and those of Biskamp
and Welter. Despite the large scatter in the data, the scaling laws calculated using the LB method
are in fair agreement with Biskamp and Welter’s results. In particular we have uA ~ vd as required
by mass continuity and the downstream velocity is close to the upstream Alfvén speed as is predicted
by considering current sheet dynamics [46, 51, 52]. The biggest discrepancy is in the scaling law for
the current sheet thickness §. This is likely to be due to the rather poor resolution of the current
sheet, causing inaccuracies in the simulations. A non-uniform mesh, with a high concentration of
grid points in the current sheet region could resolve this problem without making the computation
particularly more expensive. It should also be noted that in Biskamp and Welter’s simulations their
was no viscosity, whereas here the viscosity is one third the resistivity, which is likely to cause further

discrepancy.
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Figure 3.7: The evolution of the magnetic field lines during coalescence. The initial conditions (top
left) are unstable to small perturbations, and the islands can be seen to move towards each other
under their mutual attraction and eventually coalesce. S = 200, e = 0.3 in these simulations and
the plots show the magnetic field lines at ¢+ = 0,84,115, 146 in units of (kBo)% JK
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Figure 3.8: The stream lines corresponding to the magnetic field plots shown in figure 3.7. The flow
can be observed to reverse after coalescence which is due to oscillations of the new island under the
influence of magnetic tension.
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Figure 3.9: A thin, intense current sheet forms in the reconnecting region between the two islands.
The plots on the left show the inital current density, on the right, the current density at the time of
maximum field compression, (roughly ¢ = 84(A:F?0)" 1%-
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0.0

Figure 3.10: The current sheet can be observed to undergo tearing. § = 800 in this simulation.
The profile of the current density along the current sheet indicates that this is really a non-linear
numerical instability due to poor resolution rather than a physical effect. However, the instability

does genuinely occur at sufficiently high S > 104 [46].
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Figure 3.12: The scaling law obeyed by the downstream velocity near the current sheet. v ~
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Figure 3.13: The scaling law obeyed by the upstream velocity near the current sheet. u ~ S~-5+01,
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Chapter 4

Vortex Shedding in Solar Active

Regions

4.1 Flux Tube Geometry and Sunspot Motions

Now that we have shown that the lattice Boltzmann method is a valid technique for modelling
MHD, we turn our attention to a problem of practical interest in solar physics, namely the effect of
an erupting coronal loop on the photosphere.

A coronal loop (or flux tube) is an arc of plasma, which protrudes from the solar photosphere
and is supported against its own weight by a magnetic field. The footpoints of the loop, where it
intersects with the surface of the photosphere, appear in optical wavelengths as dark sunspots. As
the loop erupts from the photosphere the sunspots move apart. The paths which they follow can
be used to infer the loop geometry. This has been investigated by Leka et al [53]. If the loop is a
simple arc, then the sunspots will diverge along a straight line; on the other hand, if there is a twist
in the loop, the sunspots will follow a meandering path, as shown in figure 4.1.

This analysis, however, depends on the assumption that the sunspot motions are really due to
the geometry of the tube and not a result of the loop being dragged along by bulk motions of the
photosphere. A possible means of distinguishing these scenarios is to examine the vorticity in the
ambient plasma. If we imagine that the sunspots are following a meandering path, then it should
be clear from figure 4.2 that the vorticity in the ambient photospheric plasma should be different
depending on what causes the sunspot motions.

If the sunspot motion is due to the geometry of the flux tube, then the plasma is being stirred
by the tube and (if the Reynolds number is sufficiently high) a trail of vortices should be left in the
wake of the motion. Alternatively, if the flux tube is being dragged along by the plasma, then the

vortex shedding should occur ahead of the sunspot. An analysis of the vorticity in the region of a

70
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Figure 4.1: Sketch of flux tubes and their sunspots. The top figure shows a simple arc shaped flux

tube. As the tube erupts from the photosphere, the footpoints move apart in a linear fashion. If the
flux tube is twisted (bottom figure), the footpoints follow a meandering path.

<o o>

pair of sunspots has been carried out by Strous [54].

4.2 Vortex Shedding by an Obstacle

The reasoning behind figure 4.2, however, assumes that the ambient plasma is behaving purely
hydrodynamically, and it is natural to ask what effect a magnetic field would have. The crucial effect
1s the mechanism by which vorticity, which is generated by relative motion between the plasma and
flux tube, is transported through the photosphere.

To simplify our simulations, we will crudely model the flux tube as if it were an impermeable
cylinder, with a no-slip boundary condition and restrict ourselves to two dimensional flows. the
hydrodynamical version of this problem has been extensively studied [55], and even modelled by a
lattice Boltzmann method [56, 657, 58, 59, 60]. It can be shown that the problem can be parame-
terised by a single dimensionless quantity, the Reynolds number, which is a measure of the relative
importance of the non-linear convective term in the momentum equation to the viscous term. Using
a dimensional argument to derive this quantity, we can write V & (2a)~!, where a is the radius of

the cylinder, so that
_Mlpv. V||  (20)710U? 24U
Ty V|| T v(20)2U0 T v

where U is the relative flow speed between the fluid and the cylinder.

Re

(4.1)
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Figure 4.2: This figure is a sketch of the vortex shedding patterns in the wake of sunspots, in two
different scenarios. In the top figure, the ambient motion of the photosphere is negligible and the
vortex shedding occurs behind the sunspots. In the lower figure, there is a bulk clockwise rotation
of the photosphere, causing the vortices to be shed in a different direction.
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If we take the curl of the momentum equation in 2D so that

%ti =—v Vw4 vV (4.2)
then we can see that we have two mechanisms for transporting vorticity. The first term on the right
hand side of equation 4.2 transports vorticity by convection - ie a vortex will move because the fluid
as a whole is moving - and the second term allows vorticity to diffuse through fluid. It can easily be
seen that dimenionsally, the ratio of these two terms is also equal to the Reynolds number.

For large R, viscosity is negligible far away from the boundary, where spatial gradients are small
and a particular solution of the inviscid equations is that of an irrotational steady state [55]. In such
a case, where the fluid is also incompressible, the flow can be described by a complex potential [45],
w(z), where z = z + iy and v, = Rw'(z), vy = —Sw’(2). Noting that w(z) = Uz is the potential for
uniform flow, we can apply the Milne-Thomson Theorem [45] to generate a potential describing flow
past a circular cylinder. This states that if a flow described by a potential f(z), whose singularities
all lie in the region |z| > a, then the potential f(z) + f("z—z) describes a flow past a circular cylinder
which has the same singularities as f(z). Thus the potential we require is U (z + “z—z) and the velocity
field is

2 cos 20

v o= U (1__) (4.3)

r

a?sin 20
'Uy = —-U—r—2— (44)

where

rcosd = (4.5)
rsinf = y (4.6)

This velocity field is a good description of the flow far away from the cylinder, and is in fact a
singular perturbation of the viscous Navier- Stokes equations. Notice that the no-slip boundary
condition is not satisfied, so that the irrotational assumption is not valid at smaller distances. Very
close to the boundary, the flow field will vary over much shorter length scales than a, so the viscous
terms will become significant in this region.

For small R, <« 1, the viscous terms dominate, and the vorticity diffuses isotropically away
from the boundary. In such a situation, the flow possesses fore and aft symmetry. As R, increases
towards unity, convection becomes more important and the fore and aft symmetry of the flow is
broken. It is possible to find approximate solutions in this case [55].

For larger R., the non-linearity of the convection term, which now begins to dominate, prevents
us from finding even approximate analytic solutions and either numerical simulations or direct
experimentation are required [55]. For 10 < R, < 60, regions of circulating flow form in the

immediate wake of the cylinder and for . > 60 these regions of circulation become unstable and
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begin to shed vortices. When the Reynolds number exceeds approximately 1000, more instabilities
set in and the wake becomes turbulent and three dimensional. Although the singular perturbation
discussed above represents a solution at R, = oo, this flow does not occur as R, — co. The reason
for this being that turbulence generated by the instabilities has very small length scales, so that as
v — 0, V2v — oo in such a way that the viscous stresses in the wake cannot be neglected.

If we include a magnetic field, then Alfvén waves provide an additional means of transporting
vorticity away from the boundary. To see this, recall the equations, derived in section 3.2.1, for

small, linear perturbations about a homogenous, static equilibrium (p = 1)

%% = By -Vb (4.7

?9_‘; — By Vv (4.8)
Eliminating b, we have

v 5

P (Bo - V)*v (4.9)
taking the curl of which gives us ‘

0w

7 = (By - V)%w (4.10)

Thus if the vorticity is localised in space, it will be propagated as a wave packet parallel (or anti-
parallel) to the magnetic field at the Alfvén speed.

Additionally, if we have an Alfvén wave packet which consists purely of modes propagating in
one direction, then it can be shown that the non-linear terms in the MHD equations cancel exactly,

so the above statement will hold even for large velocity fields.

4.3 Model parameters

The observations on which we shall base our simulations are those of Strous et al. [61]. They obtained
flow fields of an active region by tracking identifiable features in the photosphere and then smoothing
their data to reduce noise, before calculating the (2 dimensional) divergence and vorticity fields.

In order to calculate an appropriate Reynolds number, we require the diameter of a sunspot,
the flow speed and the viscosity. The diameter and flow speed are straight forward; typical values
are D =~ 5Mm and Uy ~ 0.35 — 1.0km s~'. However, great care must be taken over what value to
use for the viscosity. The basic problem is that the observational data has a resolution of ~ 0.2Mm
and, after smoothing, only the features with a scale of &~ 7.6Mm are left behind. The observations
are thus incapable of resolving the small scale features of the flow (which can be of the order of a few
cm). However, the unresolved features cannot simply be ignored because, due to the nonlinearity of
the equations, they play a significant role in the transport of large scale momentum and vorticity.

If our simulations are to make any sense, then we require some means of parameterising the

unresolved turbulence [62, 63]. Turbulence has long been one of the most intractable problems in
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basic physics and any ad hoc model can, at best, only give order-of-magnitude estimates. Bearing
this in mind, we shall adopt an eddy viscosity parameterisation. This approach draws an analogy
between the small scale eddies and the molecules of a gas and postulates that the smallest eddies
transport the momentum of the large scale flow in a similar manner to molecular viscosity.

To make this more concrete, suppose that a flow field can be expressed as u = U + u where
U =< u > is some sort of average flow, (either an ensemble or a temporal average) and u is the
small scale turbulence, such that < @ >= 0. Then we can write the (incompressible) momentum

equation as follows:
p [%(U +14)+ V- ((U+a)(U+ ﬁ))] =-V(P+p)+V -uV(U+i) (4.11)

which, upon expanding the non-linear terms and averaging becomes

p[aa—lj+U-VU]:—VP+V-MVU~pV-<ﬁﬁ> (4.12)

The crucial term here is V- < i > which gives rise to the turbulent transport of momentum.
The parameterisation of this term in terms of the mean flow field is an important aspect of modelling

turbulence. In the eddy viscosity parameterisation, it is postulated that
< i >= -vp (VU + (VU)T) (4.13)

where vp is the kinematic eddy viscosity. Generally v s an anisotropic tensor quantity which is
dependant on the flow field. Various schemes exist for calculating vr (eg the k — € model [62]) but
for simplicity, we shall take v to be constant in our simulations. We can justify this assumption
on the grounds that the photospheric plasma is already turbulent due to convective motions deep
within the sun, and therefore variations in the eddy viscosity will be much less significant than in a
situation in which the photospheric flow is laminar and all the turbulence is generated by the motion
of the erupting flux tube.

Although the eddy viscosity parameterisation is inevitably a gross simplification, it does have
the most important desirable feature that we would expect of a model of turbulence, namely that
the large scale eddies dissipate their energy by exciting smaller scale eddies. These small scale eddies
excite yet smaller scale eddies and this energy cascade continues until the eddies are so small that
the effects of molecular viscosity cannot be neglected and the viscous dissipation of kinetic energy
into heat imposes a lower bound on the size of the eddies. It is almost as if the fluid is searching
for the fastest available mechanism for dissipating its kinetic energy; ultimately viscous heating is
the only means by which the kinetic energy can be dissipated (in a neutral fluid), but if this is not
fast because the length scales are too large, then the fluid generates smaller length scales by exciting
smaller eddies.

We can treat the small scale structure of the magnetic field in a similar manner to derive the
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following equations:

at
+prV?U - pV-<ita > + < b-Vb > (4.14)

U 1 1 -~
p(a—+U-VU> =-V (p+§Bz+§<b2>)+B~VB

86—1:' = Vx(UxB)+Vx<ﬁxf)>+nV2B (4.15)

For the sake of simplicity, we shall simply parameterise the contributions of < bb > to the mo-
mentum equation by an eddy viscosity and parameterise the turbulent contributions to the induction
equation by an eddy resistivity in a manner analogous to the eddy viscosity parameterisation. Sub-
stituting these parameterisations into equations 4.14 and 4.15 recovers the original MHD equations
with v and 7 replaced by v and ny. This parameterisation is particularly convenient because the
mean field variables obey the same equations as the total fields, but with larger transport coeffi-

cients. This allows us to forget about the small scale structure of the flow and so we can use the

same numerical techniques which work at low Reynolds numbers.

4.4 Simulations on a uniform grid

In the following simulations, the size of the lattice is 350 by 350 cells. In order to see the vortices
forming in the wake of the flow, this restricts the diameter of the cylinder to about 150 cells, which
with a maximum velocity of about 0.15 and a minimum viscosity of 0.1875 (when the streaming
parameter p = % and relaxation time 7 = %), gives us a maximum Reynolds number of 240. This
value of R, is within the region where vortex shedding can take place, and is therefore of relevance
to the situation discussed above.

It was remarked in section 2.4.4 that setting p = 0 is a better choice as it would allow small
transport coefficients as 7 — % However, in the traditional lattice Boltzmann method, this creates
severe nonlinear instability problems which can be dealt with by using different discretisations of
the lattice Boltzmann equation. This will be explored later.

The initial conditions away from the boundary are specified by the complex potential w(z) =
Uz + "z—?), so that the velocity field is specified by equation 4.3. With this velocity field, the
vorticity is initially zero everywhere expect at the boundary where it is singular. However, on the
lattice, spatial structures smaller than one lattice spacing cannot be resolved, effectively rendering
the vorticity field finite and the boundary layer to be one cell thick.

Typical results are shown in figures 4.3- 4.8. For Reynolds numbers of the order of 100, and
without any magnetic field, the flow evolves according to our expectations, so that as the vorticity
is carried away from the boundary, regions of circulation form in the wake of the cylinder.

As we increase the strength of the magnetic field, we can see that it has the effect of decreasing

the vorticity in the wake of the cylinder, and in fact, the regions of circulation have been suppressed
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Figure 4.3: The initial velocity field in the simulations of flow past a flux tube

altogether when B is comparable to U/. It can also be seen that there is a substantial increase in
the vorticity close to the upstream boundary, for a perpendicular field. This can be attributed to
the bending of the field lines as they wrap around the cylinder.

When the ambient field is aligned parallel to the flow, similar results are obtained with regard
to the suppression of vortices but no region of increased vorticity is observed immediately upstream
of the cylinder, since the field lines are not wrapped around the cylinder as they are carried along
by the flow.

4.5 Simulations on a non-uniform grid

The simulations of section 4.4 were performed using the original lattice Boltzmann method, ie. on a
a uniform hexagonal grid. It was mentioned in section 2.5 and originally observed by Cao et al [41]
and by He et al [64] and He and Doolen [60, 59] that this approach has a number of limitations;
namely the CFL condition is only marginally satisfied, making the method prone to numerical

instabilities as the Reynolds number increases; the uniform hexagonal grid does not take advantage
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Figure 4.4: Vortex formation in the wake of a flux tube, R,

regions of circulation have clearly formed in the immediate wake of the flux tube
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Figure 4.5: Vorticity of the flow shown in figure 4.4
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Figure 4.6: The initial magnetic field aligned perpendicular to the flow. By = U
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Figure 4.7: The magnetic field after the flow has evolved for 1000 time steps. Notice how the field
lines have been bent round the flux tube and reconnect in the wake
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Figure 4.8: The vorticity ofthe flow with a perpendicular ambient magnetic field. Notice that as well
as the suppression of vortices in the wake of the flux tube, there is an enhanced vorticity immediately
before the flux tube, due to the effects of bending of the field lines as they are convected past the

flux tube.
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of the particular boundary conditions; and, most seriously, a uniform grid increases considerably the
computational expense because it demands that as much time be devoted to regions of uniform flow
as to regions with rapid variations.

He and Doolen have modelled flow past a cylinder on a non-uniform grid using a LB method [60,
59]. They note that it is not necessary that the computational grid coincide with the lattice on
which the particles move. Their approach still appears to be strongly influenced by the historical
development of the LB method from the CA lattice gas, as they introduce a new step into the lattice
Boltzmann method which interpolates between the computational grid and the particle lattice in
the course of the calculation [64, 60, 59], A simpler procedure, as noted by Cao et al [41] is to
discretise the lattice Boltzmann equation directly, as was done in sections 2.5.1 and 3.3 and this is
the procedure that we follow here.

The M x N computational grid is the same as that of He and Doolen [60, 59]. A grid point is
specified by the coordinates (€;, nc), where §; = jAE, nx = kAN, 0<j <M -1,0<k <N —-1and
Al =8 /(M —1),An = 2/(N —1). The grid point {£;,7%) is mapped onto a Cartesian coordinate

system by the conformal transformation
z+ iy = aexpm(£; + ink) (4.16)

The lattice Boltzmann equation becomes, in the (£, 7n) coordinates

0fa 9fa 0fa _ 1o peq)
at +eaf 66 +ean 67’] - T(fﬂ fa ) (417)
where
_ 23 3
€at = Cazr 81'_ + €ay _ay (418)
_ an 9n
Can = Carg + eay 3y (4.19)

Equation 4.17 is then easily discretised by any of the standard means. In the simulations

presented here, a Lax-Wendroff scheme is used, so the discrete form is

f:ﬁcl — faik . Saivie = Jaj—1k _ Ate? foivie — 2fa6 + a1k
At a 2AE a Ag?
n () n n n
ajk+1 — fajr-1 o Jajkyr = 2o ¥ fajer 1, e
+ GQUT - Atean Ang - _;(fajk - f( q)gjk) (420)

The simulations on the uniform grid were restricted by their size to modelling the growth of
the two recirculating eddies in the immediate wake of the cylinder. The non-uniform grid permits
simulations over a much larger region, and it is possible to model periodic vortex shedding [59, 60] In
order to observe this process, it is necessary to excite the instability of the symmetric flow observed

in section 4.4. Like He and Doolen [60] we achieve this by adding an asymmetric perturbation to
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the initial symmetric flow:

w = U'Z (4.21)
T
ar

The boundary conditions for the vortex shedding simulations are exactly the same as before, ie
v=0,B=0o0n r=a, v,B are uniform as r = co. These are achieved by using the simple bounce
back rule at the edge of the cylinder [65, 66] (although better schemes are possible [65, 67, 68, 69,
70, 71, 72, 73, 42, 74, 66, 75]) and by setting the distribution function, f to be the appropriate
equilibrium distribution on €.

In these simulations, some care had to be taken in choosing the grid spacing. Various conditions
for the linear stability of the lattice Boltzmann method were explored in section 2.4.5 and it was
shown that the velocity and magnetic fields should remain within certain bounds, the transport
coefficients should be positive (which is also a physical requirement) and, depending on the discreti-
sation scheme being used, the CFL condition should be satisfied. If, however, the physical system is
itself unstable due to non-linearities, like the flows being studied here, then new instablities in the
numerical method arise.

As has been remarked before, the non-linear term in the Navier-Stokes equation couples the
large scale and small scale motions and, if the flow is unstable, gives rise to the energy cascade,
whereby kinetic energy is transfered from large eddies to small ones. The length scale of the smallest
structures (the Kolmogorov scale) is determined by the balance of input of kinetic energy with
viscous dissipation. In two dimensions, the situation is somewhat different. Small scale vortices
tend to merge together to form larger, coherent structures which account for most of the kinetic
energy. This is known as the inverse energy cascade [46], and since it tends to transfer energy from
large wave numbers to small wavenumbers, it inhibits the dissipative effects. The vorticity, however,
still exhibits a direct cascade, which corresponds to the generation of thin sheets between counter-
rotating eddies, where the vorticity gradient is large and where the dissipation is strongest. The
problems arise when the computational grid is too coarse to resolve the smallest structures of a flow.
In this situation the coupling between different wave numbers still occurs, but the poor resolution
means that the small structures, which should dissipate the kinetic energy, are aliased and appear
as weakly dissipating, large structures on the numerical grid [4]. This failure to dissipate energy
is known as a non-linear instability and is a result of the coarseness of the grid, not the particular
discretisation of the fundamental equations. The consequences of the instability may well depend on
the scheme used: it may result in a local violation of the CFL condition, for example, thus allowing
linear numerical instabilities to grow.

There are two basic solutions to this problem. The simplest is to increase the resolution of
the grid to ensure that no aliasing occurs. This of course increases the computational expense, and

is not really feasible at very high Reynolds numbers. Instead, as in the approach we have taken,



CHAPTER 4. VORTEX SHEDDING IN SOLAR ACTIVE REGIONS 85

Figure 4.9: Streamlines of showing the growth of the recirculating regions of the unperturbed sym-
metric flow, at a Reynolds number of 200. Bo = 0

a relatively coarse grid can be used to model a slowly varying mean flow, and the effects of the
unresolved eddies can be modelled using some parameterisation, such as an effective eddy viscosity.

In setting up the simulations, there is an important constraint on the model parameters which
arises when the component of the magnetic field perependicular to the ambient flow becomes sig-
nificant. It should be noted first of all that this situation is similar to a conducting wire moving
through a magnetic field, and thus experiencing an induced emf which forces a current along the
wire. We can easily estimate the size of this current by applying Ohm’s law: E+ vx B = ?j. The
externally applied electric field, E, is zero and, since the magnetic field is perpendicular to the flow,
jv x B 1= vgBg. Thus the current density j = UqBo/ti. Now, if we assume that the current is dis-
tributed uniformly across the cross section of the cylinder, the total current [ = jna2 = UoBoncr/?/.
A current flowing along a straight wire produces a magnetic field outside the wire, whose magnitude
varies as B = [/"irr — UoBoa2/2ip\ In our computational domain, this field has a maximum value
when r = a, so maxB = UoBoa/'2i] = ReBoi' S'ince we shall examine cases where Re > 100,

(his implies that the magnetic field will attain values which are considerably larger than the ambient
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Figure 4.10: Streamlines of the initial growth and shedding of the vortices at a Reynolds number of
200, at time intervals of 3.15¢/U. B0 =0
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Figure 4.11: Vorticity contours of the initial growth and shedding of the vortices at a Reynolds
number of 200. Bo —0
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Figure 4.12: Streamlines of a complete shedding cycle at a Reynolds number of 200, at time intervals
of 0.585a/U. BO= 0
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Figure 4.13: Vorticity contours of a complete shedding cycle at a Reynolds nu

mber of 200.
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Figure 4.14: The initial evolution of the streamlines with a perpendicular magnetic field. The vortex
shedding process has clearly been suppressed due to the stabilising effect of the magnetic field and
a slow shock front can be seen developing in the wake.
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Figure 4.16: The initial evolution of the vorticity field. Comparison with the magnetic field plots
shows that the vorticity is propagated by Alfvén waves in the magnetic field.
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Figure 4.17: The initial evolution of the current density field. Inspection of the equation of
Alfvén waves shows that the current density should propagate in a similar manner to the vorticity
and is confirmed in these plots.
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Figure 4.18: Magnetic field lines at ¢ = 118a/Uy. Tearing and plasmoid formation can be observed
in the curent sheet which forms in the wake

field prescribed by the initial and boundary conditions and this has important implications for how
we set up the simulations. In particular, we must ensure that max B = R.Bov/4n < %, so that the
lattice Boltzmann method remains stable. Since we are interested in situations in which By can be
as large as Uy, this implies that Uy < /2vR,, and in order to maintain our desired values of R, we
must have a = vR./2Uy > v2R, /1.

Obviously the above analysis is a gross simplification. Nevertheless, experimentation does in-
dicate that the analysis provides useful estimates on the bounds of the parameters and these con-
straints prove to be quite severe, so that the simulations become considerably more expensive as the
component of the magnetic field perpendicular to the flow becomes larger.

Results of the simulations are shown in figures 4.9- 4.18 The cases in which there is no magnetic

field are similar to the simulations performed by He and Doolen [59, 60]. In the unperturbed
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situation, the flow eventually settles down to a steady state, with circulating regions in the immediate
wake (figure 4.9). With the perturbation switched on, the advantages of the non-uniform grid
become clear. It is now possible to observe the vortex shedding process when the instabilities of the
symmetric flow are excited (figures 4.10- 4.11). Eventually the flow settles down to a periodic state,
with vortices of opposite sense being shed alternately. Contour plots of the vorticity field over a
complete cycle highlight the process particularly clearly (figures 4.12 - 4.13).

When the magnetic field is switched on, we see that it has a stabilising effect on the flow as
By increases (figures 4.14- 4.17). A comparison of the contour plots of vorticity with the magnetic
field (figures 4.15, 4.16, 4.17) indicates quite clearly that the stabilising mechanism is the Alfvénic
propagation of vorticity along the magnetic field lines, rather than the additional dissipation due to
the resistivity of the fluid. This can be seen in both cases where the magnetic field is aligned either
parallel or perpendicular to the flow.

The simulations with a perpendicular magnetic field are particularly interesting (figure 4.15).
The structure of the field arises as a result of the field lines being advected by the flow and wrapped
around the obstacle. As the field lines are compressed together, strong spatial gradients are generated
and a current sheet develops in the wake. Reconnection takes place within the current sheet, which
allows the field lines to be advected beyond the obstacle and subsequently accelerate the fluid in
the wake. In some instances (figure 4.18), magnetic islands (plasmoidé) break off the current sheet
and are advected away. This process is, in some respects similar to the plasmoid formation in the
earth’s magnetotail, as a result of the interaction of the magnetosphere with the solar wind.

Another interesting effect can be seen in the initial stages of the evolution of the flow. Examining
the streamlines at a time just after the start of the simulation (fig 4.14) reveals two circulating regions
before the obstacle, rather than in its wake. To understand how this arises, consider again linearised

Alfvén waves in a uniform magnetic field. The perturbed fields obey the equations:

ov
= = . 4.2
o By - Vb (4.23)
b
— = Byp- 4.24
ot 0 Vv (4:24)
so that the Fourier modes obey
—iwv = iBykcosbb (4.25)
—iwb = iBgkcosfv (4.26)
The Alfvén wave dispersion relation is
w? = B2k%cos® 0 (4.27)

or
w = +Bgkcos b, (4.28)
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the two solutions for w corresponding to waves travelling in opposite directions. Thus we have
v = —b if the wave is travelling parallel to the magnetic field or v = b if the wave is travelling
anti-parallel to the magnetic field.

Now, if we have a configuration in which the magnetic field is initially unperturbed, then the
initial conditions can be decomposed into the Fourier modes travelling parallel to the magnetic field,
with velocity field v and magnetic perturbation —3v, and modes travelling anti-parallel to the
magnetic field, with velocity field %v and magnetic perturbation %

perturbation in the velocity field will spilt into two, and disturbances will be transmitted in opposite

v. Thus an initially localised

directions along the magnetic field.

The initial condition of our simulations is like this configuration, albeit distorted by the geome-
try. The magnetic field is initially unperturbed, and we have a localised region of strong vorticity at
the boundary of the obstacle. Thus, we should expect, say, the negative vorticity on the top part of
the boundary to propagate in opposite directions along the magnetic field. The vorticity propagating
away from the obstacle in the positive y direction can clearly be seen in figure 4.16, whilst the vor-
ticity propagating in the opposite direction appears as a circulating region in front of the obstacle.
The vorticity which propagates round from the opposite side of the obstacle has the opposite sign
and eventually interferes destructively with the vorticity from the top half of the obstacle, so that

the circulating regions at the front are very weak and eventually disappear altogether.



Chapter 5

Generalising Lattice Boltzmann

MHD

In this chapter, we derive generalisations of the lattice Boltzmann MHD model which we have been
using. Firstly we present a 2D generalisation which includes the thermal energy of the fluid and

then we present a 3D, isothermal model.

5.1 Thermal Energy in Lattice Boltzmann MHD

5.1.1 The Energy Equations of Magnetohydrodynamics

Until now, our discussion of lattice Boltzmann MHD and our MHD simulations have ignored energy
conservation. The MHD equations have been closed by assuming that the temperature is constant
so that the fluid obeys Boyle’s law:
p=cp (5.1)
This condition can be arrived at by assuming that either the thermal conductivity is infinite, or
that the system is in contact with a heat bath so that energy need not be conserved. In fact, by
considering the microscopic dynamics of our present lattice Boltzmann model, it is obvious that
energy is not conserved in general.
In order to include energy in our model, we first of all need the correct energy equation for
magnetohydrodynamics, an issue that was brushed over in section 1.1.2. There are a number of

contributions to this [76]. Firstly, we have the heat equation:

p(Z_(tﬁJer(ﬁ) =—pV v =V-q+n0i° +v(VV) (V) + (V- v)? = L + H (5.2)

where ¢ is the internal energy per unit mass; —pV - v is the rate at which work is done on the gas

by compressing it; q is the heat flux which equals KV, x being the thermal diffusivity; nj2 is the

97
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ohmic dissipation; the terms involving Vv are heating due to viscous dissipation; L, is the radiation
flux and H is the heat from all other sources, like nuclear fusion in a tokamak or solar plasma. From
now on we shall neglect L, and H.

We can also obtain the equation of mechanical energy by taking the dot product of the momen-

tum equation 1.40 with v:

div?
p g: +v-V(%v2)] =—v-Vp+v-([jxB)+vv- (V)4 v -V(V-v) (5.3)

Finally, we have an equation for the electromagnetic energy which follows from Poyntings theorem [3]:

3 60E2 B2 7 .
0= = . . = 5.4
m( 5 o +E-j+ V- (ExB)=0 (5.4)

where, for the moment, we re-introduce the constants ¢g and pp. This tells us that the rate of change

of electromagnetic energy is due to the rate at which work is done on the charges plus the energy

flux of electromagnetic radiation. Since ¢p = ”Ulcg and ¢ & oo in the MHD approximation, we shall

neglect the electric component of the energy density from now on. Thus, on setting po = 1 again,

we are left with '

91p?
ot

Combining equations 5.2, 5.3 and 5.5, we get an equation for the total energy:

Ej=- - V. (ExB) (5.5)

0 1, 1, 93 B? _

P a(¢+§v)+v-V(¢+-2—v) +T+V~(E><B)_

—pV -v=V-q+ 72 +v(Vv): (VV)+ (V- -v) =v - Vp
v -xB)+vv- (VV)+uv -V(V-v)—E-j (5.6)

This equation can be considerably simplified if we note that v - (j x B) = —j - (v x B) and E is
eliminated using equation 1.37, so that all the electromagnetic contributions to the right hand side
vanish. Further simplification occurs if we introduce the viscous stress tensor o = —v(Vv)+(Vv)7 +
(v — v)(V - v)I [45], so that equation 5.6 can be written

) 1, 1., 1,

—a—t(p¢+§pv +§B Y+ V- p¢v+§pv v—(vxB)xB
' +pv+q+v-o+njxB] =0 (5.7)

All that is now needed is the equation of state:

_ PR _ 206 _
p= BT =20 (5.8)

where & is Boltzmann’s constant, m is the molecular mass of the gas and N is the number of degrees

of freedom of a molecule.
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5.2 Microscopic Dynamics

5.2.1 Compressibility in Lattice Boltzmann Magnetohydrodynamics

On examining the fluid equations of lattice Boltzmann MHD (equations 2.95 and 2.97), we are
immediately struck with a problem: there are unphysical appearances of the density in the terms
involving the magnetic field. This restricts the validity of the model to flows where p ~ constant.
Clearly this is undesirable if we wish to include thermodynamics, since it effectively closes the system,
and therefore an additional energy equation should have no effect on the flow.

The origin of the unphysical appearances of p arises simply from the definitions of the magnetic

field and the equilibrium distribution:

Z fabBab - PB (59)
a,b
fa(fq)vabvab =pl + p(vv — BB) (5.10)
a,b
f(flfQ)Babvab = p(Bv — vB) (5.11)
ab

If we change our definitions of B and f(eq) by removing the appearances of p from the magnetic

contributions to the right hand sides of equations 5.9, 5.10 and 5.11, so that

> fwBas =B (5.12)
a,b
> f(gfq)vabvab = pl + pvv — BB (5.13)
a,b
> fffq)Babvab = Bv - vB (5.14)
a,b

then it is easily shown that unphysical appearances of p disappear from the fluid equations so that
the correct form of the MHD equations is recovered. Thus, by a simple modification, the lattice

Boltzmann technique 1s no longer restricted to incompressible MHD.

5.2.2 Particle States

The basic reason for the lack of thermodynamics in the lattice Boltzmann model is that the moving
particles are monoenergetic. In the absence of rest particles, energy conservation is equivalent to
conservation of particle number and therefore results in a trivial energy equation for the system.
Rest particles are introduced in order to achieve a properly structured momentum equation, not for

energy considerations and it is easily seen that their presence violates energy conservation.
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The obvious means of introducing multi-energetic particles is to expand the neighbourhood of
a cell to include cells beyond the nearest neighbours. As mentioned in section 2.3.4, this has already
been done for hydrodynamics [38, 34]. Here we shall follow the same procedure and derive a thermal
MHD model.

The particles move on the usual hexagonal lattice, with the six lattice vectors e, a = 1,...6.
We define two types of particle: magnetic and non-magnetic. There are thirteen non-magnetic
particles, one of which is at rest and has number density fy. The other twelve carry momentum
Aeq, and have number density fu, a = 1,...,6, A = 1,2. There are thirty magnetic particles, six
of which are at rest, with number density g, and carry a magnetic field e;,a = 1,...,6. Twelve of
the magnetic particles correspond to the moving particles of the non-thermal MHD model described
in section 2.4, and carry momentum e,, and magnetic field B,, and have a number density gas1,
a=1,...,6,b=0,1. The other twelve magnetic particles carry momentum 2e, and magnetic field
(—1)%e, and have a number density ga5> The non-magnetic particles carry A?/2 units of energy and
the magnetic particles carry 1/2 + A?/2 units of energy where A = 0, 1,2 is the particle speed.

The macroscopic fields are defined in the usual way:

p= f0+2fa)\+zga+ > Gabr (5.15)

a,b,\
pv = Z faxreq + Z JabrA€q (516)
a,b,A
B=3 geea+ Z (9a1Bab + (~1)°gas2ea) (5.17)
a

e—ZfM A2+Z ga+z L4 A%)gans (5.18)

a,b,A
II = Z farrleqeq + Z daar’eqeq (5.19)
@\ a,b,\
A= Z (gab1Bavea + (—1)"gas2reses) (5.20)
Q= Zfa)\ Meu+ Y gab (1+A%)Aeq (5.21)
a,b,A

where, 1n addition to the previously defined quantities, € is the total energy density and Q is the
energy flux vector.

5.2.3 The equilibrium distribution

Now we need to make the appropriate choice of equilibrium distribution in order to recover the

correct thermal MHD equations. Since the energy flux vector contains terms which are cubic in
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the vector fields, it is necessary to expand the equilibrium distribution to third order. There is

considerable freedom in how this can be done and we shall adopt the following choice:
FED = Ay +Crv?+ Dy B2 4 Fyv-e,+Ga(v-ea)2+ Ha(v-€4)3+Jy B2(v-ea)+ K (B-v)(B-es) (5.22)
wherea=1,...,6,A=0,1,2and f,0 = fo,
gD = L4+ NB>+ PB -e, (5.23)
9D = R4 SB? 4 Tv-eq+UB-Bas+Vi(B-Bas)’ + % [(v-€a)(B - Bas) — (B - ea)(v - Bas)] (5.24)

gab2 = V(B - e,)? (5.25)

In the analysis of chapter 2, the equilibrium distribution was chosen in order that the ideal
MHD equations be satisfied to lowest order, and the the Chapman-Enskog procedure established
the form of the dissipative terms. In a more general model, such as this, the Chapman-Enskog
procedure reveals, as we shall see, additional constraints on the equilibrium distribution which
are necessary in order to eliminate some unphysical first order terms. Therefore, we shall derive
some expressions from the Chapman-Enskog procedure which will be useful in our derivation of the
equilibrium distribution. Recall that the first order perturbation of the distribution function is given

by the expression

0ty

where f; is an arbitrary component of (fo, fax, ga, gab) and v; the corresponding velocity. So the

fi(l) — (i +v; V) fl,(eq) (5.26)

dissipative terms in the flux tensors are thus:

0
o =—-rd" 8_tl(fi(eq)vivi) +V - (£ Vvivivy)

o11(®)
= —T 6t1 -7V Zi:fi(eq)vivivi (527)
HA0) e
AW = 5 G~V ;f} VB,vivi (5.28)
3
QW = — Q v Zfeq Eviv; (5.29)
and since TI(° 9, Q(® can be expressed in terms of the macroscopic fields, we can derive expres-
stons for agl etc using the inviscid fluid equations thus:
o) ,
B, [a®pdBkvi + adi(pdvk)] 6

=0k (privive) — (vi0; + v;0;)(apg + = B )
+ By (U,'(?kBj + vjakB,') - Bk(Blaka + Bjakvi) + 8k(Biijk) (530)
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oA 1 1
Y __(BH: — B.5: - RB?
o, p(BzaJ B;d;)(apé + 2B )
B
+—pk—(Bj6kB,' — Bic‘ikBj) — Ok [(v,-Bj - Bivj)vk]
+ By (’Uiak’vj - ’Uja’v,') (5.31)
0Q” 1
i G [ap¢ui6kuk + ¢0i(apg + 5 B*) — $0k(BiBr) + O (puiusd)

1 1
+%v2 [ak(Bin) — Oi(apd + 532)] - 8k(§pvzv,-vk)

1
+v;v;5 [8k(BjBk) — 0j(apd + 532)] + 2B;v;0k (vj Bx — Bjvk)

B? 1
+7 [6k(Bin) — ai(ap¢ + 532) — pvkakv,'] — B,'Ujak(vak — ijk)

B; B, 1
-, ’ [5k(BjBk) ~ 0;(apé + 5B%) - kaakvj] — BjvjOk(viBx — Bivg)  (5.32)
We can now derive the correct form for the distribution function. The terms of order O(v°, B®)
give us
Ao +6A4,+642+6L+12R=p (5.33)
3A1 +12A2+ 3L + 12R = p¢ (5.34)

on subsitution into equations 5.15,5.18 and 5.19 respectively. Substitution into equation 5.29 gives

us
T [gv/&l + 24V A, + GVR] = kV¢ +Tala+1) [¢2Vp + ppV¢] (5.36)
so that
9 (3 )
— [ ZA; + 2445 +6R ) = a(a+ 1)¢ (5.37)
dp \ 2
9 (34, 4244, +6R =% L ala+1)p (5.38)
96 \2 2 =7 p '

In the above expreséions it is clear that %Al + 24 A5 + 6R is sufficiently smooth that the operators

a% and ;—¢ commute (since the second order partial derivatives are continuous functions of p and ¢).

Therefore, for consistency, we must have

% [a(a+1)¢?] = %’ =+ ala+1)pg]
~ 2 ()=

= k=a(a+1)7pé + q(4) (5.39)
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where ¢ is an arbitrary function. This similar to the constraint on the thermal diffusivity that was

derived by Boghosian and Coveney [77], namely

w=2(r-g) e+ ale) (5.40)

. The appearance of the factor 7 — % rather than 7 is due to the particular discretisation of the
LB equation which they considered, and the factor 2 appears because in their 2D model, additional
constraints, derived in a similar manner, set @ = 1. The general form of the above constraint is,
in fact, determined completely by the structure of the macroscopic equations and the form of the
collision operator and cannot be modified by the choice of particle states [77]. Similar constraints
will be derived for the viscosities and resistivity.

Integrating either equation 5.37 or equation 5.38 then gives us
3
51+ 2445+ 6R = a(a 4 1)p¢? + r(9) (5.41)

where where ' (¢) = ¢(8).

We can now obtain the following:

Ay = p+ala+1)pd*+r(¢)+R—(2+ %a)pd: (5.42)
4 2 2 4
A = §ap¢ - §a(a + 1)P¢2 - §T(¢) - gR (543)
1 1 1 1
Ay = 1—80(0 + 1)pg? - ET e 1—8r(¢) —-sh (5.44)
L = .;.(1 — a)pp - 2R (5.45)

The order O(v', B®) contributions to the equilibrium distribution obey the following:

3Fi +6F,+6T7T= p (5.46)
gFl +12F + 6T = (a+1)p¢ (5.47)
3 3
T (ZFI +6Fy 4+ §T> = p=Ai+ala+1)p¢ (5.48)
o (3 3
o (3 3
(—98 (ZFI + 6F2 + §T> = ap (550)

By similar reasoning to the above, we arrive at the viscosity constraints

atpd (5.51)
—a’rpo (5.52)

I
A
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and
4 2
o= 9Pt 5(‘1 - 3)p¢ (5.53)
2 1
- Z . .54
Fy gapd) 18p (5.54)
T = %(1 — a)pd (5.55)

Applying the same procedure to the terms of order O(v°, BY), we get

3P+6U = 1 (5.56)
3

9 3
TU 56,‘31' - 58‘7‘3; - §0kBk6ij = 7761'Bj — 1718]'3,' - 1728,ch6,-]» (5.57)

Notice that this does not, in fact give us the correct resistivity tensor, which should be
AY) = (8:B; — 8, B;
ij = n (0; J J i)

ie. n1 = 7. However, if gradients in the resistivity are negligible, then when the expressions are
substituted into the induction equation, the unphysical terms will vanish since V-B = 0. It is
possible to obtain the correct form for the resistive tensor (with the assumption that V- B = 0)
with a more general choice of particle states. However, for the choices which were investigated, it
was found that the magnetic monopole charge density (which physically should vanish) obeyed a
diffusion equation with a negative diffusion coefficient, thus creating numerical instabilities.

In addition, we have the constraints that

gVU =aVeo+ %Vp (5.58)
If this is to be obeyed exactly, then we must have
990U ¢
X2 = 4f 5.59
23, a (5.59)
9oU
395 = a (5.60)

Since the operators a% and aa_¢ should commute, then this would imply that

i<?>_ﬂ
8¢ \p) Op

which is false. However, recall that lattice Boltzmann methods are usually restricted to low Mach

number flows, so that the variations in the density are small and we can write

9 \Y%
2 p Po
where pg is the mean density. Thus
9
Jy=1_ a2 + constant (5.62)

2 T Po
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Therefore, we have

Considering the terms of order O(v?, B) we get

Co+6C1+3G1+6C24+3G, = 0
3C + gGl +12C2,+6G, = —p
6C1+3G1 +24C,+12G, = p

gGl +6G: = p

from the zeroth order contributions to the moments and

3C‘1vj6ivj + %Gl (vjajv,- + vjaivj + Ui_ajvj) + 4802Uj3,'vj

+12G, (vjajv,- + i)jaivj -+ viajbj) =

A
gvj&-vj + (é +(a+ l)mﬁ) v;05vi + (; + (a+ 1)2P¢> vi0;v;

gv26,'cl + (—g’vza; + %vwﬂ%) G,

+24v20;Cy + (6v20; + 120;v;0;) G2 = (2a + 1)v;v;0;(p¢) + %avz&(pcﬁ)

from the first order contributions to the heat flux. These give us
g p
3Ci + ZGl +48Cy + 12G4 = ; = apd
3
;C1+126: = % +(a+1)pd = (2a+1)pé

Which upon solving:

1 5
Co = 5Ba+1)pd—7p
1 2
Cl = §(a+1)P¢—§P
Cy = 1 l(+1)¢>
2T Tz p
8 4
Gl‘: 5/~ 5(2a+1)ps
1 1
= (2 +1)pd — —
G, g(2at)pg—2p
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(5.63)

(5.64)

5.65
5.66
5.67

—_— o~ o~~~

5.68

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)
(5.74)
(5.75)
(5.76)

(5.77)
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The terms of order (v!, B!) have already been chosen to satisfy the constraints, as this part of

the problem is essentially the same as that for the non-thermal model. The O(v°, B?) terms give

Do+ 6D, 46Dy + 6N + 125+ 6V; + 6V =
3D, + 12D, + 125 + 6V + 16V, =
6D + 24D, + 125 + 6V + 24V, =

=3Vi+12V, = -1

C i @

(3D1 +48D9 + IZS)BJ-(‘),-BJ- + 3V (3Bj6,<Bj - Bj(?jB,‘ - B,-aij)
+30Va (Bj0:B; + B;0; B; + Bid; By) = (L + (a+ 1)¢) (B; 0 B; — B;; B.)

so that
3D, + 48Dy 4 125 4+ 9V, +30Vp = g +@+1)¢
3V, — 30V, = g +(a+1)¢
The further constraint that
B4g; §D1 +24D5 4+ 6S + §V1 + 15V,

B2
a5

B;
+BiB;0; (30V2 — 311) = (p¢) — 731'3;' (r¢)

(5.82)

(5.83)

(5.84)

(5.85)

turns out to be inconsistent with the previous constraints. The main effect of the inability to satisfy

this constraint is to introduce an anistropic thermal diffusion, with the diffusion enhanced in the

direction orthogonal to the magnetic field. However, for large plasma f, where the Alfvén speed is

small compared to the sound speed, this effect should not be important.

Writing ' = n/7 + (a 4+ 1)¢ for short hand, a solution for the unkowns is

1+7
Dg = ———2i
D1 == 0

I-—.
Dy, = m—1

12

o
N = —

6

n -4
S = :

18

5-—2n
v, = 9’

l_ '
Vo = U
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The order O(v®, B%) constraints are
9 9
ZHI + §H2 = 0 (593)
9 p
-H Hy, = ¢ 5.94
g 9H, 2 (5.94)

The order O(v?) contributions to the viscous tensor are small at low Mach number, so may be

neglected. Thus we have

H = —— 5.95
1 57P (5.95)
2
Hy = — 5.96
2 27»0 ( )
Finally, the constraints of order O(v!, B?) are
3, +6J, = 0 (5.97)
thleJ2 -1 (5.98)
3Ki1+6Ky = 0 (599)
gKl+12K2 = -1 (5.100)
so that
2
o= -3 (5.101)
1
Jo = 5 (5.102)
. 2
Kio= % (5.103)
1

5.2.4 Magnetosonic waves

In order to test our thermal MHD lattice Boltzmann model, we shall use it to model magnetosonic

waves in a homogenous plasma. As with the Alfvén waves of section 3.2.1, the dispersion relation is

derived by considering small, linearised perturbations about a homogenous, static equilibrium, thus:

dp1

a0 + poV vy

6V1
POW
0B,
ot
94,
Po En
P1

0
-~V (p1 +Bo-B1)+ By VB,
BO -Vvl —B0v~V1

—poV - vy

a(pog1 + dop1) (5.105)
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where the subscript 0 refers to the unperturbed field and the subscript 1 refers to the perturbation.
The usual Fourier analysis in which the perturbations are assumed to be proportional to eillox—wt)
reveals three types of wave. One is the incompressible Alfvén wave, the other two are compressible

modes and obey the dispersion relation

2 1
(%) =3 (c% +v4 + \/(c?g + v%)2 — 4c%v? cos 0) (5.106)
where c¢s = \/a(a+ 1)¢o is the speed of sound, v4 = Bo/,/po is the Alfvén speed and 0 is the

angle between the wave vector k and the ambient magnetic field Bg. The two solutions correspond
to two different couplings of the Alfvén and acoustic modes and have quite different properties.
The magnetic pressure plays a similar role to the kinetic pressure. In the fast magnetosonic wave,
they fluctuate in phase, thereby increasing the speed of the compressional wave, whilst in the slow
magnetosonic wave, they fluctuate in anti-phase, thus decreasing the speed. In fact, the variationsin
magnetic and kinetic pressure exactly balance in the slow magnetosonic mode when the wave vector
is perpendicular to the ambient magnetic field, and since the magnetic tension also vanishes in this
situation, the plasma is in static equilibrium. Thus the slow magnetosonic mode does not propagate
perpendicular to the ambient magnetic field. Depending on whether v4 > ¢s or v4 < cg, either
the fast or the slow magnetosonic mode respectively is a modified Alfvén wave, and if k is parallel
to Bg, then the mode does not vibrate longitudinally and is degenerate with the incompressible
Alfvén wave. If v4 > cg, then, unlike the incompressible Alfvén wave, the compressible Alfvén wave
can propagate perpendicular to the ambient magnetic field and if v4 > ¢g, then this wave is just
like a sound wave, but with the magnetic pressure replacing the role of the fluid pressure.

Figures 5.1- 5.6 show the results of various simulations of magnetosonic waves. In all cases the
initial conditions were chosen so that the perturbed fields were proportional to sin kz and that either
a pure fast or slow wave would travel in the positive z direction. The graphs show how the values of
the perturbed fields at the point z = 0 varies with time. The values of the varies physical parameters
were pg = 1, ¢9 = 0.3,0.1,B = (0,0),(0,0.3),(0.3,0.3),(1/3,1/3),a = 1,2/3 and k = (7 /50, 0). The
numerical parameters were Az = 1, At = 7 = 0.01, the small value of 7 ensuring that dissipation
effects are negligible. If dissipation (ie viscosity, resistivity, thermal diffusivity) is included, then the
dispersion relation becomes very complicated, and so we have chosen to neglect them here. All the
results show good agreement between the lattice Boltzmann model (O symbols) and the analytic

solution (solid lines).



CHAPTER 5. GENERALISING LATTICE BOLTZMANN MHD 109

-4
2.0%x10° ' F
E
s 1A0x1o"‘§
2 E
a E
2 E
< Og
2:\ F
S E
o E
S —roxi0TtE
~2.0x10"*E
0 50 100 150
Time
-4
45 2.0x10
°
2
2 1.0x10”
o
a
2
@
c
I
o
°
5 —-1.0x1077E
2 E
H i
£ 2oxi074E
0 50 100 150
Time
§
S -4 . .
5 1x10 [ ]
el ~
3 : ]
& sx1072F —
v [ ]
2 . 4
o F P
o
€ + 4
O L -
K] b ]
5 -5x107°f -
o N ]
L] [ ]
2 - J
& x1074L . A . ]
< 0 50 100 150
Time

Figure 5.1: These graphs show the oscillations in the perturbed fields of a sound wave at a particular
point in space. pg = 1, By = (0,0), ¢g = 0.3. The phase speed is 0.77. The analytic solution is
shown by the solid line, the lattice Boltzmann results by the O symbol.
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Figure 5.3: The oscillations of the perturbed fields in a fast magnetosonic wave at high 8. py = 1,
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slow magnetosonic wave at low 8. pg = 1,
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5.3 Three Dimensional Lattice Boltzmann MHD

Having established that the lattice Boltzmann method can be applied to two dimensional MHD,
it is worth asking whether the method can be generalised to three dimensions. As remarked in
section 2.3.4, there are no three dimensional lattices which allow isotropic transport with a one
speed model. The original three dimensional lattice gas model used a 4D face-centered, hypercubic
lattice projected onto a 3D hypersurface [36]. Later work [37] showed that a multi-speed 3D lattice
was more efficient and this is the approach we shall use here.

On this lattice the vectors are (+1,£1, £1) and permutations of (+1,0,0). As in the 2D model,
the moving particle states are characterised by pairs of lattice vectors e, ey, chosen so that e;-ep > 0
and a # b, giving a total of 48 moving states. The moving particles are divided into two classes; class
[ particles have distribution function fg, and |e,| = 1; class II particles have distribution function
gab and |eg| = /3.

5.3.1 Microscopic dynamics

The updating rules are a direct generalisation of the single streaming two-dimensional model:

fab(%,t) = fap(x — €a,t — 1) + Quap(x — €q,t — 1) (5.107)
Jab(X, 1) = gab(x — €g,1 — 1) + Qogp(x — 4,1 — 1) (5.108)

where .
Qo = —=(fab - slealy (5.109)

1
Q2ap = ——(9ab = gﬁi‘”)- (5.110)

As usual, we choose f, g to be quadratic in the lattice vectors:

f‘gfq) =cM 1@ e, +¢® ey +c®:eze, + ¢ egep +c® :epep (5.111)
ggiq) =dM +d® ., +d® e, + AW i eze, +dO) s egep + dO) : ey (5.112)

5.3.2 Macroscopic variables and conditions on the e(juilibrium distribu-

tion

The macroscopic variables are defined thus:

p="Jo+Y fart Y gab (5.113)
a,b a,b

pV= faeat Y gavea (5.114)
a,b a,b
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pB =" falriea +qies] + Y gas [r2ea + g2e0] (5.115)
a,b a,b
=) faeaCa+ Y dat€ala (5.116)
a,b
A=Y fuBlest+ > garBles (5.117)
a,b a'b

where BIb =r1€qs + q1€p and BIb = ryeq + go€p.
Inserting the expressions 5.107, 5.108 into equations 5.113,..., 5.117 we get the following con-
straints on ¢V ... ¢(® 41 4.

p= féeq) +24¢™ 4 8tre™ + 8tre® + 24tre®) + 24dM) 4 24trd®) + 8trd®) + 8trd®  (5.118)
pv = 8c® 4+ 8c® 4244 +8d® (5.119)
pB = (8¢ + 8r1)c® + (24q; + 8r1)c® + (82 + 2475)d®) + (8¢2 + 8r1)d® (5.120)

Il = [80(1) + 8tre® 4 24d™M 4 24trd@ 4 8trd®) + trd(ﬁ)] I
+48d™ +165(d®) +8D(cM) + 8D(c®)) — 48D(d™) — 16 D(d®) (5.121)

A =[ (81 + 8r1)c) + (8¢1 + 871)trel® + (8¢g + 24r,)d V)
+(8qz + 2475)trd® + 8rytrd®) + 8rotrd(®) |1

+8¢15(c®) 4+ 16¢1¢(®) + (16¢2 + 48r3)d™) + (8¢2 + 1672)S(d®))
+— 871 4(c®)) — 8924(d®)

+8(q1 + 7‘1)D(c(4)) + 8r1D( ) —16q:D (c )

—16(g2 + 372) D(AD) + 8(g2 — 72) D(d®)) + 8(g2 — r2) D(A®) (5.122)

where S(M), A(M) and D(M) are the symmetric, anti-symmetric and leading diagonal parts of a
matrix M respectively.

Following the same line of argument as section 2.4.2, we require that equations 2.65, 2.66 are
obeyed. On inspection of the forms of II(®) and A(%) it is clear that the 2nd rank tensors should be
linear combinations of (P + %pBZ)I, p(vv — BB), p(Bv — vB).

In order that there be no pressure like term in A, we must have:
(81 + 8r1)cV) + (8¢q + 24r5)d® =0 (5.123)

which can be satisfied if

[
—
D
[Ny
~—

no o= -n (5.

[
—
[\
<
~—

g2 = —3r (5.
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To eliminate the anisotropic components of I, A:
8D(c) +8D(c®) — 48D(d™) — 16D(d®) = 0
8(g1 4+ r1)D(c®) + 87, D(c®) — 169, D(c(®)
—16(g2 + 3r2) D(d) + 8(ga — r2) D(d®)) + 8(g2 — r2) D(d(®)) = 0
A should be anti-symmetric:
8¢15(c®) + 16¢;¢®) + (16¢2 + 4872)d™) + (8¢3 + 16r9)S(d®)) = 0
A should contain no pressure like terms dependant on pv?, pB?:
(8g1 + 871)c(® + (8¢ + 24r5)d™ + 8r,5(d®)) + 8r,d(®) = 0
which, after inserting 5.124 and 5.125 becomes
S(d(s)) +d®) =9
For the term p(vv — BB) in II(®) we must have:
48d™ 4 165(d®) = p(vv — BB)
for A = p(Bv — vB) we must have:
— 801 A(c®) — 8¢24(d®)) = p(Bv — vB)
and for the pressure term in I
8&”+&m@+2mm+a%mﬁuwum”+n&®:P+%¢#

A particular solution of the above equations is

M = 0
5(c®) = Z(vv-BB)

O = _f (vv — BB)

16

@ = Py

d 18 (vv — BB)
SA®) = 0

d® = o

(5) _? (Bv-
A(c™) T60, (Bv —vB)
A(d®) L (Bv-vB)

117

(5.126)

(5.127)

(5.128)

(5.129)

(5.130)

(5.131)

(5.132)

(5.133)
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Inserting these expressions in equations 5.118 and 5.133 give us

féeq) +24¢M) 4244 = p
1
8cM) 4244V = 2P+ §pB2

of which a particular solution is

flea) _ g
1 1
n - _ 2 _1p?
c = 5 (1 cs 2B>
1 1 1
n - = 24, 2-B2_Z
d 16’0(CJ+23 3)

5.3.3 Transport Coefficients

Following the procedure established in section 2.4.3, the transport terms are given by:

oo - (1,_.2% ) [Zegl)eg) 70 +Zeﬁn)e£“)g§}3]
A0 = (1= D) [ nLell ) + 3o nlelst]
where
o= - {%— +el!) ~v] £
i = |2 el 9] o
Evaluation of these expressions gives us

BNQ
v = - (T - %) [ a_vﬁn__ +24v2d® 4 8v2d®) 4 48VV - d@

+16VV - d® 4 6;410; 0 (8¢/?) — 48d® + 8cP) — 164" ]

LA©
v.Al = - <7‘ - %) [ ?VT?— —8rV2e¢® —16r,v2d® 4 167,VV - d®
46100 (8r1ct?) — 16r,d*)) ]

where d;;50 = 1if ¢t = j = k =1, and 0 otherwise.

118

(5.142)
(5.143)

(5.144)
(5.145)

(5.146)

(5.147)

(5.148)

(5.149)

These equations provide additional constraints on the vectors ¢, ¢ d(® d(®). To eliminate

anisotropic transport, we must have

c® 4B _d@ —~8d®
re® —rd® = 0

I
o

(5.152)
(5.153)
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Solving equations 5.152, 5.153 along with 5.119, 5.120 gives us

® = _261131
B/7 1
4 = B ()
B
49 = _4/)87'2

119

(5.154)
(5.155)
(5.156)

(5.157)

Substitution of these expressions back into 5.150 reveals a relationship between r; and r, which

is necessary to eliminate unphysical appearances of the magnetic field in the momentum equation.

This is easily shown to be

m = —67‘2

Finally, the transport coefficients turn out to be

1)

B
! Il
i 3
TN 4
N (2}
| L
~
[N —
— 3
|
[T
N

(5.158)

(5.159)
(5.160)

(5.161)



Chapter 6

Conclusions and Future Work

In this thesis, we have presented an investigation of the application of the lattice Boltzmann method
to the modelling of magnetohydrodynamics. In chapter 1, we presented the basic theory of MHD,
concentrating, in particular, on the underpinning kinetic theory, since the lattice Boltzmann method
is essentially a kinetic model. In addition to disscussing the various applications of MHD, we also
discussed briefly numerical methods for solving the PDEs, and the cellular automata and lattice
gases from which the lattice Boltzmann method arose.

In chapter 2, we discussed the lattice Boltzmann method in detail, presenting the standard
analysis by which the Navier-Stokes equations are derived from the microscopic rules, drawing close
analogy with the physics presented in chapter 1. In particular, we presented the model of Martinez et
al, which formed the basis of the numerical simulations in later chapters. Additionally, we proposed
some improvements to the Martinez model, one of those being the abandonment of the bi-directional
streaming, which, upon inspection, proved to be an unnecassary element of the original model and
gave rise to certain undesirable features in the macroscopic equations. We also discussed a modifica-
tion, originally applied by Cao et al to the hydrodynamic lattice Boltzmann model, which considered
alternative finite difference discretisations of the lattice Boltzmann equation. This modification al-
tered the form of the transport coefficients, and also improved the stability of the method. Finally,
we performed a linear stability analysis of the method, deriving various bounds on the values of the
macroscopic fields.

The results of some numerical simulations were presented in chapter 3 and 4. The simulations
of chapter 3 were of well understood problems, namely flow down a channel, Alfvén waves and an
example of magnetic reconnection - the coalescence of magnetic islands. These simulations were
performed in order to test the effectiveness of the lattice Boltzmann method; the linear problems
(channel flow and Alfvén waves) used the original Martinez model, the reconnection problem used
the modified model.

The simulations of chapter 4 were of a simple model of an astrophysical phenomenon: the

120



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 121

vortex shedding by a magnetic flux tube erupting from the solar photosphere. The model was a
generalisation of a problem in hydrodynamics which has been an object of intensive study. The
results demonstrated the profound effect that a magnetic field has on the vortex shedding process
and, like similar studies [59, 60], showed the advantages of using a non-uniform grid and applying
alternative discretisations of the lattice Boltzmann equation.

In chapter 5 we generalised the lattice Boltzmann method to model thermal MHD and three
dimensional MHD. We also presented some simulations of magnetosonic waves as a test of the
thermal model. The results showed good agreement with the analytic solutions (where they were
available) or with alternative numerical methods.

The results of this work demonstrate the viability of the lattice Boltzmann method as a tool for
the numerical simulation of MHD, as it has already been established for various other applications.
A number of issues remain to be addressed however before the full merits of the method can properly
be assessed. For instance, the table shows a comparison of some lattice Boltzmann models for various
systems and it can be seen that even a small increase in the complexity of the system can result in
a substantial increase in the number of components required in the lattice Boltzmann distribution
function. It is clearly desirable that the more complex LB models be simplified, and whether this

can be done will be a topic of future investigation.

Physical System Independent Variables No. of states
in LB model

2D isothermal hydrodynamics p, v, vy 7

2D thermohydrodynamics P, b, Uz, Uy 13

2D isothermal MHD P, Vg, Uy, Bz, By 13

3D isothermal hydrodynamics p, vz, vy, v, 15

2D thermal MHD P, ¢, vz, vy, By, By 43

3D isothermal MHD P, Ve, Vy, Vs, Be, By, B, 48

Some other points came to light in the course of the research which have not been mentioned.
For example, the stability constraint that At < 27 proved to be quite restrictive when the Reynolds
number was increased. This constraint can be removed by using an implicit collision operator in
the discretised equation, ie. by calculating ©, at time ¢ + At rather than t. As noted by Cao et
al [41], the macroscopic fields can be calculated using the moment equations, removing the necessity
of inverting a tridiagonal matrix which usually accompanies implicit schemes. Whether choosing
At > T would lead to significant truncation errors is a matter requiring investigation. A related issue
is the particular scheme used to discretise the lattice Boltzmann equation. The traditional method
has various shortcomings due to the restrictions of the uniform mesh, and numerical instabilities at
high Reynolds number. In addition to the original work of Cao et al [41], various other schemes
have been investigated [59, 60, 64, 78, 79, 80, 81]. The Lax-Wendroff scheme used in this thesis has
proved to be effective, but a thorough analysis of its truncation errors and comparison with other

schemes would be useful.
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The derivation of the thermal MHD model revealed some limitations in the ability of the lattice
Boltzmann method to give rise to the correct macroscopic equations. As was discussed by Boghosian
and Coveney [77], this is due to the form of the collision operator and the structure of the macroscopic
equations and cannot be rectified by a different choice of microscopic states. Thus any means of
circumventing these restrictions must focus on the collision operator. The simplest solution is to use
a collision operator with multiple relaxation times, which McNamara and Alder [82] applied to the
thermohydrodynamic model in order to allow an arbitrary choice of Prandtl number. This éould,
in principle be applied to the MHD model so that the magnetic Prandtl number can be chosen
freely. Another possibility would be to use an equilbrium distribution dependant on the gradients
of the macroscopic fields. This may be appropriate if we wish to eliminate certain unphysical effects
which would appear if spatial variations in the resistivity are significant. It could also be used to
guarantee a positive monopole diffusivity. Recall that in section 5.2.3 we found that although it
was possible to obtain a correctly structured resistivity tensor (ie n(8;B; — 9;B;)), V - B obeyed
a diffusion equation with a negative diffusion coefficient causing numerical instabilities. Thus we
settled for a resistivity tensor of the form 70; B; + 110; B;, which would give the correct behaviour
provided that spatial variations in the resistivity are small and would not introduce the numerical
instabilities. The negative diffusion coefficient was due to the fact that the coefficient of the terms
0;B; and OxBid;; were the same in the LB schemes we investigated. If, however, we introduce a
term into the equilibrium distribution which is dependant on V - B, then the new first order terms
in the Chapman-Enskog expansion should exhibit diffusive effects, which could in principle cancel
the negative monopole diffusivity which causes the numerical instability. Since these terms depend
only on V - B, which vanishes in reality, they should not introduce any unphysical effects into the
macroscopic behaviour of the model.

There are several other possibilities of future work which arise from this thesis. For instance, al-
though the simulations of magnetic island coalescence demostrated the correct qualitative behaviour
of the system, the scaling laws obeyed in the reconnecting region showed a significant amount of
scatter. This is probably due to the poor resolution of the current, and the results should improve on
a finer grid. However, the dimensions of the current sheet are very small compared to the overall ge-
ometry of the system and therefore, a non-uniform grid would be essential if the current sheet should
be resolved without a substantial increase in the computational cost of the simulations. The vortex
shedding simulations of chapter 4 demonstrated clearly the advantages of a non-uniform grid when
there are highly localised features in a flow, and it is desirable that the reconnection simulations be
repeated in an analogous fashion.

A particular restriction of the present MHD model is that the magnetic Prandtl number n/vis
constrained to be a constant (namely 3). This is attributable to the simple fact that the collision
operator employed a single relaxation time. Other lattice Boltzmann models, have solved this type

of problem by using a matrix collision operator with multiple relaxation times [82] and there is no
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apparent reason why this approach should not work in this case. Another restriction is the isotropy
of the transport coefficients. In a real plasma, transport perpendicular to the magnetic field is
suppressed. This is not very important in 2D MHD, which generally models motions perpendicular
to a strong ambient magnetic field, with B, 3> B, By, and so diffusive transport is indeed isotropic
in this special case. However for 3D motions this is not so and a means of attaining anisotropic
diffusion is therefore desirable. Preliminary investigations have indicated that the simple use of a
multiple time scale collision operator would not solve this problem, and therefore a more sophisticated
approach, possibly modifying the microscopic states, would be necessary.

Better representations of sub-grid scale turbulence are necessary. In a turbulent flow, the small
scale motions are crucial for the transport and dissipation of the mean quantities. However, no
model will ever be able to resolve such fine scales in any realistic flows. In chapter 4, we dealt with
this problem by assuming that the turbulent transport behaved like the molecular transport and
simply replaced the molecular viscosity and resistivity by a constant eddy viscosity and resistivity.
Of course there is no reason to suppose that the eddy viscosity and resistivity should be constant
(or even isotropic) and more sophisticated models exist to calculate these parameters. One example
in hydrodynamics is the k — ¢ model [5], which introduces the dynamical variables k, the turbulent
kinetic energy (TKE) and e, the rate of viscous dissipation of TKE into heat, which obey transport
equations similar to the other quantities. The turbulent transport coefficients are then calculated
from k and € using dimensional arguments, the non-dimensional quantities being estimated from
experiments. The possibility of extending the lattice Boltzmann method to incorporate such models
has been investigated [83], the basic idea being that the equilibrium distribution and collisional
relaxation times should be adjusted so that the viscous part of the stress tensor should equal the

Reynolds stresses. The development of similar techniques in the MHD model are certainly possible.
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Code listing

What follows is an example of the FORTRAN code for the lattice Boltzmann MHD program. The
subroutines setup and update need to be modified to account for differing initial and boundary

conditions.

S —— -
program lattbolt

include ’lattice.inc’

integer incr, i, j, a

C Diagnostice variable, looking for periodicities
C real osc(0:50000)

C Some diagnostic variables in the reconnecting current sheet
integer iml, im2, im3, ndiag

double precision bmi, bm2, vmi, vm2, vm3

call setup

C NB This is just a one off!

C open(41,file=’end.dat’,status=’0ld’,form="unformatted’)
C read(41) incr, f

C close(41)

C The main output file

open(8,file=’1bmhd.dat’,status=’unknown’,form=’unformatted’)
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C A diagnostic file

open(10,file=’diag.dat’,status="unknown’,form='unformatted’)

C Write out some lattice and time information

write(8) m, n, tmax, tout

C Find a suitable number of diagnostic points to print out
ndiag = tmax / 1000

do incr=0, tmax

if (mod(incr,100).eq.0) then

write(6,*) ’Iteration ’,incr

call flush(6)

endif
open(61,file=’iteration’,status=’unknown’)
write(61,*) incr ’
call flush(61)
close(61)

aQ o a

C Printout f if necessary
if (mod(incr,tout).eq.0) then
write(6,*) ’Writing out iteration’, incr
write(8) f
call flush(8)
endif

C Write out the test variable, which checks for periodicities

c if( incr .1t. 50000 ) then
C osc(incr) = £(1,2,2)
C endif

call update

C Do the diagnostics
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if (mod(incr,ndiag).eq.0) then

call diagnostics(imi, bmi, vmil, im2, bm2, vm2, im3, vm3)

write(10) im1, bmi, vml, im2, bm2, vm2, im3, vm3

endif

C Check for negative f

C (the columns i=1,m-1 are specified by boundary conditions)

do i=1, m-2
do j=0, n-1
do a=0, 12
if( £f(a,1i,j).1t.~-.1d0 ) then
write(8) f
call flush(8)
close(8)
write(6,*) ’f ’,a,’ negative at ’,i,j
stop
endif
enddo
enddo

enddo

enddo

close(8)

Q O O aQ Q

Diagnostic file, to look for periodicities in the flow
open(9,file="oscill.dat’,status=’unknown’,form=’unformatted’)
write(9) osc

call flush(9)

close(9)

open(81,file='end.dat’,status=’unknown’,form=’unformatted’)
write(81) tmax, f
close(81)

end
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C————- -

subroutine diagnostics(imi, bmi, vmi, im2, bm2, vm2, im3, vm3)
integer iml, im2, im3

double precision bmil, vmi, bm2, vm2, vm3

C Calculate various diagnostic quantities in magnetic island

C coalescence

include ’lattice.inc’

integer i, m2, n2

double precision rho, vx, vy, bx, by

C Find the local maxima Bx, vy along the line x = 0, nearest y = 2 Pi

bmi = 0.d0
bx = 0.d0
vm2 = 0.d0
m2 = m/2
i =n/2

do while( i.lt.n.and.abs(bx).ge.bml)
call macros(m2,i,rho,vx,vy,bx,by)
if( abs(bx).ge.bml ) then

bmi = abs(bx)
vml = abs(vy)
endif
i=1+1
enddo
iml = 1
vy = 0.d40
i =n/2

do while( i.lt.n.and.abs(vy).ge.vm2)
call macros(m2,i,rho,vx,vy,bx,by)

if( abs(vy).ge.vm2 ) then
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bm2 = abs(bx)
vm2 = abs(vy)
endif

C Find the extremal vx, along the line y = 2 pi
vm3 = 0.d0
n2 = n/2
doi=0, m1
call macros(i, n2, rho, vx, vy, bx, by)

if( abs(vx) .ge. vm3 ) then

vm3 = abs(vx)

i

im3
endif

enddo

end

double precision function equilibrium(rho, vx, vy, bx, by, a, s)

Calculates the lattice Boltzmann 2D-MHD equilibrium distribution function,
given the macroscopic fields rho, (vx, vy), (bx, by) for the particle state
given by (a, s).

Rest particlesvare specified by s = 0.

Ref: Martineze et al, Phys Plasmas, 6, 1994

Q O O O  Q a Q Q

include ’lattice.inc’
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double precision rho, vx, vy, bx, by

integer a, b, s, ss

double precision eav, esv, eab, esb, bbb, v2, b2

c

C Rest or moving particles?

if( s.eq.0 ) then

equilibrium = rho * (1. - alpha - vx**2 — vy**2)
else
CNBs=1or -1
b = mod(6 + a + s, 6)
c- —
C Some dot products
Cmm e
eav = ex(a) * vx + ey(a) * vy
esv = ex(b) * vx + ey(b) * vy
eab = ex(a) * bx + ey(a) * by
esb = ex(b) * bx + ey(b) * by
ss = (1 - s8)/2
bbb = microbx(a,ss) * bx + microby(a,ss) * by
V2 = UX*¥2 + vy**2
b2 = bx#*2 + by*#2
C equilibrium = (rho/12.d0) * (alpha
c . + 2.d0 ¥ ( eav + bbb
C - 2.d0 * (esv**2 - esb**2)
C + 2.d0 * (eav*esv - eab*esb)
C + q * (eav * esb - eab * esv)
c +v2 - .5d0 ¥ b2)) |

equilibrium = (rho * (alpha
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.+ 2.d0 * ( eav
- 2.d0 * (esv¥*2)
+ 2.d0 * (eav*esv)
+ v2))
+ 2.d0 * (bbb + 2.d0 * esb * (esb - eab)
+ q * (eav * esb - eab * esv)

-.5d0 * b2) ) / 12.40

endif

return

end

(==============c —_———

subroutine macros(i, j, rho, vx, vy, bx, by)

(====================——====—=======—==—=====—==c========z=============

C Calculates the macroscopic fields at the grid point (i,j) and puts
C the result in rho, (vx, vy), (bx, by)
C — —=

include ’lattice.inc’

integer i, j
double precision rho, vx, vy, bx, by
double precision ff

integer a, al, a7

rho = £(0,1,j)

vx = 0.d0
vy = 0.d40
bx = 0.d0
by = 0.d0
do a=0, 5

al =a + 1
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a7 = a + 7

£f = £(at,i,j) + £(a7,1,j)

rho = rho + ff

vx = vx + ff * ex(a)

vy = vy + ff * ey(a)

bx = bx + f(al,i,j) * microbx(a,0)
. + f(a7,i,j) * microbx(a,1)

by = by + f(al,i,j) * microby(a,0)
. + f(a7,1i,j) * microby(a,1)

enddo

vx = vx / rho

vy = vy / rho

C bx = bx / rho
C by = by / rho
end

C

subroutine setup

C

C Initialises the global paramaters in the lattice Boltzmann MHD model

(========= ——

include ’lattice.inc’
C Array indices
integer a, b, s

integer i, j

C Current sheet half-width, domain length, wave

number for
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C perturbations, island size

double precision width, length, knum, isl

C Grid spacing

C double precision dxi, deta

C Coordinates

double precision x(0:m-1,0:n-1), y(0:m-1,0:n-1)

C Macroscopic fields

double precision rho, vx, vy, bx, by, u0, b0

C Temporary variables
double precision denom, sn, cs, cs2y, csh, chi, chip, fac

integer ind

C Function declaration

double precision equilibrium

C Microscopic velocities, relative to the (xi,eta) coordinate system

double precision el, e2, del, de2

C The magnetosonic speed

ms2 = sqrt(cs2 + .01d0)

do a=0, 5
ex(a) = cos(pi * a / 3.d0)
ey(a) = sin(pi * a / 3.40)

enddo
do a=0, 5
do s=0, 1

b =mod(7 +a -2 * s, 6)
(2.d0%ex(b) - ex(a))/sqrt(3.d0)
(2.d0*ey(b) - ey(a))/sqrt(3.d0)

microbx(a,s)

microby(a,s)
enddo

enddo
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C alpha = 4.d0/9.d0
C ¢cs2 = 2.d0/9.40
q = 2.d0 / sqrt(3.40)

open(4,file=’lattice.in’,status=’0ld’)
rewind(4)

C Time parameters
read(4,*) tmax, tout, tau, dt

dtovertau = dt / tau

C Are we continuing from a previous run

read(4,*) cont

C Domain size

read(4,*) xiinf, length, isl
knum = 2.d0 * pi / length

width = .26d0 * length / pi

C Ambient flow speed
read(4,*) u0, b0

close(4)

if(cont) then

write(6,*) ’Reading in intial data’

call flush(6)

C Read in the intial data from a file

open(81,file=’end2.dat’,status=’unknown’,form=’unformatted’)

read(81) f
close(81)
endif
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C—- —_—— —_ —————— e e

C Setup the initial conditions, for magnetic island coalescence

C dxi = 2.d0 * xiinf / (m-1)

C dxi = 2.d0 * xiinf * width / (m-1)
C deta = length / n

dxi = 2.40 * xiinf / (m-1)

deta = 4.d0 * pi / n

do 1=0, m-1

do j=0, n-1

C Calculate the (x,y) coordinates
C (for IDL display routines that depend on Cartesian grids)
C x(i,j) = width * sinh(dxi * i - xiinf)

x(i,j) = (dxi * i - xiinf)

y(i,j) = deta * j

Calculate the velocity field
vx = -u0 * cos(knum * y(i,j)) * sinh(x(i,j)/width)
/ cosh(x(i,j)/width)#**2

C

C

C

C vy = u0 * sin(knum * y(i,j)) *
C (1-sinh(x(i,j)/width)**2)
C / cosh(x(i,j)/width)**3

if(.not. cont) then

ind = 2

sn = sin(.5*y(4i,j))

cs = cos(.5*%y(i,j))

cs2y = cos(y(i,j))

1.0001d0 + isl * (1-cs2y)

log(csh + sqrt(csh**2-1.40))
chip = 2.d0*isl*sin(y(i,j)) / sinh(chi)

C fac = -(x(1,j)/chi)**ind

C write(6,*) ’ok’

csh

chi
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fac = uO*exp(-abs(sn)-(x(i,j)/chi)**ind/ind)

vx = x(i,j) * (cs * (abs(sn)-1.d0) -
(x(i,j)/chi)**ind
* chip/chi * sn) * fac
vy = (1.d0-(x(i,j)/chi)**ind) * sn * fac

C and the magnetic field

C bx
C by

0.d0
b0 * tanh(x(i,j)/width)

denom = cosh(x(i,j)) + isl*cos(y(i,j))
bx = bO*isl*sin(y(i,j)) / denom
by = b0 * sinh(x(i,j)) / denom

. and the density field, (assuming that the total pressure field
is uniform ie rho( cs“2 + 1/2 B~2) = const) ‘
rho = (cs2)
/ (cs2 + .5 * (bx**2+by**2))

aQ O a Q

C Assign a pressure field which balances the Lorentz force
C rho = (bO**2 * cosh(x(i,j)/width)/denom + cs2-.5%b0**2)
C . / (cs2 + .5 * (bx**2+by**2))
rho = (b0**2 * cosh(x(i,j))/denom
- .5 * (bx**2+by**2) - b0**2)/cs2 + 1.d0
1.d0 - .5d0 * (bx**2+by**2)/cs2
1.40

C rho

rho

C Initialise the distribution function to its equilibrium valué
£(0,1,j) = eqﬁilibrium(rho,vx,vy,bx,by,o,o)
do a=0,5
f(a+l,i,j) =
equilibrium(rho,vx,vy,bx,by,a,1)
f(a+7,i,j) =
equilibrium(rho,vx,vy,bx,by,a,-1)

enddo
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C End the '"not cont" conditional

endif

C-———————————— - —_— - —_

C Set up the weights for the disretisation
C_ [——
do a=0, 5

C Calculate the components of (ex,ey) in (xi, eta) coordinates
C el = ex(a) / (width * cosh(dxi*j-xiinf))
el = ex(a)

e2 = ey(a)

C ...and their derivatives
deil = -O*pi * el
de2 = el*0
if (abs(el*dt/dxi).gt..7d0
.or.abs(e2*dt/deta).gt..7d0) then
write(6,*) abs(el*dt/dxi), abs(e2*dt/deta)
stop
endif
C ...and the weights (Lax-Wendroff discretisation)
wi(a,i,j) = .5d0 * (el*dt/dxi
+ (el*dt/dxi)**2)

w2(a,i,j) = 1.d0 - dtovertau
- (el*dt/dxi)**2 - (e2+dt/deta)**2
w3(a,i,j) = .5d0 * (-elxdt/dxi
+ (elxdt/dxi)#**2)
wd(a,i,j) = .5d0 * (e2*dt/deta

+ (e2xdt/deta)**2)
w5(a,1,j) = .5d0 * (-e2xdt/deta
+ (e2*dt/deta)**2)

C ...upwind discretisation

(@]

w2(a,i,j) = 1.d0 - dtovertau
if(el.gt.0.d0) then

Q
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C wi(a,i,j) = el*dt/dxi
c w3(a,i,j) = 0.d0
C w2(a,i,j) = w2(a,i,j) - el*dt/dxi
C else
C wia,i,j) = 0.d0
C w3(a,i,j) = -el*dt/dxi
C w2(a,i,j) = w2(a,i,j) + elxdt/dxi
C endif
c if(e2.gt.0.d0) then
C w4(a,i,j) = e2*dt/deta
C w5(a,i,j) = 0.40
C w2(a,i,j) = w2(a,i,j) - e2xdt/deta
C else
C w4(a,i,j) = 0.d0
C wb(a,i,j) = -e2xdt/deta
C w2(a,i,j) = w2(a,i,j) + e2xdt/deta
C endif
enddo
enddo
enddo

C Write out the Cartesian coordinates
open(7,file=’points’,status=’unknown’,form='unformatted’)
write(7) x, y

close(7)

end

C _____________

subroutine update

C

C Updates the lattice Boltzmann 2D-MHD distribution function, using a

C Lax-Wendroff approximation for the streaming process
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include ’lattice.inc’

C Some array indices

integer i,im,ip,j,jm,jp,a,al,a7,aa

C Some columns
C double precision £f£(0:12,0:n-1),fff(0:12,0:n-1),
C . F1(0:12,0:N-1)

C A Temporary array
double precision ££(0:12,0:m-1,0:n-1)

C Macroscopic fields

double precision rho, vx, vy,'bk, by,
. rhoO0, vx0, vy0, bx0, byo0,
. rhol, vx1, vyl, bxil, byi,
. rho2, vx2, vy2, bx2, by2

C Function declarations

double precision equilibrium

C———————————— -

C Note that the code is inevitably specific to the particular boundary

C conditions for the problem. Here, we shall assume that there are boundaries
C along the first and last columns (ie x = 0, x = xmax) and that the domain

C is periodic in the y direction.

[T T ——

C _____

C This is specific to flow current sheet instabilities

C _______________________________

C—————————————

C Set the distribution function to be its equilibrium value at the
C far field flow.
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o
C do j=0, n-1

c

C Give a value for fff, just to keep the main loop consistent
C do a=0, 12

c tff(a,j) = £(a,0,])

C enddo

C

C enddo

C STORE THE FIRST COLUMN

¢ DO J= 0, N-1

C DO A= 0, 12

C Fi1(4,J) = F(A,1,J)

C ENDDO

C ENDDO
Do an extrapolate and bounce for the boundary conditions
do j=0, n-1
do a=0, 12

The extrapolation
££f(a,0,j) = 2.d0*f(a,1,j) - £(a,2,j)
¢ ff(a,m-1,j) = 2.d0*f(a,m-2,j) ~ £(a,m-3,j)

a O a a O

¢ enddo

¢ enddo

c do j=0, n-1
¢ do a=0, 5

C The bounce
c £(1+a,0,j)
¢ £(7+a,0,3)

£ (7+mod(a+3,6),0,3)
£ (1+mod(a+3,6),0,j)
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¢ f(1+a,m-1,j) = £(7+mod(a+3,6),m-1,j)
¢ f(7+a,m-1,j) = £(1+mod(a+3,6),m-1,3)

¢ enddo

¢ enddo

Q

Apply the boundary condition:

Q

f = feq - tau e . grad feq

c do j=0, n-1

c call macros(0, j, rhoO, vx0, vyO, bx0, byO)
c call macros(0, j, rhol, vxi, vyi, bxi, byl)
¢ call macros(0, j, rho2, vx2, vy2, bx2, by2)

¢ £(0,0,j) = equilibrium(rho0,vx0,vy0,bx0,by0,0,0)
c do a=0, 5
c £(1+a,0,j)

(1.d0+1.5*tau*ex(a)/dxi)

c . * equilibrium(rho0,vx0,vy0,bx0,by0,a,1)
c . -2.d0 * tau * ex(a) / dxi

c . * equilibrium(rho1,vx1,vyl,bx1,byl,a,1)
c . +.5d0*tau*ex(a)/dxi

c . * equilibrium(rho2,vx2,vy2,bx2,by2,a,1)
c £(7+a,0,j) = (1.d0+1.5+tau*ex(a)/dxi)

c . * equilibrium(rho0,vx0,vy0,bx0,by0,a,-1)
c . -2.d0 * tau * ex(a) / dxi

c . * equilibrium(rhol,vx1l,vyl,bxl,byl,a,-1)
c . +.5d0*tau*ex(a)/dxi

c . * equilibrium(rho2,vx2,vy2,bx2,by2,a,-1)
c enddo

c

c call macros(m-1, j, rhoO, vx0, vy0, bx0, by0)
c call macros(m-2, j, rhol, vxi, vyl, bxi, byl)
c call macros(m-3, j, rho2, vx2, vy2, bx2, by2)

¢ f£(0,m-1,j) = equilibrium(rho0,vx0,vy0,bx0,by0,0,0)

c do a=0, &

c f(1+a,m-1,j) = (1.d0-1.5*tau*ex(a)/dxi)

c . * equilibrium(rho0,vx0,vyO,bx0,by0,a,1)
c . +2.d0 * tau * ex(a) / dxi
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c . * equilibrium(rhoil,vxi,vyl,bxi,byl,a,1)

c . -.5d0*tau*ex(a)/dxi

c . * equilibrium(rho2,vx2,vy2,bx2,by2,a,1)

c f(7+a,m-1,j) = (1.d0-1.5*tau*ex(a)/dxi)

c . * equilibrium(rho0,vx0,vy0,bx0,by0,a,-1)
c . +2.d0 * tau * ex(a) / dxi

c . * equilibrium(rhol,vx1,vyl,bx1,byl,a,-1)
c . -.5d0*tau*ex(a)/dxi

c . * equilibrium(rho2,vx2,vy2,bx2,by2,a,-1)

¢ enddo

¢ enddo

C Try periodic boundaries either end, but reflecting the magnetic field
C vector.

do j=0, n-1

call macros(0, j, rho, vx, vy, bx, by)

c vx = 0.d0
c vy = 0.d0
c bx = 0.d0
c by = -b0

££(0,0,j) = £(0,0,3) +
(equilibrium(rho,vx,vy,bx,by,0,0) - £(0,0,3))

* dtovertau

jp = mod(j+i,n)
jm = mod(n+j-1,n)
do a=0, 5

al = a +1

a7l =a + 7

ff(a1,0,j) = equilibrium(rho,vx,vy,bx,by,a,1)
* dtovertau

+ wi(a,0,j) * £(a7,m-1,j)
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+ w2(a,0,j) * £(a1,0,j)
+ w3(a,0,j) * £(a1,1,j)
+ w4(a,0,j) * £(al,0,jm)
+ w5(a,0,j) * £(a1,0,jp)

£f(a7,0,j) = equilibrium(rho,vx,vy,bx,by,a,-1)

* dtovertau
wi(a,0,j) * f(al,m-1,j)
w2(a,0,j) * £(a7,0,3)
w3(a,0,j) * £(a7,1,j)
w4(a,0,j) * £(a7,0,jm)
w5(a,0,j) * £(a7,0,jp)

+ 4+ o+ + 4+

enddo

C and the last column

call macros(m-1, j, rho, vx, vy, bx, by)

c vx = 0.d0
c vy = 0.d0
c bx = 0.d0
c by = b0

££(0,m-1,j) = £(0,m-1,j) +
(equilibrium(rho,vx,vy,bx,by,0,0) - £(0,m-1,j))

. * dtovertau

jp = mod(j+1,n)
jm = mod(n+j-1,n)
do a=0, 5

al =a + 1

a7l =a + 7

ff(al,m-1,j) = equilibrium(rho,vx,vy,bx,by,a,1)
) * dtovertau
+ wi(a,0,j) * f(al,m-2,j)
+ w2(a,0,j) * f(ai,m-1,j)
+ w3(a,0,j) * £(a7,0,j)



APPENDIX A. CODE LISTING

enddo

+ w4(a,0,j) * £(a1l,m-1,jm)
+ wb(a,0,j) * f£(al,m-1,jp)

ff(a7,m-1,j) = equilibrium(rho,vx,vy,bx,by,a,-1)

w2(a,0,j)
w3(a,0,j)
w4(a,0,j)
w5(a,0,j)

+ + + o+ o+

enddo

C Do a column at a time

do i=1, m2

*

*

*

* dtovertau

wi(a,0,j) * £(a7,m-2,j)

f(a7,m-1,j)
f(a1,0,j)
f(a7,m-1,jm)
f(a7,m-1,jp)

C % 3 sk ok ok ok sk ok e ok sk ok 3k ok ok ok ok ok ok ok ok ok sk 3k ok ok ok koK o ok k3 ok ok ok ok ok ok ok ok ok ok %k

CDOI =0, M-1

im

ip

C The
do

= mod(m+i-1,m)

mod(i+1,m)

i-th column

j =0, n-1

call macros(i, j, rho, vx, vy, bx, by)

££(0,1,3) = £(0,1,3) +

(equilibrium(rho,vx,vy,bx,by,0,0) - £(0,1,j))

* dtovertau

jp = mod(j+1,n)
jm = mod(n+j-1,n)
do a=0, 5

al = a + 1

a’ = a +7
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£f(al1,i,j) = equilibrium(rho,vx,vy,bx,by,a,1)
* dtovertau
wi(a,i,j) * f(al,im,j)
w2(a,i,j) * £(al,i,j)
w3(a,i,j) * £(al,ip,j)
wa(a,i,j) * f(al,i,jm)

+ + + + +

w6(a,i,j) * f£(al,i,jp)

ff(a7,i,j) = equilibrium(rho,vx,vy,bx,by,a,-1)
* dtovertau
wi(a,i,j) * £(a7,im,j)
w2(a,i,j) * £(a7,1i,j)
w3(a,i,j) * £(a7,ip,]j)
w4(a,i,j) * £(a7,i,jm)

+ + o+ o+ 4+

w5(a,i,j) * £(a7,i,jp)

enddo

3k 3K 3k oK 3k 3k o ok ok 3k 3k 3k 5 ok ok ok ke 3k ok ok o 3k 3 ok ok ok ok K ok ok 3 3k oK ok ok

C FF(0,J) = EQUILIBRIUM(RHO,VX,VY,BX,BY,0,0)
C DO 4=0, &

C FF(A+1,J)
C FF(A+7,J)
C ENDDO

EQUILIBRIUM(RHO,VX,VY,BX,BY,A,1)
EQUILIBRIUM(RHO,VX,VY,BX,BY,A,-1)

C ok ok ok ok okok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

enddo

C Update column i-1

C do j=0, n-1

C do a=0, 12

C f(a,im,j) = £f£f(a,j)
o fff(a,j) = £f(a,j)

C enddo

C enddo
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enddo

C Update the lattice
¢ do i=1, m-2
DO I=0, M-1
do j=0, n-1
do a=0, 12
f(a,i,j) = £f£(a,i,j)
enddo
enddo

enddo

return

end

C Include file common block declarations for the lattice Boltzmann MHD program

C

C Pi
double precision pi

parameter(pi = 3.1416592653589793115997963468544d0)

G e ————————— e
C Parameters associated with the microscopic rules

C

C alpha - the ’alpha’ parameter in the equilibrium distribution
C which sets the speed of sound

C ¢cs2 - the speed of sound squared

C ms2 - the magnetosonic speed

C ex, ey - the microscopic vglocity vectors

C microbx, microby - the microscopic magnetic field vectors

C q - a coefficient in the distribution function (= 2/sqrt(3))
Cmmm e e e e e

double precision alpha, cs2, ms2, q
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common /waves/ ms2

double precision ex(0:5), ey(0:5)

double precision microbx(0:5,0:1), microby(0:5,0:1)
common /micros/ ex, ey, microbx, microby, q
parameter(alpha = .556565655656565656565d0)
parameter(cs2 = .277777T7T7T777777777740)

C — _

C m,n - The size of the grid

C £ - the equilibrium distribution

C Note that £(0) - Rest particles

C with a=0,..,5 f£(1+a), state given by (a,a+l)
C £(7+a), state given by (a,a-1)

integer m, n

parameter(m = 81, n = 1024)

C Flow past a cylinder m=181, n=241

C Tearing mode m=61, n=161

C Island coalescence m = 101, n = 200
double precision £(0:12, O:m-1, O:n-1)

common /distribution/ f

C dt - the time step
C tau - the collisional relaxation time
C dtovertau - dt / tau

C tmax - the simulation time

C———————— - —_——— —_ —_—

double precision dt, tau, dtovertau
integer tmax, tout

common /times/ dt, tau, dtovertau, tmax, tout

C—————————————— - ——————————————————————

C cont - true if initial conditions are to be read in from

C a file
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logical cont

common /cont/ cont
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double precision dxi, deta

common /grid/ dxi, deta

C __________________ - -

double precision w1(0:5,0:m-1,0:n-1), w2(0:5,0:m-1,0:n-1),
w3(0:5,0:m-1,0:n-1), w4(0:5,0:m-1,0:n-1),

w5(0:5,0:m-1,0:n-1)

common /weights/ wi, w2, w3, w4, w5

double precision xiinf

common /domain/ xiinf

C double precision b0
C common /flow/ b0
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