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Preface

This thesis describes work towards the design of the suspension of the main optical 
components in the GEO 600 interferometric gravitational wave detector. The focus 
of the work is the development and application of the pendulum model which is 
described in detail in chapter 3. Discussions of aspects of the dynamics, the ther­
mal noise performance, and the control of the suspension constitute the subsequent 
chapters.

Chapter 1 gives a brief introduction to the concept of gravitational waves and 
their detection. It consists entirely of material from the literature.

Some of the issues in the design of the suspensions for interferometric gravita­
tional wave detectors are described in chapter 2. While there is no inherently original 
material, it provides the author’s interpretations of concepts in the literature.

Chapter 3 explains the theory behind the Lagrangian model of a pendulum 
suspension written entirely by the author, and also serves as a “user’s manual” for 
the Maple code Lagran.mws. The code (a listing of which is in appendix A) is used 
to draw many of the conclusions in the following chapters.

The dynamic consequences of the pendulum design are considered in chapter 4. 
Section 4.1 describes the crucial steps in verifying both the Lagrangian model of 
the author and the force model developed by Dr. Calum Torrie. This work was 
done by the authors of the two independently developed models in conjunction with 
Dr. Norna Robertson and is due to be published[l]. The two models proved to be 
complementary. The Lagrangian model was a more comprehensive analysis tool at 
the expense of computational complexity. A particular application of the Lagrangian 
code was the proper inclusion of the cantilever blades. The design of the blades was 
done with Drs. Mike Plissi, Calum Torrie, and Norna Robertson and is discussed in 
section 4.2.

The Lagrangian model allows the proper effects of tilt modes and of multiple
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stages of pendulums on the level of thermal noise at the mirror to be evaluated. 
These calculations are covered in chapter 5. The proper method for inclusion of 
loss (section 5.1) was verified with Dr. Geppo Cagnoli and Prof. J. Hough. The 
evaluation of noise observed in a suspension as a function of the length of suspension 
wires covered in section 5.2 was evaluated with Prof. J. Hough.

Chapter 6 describes the design implications for control of the pendulum. The 
damping of the pendulum resonances, called “local control” and covered in sec­
tion 6.2, was done in conjunction with Drs. Calum Torrie and Ken Strain. The 
discussion of higher bandwidth control to be used in cavity locking, named “global 
control”, which includes the modelling of the internal modes of the wires to allow 
split feedback, results from work with Prof. Jim Hough and Dr. Norna Robertson. 
The work on cavity fields was done at Stanford University and describes a subset of 
the work done with Matthew Lawrence et. al.[2].

Chapter 7 summarizes the mechanical parameters of the suspension designed by 
the suspension working group in Glasgow, based in part on the work in the preced­
ing chapters. The final chapter briefly introduces possible extensions of this work 
suggested by the author following discussions with Prof. Jim Hough and Dr. Norna 
Robertson.

Appendix A is the Maple code for the modelling program described in chapter 3. 
Appendix B is the code used to investigate the centre-of-percussion issues in the 
cantilever blades which was then incorporated in the main code of appendix A. They 
are both the work of the author.



Summary

The detection of gravitational radiation is one of the most exciting current en­
deavours in experimental physics. One method of sensing gravitational waves from 
astronomical events is to use an interferometer to detect the perturbations in the 
distance between inertially free masses. This thesis describes some of the work in­
volved in the design of the mechanical suspensions in the UK/German GEO 600 
interferometric detector.

The weak interactions between gravitational waves and matter results in very 
small signal. For detectors on Earth, great care must be taken to reduce the dis­
placement noise of the mirrors of the interferometer. Specifically, these mirrors must 
be isolated from the seismic motion of the ground and suspended in such a manner 
that the unavoidable Brownian motion does not exceed the size of the signals to be 
measured.

In order to predict the performance of a candidate suspension, a computer model 
of a multiple-stage pendulum has been developed, based on a Lagrangian formu­
lation. This model includes sufficient detail to predict the dynamic and thermal 
noise performance of the pendulum. The code uses a minimum of assumptions, 
allowing asymmetric suspensions or suspensions with limited degree of freedom to 
be analyzed. This feature allows the model to be used to test the robustness of 
a pendulum design against perturbations in the mechanical parameters which may 
occur during construction. The model has specifically been designed to include the 
effect of blade springs which can be used to achieve the necessary additional vertical 
vibration isolation not provided by a simple wire pendulum.

The predictions of the code have been compared to the results of a force model, 
written by Dr. Calum Torrie, and to experimental results for a single stage wire 
pendulum and for a triple stage pendulum using two sets of cantilevers. These 
comparisons confirm the validity of the Lagrangian model. The Lagrangian code
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was then extended to provide a more detailed analysis of the suspension system. 
This included the proper performance of the blade springs, which has been analyzed 
and interpreted in terms of the centre of percussion of the springs. Additionally, 
the code has been used to analyze the cross-coupling between input vertical motion 
and resulting horizontal output motion due to small imperfections in the pendulum 
construction. This analysis confirms that the GEO 600 assumption that the cross­
coupling would not exceed 0.1% is appropriate. Taking into account this factor, it 
is predicted that the amount of transmitted seismic noise which will be observed at 
50 Hz, the low frequency corner of the detection band, in the measured direction is
2.4 x 10-2Om/\/Hz. This is approximately a factor of 3 below the dominant noise 
at that frequency, the internal thermal noise of the test mass, which is expected to 
be 7 x 10_2Om /\/Hz. This seismic noise is dominated above ~10 Hz by the vertical 
noise coupling to the measurement direction.

The Lagrangian model has also been used to predict the design of suspension 
which will result in the lowest pendulum thermal noise. Specifically, a suspension 
which uses two wires to suspend the optic, one wire in front of the other, has been 
compared to a four wire suspension equivalent to two loops of wire. This confirms 
that the four wire suspension is the best choice for GEO 600. The model is also used 
to compare more general cases, including other suspension geometries which are not 
suitable for use in the GEO 600 control scheme. The modelling code also allows the 
full pendulum thermal noise of the triple pendulum observed in the sensed direction 
at 50 Hz to be predicted at a level of 1.4 x 10_2Om /\/Hz.

The thermal noise is reduced away from the resonant frequencies of the pendu­
lum, the reductions being larger the higher the Q of the resonance. These resonant 
peaks cause unwanted amplification of low frequency motion. The amplitude of these 
peaks is reduced by application of electronic feedback control. This “local control” 
must damp the resonances without adding additional noise within the operating 
frequency band of the system. The successful performance of this local controller 
has been demonstrated in all degrees of freedom.

Additional modelling has been done to examine other control problems associ­
ated with interferometric gravitational wave detection. While the local control can 
be relatively low bandwidth (~5 Hz), the “global control” used to maintain the 
entire interferometer on a dark fringe may require substantially higher bandwidth.



A standing wave model of a wire pendulum has been developed to examine the pos- 
siblity of using higher bandwidth actuation in a non-collocated fashion. While this 
model does not have all the details of the full multi-stage pendulum model, it allows 
more accurate prediction of performance in the presence of the internal modes of 
the suspension wires (the ‘violin modes’). Finally, one additional question is consid­
ered, namely the suitability of the standard RF error signal for locking a resonant 
optical cavity which has long optical storage times. A model of the cavity fields in 
a Fabry-Perot cavity which expands upon the standard error signal to include the 
effects of a moving end mirror has been experimentally verified. This model may be 
useful in designing a more robust locking algorithm.

In conclusion, the design of the main suspension for GEO 600 has been verified, 
the parameters of which are presented in this thesis.
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Chapter 1

The Detection of Gravitational 
Waves

1.1 General Relativity: Gravitational Waves

In the General Theory of Relativity, Einstein [3] proposed that the effects of gravity 
propagate with a finite velocity. The consequence of this is that, in the weak field 
limit and far from any source, the solution to the linearized field equations is that 
of a wave which propagates at the speed of light.

Hulse and Taylor[4] were awarded the Nobel Prize for Physics in 1993 for their 
discovery of the binary pulsar 1913+16 and subsequent observations of its orbit. 
The orbital period of this pulsar has been decreasing; from the measurements of 
this orbit, Taylor[5] calculated the rate at which orbital energy should be lost via 
gravitational radiation as predicted by General Relativity. From this rate of loss, 
he calculated the associated rate of orbital inspiral, which agrees with the observed 
data.

This provided compelling indirect evidence of gravitational waves, but the direct 
detection of a gravity wave remains one of the most challenging goals of experimental 
physics. A number of large scale projects around the world are currently working 
to make this direct observation possible. Their success and further study of these 
gravity waves will allow some of the predictions of General Relativity to be tested, 
including the speed of propagation and polarization of the waves. This, in turn, 
allows the rest mass and the spin of the graviton to be deduced. In addition, every
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CHAPTER 1. THE DETECTION OF GRAVITATIONAL WAVES 2

Figure 1.1: Effect of a gravitational wave on a ring of test particles

new ‘window’ on the universe, which in the past has meant different wavelengths 
of the electromagnetic spectrum such as X-rays and radio waves, has generated 
unexpected information about the universe. Beyond the new information about 
astrophysical events, such as the collapse of stars and the interactions of black holes, 
which gravity waves will certainly provide, it is possible that even more interesting 
will be the unanticipated results.

1.1.1 Gravitational Waves

It is informative to draw some analogies between the more familiar electromag­
netic radiation and gravitational radiation. In the same fashion that acceleration of 
charges produce electromagnetic waves, the acceleration of mass produces gravita­
tional waves. For an isolated system, there can be no change in total charge; from 
this, there can be no electromagnetic monopole radiation. Similarly, the conserva­
tion of energy (and thus mass) implies that there can be no monopole gravitational 
radiation. A particle can have a positive or a negative charge, allowing dipole 
electromagnetic radiation. Since there can be only positive mass, and due to the 
conservation of linear and angular momentum, there can be no change in the gravita­
tional dipole moment. Therefore the lowest order moment of gravitational radiation 
posssible results from a quadrupole distribution of mass. Therefore, only non-axi- 
symmetric accelerations of mass distributions will generate gravitational waves.

Gravitational waves produce a ripple in the curvature of space-time. For an 
observer on the Earth, these strains would appear as small tidal forces between 
objects. For a circular ring of test particles, free in inertial space, the effect of a wave 
travelling perpendicular to the plane of the particles is shown in figure 1.1. During 
one half period of the gravitational wave, the ring is effectively stretched along one
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axis while simultaneously compressed along the perpendicular axis. During the other 
half of the cycle, the effects are reversed. The amplitude of the wave is equivalent
to the strain in space that it produces, h , defined as

t 2 5L , xh = —  (1.1)

as illustrated in figure 1.1. The wave may be expressed in the basis of two linearly 
independent polarizations. The figure represents the h+ polarization; the second 
polarization, named hx , causes the maximum displacements in the ring of particles 
to be rotated 45° from that shown in the figure.

1.1.2 Sources

Because gravity is the weakest of the four fundamental forces of nature, generating a 
‘large’ gravitational wave requires extremely large masses accelerating very quickly. 
The only sources which will generate detectable waves are astronomical. A few 
candidate sources are described below, with paticular emphasis on those sources 
which might generate waves in a frequency band detectable by Earth based detectors 
(above 10 Hz).

B u rst Sources

Sources which emit a few cycles of gravitational radiation at a characteristic fre­
quency are called ‘burst’ sources. These typically are cataclysmic events in the 
universe, such as supernova or coalescing binary stars.

Supernovae The stellar explosions called supernovae are classified as either Type I 
or Type II. A Type I supernovae is thought to occur in a binary system of low mass 
stars, such as white dwarfs. There are two forms of Type I supernova[6]; the first type 
is when the larger white dwarf, by accreting mass from its companion, reaches the 
Chandrasekhar mass limit (where Men =  1.4M© «  3 x 1030 kg, and MQ represents 1 
solar mass). The subsequent collapse and detonation of the larger white dwarf is not 
expected to generate a significant amount of gravitational radiation. If, however, the 
two white dwarfs in a binary system are close together and the total mass exceeds 
the Chandrasekhar mass, the two stars will merge. The resulting stellar object is
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highly deformed due to its increased mass and angular momentum. It will collapse 
asymmetrically with a strong emission of gravitational waves.

A Type II supernova is thought to occur when the iron core of a massive (> 8 Me ) 
star collapses into a neutron star or, if the initial mass is large enough, a black hole, 
again triggering a stellar explosion. If this collapse is asymmetric, due to a significant 
amount of angular momentum in the stellar core, a strong burst of gravitational 
radiation will result.

The physics of a supernova event is complicated, making a detailed estimation 
of the strength of a gravitational wave difficult. Schutz[7] approximates the strain 
amplitude that might be expected from such an event as

where E  is the total energy radiated, predominantly at a frequency / ,  over a time 
scale r , and where r is the distance to the source. This is scaled based on ~0.1% 
of the energy available going into the gravitational wave[7]. The event rate of both 
Type I and Type II supernovae out to the Virgo cluster (^15 Mpc) has been esti­
mated as several per month[8].

Coalescing B inaries A binary system consists of two stars orbiting their com­
mon centre of mass. Compact binary systems consist of two high density stars, 
e.g. neutron star-neutron star, neutron star-black hole, and black hole-black hole 
binaries. As these systems lose energy through the emission of gravitational waves, 
the orbits of the stars decay. As the two stars approach each other, stronger gravi­
tational waves are emitted. The gravitational radiation, emitted at twice the orbital 
frequency, gradually increases in amplitude and frequency, resulting in a ‘chirp’ 
waveform. Once the orbit has decayed so that the stars are within a few stellar radii 
of each other, the frequency will be in the band that may be detected by ground 
based gravitational wave detectors. This signal will last for a few seconds before the 
final coalescence of the stars.

The expected signal strength for two neutron stars coalescing at a distance r
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is[9]

'•‘- n s U ) '
where the mass parameter M. =  //M2/3, M  is the total mass (Mi +  M2), and \i is 
the reduced mass, • The time scale, r , over which this frequency changes is

r - 4
/

If h, / ,  and r  are measured by a network of three detectors, the value of r  can 
be determined from these equations. The difference in burst arrival time at each 
detector can be used to determine the direction of the source. If it is also possible 
to measure the recessional velocity of the source from the optical redshift, there is 
then a method for determining Hubble’s constant, H0[7\.

The primary uncertainty about this type of source is the prediction of their event 
rate. The number of pulsars in binary systems along with the estimated pulsar birth 
rate can be used to estimate the event rate at 3 per year out to 200 Mpc[10].

Periodic Sources

Steady sources of gravitational radiation will emit continous, quasi-monochromatic 
waves. These kind of signals can be detected by a single detector using long averaging 
times and narrow-band operation, improving the detector sensitivity by the square 
root of the observation time (when the noise is random). The signal is Doppler 
shifted due to the relative motion of the detector and the source; the motion of 
the Earth over these long averaging times will create a characteristic shifting of the 
signal.

The binary systems just described, long before coalescence, emit continuous grav­
ity waves. These signals will be at frequencies too low to be observed by ground 
based detectors.

P u lsars Single pulsars can emit gravitational radiation if they spin non-axisym- 
metrically. The asymmetry is defined in terms of the pulsar’s equatorial ellipticity,
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e. The strain amplitude of the radiation is then given by[10]

*-«■** G & ) ' P ? )  (if*) M
at twice the frequency of rotation, f rot.

This asymmetry may arise, for example, when a pulsar precesses due to the 
accretion of angular momentum from a companion star, but it is a poorly known 
parameter. It is thought to lie between 10-4 and 10“6, but could be as low as 
10_8[10]. Accurate determination of this would give much information about the 
structure of pulsars.

Over a year’s observing time, the signal detected from such a pulsar can be 
integrated up to the equivalent of h =  2 x 10-21/\/Hz. There are many catalogued 
pulsars; of particular interest for the ground based detection of gravity waves is the 
Crab Pulsar. It is believed to be emitting gravitational radiation at a frequency of 
~60 Hz. This pulsar could provide one of the first gravitational wave signals to be 
detected[ll].

W agoner S tars Wagoner described a method by which a neutron star spins up 
to the Chandrasekhar-Friedman-Schutz instability point by accretion then becomes 
non-axisymmetric[12]. The additional angular momentum is then radiated away in 
the form of gravitational waves. Because the rate of accretion of angular momentum 
is proportional to the rate of accretion of mass, the gravity wave luminosity of such 
a star will be proportional to its X-ray luminosity. Discoveries by the Rossi X-Ray 
Timing Explorer[13] suggest that the gravitational wave signal strength of the X-ray 
source SCO X -l could be h «  2 x 10-26 at 500 Hz.

Stochastic Sources

A final category of potentially observable gravitational wave signals comes from 
the stochastic background, the superposition of signals from sources randomly dis­
tributed throughout the universe. One possible source of the stochastic background 
results from primordial gravitational waves produced during or after an inflationary
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period immediately following the Big Bang[7]. Another possible source is the produc­
tion of cosmic strings, which may produce an amplitude of gravitational waves[14]

» » ^  (adWO (&) ‘ (t 5)' (A)1' m
in a bandwidth B  about a frequency / ,  where H0 is Hubble’s constant and Qgw is 
the energy density per logarithmic frequency interval required to close the universe.

The stochastic background by its very nature is indistinguishable from other 
sources of Gaussian noise in a single detector. However, its frequency spectrum 
will be identical across every detector. By cross-correlating the outputs of two or 
more detectors, the stochastic background signal can be separated from the random 
noise. This is best done between detectors separated by reasonably large distances 
(although less than a fraction of the gravitational wavelength to preserve the coher­
ence of the radiation) to avoid other, local disturbances that might be detected in 
common between the detectors.

1.2 Gravitational Wave D etection

There are a number of detectors around the world, proposed, being constructed or 
already in operation, which seek to measure the extremely small strains produced by 
a gravity wave in space. The major types of detectors can split into two categories: 
resonant bar detectors and interferometers. Earth based gravitational wave detectors 
are handicapped by the fact that the Earth does not provide a quiet environment 
to detect these delicate perturbations. Any form of terrestrial experiment must go 
to great lengths to vibrationally isolate the detector from its surroundings.

1.2.1 Resonant Bar Detectors

The original detector was a resonant bar developed by Weber in the 1960’s[15]. A 
bar detector uses a massive (~few ton) mechanical resonator, usually a right circular 
cylinder. A suitably oriented gravitational wave of the correct frequency that passes 
through the cylinder will excite the fundamental longitudinal mode of the bar (at 

kHz), causing a strain in the bar. The resulting motion of the ends of the bar is 
proportional to the induced gravitational strain.
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The effects of seismic noise on the resonant bar are reduced by suspending it from 
vibration isolation stages (in the same manner as will be discussed in detail in the 
following chapters for the mirror suspensions of interferometric detectors). Acoustic 
noise is reduced by placing the detector under vacuum. The sensitivity of the detec­
tor is then limited by the noise in the sensor and the thermal noise of the cylinder. 
The thermal noise is reduced by cooling the detector to cryogenic temperatures (a 
few Kelvin or below). To reduce the thermal noise further (section 2.5), the bar is 
made of a material with low mechanical loss (or high quality factor, Q), typically 
aluminium or niobium. This high Q also ensures that once the cylinder resonance 
is excited, it will oscillate for a long period of time. This allows the measurement 
to be time averaged to reduce the effect of sensor noise. This averaging is balanced 
against the slowly varying level of thermal noise against which the measurement 
must be made, the effects of which are reduced by shortening the measurement in­
terval. With current technology, this is typically set at a measurement bandwidth 
°f of resonanf frequency of the bar. Because of this, resonant bar detectors 
are intrinsically narrowband.

Resonant bar detectors have been developed at Stanford, Lousiana State Uni­
versity (ALLEGRO), Rome (NAUTILUS), CERN (EXPLORER), and Perth, West­
ern Australia (NIOBE). Cryogenic bar detectors have achieved strain sensitivities 
of h «  6 x 10~19 over bandwidths of a few Hz at ~1 kHz at a temperature of 
4 K[16, 17, 18, 19]. Experimental groups in Padua (AURIGA) and the USA have 
developed techniques that enable the bars to be cooled further; by reducing the 
temperature to ultracyrogenic temperatures (~50 mK), it is expected that a strain 
sensitivity of order 10_2° will ultimately be achieved[20, 21].

A further increase in the sensitivity of a resonant bar detector may be made 
by changing the bar geometry. A spherical ‘bar’ is much more massive than a 
cylindrical bar of the same resonant frequency, which reduces the effects of thermal 
noise. A sphere also has five usable quadrupole modes which may be used to detect 
the passing gravitational radiation, as opposed to the cylinder’s single mode. The 
ratio of the amplitudes of these modes may be used to determine the direction 
and polarization of the incident wave. Spherical detectors have been proposed by 
experimental groups in the USA (TIGA) and the Netherlands (MiniGrail) [22].
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Figure 1.2: A Michelson interferometer.

1.2.2 Interferometeric Detectors

An interferometer uses the interference of light beams typically to measure displace­
ments. An incoming beam is split, so that one component may be used as a reference 
while another part is used to probe the element under test. The change in interfer-

by a photodiode. By using the wavelength of light as a metric, interferometers can 
easily measure distances on the scales of nanometres and, with care, much more 
sensitive measurements may be made. The light source used is a laser, a highly col­
limated, single frequency light, making possible very sensitive interference fringes. 
Different configurations can be used to measure angles, surfaces, or lengths.

The use of interferometers to detect gravity waves was originally investigated by 
Forward and Weiss in the 1970’s[23, 24]. To use an interferometer to detect gravity 
waves, two masses are set a distance apart, each resting undisturbed in inertial 
space. When a gravity wave passes between the masses, the masses will be pushed 
and pulled. By measuring the distance between these two masses very accurately, 
the very small effect of the gravity waves may be detected. The simplest Michelson 
interferometer is shown in figure 1.2. The input beam is split at a beamsplitter, 
sending one half of the light into each arm. Fortuitously, the quadrupole moment

ence pattern results in a change in intensity of the output beam which is detected
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Figure 1.3: Layout of a ‘delay-line’. The amount of time the light spends in the arm 
is increased by reflecting the light repeatedly along the lengths of the arm.

of gravitational radiation means that depending on the direction of the incoming 
radiation, the arms may actually experience disturbances out of phase with each 
other, giving rise to a larger signal.

Storage Time

In order to sample as much of the wavefront as possible, to get as large a 5L for a 
given h as possible, an interferometer ought to be made very long. The maximum 
sensitivity is obtained when the light is stored in the arms of the interferometer for 
one half of the period of the gravitational wave, or LopUcai ~  ^gw/4. For a gravity 
wave of wavelength 3 x 105 m, this would require an optical path of 75 km. On 
the Earth, it is physically impractical to build an interferometer where the arms are 
much longer than ~4 km. The effective length of the arms may instead be increased 
by causing the light to traverse the arms multiple times before returning to the 
beamsplitter.

The use of an optical delay line, shown in figure 1.3, was first propsed for use in a 
gravitational wave detector by Weiss [24]. After reflection of the light at the far end 
of the interferometer arm, the return of the light to the beam splitter is ‘delayed’ 
by reflecting it back down the arm cavity. Multiple non-overlapping beams can 
be sent between two mirrors, with the light entering and leaving the cavity by a 
hole in one end mirror. A detector using these delay lines has been developed at 
the Max-Planck-Institut fur Quantenoptik, Garching, Germany[25]. The maximum 
strain senstivity achieved in a 30 m prototype interferometer was h «  1 x 10-19/\/H z 
above 1.5 kHz[26].

Another method of increasing the optical storage time is by use of a resonant
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Figure 1.4: A Fabry-Perot cavity. The light enters the cavity through a partially 
reflecting mirror and is then reflected between the two mirrors of the cavity. Each 
photon, on average, passes the full length of the cavity many times before exciting 
the cavity, such that the light power inside the cavity is much greater than the input 
power.

Fabry-Perot cavity [27] in each arm of the interferometer, a schematic of which is 

shown in figure 1.4. The use of these cavities in a gravitational wave interferometer 
was developed in Glasgow[28]. The light enters the cavity by passing through a 
partially transmitting input mirror. The photons then travel back and forth between 
the mirrors, on average some multiple number of times, before passing back out of 
the cavity through the partially transmitting mirror. To obtain the optical resonance 
necessary requires that the mirrors be held a fixed distance apart from each other. 
The details of the optical behaviour are examined in section 6.4.

When one of these resonant cavities is used in each arm of an interferometer, 
each cavity must be kept on resonance. Typically, the laser frequency is adjusted 
to maintain one cavity on resonance. When a gravity wave changes the length of 
both cavities, the first control loop changes the frequency of the laser. The length of 
the second cavity is then adjusted to maintain its resonance. The amount of motion 

needed to maintain this resonance reflects the total change in length 5L and thus the 

gravity wave signal. A detailed description of the control required involving all the 
optical components may be found in Sigg[29]. The 10 m Fabry-Perot interferometer 
at Glasgow has reached an equivalent strain sensitivity of /i «  6 x 10_2O/ \ / H z 

at about 1 kHz[30]. Another Fabry-Perot interferometer is the 40 m prototype 
detector at Caltech, which has achieved a displacement noise background below 

2 x 10“ 18m /\/H z from 200 Hz to 5 kHz[31].
There are advantages to each scheme. Because the delay lines use non-over­

lapping beams, the mirrors must be much larger than for comparable Fabry-Perot 
cavities. The Fabry-Perot cavities also have less difficulty with scattered light, since 
there is not the problem of scattering light from one beam to the next [25]. However,
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SR

Figure 1.5: Power and signal recycling in a simple Michelson interferometer. Mirror 
PR reflects any exiting laser power back into the interferometer, while mirror SR 
reflects the output signal back into the system.

a Fabry-Perot cavity relies on having a partially transmitting optic, which restricts 
the material used in the mirror to be transmissive and to have very low absorption. 
In addition, systems using Fabry-Perot cavities have the additional difficulty that 
the the cavities must be maintained on resonance, resulting in more complicated 
control systems.

Power Recycling, Signal Recycling, and Other Configurations

The interferometric signal can be detected most sensitively by operating the inter­
ferometer on a dark fringe, when the resulting intensity at the photodetector is a 
minimum. Since power is conserved, and very little light power is lost in passing 
through the interferometer, most of the input laser power is reflected from the in­
terferometer back towards the input laser. Since increasing laser power results in 
better sensitivity (section 1.3.3), rather than ‘waste’ this reflected power, a partially 
transmitting mirror can be placed between the input laser and the beam splitter. 
This allows the entire interferometer to form an optically resonant cavity, much like 
the Fabry-Perot cavities discussed earlier, with a potentially large increase in power 
in the interferometer. This is called power recycling, and is shown schematically by 
the mirror labelled PR in figure 1.5.
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In a similar fashion, the optical perturbation due to the gravity wave may be 
reflected back into the interferometer to resonantly enhance the output signal. Such 
a technique is called signal recycling, accomplished by mirror SR in the figure. A 
discussion of recycling techniques may be found in Meers[32].

1.2.3 Space Based Detectors

Ground based interferometers are limited at the low frequency end by the practi­
cal difficulties of operating on Earth: the increasing difficulty of vibration isolation 
at lower frequencies, the effects of the curvature of the Earth for longer baseline 
detectors, and the expense of longer vacuum systems. There is also the fundamen­
tal difficulty of gravity gradient noise, described in the next section. The obvious 
solution to these specific difficulties is to use an interferometric detector in space. 
Interferometer arms may be made orders of magnitude longer than is practical on 
Earth. LISA (Laser Interferometric Space Antenna) [33] has been proposed as a 
cornerstone mission in the Post Horizon 2000 programme in ESA. It will consist of 
three identical spacecraft positioned in a heliocentric orbit 20° behind the Earth, 
with each spacecraft forming a vertex of an equilateral triangle. Each spacecraft 
will be separated from its neighbour by 5 x 109 m and will contain two test masses 
and two laser transponders (Nd:YAG), allowing the sides of the triangle to form two 
semi-indep endent interferometers.

A gravitational wave strain sensitivity of h «  10_21/\/H z is expected to be 
achieved. LISA should be able to observe gravitational waves occurring in the 
0.1 mHz to 0.1 Hz frequency range. Gravitational waves in this frequency band 
include stellar-mass binary systems with relatively large separations and interactions 
of massive black holes. Space-bourne detectors will be complementary to ground- 
based detectors, allowing a broader frequency window to be observed. ESA and 
NASA are currently discussing a joint mission to launch LISA in ~2008.

1.3 Sensitivity: Noise in Interferometers

There are many things that contribute to the noise budget of a sensitive instru­
ment. For design purposes, it is important to identify the dominant factors. As
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Noise Performance of 
the GEO 600 Detector
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Figure 1.6: Noise curve of the GEO 600 detector

an example, the predicted noise curve for GEO 600[11], the German/UK ground- 
based interferometric detector, is shown in figure 1.6. The detector will reach its 
best strain sensitivity in a frequency band starting at approximately 50 Hz, ranging 
up towards 1 kHz. This figure includes curves representing various noise sources 
that contribute to the total sensitivity. Some of these factors are calculated using 
conclusions from later chapters of this work.

There are two different kinds of noise that are relevant in the interferometric 
detection. The interferometer very sensitively measures the relative displacement of 
the optics. Therefore, the motion of the optics must be made small enough that the 
effects of the gravity wave are large enough to be seen. Any noise source that affects 
the position of the optic is referred to as ‘displacement noise’. (The displacement 
is related to the strain by a factor on the order of the length of the interferometer 
arms which depends on the specific geometry of the detector. For GEO 600, the 
equivalent strain noise is ~\/3/600 times the displacement noise.) There is then the 
optical challenge of detecting this small motion. Anything that affects the phase of 
the laser beam used to detect this is called ‘phase noise’. The work described in 
the following chapters focuses on the actual behaviour of the suspended optics, and 
therefore the requirements are often expressed in terms of the allowable displacement
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noise at the optic which results in the corresponding strain sensitivity shown in the 
noise curve.

Broadly speaking, the low frequency part of the noise spectrum is dominated 
by seismic noise, the intermediate region dominated by thermal noise, and the high 
frequency region dominated by laser noise. Each of these noise sources is briefly 
introduced here, while the elements that affect the suspension design are examined 
in more detail in chapter 2.

1.3.1 Mechanical

The low frequency region of the detector sensitivity tends to be dominated by me­
chanical noise sources, generated by the Earth upon which the detector rests. While 
careful characterization of the possible sites can result in a better, seismically quieter 
location, in all cases the ground moves many times more than is acceptable for the 
size signals to be measured.

Ground Motion

Gravitational wave interferometers sense passing gravitational waves by detecting 
the apparent motions of the end mirrors; ideally, this assumes that the mirrors 
are in inertial space. For detectors on Earth, the mirrors are always attached to 
the ground—far from inertial. The first goal of the mirror suspension will be to 
ensure that the mirror acts inertially free with respect to the Earth at frequencies 
where gravity waves are to be detected. That is, the seismic noise of the ground 
transmitted through the suspension system must be reduced to below the desired 
measurement sensitivity. The principals of seismic isolation are introduced in the 
following chapter, while the detailed modelling of isolation performance is described 
in chapter 3, with the resulting performance covered in chapter 4.

Gravity Gradient

The seismic noise arises from the physical connection between the experiment and 
the moving ground, which can be reduced by intelligent design by making a soft con­
nection and reducing the effects. There is still the gravitational attraction between 
mass outside the detector and the measured mirror masses which can ‘short circuit’
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the vibration isolation. The noise from this effect is referred to as the gravity gra­
dient noise[34]. Given the relatively weak strength of the gravitational attraction, 
objects that contribute to the gravity gradient need to be either fairly close to the 
detector, such as workers walking around in the lab, or have a relatively large mass, 
including storm systems in the atmosphere.

While this could, in principle, be detected and actively cancelled, this has not 
been attempted or explored in any detail here. Because this is the fundamental 
limitation only at very low frequencies, compared to the target range of the first 
generation detectors, it does not affect current detector sensitivity[35, 36]. For 
advanced detectors, which will strive for greater sensitivity at lower frequencies, the 
gravity gradient noise will form an eventual limit to the sensitivity.

1.3.2 Thermal

Thermal noise limits the interferometer sensitivity in the mid-frequency band, the 
lower portion of the detection band. This noise results from the Brownian noise, 
the k sT  of energy per mode, in the system. This energy is kinetic energy, actual 
movement of the mirror surface that to the measurement system of the interferom­
eter would be indistinguishable from motion caused by a passing gravitaional wave. 
The presence of the noise is fundamental, and the integrated quantity may only be 
reduced by cooling the system, typically to cryogenic temperatures. While this has 
typically been done for the bar type detectors, first generation interferometers are 
not planning cooling at this time; it is an option to be considered for next generation 
detectors. One reason that this is not necessary is because the spectral distribution 
of this thermal noise can be modified. The details of the relationship between loss in 
a system and the observed noise and some of the implications for the pendulum de­
sign are given in section 2.5, but in short, the noise is concentrated in the resonance 
of the mode. The less loss there is in the system, the more the noise is concentrated 
in that resonance and therefore the less noise is observed off-resonance. The noise 
in the very sharply peaked resonances may be filtered out with narrow band filters 
if the resonances fall within the operating frequency band of the detector.
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Test Mass

The mirror face requires a certain minimum size, expressed as some multiple of the 
size of the beam, to minimize the amount of light lost to diffraction around the edges 
of the mirror. A very thin mirror would have low frequency ‘drum’ modes, where 
the mirror face moves back and forth like the surface of a drum, whereas a very 
thick mirror will have its lowest modes where the mirror bends along its length. For 
the GEO 600 parameters, the lowest frequency mechanical mode of the test mass is 
approximately 17 kHz [37], well above the detection range of the interferometer.

The mirror material is chosen based on both its thermal and optical properties 
such as the inherent mechanical loss, the optical loss, and coefficient of thermal 
expansion. Having chosen the mirror substrate, the issue for suspension design 
becomes not compromising the inherent loss of the material. Twyford[38] discusses 
in some detail the state of the research into how this is to be accomplished for 
GEO 600.

There are a few significant points to highlight with respect to the suspension 
design. The first issue is that for controlling the orientation of the optics, corrective 
forces need to be applied. This is commonly done by sending current through coils 
which act on a magnet attached to the optic. Magnet material is lossy, and attaching 
magnets to mirrors increases the observed loss. This is one reason why the local 
control for GEO 600, described in section 6.2, does not act directly on the sensitive 
optic. The second important point for suspension design involves the method of 
bonding, as described below.

Suspension

In a similar manner to the internal modes of the mass, the pendulum mode has 
thermal noise associated with it. The nominal method to minimize the effect of 
this noise in the frequency band is the same—a very high Q system results in lower 
noise observed off resonance. If a wire pendulum suspension is clamped in a lossless 
fashion, the loss observed in the pendulum mode is much less than the inherent 
loss in the wire material. This is because most of the potential energy is stored in 
the gravitational potential as the pendulum moves, which is a lossless mechanism 
(section 2.2.2) [39].

There are, again, a few specific issues that affect the suspension design. First of
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all, the system does not swing in a single degree of freedom. In a real pendulum, 
both the translational motion and the rotational motion of the mirror mass affect the 
front surface of the mirror seen by the laser beam. This tilt mode of the suspension 
typically involves the stretching of the wires and thus does not have the ‘dilution’ 
of loss described above. Therefore all the modes of the system must be considered. 
Secondly, in order to maintain the high Q pendulum mode, great care must be taken 
in how the suspension wires are attached. The intended method of attachment in 
the GEO 600 suspension is silicate bonding[40]. To use this method will require 
that the suspension fibres in the final stage of the multiple pendulum be vertical.

Suspension Elements

There will be modes in the suspension that involve almost exclusively motion of 
the suspension wires. These modes are called ‘violin modes’, as they are similar to 
any string under tension. These modes exhibit similar high levels of Q to the losses 
observed in the other modes of the system, and as such, have a relatively high level 
of thermal noise at their resonant frequency [41]. (The relatively low mass of the 
wire compared to the sensed pendulum masses prevents the motion at frequencies 
away from the resonances from appearing in the interferometer output.) These 
resonances, and the corresponding thermal noise peaks, are pushed to as high a 
frequency as possible without over stressing the wires in an effort to remove them 
from the frequency band of interest.

1.3.3 Laser Noise 

Photon Noise

The limitations to the detector sensitivity at higher frequencies tend to come from 
the laser beam used to make the measurement. The quantized nature of light means 
that for a certain light power, P, of frequency / ,  falling on the photodetector, where 
each photon carries h f  of energy, P /h f  photons per second fall on the detector. The 
arrival of each photon at the detector is a statistically independent process where 
the distribution of the intervals between arrival times forms a Poisson distribution. 
Simply stated, since it is only possible to count an integral number of photons, 
if the anticipated number of photons which arrive in a short period of time is a
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small number, the relative error of a one more or one fewer photon can be large. 
Therefore, with a higher power input laser, more photons arrive and the relative 
error is reduced.

For a simple Michelson interferometer using a delay line in each arm to increase 
the light storage time, the photon shot noise in the strain, h, is described as[42]

W / )  = \P fzr-TT-V  I1'7)V ecPin sm(7T f r s)

where h is Plank’s constant divided by 27r, A is the wavelength of the laser light, e is 
the quantum efficiency of the photodiode, P{n is the input power, c is the speed of 
light, and rs is the light storage time. The correct expression for GEO 600 is further 
modified by the other aspects of the optical layout, specifically the signal recycling. 
As shown on the noise curve for the GEO 600 parameters using an input laser power 
of 10 W, this is then the dominant noise source at high frequencies. This is not a 
fundamental limit, and much work has been done on higher power lasers suitable 
for use in a gravitational wave interferometric detector[43].

Light Pressure

One other noise source gets worse with increasing laser power. Each photon has 
momentum, and the resulting radiation pressure exerted on each mirror by the 
photons reflecting from it, for a lossless mirror, is

Frad = - .  (1.8)c

The fluctuation in this force is then due to shot noise fluctuation in the power, P. 
This force, applied to each mirror, causes the mirror to move,

* (/)  =  ,0 n 2F U) = (1.9)m{2,KfY  m f z

For first generation detectors such as GEO 600, the laser power is low enough that 
the radiation pressure noise is far from being a limiting factor.

For future detectors, where the laser power will be increased greatly to reduce the 
photon shot noise, it is possible that the radiation pressure would become a limiting 
noise source. For any given frequency, there is an optimal laser power to give the
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minimum combination of the noise due to the radiation pressure and that due to the 
photon shot noise. This limit can be considered a fundamental limitation (for any 
given frequency) to the achievable noise for interferometric detectors, corresponding 
to the Heisenberg Uncertainty Principle.

1.3.4 Other Sources

Beyond the three main categories of noise—which result from seismic, thermal, and 
laser sources—there are any number of other possible sources of noise. One example 
is that variations in the index of refraction in the optical path of the interferometer 
can again cause signals indistinguishable from those of a gravity wave. The total 
optical path seen by the laser beam is a function of how many air molecules the 
beam passes through. Variations in this number cause noise in the output signal. 
To minimize this, the entire interferometer must be in vacuum. The required level 
of vacuum is not extreme, but being in vacuum constrains the choice of materials 
and bonding agents available to the design of the suspension system.

Any control signal that affects the position of the optics for alignment will also 
apply noise to the system. This is an important consideration for how control signals 
are applied to the system. Section 6.2.1 deals with the specific considerations about 
sensors and actuators for the control that reduce the undesirable effects of high Q 
pendulum resonances.

Additional care must be taken to avoid noise due to fluctuations in the laser. The 
effects of intensity fluctuations in the laser axe reduced by modulation techniques 
and by operating the detector on a dark fringe. Errors in beam position and size 
are reduced by use of a mode cleaner acting as an optical filter.

‘Excess’ Noise Sources

The noise that appears in the detector that is above the anticipated noise floor is 
‘excess noise’. Great effort goes into identifying the possible sources of excess noise 
and then striving to reduce these sources. What is of greatest concern with respect 
to this work is additional resonances that appear in the physical system. Even 
with the very large values of isolation, high Q (often poorly modelled) resonances 
in the middle of the isolation system may cause large peaks in the noise spectrum 
of the interferometer at their resonant frequency. Whenever possible, the system
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is designed to have every internal resonance at a high enough frequency so as not 
to affect the detection band. When this is not possible, it is often sufficient to 
ensure that the resonant frequency is above a few hundred Hertz; while this is still 
within the sensitive frequency band of the detector, the isolation of the system at 
these frequencies is so great that the resonant peaks do not appear at the output. 
This is the case, for example, with the internal modes of the smaller cantilever 
blades described in section 4.2.2. When the internal resonant frequencies can not be 
made high enough, some extra effort is made to reduce the Q of these resonances. 
This happens, for example, in the bellows which encloses the passive isolation stack 
(section 2.2.1).

1.4 D etection

GEO 600 will function as part of the global network of detectors, which include the 
French-Italian VIRGO project being constructed near Pisa in Italy, the American 
Laser Interferometer Gravitational-Wave Observatory (LIGO) being built at two 
sites in the states of Washington and Louisiana, and the Japanese TAMA, near 
Tokyo, Japan. This worldwide network will allow coincident detection for confirma­
tion of results, as well as providing the geometry needed to locate a source purely 
by its gravitational radiation, without relying on a source being sighted by other 
means.

Figure 1.7 compares the anticipated signal strength of potential sources described 
in section 1.1.2 with the sensitivity of various detection projects. The GEO 600 curve 
is that introduced in figure 1.6, the broadband sensitivity, which can be enhanced 
through use of signal recycling at higher frequencies, such as the predicted 500 Hz 
frequency of the X-ray source SCO X -l, at the expense of reduced bandwidth. 
Based on the known possible sources, it is clear that it is important to reach the 
best possible sensitivity.

To that end, this thesis concentrates on the design of the mechanical suspension 
used for the optics in the GEO 600 interferometric gravitational wave detector. The 
successful design of the suspension will satisfy requirements involving the vibration 
isolation, thermal noise of the pendulum modes, and control of the optics. The 
next chapter will introduce some of the concepts that will be used in the remainder
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Figure 1.7: Ground-based detection of gravitational wave sources. The figure com­
pares the signal strength of anticipated sources with the sensitivity of various detec­
tors. The GEO 600 curve is the broadband sensitivity, which may be enhanced at 
higher frequencies at the expense of bandwidth. The LIGO sensitivity is shown as 
representative of other long baseline interferometric detectors, whereas the LIGO II 
data illustrates the potential for advanced detectors[44]. Recent sensitivities of the 
some of the bar detectors are also shown at their most sensitive frequencies [45]. 
Candidate sources are taken from Schutz[46]. They include the Crab pulsar, shown 
between an upper limit set by equating the observed loss of energy to the grav­
itational wave luminosity and a lower limit where its ellipticity would be 10-5, 
assuming an integration time of one year. The equivalent strength of hypothetical 
radiation from SCO X -l is shown based on observation times of one day up to one 
year, at which point modelling the signal may be difficult. Finally, a representative 
spectral density curve is shown for a black hole/black hole binary as it approaches 
coalescence.
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of the thesis. After this is a discussion of the computer model used to predict 
the performance of the suspension. This model is applied in the following three 
chapters to different aspects of the suspension design: the dynamics of a multi­
stage pendulum suspension, including its vibration isolation; the resulting thermal 
noise; and the electronic control of the suspension. The final parameters of the 
GEO 600 design are then summarized.



Chapter 2 

Mechanical Suspension in 
Int er fer omet er s

There are a large number of sensitive optics in the GEO 600 system. In order to 
achieve a seismically quiet optic (as described in the following sections), each of 
these components is ‘suspended’ in a pendulum system. The specific performance 
requirements may vary slightly based on where in the optical path a component 
is, but all the suspended components have a number of issues in common. All 
suspensions have design constraints that come from the required vibration isolation, 
the allowable thermal noise, the ability to control the optics, the physical robustness 
and reliability required when there are many units to be installed, and the limitations 
due to material and technique constraints.

The detection band for the GEO 600 detector, i.e. the frequency range of greatest 
sensitivity, ranges from 50 hertz up to a few kilohertz. The various types of noise 
that limit the sensitivity of the system are introduced throughout this chapter. It 
has been specified that the system be limited by the internal thermal noise of the 
test mass at the low frequency corner of the detection band [47]. This sensitivity 
is anticipated to be a strain of 2 x 10~22/-\/Hz at 50 Hz, which with the GEO 600 
optical scheme corresponds to a test mass motion of approximately 7 x 10-2Om/\/Hz 
at 50 Hz. All other noise sources are designed to be below this level (typically by a 
factor of 10) so as not to significantly increase the observed noise. The requirements 
on the suspension system are dominated by this low frequency end of the detection 
band.

24
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Figure 2.1: GEO 600 main suspension. The figure illustrates a face view (left) and 
a side view (right) of the total suspension and isolation system. This includes the 
active and passive isolation stack layers, the interfacing to the pendulum system, 
and the triple pendulum incorporating two stages of cantilever springs.
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This chapter introduces some of the issues that influence suspension design, as 
well as some of the techniques used to satisfy these issues. The following chapters 
then address the specifics of modelling the pendulum suspension, and then how that 
modelling is used to answer problems of seismic isolation, thermal noise, and control. 
The GEO 600 main suspension will be as shown in figure 2.1. The required isolation 
will be achieved with a combination of a triple pendulum and a single passive stack 
layer[48]. The isolation stack is made up of three legs, arranged radially about the 
vacuum tank. There is also a single active isolation layer which will be used at 
low frequencies to reduce the rms (root mean square) motion, reduce the effects of 
the micro-seismic peak, and reduce the low frequency actuation requirements. A 
flex-pivot on top of each isolation stack leg reduces the rotational stiffness of the 
leg. The three legs axe statically supported by the stack stabilizer.

A rotational stage slides on bearings on top of the stack stabilizer. The pendulum 
suspension hangs from this rotational stage. There are three stages to this pendu­
lum, the top two of which use cantilever blades to improve the vertical isolation. A 
damping arm allows control forces to be applied to the top stage of this pendulum. 
The suspension design was finalized partly based on the work discussed in the fol­
lowing chapters. The final parameters of this design, summarized in chapter 7, are 
used as a baseline for the worked examples.

2.1 Seismic Noise

Given the desired sensitivity of the detector, the motion of the ground of any po­
tential detector site must be characterized in order to determine the requirements 
of the suspension. This characterization is done early in the consideration of a site, 
as it provides one of the fundamental inputs to the design. Representative ground 
spectra for the site in Ruthe are shown in figure 2.2.

The spectrum of ground motion the world over has certain similar characteristics, 
although the details can be crucial. Ground motion peaks at what is known as the 
‘micro-seismic peak’, which occurs in the neighbourhood of y of a Hertz. This peak 
is caused by ocean waves crashing on the continental shelf. At frequencies above that 
of the micro-seismic peak, the spectral density of ground motion as a function of 
frequency falls up to around 1 Hz, then tends to flatten out until somewhere around
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Figure 2.2: Typical ground spectra at the Ruthe site. The horizontal measurements 
shown here are comparable to the vertical measurements. For the modelling work, 
the ground spectrum is modelled as 10-7/ / 2 m/\/Hz.

10 Hz, then falls with frequency squared ( / ”2) until well into the measurement band, 
at which point it ceases to be a limiting factor.

The details of the spectrum vary from site to site and at various times throughout 
the year. For simple approximation, the ground motion above about 1 Hz is typically 
written as

I s ( / )  =  * ° 0 )  W z  (2 ' 1}

where for GEO 600, xQ =  10-7m/\/Hz. This single asymptote suffices for calculating 
the performance at the ‘target frequency’, the lowest frequency corner of the detec­
tion band. Since the GEO 600 noise specification is 7 x 10-2Om /\/H z at 50 Hz, the 
system will require isolation from ground motion on the order of 6 x 109. While this 
could be achieved in principle with a single pendulum somewhat over a kilometre 
in equivalent length, in practice this will be accomplished with a series of isolation 
stages, both passive and active.
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l^w\H
Figure 2.3: A one-dimensional simple harmonic oscillator with spring constant k and 
mass m. The mass is constrained to move frictionlessly in one direction (horizontal).

Large amounts of isolation can be achieved by cascading passive isolators. Passive 
isolators are, fundamentally, anything with a resonance. Mechanically, it is typically 
something heavy on something soft. In concept, the soft linkage between the object

inertia of the object being isolated.
Consider the simple harmoic oscillator shown in figure 2.3, and compare the 

motion of the input, x0, with the motion of the output, X\. The restoring force on 
the mass, m, is supplied by the spring, with spring constant k. Thus, the equation 
of motion is

2.2 Passive Isolation

being isolated and the base prevents the transmitted force from overcoming the

m ^ d t ^  ~ k  ~~Io ^  '
(2.2)

This equation can be solved in the frequency domain by taking the Laplace transform 
(with Laplace variable s = iu) solving for the ratio of xi to x0. Defining the resonant 
frequency of the system as = k /m , the response of the isolated object to input 
motion is

Xi(a) =  1
A'o(s) (5/ ( j 0)2 4- 1

(2.3)

the magnitude of which is plotted in figure 2.4. At low frequencies, u  —> 0, the 
expression approaches one, and the output of the system matches closely the input.
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Transfer Function of a Simple Harmonic Oscillator
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Figure 2.4: Response of a simple harmonic isolator. (Shown here with Q ~  100.)

However, importantly for isolation, at high frequencies (u <j0)> the response of 
the output is (uq/ uj)2. Thus, at frequencies an order of magnitude or more above 
the resonant frequency of the stage, a great deal of isolation can be achieved.

In any real system, there is some loss in the system, whether this is due to friction, 
viscous damping, or other mechanism. (In the electrical analogue, the resistance 
never goes completely to zero.) For the simple oscillator described above, some 
viscous damping may be introduced as a force proportional to the relative velocity, 
Fv =  — kv (t;i — i>o). This represents, for example, the motion of this oscillator in 
air; the faster the mass moves, the proportionally more air molecules it encounters. 
Then, the equation of motion is

=  -Jfc (xi(t) -  x„W) -  , (2.4)

and the transfer function from ground input to mass output is

^ i(s) 2C(s/a;o) +  l
M s )  { s / u q ) 2 +  2 £  ( s / ujq)  +  1

(2.5)

where the damping ratio, is given for this viscously damped case by f  =  kv/2muo. 
Particularly for systems with very little damping, the system is often parametrized
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Transfer Function of a Damped Simple Harmonic Oscillator
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Figure 2.5: Response of a simple harmonic isolator with finite Q

with the quality factor of the resonance, the Q , rather than the damping ratio, £, 
where

q =  yc (2-6)

The response of a system with Q «  10 is shown in figure 2.5. There are two im­
portant characteristics of the magnitude of the frequency response in contrast to a 
system with infinite Q. Firstly, the height of the resonant peak at uo is roughly Q 
times the low frequency response. Secondly, the response of the system is propor­
tional to (ojq/ uj)2 above the resonant frequency up to about a frequency Qu0. Above 
this point, the system response falls only as 1/u. These conclusions are drawn for 
viscously damped systems. For low loss systems, for any form of loss, the system 
response will fall proportionally to 1/a;2 for frequencies a decade or more above the 
resonant frequency.

Passive isolation has a number of advantages in comparison to ‘active’ isolation 
stages to be discussed shortly. A system is passive in that it supplies no energy to the 
system and thus requires no energy source. Because it adds no energy to the system, 
it is guaranteed to be stable. As it has fewer components than an active system, 
it can be considered more mechanically and electrically reliable. Its performance is
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not sensor or actuator limited.
There are, naturally, disadvantages with relying on passive isolation stages. First 

is the difficulty in reaching very low frequencies—systems have to be very soft and 
potentially very large to reach low resonant frequencies. Secondly, these very soft 
systems when supporting a heavy load have a large static sag. For a vertical reso­
nance of Uq = k/m , and a gravitational loading of mg, the static sag is

mg g 
k <Jq ’

and a system with a lower resonant frequency will have a greater sag. In addition, 
while small errors in the spring constant, k , only affect the resonant frequency by 
yfk, they affect the (potentially very large) sag linearly, complicating the initial 
setup and alignment. The third complication is the resonance behaviour of these 
systems. Since the isolator amplifies motion on resonance, any disturbance at that 
frequency (including the Fourier components from a step input or ‘bump’) can be 
very large and can persist for many cycles. Finally, systems designed to be soft 
typically will be under very high stress and thus more prone to creep.

For the size of isolators that will fit inside a GEO 600 vacuum tank of 1 m in 
diameter, physically realizable stages will have resonances between 1 and 10 Hz. In 
order to provide the required isolation of approximately 1010 at 50 Hz using such 
passive isolators would require three to four separate stages of isolation.

2.2.1 Isolation stacks

An isolation ‘stack’ is just a stack of material, alternating massive layers with soft 
layers. This forms a series of spring-mass resonances as described above. One 
practical difficulty is that the entire system has to operate in a vacuum. Metal 
springs can be made very soft to give the desired low resonant frequencies, but they 
tend to have very high Q in vacuum. For the isolation stack, which is many layers 
removed from the sensitive optic and thus does not need high Q for the thermal noise 
reasons to be discussed in section 2.5, the large values of Q cause large excursions of 
the stack on resonance. In addition, small disturbances can take minutes to decay. 
In contrast, most materials that provide the softness required for the resonances 
needed and that are relatively well damped, such as various types of rubber, are



CHAPTER 2. MECHANICAL SUSPENSION IN INTERFEROMETERS 32

unsuitable for use in vacuum.
The GEO 600 main suspension will use a single layer passive isolation stack in 

three legs. The compliance is provided by three plugs of silicone rubber (RTV 615), 
loaded with graphite to reduce their Q. These are enclosed in a bellows to prevent 
contamination of the vacuum system. The bellows, in turn, is damped to prevent its 
resonances from having high Q. The net effect of this isolation stage is to provide a 
horizontal resonant frequency of ~9 Hz and a vertical resonant frequency of 15 Hz, 
with a Q of approximately 10[49, 50].

2.2.2 Pendulums

Pendulums are a nearly ideal passive isolation element for a gravitational wave 
detector, because it is physically simple to provide a resonant frequency on the 
order of 1 Hz with very low loss. The fundamental angular pendulum resonant 
frequency for a simple pendulum is y/g/L, such that for initial work the only relevant 
design parameter is L, the length of the pendulum. Having a low loss isolator is 
important with respect to the thermal noise, as discussed in section 2.5. The specific 
advantage of a pendulum system comes from the ‘dilution factor’ that relates the 
loss in a pendulum to the loss in the material[39]. In a pendulum, most of the 
potential energy is stored in the gravitational field, with a small fraction stored in 
the bending or stretching of the wire. Since the gravitational field is lossless, the 
loss seen by the pendulum is only the relative contribution of the lossy components 
of the stored energy. This dilution factor provides a compelling reason for using 
pendulums as isolation stages.

There are two obvious shortcomings of a simple pendulum. The first is that while 
it is physically simple to get a resonant frequency in the neighbourhood of 1 Hz, 
requiring a length on the order of 30 cm, it becomes difficult to reach frequencies 
substantially below 1 Hz, except by vastly increasing the size of the system or using 
more exotic geometries. The difficulty of achieving the total necessary isolation 
for gravitational wave detectors with any single stage of isolation leads to systems 
designed with multi-stage pendula. GEO 600 includes a triple pendulum, a modified 
version of which is in the preliminary design for LIGO II. The second complication 
is that the pendulum may not be as soft in directions other than the longitudinal. 
For simple pendula, the vertical resonant frequency, in particular, tends to be in the
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10’s of Hz range. While the sensed interferometer direction, the longitudinal, is the 
most sensitive, coupling from other degrees of freedom (specifically vertically as per 
section 2.4.1) means that isolation is required in every direction.

The pendulum stage is the most common physical unit in the interferometer. 
Since pendulum stages can be used both to provide a quiet ‘test mass’ as well as 
to create a quiet base for actuation (a ‘reaction mass’), a number of the suspended 
optics in GEO 600 actually require parallel triple pendulum suspensions, one for the 
actual optic and one for the actuators.

Specifically, three pendulum stages are required for the GEO 600 main suspension 
to allow one stage to be made quiet with respect to thermal noise while two stages 
are made to include the necessary additional vertical isolation. Chapter 3 describes 
how multi-stage pendulums are modelled in sufficient detail to allow the necessary 
conclusions about isolation, thermal noise, and control to be drawn in the following 
chapters.

2.3 A ctive Isolation

An active isolation system, by contrast, measures the effect of disturbances on the 
plant and seeks to compensate for them. This has many potential advantages over 
a purely passive system. Most importantly is that there is not the inherent con­
nection between size and frequency in the stage. Lower frequency performance will 
still typically require larger components, but for the same physical size a properly 
designed active system can act at a lower frequency than a passive system. A second 
significant advantage of an active system is that it is ‘solid’—because it measures 
and reacts to motion, there is never a large, persistent response to a disturbance 
such as that caused by the resonant peak of a purely passive system. This helps 
both because of the smaller range of disturbance that can get through as well as the 
quicker recovery to a ‘quiet’ situation from a large disturbance. Another fundamen­
tal advantage, although perhaps less significant for gravity wave detectors, is that 
an active system can detect and reduce disturbances generated by or directly onto 
the isolated object. A passive system, in constrast, can only reduce disturbances 
which are transmitted to the system through the isolator.
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There axe reasons that make active systems less desirable in comparison to pas­
sive systems. The most obvious reason is cost: an active system requires some 
structure to support the plant, as would a passive system, plus the sensors, actu­
ators, and control electronics. Secondly is that systems are ‘active’ in that they 
require power, either as a finite on-board supply (battery) or needing some connec­
tion to the outside world. Thirdly, the fact that active systems can drive the system 
in response to a disturbance means that they can potentially drive the system in a 
mistaken fashion—even driving a system unstable. While proper design will avoid 
this, changes in the plant or disturbance environment or failures of components can 
cause all but the most robust control designs to become unstable. A final shortcom­
ing of an active system is that, as in any control system, it can only control what 
it can measure. Thus, the isolation stage will be limited by the performance of its 
sensor.

There is no sensor available that is sensitive enough to measure a fully isolated 
gravitational wave detector mirror; if there were, it would avoid the need for the 
entire isolation system. Thus active isolation alone will not be appropriate for 
GEO 600. The ideal solution would be to begin with active isolation stages, where 
the disturbances are largest and thus easiest to sense, to provide very low frequency 
noise reduction and provide a solid platform for the later, passive stages. The 
low frequency disturbances, while not in the frequency detection band, provide the 
majority of the total (root mean square) motion of the mirrors. These can be reduced 
most effectively by active isolation.

Active vibration isolation includes both feedback and feedforward control tech­
niques. Feedback control measures the response of a plant and compares this to 
some desired output to generate an error. The controller then uses this error signal 
to generate a correction. Disturbances that enter the system cause the output to 
change, which generates a signal used to eliminate the error. Feedforward seeks to 
anticipate errors by measuring the disturbance. By modelling how the plant will 
respond to that disturbance, the correction can be generated before error reaches the 
output. A schematic depiction of feedback and feedforward in an active vibration 
isolator is shown in figure 2.6.

Feedforward systems depend on accurate modelling of the plant to achieve good 
performance, whereas feedback systems tend to be more robust. However, since
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Figure 2.6: A schematic active isolation system. A sensor, S , is attached to the 
isolated mass. This is typically a small geophone. It provides a feedback signal to 
an actuator, shown here as a piezo-electric transducer (PZT), which adjusts the 
position of the mass. A second sensor directly measures the input ground motion 
to provide a feedforward signal.

there is no direct connection between the output of a feedforward system back to 
its input, a feedfoward system will not cause instability; even if a system were to 
undergo severe changes, a feedforward system would only add extra noise to the 
system. Because a feedforward system anticipates the disturbance before it has 

time to affect the plant, the effective bandwidth of a feedforward controller can be 
substantially higher. However, a feedforward system is only effective against the 
measured disturbances and will do nothing against plant generated disturbances, 
noise in the controller, or plant resonances. In this fashion, feedforward controllers 

augment feedback controllers.

2.4 S ix  D egrees-of-Freedom

Rigid bodies have six degrees of freedom (DOF) in three dimensional space—three 
translation and three rotation. A multiple-stage pendulum suspension, properly 

speaking, has a number of rigid body modes equal to the number of masses times 
six. These different degrees of freedom are not of equal importance to the sensitivity
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(a) Longitudinal, || to X (b) Vertical, || to Y (c) Transverse, || to Z

(f) Pitch, about Z(e) Yaw, about Y(d) Roll, about X

Figure 2.7: Naming convention of the degrees of freedom of a rigid body. Figures 
(a) through (c) illustrate translation along a coordinate axis, while (d) through (f) 
show rotation about the axes.
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of the interferometer, but all degrees must be considered to verify the total system 
performance.

To determine the positions of all the optical components in the GEO 600 system 
there is a global coordinate system, which is centred on the main beamsplitter. The 
modelling of each independent suspension is based on a local coordinate system. The 
naming convention for the motions of an arbitrary body is illustrated in figure 2.7. 
The positive Y  axis is upward, parallel to the pull of gravity, and has translation 
along which referred to as vertical motion; the positive X  axis is in the direction of 
the incoming laser beam, normal to the face of the mirror, and has translation called 
longitudinal motion; the Z  axis completes a right handed coordinate system, positive 
being toward the right when looking out from the face of the mirror toward the 
incoming beam, and the associated motion is referred to as transverse, or sideways.

The rotational motions, all defined in a right handed sense, axe: roll, which is 
rotation about the X  axis; yaw, rotation about the Y  axis; and tilt, rotation about 
the Z  axis.

Note that certain optics do not have an incoming beam normal to the face of the 
optic; for dynamic modelling, this is unimportant and is why the axes are based off 
the vertical direction.

Longitudinal/Tilt

The equations of motion of a pendulum in certain degrees of freedom tend to couple 
together, as explored in detail in section 4.1. Of greatest interest for interferometer 
sensitivity are the longitudinal and tilt directions. Longitudinal motion couples to 
first order to a change in optical path length of the interferometer. If the beam 
strikes the optic at any point not exactly at the same height (vertically) as the 
centre of mass, tilt motion also couples to the interferometer output to first order. 
In fact, for most of the multi-stage pendulum systems to be examined, the coupling 
of tilt and longitudinal motion causes the optic centre of mass to move even for 
nominally ‘tilt’ modes.

Sideways/Roll

Mathematically, the sideways and roll directions act the same as the longitudinal 
and tilt directions, but the parameters are different for realistic suspensions. The
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coupling of the beam to the roll direction is very weak, essentially due to imper­
fections in the surface of the mirror. In addition, since the surface of the mirror 
is essentially averaged over the beam size, errors of a characteristic length smaller 
than the beam size do not appear. The first order coupling of sideways motion to 
the sensed direction is due to the static yaw angle, which can be made small.

Because the wires are attached close to the level of the centre of mass in order to 
set the coupling in the longitudinal and tilt directions, the wires must be attached 
at approximately the full width of the mass in the Z  direction. This large lever arm, 
relative to the typical placements in the longitudinal direction for tilt, results in a 
much higher roll frequency.

Yaw

Yaw motion of the mass couples to optical path length in the same manner as tilt 
motion, except that for systems that are bilaterally symmetric about the vertical 
axis, yaw motion does not couple to any other degree of freedom. For essentially 
vertical wires long with respect to the mass dimensions, yaw tends to be a soft degree 
of freedom.

Vertical

The vertical degree of freedom is, in many ways, the most interesting direction. 
While in principal there is no interferometer sensitivity to motion in the vertical 
direction, there is fundamental coupling to this degree of freedom for any long base­
line interferometer, as discussed below. Unless the other isolation stages provide 
significantly more isolation in the vertical direction than in the horizontal direction, 
simple wire pendulums do not provide sufficient vertical isolation.

For a system with vertical wires, the restoring force is the extension spring con­
stant of the wires times the number of wires. This spring constant, k3 =  
is proportional to the Young’s Modulus of the material, E , and the cross sectional 
area of the wires, and inversely proportional to the length, L. For a given choice 
of material, the Young’s Modulus is set, while the length is established by the cal­
culations for motion in the longitudinal degree of freedom. Thus, to have a low 
vertical resonant frequency and a greater isolation requires that the area of the wire 
be made as small as possible. Since the stress in the wire goes as the loading divided
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Figure 2.8: Misalignment in a pendulum suspension. One wire is not attached 
parallel to the other wires.

by the area, this also increases the stress on the wires. So the wire size (diameter) 
is chosen to give the maximum permissable stress which then effectively establishes 
the vertical resonant frequency. For materials such as steel, with a Young’s Modulus 
of 1.65 x 1011 N/m and using 25% of the yield stress of 1.5 GPa, a 30 cm pendulum 
has a vertical resonance of 38 Hz.

2.4.1 Vertical to Horizontal Coupling

In any real physical system, mechanical imperfections will cause motion in one 
direction to couple to motion in other directions. For example, in figure 2.8, the 
misalignment of one end of a wire means that vertical motion of the upper connection 
stretches all of the wires, of which all but one wire gives a purely vertical force 
on the lower connection, while the misaligned wire gives an unbalanced horizontal 
force. Similarly, unbalanced tensions in the wires, static twists in the wires, or any 
other physical imperfections causes similar difficulties. Usually the amount of the 
cross-coupling, defined as the ratio of the transfer functions from vertical input to 
horizontal output and from vertical input to vertical output, is extremely small, such 
that as long as the system provides some isolation in every direction, the motions 
due to these cross couplings axe not significant.

However, for long baseline interferometers, such as full scale gravitational wave 
detectors, the local verticals at each end of the interferometer—the direction of the 
gravitational field—are not parallel. This implies that any pure vertical motion 
locally appears as a horizontal motion of the mirror with respect to the input beam
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Figure 2.9: The local vertical and the earth’s curvature

Figure 2.10: Light in one arm of GEO 600

(figure 2.9). The amount of cross-coupling is

7 7 —~  (2-7)
mass ' Earth

For a 600 m baseline interferometer, such as GEO 600, with the radius of the earth 
tE a r th  =  6 x 103 km, this causes a cross-coupling of 5 x 10-5.

The specific optical path of the interferometer can cause additional couplings. In 
order to increase the effective arm length of the interferometer while using a fixed 
600 m long vacuum tube, each arm of the GEO 600 system uses a four pass delay 
line as shown in figure 2.10. The beam enters each arm, reflects off a mirror at the 
fax end, returns the length of the tube where it reflects off another mirror. The beam 
then returns along the input path, passing a total of four times down the length of 
the tube. The return beam ends up 2h =  30 cm above the incoming beam, to allow
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the near mirror to not block the incoming beam. This forces the near mirror to be 
at an angle h/L  to reflect the beam back along the incoming path. This angle causes 
vertical motion of the near mirror to appear as horizontal motion of the beam at 
a level of 3 x 10-4. While it is possible to arrange the optics so that the incoming 
beam is at an angle, allowing the face of the far mirror to be vertical, this would 
require mirrors at the input end to be angled, such that this calculation provides an 
appropriate conservative limit. This level of cross-coupling is present regardless of 
the form of the pendulum suspension.

The net effect is that while there are cross couplings between every degree of 
freedom, the difficulty in getting as much isolation in the vertical direction as in 
the horizontal directions, plus the fundamental coupling from vertical to horizontal, 
means that this is the most important coupling to evaluate and model. To this point, 
GEO 600 has assumed that the total cross-coupling comparing vertical to horizon­
tal outputs, including the optical path effects just described plus any additional 
couplings due to potential misalignments, will be less than 0.1%.

2.4.2 Vertical Isolators: Cantilever Blades

If there is on the order of 0.1% cross coupling between degrees of freedom and 
the longitudinal resonance of a suspension is approximately 1 Hz while the vertical 
resonance is approximately 20 Hz, the horizontal isolation of a single pendulum at 
50 Hz is on the order of (1/50)2, while the vertical isolation is (20/50)2. If, as is 
typical, the input vertical motion is comparable to the input horizontal motion, 
then, including the cross coupling,

the contribution of the vertical motion to the sensitive direction is less than the 
horizontal motion. However, for a triple pendulum, an order of magnitude estimate 
suggests that

/ 0 .1 \  / 2 0 \ 6 f  1 \ 6

VTooJ 5̂0y > \ 5oJ ’
and the sensed motion along the beam will be dominated by the resulting vertical 
motion of the mass. This implies that the vertical isolation for a purely wire based
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pendulum, barring substantially greater vertical isolation in other stages, would be 
insufficient.

The pendulum wires being angled in any direction away from vertical causes the 
restoring force to become softer, as described in the modelling work in section 4.1.1. 
Except for systems that then use much longer wires and thus result in very wide 
systems, this degree of freedom can not be made soft enough to permit the expected 
coupling. Some other method must be used to soften the system in the vertical 
direction.

In addition, since there is always some coupling between degrees of freedom, due 
to mechanical imperfections if nothing else, it would be unwise to do a large amount 
of vertical isolation at one stage and very little everywhere else. The direction that 
is less well isolated at each stage would couple to, and reduce the effectiveness of 
the isolation for, the other directions. Therefore it is desired to introduce additional 
vertical resonances in the middle of the multi-stage pendulum. The compliance 
introduced by these vertical resonances could affect other degrees of freedom, but 
this is not necessary and, if it introduces loss and therefore thermal noise, may be 
undesirable.

One method used to get this extra vertical compliance is a soft spring, specifically 
a cantilever blade. The specific design for the lower cantilever blades in the GEO 600 
main suspension is shown in figure 2.11. These blades have been adapted from the 
design of the cantilever blades used in VIRGO [51]. They are designed as pure 
vertical isolators, although introduced in pairs they end up affecting some tilt and 
roll motions. These may be shaped into an appropriate form[52], for example curved 
about an axis parallel to its base to allow the blade to be soft with respect to vertical 
and horizontal movement and rotation about that axis. For the purposes described 
here, the blades are designed to be flat under load, so that they act as very stiff in 
five degrees of freedom and soft with respect to vertical deflection. This softness 
leads to the bladees being highly stressed, in the same manner as the suspension 
wires. The blades are thus designed to be (approximately) triangular so as to have 
constant stress—the load lines travel evenly, in straight lines, from the tip of the 
triangle to all points of the base. For the blades coming to a point, either a single 
wire or a set of closely spaced wires may connect at the tip.

For a trapezoidal blade geometry, which includes a triangle as a limiting case,
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Figure 2.11: A cantilever blade. This is the mechanical design of the lower cantilever 
blades used in the GEO 600 triple pendulum suspension (from M. Plissi).
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the spring constant of the blade is

Eah3 , ,
“ nt “  4Ua ’ ( ^

where E  gives the Young’s modulus of the cantilever material, a is the base width of 
the cantilever, h the thickness, I the length, and a  a geometrical factor. This factor 
for a trapezoid is

3 
2 ( 1"

where (3 =  b/a, and b represents the width at the tip of the blade[53]. The value 
of a  ranges from 1.5 for a triangle to 1.0 for a rectangular blade. Since the actual 
blades are not exactly trapezoids, having extra width for the clamping of the wires, 
this factor a  is calculated approximately then experimentally verified.

For vertical wires and an ideal, vertical only, cantilever, the appropriate vertical 
spring constant will be the series sum of the wire and the much softer blade, which 
will be dominated by the blade. For angled wires and other degrees of freedom, the 
exact effect of the blades is calculated as in section 3.5. A more detailed examination 
of the performance of the blades is in section 4.2.2.

2.5 Thermal Noise

The displacement noise in the optics due to the thermally driven fluctuations in the 
position of the mirror surface is the limiting noise source in the middle frequency 
band of the detector. In particular, the low end of the detection band is defined by 
the frequency at which all other noise sources can be reduced below the thermal noise 
of the test mass. The particular frequency distribution of this noise is a function of 
the loss of the system.

There are two different types of resonances which contribute thermal noise to 
the overall noise budget of the system. The higher frequency internal modes of 
the test mass all add noise in the detection band below their resonant frequencies, 
while the low frequency modes of the suspension system contribute noise above 
their resonance. For purposes of the suspension design, the internal modes of the 
suspended masses axe essentially fixed and give a thermal noise level which provides
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a target noise floor. The noise contributed by the pendulum modes will be affected 
by the design of the suspension described in the following chapters.

There is also noise contributed by internal modes of the suspension elements 
(this includes the ‘violin’ modes of the pendulum wires). These modes causes addi­
tional noise above the noise floor of the detector. Every effort is made to move the 
frequencies of these modes away from the detection band of the detector.

2.5.1 Fluctuation Dissipation

Every mode of a system has k sT  of thermally averaged energy[54]. This leaves 
unspecified the spectral distribution of this noise. Callen et. al.[55, 56] determined 
the relationship between the thermal fluctuations in the system and the dissipation 
in the system. In particular, the fluctuating thermal force is proportional to the 
impedance of a system, Z, such that

FTh(u) =  (Z(w)). (2 .1 0 )

The impedance is given by the force required at a point in the system to cause a 
specific velocity at the same impinging point, Z =  F/v. This can be expressed in a 
more useful form by using

^Th =  II^I|2 7̂7i> (2-11)

and writing the power spectral density of the thermal displacement as

4 * (« )  =  !* ( } » )  Per Hz> (2-12)

where Y(u)  is the mechanical admittance, Y(u)  =  1/Z(u) = v/F .
Returning to the simple oscillator described in section 2.2, the equation of motion 

for the damped system, equation 2.4, driven by an input force F  with no ground 
input (x0 =  0) is

(PxHt) . /fN , dxAt)  _  / n i o \= - k Xl(t) -  fc„—  + F. (2.13)

A sinusoidal driving force, F  =  F0eta;t, will cause the system, after all transients
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have died away, to move at the same frequency, such that x oc eMt. Substituting 
this steady-state repsonse into equation 2.13 gives

—mu)2x =  -  (k +  iukv) x  +  F. (2-14)

This can be written with a spring constant with an imaginary component as

^  =  -  ^ + x > (2-15) m \  m J

where ) is the loss angle, the angular amount that the system lags behind the 
driving force.

Prom equation 2.15, the admittance of the system can be calculated as

v _  iux  _  iojm /o ieN
F - ~ F ~  u f i - ± ( l  + i<Ku>))' ( • }

which can be inserted into the fluctuation dissipation theorem to give the resulting 
thermal noise.

This 4> is related to the Q of the system, the quality factor of a resonance seen 
in equation 2.6, by

Q =  J- (2.17)

Typical values of this loss function at room temperature can range from 10-3, for 
most metals, down to a few times 10~9, for sapphire, but can be a strong function 
of temperature[57]. The material chosen for the GEO 600 transmissive optics is 
Suprasil 1, supplied by Heraeus, which has a loss factor of 2 x 10-7 at the internal 
mode frequencies of the test mass (tens of kilohertz) as measured in the lab in 
GEO[58, 59]. The proper contribution of the thermal noise from all of the various 
modes of the test mass based on this loss factor defines the noise requirement at 
50 Hz to be 7 x 10-2°m/\/Hz[48, 38].

2.5.2 Mechanical Damping

Prom equation 2.16, if the loss, <j), equals zero, the real part of the admittance, and 
hence the thermal noise, equals zero. Therefore, the presence of any loss in the
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Thermal Noise in a Simple Harmonic Oscillator
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Figure 2.12: Viscous versus structural damping. The figures shows the displacement 
thermal noise for a simple harmonic oscillator with resonant frequency of 1 Hz, 
comparing the effects of viscous damping, where <f> oc / ,  to those of structural 
damping, where (f> is constant, for two different values of Q.

system results in a broadband thermal noise.
For the viscous damping considered so far, <f)(uj) oc u. Viscous damping accu­

rately describes some systems, such as motion through a viscous medium. This form 
of damping does not represent the observed behaviour in many cases however. A 
more accurate model for most problems of interest in the design of suspensions is 
given by (f>(u) = a constant, over a wide range of frequencies[60]. This form of 
damping is referred to as ‘structural damping’.

The displacement noise spectrum of a single degree of freedom oscillator with 
resonance at 1 Hz is shown in figure 2.12. There axe four different cases shown, 
comparing the effects of viscous damping to structural damping at two different 
levels of loss. In comparing viscous to structural damping, the losses are chosen to 
be equal on resonance, such that (/)v(ujq) = (/>voU)q =  (j)s■ One pair of curves is plotted 
for a loss on resonance of 1 0 -4, while the other pair is for a loss on resonance of 
1(T5.

It can be seen that there is a large peak in the thermal noise spectrum at the
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resonant frequency. Far above the resonant frequency, the thermal noise falls pro­
portionally to ( 1  /  f ) 2 for the viscously damped cause, and proportionally to ( l / / ) 5/ 2 

for the structurally damped case. Below the resonant frequency, the noise in the 
viscously damped case is constant, while for the structurally damped case it is pro­
portional to ( l / / ) 1/2. Regardless of the exact form of the damping, having less loss 
concentrates more of the thermal energy into the resonant peak resulting in a lower 
level of thermal noise off resonance.

To achieve the sensitivity desired in GEO 600 will require systems with very low 
loss, such that the Q of the pendulum resonance, where Q =  l/(j) at the resonance, 
must exceed ~107[61]. The exact frequency dependence of the loss can be difficult to 
experimentally measure, since the effects off resonance are so small. For the control 
work to be described, this amount of loss is small enough that the controllers can be 
designed assuming it to be zero. This simple analysis of a single stage, single degree 
of freedom oscillator must be expanded to examine the noise in a complex, multiple 
degree of freedom system. This is done for the GEO 600 suspension in section 5.3.

2.5.3 Electronic (‘Cold’) Damping

The large resonant peaks in the isolation can be measured and suppressed. This 
reduces the Q seen in the transfer function between, say, seismic input and pendulum 
motion, but does not increase the off resonance thermal noise of the system since 
the energy is removed externally, rather than in a internally lossy way, such as by 
friction. This can be called ‘cold’ damping, since the observed thermal noise is lower 
than would be expected for a given Q, equivalent to lowering the temperature of the 
system.

The ability to do this is important to the operation of the detector. While 
the thermal noise requirements of the system force the resonances to have high Q, 
the resulting large amplitude motion would force the detection scheme to operate 
over an unfeasibly large range. Damping the system also reduces the time required 
for the system to recover from a disturbance by orders of magnitude. How this is 
accomplished in the GEO 600 suspension is described in chapter 6 .
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2.6 Design of Suspensions

A suspension was to be designed to meet the GEO 600 requirements as introduced 
in this chapter. To predict the performance of a candidate pendulum suspension, 
a modelling code was developed which is described in detail in chapter 3. The 
following chapter uses the code to examine the dynamics of the pendulum system 
as well as other important aspects of the design, such as the cross-coupling and the 
behaviour of the cantilevers. Chapter 5 then applies the code to address some of 
the thermal noise aspects of the pendulum design.



Chapter 3 

Lagrangian Model

Lagran.mws, the code of which is in Appendix A, is the modelling program that has 
been developed to calculate the dynamics and thermal noise performance of a multi­
stage pendulum system. It uses an energy method, the Lagrangian formulation[62], 
for the equations of motion. The mws extension refers to a ‘Maple Worksheet’. 
Maple V[63] is a symbolic mathematics package developed by Waterloo Maple and 
available on a variety of platforms, including IBM PC compatibles and Unix. The 
code was developed using release 4 of Maple V on a desktop PC using a Pentium II- 
MMX processor running at 350 MHz and using 384 Mb of RAM. (Pull calculations 
use on the order of 150 Mb of RAM.) Versions of this code have been run on UNIX 
platforms using release 5. Conclusions that are drawn from the modelling work, 
particularly those with application to the GEO 600 suspensions, are discussed in the 
following chapters, particularly chapter 4 for the pendulum dynamics and chapter 5 
for the thermal noise results.

This chapter will describe how the modelling is done, including both the theoret­
ical treatment of the problem as well as some of the programming details involved 
in making the code tractable. In the hope that this program will continue to as­
sist in the design of future suspensions, this chapter will serve as a ‘user’s manual’. 
The organization of this chapter will largely follow the organization of the code, 
although a few topics will be rearranged for clarity. One example is modelling mis­
alignments. The large variety of misalignments tend to be implemented at different 
points throughout the code. Because of this, and because misalignments are a com­
plication of the basic problem, their treatment is deferred until after full discussion

50
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of a more basic model.
As the model was developed, the symbolic capabilities were used to generate 

symbolic equations of motion, which allowed comparison with other worked exam­
ples, specifically as described in section 4.1 and in Torrie[50]. With the continued 
evolution of the code, the expressions become more complicated and substantially 
less intuitive. Because of this, the current version of the code, by default, explicitly 
outputs very few intermediate steps. To examine any of these steps, one can take 
advantage of the Maple convention that uses a to terminate a line and show the 
output and a V to terminate a line suppressing the output. It should be noted 
that some intermediate steps, which axe often not simplified until after the numeric 
calculations, result in very long expressions.

The Lagrangian, L, is defined to be the kinetic energy of the system minus the 
potential energy of the system,

L =  K E  — PE. (3.1)

The energies axe written in terms of generalized coordinates of the system, qim There 
is one coordinate for each degree of freedom of the system. Once the Lagrangian is 
written out, the equation of motion for each coordinate can be expressed as:

d_ f 8 L \  _  dL_ 
dt \  dqi)  dqi'

(3.2)

3.1 Coordinates

Any inertial coordinate system is appropriate for these calculations. As we are 
concerned with the positions of the masses in the multi-stage pendulum, the first 
choice will be the (x, y , z) positions of the centre of mass of each pendulum mass 
and the rotations about those same centres of mass, ('0 , ^ , 0 ), which are about the 
X, Y, and Z  axes, respectively. The centre of this coordinate system is defined along 
the nominal line of symmetry in the X  and Z  directions, level with the top of the 
top-most wires (see figure 3.1). Note that the Y  axis is defined to be parallel to the 
local gravitational field. The X  axis is in the direction of the input optical beam, 
although the beam itself is not necessarily perpendicular to the vertical axis for long 
baseline interferometers.
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t

SIDE FRONT

Figure 3.1: The coordinate system for Lagran.mws. Illustrates the global coor­
dinates used for each suspension, (x,y, z), and defines the state variables for each 
pendulum mass, (x^y^Zi).

In practice, the coordinates as finally used will not be ‘global’, all referencing 
the same origin, but instead will be redefined so that each coordinate is measured 
relative to the nominal position of each mass. This is how each qi is initially defined, 
then redefined as

ft ft +  fto,

where the q;o give the coordinates of the equilibrium position. In this fashion, the 
resulting qi can be guaranteed to be small, allowing first order expansion in the 
generalized coordinates. The masses are numbered from top down; in a three stage 
pendulum, the centre of mass of the optic will be at position (£3 , 2/3 , 2 3 ).

One useful set of coordinates would be the modal coordinates, particularly for 
evaluation of the loss or lQ} of each mode. Since, as will be shown, the mode shapes 
are not obvious and because the physical positions of the masses are the variables 
measured, modal coordinates have not been implemented.

All the calculations that follow depend on the suspension elements, which will 
initially be described as wires. The various wires will bend, twist, and stretch which 
will lead to the forces. The stored energy will be integrated along the wire, where
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n[i, u ]

d [i, u ]
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SIDE FRONT

Figure 3.2: Attachment points of wires. The variables s, n , and d show the distances 
from a wire attachment to the respective centre of mass.

the boundary conditions will be the location of the endpoints of the wire.
The modelling code does not rely on any symmetries in the suspension, but 

recognizing there are often symmetries present, uses them to simplify the inputs. For 
example, in a two or four wire suspension, the code will place the wires symmetrically 
about the X  and Z  axes, requiring only two inputs, the distances from each axis. 
This is easily changed as necessary. The code does not make any assumptions about 
forces of symmetric wires canceling or adding; each wire is calculated independently. 
Thus the results are still correct for any input geometry.

The end of each wire is referenced to the centre of the mass to which it is 
attached. The endpoint of the first wire is located a distance s from the centre of 
mass along the X  direction; a distance n along the Z  direction; and a distance d in 
the Y  direction, as in figure 3.2. With the centre of mass being located at (x , y , z), 
the end of the first wire is at (x +  s, y 4 * d, z +  n). The naming convention is

P[i, to]

where (5 € {s,d,n}, i refers to the pendulum mass, and w refers to the direction:
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V  for the bottom end of an ‘upper’ wire, leading to mass i —  1, and T  for the top 
end of a ‘lower’ wire, leading to mass i +  1 .

The sign convention for the first wire in any stage is positive s toward positive X
and positive n toward positive Z. Since for static stability, wires toward the higher
stage in the pendulum chain are typically attached above the centre of mass while 
those leading to a lower stage are attached below the centre of mass, the convention 
is that d[i, u] is measured positive above the centre of mass, while d[i, I] is positive 
for attachments below the centre of mass.

The default locations of the wires, relative to the centre of mass, are

Wi =  (+ s ,+ d ,+ 7i) (3-3)

w2 =  (—s, +d, - n )  (3.4)

W3 =  (+s, +d, - n )  (3.5)

W4 =  (—s, +d, +ra) (3.6)

w representing the vector to the attachment point. Initially, four wire attachments 
are assumed. The wires are numbered so that both kinds of symmetric two wire 
suspensions can be simply input. For one loop of wire, one wire is at each outer edge 
of the mirror face by setting s =  0 and n = tr, the test mass radius. For two short 
wires which are attached to the top of the test mass, one wire behind the other, 
n — 0  while s is set equal to the half separation of the wires (and d = tr).

The locations in three dimensional space for these wire connections including 
displacement and rotation of the masses have the following form:

Wi,u, 1 =

f  Xi +  s[i, u] cos ((pi) cos(0 j) — d[i, u] sin(0 i) +  n[i, u] sin (<fo),  ̂
Vi ~  (S j= i Hj) +  d[i, u] cos(9i) cos(^) +  s[i, u] sin(0*)

-  n[i,u] sin(V’i), 
y Zi +  n[i, u] cos(</>j) cos(^) +  d[i, u] sin(^) -  s[i, u) sin(<fo) )

(3.7)

for representing the wire connection for the ith mass, the upper connection, 
wire number 1. With appropriate permutations in signs of the coefficients, as can 
be seen in the code, wires numbered two to four follow. For input cases where this 
symmetry does not hold, the definitions of these points are changed. For cases with 
fewer than four wires, the extra connections are ignored.



CHAPTER 3. LAGRANGIAN MODEL 55

•“ A "

n[i-1, /  ]i

Id [i, u ]
 y . _

4
Figure 3.3: The height difference between the centres of mass of the two masses can 
be calculated from known parameters. l(i) is the (input) length of the wires in the 
zth stage, and H  is the (calculated) height between one mass and the preceding.
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The other variable in the Y  coordinate is the vertical height between each stage. 
With the above definitions, the vertical height of each stage, H[i], can be defined 
such that

I2 =  (s[i — 1,1] — s[i, u])2 +  (n[i —1,1]— n[i, u])2 +  (H[i] — d[i — 1,1] — d[i, u])2
(3.8)

the Pythagorean length of the unloaded straight wire, as shown in figure 3.3.

3.2 Inputs

The specific parameters for the model are input toward the beginning of the code. 
There is some compromise in the naming convention between how concise and how 
readable the code is. There are two kinds of inputs, broadly speaking. System 
definitions, which use a Maple assignment statement, such as

NumPen := 3; (3.9)

are used to define the problem to be solved, in terms of number of pendulum stages, 
number of wires, and so forth. Prom a coding perspective, these are variables that 
control logical branching (if) statements and looping (while statements). The key is 
the :=, which in the Maple language defines NumPen, anywhere it appears, to be 
replaced with 3, in the above example. These system definitions include:

• NumPen, the number of pendulum stages ranging from 1 to 3 and numbered 
from top down,

• '#  of wires,u‘, of wires,m‘, and '#  of wires,V, the number of wires of the 
uppermost, middle, and lower stages, respectively, and

• NumCanU and NumCanM, the number of cantilever blades at the uppermost 
and middle stages.

Note the Maple convention of using single quotes (£ c) to declare an arbitrary string 
as a variable name. If any of these variables are unused, such as of wires, V for 
a one or two stage pendulum, the code should ignore them, although setting them 
to zero is appropriate.
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The last system parameter is named Symmetric and takes a Boolean value of 1 
for symmetric systems and 0 for non-symmetric systems. A symmetric system, for 
purposes of this code, is one for which:

• The equilibrium position is a pure vertical motion away from the model defi­
nition. This means that the code solves for the balance of tension and gravity 
by minimizing with respect to the vertical position of each mass, ignoring any 
possible X -Z  motion or rotation.

• The potentially coupled equations of motion assume only certain cross terms. 
Specifically, the equations of vertical motion are only functions of the yi co­
ordinates; the equations of yaw are functions only of the <j>i\ the longitudinal 
and tilt motions are coupled equations of only Xi and 0 *; and the transverse 
and roll motions are coupled equations only in Z{ and

Defining a symmetric system as non-symmetric gives the same result, with the 
usual limits on numerical accuracy, and can be used to verify whether a system 
is symmetric, by this definition. When possible the flag should be set to symmetric 
as there is a large saving in computation time. Systems that fit this definition of 
symmetric include those which are symmetric about both the X  and the Z  axes, 
which cover the ‘usual’ one, two, and four wire pendulum suspensions.

The other category of inputs to the system is the specific set of parameters. 
These parameters are input in Maple as

vars := tr =  0.09, ld[0]‘ =  0.001, ‘n[0]‘ =  0.03,... (3.10)

The key Maple difference is that the variables vars is assigned, using :=, to a col­
lection of parameters, each of which is set using =. Most of the terms used in 
the derivation are solved generically, such as the shape of the wire in terms of its 
endpoints. Then the variable vars is substituted into these expressions to get the 
numbers for each case modelled. The other important convention illustrated here 
is that Maple uses [ ] to indicate matrix elements, which it prints as subscripts 
(a[i] —> a,). Some variables use this to generate subscripts in the output (AcijXi). 
Maple will not allow, for example, the assumption that d0 is real since this is inter­
preted as one element of a matrix. Thus many variables are named using character 
strings and brackets, such as 'd[0 ]'.
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Because there are potentially a large number of inputs for each case, common
derived variables are grouped in vars-equations. For example, the moments of
inertia of a cylindrical test mass are

h  =  r n T M  (3.11)

h  =  m TM ^  (3.12)

i 2
Ijp =  tutm~  (3.13)

with t u t m  being the mass of the test mass, tT being the test mass radius, and tx 
being the test mass thickness (in the X  direction). These expressions are defined in 
vars .equations, under the assumption that the test mass is cylindrical. The specifics 
of the test mass, including tr, tx, and t u t m ,  are defined in the variable vars. The 
list vars-equations include:

• the moments of inertia of all the pendulum masses, Ipitch[i], Iyaw[i], and 
Iroll[i]

• the extension spring constants of the three wires, ksi =

• the area moments of the wires, Iwire[i] = 7r(r[w*re»D for a round wire

• the torsion spring constants of wires, kti =  Lengthil](i+a[i])

• the cantilever spring constants, k[cant, u] and k[cant, I], in Nm" 1

• g, the earth’s gravitational constant, as 9.8ms- 2

• and H[i), the height of each pendulum stage, defined in terms of the inputs in 
vars.

The remaining inputs axe set in the variable vars. The way the Maple substitu­
tion command, subs, works, the variables are substituted in the order they are listed 
in vars. Thus to use the terms defined in vars-equations, they must be listed first

vars := vars-equations, E[wire 1] = (3.14)
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Thus when Ipitch[ 1] is used, the command

subs (vars, Ipitch[l])

first substitutes the definition of Ipitch[ 1 ] from vars.equations in terms of the mass 
and sizes, then substitutes the mass and sizes from the rest of vars.

Variables included in vars, all in SI (mks) units, are

• the Young’s Modulus of the material for each wire, E[wirei]

• the radius of each wire, r[wirei\

•  Poisson’s ratio for each wire material, sigma[i\

• the wire offsets, s, n, and d, as defined in the section on coordinates, section 3.1

• the mass of each pendulum mass, ‘raass[i]‘, either as a function of the sizes or 
as a number in kg.

• the length of the wires for each stage, Length[i\

• and the dimensions of each mass, for a cubical mass, ix, iy, and iz, or for a 
cylindrical mass, tr and tx.

Strictly speaking, the Lagrangian as defined here is for a conservative system, a 
system with no loss. The only loss modelled in the system is the intrinsic loss of the 
wire material. This is expressed as a complex part of the Young’s Modulus,

Ei = Eo,i( l  +  ic*(w)) (3.15)

as discussed in section 2.5. The important thing in the calculation is that the oti 
are the only variables maintained as symbolic until the very last step. This means 
that the loss in each and every stage may be a completely arbitrary function of 
frequency, not restricted to the standard viscous and structural damping terms. For 
example, one example included in the code shows a structural loss which is constant 
in frequency plus a thermoelastic loss as a function of u  for the third stage wires. 
Given the noise requirement that losses in the system be small, it follows that the
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ai are small, allowing the various expansions that will be used. These ai(u) are the 
final inputs and are defined as

loss := alphal(u) = . . .  , alpha2(u) = . . .

There is also a lossO defined, with all the a* =  0, used to greatly simplify calculations 
where the loss is unimportant.

3.3 Kinetic Energy

The kinetic energy of this system is straightforward, consisting of the translational 
and rotational kinetic energy of the pendulum masses:

This has some implicit assumptions about the system.
Firstly, the masses themselves are rigid and thus all their mass moves with the 

centre of mass. As noted in the discussion about thermal noise in section 4.5, the 
internal modes of the optics are all in the region of 10 kHz and above, which implies 
that for frequencies up to the lowest part of the detection band, where this model 
will be used, the masses can be treated as rigid. This is not strictly true for the 
uppermost mass, which does not have an optimized cylindrical geometry, however 
the modes in this mass will still be at least a few hundred Hertz and thus far 
above the frequencies modelled here (and above the isolation corner frequency near 
50 Hz). Specifically for the GEO 600 mass, the structural mode of the mass will be 
over 300 Hz (section 7.3.3).

The second basic assumption is that there are no other elements in the system 
that have kinetic energy, with the exception of the cantilever blades as discussed in 
section 3.5. The primary thing this assumption ignores is the modes of the suspen­
sion wires, the ‘violin modes’. This is a potentially more problematic assumption 
since the relevant frequencies could stretch from a few tens of Hertz upwards. For a 
number of reasons, both scientific and practical, the assumption that these modes 
can be ignored is used. Because the mass of the wires is very small compared to
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the mass of the pendulum masses, for control purposes the dynamics are domi­
nated by the pendulum masses. It is noted that right at the frequency of these 
wire resonances, the response of the system is affected, both in terms of control 
dynamics and thermal noise. This is accepted as a shortcoming of the model due to 
the computational complexity of including the wires properly. While the effects of 
the wires could have been included for a simple system, enough other complexities 
were already in the code to render a calculation which included the violin modes 
numerically intractable. Alternative methods can be used to model these effects, as 
described in section 6.3.3.

3.4 Potential Energy

There are a number of relevant potential energy terms in the Lagrangian. The code 
is designed to be as general as possible. For practical designs for interferometer 
suspensions, certain terms have greater significance. For example, the stored energy 
due to the bending of the wires can be commented out for calculation of the resonant 
frequencies of many systems, with no substantial loss of accuracy.

3.4.1 Gravity

These suspensions are constructed in the earth’s gravitational field. This, together 
with the assumption that the suspension elements (wires or flexures) are massless, 
means that the potential energy due to the gravitational field is

PE g =  rriiyig. (3.17)

Naturally, the gravitational potential leads to a downward force on the masses. 
This is balanced in equilibrium by a static force proportional to the extension in 
the wires called tension. (The details of how this is done in the code is described 
in section 3.6.) The gravitational field is conservative (lossless), which implies that 
energy stored in this field does not contribute to the thermal noise.
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3.4.2 Twisting

The suspension wires, when they twist, cause a restoring force as in a torsional 
pendulum. For a beam that is twisted, the potential energy is the sum of the energy 
for each wire in each stage, giving[64]:

PE,  = Y ,  -  &-i)2 (3-18)2

where

In these expressions, kt is the torsional spring constant, E  is the Young’s Modulus 
and <7 is the Poisson ratio of the wire material, and I  is the area moment of the wire. 
The material constants are determined by the choice of the material, the length I 
is chosen to set the longitudinal mode, and I  by the geometry of the wire. Two 
typical choices are a round wire of radius r, with I  =  7rr4 / 4, or a flexure, thin in the 
longitudinal bending direction, with width a, thickness b, and I  =  a3b/1 2 .

It is clear that for a single wire, in a torsional pendulum, the twisting which the 
wire experiences is the differential rotation of the ends of the wire, hence fa — fa-\. 
In a system with multiple wires, which are perhaps not straight, differential rotation 
of the stages clearly bends and stretches the wires as well as twists them. For small 
motions, these can be calculated independently, and the amount of twist in each 
wire is still the differential rotation of the stages at each end.

There is no energy stored in rotation for any motion except yaw. Even for yaw 
motion, in a suspension with multiple wires, the terms due to twisting of round 
wires are usually not dominant.

3.4.3 Bending

While the dominant terms for pendulum dynamics are gravity, or tension, and the 
extension of the wires, the solution of the bending potential illustrates one subtlety 
in the extension of the wires and will be discussed first.

Given an initially straight vertical wire, (  is the coordinate along the length 
of the wire (parallel to the Y-axis). The variables 77(C) and x(C ) represent the
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transverse displacement of the wire, in the X  and Z  directions, away from the 
initial wire position. The potential energy stored in the bending of a beam in a 
plane is determined by the fourth order beam equation [64]:

Elxv (iv) (0 -  ?Vi0 (C) =  0 (3.20)

where E  is the Young’s modulus, I  the area moment of the wire or flexure in the 
appropriate plane, and T  the tension in the wire. There is an identical equation for 
bending in the Y -Z  plane, which involves x(C ) I z • The bending of a beam can
be split into uncoupled equations, as done here, when describing its bending along
its principal axes. As long as the wire or flexure has principal axes parallel to the
X  and Z  axes, true for round wires or constant rectangular cross section flexures 
soft in the longitudinal direction, this solution holds. This equation does not require 
that the total displacement be small, which it will not necessarily be, only that the 
local bending be small, which it will for sensible suspensions. The solution to the 
beam equation (3.20) is:

77(C) =  o e -*  +  pe+«  +  7C + 6 (3.21)

where k =  and

is the characteristic bending length, E  and I  are the Young’s modulus and area 
moment of the wire, as usual, and T  is the tension in the wire. With no tension, 
when the bottom end of a hanging wire is deflected, the stiffness of the wire insures 
that the entire wire bends forming an arc. The characteristic bending length is the 
length over which the bending of the wire occurs; for a long wire under tension 
(I A), if the bottom end of the wire is deflected, the wire bends mostly at the top, 
with the rest of the wire nearly straight. Note that the tension can only be accurately 
determined by solving equation 3.21 for the wire shape to get the stretching of the 
wire, as discussed further in the next section (3.4.4).

The boundary conditions for this equation for each wire are straightforward. The 
position of each endpoint is exactly that defined in the description of the coordinates,
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section 3.1, in terms of x  and z directions. The y coordinates of the points gives the
range of £. How the wire is attached at these points is unspecified in the initial setup. 
Wires are sometimes clamped between two flat surfaces or welded or bonded, again

necessary, this can be changed for specific cases.) While the optics will be cylindrical, 
even here the wires are connected to a flat ground on the side of the mass. This same 
condition is approximately true for wire attachments using ‘breakoffs’, small pieces

contact with the mass. The wire curves around the breakoff such that at the point 
of contact the slope is tangent to the breakoff. For nearly vertical wires, this tangent

Thus, the boundary conditions for 77, corresponding to bending of the wire parallel 
to the X  axis, are:

where the variables are as before, I  being the area moment with respect to each 
transverse direction, and Syj being the vertical component of the wire length. The 
second derivative with respect to C gives the curvature in each direction along the 
wire. The curvature times the Young’s modulus and area moment gives the stored 
energy, which is integrated along the wire.

It should be noted that for readability in the code, the potential energy terms 
are listed in order. The integral of the curvature for the bending energy is shown,

onto a flat surface. This is typically flush with a vertical surface of the mass. (If

attached to the side of a mass to explicitly determine where a wire loop comes in

is approximately vertical. This gives the boundary condition for the slope of the 
wire—it is equal to the ‘slope’ of the mass, which is the angle in the proper direction.

j?(0 ) =  (wu)x

V { (Wu )v  ~  i m ) y )  =  ( t i l ) x

n'( 0) = e« 
n' (W , -  (w,)y) = 81

(3.23)

(3.24)

(3.25)

(3.26)

The boundary conditions in the other direction, bending parallel to the Z  axis, are 
similar, replacing x coordinates with z and 9 with 'ip, for the equations in x (0 - 

The stored energy of the j th deformed wire in the zth stage is:

P  Ebend.
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although this is actually a place holder in the code. The real calculation of the 
bending energy, in the manner described above, is further along in the code.

3.4.4 Stretching

The wires also act as springs in extension. The stiffness of the wires is equal to the
stiffness of the material, the Young’s modulus, E, times the cross sectional area,
A = nr2 for a round wire, divided by the length:

k, =  (3.28)

With that spring constant, the stored energy becomes Fx dx, which for constant 
sized wires gives the potential energy for the entire system as:

PE  sir etch = ks,ij{$hj) • (3.29)

During development, the length of the wire was initially defined as the geometric 
distance between the two end points of the wire,

h =  \ / -  zj)2 + (Vu ~ yi)2 + (tv. + z{)2 (3-30)
= fg e o m ( w i ,W u ) ‘ (3 -3 l)

The initial length, Iq, is an input variable used in this expression to determine the 
initial yi.

This function for the geometrical distance, / jeom, is not sufficiently accurate 
as a length measurement to be used for thermal noise calculations. The actual 
length of the wire must be found by solving for the shape of the wire as a deformed 
beam loaded under tension, similar to what is done in the bending calculation in 
section 3.4.3. The case for a single vertical wire and a simple translation is shown 
in figure 3.4, where the difference in length is obvious. The manner in which it is 
calculated merits some discussion.

For this small displacement, x , the distance between the endpoints is lgeom =  
yjl2 +  x2. The proper shape of the wire could be taken directly from equations 
3.21-3.26. Knowing the shape of the beam, in terms of 77(C) and x(C)> the length of
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(a) (b)

ĝeom ̂  ^

Figure 3.4: Length of a deformed wire. Figure (a) shows a vertical wire of length 
l0. (b) shows the wire after the bottom end point has been displaced to the right 
a distance x and lines illustrating the distance between the end points versus the 
proper length of the wire.

the deformed wire is just

h =  f i t h { w h w u ) = J 1 + ( ^ rl( C)) +  ( J ^ x ( C ) j d t ,  (3-32)

the Pythagorean distance for each vertical d( integrated from the top to the bottom 
of the wire. It would be computationally desirable to expand this, as a binomial 
expansion, to remove the square root. Unfortunately, there is no guarantee that 
and are small. The solution to this is to use a different coordinate system for 
solving the wire shape.

Rather then integrating along a vertical axis, with the limits being the y coor­
dinate distance between the end points of the wires, an axis which lies along the 
straight line connecting the end points of the wire is used. This corresponds to the 
dashed line shown in figure 3.4. The length of this line, as already calculated, is 
simply Igeom. The boundary conditions to the beam equation are also updated. By 
defining the new axis to pass through the end points of the wire, the displacements
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axe defined to be zero, as:

7/(0) =  0 (3.33)

V{lgeom) =  0 (3.34)

x(0) =  0  (3.35)

and x(lgeom) = 0* (3.36)

The wires are still assumed to connect flush with the surface of each mass. With 
these new coordinates, however, the slopes are not identically equal to the angle of 
the mass. Instead, the slope of the wire at each end is the rotation of the mass 
combined with the slope of the new axis. For small angles, the slope due to the 
rotation of the mass is tan(^) =  0* or tan(^j) =  ipi, respectively for 77 and xi the 
angle of each axis is simply and With this choice of coordinate system, 
the slopes are guaranteed to be small, allowing the expansion of equation 3.32 into

rlgeom 1 f  8  \ 2 1 ( 8  \ 2
k =  fith(wh wu) = jf 1 + -  y-g^vlOj  +  2  ( ^ x ( o )  d(  (3-37)

While this may still be a complicated expression for a general wire orientation, it 
can be solved analytically by the code.

The last point to note is that the solution of 77 and x  relies on the tension 
in the wire, which is defined as ka8l and thus depends on the length. For small 
displacements from equilibrium, with the tension being linear with changes in length,
the changes in tension are very small and can be ignored. In initially solving for the
equilibrium, the static tension is unknown. In this case, the geometric distance is 
used to calculate SI and thus an approximate tension, which is used to calculate the 
proper wire shape and thus the proper length and tension. If it were necessary, this 
could be iterated, using the newly calculated tension to recalculate the wire shape. 
Generally this is not required.

For typical wire suspensions, where the wire length is many times the charac­
teristic bending length, A, the proper integrated wire length is not greatly different 
from the geometric distance between the endpoints. Therefore, the magnitude of 
the restoring force is not substantially different. The importance comes when con­
sidering the loss in the system. If the pendulum mass were to oscillate along the arc
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of a circle, the geometric distance would remain the same while the static tension 
would provide the restoring force. If the integrated length of the wire were not used, 
with no dynamic change in the length of the wire there would be apparently no loss 
due to extension. From a calculation of the shape of the wire, the actual change in 
length in the wire and hence the resulting contribution to the observed loss can be 
obtained.

3.5 Cantilevers

The cantilever blades are used in the upper stages of the pendulum suspension, 
where their possible thermal noise contributions are filtered by the lower stages of 
the pendulum. The initial assumption is that the blades act as pure vertical springs, 
with one soft direction and infinitely stiff in all others. The cantilever coordinates 
are defined relative to their equilibrium position, which is designed to be level. The 
coordinate, yc[w, i], is the distance, normal to the flat blade, of the tip of the blade 
from the equilibrium, w referring to which set of blades, u upper or I lower, and i to 
which blade of the set. As defined in section 3.1, the input d\j, I] gives the distance 
below the centre of mass of the wire attachment. A cantilever motion in the positive 
direction moves this point upward, effectively replacing d[j,l\ with d[j,l\ — yc[w,i].

The potential energy of the cantilevers, acting as pure springs, is simply

NumCan ^
PEcant= ^  gkcant{yc[w,i])2 . (3.38)

i = l

In an effort to use the coordinates of the pendulum masses as the only rele­
vant variables, the cantilever coordinates were originally to be eliminated, by first 
minimizing the potential energy with respect to them as

dPE
d y , o =  f f a ,  yj, Zj,. . .  , yc[u, *]) =  0, (3.39)

giving a set of equations in terms of the centre of mass coordinates and each can­
tilever coordinate, and then substituting. The order of expansion of these equations 
that is required to include loss accurately is high enough that this method of solution 
proved to be computationally intractable.
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Wires to 
higher stage's.

n [ U ] * - / - 5

d i l l ]

Cantilever

Figure 3.5: The input parameters for a system with cantilevers. The lower wires axe 
attached at the tip of the cantilever blades, which are shown with length lc. Even 
though the mass may have a more complicated geometry in order to support the 
cantilevers, the parameters of the wire spacings, s, n, and d, are defined exactly as 
in other stages.

Instead, the way the cantilevers are currently included in the code is the same 
manner as described in the discussion on their behaviour with respect to their centre 
of percussion in section 4.2.2. This had the added advantage of giving a more realistic 
model of these non-ideal blades. Each cantilever coordinate is another state variable 
of the system. The kinetic energy of the cantilevers is included. The blades axe 
assumed to remain flat as they bend. While this is not strictly accurate, this will 
not cause any great errors since the kinetic energy of the blades is small compared 
to the energy in the masses (as verified in section 4.2.2). The base of a cantilever 
moves the same amount as the point of the mass to which it is attached. This point 
is very similar in terms of input parameters to the relevant wire attachment point, 
except instead of being a distance n[l,i] from the centre of mass in the z direction, 
it is a distance n[l, i] plus the length of the cantilever blade, lc. The position of the 
tip of the cantilever is the same as the position of the wire connection. Both of these 
axe shown in figure 3.5.

Given the positions of both ends of the cantilever blade, and assuming it does 
not deform (remains flat), the kinetic energy is a straightforward calculation. A 
nearly triangular blade has i t’s centre of mass ~  |  of the distance from the base to
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the tip of the blade. Thus the motion of the centre of mass is then

_ 2Xbase d" x tip /« An\
Xblade =   g "■ (3.40)

The velocity is then the time derivative of this expression. The rotation of the blade, 
fi, is just the rotation of the stage to which it is attached plus the relative rotation of 
the blade, arcsin(?/c[ii;, i]/lc) ~  yc[w,i]/lc for these small motions. The total kinetic 
energy is then, naturally

H E b la d e  =  2m bladeVblade l^ b la d eQ  blade •> (3-41)

which is included in the total kinetic energy of the system. Because the cantilevers 
only move in the one direction, their rotation in the other directions is a rigid body 
rotation equal to the rotation of the mass. This has the effect of changing Iyaw and 
Ipitch for the masses, but the contribution is small and ignored here.

3.6 Equilibrium

To ensure small motion in all variables, permitting a low order expansion of the equa­
tions of motion, this expansion is done about the equilibrium point of the system. 
First this point needs to be determined. The equilibrium is the point of minimum 
potential energy with respect to the free parameters. In principle, the partial deriva­
tives of the potential energy, PE , with respect to qi G {xj, yj, Zj, 6j, (j>j, ipj} for j  =  1 
to NumPen (plus the cantilever coordinates, <& G {yc[u, j], yc[l, &]}), are all set equal 
to 0. This leads to a large number of simultaneous numerical equations. A consid­
erably easier problem to solve results from knowing that for pendulum systems, the 
equilibrium comes from the tension in the wires balancing the force of gravity. The 
tension comes primarily with the masses sagging downwards. Therefore, the numer­
ical problem that is solved sets all the cantilever positions in a stage to be equal 
(yc[u, i) =  yc[u, 1] and yc[l, i] =  yc[l, 1]), then defines the gravity.eqs to be

- —  =  0,Vft G {2/1 , 2/2 > 2/3 ? yc[u, l],2/c[1,1]}. dqi
(3.42)
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As noted earlier, the potential energy depends on the tension, which depends on 
the position, a recursive difficulty. Thus here the tension is explicitly set equal to 
the spring constant times the geometrical distance between the wire end points, not 
the proper integrated length of the wire (section 3.4.4). Also to speed the problem 
numerically, it is realized that the bending potential, which is crucial for the loss 
calculation, contributes very little to the static equilibrium calculation. Instead of 
the full potential energy, what is used is an ‘equilibrium potential energy’ variable,

P E.eq =  P E grav + P E tw ist  + P E stretch + P D can tilevers• (3.43)

This has all the numeric inputs substituted to form PE.num. The solution of the set 
of equations 3.42, yi0, is assigned to the variable offset.values, along with x^ ,  Zjo, ■ ■ • 
set equal to 0.

For a Symmetric system as defined in section 3.2, this solution of offset.values is 
the equilibrium position. For a non-symmetric system (Symmetric = 0), the poten­
tial energy (PE.num) is multivariate Taylor series expanded to second order about 
the offset.values in the first step of a gradient search for the minimum. The expan­
sion is done to all the state variables of the system, giving the expression

PE.MT2  =  qiPqi +  Q ©. (3.44)

This is minimized by setting the derivative with respect to q equal to zero, giving

<fi = P _1Q (3.45)

for the new solution of offset .values. This procedure can be iterated to reach a 
minimum. For any system which basically involves pendulum wires under tension, 
this reaches the global minimum.

By minimizing the potential energy, there is no particular constraint on the 
geometry of the system. The one restriction is that the wires may not buckle, which 
in practice means all the wires must be under tension. As a practical note, this means 
that if one wire is defined to be longer than any other wire, the initial calculation 
of offset.values may give a solution where the long wire is not under tension and 
the iteration will fail. It may still be possible, by manually setting an initial set of
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values where all wires are under tension, to iterate to the correct solution.
The minimum gives the equilibrium position in terms of all the variables, <fco. 

With these, the equilibrium lengths of all the wires can be calculated (using the 
proper integrated length of the wires) and thus the static tensions as T  = k s(leq — lo). 

To insure small perturbations about this equilibrium, every state variable is replaced 
by the variable plus offset,

ft ft +  fto, (3.46)

and all further work is done with this new definition of the ft.
Most of the physical inputs are straightforward inputs to the code, easily mea­

surable, such as the masses of the stages and the lengths of the wires. The exception 
is the cantilevers, for they are designed to be flat under load. For the desired pa­
rameters of the GEO 600 system, prior to loading, the cantilevers can deflect up to 
six centimetres. To simplify this input, the code provides a shortcut for the can­
tilevers. Since the cantilevers act in a pure vertical direction, in equilibrium they 
balance gravity with no other geometric factors. So the initial offset position of the 
cantilevers which results in them being flat under load is simply

EN u m P en  „
j = 1 171 j 9  ( o  A>7\

yClU’ Zl0= kc,u( N Um C a n U y  {3A7)

with a similar expression for any lower cantilevers. Thus before the equilibrium 
calculation is begun, the cantilever coordinates are adjusted with the above offset.

The final subtlety in the equilibrium calculations comes from an understanding
of loss and tension. The restoring force from the stretching of a wire is

k 8Sl = ks(l(qi) - l 0) (3.48)

=  ks(l(qi) -  leq +  leg -  lo) (3.49)

=  k s (l(q{) -  leq) +  k s(leq -  l0) (3.50)

=  k s (l(qi) - l eg ) + T 0 (3.51)

with T0 being what is called the static tension. Any loss terms associated with this 
force enter through the Young’s modulus and thus through the spring constant, k a. 

Tq is a constant force in the wire and has no loss. This set of substitutions is done
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in the stretching potential energy term in order to calculate the proper loss.
The total potential energy for a potentially asymmetric multi-stage pendulum 

system ends up with many, many terms. Calculations that are done on these long 
expressions can use a large amount of memory (easily over one hundred megabytes 
of RAM, a restrictive amount for a desktop PC system). To limit the amount of 
memory actively used at any time, the potential energy is broken up into parts,

dL dK E  dPE , x
7T- =   7T- 3.52oqi dqi dq{

dK E  d \
=  ~&j~ ~ dgl PEnumiJ  ■ (3-53)

The exact terms in each PEnurrij are somewhat arbitrary. P E num i  corresponds 
to the gravitational and twisting potential terms. PEnum2  and PEnum3  are the 
cantilever potentials, for upper and intermediate blades. PEnumA  up to PEnumG 
as necessary gives the bending potential for each stage of the pendulum. The re­
maining PEnumi are the stretching potential for each wire, one value of i for each 
wire.

3.7 State Space Equations

With the kinetic and potential energy of the system solved in detail in terms of 
small perturbations about equilibrium, the Lagrangian equations of motion,

d dL dL . .
J t W i ~ d Q i ~  ’ ( }

can now be solved. Appreciating that the kinetic energy is only a function of the
<7* and not of the while the potential energy is a function of qt and not of <&, the
equations of motion for each qi are then

± d K E = _ d P E  
dt dqi dqi

Each side of this equation is Taylor expanded to first order in terms of the qi and <&. 
As this is about the equilibrium, the zeroth order terms should be identically zero, 
so only the first order terms are generated. Equation 3.55 can then be rewritten in
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matrix form as

£
dt

(MS’) =  -K g . (3.56)

This expresses the system in terms of a mass matrix, M, and a stiffness matrix, K. 
For a constant coefficient mass matrix, usual for these systems, this gives

This is the step that takes a large amount of computational time. To speed up the 
calculations, the definition of Symmetric is recalled. The appropriate cross-couplings 
are assumed when Symmetric =  1. This implies, for example, that

When Symmetric = 1, the code only calculates the assumed non-zero terms and 
simply sets the other terms equal to zero. (For a single stage pendulum with no 
cantilevers and no inputs, taking advantage of the stiffness matrix being symmetric 
means that for Symmetric =  0, there are =  2 1  elements that are solved for,
whereas for Symmetric = 1 there are only 1 +  1 +  2 ^ |+ 2  2 x2 + 2  _  g terms to be

solved. These are kyy> ^^>^5 ^xx5 ^xO? ẑipi and
For a system with no cantilever blades, the mass matrix is diagonal, consisting of 

the masses and moments of inertia of the pendulum stages. Most of the computation 
time is spent on the calculations of the K matrix. (Looking ahead to the state space 
[A ,B ,C ,D ] formulation in equations 3.67-3.68, the coefficients axe named A quqj.) 
The equations are expanded to first order in each variable, such that

Mq = - K  q. (3.57)

-r.Vi =  CijVj +  Oxj +  0 Zj + . . .  .

d2P E (3.58)

These terms are solved to first order in terms of the losses, that is
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The state vector is defined as

<1T = xi yi 0i fa ipi yc[u, 1] ••• yc[l, 1] • "  x0 y0 Zq 0o

(3.60)

of dimension n x 1, for n total states. The state variables include the coordinates 
for each stage of the pendulum, yc[u, i) and yc[l, i] for the necessary cantilevers, 
and ground motions as inputs, Xo,y0,zo, and 60. For consistency in the state space 
formulation, these inputs are included as state variables in q with the corresponding 
elements of the mass matrix identically 1, giving

M ? = - K ? + B /n (3.61)

where (M 1B ,n)T = 0 • • • 0 x0 y0 zq 0O
This matrix equation is converted to a set of first order differential equations, 

a set of state space equations[65]. The solutions to such a set of equations may be 
visualized as a trajectory in the state space. This is a generally convenient form for 
a number of reasons, including the relative simplicity of numerically modelling first 
order differential equations plus the compactness in handling systems with more 
than one input or output, as shall be shown. In addition, the states provide a 
complete internal description of the system, allowing the behaviour of each mass 
and each degree of freedom to be modelled, not just the measured outputs. The 
state vector is redefined as

x = (3.62)

Since ^  =  q and ^  =  q, this results in the first order set of equationsdt

d _—x = 
dt

Onxn. I n x n
X  +

O n x n

i--
---

--
1 s
1

O n x n
(3.63)

where 0 represents the zero matrix of appropriate dimension and I the identity 
matrix.
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Rewriting the inputs as a vector

X q

2/o u =
zo 
Oo

allows the driving term in the set of equations to be written in a vector form

=
0(n—4)x4 

•̂4x4
U. (3.64)

In a similar fashion, the desired outputs of the system are written as a vector y. 
Each output is a function of the states of the system, since the state variables by 
definition fully describe the system. With appropriate small angle approximations, 
the outputs are linear combinations of the state variables and possibly inputs, such 
as

• the translational motion of the test mass, yi = xtm

•  the sensed motion of a spot a distance d below the centre of mass of a test
mass, j/2 =  xtm +  d&TM

• the motion of a GEO 600 shadow sensor, located on the top surface of the
uppermost mass away from the centre of mass in the Z  direction and Iq
away in the X  direction, ys = yi + IqOi +  1

• the signal from the above, which is the relative motion between the sensor 
attached to the ground and the mass, Va = yo — 2 /3

or any other outputs that are necessary. These are written succinctly as y = Cx  + 
Du. Note that for a great many cases of interest, D is identically zero.

To this point, the system has been modelled as if it were a conservative system 
with a complex Young’s modulus, leading to a complex stiffness matrix, K. In 
analysing the frequency response of a system (Bode plots, for example), the system 
is in principle driven at a frequency u  until all transients have died away, leaving 
every state of the system oscillating at the same frequency, q(t) =  qoetu}t. Since each



CHAPTER 3. LAGRANGIAN MODEL 77

element of — M *K has been numerically expanded as Cy +  * 53 where
the coefficients c are real, this leads to the set of equations in 3.63 being

UJ= f c i - M - ' K t f + i S i - M - ' j q q - ,
to

but since q = j t ((foevat) =  itoq\ this gives

i f = Si(-M_1K)g + SC-M-'K)^-. (3.65)
to

Combining this with the definition of x from equation 3.62 gives the set of equations 

d _
—x =  
dt

O nxn I n x n
X  +

0 (2 n —4 )xn

^4x4
u. (3.66)

This equation and the corresponding relation for the outputs, y, can be written 
concisely in the canonical state space form as

x =  A x  +  B u 

y = Cx + Du.

(3.67)

(3.68)

The functional part of the code generates this A matrix and the B matrix for the 
ground motion inputs, Xo, yQ, zQ, and 90. If desired, the components of these matrices 
can be taken from Maple and translated, for example, to a Matlab compatible form 
to take advantage of available control packages.

3.8 Inputs and Outputs

Given the set of state space equations 3.67-3.68, the system can be numerically 
modelled in terms of dynamic response. It can be particularly useful to calculate 
the performance in the frequency domain. Applying the Laplace transform to the
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state space equations for constant coefficient matrices would yield

jC(x(t)) = C(Ax (t) +  Bu(t))

sX(s) = AX{s) + BU{s) (3.69)

and

C(y(t)) =  £(Cx(t) + Bu(t))

Y(s) = CX(s)  +  T)U(s) (3.70)

with Laplace variable s. Because of the allowed arbitrary nature of the loss function,
these matrices may be a function of frequency and may not be a constant with
respect to the Laplace transform. As a Bode response calculates the output due 
to a constant frequency input after all transients have died away, in steady state 
these matrices are constant for the given u. (Given a smooth loss function and low 
levels of loss, this approximation should be good even for not strictly steady state 
conditions.) Then the equations 3.69 and 3.70 can be solved algebraically to give

=  C (si -  A ) '1 B +  D, (3.71)
U(s)

where s = iw, which is the set of transfer functions of the system from all the inputs 
in u to all the outputs in y.

It is only at this stage that the loss functions, c^, are substituted into the dy­
namics matrix A or the resulting transfer function expression. By first solving and 
expanding in terms of the atj, arbitrary (small) loss functions are easily included. 
In addition, if constant coefficient matrices are desired for control design or other 
reasons, viscous damping or zero loss can be substituted without recalculating the 
entire system dynamics.

The state space formulation can easily deal with multiple input, multiple output 
(MIMO) systems. The Maple code generates representative inputs from the top of 
the suspension. These are nominally from the ground, B5r, although in practice 
from the top of an isolation stack, the rotation stage in GEO 600, or some other 
interface. These inputs are used to calculate the isolation performance of the sus­
pension or cross coupling in isolation. The corresponding outputs axe initially state
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variables, such as xtm for calculating longitudinal motion of the system from either 
longitudinal input or vertical input through cross-coupling. The elements of the 
corresponding row of the output matrix, C, are for this case all zeros except for 
the relevant state. The term describing direct coupling of input to output, the D 
matrix, is identically zero for these cases.

Recognizing that the B matrix gives the coefficients for inputs in the equations 
of motion, it is a simple matter to state other useful inputs. For control purposes, 
the system applies force (through a coil-magnet pair) onto one of the pendulum 
masses. From Newton’s second law of motion, F  =  mx, a coil which applies a force 
purely in the X  direction to the top mass has a corresponding column in the B 
matrix in which the element corresponding to X\ is ^  with all other elements zero. 
Forces which do not push directly through the centre of mass tend to have a column 
in B which has two (or more) non-zero elements. For example, a longitudinal force 
applied a distance d below the centre of mass would have the Xi term being 1/m 
and the 0{ term being d/Io. These are particularly useful inputs for calculating the 
performance of the control servos.

Another, just as simple, category of inputs is used for calculating the thermal 
noise performance. By the fluctuation dissipation theorem, the thermal noise seen 
at a point is directly related to the impedance seen at that point, Z  =  as 
discussed in section 2.5. The model can now directly calculate the admittance, 
Y  =  ^  calculating the transfer function from the force applied at a point to 
the resultant velocity at that same point. The relevant column for B is exactly as 
described for any other input force. The desired output is still a state of the system, 
although a velocity rather than a position variable. With the frequency dependence 
of the admittance calculated, it is straightforward to get the thermal noise. The 
fluctuation dissipation theorem gives the velocity thermal noise; as requirements for 
this problem are usually given in terms of displacement noise, the desired expression 
is

(3.72)

as explored in detail in chapter 5.
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Calculating the transfer functions by evaluating the matrix expression

C (si -  A ) - 1  B +  D

is not necessarily the most numerically efficient. There are algorithms that may be 
better; they are not used in this Maple code. For a large dynamics matrix A (which 
for a triple pendulum system with 2 upper cantilevers, 4 lower cantilevers, and 4 
ground inputs would have (3 x 6 4 - 2  +  4 +  4) x 2  =  36 states), it is impractical to 
do the matrix inversion symbolically. If all states are necessary, such as for general 
asymmetric systems, the coefficients of the [A, B ,C ,D ], as well as the definitions 
of the loss variables, a*, can be copied over to another package such as Matlab[66]. 
To maintain the general nature of the loss functions, the supplied ‘bode.m’ function 
cannot be used. Instead, a new function is defined, which upon taking the frequency 
argument u  calculates the proper [A, B, C, D] for that frequency, and passes these 
‘constant coefficient’ matrices to ‘bode.m’ for evaluation only at that frequency.

There are cases where a smaller dynamics matrix can be used. For a symmetric 
system where only pure vertical motion is of interest, the only relevant states are the 
yi and the cantilever coordinates. There is a routine toward the end of the Maple 
code that extracts the appropriate states from the total A and creates smaller B, C, 
and D matrices. For selected cases the matrix inversion can be done symbolically, 
and then the loss function is included resulting in a straightforward expression for 
the desired transfer function in terms of u.

3.9 M isalignments and Other Classes of Input

Because the code generates equations of motion from scratch for each new model, 
any assumptions made in the inputs are easily changed. Because of the wide possible 
variety of changes, it is impossible to collect all the changes in a simple header file. 
Instead the possible changes are all through the setup portions of the code. With an 
understanding of how the code works, it should be clear what needs to be changed 
for any desired setup. Some, it is re-emphasized some, of the kinds of changes are 
described briefly here.
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N um ber of Stages The most straightforward change involves the number of 
pendulum stages. The code could have been written with purely numbered stages, 
rather than occasionally referring explicitly to the uppermost mass and so forth. 
It was not coded this way partially for readability and party due to its historical 
development. The extension of the code to four or more stages should be very clear.

W ire  Connections Most pendulum suspensions used in gravity wave interferom­
eters are two or four wire suspensions. This leads to symmetric systems which can 
be simply suspended on wire loops and which are designed to be soft in as many 
degrees of freedom as possible. Alternatively, a wire based pendulum could be built 
to be stiff in the non-critical degrees of freedom while soft in the longitudinal di­
rection. For a six degree of freedom single stage pendulum, five wires are used to 
constrain the other degrees of freedom. The various loops in the modelling code 
count from 1 to of wires,u‘, which can be set to 5. An extra input has to be 
defined. The section of code that describes the coordinates of the wire points, as per 
section 3.1, requires one additional line for the upper connection and one line for the 
lower connection, with appropriate values. With this change, the code now models 
five wire suspensions. An example of such a suspension is evaluated in section 4.4. 
For simple misalignments, rather than adding an entire new connection, one of the 
defined connections can have a small offset added to it.

W ire Lengths In one of these five wire suspensions, to keep the tensions and thus 
the violin modes the same in each wire is likely to require the wires to be different 
lengths. Alternatively, the wire lengths in any suspension may vary slightly, due 
for example to the difficulty in accurately welding the fused silica fibres in the final 
stage of a suspension. In this case, rather than using SI =  l(qi) — l\, where l\ is the 
input length of the first stage wires, h can be replaced in the definition of 51 by the 
necessary length for each wire. This can be done with a case like structure for the 
different wires, or a conditional i/for a simple permutation. Logically, this gives
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which is implemented in Maple as

lj = Iq +  ‘i =  1, delta, 0).

The first argument of £if is the logical test, followed by the value for true, and lastly 
the value for false.

Spring C onstants This same conditional statement can be used to vary any other 
parameter, such as the extension spring constant of the wires. In the definition of 
the stretching potential, the ksl can be multiplied by the same form of conditional 
statement to get small variations in the constant of one wire. Note that changes to 
the definitions in potential energy should be done to both PE and PEeq in order to 
find the proper equilibrium position as well.

Flexures Flexures of constant cross section can be used instead of round wires. 
Strictly speaking, the flexures need to have their principal axes parallel to the X  
and Z  axes, which would be true for a rectangular strip soft in the longitudinal 
direction. To implement this requires a number of changes. The cross section 
influences the torsional and stretching spring constants. It also affects the moments 
in the calculation for the shape of the wire, affecting both the bending and stretching 
energies. Although some care must be taken to ensure completeness, these changes 
are all straightforward.

Split Pendulum s The code was designed to model a multi-stage pendulum con­
structed in a single chain, one stage connected below another. The code can, with 
simple modifications, solve other geometries. For example, consider the modelling 
of a two stage pendulum hanging in front of a two stage reaction pendulum, both 
suspended from a common uppermost mass, as illustrated in figure 3.6. This sys­
tem could be modelled in four simple steps. Firstly, for a symmetric system, the 
equilibrium position of the full system, balancing gravity and tension, is simple to 
calculate, and the explicit statement of this equilibrium position would replace the 
numerical solution in the code. The next step involves modelling three elements of 
this pendulum, the uppermost mass and the two masses comprising one of the lower 
pendulums. The coefficients of the dynamics matrix, A, would be correct with no
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(a) (b)

wmmm,

-  (c)

Figure 3.6: Split pendulum configuration with common uppermost mass. Figure 
(a) shows a two stage pendulum and a (not necessarily identical) two stage reaction 
mass pendulum hanging from a common uppermost mass. Figures (b) and (c) show 
the subsystems that can be modelled using the unmodified code to give the correct 
results for the full system.

other changes—the influence of the motion of the lower masses on the uppermost 
masses would be calculated correctly, and vice versa. This intermediate result is 
saved. Thirdly, the other lower two stage pendulum is modelled using the upper­
most mass as the input state (so as not to remodel the effects of the uppermost 
wires in the suspension). Finally, these results are concatenated with the previous 
results; using q\ to represent the state vector associated with the uppermost mass, 
and <72 and qs the states for the two stage pendulums, the results would be

Qi =  M iQi +  Ai2<72

<72 =  A 2 i ? i  +  A 2 2 9 2 ,

and

?3 — A 3 i?i +  A 3 3  <73.



CHAPTER 3. LAGRANGIAN MODEL 84

Using the symmetry of the stiffness matrices, the effects of q3 on 9 1 can be calculated, 
and all these results can be combined to give

91 — An<fi +  A  12^2 +  A  13^3

92 — A 2i^i +  A  22 ̂ 2

93 = A 3 1 9 x + A 3 3  9 3

with no other changes to the modelling code. If this method proved unsatisfactory, 
the logic of the code could be extended by adding wire connections in the relevant lo­
cations to generate an arbitrary geometry. The functions that calculate the different 
energy terms can be used to easily extend this.

3.10 Summary

The Maple code Lagran.mws solves the dynamic equations of motion for a wide 
class of pendulum suspensions for gravitational wave interferometers. Its power and 
flexibility lead to complexity. Thus, as with any computational tool, it is not in­
tended to be used without some supervision. It has some basic error checking but 
not the rigorous error trapping that might be expected with commercial software. 
(A simple example is that if the code fails to converge to an equilibrium position, it 
will continue spending many hours attempting to continue the calculations symbol­
ically.) Used with other tools and intelligent design, it can describe the dynamics 
to a sufficient degree to enable design of feedback controllers, sensitivity analysis of 
mechanical construction, and thermal noise performance based on loss in every elas­
tic stage. Some of the conclusions that can be drawn are described in the following 
chapters.



Chapter 4

Pendulums

In this chapter, various aspects of the applications of the Lagrangian model of a 
multiple pendulum system are discussed. The model underwent extensive verifi­
cation, both theoretical and experimental, as described in section 4.1. Cantilever 
blades were implemented to improve the vertical isolation of the pendulum suspen­
sion. The cantilevers do not act as ideal vertical springs, due to their finite mass 
and inertia. This limitation to the isolation achieved when not using the centre of 
percussion is covered in section 4.2. This explains how these effects are built into the 
modelling, as well as outlining the design changes that resulted from an understand­
ing of this problem. The vertical isolation which is achieved by use of the cantilevers 
is judged to be sufficient for GEO 600 based on an assumed level of cross-coupling. 
The sensitivity of this cross-coupling parameter to imperfections in the mechanical 
construction of the system is explored by the Lagrangian model in section 4.3. As 
opposed to a suspension fundamentally soft in every degree of freedom, an alterna­
tive method would be to construct a suspension stiff in the non-critical degrees of 
freedom. An example of such a reduced degree of freedom suspension is examined 
in section 4.4. The chapter concludes with a few comments on the range of validity 
of the model and the resulting transmitted seismic noise.

85
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4.1 M odelling

4.1.1 Force

One technique for writing the equations of motion of a system is by way of Newton’s 
equations, drawing a free body diagram and writing out the various forces that are 
in the system. This method was used by Calum I. Torrie to generate one model used 
in the triple pendulum suspension, details of which may be found in Torrie[50], [1]. 
This work was done in conjunction with the development of the Lagrangian code 
by the author. The two methods proved complementary. Some terms appeared in 
the Lagrangian output that were not initially obvious. The force model provided 
explanation and understanding of how each term affected the result.

The work done on the force model generated equations of motion for a system 
symmetric about the X  and Z  axes as a function of the mechanical parameters 
of the system. These equations were input into a Matlab m-file in a state-space 
form, making them very simple to use and fully compatible with already existing 
Matlab tools for the GEO controller design. The Matlab toolboxes rely on the 
system being linear and time invariant and therefore having constant coefficient 
state space matricies. In order to generate appropriate matrices, this model cannot 
handle structural loss terms where the coefficient of the velocity terms in the A 
matrix are a function of frequency. Since the bending and the twisting of the wires 
contribute very little to the restoring forces—their significant contribution being 
to the loss terms—they have been neglected for this force modelling. Lastly, the 
exact details of the behaviour of the cantilevers based on the angle of the wires is 
complicated. For purely vertical wires, the apparent extensions! spring constant of 
the wire, for all degrees of freedom, may be replaced by the spring constant of the 
series connection of the wire and the cantilever to which it is attached. While this 
is not strictly true for wires angled away from the vertical, for the small angles used 
in the GEO designs, this same approximate replacement is sufficient.

By restricting the class of inputs, the force model can explicitly establish equa­
tions of motions in terms of the input parameters. By avoiding the need for recal­
culating for every system, the code is substantially easier to read and runs many, 
many times faster. This allows parameter searches to be done much more conve­
niently. Because of this, some of the conclusions on the control to be discussed in
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section 6.2 use outputs from the Matlab force model. This is only done after careful 
cross checking with the Lagrangian model and with due consideration of the relevant 
approximations.

4.1.2 Evaluation of the M odels

Both models, the force and Lagrangian, were rigorously evaluated against each other 
and against earlier modelling work done for the double pendulum suspensions such as 
used in the Glasgow 10 m prototype[67, 30]. This earlier modelling work evaluated 
the dynamics for a slightly more restricted class of pendulum systems. Specific 
features that were added for both new models included the angling of the wires 
away from vertical and the inclusion of the cantilever blades.

During the evolution of the Lagrangian code (in particular, while the lengths 
of the wires were calculated as the geometrical distance rather than the integrated 
length of the wires), it was possible to generate symbolic equations of motion to be 
explicitly compared to the other modelling techniques. This allowed evaluation of 
the equations of motion for a single stage pendulum.

Vertical wires in a pendulum

The simplest example pendulum suspension has four vertical wires breaking off 
from a mass in the plane level with the centre of mass. In this case, the equations of 
motion due to the simple extension of the wires can be calculated in a straightforward 
manner from Newton’s second law of motion. The resulting resonant frequencies are 
given by

2 (A l\
^vertica l ft V

•2 - I
I
4 ks2

^longitudinal /

(4.3)u tilt LY

2 mg(s* +  n2)
yaw I I z  y }

where u  =  27r/, /  =  resonant frequency, the I  give the moments of inertia about 
the respective axes, k =  the extension spring constant of each wire, m  =  mass and



CHAPTER 4. PENDULUMS 88

(a) (b)

Figure 4.1: A single pendulum suspension on four angled wires. The wires make an 
initial angle D with the vertical, in figure (a). After the mass is displaced downwards 
a distance y to the position in (b), the new angle is f2'.

g =  the acceleration due to gravity. The variables s and n are the half separations 
of the wires in the X  and Z  directions, as described in section 3.1. The expressions 
for transverse and roll modes are similar to those of longitudinal and tilt.

Vertical Motion

Now consider the equation for vertical motion for the same single pendulum where 
the four wires are all at an angle D in the Y-Z  plane with respect to the vertical, as 
shown in figure 4.1. The equilibrium position is found by setting the time derivatives 
to zero, as

cPu
m —— =  0 =  4T0 cos(Q) — mg. (4.5)

dtz

From this the static tension, To, is found to be

To =  (4.6)4cosf2

where the angle Q is determined by

cosfi =  y. (4.7)
L
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In this equilibrium position, the length of the wire is given by

12 = (n2 -  n i)2 +  h2. (4.8)

The calculation of this equilibrium deserves some consideration with respect to the 
Lagrangian code. The equilibrium tension comes from some initial extension of the 
wire. Force models typically take this input geometry and assign the appropriate 
tension, T0, to the wires. The Lagrangian code takes this input geometry, assigning 
the initial length of the wire to l0, and calculates the extension needed to get the 
correct tension. Therefore in the equilibrium position, the Lagrangian model has 
I = l0 + 5leq. Typical values of Sleq are less than a millimetre. This equilibrium value 
of I is what is usually input into a force model and what is measured on a physical 
suspension, and the use of 1$ versus I can cause slight differences between models.

When the mass is moved downwards a small amount A, the vertical equation of 
motion becomes

(Pi!m -—  =  4T'cosiT — mg, (4-9)
at1

where the tension in the wires becomes

T' =  T0 +  k6l, (4.10)

the initial tension in the wire plus the force due to the extension in the wires, and 
it is projected along the new angle f2'. In this new configuration, the length of the 
wire has increased to =  I +  61, such that

I'2 =  (l + SI)2 =  (t2 -  h )2 + (h + A)2. (4.11)

Recalling the discussion from section 3.4.4, in the Lagrangian model this length is 
written as

I* — lo 6leq +  61.

How this is done is important for the correct evaluation of thermal noise, as will 
be described in section 5.1.1. The change in the length of the wire is found by
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subtracting equation 4.8 from 4.11, leaving 2/iA +  A2 =  2181 +  512, which when 
substituting equation 4.7 gives, to first order in A,

61 = !=- = Acosfi. (4.12)
L

The angle in the disturbed configuration, f2', is given by

, h +  A 
cos j2 =  —-—

v

which, upon substituting equations 4.12 and 4.7 and expanding to first order in y , 
gives

h +  A
cos =

1 + 61 
h +  A 

I +  A cos fl
h A h A

= 7 + 7 ~ T 7 c
= cos f2 +  y  sin2 D. (4.13)

V

Using the expressions for the new angle, equation 4.13, and new tension, equation 
4.10, in the equation of motion, equation 4.9, gives

(Pllm — r =  AT'  cos Q! — mg 
dtz

= 4(T0 +  k6l) ^cos Q + y  sin2 — mg (4-14)

which upon substitution of the original tension (equation 4.6) and the expression for 
51 (equation 4.12) and noting that y = —A, gives the final equation to first order in 

y as

d2y ( sin2Q \ i .
m dA =  -  (4fc cos n + y■ (4-15)

There are two terms to the restoring force in the vertical direction. One comes 
simply from the extension of the wires; vertical motion is multiplied by cos to get 
the change in wire length, whose force is projected back to the vertical direction by
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again multiplying by cos ft. The second term comes from the fact that the original 
tension in the wire, To, which no longer acts in the same direction, does not exactly 
cancel the pull of gravity. Therefore there is a component of restoring force that is 
proportional to T0 which is proportional to g for vertical motion when the wires in 
a pendulum are not vertical.

Other degrees of freedom for a single stage pendulum

In a similar fashion, the equations of motion and thus resonant frequencies of the 
other degrees of freedom for this pendulum can be calculated. The resulting fre­
quencies are given by

o 4 k cos2 ft g sin2 ft *
Vertical =  ---- ------ +  J — 77 4.16m I cosiI

2 9 /  \

Ulongitudinal =  I 4 ' 1 7 )

9 4 ks2 cos2 ft mas2 sin2 ft
m  = — r^—  + - k ^ r  (418>

2 4mg (s2 cos2 ft +  nin2) 4ks2 sin2 ft . .
Uvaw ~  u z cosn + Tz ' ( ^

In comparing equations 4.16-4.19 with the same equations for vertical wires (fi =  0, 
or equations 4.1-4.4), some of the terms appear straightforward. For example, 
the frequency in the longitudinal direction is based on the vertical height of the 
pendulum, so for a length I at angle ft from vertical, the height is I cos ft, which 
is the term that appears in the denominator in equation 4.17. It was initially less 
obvious that there should be additional terms in the vertical, roll, and tilt equations 
which depend upon g/l. It can now be seen that these terms come from changes in 
the angles of the wires when the pendulum moves.

4.1.3 Coupling

For the cases examined so far, the equations of motion for each of vertical, longitu­
dinal, tilt, and yaw have been independent, the restoring force for each depending 
only on the corresponding displacement. (Note that this is not strictly true when 
the effects of the bending of the wires is included, but that this coupling between 
the equations of motion is small.) When the wires are attached to a mass in a
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plane parallel to the X -Z  plane and above or below the centre of mass (for the 
model inputs defined in section 3.2, d ^  0), certain couplings between the degrees 
of freedom are introduced. For a four wire suspension with the wires attached in 
plane with the centre of mass, the torque introduced by the front set of wires due 
to a vertical or longitudinal motion is cancelled by the torque from the rear pair of 
wires. When attached above or below the centre of mass, there is a net torque for 
a longitudinal displacement and therefore tilt motion. The coupled set of equations 
for longitudinal and tilt motion become

(4.20)
d2 X Au

1

X

dt2
11 A 2I 8 e

where

A n  =  

A 12 = 

A 21 =

I cosfi 
gd

I cosQ 
mgd

A 22 —
4 ks2 cos2 D

I y l  COS 

mgs2 sin2 D 
l ly  cos Q

and

mgd mgdI2
l ly  cos f2

(4.21)

(4.22)

(4.23)

(4.24)

In this case, the resonant frequencies are the eigenvalues of this dynamics matrix 
[A].

Similarly, angling the wires away from vertical introduces coupling between de­
grees of freedom. The cases examined so far, with the wires angled in the Y -Z  plane, 
cause the equations of motion for transverse and roll motions to be coupled even for 
d =  0. For GEO 600 designs, for thermal noise reasons it is never appropriate for 
the wires to be angled in the X -Z  plane, although the Lagrangian code can calculate 
such systems. The longitudinal and tilt equations for wires angled in the X -Z  plane 
would be very similar to the following sideways and roll equations for d ±  0 when 
the wires are angled in the Y -Z  plane, shown here for completeness as

dt2
z ‘i l l i l2

A i21 1
(N<N A

(4.25)
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with the elements of the [A] matrix as

(4.26)

(4.27)

(4.28)

(4.29)

Based on these equations, which were the result of the detailed cross checking 
between the two modelling methods, the nominal cross couplings in a pendulum 
suspension were defined. When the variable Symmetric is set in the Lagrangian code, 
the same couplings shown in these equations are assumed: longitudinal coupling 
with tilt and sideways with roll. The vertical equation and the yaw equation remain 
uncoupled for this class of inputs. The sensitivity of this assumption is tested in 
section 4.3.

4.1.4 Experimental Verification

To test the models, a single pendulum was set up on a four wire suspension. The 
resonant frequencies were obtained by exciting the pendulum and measuring the 
Fourier response from an accelerometer attached to the mass. The experimental 
results were obtained for four different examples. The first case investigated had 
four vertical wires breaking off level with the centre of mass, which corresponds to 
equations 4.1-4.4. Secondly the wires were angled in the Y -Z  plane at two differ­
ent angles to introduce the new terms in the equations 4.16-4.19. Finally, further 
coupling was introduced by having the wires break off above the plane through the 
centre of mass (equations 4.20- 4.29). For all of these cases, the mass, m, was 20 kg. 
The various cases and parameters for each are summarized in table 4.1.

The initial theoretical predictions gave frequency values that were too high com­
pared to the measured values for the frequencies where the dominant force was due 
to the spring constant, k. Most of the physical parameters of this system are known

in =
g cos Pi 4 k sin Pi

I m
r gd cosf2 gs sin 17 Akd sin2 PI Aks sin Pi cos PI

A n  =   +I I 771 m
7 mgd mgs sin Pi Akd sin2 Pi Aks sin Cl cos Q
21" u 7 ~~+ Tx  + Tx

^  mgs sin Pi mgd mgcP cos PI mgs2 sin2 PI AkcP sin2 Pi
Ix  cos Pi Ix  Hx Hx cos Pi Ix

2mgds sin Pi 8kds sin PI cos Pi Aks2 cos2
Ih Ix
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with confidence; the single unverified input is the spring constant of the wire,

i Eirr2
ks = —  (4.30)

where r is the radius of the wire, I is the length of the wire (both of which are 
simple to measure), and E  is the Young’s modulus. For these experiments, the 
suspension wires were made of stainless steel 302, from 280 to 350 //m diameter. In 
the first set of predictions, a reference value of Young’s Modulus of 2.0 x 1011 Pa was 
used[6 8 ]. To account for these discrepancies, an attempt was then made to calculate 
the Young’s modulus based on the observed vertical frequencies, the frequencies 
which depend most dominantly on the Young’s modulus. This calculated modulus 
was then used to predict the other frequencies. However, this value over corrects, 
predicting frequencies for tilt, yaw, and roll that were too low compared with the 
measured values. It was then postulated that some of the vertical frequencies might 
be affected by coupling to the support structure which was not completely rigid; this 
idea was supported by some simple adjustments to the experimental setup. Thus 
it was decided to independently measure the modulus of the wire by measuring the 
vertical and yaw frequencies of a one wire pendulum, whose restoring forces are 
directly proportional to the modulus of the wire with a minimum of geometrical 
factors. This one wire pendulum was as long as practical ( 8  m), and was mounted 
directly to the building to minimize the effects of the support structure. This length 
also allowded a large amount of wire to be averaged, reducing the effects of any 
kinks or other defects in the wire. These measured frequencies each gave a value for 
E  o f -1 .7  x 1011 Pa.

This value was used in table 4.1, where the theoretical predictions agree with the 
measured results within experimental error (1 0 %) except for the vertical frequencies 
for the first three cases. In these cases, it is believed that the support structure still 
couples with the pendulum to give a lower frequency, as varying the bracing on the 
test structure caused the measured vertical frequency to vary significantly. The last 
case was measured on a different support structure which was noticeably stiffer and 
consequently gives better agreement.

This experimental verification was logically extended, first to a double pendulum 
system suspended on wires, then to a triple pendulum, a triple pendulum with one 
stage of cantilevers, and finally to a triple pendulum suspension using two stages
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All values in (Hz)
Tilt Longitudinal Roll Sideways Rotation Vertical

Case 1 :
Experiment 7 0 . 9 4 20.3 0 . 9 4 1.8 11.3
Theory 7.6 0.96 2 2 . 2 0.96 1.78 14.3
Case 2 :

Experiment 44 1.0 19 1 1.9 11.9
Theory 4.5 1 . 0 1 2 1 . 8 1 . 0 1 2 . 0 2 13.74
Case 3:

Experiment 3.6 0.81 16 0.8 1.3 10.2
Theory 3.6 0.82 17.6 0 . 8 1.37 1 1 . 1

Case 4:
Experiment 3.9 0.84 18.5 0.8 U 1 1 . 4

Theory 3.9 0.85 19.9 0 . 8 1.5 11.4

I s Ui n2 d
Case 1 0.26m 0.025m 0.047m 0.133m 0

Case 2 0.27m 0.04m 0.133m 0.133m 0

Case 3 0.40m 0.025m 0 0.133m 0

Case 4 0.36m 0.025m 0 0.133m 0.032m

Table 4.1: Results from single pendulum experiment. The model predictions and 
the measured results are compared for various cases, chosen to emphasize different 
terms in the equations.

Theoretical Experimental
Tilt/Longitudinal 3.6, 2.7, 2.4 

1.34, 0.5, 0.6
3.5, 2.6, 2.2 
1.4, 0.6

Sideways/Roll 52, 3.3, 2.5 
1.4, 0.9, 0.6 1.4, 1.0, 0.6

Yaw 3.1, 1.6, 0.4 3.1, 1.6
Vertical 36, 3.8, 1.0 37, 3.7, 1.0

Table 4.2: Resonant frequencies from the prototype triple pendulum
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of cantilever blades. The final set of experiments was to measure the frequencies of 
a prototype GEO 600 main suspension. It is very difficult to measure the actual 
isolation in a multi-stage isolation system. To measure the full isolation of the 
GEO isolation system would require the sensitivity of the full GEO interferometer. 
Therefore, the measurement of the resonant frequencies will establish the predicted 
levels of isolation in the system. The predicted and measured frequencies for the 
GEO 600 prototype suspension are summarized in table 4.2. The specific parameters 
were chosen to meet the GEO 600 requirements through the use of this modelling 
work. Specific examples of how these parameters affect the vibration isolation follow 
in the remainder of this chapter. The agreement with theory is for the most part 
excellent. Due to the experimental setup, the sideways modes were difficult to 
detect. Additionally, the cluster of modes near 0.5 Hz made it difficult to explicitly 
resolve all the modes.

The validation of the Lagrangian modelling, both from consistency with the force 
model and by comparison with experiment, gave a firm basis for extending the code 
to a wider class of problems. The remainder of this chapter and all of chapter 5 
could only be done with the capabilities of the Lagrangian code.

4.2 Centre of Percussion

The concept of ‘centre of percussion’ influences the isolation performance achieved 
in these multi-stage pendulum systems. A compound pendulum is a rigid body 
constrained to rotate about a fixed axis[69]. The centre of percussion in figure 4.2 
is the point P , located a distance

I c p  =  I c m  +  1—
t C M

(4.31)

from the axis, where Icm is the distance to the centre of mass and k is the radius of 
gyration, defined by

I c m  =  rnk2 (4.32)

where Icm is the moment of inertia about the centre of mass. This distance is the 
length of the equivalent simple pendulum, which therefore has a resonant angular
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Figure 4.2: A compound pendulum. The diagram depicts a rigid body with mass 
and moment of inertia which pivots about a point O, has a centre of mass located 
at CM, and has centre of percussion located at P.

frequency =  g /lcp • For a pendulum consisting of a mass on a long wire, such 
as is typical for suspensions in gravity wave interferometers, the length of the stage 
is long compared to the dimension of the mass, meaning that I c p  is approximately 
the same as the length of the wire.

4.2.1 Isolation in Compound Pendulums

The transfer function of interest for isolation is the ratio of the horizontal motion at 
the output to the horizontal motion at the ground input. For a simple pendulum, a 
point mass at the end of a wire, the isolation well above the resonant frequency is 
( /o //)2. For a compound pendulum, the observed output depends on where on the 
mass the horizontal motion is observed. The motion at the centre of percussion is 
exactly that of a simple pendulum. Thus for a sinusoidal input of arbitrarily high 
frequency, the motion at the centre of percussion is very close to zero. Because the 
pendulum is a rigid body, the motion above the centre of percussion is a fraction of 
the motion at the top of the pendulum. Similarly, the motion below the centre of 
percussion is as if the pendulum pivots about that point of zero motion. That is, 
at arbitrarily high frequency, the motion at a point a distance I from the rotational



CHAPTER 4. PENDULUMS 98

axis along the vector OP  is

xi Icp ~  I (4.33)
Xo l e p

This intuitive description is extended to describe the behaviour at all frequencies as

Xi(w) = -^y----- — X cp{u) , (4-34)
iC P <<CP

from the geometry of the straight line connecting O and P. The motion at the 
centre of percussion is that of the equivalent length simple pendulum,

The observed horizontal transfer functions for a point at distance I from the axis is 
found by combining equations 4.34-4.35 to get

3F =   --------- ' '  / . \ 2 ' ---------• (4-36)
"  (£)

The response of a family of points with different I across the surface of the pendulum 
are plotted in figure 4.3. The important feature is that the transfer function reaches 
a constant value at high frequencies, depending on the distance from the centre of 
percussion. It is also worth noting that for points above the centre of percussion, the 
isolation has a significant ‘dip’, where the isolation is (in a very narrow band) much 
better than the nominal ( f o / f ) 2 . This dip is essentially as deep as the resonance 
peak is high (the value of Q). In theory, if additional isolation was needed at a 
target frequency, this dip could be tuned to achieve extra isolation, trusting the 
isolation from all the other stages, which continues to improve at higher frequencies, 
to work for higher frequencies where this stage’s isolation would plateau. Due to 
the narrowness of this peak and the consequent difficulty in tuning it, this seems 
an unlikely course of action. For example, the best isolation for a given frequency
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Transfer Function of a Compound Pendulum

I =  Iqp 
I =  0.9 CP  

CP
I — 0.99 Iq p  
I — 1.01 I q p  
I — 0.999 Icp

- 3

- 4

- 5

0.1 1 10 100
Frequency ( / / / 0)

Figure 4.3: The transfer function of a compound pendulum. Above the resonant 
frequency, the isolation initially improves as but levels off at a frequency which 
depends on the distance from the centre of percussion.

occurs at a point a distance I from the axis such that

- (£ )’• (4 37)

For a resonance at /o =  1 H z with Q =  105 with desired performance at 50 Hz, the 
distance to the centre of percussion is given by y/g/lcp  =  27r /0, or lCp ~  0.25 m. 
The peak performance at 50 Hz occurs at about 1.0004 times this distance, or 
approximately 0.1 mm below the centre of percussion. To take maximum advantage 
of this improved isolation, the location would have to be tuned to within roughly 
(0 .1 mm)/Q, or something like 1 nm.

The same issues regarding centre of percussion affect multi-stage pendulums. 
A double pendulum would normally be expected to see isolation proportional to 
l / / 4 above both resonant frequencies of the system, a factor of l / / 2 from each 
pendulum stage. When the lower stage pendulum, whether it is a rigid body or a 
simple ‘ideal’ pendulum, is not attached at the centre of percussion of the upper 
rigid body pendulum, the combined system will not have the full l / / 4 isolation at 
high frequencies; instead, the system will have isolation that improves at no better
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rate than l / / 2.

4.2.2 Cantilevers

To this point the cantilever blades have been described as vertically compliant el­
ements designed to enhance the vertical isolation of the total suspension system. 
Their treatment in the Lagrangian model as described in section 3.5 actually treats 
the cantilevers more realistically as elements with mass and inertia. The consequence 
of this is that the cantilevers do not give the (/o/ / ) 2 isolation of a spring-mass res­
onance to as high a frequency as might be expected for a high Q resonance. This is 
because the cantilever-wire vertical system may be considered just like the multi­
stage pendulum described above, where the connection between the stages is not 
at the centre of percussion. As in the previous example, the isolation from the 
cantilever stage reaches a maximum value, rather than continuing to improve with 
frequency.

The Maple code shown in Appendix B calculates the vertical transfer function 
of a cantilever blade such as used in GEO 600 suspending a wire pendulum, in­
cluding the kinetic energy due to the translation and rotation of the blade. It is 
this treatment which is generalized to all degrees of freedom that is included in the 
Lagrangian code.

The blades are nearly triangular, as described in section 2.4.2, modified to allow 
clamping of wires and dampers. Although the exact parameters for the spring 
constant and moment of inertia are complicated for the particular shape of the blade, 
fitting the blade parameter a  based on the measured resonance (section 2.4.2) gives 
a sufficiently accurate prediction for the cantilever behaviour. For a flat triangular 
blade of constant thickness and of length lc, the centre of mass is

Ic m  — (4.38)

from the base of the blade. Since the blades to be used have extra mass at the tip, 
both because they widen to allow for clamping and due to the clamp itself, this 
expression is not exact but gives satisfactory results.

The coordinates used to model the cantilevers are shown in figure 4.4. The 
input to the system is the motion of the base of the blade, yo. One coordinate is the
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Figure 4.4: Coordinates for cantilever modelling. The variables y0 and y\ measure 
the displacement of the base and the suspended mass, while yc measures the motion 
of the tip of the blade. All of these variables are measured in inertial space from 
their respective initial positions.

vertical motion of the mass of the pendulum, yi, at the other end of the wire from 
the tip of the cantilever. The remaining state variable is the motion of the tip of the 
blade, yc. All these variables are measured with respect to their initial positions.

The potential energy of the system is given by the two springs, the cantilever, 
with spring constant kc, and the extension of the wire, which has spring constant 
kw. Thus,

P E  = \ k c (yc -  y0)2 + \ k w (yx -  ycf . (4.39)

The position of the centre of mass of the blade is the weighted average of the position 
of the base of the blade and the position of the tip,

Uc m  —
(lc — I c m )  yo + I c m V c  

L (4.40)

The rotation of the cantilever is given by, for small angles, the slope of the blade, 
shown in figure 4.4 as

@cant —
Vc-yo

L
(4.41)

The time derivatives of equations 4.40 and 4.41 give the translational and rotational



CHAPTER 4. PENDULUMS 102

velocities, which give the kinetic energy of the system, due to both the cantilever 
of mass m c and pendulum of mass mi. By substituting for Icm from equation 4.38, 
this kinetic energy is given by

K E  =  ^n ity f +  ~mc ( ^ y 0 + j leant f ^  ■ (4.42)

The moment of inertia of such a triangular blade is given by leant =  m cl2c/ 18. 
Expressing the Lagrangian as the difference in kinetic and potential energies the 
appropriate equations of motion can be derived. Solving these, by way of Laplace 
transforms, gives

* 1  =

___________________ kw ((2 m j 2 -  9ICant)u2 +  9kcl2c)___________________
(91%antmi +  m cl2mi) -  (9Icantkw +  m cl2kw +  9(kw + kc)l2mi) uj2 +  9kck,J2'

To investigate the isolation provided by a set of cantilevers, the vertical trans­
missivity was measured. The experiments were performed in the tank which was 
eventually used to house the prototype of the entire suspension system, including 
vibration isolation stacks, rotation stage, and triple pendulum (described in chap­
ter 7). Each test was done by mounting the cantilevers rigidly to the support struc­
ture attached to the stacks and suspending a single wire pendulum stage beneath 
it. Consistency checks were performed later on the final triple pendulum prototype. 
Each of the three legs of the prototype stack sits on top of a three-axis piezoelectric 
(PZT) actuator, normally used to investigate active vibration isolation. For these 
experiments, the PZT stacks were used to vertically vibrationally excite the entire 
structure. Two piezoelectric accelerometers were used to measure the resulting ex­
citation through the prototype stack. One accelerometer was at the fixed end of the 
cantilevers while the other was attached to the suspended pendulum mass, as near 
as possible to the vertically symmetric axis. The thin wire which carried the signal 
from the suspended mass was attached to the top of the system with slack so as not 
to have added any stiffness to the system. A dynamic signal analyzer was used to 
convert the two channels of data into the resulting transfer functions.

The cantilever blades as originally designed were of maraging steel, 2 mm thick, 
37 cm long, and with a base of 8.2 cm, giving a spring constant of 739 N/m, as
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Figure 4.5: Transfer function of the original upper cantilever blades. Comparing 
the measured data to an idealized isolator clearly shows the first blade resonance at 
~ 2  Hz, a region of (/o/ / ) 2 isolation, followed by a levelling off of the isolation. The 
data also shows the presence of the first internal mode of the blade at 54 Hz.
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Figure 4.6: Transfer function of the lower cantilever blades. The isolation is very 
close to the ideal (/o/ / ) 2 until past the critical frequency of 50 Hz.

per section 2.4.2. The measured transfer function of the original upper cantilever 
blade design is shown in figure 4.5. This is measured using a suspended mass 
equivalent to the mass of the individual stage suspended by the blades in the final 
suspension. That is to say that two upper cantilever blades are measured supporting 
a mass equal to that of the uppermost mass, 5.6 kg. Some features of this predicted 
transfer function can be seen. The response at low frequencies matches that of a 
mass-spring oscillator, a resonant peak followed by a curve falling as ( /o //)2- The 
problem with this design is that the slope levels off, giving no further isolation, above 
approximately 20 Hz. It is further complicated by the first internal resonance of the 
blade occurring very close to 50 Hz. This is not exactly coincidence—the region of 
flattening out depends on the blade geometry, as does the internal resonance—but 
no explicit relationship between the internal resonance and the roll off of isolation is 
explored here. While the curve does have the large resonant peak superimposed on 
the isolation, it is clear that this is not the only limitation to the isolation and that 
the curve is no longer falling with frequency squared. This effect is due to the point 
of attachment of the wires not being at the centre of percussion of the blade, relative 
to the input motion at the base of the blade. While the same effect occurs in the
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Figure 4.7: Transfer function of the new cantilever blade. The figure shows the mea­
sured isolation as well as that predicted by ( fo/ f )2 performance and the improved 
model using the mass and inertia of the blade. While the fundamental resonant fre­
quency of this blade is actually higher than that of the original blade (see figure 4.5), 
the realized isolation at 50 Hz is better.

lower set of blades, due to the smaller size of the blades (a length of 12.4 cm, base 
of 28 mm, and thickness of 1 mm) as well as the higher frequency resonance, the 
transfer function shown in figure 4.6 shows the desired isolation up to well past the 
critical point at 50 Hz. Note that the first uncoupled resonant frequency is defined 
to be 3 Hz, the resonant frequency of the four cantilevers supporting the mass of 
the next stage (5.6 kg). Experimentally, mounting the blades in place required that 
they be flat, which they do only under the weight of the total mass suspended below 
(two stages); therefore, additional weight was added to the suspended mass. This 
causes the measured resonant frequency in figure 4.6 to be a factor of y/2 lower, or 
approximately 2.1 Hz.

Since the upper cantilever blades were no longer achieving the intended isolation, 
the vertical vibration isolation of the entire system was insufficient. This led to a 
redesign of the upper blades for the GEO 600 suspension. The new design for 
the upper blades used smaller blades, with a length of 24 cm and a base of 4 cm, 
resulting in a slightly higher initial resonance frequency of 2.6 Hz. With the blades 
being smaller, the mass of the blade relative to the pendulum mass is less and
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the distance from the centre of percussion is less, resulting in better performance at 
50 Hz. Better high frequency isolation is thus achieved even though the fundamental 
resonance is higher. In addition, this change increases the first internal mode of 
the blade from '■'■'55 Hz to near 130 Hz. This new blade design provides ‘ideal’ 
isolation up to ~30 Hz, and will provide sufficient isolation at 50 Hz for the GEO 600 
suspension[48]. The internal mode of the blade, while at a higher frequency than 
in the original design, still requires to be damped. This will be done with a small 
resonant damper, currently under development. The behaviour of the new blade 
design is shown in figure 4.7.

If it were necessary to improve the isolation further at high frequencies, to reduce 
sensitivity to internal resonances, or if moderate improvements in isolation between 
30-50 Hz were required for advanced configurations, minor modifications of the 
blades could provide additional performance. This could be done by modifying the 
location of the centre of percussion, as described below.

The centre of percussion is defined with respect to a driving point and as such 
is symmetric; for any system, the centre of percussion for an input at point A  is 
located at B,  and for an input at B , the centre of percussion is at point A.  As 
before, the distance to the centre of percussion for the triangle shown in figure 4.8 
is defined as

Ic p  = Ic m  + t— • (4.44)
•>CM

For a triangular blade, the distance from the base to the centre of mass is lc/ 3 
(equation 4.38). The moment of inertia for rotation about the base is easy to 
calculate as

/ .  =  (4-45)

The parallel axis theorem gives the moment about the centre of mass,

ml2 .. . n \
I cm =  -jg-- (4.46)

These equations 4.44-4.46 give the distance to the centre of percussion from the
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-12 cm -12 cm

18 cm

24 cm

Figure 4.8: Centre of percussion of triangular blades. For the GEO 600 upper blades, 
the centre of percussion calculated with respect to the base is ~ 0 . 1 2  m from the base, 
such that the distance from the tip of the blade where the wires are mounted to 
this point is also ~ 0 . 1 2  m. The distance to the centre of percussion calculated with 
respect to the tip of the blade is ^0.18 m

base as

Ic p  =  2- (4-4?)

For a GEO 600 blade of length 24 cm, this means the wires are attached approxi­
mately 1 2  cm from the centre of percussion (I — Ic o p )•

There are fundamentally two ways this could be adjusted (within the basic tri­
angular blade geometry). Additional mass could be added at the base of the blade, 
such that the centre of percussion with respect to the tip would be where the blade 
is mounted. This solution is complicated by the question of how to mount the blade 
without constraining the connection of the base. Alternatively, more mass could be 
added at the tip of the blade, which would move the centre of mass and the centre 
of percussion measured with respect to the base toward the tip of the blade. The 
simplest way to do this without changing the geometric position of the wires would 
be to make a larger triangle, such that (lcp)new =  I, and attach the wires to the 
appropriate point in the middle of the triangle. This is a poor solution, since by 
loading the triangle in the middle there is no longer the constant stress in the blade 
material, which is what drove the choice of triangular geometry in the first place.

A better solution is to add mass to the tip of the blade. The triangle would 
simply be extended with a narrow ‘nose’ as shown in figure 4.9. While this blade 
will have the same fundamental frequency and stress, due to the triangle being the 
same, there is a difficulty in that the extra mass on the soft end of the blade will 
cause the first internal mode to decrease. This mode is not at so high a frequency 
that it can be ignored in the GEO design; reducing it is not desired. The advantage
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Figure 4.9: Cantilever blade with extra mass on tip. This moves the centre of 
percussion, with respect to the base, closer to the tip of the blade.

is that this is a very simple redesign. To locate the centre of percussion at the tip 
of the blade, imagine adding a mass m  a distance d off the tip of the blade. As will 
be shown, the necessary mass can be small, implying the mass of the neck should 
not be ignored; in practice, the adjustment is simple enough that an approximate 
figure will allow a starting point for experimental tuning. The centre of mass of the 
combined system is located a distance

- =  ( l ) lm c + (l + d)m
mc + m

from the base of the blade. The moment of inertia measured from the base is

/  =  / 0 +  m (l +  d f  (4.49)

where IQ is as in equation 4.45, mc/2/ 6. Using the parallel axis theorem to solve the 
moment about the centre of mass,

I cm =  (/o +  m(l +  d)2) (mc + m)PCM. (4.50)
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This moment of inertia inserted into the definition of radius of gyration gives

m. + m(l +  d f
k 2 =  - -- I '"  ' -  'cm- (4-51)mc +  m

Knowing that the distance to the centre of percussion is Icm +  7^— 5 and that this
•CM

distance is desired to be equal to the length of the blade, the resulting equation is

!* £  + m(l + d)2 
3 (I d)m,1 =  T r ,  * 1  , (4.52)

which solving for the added mass m  gives

mcl2 .
m  =  — 7-— -jr. (4.53)

6d(l + d) y '

For the parameters of the GEO 600 upper blades, I =  0.24m and mc =  0.084kg, 
with an extra length of d =  0.055m (the distance somewhat arbitrarily added to 
an experimental design), this gives an extra mass of m  «  0.050 kg to be added to 
the tip. Since the mass of a tip of this length is roughly 0.010 kg, although not 
concentrated at distance d, and since the wire clamps also add mass near the tip 
of the blade, it is expected that the best performance will require substantially less 
that 0.050 kg to be added at this distance. The results from adding mass to the 
tip are shown in figure 4.10. The various curves show the isolation measured for an 
upper GEO 600 blade versus the isolation for the blade with the extra tip added 
on, and with various masses added to this tip. Also shown is an ideal isolator, 
with isolation (f 0/ f ) 2 of the same resonant frequency. It is easy to see in principle 
that the isolation can be improved towards the ideal. It is also clear that with 
additional mass added, the internal mode moves to lower frequencies. When more 
mass than required is added, a dip in the isolation is shown, just as anticipated for a 
point located closer to the bending axis than the resulting centre of percussion. If a 
design such as this were to be chosen, a careful tradeoff between the internal mode 
and the isolation would have to be made. Since the best results are achieved with 
very little additional mass, the next iteration of such a design could use a shorter 
tip. The example blade constructed for this test had an unnecessarily long neck. It 
could not be used as a simple replacement in the current GEO 600 design, since the
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long neck would interfere with the desired wire spacing. A shorter neck would allow 
a new blade to fit in the GEO 600 suspension by replacing the original blade with 
no other changes.

The same modelling technique incorporating the effects of the centres of percus­
sion can be extended to the full GEO 600 suspension. Two cantilever spring stages 
in a three stage wire pendulum give the vertical isolation shown in figure 4.11. Note 
that for the assumed 0.1% coupling from vertical motion to horizontal motion, this 
vertical motion is the limiting source of seismic noise. The predicted level of iso­
lation for cantilevers with mass and inertia is compared with the idealized case of 
three coupled ideal isolators. This suggests that at 50 Hz, the isolation is a factor 
of 3.4 worse than the ideal case supposed. The other new feature this curve shows 
is the pair of high frequency (~500 Hz) resonances. These are the bounce modes 
of the cantilevers, where the cantilevers move out of phase with the lower mass of 
each stage, stretching the wires between the cantilevers and the mass. While this 
identifies another set of possible noise peaks in the spectrum, in practice, since the 
internal modes of the blades are not included in the model, these bounce modes are 
not accurately modelled by this method.

This same model can be used to estimate the effect of the internal modes of 
the cantilevers on the output spectrum. The displacement noise level in the vertical 
direction can be estimated for the expected resonant frequencies of the upper blades, 
~130 Hz, as the transmission shown in figure 4.11, 1.7 x 10“7, times the performance 
of the stack, (15 //)2 (section 2.2.1), times the input ground spectrum, ^^m /V H z, 
to give 1.2 x 10~20m/VTiz. Allowing for a 0.1% coupling to the horizontal direction 
and a Q factor of 104 as is typical for steels such as maraging, the height of this 
peak is 1.2 x 10-19m/\/Hz, well above the noise floor of the detector. Thus this peak 
should be damped. The resonance of the lower blades, occuring closer to ~270 Hz, 
gives a peak of only 1.7 x 10-23m/\/Hz, which should not appear in the output 
signal. (With the levels of approximation, this peak might appear, but should not 
significantly degrade performance.) For each of these cantilever modes, the net 
contribution of these resonances to the rms motion of the optic is small enough to 
be ignored.
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Figure 4.10: Transfer function of a cantilever stage, adjusting the centre of percus­
sion. By careful choice of the added mass, the blade can demonstrate improved 
isolation. The upper plot shows the measured performancee of the GEO 600 upper 
blade (blade 0) compared to a new blade which has a tip added on to the end of the 
blade. By comparing these to the modelled performance of a massless isolator, it 
can be seen that the new blade provides better isolation. The lower plot shows the 
performance when additional mass is added onto the tip of the new blade. While 
this can affect the transmission at lower frequencies, it also reduces the frequency of 
the first internal mode of the blade, which appears as the peak in the transmission.



CHAPTER 4. PENDULUMS 112

Vertical Transfer Function of GEO 600 Triple Pendulum

- Ideal isolators

0.1 1 10 100 1000
Frequency (Hz)

Figure 4.11: Vertical isolation for a triple pendulum with two cantilever stages. 
This is illustrated in comparison with ideal (massless) isolators. The two very high 
frequency modes arise where a set of cantilevers move out of phase with the next 
lower mass.

4.3 Cross-Coupling

The required vertical isolation in the suspension system has been calculated from 
the displacement noise tolerable in the measurement direction divided by a cross­
coupling factor from the vertical to the horizontal. There is some inherent value 
of cross-coupling due to the optical configuration (section 2.4.1) and the achiev­
able values of cross coupling have been assumed to not greatly exceed this level. 
While this assumption was made conservative for earlier designs, for the GEO 600 
suspension, this factor directly determines the predicted noise performance for the 
frequencies where transmitted vertical seismic noise dominates. In addition, this 
factor is always assumed as a constant value, whereas in the physical system, the 
different values of the vertical and horizontal resonant frequencies mean that the 
amount of cross-coupling will be dependent on frequency.

Based on the symbolic modelling work from section 4.1, it can be seen that a 
perfectly symmetric system will have no cross-coupling from vertical to horizontal. 
As discussed in section 7.2.2, the way the GEO suspension will achieve the necessary 
thermal noise performance in its final stage pendulum is by use of silicate bonded
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fibres[38]. Specifically, small attachments will be bonded onto the test mass, and 
drawn fibres will be welded onto these attachments. It is unclear to exactly what 
level of accuracy four different fibres may be welded to the same length. Once the 
fibres are attached, it may be difficult to tune their lengths. Even without this 
challenge, simple symmetric designs in the laboratory often require a fair bit of 
adjustment to achieve the desired static position. It is obvious that a particular 
‘nominal’ position may be achieved by a happy combination of many errors; a single 
stage pendulum on four cantilevers may be level either due to all four cantilevers 
being identical or with every cantilever different but compensated by four differing 
wires. The Lagrangian code for the first time allows theoretical predictions of the 
effects of this kind of misalignment.

There are as many possible physical imperfections as there are parameters in the 
system. A few selected misalignments will be examined to calculate their effect on 
cross-coupling compared to the assumed value. It is presumed that the effects of 
errors in upper stages of the pendulum suspension will be isolated by the remaining 
pendulum stages. In addition, errors in the steel wires can be corrected, within 
limits, on the experimental apparatus by reclamping to adjust length, tension, and 
location of attachment. It is primarily offsets in the lowest stage of the suspension 
that are likely to cause difficulties. The methods by which such misalignments or 
parameter variations can be input to the code are described in section 3.9.

The amount of static extension in equilibrium of the final stage wires should 
be less than 1 mm. As the static tension is directly proportional to this extension, 
having the static tension in all four wires to within 1% would require the wire lengths 
be balanced to the order of 10 fim. By measuring the resonant frequency and thus 
the tension, wires that can be clamped under tension might well be adjusted to 
near this level of accuracy. For welding wires not under tension, this is a great 
challenge. The important question is how close to the same length do the wires 
have to be. Figure 4.12 shows the cross-coupling, the ratio between vertical output 
motion and horizontal output motion for the same vertical input motion, when one 
wire is 0.25 mm longer than the other three wires. This case, as with the following 
cases, is calculated based on numbers very similar to those to be used in the final 
stage of the GEO 600 main suspension. The parameters are for four wires hanging 
vertically, separated by 0.010 m in the beam direction (s =  0.005). Each wire is
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Cross-Coupling: U =  l0 +  0.25 mm
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— 1 mm - 

—10 mm

0.1 1 10 100
Frequency (Hz)

Figure 4.12: Cross-coupling in final stage of GEO 600 with 0.25 mm error in wire 
length. The data shown is the cross-coupling observed at a point level with the 
centre of mass, as well as points above and below the centre of mass, which introduces 
the effects of tilt.

Cross-Coupling: = lQ +  0.5 mm

100
Frequency (Hz)

Figure 4.13: Cross-coupling in final stage of GEO 600 with 0.5 mm error in wire 
length. The data shown is the cross-coupling observed at a point on the front face 
level with the centre of mass.
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attached 1 mm above the plane of the centre of mass and is attached to a breakoff 
on a flat polished on the side of the mirror, giving a separation in the transverse 
direction between wires of 0.175 m (n =  0.0875). Each wire is made of fused silica of 
radius 140 /zm with Young’s modulus of 7 x 1010 N/m. The mirror masses are right 
circular cylinders of radius 0.09 m, length 0.10 m, and mass 5.8 kg with horizontal 
flats along both sides. The static tensions in the four wires are 14.57, 14.47, 13.02, 
and 12.93 N. These differing tensions cause the mirror to move in the beam direction 
as well as tilt when given a pure vertical input. Because the beam should be located 
at the minimum of the thermal noise for the longitudinal and tilt modes, which 
is offset from the centre of mass, the inputs are chosen to show the coupling as 
seen directly not only level with the centre of mass, but also above and below the 
centre of mass. This allows determination of a maximum anticipated value for the 
cross-coupling allowing for errors in beam positioning.

Two things are important. Firstly, at frequencies well above all the resonances 
of the system, the vertical and horizontal motions are being attenuated as the same 
function of frequency, giving effectively constant cross-coupling. The shape of the 
curves suggests that for systems that strive for isolation performance at frequencies 
closer to the system resonances, the cross-coupling may be much greater than the 
level predicted at high frequencies. This might be the case for systems that aim 
for lower frequency performance without correspondingly lower resonant frequen­
cies, instead using a large number of stages which only achieve moderate levels of 
isolation per stage. Secondly, at 50 Hz, the values of cross-coupling for this level of 
misalignment plus the misalignment from consideration of the optical path, 3 x 10-4 
(section 2.4.1), is well below the 0.1% assumed for GEO 600, even for beam positions 
up to 10 mm away from the centre of mass. Next, figure 4.13 shows the same inputs 
where that misaligned wire is 0.5 mm longer than specified. In this case, the static 
tensions in the wires are 18.93, 14.85, 12.83, and 8.68 N. Again, the assumed 0.1% 
is an appropriate, conservative value. For errors substantially larger than this, one 
wire in the suspension will actually become slack, causing much greater difficulties.

Another class of misalignment on the final stage of the pendulum could be the 
location of the wire attachments. A specific type of misalignment is shown in fig­
ure 4.14, where one of the wire connections is modelled as being offset along the 
beam axis. To compound this, the spring constant of the same wire is varied. The
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Figure 4.14: Variations in wire attachment and spring constant.

Cross-coupling observed 1 mm below COM 
in a single stage pendulum
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Figure 4.15: Cross-coupling in final stage of GEO 600 due to variations in wire 
attachment and spring constant. The different curves represent different locations 
for the upper attachment of one wire while the abscissa gives the variation in the 
spring constant of the same wire.
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Cross-coupling observed 1 mm below COM 
m a two stage pendulum
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Figure 4.16: Cross-coupling in final two stages of GEO 600 due to variations in wire 
attachment and spring constant.

extension spring constant is directly proportional to the cross sectional area of the 
wire, and it is very possible that the drawn fused silica fibres will vary in cross 
section. The levels of cross coupling at 50 Hz for this example are shown in figure 
4.15 as a function of this offset and a normalized variation in spring constant. The 
ratio of horizontal output, seen 1 mm below the centre of mass, to vertical output 
for a given vertical input is plotted. Again, for this category of misalignment, the 
assumed total cross- coupling of 0.1% is appropriate even for offsets in wire position 
on the order of 2 mm, out of a 10 mm wire separation, and spring constants that 
vary by 40%.

This calculation may not accurately illustrate the situation for a multi-stage 
pendulum. A misalignment in a wire connection may affect the alignment of all 
the masses in a multi-stage suspension, where the upper connection of the wire is 
not rigid. Figure 4.16 illustrates the modelled cross-coupling for the a two stage 
pendulum, using the parameters of the lower two stages of the GEO 600 suspension. 
Again, the errors are assumed in the final stage of the suspension, where the fibres 
will make corrections most difficult. The modelled offset, 5, is an error in the 
X  coordinate of the upper connection of one lower fibre while varying the spring
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constant of the same fibre. The data are different than for the single pendulum 
case, but the assumed 0.1% is still appropriate except for very large errors in the 
parameters.

4.4 Reduced DOF Suspensions

Another application of the modelling code is to examine radically different suspen­
sion designs. Because of the effects of cross-coupling and due to the philosophy of 
the control design, in GEO 600 it is considered desirable to make the suspension 
system as soft as possible in all degrees of freedom. This way, first of all, every 
degree of freedom is isolated so that any cross-couplings do not compromise the 
isolation in the desired direction. Secondly, the controller design is made simpler. 
While the details of the control design are left to section 6.2, the idea in GEO 600 
is to have the local control loops for each degree of freedom act on the same low 
frequency band. This gives the system its great degree of robustness, since mild 
variations in any degree of freedom do not substantially degrade performance for 
any of the (identical) control loops.

Another design possibility would be a suspension soft not in as many degrees of 
freedom as possible, but only soft in a reduced number of degrees of freedom, those 
actually requiring the isolation. Such a design would be made as stiff as possible in 
the remaining degrees of freedom. The low frequency isolation resonances need to 
be damped, since with very little isolation at low frequencies, high Q values lead to 
a large amount of (rms) motion. For the higher frequency resonances, the isolation 
provided by the other stages plus the reduced input from less ground motion at these 
frequencies means substantially less motion on resonance and less rms motion. This 
suggests that these higher frequency resonances, those in the less crucial degrees of 
freedom, would not necessarily have to be damped.

One significant advantage of this kind of suspension would be the considerably 
simplified local control structure. Only the longitudinal degree of freedom needs to 
be damped, reducing the number of electronic channels by a factor of six. Because 
the suspension is too stiff to move much in the rem'aining degrees of freedom, it does 
not require dynamic alignment in the final stage. The principle difficulty is that, 
since there is much less isolation in the other directions, there must not be substantial
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Figure 4.17: A five wire, reduced DOF suspension. The wire angles and sizes are 
chosen to give the same tension in each wire.

cross coupling between the degrees of freedom. Because of this tight restriction, 
these reduced degree of freedom principles would not necessarily be applied at every 
stage in a multiple stage system. They can be used in an outer stage, where a very 
long range is needed in just one direction. One example would be compensating for 
changes in length of a long baseline beam tube due to temperature changes; a lead 
screw could translate the entire suspension a large distance along the beam with 
no (deliberate) motion in any other direction. These ideas could also be used in a 
very sensitive inner stage specifically to avoid the need to apply control and possible 
disturbance in other directions.

At least two different methods of restricting the soft degrees of freedom can be 
modelled using the Lagrangian code with slight modifications. A wire, acting as a 
rod stiff in tension and soft in all other degrees of freedom, can constrain one degree 
of freedom. A flexure, envisioned as a thin rectangular sheet, is soft in bending but 
stiff in three other degrees of freedom—translation along the two long dimensions of 
the flexure and in rotation about the axis perpendicular to the surface of the flexure.

4.4.1 W ires

A possible five wire suspension is shown in figure 4.17. There is a £V’ at the front 

end of the suspension, an offset £V’ at the rear of the suspension, and the fifth wire
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is vertical, mirroring the offset point at the rear of the suspension. The two pairs

at both the front and rear of the mass. By preventing relative motion in the Y- Z  
plane from front to rear, this constrains tilt and yaw motion of the mass, while the 
fifth (vertical) wire acting with the offset pair of wires constrains roll motion. In

in roll, left to right, such that for wires angled at 45°, and knowing that the tensions 
in each angled pair of wires in the figure are equal, Ti =  T2 and T3 =  T4,

From this, T5 =  m g/4, T3 =  T4 =  \f2m gj8, and Ti =  T2 =  y/2mg/4. To get the

requires that the cross-sectional area of the wires be in the same proportions as the 
tensions.

The above system was modelled using a vertical height (length of wire 5) equal 
to 0.28 m, the same length as the final stage wires in the main GEO suspension. 
As anticipated, the longitudinal degree of freedom is soft, with a resonant frequency 
of 1.0 Hz, while the other degrees of freedom are much stiffer, being resonant at 
7.3, 10.1, 10.3, 10..8, and 15.3 Hz. Because the wires have some bending stiffness, 
they do not act purely as one dimensional constraining elements, causing a slight 
amount of cross coupling between vertical and horizontal (~4 x 10-6) even for a 
system built perfectly as described above. The greatest concern for these systems is 
how much tighter the requirements are for aligning the beam. A small offset in the 
beam location away from the centre of mass couples angular motion of the test mass 
into sensed displacement. For a system soft in all degrees of freedom, this rotational 
motion is well isolated. In this reduced DOF suspension, this rotational motion 
can be substantially larger. Thus for this example, a beam centring offset of only

of wires, being at right angles to each other, constrain motion in the Y -Z  plane

calculating the tension in each wire, the net forces must balance vertically with the 
pull of gravity. In addition, the tensions balance in tilt, front and rear, and balance

(4.54)

2Ti 2 T3
(4.55)

y/ 2  V 2 5
OT

(4.56)

same violin modes (discussed in more detail in the following section) in each wire
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0.1 mm above the centre of mass increases the observed vertical to horizontal cross- 
coupling to 3.8 x 10-4. This level of cross-coupling for a five wire suspension with no 
perturbations can be compared with the ‘soft’ suspension modelled in figure 4.12, 
where there is a significant error (0.25 mm) in one wire length. The five wire 
suspension where the beam is offset 0.1 mm from the centre of mass exhibits nearly 
ten times the cross-coupling that the misaligned four wire suspension does when 
the beam is offset 10 mm from the centre of mass.

This same sensitivity to beam alignment is required for the thermal noise reasons 
discussed in the following chapter. In section 5.2, it will be seen that higher frequency 
modes will introduce much more thermal noise when the beam is misaligned a small 
amount than will the lower frequency modes of a soft suspension.

Because the system couples so weakly to roll motion, a symmetric system could 
be designed using four wires in two vees, which remains soft in the roll direction 
as well as the longitudinal direction. Again, this would not fit with the GEO 600 
control strategy in the triple pendulum. Modelling this is a straightforward variation 
in the Lagrangian code.

4.4.2 Flexures

Another construction uses two flexures, one behind the other. The simplest flexure 
is a thin, rectangular sheet, arranged to bend in the longitudinal direction while 
remaining stiff in the transverse and vertial directions. By constraining X -Z  motion 
at the front and back of the mass, as in the wire suspensions, the tilt motion is 
also constrained. One other possible advantage of flexures is with regards to the 
internal modes of the suspension elements as described in section 4.5. The modelling 
code can simply represent flexures of constant cross section, such as short ribbons. 
Flexures are of great interest with respect to their thermal noise performance. One 
particular difficulty is that using two flexures actually overconstrains the system. If 
the flexures are not perfectly parallel, the soft degree of freedom of the two flexures is 
not quite the same. This could cause substantially more thermal noise, by coupling 
to the stiffer direction of the flexure. How some of these ideas may be extended are 
suggested in section 8.2.
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4.5 Interned Modes

As with any model, it is important to recognize what approximations have been made 
and thus what limitations may apply to the results of a model. The single largest 
effect not included in all the modelling discussed to this point is the internal modes, 
both in the suspension elements and in the masses. This is particularly true when 
realizing that the local control actuators, acting on the upmost mass as described 
in section 6.2, axe to affect the motion of the lower two masses. The Lagrangian 
model accurately describes the dynamics for frequencies below the resonances of 
the wires, which tend to be at 100 Hz and higher, but is not appropriate at or 
above these frequencies. This allows the low frequency local control to be designed 
using this model, but higher bandwidth control applied at the upper masses can not 
be accurately characterized by this modelling technique. In a similar fashion, the 
thermal noise floor in the system has two main contributors, as per section 1.3.2, 
the noise from the pendulum suspension and the noise from the test mass itself. 
The Lagrangian code can accurately calculate the thermal noise in the suspension 
at these lower frequencies, but does not address the noise resulting from the test 
mass, whose calculation is based on the higher frequency modes of the test mass.

The dynamic modes modelled by the Lagrangian code are rigid body modes. All 
the kinetic energy terms are expressed as point masses with inertia. The internal 
modes are fundamentally continuous modes. They can be approximated in a finite 
element fashion, by breaking a continuous mass into many small elements. Accu­
rately modelling the first n internal modes can be done by using enough elements. 
Another approach is to model a continuous system, which in principle allows all 
the modes to be calculated, an example of which is described in sction 6.3.3. This 
section will address these internal modes and confirm under which circumstances 
the modelling work described to this point may be used.

4.5.1 Suspension Elements

Any wire in the suspension system, examined in isolation, is exactly analogous 
to a wire in a stringed musical instrument. The wire fixed at each end loaded 
under tension leads to ‘violin modes’ in the wire. The same effects that allow 
low loss pendulum modes ensure that the violin modes also have low loss and a
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corresponding high resonance Q—specifically Qvi0un =  \Qpend (when the tilting 
mode of the pendulum has been constrained) [41]. The low mass of the suspension 
wires compared to the pendulum masses means that the potentially large motions 
of the wires has a reduced effect on the pendulum masses, however the height of the 
resonant peaks is such that these resonances can still appear in the output signal.

The violin modes occur at frequencies[70, 71]

n 7 r  fA e* \

T y  7 (457)

where T  is the tension in the wire, p is the linear density, and I is the length. The 
tension, being set by the suspended mass divided by the number of wires for vertical 
wires, is essentially fixed. The linear density is simply the material density times 
the cross sectional area of the wires, A. In order to make the violin modes as high 
a frequency as possible in an effort to remove them from the measurement band, 
the area of the wires should be made small. This is consistent with reducing the 
thermal noise by reducing the stiffness of the wire. Minimizing the area is limited 
by the allowable amount of stress in the suspension wires, usually expressed as a 
fraction of the breaking stress

T
S  — ~  breaking• (4.58)

Overstressing the wires is a poor idea in terms of mechanical robustness. If the 
wire is stressed within a small factor of its breaking stress, any bends or defects 
in the wire cause stress concentrations which could exceed the nominal breaking 
stress. This is a particular concern in the design of wire clamps. Even without 
catastrophic failures, greater stress in a wire will cause more ‘creep’. The difficulty 
in quantifying this is that creep is usually measured over long time frames, as a 
fractional length change per month or even year. This gives very little insight as to 
how the stress in a wire contributes to noise in the measurement frequency band. 
Maraging steel is an alloy that seems to have exceptionally low levels of creep, which 
can therefore be used under greater relative stress levels, at least with respect to 
creep noise. For standard grades of steel, as used in the upper stages of GEO 600 and 
in the prototype work, the maximum allowable stress is set as |  of the tensile stress,
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1.5 GPa for ANSI302 stainless steel and an anticipated value on the order of 2 -
4.5 GPa for the fused silica fibres[72, 73]. This results in violin mode frequencies for 
the three stages of approximately 200, 500, and 500 Hz and the integral harmonics 
of these frequencies, based on the final parameters in section 7.3. Naturally, only the 
modes in the lowest stage directly affect the output, the other stages being filtered 
by the lower pendulums.

4.5.2 M asses

Of less importance to the modelling work described here is the internal modes of 
the masses being supported. The optics have a minimum size based on the size 
of the beam and the desire to lose a minimum of light off the edges of the mirror. 
The aspect ratio of the right circularly cylindrical optics is chosen to minimize the 
thermal noise seen on the front surface of the test mass. This involves the shape 
and resonant frequency of the internal modes, where a longer cylinder gives lower 
frequency longitudinal and bending modes and a wider cylinder gives lower drum 
modes[74]. For GEO 600, the test mass is of radius 9 cm and length 10 cm, which 
has its first internal mode at ~17 kHz. This is an important source of noise, as 
per section 1.3.2, but the comparatively high frequency suggests that it does not 
compromise any of the prior modelling results. It can have an effect for very high 
bandwidth control as discussed in section 6.3.2.

4.6 Conclusions

Based on the internal modes of the system, the Lagrangian model can be used with 
confidence up past the low frequency end of the detection band, 50 Hz. This allows 
the determination of the total seismic noise transmitted through the isolation system 
to be made.

From section 2 .1 , the ground noise spectrum is modelled as flat below 1 Hz at a 
level of 10- 7m /\/Hz and falls as l / / 2 at higher frequencies. The single layer passive 
isolation stacks are modelled to act as ideal viscously damped isolators (section 2 .2 ),
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Figure 4.18: Horizontal isolation for the triple pendulum suspension.
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Figure 4.19: Total transmitted seismic noise in the main suspension. At low frequen­
cies, the noise is dominated by trasmitted horizontal ground motion; above ^10 Hz, 
the noise is dominated by vertically transmitted motion which couples to the sensed 
direction at a level of 0 .1 %.
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such that

Xin 1 +  i 0.3 {f / fo) — ( f / fo)2

where the resonant frequency, /o, in the horizontal direction is 9 Hz and in the 
vertical direction is 15 Hz. The mass between the stack layer and the pendulum 
(the stack stabilizer and the rotational stage) is large enough compared to the mass 
of the pendulum that the stack and pendulum may be modelled as uncoupled. The 
transfer function of the pendulum is then calculated. The isolation in the horizontal 
direction is shown in figure 4.18, which shows the longitudinal and tilt resonances 
at 0.51, 0.90, 1.08, 2.36, 2.44, and 3.69 Hz. The vertical transmission was calculated 
for figure 4.11 and shows resonances at 1.27, 4.25, and 26.0 Hz. The product of 
the ground spectrum, the stack isolation, and the pendulum transfer function gives 
the total seismic noise transmitted to the final optic. Based on a cross-coupling of 
0.1%, verified as appropriate in section 4.3, the total transmitted seismic noise of 
the optic is the quadrature sum of the transmitted horizontal noise and 0 .1 % of the 
transmitted vertical noise. This noise is plotted in figure 4.19; the noise is dominated 
by transmission in the horizontal direction at low frequencies, while above '■'■'10 Hz 
the vertically transmitted noise dominates. This gives a displacement noise of the 
optic at 50 Hz of 2.4 x 10 2 0m /\/Hz, a factor of 3 below the the internal thermal 
noise of the test mass of 7 x 10~2Om/\/Hz.



Chapter 5 

Thermal Noise Results

The Lagrangian code described in chapter 3, by properly treating all the dynamics 
terms in a multi-stage pendulum, allows the thermal noise observed in a system to 
be calculated. The significance is that this code allows the contributions from all 
degrees of freedom and from every stage of the pendulum to be properly included. 
Thermal noise calculations use the fluctuation dissipation theorem as described in 
section 2.5.1. In this chapter, details of how the proper loss is calculated in the code 
are covered, then two specific applications of the code are described.

The fundamental resonance of a pendulum, which is specified for isolation pur­
poses, is determined by the equivalent length of the stage, not necessarily the length 
of the wires. More important is the vertical distance from the suspension point to 
the centre of mass. In particular, when the test mass has dimensions smaller than 
the pendulum lengths, approximately the same longitudinal mode frequency can be 
obtained by attaching ‘long’ wires to the sides of the mass, approximately level with 
the centre of mass, or by attaching ‘short’ wires directly off the top of the mass. 
The performance consequences of this kind of variation in suspension geometry are 
explored using this code in section 5.2.

Symbolically solving the noise in a multi-stage pendulum can be done in princi­
ple, although the expressions become much more complicated. With this modelling 
work, it is straightforward to calculate the performance for the entire system, includ­
ing exploring the effects of loss in each stage of the pendulum. Such an investigation 
can establish requirements on all the stages. In particular, the code shows the con­
tribution of loss in the cantilever blades. This depends on the specific geometry

127
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and is difficult to manually calculate. The code is used to calculate the predicted 
thermal noise in the GEO 600 suspension system is section 5.3.

There are additional applications of the code to thermal noise problems which 
are not explored in detail here. One final straightforward use of the code could 
extend the results about cross-coupling of section 4.3. The code not only quantifies 
the amount of cross-coupling from (e.g.) vertical input to horizontal output for a 
given set of misalignments, but also can calculate the effect of the ‘vertical’ thermal 
noise that is seen in the horizontal direction.

5.1 Loss in Lagran.mws

The fluctuation dissipation theorem introduced in section 2.5.1 relates the frequency 
distribution of thermal noise in a system to the mechanical impedance. Specifically, 
equation 2 . 1 2  gives the displacement spectral density as

xTh(v) = {YM ) Per Hz, (5.1)LJ*

where ks  is Boltzman’s constant, T the absolute temperature, and Y  the admittance 
(the inverse of the impedance) measured at the point of interest. The mechanical 
admittance is the resulting velocity due to an input force at that same point,

Y(m>) = j ,  (5-2)

which is simple to calculate based on the techniques described in section 3.8. For an 
optical beam impinging on the test mass a distance d below the centre of mass, the 
output velocity is xtm +  dOrM> given by the output matrix, C, as the sparse row 
vector all zero except for a 1 corresponding to the x  state and a d corresponding to 
the 6 state. The corresponding force is input at the same location; to obtain the 
driving terms in the equations of motion requires dividing by the appropriate mass 
or moment. The input vector is then

B =
0  0

0 M " 1
(5.3)
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where M is the mass matrix of the system. With these definitions, the admittance 
and thus the observed thermal noise can be calculated as per section 3.8.

5.1.1 Gravity and Conservative Forces

Because the gravitational field is conservative—that is to say, it is lossless—energy 
stored in the gravitational field is not dissipated and thus does not contribute to the 
thermal noise. Since the Lagrangian formulation is designed for lossless systems, the 
introduction of lossy elements has to be done carefully in modifying the equations 
of motion of chapter 3.

Properly speaking, the force of gravity, being purely vertical, does not provide 
the restoring force in a swinging pendulum. The tension in the wire, which at 
equilibrium balances the gravitational force, is the dominant term in the equation 
of motion. The equilibrium tension results from the static extension of the wire 
times the extension spring constant of the wire. For the simplest case, a pendulum 
hanging on a single vertical wire, the potential energy allowing only vertical motion 
is

P E  = mgy +  ^ k ay2, (5.4)

where in this case the change in wire length, 51, is equal to — y. Minimizing this 
with respect to y gives the equilibrium change in wire length as

<Me, =  -Jfa, =  (5.5)Ks

Therefore the static tension, T0, equals ks5leq and is solved for numerically at the 
same time the equilibrium is determined. While k3 is a function of the Young’s 
Modulus, and thus has loss as a function of frequency, in steady-state equilibrium 

this loss is zero.
The dynamic length of the wire as determined in section 3.4.4 can be expressed

as

/(x(t)) — Iq -t- 51

= Iq +  5leq +  5l{x).

(5.6)

(5.7)
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The potential energy involving 51 is rewritten as 6leq -f 5l(x). The forces in the 
equations of motion appear as ks5l. It is now clear that this force is made up of a 
constant force, the static tension =  ka5leq, and a dynamic force due to additional 
changes in wire length =  ka5l(x). Only this dynamic component of the force exhibits 
loss. This is easily seen by examining the vertical equation of motion for a single wire 
pendulum, where the static tension balances the force of gravity while the additional
change in wire length provides the restoring force and associated loss. To implement
this in the equations of motion, the expression ka5leq is everywhere replaced by T0 

before any numerical substitution.

5.1.2 Implementation of a

The variables a* in the Lagrangian code represent the loss angle for each stage as 
the imaginary component of the Young’s modulus,

H w irel =  -^0,1 ( l  “I" ^ l ( ^ ) )  j (^*®)

or more generally, as the imaginary component of the spring constant for cantilever 
stages

kcant,u =  k Uio (1 -f- ZQJu((j)) . (h-9)

These are the only variables that are maintained as symbolic until the very last 
step of the calculation because they axe functions of frequency. This allows the ai 
to be completely arbitrary functions. The only complication is in the numerical 
evaluation of large symbolic matrices. For viscous loss, where cti oc u, the resulting 
A matrix has constant coefficients, and the calculations of the transfer function, 
using for example Matlab’s bode.m routine, axe simple. For other (more realistic) 
loss functions, the simplest method to generate transfer functions as a function 
of frequency is using a copy of A where the a?j are explicitly evaluated at every 
frequency.

The typical loss function for these wire suspensions is represented by a constant 
(structural) loss term plus loss due to thermoelastic damping[75, 76]. The is the 
function used for loss in the final stage for all of the modelling done in the following
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sections. The expression used for the loss is[77]

A t Ll)

(5.10)

(5.11)

where

(5.12)
P ̂ Sp 

1
(5.13)

2 tT fchar

where for cylindrical wires

In these expressions 5.12-5.14, where all values are for fused silica, cxte =  5 x 10 7

is the coefficient of thermal expansion, E  =  7 x 1010 N m - 2  is the Young’s modulus, 
T  =  300 K is the (absolute) temperature, p =  2200 kg m - 3  is the density, csp =  
772 J kg- 1  K - 1  is the specific heat capacity, k =  1.38 J m- 1s- 1K - 1  is the thermal 
conductivity, and d the thickness over which the bending occurs, the diameter of 
the wire. For the GEO 600 fused silica fibres, with r =  154 /im, this gives the 
thermoelastic peak at 19 Hz.

The use of a constant loss term, (f>c, represents the presence of structural damping. 
For thin fibres (such as used in the final stage of the GEO suspension), the observed 
damping will be dominated by dissipation in the surface of the fibre [75]. The loss 
in the bulk material, 0 ^ *  is related to the loss in the fibre by

(5.15)

for round wires, where ds is a characteristic dissipation depth. The bulk loss used 
is that reported by Gretarsson,

<f>buik — 3.47 x 10 8, (5.16)

consistent with the lowest dissipation measured in fused silica[78, 57]. The value
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reported for the dissipation depth is

ds =  167 fim (5.17)

over a range which includes the size of the GEO fibres.
The loss in the earlier stages of the pendulum can be input in the same fash­

ion, but as the details are considerably less important, they are input simply as 
structurally damped terms =  constant, except where otherwise noted.

5.2 Length of Suspension W ires

The optimum suspension for a gravitational wave detector is the suspension that 
results in the lowest displacement noise of the optic, in terms of both seismic isolation 
and pendulum thermal noise. The total seismic isolation results from the many 
layers of vibration isolation while the pendulum thermal noise is dominated by the 
behaviour of the final stage pendulum. The question that this modelling work can 
be used to answer is what form of suspension gives the lowest amount of pendulum 
thermal noise. In particular, the relative merits of shorter wires versus longer wires 
may be compared. In addition, the effects of using more thin wires as compared to
using fewer thicker wires to support the same mass may be evaluated.

The seismic isolation performance of a pendulum stage depends on the resonant 
frequency of the longitudinal mode. For a single wire attached at the centre of mass 
of the suspended object, this frequency is (1/2k) y/gjl. When the length of the wire, 
I, is substantially larger than the radius of the suspended mirror, tr, virtually the 
same resonant frequency is obtained using a wire of length I — tT attached to the 
top of the test mass. This would then give nearly equivalent vibration isolation in 
the same physical height. Therefore, the question is which suspension exhibits less 
thermal noise.

5.2.1 Two Wires and Two Loops of W ires

For the GEO 600 control architecture described in chapter 6 , it is necessary to be 
able to control the tilt motion of the test mass from a higher stage in the suspension. 
Using a single wire to suspend the optic is insufficient as there is no stiffness in the
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tilt direction and therefore no ability to apply the necessary control to the optic. 
There must be at least two wires, one in front of the other (in the parameters of the 
modelling section, 0 ).

The GEO 600 main mirror has a radius tr =  9 cm, a length tx =  10 cm, and 
mass 5.6 kg. In the GEO triple pendulum, the length of wires for the final stage 
is 28 cm; therefore, to investigate the best final stage suspension, an equivalent 
pendulum length of 28 cm is used. The total cross sectional area of the circular fibres 
necessary to support this test mass depends on the breaking stress of the material 
and to what level it is considered appropriate to load the wire. The breaking stress 
of fused silica is an area of active research; at the time this modelling was done, 
an estimate of breaking stress of 600 MPa was used. To load this to ~30% of the 
breaking stress, two fibres of radius 212 /zm were modelled. In principle, two fibres 
of this radius could be of length 19 cm and attached to the top of the test mass or 
of length 28 cm and attached in a plane level with the centre of mass of the test 
mass. The loss assumed in section 5.1.2 is to be used, a constant (structural) term 
plus thermoelastic damping.

The resulting thermal noise for this stage in isolation is shown in figure 5.1. The 
total pendulum thermal noise observed on the face of the pendulum is a combination 
of all the pendulum modes which couple to the output, principally longitudinal and 
tilt. To address the fundamental question of which method results in a lower level 
of thermal noise, it is desired to examine the effect of only the longitudinal mode. 
Since for a general point on the front surface of the mirror, the longitudinal and tilt 
modes each contribute uncorrelated noise to the observed output, this corresponds 
to the point of minimum thermal noise calculated on the front surface of the mirror. 
The minimum point will depend on the mode shape and thus on the chosen spacing 
of the wires. In attempting to analyse the effect of only the longitudinal mode, this 
spacing need only be small compared to the size of the test mass. The exact tilt 
frequency will not affect the minimum noise obtained at high frequencies. Separating 
these two wires symmetrically about the centre of mass by 1 cm (s =  0.005) gives, 
for wires mounted off the top of the mass, a resonant tilt frequency of 4.7 Hz and a 
longitudinal frequency of 1.2 Hz. The minimum observed loss is at a point 0.8 mm 
below the centre of mass. When the two longer wires are attached in a plane at 
the same height as the centre of mass with the same separation, the resulting tilt
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Long wires versus short wires, allowing tilt control
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Figure 5.1: Two short wires versus two long wires. The thermal noise on the front 
surface of a GEO sized mass suspended using two short wires attached to the top 
of the mass is compared to the thermal noise for the same setup using longer wires 
attached level with the centre of mass. The data are calculated for the point of 
minimum motion on the surface of the mass, which for these cases is a fraction of a 
millimetre below the height of the centre of mass.
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frequency is only 1.7 Hz while the longitudinal mode is resonant at 0.95 Hz. The 
minimum thermal noise is observed at a point 0.3 mm below the centre of mass. 
(The minimum is not seen at the height of the centre of mass because the finite 
bending stiffness of the wires cause the two modes to couple slightly, even when the 
wires are attached in a plane level with the centre of mass.)

The peak in the thermal noise at the tilt resonant frequency is clearly visible. At 
higher frequencies, the resulting noise is dominated by the noise from the longitu­
dinal mode. The effects of the slightly different mode frequencies and less bending 
stiffness in the longer wires means that supporting the test mass with the longer 
wires results in less thermal noise at higher frequencies. At the 50 Hz frequency of 
most interest to GEO, the two long wire case exhibits a noise of 1.33 x 1 0 ~2 0m/\/Hz 
while the suspension using two wires fixed to the top of the mass has a thermal noise 
of 2.13 x 10_2 0m/\/Hz.

It is impractical to drill through the test mass to allow the suspension wires to 
be attached near the centre of mass. (In addition, this would likely compromise the 
losses for the internal modes of the test mass.) Instead, the appropriate suspension 
to use these longer wires is a four wire suspension. This case is also plotted in 
figure 5.1, where all four wires are attached in a plane level with the centre of mass, 
one pair located 1 cm in front of the other pair, and where all the wires are attached 
on the outer radius of the mass (n =  tr). This is analogous to using two loops of 
wire to support the mass. The suspension wires are thinner, by a factor of y/2, to 
support the same load across twice as many wires. The suspension has identical 
longitudinal and tilt resonant frequencies to that of the suspension with two wires 
attached near the centre of mass.

The bending stiffness of a wire may be expressed as[39]

where T is the tension in the wire, E  the Young’s modulus, I  the area moment of 
inertia, and L the length. The moment, for round wires, is proportional to r 4. For 
the four wire suspension compared to the two wire suspension, there is one half the 
tension and the radius is 1/V2  times the two wire radius, implying the moment 
is 1/4 the moment of the two wire case. Thus the bending constant for one of
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the four wires should be \/2/4 times the moment for one of the wires in the two 
wire case. There are twice as many wires, suggesting that the total bending spring 
constant for the four wire case is y/2/2 that of the two wire case. Since the wires 
are thinner, however, the surface effects cause the loss to be greater (section 5 .1 .2 ). 
For this example, the greater loss has more effect than the weaker stiffness and the 
thermal noise increases. The relative importance of these two effects is not obvious 
and depends on the specifics of the parameters. The minimum loss for the four 
wire suspension at 50 Hz is observed 0.2 mm below the centre of mass at a level of 
1.46 x 10- 2 0m /\/Hz, 10% worse than for two wires attached near the centre of mass 
but still ~30% better than for two wires attached off the top of the mass.

For these cases, the tilt modes of the pendulum are nearly pure rocking modes 
about the centre of mass and the minimum point of thermal noise is very close to 
the height of the centre of mass. The thermal noise observed when the beam is at 
the height of the centre of mass is a few percent worse than the optimum values 
quoted above.

As this method of suspension minimizes the amount of pendulum thermal noise 
for a practical suspension and allows the necessary tilt control of the mass, a four 
wire suspension is what will be used in GEO 600.

5.2.2 One W ire Suspensions

In order to maintain low loss for the internal modes of the test mass, it is usu­
ally considered undesirable to attach alignment actuators directly to the test mass. 
Therefore tilt alignment in the GEO 600 suspension acts on the upper stages of the
multi-stage suspension, requiring at least two suspension wires as calculated above.
If it were to be acceptable to provide the control directly on the test mass, it would 
be important to reconsider the best suspension solution with respect to pendulum 
thermal noise. A single wire of radius 300 /xm can support the modelled mass at the 
same fraction of breaking stress as considered for the earlier cases. The comparison 
of the minimum thermal noise observed on the front face of the test mass using a 
single 19 cm wire attached to the top of the mass as compared to a longer 28 cm 
wire attached at the centre of mass of the optic is in figure 5.2. The respective 
longitudinal mode frequencies are 1.1 and 0.95 Hz. The tilt modes are now resonant 
at 4.3 and 0.50 Hz. The substantially different mode shapes that result with a single
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Long wires versus short wires, single wire, 
measured at optimum on front surface
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Figure 5.2: One short wire versus one long wire. When control can be applied 
directly on the test mass, a single wire may be used to suspend the optic. The 
minimum thermal noise on the front surface of the mass is evaluated for a suspension 
using one short wire attached to the top of the mass versus one longer wire attached 
to the centre of mass. This is further compared to two wires attached at the radius 
of the mass (one loop of wire). These values are calculated, again, for the location 
on the surface of the mass where the thermal noise is at a minimum.
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Long wires versus short wires, single wire, 
measured at COM
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Figure 5.3: One short wire versus one long wire, measured at COM. The same 
modelling parameters are used as in figure 5.2, but the resulting thermal noise seen 
at the centre of the optic, rather than at the optimum point, is plotted.

wire cause the minimum thermal noise to be observed much further from the centre 
of mass than in the two wire suspensions. The minimum is found 12.3 mm below 
the centre of mass for the short wire suspension and 10.3 mm below for the longer 
wire to the centre of mass. As with the suspensions modelled previously, using the 
longer wire results in less thermal noise, 8.5 x 10~2 1m/\/Hz at 50 Hz as compared 
to 8 . 8  x 10- 21m /\/Hz for the wire mounted off the top of the mass.

As before, a single long wire could not in practice be attached in the middle 
of the optic. It would instead be replaced by two wires near the radius of the 
mass, equivalent to a single loop of wire. These two wires would again be of radius 
2 1 2 (= 150\/2) fim. The longitudinal and tilt modes would be resonant at 0.95 and 
0.42 Hz, and the minimum noise would be observed on the front face at a point
10.3 mm below the centre of mass. In this case, the increase in the loss in the fibre 
due to the increasing effect of the surface losses is sufficient to give a worse level of 
thermal noise than for either of the single wire cases, 9.4 x 10_2 1m/\/Hz. This data 
is also plotted in figure 5.2.

When there are suspension wires separated in the longitudinal direction, as in 
section 5.2.1, the tilting stiffness is dominated by the relative extension of these
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Thermal noise for one 2  cm wire
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Figure 5.4: Thermal noise in a very short suspension. The observed thermal noise 
across the face of the GEO mass supported on a single 2  cm fibre.
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wires. In the cases in this section, the tilting stiffness comes from the angling of 
the wires away from the vertical as the mass rotates. This results in substantially 
different mode shapes, which is why the point on the front surface which exhibits 
the minimum thermal noise is much further from the centre of the optic than for 
the earlier cases. The thermal noise for these cases is substantially higher when the 
output is observed at the centre of mass, as plotted in figure 5.3. The suspension 
using a single wire mounted off the top of the mass exhibits over twice the level of 
thermal noise at the centre of the optic as opposed to its optimum 12.3 mm below the 
centre, 1.98 x 10~2 0m /\/Hz at 50 Hz as compared to 8.84 x 1 0 _2 1m/\/Hz. The other 
two cases, one wire attached to the centre of mass and two wires attached at the 
outer radius, also exhibit more thermal noise performance measured at the centre 
of the optic—1.21 x 10- 2°m/\/Hz and 1.34 x 10- 2 0  m /\/Hz at 50 Hz, respectively.

5.2.3 Short Suspensions

It has been suggested that very short wires should be used to eliminate the vio­
lin modes of the suspension wires from the detection band. However, it must be 
ascertained whether such a suspension can obtain comparable pendulum thermal
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noise performance. The thought is that there is a point on the surface of the mass 
where the combined effect of the longitudinal and tilt mode can give a minimum 
in the observed thermal noise. To examine this possibility, a suspension for a GEO 
sized mass is modelled supported on a much shorter single wire. A 2  cm long wire, 
of radius 300 /zm as before, supports the mass off the top of the suspension. The 
resulting thermal noise on the front face of the optic is shown in figure 5.4.

Were the wire to be completely rigid, such that the wire and mass combination 
pivoted perfectly about the upper suspension point, the resulting centre of percus­
sion (section 4.2) would be located 2.6 cm below the centre of mass of the optic. By 
comparison, the minimum thermal noise is located at a point 2 . 8  cm below the centre 
of mass of the optic. At this point, at frequencies away from the resonant peaks, the 
performance is completely determined by the behaviour of the longitudinal mode. 
Except near the tilt frequency of 28 Hz, the thermal noise is that of the longitu­
dinal mode at 5.0 Hz. The best noise observed for this case, 3.2 x 10- 2 0m /\/Hz, 
is substantially worse than for the other cases detailed due to the higher resonant 
frequencies. The additional difficulty is that this minimum occurs over 1/4 of the 
radius away from the centre of mass. Assuming that the size of the mirror has been 
chosen to be as small as possible with respect to the optical beam, this point will be 
too far from the centre of the mirror to be useful. If the beam were to be centred on 
the optic for this suspension, the resulting thermal noise would include the effects 
of the tilt mode and be much worse—4.8 x 10- 19m /\/Hz at 50 Hz.

One particular advantage of this kind of suspension is that it would be com­
paratively simple to replace the suspension wire with a short flexure. Flexures can 
be made at the same fraction of breaking stress (that is, with the same cross sec­
tional area) but much thinner in the critical direction. This can make the flexure 
much softer in bending, and presumably improve the thermal noise performance. 
The Lagrangian code can model the effects of flexures by changing the definition 
of the area moment of inertia of the wire. However, the results presented here are 
sensitive to the exact values of loss. The loss in the suspension elements depends on 
the surface effects, and it is not clear at this time what is the proper loss function 
to use for a flexure. A brief discussion of how flexure systems may affect thermal 
noise performance and other aspects of suspension design is included in the chapter 
summarizing possible future work (section 8 .2 ).
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Figure 5.5: Thermal noise in the GEO 600 pendulum. The data illustrates the 
contribution to the noise for the loss associated with each set of wires and with the 
cantilevers, as well as the total noise. The curve labelled ‘wire 3’ is calculated using 
non-zero loss only in the third (lowest) stage of wires; that labelled ‘wire 2 ’ uses 
non-zero loss only in the intermediate stage wires; and that labelled ‘wire 1 ’ only 
has loss in the uppermost wires in the system. The final curve is plotted for loss 
only in both sets of cantilevers.

5.3 Thermal Noise in a M ulti-stage Pendulum

The final figure of merit is the overall thermal noise in a triple stage GEO 600 
suspension. The Lagrangian code allows arbitrary loss in every stage of the system, 
accounting for the observed noise from all longitudinal and tilt modes. In particular, 
the intrinsic loss in the cantilever blades can be included, with the correct coupling 
to the output of the system. This allows for the first time the determination of the 
maximum allowable loss in every stage of the pendulum.

5.3.1 Longitudinal and Tilt

The resulting thermal noise in the longitudinal direction for the GEO 600 parameters 
is shown in figure 5.5. This includes all the noise that results from pendulum motion 
in the longitudinal and tilt modes. These curves are calculated using structural plus 
thermoelastic loss in the final stage of the pendulum, and structural loss of 1 0 - 5  for
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the other two wire stages. The cantilever blades are input with a structural loss of 
10-4. These figures for the stages other than the final stage are extremely conserva­
tive, but as the data show, even these values are acceptable because of the isolation 
that the final stage of the pendulum provides. To illustrate the effects of loss in 
each individual stage, various curves are plotted showing the resulting thermal noise 
for the loss being zero in all stages except one. As would be anticipated, the noise 
at higher frequencies is dominated by the loss in the final stage of the suspension, 
since the noise contributed by earlier stages in the suspension is filtered by the fi­
nal stages. At very low frequencies, the noise is dominated by the stages with the 
greatest loss, the cantilevers, which is unfiltered at low frequencies. The evaluation 
of some of these curves at higher frequencies causes some numerical difficulty. This 
results in the irregularity of some curves in figure 5.5, which is particularly obvious 
in the data for loss only in the highest stage of wire (labelled ‘wire 1’) near 10 Hz. 
This irregularity is inconsequential to any of the conclusions.

The noise at 50 Hz is the crucial result for this suspension. Due to the tilt and 
longitudinal mode shapes, the thermal noise seen by the optical beam could vary 
across the surface of the test mass. By varying the impinging point on the surface, 
the minimum noise and corresponding point can be determined. For the triple 
pendulum parameters used in the above figure (and summarized in section 7.3), 
there is very little variation (< 1 %) within a few millimetres of the point level with 
the centre of mass. The other important result that this data offers is the amount 
of loss in the higher stages of the pendulum that is tolerable without compromising 
the total noise, with the loss in the final stage fixed at the best achievable level. 
The low level of loss that is required in the final stage of the suspension leads to the 
use of fused silica fibres and specialized methods of bonding the fibres to the test 
mass. If higher levels of loss can be allowed in the higher pendulum stages, relatively 
simple steel wires and mechanical clamps may be used in those stages. By varying 
the loss parameters of the higher stages in the thermal noise calculation, it may be 
seen that at 50 Hz the loss in both of these higher stages can easily afford to be a 
factor of 103 worse than the loss in the bottom stage. This is effectively because of 
the amount of filtering of the noise from the higher stages given by the 1 Hz final 
pendulum stage. The total pendulum thermal noise expected in the GEO 600 main 
suspension is therefore expected to be 1.25 x 1 0 - 2 0m /\/Hz at 50 Hz.
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Vertical Thermal Noise 
of the GEO 600 Triple Pendulum Suspension
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Figure 5.6: Vertical thermal noise in the GEO 600 triple pendulum suspension. The 
notation is as in figure 5.5.

5.3.2 Vertical

The higher vertical frequencies in the system suggest that the loss in the higher 
stages of the suspension system will not be filtered as much. In addition, the can­
tilevers, which may have a great deal more loss, affect the performance directly in 
the vertical direction, rather than indirectly affecting the thermal noise in the longi­
tudinal direction through coupling from the tilt modes. Figure 5.6 shows the vertical 
thermal noise seen at the bottom of the GEO 600 triple pendulum suspension. In 
these cases, while the loss in the final stage is the most important, the loss in the 
cantilever stages does affect the total performance of the suspension at 50 Hz. For 
&cant = 10-4, the total noise is observed to be 5.4 x 10_18m /\/Hz in the vertical 
direction. When the loss in the cantilevers is assumed to be a factor of 10 greater, 
the total loss observed in the system increases nearly 20% to 6.3 x 10“ 18m/\/Hz.

When a 0.1% coupling from vertical to horizontal output is assumed for the 
system, this contribution to horizontal thermal noise from the vertical direction is
5.3 x 10- 2 1m/\/Hz, compared to the noise predicted for the longitudinal and tilt 
directions of 1.25 x 10- 2 0m/\/Hz at 50 Hz. The uncorrelated sum of these two 
noise sources give the total anticipated pendulum thermal noise for the GEO 600 
main suspension as 1.36 x 1 0 - 2Om /\/Hz at 50 Hz, below the target specification of 
7 x 1 0 - 2 0m/\/Hz.



Chapter 6 

Control of Interferometer Optics

The GEO 600 suspension system isolates the interferometer optics from disturbances 
due to ground motion at the measurement frequencies. This alone is not sufficient; 
while the test masses may be extremely quiet in inertial space, they still require 
to be measured in order to detect a gravitational wave. Therefore the suspended 
masses need to be controlled, both to reduce their motion at low frequencies and 
to reduce their relative motion with respect to the measurement device, the input 
laser.

This chapter will examine the philosophy of how control ought be applied to 
a complex mechanical system, such as the suspensions in a gravitational wave in­
terferometer. Next, it will examine how the techniques of chapter 3 were used to 
design a pendulum suspension that met the low frequency control requirements of 
the GEO 600 detector. This is followed by a discussion of how the modelling of a 
single suspension requires to be expanded to include violin modes when the control 
of the entire interferometer is considered. The chapter concludes by examining in 
detail the signal commonly used in ‘locking’ interferometers and how this signal is 
affected by the long optical characteristic times associated with long base-line inter­
ferometers, compared to the usual regime of short characteristic times in table-top 
experiments.

144
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Figure 6.1: Block diagram of a control system.

6.1 Hierarchy of Control

There are four parts to any control system: the sensor, the actuator, the plant, and 
then the control law. It is in this order that control problems should be addressed. 
These components are summarized in the block diagram in figure 6.1, along with 
various kinds of input variables, noise sources, and outputs that are relevant to 
the design of a controller. Something can only be controlled as well as it can be 
measured, thus giving precedence to the sensing. How correction is to be applied 
to a system can also be a limitation, highlighting the importance of the actuation. 
While the design of physical systems is often constrained by many (often conflicting) 
requirements, it is often possible to choose a system that proves much easier to 
control while not compromising other requirements. Finally, a control algorithm is 
determined, based on the capabilities of the sensor, the actuator, and the response of 
the physical plant. While very clever controller design may be able to compensate for 
a wide variety of performance deficiencies, reliance on an intricate control algorithm 
usually results in a system that is not robust to changes in the system over time and, 
in practice, depends overly much on a highly specialized individual to maintain and 
update the controller. Therefore, robust and simple controller designs are preferred.

For complex systems such as gravitational wave detectors, there are many control 
loops. All the possible degrees of freedom have to be considered to determine the 
respective degree of control required. It is common that there be multiple, nested, 
loops acting on the most important degrees of freedom. Different loops can, for 
example, provide correction in different frequency bands. These loops may use 
multiple sensors which use different references, as appropriate for each frequency
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band. Additionally, loops may act over different ranges, one loop using a large 
range ‘coarse’ actuator effect while another provides a more accurate and less noisy 
‘fine’ control.

For the suspensions described in this work, control is typically broken into two 
types. The ‘local’ control, described in the next section, uses a non-inertial refer­
ence to sense disturbances in every degree of freedom of one pendulum mass. The 
relatively simple sensors and actuators can have a very wide range, compared to the 
signal to be detected by the interferometer, and the control is applied at frequen­
cies well below the detection band to control the behaviour of the entire pendulum 
suspension. The ‘global’ control, discussed in section 6.3, is the fine control applied 
to the sensed test mass. It requires sensing the entire state of the interferometer, 
using an involved sensing scheme. It typically requires higher bandwidth control, 
but is only required in certain degrees of freedom. In particular, the longitudinal de­
gree of freedom—the sensed direction of the interferometer—has the tightest control 
requirements. Variations in the angular positions of the mirrors can couple noise 
to the interferometer output with a coupling based on beam position. In a similar 
fashion, mirror displacements in directions orthogonal to the beam can cause higher 
order errors in the optical signal. The global control of these degrees of freedom is 
not discussed in detail here.

6.2 ‘Local’ Control

The pendulum suspensions provide a seismically quiet system at higher frequencies. 
Below the resonant frequencies of the system, naturally, the system provides no 
isolation, so that the suspended optic moves exactly as much as the ground on 
which it rests. Exactly on resonance, the pendulums can move a great deal more 
than the input ground motion. By being in vacuum, and due to the high mechanical 
Q required for thermal noise reasons, it is guaranteed that the pendulums resonances 
will cause motion many (y/Q) times more than the base spectrum. This leads to 
a large average (root mean square or rms) motion which can persist for a great 
deal of time. While great effort is placed into making sensors and actuators very 
accurate and sensitive, if a large motion were to be accommodated, the dynamic 
range requirements become prohibitive. As an example, even if the interferometer
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signal, which is to detect motions on the scale of 1 0 “ 19 m in a bandwidth of a few 
Hz, could operate over a range of 1 mm, the data would have to be recorded to 
log(10- 3 /10-19) =  16 decimal places, and require log2 (1015) «  54 bits of analog to 
digital conversion. In addition, the time Q/fo gives a measure of how long these 
resonances take to decay when excited by whatever means. A Q on the order of one 
million in a pendulum would give a decay time on the order of twelve days. Clearly 
the system cannot tolerate disturbances that prevent operation on these time scales.

Thus it is important to reduce the Q, the magnitude, of these resonant peaks. 
The metric is a practical one; it is desired that the system quiet down for a distur­
bance input in a short period of time, on the order of a few seconds. Therefore, the 
Q of the resonances should be reduced to ~5 or less.

As noted in the discussion of the fluctuation-dissipation theorem (section 2.5.1), 
a lower value of Q would typically cause the system to have more thermal noise in the 
measurement band, since the energy thermally dissipated in the suspension causes 
more fluctuating motion. Damping the system externally is called ‘cold damping’, 
since feedback forces are used to increase the damping without raising the noise 
temperature of the system. Energy is removed from the system through the external 
actuators rather than through frictional or other entropy increasing methods.

To reduce the motion of the system requires a reference that is quieter than the 
suspension to be controlled. On resonance, the ground input (or other interface to 
which the pendulum is attached) is much quieter than the pendulum, so measuring 
the position of the pendulum with respect to the ground is appropriate. This is 
done by mounting a light emitting diode (LED) and a photodiode on the frame 
surrounding the pendulum. A flag is attached to the pendulum, positioned so as to 
block some of the light of the diode. This sensing of each pendulum system with 
respect to its immediate surroundings lead to the designation ‘local control’. In the 
GEO 600 design, this ‘shadow sensor’ uses a photodetector of area (4.5mm) 2 and 
50 mA to supply the LED. This gives a position measurement with sensitivity better 
than 3 x 10- 1°m/\/Hz. In the state-space formulation the relative motion between 
the ground and the moving mass can be made an output by setting, for example,

Vss =

using the C and D matrices (section 3.7). All the modelling work for the local control
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simply uses y = x i, because near the resonance where the control has greatest effect,
x i  »  X g .

For a one-dimensional resonance, the ideal feedback controller is simple to de­
termine. Since the energy flow in the system is the rate of work done on the system,

d dxE  =  —W  =  F —  =  F  • v, 
dt dt

to quiet the system by removing energy, ideally

F  oc —v. (6.1)

Of course, the ground does not provide a quiet reference at higher frequencies. In 
addition, the shadow sensor provides a position signal; converting this to the desired 
velocity involves an electronic differentiation which typically adds noise at higher 
frequencies. Therefore the feedback controller should not provide gain above the 
pendulum frequencies.

Since isolation is provided by the suspension at high frequencies, it is important 
not to rigidly fix the suspension to the ground. Therefore, the appropriate actua­
tors are low impedance (soft), those which provide a correcting force, rather than 
high impedance (stiff), such as piezo-electric stacks which establish a position. For 
gravitational wave detectors, the suspensions typically use magnets attached to the 
suspended masses and use external coils to generate corrective forces. The simplest 
way to reduce the affect of actuator noise on the suspension is to make the actuator 
very weak. Limiting the authority in the actuator in this fashion clearly can reduce 
the effectiveness when large forces would be appropriate, such as for acquiring lock 
as described in section 6.4.

These sensors and actuators could, in principle, act at any point on the multiple 
stage pendulum to reduce the motion. Sensing and actuating at the same point 
ensures that no unmodelled dynamics can affect the performance of the loop. By 
proper design of the control loop, stability can be guaranteed.

These ideas were extended, in a classical control context[65], to the double pen­
dulum suspensions to be used in GEO 600 by Killbourn[67]. The success of this 
control design was to be extended to the triple pendulum suspensions used for the 
main optics. There axe a number of features that are advantageous to this design,
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not the least of which is the great variety of suspensions to which it may be ap­
plied. Firstly, the controller design is simple. A rigid body exhibits motion in six 
degrees of freedom; to control all of these requires six sensor-actuator pairs po­
sitioned around the mass. Each sensor-actuator pair is controlled independently 
with a single-input, single-output (SISO) controller. This allows the full, multiple- 
input, multiple-output (MIMO) design to be greatly simplified. Each channel is 
identical, with, at most, a small change in electronic gain, reflecting the relative 
scale of the moments of inertia and lever arms for each degree of freedom. Secondly, 
the control is collocated. By feeding back each sensor signal to the corresponding 
actuator, rather than combining the signals of multiple sensors into, for example, 
the translation and rotation of each mass then decomposing the actuation signal 
back to the appropriate drivers, the system has all the usual advantages of colloca­
tion, such as the guarantee of stability. These two virtues lead to the most general 
advantage of all, the robustness of the controller. Each controller acts to damp any 
resonances that are in the band of approximately 0.5—5 Hz. Thus any suspension 
whose frequencies lie in this range can be controlled, virtually without modification.

Ideally, the suspension design would be chosen such that all modes of the system 
lie in this range. This is not always possible. The vertical resonant frequencies of 
a wire based pendulum suspension will be higher than the longitudinal resonant 
frequencies. The inclusion of cantilever blades in the upper stages of a suspension 
allow these vertical (and roll) frequencies to be reduced to fall within the local 
control band. As previously noted, these thermally noisy blades can not be used in 
the final, most sensitive stage of a pendulum suspension. Therefore, for the GEO 600 
triple pendulum suspension, the vertical and roll modes that involve the differential 
motion of the bottom two stages of the pendulum will have higher frequencies. The 
roll motion couples very weakly to the interferometer performance, and therefore 
this mode has little effect. The entire suspension was designed to ensure that the 
higher frequency vertical mode is acceptable for isolation. This mode is resonant at 
too high a frequency to be damped but not so high a frequency that its affect on 
the control loops may be ignored, and the electronic feedback typically uses a notch 
filter at this frequency to avoid difficulties.

The important characteristics of the local control examined here are that it acts 
in a specific low frequency band and damps all the motion of the uppermost mass
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Figure 6 .2 : Bode response of the local controller.

in the suspension. This allows the simple extension of this control philosophy to a 
large variety of suspensions, both minor variations as used in all the different optics 
in GEO 600 (described in chapter 7) and in substantially different pendulums as 
may be used for advanced detectors (chapter 8 ). The frequency response of the 
local control electronics for GEO 600 is shown in figure 6 .2 .

6.2.1 Location of Damping Versus Noise

The difficulty in damping the motion of the test mass in a multi-stage pendulum 
system is that, above the resonant frequencies, the mass is very quiet. Any attempts 
to sense the motion of this test mass will be dominated by the noise in the sensor, 
ti s in figure 6.1. To not exceed the target specification of 7 x 10- 2 1m /\/Hz at 50 Hz 
(a factor of ten below the anticipated internal thermal noise of the test mass) for 
sensors which sensed the critical test mass with a sensitivity of 3 x 10-lom /\/Hz, 
the loop gain of the controller would have to be something less than 10- 9  by 50 Hz. 
Since the loop gain of the controller must be of order 1 up to a few Hertz to provide 
damping for the longitudinal resonances of the system, the system would require to
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achieve this filtering in less than two orders of magnitude of frequency. The inertia 
of the triple pendulum provides some of the filtering—the transfer function between 
force applied to the bottom mass of the GEO design to resulting displacement gives 
~10 - 4  filtering between low frequencies and 50 Hz—but the fundamental relation­
ship between the magnitude and phase of a transfer function[79] ensures that the 
electronics used to achieve the remainder of the attenuation will cause some phase 
lag at the lower frequencies. The amount of filtering required makes this potential 
controller a challenging design if it is to maintain a reasonable phase margin above 
a few Hertz.

In addition, any noise in an actuator acting directly on the isolated test mass 
is applied directly to the test mass. In the electronics that drives the actuator, the 
final stage operational amplifier can output 10 V peak (or ~7 Vrma) with a noise 
of 4 nVrma/\/H z, for a dynamic range of ~2 x 109 in a 1 Hz band at 50 Hz. An 
actuator being driven by this amplifier acting directly on the test mass and having 
a noise less than the detector specification at 50 Hz would have a maximum range 
of less than one micron (allowing for the mechanical filtering).

Instead of attempting to control the sensitively isolated optic, a more viable solu­
tion is to sense and actuate on a less sensitive stage of the multi-stage pendulum—in 
particular, the least sensitive, or highest stage. This allows both the actuator to be 
made significantly stronger, by the inverse of the isolation of the final stages of the 
pendulum at 50 Hz, and reduces the requirements on the electronic filtering of the 
sensor noise, by the same factor of isolation. There is still a significant amount of 
electronic filtering to be done, and this filtering has been updated from that devel­
oped for the double pendulum suspension for use in the suspension of the main optics 
in GEO 600. The required filtering is achieved by three stages of resonant Scultety 
filters [80]. This is a particular implementation of a filter consisting of a pair of reso­
nant poles, relatively heavily damped, to cause rapid (/p//o ) 2 attenuation, followed 
by a lightly damped pair of filter zeros, which reduces the phase lag observed at 
lower frequencies. It is chosen due to its electronically quiet implementation. The 
transfer function of a single Scultety filter is
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Noise in the GEO 600 Triple Pendulum Suspension
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Figure 6.3: Sensor and actuator noise in GEO 600 main suspension. The effective 
displacement noise of the suspended mass due to sensor noise and actuator noise. 
At 50 Hz and above, each of these is below the internal thermal noise of the test 
mass, estimated to be 7 x 10_2Om/\/Hz.

The parameters are chosen such that the resonant peak of each filter stage has a Q 
of approximately 3. The notch in each filter is tuned to account for uncontrolled 
resonances in the system. The lowest frequency notch is at the highest frequency 
vertical mode of the triple pendulum system, 25 Hz. The exact frequencies of the 
second and third notches are not crucial as long as sufficient electronic isolation is 
achieved; these notches are set at 45 and 50 Hz.

The implementation of this electronic filtering, along with the characteristics 
of the shadow sensor and the coil actuator, inserted into the dynamics model of 
the multi-stage pendulum gives the predicted levels of noise shown in figure 6.3. 
The contribution to the noise budget is a factor of nearly 100 below the specified 
level for GEO. The transfer function between the volts applied to the actuation coil 
(a noise of 4nV/\/Hz) and the resultant motion may be deduced from the figure; 
the mechanical attenuation of ~109 between low frequencies and 50 Hz combined 
with the dynamic range of the actuator gives a total actuator range greater than 
1 mm. The effect of the local control on the motion of the test mass can be seen in 
figure 6.4. The height of the resonant peaks has been reduced (to a Q of a few), as
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Figure 6.4: Predicted RMS motion of test mass. The spectral density (x sd) of the 
open and closed loop performance can be compared to see the reduction of the 
resonant peaks due to the local control. The root mean square (rms) motion for 
both open and closed loop performance is plotted as the integral of the residual 
motion at that frequency and above, xrms(f)  =  J^° x2d(f) df. Clearly most of the 
average motion comes from the resonant peaks; thus the closed loop rms motion is 
an order of magnitude less than the open loop rms motion.
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seen in the spectral density, and the total average (rms) motion has been reduced 
approximately a factor of ten.

6.2.2 M ode Coupling

The choice of a triple pendulum (or any multiple-stage pendulum) adds one impor­
tant complication to damping the system at the uppermost stage. The technique 
will successfully reduce motion of the damped stage, but it is not guaranteed to 
damp motion of the test mass at the lowest stage of the pendulum. The difficulty is 
that there may be a mode where there is a great deal of motion in the lower stages 
of the pendulum while there is little motion at the uppermost stage. The simplest 
example would be for a system where one stage has a great deal more mass than any 
other stage. The same forces that cause large motions of one stage would then cause 
little motion of the most massive stage. This aspect of the problem is avoided by 
having each stage of the suspension have comparable mass and moments of inertia 
about each axis.

The more general problem is somewhat subtler. In order for each mode of the 
system to be damped by a sensor-actuator pair, each mode must be both controllable 
and observable[81]. In practice, the requirement is that each eigenmode of the system 
should have a substantial component of motion on the uppermost mass. The exact 
relationship between observed system performance and the eigenmodes depends on 
the frequencies of the modes and the masses and moments. Therefore, the simplest 
way to verify that the mode shapes are suitable is to use the modelling techniques 
to calculate the open loop transfer function of each channel. Since each resonant 
mode of the plant is very lightly damped, and thus on the magnitude response 
exhibits a large peak, if the mode is sufficiently observable, it will have a large peak 
in the open loop transfer function of the controller channel. Achieving acceptable 
performance for all the modes to be controlled in the system requires some effort and 
iteration. Examples are shown in figure 6.5. The open loop response of one of the tilt 
controllers in the GEO 600 main suspension is shown in the solid curve. In contrast, 
the dashed line shows the same open loop controller for an arbitrary choice of one 
selected mechanical parameter, where s[l, I] = s[2, u] has been reduced from 0.03 to 
0.01 (i.e., the full separation of the wires between the uppermost and intermediate 
stages has been reduced from 6 cm to 2 cm). There are three resonant peaks
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Coupling in the GEO600 local controller
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Figure 6.5: Coupling of modes in the triple pendulum suspension. The solid line 
illustrates the open loop signal at a representative sensor which demonstrates a large 
amount of gain at each resonant peak. The dashed line shows the same signal for a 
poor choice of pendulum parameters, where the control gain at one peak (~2.5 Hz) 
is much lower than at the other peaks, resulting in very little damping of that 
resonance.
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Figure 6.6: Mode shapes in the triple pendulum. The various figures show the shape 
of the the six longitudinal and tilt modes for the GEO 600 suspension.

observed in each magnitude plot. In the chosen design, the magnitude of each peak 
is large, resulting in a large loop gain at each resonant frequency and thus sufficient 
damping. In the alternate design, the magnitude of one of the peaks, between 2 and 
3 Hz, is so small that it essentially does not appear above the baseline curve. This 
happens because the cantilevers between the uppermost and intermediate stages 
of the suspension make the tilt between these two stages very soft, such that the 
bottom two stages can tilt with respect to each other while the uppermost stage 
tilts very little unless the separation of the wires is sufficiently large. Therefore one 
of the modes of the system has very little loop gain and therefore little reduction of 
the resonant peak. The details of each case can be examined in turn, but the design 
iteration can be done by examining the open loop response of each of the control 
channels.
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Figure 6.7: Position of the coils on the triple pendulum. Six coils allow control of 
all six degrees of freedom of the uppermost masss of the pendulum.
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With this design tool, the mechanical parameters of the triple pendulum can be 
finalized. The specific longitudinal and tilt mode shapes for the GEO 600 triple 
pendulum are depicted in figure 6.6. The control is achieved by positioning the 
collocated sensor/actuator pairs to sense and control all the modes of the system. 
For the final design, two sensor/actuator pairs are located to provide longitudinal 
and yaw control, spaced 8 cm on either side of the centre of mass; one sensor/actuator 
is located on the side of the mass, actuating through the centre of mass; and three 
pairs are located on the top surface of the mass (figure 6.7). These three control 
vertical, pitch, and roll motion. One of these is located 8 cm away from the centre 
of mass in the transverse, Z, direction, acting vertically. The other two are centred 
about a line the same distance on the other side of the mass, one of them 6.5 cm 
and one 9.5 cm from the centre of mass in the Z  direction, while they are each 3 cm 
from the centre of mass in the longitudinal direction. These positions are chosen 
very practically such that the coils fit together, both for a single suspension and for 
suspensions involving a reaction mass needed for applying the global control forces 
(section 6.3).

6.2.3 Verification

The operation of this local controller was demonstrated on the prototype triple sus­
pension. Experimentally, the test of the local control with respect to the mechanical 
parameters of the pendulum was done before the final version of the control elec­
tronics was completed. Therefore the circuitry designed for the control of an earlier 
double pendulum design[67] was used. The ability to do this reflects the wide range 
of applicability of the control philosophy as described ealier. The only difference 
in the transfer functions was the final electronic filtering, which does not affect the 
control near the pendulum resonant frequencies. When in operation, it is visually 
clear that the pendulum system is well damped. Even for a large manual distur­
bance which saturates multiple sensors, the system appears to return to equilibrium 
in less than ten seconds. Each channel is well damped, with a Q on the order of 3 
or less.

The two most critical degrees of freedom, longitudinal and tilt, are explicitly 
evaluated. The local control electronics is designed with both a ‘fast’ and a ‘slow’ 
input to allow various test inputs to be applied to the system. A step input was
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Figure 6.8: Tilt step response of the prototype suspension. The figure shows the 
measurement in one channel compared to the predicted response.
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Figure 6.9: Longitudinal step response of the prototype suspension. The figure 
shows the measurements in both channels compared to the predicted response.
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fed into the slow input of the relevant channel, resulting in the step being fed dif­
ferentially into the two appropriate coils for tilt control on top of the mass for tilt 
testing and the step being fed identically to the two coils at the rear of the mass 
for longitudinal testing. The response of one sensor of the tilt pair of channels is 
shown in figure 6.8, where the agreement with theory is excellent. The next figure, 
figure 6.9, illustrates the response of the two sensors in the longitudinal pair. This 
data provided an interesting test of the robustness of the control design.

The original data taken for the longitudinal step response showed a greatly dif­
ferent response between the two nominally identical channels. The response of one 
channel looked very much as predicted by the model, while the second channel 
showed no overshoot and seemed to be well overdamped. This was because the 
shadow sensor of the second channel had approximately twice the gain of the sensor 
in the first channel. Therefore, the same force generated in each longitudinal coil 
was being detected as if there were a great deal of yaw motion. The predicted yaw 
response to a step input is shown in figure 6.10, where it is seen that the yaw mo­
tion is overdamped. Since the same pair of actuators affects both longitudinal and 
yaw motion, the electronic gain in these channels is a compromise of the ideal gain 
for each direction. The separation of the coils provides the lever arm for the yaw 
direction, and a practical separation based on physical convenience yields the over- 
damped response which is plotted. This description of the motion in terms of the 
centre of mass coordinates is for observational convenience and does not affect the 
fact that each sensor-actuator pair acts independently. The behaviour of the sys­
tem with respect to its damping and hence its rms motion was still acceptable, even 
with an unanticipated factor of two in one channel. It was, however, desired that 
the channels work identically for simplicity in setup and for calibration of alignment 
signals, and the electronic gains in the two channels were adjusted accordingly.

6.3 ‘Global’ Control

The gravitational wave is detected by sensing the response of the optical system 
formed by the interferometer. Therefore, while the suspended masses need to be 
seismically quiet, so that their motion under the influence of a gravitational wave 
can be seen, the mirrors also need to form this optical cavity. The most basic form
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of this requirement is that the laser beam which travels down the long arm of the 
interferometer needs to be reflected back to return to the beamsplitter. More specif­
ically, the lengths of the interferometer arms are required to be controlled, whether 
to maintain the interferometer on a dark fringe or to form a cavity resonance. This 
alignment is always defined with respect to the optical field and thus intrinsically 
with respect to the other mechanical components of the system which define the op­
tical path. Because the error signal for the position of any single optic then depends 
on the state of the entire system, and may most practically be measured at a large 
physical distance from that optic, this is called ‘global’ control, as opposed to the 
local control defined earlier.

As far as directing the path of the optical beam as it reflects off the suspended 
mirror, the angular orientation of the mirror in tilt and yaw are the critical degrees 
of freedom. Since this is fundamentally a question of equilibrium alignment, the low 
frequency control may be applied through the same coil-magnet actuators described 
as for the local control, applied at the uppermost mass of the system. For the 
GEO 600 main suspension, it is desired that the coils provide a capability of 10 mrad 
of static alignment. For the 600 m long arms of the interferometer, this means that 
as long as the beam initially returns down the beam tube, or as long as it still 
returns down the tube after the vacuum system has been evacuated, the coils have 
more than sufficient range to align the beam. This alignment can be detected with 
a generalization of the technique commonly used to sense the length of a Fabry- 
Perot interferometer, which will be examined in detail in section 6.4. This can 
provide a very high gain signal once the cavity is close to resonance, and has been 
demonstrated for use in GEO 600 by Morrison[82, 83].

6.3.1 Requirements

The interferometer is maintained on a dark fringe of the interferometer, as mentioned 
in section 1.2.2. If the interferometer is offest from a dark fringe by an amount Ax, 
intensity noise on the laser beam appears in the output signal of the detector as
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where I  is the intensity noise of the light. For GEO 600, the anticipated inten­
sity noise of the Nd:YAG laser is one part in 107[84]. To reach the displacement 
sensitivity of 10-20m/-\/Hz requires that the average (rms) motion of the mass to 
be less than 10-13 m. From figure 6.4, it can be seen that the rms motion of the 
system, even after the damping from the local controller, is on the order of 10-7 m. 
Therefore, the global control servo requires a gain of ~106 in the neighbourhood of 
1 Hz.

6.3.2 Gain Versus Bandwidth

Achieving this amount of gain in a single control loop results in a bandwidth of 
~1 kHz[85]. Since this level of control is applied directly to the test mass, its 
noise is not filtered by any lower pendulum stages. This control then requires an 
actuator with much lower noise performance, such as an electrostatic drive[86]. The 
linear range of these actuators is typically very small, such that the motion of these 
actuators must now also be considered. (This is considered in detail for coil-magnet 
actuators by Killbourn[67].) To provide a seismically quiet base for actuation, where 
global control forces are to be applied there is an identical, parallel triple pendulum 
suspension. This ‘reaction mass pendulum’ design is similar to the main pendulum, 
although the fused silica fibres in the final stage axe unnecessary. This allows the 
same assembly and same local control to be used, greatly simplifying the total system 
design.

The high gain necessary in the global control loops leads to the potential problem 
of exciting internal modes of the system. The internal modes of the test mass are 
> 10 kHz. Since these modes are, necessarily, very high Q resonances (section 1.3.2), 
the loop gain at these frequencies will exceed unity magnitude and cause instability 
unless precautionary measures are taken. This can be done with careful notch 
filtering[85].

Alternatively, because of the very high gain required and the concomitant diffi­
culty of achieving this gain through a single stage of noise-free actuation, an obvious 
method to consider is to use split feedback—apply actuation up to mid-frequency 
regions directly on the test mass while applying higher gain control with lower band­
width further away from the test mass. This is achievable since the system is stiff at 
low frequencies, below the pendulum resonances. This allows, for example, a large
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range, slightly noisier coil-magnet actuator to be used on the intermediate mass of 
the pendulum while a quieter electrostatic drive applies force directly to the test 
mass.

6.3.3 Split Feedback— Effects of Control ‘Through’ Reso­

nances

The control loop that feeds back to the intermediate mass will have somewhat higher 
bandwidth than the ~5 Hz loops used for the local control. Therefore, the modes in 
the suspension elements (the violin modes described in section 4.5.1) may have to
be included in the modelling of the transfer function. The effects of these internal
modes can be modelled in a finite element fashion, using a small number of elements 
per wire to include the first few violin modes, or as a continuous, standing wave 
solution[71]. The particular solution to be discussed is a one dimensional solution, 
just considering motion along the beam direction, X .  In this example, the wires are 
modelled using the second order equation for a wire under tension [70] (as opposed 
to the fourth order beam equation, equation 3.20),

d2w rnd2'w In a\
PW = W ’ '

where p is the linear density, T  is the tension, and w is the transverse displacement 
of the wire as a function of distance along the wire, rj. The solution of this equation 
is

w(r/, t) =  (asin(&77) + /?cos(kT])) exp(-iu)t) (6.5)

where k, the wave vector, is given by

k = -  (6.6)
cs

in terms of the angular frequency, us, and the speed of sound in the wire, ca, which 
in turn is
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The boundary conditions are that the displacements between wire stages must 
match,

Wi(li,t) =  wi+1 (0 , t), (6.8)

and Newton’s second law of motion must be obeyed at each mass

d2Wi(li,t) ^d w i( lh t) dwi+1 (0,t) , .
mi— W ~  = - T*— f r T  +  Tw  dv  ' (6'9)

Stated properly, an equation is written for each wire, and the resultant force at 
any mass is the sum of the forces due to all of the wires. In equation 6.9, each 
mass is represented by a point mass, such that the force equals the mass times the 
acceleration. Because this modelling is intended to allow much higher bandwidth 
control to be designed, it may be necessary to include the higher frequency internal 
modes of the test mass. In this case, the impedance of the mass can be used to 
express the relationship between the force and velocity at the endpoint of the wire, 
rather than simply using F  =  ma. Treating the test mass as, for example, a cylinder 
with longitudinal modes, the relationship between force and velocity is solved using 
the second order equation [70]

which has solution

f (x , t )  = (fi sin(kcx +  £) +  f 2 COs(kcx +  5)) exp(iu;£). (6-11)

Here /  is the amount of longitudinal compression, with the compressional wave 
vector kc = u /c c. The velocity of this compressional wave is cc =  y/E /p,  where E  
is the Young’s modulus and p the density of the material. This expression ranges 
from 0, where the wires attach, to 1/2, the distance to the front of the mass. (A 
similar equation could be used to describe the compression from the attachments 
towards the back end of the mass.) The boundary conditions are that there is no
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force at the unconstrained face of the mass,

(6.12)

(6.13)

In this expression, F  is the input force and Area the cross sectional area of the 
cylinder. The factor 2 comes from the fact that this point forms the boundary 
condition for both the front and the rear of the test mass. This can be solved to 
give the impedance at the input, the ratio between input force and velocity at that 
point.

Solving the set of equations, for all the stages of wires, allows the response at 
the wire endpoints to be calculated. The same calculation that gives the impedance 
of the test mass can be used to show the relationship between the motion where the 
wires are attached, /(0), and the motion of interest at the face of the optic, f ( l / 2). 
If the control to be designed is of sufficiently low bandwidth to be well below the 
internal modes of the test mass, then f(l/2)  =  /(0).

By modelling in this fashion, transfer functions between inputs on higher pen­
dulum stages and outputs on the test mass can be predicted more accurately for 
higher frequency bands. The Lagrangian modelling discussed previously can predict 
the transfer function, for example, between force applied at the upper mass of a 
double pendulum and the motion at the test face. Figure 6.11, which shows the 
same problem modelled in this standing wave fashion, clearly shows the effects of 
the internal modes of the suspension wires above 600 Hz, with higher harmonics 
extending above the frequency range plotted. This standing wave model does, how­
ever, lack the details necessary for the full dynamics and thermal noise calculations 
of the Lagrangian model.

This model allows a feedback loop to be designed which actuates on the interme­
diate mass (or higher in the system). Excitation of the internal modes of the system 
can be avoided by carefully notching the feedback signal at the resonant frequencies 
of the suspension wires. This is more difficult when the wires do not have exactly 
the same tension and thus different violin mode frequencies. The model described

and that the force at the input is balanced as

r df(0 ,t) F  
dx 2 Area ’

ox
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Figure 6.11: The effect of control through resonances in a double pendulum. This 
illustrates the transfer function from force applied at the intermediate mass to mo­
tion at the test mass, with the effect of the internal violin modes of the wires clearly 
visible above 600 Hz.

includes this effect by varying the tension in each individual wire. This allows the 
design of a proper split feedback system to begin.

It is very difficult to guarantee that the modes in the wires are not excited. When 
they are excited, a controller designed to position the test mass does not necessarily 
provide a simple manner to damp these modes. A system to damp the excitation 
of the violin modes has been described[87]. With this in successful operation, the 
possible excitation of the internal modes of the wires is much less critical, and the 
design of the split feedback loop may not need the level of care afforded by this 
model.

6.4 Lock Acquisition

To maintain the proper optical cavity resonances which allows the gravitational wave 
detection to be made, the longitudinal position of the mirrors with respect to the 
laser must be detected. This is typically done by taking advantage of the phase 
change of the cavity optical field through resonance. The work to be described is for
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Figure 6.12: A Fabry-Perot cavity

the simplest optical cavity, a Fabry-Perot interferometer[27], but the principles are 
used in more complicated compound optical cavities. The difficulty is that the error

time scales over which the mirrors move. This signal may not be a suitable error 
signal for control purposes when the cavity storage times are longer, as they are 
for long baseline interferometers. This section describes a subset of the work in 
Lawrence et. al.[2], with an emphasis on applications to control.

6.4.1 Optical Cavity Fields

A Fabry-Perot cavity, such as those which can used to increase the optical storage 
time in the arms of a gravitational wave interferometer as described in section 1.2.2, 
is shown in figure 6.12. The two mirrors of the cavity are a distance I apart, and 
the cavity is resonant with the laser field when the field acquires a 27rn phase shift 
in one round trip of the cavity for integer n. When the cavity is on resonance, the 
incoming laser light constructively interferes with the light already in the cavity, 
resulting in a large cavity field.

The magnitude of the steady-state electrical field just inside the cavity, Ecav, is 
equal to the same steady-state cavity field from one cavity round trip time earlier, 
propagated around the cavity, and added to the incoming field, Einetut, transmitted 
through the input mirror [8 8],

signal typically derived assumes that the cavity storage time is short compared to

Ecav = ih E in + n  r i e - ^ - ^ E , (6.14)

In this expression, n  and 7*2 are the field reflection coefficients of each mirror with t\
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and t2 the corresponding transmission coefficients (such that r\  + 1? =  1 for lossless 
mirrors), e_Q°2/ represents the loss the field experiences in one round trip of the 
cavity, and u  is the optical frequency of the input beam. Therefore, the relation 
between the cavity field and the input field in steady-state is

Ecav __  ______________ ^ 1   / ~  1 r \

Ein ~  1 ^  0}

This magnitude of this expression reaches a maximum when e_la;Z/c =  1, or wl/c =  
27T71.

The full width-half maximum (fwhm) cavity linewidth is the distance in fre­
quency between the two points on either side of the maximum transmission where 
the intensity falls to half of its maximum value[89]. This is given by

A Ufuhm =  J^  (6-16)

in radians per second, where T  is the cavity finesse, which for low loss is given by[88]

T  =  (6.17)
1 -  r ir2

If the length of the cavity changes, as opposed to the input frequency changing, 
an alternate expression for the fwhm cavity linewidth may be written. Moving the 
mirror by A/2 is equivalent to changing the input laser frequency by a free spectral 
range. Therefore the distance in cavity length between the two points on either side 
of the cavity resonance where the intensity falls to half of its maximum value is

A ZMm =  - L  = — . (6.18)

A useful error signal can be obtained by using the reflected cavity field in a 
heterodyne detection scheme[90]. The field reflected from the cavity is the superpo­
sition of the cavity field transmitted through the input mirror and the reflection of 
the input field. Therefore,

E„fl =  n E in + it1r2e - a°2,- iw2,' cEalv, (6.19)

where the cavity field is propagated around a round trip and then transmitted
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through the final mirror. For r\ + 1\ =  1, equations 6.15 and 6.19 combine to give

Erefl 1 TI — r i r 2 e - a o2 l-u j2 l /c

Em n  1 -  r i r2e-«o2* - ^ / c ' (6 .20)

For the case where r\ =  r2 and with very low loss (a0 1), on resonance the
reflected field drops to zero, whereas far from resonance essentially the entire input 
field is reflected (as can also be seen by considering power conservation with respect 
to the transmitted field).

If the input field is phase modulated at frequency u m with small modulation 
depth 5, the resulting field can be described to first order by a central carrier field 
with two sidebands given by[91]

(6.21)

When the carrier frequency, u, is close to a resonant frequency of the cavity and 
the modulation frequency is significantly larger than a cavity linewidth, then the 
sidebands are directly reflected while the carrier builds up a cavity field. For a cavity 
near resonance, er lu2l/c «  i ? such that the reflected field from equation 6.20 with 
the input field from 6.21 is

En,i =  Eone-** ( l  + |  -  e+” " ‘) )  +  (6.22)

and a corresponding reflected intensity of

Irefl =  2  CtoEnflE^fl, (6.23)

where eo is the permeability of free space. Detection of this reflected field with a 
photodetector yields a photocurrent of

irefl = $l(Irefl) =  ^C€0 'R,EreflE*refi, (6.24)

where TZ is the responsivity of the detector.
For slow changes in the cavity length, the reflected current has a DC term, a term 

at frequency ujm, and a term at frequency 2um, which may be determined by inserting
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the expression for the field, equation 6.22, into the expression for the photocurrent, 
equation 6.24. The component of the reflected current at the modulation frequency 
Um is

irf =  -ceoRtirir25Eo$l(Ecav). (6.25)

Rexamining the cavity field, equation 6.15, for small perturbations away from 
resonance, where I =  l0 +  A/ and l0 satisfies the resonance condition, then

Ecv = it 1 (1 -  r^e-*21) +
Bin (1 — n ^ e -0®21)2 +  (rir2^ŝ e _ao2') 2

From this it can be seen that the real part of E ^ ,  and thus the detected photocur­
rent in equation 6.25, is proportional to A I.

For a high finesse cavity, this provides an excellent error signal for use in locking 
the cavity on resonance. The signal is unambiguous, crosses zero at the desired 
position and can have an extremely high gain (V/nm). Any variations in input field 
affect the size of the output signal, but since this is centred about zero, this only 
affects the gain. The clear shortcoming of this signal is that it is only valid over 
a fairly narrow range of displacement. For mirror excursions of more than a few 
linewidths, there is very little field built up in the cavity and thus very little error 
signal.

6.4.2 N on-Steady State RF Error Signal

One potential difficulty comes from the fact that these mirrors may be moving over 
time scales comparable to the cavity storage time. The calculation of the cavity 
fields done in the previous section is a steady-state analysis. In practice, this means 
that the length of the cavity does not change appreciably over time scales in which 
the cavity field might change, which is approximately ts =  TTlj'KC  for a high finesse 
cavity. For a laboratory scale cavity, with I «  1 m, for a relatively low finesse cavity 
of T  =  103, the cavity storage time is only ts «  2/xs. Since for a Nd:YAG laser 
(wavelength =  1.064 /im) the cavity linewidth would be 0.53 nm, the mirror moving 
this distance over t3 yields a velocity of 0.25 mm/s, a velocity which the suspended 
mirrors would never exceed in normal circumstances. However, for a cavity a factor
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of ten longer and with ten times greater finesse, the critical velocity would be closer 
to 0.25/im/s, and it is less certain that the suspended mirror would never exceed 
this velocity.

Consider the same Fabry-Perot cavity from figure 6.12 where the far mirror is 
moving. If the cavity is initially empty, the cavity field immediately after the input 
beam is turned on is the beam transmitted through the input mirror, such that

Eam = itiE0ei{ix- ut). (6.27)

This beam is propagated around the cavity. At the far mirror, the frequency of 
the field changes due to the Doppler shift experienced by reflecting off the moving 
mirror. By the time this beam returns to the near mirror after an (unperturbed) 
round trip time r = 21/c and combines with the transmitted input light,

Ecav = it lE „ <*-» +  p e i l+2̂ ) [kx- “(t- rA  , (6.28)

where p =  r i r2e~2a°l, the round trip loss factor. Here k(l+2lT/2/c) and u;(l+2/r/2/c) 
axe the wave vector and frequency after reflection from the end mirror moving with 
velocity lT/2 toward the input mirror.

This is extended to a recursion relationship between the cavity field at time t 
and the field that existed a round trip time before as

Ecav{t +  r) =  itiEo +  pexp EcaV(t). (6.29)

For small offsets from resonance, the phase shift acquired by the field after one 
round trip, exp (z2o;Lt+T/2/c), is approximately 1 + i(2u)lt/c), where It is the time- 
varying offset from resonance. The recursion relation accurately describes the cavity 
field after a round-trip, including the Doppler effects. It does not account for the 
different phases acquired over smaller time intervals by the components that make 
up the cavity field from time t — r, t — 2t, . . . ,  each of which has experienced a 
different total Doppler phase shift.

If neither the cavity nor the input beam change significantly within a round trip
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time, the relation in equation 6.29 can be rewritten as a differential equation

dEcav _  /  p — 1 i2 p u i \  i t ^

d t  ~ \ T  T C  J V T  ° '   ̂ ^

The cavity storage time, t s, is the time required for a 1/e  decay of the cavity field. 
For high finesse cavities, where p «  I — i t/T ,  the storage time is

F t 2 F L
Tg ~  ---------     . (6.31)

7T 7rc

Equation 6.30 can be normalized with respect to the cavity storage time by using 
tf = t /r s, which results in

^  =  -  (1 -  rnt') Emv +  i ^ E o ,  (6.32)
at 7r

where z/j, the normalized length scan rate, is given by

2Tuli-g ooNvi = ------------------------------------------------ (6.33)
7rc

From the definition of cavity linewidth, equation 6.18, is the number of half fwhm 
cavity linewidths moved by the mirror in a cavity storage time,

Vl =  (A;Mm/2 ) / r s ' (6'34)

From equation 6.32, E'cot, will have an oscillating component when v\ is nonzero. 
These oscillations can affect the measured error signal, Irf , such that the error 
signal does not accurately reflect the length of the cavity with respect to a feedback 
controller. Figure 6.13 shows the nominal error signal when a 40 m cavity with a 
finesse of ~8 x 103, corresponding to a laboratory scale experiment with long optical 
storage times, passes through resonance at various speeds. For large speeds, the 
error signal passes through zero substantially after the cavity has passed through 
the resonant length. For a very large relative speed, in fact, the signal oscillates 
through zero for constant mirror velocity, such that the signal is no longer even 
monotonic.
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Figure 6.13: Error signal in a Fabry-Perot cavity. For a cavity of moderate length 
with high finesse (L =  40, T  =  8 x 103), the various curves show how the standard 
error signal is affected by passing through the resonance at different speeds.

6.4.3 Experimental Verification

These expressions were experimentally verified to confirm the behaviour of the error 
signal. The setup is shown in figure 6.14. The Fabry-Perot ring cavity had a 
perimeter of 42 cm and finesse of 4000 for S-polarized light. The end mirror of the 
cavity was mounted on a piezoelectric transducer (PZT) to change the length of the 
cavity. The laser was a single-axial-mode 300-mW Lightwave Model 122, such that 
the wavelength of the laser beam was 1064 nm. (The experiment also explored the 
affects of variation in input laser frequency. The full details of this are covered in 
Lawrence [2].)

The method of sensing the reflected error signal is entirely conventional[90]. 
The input light was phase modulated with an electro-optic modulator (EOM) and 
introduced into the cavity. The light reflected from the cavity was measured by 
a photodetector and the resulting signal was demodulated with the local oscillator 
driving the phase modulator. The cavity length was changed by applying a high- 
voltage triangular signal to the cavity PZT. Over the times scales of the cavity 
passing through resonance, the input laser frequency was essentially constant.

With this apparatus, the signals from photodetectors sensing the transmitted
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Figure 6.14: Experimental apparatus for measuring the time response of the Fabry- 
Perot cavity. The cavity had a round-trip length of 42 cm and a finesse of 4000. A 
piezoelectric actuator was used to change the cavity length.

field and the reflected field, as well as the demodulated signal from the reflected 
field, can be measured. Equation 6.32 is then fitted to the measurements. The 
cavity finesse was determined by the value that produced the best agreement for all 
of the experimental data acquired from the cavity. Because of differences between 
the photodetectors, a scaling factor and offset were determined for each detector, 
which were then kept constant. For this modelling to be used to generate an error 
signal, the measured photodetector signal would be used to calculate the mirror 
velocity. Therefore, the remaining free parameter used for fitting the data was 
the mirror velocity for each case. In all cases, the calculated mirror velocity was 
consistent with the velocity anticipated in the PZT due to the applied voltage ramp.

Figure 6.15 shows the experimental results and the excellent agreement between 
the theory and the measured data. It also again illustrates the potential difficulty 
with the use of the typical error signal. For very low mirror speeds, the response 
is essentially the well known steady-state response[88]. The response, in a very 
narrow range, is linear with mirror position, is centred about zero, and has a very 
high gain. The signal may not be used in this straightforward fashion for higher 
mirror velocities.

These curves are calculated for a constant velocity mirror. Typically, there is
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Figure 6.15: Time response of the Fabry-Perot cavity error signal. For the highest 
velocity case (210 //m/s), some unmodelled high frequency filtering in the detection 
electronics causes the agreement with theory to be compromised.
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feedback on the mirror. On a table-top system where a PZT is used to control 
the cavity length to maintain cavity resonance[92], the fast response of the actuator 
cause the mirror position to be controlled before the oscillations in the error signal 
have any affect. However, since the strength of the actuator in these pendulum 
suspensions must be low in order to minimize noise, the mirror moving at high 
speed can pass completely through resonance without ‘catching’. Since the signal 
can be oscillating even while the mirror continues its constant velocity sweep, the 
net integrated force on the mirror can be very small. In other words, the mirror can 
pass through resonance while the system fails to achieve lock and, in fact, very little 
energy may be removed from the system.

Whether this is a real problem depends on the specifics of the optical cavity, the 
mechanics of the suspension, and the input noise spectrum. A variety of techniques 
have been developed which involve ‘fringe-counting’[67, 93]. These techniques use 
the fact that if the velocity of the mirror is low enough, the standard techniques 
can successfully lock the cavity and therefore seek first to reduce the velocity of the 
mirror. Ignoring the details which this section explicitly determines, for a cavity 
moving at essentially constant speed through resonance, more oscillations in the 
reflected field correspond to a greater velocity. These methods of lock acquisition 
essentially apply a force to slow down the mirror proportional to the number of 
oscillations of the signal. By removing enough energy from the system, on the next 
pass through resonance the mirror is assumed to be moving slowly enough that the 
usual locking techniques may be successfully used.

With the expression in equation 6.32 and more detailed modelling techniques, 
in principal an improved lock acquisition algorithm can be developed. The fringe 
counting techniques establish the direction and an approximate velocity for the 
mirror. With the more complete knowledge offered by the cavity equation, the 
velocity and position of the cavity could be determined. This would allow a more 
robust locking algorithm to be devised. By knowing the distance from a resonance 
condition, rather than simply removing energy from the system and then waiting, 
the mirror can be actively guided to the proper position. Upon reaching resonance, 
one difficulty in high power cavities, for example, will be the large jump in photon 
pressure on the mirror when the cavity field is suddenly amplified on resonance. By 
knowing exactly when this resonance is going to be reached, the locking servo can
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anticipate and compensate for this disturbance.



Chapter 7 

GEO 600

7.1 Description

The work described in the preceeding chapters has been applied to the development 
of the suspensions to be used in GEO 600. This section will summarize some of 
the design features of the GEO 600 detector. The following sections describe some 
practical constraints on the suspension design, the parameters used in the main 
suspension (based on the work from the earlier chapters), and the variations on this 
suspension used to support other optical elements in GEO.

GEO 600 is the British-German collaboration to build a 600 m long laser in- 
terferometric gravitational wave detector. It was proposed in the United King­
dom and Germany in 1994, and involves the combined efforts of research groups at 
the University of Glasgow, the Max-Planck-Institut fur Quantenoptik at Garching 
and Hannover, the University of Wales (Cardiff), and the Albert Einstein Institut 
at Potsdam, with further contributions from the Laser-Zentrum, Hannover. It is 
scheduled to begin operation in autumn 2 0 0 1 .

The GEO 600 detector uses a four-bounce delay-line in each 600 m arm of 
the interferometer. It will use a 10 W stabilised diode-pumped Nd:YAG laser, 
which passes through two modecleaners to spatially and temporally filter the light 
before injection into the main interferometer[94]. The GEO 600 detector is being 
constructed near the German town of Ruthe, just south of Hannover. The location 
is an agricultural research field owned by the University of Hannover, a relatively 
quiet site seismically.

178
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GEO 600 will act as part of a worldwide network of detectors which includes the 
American LIGO and the French-Italian VIRGO projects mentioned in the introduc­
tion. The different projects have all emphasized different aspects of the technical 
challenges. Knowledge developed for all three will strongly influence designs for ad­
vanced receivers for all the different projects. One example is the cantilever blades, 
described in detail in section 2.4.2, which were first developed by the VIRGO group 
and a version of which are now incorporated into the GEO 600 main suspension. 
Similarly, the GEO 600 group is the only group using fused silica fibres in the sus­
pension in the first generation. GEO 600 is also the only detector which plans to 
initially use signal recycling as well as power recycling[95].

7.2 Design Constraints for Suspension

7.2.1 Physical Size and Space

The vacuum tanks present in GEO 600 limit the size of the isolation systems that 
can be used. As noted in the discussion on isolation systems, larger systems are the 
simplest way to get systems with lower resonant frequencies; this is not a luxury 
available in the design of the GEO suspension. The total height of the system, 
approximately 2  m from the top of the vacuum chamber to the beam height, limits 
the lengths of the pendulum stages, barring a substantial redesign away from simple 
wire pendulums.

7.2.2 Bonding and Other Restrictions

For the thermal noise reasons discussed in detail in section 2.5, the materials and 
methods of attachments of the pendulums have to be chosen very carefully[38]. 
Silicate bonding[40] will be used to attach the fused silica wires of the bottom 
stage pendulum between the lower two masses. To guarantee a good surface for 
the bonding process, the wire connections must be tangent to a flat surface. In 
practice, this means that the wires in the bottom stage of the pendulum must be 
vertical (s[2,1] =  s[3,it] and n[2,l] = n[3,u], where all parameters are as defined in 
section 3.1).

The mirror cross section is chosen based on the spot size of the laser beam and
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Figure 7.1: Main suspension in GEO 600

the desire to minimize the amount of light lost past the edges of the mirror. The 
aspect ratio of the mirror is chosen to minimize the total internal thermal noise 
summed over all the mirror modes (section 1.3.2). Based on the required coupling 
of all the modes of the multiple stage pendulum to allow the proper functioning 
of the local control, each mass in the pendulum has mass and moments of inertia 
comparable to the mirror.

7.3 Main Suspension

The primary suspension system, used for the end mirrors and with small modifica­
tions for the other large optics, will be as shown in figure 7.1.

7.3.1 Description

The support structure for the pendulum is the rotational stage, a rigid frame which 
allows the entire suspension to be rotated in the yaw direction for initial alignment 
within ten milliradians. The suspension is a triple pendulum, which includes two
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First stage Second stage Third stage
units var value var value var value

Mass dimensions m Ux 0 . 1 ir 0.09 tr 0.09
U y 0.3 ix 0 . 1 U 0 . 1

uz 0.07
Wire parameters # 2 4 4

length m h 0.42 h 0.187 h 0.28
radius fim n 350 7*2 175 7*3 154

Cantilevers # 2 4
spring constants N/m kc,u 739 kc,i 498

Half wire separations
in X - Y  plane m s[0 ] 0 s[l,Z] 0.03 s[2 , 1] 0.005

s[l,u] 0 s[2 , u] 0.03 s[3, u] 0.005
in X -Z  plane m n[0 ] 0.03 n[l,l] 0.045 7l[2,1] ir+

0.0065a
n[ 1 , it] 0.04 n[ 2 , u] ir+

0.0065a
n[3, u] £r+

0.0065a
Vertical offsets m d[ 0 ] 0 d{l,l] 0 . 0 0 1 d[2,l] 0 . 0 0 1

of wires (|| Y) d[ 1 , u] 0 . 0 0 1 d[ 2 , u] 0 . 0 0 1 d[3, u] 0 . 0 0 1

aWire position is at the mass radius — the width of the flat on side of mass 
(0.0035) +  a breakoff (0.01)

Table 7.1: Parameters for the GEO 600 main suspension. The wire spacing param­
eters are as defined in section 3.2. The first stage is the uppermost stage and the 
third stage is the sensitive optic.

stages of cantilever blades. The top pair of cantilevers attachs to the rotation stage. 
This allows the entire system to be very soft in tilt. A second set of four cantilevers 
attach to the uppermost mass of the pendulum, supporting the lower two stages.

7.3.2 Pendulum  Parameters

The specific parameters of the GEO 600 main suspension are summarized in ta­
ble 7.1. The definitions of the wire spacings are as defined in the modelling section 
(section 3.2) and summarized in figure 3.2. The cantilever blades are all basically 
triangular and similar to the design shown in figure 2.11. The upper set of blades are 
24 cm long, 2 mm thick, with a 6  cm wide base. The lower cantilevers are 12.4 cm 
in length, 1 mm thick, with a 2 . 8  cm wide base.

The lowest mass (the optic) and the intermediate mass are modelled as cylinders.
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Figure 7.2: Uppermost mass in the GEO 600 suspension. The slots allow the can­
tilever blades to be mounted without being stressed. Other details of the design 
allow attachment of the cantilevers and the local control magnets.

The actual masses have vertical flats polished on opposite sides of a diameter of each 
mass to allow the bonding of the wire attachments. The wire spacing parameters 

reflect this and are set equal to the radius of the mass minus the thickness of the 
flat plus the thickness of the bonding piece. The small amount of removed mass has 
a negligible effect on the calculated moments of inertia.

7.3 .3  U p p erm o st  M ass

For design purposes, the upper two masses of the pendulum suspension have been 

treated as rigid bodies. Only the mass and moments of inertia of these masses have 
been important. For appropriately sized cubical or cylindrical masses, the internal 
modes of the masses are very high (comparable to the internal modes of the test 
mass, in the 10’s of kHz). However, the uppermost mass in the GEO main suspension 

must be sized to support the lower set of cantilever blades. The initial design of the 
upper mass is shown in figure 7.2. Based on the length of the cantilevers, this mass 
has long ‘wings’ extending from a central block. The mass is designed such that the 
two main components, the long thin top piece and the short lower piece, add to give 

approximately the desired mass and moment of inertia.
One concern of this design is that these long ‘wings’ might lead to internal
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Figure 7.3: Internal mode of uppermost mass, modelled as a cantilever. A schematic 
section of the uppermost mass from figure 7.2 illustrates the long wing of the mass 
which is to be modelled as a cantilever, as well as showing the fixed boundary 
condition used at the central block of the mass.

resonances with unacceptably low frequencies. These frequencies are estimated by 
treating the ends of the mass as unsupported cantilevers, as in figure 7.3. The 
resonant frequency for a beam, fixed at one end, is given by[70]:

( p \ 1/2

7) ( 7 ' 1 }

for a rectangular bar of thickness a, length I, Young’s Modulus E, density p. 
The values for knl are the numeric solutions, the first few of which are knl «
1.875,4.694,7.853, For the parameters of the GEO 600 uppermost mass, namely
a =  0.012 m, I =  0.160 m, Ess — 1-65 x 1011N/m2, and p =  7870kg/m3, the first res­
onant frequency is f i  «  350 Hz. While this is likely an optimistic estimate for a real 
GEO 600 uppermost mass—the clamps for the intermediate stage cantilever blades 
will add mass at the end of this beam, plus the slots used for assembly effectively 
add mass at the tip without corresponding stiffness—having the frequency well over 
300 Hz in a fundamentally vertical mode and thus coupling to the interferometer at 
a lower order, suggests that this frequency is sufficiently high.

7.3.4 W ires

The suspension wires are chosen to be stressed at ~25% of their breaking stress 
in order to maximize the internal ‘violin’ modes in the wires. The wires in the 
upper two stages axe steel, with a breaking stress of ~1.5 GPa, which gives the wire 
radii given in the table. The breaking stress of the silica fibres is an active topic
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of research; the size of the fibres which comprise the third stage in the GEO 600 
suspension were chosen based on an anticipated strength of the fibres. This size 
has been used to finalize the design of the local control electronics based on the 
resulting mode frequencies (section 6 .2 .1 ). Based on these numbers, the first violin 
modes of the three stages will be, from the top down, approximately 2 0 0 , 500, and 
500 Hz. The modes of the lowest stage will have the strongest coupling to the output 
signal, since they are not filtered by lower pendulum stages. These parameters would 
cause only the first ~ 2  harmonics of the lowest stage violin modes to be within the 
measurement band.

7.3.5 Assem bly and Adjustm ent

Having established that the theoretical performance of the pendulum suspension is 
suitable for GEO 600, the remaining challenge is to design an achievable suspension. 
The practical difficulties in assembling the suspension are foremost the cantilevers, 
which deflect up to 5 cm between their unloaded and loaded positions, and allowing 
for correction of any imbalances in the system due to slight differences between the 
cantilevers, the mounting clamps, or other mechanical parts.

Ideally, all the components in the suspension would be perfectly matched. In 
practice, the masses may have a static angular misalignment on assembly. This could 
come, for example, from the lower cantilevers not all having the exact same static 
deflection. In the same manner, the error could be in the lengths of the wires. As 
much as it would be theoretically desirable to allow adjustment of every parameter 
of the system, this is very difficult.

The uppermost mass (figure 7.2) has been designed with slots cut into the top 
surface, which allows the cantilevers to be firmly mounted to the mass without 
being stressed. The wires that are to be attached to these cantilevers are mounted 
to their respective clamps, again, unstressed, before these clamps are attached to 
the cantilevers. This affords the best chance of having these pieces all attached 
consistently. For any adjustment that is required, small shims—calibrated thin flat 
pieces—will be used between the clamps of the cantilevers to adjust the height of 
the cantilevers. For any small errors, this is adequate adjustment to compensate 
any variety of error.

The suspended optic must be properly oriented to form the proper optical path.
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The rotational stage previously mentioned allows the mirror to be aligned in the 
yaw direction to within 10 mrad. The actuators for the local control have sufficient 
range to allow final alignment within this range after the vacuum tank has been 
evacuated. Similarly, the triple pendulum has been designed to be soft in tilt, 
allowing simple mechanical counter-balances attached to the uppermost mass to 
provide initial alignment, and again, the local control actuators can provide the 
final alignment.

7.4 Other Suspension Variations

The same process that was applied to the design of the suspension for the main optics 
can be applied to the design of other suspensions in the total GEO 600 system. The 
optical layout of the entire interferometer is shown in figure 7.4. This layout is not 
examined here in any detail, simply shown to illustrate the great variety of optical 
components involved in the system. The requirements for each of the components 
are often similar to those of the main suspension. Therefore, simple modifications 
of the process described in the preceeding chapters can achieve the required designs.

7.4.1 Reaction Mass Pendulum

To provide a quiet base of actuation, the actuation for the global control (section 6.3) 
is applied from a reaction mass pendulum. The setup within the vacuum tanks is 
as shown in figure 7.5, which applies to the tanks labelled TCE and TCN in fig­
ure 7.4. The requirement is that any relative motion of the actuators does not cause 
any excess noise on the sensitive optic through non-linear action of the actuators. 
Therefore the isolation and thermal noise requirements on the reaction mass are less 
stringent than on the main suspension. Based on ealier work on the electromagnetic 
coils used to drive the sensitive stage in a double pendulum, the displacement of the 
coils is allowed to be approximately 1000 times that of the test mass[67]. For ease 
in design and construction, and to allow the reaction mass pendulum to be easily 
aligned with respect to the main suspension, the reaction mass pendulum will be 
very similar to the main triple pendulum, although without the need for the fused 
silica final stages.
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Figure 7.4: The optical layout of GEO 600. The full details of the op­
tical layout may be examined on the GEO 600 website at www.geo600.uni- 
hannover.de/geo600/project/optical.shtml (adapted from Casey[85]).
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Figure 7.5: Reaction mass pendulum in GEO 600. The main mirror pendulum has 
a reaction mass pendulum hanging immediately behind it in both inboard tanks.

7.4.2 O ther O ptics

The suspended components in the main interferometer are shown in table 7.2. Based 
on where in the optical path an element may be, whether or not the position of 
the optic is sensed or if the optic is used in transmission, and so forth, most of 
the suspended components do not need the full isolation of a full triple pendulum 
suspension. Similarly, only the suspended components that are to be actuated to 
maintain global dock’ of the interferometer require a reaction mass pendulum to be 

suspended alongside them. The details of the displacement noise requirements on 
each component, as well as the number of stages, also affects the number of stage 
of cantilevers that are necessary.

The two other optics that are supported on triple pendulum suspensions are the 

beam splitter, in tank TCC, and the signal recycling mirror (section 1.2.2), in tank 

TCOa. The displacement noise requirement on each of these suspensions is similar 
to that of the main suspension. However, by being at different points in the optical 
path, the size of the beam, and thus the size of the optic, is different. With different 

mass, the behaviour of the local control from section 6.2 has to be re-examined. The



CHAPTER 7. GEO 600 188

t :03
2
(-H
a ?

. 2
2p 2

p
2
pFh

034J
03

i G e i p
1 *0 2  1 2a j p j p 3

13 13 13

M
<u
£o

p
.2
03
p
03
*H

Pcoco 5r*

I  P

03
03•—! PT3 »
QJ CO [H

2  * s
03 

h h >

P

2 2

(0p
03

CO

p P p o3 p
03 03 p 03 fl a

• r“H
• R • F"H R p

CO CO 3
13

CO jp
13

p
2
p̂
13

p
.2 15

CO T - 1
P
P h pco a
p  P

CD

03
p

. 2
p

.2

03
*H

£
p  
03 • ^

03
(H 

* H

£

P  (D 
. 2  2

"co *
CO *03

03
+ J
CO

• ^
CO

*03
03

■ P
CO

t i
■ s  “

.2
*-+-»

D h

O

03
N

CD

03 03 03

O O I D
t-H t-H
X X X

~ 0 -
c p -0-rtP
03

p
03 2

03
0 0 O O k DH-—1 r-H

03 03

00 00 

X X
-s- -e-
2 S
0 3  03 

CD CD

S03T3JS J0A0JIJU'E0 

JO -m riM

sumjnpuad 
jo -mn^

2
03 

ID

x \
-0 - z
2
03

» D

CM

CO

CM

CO

CM

CM C O  CM

CM

CO

p
o

♦
- u
P
03

' P .
P .
P
03 CP 

♦ ^
03
03
Ph
CO

p
O

bO
P  

• ^
r-o
P
03
P h
03

Q
d

P
.2
*■+3

'Eh
03
CO
03

Q X3
P
03

k-H

r «0fa

o c

p
o

•  rN
CO

15 1 2  03  P
P h «  
CO j_

g a03

2

bO
.2  fn p

I ’RS’-S
P  03 3 h 1
8 . M “ 8  «  h h Ph
8  S B aco ^  P  P  

O

as
Co

bO
P

03

p  P  
P

> >  u  
0 3  03
0 3  u  
*  P

03
S-H
03

fa  PQ O
A bo's

CD fa

Ta
ble

 
7

.2
: S

um
m

ar
y 

of 
the

 
su

sp
en

de
d 

m
as

se
s 

in 
GE

O 
60

0



CHAPTER 7. GEO 600 189

Beam Splitter Suspension

First stage Second stage Third stage
units var value var value var value

Mass dimensions m U>x 0 . 1  (Al) ir 0 . 1 2 U 0 . 1 2

U y 0.07 ix 0.08 tx 0.08
uz 0 . 2

Wire parameters # 2 4 4
length m h 0.545 h 0.187 h 0.28
radius pm 7*1 350 230 7*3 140

Cantilevers # 2 4
spring constants N/m kc,u 298 ^c,i 909

Half wire separations
in X - Y  plane m *[o] 0 s[U] 0.03 s[2,l] 0.005

s[l,u] 0 s[2 , u] 0.03 s[3,u] 0.005
in X -Z  plane m n[0 ] 0.03 n[l,l] 0.04 n[2 , 1] ir+

0.0065a
n[l, u) 0.04 n[2, u] iT+

0.0065a
n[3,u] tr+

0.0065a
Vertical offsets m d[ 0 ] 0 d[l,l] 0 . 0 0 1 d[ 2 , /] 0 . 0 0 1

of wires (|| Y) d[l, u] 0 . 0 0 2 d[ 2 , u] 0 . 0 0 1 d[ 3, it] 0 . 0 0 1

Table 7.3: Parameters for the GEO 600 beam splitter suspension. The first stage is 
made out of aluminium.
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Signal Recyling Mirror Suspension

First stage Second stage Third stage
units var value var value var value

Mass dimensions m ux 0 . 1 ir 0.075 tr 0.075
Uy 0.07 ix 0.075 tx 0.075
uz 0 . 2 2

Wire parameters # 2 4 4
length m k 0.445 k 0.287 h 0.28
radius p m T 1 350 7*2 230 7-3 75

Cantilevers # 2 4
spring constants N/m &c,u 457 kc,i 333

Half wire separations
in X - Y  plane m «[0 ] 0 s[l,/] 0.03 s[2,l] 0.005

s[l,u] 0 s[2 , u] 0.03 s[3, u] 0.005
in X -Z  plane m n[0 ] 0.03 n[l,l] 0.04 n[ 2 , 1] ir+

0.0065a
n[l, u] 0.04 n[2, u] ir+

0.0065a
n[ 3, u] tr+

0.0065a
Vertical offsets m d[0 ] 0 d[l,l] 0 . 0 0 1 d[2,l] 0 . 0 0 1

of wires (|| Y) d[l, u] 0 . 0 0 1 d[ 2 , u] 0 . 0 0 1 d[ 3, u] 0 . 0 0 1

aWire position is at the mass radius — the width of the flat on side of mass 
(0.0035) +  a breakoff (0.01)

Table 7.4: Parameters for the GEO 600 signal recycling mirror suspension
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final parameters for these two suspension variations are summarized in tables 7.3 and 
7.4, with the definition of the parameters being the same as for the main suspension.



Chapter 8 

Future Work

There is a constant effort to make ground based gravitational wave detectors sensi­
tive at lower frequencies. They are limited at low frequencies by transmitted seismic 
noise, thermal noise in the pendulum suspension, and noise from the low frequency 
control electronics. The work presented here, which was specifically directed to­
ward the GEO 600 detector, addresses all of these issues. The modelling code can 
predict the pendulum thermal noise for a multi-stage pendulum suspension, fully 
considering all the rigid body modes of the system. By calculating sensitivities to 
misalignments, the work quantifies the required vertical seismic isolation, as well 
as providing an improved model of the cantilever blades often used to achieve this 
isolation. Finally, the application of the local control to the uppermost mass eases 
the noise requirements on the sensors and actuators.

Construction of a number of long baseline interferometric detectors is well un­
derway. With the completion of these first generation long baseline interferometers 
and the anticipated success of first detection, experimental efforts are likely to in­
crease. New developments are already being studied to improve the sensitivity of 
next generation detectors. Better sensitivity will increase the ‘range’ at which these 
detectors can see events, and allowing a greater rate of detection events and bet­
ter signal to noise, allowing more detailed information about the waveforms to be 
obtained. Extending the most sensitive band of these detectors to lower frequen­
cies will permit binary inspirals to be observed for a longer time before the final 
coalescence.

The results of the work explored in the preceding chapters has been applied
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specifically to the design on the main suspension system in the GEO 600 detec­
tor. The modelling work of chapter 3 is done in a general fashion, allowing some 
straightforward extensions for the design work required for higher sensitivity de­
tectors. Examples include the general problem of replacing cylindrical wires with 
ribbons and the specific proposals for the suspension for the upgraded American 
LIGO detector (LIGO II).

8.1 Advanced Detectors— Suspensions in LIGO II

The GEO 600 project is a member of the LIGO Science Community (LSC), and as 
such its members are intimately involved in the discussions on how to construct a sec­
ond generation gravitational wave detector. There are a number of steps to be taken 
to improve the sensitivity of the initial long-baseline gravity wave interferometers. 
Upgrading the input laser to higher power will improve the shot noise; implemen­
tation of signal recycling schemes will allow tuned performance not available in the 
first generation of LIGO; and new mirror and suspension materials should allow 
improved thermal noise performance. One primary goal for the second generation 
will be a push toward lower frequency sensitivity.

At the present time, the GEO team has agreed to design a multiple stage pen­
dulum suspension (possibly quadruple) for application in the LIGO II detector. 
Because the interferometer arms are longer than in GEO 600 (4 km), the beam size 
and thus the suspended mirrors are larger. In addition, there is more room in the 
LIGO vacuum tanks than is available in the GEO system. However, the design prin­
ciples are exactly as outlined in these preceeding chapters. In particular, the local 
control is designed to sense and actuate on the uppermost mass of the multi-stage 
pendulum.

It is impractical to get vastly improved seismic isolation from simple wire pen­
dulums. To extend the detection band down toward 10 Hz, much more isolation is 
required of the overall system. The pendulum suspension does not have an explicit 
vibration isolation goal; instead, it will have as much isolation as is possible while 
achieving the required control objectives and thermal noise performance. The local 
control algorithms described in this thesis will work with minimal modification to act 
on slightly lower frequency bands. The sensor noise may have to be improved slightly
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from that of the GEO sensor design. The overall isolation goal will be achieved by 
a combination of the pendulum system and a replacement of the current isolation 
stacks potentially consisting of a combination of passive and active elements. The 
initial LIGO detector is to begin operation in 2001; an upgraded detector would be 
entering prototype stages at that time, in anticipation of installation in the main 
facility in 2005[44].

The modelling of such a quadruple pendulum suspension is a straightforward 
extension of the work presented here and is already in progress.

8.2 Flexures

All of the work discussed here has involved pendulums hanging on round wires or 
fibres of constant cross-section along their functional length. One obvious change 
is to vary the size and shape of the elements doing the suspending, which could 
reduce the effects of the violin modes and possibly provide improved thermal noise 
performance.

Since the softness in bending of a wire occurs over a characteristic bending 
length (section 3.4.3), typically much shorter than the total length, the bending 
element could be made very short (comparable to this bending length). The rest 
of the pendulum length could be made of, for example, a lightweight, stiff tube. 
This would likely involve a short soft element at both the top and bottom of the 
suspension element to prevent over constraining tilt motion. Such a design would 
allow the same pendulum modes while the tube structure would ensure very high 
internal modes, although there would be the additional mode of the tube moving 
out of phase with the suspended mass.

Either the short bending elements as just described or the entire length of the 
suspension element could be made round, as in conventional wires, or as thin as 
possible in the bending direction, as in a flexure. The cross-sectional area of a 
flexure would have to be comparable to that of the wires in order to keep the stress 
in the material at the same level. However, since this flexure could be made wide 
in one dimension and narrow in the bending direction, the flexure could actually be 
made much softer in the critical direction than the wire it replaces. Since the loss 
and therefore the thermal noise observed in the pendulum mode comes from the 
energy stored in bending, reducing this bending stiffness could reduce the observed
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thermal noise. Since a single flexure is stiff in three degrees of freedom—transverse 
motion, vertical motion, and roll—as opposed to the single degree of freedom of 
a round wire (vertical), a simple flexure system is inherently a reduced degree-of- 
freedom suspension (section 4.4). A system using more than one flexure must be 
carefully aligned, since if the bending degrees of freedom of the multiple flexures 
do not align, the system will be kinematically over-constrained. One way to avoid 
this would be to have flexures with their long dimension transverse to the beam 
at the suspension point (soft in bending in the longitudinal direction) which twist 
partway along their length. The long dimension of the flexure would then be in the 
longitudinal direction where the flexure attaches to the mass.

The modelling work presented in this thesis could readily be extended to the 
study of the use of such flexures and investigation of their potential for improving 
the performance of upgraded long baseline detectors.
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Lagran.mws

Lagrangian for Compound pendula
M EH  8 /9 /9 8  

CIT, JH, N A R

A .l  Introduction

6 -Degree-of-Freedom Lagrangian for up to a 3-stage pendulum, involving vertical 
motion (y), yaw (phi), longitudinal (x), tilt (theta), transverse (z), and roll (psi). 
Solve for equations of motion, initially to check resonant frequencies. Derives equa­
tions of motion to first order in the center of mass coordinates of the suspended 
masses and converts the equations to a state space (1 st order) format.

In the nominal case, the top mass of the pendulum is hung by two wires, each 
from its own cantilever blade. The second mass hangs by four wires, either each 
from its own cantilever or each pair (left and right) from one blade. The third mass 
hangs by four wires.

The spring constants for the cantilevers are input in N/m. The rest of the 
constants (wire spring constants [extension and torsion], moments of inertia) are 
calculated from physical parameters such as dimensions and material properties.

M ethod  In the Lagrangian, we need to calculate the kinetic and potential energies 
of the system then take the appropriate derivatives. As the only kinetic energies
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considered are the motions of the test masses, very little time is spent on this half of 
the calculation. This does mean there are no ’internal modes’, either in the masses 
or the suspension elements (wires).

The first portion of the code sets up the physical system based on the input 
parameters.

The next large section of the code determines the contributions of various forms 
of potential energy to the system, including the gravitational potential energy of the 
masses and the elastic energy stored in the stretching, bending, and twisting of the 
wires. These are calculated independently, which for these small motions will be 
valid, with the caveat that while stretching is calculated properly in 3 dimensions, 
bending is calculated in the 2  non-vertical directions. (This means that for wires 
sloped at extreme angles from vertical, vertical motion should cause some bending 
of the wires, which this will ignore.)

NOTE: This is being adjusted as of version 6.7 29/4/99. Bending and stretching 
are now coupled in terms of the wire shape. These notes will be updated once I 
resolve the situation-MEH

This total potential energy is minimized to calculate the equilibrium position of 
the system. This is solved numerically for vertical motions (the ’symmetric’ case) 
then expanded quadratically in the neighborhood and iterated. The full Lagrangian 
is re-written in terms of small differentials about these equilibrium coordinates, 
and the appropriate derivatives are taken. This expression gives the differential 
equation, which involves only the approximations expressed above (ie, could be 
expanded to higher order); it is then manually Taylor expanded to first order in 
the relevant variables. The case parameters are then substituted to get numerical 
results. (Unfortunately, the full expressions for the general case are so complicated 
as to make symbolic intuition very difficult; if desired, the definition of the potential 
energy (section A.5.2) may have specific terms commented. This allows parts of the 
equation to be explored symbolically. One note is that both the gravitational term 
and the stretching term must be included to get ’Tension’, and that the solution to 
the fourth order beam equation for the wires under tension requires a tension value 
to be correctly evaluated. Thus to examine the bending term, run the full potential 
energy until the point where the tensions axe evaluated, then back up, redefine the 
potential energy, then run the last part of the program.)
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There are a few lines of code which are more necessary for testing than for use. 
Also, there are portions which are build-ins for the evolution of the program. For 
example the last few pages calculate the cross-coupling between various degrees of 
freedom that are, virtually by definition, zero for these cases. Finally, many of the 
intermediate results are printed; the convention in Maple to suppress output is to 
end the statement with a colon(:), whereas a semi-colon(;) shows the output, and 
these may be adjusted without affecting the results of the program.

NB: The program  continues to  be num erically sensitive w hen solving 
for th e  in itial cantilever offsets. The initial unloaded (i.e., bent) position of the 
cantilevers is defined (section A.4.3) to be where yc =  0 . One of the first steps of 
the program is to calculate the loaded positions of the cantilevers, ycO (which would 
typically be flat). Because in the general case this offset might be anything in a large 
range (up to 30cm in these cases vs. approximately 1mm for a wire), the numerical 
solution range is specified as quite large. In the full, 3x6-DOF program with mis­
alignments, it should not be a problem, since uneven cantilevers will contribute in 
directions other than vertically. Here, it tends to find non-physical solutions where 
the cantilevers are uneven. This can be solved by using a tighter solution range, 
although I’d prefer a wide solution range to allow the most general cases.

The other point to mention is that for esthetic sake, I have frequently used sub­
scripts for denoting which stage, wire, etc. Maple interprets subscripts as vector 
or matrix indicies. Because of this, if certain parts of the code are re-run, it be­
lieves there is a recursive definition and will fail. To avoid this, my notation is not 
completely consistent, but I trust it will still be understandable.

This code was developed using Maple V Release 4.00a on a PC compatible plat­
form. There are a few features, primarily formatting and hyperlinks, that may not 
be compatible across platforms. Ken Strain has been good enough to test the code in 
Maple V Release 5, and assures me the only changes are a small number of warning 
messages concerning a new use of matricies.

Version 7.5 8/9/99.
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A.2 Instructions for use

At the moment, the code is intended as stand-alone, not as a subroutine to be 
included. This means, for example, that every time it is run it clears the Maple 
workspace. This is neceassary for two reasons-firstly, the problem of redefining 
certain terms, and secondly on this platform there is occasionally a memory leak, 
causing the program to ’forget’ certain variables. Clearing the workspace is the 
simplest way of avoiding this.

The outputs of the system are A matrices, although not strictly the A matrices 
of state space formulation. As there is no loss included, this solves the second order 
differential equations

> d i f f ( X ( t ) , t , t )  = A*X(t);

where x is the vector of center of mass coordinates (displacements and rotations).

^ X ( t )  =  A X ( t )

In the nominal cases, only certain degrees of freedom are coupled. Thus, it 
returns A matrices for

• vertical,

•  rotational (yaw),

• longitudinal and tilt (pitch), and

• sideways and roll.

These elements may be converted to the lower-left quadrant of appropriate state- 
space A matrices. The program also returns the eigenvalues or resonant frequencies 
of the system. Using these uncoupled degrees of freedom, the mode shapes should 
be obvious; if it is required to see the shapes of these modes, the Maple language 
command linalg[eigenvects] is the appropriate one to use after the calculation of the 
A matrices.

Definitions of the all input and some derived parameters are in section A.4 titled 
Variables.

It would be difficult to implement all possible misalignments; at this point each 
misalignment must be input individually at the proper point in the code. Where 
and how this is done are shown by example, including:
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• Varying the extension spring constant (section A.5.2)

• Misalignment of wire connections (section A.5.3)

A .2.1 Categories

Section A.3 entitled Setup describes the system to be modeled, including number 
of stages and numbers of cantilevers at the top two stages. While the program in 
principle can use any number of wires, to ease in setup the nominal setup is left-right 
symmetric. To get the desired tilt couplings, the lower two stages will use 4 wires.

A .2.2 Inputs

There are two parts to the Variables section: the part described under Common 
Variables (A.4.1) are typically those derived quantities that are in common for 
any spacings, lengths, and material choices of wires or simple changes in mass di­
mensions. Rather than repeat these for each case, they are grouped at the front. 
Cases are where the specifics of the run are input, including material properties, 
(sectionA.4.1,Cases) sizes and shapes of the components, and dimensions for the 
spacings. All units are mks(SI).

> r e s ta r t ;

> sttim e := tim eO :

Means no annotation on assumed variables, for compactness.

> interface(showassumed=0 ) ;

> D ig its := 20:

> w ith ( lin a lg ) :

Warning, new definition for norm 

Warning, new definition for trace

> read lib (m tay lo r):

Initialization:

> stab le .system  := 1 :
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A .3 Setup

Basic setup parameters of the system.
Functional choices are shown in parenthesis with the nominal case in bold brack­

ets [x].
For any fully x- and z-symmetric case, the calculations are much, much faster. 

This should not effect the results, but setting symmetric to 1 will speed up the 
program (0 , [1 ]).

> Symmetric := 0:

Number of stages of pendulum: (1,2,[3]):

> NumPen := 1:

(Numbered from top to bottom) NB: If there are fewer than 3 stages, the program 
will just ignore the variables for the other stages, so they may be excluded or just 
ignored when copying over cases. The program will return frequencies of zero for 
the non-existent stages.

Number of cantilevers at upper (or first) stage (0,[2],4):

> NumCanU := 0:

Number of cantilevers at intermediate (second) stage (0,2,[4]):

> NumCanM := 0:

The typical setups use either 2, 4, and 4 wires or 4, 4, and 4 wires. Using 1, 
2, or 4 wires, the assumed symmetries can be taken care of by setting either the x 
and/or the z separations to zero.

> f# of w ires ,u ‘ := 4:
‘# of wires,m ‘ := 0 :
f# of w ire s ,1 ‘ := 0 :

A.4 Variables

Definitions of variables:
y, ydot =  vertical displacement/velocity, positive upwards (0 = unstretched wire)
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x, xdot =  longitudinal displacement/velocity, along beam, positive toward in­
coming beam

z, zdot = transverse displacement/velocity
xO, yO, zO, thetaO =  translations of the top plate/attachment point While using 

rotations about the center of mass of each stage is sensible for the pendulum stages, 
it’s not clear what the ’center of mass’ is for the top plate. What should probably 
be used as an input is the angle of the top plate off the isolation stacks. ThetaO 
assumes rotation about the center point of the wire attachments, 

phi, phidot =  yaw angle/angular velocity (0 = aligned with beam) 
theta, thetadot =  pitch angle (tilt)/angular velocity, positive tilted upwards 
psi, psidot =  roll angle/angular velocity, positive clockwise facing into beam 
massi =  mass (numbered top to bottom)
Iyaw, Ipitch, Iroll =  Moment of Inertia for yaw/pitch/roll (at the moment, derived 

from physical dimensions)
sO, s[i,u/l] =  distance of wire attachment, upper and lower, from center of mass, 

along direction of the beam
nO, n[ij] =  distance of wire attachment, upper and lower, from center of mass, 

along direction perpendicular to the beam
Lengthi =  length of wire (nominally unstretched; in practice, probably stretched) 
d[ij] =  vertical distance from attachment of wire to mass to center of mass 

(positive is above/below CM)
Hi =  vertical distance from center of mass one stage to the next (unstretched 

wires) (H = dl+sqrt[length*2 - dn"2 - ds"2] + dd)
ks =  spring constant of wire in stretching =  E*pi* (rwire) * 2/length
kt =  spring constant of wire in torsion =  E*pi *(rwire) "4/[4 *( 1+PR) *length]
Ewire =  Young’s Modulus of wire sigma =  Poisson’s Ratio for wire
Iwire =  area moment of inertia of wire =  l/4*pi*r"4 f or round wire
rwire =  radius of wire g =  gravitational constant (9.8 m /s"2)
kcant = cantilever spring constants (N/m)
kappa =  characteristic bending length of wire (derived)
Ten =  nominal tension in the wire (derived)
alpha_wire.i =  loss in wire, as an imaginary part of Young’s Modulus, as a 

function of frequency
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A .4.1 Common variables

Often derived quantities, these are the variables used in the system for every choice 
of parameters, such as wire spring constant as a function of wire size and material. 
Therefore there are some implicit assumptions, including:

• Each wire is round and of constant material property

• The upper mass is a rectangular parallelpiped (a box)

• The middle and lower masses axe cylinders of the same dimensions

These assumptions can be adjusted, but the definitions in this section and in the 
vars definitions must be changed.

> vars_equations :=
fI r o l l [ 2 ] f = ‘mass[2] ‘* ir~ 2 /2 ,* I ro i l[3 ] f=<mass[3 ]‘* tr~2 /2 , 
fIp i tc h [2 ]‘ = 'm ass[2]c*(ir~2/4+ix~2/12),
‘Ip i tc h [3 ]‘=‘mass[3 ]‘*(tr~2/4+tx~2/12),
‘Iyaw[2 ]‘=‘mass[2 ]‘*(ir~2/4+ix~2/12),
‘Iyaw[3 ]‘=‘mass[3 ]‘*(tr~2/4+tx~2/12),
# ‘I r o l l [ l ]  ‘ = ‘mass[l] ‘ *(uy~2+uz~2)/12,
# fI p i t c h [ l ] ‘ = ‘m ass[l]‘*(uy~2 +ux~2 ) / 1 2 ,
##‘Iyaw [l]‘=‘m ass[l]‘*(ux~2+uz~2)/12, # Cube 
# ‘I r o l l [ l ] ‘=‘mass[1 ]‘*(ur~2)/2,
# ‘I p i t c h [ l ] ‘=‘m ass[l]‘*(ur~2/4+ux~2/12),
# ‘Iyaw [l]‘ = ‘m ass[l]‘*(ur~2/4+ux~2/12), # Cylinder 
# ‘I r o l l [2 ] ‘ = ‘mass[2 ]* *(tr~ 2 ) / 2 ,
# ‘Ip i tc h [2 ]‘ = cmass[2 ]‘ * (tr~2/4+tx~2/12),
# ‘Iyaw[2] ‘=‘mass[2] ‘*(tr~2/4+tx~2/12), # Cylinder 
fI r o l l [ 1 ] ‘ = ‘mass[l] ‘* (tr~ 2 ) / 2 ,
‘Ip itc h  [1 ]‘ = ‘m ass[l]**(tr~2/4+tx~2/12),
‘Iyaw[1 ]‘ =‘ mass[1 ]‘ *( t r "2 /4+tx~2/12), # Cylinder 
‘H[l] ‘ = (Lengthfl] "2 -  ( ‘s [ l , u ] ‘- ‘s [ 0 ] ‘)~2 -  
( ‘n [ l ,u ]  ‘- ‘n [ 0 ] ‘)~2 ) ~ ( l / 2 ) + cd [ l ,u ] f ,
‘H[2]‘=(Length[2]"2 -  ( ‘s [2 ,u ] ‘- ‘s [ l , l ] ‘)~2 -  
( fn [ 2 ,u] f- fnC l,l] f)^ 2 ) ^ ( l / 2 ) + ‘d [ 2 ,u ] ‘ + ‘d [ l , l ] ‘ ,
‘ H [3] ‘ = (Length[3]"2 -  ( ‘s[3 ,u ] ‘- ‘s [2 ,l ]  ‘)~2 -  
( ‘n[3,u] ‘- ‘n [2 ,l]  ‘)~2)~ (l/2 ) + ‘d [3 ,u ] ‘ + ‘d [ 2 , l ] ‘ , 
ksl=E [w irel]*(P i*r [w ire l]"2)/Length[1], 
ks2=E[wire2]* (P i*r[w ire2]"2)/Length[2], 
ks3=E[wire3]* (P i*r[w ire3]"2)/Length[3],
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k [t 1] =E [wirel] *Pi*r [wirel] "4 /(4 * (l+sigm a[l]) *Length[l] ) , 
k [t2]=E [wire2]*Pi*r[wire2] "4 /(4 * (1+sigma[2 ])*Length[2 ]) , 
k[t3]=E[wire3] *Pi*r[wire3] "4 /(4 * (1+sigma[3 ])*Length[3 ]) , 
k [can t,u ]=739*(1+1*alpha.cantU ),
# N/m, num erically to  match uncoupled frequencies 
k [c a n t,1]=498*(l+I*alpha_cantL),
# N/m, num erically to  match uncoupled frequencies
Iwire [1] = (1 /4 )*Pi*r[w irel] " 4 ,Iw ire [2] = (1 /4 )*Pi*r[w ire2]~4,
Iw ire[3 ]= (l/4 )*P i* r[w ire3 ]"4;

vars.equations := Iroll[2] =  ^ mass[2] ir2, Iroll[3] =  ^ raass[3] tr2,

Ipitch[2] =  mass[2] (j  ir2 +  ir2), Ipitch[3] = mass[3] %1,
ft 1 Z

Iyaw[2] = mass[2] ( j  ir2 +  j r  i r2), Iyaw[3] =  mass[3] %1,

/ro//[f] =  ^ raass[l] £r2, /pi£c/i[l] =  mass[i]% l, /j/au/[.Z] =  mass[l]% 1, z

i7[i] =  y /Length 2 — (s [ l , u) — s[0])2 — (n [ l , u] — n[0])2 4 - d[l , u],

i/[2] =  Length2 — (s[2, u] — s [ i , i] ) 2 — (n[2, u] — n [ l , I])2 + d[2, w] +  , /],

//[<?] =  yjLength3 2 — (s[3, u] — s[2 , / ] ) 2 — (n[3, u] — n[£, Z] ) 2 +  d[3, w] H- d[2 , /],

  Ewirel ft Twirel fcs2   Ewire2 ^  Twire2   Ewire3 ^  Twire3
Lengthi ’ Length2 ’ Lengthy ’

.___ 1 Ewirel 7T Twirel j   1 E wire2 7T 7"wire2
u 4 ( 1 +  (J\) Lengthx 12 4 ( 1 +  <j2) Length2 ’

fct* =  7  , f wm37! rr mrelu > ĉont,u =  739 +  7 3 9 /alpha.cantU,4 (1 +  (J3 ) Lengthy

kcant i =  498 +  498/ alpha.cantL, Iwirei =  -  7rrwirei4, Iviirei =  ft rwire2A■>

4

% 1  := 7  ir2 +  1  te2 
4 12

Cases:
Different sample cases follow below. As in many computer languages, Maple uses 

the last definition o f ’’vars” . In other words, set the desired parameters equal to 
”vars” and any following definitions to some dummy name (such as ’’varsl”). Each
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should begin with ”vars_equations” in order to include the above definitions.
Case 1:
2+4+4 wires:

> vars : = vars.equations,
E[wirel] = 1.65ell*(l+I*alpha_wirel), # N/nT2 
E[wire2] = 1 .65ell*(l+I*alpha_wire2),
E[wire3] = 7elO*(l+I*alpha_wire3), # Fused S i l ic a  
r [wirel] = 350e-6, r[wire2] = 175e-6, r[wire3] = 154e-6, 
sigma[l] = 0.29, sigma[2] = 0.29, sigma[3] = 0.29,
‘s[0] ‘ = ‘s [ l ,u ]  ‘ , ‘s [ l ,u ]  ‘=0, fs [ l , l ]  f = ‘s[2,u] ‘ ,
's[2,u] ‘= 0 .03 ,‘s [2,1] ‘=‘s[3,u] ‘ , ‘s[3,u] ‘=0.005,
‘n[0] ‘=0.03 ,‘n[l,u] ‘=0 .04 ,‘n [ l ,1] ‘=0.045,
‘n[2,u] ‘= ir -0 .0035+0.01, ‘n [2 ,l]  ‘ = ‘n[3,u] ‘ , ‘n[3,u] ‘= tr -0 .0035+0.01, 
fd [ l ,u ] ‘=0.001,fd [ l ,1 ] f=0.001,
‘ d [2, u ] ‘=0.001,fd [ 2 , l ] ‘=0.001,‘d [3 ,u ]‘=0.001, 
g=9.81,‘m ass[l]‘=ux*uy*uz*2700,
‘mass[2]‘ = ix*Pi*(ir~2)*2202, ‘mass[3]‘ = tx*Pi*(tr~2)*2202, 
Length[l]=0.42, Length[2] = 0.187, Length[3] = 0.28,
‘Iyaw[1]‘=0.1134, ‘Ip itch[1 ]‘=0.1134,
ux = 0 .1 , uy=0.07, uz=0.3,
ix=0.1, ir=0.09, tx=0.1, tr=0.09,
IcanU=mass_canU*LCanU~2/18,
IcanM=mass_canM*LCanM~2/18,
mass_canU=l/2*(0.04+0.0045)*LCanU*(0.002)*7800, 
mass_canM=l/2*(0.028+0.0038)*LCanM*(0.001)*7800,
LCanU=0.24,LCanM=0.124;
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vars := Iroll[2] =  ^ mass[2] ir2, 7ro//[3] =  ^ raass[3] tr2,

Ipitch[2] = mass[2] ( 7  ir2 +  ix2), Ipitch[3] =  mass[3] %1 ,
r t  1 Z

1 1
Iyaw[2] = mass[2] ( -  ir2 +  — ix2), Iyaw[3] =  mass[3] %1,

4  1 Z

7ro//[l] =  i  raass[i] tr2, 
z

7pz7c/i[i] =  mass[l]% l, 7t/aw[i] =  mass[l]% 1,

H[l] =  Length2 — (s [ l, u] — s[0])2 — (n[l, w] — n[0])2 +  d[l, u],

H[2] =  yjLength 2 — (s[2, u] — s [ i , I])2 — (n[2, u] — n [ l , I])2 +  d[2, u] +  d[l, Z],

H[3] =  ^Length3 2 — (s[3, u] — s[2,1])2 — (n[3, u] — n[2,1])2 +  d[3, u] +  d[2,1],

  E wirel Ttrwirel ĵ n6)   -̂ «;tre2 rwire2 i„„q   Ewire3 ^  Twire3
5  “  Length l ’ 8 ~  Lengthy ’ 5  “  Length^ ’

» _ 1 Ewirel 7T rwirel » _ 1 Ewire2 ^  Twire2
u 4 (1  +  cri) Lengthl ’ 12 4 ( 1 +  <r2) Length2 ’

k t3 =  7  vrT~~\ T ~t~'7u' > hcant,u =  739 +  7397 alpha.cantU,4 ( 1 +  <7 3) Lengthy

kcant i = 498 +  498 7 alpha.cantL, Iwirei =  -nrwirei4, Iwire2 = -itrwire2 A,4 4

Iwire3 =  -  7r Twins4. LIwirei — -1651012 +  .1651012 7 alpha-wirel,4
Ewire2 =  .165 1012 +  .1651012 7 alpha jwire2,
Ewire3 =  -71011 +  .7 10117 alpha .wireS,
Twirel =  -000350, Twire2 =  .000175, r  =  .000154,
<7i =  .29, <j2 =  -29, <73 =  .29, s[0] =  s [ l ,«], s [ i ,«] =  0,
s [ l , I] = s[2, u], s[2, u] =  .03, s[2,1] =  s[5, u], s[5, u] =  .005,
n[0] =  .03, n [ l , u] =  .04, n[ l , l\ =  .045, n[2, u] =  ir +  .0065, n[2, l\ =  n[3, u],
n[3, u] = tr + .0065, d[l, u] = .001, d[l , I] = .001, d[2, n] =  .001,
d[2,1] =  .001, d[3, u\ =  .001, g =  9.81, mass[l] =  2700 ux uy uz,
mass[2) =  2202 ixir ir2, mass[3] =  2202 txirtr2, Lengthl =  .42,
Lengthy =  .187, Lengthy =  .28, Iyaw[l] =  .1134,Ipitch[l] =  .1134, ux =  .1 ,
uy =  .07, uz =  .3, ix =  .1, ir =  .09, tx =  .1, tr =  .09,

1 1 
IcanU =  — mass-canU LCanU2, IcanM =  — mass.canM LCanM2,

18 18
mass-canU =  .347100000000 LCanZJ, mass.canM =  .124020000000 LCanM,

LCanU =  .24, LCanM =  .124%1 := i  tr2 +  — tx2
4 12
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Case 2 : Single Pendulum cases.

> v a rs l := vars_equations,
ECwirel] = 7elO *(l+I*alpha_w irel), # N/nT2 Fused s i l i c a
r[w ire l]  = 140e-6,
sigma[1] = 0.29,
‘s[0] f = ‘s [ l , u ] r , cs [ l , u ] f=0.005,
'n [ 0 ] '=0, cn [ l , u ] r= tr -0 .0035+0.01,
‘d [ l ,u ] ‘=0 . 0 0 1 ,
g=9.81 ,‘m ass[l]‘=tx*Pi*(tr~2)*2700,
Length[1]=0.28, 
tx=0.09, tr= 0 . 1 0 :

Case 3: Thermal Noise per Sheila

> v a rs l := vars_equations,
E[wirel] = 7elO *(l+I*alpha_w irel), # N/nT2 Fused s i l i c a
r[w ire l]  = 500e-6/2, # 500 micron diameter
sigma[1] = 0.29, # Poisson’s Ratio
cs [ 0 ] ‘ = ‘s [ l ,u ]  ‘ , ‘s [ l , u ] ‘ = 0, #0.005, # 1cm f u l l  separa tion  
‘n [0 ] ‘ = ‘n [ l ,u ]  ‘ , ‘n [l,u ]  f = t r ,  # Attached a t m irror rad ius 
‘d [ l ,u ] ‘ = 0 . 0 0 1 , # 1 mm 
g=9.81,
‘mass[1 ] ‘=1 0 . 8 , # kg 
Length[1]=0.25, # 25cm 
tr= 0 .25 /2 , tx=0.10,
IcanU=mass_canU*LCanU~2/18,
IcanM=mass_canM*LCanM~2/18,
mass_canU=l/2*(0.04+0.0045)*LCanU*(0.002)*7800, 
mass_canM=l/2*(0.028+0.0038)*LCanM*(0.001)*7800,
LCanU=0.24 ,LCanM=0.124;
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varsl := Iroll[2] =  i  mass[2 ] zr2, Iroll[3) =  ^ mass[5] tr2,

Ipitch[2] =  mass [2] (~ «r2 +  j -  ix2), Ipitch[3] =  mass[3] %1,
4  1Z

/z/aw/[2] =  mass[2] ir2 +  ix2), Iyaw[3] =  mass[3] %1,
fz 1Z

/ro//[l] =  i  mass[l] tr2, 
z

/pz/c/z[7] =  m ass[l]%l, /z/aza[i] =  mass[f]%l,

//[ /]  =  Length2 — (s[l,u\ — s[0 ] ) 2 — (n [ l , u] — n[0])2 +  d[l, u],

J5T[jS] =  \JLength 2 — (s[2 , u} — s [ l , / ] ) 2 — (n[2, u] — n [ l , I])2 +  d[2, w] +  d [ l , /],

//[3] =  yjLength 2 — (s[$, a] — s[2 , / ] ) 2 — (n[3, u] — n[2, / ] ) 2 +  /[3, u] +  d[£, /],

i j E wirel 7T Twirel » ~ Ewire2 ^  TwireZ 7 0  /̂ u/ire3 ?T ̂ wire3KSl =  --------  ;---, fcs2 =       , KSJ =     ;------ ,
Lengthx Lengthy Lengthy

i   1 -Cwtrel 'K ^wirel , _ 1 EwireZ ^  Twire2
11 4 (1 +  cti) Length ’ t2 4 (1 +  <j2) Length2’

k t3 =  7  ^ vnre3'*Tmre3 kcant u =  739 4- 739/ alpha.cantU,
4 ( 1 +  as) Lengthy

kcant,i =  498 +  4981 alpha.cantL, Iwirei =  ^ it r OT-rej 4, Iwire2 =  j  7r

Iwires =  t  tt ru,,-^4, E wirel =  .71011 +  .71011 /  alpha.wirel,
4

T’ti/irei =  .000250000000000000, <Ti =  .29, s[0] =  s[l, «], s[/, «] =  0, 
n[0 ] =  n [ / , u],
n[/,tx] =  £r, rf[i,ti] =  .001, # =  9.81, mass[l] =  10.8, LengthY =  .25, 

tr = .125000000000000, tx =  .10, IcanU =  ^  mass.canU LCanU2,

IcanM =  mass.canM LCanM2, mass.canU =  .347100000000000 LCanU,

mass.canM =  .124020000000000 LCanM, LCanU =  .24, LCanM =  .124

% 1  := 7  £r2 +  -7 - to2
4 12

Case 4: 2  wire-one front right, one back left:

> v a rs l := vars_equations,
Efwirel] =
7elO *(l+I*alpha_w irel), # N/nT2 Fused s i l i c a
rfw ire l]  = evalf(sq rt(2 ))*500e-6 /2 , # 500 micron diameter
sigma[1] = 0.29, # Poisson’s Ratio
fs[0] f = fs [ l ,u ]  ‘ , cs [ l ,u ]  ,= 0.005, # 1cm f u l l  separation
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fn [0 ] f = ‘n [ l ,u ] ‘ , ‘n [ l,u ]  * = t r ,  # Attached a t m irror rad ius 
‘d [ l ,u ] ‘ = 0 . 0 0 1 , # 1 mm 
g=9.81,
'm ass[1 ] ‘=1 0 . 8 , # kg 
L ength[l]=0.25, #0.02, # 25cm 
tr= 0 .25 /2 , tx=0.10:

A.4.2 Loss

Structural (or viscous) loss in the wires.
Viscous loss, alpha = phiO * omega

> loss :=
alpha.w irel = le - 6 *omega, 
alpha_wire2  = le - 6 *omega, 
alpha_wire3 = le - 6 *omega;

loss alpha.wirel =  .1 1 0 - 5 u;, alphajwire2 =  .1 1 0 - 5 u;, alphajwireS =  .1 1 0 - 5 u;

Structural loss, alpha = phiO

> loss :=
alpha .w irel = 3 .3e-8 , 
alpha_wire2 = 3 .3e-8 , 
alpha_wire3 = 3.3e-8;

loss := alphajwirel =  .33 10-7, alphajwire2 =  .3310-7, alpha.wireS = .3310-7 

Structural material loss +  Thermoelastic damping
While this depends on properties that axe defined in ’vars’, getting the substitu­

tion order correct is a chore, so just put in numerically here.
tau =  7.37e-2*rho*c*d~2/k 

Delta =  E*alpha~2*Temp/(rho*c)
phLThermoelastic =  Delta*omega*tau /( I  +  omega~2*tau~2) 
phi =  phiintrinsic +  phLThermoelastic

> loss :=
alpha.cantU  = 1.0e-4, 
alpha.cantL  = 1.0e-4, 
a lpha .w irel = 1.0e-5,
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alpha_wire2  = 1 . 0 e - 6 ,
alpha_wire3 = 3.3e-8 + (7el0*(5e-7)~2*300/( (2.2e3)*(772) ))*  
omega*(7 .37e-2*(2 .2e3)*(772)*(500e-6)~2/l.38 )/
( l+omega~2*(7 .37e-2*(2 .2e3)*(772)*(500e-6)~2/1 .38)~2); 
#alpha_wire3 = proc (omega)
# lo ca l tau ,D e lta ,a lp h a l;
#
# tau  := 7.37e-2*(2.2e3)*(772)*(500e-6)~2/1.38:
# Delta := 7el0*(5e-7)~2*300/( (2.2e3)*(772) ):
#
# alphal := Delta*omega*tau/(l+omega~2*tau~2);
#
# RETURN(3 .3e-8 + a lp h a l);
#end;

loss := alpha.cantU =  .00010, alpha.cantL =  .00010, alpha-wirel = .000010, 
alpha.wire2 =  .1 0 1 0 “5, alpha.wireS =
.3310“7 +  .7009510869565217391310“7 “

1 +  .00051420557693782818736 o>2

> loss :=
alpha.wirel = 3.3e-8 +
(7el0*(5e-7)~2*300/( (2 .2e3)*(772)
) )* omega*(7 .37e-2*(2 .2e3)*(772)*(500e-6)~2/l.38)/
( l+omega~2*(7 .37e-2*(2 .2e3)*(772)*(500e-6)~2/1.38)~2);

loss := alpha.wirel =
.3310“7 +  .7009510869565217391310“7 “

1 +  .00051420557693782818736 a;2 

A dummy zero-loss function, for calculation of static conditions and zero-loss 
resonant frequencies.

> lossO :=
alpha_wirel=0,alpha_wire2=0,alpha_wire3=0, 
alpha_cantU=0,alpha_cantL=0;

lossO := alpha.wirel =  0, alpha.wire2 =  0, alpha.wireS =  0, alpha.cantU = 0, 
alpha .cantL = 0
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> lossVars :=
[alpha.w ire1 ,a lpha.w ire2 , alpha_wire3, alpha.cantU ,a lp h a .can tL ];

lossVars := [alpha.wirel, alpha_wire2, alpha.wireS, alpha.cantU, alpha.cantL]

A.4.3 Simplifications

> inpu t.va rs := xO,yO,zO,thetaO;

input.vars := xO, ?/0 , ;z0 , 0 0

> inputsO := se q ( ii= 0 ,ii= in p u t.v a rs ) :

Used for expansions

> re a d lib (c o e f ta y l) : read lib (m tay lo r):

For expansion about nominal:

> allDOFO := inputsO,
seq(op( [x .i i= 0 ,y . i i= 0 , z . i i= 0 ,p h i . i i= 0 , th e ta . i i= 0 , p s i . i i= 0 ] ) ,  
i i = l . .NumPen),
se q (‘y c [u ,‘ . i i . f] ‘=0,ii=l..NumCanU), 
se q (‘y c [ 1 ,f . i i . f] f= 0 ,ii= l. .NumCanM):

A ’list’ versus a ’set’ ([ ] vs. { }) so it will stay ordered:

> all_vars := [
s e q ( o p ( [ x . i i ,y . i i , z . i i , t h e t a . i i ,p h i . i i ,p s i . i i ] ) , i i= l . .N u m P e n ) , 
se q (‘y c [ u /  . i i . ']  1 , i i = l . .NumCanU), 
se q (‘y c[1, * . i i . f] f , i i= l .  .NumCanM), 
in p u t.v a rs ] ;

all.vars := [xl, y l ,  z l , 01, (f> 1, z/>l, xO, yO, zO, 00]

> CantOffsO := UCant0ff=0,MCant0ff=0;

CantOffsO := UCantOff =  0 , MCantOff =  0
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> CantOffs := CantOffsO: 
i f  (NumCanU>0) then 
CantOffs := ev a lf(op ([
UCantOff=subs(vars,lossO,add(‘massV . i i . ' ] ‘ , 
i i = l . .NumPen)*g/CNumCanU*k[cant,u])) ])  ) ; 
i f  (NumCanM>0) then 
CantOffs := CantOffs,
evalf(op([M CantOff=subs(vars,lossO ,add(fm ass[‘ . i i . r] 1,
i i= 2 . . NumPen)*g/(NumCanM*k [can t,1 ]))  ])  );
f i :
f i :
CantOffs;

UCantOff =  0 , MCantOff =  0  

To simplify expressions further on (usually sqrt(I/2)=L):

> assume(xO,r e a l ,yO,r e a l ,zO,r e a l ,thetaO ,r e a l ,
x l , r e a l ,y1 , r e a l ,z l , r e a l , t h e t a l , r e a l ,p h i1 , r e a l ,p s i 1 , r e a l , 
x2 , r e a l ,y2 , r e a l ,z 2 , r e a l ,th e ta 2 , r e a l ,phi2 , r e a l ,p s i 2 ,r e a l , 
x3, r e a l ,y3, r e a l ,z3 , r e a l ,th e ta 3 ,r e a l ,ph i3 , r e a l ,p s i3 ,r e a l , 
y10,r e a l , y20, r e a l ,y30,r e a l ,
a lp h a .w ire l, rea l,a lpha_w ire 2 , r e a l , a lpha_w ire3 ,rea l, 
alpha.cantU ,r e a l , alpha.can tL ,r e a l ) ;

> add itionallyC fn [0 ] 1, r e a l , ‘s [0 ] ' , r e a l ) : 
add itionallyC fn [ l ,u ] ' , r e a l , ‘s [ l , u ] ‘ , r e a l ,* d [ l ,u ] 1, r e a l ) ; 
a d d itio n a lly ( fn [ l , 1 ] 1, r e a l , cs [ l , l ] 1, r e a l , fd [ l , l ] 1, r e a l ) ; 
add itionallyC fn [ 2 ,u ] 1, r e a l , cs [ 2 ,u ] 1, r e a l , rd [ 2 ,u ] { , r e a l ) ; 
add itionallyC ‘n [2 , 1 ] ' , r e a l , fs [ 2 , l ]  f , r e a l , fd [2 , l ]  f , r e a l ) ; 
additionallyC  fn [3 ,u ] f , r e a l , ‘s [ 3 ,u ] 1, r e a l , fd [3 ,u ] f , r e a l ) ; 
add itionallyC fy c [ u , l ] f , r e a l , ‘yc[u,2] f ,re a l ,* y c [u ,3 ] ' , r e a l ,  
‘y c [u ,4 ]c, r e a l ) ;
add itionallyC fyc[1,1] 1, r e a l , ‘y c [l,2 ] ' , r e a l , ry c [ l ,3 ] ' , r e a l ,  
‘yc [1 ,4 ]‘ , r e a l ) ;
add itionallyC ‘H [l]1, r e a l , ‘H[2]‘ , r e a l , fH[3]r , r e a l ) ; 
additionallyCUCantOff,rea l,M C an t0 ff,rea l); 
add itionallyC CH[1]‘- ‘d [ l ,u ] {> 0 ,‘H [ l] ‘- ‘d [ l ,u ] f-y l> 0 ); 
add itionallyC ‘H [l] ‘- fd [ l ,u ] f-y l0> 0); 
add itionallyC fH[2 ] f- fd[2 ,u ] f- cd [ l , l ] f>0 ,
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fH[2]‘- ‘d [2 ,u ] f- ‘d [ l , l ] c+yl-y2>0);

Because Maple is sometimes too dense to set (a-b) ~ 2  =  (b-a)~2 :

> simple := ( ‘s [ l ,u ] * - 's [ 0 ] f ) ~ 2  =
( fs [ 0 ] f- ‘s [ l ,u ]  f)~2 , ( fn [ l >u ] , - cn [ 0 ] , ) ' ‘2  = ( fn [0 ] ‘- ‘n [ l ,u ]  ‘)~2 , 
( ‘s [ 2 ,u] c- ‘s [ l , l ]  ‘ ) ~ 2  = ( ' s [ l , l ] ‘- ‘s [ 2 ,u ] ')~ 2 ,
( fn [ 2 ,u] f- fn [ l , l ]  ' ) ~ 2  = ( fn [ l , l ]  f- ‘n [ 2 ,u] f)~2 ,
( , s [ 3 ,u ] , - , s [2 .1 ] , )~2 = ( fs [ 2 , l ] ‘- 's [ 3 ,u ] f)~2,
C‘n[3,u] * -fn [2 ,l]  ‘)~2 = ( fn [ 2 , l ] ‘- tn [3 ,u!r)~2:

Some useful substitutions for intermediate steps when calculating the deltaJ due 
to gravity (and thus tensions):

> delta.gsO  :=
s e q (d e l ta [g l . i i ]= 0 , i i = l . . '#  of w ires ,u ‘): 
i f  (NumPen>l) then
delta.gsO  := delta_gsO, s e q (d e l ta [g 2 .i i ]= 0 ,i i= l . . '#  of w ires,m '): 
i f  (NumPen>2) then
delta.gsO  := delta.gsO , s e q (d e l ta [g 3 .i i ]= 0 ,i i= l . . '#  of w ire s ,1*):
f i :
f i :

> lgsEQIOs :=
s e q ( lg [ l , i i ] = 1 0 [ l , i i ] , i i = l . . '#  of w ires ,u ‘): 
i f  (NumPen>l) then
lgsEQIOs := lgsEQIOs, s e q ( lg [2 ,i i ]= 1 0 [ 2 ,i i ] , i i= l .  . f# of w ires,m ‘): 
i f  (NumPen>2) then
lgsEQIOs := lgsEQIOs, se q ( lg [3 ,i i]= 1 0 [3 ,i i]  , i i= l .  . '#  of w ire s ,V ) :
f i :
f i :

To replace the initial variables with their equilibrium positions:

> allDOFqO := s e q (o p ( [x .i i= x .i i .O ,y .i i= y .i i .O ,z .i i= z .i i .O , 
th e ta . i i= th e ta . i i . 0 ,p h i . i i= p h i. i i . 0 , p s i . i i= p s i . i i . 0 ] )  , 
i i = l . .NumPen),
se q (fy c [u ,f . i i . f] C=fy c [u ,‘ . i i . ‘] 0 ‘ ,ii=l..NumCanU), 
se q (‘yc [ 1 ,‘ . i i . f] C=fy c [ l , c . i i . f] 0 f ,ii=l..NumCanM);

allDOFqO := xl~  = xlO, yl~  = ylO~, zl~  = zlO, 9l~ =  010, (f)l~ =  >̂10, 
ipl~ =  iplO
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To use the dynamic variables while solving for the equilibrium condition: 

> allqOeqO :=
seq(op( [x . i i .0 = 0 ,y . i i . 0 = 0 , z . i i .0=0, 
th e ta .i i .0 = 0 ,p h i.i i .0 = 0 ,p s i. i i .0 = 0 ]) ,i i= l . .N u m P en ) , 
seq (‘y c [u ,*. i i . ‘DO*=0,11=1..NumCanU), 
seq (‘y c [ l , ‘ . i i .  ‘] 0 ‘= 0 ,i i= l .  .NumCanM);

allqOeqO := xlO = 0, y!0~ = 0, zlO =  0, 010 =  0, <̂ 10 =  0, >̂10 =  0

A. 5 Lagrangian

L =  Kinetic Energy - Potential Energy

A .5.1 Kinetic Energy

6  DOF for a single stage pendulum:

> KE[1] := 1 /2* (‘mass[1 ]‘*dot.yl~2) + 
l / 2 * ( ‘Iy aw fl]‘*dot.ph il~ 2 )
+ l /2 * ( ‘mass[1 ]‘*dot.xl~2) + 1 /2* (‘Ip itc h f l]  ‘*dot .the ta l~ 2 )
+ l / 2 * ( ‘m ass[l]‘*dot.zl~2) + 1 /2* (‘I r o l l f l ] ‘* d o t.p s il~ 2 );

1 1  1
KEi := -  mass{l] dotyl ~2 +  -  Iyaw[l ] dotphil ~2 +  -  mass[l ] dotxl ~2 

z z z

+  Ipitch[l] dotthetal ~2 +  mass[l] dotzl ~2 +  -  Iroll[l] dotpsil ~ 2 
z z z

And the second and third stages:

> i f  (NumPen>l) then
KE[2] := l /2 * ( ‘mass[2 ]‘*dot.y2~2) + 1 /2*(‘Iyaw[2 ]‘*dot.phi2~2) 
+ 1 / 2 * ( ‘mass[2 ] ‘*dot.x 2 ~2 ) + 1 / 2 * ( ' Ip itc h [ 2 ] ‘*do t. th e ta 2 ~2 )
+ 1 /2 * (‘mass[2 ]‘*dot.z2~2) + l /2 * ( ‘I r o l l [ 2 ] ‘*do t.p si2~ 2): 
i f  (NumPen>2) then
KE[3] := l /2 * ( ‘m ass[3]‘*dot.y3~2) + 1 /2*(‘Iyaw[3 ]‘*dot.phi3~2) 
+ 1 /2 * (fm ass[3]‘*dot.x3~2) + 1 /2* (fIp i tc h [3 ] ‘*dot.theta3~2)
+ 1 /2 * (‘mass[3 ]‘*dot.z3~2) + 1 /2* (‘I r o l l  [3 ]‘*do t.p si3~ 2):
f i :
f i :
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> KE := sum(,KE[j ] * , ,=1. .NumPen):

Kinetic energy of the cantilevers (translational):

> KE := KE +
add(l/2*mass_canU*(dotXCanU.ii)~2,ii=l. . NumCanU)+ 
add(l/2*mass_canM*dotXCanM.ii~2,ii=l..NumCanM) :

Rotational:

> KE := KE +
add(l/2*IcanU *(dotThC anU .ii)~2,ii= l..NumCanU)+ 
add(l/2*IcanM *dotThCanM .ii~2,ii=l. .NumCanM);

KE  := ^ mass[l ] dotyl ~2 4- ^ Iyaw[l] dotphil ~2 +  ^ mass[l] dotxl ~2
Z  Z  Z

+  -  Ipitch[l ] dotthetal ~2 +  -  mass[l] dotzl ~2 +  ]- Iroll[l] dotpsil ~ 2
z z z

A .5.2 Potential Energy

First used to determine the equilibrium positions of the suspension.
Gravitation potential.
Stretching of wires.
Twisting of wires.
Bending of wires.
Cantilevers.

P o ten tia l Energy from  gravity.

> PEgravity := sumO fm ass[c . j  . (] f*g*(y.j) *, *j ,=1 . .NumPen);

PEgravity := m ass[l]gyl"

P o ten tia l Energy for extension of 4 wires.

Wires are symmetric and the wires opposite each other (1 &2 , 3&4) experience the 
same extension/compression for y and phi motions.

Wire pairs front and back (1&3, 2&4) experience same extension/compression 
for x and theta motions, and etc.
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In the initial calculation of the equilibrium position, we end up solving for the 
(DC) tension, so we need two forms of the stretching energy.

> PE [stret ching,1] : =
se q ( l /2 * k s l* d e lta [ l l . j ] "2,j = l . . ‘# of wires,uf);
PE[stretching.eq,1] :=
subs(delta=delta_eq,add(ii,ii={PE[stretching,1]}));

P E  stretching,1 "=  ^112 , 7̂  ’ 2  1̂14

P E  stretching_eq, 1 ’ =

^ ksl delta.eql l l 2 +  ^ fcsl delta-eql J2 2 +  ^ fcsl delta.eql l 3 2 +  ^ fcsf delta.equ ^ 2

> i f  (NumPen>l) then
PE[stretching,2] := seq(l/2*ks2*delta[12.j]~2
# * ' i f ‘ ( j = l ,1.3,1)
# For a variation in the spring constant of one wire
# use a line  something like th is  
, j = l . . f# of wires,m‘):
PE[stretching_eq,2] :=
subs(delta=delta_eq,add(ii,ii={PE[stretching,2 ]}));  
i f  (NumPen>2) then
PE[stretching,3] := seq(l/2*ks3*delta[13.j ] "2, 
j = l .. '# of w ires,1‘) :
PE[stretching_eq,3] :=
subs(delta=delta_eq,add(ii,ii={PE[stretching,3]} ));  f i : 
f i :

> PEstretching :=
seq(PE[stretching,k],k=l..NumPen);
PEstretching_eq := sum( 1 PE[stretching_eq,k] ’ , ’k^l..NumPen):

PEstretching := jrksl 6 m 2, \  ksl 6 m 2, -zksl 61132, -  ksl 6 u j 2
A jL Z Z

Potential Energy for twisting of wires.

> PEtwisting :=
1/2*'# of wires, u'*(k[tl]*phil~2) +
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sum( ’1/2*' i f ' ( j= 2 ,'# of wires,m','# of w ires,1')*
( k [ t . j ] * ( p h i . j -p h i . ( j - l ) )~ 2 ) ’ ,*j ’= 2 ..NumPen);

PEtwisting := 2  ktl <j> 1 ~ 2

Potential Energy from cantilevers

> PEcantfu] := sum(’l/2*k[cant,u]* 'yc[u ,f . j . ' ] '~2
# * fi f ‘ ( j = l ,1 .1 ,1 ) ’
# For a variation in the spring constant of one cantilever
# use a l in e  something like  th is  
’ , ’j ’=l..NumCanU);

PE cant u := 0

> PEcant[m] :=
sum(’ l/2*k [ c a n t , l ]* 'y c [ l ,*.j . f] '"2’ , ’j ’= 1 ..NumCanM);

PEcantm := 0

> PEcantilevers := PEcant[u] +
‘i f ' (NumPen>l,PEcant[m],0):

Potential Energy from bending of wires

This really serves as a place holder for the bending energy terms; these are the 
equations used, but as called fuctions further along.

> PEbending[u] :=
Sum(’ (1 /2 )*E[wirel]*int(Iwire[l]*
( (d iff(eta [u ](zeta ),zeta ,zeta )~2)+
d if f (c h ifu ] (z e ta ) ,ze ta ,ze ta )"2),zeta=0..Length[ 1 ] ) ’ ,
’j ’= l . . f# of wires,u');

* f l  r  L e n g t h  q 2 q 2 \

PEbendingu := E «i*i /  Iwirei ( ( ^  ’k(C) ) 2 +  X“(0 )2) <KJ

> PEbending[m] :=
Sum(’ (1 /2)*E[wire2]*int(Iwire[2]*
( (d iff(eta [m ](zeta ),ze ta ,ze ta )"2)+
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diff(chi[m] (ze ta ) ,ze ta ,ze ta )"2),zeta=0..Length[2])*,
’j ’= l . . ‘# of wires,in*):

> PEbending[1] :=
Sum(*(l/2)*E[wire3]*int(Iwire[3]*
( (d i f f ( e t a [ l ] ( z e t a ) ,ze ta ,ze ta )"2)+
d i f f ( c h i [1 ](ze ta ) ,ze ta ,ze ta )"2),zeta=0..Length[ 3 ] ) ’ ,
, j , = l . . t# of w ires,1 '):

A Maple note: in ’PEbending[u]% the ’ quote allows delayed evaluation. While 
it still allows PEbend to equal PEbending[u], it does not substitute the definition 
from above, allowing us to redefine this term later.

> PEbend := seq (ei f f (ii= l,PEbending[u]’ ,
ci f ' ( i i= 2 , ’PEbending[m]’ , ’PEbending[1 ]’) ) ,ii=l..NumPen);

PEbend := PEbendingu

The potential energy of the system, specifically for the equilibrium position cal­
culation:

> PE_eq := PEgravity + PEstretching_eq 
+ PEtwisting
+ PEcantilevers;
#+ ’PEbend’ ;

PE.eq := mass[l] g yl ~ +  -  ksl delta.eqln2 + -  ksl delta-eqil22
Z  Z

+  ksl delta.eqll32 +  ^ ksl delta_equ 2 -I- 2  ktl (j)l~2 
z z

A .5.3 W ire Lengths

For convenience in stretching of wires:

> d ist  := proc ( x l ::vector,x2::vector) 
norm(xl-x2,2);
simplifyC ,ab s); 
end;

dist := p ro c(rl '/.vector, x2::vector) norm(ri — x2, 2 ); simplify(” , abs) end
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Position of Top Connections

Matrix of locations of connections of top wires.
Co-ordinates go in as x (along beam), y (vertical), and z (transverse).
Points are numbered (looking down on system) 1 is front right, 2 is back left, 3 

is front left, and 4 is back right. This allows simplest input of 2 wire systems (either 
one wire loop or one wire in front of the other).

> TopPlate := matrixO# of wires,u‘ ,3):

> row(TopPlate,1) :=
vector( [x0+' s [0 ]‘ ,y0+fi f ‘ (NumCanU>0, ‘yc[u,1 ] 1+UCant0ff, 0) + 
cs [0 ]f*theta0,z0+‘n [0 ]f] );

row(TopPlate,  1) := [x0~ +  s[0]~, y0~ +  s[0]~0O~, z0” +  n[0]~]

> row(TopPlate,2) := vector( [x0-‘s[0] f ,
y0+‘i f ‘ (NumCanU>0 /  yc[u,2] ‘+UCant0ff, 0 ) - cs [0 ] ‘*theta0,zO-f n [0 ]1] ) ;

TOw(TopPlate, 2) := [x0~ — s[0]“, y0~ — s[0]~0O~, z0~ — n[0]~]

> row(TopPlate,3) :=
vector( [x0+f s [0 ] ' ,y0+' i f  *(NumCanUX),*yc [u,*.(2+
‘i f ‘ (NumCanU>2, 1 , 0 ) ) . f ] ‘+UCantOff,0) +f s [0] '*theta0,zO-‘n [0 ]c] ) ;

row (TopPlate, 3) := [x0~ +  s[0]~, y0~ +  s[0]“ 0O~, z0~ — n[0]~]

> row(TopPlate,4) := vector( [x0-cs [ 0 ] ‘ ,y0+
1 i f ( (NumCanU>0,‘y c [u ,1.(1+ ‘i f ‘ (NumCanU>2,3,0)) . f] ‘+UCant0ff,0 )-  
‘s [ 0 ] f*theta0,z0+‘n [0 ]f] ) ;

row {TopPlate, 4) := [x0~ — s[0]~, y0~ — s[0]~0O~, z0~ +  n[0]"}

Position of Top Mass

Upper Connection

> Masslu := matrix(‘# of w ires,uf , 3):
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> row(Masslu,l) :=
v ector([‘s [ l ,u ]  ‘*cos(phil)*cos(thetal)-  
cd[l,u] ‘*sin (theta l)+<n[l,u ] ‘*sin(phil)+xl,
—fH [1 ]f+‘d [ l ,u ] ‘*cos(thetal)*cos(psil)+
*s[l,u] ‘* s in (th e ta l) -{n[l,u ] ‘*s in (p sil)+ y l,  
fn [ l ,u ] f*cos(ph il)*cos(psil)+ ‘d [ l ,u ] f* s in (p s i l ) -  
1s [ l , u ] f*sin(phil)+zl] );

row(Masslu, 1) := [ 
s[l, w]~ cos(<^l~) cos(0 1 ~) — d[l, u]~sin(0 1 ~) +  n[l, u]~sin(<£l~) + xl~,
—H[l]" +  d[l , u]~ cos(01~) cos(^ 1~) +  s[ l , w]~ sin(01~) — n [ l , w]~ sin(^l~) +  yl 
n [ l , u]~ cos(<£l~) cos(^l~) +  d[l , u]~ sin(^l~) — s[ l , u]~ sin(<£l~) +  z l  ~]

> row(Masslu,2) :=
vector( [~f s [1,u ]1*cos(phil)*cos(thetal)-  
cd[l,u] ‘* s in (th e ta l) - ‘n [ l ,u ] ‘*sin (p h il)+x l,
—fH [13‘+‘d [ l ,u ] f*cos(theta l)*cos(psil)-  
fs [ l ,u ]  ^sinCthetaD + 'nCl,u] f* s in (p s i l)+ y l ,
- ‘n [ l ,u ] <*cos(ph il)*cos(psil)+ ‘d [ l ,u ] <*sin (psil)+
*s [ l , u ] ‘*sin(phil)+zl ] ) :

> row(Masslu,3) :=
vector(C‘s [ l , u ] f*cos(ph il)*cos(theta l)-‘d [ l ,u ] f*sin (th eta l)-  
fn [ l ,u ] ‘*sin (ph il)+x l,
- fH [l] ‘+‘d [ l ,u ] ‘*cos(theta l)*cos(psil)+ ‘s [ l , u ] ' *sin(thetal)+  
‘n [ l ,u ] ‘* s in (p s i l)+ y l ,
- cn [ l ,u ] {*cos(ph il)*cos(psil)+ ‘d [ l ,u ] t* s in (p s i l ) -  
‘s [ l , u ] <*sin(phil)+zl ] ) :

> row(Masslu,4) :=
vector( [ - fs [ l , u ] ' *cos(phil)*cos(thetal)-  
fd [ l ,u ] f*sin (theta l)+ ‘n [ l ,u ] f*sin (ph il)+x l,
-*H[1]f+fd [ l ,u ] f*cos(theta l)*cos(psil)-  
fs [ l , u ] ‘* s in (th e ta l) - ‘n [ l ,u ] '* s in (p s i l )+ y l ,  
fn [ l ,u ] f*cos(ph il)*cos(psil)+ ‘d [ l ,u ] ' *sin (psil)+  
fs [ l , u ] ‘*sin(phil)+zl] ):
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Lower Connection

Same co-ordinates as for top wire connection points, except using var[l,l] instead 
of var[l,u], and changing the sign of d[l] where it appears, since d[l,1] is defined 
positive downward whereas d[l,u] is defined positive upwards.

> Mass11 := matrix(4,3):

> row(Massll,l) :=
vector( [ fs [1 ,1 ] '*cos(ph il)*cos(theta l)+ 'n [l ,l]  '*sin(phil)+xl  
+ ( ' d [ l , l ] ' - ‘ i f ' (NumCanM>0,'yc[l,l]'+MCantOff,0 ) )* s in ( th e ta l) ,
# -0.00X,
# For a Xmm misalignment in the wire attachment
# use a line like  th is
- 'H [l] '  + ' s [ l , l ] ' * s i n ( t h e t a l ) - 'n [ l ,1] '* s in (p s il)+ y l-  
( 'd [l ,1 ] '-'if'(NumCanM>0,'yc[1 ,1 ]c+MCant0ff,0))*  
co s(th e ta l)* co s(p s il) ,
'n [ l , l ] '* c o s (p h i l )* c o s (p s i l ) - ' s [1 ,1 ] '*sin(phil)+zl  
~('d[l,l]'-'if'(NumCanM>0,'yc[l,l]'+MCant0ff,0 ) )* s in (p s i l ) ] );

row(Massll ,  1) := [ 
s [ i , /]” cos(^l~) cos(01~) -I- n [ l , /]“ sin(<£l~) +  x l~  +  d [ l , I]" sin(01~),
—H[l ]~ +  s [ l , I]" sin(01~) — n [ l , /]~ sin(^l”) +  y l  ~ — d [ l , l]~ cos(01~) cos(Vd~), 
n [ l , I]" cos(< l̂~) cos(ipl~) — s [ l , sin(01~) + z l  ~ — d [ l , /]“ sin(^l~)]

> row(Massll,2) :=
vector( [ - 's  [1 ,1 ] '*cos(phil)*cos(thetal)+
( ' d [1 ,1 ] '-'if'(NumCanM>0,fyc[l,2]'+M CantOff,0))*sin(thetal)-  
'n [ l , l ] '* s in (p h i l )+ x l ,

-- 'H [ 1 ] ' - ' s [ l , l ] '* s in ( th e t a l ) + 'n [ l , l ]  '* s in (p s il)+ y l-  
( ' d [1 ,1 ] ‘-'if'(NumCanM>0,'yc[l,2] '+MCantOff,0)) 
*cos(th eta l)*cos(p sil) ,
- 'n [ l , l ] '* c o s (p h il )* c o s (p s i l )+ 's [ l , l ] '* s in (p h i l )+ z l  
— ( ' d [1 ,1 ] '-'if'(NumCanM>0,'yc[l,2]'+MCantOff,0 ) ) * s in (p s i l ) ] ):

> which_cantL :=
' i f ' (NumCanM>0, ' yc [1 , ' . ( 2 + ' i f ' (NumCanM>2, 1 , 0 ) ) . ' ] ' +MCant0ff,0):  
row(Massll,3) :=
vector( [ ' s [1 ,1 ] '*cos(ph il)*cos(theta l)-‘n [ l , 1 ] '*sin(phil)+xl  
+('d [l,l]'-w hich_cantL )*sin (theta l),
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—c H[1 ]‘ + ‘s [ l , l ] f*sin (theta l)+ ‘n [ l ,1 ] ‘*sin (psil)+yl  
- ( rd [ l , l ] f-which_cantL)*cos(thetal)*cos(psil),
- fn [ l , l ]  ‘*cos(p h il)* cos(p s il) - ‘s [ l , l ]  ‘*sin(phil)+zl  
— ( rd [ l , l ]  f-which_cantL)*sin(psil)]) :

> which.cantL := ‘i f ‘ (NumCanM>0,fyc [ 1 , ‘ .(1+ 
ci f 1(NumCanM>2,3,0) ) . f] ‘+MCantOff,0): 
row(Massll,4) :=
v e c to r ( [ -cs [ l , l ]  t*cos(phil)*cos(thetal)+‘n [ l , l ]  ‘*sin(phil)+xl  
+ ( 'd [ l , l ]  f“which_CcLntL)*sin(thetal),
- fH[l] c- cs [ l , l ]  ‘♦sinC thetaD -'nfl,1] ‘*sin (psil)+yl  
- ( ‘d [ l , l ] ‘-which_cantL)*cos(thetal)*cos(psil), 
fn [ l , l ]  c*cos(ph il)*cos(psil)+<s [1,1] ‘*sin(phil)+zl  
- ( ' d [ l , l ] ‘-which_cantL)*sin(psil)]):

Position of Second Mass

As per top mass, except var[2,u] instead of var[l,u], the independent variables are 
var2, and the vertical distance is (essentially) the sum of the top 2 masses.

Upper Connection

> i f  (NumPen>l) then

> Mass2u := matrix(4,3):

> row(Mass2u,l) :=
v ecto r([fs [ 2 ,u ] f*cos(phi2)*cos(theta2)- 
fd [2 ,u ]‘*sin(theta2)+fn [2 ,u ]‘*sin(phi2)+x2,
- fH [l] f- ‘H[2]‘ + ‘d [2 ,u ]f*cos(theta2)*cos(psi2)+  
fs [ 2 ,u ] f*sin (th eta2)-‘n [2 ,u ]‘*sin(psi2)+y2, 
fn [2 ,u ]f*cos(phi2)*cos(psi2)+‘d [2 ,u ]f*sin (psi2)-  
fs [ 2 ,u ] 1*sin(phi2)+z2] ):

> row(Mass2u,2) :=
vector( [ - cs [2 ,u ]<*cos(phi2)*cos(theta2)- 
*d[2,u]<*sin (theta2)-‘n [2 ,u ] '*sin(phi2)+x2,
- fH [l]c- fH[2]‘ + fd [2 ,u ]f*cos(theta2)*cos(psi2)-  
' s [2 ,u ] f*sin(theta2)+‘n [2 ,u ]‘*sin(psi2)+y2,
- fn [2 ,u ] ' *cos(phi2)*cos(psi2)+fd [2 ,u ]‘*sin(psi2)+  
cs [ 2 ,u ] f*sin(phi2)+z2]): 
row(Mass2u,3) :=
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v ecto r([fs [ 2 ,u ] f*cos(phi2)*cos(theta2)- 
*d[2,u] ‘*sin (th eta2)-‘n[2,u] c*sin(phi2)+x2, 
- fH [l]* -cH[2]f+‘d [2 ,u ]‘*cos(theta2)*cos(psi2)+  
‘s[2,u] f*sin(theta2)+fn[2,u] f*sin(psi2)+y2, 
- cn [2 ,u ] ' *cos(phi2)*cos(psi2)+
*d[2,u]r* s in (p s i2 )- ts [ 2 ,u ] <*sin(phi2)+z2 ] )  :

> row(Mass2u,4) :=
vector( [ - ‘s [2 ,u ] f*cos(phi2)*cos(theta2)- 
‘d [2 ,u ]f*sin(theta2)+‘n [2 ,u ]f*sin(phi2)+x2, 
- fH [l] f- ‘H[2]'+‘d [2 ,u ]‘*cos(theta2)*cos(psi2)-  
fs [ 2 ,u ] f*sin (th eta2)-'n [2 ,u ]‘*sin(psi2)+y2, 
fn [2 ,u ]r*cos(phi2)*cos(psi2)+‘d [2 ,u ]‘*sin(psi2)+  
fs [ 2 ,u ] f*sin(phi2)+z2]): 
f i :

Lower Connection

> i f  (NumPen>2) then Mass21 := m atrix(4,3):

> row(Mass21,l) :=
vector( [ fs [2 ,1 ] ‘*cos(phi2)*cos(theta2)+
‘d[2 ,l]  f*sin(theta2)+‘n [ 2 , l ] f*sin(phi2)+x2, 
-<H[1]f- ‘H[2]f- fd [ 2 , l ] f*cos(theta2)*cos(psi2)+  
fs [ 2 , l ] f* s in (th eta2)-tn [ 2 , l ] r*sin(psi2)+y2, 
‘n [ 2 , l ] f*cos(phi2)*cos(psi2)- 
* d [2 , l ] f* s in (p s i2 )- ‘s [2 ,1 ] f*sin(phi2)+z2]): 
row(Mass21,2) :=
vector( [ - fs [2 ,1 ] '*cos(phi2)*cos(theta2)+ 
fd [ 2 , l ] f*sin (th eta2)-‘n [ 2 , l ] f*sin(phi2)+x2, 
- ‘H [l]r- ‘H[2]r- ‘d [ 2 , l ] c*cos(theta2)*cos(psi2)-  
fs [ 2 , l ] f*sin(theta2)+‘n [ 2 , l ] ‘*sin(psi2)+y2, 
~‘n [ 2 , l ] 1*cos(phi2)*cos(psi2)-‘d [ 2 , l ] (*sin(psi2) 
* s [ 2 , l ] f*sin(phi2)+z2 ] ) :

> row(Mass21,3) :=
vector( [ fs [2 ,1 ] f*cos(phi2)*cos(theta2) +
‘d [ 2 , l ] f*sin (th eta2)-‘n [ 2 , l ] ‘*sin(phi2)+x2, 
- fH [l]f- cH[2]f- fd [ 2 , l ] ' *cos(theta2)*cos(psi2)+  
(s [ 2 , l ] f*sin(theta2)+‘n [ 2 , l ] c*sin(psi2)+y2, 
~ ‘n [2 ,l]  ' *cos(phi2)*cos(psi2)-fd [ 2 , l ] f*sin(psi2)
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rs [ 2 , l ] f*sin(phi2)+z2 ] ) :

> row(Mass21,4) :=
vector( [ - (s [2 ,1 ] f*cos(phi2)*cos(theta2)+ 
cd [2 ,l]  f*sin(theta2)+‘n [2 ,l]  f*sin(phi2)+x2,
— CH[1 ]‘- ‘H[2]f- ‘d [ 2 , l ] f*cos(theta2)*cos(psi2)-  
fs [ 2 , l ] r*sin (th eta2)-‘n [ 2 , l ] ‘*sin(psi2)+y2, 
fn [2 ,l] '*cos(ph i2)*cos(ps i2 )-‘d [ 2 , l ] ‘*sin(psi2)+  
c s [2 ,1 ] ' *sin(phi2)+z2]):
f i :

Position of Test Mass

Again, as before except with var[3] and vertical distance is the total distance.

Upper Connection

> i f  (NumPen>2) then Mass3u := m atrix(4,3):

> row(Mass3u,l) :=
vector( [ fs [3 ,u ] ‘*cos(phi3)*cos(theta3)- 
{d [3 ,u ]‘*sin(theta3)+‘n [3 ,u ]f*sin(phi3)+x3,
- 'H [ l ] f- ‘H[2]C- ‘H[3](+fd [3 ,u ]‘*cos(theta3)*cos(psi3)+
‘s [3 ,u ] f*sin (th eta3)-‘n [3 ,u ]f*sin(psi3)+y3,
‘n [3 ,u ]f*cos(phi3)*cos(psi3)+‘d[3,u]**sin(psi3)-  
1s [ 3 ,u ] ‘*sin(phi3)+z3] ):

> row(Mass3u,2) :=
vector( [ - ‘s [3 ,u ] ' *cos(phi3)*cos(theta3)- 
cd [3 ,u ]f*sin (th eta3)-‘n [3 ,u ]f*sin(phi3)+x3,
—cH[1]f- fH[2]‘- ‘H[3](+‘d [3 ,u ] ' * cos(theta3)*cos(psi3)-  
fs [3 ,u ]r*sin(theta3)+fn [3 ,u ]f*sin(psi3)+y3,
-*n [3 ,u ]f*cos(phi3)*cos(psi3)+'d[3,u]c*sin(psi3)+
*s[3 ,u ]f*sin(phi3)+z3 ] ) :

> row(Mass3u,3) :=
vector( [ fs [3 ,u ] ‘*cos(phi3)*cos(theta3)-‘d [3 ,u ]1*sin(theta3)-  
fn [3 ,u ]f*sin(phi3)+x3,
— CH[1] ‘- CH[2] f- ‘H[3] {+‘d[3,u] ‘*cos(theta3)*cos(psi3)+
‘s [3 ,u ] ‘*sin(theta3)+‘n [3 ,u ]‘*sin(psi3)+y3,
- fn [3 ,u ]f*cos(phi3)*cos(psi3)+'d[3,u]f*sin (psi3)-  
‘s[3,u] c*sin(phi3)+z3]):
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> row(Mass3u,4) :=
v e c to r ( [ - ‘s [ 3 ,u ] t*cos(phi3)*cos(theta3)-<d[3,u] f*sin(theta3) + 
*n[3,u]‘*sin(phi3)+x3,
- fH [l]* -‘H[2]f- ‘H[3]‘+‘d [3 ,u ]f*cos(theta3)*cos(psi3)-  
‘s [ 3 ,u ] f*sin (th eta3)-rn [3 ,u ]‘*sin(psi3)+y3,
‘n [3 ,u ]f*cos(phi3)*cos(psi3)+'d[3,u]‘*sin(psi3)+
‘s [ 3 ,u ] f*sin(phi3)+z3]): 
f i :

Extension of Wires 

Extension of Upper Wires

Initial length for each of the 4 wires.

> lgeom [l,l] := dist(row(TopPlate,1 ) ,row(Masslu,1));

lgeom11 := (
(x0~ +  s[0]~ — s[f, u]~ cos(<£l~) cos(0 1 ~) +  d[l, u]~sin(0 1 ~) — n [ l , u]~sin(<^l~)
— xl ~)2 +  (y0~ +  s[0]~ 60" +  H[l\~ — d[l , u\~ cos(01~) cosfyl")
— s[ l , u]~ sin(0 1 ~) + n [ l , u]~ sin(^l~) — y l ~ ) 2 +  (z0~ +  n[0]~
— n [ l , u]~ cos(<^l~) cos(^>l~) — d[l , u]~ sin(^l~) +  s [ l , u]~ sin(<^l~) — zl ~)2)1/2

> 10 [1 , 1] : =
subs(allDOFO,CantOffsO, lgeom[1 , 1] ) : 10[1 , 1] : = 
sim plify(10 [1 ,1 ] ,geom);

101,1 := \Z(s[0]' -  s [ f ,u ] ~ ) 2 +  (H[l]~ -  d{l,u)~Y + (n[0]~ -  n [ l ,u ] " ) 2

»**********This is the big change in 6.7.*************** The shape of the 
wire, which is determined by the bending terms, gives the correct length of the wire, 
and thus the amount the wire stretches. This is the function-it looks an awful lot 
like the function for calculating the bending energy stored in the wire.

It uses the geometrical distance calculated above as the ’straight’ length of the 
wire. Then integrates along this length, using as boundary conditions 0 displacement 
at each end and angles of wires relative to the ’straight’ wire.

This should use int( sqrt(l +  (dx/du ) ~ 2  +  (dz/du)~2) )-by integrating along 
the ’straight’ wire can use int( 1 +  l / 2 *(dx/du) ~ 2  +  l / 2 *(dz/du ) ~ 2  )
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> lenwire := proc (j,w)
local e ta , ch i , f i r s t . t h e t a , f ir s t_ p s i , whichl,which2, wire_shapex, 
wire_shapez,answx,answz,DetaDzeta,DchiDzeta,b cs, lentemp, 
l e n l , len2;
eta := proc (zeta,w)
a*exp(kappa*zeta) + b*exp(-kappa*zeta) + c*zeta + d: 
end:
chi := proc (zeta,w)
e*exp(kappa*zeta) + f*exp(-kappa*zeta) + g*zeta + h: 
end:
i f  (w=l) then 
f irst_ th eta  := thetaO; 
f ir s t_ p s i  := 0; 
whichl := ‘TopPlate'; 
which2 := ‘Masslu‘ ; 
e lse
f ir s t . th e ta  := t h e t a . ( ‘w‘- l ) ;
f ir s t_ p s i  := p s i . ( 'w ' - l ) ;
i f  (w=2) then
whichl := ‘Mass11';
which2 := ‘Mass2u‘ ;
e lse
whichl := ‘Mass21‘ ; 
which2 := ‘Mass3u‘ ; 
f i ;  
f i ;
bcs := DetaDzeta = (row(which2,j) [1 ] -row(whichl,j) [1]) /
(row(which2, j ) [2 ] -row(whichl, j ) [2 ] ) ,
DchiDzeta = (row(which2,j) [3]-row(whichl,j)[3]) /
(row(which2,j)[2]-row(whichl, j ) [2] ); 
wire.shapex := (eta(0,w) = 0,
subs(zeta=0,diff(eta(zeta ,w ),z e ta ))= -DetaDzeta -  f i r s t . th e ta ,  
eta(lentemp,w) = 0,
subs(zeta=lentemp,diff(eta(zeta,w),zeta)) =
-DetaDzeta -  theta.'w '};  
wire.shapez := {chi(0,w) = 0,
subs(zeta=0,diff(chi(zeta,w),zeta))=  -DchiDzeta + f i r s t .p s i ,  
ch i(lentemp,w) = 0,
subs(zeta=lentemp,diff(chi(zeta,w),zeta)) =
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-DchiDzeta + p s i . fw‘};
answx := solve(wire_shapex,{a,b,c,d});
answz := solve(wire_shapez, { e , f ,g ,h } ) ;
len l := expand(l+ (1/2) *( d if f (e ta (ze ta ,w ) ,zeta) )~2 +
(1/2) *(d iff(ch i(ze ta ,w ),zeta) )~2); 
len2 := int(lenl,zeta=0..lentemp ); 
len2 := subs(answx,answz,len2); 
len2 := subs(bcs,lentemp=lgeom[w,j],len2);
RETURN( subs(kappa=sqrt(Ten[w, j] / (E[wire.w]*Iwire[w]) ) ,  len2) ): 
end;
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lenwire := proc(j, w)
locals, x ? firstJheta, first-psi, whichl, which2, wireshapex, wireshapez 
answx, answz, DetaDzeta, DchiDzeta, bcs, lentemp, lenl, len2; 

r) := proc(C, w) aexp(/c£) +  6exp(—kQ +  c£ +  rfend ;
X := proc(C, w) eexp(/<) +  /ex p (-/< ) +  gC +  h e n d ; 
if w =  1 t h e n -theta := 00; first.psi := 0; whichl := TopPlate; 

which2 := Masslu 
else

first-theta := 0 .(w — 1 ); 
first-psi := ip.(w — 1 );
if w =  2 th en  whichl := Massll; which2 := Mass2u 
else whichl := Mass2l; which2 := MassSu 
fi

f i;

bcs := DetaDzeta =
(row(which2, j )i — row(whichl, j ) i) /(row(iuhich2, j ) 2
— row(whichl, j ) 2 ),
DchiDzeta =
(row (which2, j ) 3 — row (whichl, j ) 3) /(row (which2 , j ) 2
— row(whichl, j ) 2);

wireshapex := {77(0 , w) =  0 , subs(£ =  0 ,
diff(77(C, w), C)) =  —DetaDzeta — first-theta, r](lentemp, w) =  0 , 
subs(C =  lentemp, diff(r7(C, w), 0 )  =  —DetaDzeta — O.w}; 

wireshapez := {x(0 , u;) =  0 , subs(£ =  0 ,
diff(x(C> w), O ) =  —DchiDzeta +  first-psi,x{lentemp, w) =  0 , 

subs(C =  lentemp, diff(x(C5 w), O ) =  —DchiDzeta +  ^>.10}; 
answx solve(wireshapex, {b, a, d, c}); 
answz := solve (wire _s/iape2, {/, e, p, h} ) ;
/enf := expand(l +  l / 2 diff(?7(C, w), £ ) 2 +  l/2diff(x(C> w)> C)2) I 
ien2  := int(Zeni, £ =  0 ..lentemp) ;
/en2  := subs (answx, answz, len2) ;
len2 := subs(6cs, lentemp =  lgeomwj , len2) ;
RETURN (subs (« =  sqrt( Tenwj  / (E wire. wIwirew)), len2)) 

end
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> 1[1,1] := le n w ir e ( l , l ) :

Wire 1 is the forward right wire (from above). The length is to be defined as
L(vars) - L(0) =  [L(vars) - L(equilibrium)] -f [L(equilibrium) - L(0)]. The equilib­
rium position corresponds to ’Tension’-the term that represents the stored energy 
in the gravitational field, it does not have an associated loss.

> d e l ta f l l l ]  := 1 [1,1] -  l g [ l , l ]  + delta[g l 1] : 
delta_eq [lll]  :=
subs(Ten[1 ,1]=ksl*(lgeom[1,1] -1 0 [1 ,1 ] ) ,delta.gsO, 
lgsEQIOs,delta[111]):

> for i i  from 2 to '# of wires,u‘ do 
lgeom [l,ii]  := dist(row(TopPlate,ii),row(M asslu ,ii)):
1 0 [ l , i i ]  :=
subs(allD0F0,Cant0ffs0,lgeom[1, i i ] ) : 1 0 [ l , i i ] := 
sim plify(10[l,ii] ,geom )+
‘i f ‘ ( i i= 4 ,0.0005,0): 
l [ l , i i ]  := le n w ir e ( i i ,1):
d e l t a [ l l . i i ]  := l [ l , i i ]  -  l g [ l , i i ]  + d e l t a [ g l . i i ] : 
d e lta _ e q [ l l . i i ]  :=
subs(Ten[1 ,ii]=ksl*(lgeom[1 ,i i ] -1 0 [1 ,i i ] ) , delta_gs0,
lgsEQIOs,delta[11.i i ] ):
od:

E xtension of M iddle W ires

Initial length for each of the 4 wires.

> i f  (NumPen>l) then
for i i  from 1 to '# of wires,m‘ do
lgeom[2,ii] := dist(row(M assll,ii),row(M ass2u,ii)):
1 0 [2 ,i i]  :=
subs(allD0F0,Cant0ffs0,lgeom[2 , i i ] ) : 1 0 [ 2 , i i ] := 
sim plify(10[2 ,ii] ,geom ): 
l [ 2 , i i ]  := le n w ir e ( i i ,2 ) :
d e lta [1 2 .i i ]  := l [ 2 , i i ]  -  l g [ 2 , i i ]  + d e l t a [ g 2 . i i ] : 
delta_eq[12.ii] :=
subs(Ten[2 , ii]=ks2*(lgeom[2 ,i i ]  -1 0 [2 ,i i ]  ) , delta_gs0, 
lgsEQIOs,delta[12.i i ] ):
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od:
f i :

Extension of Lower Wires

Initial length for each of the 4 wires.

> i f  (NumPen>2) then
for i i  from 1 to f# of w ires, l l do
lgeom[3,ii] := dist(row(Mass21,ii),row(Mass3u,ii)):
1 0 [3 ,i i]  :=
subs(allDOFO, CantOffsO, lgeom[3 ,i i ] ) :1 0 [3 ,i i ] := 
sim plify(10[3 ,ii] ,geom ): 
l [ 3 , i i ]  := le n w ir e ( i i ,3 ) :
d e lta [1 3 .i i ]  := l [ 3 , i i ]  -  l g [ 3 , i i ]  + d e l t a [ g 3 . i i ] : 
delta_eq[13.ii] :=
subs(Ten[3 , ii]=ks3*(lgeom[3 ,i i ] -1 0 [3 ,i i ] ) , delta_gs0,
lgsEQIOs,d e lta [13. i i ] ):
od:
f i :

A .5.4 Bending of W ires

This function calculates the potential energy for one wire, j indicates the #  of the 
wire, ’w’ indicates ’which’ (l=upper, etc.).

> bendwire := proc (j,w)
local e ta , ch i ,f ir s t_ th e ta , f ir s t_ p s i ,whichl,which2, 
wire_shapex,wire_shapez,answx, answz, lentemp; 
eta := proc (zeta,w)
a*exp(kappa*zeta) + b*exp(-kappa*zeta) + c*zeta + d: 
end:
chi := proc (zeta,w)
e*exp(kappa*zeta) + f*exp(-kappa*zeta) + g*zeta + h: 
end:
i f  (w=l) then 
f ir s t . th e ta  := thetaO; 
f ir s t_ p s i  := 0; 
whichl := 'TopPlate 
which2 := ‘Masslu{;
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e lse
f ir s t . th e ta  := t h e t a . ( ‘w‘- l ) ;
f ir s t_ p s i  := ps i . ( ;
i f  (w=2) then
whichl := 'Massll';
which2 := fMass2u‘ ;
e lse
whichl := ‘Mass21‘ ; 
which2 := ‘Mass3u‘ ; 
f i ;  
f i ;
wire.shapex := {eta(0,w) = row(whichl,j)[1], 
subs(zeta=0,diff(eta(zeta,w),zeta))=  f irst_ th eta ,  
eta(lentemp,w) = row(which2,j)[1] ,
subs(zeta=lentemp,diff(eta(zeta,w),zeta)) = th e ta .‘w‘}; 
wire.shapez := (chi(0,w) = row(whichl,j)[3], 
subs(zeta=0,diff(chi(zeta,w),zeta))=  f i r s t .p s i ,  
chi(lentemp,w) = row(which2,j)[3] ,
subs(zeta=lentemp,d i f f (ch i(ze ta ,w),zeta )) = ps i . cw'}; 
answx := solve(wire_shapex,{a,b,c,d}); 
answz := solve(w ire_shapez,{e,f,g ,h});
(1 /2 )*E [wire. (wf]*int(Iwire[w] *
((d iff(e ta (zeta ,w ),zeta ,zeta ))~2  +
(d if f (ch i(ze ta ,w ),ze ta ,ze ta ))~ 2 ) , 
zeta=0. . lentemp);
subs(answx,answz,lentemp=(row(whichi, j)[2]-row(which2,j) [2]), 
RETURN(subs(kappa=sqrt(Ten[w,j]/(E[wire.cw‘]*Iwire [w]) ) ," ) ) :  
end;
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bendwire := proc(j, w)
locals, X? first Jheta, first _p si, which 1, which2, wireshapex, wireshapez, 
answx, answz, lentemp;

77 := proc(f, w) aexp(/c£) +  6exp(—«£) +  c£ +  fiend;
X := proc(C, w) e e x p « )  +  /e x p ( - < )  +  g (  +  h e n d ;
if w =  1 then first Jheta := 90; first.psi := 0; whichl := TopPlate;
which2 := Masslu
else

first-theta := — 1 );
first-psi := ip.(w — 1 );
if w =  2  then whichl := Mass 11; which2 := Mass2u 
else whichl := Mass2l; which2 := MassSu 
fi

fi;

wireshapex := {77(0 , w) =  row (whichl, j)  1 , subs(C =  0,
diff(77(£, ii>), C)) =  first-theta, r)(lentemp, w) =  row(which2, j)i,  
subs(£ = lentemp, u>), ()) =  0-^};

wireshapez := {x(0 > w) =  row (whichl, j)  3 , subs(£ =  0 ,
difF(x(C? w), 0 )  =  first-psi,x{lentemp, w) =  TOw(which2, j ) 3 , 
subs(£ =  lentemp, diff(x(C? w), 0 )  =  ^-w}; 

answx := solve {wireshapex, {b, a, d, c}); 
answz := solve(wireshapez, {/, e, p, /i});
1/2

E wire.wmt(Iwirew(difi{r)(C, w), C, C) 2 +  diff(x(C, w), C, ( )2), 
f  =  0..lentemp);

subs (answx, answz, lentemp =  row(whichl, j )  2 — TOw(which2, j ) 2, ”); 
RETURN (subs (k =  sqrt (Tenwj  /  (Ewi„,.wIwire w)), ”)) 

end

Bending of Upper Wires 

> PEbending[u] :=
sum(Jbendwire(j,1 ) 1 , ’j ,=1 . .*# of wires,u‘):
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Bending of Middle Wires

> i f  (NumPen>l) then
PEbendingfm] := sumObendwireCj ,2) ’ , * j *=1. . '# of wires,m‘): f i :

Bending of Lower Wires

> i f  (NumPen>2) then
PEbending[l] := sum(’bendwire(j,3 )* ,*j *=1..f# of w ir e s , l f): f i :

> PEbend:

> PE_eq:

A .6 Offsets

Offsets to give steady state condition, where stretching of wires and bending of 
cantilevers counters the gravitational potential. Minimizes potential energy with 
respect to yl,y2,y3, and the yc’s. Then, for non-symmetric cases, iterates to find 
the potential mininum for x’s, z’s, etc. These become the offsets which we expand 
about in the differential equations. We can then also expand the yc’s in terms of 
the other variables, to remove them as independent variables.

A .6.1 Gravitational Offset (Tension)

> solve_varsY := {seq(y.j , j = l . .NumPen), 
seq (‘y c [ u , l ] ( , j=l..NumCanU),seq(fy c [ l , l ] f , j=l..NumCanM)};

solve.varsY := {yl~}

> vert_only := x0=0,y0=0,z0=0,theta0=0, 
xl=0,x2=0,x3=0,zl=0,z2=0,z3=0, 
thetal=0,theta2=0,theta3=0,
phil=0,phi2=0,phi3=0,psil=0,psi2=0,psi3=0:

> solve_vars :=
[se q (x .j , j=l..NumPen),seq(y.j, j=l..NumPen),seq(z.j, j=l..NumPen), 
seq (th e ta .j , j = l . .NumPen),seq(phi. j , j = l . .NumPen), 
seq (p si. j , j = l . .NumPen),
seq (‘y c [u ,*.j . f] ' ,j=l..NumCanU),seq(cy c [ l , r. j . f] ' , j=l..NumCanM)];
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solvejvars := [xl~, yl~, z l ~, 91", ipl~]

> PE_eq := evalf(subs(vars,C antO ffs,lossO ,PE_eq)) :

> PE.eq := subs(inputsO,PE_eq):

> PE.eqY := subs(vert_only,PE_eq):

> PE.eqY :=
su b s(seq (fy c [u ,1. j j  . c] ‘= 'y c [u ,l]  f , jj= 2 . .NumCanU), 
se q (‘y c [ l ,  f . j j . c] f = r y c [1 ,1 ]c, j j  = 2 ..NumCanM), PE.eqY):

> gravity.eqsY  := {seq( d iff(P E .e q Y ,jj) , jj=solve_varsY )}: 

Sometimes it seems to need this, sometimes it doesn’t.

> #gravity_eqsY := sim plify (g rav ity .eqsY ):

NOTE: Solving for the proper offsets is very dependent on giving the correct 
range. Otherwise, the program will find non-physical solutions [primarily involving 
using sqrt(L~2) =  -L]. The easiest way to check for this is to see, for example, that 
all the cantilever offsets are approximately equal.

> o ffse t.v a lu es  := fso lve(grav ity .eqsY , solve.varsY ,
{ y l= -0 .2 ..0 ,y 2 = -0 .2 ..-0 .0 ,y 3 = -0 .2 .. 0 ,Cy c [ u , l ] ‘= -0 .2 ..0  });

offset-values := {yl ~ =  —.00068491399040000000004}

Often most memory efficient to solve for the equilibrium position (to this 
point) and save the equilibrium position, then restart and state this equilibrium 
with solving (i.e., comment out the fsolve line).

> # o ffse t.v a lu es  := {y2 = -.677987207736409417107795598958e-3, 
y3 = - . 105888107875681758037310172140e-2,
y1= # - .495385387467392719519669439766e-3,
fyc [1 ,1 ]c = - . 551901882179588986213151800346e-l,
‘y c [ u , l ] f = -.112017290209860707749431555229};

> o ffse t.v a lu es  := { o p (o ffse t.v a lu es),
se q (‘y c [u ,f .j j . f] ' = su b s(o ffse t.v a lu es , fy c [ u , l ] f) , jj=2..NumCanU), 
se q (fyc [ 1 ,c .j j . c] f= su b s(o ffse t.v a lu e s ,Cy c [ l , l ] ' ) >jj=2..NumCanM)}:

> o ffse t.v a lu es  := { o p (o ffse t.v a lu es), 
s e q (x .j= 0 ,j= l . .N um Pen),seq(z.j=0,j=l. .NumPen),
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seq(phi.j= 0 ,j= l . .NumPen),seq(theta.j=0,j=l. .NumPen), 
se q (p s i .j= 0 ,j= l . .NumPen)}:

> i f  (Symmetric=0) then 
'deltaPE*// := 1;
o ffse t .va lu es1 := o ffse t .v a lu es:
PENumO := fnormal(evalf(subs(offset.values,PE.eq)),15); 
PENuml := PENumO:
# while ( ‘deltaPE*//>(5e-16)) do
# For most cases, one iteration i s  su ffic ien t
# and i t  i s  MUCH faster
offset.va lues := o ffse t .va lu es1;
PENumO := PENuml;
PE.MT2 := m taylor(PE.eq,[op(offset.values)],3):
PE.MT2 := expand(collect(PE_MT2,[xl,x2,x3,yl,y2,y3,zl,z2,z3, 
th e ta l , theta2 ,th eta3 ,p h il ,p h i2 ,p h i3 ,p sil ,p s i2 ,p si3 ,
'yc[u ,l]  ‘ , fyc [u ,2 ]c, fyc[u,3] ‘ , ‘yc [u,4] ‘ ,
‘y c [ l , l ]  *, fyc [l ,2 ]  ‘ , Cyc[l ,3 ]  ‘ , fy c [ l , 4 ] f] ) ) :
Qtest := array( 1 . .nops(solve.vars), 1 . .nops(so lve .vars)):
for i i  from 1 to nops(solve.vars) do
for jj  from 1 to nops(solve_vars) do
Q te s t [ i i , j j ]  := fnormal(op(l,
se lec t(h as ,PE.MT2,
op(ii,so lve_vars)*op(jj,solve_vars)) ) ) / ( ' i f ' ( i i = j j ,1 ,2 )) :
od:
od:
Vtest := array( 1 . .nops(solve.vars)): 
for i i  from 1 to nops(solve.vars) do
V test[ i i]  := subs(allDOFO,coeff(PE_MT2,op(ii,solve_vars))): 
od:
Qtestinv := inverse(Qtest):
offset.valuesTEMP := evalm(-Qtestinv &* V test /2 ): 
offse t .va lu es1 := fnormal(
{ seq( (op(jj,solve_vars) =
offset.valuesTEMP[jj]) , jj= l..nops(solve_vars))} );
PENuml := evalf(subs(offset.va lues1,PE.eq)); 
cdeltaPE7.f := (PENumO-PENuml) /abs(PENumO)* 100: 
print ( 1 deltaPE'/,();
# od: # The iterations, when necessary
offset.va lues := o f fse t .v a lu e s l; # COMMENT OUT IF ITERATING
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f i :

5.0845242228311064243

> tensions_temp :=
seq(Ten[1 ,ii]=evalf(subs(inputsO,vars, lossO, o ffse t .v a lu es , 
C antO ffs ,ksl*delta_eq[ll .i i]) ) , i i = l . . '#  of w ires,u‘): 
i f  (NumPen>l) then 
tensions_temp := tensions_temp,
seq(Ten [2 ,i i]= eva lf(su bs( inputsO,vars, lossO, o ffse t .v a lu es , 
Cant0ffs,ks2*delta_eq[12.ii]) ) , i i = l . . '#  of wires,m‘); 
i f  (NumPen>2) then 
tensions_temp := tensions.temp,
seq(Ten[3 ,ii]=evalf(subs(inputsO,vars, lossO, o ffse t .v a lu es , 
Cant0ffs,ks3*delta_eq[13.ii]) ) , i i = l . . '#  of w ires, l l ) ;  
f i :  
f i :

Ig is the length of the wire in the equilibrium position; deltafg] is the change in 
the length of wire from the starting position to the equilibrium position. Using this 
equilibrium position to calculate tensions:

> IgEq :=
seq(lg[l,ii]=sim plify(evalf(subs(offset.values,inputsO ,vars,  
CantOffs,lossO ,tensions_tem p,l[l,ii]) ) ) , i i = l . . (# of w ires,u‘): 
delta_gs := se q (d e lta [g l . i i ]=  su b s(v a rs ,lg E q ,lg [l , i i] -1 0 [1 ,i i ] ) ,  
i i = l . . ‘# of wires,u‘): 
tensions := seq(Ten[l,ii]=
evalf(su bs(vars ,lossO ,delta_gs,ksl*d elta [g l.ii] ) ) , i i = l . .
(# of w ires,u{) : 
i f  (NumPen>l) then 
IgEq := IgEq,
se q ( lg [2 , ii]= sim p lify (eva lf(su bs(offset.va lues, inputsO,vars,
Cant0ffs,loss0,tensions.temp,1 [2 , i i ] ) ) ) ,
i i = l . . f# of wires,mf):
delta_gs := de lta .gs , seq(delta[g2 .ii]=
su b s (v a r s , lg E q ,lg [2 , i i ] -1 0 [2 , i i ] ) , i i = l . . ' #  of wires,mf):
tensions := tensions, seq(Ten[2,ii]=
evalf(subs(vars,lossO ,delta .gs ,ks2*delta[g2 .ii]) ) , i i = l . .
‘# of wires,mf) :
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i f  (NumPen>2) then 
IgEq := IgEq,
seq ( lg [3 , ii]=sim plify(evalf(subs(offset.values,inputsO ,vars,
CantOffs,lossO,tensions_temp,l[3 ,i i ] ) ) ) ,
i i = l . . c# of w ires,1‘):
delta_gs := de lta .gs , seq(delta[g3.ii]=
su b s (v a r s , lg E q ,lg [3 , i i ] -1 0 [3 , i i ] ) , i i = l . . c# of w ires,1‘):
tensions := tensions, seq(Ten[3,ii]=
evalf(subs(vars,lossO ,delta .gs ,ks3*delta[g3 .ii]) ) , i i = l . .
'# of w ires, l l ) :
f i :
f i :

Replacing the dynamic q[i] with their equilibrium q[i]0:

> offset.va lues := subs( allDOFqO,offset.values);

offset-values := {xlO =  .00074884282474776196265,
yl0~ =  -.00068491399040004506850, zlO =  -.00011716840162707303329, 
010 =  .0082313890617863095540, 010 =  .7296675203555463849010“5,
V>10 =  .0012882910979480565168}

Now, adjust the Lagrangian to normalize and expand about the nominal: (such 
as x l=xl+xl0 , etc.)

> #PE := PEgravity + PEtwisting 
#+ PEcantilevers
#+ PEbend 
#+ PEstretching:

> loopcount := 3 + NumPen + f# of wires,u‘
+ fi f ‘ (NumPen>l,f# of wires,m',0)
+ ' i f  ‘ (NumPen>2/# of wires, l ' , 0 ) ;

loopcount := 8

> PEnuml := ,PEgravity+PEtwisting, :

> PEnum2 := PEcant[u]:

> PEnum3 := PEcant[m]:
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> PEnum4 := ’PEbending[u]’ :

> kk := 5:
i f  (NumPen>l) then 
PEnum5 := *PEbending[m] *: 
kk := kk+1: 
i f  (NumPen>2) then 
PEnum6 := ’PEbending[1] *: 
kk := kk+1: 
f i :  
f i :

> for 11 in [PEstretching] do 
PEnum.kk := 11:
kk := kk+1: 
od:

> #PE := [ ’PEgravity+PEtwisting’ ,
# *PEcantilevers’ ,
# ’PEbend’ ,
# ’PEstretching’] ;

> #L := KE -  PE:

> about.nominal :=
se q (o p ([x . i i= x . i i+ x . i i .O ,y . i i= y . i i+ y . i i .O ,z . i i= z . i i+ z . i i .O ,  
th e ta . i i= th e ta .i i+ th e ta . i i .0 ,p h i. i i= p h i. i i+ p h i. i i .0 , 
p s i . i i= p s i . i i+ p s i .  ii.O ]),ii= l..Num Pen),
seq (‘y c [u , ‘ . i i . *]<=ry c [u ,' . i i . ' ] ‘ + fy c [u ,f . i i . ‘] 0 ‘ ,ii=l..NumCanU), 
seq (‘y c [ l , ‘ . i i . c] f=€y c [ l , ‘ . i i . * ]f+fy c [ l , f . i i . f] 0 c,ii=l..NumCanM);

about-nominal := xl~ =  xl~ +  xlO, yl~ =  yl~ +  ylO~, zl~ =  z l~ +  zlO,
91" =  91~ +  010, (f)l~ =  (f)l~ +  (j> 10, ipl~ =  ipl" +  V’lO

> about.values :=
op(subs(offset.values, {about.nominal}));



APPENDIX A. LAGRAN.MWS 239

about.values := zl~  =  zl~ — .00011716840162707303329,
01~ =  OV +  .0082313890617863095540,
<t>l~ =  4>T +  .7296675203555463849010"5,
Il>l~ = tl>l~ +  .0012882910979480565168, 
xl~ = xl~ + .00074884282474776196265, 
yl~ = yl~ -  .00068491399040004506850

> #L := subs(about.nominal,L):

> #PE := subs(about.nominal,PE):

This line allows algebraic substitutions in the equations of motion, when k*deltaJ 
is set equal to tension (=k*deltaJ at DC or no loss). In practice, the way to do it 
is to replace delta[g] with Ten/k[s], such that k[s]*delta[g] becomes Ten.

> tension.subs :=
s e q ( d e l t a [ g l . i i ] = T e n [ l , i i ] /k s l , i i= l . . r# of w ires,uf): 
i f  (NumPen>l) then 
tension.subs := tension.subs,
se q (d e lta [g 2 .i i ]= T e n [2 , i i ] /k s2 , i i= l . . c# of wires,mc): 
i f  (NumPen>2) then 
tension.subs := tension.subs,
se q (d e lta [g 3 .i i ]= T e n [3 , i i ] /k s3 , i i= l . . ‘# of w ir e s , l f):
f i :
f i :

> print(loopcount);
for kk from 1 to loopcount do 
print(kk);
PEnum.kk :=
evalf(subs(tens ion.subs,vars,CantOff s , tens ions, IgEq,PEnum.kk)):
PEnum.kk := evalf(subs(about.values,PEnum.kk)):
od:

8

1
2
3
4
5
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6
7
8

A. 7 Cantilevers

A .7.1 Cantilever Velocity (Translational )

Rather than substitue for the cantilever co-ordinates, as done previously, will instead 
keep cantilever positions as states. To do this, require extra parts of the kinetic 
energy term.

> allCantsO :=
seq (fy c [u ,1 . i i . f] f=0,ii=l..NumCanU), 
s e q ( 'y c [ l ,1 . i i . f] f=0,ii=l..NumCanM );

allCantsO :=

> time.vars := s e q ( i i= i i ( t ) , i i= a l l_ v a r s ) : 
vel_time_vars : = seq(dot. i i= d ot. i i ( t ) , i i= a ll_ v a rs):

> no_time_vars := s e q ( i i ( t )= i i , i i= a l l_ v a r s ) : 
no_vel_time_vars := se q (d o t . i i ( t )= d o t . i i , i i= a l l_ v a r s ) :

> all_velO := seq (d ot.ii= 0 ,ii= a ll_vars):

For a triangular blade, the center of mass lies 2/3 of the way from the tip of the 
blade towards the base. The base of the blade is equivalent to the tip of the blade 
with yc’s=0 and n-> n+Lblade.

> for i i  from 1 to NumCanU do 
XCanU.ii := evalm(
2/3*subs(‘n [0 ] f=‘n [0 ] '+LCanU,CantOffsO,allCantsO, 
row(TopPlate,ii)) + l/3*row(TopPlate,ii) ): 
od:

> for i i  from 1 to NumCanM do 
XCanM.ii := evalm(
2/3*subs(‘n [ l ,1 ] f=‘n [ l , l ] f+LCanM,CantOffsO,allCantsO,
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row(M assll,ii)) + l/3*row(M assll,ii) ): 
od:

Substituting in values for these points.

> for i i  from 1 to NumCanU do
XCanU.ii := map2(subs,{about.values,CantOffs},XCanU.ii);
XCanU.ii := subs(vars,op(XCanU.ii));
XCanU.ii := subs(time.vars,op(XCanU.ii)); 
od:

> for i i  from 1 to NumCanM do
XCanM.ii := map2(subs,{about.values,CantOffs,vars},XCanM.ii); 
XCanM.ii := subs(vars,op(XCanM.ii));
XCanM.ii := subs(time_vars,op(XCanM.ii)); 
od:

> velocity.subs := s e q ( d i f f ( i i ( t ) , t ) = d o t . i i , i i= a l l_ v a r s ) :

> acc.subs := se q (d if f (d o t . i i ( t ) , t )= d o td o t . i i , i i= a l l_ v a r s ) :

The velocity of each point is the time derivative of the position:

> for i i  from 1 to NumCanU do 
dotXCanU.ii := map(diff.XCanU.ii,t); 
dotXCanU.ii := subs(velocity.subs,op(dotXCanU.ii)): 
dotXCanU.ii.Sq := dotprod(dotXCanU.ii.dotXCanU.ii): 
od:

> for i i  from 1 to NumCanM do 
dotXCanM.ii := map(diff.XCanM.ii,t) ; 
dotXCanM.ii := subs(velocity.subs,op(dotXCanM.ii)): 
dotXCanM.ii.Sq := dotprod(dotXCanM. ii.dotXCanM.ii): 
od:

A .7.2 Cantilever Velocity (Rotational)

The kinetic energy due to rotation of the blades.
The blades angular position is equal to the rotation of the mass they are attached 

to plus the relative rotation of the blade. Note that for our purposes, the blades only 
rotate in roll (psz)-this is equivalent to just allowing pure vertical motion of the tips 
of the blades. (To be totally correct, should add the relevant moments of inertia
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to the other 2  directions, but as long as the blade can’t rotate in those directions, 
this just adds this moment to the respective moments of the masses, and has little 
effect.)

In particular, angle =  (y.tip - y_base)/L, and y.tip - y_base =  yc.
Can ignore sign for upper, as will be squared.

> for i i  from 1 to NumCanU do 
dotThCanU.ii := dot. C y c [u ,f . i i . f] f)/LCanU; 
od;
for i i  from 1 to NumCanM do 
dotThCanM.ii := (dot. C y c[ 1 , ‘ . i i . f] r) + 
dot.psil*(-l)~iquo(ii,2))/LCanM; 
od;

Expanding the kinetic energy:

> KE := subs (vars, KE):

> KE := ev a lf (subs(
seq(dotXCanU.ii~2=dotXCanU.ii.Sq,ii=l. .NumCanU), 
seq(dotXCanM.ii~2=dotXCanM.ii.Sq,ii=l. .NumCanM), KE)):

> for i i  in all_vars do 
LHS.ii := diff(KE,dot. i i ) :
LHS.ii := subs(vel_time_vars,LHS.ii):
LHS.ii := d if f (L H S .i i , t ) :
LHS.ii := subs(acc.subs,ve loc ity .sub s,LHS. i i ) :
LHS.ii := subs(no_time_vars,no_vel_time_vars,LHS.ii): 
od:

*We have not proved that every term in the states (positions or velocities) is 
higher order; it is true for the example cases, and should be true in general. If this 
is a concern, the place to check is right here. To eliminate the ’higher order’ terms, 
we assume those terms involve the states, and set those states to zero. Can take 
first order terms here:

> for i i  in all_vars do
LHS.ii := subs(allDOFO,all_velO,LHS.ii): 
od:

> NumEqs := nops(all_vars); Numlnputs := nops ( [inputsO]);
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NumEqs := 10 
Numlnputs := 4

Note, too, that if we use cantilever states, then d/dt(y0) is required to get the 
proper kinetic energy. This means that yO is not a proper input; instead, must use 
d~2/dt~2(y0) as the input, and d/dt(y0) and yO will be used as (additional) states.

In either case, the terms that go as the (acceleration of) the inputs are not 
differential equations, and thus do not go on the ’left’ side of the equation, but 
rather as driving terms on the right side.

> MassMatrix := matrix(NumEqs,NumEqs);

MassMatrix := array(1..10, 1..10, [])

> NegStiffMatrix := matrix(NumEqs,NumEqs);

NegStiffMatrix := array(1.. 10, 1..10, [])

> for i i  from 1 to (NumEqs-Numlnputs) do 
for jj from 1 to (NumEqs-Numlnputs) do 
MassMatrix[ii,jj] :=
fnormal(coeff(LHS.(op(ii,all_vars)) ,dotdot. (o p ( j j ,a l l_ v a r s ) ) ) ) : 
od:
for jj from 1 to Numlnputs do
MassMatrix[ii,(NumEqs-Numlnputs)+jj] := 0:
od:
od:
for i i  from 1 to Numlnputs do
for jj  from 1 to NumEqs do
MassMatrix[ (NumEqs-Numlnputs)+ i  i , j j ] : =
‘i f f (jj=ii+(NumEqs-Numlnputs),1 ,0 ):
od:
od:

Negative, since this will be taken to the opposite side of the equal sign:

> InputsMatrix := matrix(NumEqs,Numlnputs); 
for i i  from 1 to Numlnputs do
for jj  from 1 to (NumEqs-Numlnputs) do
InputsMatrix[jj, i i ]  :=
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-fnormal(coeff(LHS.(op(jj,all_vars)), 
dotdot.(op(ii+NumEqs-NumInputs,all_vaLrs)))): 
od:
for jj  from 1 to Numlnputs do
InputsMatrix[NumEqs-Numlnputs+jj,ii] := ‘i f ‘ ( i i = j j ,1 ,0):
od:
od:

InputsMatrix := array(1..10, 1..4, [])

This forms the left hand side of the (set of) equations, [M] d~2/dt~2[x] =  [-K][x]. 
The potential energies are used, below, to generate [-K].

A.8 Equations of M otion

D/Dt(dL/d(qdot)) - dL/dq =  0

For each variable: y (1,2,3), phi(l,2,3), x(l,2,3), theta(l,2,3), z(l,2,3), psi(l,2,3). 
This is entirely historical.

A .8.1 Equation for y (Vertical)

Left hand side of ”y” equations:

> #for i i  from 1 to NumPen do
# assume( ‘mass[‘ . i i . f] ‘ , constant):
# y.ii.LHS := D(diff(KE,y. i i . d o t ) ) ;
#od;

Right hand side of ”y l” equation:

> #ylRHS := d if f(L ,y l):

> # i f  (NumPen>l) then
# y2RHS := diff(L ,y2):
# i f  (NumPen>2) then
# y3RHS := diff(L ,y3):
# f i :
# fi:
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A .8.2 Equation for phi (Rotation)

Left and right hand side of the ”phi” equations:

> #for i i  from 1 to NumPen do
# assume(cIyaw[‘ . i i . ' ]  *, constant):
# phi.ii.LHS := D(diff(KE,phi. i i .d o t ) );
# phi.ii.RHS := d i f f ( L ,p h i . i i ) :
#od:

A .8.3 Equation for x (Longitudinal)

Left and right hand sides of the ”x l” equation:

> #for i i  from 1 to NumPen do
# x.ii.LHS := D (d iff(K E ,x .ii .d o t));
# x.ii.RHS := d i f f ( L , x . i i ) :
#od:

A .8.4 Equation for theta (Tilt)

Left and right hand sides of the ’’theta” equations:

> #for i i  from 1 to NumPen do
# assume( ‘Ip itch [f . i i . f] f , constant):
# theta.ii.LHS := D(diff(K E,theta.ii.dot))
# theta.ii.RHS := d i f f ( L , t h e t a . i i ) :
#od:

A .8.5 Equation for z (Sideways)

Left and right hand sides of the ”z” equations:

> #for i i  from 1 to NumPen do
# z . ii.LHS := D (d iff(K E ,z .i i .d o t)):
# z.ii.RHS := d i f f ( L , z . i i ) :
#od:

A .8.6 Equation for psi (Roll)

Left and right hand sides of the ”psi” equation:
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> #for i i  from 1 to NumPen do
# assume(‘I r o l l f * . i i . c] ' , constant):
# psi.ii.LHS := D (d iff(K E ,p s i. i i .d o t)):
# psi.ii.RHS := d i f f ( L ,p s i . i i ) :
#od:

A .9 Coefficients of A matrix for y, phi, x , theta, 
z, psi

These equations of motion are typically used in a state-space formulation for control 
and simulation. This puts the differential equations in a series of first order differ­
ential equations in the form d/dt(x~) =  [A]x* +  [B]u~, y* =  [C]x~ +  [D]u~. The 
equations determined above are expanded to first order in the variables to find the 
[A] matrix.

Higher order terms or sensitivities to parameters may also be calculated. 
Setting the initial elements to zero so we can sum the contributions of the parts 

of the potential energy.

> for i i  in a ll.vars do 
for jj  in all_vars do
A [ i i , j j ] :=0;
od;
od:

> timeO-sttime;

812.903

> done.vars := {};

done-vars := {}

A .9.1 Vertical M otion

Nominally decoupled from all other degrees of freedom.
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Y1

> #diff_vars := {seq(op([y.ii=0]),ii=0..NumPen)};

> #diff_vaxs_only := (all_vars_subs minus d iff_vars);

> #statime := time():
#for i i  from 1 to loopcount do
# PEnumDiff.ii := evalf(subs(diff_vars_only,PEnum.ii)):
#od:

Then expanding this about y=0 (the substituted y), phi=0, x=0, theta=0, z=0, and 
psi =0, for the other Y variables and the ground inputs:

> statime := timeO:
for kk from 1 to loopcount do 
print(kk);
qiRHS := -diff(PEnum.kk,yl):
#print(*qyl*);
#print(tim eO -statim e);
i f  Symmetric=l then
coup_vars := (seq(y . i i , i i= 0 . . NumPen),
seq (fy c [u ,*. i i . ' ] ( ,ii=l..NumCanU),
seq (‘y c [ 1 ,c . i i . f] f ,ii=l..NumCanM)}:
e lse  # If non-symmetric
coup_vars := {op(all_vars)}:
f i :
coup_vars := coup_vars minus done.vars: 
for i i  in coup.vars do 
diff_vars := {ii=0};
diff_vars_only := {allDOFO} minus d iff .vars;  
qiRHSqi := evalf(subs(diff_vars_only,qiRHS)): 
qiRHSqi := d iff(q iR H Sqi,ii): 
qiRHSqi := evalf(subs(diff_vars,qiRHSqi)):
#print(,q i ,q i lO  ;
qiRHSqi := mtaylor(qiRHSqi,lossVars,2);
#prin t(’q i fq i l . l o s s *) ;
#print(tim eO -statime);
A [y . l , i i ]  := A [y . l , i i ]  + fnormal(simplify(qiRHSqi),12);
#simplify(qiRHSqi):
A [i i ,y .  1] := A[y. 1 , i i ]  :
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od:
od:
done.vars := done.vars union {yl}:
timeO-statime;
timeO-sttime;

1
2
3
4
5
6
7
8

66774.888
67587.820

> 1= 1 ;

1 =  1

> #DEBUG();

> #quit

Y 2 , Y3

As above for the other masses:

> statime := timeO:
for i i  from 2 to NumPen do 
for kk from 1 to loopcount do 
p r in t ( i i ,k k ) ;
qiRHS := -diff(PEnum.kk,y.ii):
i f  Symmetric=l then
coup.vars := { s e q ( y . i i , i i = l . .NumPen),
seq (‘y c [u ,‘ . i i . ' ] f ,ii=l..NumCanU),
seq ({y c [ 1 /  . i i . f] 1 , i i= l .  .NumCanM)}:
e lse  # If non-symmetric
coup.vars := (op(all_vars)}:
f i :
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coup.vars := coup.vars minus done_vars: 
for 11 in coup.vars do 
diff .vars  := {11=0};
diff_vars_only := {allDOFO} minus diff_vars; 
qiRHSqi := evalf(subs(diff_vars_only,qiRHS)); 
qiRHSqi := diff(qiRHSqi,11); 
qiRHSqi := evalf(subs(diff_vars,qiRHSqi)); 
#print( ,q i,q iO  ;
qiRHSqi := mtaylor(qiRHSqi, lossVars,2);
#print( ’q i , q i , loss *);
#print(time( ) -statim e);
A [ y . i i , l l ]  := A [ y . i i , l l ]  + simplify(qiRHSqi);
A [ l l ,y . i i ]  := A [ y . i i , l l ]  :
od:
od:
done_vars := done_vars union { y . i i } :  
od:
timeO-statime;

A .9.2 Rotational M otion

Again, nominally decoupled from the other degrees of freedom:

Phi[i]’s

> statim e := tim eO : 
for i i  from 1 to NumPen do 
for kk from 1 to loopcount do 
p r in t ( i i ,k k ) ;
qiRHS := -diff(PEnum.kk,phi. i i ) :
#print(time( ) -statim e); 
i f  Symmetric=l then
coup.vars := {seq(phi.ii,ii= l..Num Pen), 
seq (ry c [u ,f . i i . f] ‘ ,ii=l..NumCanU), 
seq (‘yc [ 1 , ' . i i . ‘ ,ii=l..NumCanM)}: 
e lse  # If non-symmetric 
coup.vars := {op(a ll.vars)}: 
f i :
coup.vars := coup.vars minus done_vars:
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for 11 in coup.vars do 
diff_vars := {11=0};
diff_vars_only := {allDOFO} minus d iff .vars;  
qiRHSqi := evalf(subs(diff_vars_only,qiRHS)); 
qiRHSqi := diff(qiRHSqi,11); 
qiRHSqi := evalf(subs(diff_vars,qiRHSqi)):
#print(*q i , q i ’);
qiRHSqi := mtaylor(qiRHSqi,lossVars,2);
#print(*q i , q i , loss  ’);
#print(time( ) -statim e);
A [p h i . i i ,11] := A [ p h i . i i , 11] + simplify(qiRHSqi);
A [ l l ,p h i . i i ]  := A [p h i . i i , l l ]  ;
od:
od:
done_vars := done_vars union {p h i. i i} ;  
od:
timeO-statime;

1 , 1 

1 , 2  

1, 3 
1 , 4 
1, 5 
1 , 6  

1 , 7 
1 , 8  

50075.597

A .9.3 Longitudinal and Tilt

These two are coupled in the nominal case.

X[i]

> statim e := tim eO : 
fo r  i i  from 1 to  NumPen do 
fo r  kk from 1 to  loopcount do 
p r i n t ( i i ,k k ) ;
qiRHS := -d iff(P E n u m .k k ,x .ii): 
# p r in t( ,q i ’) ;
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i f  Symmetric=l then 
coup.vars : =
{seq(x.ii,ii=0..Num Pen),seq(theta.ii,ii=0..Num Pen),
seq (cy c [u ,f . i i . ' ] ‘ , ii=l..NumCanU),
seq (‘yc [ 1 , f . i i . ' ] ‘ ,ii=l..NumCanM)}:
e lse  # If non-symmetric
coup.vars := {op(a ll.vars)}:
f i :
coup.vars : = coup.vars minus done.vars: 
for 11 in coup.vars do 
diff_vars := {11=0};
diff_vars_only := {allDOFO} minus diff_vars; 
qiRHSqi := evalf(subs(diff_vars_only, qiRHS)); 
qiRHSqi := diff(qiRHSqi,11); 
qiRHSqi := evalf(subs(diff_vars,qiRHSqi));
#print( ’q i , qx *);
qiRHSqi := mtaylor(qiRHSqi,lossVars,2); 
#print( ,q i ,q i , l o s s ’) ;
#print(tim eO -statim e);
A [ x . i i , l l ]  := A [ x . i i , l l ]  + simplify(qiRHSqi);
A[11,x . i i ]  : = A[x. i i ,11]; 
od:
od: # kk, Loop on PE
done_vars := done.vars union { x . i i } ;
od:
timeO-statime;

43980.689
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T heta[i]’s

> statim e := tim eO : 
for i i  from 1 to NumPen do 
for kk from 1 to loopcount do 
p r in t ( i i ,k k ) ;
qiRHS := -diff(PEnum.kk,theta.ii):
#print(*q i 1); 
i f  Symmetric=l then 
coup.vars : =
{seq(x.ii,ii=0..Num Pen),seq(theta.ii,ii=0..Num Pen),
seq (‘y c [u ,‘ . i i . f] 1,ii=l..NumCanU),
seq (‘y c [ 1 /  . i i . c] ‘ , i i= l .  .NumCanM)}:
e lse  # If non-symmetric
coup.vars := (op(all_vars)}:
f i :
coup.vars := coup.vars minus done_vars: 
for 11 in coup.vars do 
d iff .vars  := {11=0};
diff_vars_only := {allDOFO} minus d iff .vars;  
qiRHSqi := evalf(subs(diff_vars_only,qiRHS)); 
qiRHSqi := diff(qiRHSqi,11); 
qiRHSqi := evalf(subs(diff_vars,qiRHSqi));
#print(*q i ,qx’);
qiRHSqi := mtaylor(qiRHSqi,lossVars,2);
#p r in t(*q i,q i, l o s s ’);
#print(tim eO -statime);
A [ th e ta . i i , l l ]  := A [ t h e t a . i i ,11] + simplify(qiRHSqi);
A[11,th e ta . i i ]  := A [ t h e t a . i i ,11];
od:
od: # kk, Loop on PE
done_vars := done_vars union { th e ta .i i} ;
od:
timeO-statime;

1 , 1 

1 , 2

1.3
1.4
1.5
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1, 6
1.7
1. 8  

47562.272

A .9.4 Sideways and Roll

Once again, nominally coupled.

Z[i]’s

> statim e := tim eO : 
for i i  from 1 to NumPen do 
for kk from 1 to loopcount do 
p r in t ( i i ,k k ) ;
qiRHS := -diff(PEnum.kk,z. i i ) :
# p r in t(q i):
i f  Symmetric=l then
coup.vars := {seq(z . i i , i i= 0 . . NumPen),
seq(psi.ii ,i i= l..N um Pen),
seq (‘y c [u ,{ . i i .  '] 1 , i i= l .  .NumCanU) ,
seq (‘y c [ 1 /  . i i .  f] ( , i i= l .  .NumCanM)}:
e lse  # If non-symmetric
coup.vars := (op(all_vars)}:
f i :
coup.vars := coup.vars minus done_vars: 
for 11 in coup.vars do 
d iff .vars  := {11=0};
diff_vars_only := {allDOFO} minus diff_vars; 
qiRHSqi := evalf(subs(diff_vars_only,qiRHS)); 
qiRHSqi := diff(qiRHSqi,11): 
qiRHSqi := evalf(subs(diff_vars,qiRHSqi)): 
qiRHSqi := mtaylor(qiRHSqi,lossVars,2):
A [ z . i i , l l ]  := A [ z . i i , l l ]  + qiRHSqi; #simplify(qiRHSqi) 
A [ l l , z . i i ]  := A [ z . i i , l l ] :
#p r in t(q iz ): 
od:
od: # Loop on PE
done_vars := done_vars union { z . i i } ;  
od:
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Psi[i]’s

Again, expanding about the equilibrium to first order:

> statim e := tim eO : 
for i i  from 1 to NumPen do 
for kk from 1 to loopcount do 
p r in t ( i i ,k k ) ;
qiRHS : = -diff(PEnum.kk,psi. i i ) :
# p r in t(q i):
i f  Symmetric=l then
coup.vars := {seq(z.ii,ii=0..Num Pen),
seq (p si . i i , i i = l . . NumPen),
seq (‘y c [u ,‘ . i i . ' ] ( ,ii=l..NumCanU),
seq (fy c [1 ,* . i i . f] 1,ii=l..NumCanM)}:
e lse  # If non-symmetric
coup.vars := (op (a ll .vars)}:
f i :
coup.vars := coup.vars minus done_vars: 
for 11 in coup.vars do 
diff .vars  := {11=0};
diff_vars_only := {allDOFO} minus d iff .vars;  
qiRHSqi := evalf(subs(diff_vars_only,qiRHS)); 
qiRHSqi := diff(qiRHSqi,11): 
qiRHSqi := evalf(subs(diff_vars,qiRHSqi)): 
qiRHSqi := mtaylor(qiRHSqi,lossVars,2):
A [ p s i . i i , 11] := A [ p s i . i i , 11] + qiRHSqi; #simplify(qiRHSqi) 
A [ l l ,p s i . i i ]  := A [ p s i . i i , l l ]  :
#p r in t(q iz ): 
od:
od: # Loop on PE
done.vars := done.vars union { p s i . i i } ;
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od:

Cantilevers

> statim e := tim eO : 
for i i  from 1 to NumCanU do 
for kk from 1 to loopcount do 
p r in t ( i i ,k k ) ;
qiRHS := -diff(PEnum.kk,fy c [u ,*.i i . c] ' ) :
#p r in t(q i): 
i f  Symmetric=l then 
coup.vars : =
{seq (‘y c [u ,( . i i . f] ' ,ii=l..NumCanU),
seq (fyc [ 1 , ' . i i . *]1, ii=l..NumCanM),
input.vars}:
e lse  # If non-symmetric
coup.vars : = {op(a ll.vars)}:
f i :
coup.vars := coup.vars minus done.vars: 
for 11 in coup.vars do 
diff .vars := {11=0};
diff_vars_only := {allDOFO} minus d iff .vars;  
qiRHSqi := evalf(subs(diff_vars_only,qiRHS)); 
qiRHSqi := diff(qiRHSqi,11): 
qiRHSqi := evalf(subs(diff_vars,qiRHSqi)): 
qiRHSqi := mtaylor(qiRHSqi,lossVars,2):
A[‘yc [u ,‘ . i i .  f] *,11] := A[fy c [u ,f . i i . f] f ,11] + qiRHSqi; 
#simplify(qiRHSqi):
A [11 ,‘yc[u, f . i i . f] f] := A[‘y c [u ,' . i i . ' ] f ,11]: 
#prin t(q iz):
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od:
od: # Loop on PE
done_vars := done_vars union { ‘y c [u ,c. i i . f] c}; 
od:

> statime := timeO: 
for i i  from 1 to NumCanM do 
for kk from 1 to loopcount do 
p r in t ( i i ,k k ) ;
qiRHS : = -d i f f  (PEnum.kk/ycCl, ' . i i . '] ') :
#p r in t(q i): 
i f  Symmetric=l then 
coup_vars : =
{seq (‘y c [u ,1 . i i . *]f ,ii=l..NumCanU), 
seq (fyc [ 1 , f . i i . f] c,ii=l..NumCanM)
}:
e lse  # If non-symmetric1 
coup.vars : = (op (a ll .vars)}: 
f i :
coup.vars := coup.vars minus done.vars: 
for 11 in coup.vars do 
diff.vars := {11=0};
d if f  .vars .only := {allDOFO} minus diff.vars;  
qiRHSqi := evalf (subs (d iff  .vars.only, qiRHS)) ; 
qiRHSqi := diff(qiRHSqi,11): 
qiRHSqi := evalf (subs (d iff .vars, qiRHSqi)): 
qiRHSqi := mtaylor(qiRHSqi,lossVars,2):
A[‘y c [ l , 1 . i i .  f] * ,11] := A[‘y c [ l ,  * . i i . '] f ,11] + qiRHSqi; 
#simplify(qiRHSqi):
A [ l l / y c [ l , f . i i . f] ‘] := A[cyc [ 1 , f . i i . c] c ,11] :
#p r in t(q iz ):
od:
od: # Loop on PE
done.vars := done.vars union ( Cy c [ l /  . i i . f] '}; 
od:
timeO-statime;

0
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A .9.5 Stiffness M atrix

> for i i  from 1 to (NumEqs-Numlnputs) do
for jj  from 1 to NumEqs do
NegSt i f f  Matrix [ i i , j j ]  := A[op(ii,all_vars) ,op(j j ,all_vars)]
od:
od:
for i i  from 1 to Numlnputs do
for jj  from 1 to NumEqs do
NegStiffMatrix[NumEqs-Numlnputs+ii, j j] := 0:
od:
od:

> invMK := matrix(NumEqs,NumEqs);

invMK := array(1..10, 1..10, [])

> invMass := inverse(MassMatrix):

> invMass := map(fnormal,invMass);

.17846283747871781632,0,0,0,0,0,0,0,0,0 
0, .17846283747871781632,0,0,0,0,0,0,0,0 
0, 0,  .17846283747871781632,0,0,0,0,0,0,0 
0,0,0,62.435978126665125239,0,0,0,0,0,0 

invMass := 0,0,0,0,62.435978126665125239,0 , 0 , 0,0 ,0
0,0,0,0,0,44.064898142893287977,0,0,0,0 

0 , 0 , 0 , 0 , 0 , 0 , 1 ., 0 , 0 , 0  

0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ., 0 , 0  

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 . , 0  

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 .

> invMK := evalm(invMass ft* N egStiffM atrix): 
invMK := map(fnormal, invMK,14);
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invMK  :=
[[-35.318812192440 -  .190910157967221 alpha.wirel ~ , 
.00040478294044744 -  .0835943224986181 alpha.wirel' ,  
-.2674464244434110“9 +  .1676474059813310"91 alpha.wirel'  
.088278840112331 +  .0269512398948451 alpha.wirel *, 
.00031334925327275 +  .3562622669375010"51 alpha.wirel' ,  
-.00026676192885280 -  .000268501447557261 alpha.wirel' ,  
35.318812192440 +  .190910157967341 alpha.wirel *, 
-.00040478294044399 +  .083594322498617/ alpha.wirel ~, 
.2674464244434110“9 -  .1676474059823410"9 /  alpha.wirel' ,  
.052984416627300 +  .0267845856865461 alpha.wirel *],

[.00040478294044744 -  .0835943224986181 alpha.wirel ~ , 
-13296.554200983 -  13296.5542032731 alpha.wirel' ,  
.000038394879635326 +  .00459042213603221 alpha.wirel' ,  
.11052982986076 +  .134265219266951 alpha.wirel ~ , 
.00026751751261964 +  .00026931623216167 /  alpha.wirel ~ , 
.0060214749158941 +  .00731454084092101 alpha.wirel' ,  
-.00040478294044744 + .083594322498797/ alpha.wirel' ,  
13296.554200983 +  13296.5542032731 alpha.wirel ~ , 
-.000038394879635326 -  .0045904221360322 /  alpha.wirel' ,  
-.00012949352024709 -  .000197031031756651 alpha.wirel *],

[-.2674464244434110“9 +  .1676474059813310“91 alpha.wirel'  
.000038394879635326 +  .00459042213603221 alpha.wirel *, 
-35.318812196334 -  .19091015507376 /  alpha.wirel'  , 
-.7558734984581010"6 -  .8149779368689810“6/  alpha.wirel' ,  
.00030649819291337 +  .9353164542916110~6 /  alpha.wirel' ,  
-.034731875588975 +  .000402235346294171 alpha.wirel ~ , 
.2674464244434010“9 -  .1676474059820310“91 alpha.wirel' ,  
-.000038394879635398 -  .00459042213603171 alpha.wirel ~ , 
35.318812196334 + .19091015507373 /  alpha.wirel' ,  
.7556446650348410-6 +  .7768348697172310“61 alpha.wirel *],
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[30.884725403731 + 9.42900521102441 alpha.wirel*, 
38.669328231170 +  46.9732545540361 alpha.wirel *, 
-.00026444553881916 -  .00028512347645562 /  alpha.wirel *, 
-124.95129462147 -  118.914987413701 alpha.wirel *, 
.0011377926517916 +  .000586782480199331 alpha.wirel *, 
.000077218161785664 +  .0000651688376152921 alpha.wirel' ,  
-30.884725403731 -  9.4290052110244 /  alpha.wirel' ,  
-38.669328231895 -  46.9732545615471 alpha.wirel' ,  
.00026444553881916 +  .000285123476455561 alpha.wirel *, 
116.24880715864 +116.257854508941 alpha.wirel ~],

[.10962656091175 +  .00124639860153061 alpha.wirel' ,  
.093592132694919 +  .094221422330614/ alpha.wirel *, 
.10722968848281 +  .000327224415495611 alpha.wirel ~ , 
.0011377926517916 +  .00058678248019933 /  alpha.wirel' ,  
-115.39651758459 -  .64502244724294/ alpha.wirel *, 
-.0012898284165657 +  .27230517901136 /  alpha.wirel *, 
-.10962656091179 -  .00124639860751991 alpha.wirel *, 
-.093592132694811 -  .0942214223288731 alpha.wirel * , 
-.10722968848281 -  .00032722441505193 /  alpha.wirel *, 
-.00066781159953618 -  .000777394535677481 alpha.wirel *],

[-.065867142926616 -  .0662966537178421 alpha.wirel ~ , 
1.4867839298504 +  1.8060594668941 /  alpha.wirel ~ , 
-8.5757717503641 + .099317369455350 /  alpha.wirel ~ , 
.000054497591548319 +  .000045993644654414/ alpha.wirel *, 
-.00091031100181492 +  .192182461730241 alpha.wirel ~ , 
-30579.127381233 -  30574.8800805591 alpha.wirel ~ , 
.065867142926616 +  .0662966537178601 alpha.wirel *, 
-1.4867842692593 -  1.8060592407731 /  alpha.wirel ~ , 
8.5757717503641 -  .0993173694553521 alpha.wirel ~ , 
.000052806331126026 +  .000079378897846151 /  alpha.wirel'],



APPENDIX A. LAGRAN.MWS 260

> invMInputs :=

"o
’

o o o o o 0 , 0, 0 , 0 ] 5

oooo. 0 , 0 0, 0, 0 , 0 ] ,

"o
’

o o o o o 0 , 0, 0 , 0 ] ,

o
’

o o o 0 , 0 0, 0, 0, 0] ]

evalm(invMass &* InputsM atrix)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

invMInputs := 0 0 0 0

0 0 0 0
1. 0 0 0

0 1. 0 0
0 0 1. 0
0 0 0 1.

> 1= 1 ;

17 hours for GEO numbers 

> tim eO -sttim e;

1 =  1

277258.398

A .9.6 Resonant Frequencies

For y, phi, since they are uncoupled to first order from the other variables, can 
calculate their resonant frequencies from the qiRHSqj terms. For coupled degrees of 
freedom, need to calculate the (sub)matrix and find the eigenvalues.

> invMKO := map2(subs, [lossO ], invMK):

> Freqs_omega := [eigenvals(invMKO)] :

> Freqs.omega := mapCsqrt, -Freqs_omega);
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Freqs.omega := [201.44661570824887056, 132.37847506020080438,
24.142463731684817928, 5.3643287817954678076, 10.792456624324310125, 
5.9647488221081273455, 0, 0, 0, 0]

> Freqs := evalf(Freqs.om ega/(2*Pi));

Freqs := [32.061224659101258013, 21.068688664798145004,
3.8423924413144443021, .85375944199287391115, 1.7176728198660844167, 
.94931925934006874325, 0, 0, 0, 0]

The vertical resonant frequencies in Hz:

> freq_vars :=
{seq (y . i i , i i = l . .NumPen),seq(‘y c [u ,f . i i . '] ‘ ,ii=l..NumCanU), 
seq (‘y c [ 1 ,‘ . i i . f] f ,ii=l..NumCanM)}; 
dim_freq := nops(freq .vars):
AFreqsY := matrix(dim_freq,dim_freq):

freq.vars := {yl

> which.vars := {}:
for i i  from 1 to NumEqs do
i f  ({op (ii,a ll_vars)}  in tersect freq .vars)<>{} 
then which.vars := which.vars union { i i }  f i :  
od:
which.vars := so r t( [op(which.vars)]):

> for i i  from 1 to dim.freq do 
for jj  from 1 to dim.freq do
AFreqsYfii,jj] := invMKO[op(ii,which.vars),op(jj,w hich.vars)]:
od:
od:

> FrequencysY := [eigenvals(AFreqsY)]:

> i f  (max(op(FrequencysY))>0) then 
stable.system  := 0:
ERROR( f UNSTABLE in y . ‘): 
e lse  f i :

> FrequencysY := evalf(map(sqrt,-FrequencysY)/(2*Pi)):
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> temp.freqs := {op(FrequencysY)}: 
for i i  in FrequencysY do
i f  (abs(ii)>500) then
temp.freqs := temp.freqs minus { i i }  f i :
od:
FrequencysY := so r t( [op(temp.freqs)] ) ;

FrequencysY := [21.066577042357931220]

The rotational (yaw) resonant frequencies in Hz:

> freq.vars :=
{seq(phi. i i , i i = l . . NumPen), 
seq (‘y c [u ,c. i i . f] ' ,ii=l..NumCanU), 
seq (‘y c [ l , 1 . i i . '] c , i i= l .  .NumCcinM)}; 
dim.freq := nops(freq.vars):
AFreqsPhi := m atrix(dim .freq,dim.freq):

freq.vars := {(j> 1 ~}

> which.vars := {}:
for i i  from 1 to NumEqs do
i f  ({op (ii,a ll_vars)}  in tersect freq .vars)<>{} 
then which.vars := which.vars union { i i }  f i :  
od:
which.vars := so r t( [op(which.vars)]):

> for i i  from 1 to dim.freq do 
for jj  from 1 to dim.freq do
A FreqsPhi[ii,jj] := invMKO[op( i i ,w h ich .vars),op (jj,which.vars)]
od:
od:

> FrequencysPhi := [eigenvals(AFreqsPhi)] :

> i f  (max(op(FrequencysPhi))>0) then 
stable.system  := 0:
ERROR( fUNSTABLE in p h i. ‘): 
e lse  f i :

> FrequencysPhi := evalf(m ap(sqrt,-FrequencysPhi)/(2*Pi)):
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> temp.freqs := {op(FrequencysPhi)}: 
for i i  in FrequencysPhi do
i f  (abs(ii)>500) then
temp.freqs := temp.freqs minus { i i }  f i :
od:
FrequencysPhi := sort([op(tem p.freqs)]);

FrequencysPhi := [1.7176507978694903821]

Giving longitudinal and tilt frequencies in Hz of:

> freq.vars :=
{ s e q ( x . i i , i i= l . .Num Pen),seq(theta.ii,ii=l..Num Pen), 
seq (‘y c [u ,* . i i . '] ‘ , i i= l .  .NumCanU), 
seq (‘y c [ l , f . i i . ' ] 1,ii=l..NumCanM)}; 
dim.freq := nops(freq .vars):
AFreqsXTheta := m atrix(dim .freq,dim .freq):

freq.vars := { 6 l ~ , x l ~ }

> which.vars := {}:
for i i  from 1 to NumEqs do
i f  ({op (ii,a ll_vars)}  in tersect freq .vars)<>{} 
then which.vars := which.vars union { i i }  f i :  
od:
which.vars := so r t( [op(which.vars)]):

> for i i  from 1 to dim.freq do 
for jj  from 1 to dim.freq do 
AFreqsXTheta[ii,jj] :=
invMKO[op(ii,which.vars),op(jj,w hich.vars)]:
od:
od:

> FrequencysXTheta := [eigenvals(AFreqsXTheta)]:

> i f  (max(op(FrequencysXTheta))>0) then 
stable.system  := 0:
ERROR(‘UNSTABLE in x /th e ta .‘): 
e lse  f i :

> FrequencysXTheta := evalf(map(sqrt,-FrequencysXTheta)/(2*Pi)):
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> temp.freqs := {op(FrequencysXTheta)}: 
for i i  in FrequencysXTheta do
i f  (abs(ii)>500) then
temp.freqs := temp.freqs minus { i i }  f i :
od:
FrequencysXTheta := so r t( [op(temp.freqs)] ) ;

FrequencysXTheta := [.85438955831540808240, 3.8539619432088401669]

Sideways and roll frequencies are, in Hz:

> freq.vars :=
{ s e q ( z . i i , i i = l . .N u m P en),seq (psi.ii,ii= l. .NumPen), 
seq (‘y c [u ,‘ . i i . f] ‘ ,ii=l..NumCanU), 
seq (‘y c [ 1 /  . i i . c] * , i i= l .  .NumCanM)}; 
dim.freq := nops(freq.vars):
AFreqsZPsi := m atrix(dim.freq,dim .freq):

freq.vars := {iipl”, zl ~}

> which.vars := {}:
for i i  from 1 to NumEqs do
i f  ({op (ii,a ll_vars)}  in tersect freq .vars)<>{} 
then which.vars := which.vars union { i i }  f i :  
od:
which.vars := so r t( [op(which.vars)]):

> for i i  from 1 to dim.freq do 
for jj  from 1 to dim.freq do 
AFreqsZPsi [ i i , j j ]  : =
invMKO[op(ii,which.vars),op(jj,w hich.vars)]:
od:
od:

> FrequencysZPsi := [eigenvals(AFreqsZPsi)]:

> i f  (max(op(FrequencysZPsi))>0) then 
stable.system  := 0:
ERROR( 1 UNSTABLE in z /p s i . ‘): 
e lse  f i :

> FrequencysZPsi := evalf(m ap(sqrt,-FrequencysZPsi)/(2*Pi)):
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> temp.freqs := {op(FrequencysZPsi)}: 
for i i  in FrequencysZPsi do
i f  (abs(ii)>500) then
temp.freqs := temp.freqs minus { i i }  f i :
od:
FrequencysZPsi := so r t( [op(temp.freqs)]);

FrequencysZPsi := [.94935921241067477385, 32.061206790908636184]

> i f  (stable.system  =0) then 
p r in t(*\n
SYSTEM IS IN UNSTABLE EQUILIBRIUMS 
* * * * * * * * * * * * * * * * * * * * * * * * * * )  
e lse
p r in t( ‘\n SYSTEM IS STABLE\n\nf): 
f i ;

SYSTEM IS STABLE

29,600sec., ~490min., "8.5 hours for GEO600 numbers (no cantilevers)

> tim eO -sttim e;

277259.503

> #DEBUG();

> #quit

> #save invMK, MassMatrix, invMInputs, lossO, lo s s , cllju ly .m ‘ :

> #save invMK, MassMatrix, invMInputs, lossO, lo s s , ( l lju ly .tx t* :

A .9.7 Cross terms

Original code solved the ’coupled’ variables first, then, for a non-symmetric case, 
solved every variable (the extra cross couplings) here. Now, the code solves for
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all ’coup_vars’ which, for a symmetric case, is just the obvious couplings (plus the 
cantilevers, where appropriate) and for a non-symmetric case is equal to all variables. 
Thus, this separate section is no longer necessary.

A. 10 General System  Dynamics
> UpperRight := array(id en tity ,1 . .NumEqs,1 . .NumEqs):
UpperLeft := array(sparse,l..NumEqs,1 . .NumEqs):

> additionally(alpha.w irel,real,alpha_w ire2,
r e a l , alpha_wire3,r e a l,alpha.cantU,r e a l, alpha.cantL ,real);

> RelnvMK := copy(invMK): 
for i i  from 1 to NumEqs do
for jj  from 1 to NumEqs do
RelnvMKfii,jj] := Re(RelnvMK[ii,jj]): 
od:
od:

> ImlnvMK := copy(invMK): 
for i i  from 1 to NumEqs do
for jj  from 1 to NumEqs do
ImInvMK[ii,jj] := Im(ImInvMK[ii, jj])/omega:
od:
od:

> Adynam :=
blockmatrix(2 ,2 ,UpperLeft,UpperRight,RelnvMK, ImlnvMK):

> slminusA := charmat(Adynam,omega*I):

A. 10.1 Input vectors

Sample input vectors-from motion of the top plate, xO, yO, zO, and thetaO: First 
column is xO, then yO, zO, thetaO.

> Btemp := array(sparse,l..NumEqs,1 ..1 ):
Bdynam := blockmatrix(2,1 ,Btemp,col(invM Inputs,l)):
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A .10.2 Output Vectors

Sample out put vectors-basically, motions of the test mass (bottom mass) in each 
direction.

> Cdynam := array(sparse,l..2*NumEqs):
Cdynam[ (NumPen-1)*6+1] := 1:
print(Cdynam);

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 05 0]

Output perpendicular to the test mass face, i.e., correcting for non-zero yaw 
angle:

> CdynamXTMFace := matrix(l,6*(2*NumPen),
[seq(0, j j = l . .6*(NumPen-l)),
su b s(o ffset.va lu es, l*cos(ph i.NumPen.0 ) ) ,0 ,  
su b s(o ffset.va lu es, - l* s in (p h i.NumPen. 0 )) , 0 ,0 ,0 , 
seq(0, j j - 1 . . 6*NumPen)]);

CdynamXTMFace :=
[cos(.7296675203555463849010"5) , 0, -sin(.7296675203555463849010“5) , 0 
, 0 , 0 , 0, 0 , 0 , 0 , 0 , 0]

A. 10.3 Straight Through Term

For most cases of interest,

> Ddynam := matrix(1 ,1 ,0 );

Ddynam 0

As a reminder of the previously calculated frequencies, to compare to the full 
calculation:

> FrequencysY; FrequencysPhi; FrequencysXTheta; FrequencysZPsi;

[21.066577042357931220] 
[1.7176507978694903821] 

[.85438955831540808240, 3.8539619432088401669]
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[.94935921241067477385, 32.061206790908636184]

2/8/99, Full run, 58600 sec., 977 min., ~16.3 hours

> tim eO -sttim e;

277260.129

> DEBUGO;

277260.129

> quit

Warning, computation interrupted

A .11 Functional Outputs

Based on these system dynamics, we can generate useful outputs to study the system. 
For simple systems, with no loss and no bending terms included, we can take the 
[A,B,C,D] matricies and calculate the relevant transfer functions as C(sI-A)*(-l)B  
+ D. For more complicated systems, it is very computational difficult to symbolically 
invert the matricies, so the most convenient thing to do is to set up a function that 
calculates as much as it can, then for each frequency point, numerically does the 
matrix math.

The general idea is shown below.
Note that for plotting, the automatic plotting routines will have trouble with 

such a function. As such, you may wish to provide your own plotting vector.

> Aplot := copy(sIminusA):

Note: Inputs are accelerations, so to get proper transfer functions, must use 
accerleration as output.

> TF := proc (f) loca l i i , j j :  
global Aplot:
for i i  from 1 to NumEqs do
A p lo t [ i i , i i ]  := evalf(subs(om ega=2*Pi*f,sIm inusA[ii,ii])):  
od:
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for i i  from (NumEqs+1) to (NumEqs+NumEqs) do 
for jj from (NumEqs+1) to (NumEqs+NumEqs) do 
A p lo t[ ii ,j j ]  :=
e v a lf(su b s(te s t, loss,omega=2*Pi*f, sIm in u sA [ii,jj]) ) :  od: 
od:
ev a lf(-(2 * P i* f)"2)*evalm(Cdynam ft* inverse(Aplot) &* Bdynam +
Ddynam)[1,1];
end;

TF := proc(/) 
locahz, j j ; 
globa lAplot;

for ii to NumEqs do Aplot iii{ := evalf(subs(w =  27rf, slminusA^a)) o d ; 
for ii from NumEqs -f 1 to 2NumEqs do 

for jj  from NumEqs +  1 to 2 NumEqs do
Aplot# $ := evalf (subs (test, loss, u  = 2nf, slminusAajj))

od
od;
evalf (—An2 f 2)eva\m(((Cdynam &* (mveise(Aplot))) &* Bdynam)A- 

Ddynam)i,i
end

> min_f := 0.1: 
max_f := 100: 
num_f := 30:
delta_f := (m ax_f/m in_f)~(l/(num _f-l)):
f_vec := [seq (m in _ f* d e lta _ f~ (ii- l) ,ii= l. .num_f)]:

> data.vec := [seq (T F (ii) ,ii= f_ v ec)]:

> mag_data := z ip ((x ,y )-> [x ,ab s(y )],f_vec ,d ata_vec):

> w ith (p lo ts):

> mag_plot := loglogplot(mag_data,color=red):

> #display(mag_plot, axes=boxed);

A Maple note: For variables, y=x sets the value of y equal to the value of x. 
Later changing x does not change y.
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For matricies, Y=X  sets a pointer; later changing X  *does* change Y. Use ’copy’ 
to get a new version of the matrix.

’AplotO’ and ’BplotO’ will be dummy matricies we can substitute specific values 
for frequency without changing Adynam and Bdynam.

> AplotO := copy(fsI-ATotal'):

> BplotO := matrix(6*(2*NumPen),1,
[seq(0, j j = l . .6*NumPen), l/(su b s(vars, fm ass[l]' ) ) ,  0 ,0 , 0 ,0 ,0 ]);

> Cplot := matrix(1 ,6*(2*NumPen),
[1 ,0 ,0 ,0 ,0 ,0 , seq(0, jj=l..6*NumPen)]);

> Dplot := copy(Ddynam);

We do all the substituting we can before the function call; as this step is slow, 
there is an output to reassure the user it hasn’t stopped.

> for i i  from 1 to (2*D0Ftot) do
i f  ( i i= l)  then p r in t(‘l  out of ' . (2*D0Ftot)):
e lse  p r in t( i i) :  f i :
for jj  from 1 to (2*D0Ftot) do
AplotO [ i i , j j ]  := ev a lf(su b s(lo ss ,A p lo tO [ii,jj]));
od:
B p lotO [ii,l] := e v a lf(su b s(lo ss ,B p lo tO [ii,l])); 
od:
Aplot := copy(AplotO):
Bplot := copy(BplotO):

Function of omega (not f):

> TFTot := proc(x) loca l i  i , j j ; 
global Aplot,Bplot,Cplot,Dplot; 
for i i  from 1 to (2*D0Ftot) do 
for jj  from 1 to (2*D0Ftot) do
Aplot [ i i , j j] := subs(omega=x,AplotO[ii,jj]);
Aplot [ i i , j j]  := e v a lf(A p lo t[ii, j j ] ); 
od:
B p lo t [ i i , l ]  := subs(omega=x,BplotO[ii,1]);
B p lo t [ i i , l ]  := e v a lf(B p lo t[ ii ,1 ]);  
od:
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RETURN(evalm(Cplot ft* inverse(Aplot) &* Bplot + D plot)[1 ,1 ]); 
end;

In Hz:

> TargetFreq := le-4;

> TFO := TFTot(2*TargetFreq);

> Im(TFO)/Re(TFO);

> Elapsed := tim eO -sttim e;

> Elapsed/60;



Appendix B 

Blade Equations

Transfer Function of Cantilever Blades

MEH, 2 8 /5 /9 9

As ideal (massless) springs, as an element with mass & inertia, and in a coupled 
system.

zO =  input
zEnd =  motion at end of blade
zl =  motion of massl (at bottom of wire)

> D igits := 20;

Digits := 20

> KE := l/2*Massl*zldot~2 # For the mass 
+ l/2*MassBlade*( (2*z0dot + zEnddot)/3)~2
# From geometry, translation of the blade 
+ 1/2*JBlade/Lblade~2*(zEnddot-zOdot)~2:
# From geometry, rotation of blade;

> PE := l/2*kcant*(zO-zEnd)~2 + l/2*kwirel*(zl-zEnd)"2:

> LI := KE -  PE;

272
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1 1 2  1 
LI := -  Massl zldot2 +  -  MassBlade ( -  zOdot +  -  zEnddot)2 

2 2 3 3
1 JBlade (zEnddot — zOdot)2 1 . , n

+  2   — 2 kcant(z0 ~ z E n d )

— i  kwirel (zl  ~ — zEnd)2

Really d/dt(diff(*)), but we’ll clean that up in the Lagrangian:

> Eqsl := {diff(LI,zEnddot) = d iff(L l,zE nd),
d iff(L I,z ld o t) = d iff(L I ,z l)} :

> Eqsl := subs(zEnddot=s~2*zEnd, zldot=s~2*zl,
z0dot=s~2*z0,Eqsl);

^ f l  . .  nr j /2 2 1 2 o j\ JBlade (s2 zEnd — s2 zO~)Eqsl := { - MassBlade (-& zO + - s  zEnd) H---------------------- -̂--------- -
3 3 3 Lblade

kcant (zO~ — zEnd) +  kwirel (zl  ~ — zEnd),
Massl s2 zl~  =  —kwirel (zl ~ — zEnd)}

> Solnl := solve(E qsl,{zl,zE nd}):

> vars := kcant = omegaO~2*Massl,
omegaO = sq rt(1 .86Ell*b*h~3/(4*alpha*Massl)/Lblade~3),
Massl=5.6/NumBlades,kwirel=l.7ell*evalf(Pi)*rwire~2/LenWire, 
JBlade=MassBlade*Lblade~2/18,MassBlade=l/2*(b+a)*Lblade*h*7800, 
alpha=(3 /(2 * (1-beta))* (3 - (2 /(1-beta))*(1+(beta~2*ln(beta) 
/ ( 1 -b e ta ) ) ) ) ) , 
beta=a/b;

vars := kcant = ujO2 M assl,

bh3
uO =  215638.58652847824675

a Massl Lblade3’
5.6 10 rwire2

Massl = —----=7- r - ,  kwirel = .534070751110264850551012
NumBlades ’ ’ Len Wire ’

JBlade =  — MassBlade Lblade2, MassBlade =  3900 (b +  a) Lblade h,
18 v '
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> UpperBlades := NumBlades=2,b=0.04,a=0.0045,h=0.002,
Lblade=0.24 ,LenWire=0.42 ,rwire=350 e -6 :
LowerBlades : = NumBlades=4,b=0.028,a=0.0038,h=0.001,
Lblade=0.124,LenWire=0.187,rwire= 175e-6:

> p r in t( calphaUpper = ‘+evalf(subs(vars.UpperBlades,alpha)));  
print ( ‘ alphaLower = ' +evalf (subs (vars, LowerBlades, alpha)));

alphaUpper =  +1.3803223482783266058

alphaLower =  +1.3614241824553639503

> TFOtol := su b s(S o ln l,z0 = l,z l);

TFOtol := —kwirel (2 MassBlade s2 Lblade2 — 9 JBlade s2 — 9 kcant Lblade2) 
/ ( MassBlade s4 Lblade2 Massl +  MassBlade s2 Lblade2 kwirel 
+  9 JBlade s4 Massl +  9 JBlade s2 kwirel +  9 kcant Lblade2 Massl s2 
+  9 kcant Lblade2 kwirel +  9 kwirel Lblade2 Massl s2)

> TFOtolUpper := evalf(subs(vars.UpperBlades,s=I*omega, 
omega=2*Pi*f.TFOtol));

TFOtol Upper := -155770.63574049391474(
-.28414455264979704475 f 2 -  404.25339827033324521)/ 
(31.409216466633643562 / 4 -  .90151831349909459577107/ 2 +  
.62970808848824892703 1 08)

> TFOtolLower := evalf(subs(vars,LowerBlades,s=I*omega, 
omega=2*Pi*f.TFOtol)):

> fsolve(l/TF0tolU pper,f=0..5);
fsolve(l/TFOtolUpper,f=100..5000);

2.6429420687406739352

535.73921961531450801
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> fsolve(l/TF0tolLow er,f=0..5);
fsolve(l/TFOtolLower,f=100..5000);

3.0012206882376742346

933.23304759607086041

> w ith (p lo ts):

> MagUpperl := loglogplot(abs(TFOtolUpper),f=0.1..1000, 
numpoints=300,title='Single Stage TF: Upper Blade plus Wire') 
MaglUUC := loglogplot(abs(l/(l-(f/subs(vars,U pperB lades, 
omegaO/(2*Pi)))~2)),f=Q.l . . 1000,numpoints=200,color=blue):

> MagLowerl := loglogplot(abs(TFOtolLower),f=0.1 ..1000, 
numpoints=300,title=<Single Stage TF: Lower Blade plus Wire') 
MaglLUC := loglogplot(abs(l/(l-(f/subs(vars,L ow erB lades, 
omegaO/(2*Pi)))" 2)),f=0.1 . . 1000,numpoints=200,color=blue):

> d isp lay( [MagUpperl,MaglUUC],view=[-l. .3 , - 3 . .2  ] ) ;

Single Stage T F : Upper B1 plus Wire

> (evalf(subs(vars,U pperBlades,om egaO /(2*Pi)))/ 50)~2; 
abs(subs(f=50,TFOtolUpper)) ; " /" " ;

.0028218304125459893876
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.0077932919430397645103

2.7617860762965859700 

> d isp lay( [MagLowerl,MaglLUC],view=[-l. .3 , - 3 . .2  ] ) ;

Single Stage T F : Lower Blade plus Wire

I £00000001

> abs(subs(f=50,TF0tolLower));
(eva lf(subs(vars , LowerBlades,omegaO/(2*Pi)))/50)~2;

.0054552313383509409220

.0036301509731010073084

1.5027560503057765191
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