DESIGN AND IMPLEMENTATION OF AUTOMATED MAPPING SYSTEM

- WITH EMPHASIS ON IMAGE HANDLING -

BY

JAE-HONG YOM

B.Sc. in Civil Engineering (Yonsei University, Seoul Korea) 1981
M. Eng. in Photogrammetry (Yonsei University, Seoul Korea) 1983
Post Graduate Diploma in Land Information System (ITC, The Netherlands) 1989

A Thesis for the Degree of Doctor of Philosophy (Ph.D.)
of the Faculty of Science at the University of Glasgow

Department of Geography & Topographic Science

January 2000

© Jae-Hong Yom 2000

ProQuest Number: 13818644

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13818644

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

ABSTRACT

This thesis is concerned with the design and the implementation of an automated mapping
system. Automation of the mapping process is a major concern in the geomatics discipline as
the role of geospatial information is becoming more important in the ‘information society’.
Automation has been successful in some tasks of the mapping process, whereas it is faced
with difficulties in other more complex tasks. '

In all of these automation efforts, software development is inevitably involved. In software
development, software design should be carried out prior to its implementation but at
present, software design is not widely practiced by research organisations in the geomatics
discipline. Research into systematic design of software for the geomatics discipline will
prove beneficial for both the research organisations and the end users in the long run.

An Object Oriented software design using the Unified Modeling Language (UML) is
presented in this thesis for some of the subsystems of the automated mapping system,
namely:

e the image acquisition subsystem;

e the positioning subsystem; and

e the image point referencing subsystem.

For each of these subsystems, the domain knowledge and the software implementation
aspects were investigated and analysed. Based on the results of this analysis, the software
design for the subsystems was produced using UML. The design was then implemented in
C++ programming language and tested with practical data.

This study concludes that the software design of this study enhances the implementation
effort. For example, the same classes which had already been implemented in the positioning
subsystem were reused in the image point referencing subsystem with only little changes.

It is also emphasized in this study that the Object Oriented design using UML should be used
by research organisations of the geomatics discipline. The software design of the automated
mapping system presented in this thesis will lay a foundation for further development of

software which could be effectively used for geospatial research.

PREFACE

1. INTRODUCTION

1.1 Objective of Research..........coveveemniecienincnninceiccecces DERIVED & ORIGINAL
1.2 Scope Of ReSEAICH.....c..cocvrrerieticieitceerecrecrcreer et ORIGINAL
1.3 Outline of TRESIS....c.cevvvuemrmiecirecrcrcc et ORIGINAL
2. AN INTRODUCTION TO OBJECT ORIENTED SOFTWARE DESIGN DERIVED
2.1 Key Concepts in the Object Oriented Method............ccoovvevvivicniiicrinninninn DERIVED
2.2 Object Oriented DESIgNcoceveerieriereieririeieeineestsesert e sresresesesesenessesnenens DERIVED

3. ANALYSIS AND DESIGN OF THE IMAGE ACQUISITION SUBSYSTEM

3.1 Calibration of the Imaging Sensor.......c.ccececceverevrrinenicricinriecres DERIVED
3.2 Control of Image Capturing..........ccceevvevreerverrreereecenrrersrenneesseesseesensanessnrssnsossisns DERIVED
3.3 Flight Planning..........ccceeveeiveerierieienenerenese et scesiesieeesss e snesassones DERIVED
3.4 Important Objects in the Imaging Subsystem.........c.ccocuvcverreeverierrivereerrccnnas ORIGINAL
3.5 Class Diagrams of the Imaging Subsystem...........ccccovvrvervvreriinivininseenneinnens ORIGINAL

4. ANALYSIS AND DESIGN OF THE POSITIONING SUBSYSTEM

4.1 Processing of GPS Data.........ccccveereererveenrirnerceneeneeninecenns DERIVED & ORIGINAL
4.2 Processing of IMU Datacccocverrvcrinceenccniiccninccees DERIVED & ORIGINAL
4.3 Kalman Filtering......c...ccceeeeveeverierenirieeeireeseeiceeseenenenenee DERIVED & ORIGINAL

5. ANALYSIS AND DESIGN OF THE IMAGE POINT REFERENCING SUBSYSTEM

5.1 The Collinearity Mathematical Modelcccooceniiivnnnen. DERIVED & ORIGINAL
5.2 Solution of the Normal Equation........c..cccceeveveeeenereerirecnnenne. DERIVED & ORIGINAL
5.3 The CMappingMatriX Classcccvvveereireerrersernenieeresressneeressresseessressresnesaes ORIGINAL

6. IMPLEMENTATION OF DESIGN FOR CAMERA CALIBRATION AND GPS
SURVEYINGcovriiiitiicititiiiciciccinie et ens e ORIGINAL

7. CONCLUSIONS AND RECOMMENDATIONS........cccoeviiimimiiinneiirnreinenenenn ORIGINAL

1

ACKNOWLEDGEMENT

I would like to offer my most sincere thanks to my supervisor Dr. J. E. Drummond for her
constant support and encouragement throughout my study. Her advice and guidance were

essential for the completion of this thesis.

I am also grateful to Mr. D. A. Tait, who has given me valuable guidance as second
supervisor. Thanks and gratitude are also due to Mr. 1. Gordon for his lectures on GPS and
assistance with GPS related subjects, Dr. D. Forrest, Professor G. Petrie and Dr. R. Poet for

their interest and assistance during the study.

I am also grateful to Dr. K. P. Schwarz of the Department of Geomatics Engineering of the
Calgary University for his kindness and guidance offered during my study period there. My

appreciation extends to Dr. N. El-Sheimy and all the members of the research group.
I would also like to thank Dr. G. Mader for making his KARS GPS program available.

My colleagues, Alias Abdul-Rahman, Matt Duckham and Hasin Rammali are also gratefully
acknowledged for useful discussions and also for sharing their experiences and most of all,

going through the journey together.

Thanks also goes to Professor J. Briggs and Mr. Iain McNeil for their assistance with the

Glasgow University scholarship application.

Financial support for this study has been granted by the University of Glasgow, the British
Council and the Air Korea Co. (now part of Korea Airport Service Co.). Their financial

support is greatly appreciated.

The coordinated help of the International Office of Glasgow University and the British
Council Offices at Glasgow and at Seoul is also gratefully acknowledged.

iii

TABLE OF CONTENTS

ABSTRACT ...ttt sttt s s s s ssas s re s senen i
PREFACE ...ttt sttt ss s s i
ACKNOWLEDGEMENTccootiiitiietnininticteence st ae e sesesesesesesasasnnes iii
TABLE OF CONTENTS ..ottt eesr e s srestnsassese s ssnenes iv
LIST OF TABLES ...ttt et e sans viii
LIST OF FIGUREScooeotritititiiiiiic sttt st st s ssas i sasas s ix
L. INTRODUCTIONoomiiiiiiiiicerctenee et s e e see s i s ssasssasssssnesarsssanee 1
1.1 Objective Of RESEATCH......c..oueviieeiieirieietcceis sttt sttt 1
1.1.1 The Mapping ProCESS.......ccceveverrerieirririinieesresesiesreneeseesssessesieseessnessnssessessnsssosessnesns 1
1.1.2 An Automated Mapping SYSteIm.........cccecvvuiriiriimniemininiiicinrcnsre e er e 2

1.1.3 The Need for Software Design in an Automated Mapping System............c.cccuvueune. 6
1.1.4 Software Design Research in Geomatics Communityc.ccceeeueeeerieeniennnnnnns 7

1.1.5 Problems in Software Design for Automatic Mapping System...........ccccceeeeririnnene 8

1.2 ScOPE Of RESEATCH.....coceieieniiririeerreereeee et st snes 9
1.3 Outling Of TRESIS...ccveveeriiieiecerec ettt s e ess bbb 12

2. AN INTRODUCTION TO OBJECT ORIENTED SOFTWARE DESIGN...........ccccccvernee. 13
2.1 Key Concepts in the Object Oriented Method..........cc.cocceerucrincncncncrnnrincen 14

2. 1.1 ADSHACLION . ..cvucuveniinrieieniriieicieecereie ettt etsse st sanssss s resnsss e b bsnsnns 15
2.1.2 ENCAPSULAtION......c.ooveririiicennniirericcicnteiesr et nesenssresas et s e ssnnssssaesesnsasans 16

P2 BRI 01113 o L 1o O 18
2.1.4 POlyMOIPRISIN....coirniiieeiiiieniteceseeereese st reesaesne st e e s ssaasessressssesassoneseennesnesesaorsons 20

2.2 Object Oriented DESIZNccovvvuevemiriiiiiiiiiiiicnece et ens 23
2.2.1 Design GOalS.......coouiveieieiiiiicii ittt e 24
2.2.2 Unified Modeling Language..........ccccvceeveererrrcreirerivennererenennressesseesessesssseeseessenenns 24

iv

. ANALYSIS AND DESIGN OF THE IMAGE ACQUISITION SUBSYSTEM................. 30

3.1 Calibration of the Imaging SenSOor........ccccoceecvireerreceirrieenree st 31
3.2 Control of Image Capturingccceeveeeeeeeriererenierieeeieeresresessesseseerssssnmssessensassesssssssons 35
3.2.1 Control of Imaging SENSOT.......cccccoviierieririeneeeeeeee et sernereesns 35
3.2.2 Exposure Time Recordingccocoevvuiiiinicniiiiiiiniicnenccenccicesiseesineinens 36
3.3 Flight Planning..........ccccecevvveinmiiinninieiiniiiiein et snsr s 37
3.4 Important Objects in the Imaging SubsyStem...........ocvevirurrciririmniniiiiicrcieeene 39
3.4.1 The IMaging SENSOTcccoeciriiriiiiiienre ettt benes 39
3.4.2 The IMage Class.......cocereerienienriiiriiniiiineineeetesese s e s e srsssnsssnesrrssresrssnssnsnsesns 42
3.4.3 The POINt ClaSS ..c.veveuenrieriiieierinietccic ettt aes 44
3.4.4 Coordinate Frames............cccvoeeermiiioenirineniieeeee et 44
3.5 Class Diagrams of the Imaging Subsystem...........cc.ccccovcvivuvciniiininiininnicineenens 49
3.5.1 The CMatrixCamera Class.........ccccverreererreeniirinersrrisireeeseessseereeesesneesonesneerossssassnssnns 49
3.5.2 The CMappingImage Class........ccccoviiriivienernireneeiiinirenersinis s e ene s 51
3.5.3 The POINt ClaSSES.....c..cvvemrreerieireciiiiiinieeriststesae ettt sssss et s s saes e 53
3.6 Summary of Chapter 3..........ccoievieriiiiiiiiircee et es e en et 54
. ANALYSIS AND DESIGN OF THE POSITIONING SUBSYSTEMcccconiviernrnne 57
4.1 Processing of GPS Data.......coceveeveeeeviinieneiieneeieeeeeneeeeeerc et ssac e saisee 60
4.1.1 Analysis of GPS Data Processing........c..ccoceveeuveueruenierciiinininininnicineiesee s 61
4.1.2 Design of Classes of the GPS Data Processingcocovvevmmmmnirnenenivinnnrnenscenens 82
4.2 Processing Of IMU Daataccccoueeeiiiiiiciiicieircseee e sceacnee st sasb e ae 86
4.2.1 Overview of IMU Data Processing.........co.ceceeereverereversereersesiseesesniesseisnneiene 87
4.2.2 Mechanisation Of IMU Dataccoeeiviiiniiiinininiciiciiciniecseeneesnensese s 90
4.2.3 Alignment Of IMUcooviiiiiiiiicccrcc s 94
4.2.4 Detail Class Diagrams of IMU Data Processing.............c.ceeverieereervrsnnniiiinninnnnes 96
4.3 Kalman FIlteringccoocceeririnineiiiiccccets et 100
4.3.1 The INS Error MOdel.....c..coouiiieiiieieerereretse et ssenesasassnsrssnens 100

4.3.2 The Kalman FUer CIASS . .ooovroooeeoeessooos oo eseses s eseeeses e seeeere e 101
4.4 Summary of Chapter 4cocooiiiiiiiiirieiereererreee ettt e 104

5. ANALYSIS AND DESIGN OF THE IMAGE POINT REFERENCING SUBSYSTEM 107

5.1 The Collinearity Mathematical Modelccoceeiereirieiieniieincenec e 109
5.1.1 Image Observation EQUation..........ccceceeererrinieeenincniesccenrenrceenecseecsesesae e 111
5.1.2 Direct Observation EQUAtIONcocceeriveirienirineneneeseeerresrenesceseereesesnessesiens 112
5.1.3 Formation of the Normal EQUationcceceevererimmenrireeericererenercreenneceeeniens 113
5.1.4 Design of the CCollinearityEquation Class.......c.c.ccccereerrenierneeeniencenreeenereenneas 116

5.2 Solution of the Normal EQUationcocueeiirieeirccceeeeeeee e e 118
5.2.1 Cholesky FactOriSationccccvvuereniirieriinireeieiieeseesiessessisee e sseesessesessesssereeas 120
5.2.2 Analysis Of RESULL.....c.comiiiiiiee e 120
5.2.3 Storage Optimisation in the Least Squares Adjustmentccooevreevesvirnvennenns 122
5.2.4 Decorrelation of Correlated ObSErVALIONSovvveveieeereueverrirereeerereesresneerenac 124
5.2.5 The Design of the CLSQAdjustment Classcccerverveerrerereerereesricnseneninnnes 125

5.3 The CMappingMatrix Classcccceiieerereririirieiccre e e 126

5.4 Summary for Chapler S.......c.ccociiiiiiiicrineceeieee ettt see et sae s ssiees 127

6. IMPLEMENTATION OF DESIGN FOR CAMERA CALIBRATION AND GPS

SURVEYIING ..ottt st sttt st st et s s bt s b e e nse e s an et 130
6.1 Camera Calibration Implementation.............cccoceeeeerveirinienrieneeee et 130
6.1.1 Programming...........cccoeeemirmiiiiiniiic e 131
6.1.2 Calibration TESLINE «....cocveerrrrerrereteririeserreerceseeiesesirrsae et e sesssesseessesesseseaseeanes 136
6.1.3 Block Bundle Adjustment TeStiNg.........cceoveeerieveriveerennirccereeeenereeeneeeeieeneseeas 138

6.2 GPS Surveying IMplementation...........cceve.eveevemrieeeenieeeenienieeieseereseeei s 141
6.2.1 PrOgramiming......ccccecceeeuerisiiiriirriineesineirreriesseesueeestesessessesnesssessssseesniessesssnessnes 141
6.2.2 Testingccevvveverveeneennn. ateereere e te e r e e e e aa st e st et eeeerte s st enneeseeaesneeereeresresbeesanen 144

6.3 Summary of ChapLer Gcccoovieiiiiiciieecerer et 146

Vi

7. CONCLUSIONS AND RECOMMENDATIONS.........ccoviiiiiiiccierreecneree e 149
7.1 General ConCIUSIONScc.coiviiiiiieiiecrcreircescet e ere e s 149
7.2 Recommendations for Further Development of the Automated Mapping System...... 154

7.3 Recommendations for Future Research Based on an Automated Mapping System ... 155

REFERENCE LIST ...ttt s easss e 158
APPENDIX A: DATA FILES FOR CAMERA CALIBRATIONcccciiiiniinciinienee 165
APPENDIX B: DATA FILES FOR BLOCK BUNDLE ADJUSTMENT.........ccccoovveruinnnnee. 174
APPENDIX C: OUTPUT FILE FOR GPS DATA ADJUSTMENTccccovmviniiiiininnne 186

APPENDIX D: SOURCE CODE LISTING FOR CLASS INTERFACES OF BUNDLE

ADJUSTMENT PROGRAMccocimiiiiiiniiiiiiiieecicnveseee e 187

APPENDIX E: SOURCE CODE LISTING FOR CLASS INTERFACES OF GPS DATA

PROCESSING PROGRAMcocooiiiiiiicciccecncic et 203

vii

LIST OF TABLES

Table 1.1 Comparison of Manual and Automated Mapping Environmentcccocevennenn. 10
Table 3.1 Classes Designed for Image Acquisition SubSYSteM..........ccoveevervirievrmrenreiinneninnenns 56
Table 4.1 Classes Designed for GPS Data Processingcceeevvveeirirreererenieeninncnsssnenns 105
Table 4.2 Classes Designed for IMU Data Processing and Kalman Filtering.............ccev.u... 106
Table 5.1 Classes Designed for Image Point Referencing Subsystemccccoevvieienienennne. 129
Table 6.1 Correlation Matrix of Adjusted Parametersccocveevevvveriereveniinincnieiennssenne 137
Table 6.2 Summary of Adjustment Result for DCS260 Calibrationccecvovenenreennen. 138
Table 6.3 Summary of Adjustment Result for the Zurich City Hall Images............ccccceuenvn.. 140
Table 7.1 Development Status of the Automated Mapping System........ccccoeeeveererivirennennes 150

viii

LIST OF FIGURES

Figure 2.1 Class Diagram EXampleccccoomrimniriieeeiecr et 26
Figure 2.2 Use Case Diagram Example..........cccoooirieieniininieicccccecceci e 28
Figure 2.3 Sequence Diagram of Read Data Fileccooveemiivenenicnineeincnereeceecnee 29
Figure 3.1 Use Case Diagram of the Image Acquisition Subsystem...........coceeeevvucuerrnirurienne 31
Figure 3.2 Sequence Diagram of Bundle Adjustmentccoceeeveveverveenenrernvernnveeressnnonenns 34
Figure 3.3 Time Scales of Different Sensors..........ccoeverrmreeecninncncnincnenceinnieneee 36
Figure 3.4 Sequence Diagram of Camera Control and Time Recording............coccoevrvvinnennnee 38
Figure 3.5 Sequence Diagram of Flight Planning...........cccccecvvvcerienncneinnnenccrennicnennncnnes 39
Figure 3.6 Class Diagram of Imaging Sensor..........c.cceeceivirirnieesrrenrencrrerieeeneeeeseesnnsesseenees 41
Figure 3.7 Class Diagram of the Image Class........cccceeververrenrrreneesicriiricinisrencnneiscnneens 43
Figure 3.8 Class Diagram of Point Class.........cccccevverieeniiniireiieciieceerecrr e 44
Figure 3.9 Pixel Coordinate Frame............ccccooeeirerinircineeccrc et 45
Figure 3.10 Photo Coordinate Frame..........ccccccereeiriierieinrrceenceciiecente e csrese s 46
Figure 3.1 1 Inertial Coordinate Framecccccvvreiviiecoinieeeeccccic e 47
Figure 3.12 Earth-Centred-Earth-Fixed (ECEF) Coordinate Frame........c....ccccocevrveuniieriirnnens 47
Figure 3.13 Local Coordinate Frame............ccccocceoererireenenincneccniniccecne e 48
Figure 3.14 Wander Coordinate Framecccccvveeeerreeeneerenneeensriicnietsieseseeeaneesnnene 48
Figure 3.15 Body Coordinate Frameccccccuvvireriniincriceiniecniicsrcincinncincnnie 49
Figure 3.16 The CMatrixCamera Classcc.coccovivieiirierinieineeniniennesee st 50
Figure 3.17 The CMappingImage Classcc.cocevrververeeeirerrrinneesrcieircnicneresisessssncsesesanene 52
Figure 3.18 The Point Classescccovvrruieeriiiricnieiiicieenennese st eae e 53
Figure 4.1 Use Case Diagram of the Positioning Subsystemcc.cccoovvvvvnivinnccncnnne, 59
Figure 4.2 Abstraction of GPS Surveyingccccocvvvvemriiiviiicniinciecineccecevecnens 61
Figure 4.3 Space Vehicle and Related Classes.........c.coovevevvirineneiniiiiiciniccvciccienens 63

ixX

Figure 4.4 Class Diagram of CGPSODbSEIvation.........ccoeeveerevrereennnnscncrennerenenneessvncereens 64

Figure 4.5 Class Diagram of CStationc..cecveverurevererieniieiniinieieneecstrncsessnessenssesse s 66
Figure 4.6 Sequence Diagram of Read Navigation Data.........c..ccccceoivrvinininieniniinniennnns 70
Figure 4.7 Sequence Diagram of Read Observation Data Headercccccvnevvvinnininnncns 71
Figure 4.8 Sequence Diagram of Read Epoch Observationcccocveiivieinenninenncnenn 71
Figure 4.9 Sequence Diagram of Point Positioning with Code Rangesccccovvvvverennnncnn. 73
Figure 4.10 Sequence Diagram of Form Double Difference............ccccocvvvvvvveemnrinnnnennnnnns 74
Figure 4.11 Sequence Diagram of an Overview of Resolving the Integer Ambiguities 75
Figure 4.12 Sequence Diagram of Selecting Primary Double Differencescccceoeennnnene 76
Figure 4.13 Sequence Diagram of Creating Ambiguity Set List..........ccocovverinmeeiiicnreennnn. 77
Figure 4.14 Sequence Diagram of Computing Trial Position from Primary DDs................... 79

Figure 4.15 Sequence Diagram of Computing Secondary Ambiguities from Trial Position .. 80

Figure 4.16 Sequence Diagram of Computation of Residual with Combined DDs................. 80
Figure 4.17 Sequence Diagram for Computation of Ambiguity Function Value.................... 81
Figure 4.18 Detail Class Diagram of CSpaceVehicle and CSignalMeasurement................... 82
Figure 4.19 Detail Class Diagram of CStationcccovvueeiereniriincniitcicnncsennsenennesnens 84
Figure 4.20 Detail Class Diagram of CODbSErvation...........ccoceveveiereenrineciiinieneeninnsnnennennenene 85
Figure 4.21Class Diagram of CIMUMEaSUIEMENLSccevveerirrerinerriereerennirneensenneasseseesnesnns 87
Figure 4.22 Sequence Diagram of Reading IMU Data File........ccccccoeeviininiiinieninncinnnes 88
Figure 4.23 General Class Diagram of CIMUEpochMeasurement.............cocoovevieeecnvncennnes 89
Figure 4.24 Sequence Diagram of Mechanisation of an Epoch Measurement........................ 91
Figure 4.25 Sequence Diagram of Initialise Mechanisation..............ccccovvviveininncnineseennnn, 92
Figure 4.26 Sequence Diagram of Initial Alignment............cccooevmiiininiiiininninineen, 95
Figure 4.27 Class Diagram of CIMU.......c.ccccecterrrerreiririeiieieiiresiscsneecnsnesnerssnsnessesennns 97
Figure 4.28 Class Diagram of CTrajJectory.........cccccevirimiriiiniireiicincceceeae s 98
Figure 4.29 Detailed Class Diagram of CIMUEpochMeasurementcccoveeerieeniesnennenes 99
Figure 4.30 Sequence Diagram of Kalman Filteringcccocvvevveriiieiinininnenn 102

Figure 4.31 Class Diagram of Kalman Filtering..........cccccovceecireienincvenieienereceeeeenreneennee 104

Figure 5.1 Use Case Diagram of Image Point Referencing Subsystem..........c.ccocovvceruennnne 108
Figure 5.2 Bundle 0f RAYS ..c..coeiiieiieeece ettt 109
Figure 5.3 Structure of the Normal Equation for Bundle Adjustmentcccoccoueureununnns 114
Figure 5.4 Sequence Diagram to Form Observation Equation............ccccoccounvreienincnncnnencs 115
Figure 5.5 Class Diagram of the CCollinearityEquation Class...........cc.ccccevvvirvrivcnvnnnnns 117
Figure 5.6 Sequence Diagram of Least Squares Adjustmentcccocovvevircrvennnnncinnennns 119
Figure 5.7 Memory Index of Column and Rows of Normal Matrix..........cccccoccevrrrnienninens 123
Figure 5.8 Class Diagram of the CLSQAdjustment Class..........cccocvevverrrirnnreciererinereecrnennes 125
Figure 5.9 Class Diagram of the CMappingMatriXccccocervecrieirivnrerinnrinncninccnnneees 127
Figure 6.1 Initial Window of the Bundle Adjustment Programc.ccocoocrnnriiiinnnnnns 133
Figure 6.2 Dialog Box1 for Setting the Adjustment Environment.............ccccovevivvinnnenncnns 134
Figure 6.3 Dialog Box2 for Setting the Adjustment Environment............cccccorvererencncnncnes 134
Figure 6.4 Marking for Visual Checking of Registered Pointsccccceeevverrvinnnccnnenn. 135
Figure 6.5 Image of the Control Points Grid Plate...........ccccceveevverieeniennenecieececne 136
Figure 6.6 Camera Stations Layout for the Zurich City Hall Reference Data Set 139
Figure 6.7 Images of the Zurich City Hall from Stl and St3..........ccoconiivninnvicnnninninnens 139
Figure 6.8 Wide Lane Members Added to the CDoubleDiff Class...........ccccoevevvrviennncnnine 143
Figure 6.9 Design of a Polymorphic Double Difference Classccccoverereeerncecenncinenens 144
Figure 6.10 Adjustment Result of GPS Adjustment...........cccoevevevervverveerrenneecreresrervererseennerees 145
Figure 6.11 Ambiguity Function Values for Candidates of Ambiguity Set..........cccceeeeneee. 146

xi

Chapter 1 Introduction

1. INTRODUCTION

1.1 Objective of Research

It is natural for expectations of the level of automation in mapping systems to grow as
technology evolves and new possibilities emerge. Furthermore, as with several other
disciplines, the mapping or geomatic(s) discipline (namely cartography, geodesy,
photogrammetry, remote sensing and surveying) is obliged to cooperate with others.
Examples of other disciplines with which geomatics cooperates include various sub-
disciplines of computer science such as computer vision, digital image processing and

artificial intelligence.

These expectations and obligations require rapid implementation of new technologies and
concepts into working mapping systems, if end users are to benefit as soon as possible.
However rapid implementation depends almost entirely upon such systems’ software
design. For a system to be augmented with the latest technologies, it is crucial for any system
to have a software design which is flexible in terms of extendibility, compatibility and

reusability and also to be reliable in terms of meeting the requirements of the intended users.

1.1.1 The Mapping Process

Before the introduction of computers, the production of a map was a very labour intensive
task. One of the major difficulties involved in this process was the wide variety of activities
involved. The production process was a sequence of tasks including surveying, aerial

photography and photo processing, stereo compilation, cartographic design and editing.

It is important to understand the mapping process in the traditional environment and its
inherent problems to be able to understand why automation has become an important issue in

the mapping discipline.
For example, in the traditional environment:

e Surveying ground control points involves much physical activity. Surveyors may climb

mountains daily for several months or travel in a desert for hundreds of miles.

e Good planning and experience are also very important. An experienced surveyor will
develop an intuition for the landscape and the optimum place for a control point and the

route to get there from just looking at the map.

e The surveyor needs mathematical skills. To compute the coordinates of the selected

Chapter 1 Introduction

points that have been visited, rigorous adjustment of the observations of angles and
distances is required. The surveyor must be able to identify a badly observed point, and

judge the influence of this point on the overall accuracy.

¢ The knowledge required for an aerial photographer is quite different from a surveyor and

includes photographic science, aircraft and their navigation.

¢ In contrast to the outdoor activities of surveying and aerial photography, the stereoplotter
operator works indoors using very complex instruments. These operators are highly
skilled and require a lot of training. For example the operator’s judgment influences the
overall accuracy of what shows up in the completed map. Or given a general guideline
that all buildings should be recorded, the operator has to decide for example if a wall
around a house, a small hut, or a telephone box should be collected. Usually this detailed

judgment comes with experience of many different mapping projects.

e Turning to the cartographer, who also works indoors (although sometimes verification of
the raw map produced by stereo compilation involves the cartographer going outdoors to
the mapped area), it is essential for the cartographer to possess a skill for graphic
presentation and expression. It is the responsibility of the cartographer to refine the coarse
information content in the raw map provided by the stereoplotter operator to one that is
standardized and coherent. This involves symbolisation, annotation and the more complex
task of generalisation (a process of skilled decision making regarding which information

to retain in conflicting or potentially confusing situations).

1.1.2 An Automated Mapping System

With the many problems that were inherent in traditional map production, it is obvious that
automation could benefit the process to a great degree. Some of the automation technologies

which have been applied to the production of maps are reviewed in later paragraphs.

In an ideal automated mapping system, it is possible to imagine that an unmanned robot
aeroplane equipped with necessary sensors will be controlled from a base station and the
acquired images with position data will be transmitted back to the base station in real time.
Subsequently spatial objects will be extracted automatically from the received images, and

these will populate the GIS database.

An automated mapping system is, for the purpose of this study, defined as a composition of
subsystems which apply the concepts and the techniques described below. The system is

composed of the image acquisition subsystem, positioning subsystem, image point

Chapter 1 Introduction

referencing subsystem, object extraction subsystem and the visualisation subsystem.

For this research, a practical level of automation is assumed where human interaction is still

required at many stages.

Image acquisition

The image acquisition subsystem of the automated mapping system, involves a human
operated platform, such as a fixed wing airplane or a helicopter. The imaging sensors are a
key component of the imaging subsystem. Some examples of imaging sensors are CCD
digital cameras, video cameras, linear array scanners, laser profiling scanners and multi-

spectral scanners.

Photographic processing is a task that will become unnecessary when digital images are
acquired directly. It is expected that CCD cameras will be widely used for capturing digital
images directly [Ohlhof et al.,1994][Peipe, 1994]. At present though, because of currently
available technology, it is still a practice in the mapping community to use film based

cameras and to scan the film digitally.
Positioning

In an automated system these imaging sensors (eg CCD cameras) are synchronized with the
positioning sensors to compute the attitude and the position at the instant of the image
capture. Some of the most popular positioning sensors in use today are GPS (Global
Positioning System) receivers and IMU (Inertial Measurement Units). The GPS receivers
provide the positional coordinates of the exposure stations whereas the IMU provides the
attitudes of the imﬁges at the instant of exposure. The observations from these sensors are
synchronised and integrated through the Kalman filtering process. This process will compute

the integrated result in an optimal sense.

Another role of the positioning sensor in an automated mapping system is the navigation of
the platform vehicle. The real time capability of a differential GPS will make control and
monitoring of the flight simple and this will result in the improved coordination of activities

between the pilot and the photographer.

A further manual task that is removed with the introduction of the positioning sensors is the
need for ground control point surveying. This is very beneficial in terms of time and cost
because, in a traditional mapping project, the cost of ground control point surveying can take

up to more than 50% of the whole project cost. At present though the positioning sensors of

Chapter 1 Introduction

an automated mapping system have not completely removed the need for ground control. The
problem now is more of a practicality and cost effectiveness rather than technical feasibility.
For the automated system to be able to achieve the same accuracy and reliability as a
traditional mapping system, the automated mapping system would have to use a CCD camera
of a large sensor size, e.g. close to the 23 cm x 23 cm of the traditional aerial camera, and a
high quality IMU. This is impractical in terms of the cost involved, although much progress
has been seen in recent years in the enhancement of low or mid quality sensors through
research into algorithmic development and the integration of different types of sensors

[Ackermann, 1995][Schwarz, 1998][Axelsson, 1999].

Image Point Referencing

In Geomatics the term triangulation appears in many contexts. In land surveying it is the term
used for control extension and exploits the geometric properties of two-dimensional triangles
[Wolf et al., 1997 (pp. 249-274)]. In photogrammetry the term aerial triangulation is also a
means for control extension, but exploits the projective geometry of the camera [Kraus et al.,
1993 (pp. 247-295)]. In some digital photogrammetric systems the term is loosely used to
describe relative and absolute orientation as well as aerial triangulation [GDE-Systems,

1997].

However in this work, the term ‘image point referencing’ has been selected to refer to the
task of locating the ground position of any points seen on the image by using their observed

image coordinates and the values obtained from the positional sensors.

In traditional mapping systems, the main reason for the aerial triangulation process is to
reduce the cost of ground control point surveying by replacing it with computed coordinates
from image observations. During the aerial triangulation process, the operator identifies the
surveyed ground control point in the images in which they appear and measures the image
coordinates of these points. These measurements and the surveyed coordinates are then fed
into an aerial triangulation program to compute the coordinates of the perspective points as
well as the attitudes of the observed and other connected images at their instants of exposure.
These (i.e. the image coordinates, the perspective centre coordinates and image attitudes) are

then used to compute ground coordinates of any points on an image.

In the image point referencing process of an automated mapping system, the perspective
point coordinates and the attitudes are not computed indirectly, but are observed directly
using the positional sensors. In theory, the image point referencing process would not involve

any ground control point surveying.

Chapter 1 Introduction

Aside from the fact that the perspective coordinates and the attitudes are directly observed,
the setting up of the observation equations and their adjustment is very similar to the

traditional aerial triangulation task.

Image Matching

Digital image matching is described as a process which automatically establishes the
correspondence between primitives extracted from two or more digital images depicting at

least partly the same scene [Heipke, 1996].

Image matching techniques are used to automate the process of determining the coordinates
of an image point. In the interior orientation process, they are used to determine the pixel
coordinates of the fiducial points. In the aerial triangulation process image matching is used
to measure the pixel coordinates of targeted ground control points. Image matching can also
be used to compute the relative orientation of stereo pairs. In this process interest operators
(a mask of functions, or kernel, used to process the radiometric values of pixels in a region
of an image) are used to locate points of interest, such as road corner points, in one image.
Then a matching technique is applied to locate the corresponding conjugate points from other

photographs which include the same scene.

Image matching is especially appropriate for the generation of a digital terrain model from
stereo aerial images. The manual task of creating a digital terrain model is very simplistic in
nature but tedious and error prone, making the effort of automation relatively easy but

producing much benefit as its result.

Spatial object extraction

The automation of stereo compilation is still a challenge to many researchers in both the
photogrammetric field and the computer vision field. Object recognition techniques are used
by the photogrammetrist to capture the semantic information at a certain location and
populate the GIS database, which is identical to the task of the human stereoplotter operator.
The automation effort in this field involves research into image segmentation, feature
extraction from images and grouping extracted features such as points and edges. Detection
and interpretation of simple features such as road centrelines has been successful, but other
spatial objects, buildings in particular, are still being researched [Roux et al., 1994][Gruen et
al., 1996][Boichis et al., 1998][Haala et al., 1998].

Visualisation

Schroeder et al. [1998 (pp. 1-15)] define visualisation as “... the process of exploring,

Chapter 1 Introduction

transforming, and viewing data as images (or other sensory forms) to gain understanding and

’

insight into the data .”. The concept of automation and the involvement of computer
processing are inherent in this definition of visualisation. The activity of visualisation
resembles closely the activity of a cartographer, except that a cartographer deals mainly with

geospatial data.

The end product of a visualisation process in a mapping system might be a three dimensional
perspective view of a landscape processed from the digital terrain model and a scanned aerial
image of that area. The images of the mountains could also be marked with contour lines,
streets could be labelled with street names and commercial buildings could be coloured red.
In other words, the traditional cartographic process of symbolising information on paper
maps is incorporated into the visualisation process as symbolising information on three

dimensional image views.

1.1.3 The Need for Software Design in an Automated Mapping System

Integrated Approach to Cope with Increased Complexity

The issue of software design in automated mapping is recent because it is only with the latest
developments in technology that considerations of software design have emerged. For
example, if a photogrammetrist is interested only in the study of error propagation from
traditional aerial triangulation using ground control and standard film based photographs,
which is a self-contained environment, it would probably be more efficient if the software

was written in a high level procedural language such as FORTRAN or C.

In this sort of study the design of the software need not be given much consideration. But if
other positioning systems and sensors are to be integrated with the photogrammetric tasks,
such as GPS receivers, IMU and laser scanners, for example, to carry out automatic
orientation of images, or to automatically detect and extract building features in the images

and place them in a GIS database, the problem becomes much more complex.

This becomes an integrated problem with different types of knowledge domains and
considerable coordination effort required. The complexity involved is not only of a
mathematical nature. The programming task is complex too. It needs, for example, a software

design approach to come up with an efficient solution.

Chapter 1 Introduction

Efficiency and Preservation of Information

Although different types of knowledge base are necessary for the various tasks of a mapping
system, there are some common key elements which carry on to the next task. For example a
point, such as a footpath intersection, surveyed with GPS is imaged on different images and
eventually ends up in the GIS database. The information collected during a GPS surveying
session must be preserved, and processed with the imaged points in different images and
later the point is identified as a footpath intersection at the object recognition stage. This set
of information should be preserved in the finalized version of the GIS database. This would
not only make it an efficient way of processing but also an important function enabling the
tracing of error sources in a GIS database. In an unintegrated approach, only the result of the
processed coordinates would be in the final GIS database, with all the intermediate

information being lost.

1.1.4 Software Design Research in Geomatics Community

In the Geomatics community, depending on the type of problem faced, some fields have been
quick to adopt the software design approach to solve intrinsic problems whereas others have
not. The fields of GIS and cartography started their research in applying software design at

an early stage, in contrast to photogrammetry and surveying .

In the field of GIS, the modeling of spatial objects is a very widely studied subject and this
now can lay a foundation for a software system handling the geospatial data, produced by the
surveying and photogrammetric processes. The modeling and software design aspects have
been of much interest in GIS. For example, Pilouk [Pilouk, 1997] did an extensive study on
integrated modeling for 3D GIS and attempted the integration of spatial objects sharing
common aspects in one 3D model, using the object oriented approach for its logical design
and implementation. Molenaar [Molenaar, 1998] introduced a theoretical framework
covering different aspects of spatial object modeling. Commercial GIS systems, such as

LaserScan LAMPS2 or SmallWorld also incorporated such approaches.

Likewise, the field of cartography was involved comparatively early in cooperation with a
sub-discipline of computer science, i.e artificial intelligence. As an example: cartographic
expert systems have been one of the major cartographic research fields which have required
the application of good software design [Keller, 1995]. Cartographic expert systems were
mainly applied to generalization. Generalization, an important task in cartography, is defined

by Peng [Peng, 1996] as a transformation process with the objectives of transforming a

Chapter 1 Introduction

database to a lower resolution and as a way of presenting a legible graphic view of a

database. Peng used Object Oriented design to resolve conflicts in generalization.

However in surveying and photogrammetry, despite much interest in the automation of
various tasks, software design was not as much an issue as the algorithmic aspects of a

process.

In surveying for example, the focus of research for the past decade has been the increase of
accuracy and reliability of GPS observation [Remondi, 1984][Lachapelle, 1990][Goad et al.,
1997].

In photogrammetry, the focus of research has been the automation of a simple manual task,
such as selecting an interest point from an image [Forstner et al.,1987], for example a corner
of a building or path intersection and locating the conjugate point from a stereo pair [Schenk
et al., 1991](Gulch, 1995][Ackermann et al., 1997]. All this was carried out, of course, with

the highest possible geometric accuracy as a major consideration.

The reason behind the fact that the software design aspect did not play an important role in
surveying énd photogrammetry may be because, although the problems in surveying and
photogrammetry are complex in their algorithmic aspects, the types of data and the software
implementation aspects are relatively simple. There are not many data types involved and
there is not much interaction between the data types. Most tasks involve the sequential

processing of a relatively few types of data.

Recently though, the effort to automate stereo compilation, which involves the interpretation
of images of ground objects, has brought about coordination of efforts in photogrammetry,
computer vision and artificial intelligence [McKeown, 1989][Schenk et al., 1992]. What is a
simple task for a stereoplotter operator, such as following the line of a building or a road on
an image and labelling these as a building, road, etc. amounts to a very complex task for a

computer to emulate, in terms of positional and semantic accuracy and efficiency.

1.1.5 Problem in Software Design for Automated Mapping System

A major problem in the software design of any system is the modeling of the domain
knowledge [Booch, 1994 (pp. 3-26)]. This is usually done at the requirement analysis phase
of the system’s life cycle. In many simple situations, such as automating an accounting
system for a small scale business, the activities and the domain knowledge involved in
accounting are transferred to the software engineer through interviews and investigations. If

the domain is complex and wide in variety, the task is more difficult.

Chapter 1 Introduction

The design of an automated mapping system is difficult in that it involves many tasks, as
well as highly theoretical knowledge. In such a case, either the software engineer will have to
study all the tasks involved in the map production process or a mapping expert will have to
acquire the knowledge and skills of a software engineer. In either case, it would be a difficult

task.

This study has been undertaken to produce a software design for an automated mapping
system from a Geomatics point of view. It is the objective of this research that the software
design will lay a foundation for the development of automated mapping software. It is
expected that this effort will benefit both the Geomatics researchers who wish to program
and implement their ideas and the software engineer who wishes to acquire Geomatics
domain knowledge. It is also expected that through refinement of the design and the addition
of more classes and functions to the design, the common starting point of the development of
an automated mapping system will be the software design that has emerged from this study,
thereby enabling maximum software reuse and compatibility which will in turn provide quick

implementation of new technologies for mapping purposes.

1.2 Scope of Research

This research focuses on the software design and implementation of an automated mapping
system. Object Orientation methodology is applied in the design procesé and so the
conceptual building of a set of common classes for the automated mapping system is of
major interest. The domain analysis phase of the object orientation, i.e. details of the
processes and algorithms used in the mapping field, is extensively covered from a software
development perspective and then its findings are developed into a software design. Finally

the design is implemented and tested (in part).

A comparison of the mapping process in the manual environment and what the author

defines as the automated mapping environment is made in Table 1.1.

The various subsystems of the automated mapping system mentioned in subsection 1.1.2 will

perform the mapping processes mentioned on the first row of the table.

The Positioning Subsystem will reduce human interaction significantly in the Ground
Control Surveying process. A surveyor would still be needed to install the GPS receivers and

initiate the observations.

Chapter 1 Introduction

Table 1.1 Comparison of Manual and Automated Mapping Environment

Mapping Manual environment Automated environment
Process
Ground Coordinates of points which appear in | Ground Control Surveying would not be
Control the images are surveyed using surveying | necessary in most cases. The position of
Surveying instruments. The distance, angles | image exposure stations and the attitudes
between these points are observed to | of images would be computed from the
compute the position of each point in a | integrated sensor system. However some
selected coordinate system. ground points might still be necessary to
increase reliability for quality control.
Image An area of interest which will be | Imagery is acquired directly using a
Acquisition mapped, is selected and after making the | digital sensor, such as a CCD camera.

appropriate plans, images are captured.
For aerial photography, flying height,
speed and the approximate coordinates of
waypoints are important factors during
the planning stage, and constant
monitoring of the airplane’s position
during flight is essential.

The most important factor however is the
weather, especially clouds, which will
decide whether a flight should be made at
all.

These sensors are synchronized with
positioning sensors such as the GPS
receivers and/or Inertial Measurement
Unit and/or Laser Scanner.

The position, attitude of images captured
by these sensors can be computed using
the synchronising features.

Image Point
Referencing

Using the ground control surveyed
points, ground coordinates of tie points
are computed from image observation.
The geometry of the camera constants,
and the exposure positions and the
attitudes of a stereo pair are used in the
computation.

The exterior orientation of images which
are available from the preceding process,
ground coordinates of image objects or
any points on the image are computed.
This process would be very similar to the
manual aerial triangulation process.

Stereo
Compilation

Through the aerial triangulation process
all the geometry at the instant of
exposure is accurately computed. This is
reconstructed on a stereo plotter. The
operator, usually a skilled person, is now
able to draw any feature on the image
onto a map at the given coordinate
system, producing a map. This process
involves the interpretation of the objects
on the image and recording the
interpretation at its spatial location
accurately

The features in the images are used to
emulate the interpretation process of a
human brain. The points, lines or area
features are extracted through interest
operators (or edge detection algorithms,
segmentation methods, texture
manipulation, grouping, labeling etc.)

The interpreted object would then be
recorded in an intermedijate format

before going into a target geospatial

database.

Cartographic
Editing

Whereas stereo compilation is concerned
about recording, cartographic editing is
concerned with presentation and the
communication of information to the end
user. The cartographer uses the ‘raw
map’ of the stereo compilation and
symbolises this in a standardised and
coherent way.

The data from the geospatial database
will be used to relay to and analyse
information for the end user. The
manipulation or modeling and the
visualisation of the data content of the
geospatial database is done through this
module.

This module would however be
physically separated from the Mapping
System and reside in a user’s GIS

10

Chapter 1 Introduction

The Positioning Subsystem of the automated mapping system will be used either in real-time
or post processing of the observed data. The Image Acquisition process will be performed
through the collaboration of both the Image Acquisition Subsystem and the Positioning

Subsystem.

The Image Point Referencing process will be performed by the Image Point Referencing
Subsystem which will use image matching techniques to replace the human operator’s action
of observing and recording the coordinates of a point on the image. This image matching
technique would be able to automate the image point referencing process completely, in the

case of aerial triangulation.

The Stereo Compilation process should be automated by the Spatial Extraction Subsystem.
But as mentioned earlier, automation for this process will involve a certain level of human

interaction for some time during the near future.

Cartographic Editing is a process where much change has taken place recently and changes
are further anticipated with regards to its role in the creation of GeoSpatial information. This
is because automation has brought about drastic changes in the presentation and the
dissemination of information. These changes can be understood easily if one thinks of the
change from a traditional map on paper to an image of a three dimensional perspective view
available on the Internet. In the automated mapping system, the process of presenting

geospatial information will be performed by the Visualisation Subsystem.

Automation efforts will continue to recreate the results produced by a cartographer. At the
same time there will also be other efforts to produce computer oriented maps which can be
produced at a less cost and with less time, even though lacking in the overall quality. It can
be expected that the end users will prefer to use these computer oriented maps because they
can be easily adjusted to suit the user’s specific purpose with less time and cost, even though
they are not as comprehensive and as complete as traditional maps. The versatility of the
computer oriented maps implies that it should be possible for the user to decide what
information should be included in the produced maps. This should be taken into account in
the design of the Visualisation Subsystem. The Visualisation Subsystem should provide the
basic tools (i.e classes) which can be utilised by a specific application field of GIS, such as

cadastral administration, utilities management or environmental monitoring.

This research will analyze in detail the Image Acquisition, Positioning and Image Point
Referencing process of an automated mapping system, define the requirements for those
processes and present an object oriented design for them. The design will be implemented

and tested for a camera calibration application and for GPS data processing.

11

Chapter 1 Introduction

1.3 Outline of Thesis

Following this initial introductory chapter, this thesis is divided into six further chapters.

Chapter 2 is an introduction to the concepts of the Object Oriented method and the Unified
Modeling Language (UML). Key concepts of abstraction, encapsulation, inheritance and
polymorphism will be explained with examples from photogrammetry. Object Oriented
design will then be explained followed by an introduction to the Unified Modeling

Language.

In Chapter 3, the analysis and design of the Image Acquistion Subsystem will be described.
Calibration of the imaging sensor, controlling the image capturing process and flight
planning will be explained using UML diagrams. Important classes will be identified and

Class Diagrams of these classes will be shown.

Chapter 4 addresses the analysis and design of the Positioning Subsystem. In the first section
of this chapter, various classes used in GPS data processing will be designed. The second
section deals with IMU data processing. The chapter concludes with a section on Kalman

filtering.

Chapter 5 addresses the design of the Image Point Referencing Subsystem. Classes which
will be responsible for the formation of the collinearity condition will be designed followed
by a class to solve the normal equations. Computational optimisation schemes in terms of
memory storage and speed are also introduced. A class for matrix formation and computation

is explained in the final section of this chapter.

Chapter 6 addresses the implementation of the design for camera calibration application and
GPS surveying. For the bundle adjustment implementation, a camera calibration test is
carried out using a control grid plate and also the implemented program was tested on a set
of terrestrial images taken with a digital camera. For GPS surveying the implemented

program was tested for relative positioning using phase data.

Chapter 7 concludes with a summary of the findings and some recommendations.

12

Chapter 2 An Introduction to Object Oriented Software design

2. AN INTRODUCTION TO OBJECT ORIENTED SOFTWARE
DESIGN

The Object Oriented software design approach is now a proven and accepted methodology in
the software engineering discipline. Its concepts and benefits can be found widely [Goldberg

et al., 1983][Cox, 1986][Rumbaugh et al., 1991].

But to summarise, the key concepts of Object Orientation are abstraction, inheritance,
encapsulation, and polymorphism [Stroustrup, 1995][Microsoft, 1997]. The benefit of using
these concepts is the increase of efficiency in software design and implementation achieved

by enhancing reusability, compatibility and extendibility [Meyer, 1988].

The abstraction concept in Object Orientation, for example enables the close resemblance of
the model to real physical phenomena. For example in Object Orientation, a camera is named
and modeled as a camera and all the characteristics of a camera such as the principal point,
the film size and shutter speed are included in the camera class as its components. “Class” is
a key Object Oriented concept, see section 2.1. In contrast to the Object Oriented method, in
a procedural method, the camera is modeled as a set of functions or subroutines from an
early stage of the development, such as CheckCameraStatus(), GetShutterSpeed() or
GetPrincipalDistance(). The closer resemblance to reality of an Object Oriented model,
makes the transition from reality to computer programs an easier task compared to the
procedural method. When one uses a procedural method to deal with complex software
development, one can easily get confused and make errors using various data types and

arguments.

In a traditional structured programming design, one would begin by trying to identify what
the system is going to do, i.e. what are the tasks and the processes that the program is going
to carry out. Flowcharts will be laid out then refined and broken down into many hierarchies
to identify each detailed step which will then be implemented as functions. However, in an
Object Oriented design the first step is the identification of the candidate classes. The objects
and the active entities in the problem domain are first identified. The attributes and the
behaviour of the identified class are assigned and then their relationships and interactions

with other classes are defined.

The Object Oriented method leaves the details of each function or subroutine to the final
stage. In the initial stage its chief aim is to identify the main objects in the system, the

interaction between these objects and the attributes of the objects. It proceeds gradually from

13

Chapter 2 An Introduction to Object Oriented Software design

a high level of abstraction to the lower level of abstraction. This enables the development of

complex software.

In this chapter, the key concepts of the Object Oriented method will be introduced, with
examples as to how they are applied in the photogrammetric process. Then a software design

tool, the Unified Modeling Language (UML) will be introduced.

Examples will be given in C++ codes. For readers unfamiliar with the C++ programming
language, review texts are recommended such as “The C++ Programming Language”
[Stroustrup, 1995] for those who have some experience with C language, and “First Course
in C++ : A Gentle Introduction” [Harman et al., 1997] for those who are not familiar with C

or C++.

2.1 Key Concepts in the Object Oriented Method

Meyer [Meyer, 1988] defines Object Oriented design to be the construction of software
systems as structured collections of abstract data type implementations. The abstract data
type implefnentations refers to classes. The word collection emphasizes class as being an
independent unit. This means a class should not be specific to a system but should have its
own behaviour and characteristics, leading to reusability of the class in other systems. The

word structured emphasizes the relationships that must exist between different classes.
The instantiation of a class is called an object.

A simple example of a class is CCamera (in C++ programming notation, classes are
frequently named with a ‘C’ in the beginning of the class name to show that it is a class). An
object of this class could be called ‘MyCamera’ or even ‘RC30’ or ‘UMK10’, to refer to the

actual camera that was used in a photogrammetric project.

The design activity begins with identifying the classes involved, their behaviour and

characteristics and the relationship or the interaction between them.

In the actual execution of the program, objects of each class will interact with each other to

accomplish the purpose of the system.

Classes and objects employed in software development lead to the application of some
important concepts within the Object Oriented method, namely: abstraction, inheritance,

polymorphism and encapsulation.

14

Chapter 2 An Introduction to Object Oriented Software design

2.1.1 Abstraction

Abstraction is one of the most important facilities of the Object Oriented method. It is a

facility which enables us to model the way our mind envisages and deals with the reality.

Booch [Booch, 1994 (pp. 27-80)] defines abstraction as the process which denotes the
essential characteristics of an object which distinguish it from all other kinds of objects and

thus provides crisply defined conceptual boundaries, relative to the perspective of the viewer.
The process of abstraction results in the identification of classes in the problem domain.

For example, an area in a city may have one way streets, two way streets, a hospital, a
university, apartment dwellings, traffic lights, a river, a hill and various other phenomena.

According to the perspective of the viewer, this could be abstracted in various ways.

A gas supplying company would not be interested in the river and the hill but would need the
information regarding the buildings which use their gas service. They would also need
information about the roads under which their gas pipes are buried. It would then be sensible
to have in their software design a CBuilding class and a CRoadNetwork class. It is easy in
this case to realise that hospitals, universities and apartments share common essential
characteristics which differentiate them from a road or a hill. The identification of the
CBuilding class can be regarded as an abstraction of the various structures which use their
gas services. Hospitals, universities and apartments would be the instances of the CBuilding

class.

In photogrammetry, coordinates of an image point, perspective point and the control point
are used to form the collinearity equations in the bundle adjustment. At the initial stage of
system development it is difficult to understand how ground control points, images of the
ground control points, and the perspective points will be utilised for the adjustment, and then
how the image points will be associated with the image rotation. But even at this stage it can
generally be concluded that these different types of points will somehow be applied in the
adjustment in association with the image rotation. It is certain that points are important in the
adjustment process and there are some characteristics of a point that would differentiate it

from an image or a camera.

For example, all points share the common characteristics of having a set of coordinate values
in a coordinate system and are unique in space. It would be logical then, in the Object
Orientation sense, that an abstraction of the point class is included in the design, for example

as CGenericPoint. The details of how image points are different from control points need not

15

Chapter 2 An Introduction to Object Oriented Software design

be investigated at the initial stage. Those can be determined later. For the initial stage, one

can just start with the point class and define its properties and behaviours.

Abstraction makes complexities manageable. It is a process of investigating various objects
in the problem domain and classifying the objects by common features and roles, and then
defining such a collection of objects as belonging to a class. Making complex things into

simple blocks is a major advantage in software design.

2.1.2 Encapsulation
Encapsulation is the feature which makes reusability and compatibility of programs easy.

Encapsulation, which can also be called data-hiding, means that similar functions and the
data which are used by these functions are grouped together into one place, a class, and are
accessed in a controlled way. This is necessary to limit the opportunity for modules to affect
one another. The example described below, relating to an image class called

CMappingImage, demonstrates the encapsulation feature in C++.

In C++, encapsulation of a class is realized through the use of the keywords ‘private:’ and
‘public:’. The members of a class which are placed under the private keyword are prohibited
for use by an external source. These members can only be used within the class. Usually

those functions which will be used by other classes are placed in the public part.

An image class is a typical class used in photogrammetry. Some of the important attributes of
an image are rotation angles, perspective point and image point list. An image class called
CMappinglmage can be defined as follows in C++. (The symbol ‘//’ signifies that what

follows after this symbol is a comment to explain the program code)

class CMappinglmage
{

CMappingImage();
~CMappingImage();

private:

double Omega, Kappa, Phi; //rotation angles
CPerspectivePoint thePerspectivePoint;
CMatrix RotationMatrix;

CPointList theImagePoints;

void SetRotationMatrix();

public:

void SetRotationAngles(double omega, double phi, double kappa);
CMatrix& GetRotationMatrix();

void AddImagePoint(CImagePoint* thelmagePoint);

void DeleteImagePoint(CImagePoint* theImagePoint);

b

16

Chapter 2 An Introduction to Object Oriented Software design

From the above example, the rotation angles and the perspective point, the rotation matrix,
and the image points are declared in the private part. This means that they can only be
accessed by the functions of the same class, i.e. member functions. However the functions in
the public part such as SetRotationAngles, GetRotationMatrix, AddImagePoint and
DeleteImagePoints can be used by other functions. It is through these public member

functions that classes interact with each other.

The mechanism to make some data members of a class inaccessible to other classes is a way

of implementing encapsulation. This will make a particular class modular and independent.

A subject related to encapsulation is that of coupling and cohesion. Coupling is the measure
of the strength of association from one module to another. In Object Orientation this can be
translated to the interaction between different classes. In Object Orientation it is desirable
that classes have weak coupling. This would result in stronger modularity and reduced
complexity. In C++ weak coupling would mean that a member function of a class interacts
with very few other classes. Cohesion is the degree of connectivity among the elements of a

single class. High cohesion implies good encapsulation.

For example, adjustment in photogrammetry usually involves various matrices which are
formed by observations [Mikhail, 1976 (pp. 3-8)]. The observations can be coordinates of
image points, pseudo-ranges of a GPS receiver or acceleration rate of an IMU. It would be
advantageous if an adjustment class in photogrammetry, example CAdjustment, has only
objects of CMatrix class as its data members, instead of objects of CPoints or

CGPSObservations. The next CAdjustment class defined in C++ code will demonstrate this.

class CAdjustment
{

CAdjustment();
~CAdjustment();

private:

CImagePoints imagePoints;

CPerspectivePoints perspectivePoints;

CControlPoints controlPoints;

CGPSObservations gpsObs;

CMatrix ObservationMatrix, WeightMatrix, ResidualMatrix, NormalMatrix;

public:

void SetGPSObservationMatrix();
void SetImagetObservationMatrix();
void FormNormalMatrix();

void Solve();

}

17

Chapter 2 An Introduction to Object Oriented Software design

If the adjustment class has objects of point class, or objects of GPS observation class as its
data members forming the relevant ObservationMatrix, as in the above code example, this
would mean there is interaction with increased numbers of other classes. This implies high
coupling. This also means that the adjustment class must exist with those classes. Under such
a situation, the member functions of the adjustment class would also need to interact with the

data members of other classes. This implies low cohesion. Encapsulation is weakened.

But if the adjustment class has only matrix related members then the result is the desired case
of weaker coupling and higher cohesion; weaker coupling because it interacts with only the
CMatrix class and higher cohesion because the class works with fewer classes involved, only
the CMatrix objects. The next example shows the case where only matrix objects are

involved.

class CAdjustment

{
CAdjustment();

~CAdjustment();

private:
CMatrix ObservationMatrix, WeightMatrix, ResidualMatrix, NormalMatrix;

public:

void SetObservationMatrix(CMatrix theObservationMatrix);
void FormNormalMatrix();

void Solve();

}

The second example shows a stronger encapsulation than the first example, because it is
more self sufficient or independent than the first example. This implies that the CAdjustment
code can be reused in many situations without any change, in contrast to the first example

where it is applicable only for adjustment of image observations and GPS observations.

To increase the strength of encapsulation, it is necessary to identify, during the design stage,
the possible environments in which the class will be used. Encapsulation is the feature which

makes the reusability and compatibility of programs easy.

2.1.3 Inheritance

Inheritance is easily demonstrated by using the point class again. A point can be described as
an object having a set of coordinates and related accuracy in a coordinate system. It usually
has a unique number or a name to identify itself. These properties are common to all points

and can be defined as the base class mentioned above, CGenericPoint. A CImagePoint,

18

Chapter 2 An Introduction to Object Oriented Software design

CControlPoint or CPerspectivePoint also share these properties but have further different
properties characteristic only of themselves. These classes can be derived from the base
class. The derived classes inherit the properties of the base class. Looking for a base class is
also a part of the abstraction process and inheritance is a result of such an abstraction
process. In C++, inheritance is declared by using the colon in the class definition. For
example, ‘CImagePoint : CGenericPoint’ means that the class CImagePoint is derived from

the CGenericPoint class.

In the example below, CGenericPoint is the base class representing all types of points. It has
PointName and PointCoordinate as its data members in the private domain and

AssignPointName member function in the public domain.

class CGenericPoint

{

public:

CGenericPoint();

~CGenericPoint();

void AssignPointName(CString aName);

private:
CString PointName;
CCoordinate PointCoordinate; /embedded object, aggregation of an object in another class

}

Also note that the PointCoordinate data member is an object of the CCoordinate class. The

CCoordinate class for example could have been defined as follows.

class CCoordinate

{

public:

CCoordinate();

~CCoordinate();

void TransformCartesianToGeodetic();
void TransformGeodeticToCartesian();

private:

double X, Y, Z;

double dx, dy, dz;

double phi, lambda, height;
double dphi, dlambda, dheight;
}

The CImagePoint class, defined below, is derived from the CGenericPoint (see above). This
means that the PointName and PointCoordinate data members as well as the

AssignPointName(CString aName) member function of the base class are inherited in the

19

Chapter 2 An Introduction to Object Oriented Software design

CImagePoint, in addition to its own data member AdjustedResidual and

GetAdjustedResidual() member functions.

class CImagePoint : CGenericPoint //ClimagePoint is derived from the CGenericPoint
{

public:

CImagePoint();

~ClImagePoint();

double GetAdjustedResidual();

private:

double AdjustedResidual;

}

The benefit of inheritance from the above example might seem insignificant. But imagine an
image class, called for example CVisionlmage, used in the Computer Vision research field,
and within this class a hundred or more functions for image display, image processing, image
analysis, etc., are already implemented. These functions could be available for use by a

photogrammetrist for object recognition research by just declaring as follows:

include “VisionImage.h”

class myImage : CVisionImage

{

public:

myImage();
~myImage();
MyOwnFunction();

}
MyOwnFunction() in myImage class is now able to use all the functions implemented in the

CVisionImage class because myImage class has inherited them. Inheritance is the key feature

which makes software easily extendible.

Another benefit of inheritance is that it makes the program legible. If all the same functions
and data members of a base class have to be included in every derived class, the program

would be very long and complicated and it would be difficult to understand the code.

2.1.4 Polymorphism

In the Object Oriented method, letting the system take appropriate actions depending on the

type of data is called polymorphism. This leads to efficient maintenance of the software.

As a mathematical example, a ray of light traveling from the ground control point passing

through the perspective point and then to the image point is modeled by the collinearity

20

Chapter 2 An Introduction to Object Oriented Software design

equations. The coordinates of each point through which the ray passes are used to form the
collinearity equations. The adjustment to obtain camera calibration data or a tie point’s

coordinates involves the formation of the observation matrix using the collinearity equations.

The application of polymorphism in the formation of the observation matrix can be
demonstrated. This uses the knowledge that the position of coordinate values in the
observation matrix will be decided by the type of point and the fact that different types of

points are derived from a base class called CGenericPoint.

First, the different points from all types through which the ray of light passes will be added
to a list of points. Then the virtual function (the function declared in the base class which
will also be declared at the derived classes) for forming the observation row will be declared
at the base class, CGenericPoint, and finally the same function will be defined in the derived

point classes, but each implemented to act according to its own type.

In C++ programming, a ray of light can be modeled as a list composed of pointers to the
objects of the point class, CGenericPoint. This feature can be illustrated by a template-based

collection class, as follows.

typedef CTypedPtrList <CPtrList,CGenericPoint*> CRay;

The above statement declares CRay as a pointer list and the type of pointers are pointers to
objects of the CGenericPoint class. It is derived from a parameterised class (i.e. a class with

parameters) CTypedPtrlList which takes CPtrList and CGenericPoint as its arguments.
Now points through which the ray of light passes can be added to the CRay.

In the example below, aRay object of the CRay class is instantiated in the first line. An
object of the CImagePoint is also created as anImagePoint. The aRay is defined in the stack
and the anlmagePoint is defined as a pointer pointing to the address at a dynamically
allocated memory in the heap. Note that although CRay is defined as a list of CGenericPoint,
it will accept its derived objects, anImagePoint of the ClmagePoint class and other objects of
CPerspectivePoint and CControlPoint. The aRay object now has a anlmagePoint,
aPerspectivePoint and aControlPoint as its members, indicating these are the points through
which the ray of light passes.

CRay aRay;

ClImagePoint *anImagePoint = new CImagePoint;

aRay.AddTail(anImagePoint);
CPerspectivePoint *aPerspectivePoint = new CPerspectivePoint;

21

Chapter 2 An Introduction to Object Oriented Software design

aRay.AddTail(aPerspectivePoint);
CControlPoint *aControlPoint = new CControlPoint;
aRay.AddTail(aControlPoint);

The next task is to declare a virtual function FormObservationRow() in the base class
CGenericPoint. Then for each derived class of CImagePoint, CControlPoint and
CPerspectivePoint, define an overloaded function (i.e. the function that is declared in the
derived class that has the same name of the virtual class of the base class)
FormObservationRow() which assigns the coordinate values to the appropriate vectors and
matrices at the correct places according to the type of point. An example of the code
implementation in C++ could be:

class CGenericPoint

{

public:

CGenericPoint();

~CGenericPoint();

void AssignPointName(CString aName);

virtual void FormObservationRow(CMatrix &ObservationMatrix); /the virtual function

private:
CString PointName;
Coordinate PointCoordinate;

}

The virtual keyword declares that FormObservationRow() function will be defined

differently by a derived class, such as a CImagePoint as shown below.

class CImagePoint : CGenericPoint

{

public:

CImagePoint();

~ClImagePoint();

double GetAdjustedResidual();

void FormObservationRow(CMatrix &ObservationMatrix); /image point overloaded function

private:
double AdjustedResidual;
}

The FormObservationRow function of the image point will now react as defined by the
CImagePoint class and not as was defined in the CGenericPoint. It will position its
coordinate values at the place in the observation matrix which would be correct for an image
point. The same applies to other derived classes such as the CControlPoint or the

CPerspectivePoint.

22

Chapter 2 An Introduction to Object Oriented Software design

Finally, the points from the CRay list are processed one by one to form a complete row of the

observation equation.

CGenericPoint *aPoint;
CRay *aRay;
POSITION pos = aRay->GetHeadPosition(); /put the list iterator at the beginning of the list
while(pos){
aPoint = aRay->GetNext(pos); /get the pointer in the aRay list
aPoint->FormObservationRow(CMatrix &ObservationMatrix); //the overloaded function
}

The program just executes aPoint->FormObservationRow(CMatrix &ObservationMatrix)
without any consideration as to whether the point is an image point or a control point. The
system will decide which version of the FormObservationRow function to execute: the image
point version; perspective version; or, the control point version. In a procedural programming
language such as the C language, this would have to be implemented by using a set of ‘if ~
then’ statements or ‘switch ~ case’ statements. The problem with this is not the difficulty in
writing a few more lines, it is that the programmer has to be aware of this fact. If he or she
makes any changes in any versions of the FormObservationRow function, all occurrences of
the function in the program should be found and repaired. In contrast, when using
polymorphism as in the above example, only the overloaded function needs to be changed.
The procedural method is very error prone and changes would be difficult to locate if there
are many such cases and especially if the programmer has been replaced by a new member in

a team.

In the above example, the function FormObservationRow took on different forms depending
on the type of point, whether it was an image point, a perspective point or a control point.
The function was polymorphic. Letting the system take appropriate actions depending on the

type of data is called polymorphism and leads to efficient maintenance of the software.

2.2 Object Oriented Design

The facilities provided by an Object Oriented system mentioned as above, namely
abstraction, encapsulation, inheritance and polymorphism, improve error prone programming
situations. The programs using such facilities would also be much more easily understood,
which means that maintenance is more efficient. The Object Oriented design aims to apply
and incorporate abstraction, inheritance, encapsulation and polymorphism into a program

while meeting the requirement of the system.

23

Chapter 2 An Introduction to Object Oriented Software design

2.2.1 Design Goals

The goal of the Object Oriented design is two-fold: to fulfil the user requirement accurately
as represented in the external view; and to produce a software which is easy to implement
and maintain as represented in the internal view [Meyer, 1988]. These views are considered

below.

First is the need to satisfy the needs of the end user. This is the external view. The produced
design must fulfil the requirement of the user accurately. The end product, a computerised
system, must serve the end user’s need quickly and efficiently. For example a stereoplotter
operator using an automated mapping system to collect data on buildings would not be
interested in abstraction or inheritance. But he or she would be interested in how many times
the mouse button would need to be clicked to complete his or her task, or whether the system
gives out a quantified report on the reliability of the recognition process. Good software must

be designed to meet such user’s requirements.

Second, the software engineer is considered. This is the internal view. The design must be
made in such a way that besides meeting the user’s requirements, it must be easy to
implement and maintain. For example, changes to the design, due to changes in the
requirements or other circumstances, should be relatively simple. Modules of software
should be reusable in similar situations with minimum effort. New members to the
development team should not take too long to understand the existing design. These, as

others, are some of the goals of the design from a software engineering aspect.

2.2.2 Unified Modeling Language

In the computer science discipline, various Object Oriented programming languages have
been developed over the years as well as different approaches to analysis and design

methodology, using Object Oriented concepts.

UML is, as the name suggests, a modeling language for the Object Oriented methodology. It
began as a response to the Object Management Group’s (OMG) request for a standard in the
Object Oriented methodology. OMG [OMG, 1999] states that UML “is defined as a language
for specifying, visualising, constructing and documenting the artifacts of software systems,
as well as for business modeling and other non-software systems”. The OMG is an
international organization supported by more than 800 various members of the computer
science discipline. It was founded in 1989 to promote the theory and practice of Object

Oriented technology. Later the OMG accepted the UML as the standard [Douglass, 1999]. It

24

Chapter 2 An Introduction to Object Oriented Software design

is stated by some experts that UML will become in time a core skill for software engineers

[Pooley et al., 1999].

The UML has been adopted as the design tool for this study, because it has been accepted as
the standard by the main standardisation body for Object Oriented matters, the OMG.

Features of UML include the Object Model; Use Cases and Scenarios; and, Behavioural
Modeling with Statecharts. These features are used in the analysis and design stages of the
system to capture domain characteristics accurately and represent them in a standard way.
This will serve to link and communicate information to later stages of the implementation,
testing and maintenance of the developed system. UML uses various types of diagrams to

document and relay views of a model, including:
e (lass Diagram
e Use Case Diagram
e Behaviour Diagram
e Statechart Diagram
e Activity Diagram
¢ Interaction Diagram
* Sequence Diagram
e (Collaboration Diagram
¢ Implementation Diagrams
¢ Component Diagram
¢ Deployment Diagram

The following paragraphs will give examples of the basic diagrams in the UML, namely the
Class Diagram and the Use Case Diagram.

The Class Diagram is the basic diagram that shows the classes in the system domain. This is
shown in Figure 2.1. A Class Diagram represents the class as a rectangular box. The box has
three compartments. The top compartment labels the name of the class and the second shows
the data members. The third shows the member functions or the operations of the class.
Templates or parameterised classes, have a dotted rectangle on the right corner to show the
arguments the template is taking. Relationships between classes are shown as lines joining

the two classes. An arrowline with the closed arrowhead represents an inheritance

25

Chapter 2 An Introduction to Object Oriented Software design

relationship with the arrowhead at the base class. A line with a diamondhead represents
aggregation, with the head at the containing class. A dotted line with the open arrowhead

shows a dependency relationship.

P I
CTypedPtrList
yp ‘r
A
<CPrtList, *C ﬁenericP oint>

CRay
i CCoordinate
- &PointName : CString

CGenericPoint & X : double

&PointName : CString <>————|@pY : double

&Z : double

A ®TransformCartesianToG eodetic()
- l
ClmagePoint CPerspectiveP oint CControlPoint
& AdjustedResidual
. $FormObsevationRow() ®FormObse vationRow()

$GetAdjustedResidual()
$FormObservationRow()

Figure 2.1 Class Diagram Example

There are many kinds of dependency, but the one shown on Figure 2.1 is a bind dependency.
It explains that the CRay class is a specialization of the template class, i.e. derived from
CPtrList class, but because the template actually binds the arguments rather than derives the

child class, it uses this special symbol to show such a relationship.

As can be seen from the diagram above, this is a very compact and efficient way of

documenting what was explained verbally in the first half of this chapter!

Another key feature of the UML is the application of a Use Case Diagram to define what
the system would do from a user’s point of view. The Use Case Diagrams show how an
actor, i.e. object outside the context of the system, would use the system without showing the
design structure of the functions of the system itself. Use Case Diagrams are important to

communicate the key requirements of the system as well as defining the boundaries of the

26

Chapter 2 An Introduction to Object Oriented Software design

system to be developed. They are also useful in guiding the direction of the development and
to check if development is on track for meeting the user’s requirements. The Use Case

Diagram of the automated mapping system at its top level is shown in Figure 2.2.

Actors are the figures who use the system and each elliptical object is a Use Case, i.e. a case
of how the system would be used. A line depicts a relationship of ‘uses’ or ‘extends’ or even
‘is-a’ as in the inheritance relationship. In the figure, there are five actors, i.e. the pilot, the
imaging sensor specialist, the positioning sensor specialist, the geospatial database specialist
and the GIS visualisation specialist. For example, the pilot uses the automated mapping

system to monitor the flight. So Monitor Flight is a Use Case of the system.

By way of further explanation, in the case of the positioning sensor specialist, he or she will
use the automated mapping system to tag the image with position and rotation information.
The Tag Image Use Case will in turn use other Use Case modules which will process GPS
data and IMU data, namely the Process GPS Data Use Case and the Process INS Data Use

Case.

A Sequence Diagram models the dynamic aspects of the system and emphasizes the time
ordering of messages that are exchanged between objects. In a Sequence Diagram (for
example Figure 2.3), objects are represented by rectangles and these are arranged as a row on
top of the page. Messages between two objects are represented by a horizontal arrow linking

the two objects. The vertical positions of these arrows shows the time ordering of messages.

The Sequence Diagram of Figure 2.3 shows the sequence of events between various objects
when data files are read during the initial phase of camera calibration. These data files are
the sensor data file, image data file and ground control data file. When the file names are
keyed in by the user, the data from these files will populate the attributes of objects with

corresponding values. These objects are then grouped to form the bundles of rays.

Further details of UML are described in OMG’s publication “OMG Unified Modeling
Language Specification” [OMG, 1999], but they have not been found essential to this work.
The application of UML in analysis and design does not necessarily imply that a better
design will be produced compared to when it is not applied. It is a method of documenting

what has been perceived by the designer as a result of observation and investigation.

27

Chapter 2 An Introduction to Object Oriented Software design

X -
Pilot : Monitor Flight
O /Plan Flight
X -
Imagi;;n}\ Control Imaging Sensor
Specialist A O
\ Calibrate Imaging Sensor

% Tag mage Process GPS Data

Positioning
Sensor Specialist

Process IMU Data
Pe rform Tnangulahon

% C O

_—7 Collect Spatial Object

GeoSpatial /
DB Specialist

Structure Data for GIS

O/

Spatial Modeling

Qﬂ

A

GIS Visualisation
Specialist

Visualise Spatial Information

Figure 2.2 Use Case Diagram Example

Chapter 2 An Introduction to Object Oriented Software design

The result of UML could be used as a useful means of discussing and confirming what has
been perceived. This will of course improve the understanding of the problem and probably
lead to a better design. But in all cases, the initial phase of being able to perceive the problem
clearly will be a prerequisite to a good design. It is important to note that software design, or
any design, is not a trivial activity and using a methodology or a tool will help the situation

but it will not solve the problem completely.

Read Data Files

% rol a aint nt st

E

E

inputG roundControIFileName

e

I |
l I
I |
| |
| I I
l creaﬁeFullComroIPoint]
| readData | |

|
inputSensorFiIeNTl me : :
|
1
|
|
I

I createﬁensor

I
| L readbata

L)

I I |
InptrtlmageFileque I

freatelmagel

Yoo

| readData l

|

createlmri\gePoint
I

l
|
|
|
I
|
|
|
I
I
I
I
|
!
!
|
|
I

readbata

|
I
|
I
|
|
I
I
I
I
|
I
|
|
I
|
>|
|
I

createRay
I I

IsLink¢dToContro|
b

IsNotLi edToContr!oI
CreateTiePoint

=

addPoiJﬁtsToRay

|
I
I
|
|
|
I
|
|
I
I
|
I
I
|
|
|
I
|
|
I
I
I
|
|
|
|

N N

adeayToRagl.ist

I |
I I
I I
| I
| |
| |
| I
I I
| I
I |
I I
| I
I |
I |
I | I

| I I I |
| | | | |

I
|
I
| I
| |
I |
I |
| |
I I
I I
| |
I !
| I
I !
| |

I
|
|
|
|

Figure 2.3 Sequence Diagram of Read Data File

29

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

3. ANALYSIS AND DESIGN OF THE IMAGE ACQUISITION
SUBSYSTEM

In this chapter the analysis and the design of the image acquisition subsystem will be

described.

In the analysis stage, the main roles and the processes of the image acquisition subsystem

will be explained. The main roles of the image acquisition subsystem are classified as:
e calibration of the imaging sensor;
¢ control of the image capturing process; and,
¢ flight planning.

A Use Case Diagram of the image acquisition subsystem is produced as the result of the
analysis. After investigation of each role, candidate classes are identified. The identified
classes are then further explained with regards to their purpose and some background
information will be provided in the photogrammetric sense. Sequence Diagrams will show

the actions that are followed in the processes of selected Use Cases.

In the design stage, the Use Case Diagrams and the Sequence Diagrams are then used to
produce the Class Diagrams which show classes with all the relevant data members and
member functions as well as their relationships with other classes. The design of an
automated mapping system involves disciplines including photogrammetry and geodesy, and
thus some choices had to be made regarding terminology. In photogrammetry and many other
disciplines, ‘coordinate system’ usually refers to the reference system to which the values of
the coordinates of points are referenced, such as ‘photo coordinate system’ and ‘pixel
coordinate system’. But in geodesy it is conventional to use ‘coordinate frame’ for such
purpose. ‘Coordinate system’ in geodesy refers to the coordinate frame as well as the
physical theories and their approximations that are used to define the coordinate axes [Jekeli,
1998]. For consistency purposes, the term ‘coordinate frame’ will be used in this thesis to
refer to what would be called ‘coordinate system’ in photogrammetry. Therefore, terms such
as ‘photo coordinate frame’, ‘pixel coordinate frame’ and ‘local coordinate frame’ will be

used.

The description of the roles and the processes of the image acquisition subsystem given
above can be summarised by the Use Case Diagram as shown below (Figure 3.1). This
diagram shows how different actors (i.e. human operators, imaging sensors and GPS

receivers) would interact with the image acquisition subsystem. It also shows that the system

30

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

would be used to calibrate image sensors, control imaging sensor and to plan and monitor the

flight.

Read Control
Points Data

O Read Image Data

Read Sensor Data

©/7 Read Data File V\
Calibrate Image O

Sensor \

Bundle Adjustment Least Squares
Adjustment

Imaging Sensor
Specialist

Control Imaging

Sensor
Plan Flight

Transmits Image Data
Log Image Data Imaging
Sensor

Trapsmits Shutter Pulse
Monitor Flight
Record Shutter
Pulse
Transmits 1PPS
Transmit Range Data
Compute Present Log GPS Data GPS
Location Receiver

Figure 3.1 Use Case Diagram of the Image Acquisition Subsystem

3.1 Calibration of the Imaging Sensor

In the image point referencing process, which is essential in the mapping process, some

quantified values regarding the camera and the image at the instant of exposure are

31

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

necessary. These values regarding the camera are called interior orientation parameters and

the values regarding the image are called exterior orientation parameters.

The quantities to be determined in interior orientation (interior orientation parameters) are
the principal distance (also known as camera constant), the principal point offset from its
initial approximate position (usually symbolised as xp and yp) and additional parameters
(usually representing lens distortion coefficients and film distortion coefficients, i.e. uniform
linear scale changes and non-orthogonality of the x-y coordinate axes). The determination of
these parameters is called camera calibration. These camera calibration data are then used to
transform all observed coordinates of image points in an arbitrary coordinate frame (usually
pixel coordinate frame) to the photo coordinate frame (definition of the different types of
points and coordinate frames will be covered in the later part of this chapter). The
coordinates in the photo coordinate frame are then transformed to the ground coordinate

frame using the exterior orientation parameters.

Exterior orientation parameters are the three angles of rotation of the image and the ground
coordinates of the perspective point in a Cartesian coordinate frame. Exterior orientation will

be further explained in Chapter 5, where image point referencing will be discussed in detail.

Although there are several established methods of camera calibration, treatment will be

confined to the self-calibration method in this research.

The unknown parameters of camera calibration are determined through the least squares
adjustment process. Accurate control point coordinates are first acquired through surveying
or some other methods which will produce observations of high accuracy. Images of the
control points are then acquired and the corresponding image points are observed to get their
image coordinates. The image coordinates, control point coordinates and the unknown
parameters are used in setting up a set of equations, the collinearity equations in this case.
The unknown parameters are then solved with the constraint that the squares of the residual
(the difference between the observed and the computed value) are minimised. Usually in
traditional film based cameras, coordinates of the fiducial marks on the films are also
provided as part of the calibration data. When scanned digital images of the films are to be
used, the fiducial marks also have to be observed to get their pixel coordinates. These will
establish a set of transformation parameters from the pixel coordinate frame to the fiducial
coordinate frame. All pixel coordinates will first be transformed to the fiducial coordinate

frame before being transformed to the photo coordinate frame.

For most digital camera systems however usually no fiducial marks are present and the

calibration data are not provided. In this case the principal point coordinates are the distances

32

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

from the centre of the CCD sensor chip. This distance and other parameters are determined
through the camera calibration process. Pixel coordinates are then transformed to the photo

coordinate frame.

Lens distortion is characterised by its radial components and its tangential components. The
radial component of the distortion of the lens increases with the increase in the radial

distance from the principal point and it is assumed to be symmetric about the principal point.

The radial components of lens distortion are characterised by the following equations

[Moniwa, 1972]:

dr, = (x—xp)(klr2 +kyrt +k3r6) (3-1)

dr, = (y— yp)(klr2 +k,rt + k3r6) (3-2)

where, x,,y, are the coordinates of the principal point, dr,,dr, are the x and y

components of the symmetric radial distortion at the radial distance r and k,,k,,k; are the

unknown coefficients of the polynomial.

The tangential components of lens distortion are characterised by the following equations

[Moniwa, 1972]:

dp,‘zpl{,-2 +2(x—xp)2}+2p2(x—xp)(y—yp) (3-3)

dpy=p2{r2+2(x—xp)2}+2pl(x—xp)(y—yp) (34)

where, dp, dp, are the x and y components of the tangential lens distortion, p;,p, are the
unknown coefficients, X,,y, are the coordinates of the principal point, x,y are the image

coordinates of a point and r is the radial distance from the principal point.

The film distortion is usually modeled by the affinity equation as follows [Moniwa, 1972]:
dg, = Aly-y,) (35)

dgq, = B(y - y,,) (3-6)

where, A,B are the parameters defining scale change and non-orthogonality of coordinate

axes. During the camera calibration process the unknown lens distortion parameters, namely

33

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

k..k,.k;,p,,p,, A,B are determined as well as the coordinates of the principal point

x,,y, and the principal distance.

The actual determination of these values involves a process known as bundle adjustment in
photogrammetry. During bundle adjustment, all parameters, image coordinate observations
and ground control points coordinates are used to model a bundle of rays. The mathematical
condition is modelled by the collinearity equations. Bundle adjustment will be explained in

detail in Chapter 5, which describes the image point referencing subsystem.

The camera calibration process begins by reading data files. This sequence of actions are as
depicted in the Sequence Diagram of Figure 2.3 of Chapter 2. The bundles of rays which
were formed through reading the data files and going through the sequence of events of
Figure 2.3 are then used in the least squares adjustment of the image point observations to

determine the camera calibration data.

The observation matrix, the residual matrix and the weight matrix are formed. These
matrices will then be used to form the normal matrix and the constant vector which will be
solved for the unknown parameters. The interaction between objects in this process is shown

in the Sequence Diagram of Figure 3.2

theAdjust | |theEquati | |thelmage| |thelmage| |theCamer| | theRay | |rotationM
%mﬂm on List a atrix

oA | | |

| |
inputAdjustmentPar dmeters f | | | |
I I

getimagelList

I getimage I
—>

| getCamera >I |

| forfnRotationMatTix

formObser\rationMatrix

formResiquaIVector
T

Y S N

|
|
I
|
|
|

formwW eiphtMatrix

loIrmNormalMatlIix

fﬁrmRHSVectqr
. solve
EnalyseResuﬂ
I |
| I

- Y e =

|
I
I |
I | |
I | | |
| | - |
| | | |
| ! | I I
I | I I I
I | | | |
I | | | |
| I | ! I
| | I I |
| | ! I I

Figure 3.2 Sequence Diagram of Bundle Adjustment

34

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

3.2 Control of Image Capturing

The image capturing process can be considered to be the control of the imaging sensor and

the recording of the time of shutter release.
Control of the imaging sensor involves setting up of camera and capturing of images.

The recording of the time is carried out by capturing the pulse from the shutter at the time of
its release and then relating this to a given time frame. Usually external events such as the
shutter pulse are captured in the computer clock time frame. These are then transformed to
the GPS time frame. This can be done using the 1 Pulse-Per-Second (PPS) signal of the GPS
receiver which is also captured by the computer. These 1 PPS signals will serve as reference
data for the transformation. The final outcome of the time recording process is the GPS time

for the shutter pulses.

3.2.1 Control of Imaging Sensor

In most film based cameras, the image capture environment, i.e. shutter release interval, the
aperture, the focal length and others, are preset manually using the hardware instrumentation
of the camera. In a digital camera, this should be done using a computer which is linked to

the camera. Most digital camera manufacturers provide a software library to do this.

The development of the software module of an automated mapping system to set the capture

environment usually would involve the utilisation of such a software library.

Some of the functions that should be present in the module to control the camera are as

follows.

LTS L1

e Manipulation of camera properties (e.g. “initialise”, “set”, or ‘“‘get current status”)

e Capturing of images from multiple camera sources and directing each image file to

specific directories in the storage media

e The capability to temporarily pause the preset image capturing motion as well as the
capability to resume image capture either manually or by software. (It should be possible
to trigger a temporary pause or resumption of image capture by the preset times, camera
location or heading, e.g. when the airplane is in an east-west direction and within the area

of interest.)

e Quick review of captured images by the imaging specialist and marking faulty images. (It
should be possible for the imaging specialist to make a quick decision whether to take any

complementing images while the plane is still within the vicinity of the region of interest.)

35

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

e Concurrent error reporting. (Early warnings should be provided by the system regarding

the available disk space, and any problems with cameras or their power supply.)

3.2.2 Exposure Time Recording

Exposure time recording is done using the shutter pulse and a clock system. Many digital
cameras are equipped with an interface to a flash which is used to synchronise the bursting of
the flash light with the release of the shutter. This facility can be used to record the exposure
time. The pulse from the flash interface is sent to a computer or a GPS receiver. Some GPS
receivers have an interface which will record the camera pulse directly and generate a file of

consecutive events with corresponding GPS time.

The pulse could also be sent to a computer which will record the time in the computer clock
time frame. The computer clock should be transformed to the GPS time frame because the
position of the moving camera will be given in the GPS time frame. Some GPS receivers
generate very accurate 1 PPS signals. This can be used to correct the computer time as well
as to transform the exposure time of the image from computer clock time frame to the GPS

time frame.

This recorded time of the image exposure in GPS time is necessary to interpolate the position
and the attitude of each image from the positioning sensors of GPS and IMU. These
positioning sensors provide positional and attitude data at different time rates. The following
diagram (Figure 3.3) depicts an example of the different time scales at which each sensor
acquires its data. The position and the attitude should be computed for the instant of the

dotted line.

I I Camera Shutter Pulses

I I I I I GPS Data Frequency

I I l I I I I l | IMU Data Frequency

Figure 3.3 Time Scales of Different Sensors

36

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

Transferring of electronic pulses involves special hardware interfaces between different
devices, such as camera, GPS receiver and computer. (In the positioning subsystem of
Chapter 4, IMU data produced in the IMU time frame are also transformed to the GPS time

frame).

It should be possible to tag each image with the time of exposure either automatically or
from a created file. If the time tagging facilities are present, each image file produced should
contain the time of exposure in its header. This could be included automatically at the

moment of exposure or could be post processed after the flight.

As most image files are represented in standardised formats, such as BMP, TIFF, JPEG or
PNG, the inclusion of extra information such as exposure time, perspective point or attitude

to the image, should require some coordination with the standardisation organisations.

The Sequence Diagram for the process of controlling the camera and recording time is shown
in Figure 3.4. The diagram is comparatively simple because it is assumed that a software
library provided by the camera manufacturer is to be used. Most of the interactions would
involve sending messages to this software library. The library will then send the appropriate
messages to the camera or receive messages from the GPS receiver, the 1 PPS signal in this

case.

3.3 Flight Planning

Flight planning is a comparatively simple task which has two purposes. One is to assist the
imaging sensor specialist in planning the flight. The other is to assist the pilot who will be
navigating the flight according to this plan. A good reference in flight planning can be found
in the Manual of Photogrammetry produced by the American Society of Photogrammetry and
Remote Sensing [Combs, 1980].

The major components of this module are the background map, the flight detail and the

current location from the GPS receiver.

The background map is a scanned image of the area. The planning involves drawing planned
flight lines on top of this map with the direction of flight shown with an arrowhead. The
flying height, flying speed, and the time and the duration of flight are also included in the
planning database. The planned forward and side overlap of images are also provided in the
flight plan. All these will later be used for informing the pilot who will control the flight, and
also for consideration of the images that were actually taken. The Sequence Diagram for

flight planning is shown in Figure 3.5.

37

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

2 S

~Imaging Sensor

suale

initialis eEnvironm ent

:

I

setAperture

setShutterSpeed

setCaptureinterval

setDirectoryPath

setValues

reportPres entLocation

reportPresentDirection

reportDiskStatus

reportP owerStatus

reportCurrentEnvironment

getValues

displayValues

mark mage

quickViewlmage

captureimage

triggerS hutter

pauseCapture

stopShutter

resumeCapture

triggerShutter

AL_/_BL_____L_____*M_________

transmitShutterPulse

recordShutterTime

transmit 1PP

record 1PPS

\ \ N \
._\J_}‘__\L_){__L_\L A2 __]V\L\L{_SL_(___L___Z___

|
I
I
I
I
I
I
i
|
I
I
|
I
(S
|
!
I
I
i
|
I
I
I
!

1ransbrmT'ln e_Computer2G Pq

>

— — — — |- —

Figure 3.4 Sequence Diagram of Camera Control and Time Recording

When the program is initiated a general and small scale map will be displayed on the
monitor. The user then selects and area of interest from this map and the area will be zoomed
to a working scale. The user then draws flight lines on to this map and keys in the
appropriate flight attributes such as flying height and speed. During the monitoring stage, the
present location of the aeroplane will be computed from the GPS receivers which will

continuously update the image which shows the original plan in its background. The imaging

38

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

sensor specialist will use this to inform the pilot and continuously monitor the flight in the

planned direction.

2 =] A

“mading Sensar | | e

| displaylmage (Generar Map)

etleclAveaOHnter;Tl |
displaylmage
| drawFlightLines |

I 2 omputeCoordinate. |
uelFigh]Allrlbumu

} } ~

’l compuleFIlgthurnllon
l
|
I
|
|
1

!
|
|
|
|

':l (1anamilﬂnngaDa|r
| comput PrelamLocalIonl
|ranslorchIordinalas %e actual computation

disp|ay Trajectory
b ‘ detail in the positioning

T 1 of present loc atbon from
| GPS will be shqwn in

| I | subsystem l

1 I 1)

N T T

Figure 3.5 Sequence Diagram of Flight Planning

3.4 Important Objects in the Imaging Subsystem

The key elements of the Imaging Subsystem described above are the imaging sensor, the
image, the points and the coordinate frames. These most probably will later be identified as
classes together with many other related classes. In this section, an overview and the status of
these important objects are provided. This information will be used in the design of the

related classes.

3.4.1 The Imaging Sensor

Basically sensors can be seen as devices which convert a form of energy to an electrical
signal. In a CCD camera the photo-site performs this transformation from the incident light
to a number representing the light intensity at certain location of the scene. In a GPS
receiver, the signals transmitted from the GPS satellites are transformed to pseudo-ranges
and phases. In an IMU, the inertia created by movement is transformed to change in rotation

and acceleration.

An imaging sensor is here defined as a type of sensor which produces images of the 3D

scenes which include the topographic features of the earth. There are many types of imaging

39

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

sensors which are used for mapping purpose. Some, which are currently used or are being

researched are listed below.
e Linear CCD Array camera
e Matrix camera
¢ Traditional frame camera
e Matrix CCD camera
e Active Pulse sensors
e Imaging radar system
e Laser Scanner

All these sensors use different mathematical models and have different processing methods.
But they all share the common characteristic that they produce an image data set. This image
data set is the result of a transformation by the sensor of the 3D scene to an image
representing the scene. It is not attempted to model all these sensors in this research, and

only the traditional metric camera and matrix type CCD camera will be modeled.

It is anticipated, however, that addition of a new sensor to the mapping system will involve
software development tasks which will be simpler by using the inheritance and the
encapsulation facilities of the object oriented design. For example a new sensor class could

be derived from the generic sensor base class.

A class diagram of the imaging sensor showing only the class names and their relationships

with other classes is shown in Figure 3.6.

Current Problems with the Digital CCD Camera in Photogrammetry

The traditional film based camera is still widely used in the mapping community. Images are
reproduced on films and then transformed into a digital image using a digital scanner. The
main reasons for this are the problem of digital cameras with regard to accuracy and the

speed of imége capture [Beyer, 1992][King, 1995][Mills et al., 1996].

The geometric accuracy of the digital camera is inferior to the film based camera mainly
because of the size of the imaging area, the sensor size. A normal aerial film is about 23 x 23
cm. A typical CCD sensor of a digital camera could have 1548 x 1032 pixels with each
pixel’s dimension being 4.85 microns x 4.85 microns. This would mean that the sensor size
is about 7.5 x 5 mm. The poor geometry of rays due to the small imaging area results in a

decreased performance in accuracy. To produce a digital CCD sensor with size similar to that

40

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

of an aerial film introduces many problems such as irregularity in the flatness of the sensor
plane, difficulty in management of the sensors, i.e. locating and exchanging faulty photo-site

chips, and the speed of image capture, which is a major problem.

CSensor

ClmageSensor

A

CLinearCCDArray CMatrixCamera CActivePulseSensor

CFrameCamera CMatrixCCD

Figure 3.6 Class Diagram of Imaging Sensor

For a digital camera to capture two consecutive images, the photo-sites have to be refreshed
and the quantized values transferred to a recording media. This is a time consuming task with
the current technology. This limits the frame rate, i.e. the time necessary between two
consecutive image exposures, effecting the flying speed of the aeroplane and the overall cost

of the image capturing process.

However, where frame rate is not a major concern, and the distance of the object is relatively
close, such as with most non-topographic photogrammetry, the problems mentioned above
have little effect and the digital camera is suitable in applications such as industrial
monitoring, architectural and historical monument preservation and restoration, robot vision

and medical imaging [Sheffer et. al, 1989][Waldhausl, 1992][Streilein, 1995][Peipe, 1995].

41

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

3.4.2 The Image Class

Images are produced by an imaging sensor. An image is composed of grids of data with a
spatial component and its corresponding thematic component. The thematic component can
be light intensity as in a camera or height computed from travel distance of sensor signals as

in the radar and laser sensors.

If the grid is two dimensional, the image is a two dimensional image. If the grid is three
dimensional, it is a three dimensional image. Each grid point or pixel in the case of an image
from a digital camera will have a set of coordinates in the grid coordinate frame as its spatial

component and a corresponding thematic value.

Two types of two dimensional images have been considered, i.e. CMappinglmage and
CDisplayingImage. Although both refer to one image of a scene taken by an imaging sensor,
they differ in their responsibilities and roles. CMappingImage is mostly concerned with the
geometric aspects of the image and is mostly used at the initial stage of photogrammetric
data processing. CDisplayinglmage is used mostly to display, zoom and pan images. It is also
used for changing image formats. It is most likely that CDisplaylmage will use the end

product of CMappingImage in the visualisation subsystem.

Images captured by the imaging sensor can have a reference point and an attitude. In the case
of a frame camera the reference point is the perspective point and the attitude is the attitude

of the camera at instant of capture.

In the case of a laser profiler, it is difficult to determine the optimum design for the signal of

the laser sensor.

In the first case, the signal itself could be defined as an image, in which case the image will
be a single point with X,Y,Z and attitude and the travelled distance. This means it could be
defined as a one dimensional image. This will be advantageous for the process of calibrating
the image acquisition subsystem, because the computation of the reference point and the
attitude is common for all images. This implies that a function for the computation of camera
attitude computation can be defined at the generic class of image and it will be applicable for

camera as well as the laser profiling scanner.

In the second case, the constructed two dimensional image from the laser signals could be
defined as an image and the signals as a list of embedded objects. This will be advantageous
in the subsequent process of extracting spatial objects from various types of images, because
most of the images at this stage are two dimensional. However, the member function for

computing the reference point and attitude of an image class is repeated in another class, the

42

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

signal class. This means that if a change occurs in the computation of the reference point and
the attitude, then the code in both the image class as well as the signal class should be

updated. This inconsistency is something that the object oriented method aims to minimise.

In this research the first case will be selected for purposes of consistency, but more research
into the design for incorporating various sensors is needed to come up with an ideal solution.
A class diagram of the image class and its relationship with other classes is shown in Figure

3.7.

—

L
ClmagelList

g

|

i
CGenericimage

I

C3DImage C2DImage CiDImage

e

ClaserSignallmage

CDisplayingimage

captured by
CM appingimage ClmageSensor

CPerspectiveP oint

MFC template class for
containment of pointers to

CRotation objects
CTypedPirList |
A ™~
bind - | <2bind>>
<< ;’7 CPtrDS(,QHay'
CPurList, CGenericPoint | g R
<<bind>> I
- - CPtrList, CanagePoint' o
—_— — Rays
— | |
CRay | I
ImagePoints

Figure 3.7 Class Diagram of the Image Class

43

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

3.4.3 The Point Class

A point is defined by its coordinates in a coordinate frame. The coordinates can be
transformed between coordinate frames with the transformation parameters. The coordinates
are usually computed values from observations and these coordinates usually have a set of
associated numbers representing their accuracies. Also points are usually given a unique

identifier to distinguish one from another.

Some examples of points used in the mapping systems are image points, control point, tie

points, and perspective points as shown in Figure 3.8.

CGenericPoint CCoordinateSet

T

i

<<Enumeration>>
CMappingPoint CoordinateFrameType

A

|
i

. !
CControlPoint CPers pective Point Clm agePoint

CFullControlP oint CTiePoint

Figure 3.8 Class Diagram of Point Class

3.4.4 Coordinate Frames

The transformation between different coordinate frames is a common problem encountered
in many mapping applications. The most important functions involved in coordinate

transformation are scaling, rotation and translation.

Although the coordinate frame itself is important in understanding many of the theories in
mapping applications, in software implementation, the transformation between different
coordinate frames is of great concern. The transformation itself is incorporated into various
mapping processes. For example, in the bundle adjustment of photogrammetric observations,

the rotation matrix is formed and its elements are used in the forming of the collinearity

44

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

equations. In IMU data processing, rotation matrices are also formed to transform
observations from a body coordinate frame to a local coordinate frame, or from an earth-

centred-earth-fixed coordinate frame to a body coordinate frame.

A separate class of coordinate frame will not be defined in this design, as the transformation
itself is realised in other classes in the form of observation equations and rotation matrices.
Instead a coordinate frame type will be associated with the coordinate set to signify its

coordinate frame type.

The pixel coordinate frame, shown in Figure 3.9, is a 2 dimensional coordinate frame
usually defined with it origins on the top left corner of the image and its x axis extending
right and the y axis extending down. The photo coordinate frame is a 3 dimensional right

hand Cartesian coordinate frame and has its origin at the perspective point.

» X axis

80%y) dy

—>| dx |e

y axis

Figure 3.9 Pixel Coordinate Frame

The photo coordinate frame as shown in Figure 3.10, has its origin at the perspective point.
The x-axis is usually taken to coincide with flight direction and the y-axis is perpendicular to
the x-axis in the same horizontal plane. The principal point is the point on an image plane
where an image would be formed if the image plane was perpendicular to a direct axial ray

coming through the centre of the lens. The principal distance is the perpendicular distance

45

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

from the perspective point of the lens to the image plane. The fiducial centre is the point on

an image plane where lines from opposite fiducial marks intersect.

Photo Coordinate Frame

Perspective Point

X YorZo

Fiducial Mark

Ground Point
P(X,Y,Z)
zZ,
Y
Xo A
Y,
X

o

Figure 3.10 Photo Coordinate Frame

The following coordinate frames are mostly used in the computation of rotation and position

from IMU observations [Schwarz et al., 1994].

The inertial coordinate frame, or i-frame, is a frame which does not rotate or accelerate
(Figure 3.11). The origin is at the mass centre of the earth; the x-axis points towards the
mean vernal equinox; the z-axis points towards the north celestial pole; and, the y-axis
completes a right-handed system. The International Earth Rotation Service (IERS)

continually establishes the inertial system through geodetic observations of quasars.

46

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

Z
4

North

Greenwich Meridian

/ ‘—’y l

Equinox
Equator

Figure 3.11 Inertial Coordinate Frame

The Earth-Centred-Earth-Fixed (ECEF) coordinate frame, or e-frame, also has its origin at
the mass centre of the earth as in i-frame, as shown in Figure 3.12. The x-axis points towards
the Greenwich meridian; the y-axis makes a 90° with the x-axis in the equatorial plane; and,

the z-axis is taken as the axis of rotation of the reference ellipsoid. The e-frame is also the

frame that is used by GPS.

2C
A

Greenwich Meridian

/ ’ye

Equator

x©

Figure 3.12 Earth-Centred-Earth-Fixed (ECEF) Coordinate Frame

The local coordinate frame, or l-frame is shown in Figure 3.13. It has its origin at the

topocentre; the y-axis or the North axis points north, tangent to the geodetic meridian; the x-

47

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

axis or the East axis points to the East; and, the z-axis or the Up axis points upwards along

the ellipsoidal normal.

Ze

North Local Coordinate Frame

Ye

Xe

Figure 3.13 Local Coordinate Frame

The wander coordinate frame, or w-frame, is used in geographic areas of high latitudes to
complement the 1-frame (Figure 3.14). The 1-frame needs always to orient itself to the north,
which involves large rotations in areas of high latitude. The wander coordinate frame
resolves this by setting the y-axis at an arbitrary direction. The angle between the y-axis and

the north axis is called the wander angle.

North
Yw }

Xw

x Wander Angle

» East

Figure 3.14 Wander Coordinate Frame

48

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

The body coordinate frame, or b-frame, is shown in Figure 3.15. It is the coordinate frame to
which the IMU observations are referenced. It has its origin at the centre of the IMU, the
exact location of which should be given by a specification of the manufacturer. This position
is later needed when offset distances between different sensors are surveyed. The x-axis
points towards the right side of the IMU; the y-axis points towards the front of the IMU; and

the z-axis points upwards.

Forward

4 .

Right

IMU Body

Figure 3.15 Body Coordinate Frame

3.5 Class Diagrams of the Imaging Subsystem

In this section the empty classes identified in the previous sections will be populated with the
appropriate data members and member functions. This building of classes lays the
foundation for the implementation stage, where objects based on these classes will be used to

perform tasks such as reading data form files, the bundle adjustment and flight planning.

3.5.1 The CMatrixCamera Class

The matrix sensor class and its relation with other classes are described in Figure 3.16. It is
derived from the base class CImageSensor which has a virtual function ReadDataFile(). The
ReadDataFile() function will read data from files and populate the object with appropriate

initial values.

49

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

ClmageSensor
$count:int=0

<<struct>>
<<virtual>> ReadDataFile() CDistortionParameter

A K1 : double
K2 : double
K3 : double
P1 : double
<<struct>> P2 : double
CLensParameter A : double
B : double
dK1 : double
dK2 : double
CMatrixCamera dK3 : double

dP1 : double
ReadDataFile() dP2 : double
dA : double
dB : double
initk1 : double
initK2 : double
initK3 : double
initP1 : double
CFrameCamena initP2 : double
Fiducial_x[10] : double initA : double
Fiducial_y[10] : double initB : double

xp_offset : double

yp_offset : double

dxp : double

dyp : double

initxp : double

inityp : double
CameraConstant : double
dCameraConstant : double
initCameraConstant : double

GetFiducial_x() \

GetFiducial_y() \

= CMatrixCCD
| HorPixelsNo : int

CTypedPtrT_Tst—' VerPixelsNo : int
SensorElementWidth : double

SensorElementHeight : double

0

<<biqd>> GetSensorElementHeight()
. . . GetSensorElementWidth()
PtrList, Point
CPuList, CGenericPoi GetHorPixelsNo()
| GetVerPixelsNo()

FiducialPoints

Figure 3.16 The CMatrixCamera Class

The CMatrixCamera class has two aggregated ‘structs’ (‘struct’ is a keyword used in C and
C++ to define a collection of elements of arbitrary data types) as its data members,
CLensParameter and the CDistortionParameters. The CLensParameter struct contains the

values of the principal point offset (xp_offset and yp_offset) and the principal distance or the

50

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

camera constant(CameraConstant). Expected or known errors associated with these values
are shown with a ‘d’ in front such as ‘dxp’ and ‘dyp’. The initial values begin with ‘init’
such as ‘initxp’ and ‘inityp’. The CDistortionParameter contains the lens distortion
parameters (K1, K2, K3, P1 and P2) and the film shrinkage distortion parameters (A and
B).

The frame camera and digital CCD matrix camera classes are derived from the
CMatrixCamera class. The frame camera class, CFrameCamera, has fiducial points as its
data members. The values of the coordinates of these fiducial points are those that are
supplied by the manufacturer and are inherent to the camera. Their units are usually in
millimetres. It uses a template class called CTypedPtrList which takes CPtrList and pointer
to the objects as its arguments. CTypedPtrList is a template class provided by the
MFC(Microsoft Foundation Class) library [Horton, 1998].

3.5.2 The CMappingImage Class

The CMappinglmage Class is derived from C2DImage which is in turn derived from the
CGenericImage class (refer to Figure 3.7). The following figure below, Figure 3.17, is
centred on the CMapping Image which is the main image class to be used in the image

acquisition subsystem.

The AffineParameter data member of the CMappinglmage is used to contain the parameters
of the affine transformation. These parameters transform pixel coordinates of the fiducial
points of scanned images to photo coordinates. The FiduciallmagePoints of the
CMappinglmage is used in conjunction with the FiducialPoints of the CFrameCamera to
compute the affine transformation parameters. The CRotation class holds the primary,
secondary and tertiary rotation angle of the axes which are usually known as omega, phi and
kappa in photogrammetry. These are used to form the rotation matrix of the image. The
CMatrix class is a very versatile class which will be extensively used in the adjustment

processes to be followed after the objects are populated and appropriate matrices formed.

The CMappingImage also holds ImagePoints and Rays as its data members. Both of these are
derived from the template class CTypedPtrList. The ImagePoints class is a list of pointers to
objects of CImagePoint, and the Rays class is a list of pointers to CRay objects. CRay class

itself is also a list of pointers to objects of CGenericPoint.

51

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

CMappingimage
AffineParameters[7] : double
TotalPoints : int
index : int
$count:int=0
ImageName[NameLength] : char

AffineTransform()
DeletelmagePt()
AddimagePoint()
GetTotalPoints()

<<static>> howManylmages()
GetimagePoints()

<<virtual>> ~Cimage()

Clmage() \
? CPerspectivePoint

ClmageSensor

CRotation

$count:int=0

PrimaryRotationAngle : double
SecondaryRotationAngle : double
TertiaryRotationAngle : double

PrintinitialCoordinate()
PrintCoordinate()

<<static>> howManyPoints()

Pr!ntlmtlal_notation() <<virtual>> ~CPerspectivePoint()
PnntF_!QtatlonQ CPerspectivePoint()
SetlnitialRotation() FormObservationRow()
SetRotation()

<<virtual>> ~CRotation()

CRotation() -

pm_RotatgnMatrix I — __I
CTypedPtrlList

A N <<bind>>

Ciatrix / ' \ CPtrList-CRay"
| ~ I_ m

GaussJordan() <<bind>> 1 \ _L |
Inverse() CPtrList, CImagePoint \ Rays
SolveNormal() / | <<bipd>>
CholeskySolve() / fPtrList, CGegericPoint*
CholeskyDecompose() / .<<bin >> \
<<virtual>> clear() / CPtrList, ClmagePoint \
::c:t::l]: :::::g FiduciallmagePoints | \
<<const>> nRows() \

l

<<const>> nCols() | \

<<const>> operator()() | CRay
|

<<const>> operator()()
<<virtual>> operator=()
<<virtual>> ~CMatrix() |

CMatrix() ImagePoints
CMatrix()

Figure 3.17 The CMappingImage Class

52

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

3.5.3 The Point Classes

The main classes of points used in the Image Acquisition subsystem are the perspective
point, the control point and the image point. These classes are derived from the
CGenericPoint. Most of the general functions of a point are defined in this base class (See

Figure 3.18).

CCoordinateSet
CGenericPoint XY 2z
PtName[NameLength] : char phi
name
<<virtual>> PrintCoordinate() lambda
<<virtual>> PrintinitialCoordinate() heiaht
EmptyinitialCoordinate() dx 9
g'enlgz::;éz";‘s;&eo A dy <<Enumeration>>
CAngleUnit
SetinitialCoordinate() dz o DIANg
SetPtCoordinate() dphi RA
SetPtName() diambda o
GetPtCoordinate() dheight
GetPtName() 1
<<E-n umeration>> <<Enumeration>>
CoordinateFrameType CLengthUnit
CMappingPoint pixelframe LOMETER
photoframe METER
L g:::e CENTIMETER
MILLIMETER
lframe MICRON
wframe PIXEL
bframe
CPerspectivePoint
count : int
X CControlPoint "
PrintinitialCoordinate() CimagePoint
PrintCoordinate() go:nt L count
howManyPoints() n :x is-linked-to
WP PrintCoordinate()
PrintHeader() g‘;’m:;‘;%m"tso
howManyPoints() . .
GetlmagePoints() GetLinkedControlPoint()
CTiePoint CFullControlPoint
count count
howManyPoints() howManyPoints()

Figure 3.18 The Point Classes

Although not shown in the diagram, to avoid confusion, two coordinate sets are defined in
the CGenericPoint class, an initial coordinate set and a working coordinate set. An initial

coordinate set will remain unchanged throughout the adjustment whereas the working

53

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

coordinate set will be updated constantly. The reason for the many functions with the same
name is because they are overloaded functions which will take different arguments. For
example, SetCoordinate (x, y) will only update x and y coordinates, where as SetCoordinate

(x, y, z) will update all x, y and z coordinates.

The coordinate set is an aggregated class of the point class. It has coordinate values of the
Cartesian coordinate frame (x, y, z) as well as the geodetic coordinate frame (phi, lambda
and height). It also has objects of the enumeration which will specify the coordinate frame,

the length unit and the angle unit of the coordinates.

An image point is linked to a control point, forming a ray, and this can be accessed by the
GetLinkedControlPoint() function. An image point also has the GetImage() function to return

the image that contains it.

A control point may have a list of image points, and this can be accessed by the
GetlmagePoints() function. CTiePoint and CFullControlPoint are derived from the
CControlPoint. The role of FormObservationRow() functions of these points are as explained

in Chapter 2 regarding polymorphism.

3.6 Summary of Chapter 3

In this chapter, the processes involved in the acquisition of images have been analysed.
Concepts used by domain experts (i.e. photographers and photogrammetrists) have been
investigated. As the result of the investigation, a Use Case Diagram of the Image Acquisition
Subsystem was produced (Figure 3.1). Some the important Use Cases of this subsystem that
were identified include Calibrate Image Sensor, Control Imaging Sensor, Plan Flight,
Monitor Flight, Log Image Data and Record Shutter Pulse. These Use Cases give a good

overall view the various situations that this subsystem will be used for.

Based on this Use Case Diagram, further analysis for each Use Case was carried out. For
essential Use Cases, corresponding Sequence Diagrams were produced to show the sequence
of actions and messages that were exchanged between different objects. For example, the
Sequence Diagram of Bundle Adjustment (Figure 3.2) illustrated how messages were passed
between different objects of image, camera and ray of points to form various matrices which

were necessary for the bundle adjustment.

These Sequence Diagrams were then used to identify important classes and their roles. Some

of the most important classes, which are very likely to be reused in many applications of the

54

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

automated mapping system were designed in this chapter. They are the image sensor class,

the image class and the point class.

The image sensor class was designed with the consideration that various types of image
sensors exist today and that more will be produced in the future. To accommodate this, three
types of image sensor classes were derived from the base class CImageSensor, namely, the
CLinearCCDArray class, the CMatrixCamera class and the CActivePulseSensor class. The
CMatrixCamera was then reclassified into CFrameCamera and the CMatrixCCD camera.

Other new types of image sensors can be derived from the CImageSensor in the future.

The image class was also designed with the fact that the automated mapping system will
have to deal with various types of images in the future. A very polymorphic CGenericImage
is at the highest level of abstraction. It is the base class of all forms of images. This generic
image is classified into C1DImage, C2DImage and C3DImage classes. The normal images
that we use such as the aerial image would be an object of the C2DImage class, whereas the
output data from the CActivePulseSensor would belong to the C1DImage class. A three
dimensional perspective view generated from stereo images would be an example of the
C3DImage class. However for this thesis, the CMappingImage class is fully developed. The
CMappinglmage is derived from the C2DImage class and contains data members and

member functions to perform the camera calibration and the bundle adjustment.

The point class too has a CGenericPoint class which has CCoordinateSet as its data member.
The CMappingPoint is derived from this CGenericPoint base class and is used to represent
all points used for mapping purposes. CControlPoint, CPerspectivePoint and the
ClImagePoint classes are derived from the CMappingPoint. Some important member
functions identified for the CImagePoint class are the GetLinkedControlPoint() function and
the GetImage() function. These functions will be useful in forming the collinearity equations
during bundle adjustment. Another point of detail design of the point class is the member
function ‘count’. It is a static data type, which means that it has a global nature and is not
confined to the containing class. This global characteristic can be used to trace the number of
points there are at any instant of computation. This can be implemented by increasing the
‘count’ variable by one when a new object of the point class is created and then reducing it
by one when it is destroyed. This feature is also implemented in the CMappingImage class to

trace the number of images created.

Usually there are many images and many points involved in mapping projects. The objects of

these classes are managed through a pointer list class which holds pointers to the objects of a

55

Chapter 3 Analysis and Design of the Image Acquisition Subsystem

class. The MFC (Microsoft Foundation Library) was used for this purpose. For example a list

of image points can be declared as follows.

#include <afxtempl.h>

typedef CTypedPtrList <CPtrList,CImagePoint*> ImagePointList;
ImagePointList MylImagePoints;

The first line includes the header file, which will enable access of the functions provided by
the MFC. The second line defines ImagePointList as a list of pointers to the CImagePoint

objects and the third line declares MyImagePoints as being a type of such an ImagePointList.

The classes designed in detail for the Image Acquisition Subsystem are summarised in the

table below:

Table 3.1 Classes Designed for Image Acquisition Subsystem

Imaging sensor related classes Image related classes Point related classes
ClImageSensor CMappingImage CGenericPoint
CMatrixCamera CRotation ClImagePoint
CMatrixCCD CRay CPerspectivePoint
CFrameCamera CContolPoint
CLensParameter CTiePoint
CDistortionParameter CFullControlPoint
CCoordinateSet
CCoordinateFrame
CAngleUnit
CLengthUnit

56

Chapter 4 Analysis and Design of the Positioning Subsystem

4. ANALYSIS AND DESIGN OF THE POSITIONING
SUBSYSTEM

The main role of the positioning subsystem is to tag each image with the attitude, or the
rotations, of the images and the position of the perspective centre of the image at the instant
of image capture. For a laser scanner sensor, the positioning subsystem will compute the
attitude and the position of the sensor for each pulse. The attitude of the images is obtained
by using> the data from the IMU. The position of the perspective centre of the image sensor is
obtained by using GPS receivers. Kalman filtering and smoothing of data are applied in
kinematic phase processing and also in GPS/IMU data integration, in order to get the optimal
estimates of the unknown parameters as well as to accommodate measurement updates from

different sensors.

In this chapter, GPS data processing methods and IMU data processing methods will be
presented in two sections. Each of these two sections will begin with an overview of the
basic theory and processing methods. Use Cases will then be discussed followed by
Sequence Diagrams of these Use Cases. A third section will be devoted to an explanation of

Kalman filtering.

As in Chapter 3, important objects will be identified initially and later filled with data

members and member functions.

Static GPS data processing is used to establish the coordinates of the base station. These
coordinates will be used in the kinematic data processing to process the phase data in the

computation of the coordinates of the moving receiver.

IMU data processing begins with the alignment of the IMU. The raw data output of an IMU
is a series of angular increments (of roll, pitch and azimuth) and acceleration increments with
respect to the previous state. Therefore, to compute the position, velocity and the
acceleration at a certain point of the trajectory, the data stream must be referenced to an
initial state where the rotation angles, position and the velocity are known. The computation
of this initial state is known as alignment. The alignment of a strapdown IMU (i.e. an IMU
which allows its gyros and accelerometers to rotate with the body of the vehicle, because
they are strapped to the vehicle) determines the initial Euler angles or the attitude matrix of
the system from the IMU sensor output, approximate coordinates and the observed velocities.
The alignment process is divided into two parts : the coarse and the fine alignment [Wong,
1988]. Fine alignment is the process of accurately determining the initial state using the

Kalman filtering method and the known velocity. For a stationary state where the known

57

Chapter 4 Analysis and Design of the Positioning Subsystem

velocity is zero, this is known as zero velocity update. The coarse alignment computes the
initial approximation values for the fine alignment process, using known values of the earth

rotation rate and the magnitude of the gravity vector and approximate coordinates.

The term ’mechanisation’ is frequently used by many geodesists and scientists who are
involved in dealing with inertial navigation systems. Draper et al. [1960 (pp. 24)] uses it in
the following context: “..problem is thus solvable by the mechanization of appropriate
coordinate axes, that is, by the construction of physical objects which are designed to
simulate Cartesian coordinate frames...” and Lapucha [1990 (pp. 34)] defines it as
“Mechanization is the process of transforming the specific force measured by accelerometers
and angular rates measured by gyros into the navigation parameters velocity, position and
attitude.”. Britting [1971] uses the term ‘mechanization equations’ throughout his book to

refer to the equations involved in the processing of various types of IMU..

In this thesis, the established usage of the term ‘mechanisation of IMU data’ will be
followed, to refer to the computation of the attitudes, position and the velocity in a selected
coordinate frame using the raw data outputs of rotation and acceleration increments in a

coordinate frame.

Kalman filtering is an estimation process used widely in kinematic positioning applications.
The Kalman filter processes measurement data, usually in the form of digital outputs from

sensors, using the linear system model and extra information regarding the model, namely:
e the external measurements of the parameters of the model;
¢ the statistical model of the system and the measurement errors; and,
¢ initial conditions.

The linear system model is a mathematical model where the observables are related to the
parameters. Usually in GPS and IMU data processing, the system model is a dynamic model
with position coordinates, velocity and acceleration as its state vector. State vector refers to

the vector of parameters by which the system can be fully described.

If the state vector is estimated for some time in the future, the process is called prediction. If
the estimate is made using the current measurement point, it is called filtering. If the estimate
is made for a span of time using available measurements, as in post processing, the process is
called smoothing. Further explanation about Kalman filtering will be given in section three

of this chapter.

58

Chapter 4 Analysis and Design of the Positioning Subsystem

For Kalman filtering and other data processing in this study, post processing of data is
assumed where the programs interact with the data files collected from the positioning

sensors. Time synchronisation is also assumed and realised through an ‘event file’ which is a

text data file containing:
e records of the image capture time;
¢ the GPS observation time; and
¢ the IMU observation time in the GPS time frame.

A Use Case Diagram (Figure 4.1) depicts the Positioning Subsystem. Its main functions are

called Process GPS Data and Process IMU Data.

Point Positioning with
/ Code Ranges \ O
/Least Squares

Adjustment

/

Process GPS Data

Kinematic Phase
Processing
: Static Phase C
% Read IMU Data Processing Interpolate Position
Positioning Sensor
Specialist &/O
O Read GPS Data O
Read Dafa File

Smooth Data Fijter Data

Read Event Data ﬁ:
__—~7Mechanise IMU Data

Zero Velocity Update

— \

Process IMU Data IMU Alignment

Figure 4.1 Use Case Diagram of the Positioning Subsystem

59

Chapter 4 Analysis and Design of the Positioning Subsystem

Process GPS Data uses Static Phase Processing and Kinematic Phase Processing which each
in turn uses Least Squares Adjustment. The Kinematic Phase Processing also uses the Point
Positioning with Code Ranges for its initial approximation. Filter Data and Smooth Data

refer to the Kalman filtering of kinematic data processing.

Process IMU Data uses IMU Alignment and Zero Velocity Update as well as the Filter Data
and the Smooth Data Use Cases. Mechanisation of IMU Data is used by the Zero Velocity
Update, IMU Alignment and the Filter Data Use Cases.

4.1 Processing of GPS Data

GPS data can be processed in various ways depending on the application requirement.
Various terms are used by GPS domain experts to refer to the various methods of data
processing which handles different data types. Here are some phrases which might be
confusing to someone who is newly exposed to the GPS technology [Hofmann-Wellenhof et

al., 1994].
e “To a surveyor static surveying refers to static relative positioning by carrier phases”

e “Relative positioning usually refers to the case of using carrier phases observations,
whereas in the case of using code observations the term ‘differential’ is usually used, as in
‘Differential GPS’”

e “The accuracy of differential GPS or kinematic point positioning is at the meter level
whereas the accuracy of kinematic relative positioning is at the centimeter level”

[Hofmann-Wellenhof et al., 1994]

For consistency of terminology, only the terms described in Figure 4.2 will be used in this
study to describe various aspects of a GPS survey. The term ‘relative positioning’ will be
used to mean only the type of Positioning Scheme. It will not therefore automatically mean
the usage of phase observations. Also the term ‘differential’ will not be used for referring to
using code observations. The term ‘differencing’ or ‘difference’ will only be used at the

computation level as in single difference, double difference or triple difference.

In Figure 4.2, all GPS survey projects are defined to have the following aspects:
¢ Positioning Scheme

The Positioning Scheme can be Point Positioning or Relative Positioning.
e Observed Data Type

The Observed Data Type can be Code Ranges or Phase Measurements

60

Chapter 4 Analysis and Design of the Positioning Subsystem

e Data Collection Mode and
The Data Collection Mode can be Static or Kinematic.
e Data Processing Time.

The Data Processing Time can be processed in Real Time or Post Processed.

GPS Survey
/ o Data Processing Time
Positioning Scheme ﬂ
Post Processing
Observed Data Type Real Time

| 5

Point Positioning

Relative Positioning Code Range K

Static Kinematic

Data Collection Mode

Phase Measurement

Figure 4.2 Abstraction of GPS Surveying

For example, the GPS observation for flight monitoring described in Chapter 3 would be a
relative positioning scheme which collects code range data in a kinematic mode and which
will be processed in real time. An actual project would consist of various combinations of the
above classifications. For example, code range could also be used for initial approximation in
the post processing of phase measurement data collected in the kinematic mode, and real

time processing could be carried out as well as post processing.

The next section will describe GPS data processing and various objects involved in this

process.

4.1.1 Analysis of GPS Data Processing

The GPS satellites or space vehicles (SV), which move along designated orbits, transmit

signals continuously in a known format. The ephemeris data which describe orbits are also

61

Chapter 4 Analysis and Design of the Positioning Subsystem

transmitted as part of the signals. The position of the SV at the moment of signal

transmission can be computed using this ephemeris data.

The important components of the signal which are used for positioning are the carrier
component and the code component. The code component is the signal which has been

modulated to the carrier signal.

These signals are captured by GPS receivers, in static or kinematic mode. The carrier
components of the signals are characterised by their frequencies and wavelengths. The L1
carrier has a frequency of 1575.42 MHz. The wavelength of the L1 carrier which can be
computed by dividing the frequency with the speed of light (299,792,458 metre/sec), is
about 19 cm. The frequency of the L2 carrier is 1227.60 MHz and its wavelength is about
24.4 cm. Two kinds of codes signals are modulated to the carrier waves: C/A code and P
code. The C/A code and Pl code are carried by the L1 carrier and the P2 code is in L2

carrier.

The GPS was designed so that civilian users could be denied full use of the system when this
was deemed necessary for military purposes. This is achieved by two methods named
Selective Availability (SA) and Anti-Spoofing (A-S). SA degrades the positioning accuracy
of the C/A code by dithering the satellite clock and manipulating the ephemerides. A-S
encrypts the P-code or makes it unavailable. The resulting encrypted P-code is called Y-
Code.

The data produced by the GPS receiver, as a result of capturing the signals and the internal
signal processing of the receiver, are the pseudoranges (or code ranges) and phase
measurements. Code ranges are distances (in metres) between the receiver and the signal
emitting SV. This is obtained by multiplying the speed of light by the measured travel time
of the signal. Phase measurements are the fractional phase offset (in cycles) between the

received carrier signals (i.e. L1 and L2) and the reference signal of the receiver.

Time data generated by various clocks play an important role in the processing of GPS data.
The most accurate time is the one which is maintained by the GPS control segment (GPS
Time). SVs also have oscillators which maintain their own time frame (SV Time). The

receiver has a clock too, which records the time the signal is received (Receiver Time).

The captured code ranges and the phase measurements at the receiver are all related to a time
frame. To simplify computation regarding time, for example to check if two observations are
synchronous, the civilian representation of time as year, month, day, hour, minute and

seconds is transformed to one number representing seconds of the GPS Week.

62

Chapter 4 Analysis and Design of the Positioning Subsystem

Errors due to time delay caused by the refraction of the signal in the troposphere and the

ionosphere are also computed to achieve high positional accuracy.

The next figure (Figure 4.3) shows the relationship between SV, signal measurement and
orbit. The CClockTime class is a class which deals with the transformation of civilian time
format to seconds of GPS week. The CPosition class is defined as an object with a
coordinate and time. Therefore it has an object of CMappingPoint (refer to the section on
Point class in Chapter 3) as one of its data members as well as an object of the CClockTime

class.

CSpaceVehicle
<<struct>> CSignalMeasurement
COrbit
CCodeRange
CClockTime
CPhaseMeasurement
is-compyted-by
CPosition
L1Phase L2Phase

Figure 4.3 Space Vehicle and Related Classes

A GPS observation is defined as a record of all the measured signals from all visible SVs at a

moment in time. It should be noted that for each epoch observation, the number of instances

63

Chapter 4 Analysis and Design of the Positioning Subsystem

of the CSpaceVehicle is equal to the number of visible GPS satellites at the time and place of
observation. Therefore each GPS epoch observation has a list of objects of the
CSpaceVehicle class and each CSpaceVehicle object in turn has a CSignalMeasurement
which can be the code measurement, the phase measurement or both of these measurements.
The phase measurement can also be either L1 measurement, L2 measurement or both phase
measurements. The measured signals are contained in the CSignalMeasurement class of
Figure 4.3. The CSpaceVehicle class and the CSignalMeasurement is connected by the

diamond-head line indicating the aggregation relationship.

The interval for these observations is preset before the survey, for example to collect a record
after every second or after every five seconds. For relative positioning the interval must be
set to be equal for the relative and the base station, so that each record of a relative station
will have a matching observation record of the same epoch at the base station. For each GPS
survey, each receiver collects these observations in a single data file, known as an
observation file.The ephemeris data are collected as a separate navigation file and a
meteorological file is also produced as a separate file to provide information on atmospheric
data such as pressure, temperature and humidity which are used for correcting errors due to

these influences. Figure 4.4 shows the class diagram of the observation class.

— — 1
|
CTypedPtrlist
{from Utility)
/|\ <<bind>>
CPtriList, *CGRSObservation
<<bihd>> >
CPtrList, *C§paceVehicle Observations
|
I
SVs
+obser SVs
CGPSObsenation CClockTime
{from Utility)

pm_SyncObs

Figure 4.4 Class Diagram of CGPSObservation

64

Chapter 4 Analysis and Design of the Positioning Subsystem

The “Observations” class is shown as a list which is produced as a result of binding the
argument CPtrList class and the pointer of the CGPSObservation class, *CGPSObservation.
The CGPSObservation class has an object of the CClockTime to indicate the observation
time. The CGPSObservation class also has a list of CSpaceVehicle objects as its data
member, i.e. SVs. SVs are the GPS satellites for which signals have been recorded in this
single observation. An object named pm_SyncObs, is another CGPSObservation data
member which is the synchronised pair of this observation. The aggregation line which
points to itself indicates that the CGPSObservation class has another object of

CGPSObservation as its data member.

The signals are captured by an antenna connected to the receiver and the data files are saved
in a computer disk connected to the receiver. The actual position computed using the GPS
signals would be the phase centre of the antenna. However, the position of a ground marker
or a point in space, such as the perspective centre, is usually the object of interest rather than
the position of the antenna or the receiver. A new class called CStation is created to refer to
this point of interest related to the receiver (Figure 4.5). Although in its strictest sense it is
accurate to put the point coordinates in the antenna class because the initially processed
coordinates refer to this point, the term ‘station’ is commonly employed by domain users to
refer to the point of interest where the receiver has been set up. CStation is defined as the
point of interest which holds the receiver and much of the role of the receiver is delegated to
the CStation class. The static reference station, named CReferenceStation class, has a
position object whereas the kinematic station, named CRoverStation class, has a list of
position objects which depicts the trajectory of its receiver. Both of these classes are derived
from the CStation class. For multi-antenna systems, though not treated in this thesis, it would
be possible to have two sets of CPosition lists declared in the CRoverStaton class and name

them for example as EpochPositions1 and EpochPositions2.

Events which occur during the observation period, such as shutter release, cycle slip or any

other external events other than the signal recording, are kept recorded in the CEvent class.

The computation is done mostly in the e-frame. However the antenna height compensation
and the presentation of most end results in surveying requires transformation to the l-frame.
Transformations to and from the e-frame to geodetic coordinates of latitude, longitude and
height are also necessary in many parts of the processing. These functions should be added to

the CMappingPoint class.

65

Chapter 4 Analysis and Design of the Positioning Subsystem

CSensor
<<struct>> Z%
CAntenna CReceiver
uses
<<struct>>
CEvent
Events Cstation
| /
I
| Observations
| CReferenceStation
<<billd>> /
CPtrList, ’bEvent / CRoverStation
| /
l <<bind>>
CPtriList, CGPS/{bseNatlon ? CPosition
| / EpochPositions
/ .
| —/— - <<bind>> i
— WP CPtrList, *CPosition
CTypedPtrList
CMappingPoint CClockTime

Figure 4.5 Class Diagram of CStation

Code Range Data and Phase Measurement Data

The main differences between the code range data and the phase measurement data are the
level of accuracy and the processing method. In general, the accuracy of code ranges is at
the metre level, whereas the accuracy of phases measurements is at the millimetre level.
[Hofmann-Wellenhof et al., 1994] . The processing method differs greatly because of the

different types of unknown parameters involved in the mathematical models. In the

66

Chapter 4 Analysis and Design of the Positioning Subsystem

following, the basic equations used in GPS data processing will be introduced. All basic
equations for GPS data processing in this thesis have been referenced from the book by

Hofmann-Wellenhof et al. [1994].

The observation equation for the code range point positioning is given as follows.

RI®)=p/0)+d8'®)-6¢) (4

where, R’ (¢) is the measured code range between station i and SV j at an epoch t,

pij (t) is the geometric distance between the station and the SV at an epoch t, §, and & T are

the clock errors of the receiver clock and the SV clock respectively, and ¢ is the speed of

light. Also, the geometric distance can be expressed as follows.

o/ O={(X'O)-x,0) +{F'O-x0) +(Z0-20)

where, X, Y and Z with subscript i are the coordinates of the station i in the e-frame and
X,Y and Z with superscript j are the coordinates of the SV j also in the e-frame. The SV
position coordinates and the SV clock error can be computed directly from the transmitted
data. Therefore the unknown parameters are the X,Y,Z coordinates of the station position
and the receiver clock error, §,. If the number of SVs that are observed simultaneously is
more than 4, the station coordinates can be computed with only a single epoch observation.

Therefore real-time processing of code ranges is relatively simple.

For the case of phase measurement, the mathematical model is given by the following

equation.

0 =%p,.j(t)+ NI+ FIASI () (43)

where, <I>,.j (¢) is the measured phase at epoch t, A is the wavelength of the carrier signal,

N/ is an unknown integer number, known as integer ambiguity, representing the initial

number of cycles between the SV and the station when the receiver first locked on to the SV
signal, f/ is the frequency of the SV signal and A(Sf (t)is the term representing both the
receiver and the SV clock error. The integer ambiguity introduces many complexities to the
solution of the phase observations. Because it is constant in time it needs to be solved only

once initially in static mode. In static mode the number of unknown parameter is 5 for each

67

Chapter 4 Analysis and Design of the Positioning Subsystem

phase observation equation. With each SV however a new integer ambiguity is introduced.
For example in static mode, if 4 SVs are tracked for 5 epochs, the total number of unknown
parameters is 12 (i.e. 3 station coordinates, 4 integer ambiguities and 5 receiver clock
errors). The number of observation equations is 20 (4 observation equations for each of the 5
epochs). Therefore in this case the redundant observations can be solved by the least squares
method to get the station coordinates. It can be seen from the above example that with a short
period of initial static processing to solve for the integer ambiguity (known as initialisation),
phase measurement data can also be used for real time processing in kinematic mode. This
implies station positional accuracies reaching centimetre level, compared to the metre level
when using code range data. Unfortunately in actual circumstances, it is unlikely that the
integer ambiguities of each SV remain constant throughout the data collecting period,
especially in urban areas or when the receiver is in kinematic mode. When the signals are
interrupted or blocked, cycle slips occur and this brings changes to the integer ambiguities.
This requires repeating the initialisation process. However, through much recent research
into integer ambiguities [Schwarz et al., 1989][Hatch, 1990][Abidin, 1993] it is now possible
to resolve the ambiguity while in kinematic mode. This technique is known as ‘On-The-Fly’
(OTF) ambiguity resolution. This will be discussed in detail in the later section on kinematic

phase processing.

Forming Difference Equations in Relative Positioning Scheme

Relative positioning uses two or more receivers to get synchronous epoch data in order to
increase the accuracy of the computation. The observation equations formed in data

processing as the result of relative positioning are difference equations.

In relative positioning one receiver is placed on a known point and the synchronous data
from the unknown and the known stations are differenced. Because they are synchronous the
first difference of observations (single difference) between two stations for the same SV,
removes the satellite clock error. A further difference between two single differenced
observations for the same station vector (double difference) will remove the receiver clock
error. Another difference of the double differenced observations between two different
epochs (triple difference) will remove the integer ambiguity. The most commonly used

double difference equation is as follows.

ADE (1) = pk()+ANE (4-4)

68

Chapter 4 Analysis and Design of the Positioning Subsystem

where, A is the wavelength of the carrier phase, @’ () is the double difference phase

observation for SV j,k observed from stations A and B at epoch t. pJ(z) and NJ are
the double difference range and integer ambiguity for SV j,k observed from stations A and
B atepocht.

It should be noted that when performing least squares adjustment with differenced

observation equations, correlation between parameters should be considered and this should

be used to form weight matrices in the actual adjustment.

Reading GPS RINEX Data File

In post processing, the observation data file collected by the receiver is read by the GPS data
processing program for subsequent processing. Some sort of format for the data file must be

fixed for this to be possible.

RINEX is an acronym for Receiver Independent Exchange Format. It has been developed by
the Astronomical Institute of the University of Berne for the easy exchange of the GPS data

between GPS receivers of different manufacturers [Gurtner et al.,1990].

Four different types of ASCII data files are defined in the RINEX format: Observation Data
File; Navigation Message; Meteorological Data File; and, the GLONASS Navigation
Message File. Each file type consists of a header section and a data section. The header
section contains global information for the entire file and the data section contains the actual
observation values. Each file is a set of data collected from one site and one data collection
session. The following analysis will deal only with the reading of navigation and observation

data files.

Figure 4.6 show the Sequence Diagram of reading a RINEX navigation data file. During post
processing, when the operator inputs the file name the data file is read header first. An
Almanac object is created and the data are read in from the data file. These almanac data will
be added to the orbit as a data member to the orbit later, after the orbit data have been read
from the file. The orbit data which follows the header will be réad into the orbit object and
this will be added to a list of orbits. Later the orbit data of an SV which is the closest in time

to the observation epoch will be selected and used to compute the SV position.

The observation data header contains information about the survey as a whole. It contains

data regarding the station such as the station name and number, the observer and the agency,

69

Chapter 4 Analysis and Design of the Positioning Subsystem

the type of receiver and antenna used. There are also lines for antenna eccentricities and

approximate position of the station in the observation data header.

_Q dataFile theAlmanac theOrbit theOrbitList
AN
- Positionin I

inplutNavigationFileName

I
Sensor $pecialist | |
I
I

S
[-~} createAlmanac

I

|

I

I

l readData “1 |
[|

< — |

I§NewOrbit | |

creatzJeO rbit I

] ~)

T P |

readData |

I I

fddAIman acToO rbif
SN

7
|
|
|
|

addTolList

Rt

S

|
|
|
I
|

Figure 4.6 Sequence Diagram of Read Navigation Data

Types of observation (i.e. L1, L2, Cl1, P1, P2, DI, D2...) are listed and the interval of
observation, time of first and last observation are also in the observation data header. As
each line of the data header is processed, each relevant object (i.e. CStation, CReceiver,
CAntenna, CPosition, CClockTime) is created and populated with the data from the header
part of the observation file (Figure 4.7). An empty EventList is created which will be filled
with events such as shutter release event or a cycle slip event as they are encountered in the

processing of the GPS observations.

What follows after the header are records of GPS observations (Figure 4.8). Each GPS
observation has a list of SVs and each SV has a list of values each representing pseudoranges
in metres, phase in cycles and Doppler measurements in Hertz. This list of values is
abstracted as an object of the signal measurement class. For each SV an orbit closest in time
is selected from the orbit list and added to the SV as its data member. This orbit list has been

created from the navigation data file. The data relevant to the signal measurement is read

70

Chapter 4 Analysis and Design of the Positioning Subsystem

from the data file and then the signal measurement is added to the SV as its data member.
Finally the SV is added to the list of SVs, which is a data member of the CGPSObservation.

This process is carried out with each GPS observation record.

r ion

: Positioni

Sensor §pecialist | I

|

inputOlLservationFilLName | |
’ |

|

7

createStation

c[eate Receivgr

readpata |
|

r

|
|
|
|
|
I

createﬁntenna

rea«liData

createPosition

v]

ventList

- - 1y _ _ _ _
__._SL_______________ mg

et SR CE

|
|
I
i
| readData
I
|
|
|

|
|
| create
.
|
|

— — +m

Figure 4.7 Sequence Diagram of Read Observation Data Header

addTobVList

DataFile theQbservation theSV. theOrbitList theSVList theSignalMeas
urement

|create0bservation| l | I |

— createSVList

| readData I l | \l |
createSV l ' I]

| > creéteSiganeasuren{ent |

| | getOrbit(tim e) l /I

I | E— I

| readPata | |

I dDat ,

readData

= |

l |

| |

| |

| |

| 1
| |
| |

| | |

! | |

| | |

| | |
| | |
| 1 |

Figure 4.8 Sequence Diagram of Read Epoch Observation

71

Chapter 4 Analysis and Design of the Positioning Subsystem

Point Positioning with Code Ranges

Point positioning with code ranges refers to the computation of the coordinates of the station
using the code ranges of a single GPS observation. Therefore it would suitable for this
function to be a member of the CGPSObservation class, and to call it, for example,
ComputeSingleCodePos. The function would take an initial approximation for the unknown
parameters of the station coordinates (x, y, z) and the receiver clock error (dt). Then the

position could easily be computed, for example by using the following C++ code.

CPosition ApproximatePosition;
CGPSObservation RovObs;
ApproximatePosition = RovObs. ComputeSmglcCochos(O 0.,0.,0.);

After the execution of this command line, the object ‘ApproximatePosition’ has the
computed values of the station coordinates. In the example code above, all the initial

approximations of the station coordinates and the receiver clock offset are set to zero.

The process of point positioning with code ranges is examined in the Sequence Diagram as
shown in Figure 4.9. The SVs in the SV list are accessed consecutively and the position for
each SV is computed. The travel time of the signal and the correct SV time are computed
prior to the computation of the SV position. Then for each SV the linearised version of
observation equation 4-1 is formed. The least squares adjustment is then carried out with the

final set of observation equations to get the station coordinates.

Kinematic Phase Processing

In this section post processing of kinematic phase data using the relative positioning scheme
is described. Depending on the initialisation techniques carried out to resolve the integer
ambiguity there are various processing strategies. This section will deal with single epoch
ambiguity resolution [Corbett, 1994]. The actual ambiguity resolution is performed by a least
squares ambiguity searching method introduced by Hatch [Hatch, 1989][Hatch, 1990]. The
advantage of the single epoch ambiguity resolution is its insensitivity to cycle slips because
ambiguity is fixed for every observation. This also means that errors due to incorrect

ambiguity resolution are isolated to the single epoch.

However the disadvantage is the requirement for an increased number of visible SVs to

achieve a high redundancy in observations for increased reliability.

72

Chapter 4 Analysis and Design of the Positioning Subsystem

on stment
?etlnitialPositioq I | I
getSJlList N | I
| getNextSV>l I
comptIteTravelTime I
— I

com;zuteSVTime [

coI-nputeSVPositIon

|
|
I
|
I
I
I
I
I
I
|
I

vV_v_v _

foerbservationMFtrix
foImResiduaIMatI’ix
fcIrmWeIghtMatrIx
I
fﬂrmNormalMa;r'x

fPrm RHSVectol’
I solve J

|
|
I
I IanalyseResuItI
|
|

7

|
I
I
I
I
I
|
|
I
I
|
|
|
|
|
|
I | I

|
I
|
|
I
|
|
I
[
I
|
|
|
I
|

I
|
I
I
I
I
I

Figure 4.9 Sequence Diagram of Point Positioning with Code Ranges

For a relative positioning scheme, double difference equations between synchronised
observations must be formed. The formation of double difference observations begins by the
synchronisation of the two observation data files, where the file pointers of both files are set
to coincide with the earliest observations of either the reference station data file or the rover
station data file. Then approximate positions are computed using a point positioning scheme
with code ranges. At this point the rover observation is included as a data member of the
reference observation. See Figure 4.10. The Sequence Diagram of Figure 4.10 shows the
sequence of actions and the interaction of objects in the formation of double differences from

two synchronised phase observations.

To form the double difference equations, SVs present in both the reference and the rover
observations are selected. SVs below the valid elevation angles are filtered out. The
remaining SVs are added to a list 6f SVs called SynchronousSVs. A reference SV is selected
from the SynchronousSVs and then single differences are formed by differencing the phase
values of the reference observation and the rover observation. Finally double differences are

formed by differencing the single differenced phase values from the single difference with

73

Chapter 4 Analysis and Design of the Positioning Subsystem

the reference SV. These double differences are added to the list of double difference objects
called DoubleDiffs, a data member of CGPSObservation.

theGP SProj | | theReferenc | {theRoverObs/ [theSingleDift| {theDoubleDit|| SyncSVs || the Double

synchroniseFiles I I |
le— I I I

computequroximatePosiFion |

I I
[computeA qproxim ate Posilﬁ on

inclydeAsDataMerhber
<_‘._.._.._.._~._.

selectVglidElevationS
D

I

|

|

|

|

|

|

I

I

|

|

| selectSlynchronousSV/| |

ynchro

| | addSynchlIounousSV
|

|

|

|

|

|

|

I

setReferlenceSV

IormSinglﬁDiIference |

|
!
I
|
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|

|
|
|
I
|
I
|
|
|
|
I
I
I
!
I
|
|
|
|
!

| I
| |
I I

addT|oList

[formDoubleDifferehce
|
|
|

B Y

Figure 4.10 Sequence Diagram of Form Double Difference

Having formed the double differences, it is now possible to attempt to resolve the integer
ambiguities. An overview of the integer ambiguity resolution is shown in Figure 4.11.
Primary double differences are selected from the double differences. Primary double
differences are double differences which are used to compute a trial position with a
candidate integer ambiguity set. The rest of the double differences are called secondary
double differences. The reason for adopting the concept of primary and secondary double

differences is to speed up the computation time by reducing the search space. Only three

74

Chapter 4 Analysis and Design of the Positioning Subsystem

double differences are selected as primary double difference, regardless of the total number

of double differences.

compute!Residual

|

I |

1 I I
I |

I I

- PrimaryDD s | AmbiguitySe | theAmbiguity| the TrialPositi| | SecondaryD || C ombinedD
IIndPrimaryDD,l, I I I I I
| | I I |
| | aquoSecondarylPDs I N I
I I generateSet(I)fAmbiguities I I | |
| | getAmbiguityS/eIl | | |
I | > | I |
| | computeTHalPosition | | |
I | | computeSecondaryAnhbiguity [
| ! IaddPrimaryDDL, | !
I | I I =1
| | | addSecondaryDDs
_—
| I
| I
I |
I |
I I
| I

T N T N T T T T T

I
|
|
c?m pute Ambig uftyF uncti onVaIlie
I
|
I
|
I

Figure 4.11 Sequence Diagram of an Overview of Resolving the Integer Ambiguities

If the range of the integer ambiguity search space was for example * 10 cycles, the total
integer ambiguity combinations to be tested would be 217 . The trial positions computed from
the candidate integer ambiguity set is then used to compute the integer ambiguities of the
secondary double differences. Each double difference now has an integer ambiguity
associated with itself. These double differences are added to a new list double differences,

called CombinedDDs.

A technique to further reduce the computation time is introduced by computing the
Ambiguity Function Value of the candidate integer ambiguity set. The Ambiguity Function
Value can be used to reject a candidate integer ambiguity set if it is below a selected criteria.
Only those sets which get through this initial test will go through to the next more rigorous

test.

The final test is a least squares adjustment of the double differenced observation equations
formed with the double differences of the CombinedDDs. The candidate integer ambiguity

set with the minimum unit variance should be the correct integer set. As mentioned above the

75

Chapter 4 Analysis and Design of the Positioning Subsystem

first task in beginning the integer ambiguity search is the selection of the primary SVs and

the primary double differences as shown in Figure 4.12.

= - theDD DoubleDiffs | - CStation |PrimaryDDs|| Secondary
C GPSObservat|| CSpaceVehi DDs
getDD
I 3

getSV
I I

|
|
comptiteSVPosition I [
© | |

|

I

|

|

I

I I
getStaﬁoTPosition N
¥ >

I |
| |

adLToPrimaryD[;s

computeGDOP
z—

addToSec?ndaryDDs
T

-y

|
| I
| |
I |
| |
| |

Figure 4.12 Sequence Diagram of Selecting Primary Double Differences

This is done by computing the GDOP (Geometric Dilution Of Precision). The GDOP is an
index of measure reflecting the SV geometry on the position and the time estimate. It is given

by the following equation.

ol +o)+o)+0)
G,

GDOP = \/ (4-5)

where, 0,0, ,0, 0, are the standard deviation in the horizontal and vertical position and

the receiver clock. 0, is the standard deviation of the observation.

A set of ambiguities candidates is generated from the primary double differences by the

sequences of actions shown in Figure 4.13.

These candidates, which are the search space, are computed using the initial approximate

position of the rover station.

In the search for the correct ambiguity set, computations of the direction cosine from the

station to the SV are constantly carried out. The x, y and z components of the direction

76

Chapter 4 Analysis and Design of the Positioning Subsystem

cosine are the linear terms of the Taylor series expansion of p, the distance from the station

to the SV, shown in the following equation.

X'(t)- X, Yi(t)-Y, Z'(t)-z,
— OAY Ay ST A7 (46
o0 T T e O

0/ (0) = pi0) -

p‘.{,(t) is the approximate distance between the station i and SV j, at epoch t, X j(t),

Y’(t), Z’(t) are the coordinates of the SV j, at epoch ¢, and X,,,Y,,Z,, are approximate
coordinates of the station. AX;,AY,,AZ, are the unknown parameters to be solved, which

are the correction to the initial approximation.

theDD thePrimaryDDs | (theApproximate| |theAmbiguityS
Station etlist

| getDD |

computeDirtlactionCosine

com;uteﬂesidual

RouUndTolnteger
[2__._____]

computéAmbiguityFlange

N

|
I
]
l
I
|
I
|
|
I

addToAm Piguity List

\

|
|
|
|
|
|
|
|
|
|
|

Figure 4.13 Sequence Diagram of Creating Ambiguity Set List

The observation equation of a linearised double difference equation, given below, looks
similar to the equation (4-6) . The coefficients derived from the direction cosines (i.e. the
coefficients of each unknown parameter) are used to build up the observation equation. It
would be convenient to have a member function in the double difference class to compute
these direction cosine related terms. Another difference is the introduction of the term on

integer ambiguity:

77

Chapter 4 Analysis and Design of the Positioning Subsystem

k() =al,-AX , +alt-AY, +ali-AZ, +A-N& (47

where,

ak =— Xk(t)_Xao Xj(t)— X 50
° Pso(2) P30(¢)

A

o YO-Y, Y)Y,
i pgo(t) péo(t)

’

Jk :_Zk(t)_zao +Zj(t)'"zso
? Psot) P3o(t)

and AX,,AY,,AZ, are the correction parameters to the approximate rover station

coordinates. %% (z) is the residual, A is the wavelength of the carrier and N/%is the

unknown integer ambiguity.

The residual, also known as the misclosure, is the difference between the observed value and
the computed value of the mathematical model. The residual of the double difference

observation equation is given as:

U (8) = A2-@%(6) - pyo(8) + pho(8) + pi(e) - pi(t) (4-8)

Direction cosines and the residuals are computed for each double difference using the
approximate coordinates of the rover station. The approximate coordinates are used to
compute a set of real valued numbers representing the ambiguities. A set of integer
ambiguities is formed from this real valued set of ambiguities by rounding the computed
value to the nearest integer. From this set a series of integers (for example -5 to +5) are

added to the rounded value to form the list of candidate ambiguity sets.

From the candidate ambiguity sets, each candidate is retrieved and then tested for the
probability of it being the correct ambiguity set. This begins with the computation of the trial
position using the double difference data of the primary double differences and the selected

candidate ambiguity set (Figure 4.14).

In this process, a standard least squares adjustment of the double difference observations is
carried out for the solution of the trial position. One thing to note here is that the observation

matrix and the weight matrix remain the same for all candidates. It is only the residual

78

Chapter 4 Analysis and Design of the Positioning Subsystem

vector which is changed with the change of the value of the integer ambiguity. This means
that the normal matrix need be set up only once and also that only the right hand side vector

of the normal equation need be set up.

l..

Positi

|

getDD I

computeDirectionCosine

|

|
e
N
comI}uteResidual I
— I
™ |
IsInitialCase |

I
I
I
|
|
|
|

<
I iI)rmObserva!ionM atriI(
I |
|brmHes iduaNector|

formW eightM atrix

formNormalM atrix

form RHSVector

solve

. /A N

I
|
I
|
¥
I
I
|
|
I
|
I
I
|

|
I
|
|
|
I
|
I
I
I

__V_VY

Figure 4.14 Sequence Diagram of Computing Trial Position from Primary DDs

With the trial position computed using the double differences of the primary double
differences and the candidate integer ambiguity set, the integer ambiguities for the secondary

double differences are derived (Figure 4.15).

The directional cosines and the residuals of the secondary double differences are computed
first and then rounded to the nearest integer. Both the primary and secondary double
differences are added to a list of double differences called Combined DDs. This list now
contains the double differences with each double difference’s integer ambiguity fixed to a

value.

79

Chapter 4 Analysis and Design of the Positioning Subsystem

ﬁddP rim aryDDToLijt

|

I getDD I
I
I

|

|
|
|
computeDirdctionCosine |
|
|
I

comPuteHesidual

<
<

I
|
|

addSecondLryDDToList
I

I
I

- N

|
|
|
|
|
I
|
I
I
I
|

I
I
I
Floun|dTOAmbiguity | |
|
I
|
|

Figure 4.15 Sequence Diagram of Computing Secondary Ambiguities from Trial Position

The final stage is the evaluation of this set of ambiguity sets by performing a standard least
squares adjustment with the observation equations formed from the double differences of the

CombinedDDs (Figure 4.16).

B CombineddD TAaPosii CEnuat =
CLSQAdjustment

getDD |

computeDichtionCosine

I I
| |
= I |

|

I I

| |

I I

comtuteResidual I I I

*rmObservationMatriI(I I
>~

formResidualVect ,I l

! rmResidualVec orTl X |
=

| formW eightMatrix | |

|

V

formNormalM atrix

>

I formRHSVector |

solve

analyseResult

<
I
|
[
I
I
I
I
|
|
|
|
I

Figure 4.16 Sequence Diagram of Computation of Residual with Combined DDs

80

Chapter 4 Analysis and Design of the Positioning Subsystem

A very similar procedure of computing the trial position with the primary double differences
is pursued except that CombinedDDs are used and the result is analysed to compute the a
posteriori residual value of the finally adjusted value. This value is retained for all the
candidates. The candidate with minimum a posteriori residual value is selected as the correct

ambiguity set.

Because of the huge number of candidates, it is necessary to reduce the computation time
where possible. For this purpose, the ambiguity function value can be computed to reject the
candidate whose ambiguity function value falls below a selected criterion. This process is
shown in Figure 4.17. The ambiguity function value can be said to represent the size of the

residual from a scale of zero to one [Counselman et al., 1981][Mader, 1990].

theDD Com binedDDs theTrialPosition -~
CGPSQObservation
| getDD |
S~
| -
computeDirectionCosine
[
<

combuteHesidual

a—

residualToRadian

yN_

com puIeSigm aCosine

computeAm biguityFunctionV alue

pza—
I

I
I
I
I
I
I
I
I
I
I
|
I
! I

I
I
|
I
I
|
I
I
I
I
I

I
I
I
I
I
|
I
I

Figure 4.17 Sequence Diagram for Computation of Ambiguity Function Value

The integer ambiguity candidate whose value is closest to 1 is likely to have the minimum
residual. The computation of ambiguity function value takes less computation time than the
formal computation of residuals by the least squares adjustment. So candidates with
relatively large residuals can be filtered out .by the computation of the ambiguity function
value. However the least squares method is more rigorous and provides the statistical

information which is not possible to acquire with the ambiguity function value computation.

81

Chapter 4 Analysis and Design of the Positioning Subsystem

4.1.2 Design of Classes of the GPS Data Processing

The CSpaceVehicle class with the CSignalMeasurement struct are shown in Figure 4.18.

Some changes have been introduced from the initially proposed structure of Figure 4.3.

Health : double
Accuracy : double
L2_P_Flag : double
GPS_Week_No : double
Code_L2 : double
I_DOT : double
OMEGA_DOT : double
omega : double

Crc : double

i_0: double

Cis : double
OMEGA_0: double
Cic : double

Toe : double

sqrt_A : double

Cus : double

e : double

Cuc : double

MO : double

Delta_n : double

Crs : double

IODE : double
ClockDriftRate : double
ClockDrift : double
ClockBias : double
TransmissionTime : double
PRN : int

computed by

CClockTime <<struct>>
IsTimeSet : BOOL CSignalMeasurement
GPSSec : double T2_Value : double
DayofWeek : int T1_Value : double
GPSWeek : int D2_Value : double
ModifiedJdulianDay : double D1_Value : double
JulianDay : double P2_Value : double CSpaceVehicle
Minute : int P1_Value : double Nw : double
Hour : int C1_Value : double N2 : double
Day : int L2_Value : double N1 : double
Month : int L1_Value : double Corrected_Code : double
Year: int PRN : int
Second : double LockLoss : BOOL
AmbiguityComputed : BOOL
CheckTime() \ PositionKnown : BOOL
ToGPSSec() \ TravelTime : double
SetTime() \ SigmaRho : double
TodJulian() Rho : double
+T \ SVTimeError : double
. |SVTime : double
U@ +SV_Position | e lativisticCorrection : double
<<struct>> CPosition _~{ TropoCorrection : double
COrbit lonCorrection : double
10DC : double Azimuth : double
TGD : double Elevation : double

CMappingPoint

®Cartesian2Geodetic()
#Geodetic2Cartesian()
®Local2Cartesian()

Figure 4.18 Detail Class Diagram of CSpaceVehicle and CSignalMeasurement

InitializeSignals()
ComputeTravelTime()
ComputeCurrentPosition()
GetSVPosition()
GetSignalMeasurement()
ComputeAzElevRho()
UpdatePosEarthRotation()
ComputeSVTime()
ComputeTropoCorrection()
ComputelonCorrection()
SetSignalValue()
GetSignalValue()

82

Chapter 4 Analysis and Design of the Positioning Subsystem

It was later found that classifying the signal measurement into code and phase and also
classifying the phase into L1 and L2 were not necessary. Therefore to simplify the design,
CSignalMeasurement has been changed to a struct with all the signals as data members. The

values of the signals that are not collected will be set to zero.

The other change is in the CPosition class. It was proposed that the CPosition has
CMappingPoint and CClockTime. This has been changed to an inheritance relationship
where the CPosition inherits the properties of CMappingPoint which has the time property.
So instead of regarding position as an object which has a point and time, it is regarded as a
point in time. The transformation functions to and from geodetic and Cartesian e-frame are

added to the CMappingPoint class.

Some of the important functions in the CSpaceVehicle class are ComputeCurrentPosition
and SetSignalMeasurement and GetSignalMeasurement. The ComputeCurrentPosition
computes the current position of the SV using the data member orbit object. The other
member functions in the CSpaceVehicle class support this computation of current position
and compensate for the error due to tropospheric and ionospheric refraction and the earth

rotation.

The main role of the CClockTime class is to transform the civilian time of year, month, day,
hour, minute and second into the GPS second of the week. This is carried out by the
ToGPSSec function.

Figure 4.19 shows the detail Class Diagram of the CStation class. The main role of the
CStation class is to hold the observation file and provide epoch observations to the
CObservation class. It also holds the objects of the CPosition class to represent the initial

approximation position and the adjusted position.

Most of its data members are read in from the header part of the RINEX observation data
and its member functions are the initialisation of data members and the transformation of
positions to and from the antenna and the station. The CStation class uses a receiver to
compute its position. The receiver has an antenna attached to it. The antenna has a phase

centre with the offset and the correction factor data.

The CStation class also has a list of objects of the CEvent class. An event is defined by
EventType integer, which represents cycle slip, shutter release, lock loss or any other event

the user wishes to define.

Two classes are derived from the CStation class, namely the CRoverStation and the

CReferenceStation. The only difference is that the CRoverStation class holds a list of objects

83

Chapter 4 Analysis and Design of the Positioning Subsystem

object of the CPosition class.

<<struct>>
CAntenna

Radius : double
SlantHeight : double
delta_N : double

CReceiver

SoftwareVersion : CString
ReceiverType : CString
ReceiveNumber : CString

delta_E : double
delta_H : double
Type : CString
Number : CString

/

+m_P hasiCenter

<<struct>>
CPhaseCenter

Offset2 : double
Offset1 : double
HorizontalOffset : double
CorrectionFactor ; double

CorrectEcc()
GetAntenna()

G etEvents()

<<virtual>> ~CReceiver()
CReceiver()

uses

of the CPosition class for the adjusted positions and the CReferenceStation has only one

CStation

Events

<<struct>>
CEvent
StationName : CString
FileName : CString
PhaseType : int
PRN : int
EventType : int

PRNinstances[TotaInSV+1] : in

ObsType[10] : int
noObsType : int
Interval : double
ObsFileName : CString
$ count:int=0

——iCodeAdjusted : BOOL

initialPosKnown : BOOL
Number : CString
Name : CString

t

Initialize()
AntennaPos2StPos()
StPos2AntennaPos()

/4

CRowerStation

+list of adjustgd Positions

EpochPositions

1

CReferenceStation

+adjustedPlosition

CPosition

Figure 4.19 Detail Class Diagram of CStation

+initialPosition

Figure 4.20 shows the detail Class Diagram of the CObservation class. It is the most
important class in the domain of GPS data processing, as most of the computation is carried

out by this class, especially in a single epoch ambiguity resolution processing. Most of the

84

Chapter 4 Analysis and Design of the Positioning Subsystem

functions in the CObservation class are named as described in the Kinematic Phase

Processing of the previous section on the analysis of the GPS data processing.

CObservation
Initialized : BOOL
DoubleDifts Synchronized : BOOL
ObservationValidity : BOOL

nDD : int
\ ReferenceSV_PRN : int
nvalidSVs : int

intHowManySVs : int
ReceiverClockOffsetAccuracy : double
ReceiverCloc kOffset : double

Com puteTestPosResidual()

CDoubleDiff Com puteSecondary Amb()
_ ComputeAmbTestPos()

CycleSlip_L2: BOOL SelectAmbP ar()

CycleSlip_L1: BOOL ComputeGDOP()

IsPrimary : BOOL
L2_Resolved : BOOL
L1_Resolved : BOOL
intParL2 : double
intParL1 : double

FindPrimaryDD() +pm_SyncObs

EstimateSVAmbiguity()
FormDoubleDiffs ()
FormSingleDiffs()

K FindSV()
ddHeS{dual_Pz : double GetSV()
ddHes!duaI_P1 : double SetReferenceS V()
ddFles!duaI_LZ : double FormDDObsEq()
ddResidual_L1 : double FormDDUnitW eight()

FormDDW eight()

Com puteResidual_P2()
ComputeResidual_P1()
ComputeResidual_L2()
ComputeResidual_L1()

UpdateSynchronousSVs()
Com puteSVPosition()
ComputeSingleEpochCodePosition()

N . EmptySyncSVs()
ComputeDirectionCosine() Initialize()
<<virtual>> ~CDoubleDiff() HowManyValidSVs()
CDoubleDiff() GetTime()

GetSVList()

-RefSobs OtherSobs
\/
<<struct>>
CSingleDiff -PrimaryAmbListL1[4]
PRN:int
GPSSec : double

SVs Clist<double,double>

Figure 4.20 Detail Class Diagram of CObservation

The CObservation has a list of SVs, a list of objects of the CDoubleDiff class and a list of
double variables representing the integer ambiguities of the primary SVs. The list of double

differences are formed by the FormDoubleDiffs function. This function will in turn initiate

85

Chapter 4 Analysis and Design of the Positioning Subsystem

the FormSingleDiffs function to form the single differences prior to computing the double
difference values. The CDoubleDifference class has data members to show its state as to
whether cycle slip has occurred, whether the integer ambiguity has been resolved and
whether the double difference is a primary double difference. The computed integer
ambiguity is stored as intParL.1 or intParL2. The computed residuals are also stored as its

data members.

The PrimaryAmbListL1[4], holds the candidate integer ambiguity set of the primary double
differences. It is formed by the EstimateSVAmbiguity function. PrimaryAmbListL1[1] will
hold all the candidate integer ambiguity of the first primary double difference,
PrimaryAmbListL.1[2] for the second primary double difference and PrimaryAmbListL.1[3]
for the third primary double difference.

Each of the candidate values will then fill the intParLL1 variable of the CDoubleDiff class for

the subsequent processing of searching for the most likely integer ambiguity set.

4.2 Processing of IMU Data

Britting specifies that “...An inertial navigation system utilizes the inertial properties of
sensors mounted aboard the vehicle to execute the navigation function. The system
accomplishes this task through appropriate processing of the data obtained from force and

inertial angular velocity measurements...” [Britting, 1971 (pp. 1-10)].

He also specifies that all inertial navigation systems must perform the following basic

functions:

¢ Provide measurements in a selected reference frame;

e Measure specific force;

e Have knowledge of the gravitational field; and,

¢ Time integrate the specific force data to obtain velocity and position information.

The reference frame is obtained through the use of a set of gyros. Three gyros are used to
obtain the rotations of a three dimensional Cartesian coordinate frame. Three accelerometers
are used to measure the specific force vector. However the measured specific force vector
also includes forces of the local gravitational field. Therefore the gravitational field should
be taken into account when the measured specific force data are integrated to obtain the

velocity and the position.

86

Chapter 4 Analysis and Design of the Positioning Subsystem

As in previous cases of adjustment of image observations and GPS observations, in IMU
observations too, a mathematical model is used to relate the observations values from the
sensors and the parameters that are sought. In dynamic systems, the Kalman filtering method
is currently widely deployed to estimate the state vector from the mathematical model

optimally.

In this section, the IMU data processing methods and the Kalman filtering methods will be
analysed and designed using the Object Oriented approach. The designed methods will deal
only with strapdown IMUs, as these are widely used for mapping purposes at present, due to

their relatively low cost.

4.2.1 Overview of IMU Data Processing

In the Object Oriented design for IMU data processing the CIMU class, representing the
IMU, aggregates a list of objects of the class CIMUEpochMeasurement in the class
CIMUMeasurements (Figure 4.21).

The important components of an IMU measurement are the time of the measurement, the
specific force vector and the angular rotation rate vector. It should be noted that the observed

values are increment data from the previous state.

— | ClMU
CTypedPtrlist— [

ASN

~N
~
CPtrList, ‘ClMUEpoc}Me\asurement
N
~N

~N

CIMUMeasurements

Figure 4.21 Class Diagram of CIMUMeasurements

The Sequence Diagram of Figure 4.22 shows the sequence of actions and interactions

between different objects when a data file is accessed.

An IMU object reads the initial data such as its calibration data regarding the gyro drift,
accelerometer bias and a description of the location of centre of gravity. As each data record

is read, an object of the CIMUEpochMeasurement is created. Then the measurement time,

87

Chapter 4 Analysis and Design of the Positioning Subsystem

the gyro data output and the accelerometer data output are read; these values will populate
the Angle Data object and the Force Data object. The populated CIMUEpochMeasurement is
then added to the list, CIMUMeasurements. In post processing, each of the

CIMUEpochMeasurements will be accessed sequentially to be processed.

DataFile MU ||Data Record || Angle Data || Force Data || Data List

I I
c[eate IMU obje?

lread Initial Datp
<

I I
I I
I |
créate Measuremeént |
I |
’ I

read Tirlne Data
I 1

| cleate Gyro Objept
———2>

I | |
read F}aw Angular Ra}e Data |

I creEte Acceleromater

I
|
I
I
I
I
I
I
|

read Raw I=orce Data :

I
I
|
I l I |
I
|
|
I

add ToI|M 4] MeasuremIent List

S N TN T TN T

I

I f I >l
I I I I
| I I I

Figure 4.22 Sequence Diagram of Reading IMU Data File

Figure 4.23 shows the class diagram of CIMUEpochMeasurement. The
CIMUEpochMeasurement has three aggregated classes, CIMUTime, CAccelerometer and
the CGyro.

The CIMUTime is derived from the CClockTime class, which was defined in the GPS data
processing section. This is a helpful feature because the local time frame of the IMU is
normally related to the GPS time frame when the IMU observations are processed and

updated by GPS observations during the Kalman filtering process.

The CAccelerometer holds the measurements produced by the accelerometers and processes
these observations. The CGravity and CCoriolis computes the gravity force and the Coriolis
force. These forces will be removed from the raw measurement to get the force from the

inertial acceleration, from which velocity and position can be directly obtained.

88

Chapter 4 Analysis and Design of the Positioning Subsystem

CIMUEpochMeasurement +rotation_e2b | CRotation

+rotation_b2e

<> X +rotatiop-12e
CGyro

CIMUTime

/ Q\ CMappingMatrix
— us

CAccelerometer +rav\v\AnguIarRateMeasurement

3 +coN1tedAttitude
CClockTim
+rawForceMeas urement <<struct>>
+computedAccelération CXYZvector
+computedVelocity x_Component Double

t:D
CPosition y_Componen ouble
z_Component : Double
(from GPS)
dx : Double
dy : Double
+coriolisForce .
CCoriolis O/— dz : Double

CGravity

Figure 4.23 General Class Diagram of CIMUEpochMeasurement

The CGyro holds rotation matrices which are computed at the epoch of measurement.
Various rotation matrices are computed. The notations rotation_e2b, rotation_b2e and
rotation_l2e shown in the figure, refer to the rotation matrices which transform force
measurements and angular measurements from e-frame to b-frame, b-frame to e-frame and 1-

frame to e-frame respectively.

Many of the measurements and computed values have three components, i.e. one component
for each of the x,y and z directions. A CXYZVector struct is defined to hold these
components as one unit. The CGyro «class has at its data members
rawAngularRateMeasurement and computedAttitude which are both objects of the
CXYZVector. The CAccelerometer class also has objects of the CXYZVector, i.e.

rawForceMeasurement, computedAcceleration and computedVelcity. The CCoriolis and the

89

Chapter 4 Analysis and Design of the Positioning Subsystem

CGravity class each have CXYZVector objects to hold the Coriolis force and the Gravity

force.

Another point to note is that, during computation, the CAccelerometer class needs to access
the rotation matrices of the CGyro class, and the CGyro class needs to access the position of
CAccelerometer. These imply that each class needs to access private data members of the
other class. This can be implemented in C++ by using the ‘friend’ keyword. This association

is shown in the diagram above as the ‘uses’ relationship with arrows pointing to each other.

4.2.2 Mechanisation of IMU Data

The mechanisation of IMU data refers to the process of each CIMU record of observation
where the raw observation data of angular rate and force in the b-frame are transformed to
position, velocity and attitude in the e-frame. The usage of the term mechanisation has

already been explained at the beginning of Chapter 4.

The Sequence Diagram of the mechanisation process is shown in Figure 4.24 (All basic
equations used for IMU data processing in this chapter have been referenced from Schwarz
et al. [1994]).

Initialisation of the mechanisation process is carried out as shown in Figure 4.25.
Initialisation is necessary at the beginning of each sample of observations in the coarse

alignment process which will be explained in the following subsection 4.2.3.

For each record the time interval is computed by differencing the time data of the previous
and the current observation. The rotation data or the angular rate measurement is refined by
removing the drift error. The force data are also likewise refined by removing the bias error.
The drift error and the bias error are provided from the calibration data, which would be

stored in the CIMU object.

w,, = wraw}, —driftVector (49
fi = fraw}, —biasVector (4-10)
where, @, and f,b" refer to the refined angular rate measurement and the refined force

measurement of the b-frame relative to the i-frame quantified to real valued numbers in the

b-frame. Angular rates and force measurements are changed to angles and velocity by

90

Chapter 4 Analysis and Design of the Positioning Subsystem

integration with respect to time. The next process needs to transform the values in the b-

frame to the e-frame with the rotation matrix, R,f .

Data_ MU Time | | Rotation |Quaternion|Force Data ravit Coriolis
i Becord Data Vector

| | |
initia!ise Mechan]sation {ifin it1a| record}

|

|

| | I I
get Time Inter\fal ' |
|

|

| getRotdtion Data |

Remoye Drift Errorl
<~

|
|
|
I
I
|
|
I
|

get Forcle Data |
I 1

|

I

|

I

|

I

|

I

‘ I

Remote Bias Error

transforrI\ Rotation_bbe I
e |
|

I

|

I

I

|

|

N T T T

— -

l

iterate twice /compulIe QuatemiorI Vector I
> I

|

l

I

~ upd?‘t:e Rotation_}bZe
S
S
update Earth Hotati?n

I I |

trdnsform deltd Velocity_b2e

| ~
|

I

|

|

I | I | I
I

|

!

I

|

|

|

I

|

I

|

|

I
I
I
I
I
I
I
I
I
I
|
!
|
I
|
|
|
|
I

| | compute Gravity |

|

—
—
—
—_—

iterate twice —— compute delta Velocity I
< .
< | | complute Coriolis
compute deIIta Velocity
AN K I 4

“update Gurrent Veloclty

|
|
/'-
I
~ | I
|
N =
|

|

I |

| I

I I

| update Clurrent Positibn I

— I
< I

I

I

I

I

compute Current Attitude

Measuremerln

I

I
I
F upcﬁate Previous I
I |

Figure 4.24 Sequence Diagram of Mechanisation of an Epoch Measurement

91

Chapter 4 Analysis and Design of the Positioning Subsystem

tation Dat Gravity Coriolis

transform to Qua[tenion Vector (thationM at_b2e)

compute Coriolis Force(Velocity)

| | %_—_,l
transform EarthFlt| tation_e2b (Data:Interval)
< |

|
|
| | o
| compute Grla\nty Force(Posm?n)
| < l
I |
| |

Figure 4.25 Sequence Diagram of Initialise Mechanisation

The rotation matrix R, is updated from its initial state by the observed values of the

increase in the rotational angles. These increment values of the b-frame relative to the e-
frame can be computed by removing the earth rotation, a geodetic constant. But the earth

rotation which is given in the e-frame needs to be transformed to the b-frame first by
applying the rotation matrix Rf. This matrix is obtained by transposing the R, matrix. So

this process is iterated twice to converge closer to the true value.

With the computed rotation matrix, R; the veloctiy data is transformed from the b-frame to

the e-frame. Now that the initial raw force data has been transformed to velocity in the e-
frame, the next task is to remove the gravity and the Coriolis force. The Coriolis force is

given by the equation below.

-2-w,-v,
Coriolis=| 2-w, v, (4-11)
0

where, @, is the earth roation rate and v,,v, are velocity directional components. The

normal gravity vector in the e-frame, ¥, is given by the equation below and the coefficients

are as defined by Wei et al. [1990].

92

Chapter 4 Analysis and Design of the Positioning Subsystem

fe e, 124y tt4e, 1%} x,
_4q { 2 4 6} 4-12
Y. = ” C,tcy t"+cyt +cy ot 0y, (4-12)
{d,+d,-1* +d,-1* +d,-1°} -2,

The centripetal acceleration is added to the normal gravity vector to compute the effect of the

gravity. The centripetal acceleration is given by the equation below.

w? - x,
Centripetal Acceleration = a)f 'y, (4-13)
0

where, @, is the earth rotation rate and x,,y, are the coordinate values in the e-frame. The
remaining velocity is used to compute the position. But the computation of gravity requires
positional data. Therefore as in the case of computing the rotation matrix R, , the procedure

is iterated twice.

The attitude is computed by using the coordinates of the current position. First the Cartesian

coordinates are transformed to the Geodetic coordinates of latitude and longitude. The

rotation matrix, R/ which transforms from l-frame to e-frame, is computed using these

latitude and longitude values. Then the rotation matrix, R,f is computed by the following

equation.

R'=R'xR (4-14)

Roll, pitch and yaw are derived from the R, matrix as follows.

,
roll = tan'l(— -ﬂ]
£Y)

pitch =sin" (r,,) > (4-15)

r
yaw = tan'l(——ll)
£)

where, r; refers to the element of the the R, matrix at row i and column j.

The mechanisation of a single record of observation data produces increments in the position

and velocity during the time interval. These increments are added to the previous values to

93

Chapter 4 Analysis and Design of the Positioning Subsystem

obtain the current position and the current velocity. The new position is then used to compute

the current attitude.

Finally, the values of the current values for position, velocity and attitude are set as the
previous values. The increment values next computed will be added to these previous values

to get new current values.

4.2.3 Alignment of IMU

Alignment in this thesis is considered only with respect to a stationary strapdown IMU. The
alignment process determines the initial roll, pitch and yaw from the data observations of a
stationary strapdown IMU. This process is divided into two parts: the coarse alignment and
the fine alignment. Coarse alignment computes the approximate attitude from the data
outputs and the positional data. Fine alignment uses the output from the coarse alignment and
improves the attitude using the Kalman filtering method where zero velocity is used in the
measurement update. The Sequence Diagram of Initial Alignment is shown in Figure 4.26.
An alignment time is initially set to determine the number of observations that will be

required to determine the attitude of the IMU.

Next, a sample size is set to divide the amount of data in the alignment time into chunks of
data records. Following this, for each chunk (or sample), the attitude is computed. This is
done in two separate steps. The first step computes the azimuth using the average angular

rate observations of the sample.

Ideally, in a stationary state, this should be the same as the earth rotation rate. The average
angular rate in the b-frame is first transformed to the 1-frame then the azimuth is obtained by

the following equation.

azimuth = —tan~ (4-16)

ie ie

where, [a)’]x,[w.’]y are the x,ydirectional components of the angular rate in the 1-frame.

The transformation from b-frame to I-frame requires the rotation matrix R,f , which in turn

needs to hold the values of roll and pitch. But because these have not been computed yet, an

initial approximation is first used for the roll and pitch.

94

Chapter 4 Analysis and Design of the Positioning Subsystem

In the second step, the roll and pitch are computed using the computed azimuth. The

computed set of roll, pitch and azimuth values are then used to update the rotation matrix

R, . This iteration is continued for the coarse alignment time.

theiMU Measuremen||Data Record tation Eorce Data | {theKalmanFil
tList Data ter

|

iEitiaIise

set align time

|
setﬁ‘ample size

|
getSample |

| det Data Record
| - o — \f‘oralldata recoArds in 7

I | I
| I I
I | |
I | I
I I |
| I I
| I |
I I |
I |

mechanise data |@ach sample

<— L

|
|
| |
| |
| | | P
| |
|

1

I

accumulate angular|data |
: —>> |

I | I
forall sampI|es | computP New Azimuth|
1

L

|

I

I

I

|

I

I

|

I

during coarse align ,;_lransform Velocity_e2b
< | <]
~ comﬂlte New Roll, Pitch
~
~.
~

I

|

! |

>~ = — I |
up?ateIRotation_bze | I
— | I
I

~

fine Align

I I

| |

: :\ updath Rotation_b2I
| |

I |

I | |

| I I [“
I | | | I
| | I | |

Figure 4.26 Sequence Diagram of Initial Alignment
The computation of roll and pitch is performed using the following equations.

oroll = —sin” [T-Ig] (4-17)

95

Chapter 4 Analysis and Design of the Positioning Subsystem

V']

dpitch = sin” m (4-18)

where, Oroll,dpitch are the corrections to the initial approximation, [vb]x,[v"]yare the
x,ydirectional components of the velocity in the b-frame, T is the time interval for the

sample and I g| is the magnitude of gravity. After the completion of the coarse alignment, fine

alignment is carried out.

4.2.4 Detail Class Diagrams of IMU Data Processing

In the design of the classes of IMU data processing, the CIMU class has been designated
with roles which are global in nature for the whole processing time and the
CIMUEpochMeasurement class is mostly involved with the mechanisation of each

observation.

The CIMU class and other related classes are shown in Figure 4.27. The CIMU class itself
holds data about the IMU characteristics, such as its calibration data and scale factors. Its
member functions include computing the scaling factors. An object of the
CIMUEpochMeasurement, named prevMeasurement, is aggregated in this class to hold the
result of a processed data record. This is used in the mechanisation of each epoch

measurement.

Three important classes have been added to the initial design, i.e. the CCoarseAlignment

class, CFineAlignment class and the CTrajectoryEstimation class.

As the name suggests, each is responsible for the tasks of coarse alignment, fine alignment
and the estimation of the trajectory. The CAttitude class is a data member of both the
CoarseAlignment and the CFineAlignment class as they each computes the initial attitude of
the IMU.

The result of trajectory estimation is, however, a list of positions, velocities and attitudes. A
new class called CTrajectory has been created to hold the time of estimation and the
estimated position, velocity and the attitude (Figure 4.28). The CTrajectoryEstimation class
will store the computed list of times, position, velocities and attitudes in the Trajectories

class.

96

Chapter 4 Analysis and Design of the Positioning Subsystem

CIMUEpochMeasurement
timelnterval : double

CiMU computeTimelnterval()

IMUName : String mechaniseData()
centerOfGravity : String updatePrevMeasurement()
gyroDrift : double
accelerometerBias : double

prevMeasurement

dataFrequency : double IMUMeasurements
gyroBitWeight : double K>

accelerometerBitWeight : double

gyroScaleFactor : double <<bind>>

accScaleFactor : double

CPtrList, 'CIMUEpocPMeasurement
computeGyroScaleFactor()

computeAccScaleFactor() | — — =
0 Bam— |
CTypedPrist ~ |~

N

CPtrList, 'CTrajectory
I

Trajectories

CCoarseAlignment

coarseAlignTime : double
coaseAlignSampleSize : double

coarseAlign()
computeAzimuth()
computeRolIPitch()

CFineAlignment

fineAlign() estimateTrajectory()

<<struct>>
CAttitude uses

roll
pitch
yaw
droll
dpitch
dyaw

CKalmaneFilter

Figure 4.27 Class Diagram of CIMU

97

Chapter 4 Analysis and Design of the Positioning Subsystem

<<struct>>
CTrajectory

O

CIMUTime \
IMUTime : double <<struct>>
velacity CAttitude
roll
pitch
yaw
droll
CPosition dpitch
(from GPS) dyaw

<<struct>>
CXYZVector

x_Component : Double
y_Component : Double
z_Component : Double
dx : Double
dy : Double
dz : Double

Figure 4.28 Class Diagram of CTrajectory

The Figure 4.29 shows the Class Diagram of CIMUEpochMeasurement class and other
related classes. The main role of this class is to mechanise each data measurement. It has
three main aggregated classes: CIMUTime, CAccelerometer and CGyro. The CIMUTime
class is the time in the IMU time frame for the current measurement. It is derived from the
CClockTime class, which was used in GPS data processing. Member functions related to

IMU time handling should be included in this class.

The CAccelerometer handles all functions related to force measurement and processes
leading to the current velocity and position. This includes computation of the gravity and the
Coriolis force. The member object ‘currentPosition’ is used to hold positional data. The
CPosition class which has been used in GPS data processing has useful functions such as
transformation of geodetic to Cartesian coordinates. This is another good example of

resusability of a software component through design of the software.

98

Chapter 4 Analysis and Design of the Positioning Subsystem

C MUE pochMeasurement
CIMUTime gurrentTimgtimelntenal : double
ime : < Ko
IMUTime : double computeTimelnterval()
mechaniseData() prevEpochMeasurement
updatePrevMeasurement() |
= :
\/
CClockTime
{from Utility)
CAccelerometer
$ C Gyro
removeBiasError()
removeDriftE rror()

CPosition integrateForce2Velocity()

(rom GPs) | ———————<>|transformVelocity_b2e() &}integralenatez;\nme()

currentPosition [removeGravity() updateQuatarnion().
removeCoriolis () computeCurrentAttitude()

updateVelocity() updateRotation_b2e()
updateP osition() updateEarthRotation()
transformRotation2Quat()
b_forc
b_velogity b_omega_ib currentA ttitude
~

. b_the'ta_ib
e_CurrentVelocity
CCoriolis <<struct>>
coriolis <<struct>> CAtitude
teCoriolis() CXYZV ector roll
computeCoriolis .
P \x_Component: Double pitch
+coriolisForce y_Component : Double yaw
z_Component : Double droll
dx : Double rot dpitch
dy : Double +rotaflon_b2e dyaw
dz : Double +rotation_I2e
curranlOJ/aternion
+gravijyForc -
CRotation CQuatemionVector
(trom Image)
q1 : double
- 2 : double
C Gravity $FormRotationMat_b2e(:3 double
normalGravity ®FormRotationMat_[2e() 4 : double
— centripetalAcc SFormRotationMat_b2I())
gravityForce' Q FormS Matrix()
gravityMagnitude rotationMatrix\ /j}
computeNormalGravity()
computeCentripetalAcc() CMappingMatrix
computeGravityForce() (from Adjustment)
computeGravityM agnitude()

Figure 4.29 Detailed Class Diagram of CIMUEpochMeasurement

The raw force data, the integrated velocity increment and the current velocity in the e-frame

are instantiated from the CXYZVector class.

99

Chapter 4 Analysis and Design of the Positioning Subsystem

The CGyro class handles all functions related to the angular rate data and the computation of

rotational transformation matrices. The CQuaternionVector class is used in the updating of

the rotation matrix R, and the CAttitude class is used to hold the roll, pitch and yaw data.

4.3 Kalman Filtering

Kalman filtering is an estimation process widely used in kinematic and dynamic positioning
problems. It has been covered in numerous textbooks since its original inception in 1960,
[Kalman, 1960] [Gelb, 1974] [Anderson et al., 1979] [Maybeck, 1979] [Maybeck, 1982]. In

this section an Object Oriented design of the basic Kalman filter class will be made.

4.3.1 The INS Error Model

A 15 error state INS model in the e-frame is introduced in this section which was developed
at the University of Calgary [Schwarz et al., 1994].

The rate of change of an error model is described by the following linear differential
equation.

x=F-x+w (4-19)

where, xis the rate of change of the error model, F is the dynamics matrix, xis the error
state vector and w is the system noise.

The error state vector for the INS error model is given by the next equation, where, each row

is a vector with x,y and z components.

dposition
dvelocity
x =| dmisalignment (4-20)
odrift
obias

The derivation of the dynamics matrix is important because it is used in the formation of the
transition matrix which is a part of the Kalman filtering process. The formation of the

transition matrix from the dynamics matrix is given by the equation below.

(FA?)?
21

®, =e™ =I+FAt+ (4-21)

100

Chapter 4 Analysis and Design of the Positioning Subsystem

where, @, _, is the transition matrix describing change from instance k-1 to k and I is an

identity matrix. Usually only the first two terms on the right hand side of the above equation

are used in the computation of the transition matrix.

The dynamics matrix is derived from the following set of error equations [Skaloud,

1995][Schwarz et al., 1994].

N, N, Nj, 0 2w, 0
ovelocity=| N,, N,, N,, [fposition+|-2w, 0 O évelocity
N, N;, Nj 0 0 O
, . (4-22)
o f, -J
+-fF 0 ¢ |Omisalignment + R; - 6bias + noise
fy -f 0
5p0s.ition = évelocity + noise , (4-23)
0 w O
omisalignment =| —w, 0 O |dmisalignment + R; - &drift + noise (4-24)
0 0 0
5drzft = noise (4-25)
&);'as = noise (4-26)

where, f., f, and f, are specific force components in e-frame and N,,to N, represent the

influence of the normal gravity error.

4.3.2 The Kalman Filter Class

The Kalman filtering process can be classified into the two different subprocesses of
propagating (or estimating) and updating. The Kalman filtering process is shown in the

Figure 4.30 Sequence Diagram.

An initialisation of the state vector (X vector), the state covariance matrix (P matrix) and the
spectral density matrix of the system noise (Q matrix) is followed by the iteration of the

propagation process and the measurement update process.

101

Chapter 4 Analysis and Design of the Positioning Subsystem

EilterProcess propagation |imeasurementy
pdate
initiaIiJe State Vector | l
| |
| | |
initiqlise P Matrix | |
=1 | |
initihlise Q Matrix | |
[P | 1
I form Phi Matrix | !
|) |
T —)
- - ~|_ |
unti — pr?pagate State Ve\cfor ~ _ |
m easurement > -
is awailable - | I IR
— - Ft\opagate P Matrz] | ~~ _|continuous
= > iteration until
| | | end of data
| computelK Matrix | . -
| ! >
| update Stjte Vector -~ |
| 2
| <)
I ~
|
|

[
update P Matrix

L

I

|

|

Figure 4.30 Sequence Diagram of Kalman Filtering

In the propagation process, the transition matrix (Phi matrix) is formed to be used in the

propagation of the state vector, given by the following equation.
X" =@ x5’ (4-27)

where @, _, is the transition matrix from epoch k-1 to k. The ‘"~ * superscript on the variables

indicate that they are prior estimates (i.e. propagated) whereas those with the ‘+’ superscript
indicate that they are updated estimates. The state error covariance matrix is then computed

by the following equation.

P = (Dk—lPlc—l+(Dk—1T +0 (4-28)

102

Chapter 4 Analysis and Design of the Positioning Subsystem

When the external measurement becomes available, the propagated state vector and its error

covariance matrix are updated. If the measurement is given by the following equation,

,=H, -x, +v, (4-29)

where, z,is the measurement vector, H,is the design matrix and v, is the measurement

error vector, the updated state vector and its updated error covariance matrix are given as

follows.

x=x 4K [z - H, %] (4-30)
R*=[I-K,-H] P~ (431)
K,=P -H'[H, B -H+R] (4-32)

where, K, is the Kalman gain matrix and R, is the measurement error covariance matrix.

The following figure, Figure 4.31, shows the class diagram of the CKalmanFiltering class. In
IMU data processing, an INS Kalman filtering class should be derived from this class and the

specific formation of the transition matrix and the design matrix should be carried out.

The initialisation process is placed in the CKalmanFiltering main class. The state vector, the
P matrix and the Q matrix are also placed in the CKalmanFiltering class. The aggregated
CMeasurementUpdate and CPropagation class each have two pointer variables pointing to
the P matrix and the state vector of the CKalmanFiltering class. Therefore, while the
updating and propagating process are delegated to different classes, the updating and the
propagating are done for the same state vector and P matrix of the CKalmanFiltering class.
As shown in the figure, all the propagating and updating process and their relevant matrices

are placed in the CPropagation class and the CMeasurementUpdate class.

103

Chapter 4 Analysis and Design of the Positioning Subsystem

CKalmanFiltering

dimStateVector

initialise_QMatrix()
initialise_PMatrix()
initialise_XVector()

0

state_XVector

stateCovariance_P Matxix
systemNpise_QMatrix

CPropagation CMeasurementUpdate
propagate_PMatrix() update_KMatrix()
propagate_XVector() update_XVector()
form_PhiMatrix() update_PMatrix()

ij easurementCov_RMatrix

designMat_H Matrix
measurement_ZVector

]
transitionMattrix_

propagated_XVeaotor

gain_K Matrix

ro ated_P Matxix
propag updated_XVector

updated_PMatrix

CMappingM atrix

Figure 4.31 Class Diagram of Kalman Filtering

4.4 Summary of Chapter 4

In this chapter, the design of the classes involved in GPS data processing, IMU data

processing and Kalman filtering were presented.

Much of the analysis of the GPS data processing was devoted to the resolution of the initial
ambiguity which is necessary in GPS surveys with phase measurement observations. The
most important classes in GPS data processing are the CSpaceVehicle class, the
CObservation and the CDoubleDiff class. The main responsibilities of the CSpaceVehicle
class are to compute its own position at an epoch and to hold all the observation data (i.e.

code ranges, phase measurements, Doppler measurements and others) captured by a receiver

104

Chapter 4 Analysis and Design of the Positioning Subsystem

for the particular space vehicle. The main responsibilities of the CObservation class are to
form the observation equation for subsequent least squares adjustment and to resolve the
integer ambiguity. The CDoubleDiff class is used by the CObservation class in its formation
of double difference equations. The classed designed for GPS data processing is shown in

Table 4.1.

Table 4.1 Classes Designed for GPS Data Processing

Space Vehicle related Station related Observation related

CSpaceVehicle CStation CObservation
CSignalMeasurement CRoverStation CDoubleDiff
COrbit CReferenceStation CSingleDiff

CClockTime CPosition

CReceiver

CAntenna

CPhaseCentre
CEvent

Analysis of IMU data processing was focussed on the mechanisation of the IMU data and the
initial alignment process. The main classes for the IMU data processing are the
CIMUEpochMeasurement class, the CAccelerometer class and the CGyro class. The CIMU
class is the main class which uses other aggregated classes to perform alignment,
mechanisation and estimation of the trajectory. The CIMUEpochMeasurement class is
responsible for mechanising and producing a set of position vector, velocity vector and
attitude vector from each epoch data of the IMU. The CIMUEpochMeasurement class
aggregates both the CAccelerometer class and the CGyro class. The force data are held by
the CAccelerometer class which integrates force to velocity and then to position. The CGyro
class holds the angular rate data from the gyro and processes these to attitude data. The
CAccelerometer and the CGyro classes interact to mechanise each observation. Separate
classes for coarse and fine alignment, CCoarseAlignment class and CFineAlignment class

were designed to perform the alignment process.

Classes for the Kalman filtering process was also designed. Three classes, the

CKalmanFiltering class, the CPropagation class and the CMeasurementUpdate class, were

105

Chapter 4 Analysis and Design of the Positioning Subsystem

designed to form the necessary matrices which will perform the estimation and the

measurement updating process of Kalman filtering.

The classes designed for IMU data processing and Kalman filtering are shown in Table 4.2.

Table 4.2 Classes Designed for IMU Data Processing and Kalman Filtering

IMU related Epoch Observation related Kalman Filtering related
CIMU CIMUEpochMeasurement CKalmanFiltering
CCoarseAlignment CAccelerometer CPropagation
CFineAlignment CGyro CMeasurement
CTrajectory CCoriolis
CAttitude CGravity
CIMUTime CQuaternionVector
CXYZVector
CKalman

106

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

5. ANALYSIS AND DESIGN OF THE IMAGE POINT
REFERENCING SUBSYSTEM

The image point referencing subsystem performs the task of geometrically relating the image
coordinate frame to the ground coordinate frame. The main processes of this subsystem are
the data reading process (image points, control points and sensor data) and the bundle

adjustment process.

Most of the classes used in image point referencing have been identified in the image
acquisition subsystem. Many of the processes in this image point referencing subsystem
involve the formation of matrices using various classes (e.g. CImagePoint, CImageSensor,
CControlPoint, ...) followed by algebraic computations using these matrices. A Use Case
Diagram of the image point referencing subsystem is shown in Figure 5.1. As shown in the
diagram, sensor data and control points are accessed from the data files or directly from the
image acquisition subsystem or the positioning subsystem. Image points however can be read
from the data file or by a selection of an image point (manual or automatic). The selection of

the image point is then followed by its coordinates computation.

In case of a manual point selection, the human operator (GeoSpatial DB Specialist in this
case) points an indicator on the image display to the selected point and records the
coordinates by clicking the mouse. The same groun?s/ poirl_lgappearing in other images (called

conjugate points) are identified and recorded in the same manner.

In the case of automatic point selection, there are more complex algorithms involved.
Selecting a point automatically is difficult because it involves the judgement as to which
point is suitable for image point referencing purpose. To emulate the human judgement
process would involve a very complex computer process. Instead for this purpose, many
distinct points from a region of an image are arbitrarily selected using interest operators.
These points are called interest points. This process is represented by the Use Case called
Select Interest Points in the diagram. Conjugate points of the arbitrarily selected interest
points are selected and measured in other images by the matching process. This is

represented by the Match Points Use Case.

The image matching process can be classified into area based, feature based and relational,
according to the matching strategy used. The most popular matching strategy is the area
based least squares matching. Another area based matching method called the cross
correlation matching method is usually used to compute the initial approximate pixel

coordinates which are necessary in least squares matching.

107

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

In this chapter, the algorithmic aspects of the bundle adjustment will be explained. Sequence
Diagrams will be used to illustrate the sequence of processes of the bundle adjustment as

well as the objects that interact with each other.

/\
Read Sensor Data

Image Acquisition
Subsystem (trom Utility)

\ Least Squares Matching

Read Control Points Data
(trom Ullllly) ross Correlation Matching

Get Sensor Data

X -

Positioning Relational
Subsystem Matching

Area Based Matching
GetControI P oint

Feature Based Matching

AN
z_/—

Match Points

\

Q
/N

Bundle Adjustment Least Squares Adjustment

GeoSpatial
DB Specialist
@ Compute
Initial Approximation
Manual image Get Image Point

Point Selection -
|) O
© Select Interest Points

Read Image Data \

\
Y o

Selectimage Point Automatic Image
Point Selection

Figure 5.1 Use Case Diagram of Image Point Referencing Subsystem

108

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

5.1 The Collinearity Mathematical Model

A bundle of rays in photogrammetry refers to the lines connecting the ground points, the

perspective points and the image points. This is shown in Figure 5.2.

Figure 5.2 Bundle of Rays

The mathematical model in photogrammetry uses this concept of the ‘bundle of rays’ to set
up the relationship between the image coordinate observations and the unknown parameters
of the image, the sensor and the ground points. The rays are each modeled as a straight line
passing through these points. This mathematical model, widely used in photogrammetry, is
known as the collinearity condition. The collinearity equations are given as below (All basic
equations used for image point referencing in this chapter have been referenced from
Merchant. [1994]).

x=(x, +)- c%
(5-1)

Al

Y
)’=()',,+5y)—cE

109

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

where, x,y are the image coordinates, X,,y,are the coordinates of the principal

point, dx, dy are image coordinate compensations for the systematic errors, ¢ is the principal

distance and X',Y',Z' are defined as follows.

X' X-X,
Y' = Rimage Y— Y;) (5-2)
z zZ-7,

In the above equation (5-2), X,Y,Z are the ground coordinates, X,,Y;,Z, are the

coordinates of the perspective point and R, is the image rotation matrix formed by

image
W,Q,K , the primary, secondary and tertiary rotation angles of the image at the moment of

exposure. The rotation matrix elements are shown below.

COSQCOSK COSWSINK +sin@sin@cosK Sin@sink —Ccos® SIn¢ COSK

R__ =|—cos@sink cos@WCosK —sinwsin@sink sin@ cosk +coswsin@ sink

image

sin@ —sinwcosg COSWCOSQ

The observations in the collinearity model are the image coordinates, and the unknown
parameters are classified into three sets: image parameters; sensor parameters; and, point

parameters.

The image parameters, also known as exterior orientation parameters, refer to the coordinates

of the perspective point and the rotation angles. For each image there are six parameters.

The sensor parameters, also known as interior parameters or additional parameters, refer to
the correctional terms to the systematic error. These were explained in Chapter 3. In addition
to the lens distortion and the film shrinkage corrections, the principal distance and the
principal point coordinates are also included in this parameter set. If only one sensor is used
for all the images, which is normally the case, one set of sensor parameters exists for the
whole computation. In such a case there would be ten parameters in the sensor parameter set.
If the sensor parameter set is included in the computation of pérameters, the bundle

adjustment becomes the self-calibration process. If the sensor parameters are known, the

110

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

sensor related observation equations are not included and the computation is then a normal

case of bundle adjustment.

The point parameters are the x,y,z ground coordinates of the observed image point. There
are three parameters for each ground point. Control point coordinates, i.e. ground points
where the coordinates are known with high accuracy, are also included in the observation
equations. These observations are given very large weights and they remain fixed through the

computation and act as constraints in the adjustment to influence other parameters.

The observation equations which comprise observations and parameters can be divided into
two main types: the Image Observation Equation and the Direct Observation Equation (also

called Pseudo Observation Equation).

5.1.1 Image Observation Equation

The Image Observation Equation refers to the observation equations formed using the image
point coordinates observations and the collinearity equations. The collinearity equations are
linearised with respect to the parameters and iterated to solve for the unknown parameters.
The coefficients therefore are the partial derivatives of the observation equations. One pair of
equations, one for each x coordinate and y coordinate, exists for each image point
observation. In the formation of the design matrix, i.e. coefficient matrix of the the
collinearity equations, it is first linearised with respect to the unknown parameters. And as
the result of linearisation the coefficients are grouped into parameter groups. The coefficients
of the image parameter group, to be called Image Design, are computed as follows
JF (%)

2(x,9,w,X0,Yo0,Zo)

The coefficients of the sensor parameter group, to be called Sensor Design Submatrix, are
computed as follows

OF (x)

Jd(Xp,Yp,CC,P1,P2,K1,K2,K3,A,B)

Sensor Design Submatrix = IF((54)

i)
A(Xp,Yp,CC, P, P2,K1,K2,K3,A,B)

The coefficients of the ground point parameter group, to be called Point Design Submatrix,

are computed as follows

111

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

IF (x)
Point Design Submatrix = aF(yé(X,Y,Z) (5-5)
d(X,Y,Z)

The discrepancy vectors are the numerical values obtained by evaluating the mathematical
models with the original observations (x,y) and the current estimates of the unknown

parameters. They are computed for each image point observation.

- X

obs

x computle
Image Discrepancy Subvector = pued (5-6)
y obs y computed
For each image point observed, the above submatrices of equations (5-3) to (5-6) are
evaluated. These submatrices and the subvector will be used in the formation of the normal

equation.

5.1.2 Direct Observation Equation

An observation model can be adopted to add the parameters as observations. This enables the
incorporation of known standard deviations regarding the parameters into the observation
model. If the parameters are unknown parameters, such as the coordinates of a tie point, a
weight value close to zero can be given to make them free parameters. If the point is a
surveyed control point with known standard deviations, the known precision value (for
example 0.02 metres) can be used to fix, or constrain, the computation result within this
uncertainty level. A simple direct model can be used for this purpose [Brown et al., 1964].
Addition of the direct observation equation to the observation model results in simple matrix

addition in the normal equation as shown below:

BioseWBinege * Wonage BinageWBionior BrigeWBooin | Dinage
BrrorWBeosor " Weanor BionarWBoine | Dsonr
BroiaWB im + Wi | A poim |
(5-7)
B WE ~ Wiy Eopege |
= | Boonsor WE = Wonior E ensor
B:aintWE - Wpaim Epoim i

112

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

where B, B

image * *~ sensor

B are design matrices related to image parameters, sensor

point
parameters and point parameters. Wand E are weight matrix and discrepancy vectors

W w

sensor * ' point

formed by applying the image observation equation. W, and

image °

E E

image » Esensor + E poine @€ Weight matrices and the discrepancy vectors formed by using the

direct observation equations.

As the result of adding the direct observation equations, the diagonal submatrices of the
normal matrix in equation (5-7) are added with the weight matrices. The Right Hand Side
Vector submatrices of the normal equation are subtracted with the weight matrix multiplied
by the discrepancy vector. For the first iteration cycle, the discrepancy subvectors

E E E

image *

are zero but subsequent iterations should use the updated parameters to

sensor * *~ point

compute the values of the discrepancy subvectors of direct observation.

In consideration of the resulting normal equation, it can be seen that processing the direct
observation equations amounts to addition of their final contribution to the normal equation.
The evaluation of the Design Submatrix or the Discrepancy Subvector is not needed as was

the case in processing image observation equations.

5.1.3 Formation of the Normal Equation

After the design submatrices are evaluated for an observation, the next step is the formation

of the normal equation and its solution.

There are two way of forming the normal equation. It can be formed by using the full design
matrix or by direct formation of the normal matrix from observation submatrices without

forming the full design matrix.

The first way of using the full design matrix is shown by the following equation:

B"WB-A = B"WE (5-8)

where B is the full design matrix.

The second way of forming the normal equation is a useful method if the observations are
not correlated and there are not many variations to the computation process, such as in the
bundle adjustment. It is possible to directly compute the contribution of each observation to
the formation of the normal equation. This will save a lot of computation time and computer

memory space. This procedure of direct formation requires the computation of the location in

113

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

the normal matrix to which the contribution of the observations will be accumulated. The
computation of this location is simplified if the normal matrix is structured according to the

parameter groups.

In this software design, the structure of the normal matrix for the bundle adjustment is

configured as below [Merchant, 1984] in Figure 5.3.

Image Parameter
6x6
Sensor Parameter
10x 10
Sensor-Image Submatrix
Point Parameter
3x3
Point-Image Submatrix | Point-Sensor Submatrix [|

Figure 5.3 Structure of the Normal Equation for Bundle Adjustment

The initial location of the contribution of an observation for Image Design Submatrix is

computed as:

row = (Image Index-1) * 6 + 1 (59

where Image Index refers to the number of the image in a consecutive series of images.
The initial location of the contribution of an observation for Sensor Design Submatrix is
computed as:

row = (Total Image Parameters) + (Sensor Index-1) * 10 +1 (5-10)

where Total Image Parameters is computed as the total number of images multiplied by 6,

which is the number of image parameters for each image.

114

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

The initial location of the contribution of an observation for Point Design Submatrix is
computed as:
row = Total Image Parameters + Total Sensor Parameters

+ (Point Index - 1) *3 +1 (5-11)

The Total Sensor Parameters value is computed by multiplying the total number of sensors
by 10. For the diagonal submatrices, the initial column number is the same as the initial row
number. However for off-diagonal submatrices the initial row and initial column numbers are

different.

For example to compute these for the Sensor-Image Submatrix, the initial row and column is
computed as:
row = Total Image Parameters + (Sensor Index-1)*10 + 1 (5-12)
col = (Image Index-1) *6 + 1 (5-13)

Initial row and column for other off diagonal submatrices can be computed in a similar way.

The next figure, Figure 5.4, shows the sequence of processes in the formation of the

observation equations for each image point.

get Ray |

evaluafe Coefficients

form Image Design Suleatrix and Discrepancy SubVector
PZRN |
compute Location of Noim al Matrix for Image S ubMatrix

m—
|

|
|
|
|
|
|
|
| form SensorDesign SubIV|atrixand Discrepancy SubVector
|
|
I
l
|
l
|
|

compute Locati(In for Sensor SubMatrix

[Pzm—
I

form Point D esign SubMatrixand Discrepancy SubV ector

compute Location for Point SubMatrix

!

|

Figure 5.4 Sequence Diagram to Form Observation Equation

115

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

5.1.4 Design of the CCollinearityEquation Class

The collinearity equations involve: 1) the coordinates of the ground point, perspective point
and the image point; 2) the rotation matrix of the image; and, 3) the principal distance and
the principal point of the sensor. If one looks at the class carefully, all these values can be

accessed through the CRay class.

The CRay class in itself only contains the three points of a ray as mentioned in item 1)
above. The image point however has a member function to retrieve the image which contains
the image point, GetImage() (refer to Figure 3.19 in Chapter 3). The CMappingImage class in
turn aggregates the CRotation class and the CPerspectivePoint class (refer to Figure 3.19 of
Chapter 3). This means that 2) and 3) are also accessible and also that the collinearity
equations can be formed using only the CRay class. It can be seen that the introduction of the
CRay class has made coupling weaker than when not using the CRay class (refer to

subsection 2.1.2 of Chapter 2) thereby increasing modularity and reducing complexity.

The result of the class design is shown in Figure 5.5. CBundleEquation is derived from the
virtual CEquation. This CBundleEquation class holds functions common to the image
observation equation (i.e. the collinearity equations) and the direct observation equations.
The CCollinearityEquation class and the CDirectObservationEquation class are derived from
the CBundleEquation. The computation of the location is the same for both the
CCollinearityEquation and the CDirectObservationEquation but the computation of

contribution is different for each case.

The CDirectObservationEquation needs only to compute the normal matrix contribution and
its location. Therefore the contribution function needs to be overridden in the derived
classes. The location computation can be done using the base class functions of the
CBundleEquation because they are the same for both the image observation equation and the

direct observation equations.

The CCollinearityEquation also needs to compute the normal matrix contribution and its
location. As in the CDirectObservationEquation, the location computational functions need
not be overidden, but in the computation of the normal matrix contribution, extra functions to
compute all the design submatrices for each parameter group are necessary. These are
included as member functions and named appropriately by such as formImageDesign,

formSensorDesign, formPointDesign,...

116

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

<<vntuab>
CEquation

DesignSubMatrix
DiscrepancySub Vector

CMappingMatrix

formDesign()
formDiscrepancy()

N

Image_DesignMat
Image_DisrepancyVec
Image_NormalSubMat

Image_NormalRHS Sup'Vec

Sensor_DesignMat,
Sensor_DiscreparcyVec
Sensor_Normal8ubMat
Sensor_Norpral RHSSub Vec

CRotation

Point_BesignMat

Pojrt_DiscrepancyVec
Pdint_NormalSubMat

CBundleEquation

NormalMatrixLocation_ImageDesign
NormalMatrixLocation_imageDiscrepancy
NormalMatrixLocation_SensorDesign

NormalMatrixLocation_PointDesign
NormalMatrixLocation_PointDiscrepancy

NormalMatrixLocation_SensorDiscrepancy

computelLocationNormalMatrix_image()
computeLocationNormalMatrix_Sensor()
computelocationNormalMatrix_P oint()
computeNormalSubMat_Image()
computeNormalRHSSubVec_Image()
com puteNom alSubMat_Sensor(
computeNormalRHSSubVec_Sensor()
computeNormalSubMat_Point()
computeNormalRHS SubVec_Point()

Point_NormalRHS SubVec
ClmageRotation
omega
_ phi
1 kappa
uses —J domega
CRay dphi
(from Point) dkappa
J <> FormRotationM atrix_Aerial()
FormRotationM atrix_Topo()
CControlPoint ClmagePoint
{from Point) | (from Polnt)

™

\,«\

CcCollinearity Equation

formimageDesign()
formSensorDesign()
formimageDiscrepancy()
formSensorDiscrepancy()
formPointDisrepancy()
formPointDesign()
computeNormalSubMat_lmage()
computeNormalRHS SubVec_lmage()
computeNormalSubMat_Point()
computeNormalRHS SubVec_Sensor()
computeNormalSubMat_Point()
computeNormalRHS SubVec_Point()

Al

CMappingimage

(from Image)

caph)&ed by
]

A CPerspective Point

(from Point)

L

CimageSensor

CDirectObservationEquation from Imaglng Sensor)

computeNormalSubMat_image()
computeNormalRHS SubVec_lmagse()
computeNormalSubMat_Sensor()
computeNormalRHS SubVec_Sensor()
computeNormalSubMat_Point()
computeNormalRHS SubVec_Point()

Figure 5.5 Class Diagram of the CCollinearityEquation Class

A new class called CImageRotation has been derived from the CRotation class. This class
will handle only the formation of the rotation matrix from the rotational angles. This has
been done to differentiate it from the rotational matrix of the Positioning Subsystem, which

has different characteristics.

117

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

As can be seen from the class diagram, the CBundleEquation class only has one arrow
extended to the CRay class. The rest of the information regarding to other various objects are
handled by the CRay class. This implies that only the CRay class needs to be taken into

account if any changes occur in the CBundleAdjustment class.

5.2 Solution of the Normal Equations

After the formation of the normal equation from the observation equations, the unknown
parameters are solved using matrix computations. The CCollinearityEquation class explained
in the former subsection was responsible for the formation of the design matrix of the

observation equation and also the formation of the normal equation.

In this subsection a class will be designed whose main task will be to solve the normal

equation.

The design of class to solve the normal equation should be made in consideration of the fact
that although the the observation equation varies under different situations, the solution of
the normal equation is processed in a quite standardised manner. Taking this into account, it
was determined that this class (to solve the normal equation and to be called the
CLSQAGdjustment class) should use a virtual base class of the observation equation so that

the observation equation can take many forms.

First the sequence of processes and interactions between different objects in the least squares
adjustment are investigated. The result of this investigation is shown in the Sequence
Diagram of Figure 5.6. After analysing each process in detail a class diagram of the
CLSQAdjustment will be presented as the final result of the object oriented design of the

least squares adjustment.

After the relevant matrices have been formed, the adjustment process is simply a series of
matrix computations. In any matrix computation the dimension of the matrices to be
computed must be known in advance. After allocating the memory space for the matrices all
the values of the matrix elements are initialised to zero. This is referred to as the ‘initialise

Adjustment’ process in Figure 5.6.

Also, before proceeding with the computation, the redundancy of the observations must
always be checked. This means that the number of observations must always be greater than

the number of parameters if the computation is to be solved.

The next step in the least squares adjustment is an iteration process which will solve for the

correction to the previous approximate parameters. Before the solution of each parameter,

118

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

the normal equation matrices are newly formed using the updated parameter values (or the
approximate values for the initial iteration). The iteration is continued until it meets the

criteria to stop the iteration.

. CLSQAdjustment = -
ot ionE ion) ||(Di of ionE ion)
initialisE Adjustment

check|Redundancy

initialise Ilteration

Yy

-/I form Image SubMatrix
I

/ form Sensor SubMatrix
|— st

These N

processes are
carried out for

. . —~
| form Point SubMatrix N ~

Continue —

|
|
|
|
|
|
|
~H
|

iteration ~ ¢ .
until iteration compute LocatiJ)n in Normal Equation each image point
criteria are F in each lma.ge.
met compute Contribution in Normat Equation The resultis a

|
|
|
I L update Normal Matrix
u

[— | |combined
\ I | Normal Equation
\ |update Nomal RHS Vector | ya
\ I l comput} lécatil)n in Normal Equation .
PP
Voo I / | Ié—' . |
'\] I compute CDntl’lbL‘lan in Normal Equation
Vo | 7)
\\ /
\ L‘ update Nlormal atrix

\L
solve Ngrmal Equation
iz_":

updaté\ Parameter

check ItT‘ra';tion Criteria
computj Unit Variance

compute Adjusted Parlameters Standard DeviatioA
|
I
|
|
|

1
update N orrka),RHS Vector
[
|
|
|
|
|

compute C]orrelation Matrix

compute Check Point RMS

|
—
1
|

|

|

I

|

l

|

|

|

|

! |

Figure 5.6 Sequence Diagram of Least Squares Adjustment

Usually the number of iterations and the a priori unit variance are used as the criteria to stop
the iteration. The iteration stops in either of two cases: 1) if the number of iterations exceeds

a certain limit (e.g. more than 5) which means something is wrong with the data or the

119

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

model; or 2) if the a priori unit variance is close to zero (e.g. smaller than 0.0001 metres)
which means that a solution has been reached. If the criteria are not met the parameters are

updated and the iteration continues.

The solution of the normal equation can be optimised to utilise the fact that the normal
matrix is a symmetric and a positive definite matrix. The Cholesky factorisation technique is

applied for this purpose.

5.2.1 Cholesky Factorisation

For any symmetric positive definite matrix A, there exists a unique lower triangular matrix
with positive diagonal entries such that A = GG', where G is known as the Cholesky
Triangle [Golub et al., 1996]. The factorisation of the A matrix into Cholesky Triangles is
known as Cholesky factorisation or Cholesky decomposition. The application of the
Cholesky factorisation enables the optimisation of the solution of the normal equation by
computing the parameters without having to compute the inverse of the normal matrix. The

normal equation (5-8) can be rewritten as:
N-A=U (5-14)

where N is the normal matrix and U is the RHS vector of the normal equation. After

Cholesky factorisation this equation becomes :

(G-G")-A=U (5-15)

or:

G-(G"-A)=U (5-16)

where G is the Cholesky Triangle. The solution now can be acquired by a series of forward

and backward substitutions. First, the equation is solved for GT - A then for A, the unknown
parameters. This scheme is made even more ideal by the fact that G is already a triangular

matrix.

5.2.2 Analysis of Result

When the solution has converged to a set of parameter values, the adjusted parameters are
determined as the solution and a series of computations is carried out which will indicate the

statistical precision and accuracy of the solution.

120

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

Computation of Unit Variance

After the final solution of the parameters, the residual vector (also known as the misclosure

vector), is used to compute the a posteriori unit variance. The adjusted parameters are used

in the computation of the residual vector computation. The unit variance is computed as:
vIWy

" nObservation—nUnknown

o, (5-17)

where, Oy is the a posteriori unit variance and v,W are residual vector and weight matrix

respectively. The weighted quadratic sum of the residuals is divided by the redundancy to get

the unit variance.

Computation of Correlation Coefficient

The introduction of new parameters to a mathematical model can prove to be beneficial or
detrimental according to their relevance to the actual physical phenomena. This is because
the parameters can be correlated and if the adjustment is carried out without taking the
correlation into account, the solution could be quite erroneous even though it has converged
to one set of values. In the bundle adjustment it has been found that the principal distance
and the principal point coordinates can be highly correlated with the lens distortion
parameters, depending on the geometry of the photography [Moniwa, 1981]. Therefore, in a
self-calibration adjustment, variation in the geometry should be provided by such methods as
large rotation angles (such as in convergent photography) and different image to object
distances. Even with such variations, the correlation coefficients of the parameters should be
computed to check for correlations. The correlation coefficient between different parameters
can be easily computed from the covariance matrix, which is the inverse of the normal

matrix.

The correlation coefficient between two parameters are given as [Mikhail et al., 1976

(pp.294-303)]:

(5-18)

where, p is the correlation coefficient, s,,is the covariance between the parameter x and y

and s,,s, are the standard deviations of the parameter x and y, respectively. The values of

121

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

correlation coefficients are between zero and one, with a value close to one signifying high

correlation between the two selected parameters.

Computation of Check Point Root Mean Square Error

The a posteriori unit variance is a statistical measure of precision and it signifies how close
the observations are to the mathematical model computed with the adjusted parameters.
Sometimes it is necessary to check the result of an adjustment with some external known
values of superior accuracy. This would be a check on the absolute accuracy rather than on
the statistical precision. Check points are selected for this purpose in many photogrammetric
tasks. The adjusted ground coordinates of selected points, which are treated as unknowns, are
compared to the pre-surveyed coordinates. The root mean square error of all the check points
is an indication of the accuracy of the adjusted parameters, with reference to a set of values
obtained in a known superior method, such as ground control point survey. The planimetric

root mean square error of check points are computed as:

“ 2 & 2
Z (xadjusred - xsurveyed) + 2 (y adjusted -y surveyed)
: 1

RMS.,, =1 5-19
xv o (5-19)

where, n is the number of check points.

The height root mean square error of check points are computed as:

1 2
2 (zadjusled - Zxurveyed)

RMS, = (5-20)
n

5.2.3 Storage Optimisation in the Least Squares Adjustment

For the purpose of reducing the required computer memory in an adjustment, a scheme is
used to relate the position of a lower triangular matrix to its dynamically allocated memory
address [Wolf et al., 1997 (pp. 441-457)]. The mapping scheme is shown in Figure 5.7. This
allows memory allocation of only the lower triangular matrix, instead of the whole normal
matrix. Thus approximately only half of the memory is required. The numbers along the top
of the matrix are the column numbers and down the left side are the row numbers of the
normal matrix. The numbers in the shaded boxes are the index numbers of the allocated

computer memaory.

122

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

1 1

2 2 3

3 4 5 6

4 / 8 9 10

5 11 12 13 14 15

Figure 5.7 Memory Index of Column and Rows of Normal Matrix

The mapping between the rows and columns of the normal matrix and the memory index can
be represented by the following equation:

/ rowx (row - 1)
MemorylIndex(row,column) ~ column + (5-21)

The size of the memory to be allocated for the normal matrix is given by the following

equation:

row X (row+ 1) +1

MemoryDimension = (5-22)

For the illustration in Figure 5.7, the memory dimension is 16. One extra unit is added
because the first block (zero index) is skipped and the first matrix value is stored in index

one.

In C++ the usage of the above equations is shown by the example below.

#define Getlndex(row,col) (col + row*(row-1)/2)

int row = 5;

int nDimension = row*(row + 1)/2 + 1;

double *pm_NormalMatrix = new double[sizeof(double) * nDimension];
int index = Getlndex(3,4);

*(pm_NormalMatrix + index) = 5;

The above example defines the mapping function in the first line then computes the size of
memory to be allocated in the third line, given that there are five rows in the matrix. The fifth
line uses the mapping function to access the memory for the place of the third row and fourth

column of the matrix, (3,4). Finally a value of 5 is located at this place. If many images

123

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

containing many control points are to be processed, this storage optimisation scheme may

prove to be very cost effective and efficient.

5.2.4 Decorrelation of Correlated Observations

Although it is normally assumed that the observations for a bundle adjustment are
uncorrelated, in some applications, such as the double difference equations of GPS data
processing, they are correlated. In such cases, weight matrices have to be formed prior to the
formation of the normal equation and this adds complexity to the process, especially when

optimisation schemes have been introduced.

One way to resolve this situation is to decorrelate the design matrix. The decorrelation of the
design matrix results in a transformed design matrix which excludes the weight matrix from
the normal equation [Strang et al., 1997]. The first step is to apply Cholesky factorisation to

the weight matrix as below:

W=G-G" (5-23)

where, W,G are the weight matrix and Cholesky Triangle respectively. Substituting this

equation into the normal equation of (5-8) results in the equation below:

B"(G-G")B-A=B"(G-G")E (5-24)

After rearranging, the above equation is expressed as:

(G™-B)" -(G"-B)-A=(G"-B)" -(G" -E) (5-25)

Substituting G” - B with the transformed design matrix B,,,, results in the new normal

equation without the weight matrix.

B, B, -A=B, E,, (5-26)
It can be seen from the above equation that if the design matrix, B is multiplied by the
transpose of the Cholesky Trianglg: of the weight matrix, G, the normal equation is without
the weight matrix and it is implicit in the new design matrix, G” - B. The constant vector on
the right hand side should also be multiplied by the Cholesky Triangle. By using the
decorrelation method shown above, a normal equation can be formed in a simple way for

correlated observation equations.

124

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

5.2.5 The Design of the CLSQAdjustment Class

The CLSQAdjustment class is designed to be responsible for solution of the normal equation

and for the analysis of the adjustment result, as shown in Figure 5.8.

CLSQAdjustment
noOfParameter
noOfObservation
discrepancySquareSum
pm_ParameterVec
pm_NormalMatrix

checkRedundancy()
decorrelateObservation()
formW eightMatrix()
formDesignMatrix()
formDiscrepancyVector()
formNormalMatrix()
formDesign() formNormalRHSVector()
formDiscrepancy() solve()

<> choleskyDecompose()

choleskySolve()

initialise()
updateP arameter()
adjust()
computeDiscrepancy SquareSum()
analyse()
computeUnitVariance()
lcomputeCorrelation()
”lcomputeParameterPrecision()

<<vrtual>>
CEquation uses

DesignSub Matrix

DiscrepancySubVector
DgsignMatrix

WreightMatrix
DigcrepancyVector
NotmalMatrix

alRHSVector

CMappingMatrix

Figure 5.8 Class Diagram of the CLSQAdjustment Class

It uses the CEquation virtual class to form the normal equation from the observation

equations. In the bundle adjustment it will use the CCollinearityEquation class and the

125

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

CDirectObservationEquation class. This can be done without any change to the

CLSQAdjustment class because both of these classes are derived from the CEquation class.

Functions have been included which will solve the normal equation in various schemes. This
has been done to make this class versatile and the user will have choice in selecting the one

or more solution schemes mentioned below:
¢ apply standard matrix multiplication and inversion method.
¢ apply the Cholesky decomposition
¢ apply the storage optimisation

e apply decorrelation

5.3 The CMappingMatrix Class

In all of the proposed automated mapping subsystems, there is always some form of matrix
computation involved in their processes. Therefore the matrix related class is a very

important class and a well designed class should be reusable in many applications.
The basic responsibilities of a matrix class include:
¢ allocation of memory at its creation given the dimensions of the matrix

¢ returning the allocated memory address

deallocation of memory on its destruction
e copying values of one matrix to another
e reporting the dimensions of the matrix

Other responsibilities which are closer to the actual matrix application involve functions
which carry out various linear algebra computations. These computations can be
programmed to use the familiar mathematical symbols, such as ‘+’ and ‘-’ through a
function of the C++ language called ‘overloaded operators’. This means that a matrix ‘A’ can
be multiplied by matrix ‘B’ by simply specifying as ‘A*B’. The function of the operator ‘*’
is ‘overloaded’ to handle the matrix objects as it handles multiplication for integer or real

value arguments.

The matrix class in this thesis followed the design proposed by Birchenhall [Birchenhall,
1993]. The next figure, Figure 5.9, shows the Class Diagram of the CMappingMatrix class

and the aggregated class matMap which in turn aggregates another class called realArray.

126

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

The CMappingMatrix is where the actual high level matrix computation is handled. The
basic responsibilities are handled by the matMap class and the realArray class. The matMap
class performs the responsibility of mapping an element of a matrix, such as ‘NormaMatrix
(3,2), to the actual storage memory address. The real Array class manages the basic functions

of allocating and destroying memory for the real valued matrix elements.

CMappingMatrix
SolveMarix()
clear()
reset()
nRows()
nCols() matMap
operator=()() map : double**
operator()() realArray
eye() clear() base: double™
ones() reset()
zeros() K>———1/operator=() K>-————| operator=()
inverse() nCols() size()
transpose() nRows() operator()
multiply() operator() elem()
subtract() base()
add() opname()
operator-()
operator+()
operator*()
operator/()
opname2()

Figure 5.9 Class Diagram of the CMappingMatrix

This three-tiered structure facilitates the use of ‘reference matrices’. Reference matrices are
matrices which are created using the copies of the values of an original matrix. Therefore
actual memory allocation for the reference matrices are not made, thereby saving valuable

memory space and processing time.

5.4 Summary for Chapter 5

In this chapter, the classes of the Image Point Referencing Subsystem were designed after
analysis of the photogrammetric process of image point referencing through the bundle

adjustment.

In the analysis stage, a Use Case Diagram of the Image Point Referencing Subsystem was

produced to give a general view of what this subsystem would be used for (Figure 5.1). An

127

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

interesting aspect of the diagram is that the Bundle Adjustment Use Case uses the
Positioning Subsystem and the Image Acquisition Subsystem. These Subsystems are depicted
as actors because they are external entities communicating with the Image Point Referencing
Subsystem. It can also be seen that the Least Squares Adjustment Use Case is used by three
Use Cases, namely Bundle Adjustment Use Case, Compute Initial Approximation Use Case
and the Match Points Use Case. This indicates that the software component of the Least

Squares Adjustment Use Case can be reused for different applications.

Identifying the potential for reuse is an important aspect of software design. It will not only
make implementation simpler but it will also keep the software consistent during
maintenance and further development. It can be said that potential for reuse of the Least
Squares Adjustment was identified by taking an integrated approach of the whole mapping

process.

The analysis and the design for the Image Point Referencing was performed at a very
detailed level, and advanced knowledge and techniques used in the photogrammetry
discipline were included in the design. Some of these techniques are the direct formation of
the normal equations, inclusion of the direct observation equations, Cholesky factorisation,
storage optimisation and decorrelation of correlated observations. Decorrelation of correlated
observations is not used in the Image Point Referencing because the image observations are
almost always assumed to be uncorrelated. However, it was included in this chapter because
the least squares adjustment class design was treated in this chapter. Decorrelation will be
valuable in dealing with correlated observations, such as the double difference equations of

Chapter 4.

Two Sequence Diagrams were made to explain the procedures in the formation of the
observation equations and the least squares adjustment. The least squares adjustment of the
image observations in this case becomes the bundle adjustment. Classes and member

functions were identified using these Sequence Diagrams.

The key class, CCollinearityEquation class was designed in detail. Although the diagram in
Figure 5.5 depicted all the classes that are involved with the CCollinearityEquation class in
the formation of the normal equations, it should be noted that only the CRay class interacts
directly with the base class of CBundleEquation class. Classes such as CControlPoint,
ClImagePoint, CPerspectivePoint, CMappingImage, CImageSensor and CImageRotation are
actually managed by the CRay class. This results in enhanced encapsulation and eventually

high reusability of classes.

128

Chapter 5 Analysis and Design of the Image Point Referencing Subsystem

It should be emphasized that a deep understanding of software engineering skills as well as

of domain knowledge are required for good results in software design.

The CLSQAdjustment class was design with reusability as its most important factor. It was
designed to use CEquation class, which is actually a base class. Such design will enable the
CLSQAdjustment to be used in most situations where observation equations of different

application domains are derived from the CEquation base class.

Finally in this chapter, the CMappingMatrix class was introduced. Although simple in terms
of complexity when compared to other important classes such as the CCollinearityEquation
class or the CLSQAdjustment class, it a very important and fundamental class of the

automated mapping class.

The classes designed for the Image Point Referencing Subsystem are shown in Table 5.1

Table 5.1 Classes Designed for Image Point Referencing Subsystem

Observation Equations related | Least Squares Adjustment Matrix related (adopted)
related
CBundleEquation CLSQAdjustment CMappingMatrix
CCollinearityEquation CEquation matMap
CDirectObservationEquation realArray

129

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

6. IMPLEMENTATION OF DESIGN FOR CAMERA
CALIBRATION AND GPS SURVEYING

Implementation of the design, i.e. programming in a selected programming language,
transforms the UML Class Diagrams and Sequence Diagrams into program codes. During the
design of various classes, the structures of the objects and the cooperation between related
objects were the main focus. In the implementation phase, the inner functionality of
individual objects is the main concern. The declarations of various classes are based on the
Class Diagrams and the codes for the member functions are based on the messages of the

Sequence Diagrams of Use Cases.

In this chapter, the classes designed in Chapters 3, 4 and 5 will be used to program the
camera calibration application and the GPS surveying application. For each application the
programming process will be explained followed by a description of the testing that was
carried out with some sample data. The input data and results of these tests are included in

Appendix A, Appendix B and Appendix C.

Source codes for the header files containing class interfaces are also included in Appendix D
and Appendix E. Approximately 6,000 lines of programming code was written for the bundle
adjustment program and about 8,000 lines for the GPS data processing program. The
program was developed based on the design of the foregoing chapters. It should be noted that
many iterations of analysis, design and implementation were performed over a period of
more than two years to come to the present stage, even though the author was already
knowledgeable in photogrammetry and programming at the beginning stage. The presented
diagrams are the most current version of the software. More iterations of this software
development are anticipated in the future. Program development for this research was done

using Microsoft Visual C++ version 6.0.

6.1 Camera Calibration Implementation

The implementation of the camera calibration application will be explained in two parts. The
programming of the design will be explained first, followed by testing of the developed

program. The testing was carried out for:

e self-calibration for a digital camera (Kodak DCS260) owned by the University of
Glasgow. A grid plate was used as the test field where the coordinates of the grid
intersections were used as control points. These points were observed using an analytical

plotter, and;

130

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

e bundle block adjustment of a data set made available from CIPA (International
Committee for Architectural Photogrammetry), which includes 16 digital images of the

Zurich City Hall building and 21 control points on the facades of the building.

6.1.1 Programming

For the implementation of the camera calibration application a new class called CProject was
formed to handle the process of populating various objects of classes such as CImage and
CControlPoint with data supplied by the data files. After the data are correctly placed in each
object, they are then processed by the CLSQAdjustment class which handles the rest of the

adjustment process.

During the programming process it is important to confirm that each member function is
correctly implemented. In implementation using a procedural programming language, it is
normal that a single function grows to be very large and this makes error tracing very
difficult. This problem is alleviated in object oriented programming because each class is
usually limited to a number of responsibilities and the member functions of each class are
usually small and compact. If the number of member functions increases during
implementation stage, changes should be made to the design and keep the number of
functions in a class to a manageble size. In object oriented programming, the programmer is
more focused on the implementation of the class under scrutiny, and is less distracted by
other global influences. This is the advantage of the encapsulation characteristics of the

object oriented methodology.

Verification of each module is important before performing any integrated test. In
programming, early verification of the implemented code is very important because, as the
size of the program increases, what may seem as a very simple mistake in the beginning may

prove to be very costly, because of the time and effort in locating that mistake at a later stage.

In this research, many of the member functions in each class which require matrix
computations were first implemented in a mathematical software package, Matlab, for quick
and reliable solutions. Because the size of the member functions is small and the test data are
also small in scale, a student edition of the Matlab software proved to be sufficient. The
source code in Matlab programming language was then translated into C++ and the results

from the two computations were compared.

Reliable test data are important for the verification process. It is also very difficult to get
them. Simulated data are one solution but one must be careful in producing simulated data. If

the simulated data are produced by the same programmer, then there is always the danger

131

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

that the simulated data themselves may be produced under a false assumption also found in
the code implementation, and this may result in the test turning out to be perfect, when in
fact it is not. Further development based on this false verification may prove to be very
frustrating because it is now even more difficult to locate the error in the following stages.
For verification of the developed bundle adjustment program, examples available from text

books [Kraus et al., 1993] and a program manual [Kruck, 1986] were used as test data.

A program may go through major restructuring during the implementation phase, whether
because the design was not as complete as it should have been or because the requirement
was not foreseen at the design stage. In the implementation of the bundle adjustment program
in this research, it was decided at a very late stage of implementation that an approximation
program should be included to provide for the initial approximation necessary in the bundle
adjustment. This proved to require a trivial effort, compared to the initial effort. A new class
called CDLT was created and, using all the other existing classes implementation of the DLT
(Direct Linear Transformation) to provide for the initial approximation was quite easy. This
was because of the portability and the extendibility of existing classes made possible by the

encapsulation characteristics of the object oriented methodology.

For testing the implementation, some programs were created which did not use the classes
designed in the foregoing chapters, namely a simple graphic user interface and digitising

software to collect the image coordinates.

Graphical User Interface (GUI) Implementation

A simple graphical user interface was implemented using the Microsoft Foundation Class
(MFC). At the initial execution of the bundle adjustment program, three text data files are
opened (“‘gubaio.img”, “gubaio.gcp” and “gubaio.cam”) from the subdirectory “infile” of the
current directory. After carrying out the adjustment, the result of the adjustment is saved to a
text file, named “gubaio.out”, and this file is stored in another subdirectory called “outfile”.

(Details of the format of these data files are explained in Appendix A and Appendix B.)

At the end of the adjustment, a new window showing this result file is opened. The user can
edit the data files as required from the opened windows of these files. The initial window is

shown in Figure 6.1.

From the initial state, the adjustment is initiated by clicking the submenu item called
“Adjust”, upon which a dialog box is shown on the screen directing the user to make the

following selections (Figure 6.2):

132

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

aensor = Olympus
11 Inlti.IPeisCenter = 138.0 1/9.0 2.0
11 InWalRotation» 0.0 0.0 0.0
J1 Points

01 216 419

iJ PainlEnd

Figure 6.1 Initial Window of the Bundle Adjustment Program
+ Bundle adjustment with or without self-calibration adjustment

For the self-calibration case, sensor parameters are included in the normal matrix,

whereas, in the normal bundle adjustment case they are not.
» Aecrial platform or terrestrial platform

Different rotation matrix and different partial differentiation values are added for each
case respectively. For the terrestrial case, the rotation is in the order z-axis, x-axis and y-
axis because, the imaging sensor being horizontal with the z-axis, the rotation matrix will

not form a positive definite normal matrix, making the solution impossible.
* Choice of angular units

Angular data can be in radians, degrees or GON. Using this selection the program will
change the input data into radians, its working unit, and then compute back to the selected

unit for the output.
e Maximum number of iterations

The maximum number of iterations can be entered into the edit box provided. Sometimes
when the initial approximation is within the convergence limit, but not good enough to

converge within a few iterations, a large number such as 10 or 15 can be typed in.
* Test of convergence value

The computed unit standard deviation for each iteration is compared against this test of

convergence value and then breaks the iteration if the computed value is smaller.

133

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

3 farVie* fiw*
iile] HA

MW
MMMI I P Re«hn r m rogot

ttitonDew
Murtx* « ttwafen

aast..| QiAx, IyM n AW A1 jjitng C [[;«|SAI0 won..

Figure 6.2 Dialog Boxl for Setting the Adjustment Environment

A second dialog box appears when the “OK” button of the first dialog box is clicked (Figure
6.3).

m H ffln

r fm

l«m Ontoition (

| Piyi
"MiaotoftWe '

Figure 6.3 Dialog Box2 for Setting the Adjustment Environment

This dialog box is used to define the following factors:
+ The estimated accuracy of the image observation in millimetres.

+ The accuracy of the control points

134

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

If “Fixed” is chosen, a large value is assigned to the weight for the ground control points
making the control parameters act as constants. If “Free” is chosen, a small value is
assigned making them act as unknown parameters. If a known standard deviation value is
added in the control point file, “gubaio.gcp”, this selection is disregarded and the standard
deviation is chosen to compute the weight for each control point. This applies to all the
subsequent parameters of imaging sensor parameters, perspective point coordinates,

rotational angles and the additional parameters of lens distortion and film shrinkage.

Finally, after the completion of the adjustment a new window is opened showing the result of
the adjustment. The result can be saved under a chosen name and another adjustment can

then be processed under a different adjustment environment.

Digitising software implementation

Digitising software is necessary to capture the image coordinates (i.e. the pixel coordinates)
of the ground points (i.e. control points and tie points). Although for an integrated automated
mapping system a very sophisticated image handling system has to be designed and
implemented, for the purpose of testing the implementation in this research, rather simple
digitising software was implemented. Its main role is to open an image file and record the
pixel coordinate as pointed to by the cursor and selected by clicking the mouse. A marked
circle was made to show on the screen the points which had been recorded, as shown in

Figure 6.4.

Figure 6.4 Marking for Visual Checking of Registered Points

The pixel coordinates are then recorded to a file called “imgxy.txt” together with image

information.

135

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

6.1.2 Calibration Testing

A calibration test was carried out for the digital camera Kodak DCS260 that is owned by the
University of Glasgow. The photo-site was reported by the manufacturer to be a square one
0f4.85 micron in height and width. Since the number of pixels in the images produced by the
camera is 1024 (H) x 1536 (W), the dimension of the sensor chip was computed as 4.9964
(H) x 7.4496 (W) cm. An initial set of values of (0,0) for the principal point coordinates and

8 millimetres for the principal distance were used as the initial approximation data.

The control grid plate used for this testing was prepared by a mapping company in Korea
called Air Korea Company. For control points, a grid of 22 horizontal and vertical lines
which were one centimetre apart, was drawn on plastic transparency plate with a drafting
machine. Each intersection of all the grid lines were then observed using an analytical plotter
with the coordinate origin set approximately at the centre of the plate. The X and Y
coordinates are the readings from the analytical plotter and Z is set as zero for all control

points.

Digital images of this plate were then captured from various locations. Care had to be taken
as to the orientation of the plate, with regard to the coordinate system used by the analytical
plotter. The camera focal length was changed from auto mode to manual mode. As the

images were taken indoors, the image quality was quite poor, as can be seen in Figure 6.5.

Figure 6.5 Image of the Control Points Grid Plate

136

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

Only 25 points were selected, and image coordinates of these points were acquired using the
digitising program. Through visual judgment, the pointing accuracy could be defined as

being approximately 3 - 5 pixels.

In the adjustment environment setting, the ‘With Self-Calibration’ option was selected and
the platform was set to ‘Aerial Mode’ (Figure 6.2) because the control point coordinates are
parallel to the camera. The angle unit was selected as ‘Degree’ because the approximation
was given in degrees, and the iteration was increased to 15 to confirm any convergence. In
the second dialog box (Figure 6.3), all parameters were set to ‘Free’ except the control points
parameters. The result of this adjustment reported the principal coordinates as (0.013, 0.213)
and the principal distance as 10.193 millimetres. But the correlation matrix showed high
correlation between the principal point coordinates and the tangential lens distortion

parameters (See Table 6.1).

Table 6.1 Correlation Matrix of Adjusted Parameters

Xp yp cc K1 K2 K3 P1 P2 A B

Xp 1.00

yp 0.01 1.00

cc 0.31 0.30 1.00

K1 0.20 0.11 0.39 1.00

K2 0.00 0.00 0.00 0.00 1.00

K3 0.00 0.00 0.00 0.00 0.00 1.00

P1 0.83 0.10 0.02 0.16 0.00 0.00 1.00

P2 0.10 0.89 0.08 0.09 0.00 0.00 0.11 1.00

A 0.16 0.30 0.25 0.10 0.00 0.00 0.08 0.14 1.00

B 0.27 0.09 0.07 0.09 0.00 0.00 0.13 0.01 0.03 1.00

This suggests that more variations should have been given to the distances of the images to
the object and the rotation angles between images. Another possible explanation is that the
grid is too small and the control points are clustered around the centre of the image. Evenly

distributed control points covering the whole image would produce better results.

The details of the result of the adjustment as well as the input data files can be found in

Appendix A. A summary of the adjustment result for the calibration is shown in Table 6.2

137

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

.Table 6.2 Summary of Adjustment Result for DCS260 Calibration

Number of Images 5
Number of Full Control Points 25
Number of Check Points 0
Number of Tie Points 0

Execution Time 2.03 seconds
No of Iterations 7

Unit Standard Deviation of Observations 0.004 mm
Principal Distance 10.193 mm
Principal Point Coordinate (x,y) (0.013, 0.213) mm
Max Residual 0.016 mm for Point 14 at Image 5

6.2 Block Bundle Adjustment Testing

Bundle block adjustment was carried out with digital images captured with a digital camera,
Olympus D1400L. The images were captured by members of the CIPA organisation. Details
of the project can be found at the CIPA web page [Streilein et al., 1999]. The configuration
of the image is shown in Figure 6.6. The West facade (image captured from Stl) and the

North-West view (image captured from St3) of the building are shown in Figure 6.7.

For the bundle block adjustment test of the program with this data set, many tie points (or
new points) were needed. Their image coordinates were measured from images by selecting

an appropriate point then numbering the point.

The digitising of the control points to capture the image coordinates was a simple task, but
the process of handling the tie points was quite tedious and error prone. In aerial
photography, selection of tie points is a relatively simple task because vertical photography is

assumed in most cases.

With the terrestrial case, rotations occur in all directions. This makes planning of control
points distribution difficult, and it is also difficult to select tie points from overlapping
images because the overlaps are in many cases irregular. This is because photography is
constrained by limited space and other obstacles. Also considering the fact that one of the
main objectives of terrestrial photogrammetry is the three dimensional reconstruction of an

object, it is normal that images are taken from all directions. In the Zurich City Hall case, an

138

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

image containing the whole building was available from the West side, but on the North and
East side, images were taken from close ranges and only parts of the building were imaged,

making inclusion of tie points necessary.

St 13
St 14
h
Stl2 ~ ASWS5
Stll »
ATstlo
Stl @™
St9
St2
Stl
St8 oc:
South
St7

East "TT West

J ’ ((North

St5 St3

Figure 6.6 Camera Stations Layout for the Zurich City Hall Reference Data Set

Figure 6.7 Images of the Zurich City Hall from Stl and St3

The image coordinates were captured and the bundle adjustment was carried out with the
given camera data and the control point coordinates. In the adjustment dialog box, the
platform for this case was selected as ‘Terrestrial’ because the camera was horizontal to the

Z-axis. For the terrestrial case, the primary axis is the Z-axis (Alpha), the secondary axis is

139

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

the X-axis (Zeta) which is rotated 90° to bring the camera upright. In this program, 90° is
implicitly added to the secondary rotation and all input and output data reflect the deviation
from the horizontal position. The tertiary axis is the Y-axis as seen from the other negative

direction (Kappa) [Kraus, 1997].

The control points and the sensor parameters were held fixed and the data were solved for
the image parameters and tie points coordinates. Tie points coordinates get very large errors
by default and are solved as unknown parameters. The middle row of control points on the
West facade, No. 111. No 112 and No. 113, were used as check points. They were also given
large errors to be solved as unknowns. The adjusted coordinates of the check points are then

compared with the ground surveyed coordinates.

The details of the result of the bundle block for these images as well as the input data files

can be found in Appendix B. A summary of the result is shown in Table 6.3.

Table 6.3 Summary of Adjustment Result for the Zurich City Hall Images

Number of Images) 15
Number of Full Control Points 18 (3 used as check points)
Number of Check Points 3
Number of Tie Points 27
Execution Time 11.92 seconds
No of Iterations 10
Unit Standard Deviation 0.072 mm
Max Residual 0.5 mm for Point 202 at Image 6
Check Point RMS XY 0.45m
z 0.27 m

140

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

6.3 GPS Surveying Implementation

For the implementation of the program for processing GPS surveying data, all the classes of
the Positioning Subsystem (Chapter 4) were used. The programming will be explained in the

first part of this section then the adjustment and the result of the testing will be explained.

A test was carried out for a baseline where static GPS observations were made at both
stations. Phase data processing for the baseline of these two stations was carried out. As
single epoch data processing is carried out, each computation should result in the same

baseline length, because both of the receivers were stationary.

6.3.1 Programming

As in the implementation for the calibration case, a new class called CProject was created to
handle the reading of data from the observation files. Programming for the GPS data
processing was relatively quick, compared to the initial effort of the calibration application,
in terms of coding, because many of the classes involved in various adjustment tasks had

already been implemented and these could be reused without very much editing.

For the reading of data files, the observation and navigation files for a single baseline in
RINEX format should be placed in a subdirectory called “infile”. It should be named with
three letter extensions with the first two letters of the extension referring to the year of
observation and the last letter being an “n” or “0” depending on whether it is a navigation file
or an observation file. For example, a set of data files could be named as “test095a.99n” and
“test095a.990”. This name contains the information that these data are about a project or a
station called “test” which were observed on the 95th day of the year (5th of April) 1999 for
session a.. Session refers to a set of observation that are to be processed in one adjustment
computation. Usually a session is a set of data which were collected without any long

interruption.

The developed program automatically looks for the last letter in the file extension and
populates the orbit objects with the relevant navigation data and the space vehicle objects

with the relevant observation data of pseudoranges in metres and phases in cycles.

After having read all the data in the navigation header and the navigation data, the program
proceeds to read the observation header of the two files collected from the two stations. At
this point the program synchronises the two file pointers (one is assigned as the reference
station file and the other as the rover station file) by first taking the first record of the file

which has the earlier observation time and defining this time as the reference time. The file

141

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

pointer for the other file proceeds through the records until it finds this reference time. The
files are now defined as synchronised and observation pairs are processed sequentially. This
algorithm will make the extension of the present post processing program to handle real-time
processing easier because the data are being processed record by record from the data files,
which is a similar scheme as in real-time processing where the data from the receivers are

transmitted to the computer epoch by epoch.

Unlike the calibration application, GUI programming for the GPS surveying application is
more complex. There is not much editing to do with the data files; however a visual
representation of the geometry and the availability of the space vehicles, indications of cycle
slips, and inclusion and exclusion of parts of observation data are some of the requirements
necessary to make a reliable adjustment. Due to its complexity, it is deemed that a systematic
GUI class for GPS data processing should be designed first before an attempt is made to

implement it.

Implementing Wide Lane technique

Although not included in the design of the positioning subsystem, it was decided that the
wide lane technique would be useful in the subsequent GPS data processing. The wide lane
signal is defined as the difference of the L1 phase data minus the L2 phase data as shown in

equation (6-1).

e,=0,-0,, (6-1)

w

The frequency of this signal is 347.82 MHz and the corresponding wavelength A, is 86.2

cm. The longer wavelength, as compared to the 19.0 and 24.4 cm of the L1 and L2 signals,
makes it easier to solve for the integer ambiguity, by reducing the number of the search
candidates. The constraint is that both L1 and L2 signals must be captured, which is possible
with only the double frequency capable receivers. But because of the advantage of being able
quickly to resolve the integer ambiguities, it is a technique that many are adopting in GPS

phase data processing.

The inclusion of the wide lane signal to an existing design was a simple task. A set of data
members and a member function relevant to the wide lane technique were added to the

existing CDoubleDiff. This is shown in bold letters in Figure 6.8.

142

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

CDoubleDift
CycleSlip_L2 : BOOL
CycleSlip_L1: BOOL
IsPrimary : BOOL
Lw_Resolved : BOOL
L2_Resolved : BOOL
L1_Resolved : BOOL
intParLw : double
intParl2 : double
intParl.1 : double
ddResidual_P2 : double
ddResidual_P1 : double
ddResidual_Lw : double
ddResidual_L2 : double
ddResidual_L1 : double

ComputeResidual_P2()
ComputeResidual_P1()
ComputeResidual_Lw()
ComputeResidual_L2()
ComputeResidual_L1()
ComputeDirectionCosine()
<<virtual>> ~CDoubleDiff()
CDoubleDiff()

<<struct>>

CSingleDiff
PRN : int
GPSSec : double

Figure 6.8 Wide Lane Members Added to the CDoubleDiff Class

It is thought that although this was a simple task, from the view of the Object Oriented
method, using the polymorphism features in the design would prove to be more beneficial in
terms of portability and extendibility of the software. The improved design should have a
double difference base class, for example called CGenericDD, and a separate class derived
for each signal, L1 ,L2 and Lw, called for example CDD_L1, CDD_L2 and CDD_Lw, as

shown in Figure 6.9.

The base class would contain the virtual function to compute the residual which could be
called ‘ComputeResidual’, without any convention for specific signal. In each of the derived
classes, there would be an own version of the ComputeResidual function and, depending on

the signal type, the correct version of the ComputeResidual function will be evoked.

143

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

CGenericDD

FIR
/

CDD_L1 CDD_L2
CDD_Lw

Figure 6.9 Design of a Polymorphic Double Difference Class

It is important to note that design and implementation are part of an iterative process. It is
almost impossible to come up with a perfect design which will be implemented without any
changes to the original design. New information and new ideas which develop during the
programming phase bring about changes to the original design. Taking the above case of the
polymorphic double difference class, if it was decided during the implementation phase that
indeed the polymorphic double difference class was a better choice, and it was implemented
by the programmer directly without going through the design process, there would be
inconsistency between the design and the implementation. It is therefore now necessary to
update the design to match the program. If one person is performing both the design and the
implementation, designs could be updated to match the implemented program as changes
occur during the implementation. But if many team members are involved, new proposals
and information with respect to the design should be systematically incorporated to the

design at the next cycle of the design and implementation iterations.

6.3.2 Testing

For testing the GPS implementation, a set of data from a GPS software company, TerraSat,
was used [Terrasat, 1999]. The data were collected at 10 seconds interval and from two

stations in static mode.

The result of the adjustment is included in Appendix C. This result is shown graphically in
Figure 6.10.

144

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

Baseline Computations Using Single Epoch Phase Data

103.6 T Y T T T
E 103.5 E
2
[}
£
B
103.4 e
g
x
103_3 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Epoch Number
-1169.36 T T T T T T T
~-1169.38} E
E
2
'E -1169.4 | E
B
§ -1169.42} g
>
_1 16944 1 1 1 1 I 1 1
0 5 10 15 20 25 30 35 40
Epoch Number
-114.6 T T T T T T T
Earl ' 4
o
©
£
B
-114.8} -
8
N
_1 14.9 i 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Epoch Number

Figure 6.10 Adjustment Result of GPS Adjustment

A variation of about 30 centimetres in X, 8 centimetres in Y and 30 centimetres in Z in the
baseline vectors, can be seen from the graphs. The large error could be because the
atmospheric refraction and space vehicle clock error were not included in the model. As
explained in Chapter 4 (Figure 4-14), Ambiguity Function Values are computed to reject
integer ambiguities set candidates whose values are beyond a selected criteria. Figure 6.11
shows the computed Ambiguity Function Value (AFV) for each candidate of integer
ambiguities set of the first epoch data. There are comparatively few candidates because this
is a wide lane signal. For the L1 signal it is normal to have more than one thousand
candidates. The selection criteria reduces the number of candidates even further by selecting

candidates only above the selection criteria line and thus speeding up the computation.

145

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

Armbiguity Function Values for Canddates of Ambiguity Set
1 I T 1 T

08 Selgfition Criteria)

o
~
: T

Ambiguity Function Value
<)
o

o
o
T

0.4} .

0.3 !) L L
0 50 100 180 200 250

Candidate Number

Figure 6.11 Ambiguity Function Values for Candidates of Ambiguity Set

As can be seen in Figure 6.11, if the selection criteria is set to be 0.7, much of the erroneous
candidates below the dotted line are disregarded in further computations and only those
which are more likely to the correct answer, shown above the line, are considered for further

rigorous testing.

6.4 Summary of Chapter 6

In this chapter, implementation of the designed classes in two programs (i.e. bundle
adjustment and GPS data processing) and the testing of the developed programs were

explained.

Experiences acquired while implementing the designed classes were explained. Some of

these experiences are :

e classes should be designed to be of manageable size, in terms of the total number of

member functions.

e cach member function should be verified immediately upon completion before attempting

to implement another member function.

146

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

Ambiguity Function Values for Candidates of Ambiguity Set
1 1 T I T

0.8 Seldgtion Criteria

o
~
T

Ambiguity Function Value
)
(2]

=4
(2}
T

041

0 50 100 150 200 250
Candidate Number

Figure 6.11 Ambiguity Function Values for Candidates of Ambiguity Set

As can be seen in Figure 6.11, if the selection criteria is set to be 0.7, much of the erroneous
candidates below the dotted line are disregarded in further computations and only those
which are more likely to the correct answer, shown above the line, are considered for further

rigorous testing.

6.4 Summary of Chapter 6

In this chapter, implementation of the designed classes in two programs (i.e. bundle
adjustment and GPS data processing) and the testing of the developed programs were

explained.

Experiences acquired while implementing the designed classes were explained. Some of

these experiences are :

e classes should be designed to be of manageable size, in terms of the total number of

member functions.

e each member function should be verified immediately upon completion before attempting

to implement another member function.

146

Chapter 6 Implementation of Desigﬁ for Camera Calibration and GPS Surveying

e reliable test data should be used for the verification and care should be taken with

simulated data.

e mathematical software, such as Matlab, is very useful for quick prototyping member

functions in the implementation phase of software development.

e updating of design and implementation should be systematically carried out to ensure

consistency in the design and the implementation.

The completed bundle adjustment program was tested for two applications: camera

calibration and block bundle adjustment.

The camera calibration testing was carried out on a digital camera using images of a grid
plate. The coordinates of the grid plate were observed using an analytical plotter. The result
of this test produced résults with some correlation between parameters. The probable reason
for this was explained as being due to lack of strength in the geometric configuration of

observed points in the images.

Block bundle adjustment was also carried out with digital images of Zurich City Hall. These
were provided by the CIPA organisation. New requirements for terrestrial images were
discovered during this testing, especially regarding the inclusion of tie points in terrestrial
images. Different aspects of the aerial images should be taken into account when automating

image point referencing of terrestrial images.

The GPS data processing program was implemented using the design classes in the third
section of this chapter. Post processing of phase measurements of a baseline collected in
static mode was used as the test data. Among the various methods of processing phase
measurements, the single epoch method of resolving integer ambiguities used in kinematic

mode was selected.

One of the most important aspects of the Object Oriented method, namely reusability of
software, was confirmed in this implementation. Classes of least squares adjustment and
matrix which had been already implemented in the bundle adjustment implementation were
reused for this application with few changes. Extendibility was also confirmed when the
wide laning technique was incorporated at a later stage of implementation, although this was

not designed in the initial phase.

The CDoubleDiff class, whose task is to form double differenced equations, proved to be a
very useful class. Forming the double differenced observation equation and performing the
least squares adjustment was simplified by using this class. Simplification of complex

matters is the chief aim of Object Orientation.

147

Chapter 6 Implementation of Design for Camera Calibration and GPS Surveying

The results of the test are shown graphically in Figure 6.10. The variations of each epoch
reflect the errors of the computation for each epoch. This is because kinematic mode was
applied to two static stations. In theory there should be no variations for all the epochs.
Errors amounting to 30 centimetres were observed which could be due to unmodelled errors

in the computation.

The implementation of the designed classes confirmed some important aspects of the design.
Although successful implementation was one of the objectives (i.e. the external view as
mentioned in Section 2.2), the emphasis was on investigating the validity of the designed
classes, the reusability of the classes in various applications, the extendibility of classes and
effective maintenance of the software in terms of consistency of the design with the
implementation (i.e. the internal view). All these aspects of the Object Oriented design were
confirmed through this implementation effort. It should be noted however that software
design is an iterative process which changes constantly, although the changes should be

minimal after maturity has been achieved.

148

Chapter 7 Conclusions and Recommendations

7. CONCLUSIONS AND RECOMMENDATIONS

In this research, an integrated approach was taken for the design of an automated mapping
system. Past research by different sub-disciplines of the Geomatics discipline has focused
only on specific tasks of the mapping processes. Photogrammetrists focused on camera
calibration, aerial triangulation, and automatic object recognition from images. Surveyors
and geodesists mainly carried out research in GPS and IMU data processing. Cartographers
focused their activities on GIS modeling and visualisation. These dispersed efforts, although
appropriate for gaining a deeper understanding of each sub-discipline, were not very
effective in terms of software development for the whole mapping process. The integrated
approach of this study was taken with an ultimate aim of producing a software design that
automates the mapping process, from the initial data acquisition to the visualisation of

geospatial data.

7.1 General Conclusions

The objective of this research was to produce a software design prototype for the automated

system which is:

e accurate in terms of meeting the user requirements;

¢ rapidly implementable; and,

¢ flexible in terms of extendibility, compatibility and reusability.

To this end, the conventional mapping process was analysed. An automated mapping system
was defined and then structured into the Image Acquisition Subsystem, Positioning

Subsystem, Image Point Referencing Subsystem and the Visualisation Subsystem.

The Object Oriented design methodology was applied to the design of these subsystems
(except for the Visualisation Subsystem) and UML notations were utilised to produce Use
Case Diagrams, Sequence Diagrams and Class Diagrams. Just as architectural design
blueprints reflect different aspects of a building, these software design drawings serve to
explain to a domain expert, a software designer or a programmer the different aspects of the

automated mapping software artifacts.

From Chapter 3 to Chapter 5, narrative explanations of the domain knowledge of
photogrammetry and geodesy were complemented with Use Case Diagrams and Sequence

Diagrams. Such diagrams help the domain experts to understand the transition of their

149

Chapter 7 Conclusions and Recommendations

knowledge to ‘classes’ and ‘objects’ and eventually to Object Oriented program codes,

whilst the software designer will find them helpful in understanding the domain knowledge.

To verify and evaluate the design, the designed classes were then implemented in three
applications: the Image Acquisition Subsystem (Camera Calibration), Image Point
Referencing Subsystem (Bundle Block Adjustment) and Positioning Subsystem (GPS data
processing). These implementations were each tested with test data. Some general
conclusions are given below regarding the design and the implementation of an automated

mapping system.

The table below shows the current development status of the automated mapping system

proposed in this thesis.

Table 7.1 Development Status of the Automated Mapping System

Image Acquisition Image Point Positioning Visualisation
Stage of Development Subsystem Referencing Subsystem Subsystem
Subsystem
Analysis Complete Complete Complete Incomplete
Design Complete Complete Complete Not initiated
Implementation Incomblete Complete Incomplete Not initiated
Testing Incomplete Complete Incomplete Not initiated

For the Image Acquisition Subsystem, the analysis and design has been completed and the
implementation of the camera calibration Use Case has been implemented and tested but
more implementation and testing with regard to flight planning and monitoring and
controlling the imaging sensor are incomplete. Analysis and design of flight plaﬁning and
monitoring needs access to aircraft to be able to understand the true nature of the job, which
would have been quite difficult to undertake as part of this thesis. This has not been pursued
further for this reason but also, it is not very significant in terms of software complexity.
With the GPS related classes having been already implemented, the implementation of the
rest of the Image Acquisition Subsystem is deemed to be a relatively simple matter for the

future.

The Image Point Referencing Subsystem has been completed through the implementation

and the testing of bundle block adjustment.

150

Chapter 7 Conclusions and Recommendations

For the Positioning Subsystem, Process GPS Data Use Case has been completed but the other
half of Process IMU Data, which includes mechanisation of IMU data and Kalman filtering,
has only been analysed and designed. The Process IMU Data Use Case is incomplete at this
stage. Lack of resources during the study period was the main reason that the implementation
and testing of this Use Case has not been completed. The limited resources available were
invested in the acquisition of knowledge through a study visit rather than acquiring the IMU.
It was through this study visit that the analysis and the design of the Process IMU Data Use
Case was made possible. Based on this design, it is anticipated that the implementation and

the testing of this Use Case could be performed successfully.

The Visualisation Subsystem was considered and mentioned in various parts of the thesis as
considerations about this subsystem were made in conjunction with other classes (e.g. Figure
3.7 in Chapter 3) but the analysis is incomplete and the subsequent development stages of
design, implementation and testing have yet to be initiated. The reason for so little attention
being given to this subsystem is that visualisation is a subject much researched by both the
cartographers and computer image specialist, although with slightly different aims. It is a
well established subject and published materials on Object Oriented designs and codes are
readily available. Therefore, more attention was given to other subsystems which needed

more individual creative effort to produce an Object Oriented design.

General conclusions regarding the design

e Object Oriented Design is essential for research activities in the Geomatics

community

It was mentioned in Chapter 1 that this study has been undertaken from a Geomatics point
of view. This is re-iterated here, to emphasize that the software design produced in this
study is to enable the domain experts, photogrammetrists, geodesists, cartographers to
focus more on the domain research and spend less of their resources on the programming

aspects.

The Object Oriented design of the automated mapping system produced in this study has
been found to be very effective in reducing the development time through its reusable
classes. As an example, in the GPS data processing program, about 8,000 lines of code
were implemented with much of the program using the same codes developed for the
bundle adjustment program. So with a good design serving as the basis, the size of the

program in terms of number of lines of code is no longer an important issue.

151

Chapter 7 Conclusions and Recommendations

Object Oriented software designs should be produced and maintained by research
organisations in the Geomatics community enabling them to focus more on domain

research.

UML notations and diagrams are effective in software design and software

maintenance of the automated mapping system

In this study, the author did the investigating, the analysis, the design and the
implementation. Due to this, there was little inconsistency in progressing from the
analysis phase to the design and then on to the implementation phase. Even so, as the
program grew larger, changes were inevitable and numerous in many stages of the design
and implementation. Difficulties were experienced in understanding the author’s own
code when coming back to a part of the program which had been left untouched for a long

time.

In a much more difficult situation, where different software designers investigate different
domains and then pass the designs to programmers who have little or no understanding of
the domain problems, a lot of misunderstanding can be expected. The UML will prove to
be crucial in these situations by effectively relaying the ideas and concepts of the designer

to the programmer.

It can be envisaged that in the future, an expert in Geomatics will produce the result of his
research in UML diagrams and will be able to produce a working program, almost

instantly, and then incorporate it into an existing automated mapping system.

Integrated software design of an automated mapping system will bring synergism to

research in Geomatics

Cooperation between different domain fields is a very difficult task. This could be
because of the different levels of understanding in certain subjects, different objectives

and different terminologies.

The integrated automated mapping system could present a common ground on which all
these incompatibilities between different sub-disciplines dissolve. Each sub-discipline
will not only use its respective subsystem of the automated mapping system but also other

subsystems because they are easily accessible.

The use of the integrated automated mapping system will make the researchers of a
specific sub-discipline more aware of other sub-disciplines, thereby resulting in better

coordinated research activities cooperation.

152

Chapter 7 Conclusions and Recommendations

General conclusion regarding the implementation

e The Object Oriented software design of this study enabled software extendibility

and reusability

During the development of the software in this study, the initial design had to be changed
and implementations had to be updated. The Camera Calibration program of the Image
Acquisition Subsystem was extended with a function to produce approximate data with
the Direct Linear Transformation algorithm. This was easily done with the addition of
new CDLT class to the program class. Minimum changes were made to the existing

programs.

The same extendibility was demonstrated when the wide lane technique was added to the
existing GPS data processing program. Few changes were necessary to the existing

program.

Reusability of the software was demonstrated by using large parts of the bundle

adjustment program in the GPS data processing program, with only few changes.

The extendibility and the reusability of the Object Oriented design was confirmed in the

automated mapping system software design produced in this research.

¢ Different requirements for aerial and terrestrial images should be taken into

account for the automated mapping system design

In the testing of the bundle block adjustment application, it was found that requirements
should be analysed separately for terrestrial images. Although the same theories of
photogrammetry are applied for both the aerial and the terrestrial images, different aspects

of automation exist for each type.

For example, many of the automation techniques, such as locating conjugate points and
tie point identification in aerial images, assume near vertical photography. This is not so

with terrestrial images and the same image matching techniques would not be applicable.

The end product of mapping with aerial images usually becomes part of a topographic
database of a GIS system. With the terrestrial images, many of the end results are three

dimensional reconstructions of the imaged objects.

Control points or the positioning sensors provide a reference coordinate frame for the
aerial images. In many cases of terrestrial images, they are used without reference frames

and only relative distances and sizes are needed as their output.

153

Chapter 7 Conclusions and Recommendations

It was found during the testing of the bundle block adjustment that these differences
between the aerial and terrestrial images require a separate analysis of the close range

application and that separate classes should be designed for the terrestrial images.

e Mathematical software is useful in the implementation of class member functions in

the development of the automated mapping system

In mapping applications, many linear algebra computations are involved. The use of
mathematical software to validate the computed results of a developed program ensures
the reliability of the developed software in terms of computational accuracy. The
mathematical software is useful in validating the result of computations carried out by

member functions.

Mathematical software is not, however, suitable for applications which demand fast
computational time, nor is it efficient for large programs that require considerable

maintenance.

7.2 Recommendations for Further Development of the Automated

Mapping System

e Design and implementation of the CDisplayinglmage class and the Visualisation

Subsystem

The design and the implementation of the Visualisation Subsystem will require a class
which will be able to handle the reading of image files in various formats, handling of
radiometric pixel data and displaying the images. This class, shown in Figure 3.8, as

CDisplyImage, will have to be versatile.

Besides playing an important role in the Visualisation Subsystem, this class will also be
responsible for many tasks which apply the image matching techniques of the Image Point

Referencing Subsystem.
e Implementation and testing of IMU and Kalman Filtering related classes

The IMU and the Kalman Filtering classes were designed in this research as part of the
Positioning Subsystem. In future research, these classes should be implemented and tested

to complete the Positioning Subsystem.

154

Chapter 7 Conclusions and Recommendations

e Extension of design to include various imaging sensors

Linear array sensors and laser scanners are some of the potential imaging sensors that are
actively being researched at present. Although some initial consideration was given to
these sensors in this research, future studies should be carried out to include these sensors
as part of the automated mapping system. The automated mapping system will be suitable
for the inclusion of these sensors, because these sensors interact with IMU and GPS and

these positioning sensors have already been designed in the Positioning Subsystem.
¢ Extension of design to include Real-Time Kinematic Mapping Systems

Real-Time Kinematic Mapping Systems are useful in many applications, especially in
emergency situations such as monitoring forest fires and floods. The design for the
extension to a Real-Time Kinematic Mapping System will involve extension of the GPS
related classes of the Positioning Subsystem to handle radio signals from the reference

station to the rover station.
e Design and implementation of standard GUIs for mapping applications

GUI programming is relatively simple but tedious. It is the kind of activity a Geomatics
domain expert would not like to spend too much time on. To have a set of standard GUIs
available for mapping applications will be beneficial to the Geomatics community.
Initially the GUIs could serve as a simple set of formatted input dialog boxes and output
windows to assist the research activities, but these could later develop as standard GUISs.
Such standard GUIs will be valuable for the Geomatics community not only in terms of
saving development time but also for the end users that will have the advantage of using a

familiar GUI, irrespective of the developer of the software.

7.3 Recommendations for Future Research Based on an Automated

Mapping System

Recently in Geomatics, although basic research into mathematical modeling and accuracy
improvement is regarded as being fundamental and important (as they should be), applied
research has been more popular. Applied research in Geomatics has focused on two main
themes: geospatial data production and geospatial data manipulation. In both of these themes,

automation is inevitably involved.

Some of the research that is being carried out with regard to the automation of geospatial

data production includes :

155

Chapter 7 Conclusions and Recommendations

e sensor integration

data fusion

automated object recognition

automation of aerial triangulation

For automated geospatial data manipulation recent research efforts include:

three dimensional GIS data structures

e visualisation

automated data quality reporting

interaction with geospatial information using the Internet

Future Research Using the Automated Mapping System

The Automated Mapping System would be beneficial in the automation research mentioned
above. This would be because an integrated approach is possible through the various
subsystems that are available and because the time from the initial inception to the delivery
of the research result will be shortened through the shorter implementation periods, made

possible by the Object Oriented Design of the Automated Mapping System.

Some of the research themes that could be carried out using the Automated Mapping System

are:
e Comparison of automatic relative orientation and IMU derived attitude.

The IMU provides the final attitude data of an image through refinement of its initial data
through updates which require GPS observations. It is also dependent on the
synchronisation of the measurement epochs of various sensors (Imaging Sensor‘, GPS and
IMU).

The relative orientation of the images on the other hand is purely photogrammetric and is
only effected by the image matching accuracy of conjugate points, if other unmodeled
systematic errors are disregarded. The comparison of the image rotational angles
computed from automatic relative orientation and those computed through GPS/IMU
integration, might give indications as to whether updating of the IMU attitude data with

the relative orientation data is justifiable.

e Investigation of geometric errors through tracing of selected points - from initial

acquisition to GIS database.

156

Chapter 7 Conclusions and Recommendations

Automated data quality reporting is a main concern with regard to assessing the
geospatial data that are incorporated into a GIS. Software could be developed based on
the Automated Mapping System design of this research, which would show a visual
profile of selected points from the GIS database. Error tracing has been difficult in the
past because much of the information from preceding processes of geospatial data
production is not passed on to the next. It is even difficult to know which processes were
involved. With the integrated Automated Mapping System, this information could be
preserved and accumulated. A standard quality profile could be made available visually,

using graphs and images.
A study in data fusion for automatic object recognition using integrated sources.

With an integrated approach, processing of data from various imaging sensors,
positioning sensors and GIS databases will be made available easily. Data of various
texture from different imaging sensors, geometric data from positioning sensors and
semantic data from GIS databases will prove helpful in the very difficult task of

interpreting complex images automatically.
A study into an integrated approach to the visualisation of three dimensional images.

Visualisation of aerial images usually involves creating perspective three dimensional
views. Buildings and roads and other objects are also created from the aerial images.
Visualisation from terrestrial images, on the other hand, involves object reconstruction of
specific and smaller objects, such as monuments or sites. Better quality visualisation
results could be produced if inhomogeneous data from these two types of image could be

merged to a single visualisation image.

Finally, further study into the visualisation of inhomogeneous data, and fuller utilization
of the power of the Automated Mapping System could allow for a continuous transition of
the visualisation of the urban data from an above ground perspective to the underground
utilities. It is an important requirement in utilities management to be able to relate an
underground utility, such as a gas pipe or a water main, to a manhole or a building on the

street. This integrated visualisation could prove a most powerful decision support tool.

157

Reference List

REFERENCE LIST

[1] Abidin, H. Z. Computational and Geometrical Aspects of On-The-Fly Ambiguity
Resolution. 1993. Department of Geodesy and Geomatics Engineering - University of
New Brunswick.

Ref Type: Thesis/Dissertation

[2] Ackermann, F. Sensor and Data Integration - The New Challenge. 3-10. 1995.
Herbert Wichmann Verlag, Heidelberg.
Ref Type: Conference Proceeding

[3] Ackermann, F., Krzystek, P. "Complete Automation of Digital Aerial Triangulation."
Photogrammetric Record, 1997, 15 (89), 645-656.

[4] Anderson, B. D. O.,Moore, J. B. Optimal Filtering. Englewood-CLiffs, NJ: Prentice-
Hall, 1979.

[S] Axelsson, P. "Processing of Laser Scanner Data - Algorithms and Applications."
ISPRS Journal of Photogrammetry & Remote Sensing, 1999, 54 138-147.

[6] Beyer, H. A. Geometric and Radiometric Analysis of a CCD-Camera Based
Photogrammetric Close-Range System. 18-42. 1992. Institut fur Geodasie und
Photogrammetrie.

Ref Type: Thesis/Dissertation

[7] Birchenhall, C. R. A Draft Guide to MatClass : A Matrix Class for C++ Version 1.0d.
1993. Department of Econometrics and Social Statistics - University of Manchester.
Web page (accessed in August 1997): http://les.man.ac.uk/ses/staff/crb/matclass/

Ref Type: Computer Program

[8] Boichis, N., Cocquerez, N, and Airault, S. A Top Down Strategy for Simple Cross
Roads Automatic Extraction. XXXII(Part 2), 19-26. 1998. Cambridge, United
Kingdom. Proceedings of the Commision II Symposium : Data Integration Systems and
Techniques.

Ref Type: Conference Proceeding

[91 Booch, G. Object-Oriented Analysis and Design. Benjamin/Cummings, 1994.

[10] Britting, K. R. "Introduction,” Inertial Navigation Systems Analysis. John Wiley &
Sons, 1971.

158

http://les.man.ac.uk/ses/staff/crb/matclass/

Reference List

[11]

(12]

(13]

(14]

[15]

[16]

[17]

(18]
(19]

(20]

(21]

(22]

Brown, D. C., Davis, R. G., and Johnson, C. J. Research in Mathematical Targeting -
The Practical and Rigorous Adjustment of Large Photogrammetric Nets. RADC-TDR-
64-353. 1964. TDR-Report.

Ref Type: Report

Corbett, S. J. GPS Single Epoch Ambiguity Resolution for Airborne Positioning and
Orientation . 1994. Department of Surveying - University of Newcastle Upon Tyne.
Ref Type: Thesis/Dissertation

Counselman, C. C., Gourevitch, S. A. "Miniature Interferometer Terminals for Earth
Surveying: Ambiguity and Multipath with the Global Positioning System." IEEE
Transactions on Geoscience and Remote Sensing, 1981, GE-19 (4), 244-252.

Cox, B. J. Object-Oriented Programming: An Evolutionary Approach. Reading, MA:
Addison-Wesley, 1986.

Douglass, B. P. "Introduction to Objects and the Unified Modeling Language," Doing
Hard Times - Developing Real-Time Systems with UML, Objects, Frameworks, and
Patterns. Addison Wesley Longman, 1999, 3-55.

Draper, C., Wrigley, W., Hovorka, J., Inertial Guidanc. Pergamon Press, 1960.

Forstner, W. and Gulch, E. A Fast Operator for Detection and Precise Location of
Distinct Points, Corners and Centers of Circular Features. ISPRS Intercommission
Workshop, 281-305. 1987. Interlaken.

Ref Type: Conference Proceeding

GDE-Systems. "Triangulation," Socet Set User's Manual. 1997, 14-1-14-67.
Gelb, A. Applied Optimal Estimation. Cambridge, Ma.: MIT-Press, 1974.

Goad, C., Yang, M. "A New Approach to Precision Airborne GPS Positioning for
Photogrammetry." Photogrammetric Engineering & Remote Sensing, 1997, September
1067-1077.

Goldberg, A.,Robson, D. SmallTalk-80: The Language and Its Implementation. 1983.

Golub, H. G., Van Loan, C. F. "Positive Definite Systems," Matrix Computations. The
Johns Hopkins University Press, 1996, 140-151.

159

Reference List

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

31]

(32]

[33]

Gruen, A. and Li, H. Linear Feature Extraction with LSB-Snakes from Multiple
Images. XXXI(B3), 266-272. 1996. Vienna. International Archives of Photogrammetry
and Remote Sensing.

Ref Type: Conference Proceeding

Gulch, E. "Automatic Control Point Measurement." Photogrammetric Week '95, 1995,
185-195.

Gurtner, W., Mader, G. "Receiver Independent Exchange Format Version 2." CSTG
GPS Bulletin, 1990, 3 (3).

Haala, N., Brenner, C., and Statter, C. An Integrated System for Urban Model
Generation. XXXII(Part 2), 96-103. 1998. Cambridge, United Kingdom . Proceedings
of the Commision II Symposium : Data Integration Systems and Techniques.

Ref Type: Conference Proceeding

Harman, M., Jones, R., First Course in C++ : A Gentle Introduction. McGraw Hill,
1997.

Hatch, R. Ambiguity Resolution in the Fast Lane. 26-29. 1989. Colorado Springs, CO.
Proceedings of the Second International Technical Meetings of the Satellite Division
of the ION, GPS-89.

Ref Type: Conference Proceeding

Hatch, R. Instantaneous Ambiguity Resolution. Schwarz, K. P. and Lachapelle, G.
Symposium No. 107, 299-308. 1990. Banff, Canada, Springer-Verlag. Kinematic
Systems in Geodesy, Surveying and Remote Sensing. International Union of Geodesy
and Geophysics and International Association of Geodesy.

Ref Type: Conference Proceeding

Heipke, C. Overview of Image Matching Techniques. 173-189. 1996. OEEPE.
Ref Type: Conference Proceeding

Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J. "Surveying with GPS," GPS -
Theory and Practice. Springer-Verlag, 1994, 129-136.

Horton, I. "Windows Programming and MFC," Introduction to Microsoft VisualC++
6.0 Standard Edition. Wrox Press: 1998, 47-80.

Jekeli, C. "Coordinate Frames and Transformations," Inertial Navigations Systems
with Geodetic Applications - Course Notes. Dept. of Civil and Environmental

Engineering and Geodetic Science, The Ohio State University, 1998, 1-1-1-23.

160

Reference List

(34]

(35]

[36]

(37]

(38]

(39]

[40]

(41]

[42]

[43]

[44]

Kalman, R. E. "A New Approach to Linear Filtering and Prediction Problems." ASME
Journal of Basic Engineering, 1960, 82 34-45.

Keller, S. F. "Potentials and Limitations of Artificial Intelligence Techniques Applied
to Generalisation," Muller, J. C., Lagrange, J. P., Weibel, R., GIS and Generalisation -
Methodology and Practice. Taylor & Francis Ltd., 1995, 135-147.

King, D. J. "Airborne Multispectral Digital Camera and Video Sensors: A Critical
Review of System Designs and Applications." Canadian Journal of Remote Sensing,

1995, 21 (3), 245-273.

Kraus, K. "Coordinate Systems and Transformations," Photogrammetry - Advanced

Methods and Applications. Ferd. Dummlers Verlag, 1997, 12-43.

Kraus, K., Waldhausl, P. "Photogrammetric Triangulation," Photogrammetry -
Fundamentals and Standard Processes. Ferd. Dummlers Verlag, 1993.

Kruck, E. "Computational Examples,” BINGO User's Manual. Intergraph, 1986, 8-1-8-
63.

Lachapelle, G. GPS Observables and Error Sources for Kinematic Positioning.
Schwarz, K. P. and Lachapelle, G. Symposium No. 107, 17-26. 1990. Banff, Canada,
Springer-Verlag. Kinematic Systems in Geodesy, Surveying and Remote Sensing.
International Union of Geodesy and Geophysics and International Association of
Geodesy.

Ref Type: Conference Proceeding

Lapucha, D. Precise GPS/INS Positioning For A Highway Inventory System. 1990.
Department of Surveying Engineering, University of Calgary.
Ref Type: Thesis/Dissertation

Maybeck, P. S. Stochastic Models, Estimation, and Control. Vol. 1, New York:
Academic Press, 1979.

Maybeck, P. S. Stochastic Models, Estimation and Control. Vol. 2, New York:
Academic Press, 1982.

McKeown, D. M., Harvey, W., Wixson, L. "Automating Knowledge Acquistion for
Aerial Image Interpretation." Computer Vision, Graphics and Image Processing, 1989,
46 37-81.

161

Reference List

(45]

(46]

[47]

(48]

[49]

(50]

(51]

[52]

[53]

[54]

[55]

(56]

[57]

(58]

Merchant, D. C. "Spatial Triangulation - The Bundle Method," Analytical
Photogrammetry : Theory and Practice Part - 11. Department of Geodetic Science and
Surveying, The Ohio State University, 1984.

Meyer, B. Object-Oriented Software Construction. Prentice Hall International (UK)
Ltd., 1988.

Microsoft. "Fundamentals of Object-Oriented Design," Introduction to C++ - A Short

Guide to Programming in C++. Microsoft Corporation, 1997, 169-189.
Mikhail, E. M., Ackermann, F. Observations and Least Squares. Harper & Row, 1976.

Mills, J. P., Newton, I., Graham, R. W. "Aerial Photography for Survey Purposes with
a High Resolution, Small Format, Digital Camera." Photogrammetric Record, 1996, 15
575-587.

Molenaar, M. An Introduction to the Theory of Spatial Object Modelling for GIS.
Taylor & Francis Ltd., 1998.

Moniwa, H. Analytical Photogrammetric System with Self-Calibration and Its
Applications. 34-59. 1972. The University of New Brunswick.
Ref Type: Thesis/Dissertation

Moniwa, H. "The Concept of Photo-Variant Self-Calibration and Its Application in
Block Adjustment with Bundles." Photogrammetria, 1981, 36 11-29.

Ohlhof, T., Kornus, W. "Geometric Calibration of Digital Three-Line CCD Cameras."
ISPRS Commission I Symposium, 1994, 30 (1), 71-81.

OMG. OMG Unified Modeling Language Specification. 23-23. 1999.
Ref Type: Report

Peipe, J. "Photogrammetric Calibration and Performance Test of Still Video Cameras."

ISPRS Commission I Symposium, 1994, 30 (1), 108-113.

Peipe, J., Schneider, T. "High Resolution Still Video Camera for Industrial
Photogrammetry." Photogrammetric Record, 1995, 15 135-139.

Peng, W. Automated Generalisation in GIS. 1996. ITC Publication Series Nr. 40.
Ref Type: Thesis/Dissertation

Pilouk, M. Integrated Modelling for 3D GIS. 1997. ITC Publication Series Nr. 40.
Ref Type: Thesis/Dissertation

162

Reference List

(591

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

(691

Pooley, R. J., Stevens, P. Using UML : Software Engineering with Objects and
Components. Addison-Wesley, 1999.

Remondi, B. W. Using the Global Positioning System (GPS) Phase Observable for
Relative Geodesy: Modeling, Processing and Results. 1984. Center for Space
Research, University of Texas at Austin.

Ref Type: Thesis/Dissertation

Roux, M. and McKeown, D. M. Feature Matching for Building Extraction from
Multiple Views. 331-349. 1994. Monterey, California, ARPA. Proceeedings of the
ARPA TUW.

Ref Type: Conference Proceeding

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. , Lorensen, W. Object-Oriented
Modeling and Design. Englewood Cliffs: Prentice Hall, 1991.

Schenk, T., Li, J. C., Toth, C. K. "Towards an Autonomous System for Orienting
Digital Stereopairs." Photogrammetric Engineering & Remote Sensing, 1991, 57 (8),
1057-1064.

Schenk, T., Toth, C. K. "Computer Vision and Digital Photogrammetry." ITC Journal,
1992, 1 34-38.

Schroeder, W., Martin, K., Lorensen, B. "Introduction," The Visualization ToolKit : An
Object-Oriented Approach to 3D Graphics. Prentice Hall, 1998, 1-15.

Schwarz, K. P. Sensor Integration and Image Georeferencing. Invited Lecture Duane
C. Brown International Summer School in Geomatics. 1998. The Ohio State
University.

Ref Type: Audiovisual Material

Schwarz, K. P., Cannon, E., Wong, R. V. C. "A Comparison of GPS Kinematic Models
for the Determination of Position and Velocity Along a Trajectory." Manuscripta

Geodetica, 1989, 14 345-353.

Schwarz, K. P.,Wei, M. ENSU 623 Lecture Notes. Department of Geomatics
Engineering, The University of Calgary, 1994.

Sheffer, D. B., Herron, R. E. "Biosterometrics," Karara, H. M., Non-Topographic
Photogrammetry. American Society for Photogrammetry and Remote Sensing, 1989,
359-366.

163

Reference List

(70]

(71]

[72]

(73]

(74]

[75]

[76]

(77]

[78]

[79]

(80]

Skaloud, J. Strapdown INS Orientation Accuracy with GPS Aiding. 1995.
Department of Geomatics Engineering - The University of Calgary.
Ref Type: Thesis/Dissertation

Combs, J. E. (Ed.), “Chapter VII : Planning and Executing the Photogrammetric
Project”, Manual of Photogrammetry, American Society for Photogrammetry and
Remote Sensing, 1980, 367- 412.

Strang, G., Borre, K. "Decorrelation and Weight Normalization," Linear Algebra,

Geodesy and GPS. Wellesey-Cambridge Press, 1997, 400-403.

Streilein, A. Videogrammetry and CAAD for Architectural Restitution of the Otto-
Wagner-Pavillon in Vienna. “Optical 3-D Measurement Techniques III - Applications
in Inspection, Quality Control and Robotics”. Editors Gruen, A. and Kahmen, H. 305-
314. 1995. Vienna, Wichmann.

Ref Type: Conference Proceeding

Streilein, A., Grussenmeyer, P., and Hanke, K. Zurich City Hall - A Reference Data
Set for Digital Close-Range Photogrammetry. 1999. Olinda, Brazil. XVII CIPA
International Symposium.

Web page (accessed on December 1999) : http://cipa.uibk.ac.at

Stroustrup, B. "A Tour of C++," The C++ Programming Language. Addison-Wesley,
1995, 13-42.

TerraSat. Sample Data File. 1999.

Web page (accessed on December 1999) : http://www.terrasat.de/news.htm

Waldhausl, P. Defining the Future of Architectural Photogrammetry. 29(B5), 767-770.
1992. International Archives of Photogrammetry and Remote Sensing.
Ref Type: Conference Proceeding

Wei, M., K.P.Schwarz. "A Strapdown Inertial Algorithm Using an Earth-Fixed
Cartesian Frame." Journal of The Institute of Navigation, 1990, 37 (2), 153-167.

Wolf, P., Ghilani, C. D. Adjustment Computations - Statistics and Least Squares in
Surveying and GIS. John Wiley & Sons, 1997.

Wong, R. V. C. Development of a RLG Strapdown Inertial Surveys System. 41-47.
1988. Department of Surveying Engineering, University of Calgary.
Ref Type: Thesis/Dissertation

164

http://cipa.uibk.ac.at
http://www.terrasat.de/news.htm

Appendix A : Data Files for Camera Calibration

APPENDIX A : DATA FILES FOR CAMERA CALIBRATION

The Calibrate Image Sensor Use Case of the Image Acquisition Subsystem was implemented
using the software design of Chapter 3.

There are three important input data files for this program: the image file; the ground control
point file; and the image sensor file. All these input files should reside in a subdirectory

called ‘infile’.

The Image File, which should be named ‘gubaio.img’, contains all the data pertaining to the
image. Each image begins with the ‘[IMAGE]’ keyword and ends with the ‘ImageEnd’
keyword. The name of the image; the name of the sensor used to capture this image; the
initial approximate coordinates of the perspective center; and the initial approximate
rotations of the image are then entered on separate lines. Each keyword; the ‘=" symbol; and

the values should be separated by a space between them as shown in the example below.

[IMAGE]

name = stl

sensor = dcs

InitialPersCenter =00 .8

InitialRotation=000

Points
1 532.043478 185.565217
2 649.434783 182.086957

PointsEnd

The ‘Points’ keyword marks the beginning of the image coordinates (or pixel coordinates)
and the ‘PointEnd’ keyword marks the end of the points. Each image point is entered in a

new line in the order of point number, x coordinate value and y coordinate value.

For the ground control point file, which should be named ‘gubaio.gcp’, ‘FullControl’ and
‘FullControlEnd’ keywords mark the beginning and the end of control point coordinates.
Each line is then entered with the point number, X, Y and Z coordinates as shown in the

example below.

FullControl
1 -.102767 .093382 0.0
2 -.062.821 .09373 0.0

FullControlEnd

165

Appendix A : Data Files for Camera Calibration

For the Image Sensor File, which should be named ‘gubaio.cam’, each sensor begins with the
‘[SENSOR]’ keyword and ends with the ‘END’ keyword. It is followed by the name of the
sensor and the type of the imaging sensor. The keyword for the type of the imaging sensor
can be ‘DIGITAL’, ‘SCAN’ or ‘FRAME’. If ‘DIGITAL’ is selected, the sensor element
should be given as the dimensions of height and width of the sensor chip in millimetres. If
the type is ‘SCAN’, four fiducial coordinates (X, y) of the camera should be given, beginning
with upper left then proceeding in anti-clockwise direction to the lower left, lower right and

then upper right. An example is shown below.

[SENSOR]

name = RC30

type = SCAN

1-105.996 105.999

2-105.993 -105.996

3 105.996 -105.999

4 105.997 105.999

ScanResolution = 25
CameraConstants = 0.014 0.022 303.1
RadialDistortion = 0.0 0.0 0.0
DecenteringDistortion = 0.0 0.0 0.0
Affinity = 0.0 0.0

END

For ‘SCAN’ and ‘FRAME’ type, the image file should have the pixel coordinates or the
photo coordinates of the fiducial points included immediately after the line specifying the

sensor, as shown in the example below.

[IMAGE]

name = 131

sensor = RC30

1359 382

2 363 8866

3 8845 8868

4 8845 385

InitialPersCenter = 166170.9614 196547.0127 1005.285568
InitialRotation = 0.1813257385 0.869770513 0.946245091

These coordinates are used to perform the interior orientation of each image.

For the ‘DIGITAL’ type, this information is not necessary. The dimensions of the sensor
chip are used instead, and the coordinates of the four corners of the sensor chip are used as
the fiducial points. The following data are the actual data used for the camera calibration

testing explained in chapter six.

1. Input Files

1.1 Image File (gubaio.img)

[IMAGE]
name = stl
sensor = dcs

166

Appendix A : Data Files for Camera Calibration

InitialPersCenter =00 .8
InitialRotation =000
Points

DO 00NN AW -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

532.043478 185.565217
649.434783 182.086957
824.130435 178.173913
939.000000 176.869565
1082.913043 172.956522
536.434783 301.913043
652.086957 298.869565
827.391304 295.826087
942.608696 292.782609
1086.173913 290.173913
541.869565 476.434783
658.826087 472.521739
831.086957 469.913043
947.173913 466.000000
1089.434783 462.521739
544.565217 593.478261
660.652174 589.130435
833.347826 584.347826
947.695652 581.739130
1091.260870 576.086957
549.608696 736.782609
664.826087 732.869565
838.391304 728.086957
952.304348 724.173913
1094.130435 719.826087

PointEnd

ImageEnd

[IMAGE]

name = st2

sensor = dcs
InitialPersCenter = .5 .3 .7
InitialRotation = -10 45 -90
Points

25

593.333333 724.666667
592.000000 628.666667
587.333333 466.000000
586.666667 349.333333
584.000000 190.333333
715.333333 718.666667
717.333333 620.666667
722.000000 459.333333
724.666667 342.666667
728.666667 185.333333
895.333333 707.333333
904.666667 608.666667
917.333333 450.666667
926.666667 336.000000
940.666667 181.333333
1013.333333 700.000000
1024.666667 601.333333
1044.666667 446.000000
1058.000000 330.333333
1077.333333 176.333333
1158.000000 690.333333
1174.000000 594.333333
1200.666667 437.666667
1219.333333 325.000000
1245.333333 170.333333

PointEnd
ImageEnd
[IMAGE]
name = st3

167

Appendix A : Data Files for Camera Calibration

sensor = dcs
InitialPersCenter =.5 -.5 .8
InitialRotation = 10 45 90

Points

25

1002.000000
1020.000000
1051.000000
1074.000000
1102.000000

289.000000
345.000000
438.000000
502.000000
589.000000

929.000000 293.000000
948.000000 351.000000
979.000000 444.000000
998.000000 511.000000

1024.000000 595.000000

819.000000
836.000000
861.000000
879.000000
903.000000
744.000000
760.000000
783.000000
799.000000
819.000000
649.000000
662.000000
681.000000
695.000000
714.000000

PointEnd
ImageEnd
[IMAGE]
name = st4
sensor = dcs
InitialPersCenter =-.50.5
InitialRotation = 0 -45 0
Points

25

538.000000
630.500000
757.166667
830.500000
918.000000
541.333333
632.166667
758.000000
831.333333
917.166667
545.500000
635.500000
758.833333
832.166667
918.000000
548.833333
638.833333
760.500000
834.666667
921.333333
553.000000
643.000000
763.000000
836.333333
918.000000

PointEnd
ImageEnd
[IMAGE]

298.000000
360.000000
452.000000
520.000000
605.000000
303.000000
366.000000
459.000000
527.000000
614.000000
307.000000
370.000000
465.000000
534.000000
623.000000

186.333333
186.333333
184.666667
183.833333
185.500000
317.333333
309.833333
302.333333
298.166667
292.333333
507.833333
494.500000
474.500000
462.833333
451.166667
633.500000
614.333333
587.666667
571.833333
554.333333
787.500000
760.833333
727.500000
706.666667
681.666667

168

Appendix A : Data Files for Camera Calibration

name = st5

sensor = dcs
InitialPersCenter = -.7 .5 .7
InitialRotation = 10 -45 90
Points

O 003NN AN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

975.666667
966.500000
951.500000
942.333333
929.833333
899.000000
891.500000
878.166667
869.000000
860.666667
779.000000
774.000000
767.333333
762.333333
755.666667
699.833333
695.666667
690.666667
686.500000
682.333333
597.333333
595.666667
594.000000
591.500000
590.666667

PointEnd
ImageEnd

299.000000
361.500000
451.500000
506.500000
571.500000
304.833333
369.000000
457.333333
512.333333
580.666667
314.833333
378.166667
467.333333
520.666667
589.833333
319.000000
382.333333
474.833333
530.666667
599.833333
327.333333
393.166667
484.833333
541.500000
609.833333

1.2 Ground Control Point File (gubaio.gcp)

FullControl

1 -.102767 .093382 0.0
2 -.062.821.09373 0.0
3 -.002838 .094302 0.0
4 .037149 .094683 0.0
5 .08713 .0951410.0
6 -.10244 .0533750.0
7 -.062441 .053750.0
8 -.002464 .054305 0.0
9 .037514 .054683 0.0
10 .087495 .055124 0.0
11 -.101895 -.006575 0.0
12 -.061914 -.006203 0.0
13 -.0019 -.0056790.0
14 .038053 -.005289 0.0
15 .088037 -.004839 0.0
16 -.101.54 -.046598 0.0
17 -.061554 -.046264 0.0
18 -.001574 -.045656 0.0
19 .03843 -.045298 0.0
20 .088405 -.044789 0.0
21 -. 101111 -.096581 0.0
22 -.061126 -.096203 0.0
23 -.001126 -.095672 0.0
24 .038831 -.0952920.0
25 .088832 -.094836 0.0
FullControlEnd

CheckPoint

CheckPointEnd

TiePoint

TiePointEnd

169

Appendix A : Data Files for Camera Calibration

1.3 Image Sensor File (gubaio.cam)

[SENSOR]

name = dcs

type = DIGITAL

SensorElement = 5.0052 7.5078
SensorPixels = 1024 1536
CameraConstants =00 8
RadialDistortion = 0.0 0.0 0.0
DecenteringDistortion = 0.0 0.0 0.0
Affinity = 0.0 0.0

END

2. Output File (gubaio.out)
Adjustment Start Time : 1999/12/4 (14:41:32)

[GENERAL]

Adjusted WITH Self-Calibration

Platform type = AERIAL

AngleUnit = DEGREE

Converge Test criteria = 1e-005

Maximum iteration = 15

A priori Standard Deviation of Image Observation = 0.005 mm

[CAMERA PARAMETERS]

Principal Point = FREE (Sigma = 1e+009 mm)
Principal Distance = FREE (Sigma = 1e+009 mm)

[IMAGE PARAMETERS]

Rotation angles = FREE (Sigma = 1e+009 DEGREE)
Perspective Point Coordinate = FREE (Sigma = 1e+009 m)

[CONTROL PARAMETERS]

Planimetry Controls = FIXED
Height Controls = FIXED

[REDUNDANCY STATUS]
Number of Parameters = 115
Number of Equations = 365
Redundancy = 250

[CONTROL POINTS STATUS]
Number of Full Controls =25

Number of Check Points =0
Number of Tie Points =0

Iteration No =1
Sigma0 = 2.1323

170

Appendix A : Data Files for Camera Calibration

Iteration No =2
Sigma0 = 0.96045

Iteration No =3
Sigma0 = 0.22957

Iteration No =4
Sigma0 =0.042114

Iteration No =5
Sigma0 = 0.0056607

Iteration No = 6
Sigma0 = 0.0042132

Iteration No =7
Sigma0 = 0.0042131

Time of execution(adjustment iterations only) : 2.14 seconds

Maximum residual : 0.016604
Image Name : st5
Point Name 114

A POSTERIORI Sigma0 = 0.0042131

Xp yp cc K1 K2 K3 P1 P2
xp 1.00
yp 0.01 1.00
cc 031 0.30 1.00
K1 0.20 0.11 0.39 1.00
K2 0.00 0.00 0.00 0.00 1.00
K3 0.00 0.00 0.00 0.00 0.00 1.00
P1 083 0.10 0.02 0.16 0.00 0.00 1.00
P2 0.10 0.89 0.08 0.09 0.00 0.00 0.11 1.00
A 0.16 0.30 0.25 0.10 0.00 0.00 0.08 0.14 1.00
B 0.27 0.09 0.07 0.09 0.00 0.00 0.13 0.01 0.03 1.00

K1 K2 K3 P1 P2

-0.0000907070 0.00000 0.00000 -0.0000937410 -0.0000317171 -0.0025433164 0.0007809931

0.007 0.006 0.006 0.001 0.001

Image : stl

-0.050 0.025 0725 -2.545 -2.229 -0971
0.00274 0.00735 0.00828 0.16039 0.21214 0.17389

Image : st2

0.005

0335 0.131 0529 -9.973 32599 -86.894
0.00370 0.00133 0.00565 0.07866 0.22527 0.38619

Image : st3

0.582 -0.274 0.812 15.353 34338 77.270

0.007

171

Appendix A : Data Files for Camera Calibration

0.00112 0.00189 0.00130 0.03932 0.23441 0.20142

Image : st4
-0.540 0.085 0.489 -10.551 -47.674 -8.055
0.00393 0.00706 0.00584 0.03074 0.11356 0.24559

Image : st5
-0.718 -0.238 0.783 16.866 -41.355 96.324
0.01431 0.00192 0.00962 0.20263 0.19762 0.27777

Sensor Name : dcs
0.031 0.188 10.275
0.00409 0.00962 0.00156

Name X y z Control Type
1 -0.103 0.093 0.000 Control
0.003 0.003 0.001
2 -0.062 0.094 0.000 Control
0.006 0.001 0.006
3 -0.003 0.094 0.000 Control
0.005 0.007 0.002
4 0.037 0.095 0.000 Control
0.004 0.001 0.015
5 0.087 0.095 -0.000 Control
0.004 0.006 0.005
6 -0.102 0.053 0.000 Control
0.005 0.005 0.011
7 -0.062 0.054 0.000 Control
0.007 0.005 0.006
8 -0.002 0.054 0.000 Control
0.008 0.006 0.004
9 0.038 0.055 -0.000 Control
0.018 0.014 0.001
10 0.087 0.055 -0.000 Control
0.020 0.011 0.001
11 -0.102 -0.007 0.000 Control
0.003 0.005 0.001
12 -0.062 -0.006 -0.000 Control
0.005 0.007 0.006
13 -0.002 -0.006 -0.000 Control
0.006 0.002 0.008
14 0.038 -0.005 -0.000 Control
0.004 0.001 0.005
15 0.088 -0.005 0.000 Control
0.005 0.001 0.006
16 -0.101 -0.047 -0.000 Control

172

Appendix A : Data Files for Camera Calibration

17

18

19

20

21

22

23

24

25

0.004

-0.062
0.005

-0.002
0.006

0.038
0.006

0.088
0.001

-0.101
0.002

-0.061
0.001

-0.001
0.003

0.039
0.006

0.089
0.006

0.001

-0.046
0.006

-0.046
0.006

-0.045
0.005

-0.045
0.007

-0.097
0.022

-0.096
0.001

-0.096
0.005

-0.095
0.015

-0.095
0.004

0.001

-0.000 Control
0.004

-0.000 Control
0.007

-0.000 Control
0.004

0.000 Control
0.005

0.000 Control
0.001

0.000 Control
0.008

0.000 Control
0.006

0.000 Control
0.002

0.000 Control
0.003

173

Appendix B : Data Files for Block Bundle Adjustment

APPENDIX B : DATA FILES FOR BLOCK BUNDLE
ADJUSTMENT

The same applies for the data files of block bundle adjustment as explained in Appendix A.
A difference from Appendix A in the data file for this application, is the inclusion of tie
points and check points. To include tie points and check points, only the ground control point
file (‘gubaio.gcp’) needs to be appended with the keywords ‘TiePoint’, ‘TiePointEnd’ and
‘CheckPoint’, ‘CheckPointEnd’. Each part is then filled with point number and approximate
X, Y and Z coordinates. For check points, there are two lines for each point. The first line is
filled with the point number and the surveyed or known X,Y and Z coordinates. This line is
then followed by a second line of the approximate X,Y and Z coordinates. This is shown in

the example below.

TiePoint
tpe22 146 256 10
tpe23 146 256 3
tpsll 152 236 14
tps12 152. 236 3
tps21 152 247 14
tps22 152 247 3
TiePointEnd
CheckPoint
102 118.13 23549 10.37
110 230 10
112 136.12 237.39 10.37
130 230 10
122 152.02 239.39 1048
150 230 10
CheckPointEnd

The next data files show the actual data files used for the bundle adjustment of the terrestrial

images explained in Chapter 6.

1. Input Files

1.1 Image File (gubaio.img)

[IMAGE]

name = stl

sensor = olympus

InitialPersCenter = 136.0 1790 6
InitialRotation = 0.0 0.0 0.0
Points

101 215.870968 418.935484

102 212967742 520.870968

103 209.741935 680.000000

111 643.774194 399.225806

112 646.354839 506.709677

113 649.258065 674.838710

121 1047.096774 382.806452

174

Appendix B : Data Files for Block Bundle Adjustment

122 1056.129032 491.838710
123 1065.806452 661.612903
tpll 137.096774 370.838710
tpl2 166.129032 486.419355
tpl3 163.225806 593.838710
tp4l 1128.935484 324.387097
tp42 1105.387097 450.516129
tp43 1115.064516 567.354839
PointEnd

ImageEnd

[IMAGE]

name = st2

sensor = olympus
InitialPersCenter = 136.0 179.0
InitialRotation = 0.0 0.0
Points

101 185.517241 360.034483
102 182.758621 471.068966
103 176.551724 637.275862
111 638.068966 358.655172
112 640.482759 469.689655
113 640.137931 638.655172
121 1038.827586 361.068966
122 1045.379310 469.344828
123 1050.551724 634.862069
tpll 104.551724 305.896552
tpl2 130.413793 431.068966
tpl3 125.241379 543.827586
tp4l 1125.103448 304.793103
tp42 1094.758621 428.241379
tp43 1102.689655 543.068966
PointEnd

ImageEnd

[IMAGE]

name = st3

sensor = olympus
InitialPersCenter = 79.0 200 2.0
InitialRotation = -45 10.0
Points

101 616.000000 292.000000
102 619.000000 470.000000
103 624.000000 754.000000
111 949.000000 430.000000
112 958.000000 558.000000
113 965.000000 754.000000
121 1104.000000 498.000000
122 1113.000000 599.000000
123 1124.000000 752.000000
201 215.000000 384.000000
202 201.000000 759.000000
211 505.000000 290.000000
212 502.000000 756.000000
tp41 1156.000000 461.000000
tp42 1135.000000 568.000000
tp43 1144.000000 669.000000
tpll 579.000000 151.000000
tpl2 572.000000 380.000000
tpl3 571.000000 582.000000
tp21 110.000000 333.000000
tp22 149.000000 486.000000
tp23 142.000000 637.000000
tpnll 250.000000 372.000000
tpnl3d 236.000000 761.000000
PointEnd
ImageEnd

2.0
0.0

0.0

175

Appendix B : Data Files for Block Bundle Adjustment

[IMAGE]
name = st4
sensor = olympus
InitialPersCenter = 96 237 2.0
InitialRotation = -90 -0 90.0
Points
201 364.000000 1008.000000
211 368.000000 306.000000
212 1052.000000 260.000000
tpll 220.000000 89.000000
tpl2 518.000000 135.000000
tp13 803.000000 105.000000
tpnll 366.000000 911.000000
tpnl3 1066.000000 962.000000
PointEnd
ImageEnd
[IMAGE]
name = st5
sensor = olympus
InitialPersCenter =96 246 2.0
InitialRotation = -90 10 90.0
Points
201 309.000000 766.000000
202 987.000000 808.000000
211 322.000000 62.000000
212 1000.000000 19.000000
tp22 456.000000 938.000000
tp23 740.000000 967.000000
tpnll 308.000000 654.000000
tpnl3 997.000000 694.000000
PointEnd
ImageEnd
[IMAGE]
name = st6
sensor = olympus
InitialPersCenter =77 284 2.0
InitialRotation = -135 10.0 0.0
Points ‘
201 726 274
202 732784
211 1082 356
2121104 784
301 137.368421 516.315789
302 132.105263 627.315789
303 122.631579 794.157895
311 316.631579 425.157895
312 307.684211 635.684211
321 605.578947 281.421053
322 603.473684 475.105263
323 601.894737 787.315789
tpll 1210290
tpl2 1158 470
tp13 1174 642
tp21 622 120
tp22 642 376
tp23 642 596
tp32 110.000000 592.157895
tp33 104.210526 706.789474
tpell 436358
tpel2 434 522
tpel3 426784
tpe21 208 478
tpe22 198 600
tpe23 188 790
tpnl1 790 288

176

Appendix B

: Data Files for Block Bundle Adjustment

tpn13 800 784
PointEnd
ImageEnd
[IMAGE)]
name = st7
sensor = olympus
InitialPersCenter = 125 257 0
InitialRotation = -180 10 90.0
Points
321 393.000000 269.000000
322 673.000000 247.000000
323 1178.000000 213.000000
tp21 213.000000 45.000000
tp22 553.000000 96.000000
tp23 881.000000 64.000000
tpell 404.000000 818.000000
tpel2 680 836
tpel3 1184.000000 866.000000
PointEnd
ImageEnd
[IMAGE]
name = st8
sensor = olympus
InitialPersCenter = 134 257 0
InitialRotation = -200 10.0 0.0
Points
321 1011.000000 242.000000
322 1027.000000 477.000000
323 1053.000000 859.000000
311 80.000000 80.000000
312 44.000000 496.000000
tpell 590.000000 166.000000
tpel2 596 422
tpe13 600.000000 858.000000
tp21 1187.000000 142.000000
tp22 1127.000000 399.000000
tp23 1148.000000 649.000000
PointEnd
ImageEnd
[IMAGE]
name = st9
sensor = olympus
InitialPersCenter = 150 257 2.0
InitialRotation = 135 45 80.0
Points
311 430.000000 310.000000
312 784.000000 306.000000
tpell 554 94
tpel12 750 82
tpel3 1078 66
tpe21 198 738
tpe22 500 758
tpe23 1036 794
PointEnd
ImageEnd
[IMAGE]
name = stl1
sensor = olympus
InitialPersCenter = 175 257 0
InitialRotation = 100
Points
301 834.000000 281.000000
302 840.000000 496.000000
303 842.000000 842.000000
321 1147.000000 577.000000

10.00.0

177

Appendix B : Data Files for Block Bundle Adjustment

322 1154.000000 695.000000
323 1163.000000 870.000000
311 1046.000000 484.000000
312 1056.000000 696.000000
tp21 1198 538
tp22 1170 656
tp23 1174 772
tp31 849.000000 97.000000
tp32 818.000000 380.000000
tp33 815.000000 626.000000
tp4l 88.000000 267.000000
tp42 136.000000 473.000000
tp43 116.000000 668.000000
tpell 1100 532
tpel2 1108 662
tpel3 1116 858
tpe21 948 390
tpe22 956 568
tpe23 964 848
tpsil 238.000000 344.000000
tps12 200.000000 832.000000
tps21 705.000000 260.000000
tps22 700.000000 834.000000

PointEnd

ImageEnd

[IMAGE)

name = st12

sensor = olympus

InitialPersCenter = 180 241 0

InitialRotation = 90.0 0.0 90.0

Points
tp31 320.000000 135.000000
tp32 515.000000 176.000000
tp33 688.000000 171.000000
tpsl1 414.000000 706.000000
tps12 824.000000 726.000000
tps21 418.000000 272.000000
tps22 830.000000 266.000000
tp4l 328.000000 847.000000
tp42 515.000000 810.000000
tp43 683.000000 820.000000

PointEnd

ImageEnd

[IMAGE]

name = st13

sensor = olympus

InitialPersCenter = 185 250 0

InitialRotation = 900 -90

Points
tp31 921.000000 631.000000
tp32 769.000000 598.000000
tp33 634.000000 592.000000
tps11 840.000000 186.000000
tps12 524.000000 180.000000
tps21 848.000000 520.000000
tps22 524.000000 520.000000
tp4l 908.000000 79.000000
tp42 764.000000 112.000000
tp43 632.000000 107.000000

PointEnd

ImageEnd

[IMAGE]

name = st14

sensor = olympus

InitialPersCenter = 185 241 0

178

Appendix B : Data Files for Block Bundle Adjustment

InitialRotation = 90.0 0.0 -90.0
Points

tp31 951.000000 779.000000
tp32 799.000000 747.000000
tp33 662.000000 750.000000
tpsll 869.000000 327.000000
tps12 547.000000 326.000000
tps21 877.000000 670.000000
tps22 552.000000 679.000000
tp4l 935.000000 218.000000
tp42 791.000000 252.000000
tp43 655.000000 249.000000
PointEnd

ImageEnd

[IMAGE]

name = st15

sensor = olympus
InitialPersCenter = 230 160 0
InitialRotation= 45.00.0 0.0
Points

tp31 821.307692 382.153846
tp32 800.538462 446.384615
tp33 799.769231 505.230769
tps1l1 669.000000 390.230769
tps12 670.538462 551.769231
tps21 777.076923 404.846154
tps22 779.769231 553.692308
tp4l 649.769231 354.153846
tp42 649.000000 428.384615
tp43 648.230769 496.461538
121 632.923077 391.461538
122 632.538462 454.153846
123 631.000000 551.846154
111 482.538462 411.846154
112 480.615385 468.769231
113 481.384615 556.076923
101 351.384615 431.461538
102 351.384615 481.076923
103 349.846154 559.153846
tpl1 318.307692 408.769231
tpi2 331.000000 464.153846
tpl3 330.615385 516.076923
PointEnd

ImageEnd

[IMAGE)

name = st16

sensor = olympus
InitialPersCenter = 215 160 0
InitialRotation = 45.0 0.0
Points

tp31 925.000000 377.000000
tp32 901.000000 456.000000
tp33 902.000000 527.000000
tpsl1 784.000000 375.000000
tps12 787.000000 582.000000
tps21 880.000000 403.000000
tps22 882.000000 585.000000
tp4l 778.000000 325.000000
tp42 768.000000 420.000000
tpd3 768.000000 507.000000
121 739.000000 373.000000
122 739.000000 456.000000
123 738.000000 581.000000
111 504.000000 401.000000
112 504.000000 474.000000

0.0

179

Appendix B : Data Files for Block Bundle Adjustment

113
101
102
103
tpll
tpl12
tpl3

504.000000 585.000000
306.000000 425.000000
305.000000 490.000000
304.000000 588.000000
260.000000 398.000000
278.000000 468.000000
279.000000 535.000000
PointEnd
ImageEnd

1.2 Ground Control Point File (gubaio.gcp)

FullControl
101 118.13
103 118.20
111 136.09
113 136.08
121 151.99
123 151.99
201 114.77
202 114.72
211 115.99
212 116.03
301 151.22
302 151.22
303 150.75
311 136.66
312 136.78
321 117.01
322 117.02
323 117.10
FullControlEnd
TiePoint
tpll 114
tpl2 114
tpl3 114
tp21 114
tp22 114
tp23 114
tp31 152
tp32 152
tp33 152
tp41 152
tpd2 152
tp43 152
tpnll 114
tpnl3 114
tpell 128
tpel2 128 256 10
tpel3 128
tpe21 146
tpe22 146
tpe23 146
tpsll 152
tpsi2 152
tps21 152
tps22 152
TiePointEnd
CheckPoint
102 118.13
110
112 136.12
130
122 152.02
150
CheckPointEnd

235.51
235.44
237.41
237.45
239.43
239.37
247.55
247.28
236.07
236.25
256.00
256.00
256.11
254.48
254.02
252.11
252.09
252.06

235
235
235
250
250
250
250
250
250
235
235
235
248
248
256

256
256
256
256
236
236
247
247

235.49
230
237.39
230
239.39
230

14.61
3.66
14.65
3.67
14.76
3.69
14.26
3.61
14.25
3.64
14.79
10.49
3.67
14.68
8.20
14.88
10.55
3.63

16
11
6
16
11
6
16
11
6
16
11
6
14
4
14

3
14
10
3
14
3
14
3

10.37
10
10.37
10
10.48
10

180

Appendix B : Data Files for Block Bundle Adjustment

1.3 Image Sensor File (gubaio.cam)

[SENSOR]

name = olympus

type = DIGITAL

SensorElement = 6.6 8.245

SensorPixels = 1024 1280
CameraConstants = -0.1905 0.9305 8.595
RadialDistortion = 0.0 0.0 0.0
DecenteringDistortion = 0.0 0.0 0.0
Affinity = 0.0 0.0

END

2. Output File (gubaio.out)
Adjustment Start Time : 1999/12/9 (10:59:47)

[GENERAL]

Adjusted WITHOUT Self-Calibration

Platform type = TERRESTRIAL

AngleUnit = DEGREE

Converge Test criteria= 1e-005

Maximum iteration = 15

A priori Standard Deviation of Image Observation = 0.005 mm

(CAMERA PARAMETERS]

Principal Point = FIXED
Principal Distance = FIXED

[IMAGE PARAMETERS]

Rotation angles = FREE (Sigma = 1e+009 DEGREE)
Perspective Point Coordinate = FREE (Sigma = 1e+009 m)

[CONTROL PARAMETERS]

Planimetry Controls = FIXED
Height Controls = FIXED

[REDUNDANCY STATUS]
Number of Parameters = 225
Number of Equations = 679
Redundancy = 454

[CONTROL POINTS STATUS]
Number of Full Controls =18

Number of Check Points =3
Number of Tie Points =27

Iteration No = 1
Sigma0 = 4.2258

Iteration No =2
Sigma0 = 1.9123

Iteration No =3

181

Appendix B : Data Files for Block Bundle Adjustment

Iteration No =3
Sigma0 = 0.77017

Iteration No = 4
Sigma0 = 0.27411

Iteration No = 5
Sigma0 = 0.13868

Iteration No =6
Sigma0 = 0.10423

Iteration No =7
Sigma0 = 0.077145

Iteration No =8
Sigma0 = 0.072281

Iteration No =9
Sigma0 = 0.072267

Iteration No = 10
Sigma0 = 0.072265

Time of execution(adjustment iterations only) : 11.92 seconds

Maximum residual : 0.50994
Image Name :st6
Point Name 1202

A POSTERIORI Sigma0 = 0.072265

RMSE of XY Coordinates : 0.45388
Maximum XY Error :0.72125 at point 102

RMSE of Z Coordinates : 0.27363
Maximum Z Error :-0.34073 at point 102

Image : stl
144.806 183.222 0.078 10.620 16492 1.076
1.22603 1.17176 4.50383 5.29539 0.75308 1.13575

Image : st2
138959 184.025 0.152 4355 15.066 0.333
0.01314 0.14853 0.22199 22.04812 33.05544 8.54322

Image : st3
96.662 213.536 2915 -45.058 17.582 1.327
0.02379 0.07986 0.04005 0.43027 3.50553 8.01074

Image : st4
95.858 237.147 3.885 -88.844 17420 92.151
0.57693 0.02691 0.02645 0.26488 6.34744 11.76073

Image : stS
96.011 236467 4.258 -76.636 14.220 88.775
0.00264 0.25572 0.01157 6.08802 0.74372 2.28110

Image : st6
89.553 265.100 3.578 -117.270 16910 0.573

182

Appendix B : Data Files for Block Bundle Adjustment

0.06118 0.01157 0.02418 9.81715 2.82626 1.13848

Image : st7
115215 271352 5.448 -169.035 17.245 90.869
0.04378 0.10626 0.17134 1.22901 0.30157 1.85012

Image : st8
133.370 276.043 5.094 -195.593 15.045 -1.866
0.11078 0.10039 0.00025 2.32480 2.10794 1.13763

Image : st9
152.250 269.401 3.535 136.435 19.362 90.027
0.23051 0.03901 0.02419 0.95933 0.41741 0.61635

Image : st11
172981 267.835 3962 128.867 19.273 -3.519
0.01298 0.01687 0.04170 4.75683 17.96477 6.53327

Image : st12
186.166 262241 2.283 107.935 11.627 86.569
0.02096 0.00999 0.17180 30.93133 1.36891 0.11470

Image : st13
194.795 268.149 0.861 114922 7.117 -94.128
0.04933 0.04170 0.10956 3.55151 1.55187 0.41748

Image : st14
197.360 264.185 1420 115465 4.780 -93.282
0.00455 0.01207 0.02124 2.90266 3.12438 0.60969

Image : st15
226.694 177.152 1.233 50.944 9.076 -0.061
0.00526 0.08302 0.06199 0.18366 8.39069 19.22766

Image : st16
196.342 178.715 1.207 41379 10.693 -0.257
0.00675 0.55937 0.01584 5.92998 27.41354 1.78153

Sensor Name : olympus
-0.191 0930 8.595
0.00000 0.00000 0.00000

[Check point std dev followed by std error(given - adjusted)]

Name X y z Control Type

101 118.130 235.510 14.610 Control
0.037 0.021 0.052

103 118.200 235.440 3.660 Control
0.028 0.009 0.057

111 136.090 237.410 14.650 Control
0.047 0.002 0.004

113 136.080 237.450 3.670 Control
0.049 0.180 0.103

121 151.990 239.430 14.760 Control
0.007 0.016 0.006

123 151.990 239.370 3.690 Control
0.252 0.019 0.315

183

Appendix B : Data Files for Block Bundle Adjustment

201 114.770 247.550 14.260 Control
0.236 0.078 0.009
202 114.720 247.280 3.610 Control
0.111 0.008 0.154
211 115.990 236.070 14.250 Control
0314 0.002 0.045
212 116.030 236.250 3.640 Control
0.009 0.076 0.011
301 151.220 256.000 14.790 Control
0.008 0.103 0.070
302 151.220 256.000 10.490 Control
0.007 0.013 0.021
303 150.750 256.110 3.670 Control
0.024 0.001 0.002
311 136.660 254.480 14.680 Control
0.037 0.146 0.013
312 136.780 254.020 8.200 Control
0.019 0.045 0.003
321 117.010 252.110 14.880 Control
0.159 0.020 0.005
322 117.020 252.090 10.550 Control
0.027 0.045 0.012
323 117.100 252.060 3.630 Control
0.022 0.021 0.023
102 118.111 234.769 10.029 Check
0.011 0.008 0.009
0.019 0.721 0.341
112 136.181 236.850 10.108 Check
0.076 0.256 0.001
-0.061 0.540 0.262
122 152.654 239.252 10.280 Check
0.055 0.860 0.046
-0.634 0.138 0.200
tpll 114.923 232.693 16.471 Tie
0.047 0.010 0.011
tpl2 115.968 233.849 11.598 Tie
0.048 0.013 0.174
tpl3 116.047 233.854 7.022 Tie
0.143 0.011 0.009
tp4l 156.526 237.808 16.922 Tie
0.146 0.013 0.085
tp42 154.942 238.744 11.862 Tie
0.151 0.001 0.025
tp43 154.700 238.905 7.090 Tie

184

Appendix B : Data Files for Block Bundle Adjustment

0.070 0.003 0.021
tp21 113.581 252.664 17.613 Tie
0.121 0.102 0.020
tp22 114.784 251.332 12.303 Tie
0.478 0.009 0.320
tp23 114.732 251.188 7.317 Tie
0.021 0.001 0.186
tpnll 115.507 246479 14.886 Tie
0.021 0.003 0.020
tpnl3 115.939 246.433 3.563 Tie
0.013 0.060 0.033
tp32 153.462 256.777 11.769 Tie
0.105 0.184 0.029
tp33 153.574 256.884 7.313 Tie
0.017 0.023 0.002
tpell 126.891 252.279 15.680 Tie
0.010 0.009 0.007
tpel2 126.740 252.189 10.743 Tie
0.034 0.064 0.002
tpel3 126.553 252.034 3.312 Tie
0.026 0.072 0.005
tpe2l 145.523 255.395 14.471 Tie
0.173 0.027 0.010
tpe22 145.486 255.537 10.094 Tie
0.001 0.008 0.004
tpe23 145.232 255.450 3.953 Tie
0.001 0.045 0.019
tp31 154.150 257.716 16.749 Tie
0.002 0.320 0.003
tpsll 154.554 241.370 14.885 Tie
0.012 0.097 0.023
tps12 153.966 241.909 3.358 Tie
0.003 0.134 0.003
tps21 153.011 253.908 14.826 Tie
0.001 0.025 0.041
tps22 152.996 254.424 3911 Tie
0.001 0.016 0.007

185

Appendix C : Output File for GPS Data Adjustment

APPENDIX C : OUTPUT FILE FOR GPS DATA ADJUSTMENT

The input files for the GPS data testing were not included because they are in RINEX data

format already explained in chapter four.

The output file for the single epoch relative positioning of phase data is shown here. The first
column is the a posteriori standard deviation after least squares adjustment of the double
differenced phase measurement. The second column shows the epoch number in sequential
order and the next three columns show the X,Y and Z vector components of the baseline in

metres. This result is graphically demonstrated in Chapter 6.

(Standard Deviation) Epoch No. Dx Dy Dz

(0.030) 1 103.422 -1169.394 -114.864

(0.012) 2 103.387 -1169.404 -114.898

(0.021) 3 103.357 -1169.387 -114.889

(0.023) 4 103.459 -1169.372 -114.789

(0.021) 5 103.444 -1169.379 -114.796

(0.012) 6 103.489 -1169.376 -114.724

(0.025) 7 103.458 -1169.391 -114.730

(0.022) 8 103.538 -1169.371 -114.670

(0.024) 9 103.471 -1169.403 -114.725

(0.015) 10 103.439 -1169.402 -114.745
(0.012) 11 103.434 -1169.394 -114.760
(0.006) 12 103.463 -1169.387 -114.751
(0.018) 13 103.447 -1169.381 -114.764
(0.023) 14 103.435 -1169.395 -114.771
(0.010) 15 103.546 -1169.398 -114.694
(0.017) 16 103.563 -1169.401 -114.662
(0.012) 17 103.514 -1169.383 -114.716
(0.009) 18 103.541 -1169.382 -114.667
(0.003) 19 103.476 -1169.422 -114.702
(0.009) 20 103.539 -1169.389 -114.679
(0.023) 21 103.572 -1169.380 -114.658
(0.023) 22 103.560 -1169.403 -114.680
(0.025) 23 103.595 -1169.407 -114.672
(0.031) 24 103.564 -1169.398 -114.679
(0.030) 25 103.562 -1169.400 -114.677
(0.034) 26 103.588 -1169.403 -114.637
(0.034) 27 103.542 -1169.389 -114.665
(0.021) 28 103.516 -1169.406 -114.704
(0.023) 29 103.517 -1169.415 -114.702
(0.011) 30 103.572 -1169.398 -114.698
(0.010) 31 103.538 -1169.410 -114.749
(0.013) 32 103.581 -1169.434 -114.701
(0.016) 33 103.495 -1169.410 -114.727
(0.020) 34 103.458 -1169.415 -114.752
(0.022) 35 103.582 -1169.422 -114.694
(0.023) 36 103.426 -1169.427 -114.786
(0.019) 37 103.553 -1169.405 -114.666
(0.019) 38 103.527 -1169.404 -114.703
(0.030) 39 103.417 -1169.436 -114.805

186

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

NI T
file defining global variables used in the program : global.h
i s

#include <iostream.h>

#include <fstream.h>

#include <IOMANIP.H>
#include <afxtempl.h> //for CList

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdarg.h>
#include <math.h>

#include “constants.h"
class CMappingMatrix;

enum ImageSensorType { DIGITAL, FRAME, SCAN};
enum PointType { CONTROL, TIE, CHECK};

enum GPSSensorType { GPS1, GPS2 };
enum INSSensorType { INS1, INS2 };
enum USEGPS {NOGPS, WITHGPS };
enum USEINS {NOINS, WITHINS };

enum ANGLEUNIT {RADIAN, DEGREE, GON};
//for matrix indexing
#define GetIndex(row,col) (col + row*(row-1)/2)

//used in GaussJordan Elimination
#define SWAP(a,b) {double temp=(a);(a)=(b);(b)=temp;}

-

nTiePoint; /number of tie points

extern int nTieEstimate;

extern int nFullControl; // number of controls

extern int nCheckPoint; // number of check points

extern int nImage; // number of images

extern int nImgSensor; // number of imaging sensors
extern int nImageObservation; // total number of image observations
extern int GPS;

extern int INS;

extern int nRedundancy;

extern int nDimension; //total number of memory allocation
extern int nObs;

extern int nPoint; /number of points (control and tie points)
extern int nImageParameter;

extern int nlmgSensorParameter;

extern int nPointParameter;

extern int nUnknown;

extern double ang;

extern in

=

extern double APRIORI_IMG; /Image Measurement Accuracy
extern double APRIORI_XYP; //Principal Point Coordinate Accuracy
extern double APRIORI_CC ; //Principal Distance Accuracy

extern double APRIORI_K1;

extern double APRIORI_K2;

extern double APRIORI_K3;

extern double APRIORI_P1;

extern double APRIORI_P2;

extern double APRIORI_A;

188

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

extern double APRIORI_B;

extern double APRIORI_ROT; //Rotation angles Accuracy

extern double APRIORI_PER,; //Perspective Point Coordinate Accuracy
extern double APRIORI_SXY; /Planimetry Accuracy

extern double APRIORI_SZ ; //Height Accuracyextern double ConvergeTest;

extern int nMaxlIteration;

extern double ConvergeTest;
extern int AngleUnit;

extern int ImageSensorType;
extern BOOL GetEstimate;

extern BOOL AdditionalParameter;
extern BOOL USEDLT_SENSOR;
extern BOOL USECOLL_POINT;
extern BOOL SimulateData;
extern BOOL Platform;

extern ImageList Images;

extern ControlPointList ControlPoints;
extern ImageSensorList ImageSensors;
extern ImagePointList ImagePoints;

extern void CholeskyDecompose(double* NormalMat, int nRows);

extern void CholeskySolve(double* NormalMat, double* SolutionVec, int nRows);
extern double* SolveNormal(double *NormalMat,double *SolutionVec,int nRows);
extern void Inverse(double *NormalMat,int nRows);

extern void GaussJordan(CMappingMatrix& a, CMappingMatrix& b);

i
typedef struct
{

double K1,K2,K3,P1,P2,A, B;

double dK1,dK2,dK3,dP1,dP2,dA,dB;
}AddParam_Struct;

i
/1 Class: CAdditionalParameter

" '

// Implementation Status : Completed (200 program lines)
"

I T T T
class CAdditionalParameter

{

friend class CProject;

friend class CNormalEg;

friend class CAdjustment;

/! Constructor(s) & destructor
public:
CAdditionalParameter();
virtual ~CAdditionalParameter();

// Attributes

private:
AddParam_Struct AdditionalParameter;
AddParam_Struct InitialAdditionalParameter;

// Operations
public:
AddParam_Struct GetAdditionalParameters()
{ return AdditionalParameter; }
AddParam_Struct GetInitialAdditionalParameter()
{ return InitialAdditionalParameter; }
void SetAdditionalParameter(double K1, double K2, double K3, double P1, double P2, double A,
double B);

189

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

void Setlnitial AdditionalParameter(double K1, double K2, double K3, double P1, double P2, double A,
double B);

void PrintAddParam(ofstreamé& filethis);

void PrintInitialAddParam(ofstream& filethis);

void PrintAddParamStdDev(ofstreamé& filethis);

void PrintHeader(ofstreamé& filethis);

I
G
// Class: CSensor

"

// Implementation Status : Completed (Empty Class)
1/l

i
class CSensor

{
/1 Constructor(s) & destructor
public:
CSensor();
virtual ~CSensor();
/! Attributes
char SensorName[NameLength];
int SensorType;
// Operations

I

i

// Class: CSensorGPS

1/

// Tmplementation Status : Completed (Empty Class)
/I

I
class CSensorGPS : public CSensor
{

friend class CProject;

/1 Constructor(s) & destructor
public:

CSensorGPS();

virtual ~CSensorGPS();
/! Attributes

// Operations
B

W T T LT T
// Class: CSensorIMG

/!

/I Implementation Status : Completed (79 program lines)
1/

T T T T L T
class CSensorIMG : public CSensor

{

friend class CDLT;

friend class CProject;

friend class CNormalEq;

friend class CAdjustment;

friend class CMappingImage;

// Constructor(s) & destructor
public:
CSensorIMG();

190

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

virtual ~CSensorIMG();

/! Attributes
CPrincipalPoint* pm_PrincipalPt;
CAdditionalParameter* pm_AddParam;

double InitialPrincipalDistance;

// this indicates type of sensor (0=digital, 1=frame, 2=scanned image)
int type;

/l case digital camera

double SensorElementHeight;

double SensorElementWidth;

// case scanned image with fiducial coords given

int VerPixelsNo;

int HorPixelsNo;

int ScanResolution;

double Fiducial_photo[3][5];

double PrincipalDistance;

double PrincipalDistance Accuracy;
static int count;

int index;

//Std Dev calculated for DLT adjustment. This value is used in the approximation of
/limage and sensor parameters where the smallest value will be select in deciding

// the value for xp, yp and cc

double CalibratedStdDeyv;

/I Operations
public:
CAdditionalParameter* GetpAddParam()

{ return pm_AddParam; }
CPrincipalPoint* GetPrincipalPt()

{ return pm_PrincipalPt; }
double GetPrincipalDistance()

{ return PrincipalDistance; }
double GetlnitialPrincipalDistance()

{ return InitialPrincipalDistance; }
double GetSensorElementWidth()

{ return SensorElementWidth; }
double GetSensorElementHeight()

{ return SensorElementHeight; }
void PrintSensorIMG(ofstreamé& filethis);
static int howManyIMGSensors()

{ return count; }

|5
i
/1 Class: CSensorINS

1

// Implementation Status : Completed (Empty Class)
1

T T T T T T
class CSensorINS : public CSensor

friend class CProject;
// Constructor(s) & destructor
public:

CSensorINS();

virtual ~CSensorINS();
/1 Attributes

/I Operations
|5

191

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

T T T T

/ Class: CProject
"
// Tmplementation Status : Completed (1,658 program lines)
/"
W T T T T T T
class CProject
{
/! Constructor(s) & destructor
public:
CProject();
virtual ~CProject();
/] Attributes
public:
char imgfile[NameLength];
char gepfile[NameLength];
char camfile[NameLength];
char gpsfile[NameLength];
char insfile[NameLength];
char outfile[NameLength];
char simfile[NameLength];
// Operations
public:
void SetImages();
CMappinglmage* Getlmage(char* imgName);
void SetIMGSensor();
void SetGPSSensor();
void SetINSSensor();

void SetControlPoints();
void ReadTiePointEstimate();
void ComputeEstimate();
void ComputeEstimatePoint_2DLinear();
void ComputeEstimate_Image();
void ComputeEstimatePoint_Coll();
void Simulate();
void DeleteAllControls();
void DeleteAlllmages();
void Delete AlllmageSensors();
void Adjust();
|5

NI T T T
typedef struct
{
double MaximumResidual;
char ImageName[NameLength];
char PointName[NameLength];
double Sigma0;
}Residual_Struct;

typedef struct

{
double MaximumError_XY;
char PointName_XY[NameLength];
double MaximumError_Z;
char PointName_Z[NameLength];
double RMS_XY;
double RMS_Z;

}JRMS_Struct;

192

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

W T T T T

/I Class: CLSQAdjustment

/!

// Implementation Status : Completed (380 program lines)
"

T e T T
class CLSQAdjustment

{

friend class CProject;

public:
CLSQAdjustment();
CLSQAdjustment(CEquation* Equation);

virtual ~CLSQAdjustment();
private:

double *pm_NormalMatrix, *pm_ParameterVec;

double DiscrepancySquareSum;

int nUnknown;

int nDimension;

int nObs;

int nRedundancy;

int MaxlIteration;

double AdjustedUnitVariance;

double MaxResidual,;

double AdjustedParameterPrecision;

CMappingMatrix Residual;

public:

/fform normal eq
void FormNormal(CEquation* Equation);
void FormNormal(CMappingMatrix& DesignMat,int nRows,
int nCols,double variance);
void FormRHS(CMappingMatrix& DesignMat, CMappingMatrix& DiscrepancyVec, int nRows, int
nCols, double variance);

void Solve();//solve for given normal eq.(one iteration)

void Compute_DiscrepancySquareSum(CMappingMatrix& DiscrepancyVec, int nRows);//square of
misclosure

void ComputeAdjustedResidual(CMappingMatrix &DesignMat, CMappingMatrix &ConstantVec,

CMappingMatrix

&ParameterVec, CMappingMatrix &UnitWeight);

void Initialize();

void CholeskyDecompose(double* NormalMat, int nRows);

void CholeskySolve(double* NormalMat, double* SolutionVec, int nRows);

void Llnverse(double *NormalMat,int nRows);//for Lower Triangular Matrix, used with Cholesky
Decompose

void UpdateParameter(CMappingMatrix& InitialParVal);

|

niiiiiniiniin

/l Class: CDLT

1

// Implementation Status : Completed (530 program lines)
I

i
class CDLT

{
friend class CProject;
// Constructor(s) & destructor
public:
CDLT();
virtual ~CDLTY();

193

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

/! Attributes
public:
double xp, yp, cx, cy, cc;
double Xo, Yo, Zo, omega, phi, kappa;
double m11, m12, m13, m21, m22, m23, m31, m32, m33;//rotation matrix element
double affinity_a, affinity_b;//affinity

private:

double *DLT_Parameter, *DLT_Normal;
double *DLT_TiePtNormal, ¥*DLT_TiePtParameter;
double L11,1.12,1.13,L14,1.21,1.22,1.23,1.24,1.31,L.32,L33;
double ximage, yimage, X, Y, Z;

double DisSquareSum;
double Sigma_dit;
double A,B,C;
BOOL lterative;
int TiePtIndex;
int nTiePt_Parameter;
int nTiePt_Dimension;
CMappingMatrix DesignMat_DLT,DLTMat_Constant;
CMappingMatrix DesignMat_TiePt, TiePt_Constant;

/I Operations

public:
// (Operation description)
void FormDesignMat_DLT();
void FormDLT_Constant();
void FormNormal_DLT();
void FormRHS_DLT();
void FormDLT(CMappingImage* pIMG);//Forms the DLT normal equations for the image
void Initialize_Normal();
void ComputeTiePoint();
void FormDesignMat_TiePt();
void FormConstant_TiePt();
void FormNormal_TiePt();
void FormRHS_TiePt();

|5

T T T T
typedef struct
{
double omega, domega;
double phi, dphi;
double kappa, dkappa;
}Rotation_Angle;

TN T T T T
/! Class: CMappingImage

1/

// Implementation Status : Completed (256 program lines)
"
i
class CMappingImage

{

friend class CProject;

friend class CNormalEq;

friend class CDLT;

friend class CAdjustment;

/I Constructor(s) & destructor
public:

CMappinglmage();

virtual ~CMappingImage();

/I Attributes

194

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

public:

int

CRotation* pm_Rotation;
CPerspectivePoint* pm_PerspectivePt;
CSensorIMG* pm_SensorIMG;
char ImageName[NameLength];
ImagePointList* pm_ImagePoints;
static int count;

index;
int TotalPoints;

/fthis value is assigned after computing the estimated a,b,Xo0,Yo by 2D linear conformal
/ftransformation. The image with smallest StdDev will be used to assign tie point estimate
double StdDev2D;

//observed pixel coordinates of fiducial marks which will be used for affine transformation
double Fiducial_pixel[3][5];

double AffineParameters{7];

CMappingMatrix MatrixSolution;

// Operations

public:

|5

ImagePointList* GetlmagePoints()
{ return pm_ImagePoints; }
static int howManyImages()
{ return count; }
int GetTotalPoints()
{ return TotalPoints; }
void AddImagePoint(char* ptname, double x, double y, double dx, double dy);
void DeleteImagePt(char* ptname);

// do the affine transformation for scanned images,

/freturn value is affine(1], affine[2],..., six transformation parameters

/fthe fiducial pixel coordinate of this image is used with the fiducial photo
/lcoordinates of the sensor used to capture this image

void AffineTransform();

I TR T

// Class:
/!

CRotation

// Implementation Status : Completed (216 program lines)

I

i
class CRotation

{

friend class CProject;
friend class CNormalEq;
friend class CAdjustment;

// Constructor(s) & destructor

public:
CRotation();
virtual ~CRotation();
// Attributes
public:
CSensorINS* pm_SensorINS;
CMappingMatrix m_RotationMat;
Rotation_Angle Rotation;
Rotation_Angle InitialRotation;
/! Operations
public:

void SetRotation(double omega, double phi, double kappa,
double domega, double dphi, double dkappa);

195

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

void SetRotation(double omega, double phi, double kappa);
void SetlnitialRotation(double omega, double phi, double kappa,
double domega, double dphi, double dkappa);
void SetInitialRotation(double omega, double phi, double kappa);
void PrintRotation(ofstreamd&: filethis);
void PrintInitialRotation(ofstream& filethis);

T T T T T T

/ Class: real Array

I

// Implementation Status : Completed (86 program lines)
I

W T T T
class realArray

{

friend class matMap;

/1 Constructor(s) & destructor

public:
realArray(INDEX nr, INDEX nc);
virtual ~realArray();

/1 Attributes

private:
double* *base;
INDEX nrow, ncol;

/I Operations
private:
double& elem(INDEX i, INDEX j) const;
double& operator()(INDEX i, INDEX j) const
{ return elem(,j) ; }
DWORD size(void) const
{ return (DWORD) nrow * (DWORD) ncol ; }
realArray& operator =(realArray& y);
|5

i

/l Class: matMap

1"

// Implementation Status : Completed (145 program lines)
"

i
class matMap

{
// Constructor(s) & destructor
public:
matMap(void);
matMap(INDEX nr, INDEX nc = 1);
virtual ~matMap();
/I Attributes
private:
realArray* pa;
double* *map;
INDEX mapSize, nrow, ncol;
// Operations
public:

double* base(INDEX j) const
{ return pa->base(j] ; }
double& operator()(INDEX 1) const
{ return map[1](i] ; }

196

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

double& operator()(INDEX i, INDEX j) const
{ return map(j](i] ; }
INDEX nRows(void) const
{ return nrow ; }
INDEX nCols(void) const
{ return ncol ; }
matMapé& operator =(const matMap& m);
real Array* array(void) const
{ return pa ; }
void reset(INDEX nr, INDEX nc);
void clear(void);

// Friend classes
friend class CMappingMatrix;
I

i

/ Class: CMappingMatrix

"

// Implementation Status : Completed (142 program lines)

"

W e e e e

class CMappingMatrix

{

// Constructor(s) & destructor

public:
CMappingMatrix();
CMappingMatrix(INDEX nr, INDEX nc = 1),
virtual ~CMappingMatrix();

// Attributes
private:
matMap* pm;

// Operations
public:
virtual CMappingMatrix& operator =(const CMappingMatrix& y);
double& operator()(INDEX i, INDEX j) const
{ return pm->map(j](i] ; }
double& operator(}(INDEX 1) const
{ return pm->map[1][i] ; }
INDEX nCols(void) const;
INDEX nRows(void) const;
virtual void reset(INDEX nr, INDEX nc);
virtual void reset(INDEX nr);
virtual void clear(void);

B
N T T T T T
/] Class: CEquation

1!

// Implementation Status : Empty Class

1/l

T T T T T T T
class CEquation

{
friend class CLSQAdjustment;

public:
CEquation();
virtual ~CEquation();

private:
double *pm_NormalMatrix, *pm_ParameterVec;
int NumberOfObs, NumberOfUnknown;

197

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

public:
virtual void FormNormalEquation();
K

i

// Class: CCollinearityEquation

"

// Implementation Status : Completed (300 program lines)
/"

T T T T T T T
class CCollinearityEquation

{

friend class CBundleEquation;

public:
CCollinearityEquation();
virtual ~CCollinearityEquation();

// Form Observation Equation Submatrices

void Initialise_Design(CImagePoint* pImgPt);

void Initialise_Image(CMappingImage* pIMG);
void ComputeDesignMatrix(CImagePoint* pImgPt);
void FormDesignMat_Constant();

void FormDesignMat_Image();

void FormDesignMat_Sensor();

void FormDesignMat_Point();

private:
double rll, r12, r13, r21, r22, r23, r31, r32, r33;//rotation matrix
double xp, yp ,PrincipalDistance; //sensor parameters
double K1, K2, K3, P1, P2, A, B; //lens distortion and affinity parameters
double xcoord, ycoord;
double delta_x, delta_y;
double X, Y, Z, Xo, Yo, Zo;//ground coordinates and perspective center
double COLL_N, COLL_Zx, COLL_Zy, M1, M2;//denominator and numerators of the collinearity
equation
double CosOm, CosPhi, CosKap, SinOm, SinPhi, SinKap;
double radius2, radius4, radius6;

//Observation Equation Submatrices
CMappingMatrix ~ DesignMat_Image, DesignMat_Sensor, DesignMat_Point;
CMappingMatrix ~ DesignMat_Constant;

|B

I T T T T T T T

/ Class: CDirectObservationEquation

"

// Implementation Status : Completed (132 program lines)
1!

I T T T T T T
class CDirectObservationEquation

{

friend class CBundleEquation;

public:
CDirectObservationEquation();
virtual ~CDirectObservationEquation();
void ComputeContribution_Image(CMappingImage* pIMG);
void ComputeContribution_Point(CControlPoint* pCntPt);
void ComputeContribution_Sensor(CSensorIMG* pImgSensor);
private:

double image_discrepancy[7], sensor_discrepancy[11], point_discrepancy[4];
double image[7], sensor[11], point[4];

198

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

|5

T T T T T T T
typedef struct
{

double x,y,z;
double dx,dy,dz;
}Coordinate_Struct;

T

/I Class: CGenericPoint

"

// Implementation Status : Completed (327 program lines)
1"

TR i i
class CGenericPoint

{

friend class CProject;

friend class CMappinglmage;

friend class CNormalEq;

friend class CDLT;

friend class CAdjustment;

// Constructor(s) & destructor
public:

CGenericPoint();

virtual ~CGenericPoint();

// Attributes

public:
CoordinateUnit unit;
ProjectionType projection;

protected:
char PtName[NameLength];
Coordinate_Struct InitialCoordinate;
Coordinate_Struct PtCoordinate;
Coordinate_Struct CheckCoordinate;

/! Operations
public:
char* GetPtName()
{ return PtName; }
Coordinate_Struct GetPtCoordinate()
{ return PtCoordinate; }
void SetPtName(char* aName)
{ strcpy(PtName,aName); }
void SetPtCoordinate(double x, double y, double z);
void SetInitialCoordinate(double x, double y, double z);
void SetPtCoordinate(double x, double y, double z, double dx, double dy, double dz);
void SetInitialCoordinate(double x, double y, double z, double dx, double dy, double dz);
void SetPtCoordinate(double x, double y, double dx, double dy);
void SetInitialCoordinate(double x, double y, double dx, double dy);
void SetPtCoordinate(double z, double dz);
void SetInitialCoordinate(double z, double dz);
void SetCheckCoordinate(double x, double y, double z, double dx, double dy, double dz);
void EmptyCoordinates();
void EmptyInitialCoordinates();
virtual void PrintCheckCoordinate(ofstreamé& filethis);
virtual void PrintInitial Coordinate(ofstreamé& filethis);
virtual void PrintCoordinate(ofstreamé& filethis);
virtual void PrintCoordinateAccuracy(ofstreamé filethis);

5

i

199

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

// Class: CControlPoint

1/

// Implementation Status : Completed (74 program lines)
/"

T L T
class CControlPoint : public CGenericPoint

{

friend class CDLT;

friend class CProject;

friend class CMappingImage;

friend class CNormalEq;

friend class CAdjustment;

/1 Constructor(s) & destructor
public:

CControlPoint();

virtual ~CControlPoint();

/I Attributes
public:
int type; /CONTROL, TIE or CHECK

protected:
ImagePointList* pm_ImagePoints;
int m_nRays;
int index;

private:
static int count;

/I Operations
public:
ImagePointList* GetImagePoints();
static int howManyPoints()
{ return count; }
void PrintRays(ofstreamé& filethis);

|

i
/I Class: CMappinglmagePoint

"

// Implementation Status : Completed (47 program lines)
/!
i
class CMappingImagePoint : public CGenericPoint
{

friend class CProject;

friend class CNormalEq;

friend class CDLT;

friend class CAdjustment;

// Constructor(s) & destructor

public:
CMappingimagePoint();
virtual ~CMappingImagePoint();

1/ Attributes

private:
CControlPoint* pm_ControlPoint;
CMappingImage* pm_Image;
staticint count;

// Operations

public:

CControlPoint* GetLinkedControlPoint()

200

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

{ return pm_ControlPoint; }
CMappingImage* GetImage()

{ return pm_Image; }
static int howManyPoints()

{ return count; }
void PrintCoordinate(ofstreamé& filethis);

// Friend classes
friend class CMappinglmage;

|5

i

/1 Class: CPerspectivePoint

/1

// Implementation Status : Completed (53 program lines)
/I

TN TN T T T T
class CPerspectivePoint : public CGenericPoint

{

friend class CProject;

/! Constructor(s) & destructor
public:
CPerspectivePoint();
virtual ~CPerspectivePoint();

/1 Attributes

private:
CSensorGPS* pm_SensorGPS;
staticint count;

/] Operations
public:
static int howManyPoints()
{ return count; }
void PrintCoordinate(ofstream& filethis);
void PrintInitial Coordinate(ofstreamé& filethis);
|5 ‘

W T T

/I Class: CPrincipalPoint

I

/I Implementation Status : Completed (62 program lines)
1

I T T T T T
class CPrincipalPoint : public CGenericPoint

{
/I Constructor(s) & destructor
public:
CPrincipalPoint();
virtual ~CPrincipalPoint();
// Attributes
private:
staticint count;
// Operations
public:

static int howManyPoints()
{ return count; }
void PrintCoordinate(ofstreamé& filethis);
void PrintInitialCoordinate(ofstreamé& filethis);

201

Appendix D : Source Code Listing for Class Interfaces of Bundle Adjustment Program

i

/I Class: CTiePoint

1

// Implementation Status : Completed (29 program lines)
/"

i
class CTiePoint : public CControlPoint

{

// Constructor(s) & destructor
public:

CTiePoint();

virtual ~CTiePoint();

// Attributes
private:
static int count;

// Operations
public:
static int howManyPoints()
{ return count; }

h

G

// Class: CFullControl

1

/l Implementation Status : Completed (29 program lines)
/!

i
class CFullControl : public CControlPoint

{

// Constructor(s) & destructor
public:

CFullControl();

virtual ~CFullControl();

/1 Attributes
private:
static int count;

// Operations
public:
static int howManyPoints()
{ return count; }

202

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

APPENDIX E : SOURCE CODE LISTING FOR CLASS
INTERFACES OF GPS DATA PROCESSING PROGRAM

In this appendix, the source code listing for the class interfaces used in the GPS data
processing program is presented. As in Appendix D, each class is introduced as it has been
implemented in its header file (*.h) as well as the the size of the implementation file in

number of lines.

U T T T T T

// Class: CClockTime

"

// Implementation Status : Completed (150 program lines)
"

W T TN T
class CClockTime

{

/I Constructor(s) & destructor

public:
CClockTime();
virtual ~CClockTime();
// Attributes
public:
double Second;
/1 2 digits
int Year;
int Month;
int Day;
int Hour;
int Minute;
// Julian Day
double JulianDay;
double ModifiedJulianDay;
int GPSWeek;
int DayofWeek;
//GPS second of week
double GPSSec;
BOOL IsTimeSet;
//member functions
public:

/f Julian day is computed from given time of clock
void ToJulian();
void SetTime(int aYear, int aMonth, int aDay, int aHour, int aMinute, double aSecond);

// computes GPS time as seconds of week and puts this value into the data member Epoch
void ToGPSSec();

void CheckTime(double aTime);

void Output(ofstreamé& filethis);

203

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

i

struct CSingleDiff
{
double GPSSec;
int PRN;
double phaseL1, phaseL2;
double codeP1, codeP2;
CPosition SVpos;
|5
W i e
// Class: CDoubleDiff
1/
// Implementation Status : Completed (194 program lines)
/"
TN T T T T
class CDoubleDiff
{
friend class CGPSObservation;
public:
CDoubleDiff();
virtual ~CDoubleDiff();
void ComputeDirectionCosine(CStation* St1, CPosition& aPos);
void ComputeResidual_L1();
void ComputeResidual_L2();
void ComputeResidual_Lw();
void ComputeResidual_P1();
void ComputeResidual_P2();
private:
CSingleDiff RefSobs;
CSingleDiff OtherSobs;

double phaseL.1, phasel2, phaseLw;//double differenced observed value

double codeP1, codeP2;//double differenced observed value

double rho_st2sv1, rho_st2sv2, rho_stlsv1, rho_stlsv2;//distance to the satellite

double DirectionCosine_x, DirectionCosine_y, DirectionCosine_z;/first three (positional)components
of the design matrix

double ddResidual_L1;//constant component of the rhs of the obs eq.

double ddResidual_L?2;

double ddResidual _Lw;

double ddResidual_P1;

double ddResidual_P2;

double intParL1;//DD integer ambiguity for L1

double intParL2;//DD integer ambiguity for L2

double intParLw;//DD integer ambiguity for Lw

BOOL L1_Resolved;

BOOL L2_Resolved;

BOOL Lw_Resolved;

BOOL IsPrimary;

BOOL CycleSlip_L1;

BOOL CycleSlip_L2;
I8

i

/ Class: CEventObs

1

// Implementation Status : Completed (28 program lines)
"

TN T T T T T T T
class CEventObs

{

/! Constructor(s) & destructor

public:

204

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

//attribute
public:

CEventObs();
virtual ~CEventObs();

// Time of observation
CClockTime m_ClockTime;//event epoch
CClockTime m_ClockTime2;//in case of lock loss end of lock loss

// Describes type of event

/lenum EVENT {CycleSlip, LockLoss, PhotoExposure, RejectedObs, Other};
int EventType;

int PRN;//in case of cycleslip or lockloss

int PhaseType;

CString FileName;

CString StationNamel;

CString StationName2;

int SessionNo;
h
I T T T T
// Class: CLSQAdjustment
/
// Implementation Status : Completed (367 program lines)
1/
I i
class CLSQAdjustment
{

public:

private:

public:

friend class CGPSObservation;
friend class CSpaceVehicle;

CLSQAdjustment();
virtual ~CLSQAdjustment();

CLSQAdjustment(int nPar, int nEq);

//Collapsed Full Normal Matrix and RightHandSide Vector
/lindex of the matrix is accessed by the mapping function GetIndex(row, col)
double *pm_NormalMatrix, *pm_ParameterVec;

double DiscrepancySquareSum;

int nUnknown;

int nDimension;

int nObs;

int nRedundancy;

int MaxIteration;

double AdjustedUnitVariance;
double MaxResidual;

double AdjustedParameterPrecision;
CMappingMatrix Residual;

//form normal eq
void FormNormal(CMappingMatrix& DesignMat, int nRows, int nCols, double variance);
void FormRHS(CMappingMatrix& DesignMat, CMappingMatrix& DiscrepancyVec, int nRows, int

nCols, double variance);

void Solve();//solve for given normal eq.(one iteration)
void Compute_DiscrepancySquareSum(CMappingMatrix& DiscrepancyVec, int nRows);/square of

misclosure

void ComputeAdjustedResidual(CMappingMatrix &DesignMat, CMappingMatrix &ConstantVec,
CMappingMatrix

&ParameterVec, CMappingMatrix &UnitWeight);

void Initialize();

205

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

void CholeskyDecompose(double* NormalMat, int nRows);

void CholeskySolve(double* NormalMat, double* SolutionVec, int nRows);

void LInverse(double *NormalMat,int nRows);//for Lower Triangular Matrix, used with Cholesky
Decompose

void UpdateParameter(CMappingMatrix& InitialParVal);

|8

T T T T T

/1 Class: real Array

/"

// Implementation Status : Completed (101 program lines)
/"

T T T T
class real Array

{

friend class matMap;

// Constructor(s) & destructor

public:
realArray(INDEX nr, INDEX nc);
virtual ~real Array();

/I Attributes

private:
double* *base;
INDEX nrow, ncol;

/] Operations
private:
double& elem(INDEX i, INDEX j) const;
double& operator()(INDEX i, INDEX j) const
{ return elem(i,j) ; }
DWORD size(void) const
{ return (DWORD) nrow * (DWORD) ncol ; }
realArray& operator =(realArray& y);
|8

HHNTTTTIT T T T T

/1 Class: matMap

n"

// Implementation Status : Completed (146 program lines)
"

T T T T T T T T T T
class matMap

{
/! Constructor(s) & destructor
public:
matMap(void);
matMap(INDEX nr, INDEX nc = 1);
virtual ~matMap();
/1 Attributes
private:
realArray* pa;
double* *map,
INDEX mapSize, nrow, ncol;

/I Operations
public:
double* base(INDEX j) const
{ return pa->basel[j] ; }
double& operator()(INDEX i) const
{ return map[1][i] ; }
double& operator()(INDEX i, INDEX j) const
{ return map(j][i] ; }

206

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

INDEX nRows(void) const
{ return nrow ; }
INDEX nCols(void) const
{ return ncol ; }
matMapé& operator =(const matMap& m);
realArray* array(void) const
{ return pa; }
void reset(INDEX nr, INDEX nc);
void clear(void);

/1 Friend classes
friend class CMappingMatrix;
|8

T T T I T T T T

/ Class: CMappingMatrix

/"

// Implementation Status : Completed (690 program lines)

I

HHTTTTTTTTTT T T T T T T

class CMappingMatrix

{

// Constructor(s) & destructor

public:
CMappingMatrix();
CMappingMatrix(INDEX nr, INDEX nc = 1);
virtual ~CMappingMatrix();

/I Attributes
private:
matMap* pm;

/I Operations

public:
// all argument matrix are destroyed
virtual CMappingMatrix& operator =(const CMappingMatrix& y);
virtual CMappingMatrix& operator +(const CMappingMatrix& x) ; // Mat+Mat
virtual CMappingMatrix& operator -(const CMappingMatrix& x) ; // Mat-Mat
virtual CMappingMatrix& operator !(); // transpose

/larguments matrix values are preserved

CMappingMatrix& add(CMappingMatrix& x, CMappingMatrix& y) ;
CMappingMatrix& subtract(const CMappingMatrix& x, const CMappingMatrix& y);
CMappingMatrix& multiply(const CMappingMatrix& x, const CMappingMatrix& y),
CMappingMatrix& transpose(CMappingMatrix& x);

CMappingMatrix& inverse(CMappingMatrix& y);

friend void SolveMatrix(CMappingMatrix& a, CMappingMatrix& b);//returns the solution in b and the
inverse in a
CMappingMatrix& inv(CMappingMatrix& x);//luDecompse and returns the inverse matrix
CMappingMatrix& zeros(INDEX nr, INDEX nc); //creates a zero matrix of nr x nc
CMappingMatrix& ones(INDEX nr, INDEX nc); //creates a zero matrix of nr x nc
CMappingMatrix& eye(INDEX nr, INDEX nc); //creates a zero matrix of nr x nc
double& operator()(INDEX i, INDEX j) const
{ return pm->map(j]fi] ; }
double& operator()(INDEX i) const
{ return pm->map(1][i] ; }
double& mat(INDEX i, INDEX j = 1) const
{ return pm->map(j]fi] ; }
INDEX nCols(void) const;
INDEX nRows(void) const;
virtual void reset(INDEX nr, INDEX nc);
virtual void reset(INDEX nr);
virtual void clear(void);
void GaussJordan(CMappingMatrix& a, CMappingMatrix& b);

207

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

i

struct CVector

{
double dx;
double dy;
double dz;

double sigma_dx;
double sigma_dy;
double sigma_dz;
double sigma0;
int nlteration;

|5

T T LT LT

/l Class: CGPSObservation

/!

// Implementation Status : Completed (3,422 program lines)
1/

i

class CGPSObservation

friend class CProject;
friend class CSpaceVehicle;

/I Constructor(s) & destructor

public:
CGPSObservation();
virtual ~CGPSObservation();
// Attributes
SVList* SVs;
SVList* SyncSVs;
CClockTime m_ClockTime;
// initially read from data file
double ReceiverClockOffset;
double ReceiverClockOffsetAccuracy;
// Number of SV's observed in this observation
int initHowManySVs;//this is initially read value from data file
int nvalidSVs;/number of synchronized svs
int ReferenceSV_PRN;
int nDD;// number of DoubleDiffs
BOOL ObservationValidity;//if false do not use this observation
BOOL Synchronized;
SingleDiffList* SingleDiffs;
DoubleDiffList* DoubleDiffs;
CGPSObservation* pObs2;//the sychronized observation
DoubleDiffList PrimaryDDs;
DoubleDiffList SecondaryDDs;
DoubleDiffList CombinedDDs;
//filtered double differenced ambiguity paramters
CList<double,double> PrimaryAmbListL1[5];
CList<double,double> Primary AmbListLw[5];
// Operations
public:

/I Returns the list of observed space vehicles
SVList* GetSVList()
{ return SVs; }

208

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

CClockTime GetTime()

{return m_ClockTime;}

int HowManyValidSVs()
{return nvalidSVs; }

void DeleteAlISVs();

void Initialize();

void EmptySyncSVs();

void Delete AllSingleDiffs();
void Delete AllDoubleDiffs();
void Delete AllPrimaryDDs();
void DeleteAllSecondaryDDs();
void EmptyGlobalCandidateList();

/lcode point positioning
CPosition ComputeSingleEpochCodePosition(double X, double Y, double Z, double RCVdt);
int ComputePosition(CMappingMatrix& B, CMappingMatrix& ResultMatrix,
double& varx, double& vary, double& varz, double& vart);
void SmoothSVs();//sv P1, P2 and phase values are used to compute ambiguities
BOOL ComputeDDCodePosition(CStation *St1, CStation *St2);
void ComputeSVPosition(CPosition *aPos);

//double difference relative positioning. non synchronous svs and below elev are deleted
void UpdateSynchronousSVs(); //observation to be compared to

void FormDDWeight(double *DD_WeightMat, int nObs, double var);

void FormDDWeight(CMappingMatrix & WeightMat, int sigtype);

void FormDDUnitWeight(CMappingMatrix &UnitWeight);

void FormDDWeight_Dual(double *DD_WeightMat, int nObs, double var);
void FormDDWeight_Dual(CMappingMatrix &WeightMat, int sigtype);
void FormDDUnitWeight_Dual(CMappingMatrix &UnitWeight);

void FormDDObsEq(int sigtype, CMappingMatrix& DesignMat, CMappingMatrix& ConstantVec,
CDoubleDiff* dd);
void SetReferenceSV();
CSpaceVehicle *GetSV(int PRN);//returns the SV from the SVlist;
BOOL FindSV(int PRN);
BOOL ComputeDDPhasePosition(CStation *St1, CStation *St2);
void FormSingleDiffs();//observation to form the difference
void FormDoubleDiffs();//observation to form the difference
void UpdateS VPos(CPosition *aPos, DoubleDiffList *DDs);
void ComputeBaselineDD(CStation *St1, DoubleDiffList *DDs,
CPosition& aPos, CPosition
&newPos, BOOL IsInverse);
void EstimateSVAmbiguity(CStation *St1, CStation *St2);
void EstimateSVAmbiguity_w(CStation *St1, CStation *St2);
double ComputelonCorrection(double dResL.1, double dResL.2);
double ComputeDDWideLane(CDoubleDiff *dd);
double ComputeDDN 1(CDoubleDiff *dd);
void Find2Smallest(CList<double, double>& candList, double* sortArray);
void FindPrimaryDD(CStation *St2);
void FindPrimaryDD();
double ComputeGDOP(CStation *St2, CDoubleDiff *testDD);
double ComputeGDOP(CPosition &TestPos);
void SelectAmbPar(CStation *St1, CStation *St2);
void SelectAmbPar_w(CStation *St1, CStation *St2);
void ComputeAmbTestPos(CStation *St1, CStation *St2, CMappingMatrix& DesignMat1,
CMappingMatrix&
Weightl, CPosition &TestPos, BOOL &init);
void CheckNewCandidate(CList<double, double> *ThisCandidate);
BOOL ComputePrimaryl.2Amb(CStation *St1, CPosition& TestPos, int &ion, int& wlane);
void ComputeSecondaryAmb(CStation *St1, CPosition & TestPos);
void ComputeTestPosResidual(CStation* St1, CPosition& TestPos, CMappingMatrix &Residual);
void ResolveWideLaneAmb(CStation *St1, CStation *St2);
void ComputeSecondaryAmb_w(CStation *St1, CPosition &TestPos);
void ComputeAmbTestPos_w(CStation *St1, CStation *St2, CMappingMatrix& DesignMat1,

209

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

CMappingMatrixé&
Weight1,CPosition &TestPos, BOOL &init);
void ComputeTestPosResidual_w(CStation* St1, CPosition& TestPos, CMappingMatrix &Residual);
double ComputeAmbiguityFunctionValue(CStation *St1, CPosition & TestPos);
double Compute AmbiguityFunctionValue_w(CStation *Stl, CPosition &TestPos);
BOOL Initialized;//observation is initialized by calling ComputeSingleEpochCodePosition()
/fsatellite positions will be computed as well as the clock offset

15

i

/l Class: CPosition

n

// Implementation Status : Completed (215 program lines)
"

I T T T T
class CPosition

friend class CProject;

friend class CSpaceVehicle;
friend class CGPSObservation;
friend class CStation;

friend class CDoubleDiff;
// Constructor(s) & destructor
public:
CPosition();
virtual ~CPosition();
// Attributes
private:
double X,Y,Z,dx,dy,dz;
/Natitdue, longitude in degrees
double height, latitude, longitude, dh, dlat, dlong;
//degree, minute and seconds
int latdeg, latmin, longdeg, longmin;
double latsec, longsec;
double Sigma0;//a priori standard deviation of parameters
double UnitVariance;//a posteriori unit variation of observations
double MaxResidual;
double pdop;
int nlteration;
/I Operations
public:

/I Compute Cartesian coordinate X,Y,Z given geodetic coordinates latitude, longitude and height and
reference ellipsoid

void Geodetic2Cartesian();

void Cartesian2Geodetic();

void Local2Cartesian(double phi, double lambda, double &x, double &y, double &z);

void Deg2DMS();

void Initialize();
|8

i
/1 Class: CProject
1!
// Implementation Status : Completed (1,640 program lines)
n
HINTHITTTRET T e i o
class CProject
{
/1 Constructor(s) & destructor
public:

CProject();

virtual ~CProject();

210

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

// Attributes
private:

char *indir ;

char *outdir;

int WaveLengthFactor_L1[TotalnSV+1];//WaveLengthFactor value of L1 phase for each satellite

int WaveLengthFactor_L2[TotalnSV+1];

OrbitList Orbits[TotalnSV+1];//List of orbits for each satellite read from navigation file

int PRNinstances[TotalnSV+1];//number of occurrences of SV in observations

SVList SameSV1,SameSV2;//static data where simultaneous tracked svs from two observations are
stored

//pObs1 sv and pObs2 will alternate

CStation *RefSt, *RovSt;

FILE *RefFile, *RovFile;

CGPSObservation *RefObs, *RovObs;

CPosition FixedPos;

/I Operations
public:
//read observation files
void ReadObsHeader(FILE *fpobs);
void SynchronizeFiles();
void ReadEpochObs(CString aLine, FILE* fp, CStation *pSt, CGPSObservation *pObs);

//read navigation files
void ReadNavHeader(FILE* file, CAlmanac &Almanac);
void ReadNavData(FILE* file, CAlmanac &Almanac);

COrbit GetOrbit(int PRN, CClockTime Time);

//observation adjustment
void AdjustBaseLine();
void ProcessDD();

B

s
struct CPhaseCenter
{
// correction factor a
double CorrectionFactor;
// Horizontal Offset(b)
double HorizontalOffset;
// Phase center offset L1(c1)
double Offsetl;
// Phase center offset L2 (c2)
double Offset2;

T T T T
struct CAntenna
{
CPhaseCenter m_PhaseCenter;
// Name of antenna
CString Number;
CString Type;
double delta_H;
double delta_E;
double delta_N;
double SlantHeight;
double Radius;

211

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

T T e i

/I Class: CReceiver

"

/f Implementation Status : Completed (62 program lines)
"

TN T T L T T
class CReceiver

{ .
friend class CProject;
friend class CStation;

// Constructor(s) & destructor

public:
CReceiver();
virtual ~CReceiver();
EventList* GetEvents()
{return ExternalEvents; }
I/ Attributes
private:
CAntenna* m_pAntenna;
/I The name of the receiver
CString ReceiverNumber;
CString ReceiverType;
CString SoftwareVersion;
EventList* ExternalEvents;
// Operations
public:
// Get antenna specifics
CAntenna* GetAntenna()
{ return m_pAntenna; }
/1 Corrects the instrument eccentricities and updates the CorrectEcc
void CorrectEcc();
|5
i
/ Class: CSignalMeasurement
I
// Implementation Status : Completed (229 program lines)
"

T T T
class CSignalMeasurement

{

friend class CSpaceVehicle;

public:
CSignalMeasurement();
virtual ~CSignalMeasurement();

//Atributes

public:
int LLI_L1;//Loss of Lock Indicator
int SS_L1;//Signal Strength
int LLI_L2;//Loss of Lock Indicator
int SS_L2;//Signal Strength
int LLI_C1;//Loss of Lock Indicator
int SS_C1;//Signal Strength
int LLI_P2;//Loss of Lock Indicator
int SS_P2;//Signal Strength
int LLI_P1;//Loss of Lock Indicator
int SS_P1;//Signal Strength
int LLI_D1;//Loss of Lock Indicator
int SS_D1;//Signal Strength

212

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

int LLI_D2;//Loss of Lock Indicator
int SS_D2;//Signal Strength
int LLI_T1;//Loss of Lock Indicator
int SS_T1;//Signal Strength
int LLI_T2;//Loss of Lock Indicator
int SS_T2;//Signal Strength

private:
double L1_Value; //cycles
double L2_Value;
double C1_Value; //meters
double P1_Value;
double P2_Value;
double D1_Value;//Hz
double D2_Value;
double T1_Value;//transit integrated doppler
double T2_Value;//transit integrated doppler
double SmoothedCode_Value;
double Lw_Value;
double CombinedCodeRange;
double nDuration;//to comute weight factor in code smoothing

/I Operations
public:
double GetSignal Value(int sigtype);
double GetTravelTime(int sigtype);
void SetSignalValue(int sigtype, double value);
void SmoothCode(CSignalMeasurement *prevSignal, double Interval);
void ComputeCombinedCodeRange();
void InitializeCodeSmoothing();
BOOL L1_IsCycleSlip;
BOOL L2_IsCycleSlip;
BOOL IsInitial;
|5

i
struct ClonParameter //almanac parameters

{
double AQ, Al, A2, A3;
double B0, B1, B2, B3;

)

W e i g
struct CUTCParameter //almanac parameters

{
double A0, Al; //terms of polynomial

int T; /lreference time for UTC data
int W; /IUTC reference week number
|8
s
struct CAlmanac
{
int LeapSeconds;
ClonParameter m_JonPar;// Ionosphere parameters of almanac
CUTCParameter m_PUTCPar;// almanac parameters to compute time in UTC
|5
HHHTTHHTTT T T LT T
struct COrbit
{
/I SV PRN number
int PRN;
// Transmission of time of message(sec of GPS week)
double TransmissionTime;

213

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

// Time of Clock in year, month, day, hour, minute, second

CClockTime Toc;

I Coefficient to compute the second order polynomial describing the satellite clock offset
double ClockBias;

/l Coefficient to compute the second order polynomial describing the satellite clock offset
double ClockDrift;

/I Coefficient to compute the second order polynomial describing the satellite clock offset
double ClockDriftRate;

/I Issue of Data, Ephemeris

double IODE;

double Crs;
double Delta_n;
double MO;
double Cuc;

/l Eccentricity

double e;
double Cus;
double sqrt_A;
/] Time of Ephmeris
double Toe;
double Cic;
double OMEGA_0;
double Cis;
double i_0;
double Crc;
double omega;

double OMEGA_DOT;
double I_DOT;

/f Codes on L2 channel
double Code_L2;

/I To go with TOE

double GPS_Week_No;
// L2 P data flag

double L2_P_Flag;
double Accuracy;
double Health;

double TGD;

// Issue of Data, Clock
double 10DC;
CAlmanac Almanac;

)i

NI i e i

/ Class: CSpaceVehicle

/"

// Implementation Status : Completed (739 program lines)
/"

T T T T T L T T T
class CSpaceVehicle

{

friend class CProject;

friend class CGPSObservation;

/I Constructor(s) & destructor

public:

CSpaceVehicle();

virtual ~CSpaceVehicle();
/1 Attributes
private:

CSignalMeasurement* m_pSignalMeasurement;
CPosition m_SVPosition;

COrbit m_Orbit;

CClockTime m_ObsTime;

214

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

public:
// Elevation of space vehicle at a given time
double Elevation;//in degrees
double Azimuth;//in degrees
double IonCorrection;
double TropoCorrection;
double RelativisticCorrection;
double SVTime;
double SVTimeError;
double Rho; //distance between station and SV
double SigmaRho;
double TravelTime;//travel time of preferred code
BOOL PositionKnown;
double dphase;
double dtime;
double phase_rate;
double SlipCorrection;
BOOL FirstEpoch;
BOOL AmbiguityComputed;
BOOL LockLoss;
/I Space Vehicle PRNnumber
int PRN;
double Corrected_Code;
int WaveLengthFactor_L1;// (FULL,HALF,SINGLE)
int WaveLengthFactor_L2;// (FULL,HALF,SINGLE)
double N1; /L1 Ambiguity parameter
double N2; /L2 Ambiguity parameter
double Nw;//WideLane Ambiguity parameter
double Smoothed_Rho;
double Smoothed_lonCorrection;
double Smoothed_N1;
double Smoothed_N2;
double Smoothed_Nw;
double Smoothed_dN1;
double Smoothed_dN2;
/I Operations
public:
void ComputelonCorrection(CPosition* aPos);
void ComputeTropoCorrection(double station_height);//in meter
void ComputeTropoCorrection();//in meter
void ComputeRelativisticCorrection();//in meter
void ComputeSVTime(int PreferCode, double RCVTimeError);
void ComputeSVTime(double RCVTimeError);//uses travel time
void UpdatePosEarthRotation(double time); //m_SVPosition is updated for earth rotation
void ComputeAzElevRho(CPosition* aPos);
CSignalMeasurement* GetSignalMeasurement()
{return m_pSignalMeasurement; }
CPosition GetSVPosition();
/I Computes and updates the data member m_pPosition of the Space Vehicle from orbit and time given
in gps time.
void ComputeCurrentPosition(double SVGPSTime);
/lcode value used to compute SVtime, sv position initially computed, travel time computed,
//SVtime recomputed, sv position recomputed and then updated for earth rotation;
void ComputeCurrentPosition(int PreferCode, double RCVTimeError,CPosition* StationPos);
void ComputeTravel Time(CPosition* StationPos);
void ComputeTravel Time();
void ComputeN1Ambiguity(CGPSObservation *pObs);
void ComputeWideLaneAmbiguity();
void SmoothDualCode();
private:
void InitializeSignals();

}5

215

Appendix E : Source Code Listing for Class Interfaces of GPS Data Processing Program

NI e i

// Class: CStation

"

// Implementation Status : Completed (154 program lines)
/"

T T T T T
class CStation
{

friend class CProject;

friend class CGPSObservation;

friend class CDoubleDiff;

public:
CStation();
virtual ~CStation();

void StPos2AntennaPos(CPosition* aPos);
void AntennaPos2StPos(CPosition* aPos);
void Initialize();

private:
CPosition* knownStPos;//if a position is fixed
CPosition* initial AntPos;//if a position is fixed
CPosition* approxPos; //given position read from file
CPosition* CodePos;//position computed with code
CPosition* TDPos;//position computed with TD
CPosition* FloatDDPos;//position computed with DD float
CPosition* FixedDDPos;//position computed with DD fixed

CString Name;

CString Number;

BOOL initialPosKnown;
BOOL FixedType;
BOOL CodeAdjusted;
double PDOP;

static int count;

CReceiver* m_pReceiver;

CString ObsFileName;

CClockTime m_FirstObsTime;

CClockTime m_LastObsTime;

double Interval;

EventList* Events;

PositionList* Positions;

int noObsType;

int ObsType[10];

int PRNinstances[TotalnSV+1];//number of occurrences of SV in observations

216

