
Mutational analysis of the transforming protein E8 of bovine 
papillomavirus type-4 (BPV-4)

G. Hossein Ashrafi, DVM

This thesis is submitted in part fulfilment of the degree of Doctor of 
Philosophy in the University of Glasgow

Beatson Institute for Cancer Research Faculty of Medicine
CRC Beatson Laboratories, University of Glasgow
Bearsden, Glasgow Glasgow

June 1998 
© G. Hossein Ashrafi



ProQuest Number: 13818656

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818656

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



G U S G O W  UNIVERSITY 
LIBRARY

11 #5 <2 (c<̂  0

GLASGOW k
U>jnro-£;r;

J —i



ABSTRACT

The transforming genes of bovine papillomavirus type 4 (BPV-4) are 

encoded by the E7 and E8 open reading frames (ORFs). E7 is the transforming 

gene of BPV-4, in that, in co-operation with activated ras, it induces 

morphological transformation of primary bovine fibroblasts (PalF) in the absence 

of other viral genes, but the acquisition of anchorage independent growth requires 

the additional presence of E8.

The BPV-4 E8 is a small transforming protein localized to cellular 

membrane. It consists of two domains: a very hydrophobic region encompassing 

the first 30 amino acids of the protein, and a second region of mainly hydrophilic 

amino acids comprising the C terminal 12 residues;. The results in this thesis 

demonstrated that in addition to the ability of E8 to grow independently of 

anchorage, PalF cells expressing E8 lose gap junction intercellular communication 

(GJIC), can grow in low serum, and are not contact inhibited. E8 also 

transactivates the cyclin A promoter in PalF cells.

Mutant forms of E8 were generated to establish if the transforming 

functions of the protein could be segregated and therefore to define its functional 

domains. Mutations were introduced both in the hydrophobic domain and in the 

hydrophilic C-terminal tail, and chimeras with BPV-i E5 were constructed. Cells 

expressing either E8 wild type or its mutants were analysed for their ability to: 

morphological transformation, anchorage independent growth, focus formation, 

cell population growth in low serum, tumorigenicity im nude mice, trans-activation 

of the cyclin A promoter, binding to ductin and down regulation of GJIC.

The analysis of E8 mutants and chimeras constructed with BPV-1 E5 show 

that the multiple transforming function of E8 can be segregated and that both the 

hydrophobic domain and the hydrophilic C-terminal tail of E8 are critical for its 

functions and for the transactivation of the cyclin A  promoter. These results

I



support the hypothesis that the different aspects of cellular transformation 

produced by E8 might be due to interaction with different cellular targets. The 

observation from the analysis of the transformation parameters of E8 and BPV-1 

E5 expressing cells suggest that E8 acts differently from E5. This study also 

demonstrates that the separate domains of E5 and E8 are not functionally 

interchangeable. The short term co-transfection analysis of E8 mutants suggest 

that substitution of alanine with proline, which is expected to alter the 

conformation of the hydrophobic domain, may have an effect on cell 

transformation. Also the short-term co-transfection experiments of E8 mutants in 

the putative casein kinase II site support the possibility that BPV-4 E8 might be 

phosphorylated by CKII and that this phosphorylation could have an effect on the 

biological activities of this protein.
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Chapter One Introduction

CHAPTER ONE 

INTRODUCTION

1.1 The Multistage Nature of Carcinogenesis

Despite considerable progress, cancer is still the leading cause of death. It 

is recognised as being a complex, multistage, genetic disease, in which the 

regulation of growth and maturity of normal cells is disrupted. Generally a tumor 

develops from a single cell that begins to proliferate abnormally (Nowell 1976). 

The development of a fully malignant tumor involves complex interactions 

between several factors, both exogenous (environmental) and endogenous (host- 

related, such as genetic, hormonal, or immunological factors). In addition, 

carcinogenesis is assumed to proceed through multiple discernible stages. The 

stages include initiation, promotion, and progression.

Initiation involves exposure of normal cells to some form of genotoxic 

agent such as physical, chemical or microbial carcinogens, which causes a genetic 

change(s) and cell proliferation. The cells at this stage, although altered at the 

DNA level, are phenotypically normal. The second stage of carcinogenesis is 

promotion, which leads to the appearance of benign tumors. A third stage, 

progression, covers conversion of benign alterations to malignant ones as well as 

their further evolution to tumors with increasing degree of malignancy (Sugimura,
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1992; Kinzler and Vogelstein, 1996b). The overall process can occupy most of 

the individual’s lifespan.

Such a model for a multistage process was first proposed by Foulds in 

1957, who pointed out that tumor progression occurred in a stepwise fashion, each 

step determined by the activation, mutation or loss of specific genes (Foulds, 

1957). Evidence for the multistep nature of tumorigenesis has come from several 

independent sources such as epidemiology, clinical observation and pathology 

and, more recently, molecular genetic studies.

Epidemiological studies support the concept that cancer is a multistep 

process. Cancer development in humans shows a clear exponential relationship of 

cancer incidence and age. It can occur at all ages, but in most tumor types it 

becomes much more common with advancing age excluding the distinctive group 

of childhood tumor (Vogelstein and Kinzler, 1993). From such statistics it has 

been estimated that somewhere between three and seven independent events, each 

of low probability, are typically required to change a normal cell into a cancer cell 

(Renan, 1993). This supports the hypothesis that multiple independent events are 

necessary for the development of cancer.

A model for understanding the interplay of gene mutation and the 

evolution of a normal to cancerous cell has been elucidated in colorectal 

carcinoma (Fearon and Vogelstein, 1990; Kinzler and Vogelstein, 1996a). The 

Vogelstein model illustrates the progression from a benign adenoma to metastatic 

colorectal cancer. In this model four critical gene mutations not found in normal 

colonic epithelium have been noted in colorectal carcinomas. These processes of
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activation and loss are the DNA changes which appear to have substantial effect 

on transformation from normal to malignant. Similar to the findings in colorectal 

tumors, molecular analyses of cervical tumors have indicated activation of cellular 

genes during malignant progression (Riou et al., 1985).

These evidences support the hypothesis that cancer is a complex genetic 

disease that may take years or even decades between the initial genetic damage 

and the eventual emergence of a tumor. Multiple genetic events are likely to be 

involved in tumor progression. It suggests that initial genetic damage by 

identified risk factor, by itself, is not sufficient to elicit cancer.

1.1.1 Oncogenes and Tumor Suppresser genes

There is increasing evidence that a malignant cancer predominantly arises 

through an accumulation of genetic events (Fearon and Vogelstein, 1990; Bishop, 

1991). Notably, genes associated with carcinogenesis have been essentially 

categorized into two distinct classes.

One class is that of proto-oncogenes, these are normal cellular genes and 

are responsible for positive growth signals (Druker et al, 1989; Cooper, 1990; 

Hesketh, 1994). Activation of proto-oncogenes to oncogenes causes dysfunction 

of growth and differentiation pathways and enhance the probability of neoplastic 

transformation. Carcinogens can cause the genetic changes that can lead to 

activation of proto-oncogenes, including mutation (Singer and Grunberger, 1983), 

translocation (Preston R. J. 1990), and gene amplification (Lavi, 1981; Schimke,
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1990), driving the process. For example, ras proto-oncogenes are activated 

primarily at codons 12, 13, and 61 by base substitutions caused by chemical (e.g. 

DMBA, dimethylbenzanthracene) and physical (e.g. radiation) carcinogens in both 

mammalian cells and animal models (Balmain and Brown, 1988; Brown et al., 

1990). A translocation between chromosomes 2 and 8 is responsible for myc 

activation in Burkitt’s lymphoma (Dalla-Favera et al., 1983). Gene amplification 

oiN-myc is characteristic of many neuroblastomas (Brodeur et al., 1984).

The first oncogene to be discovered was the viral v-src gene, the 

transforming gene of a retrovirus named Rous sarcoma virus. Subsequent work 

established that this gene was derived from a normal cellular gene, c-src, picked 

up by the virus sometime during its evolution, a process termed transduction 

(Bishop and Varmus, 1982). Many other cellular proto-oncogenes have since 

been isolated and identified; they can be classified as nuclear, cytoplasmic, or 

membrane receptors on the basis of their site of action. Such genes encode 

products which are fundamental to the normal cell growth and development. 

Their role in the cell can be divided into four groups according to the point where 

they interfere with cell growth control: growth factors (e.g. sis), growth factor 

receptors (e.g. erbB, fms, kit), cytoplasmic transducer of growth factor responses 

(e.g. src, ras, raj) and transcription factors that mediate growth factor-induced 

gene expression (e.g. jun, fos, myc) i.e. they can be involved in the disruption of 

normal growth factor related signalling at any point on that pathway (Hunter, 

1991; Teich, 1991).
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The second class of genes which play an important role in tumorigenesis, 

often referred to as tumor suppressor genes, is responsible for negative growth 

signals (Weinberg 1991; Hinds and Weinberg, 1994). Like proto-oncogenes, 

these are also normal cellular genes that, when inactivated, cause dysregulation of 

growth and differentiation pathways and enhance the probability of tumor 

formation.

Early evidence for the existence of tumor suppressor genes came from 

somatic cell hybridization studies, which showed that fusion of tumor cells with 

normal cells results in loss of tumorigenicity (Harris et al., 1969; Sager, 1985; 

Harris, 1988). These experiments showed that the normal cells were donating 

genetic information capable of suppressing the transformed phenotype of their 

tumor cell partner. This suppression of malignancy was dependent on retention of 

specific chromosomes, loss of which contributes to cancer. The assumption was 

that the chromosomes which were lost contained tumor suppressor genes.

As a result, tumor suppressor research focused on the study of these key 

chromosomes for identification of candidate genes. Experiment with the 

technique of microcell transfer enabled the introduction of a single chromosome 

from a donor to a recipient cell (Fournier and Ruddle, 1977; Saxon and 

Stanbridge, 1987). The transfer of chromosome 11 derived from a normal human 

fibroblast cell into a Wilms tumor cell line (Weissman et al., 1987), or Hela cells, 

an established human cervical carcinoma line containing papillomavirus DNA 

(Saxon et al., 1986), resulted in the suppression of tumorigenicity. This provided
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direct evidence for the existence of a tumor suppressor gene on chromosome 11. 

Similar experiments have shown that other chromosomes are also associated with 

tumor suppression (see below).

Two tumor suppressor genes are of particular interest to this work as they 

have been shown to be targets of papillomavirus oncoproteins. These genes are 

the retinoblastoma gene product, pRb, and the p53 protein.

The retinoblastoma (Rb) gene was the first tumor suppressor gene to be 

isolated and identified by Knudson in the studies of retinoblastoma, a childhood 

cancer of the retina. He suggested that more than one genetic mutation (hit) was 

necessary for either inherited (positive family history) or sporadic (no family 

history) cancer (Knudson, 1971). Patients with heritable retinoblastoma carry one 

germ-line mutation in Rb gene locus and develop tumor when the remaining 

normal allele undergoes a somatic mutation, hallmarks of tumor suppressor gene. 

In contrast, people born without an Rb mutation in their germ line cells must 

acquire two mutations (hits) in the same retinal cell to develop cancer. It was 

demonstrated that both copies of Rb genes are inactivated in the cancer. 

Inactivation of the retinoblastoma protein may also be involved in the 

development of a proportion of osteosarcomas, soft tissue sarcomas, and small 

cell lung, breast, and bladder carcinomas (Weinberg, 1992).

The Rb gene maps to chromosome 13 band ql4, and encodes a 105kD 

(kiloDalton) nuclear phosphoprotein, that plays a role in proliferation, 

development and differentiation (Friend et al., 1986; Lee et al, 1987).
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This protein is regulated in a cell cycle dependent manner by 

phosphorylation. During G l, Rb is predominantly hypophosphorylated and 

becomes increasingly more phosphorylated during progression through the cell 

cycle (Ludlow et al, 1990).

Further studies have shown that pl05Rb mediates control over cell growth, 

differentiation, and development by interacting with certain transcription factors 

that play a role in these biological processes. The underphosphorylated form of 

Rb binds to and alters the transactivation function of the E2F transcription factor, 

which is required for DNA transcription and replication (Adams and Kaelin, 

1995). Free E2F is a transcriptional activator, and the complex of Rb-E2F is a 

transcriptional repressor. On mitogenic stimulation and releases of a cell cycle 

block at G l, Rb becomes hyperphosphorylated, loses its affinity for E2F, and 

releases E2F to activate early response genes.

Rb also interacts with components of the cell cycle machinery, namely, the 

cyclins and cyclin dependent-protein kinases (CDKs), to control cell division. 

Cyclins functionally activate the CDKs and are expressed differentially during cell 

cycle progression (for review see Bottazzi and Assoian, 1997).

Interest in Rb increased substantially when it was discovered that this 

protein exists within DNA tumor virus-transformed cells in the form of complexes 

with various virus-encoded oncoproteins. Human adenovirus, SV40, and human 

papillomavirus (HPV) each specify an oncoprotein, E1A, large T antigen, and E7,
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respectively, that forms complexes with the host cell Rb (for review see Green 

1989).

The ability of these viral oncoprotein to complex with pRb suggests that 

these DNA tumor viruses transform cells through their ability to damage a vital 

cellular growth suppression mechanism.

Another well characterized tumor suppressor gene involved in cancer is 

the p53 gene, which is located on chromosome 17ql3.1 (McBride et al., 1986) and 

encodes a 53,000-dalton protein (Levine, 1992). Consistent loss of normal protein 

function in a variety of different tumors indicates that this locus is also subject to 

somatic mutation and inactivation. Of particular interest is the finding that the 

individuals affected by the family cancer syndrome, called Li-Fraumeni syndrome 

(LFS), have germline mutations in their p53 gene. LFS patients inherit a 

predisposition to develop multiple forms of cancer, including breast carcinoma, 

sarcomas, and leukaemia at an early age (Malkin et al., 1990; Malkin, 1993).

The p53 protein exerts its antiproliferative activity by promoting a block at 

the G1 phase of the cell cycle. Several biochemical activities have been ascribed 

to p53 that may mediate the biological effects of the protein. This protein has an 

acidic amino terminal domain that can transactivate genes under the control of 

promoters containing specific p53 DNA binding motifs. An internal domain 

located between amino acids 115 and 295 has been identified as a region of 

specific DNA binding. The p53 protein thus may mediate its effect on cell 

processes by binding to specific DNA motifs at promoters, thereby repressing or 

activating transcription of genes involved in growth control (Kern et al., 1992).



Chapter One Introduction

Also of interest is the finding that the p53 protein, like the Rb protein is 

bound by viral transforming proteins, suggesting that tumor suppressor gene 

products may be early cellular targets for inactivation in the transformation 

process of both virally induced and naturally occurring cancers. For example, and 

of particular significance to this thesis, a number of DNA tumor viruses, including 

papillomaviruses encode proteins which bind to and inactivate the growth 

suppressor function of p53 and Rb. The significance of this in virus associated 

cellular transformation will be discussed more fully later in this chapter.

1.1.2 Viruses and Cancer

Epidemiological studies supported by clinical and molecular biological 

investigations of certain human cancers indicate that viruses contribute to one of 

several events that cause these malignancies. It is estimated that viral infections 

are responsible for approximately 15 percent of the human cancer world-wide 

incidence. Cancer of the cervix and hepatocellular carcinoma account for about 

80 percent of these tumors (zur Hausen, 1991b). Virus infection alone is not 

sufficient to induce cancer. Long incubation periods of years to decades are 

needed, suggesting that other genetic or environmental co-factors may be crucial 

after viral infection. Viruses can contribute to the development of cancer by a 

variety of mechanisms, both direct or indirect.

An example of indirect mechanism is the immunosuppression induced by 

human immunodeficiency virus (HIV) which considerably increases the risk for
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developing certain cancers, most notably Kaposi sarcomas and B cell lymphoma 

(Biggar et al., 1994; Schulz, et al., 1996). The virus weakens the immune system 

and increases the susceptibility to cancer. Some viruses, like Epstein-Bar virus 

(EBV), Hepatitis B virus, Human T cell leukaemia-lymphoma virus type 

1(HTLV-1) and several type of papillomaviruses appear to play a direct etiologic 

role (zur Hausen, 1991b). This chapter focuses on the role of papillomaviruses 

which are directly associated with the work of this thesis, particularly bovine 

papillomavirus type 4.

1.2 The papillomaviruses

Papillomaviruses are classified as the genus papillomavirus of the 

papovaviridae family by virtue of their capsid structure and biochemical 

composition (Mathews, 1982). They contain only DNA and structural proteins. 

The DNA is closed circular double-stranded and has molecular weight of 5x10^ 

Daltons corresponding to about 8kbp (kilobase pair) (Watson and Littlefield 1960; 

Crawford, 1965). They cause tumours of the skin and mucosa in many animals, 

including man. Papillomaviruses infect basal epidermal cells, leading to cell 

transformation, proliferation and papillomatosis. Generally, the tumours are 

benign and regress. Occasionally, with the synergistic co-operation of cofactors, 

they may persist and progress to malignant carcinomas (Jarrett et al., 1978: zur 

Hausen, 1982; Campo, 1988).

The overall genome organisation of many papillomaviruses is similar, a 

characteristic feature of papillomavirus genomes is that all major open reading
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frames (ORFs ) are located on the same DNA strand. The genome of 

papillomaviruses is divided into three functional regions, the first two being 

"early" genes which are expressed before the onset of viral DNA replications and 

the "late" genes which are expressed after viral DNA replications. Two major L 

genes designated LI and L2 code for proteins which are present in the 

papillomavirus capsid. Eight E genes are designated E l to E8, which encode 

proteins involved in aspects of virus replication and transformation. The third 

region is the long control region (LCR) or upstream regulatory region (URR), 

contains regulatory elements for DNA replication and transcription (Chen et al., 

1982; Pfister, 1987; Ward et al., 1989).

Papillomaviruses have been identified in warts from many animal species: 

rabbits (Shope 1933), hamster (Graffi et al., 1969), sheep (Gibbs et al., 1975), 

goat (Davis and Kemper 1936), deer (Tajima et al., 1968), cattle (Olson and Cook 

1951), horses (Montes and Vaughan 1975), dogs (Cheville and Olson 1964), 

monkeys (Koller and Olson 1972), and also chaffinches (Osterhaus et al., 1977).

The most commonly studied of these viruses are the human (HPV), bovine 

(BPV) and cottontail rabbit (CRPV) papillomaviruses (for review see Jackson et 

al., 1996) which will be discussed in greater detail below.

The advantages in studying animal papillomavirus is that some questions 

such as the role of the immune system in virus control and tumor progression, and 

the usefulness of antiviral or anti-tumor vaccines, can only be addressed in animal 

systems. For instance, only in animals can the immune response be studied 

following experimental infection and vaccination of the natural host (Jarrett et al.,

11
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1991; Christensen et al., 1991, Campo, 1997a, b). In addition, these viruses cause 

serious agricultural and financial problems in domestic animals.

1.2.1 Cottontail rabbit papillomavirus

Cottontail Rabbits (Shope) papillomavirus (CRPV) was the first DNA 

tumor virus to be isolated and characterized, and was the first model for analysis 

of viral carcinogenesis in mammals (Shope and Hurst 1933; Rouse and Beard, 

1935). The virus induces papillomas on the hairy skin of cottontail and domestic 

rabbits and these papillomas can progress to squamous skin carcinoma in up to 

25% of cottontail rabbits (Kidd and Rous, 1940; Syverton, 1952).

Early studies (Rous and Beard, 1935; Rous and Friedewald, 1941; 1944) 

showed that 75% of domestic rabbits with benign papillomas ultimately developed 

cancers 6 months to one year after CRPV infection without any other treatment. 

The application of carcinogenic chemical such as tar and/or methylcholathrene in 

the absence of virus gave rise to benign papillomas, which rarely progressed to 

carcinoma after a period of 6 months to 2 years. However, infection by CRPV 

combined with tar and/or methylcholathrene treatment produced numerous 

carcinomas after only 1 to 2 months. From this extensive series of experiments, it 

has been concluded that CRPV and carcinogens synergize powerfully in inducing 

malignant conversion of papillomas. Study of this virus has proved useful for the 

analysis of the multifactorial nature of papillomavirus-associated carcinogenesis 

as co-factors are involved in malignant progression.

12
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The important role played by environmental co-factors is demonstrated by 

the limited geographical distribution of CRPV infection, as the papillomatosis is 

endemic in rabbits in particular States in USA, especially the Midwestern states 

bordering the Mississippi river (Shope 1933; Kreider and Bartlett, 1981).

The ability of CRPV to induce tumors in experimental animals has 

allowed examination of papillomavirus induced cellular transformation. CRPV 

encodes three transforming proteins; two are encoded by the E6 ORF and one by 

the E7 ORF. Papilloma formation in rabbits, however, requires all three proteins 

(Meyers et al., 1992; Schmitt et al., 1994). The E7 protein has been shown to bind 

the retinoblastoma suppressor protein (pRb) (Haskell et al., 1993; Schmitt et al., 

1994), but E6 protein most likely performs an as yet unknown transforming 

function (Harry and Wettstein, 1996).

The similarity which has been observed between HPV and CRPV E7 

proteins demonstrated that a crucial activity of HPV E7, pRb binding, is also 

shown by the CRPV E7 protein. The conservation of the binding activity of the 

CRPV E7 protein argues for the conservation of functional activity as well. Thus, 

both of these viral oncoprotein may cause cellular transformation through their 

ability to alter the function of a critical growth suppressing protein, pRb (Haskell 

et al., 1993). This has led to increasing interest in use of CRPV as a model for 

HPV pathogenesis, and to understand the genetic factors, in particular 

immunogenetics, that condition the expression of the oncogenic potential of 

papillomavirus (Breitburd et al., 1997).

13
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1.2.2 Human papillomavirus

There are more than 70 types of human papillomaviruses, many of which 

have been shown to be associated with anogenital carcinoma (zur Hausen, 1994), 

skin cancer (Pfister et al., 1983; Bunny et al., 1987) and upper respiratory tract 

cancer (Watts, et al., 1991). These can be divided into two major subgroups 

initially classified on the basis of their ability to infect specific anatomic regions, 

namely cutaneous and mucosal epithelia (de Villiers, 1989).

In 1979 specific cutaneus HPV types were identified in a rare form of 

human carcinoma arising in patients with epidermodysplasia verruciformis (EV) 

at sunlight exposed sites (Orth et al., 1979). EV is influenced by genetic and 

environmental factors, as well as by HPV.

Evidence for the importance of genetic factors includes a high frequency of 

consanguinity among EV patients and a frequent familial occurrence of the 

disease. Sunlight appears to be a particularly important environmental factor, as 

tumors develop primarily in areas of the body that are exposed to the sun. These 

tumors are example of co-operative effects of specific virus infections and other 

environmental carcinogens. More than 20 types have been isolated from EV 

associated skin lesions, however, HPV 5 and 8 are the predominant types, being 

found in 90% of skin carcinoma of patients with the disease (Arends et al., 1990).

The best characterized HPVs are those that infect the mucosa of the 

anogenital tract. According to their clinical lesions these can be divided into two 

groups:
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One group, such as HPV 6 and 11 called “low risk”, which are very rarely 

found in malignant tumors but induce benign genital warts; a second group, such 

as HPV 16, 18, 31 and 33, called “high risk”, which are frequently found in 

cervical carcinomas (zur Hausen, 1991b).

HPV types 16 and 18 are the most common types found in malignant 

lesions of the genital tract. Several observation studies indicate that genital HPVs 

are transmitted primarily through contact with infected cervical, vaginal, vulvar, 

penile or anal epithelium (Gissman et al., 1982; Johnson et al., 1991; Nuovo et al., 

1991; Zhu et al., 1993; Labropoulou et al., 1994).

DNA of HPV types 16,18, and 33 and less frequently of other types can be 

found in about 90% of cervical, vulvar, and penile cancer biopsies, if such 

investigations are carried out under standarized experimental conditions. HPV-16 

is present in about 50% of these biopsies, HPV-18 in 20% and HPV-33 may be 

seen in up to 10%. The remaining 10 % harbours other HPV types (zur Hausen 

and Schneider, 1987).

Cervical cancer is the second most frequent cancer in females on a world

wide scale exceeded only by breast cancer (Parkin et al., 1993). The world-wide 

annual incidence of cancer of the cervix is greater than 500,000 cases per year 

world wide with about 45% mortality, even with medical intervention (Broker and 

Botchan, 1986; Scheffner et al., 1994).

It is important to point out that most high risk HPV infections do not 

progress to cancer and, for the cases that do progress to cancer there is a long
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latent period (between 5 and 20 years or several decades). Other cofactors are 

required for full malignant transformation, and HPV is essential, but not sufficient 

for it (zur Hausen, 1991b). This reasoning is in line with numerous observation 

supporting the multistep nature of carcinogenesis.

1.2.2.1 Functions of the viral gene products

The genome of HPVs is double-stranded DNA circle about 8 kbp long 

which can be divided into three regions: (1) the long control region (LCR) which 

contains control viral replication and transcription; (2) the region that encodes the 

early (E) genes encoding proteins involved in cell transformation, or in the 

replication and transcription of the viral genome; and (3) the region that encodes 

the late (L) genes encodes the major LI and minor L2 capsid proteins (Fuchs and 

Pfister, 1996).

The E l ORF of HPVs encodes a nuclear phosphoprotein essential for viral 

DNA replication that is 600-650 amino acids long. The E l protein is a DNA- 

dependent ATPase and an ATP-dependent helicase that binds an AT-rich 

palindromic sequence within the region of replication (Chow and Broker, 1994; 

Howley, 1996). The E l and E2 proteins form a complex which stabilizes the 

binding of E l to the origin of replication. E l associates with the cellular DNA 

polymerase a, a component of the cell replication machinery (Park et al., 1994).

The E2 ORF of HPVs encodes a nuclear phosphoprotein of about 350-500 

amino-acids that regulates both viral DNA replication and transcription. The E2
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protein is characterized by three functional domains comprising an amino-terminal 

transacting domain of about 200 amino-acids, a central flexible hinge highly 

divergent in size and sequence among PVs, and a carboxy-terminal DNA binding 

and protein dimerization domain of about 90 amino-acids (Thierry, 1996). E2 

usually activates viral gene transcription when present as a full length molecule, 

but acts as a repressor of the early promoter in high risk HPVs, such as HPV-16 

and HPV-18 (Romanczuk et al., 1990; Howely, 1996).

The E4 ORF of HPVs is entirely contained within the central portion of the 

E2 ORF, but it is translated in a different reading frame. The primary E4 product 

is expressed from spliced mRNAs encoding an E1-E4 fusion protein containing 

the first five residues of E l (Doorbar ,1996; Doorbar et al., 1988). The size of E4 

proteins ranges between 90-140 amino acids for genital (mucosal epithelia) HPVs 

and between 200-250 amino acids for cutaneous HPVs. The E4 proteins 

constitute a multispecies family arising from post-translational modifications and 

multimerizations that have the ability to aggregate into cytoplasmic and nuclear 

inclusions (Rogel-Gaillard et al., 1993; Doorbar, 1996).

The E4 proteins should be considered as late proteins, because their 

expression coincides with the onset of vegetative viral DNA replication (Croissant 

et al., 1985). The function of E4 is still a matter of speculation. A most probable 

role would be to interfere with normal keratinocyte differentiation to favour the 

production and release of viral particles (Doorbar et al., 1991; Rogel-Gaillard et 

al., 1993; Doorbar, 1996). The E4 protein of HPV-16 has been shown to associate
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with tonofilaments, resulting the disruption of the cytokeratin filament network 

(Roberts et al., 1993; Doorbar, 1996).

The E5 ORF of HPVs encodes a small (75-100 amino acids long) 

membrane-associated hydrophobic protein (DiMaio et al., 1994; Banks and 

Matlasheweski, 1996). The E5 protein of genital HPVs has only a weak 

transforming activity in vitro (Howely, 1996). The HPV-16 E5 interacts with 

ductin and down-regulates gap junctions (Oelze et al., 1995). A probable 

consequence of E5 interaction with the vacuolar H+-ATPase form of ductin is the 

inhibition of the acidification of endosomes, leading to the observed retention and 

recycling of undegraded epidermal growth factor (EGF) receptor from endosomal 

compartments (Straight et al, 1995). This provides a likely explanation for the 

observed co-operation between HPV-16 E5 and EGF receptors in cell 

transformation (Leechanachai et al., 1992; Straight et al., 1995). The HPV-16 E5 

gene, unlike HPV-16 E6 and E7, is generally lost in advanced carcinomas often as 

a consequence of viral integration (Howely, 1996). Hence it is likely that the E5 

protein would play a role in the early stages of cell transformation.

Two viral early genes, E6 and E7, play a crucial role in tumor formation. 

In several malignant lesion and in cell lines derived from cervical cancer, HPV 

DNA is integrated in the cellular genome (Yee et al., 1985; Durst et al., 1987; 

Popescu et al., 1987). This viral DNA integration does not appear to favour any 

particular location in the host genome but the integration event usually occurs 

within the E1/E2 region. As a consequence the E2 gene product(s) is either lost or 

altered. Since the E2 gene product suppress transcription of E6 and E7 (Cripe et
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al., 1987; Thierry and Yaniv, 1987; Romanczuk et al., 1990), disruption of the E2 

gene may enhance expression of E6 and E7 genes.

Further evidence for the function of HPV16/18 E6 and E7 proteins in the 

development of cancer has been obtained by in vitro cell transformation assays 

(Mansur and Androphy, 1993). Both protein have been shown to have in vitro 

transformation activity, although E6 is usually less active. E6 and E7 from the 

low risk HPV types 6 and 11 have very weak in vitro transformation activity, 

showing good correlation between in vitro transformation activity and clinical 

observation. The best evidence for the involvement of E6 and E7 comes from 

biochemical studies. E6 and E7 from the high risk HPV types have the ability to 

alter pathways involved in cell cycle control, interacting with and neutralizing the 

regulatory function of two tumor suppressor proteins, p53 and pRb, respectively 

(Dyson et al., 1989; Werness et al., 1990).

E7 is the major transforming protein of HPV. It is a small protein of 98 

amino acids, which is localised in the nucleus and attached to the nuclear matrix 

(Greenfield et al., 1991). Also a recent report describes E7 in the nucleolus 

(Zatsepina et al., 1997).

Several domains have been identified in HPV-16 E7 by various 

laboratories (Dyson et al., 1989; Munger et al., 1989; Barbosa et al., 1990): the 

p i05 retinoblastoma gene product (RB) binding domain, the casein kinase II 

(CKII) phosphorylation sites, and the two zinc binding Cys-X-X-Cys motifs. The 

transformation properties of HPV-16 E7 depend primarily on Rb-binding and zinc
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binding; mutation in either of these two domains abolish transformation 

(Edmonds and Vousden, 1989; Chesters et al., 1990), highlighting their critical 

role. Binding of E7 to pl05Rb prevents the interaction of pl05Rb with its natural 

target, namely the transcription factor E2F (Defeo-Jones et al., 1991; Rustgi et al., 

1991); the zinc fingers are essential for the transactivation activity of E7 (Phelps et 

al., 1988) and mutations that disrupt them destabilize the protein (Story et al., 

1990). The CKII sites although less critical (Watanabe et al., 1990; Storey et al.,

1990), nevertheless contribute to the transformation activity of HPV-16 E7 

(Barbosa et al., 1990; Firtzlaff et al., 1991).

The E7 protein has been shown to associate with several other protein 

including the Rb-related protein, pl07 (Davies et al., 1993), cyclin A and the 

protein kinase p33CDK2. These proteins are believed to play important role in cell 

growth control and may be critical to the transformation activity of E7 

(Tommasino et al., 1993).

In addition HPV-16 E7 binds the members of the API family of 

transcription factors, including c-Jun, JunB, JunD and c-Fos through one of the 

CXXC motifs (Antinore et al., 1996); this binding is independent of pl05Rb 

interaction, and appears to contribute to cell transformation by E7. A recent report 

has demonstrated that E7 can complex with the basal transcription factor, TBP, 

the TATA box binding protein, and that unlike the pRb interaction, the affinity of 

this interaction is increased upon phosphorylation of E7 by CKII (Philips and 

Vousden, 1997).
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Furthermore, E7 expression in human keratinocytes can uncouple cellular 

differentiation and proliferation by interaction with p21Cipl (Jones et al., 1997). 

Also it has been demonstrated that HPV-16 E7 protein blocks the ability of p21 to 

inhibit CDK activity and PCNA-dependent DNA replication through direct 

binding to the carboxyl terminus of p21. Thereby E7 interaction with the carboxyl 

terminus of p21 modulates its dual inhibitory activity and disrupt normal cell cycle 

control (Funk et al., 1997).

E6 is second major oncogene of HPV-16, which encodes a 151 

amino acid long protein localized to the nucleus and in non nuclear membrane. 

Like E7, E6 binds zinc, in vitro, through Cys-X-X-Cys repeats (Barbosa et al., 

1989; Farthing and Vousden, 1994; Munger, 1995; Howley, 1996). HPV-16 E6 

binds to the core structure of another negative regulator of the cell cycle, p53, 

promoting its degradation through the ubiquitin pathway (Werness et al., 1990; 

Scheffner et al., 1990; Li and Cofino, 1996) and therefore sequestering it from 

controlling cell proliferation. This function is believed to be important for E6 

immortalizing and transforming activities.

However other roles for E6 in transformation have been suggested. 

Introduction of HPV-16 E6 into p53 null mouse fibroblasts was shown to confer 

immortality (Scobie et al., 1997). It has also been demonstrated that the ability of 

E6 to immortalize primary mouse fibroblasts was independent of its interaction 

with p53 (Pirn et al., 1994). The ability of E6 to act as a repressor (Etscheid et al.,
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1994) and/or activator of transcription (Akusta et al., 1996) has also been shown 

to be independent of p53.

It has been shown that the truncated E6*l protein of HPV-16 trans- 

activates the HPV-16 early promoter p97 as well as the heterologous promoter of 

adenovirus E2. Full length HPV-16 E6 protein was found to trans-activate 

heterologous promoter, but repress transcription from the autologous p97 

promoter. The transcription-modulatory activity of full length E6 and E6*l 

proteins toward the autologous promoter suggests that the regulation of 

transcription, which might contribute to the latency of HPV-16, is finely regulated 

(Shirasawa et al., 1994).

Several other proteins have been shown to interact with E6, in particular 

E6-BP (E6 binding protein), a calcium binding protein which appears to associate 

only with high risk E6 proteins (Chen et al., 1995). The E6 protein of HPV-16 

was also found to associate with a cellular protein (E6 associated protein, E6-AP) 

that links E6 and p53 in their degradation complex (Chen et al., 1995; Elston et 

al., 1998), however the significance of any of these interactions in relation to 

cellular transformation has not as yet been determined.

Other recognised functions of E6 which have been reported and can be 

associated with cellular transformation include the inhibition of human 

keratinocytes differentiation (Sherman and Shlegel, 1996) and the activation of 

telomerase (Klingelhutz et al., 1996); telomerase activation is linked to cell 

immortalisation and is characteristic of most cell lines and tumors.
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1.2.3 Bovine papillomaviruses

Cattle are infected by six different types of bovine papillomavirus (BPV), 

each one associated with a specific disease. The viruses are divided into two 

subgroups A and B, on the basis of their genome homology, site specificity and 

clinical manifestations. Subgroup A comprises the fibropapillomaviruses, BPV 

1, 2, and 5, which cause lesions of both dermal fibroblasts and keratinocytes. 

Subgroup B includes types 3, 4, and 6 which are wholly epitheliotropic, where 

only keratinocytes are involved (Campo et al., 1981; Jarrett et al., 1984). The 

fibropapillomaviruses have a larger genome (approximately 7.9kb) than the 

epithelial papillomaviruses, whose genome is approximately 7.3 kb. The viruses 

are evolutionarily more closely related to each other within a subgroup than they 

are between subgroups, and there is a little or no immune cross-reactivity between 

the viruses of the two subgroups (for review see Campo, 1995).

BPV-1 induces fibropapillomas of the penis of bulls and of the teats and 

udder of cows and can also infect adjacent skin, BPV-2 is the agent of common 

cutaneus warts and BPV-5 causes rice grain fibropapillomas of the udder. BPV-3 

causes epithelial papillomas of the skin, BPV-6 causes teat frond papillomas, and 

BPV-4 induces papillomas of the alimentary canal (Campo and Jarrett, 1987).

1.2.3.1 Bovine papillomavirus type 1

Bovine papillomavirus type 1 is a fibropapillomavirus that infects both 

epidermal keratinocytes and the underlying dermal fibroblasts, resulting in the
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production of benign tumors. The observation that BPV-1 or its DNA could 

transform mouse fibroblasts in culture (Dvoretzky et al., 1980) opened up an 

entire new field of investigation in papillomavirus research.

The DNA of BPV-1 was the first to be completely sequenced (Chen et al., 

1982), further genetic dissection has identified E5 and E6 ORFs as the 

transforming genes of BPV-1 (Yang et al., 1985; Schiller et al., 1986). Both the 

E5 and E6 protein have been found in transformed cells (Androphy et al., 1985; 

Schlegel et al., 1986). The 15.5kD E6 protein is localized in both the nuclear and 

membrane fractions, whilst the 7kD E5 protein is only found associated with 

membranes.

E5 is the major transforming protein of BPV-1, is capable of transforming 

established mouse fibroblasts and keratinocytes in the absence of other viral gene 

products (Leptak et al., 1991), and has been shown to induce cellular DNA 

synthesis (Green and Leowenstein, 1987). It is a 44 amino acid long highly 

hydrophobic protein and contains two distinct domains: an amino terminal 

hydrophobic region that is predicted to traverse the cell membrane and a 14 amino 

acid hydrophilic carboxyl-terminal domain, which contains two cystein residues 

that mediate homodimer formation (Schlegel et al., 1986; Schlegel and Wade- 

Glass, 1987; Horwitz et al., 1988).

The protein is located mainly in the endoplasmic reticulum and Golgi 

membranes (Burkhardt et al., 1989), and targets a number of cellular proteins. It 

has been shown to activate the receptors for epidermal growth factor (EGF) and 

colony stimulation factor-1 (CSF-1) (Martin et al., 1989), to bind and activate the
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receptor for platelet derived growth factor (PDGF) (Goldstein, et al., 1994; Petti et 

al., 1991; Petti and DiMaio, 1992), and to bind the 16kD (kiloDalton) protein 

called ductin (Goldstein et al., 1991; Holzenburg et al., 1993). Ductin is a 

component of both vacuolar H+-ATPase and of gap junctions (Finbow et al.,

1991). The interaction between E5 and 16kD ductin will be discussed in section 

7.I.2.I.I.

BPV-1 E6 is the second transforming protein of the virus (Yang et al., 

1985) but contrary to E5 it is only weakly transforming; it is capable of binding 

zinc through Cys-X-X-Cys motifs (Barbosa et al., 1989) and has transcriptional 

transactivator activity (Lamberti et al., 1990; Yang et al., 1991). In this respect it 

is possible that deregulation of cellular genes contributes to transformation by E6. 

As explained before (section 1.2.2) the main action of HPV-16 E6 appears to be 

the binding (Werness et al., 1990) and the subsequent deregulation (Scheffner et 

al., 1990) of the tumor suppressor protein p53, thus abrogating its control on cell 

proliferation.

Like the E6 proteins of high risk HPVs, BPV-1 E6 has been shown to 

bind in vitro to a calcium binding protein, E6-BP (Chen et al., 1995). Also BPV-1 

E6 binds E6-AP but fails either to complex with p53 or to degrade associated 

proteins, implying that BPV-1 E6 might transform cells through a mechanism 

different from that of the HPVs (Scheffner et al., 1992). It has also been reported 

that transformation by BPV-1 E6 does not require transcription activation and that 

association of BPV-1 E6 with E6-AP is a function separable from transcriptional
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activation by E6. Association of E6 with E6-AP appears to be necessary but not 

sufficient for transformation by E6 (Ned, R. et al., 1997).

Recently it has been reported that BPV-1 E6 interacts with paxillin. 

Paxillin is a protein involved in transducting signals from the plasma membrane to 

focal adhesions and the actin cytoskeleton, and disrupts the actin cytoskeleton. 

Disruption of the actin cytoskeleton is a characteristic of many transformed cells, 

and in BPV-1 E6 transformed cells may be mediated by E6 through its interaction 

with paxillin (Tong and Howley, 1997).

Taken together the observation that BPV-1 E5 activates the platelet- 

derived growth factor and epidermal growth factor receptors and that E6 disrupts 

paxillin function support the view that signals from cell adhesion and growth 

factor receptor are both required for regulated cell proliferation and that disruption 

of these pathways co-operatively contribute to tumorigenesis.

The E7 protein of BPV-1 contains neither Rb-binding domain or CKII 

sites and is consequently non-transforming (Iftner et al., 1990). Furthermore, It 

has been reported that BPV-1 E7 contributes to the control of viral DNA 

replication and copy number of viral genomes (Lusky and Botchan, 1986).

1.2.3.2 Bovine papillomavirus type 4 and cell transformation

Because of the clinical importance of papillomavirus infection, and the 

risk of malignant progression of some of the lesion induced by this group of 

viruses (zur Hausen, 1991a), the study of their transformation potential and 

characteristics acquires particular importance.
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BPV-4 is a weakly transforming papillomavirus, it induces papillomas in 

the mucosal epithelium of the upper gastrointestinal tract of cattle; the papillomas 

are, in general, benign and eventually regress spontaneously (Jarrett, 1985). 

Lesions can progress to carcinoma in animals feeding on bracken fern. Bracken 

fern contains several mutagens one of which, quercetin, has been shown to 

cooperate with BPV-4 in in vitro transformation (Campo et al., 1994b).

It has been found that in naturally occurring bovine alimentary cancers the 

ras gene is rearranged and activated (McCaffery et al., 1989; Campo et al., 1990), 

p53 gene is mutated (Scobie, 1996) and the level of EGF receptors is increased 

(Smith et al., 1987). These observations support the hypothesis that multiple 

independent events are necessary for the development of cancer (Table 1.1).

Table 1.1 In vivo cell transformation by BPV-4

Present in papillomas Yes

Present in carcinomas No

Mutation of p53 Yes

High levels of EGF receptor Yes

Activation of ras gene Yes

Although infection by BPV-4 is a prerequisite for carcinogenesis, the viral 

DNA is lost during malignant progression (Campo et al., 1985). Loss of viral 

DNA during progression has also been demonstrated to occur both in vitro
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systems (Smith and Campo, 1988) and in carcinoma induction in xenografts of 

BPV-4 infected bovine palate tissue. (Gaukroger et al., 1991). Thus, BPV-4 

appears to act by a “hit and run” mechanism in carcinogenesis of the upper 

alimentary canal of cattle and that the presence of BPV-4 DNA is required for the 

initiation but not the maintenance of the malignant phenotype.

Early studies of the transforming properties of BPV-4 in vitro were 

conducted in established mouse fibroblast cells. The virus was found to transform 

both NIH-3T3 and C l27 established cells in vitro. Complete morphological 

transformation of C127 mouse fibroblast cells requires cooperation between the 

viral DNA and the tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) 

(Campo and Spandidos, 1983; Smith and Campo,1988). Results showed that, as 

in vivo, additional cofactors contribute to viral DNA-dependent morphological 

transformation.

An important observation from these in vitro experiments was that, as in 

cancer in vivo (Campo et al., 1985), no viral DNA could be detected in the 

majority of transformed C l27 cell lines, and even when present the viral 

sequences were not expressed (Smith and Campo,1988).

Work on C127 cell lines defined the BPV-4 E7 and E8 ORFs as the 

transforming genes (Smith and Campo,1988). This was the first indication that E7 

and E8 were the main transforming proteins of BPV-4, and was later confirmed in 

primary bovine cells (Jaggar et al., 1990).

In nature BPV-4 infection is restricted to the mucous epithelium of the 

alimentary canal of cattle (Jarrett, 1985) and therefore, in vitro transformation of
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established mouse fibroblasts would appear a rather remote system from the 

natural one. Thus, more recent work has looked at BPV-4 transformation of 

primary bovine fibroblasts (PalF cells) from the foetal palate (Jaggar et al., 1990). 

These cells have the distinct advantage of being non established and are therefore 

presumed to be normal when placed in culture, belong to the natural host of BPV- 

4, and although fibroblastic (keratinocytes are the natural target cells) derive from 

one of the main sites of BPV-4 infection (Jarrett, 1985).

Primary bovine palate fibroblasts (PalF cells) when transfected with BPV- 

4 alone exhibit no morphological change, BPV-4 can achieve morphological 

transformation of PalF cells only when cotransfected with an activated ras. These 

partially transformed cells have an extended life span and are capable of 

anchorage independent growth, however are not immortal or tumorigenic in nude 

mice (Jaggar et al., 1990). This indicates that BPV-4 needs the co-operation of 

other factors such as quercetin, for full transformation in vitro (Pennie and 

Campo, 1992; Pennie et al., 1993; Cairney and Campo, 1995; Scobie et al., 1997).

For two reasons work with BPV-4 is valuable, the first being that the virus 

is involved in a naturally occurring cancer in its own host, therefore providing the 

opportunity for studying carcinogenesis in a natural system, and the second is that 

the bovine system presents itself as a valuable model for mucous epithelia 

papillomavirus infection in humans, particularly that of the anogenital tract and 

provides an experimental situation for the development of therapeutic and/or
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prophylactic vaccines and the investigation of the immune response (Campo, 

1994; Kirnbauer et al., 1996; Campo, 1997a, b).

1.2.3.2.1 Genomic Organisation of BPV 4 and function of viral protein

The BPV-4 genome is a double-stranded DNA circle 7.265 kbp long 

(Jackson and Campo, 1995), which can be divided into three regions; a long 

control region (LCR) which contains elements through which viral gene 

replication and expression are regulated and regions encoding the early and late 

gene products. The major open reading frames are shown in figure 1.1.

An unusual feature of BP Vs of subgroup B is their lack of the E6 ORF, 

which has apparently been replaced by the E8 ORF (Jackson et al., 1991). Thus 

for these viruses an E6 ORF is not required for a successful infection cycle, and 

papillomas induced by BPV-4 can progress to alimentary canal carcinoma even 

though BPV-4 does not posses an E6 ORF.

There are four late open reading frames (ORFs), numbered LI to L4. The 

LI and L2 ORFs encode the major and minor structural protein of the virion 

respectively. Both proteins encode virus neutralizing epitopes, these are effective 

prophylactic vaccines which prevent infection (Campo et al., 1997; Campo, 

1997a, b). Although the L3 and L4 ORFs do have ATG start codons, their 

functions are not known.

Between the early and late gene ORFs, there is a BPV-4 LCR, which 

contains regulatory elements for both viral DNA replication and transcription. 

Transcription from the LCR is regulated by E2 as well as by cellular factors, e.g.

30



Chapter One Introduction

PEBP2. Sequence analysis of the BPV-4 LCR revealed a number of potential 

binding sites for transcription factors, including the virally encoded E2 

transactivator / repressor (Jackson and Campo, 1991, 1995). There are four E2 

binding sites in the LCR, binding sites 1 (BS1), 2 (BS2), 3 (BS3), and 4 (BS4).

The E l ORF of BPV-4 is transcribed into a number of separate mRNAs 

(Smith et al., 1986; Stamps and Campo, 1988; Campo et al., 1994a). However the 

function(s) of any of these transcripts has not yet been well characterized. The 

BPV-4 E l ORF shows a high degree of homology with E l ORFs from other 

papillomaviruses, such as BPV-1 E l, suggesting that this protein plays a role in 

the replication of viral DNA (Lambert, 1991).

The BPV-4 E2 protein is a transcription regulator, which acts on the BPV- 

4 LCR to regulate transcription. Mutational analysis of the LCR demonstrated 

that BS2 and BS4 mediated transactivation by E2, whereas BS1 and BS3 are 

responsible for repression by elevated levels of E2 (Jackson and Campo, 1995; 

Morgan et al., 1998). These results suggest that the four E2 sites each perform 

different functions in the control of transcription and that competition between 

cellular transcription factors and viral E2 protein is essential in regulating the level 

of viral gene expression during papilloma development (Jackson and Campo,

1995).

Two of the ORFs , E3 and E5, contain no ATG and are therefore suspected 

of having no function.
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Similar to the E l ORF, the E4 ORF is transcribed into several RNA 

species (Stamps and Campo, 1988). Two of these, 7E11 and 1.6 kb transcripts, 

encode a potential E1-E4 fusion peptide, although a different region of E l is 

found in these two transcripts. The 7E11 transcript is most likely to encode the 

E1-E4 fusion peptide described for HPV-1 (Doorbar et al., 1988). The HPV-16 

E1-E4 fusion protein interferes with cytokeratin assembly (Doorbar et al., 1991; 

Roberts et al., 1993), possibly upsetting the differentiation programme and 

favouring the production of virion progeny; accordingly the expression of BPV-4 

E4 is greatest in the differentiated layers of papillomas (Anderson et al., 1997). 

This coincides with the vegetative replication of viral DNA (Campo et al., 1994a), 

in agreement with previous studies (Breiburd et al., 1987). The BPV-4 7E11 

transcript may in some way contribute to BPV-4 virus production by interfering 

with normal epithelial differentiation.

E7 is one of the transforming gene of BPV-4, in that, in co-operation with 

activated ras, it induces morphological transformation of PalF cells in the absence 

of other viral genes. It is located in the cytoplasm and in the nucleus (Pennie et 

al., 1993; Campo et al., 1994b). In vivo, E7 is expressed in all layers of 

papillomas at all stages of development (Anderson et al., 1997). It possesses the 

two Cys-X-X-Cys motifs and potential pl05Rb binding domain, although it lacks 

the casein kinase II site which is the feature of the E7 protein of the high risk 

HPVs (Jaggar et al., 1990). Mutation of either of these domains abolish the 

protein’s transforming ability in vitro (Campo et al., 1994b; Jackson et al., 1996),
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in line with previous demonstration of the importance of these domains in the 

transforming and immortalizing activity of HPV E7 (Vousden, 1994).

Nevertheless, although morphologically transformed, E7 expressing PalF 

cells are not capable of growing independently of anchorage, thus showing that 

other viral gene(s) encode function(s) that confer anchorage independent growth.

The E8 open reading frame of BPV-4 encodes a small, 42 amino acid long 

protein that is composed of two domains: a very hydrophobic region, theoretically 

capable of forming a transmembrane a-helix, encompassing the first 30 amino 

acids of the protein, and a second region of mainly hydrophilic amino acids 

comprising the C terminal 12 residues (Figure 1.2). It is localised in the nuclear 

membrane, the endoplasmic reticulum, the Golgi apparatus and occasionally the 

plasma membrane (Pennie et al., 1993). In vivo, E8 expression is limited to the 

basal, suprabasal layers of early papillomas, i.e., not in areas of vegetative viral 

DNA replication, with decreased expression in late stage papillomas (Anderson et 

al., 1997); E8 is therefore a true early protein.

In vitro E8 binds to ductin, the 16 kDa protein that forms transmembrane 

channels in both gap junctions and vacuoles. Overexpression of E8 is lethal to 

PalF cells in vitro (Campo, 1992) but when co-expressed with E7, it contributes to 

cell transformation by conferring anchorage independent growth (Pennie et al., 

1993) and down-regulating gap junction intercellular communication (GJIC) in 

primary bovine fibroblasts (Faccini et al., 1996). These partially transformed cells 

however are not immortal or tumorigenic in nude mice (Pennie et al., 1993).
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Recent work (O’Brien and Campo, 1998) on the specific role of E8 in 

cellular transformation has shown that when E8 expressed in an established NIH- 

3T3 cells, it is transforming: cells can grow in low serum and in suspension, and 

these cellular phenotypes are associated with the ability of E8 to transactivate 

cyclin A gene promoter, which will be discussed more fully in chapter six.

As mention above, the subgroup B papillomaviruses are unique among the 

papillomaviruses in not possessing an E6 ORF (Jackson et al., 1991). This gene is 

crucial to the transforming ability of other papillomaviruses, such as HPV-16 and 

18. It raises the question of whether E6 functions are not required by BPV-4, or 

whether these functions are supplied by another viral or host protein. The 

demonstration that HPV-16 E6 confers immortality to PalF cells transformed by 

BPV-4 E7 and ras in the presence or absence of E8 suggests that HPV-16 E6 does 

indeed provide functions which are not supplied by BPV-4 E7 and E8 (Pennie et 

al., 1993). A summary of the transformation potential of BPV-4 in PalF cells is 

shown in table 1.2.

The E6 proteins of the oncogenic HP Vs have been demonstrated to bind 

and promote deregulation of the p53 tumor suppressor gene product (Scheffner et 

al., 1990; Werness et al., 1990). Nevertheless, it has been demonstrated that E6 

can transform cells independent of its interaction with p53 (Scobie et al., 1997). 

Transfection of p53-null mouse fibroblasts with the entire BPV-4 genome in the 

presence or absence of HPV-16 E6, demonstrated that an immortal phenotype was 

only achieved when the HPV-16 E6 was present.
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Table 1.2 Summary of PalF cell transformation by BPV-4, In vitro

Transfected DNA 

(+ ras)

Morphological

transformation

Anchorage

independence

Immortality Tumorigenicity 

in nude mice

BPV-4 Yes Yes No No

E7 Yes No No No

E7+E8 Yes Yes No No

E7+16 E6 Yes No Yes No

E7+E8+16 E6 Yes Yes Yes No

Quercetin+BP V-4 Yes Yes Yes Yes

These experiments indicated that BPV-4 lacks several functions to achieve 

complete in vitro transformation of PalF cells, and that BPV-4 transformed PalF 

cells, even in the presence of HPV-16 E6, are not tumorigenic in nude mice 

(Pennie et al., 1993), suggesting that additional cofactors such as quercetin 

(Pennie and Campo, 1992; Pennie et al., 1993; Caimey and Campo, 1995; Scobie 

et al., 1997) are necessary for BPV-4 transformed cells to gain a fully transformed 

phenotype. The dependence on additional cofactors to achieve a malignant state is 

supported by BPV-4 transformation in vivo (Jarret et al., 1978; Campo et al., 

1994b).
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BPVl E5 BPV4 E8

Figure 1.2 Putative transmembrane configuration of BPV-1 E5 and BPV-4 

£8

The amino acids of BPV-1 E5 that have been shown to be critical for cell 

transformation (Horwitz et al., 1988, 1989) are shaded.
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1.3 Aim of Ph.D. project

As discussed, initial studies from this laboratory have suggested that while 

E7 is the main transforming gene of BPV-4 in primary bovine cells, E8 provides 

significant contributions to cell transformation. However, our understanding of 

BPV-4 E8 and cell transformation is still limited.

In established murine fibroblast NIH-3T3 cells, it has been shown that 

cells expressing E8 are capable of anchorage independent growth. E8 deregulates 

cyclin A expression, trans-activates human cyclin A gene promoter, increases 

endogenous cyclin A levels in cells maintained in short-term suspension culture 

and in low serum, also NIH-3T3 cells expressing E8 continue to proliferate in low 

serum but do not activate autocrine mechanism (O’Brien and Campo, 1998).

Building on this information on the biology of BPV-4 E8 in both 

established and primary cells and in an attempt to expand on the information of E8 

functions, the aim of the work in this thesis was to define and segregate different 

functional domains of the BPV-4 E8 protein in PalF cells, for their ability to:

• confer anchorage independent growth

• confer escape from contact inhibition

• allow growth in low serum

• trans-activate the cyclin A promoter

• bind 16k ductin, and down-regulate gap junction intracellular communication 

(GJIC).
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To this end, several mutations have been introduced in the predicted ex- 

helical transmembrane domain and in the C-terminus, along with the chimeric 

molecules formed between BPV-4 E8 and BPV-1 E5.

It has been shown that binding of BPV-1 E5 to ductin requires the N- 

terminal hydrophobic domain and that glutamine at position 17 is important for 

ductin interaction and for the transforming function of the protein (Goldstein et al 

1992a, b; Sparowski et al., 1994; Sparowski et al., 1996). To test whether the 

corresponding residue, asparagine, in the E8 polypeptide of BPV-4 is also crucial 

for cell transformation, E8 mutants containing single amino acid substitutions at 

residue 17 were produced.

Since the BPV-4 E8 has the postulated a-helical domain, we were 

interested to determining whether this predicted a-helical domain of E8 is 

responsible for the biological activity of this protein. Proline has the property of 

forcing a bend in the main chain and of disrupting an a  helix, thus alanine 

residues at positions 15 and 20 were changed to proline. The same two alanine 

residues were also mutated to the chemically similar amino acid glycine to control 

for any effect due to changes in residues rather than in structure.

To define the role of C-terminus hydrophilic tail of E8 a C-terminus 

truncated form of E8 comprising only the membrane-localised region was 

generated. A similar mutant form was obtained for the BPV-1 E5 to create a 

truncated form of this protein. Also two chimeras were constructed between E8 

and E5 to test the relative contribution each domain of E8 made to cell
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transformation and whether these domains were functionally interchangeable 

between the two peptides.

There is a potential CKII site in the C-terminus hydrophilic tail of E8 

BPV-4 E8. To assess the possibility that E8 might be phosphorylated by CKII and 

whether this phosphorylation could affect the biological activities of this protein, 

three mutations were generated in the putative CKII site. The threonine in the 

putative CKII site was changed to aspartic acid, which is an acidic amino acid, 

mimicking a phosphorylated amino acid; alanine a nonpolar amino acid which 

cannot be phosphorylated; or serine (polar amino acid) which maintains the 

putative CKII site.

The results in this thesis demonstrate that in addition to anchorage 

independent growth, PalF cells expressing E8 loss GJIC, can grow in low serum, 

and are not contact inhibited. E8 also trans-activates the cyclin A promoter in 

PalF cells. The results obtained from the analysis of the transformation 

parameters of E8 and BPV-1 E5 expressing cells suggest that E8 acts differently 

from E5.

The analysis of E8 mutants and chimeras constructed with BPV-1 E5 show 

that the multiple transforming function of E8 can be segregated and that both the 

hydrophobic domain and the hydrophilic C-terminal tail of E8 are critical for its 

functions. Results also demonstrate that the separate domains of E5 and E8 are 

not functionally interchangeable.
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MATERIALS AND METHODS

CHAPTER TWO

2.1 Materials

2.1.1 Antibodies

SUPPLIER ANTIBODY

Amersham International pic, 

Amersham, Bucks, England

Anti-mouse IgG horseradish peroxidase 

linked whole antibody (raised in sheep)

Boehringer Mannheim UK Ltd., Lewes, 

East Sussex, England

Mouse monoclonal antibody (Clone 12CA5) 

to a peptide epitope drived from the 

hemagglutinin protein of human influenza 

virus

2.1.2 Bacterial Hosts

SUPPLIER BACTERIAL HOSTS

Gibco Europe Life Technologies Ltd., 

Paisley, Scotland

E. coli DH5a competent cells

Promega ltd., Chilworth Research 

Centre, Southampton, England

E. coli JM109 competent cells
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2.1.3 Buffers

TE lOmM Tris-HCl, ImM EDTA pH 8.0

5x TBE buffer 40mM Tris base, 16mM acetic acid, ImM 

EDTA, pH8.0

1 x ligase buffer 50mM Tris HCL pH7.6, lOmM MgCl2, 

ImM ATP, ImM DTT, 5% (w/v) 

polyethylene glycol-8000

Phosphate buffered salin (PBS) 137mM NaCl, 44mM Kcl, 1.4 mM 

KH2P 0 4, 8.5 mM Na2HP04

10 x loading buffer 0.45% (w/v) bromophenol blue, 1% (w/v) 

SDS, lOOmM EDTA, 2.5% (w/v) Ficoll 

400 in TE

2 x HEPES buffered saline (HBS) 280mM NaCl, lOmM KC1,1.5mM Na2- 

HP04.2H20,12m M  D-glucose, 50mM 

HEPES

SDS-PAGE Lysis buffer 1M Tris-HCL (pH 6.8), 10% (w/v) SDS, 

20% (v/v) glycerol

Lysis buffer lOmM Tris-HCl, 400mM NaCl and 2mM 

Na2EDTA, pH 8.2

Tris-glycine electrophoresis buffer 25mM Tris, 250mM glycine and 0.1% 

(w/v) SDS

2x SDS gel loading buffer 4% (w/v) SDS, 0.2% (w/v) bromophenol 

blue, 20% (v/v) glycerol and lOOmM Tris, 

pH6.8

Dephosphorylation buffer 50mM Tris HC1, O.lmM EDTA. pH 8.0
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2.1.4 Cells

CELL LINE DESCRIPTION

PalF PalF cells are primary fibroblasts explanted 

from bovine foetal palate.

PalF transfectants PalF transfectants were derived from 

transfection of PalF cells with sub-gnomic 

fragments of BPV-4 as detailed in Chapter 

four

2.1.5 Cell Culture Materials

SUPPLIER MATERIAL

(i).Globerpharm Ltd., Esher, Surrey, 

England

(ii). Harlan Sera-Lab ltd., Crawley Down, 

England

Foetal Calf Serum 

Foetal Calf Serum

Gibco Europe Life technologies Ltd., 

Paisley, Scotland

10% Dulbecco s Modified Eagles Medium

lOx F10 (Ham) Medium

200 mM glutamine

Geneticin. G418 sulphate

MEM amino acids solution (50x)

7.5% sodium bicarbonate 

100 mM sodium pyruvate 

2.5% Trypsin

2.1.6 Chemicals

Supplier- Amersham International pic, Amersham, Bucks. England 

ECL Western detection agent

Supplier- BDH Chemicals Ltd.. Poole. Dorset. England.

Calcium chloride

D-glucose

Glycerol
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Supplier- Beta Lab.. East Mosley. Surrey. England.

Yeast Extract

Supplier- Biogenesis Ltd.. Bournemouth. England.

RNAzolB

Supplier- Boehrineer Mannheim UK Ltd.. Lewes. East Sussex. England. 

Caesium chloride

DOTAP (N-[l-(2, 3-Dioleoyloxy) propyl]-N, N, N- 

trimethylammoniummethylsulfate)

DNase 1, RNase-free 

Protease K 

RNase A

Supplier- Difco laboratories. Detroit. Michigan, USA.

Bacto-Agar

Bactotryptone

Supplier- Fisons Scientific Equipment, Loughborough, England.

Acetic acid 

Butan-l-ol 

Chloroform

di-potasium hydrogen orthophosphate anhydrous 

Ethylene diamine tetra acetate (EDTA) disodium salt 

Dimethyl sulfoxide (DMSO)

Hydrochloride acid 

Magnesium chloride 

Magnesium sulphate 

Methanol 

Potassium chloride

Potassium dihydrogen orthophosphate 

Propan-2-ol

Sodium acetate
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Sodium carbonate

Sodium chloride

Sodium dodecyl sulphate (SDS)

Sodium hydroxide

Supplier- Fluka AG. Chemisch Fabrik CH-9470 Buchs.

Methocel MC 4000

Supplier- Gibco Europe Life technologies Ltd., Paisley, Scotland.

All DNA restriction enzymes and appropriate buffer concentrates were obtained 

from Gibco Life Technologies (BRL) unless otherwise stated. The following 

reagents were also obtained from Gibco:

Agarose (ultrapure electrophoresis grade)

Tris

Supplier- James Burrough Ltd.. Witham, Essex, England.

Ethanol

Supplier-Sevem Biotech Ltd., Kidderminster, Worchester. England.

Acrylaimide

Supplier- Sigma Chemical Co., Ltd., Poole, Dorset. England.

Ampicillin

Bicinichonic acid solution 

Bovine Serum Albumin

Copper(II) sulphate (pentahydrate 4% (w/v) solution)

Crystal violet 

Ethidium bromide 

HEPES 

Lysozym

Phenol:Chloroform:Isoamyl Alcohol (25:24:1 (v/v))

Salmon tested DNA (sodium salt)

TEMED (N,N,N ,N -tetramethylthylenediamine)

Tween 20 (Polyoxyethylene sorbitan monolaurate)
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2.1.7 Equipment and Plasticware

SUPPLIER EQUIPMENT

Alpha Laboratories Ltd., Eastleigh, 

Hampshire, England

Microfuge tube

Becton Dickinson Labware, Plymouth, 

England

Falcon 1059 polypropylene tubes 

Falcon 2059 polypropylene tubes 

Falcon 2098 polypropylene tubes 

Sterile Plastipak syringes 

18 gauge sterile syringe noodles 

60 and 90 mm tissue culture dishes

Bibby sterilin Ltd., Stone, Staffs, England. 60 and 90 mm bacteriological petri dishes 

Sterile plastic universal containers

Costar Corporation, High Wycombe, 

Bucks, England

24 well tissue culture plates 

96 well tissue culture plates 

Disposable Cell scrapers

Dupont Uk Ltd., Stevenage, Hertz, 

England

Polyallomer ultracentrifuge tubes

Eastman Kodak Co., Rochester, New 

york, USA

X-ray film (XAR-5)

Gelman Sciences, Northampton, England Sterile 0.2 pm acrodisc filters

Ilford Ltd., Mobbrrley, Cheshire, England Ilford PANF 50 black and white film

Nunc, Roskilde, Denmark T25, 80, and 175 cm2 tissue culture flasks 

Cryotubes

Technical Photo Systems., Cumbernauld, 

Scotland

Fuji RX medical X-ray film

Whatman International Ltd., Maidstone, 

Kent, England

Whatman 1 filter paper
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2.1.8 Kits

SUPPLIER KIT

Boehringer Mannheim UK Ltd., Lewes, 

East Sussex, England.

Random Primed DNA Labelling Kit.

Perkin Elmer Cetus, Norwalk, USA. GeneAmp RNA PCR core kit 

GeneAmp PCR core kit 

GeneAmp thinwalled reaction tubes

Promega ltd., Chilworth Research Centre, 

Southampton, England

Luciferase Assay System 

Reporter Lysis 5 X Buffer 

Altered SitesR II invitro Mutagenesis 

Systems

Qiagen ltd., Dorking, Surrey, England QLA prep Spin plasmid miniprep kit 

QLAquick gel extraction kit

2.1.9 Molecular Weight Markers

SUPPLIER MARKER

Amersham International pic, Amersham, 

Bucks, England

Rainbow™ coloured protein molecular 

weight markers (14,300- 200,000Da)

Gibco Europe Life Technologies Ltd., 

Paisley, Scotland

Bacteriophage X DNA (EcoR I digested) 

Bacteriophage X DNA (Hindlll digested) 

lOObp DNA ladder 

Low DNA mass ladder
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2.1.10 Other Materials

SUPPLIER MATERIALS

Beatson Institute Central Services Amphotericin B

LB-Medium (Luria-Bertani Medium)

Kanamycin

Penicillin

Sterile distilled water 

Sterile glycerol

Sterile phosphate-buffered saline (PBS) 

Sterile phosphate-buffered saline + 

EDTA (PE)

Merck Ltd., Poole, England Silicone grease

Premier Beverages., Adbaston, Stafford, 

UK

Marvel (Dried Skimmed milk)

2.1.11 Plasmids

pBV4 contains the whole BPV-4 genome (7.265 kb) cloned into the Bam H I site 

of pAT153 (Campo & Coggins, 1982).

pJ4Q16-E6 was a gift from Dr. L. Crawford (Dept, of Pathology, University of 

Cambridge). This plasmid construct is a pBR322 derivative. It contains the HPV- 

16 E6 open reading frame (ORF) cloned into the Bam HI / EcoR I sites of pJ4Q 

downstream of a MoLV LTR promoter (Storey et al., 1988).

pT24 is a pUC13 derived plasmid containing the 6.6 kb activated human c-Ha-ras 

oncogene from the T24 human bladder carcinoma line originally cloned in 

pBR322 (Santos et al., 1982). This plasmid construct was a gift from M. O’Prey 

(Beatson Institute, Glasgow).
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pZipneoSV (XI) (referred to as pZipneo throughout the text) consists of a 

Moloney murine leukaemia virus (MoLV) transcriptional unit, including the long 

terminal repeats (LTRs), and pBR322 sequences. This construct has a unique 

BamH I cloning site and also contains DNA sequences derived from the 

transposon Tn5, which encodes G418-resistance (neomycin resistance) in 

mammalian cells (Cepko et al., 1984).

pZipneoE7 contains nucleotides (nts) 652-1250 of the BPV-4 genome cloned into 

the BamH I site of pZipneo SV (XI) (Pennie et al., 1993). In pZipneoE7 the BPV- 

4 E7 gene is under the transcriptional control of the Moloney leukaemia virus 5 

long terminal repeat (MoLV LTR).

pZipneoHAE8 contains nts 236-590 of the BPV-4 genome cloned into the Bam 

HI sites of the vector pZipneo. The sequence coding for the influenza virus 

haemagglutinin type-1 (HA1) epitope is inserted at the 5 of the E8 sequences.

pALTER-E8 contains nts 236-590 of the BPV-4 genome cloned into the Bam HI 

sites of the vector pALTER-1 (Promega). This plasmid construct was a gift from 

Dr R. Anderson.

pBV la contains the whole BPV-1 genome (7.945 kb) cloned into the Hind III site 

of pAT153 (Campo & Coggins, 1982).
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pZipneoBPV-1 HAE5 contain nts 3879-4012 of the BPV-1 genome cloned into 

the Bam HI sites of the vector pZipneo. The sequence coding for the influenza 

virus haemagglutinin type-1 (HA1) epitope is inserted at the 5 of the E5 

sequences. The HAE5 was a gift of Drs R. Schlegel and D. J. Goldestein.

pwt929 is a reporter plasmid for human cyclin A promoter. This plasmid 

construct was a gift to Dr Vincent O’Brien from Dr William Fahl, University of 

Wisconsin, USA (Kramer et al., 1996).

2.1.11 Water

Distilled water for the preparation of buffer stocks was obtained from a Millipore 

MilliRO 15 system, and for protein, enzyme, RNA or recombinant DNA 

procedures was further purified on a Millipore MilliQ System to 18MQ/cm. 

Sterile distilled water for making up tissue culture media was supplied by the 

Beatson Institute for Cancer Research Technical Service.

50



Chapter Two Materials & Methods

2.2 Methods 

2.2.1 Molecular biology

2.2.1.1 Oligonucleotide synthesis and purification

Oligonucleotides were synthesised by Beatson Institute technical services 

staff on an applied Biosystems model 381A DNA Synthesiser or 392 DNA/RNA 

Synthesiser using the manufactures protocols and Cruachem reagents. The final 

primers were synthesised with or without trityl group protection. All primers were 

firstly deprotected after synthesis by incubating in a 55°C water bath overnight.

“Trityl on” primers were detritylated using a Cruachem oligonucleotide 

purification (COP) cartridge according to manufacturers instructions. Each 

oligonucleotide was ultimately eluted from COP cartridge minus the trityl group 

using 1 to 2ml of 20% (v/v) acetonitrile. The acetonitrile was evaporated off and 

the primer dissolved in 0.5ml sterile distilled water or TE pH 8.0. Primers were 

stored at -20°C.

“Trityl o ff’ oligonucleotides were provided in ammonia. The 

oligonucleotides were deprotected by heating to 55°C overnight then purified by 

precipitation with butan-l-ol. 1ml butan-l-ol was added to 150pl oligonucleotide 

solution and microcentrifuged at 14000 for 20 minutes at room temperature. 

Excess butanol was removed by centrifugation under vacuum and the primer 

dissolved in an appropriate volume of sterile distilled water or TE pH 8.0. Primer 

concentration was determined as described in section 2.2.1.4.
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2.2.1.2 Denaturation of Double-stranded DNA Template

The double stranded DNA (dsDNA) was alkali-denatured by using the 

following alkaline denaturation reaction. The reaction was carried out in a final 

volume of 20pi comprising of 0.5pmol of dsDNA template, 0.2M NaOH, 0.2mM 

EDTA and sterile, deionized water to final volume 20pi. This was incubated for 5 

minutes at room temperature

The DNA was precipitated by adding one tenth of 2M ammonium acetate, 

pH 4.6 and 3.5 volume of ethanol and standing at -70°C for 30 minutes followed 

by centrifugation (14000 rpm) in a microcentrifuge for 15 minutes at 4°C. The 

pellet was washed with 70% ethanol before drying under vacuum for 5 minutes to 

remove all traces of ethanol. The pellet was dissolved in appropriate volume of 

sterile distilled water and stored at -20°C.

2..2.1.3 DNA Extraction with Organic Solvent and Ethanol Precipitation

DNA samples were purified by extraction with phenol:chloroform in 

order to remove contaminants, such as residual enzyme activities from a 

restriction reaction or detergent which might otherwise interfere with subsequent 

cloning steps. In the first round of extraction the DNA sample was mixed with an 

equal volume of phenokchloroform. Phenol:chloroform was freshly prepared 

from an equal volume of 1M Tris-HCl pH8.0, saturated phenol and 

chloroform:isoamyl alcohol (24:1 v/v). The aqueous DNA and organic phase 

were mixed thoroughly by vortexing, then separated by centrifugation in a 

microcentrifuge at 14000 rpm for 5 minutes at room temperature. The upper 

aqueous phase was transferred in a clean eppendorf tube, care was taken not to
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transfer any of the interphase to the tube, and the extraction process repeated. The 

aqueous phase was then extracted with an equal volume of chloroform 

(chloroform:isoamyl alcohol, 24:1 v/v) by vortexing and centrifugation as 

described above. This was repeated to remove any traces of phenol from the 

aqueous phase. The aqueous phase was transferred to a fresh eppendorf for 

ethanol precipitation.

Ethanol precipitation was used to concentrate DNA samples and also to 

remove solute contaminants such as salt. The aqueous DNA solution was mixed 

with one tenth volume of 3M sodium acetate pH 5.2 and 2-2.5 volumes of ice 

cold ethanol. The sample was then mixed well by inversion several times and 

then stored at -20°C or, alternatively, placed on dry ice for 15-30 minutes to 

facilitate DNA precipitation. The precipitated DNA was collected by 

centrifugation in a microcentrifuge at 14000 rpm for 15 minutes at 4°C. The 

supernatant was discarded, and the pellet was washed with 70 % ethanol to 

remove any trace of salt, dried under vacuum before resuspension in distilled 

water at an appropriate concentration. The DNA concentration was determined as 

described below.

2.2.1.4 Quantitation of nucleic acids

The concentration of nucleic acid in a solution was determined 

spectrophotometrically in a Beckman DU 650 spectrophotometer. Samples were 

diluted in TE and transferred to a quartz cuvette with a pathway of 1cm. The 

spectrophotometer was initially calibrated using TE buffer only as a blank. The 

optical density reading were obtained at 260nm and 280nm; an O.D. reading of 1
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at 260nm (A260 = 1) corresponds approximately to a concentration of 50pg/ml of 

double stranded DNA, for oligonucleotides an A260 of 1 was taken to correspond 

to ~35pg/ml, and for RNA an A26o of 1 was taken to correspond to 40pg/ml. The 

ratio between readings at 260nm and 280nm (A26ô A28o) provided an estimate of 

the sample purity; a ratio of -1.8 indicated that preparations contained essentially 

no protein or phenol contamination.

2.2.1.5 Restriction enzyme digestion of DNA

Restriction digests were carried out in small reaction volumes using 

enzymes and their appropriate concentrated buffer solutions according to the 

manufacturers.

Plasmid DNA was incubated with 5-10 units enzyme/pg DNA in a 

buffered solution ensuring that the total volume of enzyme added did not 

exceeded one tenth of the final reaction volume. Small quantities of plasmid 

DNA (<5pg ) were routinely digested in a 20pl reaction volume as specified by 

the manufacturer for 2 hours at 37°C. Large digests were carried out in 

proportionally larger reaction volumes. The digestion fragments were analysed by 

agarose gel electrophoresis as described below.

2.2.1.6 Agarose gel electrophoresis

Horizontal gel cast apparatus from Pharmacia was used. In general, 1% 

(w/v) agarose gels were used, but smaller fragments (100-400) were separated on 

2-4% gels. Low melting point agarose was used at a concentration of 1% (w/v) in 

order to isolate and purify required DNA restriction fragments. Gel mixes



Chapter Two Materials & Methods

containing the appropriate amount of agarose were dissolved in 0.5 x TBE buffer 

by heating the solution in a glass conical flask in a microwave until all the 

particles of agarose gel had dissolved. The gel was poured when the agarose was 

hand hot and a comb with the required number and size of teeth placed 

immediately into the gel to form the sample wells. The gel was submerged in 0.5 

x TBE buffer. The samples containing 1 x loading buffer were loaded in each 

well along with an appropriate size marker (i.e. 100b ladder, 1Kb ladder, DNA 

mass ladder) into the first and/or last well in the gel and run at 70-100 constant 

voltage usually until the samples’ blue dye front was 1-3 cm from the end of the 

gel. Once run, the DNA fragments were visualised by staining the gel in running 

buffer containing 0.5ng/ml ethidium bromide with gentle agitation for 10 minutes 

at room temperature. The separated DNA was visualised by illumination with 

short wave (312nm) UV light and photographed through a red filter onto 

videoprint paper using an Appligene Imager.

2.2.1.7 Isolation and purification of DNA restriction fragment from agarose 

gel

The DNA fragment to be used for cloning was recovered from low melting 

point agarose gel and visualised as described in section 2.2.1.6. The fragment was 

cut out of the gel with a clean scalpel blade and the gel slice placed in an 

eppendorf tube. Extraction of the DNA fragment from the agarose was achieved 

using a Qiagen Qiaquick gel extraction kit following the manufacturer’s 

instructions. Alternatively, the DNA fragment was purified from the gel slices 

using extraction with phenol: chloroform as described in section 2.2.1.3. First the
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gel slice was weighed then three volumes of TE buffer were added to the tube 

containing the gel fragment. The tube was then incubated at 50°C for 10 minutes 

or until the gel slice had completely dissolved in TE. Extraction with 

phenolichloroform was performed as described earlier. Approximately 10% of the 

extracted DNA was then checked for size and purity by running on a 1% agarose 

minigel.

2.2.1.8 Ligation of DNA fragments

Both vector DNA and the DNA fragment to be inserted into the vector 

were separately digested and purified as described above and then isolated by gel 

electrophoresis as described in section 2.2.1.6.

The vector DNA was dephosphorylated at its termini to prevent religation. 

After the vector DNA had been linearized by digestion, the reaction mixture was 

adjusted by adding dephosphorylation buffer and 1 unit of Calf Intestinal Alkaline 

Phosphatase (CLAP) was added to the reaction mixture and incubated at 37°C for 

15 minutes. The reaction was stopped by heating to 50°C for a further 15 minutes. 

Another 1 unit of CLAP was added to the reaction mixture and incubated at 37°C 

for 15 minutes. All enzyme activity in the reaction was finally stopped by heating 

to 50°C for further 15 minutes.

The DNA was phenolichloroform extracted, ethanol precipitated and then 

resuspended in appropriate volume of distilled water and stored at -20°C.

The DNA fragment was inserted into dephosphorylated vector (lOOng) at a 

ratio of 3:1 respectively. The vector and inserted DNA were incubated together in 

a reaction containing 1 x ligase buffer and 1 unit of T4 ligase at 22°C for 1 hour or
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overnight. Dilutions of this reaction volume were used to transform competent 

bacterial cells (section 2.2.1.9).

2.2.1.9 Transformation of bacterial Hosts

All plasmids were propagated in commercially available E. coli JM109 

competent cells supplied as frozen stocks (Promega) kept at -70°C until use. 

Bacteria were transformed following manufacturer s instructions. Competent cells 

were thawed slowly on ice, and 100 pi of aliquots put into a prechilled 

polypropylene culture tube (Falcon 2059) and 1-2 ng of the appropriate plasmid 

DNA added and mixed by gently moving the pipette tip trough the cells while 

dispensing. The cells were then incubated on ice for 30 min before being heat 

shocked for 45 seconds at 42°C. The tube was then immediately placed on ice for 

2 min. 900 pi of room temperature L-broth (1% w/v Bactotryptone, 0.5% w/v 

yeast extract, 1% w/v NaCl) was then added to each transformation reaction. The 

tube was then transferred to a shaking 37°C incubator (approximately 225rpm) for 

1 hr to allow expression of the antibiotic resistant marker. Following this, 1 OOpl 

of cells were spread on an L-agar plate containing the appropriate antibiotic. The 

plate was inverted and incubated overnight at 37°C to allow colony formation.

2.2.1.10 Glycerol Stocks

Host strains, and their derivatives containing useful plasmids, were stored 

as glycerol stocks for future retrieval. 850 pi of an overnight culture was mixed 

gently with 150 pi sterile glycerol in a 1.5 ml Nunc Cryotubes and stored at -70°C. 

A sterile plastic loop was used to retrieve an aliquot of cells as and when required.
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2.2.1.11 Small scale preparation of Plasmid DNA (Miniprep)

Small amounts of plasmid DNA were extracted from transformed bacterial 

colonies to identify correct clones.

Single colonies of bacteria carrying the required plasmid were picked 

using a sterile yellow pippet tip and grown in 5 ml culture of L-Broth (1% w/v 

Bactotryptone, 0.5% w/v yeast extract, 1% w/v NaCl) containing antibiotic 

(100|ig/ml Ampicillin) at 37°C in a shaking incubator (225rpm) overnight. 10 

separate colonies were generally picked for screening at any one time. Bacteria 

were pelleted from 1.5ml of overnight culture by spinning in a microcentrifuge 

(14000rpm) for 30 seconds at room temperature. DNA was prepared using the 

Q1A prep Spin plasmid miniprep kit following the manufacture’s instructions.

2.2.1.12 Large Scale Preparation of Plasmid DNA

Bacteria containing the plasmid of interest were streaked onto an L-agar 

plate containing the appropriate antibiotic and the plate inverted and incubated 

overnight at 37°C to allow colony formation. A single colony was picked, using a 

sterile yellow tip, from this plate and used to inoculate a sterile universal tube 

containing 5 ml of L-Broth medium and the appropriate antibiotic(100pg/ml 

Ampicillin) which was then put in a shaking incubator at 225rpm overnight at 

37°C. This culture was then added to 500 ml of Superbroth, containing 100|xg/ml 

Ampicillin in a 1 litre glass conical flask (to allow good aeration), then returned to 

the shaking incubator for 48 hours. Superbroth is composed of two solution, A 

and B. Solution A consists of 12 g of bactotrypton, 24 g of yeast extract, and 5 ml 

of glycerol made up to final volume of 900 ml with distilled water. Solution B is
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consist of 12.5 g of di-potasium hydrogen orthophosphate (K2HPO4) and 3.8 g of 

potassium dihydrogen orthophosphate (KH2PO4) made up to a final volume of 

100 ml. Both solution were autoclaved separately and combined just prior to use.

Bacterial cells were pelleted by centrifugation in a sorvall RC-5B 

centrifuge (Sorvall GS-3 rotor) at 5,000 rpm for 10 min at 4°C and the supernatant 

was removed. The pellets were resuspended in 18 ml of TEG (50 mM glucose, 

lOmM Tris-HCl (pH8.0), 10 mM EDTA). Resuspended pellets were pooled into 

one centrifuge bottle and 2 ml of lysozyme containing 10 mg/ml were added. The 

suspension was mixed gently and allowed to stand on ice for 10 min. 40 ml of 

freshly prepared alkaline SDS (0.2 M NaOH, 1% SDS) were added and the 

suspension mixed by gentle inversion and placed on ice for 5 min. 30 ml of ice 

cold 5M potassium acetate (490.7 g KAc and 115 ml glacial acetic acid made up 

to 1 litre in water) were added, the whole solution inverted sharply five times and 

then returned on ice for 20 min. The flocculate was centrifuged at 8,000 rpm for 5 

min at 4°C in a Sorvall GS-3 rotor and the supernatant filtered through gauze into 

a 250ml measuring cylinder. 0.6 volumes of room temperature propan-2-ol was 

added, then the whole solution transferred to 250ml centrifuge bottle and mixed 

by inversion several times and left at room temperature for lOmin. The nucleic 

acid in this cleared lysate was precipitated and pelleted by centrifugation at 8,000 

rpm for 5 min at 4°C. The supernatant was removed and the nucleic acid pellet 

washed with 50ml room temperature 70% ethanol to remove any salt. The 

solution was centrifuged for a further 5 min at 8,000 rpm at 4°C. After discarding 

the supernatant, the pellet was allowed to dry at room temperature for 10 min 

before being resuspended in 9ml of TE.
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Ultracentrifugation through a caesium chloride (CsCl) density gradient was 

then carried out to further purify the plasmid DNA. 10 g of caesium chloride was 

added to the solution and allowed to dissolve at room temperature. 500pl of a 

lOmg/ml ethidium bromide solution was added to visualise the DNA band after 

centrifugation. The refractive index of this solution adjusted to 1.395. The 

solution was transferred to a sealable centrifuge tube (11.5ml Dupont disposable 

tube) with a protective metal cap over the top of each tube. Samples were spun in 

a balanced Beckman ultracentrifuge at 50,000 rpm for 24hr at 20°C in a T1270 

rotor. The tube was carefully removed from the centrifuge rotor and placed 

securely in a clamp on a rotor stand. After centrifugation, any contaminating 

RNA was found to have a pelleted to the bottom of the tube. Two distinct bands 

were observed; the upper band contains sheared linear plasmid DNA and residual 

bacterial chromosomal DNA while the lower band contains closed circular 

plasmid DNA. An 18 gauge needle was first inserted into the top of the tube to 

act as an air inlet and the lower band was gently withdrawn by similarly piercing 

the side of the tube ~ 1cm below the lower band with an 18 gauge needle 

connected to a syringe. The plasmid DNA band was then transferred to a clean 

ultracentrifuge tube. The tube was filled with CsCl/TE (RI=1.395) as before and 

underwent further centrifugation prior to plasmid extraction.

The band removed as described above was transferred to a 5 ml Bijoux 

tube. Ethidium bromide was removed in the solution by extracting with an equal 

volume of water saturated butan-2-ol. The solution was mixed and ethedium 

bromide separated with the upper organic phase which was carefully aspirated off 

and discarded into appropriate bottles. This extraction process was repeated until
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the lower aqueous phase was clear and colourless. The CsCl removed by 

dialysing the plasmid DNA into a dialysis tube (Collodion Bag) and placed in a 

large beaker containing 2 litres of TE. Plasmid DNA was dialysed against TE on 

a magnetic stirrer for 4 hours at room temperature. The TE buffer was changed 

and dialysis continued for a further 4 hours at room temperature or overnight at 

4°C. DNA was then ethanol precipitated and the DNA pellet was finally 

resuspended in 0.5-1 ml TE (pH 8.0), depending on the size of the pellet. The 

DNA concentration was determined as described in section 2.2.1.4. The plasmid 

DNA was aliquoted and stored at -20°C.

2.2.3 Cell Culture and Transfection

2.2.3.1 Cell Culture

All cell culture work was performed following strict aseptic techniques 

inside a laminar flow hoods (Class II Microbiological safety Cabins; Medical Air 

Technology Ltd., Manchester, England). Cells were incubated in dry 37°C 

incubators containing 5% (v/v) CO2 (Heraeus, Essex, England) and were routinely 

screened for mycoplasma infection using a fluorescent dye technique (M. 

Freshney, Beatson Institute, Glasgow).

2.2.3.2 Isolation of Primary Bovine Fibroblasts

The fibroblasts from foetal bovine palate were isolated as described 

previously by Jaggar et al., (1990). A small section of soft palate tissue was taken 

from bovine foetuses of less than 5 months gestation obtained from the veterinary 

post-mortem room at the Glasgow University Veterinary College. The palate
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tissue was sterilized by a 30 second wash in 70% ethanol and then dissected into 

small pieces approximately 2mm2 in size using crossed scalpels and placed into a 

90mm dish being well spaced apart. The tissue was allowed to adhere to plastic 

by placing the dishes in a dry 37°C incubator containing 5% (v/v) CO2 for 5 

minutes. Culture medium was then added slowly to each dish so as not to disturb 

the adherent samples. The samples were fed twice weekly over a period of two 

weeks in which time fibroblasts and keratinocytes grew out of tissue mass. The 

medium used for both isolation and subsequent routine growth of PalF cells was 

DMEM supplemented with 10% foetal calf serum, 2mM glutamine, ImM 

pyrovate, 0.375% sodium bicarbonate, 37.5 pg/ml penicillin, 50 pg/ml 

streptomycin. This medium selectively favoured the outgrowth of fibroblasts and, 

as expected, keratinocytes died. The newly extracted fibroblasts were trypsinised 

and reseeded into large (T175 cm2) flasks. Cells were expanded and stocks of 

PalF cells were frozen down in liquid nitrogen for further experiments.

2.2.3.3 Maintenance of Primary Bovine Fibroblasts in Culture

Cells were fed twice weekly, old medium was aspirated from sub

confluent flasks and fresh medium added. PalF cells were grown until just sub

confluent whereupon they were passaged approximately 1 in 4. Replating was 

performed as follows: for T80 cm2 tissue culture flask medium was aspirated off 

and the cells washed twice with 5 ml phosphate-buffered saline (PBS). The PBS 

was removed and 1 ml of trypsin solution (0.25% trypsin in lx  PE buffer; PBS 

with the addition of EDTA to 1 mM), which had been pre-warmed to 37°C, was 

added to cells. Flasks were transferred to the 37°C hot room until the cells had
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detached from the flasks. Complete medium was added and the cell suspension 

transferred to a sterile universal tube. The cells pelleted by centrifugation at 

lOOOrpm for 5 mins at room temperature. The pellet was then resuspended in 

fresh growth medium and the cells reseeded at an appropriate density.

2.2.3.4 Long term cell storage

To freeze cells stocks for storage, confluent cultures were trypsinised, and 

pelleted as described above (section 2.2.3.3). The pellet was then resuspended at a 

concentration of approximately 106 cells/ml in growth medium containing 10% 

(v/v) DMSO. The DMSO in the medium acts as a cryoprotectant but all solution 

must be chilled as DMSO is toxic to cells at room temperature. Suspensions were 

divided into 1 ml aliquots in 1-2 ml Nunc cryotubes and placed in a polystyrene 

box and frozen, well insulated, at -70°C overnight to ensure a slow rate of cooling. 

The ampoules were then transferred to a liquid nitrogen bank containing labelled 

storage rack until required. Frozen stocks were recovered by removing the 

ampoules from liquid nitrogen and placed into a small, covered bucket of water at 

37°C. Once thawed, the cells were added to 10ml of the appropriate pre-warmed 

growth medium, centrifuged, resuspended in fresh growth medium and transferred 

to 80 cm2 flasks.

2.2.3.5 Transient transfection of Primary Bovine Fibroblasts (PalFs)

Cells were transiently transfected with a range of plasmid DNAs (section 

2.1.11) using the standard calcium phosphate-mediated method. Cells (105) were 

plated in each well of 6 well plate, in duplicate, containing 5ml of appropriate
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growth medium (DMEM-10) the day before transfection. For each well of cells to 

be transfected the following mixture was set up.

250[xl of a DNA solution (up to 3pg of total plasmid DNA in O.lx TE pH 

8.0 containing 250mM CaCl) was added to 250pl of 2 x HEPES buffered saline 

(HBS). The addition of the DNA solution to the 2 x HBS must done very 

gradually with constant but gentle mixing. The mixture was incubated for 20 to 

30 minutes at room temperature during which time a fine precipitate formed 

giving a slight blue/grey colour to the transfection mix. To resuspend the 

precipitate the mixture was gently pipetted up and down.

This mixture was then added directly into the medium above the cells. 

The plates was moved slowly to disperse the transfection solution throughout the 

culture medium and incubated at 37°C for 16-18 hours. After withdrawal of the 

medium, cells were washed twice with 2ml of pre-warmed PBS and incubated in 

DMEM medium, which was supplemented with 10% feotal calf serum (FCS), 

reffered to as DMEM-10 or 0.5% FCS (DMEM-0.5) at 37°C for a further 24 hour 

before being harvested.

2.2.3.6 Luciferase Assays

Cells were seeded at 20,000 cells/ml in DMEM-10 in each well of 6 well 

plates, 5ml/well, the day before transfection, and transfection was performed using 

the standard calcium phosphate method (section 2.2.3.5). After 16-18hr., the cells 

were washed twice with 2ml. PBS and incubated in DMEM-0.5 or DMEM-10 for 

a further 24 hr. Cells were then washed twice with PBS, the PBS was completely 

removed by aspiration and 300pi of 1 x reporter lysis buffer (Promega) added to
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each well, following 15 minutes incubation at room temperature, cells were 

scraped off the culture well and each lysate transferred to a 1.5ml eppendorf. Cell 

debris was pelleted by spinning lysates at 4°C in a microcentrifuge at 14000 for 5 

minutes. The supernatant was transferred to a second eppendorf taking care not to 

disrupt the cell pellet. The lysate were either assayed for reporter enzyme activity 

immediately or stored at -20°C.

Luciferase activity was determined using a luminometer with automatic 

injection (BioOrbit, model 1251). For each sample, 80pl of lysate and 120pl of 

Luciferase assay buffer (Promega) were used. Luciferase activity was normalised 

for protein content determined using the BCA assay (Pierce). The reporter 

plasmid for the human cyclin A promoter, pwt929, was provided by Dr. William 

Fahl, University of Wisconsin, USA.

2.23.1 DNA transfection of Primary Bovine Fibroblasts

PalF cells were transfected with a range of plasmid DNAs (section 2.1.11) 

using the cationic lipid N-[l-(2, 3-Dioleoyloxy) propyl]-N, N, N- 

trimethylammoniummethylsulfate (DOTAP; Boehringer Mannheim BCL) 

following the manufacturer s recommendations. Each reaction contained 5 pg of 

each relevant plasmid DNA plus 2 pg of a plasmid construct containing the 

selectable marker gene for neomycin resistance (pZipneo; Chapter 2.1.11).

Transfection classes are described in Chapter four in the Result section. 

Reaction were made up to 20 pg with sonicated salmon sperm DNA (Sigma). 

PalF cells were plated at a density of 5 xlO5 into an 80 cm 2 flask 24 hr prior to 

transfection. The cells were fed with 13.5mls of growth medium on the day of
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transfection, the transfection mix was as follows; 80 pi of DOTAP was diluted up 

to 250 pi with complete medium in a separate reaction vial. DNA (20pg) was also 

diluted up to 250pi with complete medium in a separate reaction vial. Both 

solution were mixed together and incubated for 10 min at room temperature. This 

mixture was then slowly added to the flask of cells and incubated at 37°C 

overnight. After withdrawal of the medium, cells were washed twice in PBS and 

then fresh complete medium was added to the flask. The next day cells were split 

at a dilution of 1:2 and allow to settle for 24 hr prior to selection.

2.2.3.S Selection of transfected cells

Cell were selected in medium containing 500 pg/ml G418 for 21-28 days, 

being fed twice weekly. After this time, G418-resistant colonies were scored. 

Where appropriate, several colonies were picked from each transfection class in 

order to expand them clonally.

2.2.3.9 Isolation of clonal populations

Single neomycin resistant colonies were identified and their position 

marked using a microscope ring marker attachment. The cells were then washed 

twice in sterile PBS. A sterile 6 mm stainless steel cloning rings coated with 

sterile silicon grease (Merck, England) at the base was then placed over the 

identified colony thus providing a waterproof seal round each isolated colony. A 

total volume of 100 pi trypsin solution, which had been pre-warmed to 37°C, was 

pipetted within each cloning ring. After 1-2 min an equal volume of complete 

medium was added and the cell suspension transferred to a 24-well plate (Costar)
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along with 2ml medium and returned to the 37°C incubator for expansion into cell 

lines.

2.2.3.10 Transformation Assays

2.2.3.10.1 Focus formation assay

200 cells of normal PalF and each clone were mixed with 25,000 normal 

PalF cells. The mix was plated in each well of 6 well plates, in triplicate. Cells 

were fed twice weekly. Three weeks later the cells were fixed in methanol and 

stained with 10% filtered Giemsa.

2.2.3.10.2 Cell population growth in high serum (DMEM-10%) and low 

serum (DMEM-0.5%) culture (Crystal Violet assay)

Cells were seeded in 96 well tissue culture plates, in triplicate, at 3000 

cells/well in 200/d of DMEM-10. One 96 well plate of cells was set up for each 

day from day 0 to day 7. The outer wells along the edge of the plate were not used 

and instead 200pi of growth medium was added to each of these wells to reduce 

evaporation from the inner cell-containing wells. After four hours incubation, 

during which time the cells attached to the bottom of each well, growth medium 

was respectively changed to DMEM-10 or DMEM-0.5 in the appropriate wells. 

The first plate, corresponding to day 0, was treated with 100^1 of 0.1% Crystal 

Violet in 20% Methanol and assayed. Each day thereafter one plate of cells was 

treated with Crystal Violet to determine the growth characteristics of cells in each 

well. This was carried out over a period of 7 days (at daily intervals for 7 days).
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Treatment of cells with Crystal Violet was performed as follows; Medium 

from all cells in 96 well plate was aspirated off. Each well was washed with pre

warmed (37°C) PBS before addition of lOOpl Crystal Violet. The plate was 

placed at room temperature overnight. Crystal Violet solution was removed from 

each well and the well was washed extensively in water then dried at room 

temperature. Following wash with water, 100 |xl of 1% alkaline SDS was added 

to each well and placed on a horizontal shaking platform for 10 minutes at room 

temperature. The absorbance of the solubilized dye in each well was determined 

immediately at 590nm using a automated microwell plate reader (Dynatech 

MR7000).

2.2.3.10.3 Anchorage independent growth

The ability of cell line to form colonies in semi-solid media is taken as a 

phenotypic measure of its degree of transformation. The extend of transformation 

of cell population was assayed by plating cells in Methocel based medium.

Efficiency of methocel colony formation was determined by adding 105 

cells to 15 ml of 1% methocel including 30% Foetal Calf Serum (FCS).

The mix was plated in bacterial petri dishes. Bacteriological petri dishes 

were used to discourage cells from adhering to the bottom of the dishes. Cells, 

tested in duplicate, were left at 37°C for 12 days before being scored and 

photographed with PanF 50 technical film.

Methocel medium was made up as follows:

3g of Methocel MC 4000 (Fluka) was added to 200 mis of distilled water 

and autoclaved. The Methocel was left to dissolve with stirring for 2-3 days at
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4°C. Following dissolution, 22 mis of 10 x FI0-HAM medium (Gibco), 4 mis of 

50 x minimum essential amino acids (Gibco), 4 mis of 0.1 M sodium pyruvate, 5 

mis of 7.5% sodium bicarbonate, 100 mis of foetal calf serum (FCS) and 2% 

penicillin and streptomycin were added.

2.2.3.10.4 Tumorigenicity Assay in Nude Mice

The ability to form tumours is an indicator of full cellular transformation. 

The transformed cells were assayed in nude mice. Cells were removed from 

selection and expanded at identical cell density. The cells were suspended in 

sterile PBS at a concentration of 108 cells/ml. 0.1 ml of this suspension (107 cells) 

were injected subcutaneosly into a four-week old female athymic nude mice, 

strain MF1 nu/nu (Harlan-Olac, Bicester, England) at a single injection site. 

Three mice were injected per cell line tested and examined for tumour growth 

weekly up to 15-20 weeks post injection. If no tumour had developed by then the 

cells were considered to be non-tumorigenic.

2.2.4 Eukaryotic DNA and RNA analysis

2.2.4.1 DNA extraction from cell lines

Genomic DNA was isolated from cell lines using a modification of the 

technique of Miller et al (1988). Cells, grown to approximately 80% confluency 

in a 75 cm2 tissue culture flask, were washed twice with PBS, trypsinised and 

pelleted at 1000 rpm at room temperature for 5 minutes in a 20 ml universal tube. 

The cell pellet was resuspended in 3 mis of lysis buffer and digested overnight at 

37°C with 0.5 mis of protease K solution (lm g protease K in 1% SDS and 2mM
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Na2EDTA). After digestion, 1 ml of a saturated NaCl solution was added and the 

tube shaken vigorously for 15 seconds, followed by centrifugation at 2500 rpm for 

15 minutes to precipitate the protein pellet. The supernatant was carefully 

transferred to a fresh tube and one tenth volume of 3 M sodium acetate, pH 5.2 

and 2 volumes of absolute ethanol were added. The sample was mixed by 

inversion and stored at -20°C overnight or alternatively placed on dry ice for 30 

minutes to precipitate the DNA. Precipitated DNA was recovered by 

centrifugation in microcentrifuge at 14000 rpm for 30 minutes at 4°C. The DNA 

pellet then was washed with 70% ethanol to remove solute contaminants such as 

salt, air dried, and resuspended in an appropriate volume of TE. The DNA was 

allowed to dissolve before quantitation.

2.2.4.2 Total RNA extraction from cell lines

Cells were grown in a 175cm2 (T175) flask to approximately 80% 

confluency following the RNAzol B method of extraction (Biogenesis Ltd, 

England). Cells washed twice with ice cold PBS and lOmls of RNAzol B was 

added directly to the flask. The lysate was transferred to a Falcon 2059 

polypropylene centrifuge tube and 1 ml of chloroform was added with vigorous 

pipeting. The top of the tube was then covered with Parafilm (American National 

Can, USA) and the tube was left on ice for 15 minutes to allow phase separation 

to take place. The tube was then centrifuged in a sorval RC-5B (HB6 roter) at 

10,000rpm for 15 minutes at 4°C. The upper, aqueous phase was transferred to a 

fresh tube and an equal volume of isopropanol added. The samples were mixed 

and stored overnight at -20°C to allow precipitation of RNA and the RNA pelleted
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by centrifugation as before. The pellet was resuspended in 5 mis of 75% ice cold 

ethanol (made with diethylpyrocarbonate (DEPC) -treated RNase-free water), and 

transferred to an eppendorf. The RNA was pelleted in a microfuge at full speed at 

4°C for 30min, dried on a speedivac and then resuspended in DEPC-treated RNase 

free water and the concentration of RNA was measured spectrophotometrically as 

described in section 2.2.1.4. RNA samples were aliquoted and stored at -70°C.

2.2.4.3 Polymerase chain reaction (PCR)

2.2.4.3.1 Amplification of DNA

All reagent were provided in the Perkine-Elmer Cetus DNA PCR Kit. 

Primer sequences were designed such that they were complementary to opposite 

strands and opposite end of the DNA of interest. The forward E8 primer 

corresponded to the HA epitope and the reverse primer to nucleotide 455-432 of 

the BPV-4 genome. The forward and reverse E7 primers corresponded to 

nucleotide 642-661 and nucleotide 812-793 of the viral genome respectively. The 

forward E5 primer corresponded to the HA epitope and the reverse primer to 

nucleotide 206-184 of the BPV-1 genome. The forward and reverse Zip primers 

corresponded to nucleotide 503-527 and nucleotide 5477-5458 of the pZipneo 

MoLV genome. Primer sequences are described in table 2.1.
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Table 2.1 Oligonucleotide PCR primers

Forward E8 

Reverse E8

5’ CCA TAC GAT G IT  CCA GAT TAC GCT 3’ 

5’ CCA TCC ATC TAA CCG AGT AAT AGT 3’

Forward E7 

Reverse E7

5’ CCT TCC AGT CTT AAT TGC AG 3’ 

5’ CAG IT T  CAA TCT CCT CTT CA 3’

Forward E5 

Reverse E5

5’ CCA TAC GAT GTT CCA GAT TAC GCT 3 ’ 

5’ GCA TTA AAA GGG CAG ACC TGT AC 3 ’

Forward Zip 

Reverse Zip

5’ GCC TCC GTC TGA ATT  IT T  GCT TTC G 3’ 

5’ GGC TGT TAG TAA CTC TTG TC 3’

All reaction mixture comprising of 200pM of each dATP, dGTP, dCTP 

and dTTP, 3mM MgCh, 1 x PCR kit buffer (500mM KC1, lOOmM Tris-HCl),

0.15p.M of each primer, 2.5 units Tag polymerase (a thermolabile DNA 

polymerase from Thermus aquaticus) and lpg  of DNA sample (controls included 

distilled water, pZipneo HAE8, pZipneo E7 plasmids, and lpg  of DNA from 

parental PalF cells), was aliquoted into 0.5ml GeneAmp PCR reaction microfuge 

tubes in a final volume of 50pl. The tubes were placed into the PCR machine 

(Perkin-Elmer Cetus type 9600) and heated to 95°C for 3 minutes to inactive 

DNase and ensure all DNA duplexes were melted. The DNA was then amplified 

(using Perkin-Elmer Cetus type 9600 thermocycler) for 28 cycles at 94°C for 30 

seconds, 60°C for 30 seconds, to allow the primers to anneal to the template DNA, 

followed by 72°C for 30 seconds, to allow extension of the amplimer sequences. 

After completion of the cycles, the reaction was incubated at 72°C for a further 7 

minutes to ensure full extension and then cooled to 4°C. 5pi of each sample was
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analysed by agarose gel electrophoresis (as described in section 2.2.1.6) to check 

the correct product was amplified.

2.2.4.3.2 Amplification from RNA reverse transcriptase-PCR (RT-PCR)

RNA was prepared (see section 2.2.4.2) and used as the template for 

reverse transcription and PCR amplification of cDNA. Firstly cDNA was 

synthesised from RNA by reverse transcription using the Perkin-Elmer Cetus 

RNA PCR kit. The reaction was carried out according to the manufacturers 

instructions, to the following final concentrations: 5mM MgCk, lx  PCR kit buffer 

II (500mM KC1, lOOmM Tris-HCl), ImM of each of dATP, dGTP, dTTP, dCTP, 

1 unit RNase inhibitor, sslpg RNA, 2.5 units MuLV reverse transcriptase, 0.15pM 

of each reverse primer, E7, E8 and E5, (section 2.2.4.3.1) and DEPC-treated 

water to a final volume of 20 pi. Controls included lpg  of RNA treated with 

DNase, lpg RNA treated with RNase, nucleic acids from normal parental PalF 

cells, distilled water, pZipneo HAE8, pZipneo HAE5, and pZipneo E7 plasmids.

All samples were placed in the termocycler and further incubated at 22°C 

for 10 minutes, 42°C for 15 minutes, 99°C for 5 minutes, and soaked at 4°C for 5 

minutes. The above reaction volume was increased to lOOpl by adding 2mM 

MgCb, 1 x kit PCR buffer II, 0.15pM of forward HA1 E8 primer, 0.15pM of 

forward HA1 E5 primer, 0.15pM of forward E7 primer and 2.5units of Tag 

polymerase. Amplification proceeded for 35 cycles of 94°C for 30 seconds and 

60°C for 1 minutes, plus a 1 second extension per cycle followed by final 

extension at 60°C for 7 minutes using the Perkin-Elmer Cetus 9600 thermocycler.
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The samples were then analysed by agarose gel electrophoresis as described in 

section 2.2.1.6 to ensure correct amplification.

2.2.5 Protein Analysis

2.2.5.1 Protein preparations from Cells

Cells were lysed by aspirating the culture medium off, washing the cell 

monolayer twice with ice-cold PBS, the PBS was completely removed by 

aspiration, adding 1.5ml of ice-cold PBS, scraping the cells off the dish and 

transferred them to a 1.5 ml microcentrifuge tube. Cells were pelleted by spinning 

at 4°C in a microcentrifuge at 5,000rpm for 5 minutes, the supernatant was 

removed and 300pl of boiled lysis buffer was added to the pellet. Cells were lysed 

following a 5 minutes boiling, and then sonicating the resulting cell suspension 

using an MSE Soniprep 150 sonicator. Cell debris was pelleted at 14000 rpm and 

the supernatant transferred to a new microcentrifuge tube.

2.2.5.2 Protein assays

The BCA/CuS04 Protein assay was used to spectrometrically determine 

the protein concentration of dilute solutions following the manufacturer’s 

instructions. Protein reduce alkaline Cu(II) to Cu(I) in a concentration-dependent 

manner. Bicinchoninic acid is a highly specific chromogenic reagent for Cu(I), 

forming a purple complex with an absorbance maximum at 562nm. lOpl of 

protein solution was placed in separate wells in 96 well plate. 200pl of 

developing solution (5ml BCA(Biocinchoninic acid) solution, lOOpl of 4% (w/v)
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CuS04 (copper II sulphate pentahydrate solution) was added to the protein 

samples and incubated at 37°C for 30 minutes.

The absorbance of each sample was read at 590nm using a Dynatech 

MR7000 automatic plate reader. The absorbance reading was converted to 

concentration in pg/ml for each sample using a standard curve generated from a 

series of control BSA solutions of known concentration. The actual concentration 

of each protein sample was calculated after multiply by the relevant dilution 

factor.

2.2.5.3 SDS-Po!yacrylamide Gel Electrophoresis (SDS-PAGE)

Protein samples were resolved according to the molecular weight using 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). 15cm 

gels were used, containing gels of varying polyacrylamide content, depending on 

the molecular weight of the proteins being resolved, but typically 15% 

polyacrylamide resolving gel was used. For a single 15% gel of 15cm the

following solutions were prepared:

30% acrylamide 10ml

Water 4.6ml

1.5 M Tris (pH 8.8) 5.0ml

10% SDS 0.2ml

10% ammonium persulphate (freshly prepared) 0.2ml

TEMED 0.008m

This resolving gel was poured between two glass plates (cleaned with 70% 

ethanol) sealed on three sides with a gasket, then overlaid with isopropanol and
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left to polymerise at room temperature. Once the gel was set, the isopropanol was 

removed using Whatman 3MM filter paper and the stacking gel consisting of 5% 

polyacrylamide was poured on top of the resolving gel, a comb inserted and left to 

polymerise for at least 30 minutes before use. The stacking gel was prepared as

follows:

30% acrylamide 0.67ml

Water 2.7ml

1.5 M Tris (pH 8.8) 0.5ml

10% SDS 0.04ml

10% ammonium persulphate (freshly prepared) 0.04ml

TEMED 0.004ml

Once the stacking gel had polymerised the whole gel was transferred to an 

electrophoresis tank. The tank reservoirs were then filled with Tris-glycine 

electrophoresis buffer. After the removal of the combs, the wells were flushed 

with electrophoresis buffer to remove any excess stacking buffer.

Prior to loading, equivalent amount of each protein samples (30-50pg) was 

mixed with an equal volume of 2x SDS gel loading buffer. The prepared protein 

samples were then loaded into consecutive wells and 5pi Rainbow™ protein 

molecular weight marker mix (molecular weight range 14.3KD-200KD) added to 

the first or last well on the gel. The gel was run by electrophoresis at a constant 

current ~ 35mA/gel for 2-3 hours. Once the dye front was aproximately 5-10cm 

from the bottom of the gel, it was removed and used for western analysis.
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2.2.5.4 Western blotting

Separated protein samples were transferred to a nitro-cellulose membrane 

by semi-dry blotting. For this purpose the gel was removed from the 

electrophoresis tank, then excess gel was cut away. The dimensions of the 

remaining gel was measured and 2 pieces of Whatman 3MM filter paper were cut 

to an equal size, as was one piece of nitro-cellulose (ECL-hybond). The transfer 

of the protein from the gel to the nitro-cellulose was performed as follows:

1. Two sheets of Whatman paper were soaked in transfer buffer (122mM 

Glycine, 25 mM Tris, 20% Methanol) and placed neatly on the centre of the 

blotting apparatus, avoiding any air bubbles.

2. Onto these was laid the nitro-cellulose membrane, the gel, then a 

further 6 sheets of Whatman paper, all soaked in transfer buffer.

3. The stack of sheets was rolled with a glass pipette to eliminate any air 

bubbles

4. 20 volts was applied across the blot for approximately 30 mins, the time 

taken for the pre-stained marker proteins to be completely transferred

Once the transfer was completed, the membrane was blocked by shaking 

for a minimum of 2 hours in i00 ml of block buffer (5% Marvel (dried milk) in 

Tween 20 0.1% (v/v) in PBS) at room temperature. The nitro-cellulose filter was 

washed in wash buffer (PBS, 0.1% (v/v)Tween 20) for 4 x 10 minutes. The filter 

was then placed in 50ml blocking buffer containing 12CA5 anti HA mouse 

monoclonal antibody at a 1/1000 dilution and incubated at room temperature for 1 

hour with gentle shaking. The primary antibody solution was removed and the 

filter rinsed in blocking buffer then washed 4 times, each for 10 minutes, in 100ml
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volumes of fresh washing buffer. The filter was then incubated in 50 ml blocking 

buffer containing a 1/5000 dilution of anti-mouse IgG horse-radish peroxidase for 

1 hour at room temperature with gentle shaking. The filter was washed 3 x 10 

minutes with washing buffer. Excess surface liquid was removed from the filter 

by briefly blotting with a piece of Whatman 3MM paper. The detection consisted 

of incubating the filter in an equal volume of an Amersham Enhanced 

chemilluminescence (ECL) detection reagents I and 2 for 1 minute at room 

temperature. The excess detection solution was drained off the nitro-cellulose 

filter and this was then wrapped in Saran wrap and exposed to Fugi-XR film for 

30 second or 20 minutes (depending on the strength of the signal).

2.2.5.5 Immunofluorescence

Cells were grown until 80% confluent on single well glass chamber slides. 

After removal of tissue culture media the cells were washed once with PBS and 

fixed in ice cold acetone for 30 mins.

The acetone was removed and 1.5% Marvel PBS blocking solution applied 

to the cells for 10 mins. After removing the blocking solution 50-100pl of 

primary antibody (12CA5) was applied at the appropriate concentration and left in 

a moist chamber at room temperature for 1-2 hours.

The cells were then washed 3 times with the blocking solution and 

incubated with 50-100pl of secondary FITC-conjugated antibody for 1 hour. The 

cells received a final wash in blocking solution and were then mounted in 50% 

glycerol in PBS. Cells were analysed under UV illumination using a Leitz vario 

orthomate microscope (Confocal microscope).
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CHAPTER THREE 

GENERATION OF MUTANTS

3.1 Introduction

The E8 ORF encodes a small (42 residues) polypeptide that bears some 

resemblance to the E5 oncoprotein of BPV-1: both are localized to cellular 

membranes and have two distinct domains: a hydrophobic membrane domain 

(residue 1-30) with the capacity to form an a-helix and a hydrophilic “tail” region 

(residue 31-42, E8; 31-44, E5) which is not thought to be membrane localised 

(Jackson et al., 1996). The structural and functional characteristics of E8 as 

detailed in chapter one, suggest E8 may transform cells in a way analogous to that 

of BPV-1 E5.

In an attempt to segregate different transforming functions of the E8 

protein and therefore to define its functional domains, several mutations have been 

introduced in the predicted a  helical domain, and in the C terminus, and chimeric 

molecules between BPV-4 E8 and BPV-1 E5 were constructed (Figures 3.1, 3.2; 

table 3.1).

Previous studies (Goldstein, et al., 1992a, b) have shown that binding of 

E5 to ductin requires the N-terminal hydrophobic domain (first 32 residue) and 

that glutamine at position 17, near the middle of this domain, is important in
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protein function. Since the transmembrane domain of BPV-1 E5 appears to 

mediate its binding to cell proteins it has been hypothesized that it might be 

possible to determine whether the equivalent residue in the E8 polypeptide of 

BPV-4 has a similar function to that of BPV-1 E5. Thus N (asparagine) at 

position 17, chemically similar to the glutamine of BPV-1 E5, crucial for cell 

transformation and for ductin binding, has been mutated to serine (17S), tyrosine 

(17Y) or alanine (17A).

A mutant form of E8, E8T, comprising only the first 32 amino acid 

residues was produced by changing S (serine) at residue 33 to a stop codon, to 

determine if the membrane domain was sufficient to transform cells. A similar 

mutation has been introduced in BPV-1 E5 by changing W (tryptophan) at residue 

32 to amber stop codon, to create a truncated form of BPV-1 E5 (E5T; residues 1- 

31).

Two chimeric molecules were also formed between BPV-4 E8 and BPV-1 

E5, to define functional regions of the protein and whether these domains were 

functionally interchangeable between two peptides.

One form, E8N-E5C, retains the N-terminal two third of E8 (E8 body, 1- 

29) but the carboxyl end is replaced by the last third of BPV-1 E5 (E5 tail, 30- 

44). The reciprocal chimera, E5N-E8C retains the N-terminal two third of BPV-1 

E5 (E5 body, 1-31) but the carboxyl end is replaced by the last third of BPV-4 E8 

(E8 tail, 32-42).

To determine whether the postulated a-helix domain of BPV-4 E8 could
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have an effect on cell transformation, two mutations were introduced in this 

portion of E8. Alanine residues at positions 15 and 20 were changed to proline, 

which has the property of forcing a bend in the main chain and of disrupting an a  

helix. The same two alanine residues were also mutated to the chemically similar 

amino acid glycine to control for any effect due to changes in residues rather than 

in structure.

In the C-terminus hydrophilic tail of E8 there is a possible casein kinase II 

(CKII) phosphorylation sites (TRLD) at positions 36-39. It is particularly 

interesting to determine whether the putative phosphorylation of this site can 

affect cell transformation. To investigate this, mutations were introduced to the 

putative CKII site. The threonine (Thr) was changed to aspartic acid, alanine, or 

serine. Aspartic acid is negatively charged, mimicking a phosphorylated amino 

acid. Alanine can not be phosphorylated, but serine, like threonine, can be 

phosphorylated. These changes allow us to determine whether incorporation of a 

negative charge, or the presence of phosphate moieties within the CKII site, is 

critical for the regulation of cell transformation by BPV-4 E8.

3.2 Site-directed mutagenesis of HAE8

The Altered Sites In vitro Mutagenesis System (Promega) was used to 

construct mutant forms of HAE8. The HAE8 ORF was subcloned into pALTER- 

1 vector, and DNA was denatured as described in Materials and Methods section 

2.2.I.2.
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An oligonucleotide, complementary to the single-strand template except 

for the mutated nucleotide of interest, was synthesized and annealed with the 

single-strand template DNA. The mutant strand was then synthesized by 

extending the oligonucleotide with DNA polymerase followed by ligation, to 

create double-strand DNA.

This in vitro mutagenesis system was based on the use of a second 

mutagenic oligonucleotide to confer ampicillin resistance to the mutant DNA 

strand, during mutagenesis reaction. The mutant forms of HAE8 were constructed 

using the oligonucleotides designed with the following mismatches (underlined):

Mutant N17S contained the codon AAT changed to AGT

Mutant N17Y contained the codon AAT changed to TAT

Mutant N17A contained the codon AAT changed to GCT

Mutant E8T S33 contained the codon TCT changed to TGA.

Mutant E5T W32 contained the codon TGG changed to TAG

Mutant E8N-E5C, retains the N-terminal two third of E8 (residues 1-29) but the 

carboxyl end is replaced by the last third of BPV-1 E5 (residue 30-44).
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Mutant E5N-E8C, retains the N-terminal two third of BPV-1 E5 (residues 1-31) 

but the carboxyl end is replaced by the last third of BPV-4 E8 (residue 32-42).

Mutant A15G-A20G contained the codons GCT- GCA changed to GGT

Mutant A15P-A20P contained the codons GCT-GCA changed to CCC

Mutant ARLD T36 contained the codon ACT changed to GCT (Ala)

Mutant DRLD T36 contained the codon ACT changed to GAT (Asp)

Mutant SRLD T36 contained the codon ACT changed to AGT (Ser)

3.3 Synthesis of mutant strand

The oligonucleotide containing the required mutation was firstly 

phosphorylated by incubating lOOpmol oligonucleotide with lx  kinase buffer, 

ImM ATP, 5 units T24 Polynucleotide kinase and sterile deionized water to a 

final volume of 25 pi. The reaction was then incubated at 37°C for 30 minutes. 

The reaction was stopped by heating to 70°C for 10 minutes. The reaction 

products were either stored at -20°C or added directly to the anneal reaction.

1.25pmol phosphorylated mutagenic oligonucleotide was annealed to
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0.05pmol of alkaline-denatured dsDNA, 0.25pmol phosphorylated ampicillin 

repair DNA, 1 x annealing buffer, and sterile deionized water to final volume of 

20pl. The reaction was heated at 75°C for 5 minutes to stop it, cooled slowly to 

45°C, then placed on ice.

The complementary DNA strand was synthesised by adding 5 units of T4 

DNA Polymerase, 3 units of T4 DNA Ligase, 1 x Synthesis buffer and sterile 

deionized water to final volume of 30pl. The reaction was incubated at 37°C for 

90 minutes to perform mutant strand synthesis and ligation. The mutant DNA was 

then transformed into JM109 as described in section 2.2.1.9., and sequenced as 

described below to identify plasmid carrying the required mutation.

3.4 DNA Sequencing

To confirm the presence of mutations, sequencing of all new plasmids was 

carried out using Taq terminator sequencing on an Applied Biosystems 373A 

automated sequencer which was performed by Beatson Institute technical service 

staff.

The region to be sequenced was amplified by a 20pl PCR reaction. 0.5pg 

of template DNA was mixed with 3.2 pmols of the appropriate primer in a total 

volume of 12pl with RQ grade water and 8 \i\ of dye terminator cycle sequencing 

ready reaction premix added to each reaction volume contained in 250pl thin 

walled PCR tube.

The samples were placed in a PTC-100 programmable thermal controller
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(MJ Research) and exposed to 25 cycles of 96°C for 10 seconds, 50°C for 5 

second, 60°C for 4 minutes and were then cooled to 15°C. The PCR products 

were ethanol precipitated as described in materials and methods section 2.2.I.3., 

washed with 70% ethanol. The pellet was dried in a speedivac for 5 minutes 

before being given to a member of technical services for loading onto the 

sequencing gel in 3-4pl of 95% Formamide and Blue Dextran.

3.4.1 Computer analysis of DNA sequence data

Sequence data were aligned and compared to other sequences using the 

Wisconsin package version 9.1, Genetic Computer Group (GCG), Madison, 

Wisconsin, U.S.A.
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Table 3.1 E8 mutants, E8/E5 chimeras, and E5T

Mutants Description

N17S asparagine at 17 mutated to serine

N17Y asparagine at 17 mutated to tyrosine

N17A asparagine at 17 mutated to alanine

E8T serine at 33 mutated to stop codon

E8N-E5C E8 Body (aa 1-29) - E5 Tail (aa 30-44)

E5N-E8C E5 Body (aa 1-31) - E8 Tail (aa 32-44)

E5T tryptophan at 32 mutated to stop codon

A15G-A20G alanine at 15 and 20 changed to glycine

A15P-A20P alanine at 15 and 20 changed to proline

ARLD threonine at 36 changed to alanine

DRLD threonine at 36 changed to aspartic acid

SRLD threonine at 36 changed to serine

N17S, N17A, N17Y, and E8T mutants have been made by Dr R. Anderson a 

previous worker in our laboratory.

E8N-E5C, E5N-E8C, and E5T mutants have been made by Mrs J. Grindlay a 

present worker in this laboratory. All the other mutants were made by myself.
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CHAPTER FOUR 

CHARACTERISATION OF CELL CLONES

4.1 Transfection classes

PalF cells were isolated and grown in culture medium (DMEM containing 

10% serum). Cells were sub-cultured at appropriate intervals to maintain sub

confluent monolayers. Detachment and dispersion of cells was achieved by a brief 

exposure to a solution of 0.025% trypsin, 0.02% EDTA in PBS. The general 

tissue culture condition used for PalF cells are described in chapter 2.23.2.

For stable transfection, cells were transfected by using a lipofection 

transfection technique (DOTAP) as detailed in chapter 2.2.3.7. Fourteen 

transfection classes were performed as in table 4.1. The following plasmids were 

used, pZipneo-HAE8 wild type and mutants, pZipneo BPV-1 HAE5, pZipneo 

BPV-4 E7, pT24 (activated ras) and pJ4Q16-E6 (HPV-16 E6).

As described in detail earlier (1.2.3.2), PalF cells can be transformed by 

BPV-4, or by the E7 and E8 ORFs, only in the precence of an activated ras gene 

(Jaggar et al., 1990; Pennie et al., 1993). Cell immortalization is however 

achieved only with the addition of the E6 ORF of HPV-16 (Pennie et al., 1993; 

Scobie et al., 1997). Consequently, the transfection classes contained pZipneo 

BPV-4 E7, activated ras and HPV-16 E6, to generate stable transformants.
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Comparison of cells transfected with BPV-1 HAE5 is very useful for the 

analysis of the functions of chimeric mutants. To investigate the competence of 

BPV-1 HAE5 to generate immortal transformed PalFs, cells were also transfected 

with BPV-1 HAE5 + HPV-16 E6 + T24ras, BPV-1 HAE5 + T24ras, and BPV-1 

HAE5 on its own as shown in table 4.1.

Transformation was assessed by using a neomycin resistance assay. 

Where G418 resistance was not conferred by the plasmid being used, the pZipneo 

plasmid was co-transfected at a ratio of one to ten of the other constructs.

As detailed in Materials and Methods section 2.2.3.7, each transfection 

class was performed twice in duplicate; i.e. for each transfection class, two 

DOTAP/DNA mixes were made, each mix being split 50:50 between two flasks 

of cells - giving four transfected flasks per class.

Following transfection, cells were selected in medium containing 500 

pg/ml G418 for 21-28 days. After this time, G418-resistant colonies were 

marked. Where appropriate, several colonies were picked from each transfection 

class (taking representative colonies from all four replicate flasks) and expanded 

into cell lines for analysis.

Some mutants including A15G-A20G, A15P-A20P, ARLD, DRLD, and 

SRLD were only used in short term transfection experiments to test their ability to 

trans-activate the cyclin A promoter but were not used for the generation of stable 

transfectants because of time limitations.
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Table 4.1 Transfection classes

pZipneo HAE8 (Wild type) + pZipneo E7 + T24 ras + pJ4Q16-E6

pZipneo HAE8 Mutant N17S + pZipneo E7 + T24 ras + pJ4Q16-E6

pZipneo HAE8 Mutant N17Y + pZipneo E7 + T24 ras + pJ4Q16-E6

pZipneo HAE8 Mutant N17A + pZipneo E7 + T24 ras + pJ4Q16-E6

pZipneo HAE8T + pZipneo E7 + T24 ras + pJ4Q16-E6

pZipneo HAE8N-E5C + pZipneo E7 + T24 ras + pJ4Q16-E

pZipneo BPV-1 HAE5N-E8C + pZipneo E7 + T24 ras + pJ4Q16-E6

pZipneo BPV-1 HAE5T(E5T) + pZipneo E7 + T24 ras + pJ4Q16-E6

pZipneo BPV-1 HAE5 + pZipneo E7 + T24 ras + pJ4Q16-E6

pZipneo BPV-1 HAE5 + --------------- + T24 ras + pJ4Q16-E6

pZipneo BPV-1 HAE5 + T24 ras

pZipneo E7 + T24 ras + pJ4Q16-E6

pZipneo BPV-1 HAE5

pZipneo
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4.1.1 Morphological transformation

To determine if expression of BPV-4 E8 wild type and mutant forms of 

E8 affect PalF cells morphology, cells were fixed in methanol and stained with 

10% Giemsa and photographed using PanF 50 film.

4.4.1.1 Results

Non-transfected cells died after about two weeks of selection. Control 

cells transfected with only empty vector (pZipneo) were not transformed. As 

showed in table 4.3., a few colonies (6.01%) were observed, but these were not 

expandable.

Cells expressing BPV-4 E8 and mutants were morphologically 

transformed (Table 4.2 & 4.3) displaying an irregular morphology than parental 

PalF cells (Figure 4.1a, 4.1b, & 4.1c).

PalF transfectants (BPV-4 E8, its mutants, and BPV-1 E5) and E7 

transfection classes, with no E8, were equivalent with regard to transformation 

efficiency scores (Table 4.2 & 4.3). This finding agrees with previous studies 

(Jaggar et al., 1990), that the presence of BPV-4 E7 gene alone (+ neo + ras) is 

sufficient to morphologically transform PalF cells.

There were a few resistant colonies with BPV-1 E5 + HPV-16 E6 + T24 

ras, and E5 + ras, and E5 on its own (Table 4.2), but none of them was 

expandable. Therefore, BPV-1 E5 like BPV-4 E8 needs E7 to allow expansion.
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Table 4.2 Transformation efficiency of each transfection class 

A

Transfected Expl Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Average

Plasmid FI F2 FI F2 FI F2 F1F2 F1F2 F1F2 F1F2

PalF cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pZipneo nd nd nd nd 0 2 1 0 3 1 nd nd nd nd 1.2

E7 (no E8) 18 12 27 24 13 18 19 23 19 20 nd nd 18 16 18.9

E8 wild type 11 24 16 14 nd nd ndI ndi 23 20 25 20 22 19 19.4

N17S 19 10 nd nd nd nd nd nd nd nd 17 21 18 24 18.2

N17Y 18 9 nd nd nd nd nd nd nd nd 19 15 23 19 17.2

N17A 15 13 nd nd nd nd nd nd nd nd 24 21 17 18 18

E8T 12 15 nd nd nd nd nd nd nd nd 21 18 19 17 17

E8N-E5C nd nd nd nd nd nd nd nd nd nd 19 18 19 17 18.2

E5N-E8C nd nd nd nd nd nd 19 15 18 21 22 13 20 19 18.4

BPV-1 E5 nd nd nd nd nd nd 13 18 nd nd 20 24 nd nd 18.7

E5T nd nd nd nd nd nd nd nd nd nd 17 21 19 16 18.2

All transfectant cell lines (except pZipneo) contain BPV-4 E7, activated ras

and HPV 16-E6. 

nd = not done

Expl = experiment 1, Exp2 = experiment 2 etc.

FI = flask 1, F2 = flask 2

Column marked average is the numerical average of experiments 1-7.

B

Transfected

plasmid

Expl 

FI F2

Exp2

F1F2

Average

BPV-1 E5a 13 18 20 24 18.7

E5 + E6 + ras 3 12 10 8 8.2

E5 + ras 4 6 1113 8.5

E5 alone 1 1 2 3 1.7

a Transfectant cell lines contain BPV-4 E7, activated ras and HPV 16-E6.
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Table 4.3 Standardized average transformation efficiency of each cell type 

A

Cell type T. E. (%) ± SD

PalF cells 0

pZipneo 6.01 ± 1.16

E7 (no E8) 97.50 ± 4.29

E8 wild type 100 ± 4.52

N17S 93.64 ± 4.70

N17Y 88.48 ± 4.75

N17A 92.78 ± 4

E8T 87.62 ± 3.16

E8N-E5C 94.07 ± 0.95

E5N-E8C 94.71 ± 3.02

BPV-1 E5 96.64 ± 4.57

E5T 94.07 ± 2.21

All transfectant cell lines (except pZipneo) contain BPV-4 E7, activated ras 
and HPV 16-E6. The above data were obtained by standardizing the average 
colony numbers (Table 4.1) to the number of colonies obtained with BPV-4 E8 + 
BPV-4 E7 + T24 ras + HPV-16 E6, taken as 100%. T. E. = Transformation 
efficiency SD = Standard deviation

B
Cell type T. E. (%) ± SD

PalF cells 0

BPV-1 E5a 100 ± 4.57

BPV-1 E5 + 16E6 + T24 ras 44 ± 3.86

BPV-1 E5 + T24 ras 45.3 ± 4.20

BPV-1 E5 alone 9.33 ± 0.95

a Transfectant cell lines contain BPV-4 E7, activated ras and HPV 16-E6. 

Numbers were standarized to the number of colonies obtained with BPV-1 E5 + 

BPV-4 E7 + T24 ras + HPV-16 E6 taken as 100%.
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Figure 4.1 Morphology of parental PalF cells and examples of 

morphological transformation of transfected PalF cells

E7 (no E8) cells were transfected with pZipneoE7, pT24 ras, and pJ4Q16- 

E6, while other cells were transfected additionally with an E8 wild type, 

mutant forms of E8 or BPV-1 E5 as noted in each panel (Final 

magnification; X 40).
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Figure 4.1 a

E7 (no E8)PalF cells

t E8N17Sr E8 wild type 51j
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E8N17A

Figure 4.1b

E8N17Y

E8N-E5C
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Figure 4.1c
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4.2 Detection of viral genes and transcripts in PalF cells

In vitro BPV-4 is not a particularly powerful transforming virus and this in 

combination with the difficulties of working with primary cells limited the 

number of clones available for final analysis. Due to the large number of different 

transfection classes being investigated it was decided to characterise 4-5 clonal 

lines from each transfection class.

In the event, generally between 2-4 clones were expanded from each class 

to the stage where they could be fully assayed. By using between 2-4 separate 

clones, we would expect to find that the results from one clone generally 

confirmed or supported the results from other clones, thus reinforcing that any 

effect of BPV-4 E8 wild type or mutants on PalF cells were genuine. In each 

cases clones from both transfection mixes were represented. Due to cell 

contamination there were a few instances among the control-treated transfection 

classes where this target was not met.

The detection and expression of BPV-4 HAE8 wild type, mutants, BPV-4 

E7 and BPV-1 HAE5 genes were confirmed by DNA PCR and RT-PCR as 

described below.

4.2.1 DNA PCR

For the detection of viral DNA, genomic DNA was extracted (chapter 

2.2.4.1) from each G418 resistant clone, lpg  of DNA from each clone was used 

for PCR, applying a Perkin Elmer Kit, together with 0.15pM of Zip primer, 

described in materials and methods chapter 2.2.4.3.I.
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Reactions with control samples which included distilled water, pZipneo 

HAE8, pZipneo E7 plasmids, pZipneo HAE5 plasmid, and lfxg of DNA from 

parental PalF cells, were performed at the same time to ensure that the 

experimental conditions were correct.

To check the correct product was amplified, 5pi of each sample (PCR 

product) was mixed with DNA loading buffer, and then loaded in each well of a 

1.5% (w/v) agarose gel prepared in 0.5% TBE buffer, along with an appropriate 

size marker (100b DNA ladder) into the first and/or last well in the gel and run at 

70-100 constant voltage (using horizontal gel cast apparatus) usually until the 

samples’ blue dye front was 1-3 cm from the end of the gel. Once run, the DNA 

fragments were visualised by staining the gel in running buffer containing 

0.5pg/ml ethidium bromide and then photographing the gel under UV 

transllumination, as detailed in Chapter 2.2.1.6.

The analysis of DNA PCR showed that there were detectable products 

which confirmed the presence of transfected viral DNA of interest in the cell lines 

which co-migrated with the positive control, but, as expected, in the negative 

controls, there were no detectable bands (Figure 4.2). These results indicated the 

presence of E8 and E5 genes. The experiment was performed for at least three 

independent clones for each cell type and a representative result is presented in 

transfected cell lines with wild type E8, E7 (no E8), and BPV-1 E5 (Figure 4.2).

In transfected cell lines with E7 (no E8) four clones were analysed to 

confirm the presence of E7, 3/4 showed the presence of E7 DNA. Wild type E8
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DNA was found in 3/3 clones; N17S DNA in 3/5; N17Y DNA in 2/4; N17A DNA 

in 3/5, and E8T DNA 4/5.

E8N-E5C DNA was detected in 3/5 clones and E5N-E8C DNA in 2/3. 

BPV-1 E5 DNA was found in 2/4 clones and E5T DNA in 2/6. The transfected 

cell lines in which the presence of viral DNA was confirmed were tested for the 

expression of viral RNA by RT-PCR.
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Figure 4.2 A representative DNA PCR analysis of with wild type E8, 

E7 (no E8), and BPV-1 E5

The lane marked M is the DNA size marker 

pZipneoE8, pZipneoE7, pZipneoE5 = Positive control 

H20/PalFs = Negative control 

A = HAE8 wild type transfected sample 

B = E7 (no E8) transfected sample

C = A E5N-E8C transfected sample in which the transfected genes were not 

detected

D = BPV-1 E5 transfected sample

DNA PCR products were detected and these co-migrate with each specific 

positive control
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Figure 4.2
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4.2.2 RT-PCR

To confirm that the plasmid of interest was transcribed in the PalF 

transfectants, the transfected cells were analysed for the presence of mRNA from 

each clone by RT-PCR (chapter 2.2.43.2). mRNA was selected for during the 

reverse transcriptase step by using the specific primers (Table 2.1; chapter

2.2.4.3).

Total cell RNA was isolated using RNAzol B method of extraction as 

detailed in chapter 2.2.4.2. lpg  of RNA was used for RT-PCR using a Perkin 

Elmer Kit and 0.15pM of the appropriate primers as above.

Controls were carried out using l|Ag of RNA treated with DNase to remove 

DNA, nucleic acids from normal parental PalF cells, DEPC-treated water, 

pZipneo HAE8, pZipneo HAE5, and pZipneo E7 plasmids, to make sure that the 

experimental conditions were correct. The samples were then analysed by agarose 

gel electrophoresis as described above and in section 2.2.1.6. to ensure correct 

amplification.

The analysis of RT-PCR showed that in the samples which were not 

treated with DNase, both using MULV reverse transcriptase and with no MULV 

reverse transcriptase, there were detectable products which confirmed the presence 

of transfected viral DNA. In the samples treated with DNase using MULV 

reverse transcriptase a band was observed which co-migrated with the positive 

control, but, as expected, in the DNase treated samples with no MULV reverse 

transcriptase, and in the negative control there were no detectable bands (Figure

4.3). These results indicated that the E8 and E5 genes were transcribed. No
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differences in the extent of transcription were observed for the different 

constructs. The experiment was performed for at least three independent clones 

for each cell type and a representative result is presented in each case (Figure 4.3).

In cell lines transfected with E7 (no E8) three clones were analysed to 

confirm the expression of E7, all were positive. Wild type E8 RNA was found in 

3/3; N17S RNA in 3/3; N17Y RNA 2/2; N17A RNA 3/3, and E8T RNA was 

found in 3/4 clones, of particular note is the finding that in one cell line although 

E8T DNA was detected the gene was not expressed (Figure 4.3c, bottom panel).

E8N-E5C RNA was detected in 2/3 clones, again in one clone the E8N- 

E5C DNA was detected but we could not confirm the presence of its RNA. E5N- 

E8C RNA was found in 2/2 clones; BPV-1 E5 RNA in 2/2, and E5T RNA in 2/2.

Only the transfected cell lines which transcribed the plasmid of interest 

were then expanded for further analysis which will be described in following 

chapters.
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Figure 4.3 RT-PCR analysis of transfectant PalF cells

The lane marked M is the DNA size marker 

A = not treated with DNase 

B = treated with DNase 

+ = with MULV reverse transcriptase 

- = no MULV reverse transcriptase 

HAE8/HAE5 = Positive control 

H20 = Negative control

RT-PCR products of 185bp were detected and these co-migrate with the 

positive control
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Figure 4.3a
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Figure 4.3b

N 17S

o<N
M X

>
+

> DO

+
DO X

>
oo

I I I I I J 1

N17A
o

M 2

1 I
>  : 
i  C

>  0 0  DO

' t  i

HAE8 
-----►

S B | K 3 ■

|
n k

f f i i i B
, , ' , HE

RT-PCR product

RT-PCR product

109



Chapter Four Characterisation of cell clones
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Figure 4.3d
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BPV-1 E5
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4.3 Protein detection and localisation

In order to provide an initial indication of possible interaction between E8 

wild type and mutant forms of E8 proteins and cellular structures, we planned to 

investigate the localisation of HAE8 wild type and mutants proteins by 

Immunofluorescence and relative expression of wild type and mutants by western 

blotting, using mouse monoclonal antibody 12CA5 raised against the HA peptide 

from the influenza virus haemagglutinin tagged at the N-terminus of E8 forms.

Experimental conditions are detailed in chapter 2.2.5.4 and 2.2.5.5. For 

detection of protein from each transfectant clone total cellular protein was 

extracted from all cell classes according to the method detailed in chapter 2.2.5.1. 

Equal amounts of protein (20-30[ig) were loaded into separate wells in a 15% 

SDS-PAGE along with standard protein markers (Rainbow markers) and in vitro 

translated HPV-16 HAE5 protein (a gift from A. Ashby) as a control, separated by 

electrophoresis and transferred onto nitrocellulose membrane (ECL Hybond) 

(chapter 2.2.5.3). Membranes were probed using the primary and secondary 

antibody as described in section 2..2.5.4. Antibody detection was performed using 

enhanced chemiluminescence (ECL).

A band was observed for the control in vitro translated HAE5 (not shown), 

but we could not detected any protein from PalF transfectants.

For localisation of HAE8 wild type and mutants proteins we used 

Immunofluorescence technique as detailed in chapter 2.2.5.5. Controls were 

performed using tubulin antibody (a gift from D. Owens) at the same time to
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ensure that the experimental conditions were correct. Tubulin was visualized (not 

shown) but we could not detect any E8 protein.

Our failure to detect E8 protein may be due to the extreme hydrophobicity 

of this protein, or low levels of E8 expression.
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CHAPTER FIVE 

ANALYSIS OF THE EFFECT OF BPV-4 E8 AND MUTANTS ON 

BEHAVIOUR OF PALF CELLS

5.1 Transformation Assays

The ability to propagate animal cells in culture has allowed the 

development of in vitro assays for the carcinogenic activity of chemicals and 

viruses. Transformation of cultured cells clearly provides a simpler and more 

quantitative assay for the biological activity of chemical and viral carcinogens 

than induction of tumors in experimental animals.

The extent of transformation, in this series experiments, was measured as 

four separate parameters: anchorage independent growth, focus formation, cell 

population growth in low serum (0.5% FCS) and high serum (10% FCS), and 

tumorigenicity in nude mice.

5.1.1 Anchorage independent growth

One property associated with transformation of fibroblasts is the loss of 

requirement for attachment to the substratum (anchorage independence). The 

ability of a cell line to form colonies in semi-solid media is taken as a phenotypic 

measure of its degree of transformation. The extent of transformation of E8 lines 

was assayed by plating cells in Methocel-based medium.
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Efficiency of methocel colony formation was determined by adding 105 

transfectant cells to 15 ml of 1% methocel including 30% Foetal Calf Serum 

(FCS) as detailed in Materials and Methods section 2.2.3.10.3. This mix was 

plated in bacterial petri dishes, in duplicate, and maintained at 37°C for 12 days 

before scoring.

Each plate was scored for colonies by counting three areas (~ 9mm per 

area) from each plate. Averaging the colony numbers of all three areas divided by 

9 indicates colony numbers per mm2, then multiplying by 100 gives colonies per

cm2. To give an estimate of total numbers of colonies, the colonies number in

2 2 each cm were multiplied by the area of dish (64cm ). The number of colonies

was expressed as a percentage of the total number of cells seeded into each plate

(105) on day 0.

5.1.1.1 Results

Among PalF transfectants only cells expressing BPV-4 E8 wild type, 

E8N17A, E8N17S, E5N-E8C and BPV-1 E5 showed appreciable anchorage- 

independent growth, with cells containing E8N17A displaying the highest 

efficiency of colony formation (Figure 5.1; table 5.1a & 5.1b). The colony 

formation efficiency of E8N17A is even higher in agar where it reached 25% (not 

shown). E8N17Y, E8T, E8N-E5C, and E5T were not capable of anchorage 

independent growth
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Thus a single amino acid change at residue 17, from N to Y is capable of 

abolishing this transforming function of E8, while another from N to A, results in 

a molecule with a greater ability of inducing anchorage independence than even 

wild type E8. These results concur with those obtained by other workers for E5 

and points to the importance of the residue at position 17 (Goldestein et al., 

1992b; Sparkowski et al., 1994; Sparkowski et al., 1996).

Neither E8T or E5T are capable of conferring anchorage independent 

growth, nor is the E8N-E5C chimera. On the contrary E5N-E8C is equally 

capable of inducing this transformed phenotype as wild type E8 or wild type E5. 

The results obtained with E5T concur with those obtained by other workers 

(Green and Loewenstein, 1987) and point to the importance of an intact 

hydrophilic tail for the biological activity of both E5 and E8 proteins. The results 

also show that, while the C-terminal tail of E8 can substitute for the tail of E5 in 

conferring anchorage independent growth, the reciprocal combination abolishes 

this ability, and therefore the individual C-terminal domains are not functionally 

interchangeable.

Together these data suggest that the nature of residue 17 and the 

hydrophilic tail of the BPV-4 E8 protein are important for anchorage independent 

growth.
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Table 5.1a Anchorage independent growth of each separate clone of PalF 

transfectants and control cells

Cell line Description Number of anchorage 
Independent colonies 

in Methocel (%)

PalF Parental
PalFs

0.6 , 1.1

E7i Control (no 1 ,1 .5
E7a E8) 0.8,1.31
E7g 1.18,1.4

E8a (5.5) BPV-4 E8 12 ,14
E8b (1.1) wild type 9.4,11
Mutant la N17S 10,12
Mutant lc 13 ,14.7
Mutant le 13.3,14
Mutant 2f N17Y 4 ,4 .2
Mutant 2g 1 ,1 .2
Mutant 3 a N17A 17.7,18.9
Mutant 3b 17.5 ,19.4
Mutant 3f 19.4,20.1
Mutant 4f E8T 1.2,1.9
Mutant 4a 2.6,2.84
Mutant 46 2 .8 ,3
Mutant 6a E8N-E5C 2.1,3.3
Mutant 6e 0.71,1.4
Mutant 7b E5N-E8C 12.3 ,14
Mutant 7U 9.4,11.85

E5i BPV-1 E5 8 ,1 0
E5d 11 ,12

E5Ta E5T 1.2,0.9
E5Tb 1.3 ,1.19

All transfectant cell lines contain BPV-4 E7, T24 ras (activated ras) and HPV 

16-E6.

Colony formation was scored by counting the total number of colonies in each 

plate of duplicate plates for each cell type. The number of colonies was expressed 

as a percentage of the total number of cells seeded into each plate (105) on day 0.
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Table 5.1b Summary of anchorage independent growth

Cell type Anchorage 

independent growth

Average no*, of 

Anchorage independent 

colonies (%) ± SEM

PalF cells 0.9 ± 0.25

Control (no E8) 1.2 ±0.18

E8 wild type + 11.6 ±1.36

N17S + 12.8 ± 1.17

N17Y 2.6 ± 1.22

N17A + 18.8 ± 0.72

E8T 2.4 ± 0.49

E8N-E5C 1.9 ±0.78

E5N-E8C + 11.9 ±1.34

BPV-1 E5 + 10.3 ± 1.20

E5T
-

1.2 ±0.12

All transfectant cell lines contain BPV-4 E7, T24 ras (activated ras) and HPV 

16-E6.

* Average calculated from data in table 5.1 

SEM = standard error of mean
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E8N17S

F i g u r e  5 .1 a  A n c h o r a g e  i n d e p e n d e n t  g r o w t h  o f  s t a b l e  P a l F  t r a n s f e c t a n i s

Control cells (no E8) were transfected with pZipneoE7, pT24 ras. and 
pJ4f216-E6, while other cells were transfected additionally with an E8 
wild type or mutant forms o f E8 as noted in each panel (E8N17S, 
E8N17Y, E8N17A).
The average efficiency of growth in methocel is indicated in each panel as 
percentage of the plated cells (Final magnification; X 40).
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jjgr "-f'"••r'-’

E8N-E5C

1.9%

E5T

.2%

Figure 5.1b Anchorage independent growth of stable PalF transfectants with 
E8T, E8N-E5C, E5N-E8C, BPV-1 E5, and E5T.
T he average efficiency o f grow th in m ethocel is indicated  in each panel 
as percentage o f  the p lated cells (Final m agnification ; X 40).
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5.1.2 Focus formation assay

A major characteristic of normal fibroblasts in culture is density-dependent 

inhibition of growth; once a group of cells grow to completely cover the dish or 

layer of feeder cells, so that all cells are in contact, cell division ceases (contact 

inhibition).

To investigate whether the transfectant cells lose contact inhibition when 

co-cultured with excess normal parental PalF cells, and whether the inhibition 

correlates with the presence of gap junction intercellular communication 

(discussed in chapter 7) 200 cells of each PalF transfectant (Table 5.2) were mixed 

with 25,000 normal PalF cells. The mix was plated in each well of 6 well plate, in 

triplicate as described in materials and methods section 2.2.3.10.1. Three weeks 

later the cells were fixed in methanol and stained with 10% Giemsa solution and 

photographed.

Cells expressing BPV-4 E8 wild type and E8N17A escaped contact 

inhibition as assessed by focus formation (Figure 5.2). On the contrary, cells 

expressing all the other E8 mutants were incapable of forming foci. Surprisingly, 

also the cells expressing BPV-1 E5 were incapable of forming foci. Only 

E8N17A maintains the transformation potential of E8 wild type, and even BPV-1 

E5 can not induce loss of contact inhibition in primary bovine cells. This latter 

observation suggest that E8 may have additional function to BPV-1 E5 and acts 

differently from BPV-1 E5.
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V '  ■
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Control (no E8)

M f M r n

F i g u r e  5 .2  F o c u s  f o r m a t i o n

Control cells (no E8) were transfected with pZipneo E7, pT24 ras, and pJ4£216- 
E6, while other cells were transfected additionally with an E8 wild type or E8 
N17A as noted in each panel
Only cells expressing E8 wild type and E8N17A abolish contact inhibition as 
assessed by focus formation (Final magnification; X 40).
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Table 5.2 Contact inhibition of PalF transfectant cells

Cell type Contact inhibition

PalF cells yes

Control (no E8) yes

E8 wild type NO

BPV-1 E5 yes

E8 N17S yes

E8 N17Y yes

E8 N17A NO

E8T yes

E8N-E5C yes

E5N-E8C yes

5.1.3 Cell population growth in low (DMEM-0.5%) and high serum 

(DMEM-10%)

It has been shown that NIH-3T3 cells expressing BPV-4 E8 continue to 

proliferate in low serum, but do not appear to activate an autocrine mechanism 

(O’Brien and Campo, 1998).

To determine if the cell lines described here can escape growth arrest in 

low serum, two separate clones per transfectant class were assayed as follows: 

Cells (3000 cells/well) were seeded in 96 well tissue culture plates, in triplicate. 

After four hours incubation, during which time the cells attached to the bottom of 

each well, growth medium was changed to DMEM containing 10% serum or 0.5% 

serum. Population growth was determined, at daily intervals for 7 days, by

124



Chapter Five Analysis of the effect o f BPV-4 E8 and mutants on behaviour of PalFs

staining cells with 0.1% Crystal Violet in 20% Methanol. Dye was solubilized 

and absorbance was determined at 590nm using a automated plate reader 

(Dynatech MR7000) as described in Materials and Methods, section 2.2.3.10.2. 

Cell growth is expressed as a growth index representing the fold change in cell 

population from day 0 (harvested 4hr. after seeding the cells).

5.1.3.1 Results

Transfectants and parental PalF cells have very similar population growth 

kinetics when maintained in normal growth medium containing 10% serum 

(Figure 5.3). However, cells expressing E8 wild type, E8N17A or BPV-1 E5 

continue to proliferate in low serum, while there is little or no population growth 

in the control cells (Figure 5.3 ) or cells with other mutant forms of E8, including 

E8N17S (Figure 5.3a) and E5N-E8C (Figure 5.3c ) which could grow in 

suspension culture. Some cell lines are therefore both capable of anchorage 

independent growth and of proliferation in low serum, while others are capable of 

growing in suspension but cannot proliferate in the absence of serum mitogens. 

Thus the transformation phenotypes of anchorage independent growth and of 

growth in low serum can be segregated in cells expressing E8N17S or E5N-E8C.

In addition to this information on E8 transformed cells, this is the first time 

that the ability of cells expressing BPV-1 E5 to growth in low serum has been 

demonstrated. A summary of cell population growth in low serum (DMEM-0.5%) 

is shown in table 5.3.
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Table 5.3 Cell growth in low serum

Cell line Description Growth in low serum

PalF Parental PalF cells no

E7a Control (no E8) no

E7b no

E8a (5.5) BPV-4 E8 wild type YES

E8b (1.1) YES

Mutant la E8 N17S no

Mutant lc no

Mutant 2f E8 N17Y no

Mutant 2g no

Mutant 3b E8 N17A YES

Mutant 3f YES

Mutant 4f E8T no

Mutant 4g no

Mutant 6a E8N-E5C no

Mutant 6e no

Mutant 7b E5N-E8C no

Mutant 7U no

E5i BPV-1 E5 YES

E5d YES

E5Ta BPV-1 E5 mutant no

E5Tb (E5T) no
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Figure 5.3 Cell proliferation growth in high and low serum medium

Two independent clones for each cell type were maintained in high and low

serum for 7 days

HS = High serum (10% FCS)

LS = Low serum (0.5% FCS)

Bar = standard deviation
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Figure 5.3b
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Figure 5.3c
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5.1.4 Tumorigenicity Assay in Athymic Mice

The ability to form tumours in experimental animals is an indicator of full 

cell transformation. An important test system for such in vivo assays is the nude 

mouse, which carries a mutation resulting in thymic deficiency. As a 

consequence, the thymus-derived (T) lymphocytes do not develop, and the mouse 

is immunogically incompetent. Inoculation of these mice therefore provides an 

assay for tumorigenicity that is not complicated by the possibility of immune 

rejection. This is particularly useful because it allows testing tumorigenicity of 

cell line in a nonsyngeneic host that would otherwise reject the foreign tumor 

graft.

To investigate the tumorigenicity of the transfected cells (chapter 4), some 

transfectant clones, as shown in table 5.4, were suspended in 0.1 ml of sterile PBS 

at a concentration of 108 cells/ml. PFA 15.6 is a tumorigenic cell line transfected 

with plasmids expressing mutant p53 + BPV-4 + T24 ras + HPV-16 E6 (a gift 

from Dr L. Scobie) and was used as a positive control. Nude mice (three per 

assay) were each injected subcutaneosly with this suspension (detailed in 

Materials and Methods, section 2.2.3.10.4), and examined for tumour growth 

weekly up to 15-20 weeks post injection.

5.1.4.1 Results

Subcutaneous injection of nude mice with the cell lines resulted in the 

appearance of small nodules which disappeared after three to four weeks. This is
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indicative of a reaction at the site of injection and not of tumor formation. 

Tumorigenicity was detected only in the PFA 15.6 positive clone. Despite 

showing other evidence of phenotypic transformation none of the injected PalF 

transfectant cells were tumorigenic. Thus, neither of BPV-4 E8 wild type or its 

mutant forms cause cells to be tumorigenic. These results concur with the study 

of Pennie et al (1993) and suggest that additional factors are needed for full 

transformation of PalF cells. This is similar to the in vivo situation where the 

progression of BPV-4 induced papillomas to carcinomas is co-factor dependent.

Table 5.4 Tumorigenicity of PalF transfectant cell lines in nude mice.

Cell line Description Incidence 

(no. mice positive / No. mice 

tested)

PFA 15.6 (mutant p53 + 

BPV-4 + T24 ras 

+ HPV-16 E6)

3/3

E7a Control (no E8) 0/3

E7i 0/3

E8a (5.5) BPV-4 E8 wild 0/3

E8b (1.1) type 0/3

Mutant 3a E8 N17A 0/3

Mutant 3b 0/3

Mutant 3f 0/3
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5.1.5 CONCLUSIONS

Together these data suggest that:

Cells expressing E8 are transformed, failing to exit the cell cycle when 

deprived of serum mitogens, exhibiting loss of contact inhibition and being 

capable of anchorage independent growth. PalF cells which do not harbour BPV- 

4 E8 do not show any of these phenotypes, despite the presence of BPV-4 E7, 

HPV-16 E6 and activated ras (Table 5.5). Although E8 plays a pivotal role in 

PalF transformation, the generation of stable transfectants requires the presence of 

E7. This contrasts with the transformation of established mouse NIH-3T3 cells by 

E8 alone (O’Brien and Campo, 1998).

These contradictory observations may be due to inherent differences 

between established and primary cells. Normal cells in culture have a limit to the 

number of times they can divide and when this limit is reached the cells 

irreversibly leave the cell cycle and become senescent. PalF cells are primary 

cells and, as expected, senesce on continued culture. BPV-4 E7 possesses the two 

Cys-X-X-Cys motifs and potential pl05Rb binding domain (Jaggar et al., 1990). 

Mutation of either of these domains abolish the protein’s transforming ability in 

vitro (Campo et al., 1994b; Jackson et al., 1996). As pl05Rb is a tumor 

suppressor protein which negatively regulates the cell cycle (Sherr, 1994), it could 

be proposed that BPV-4 E7-mediated disruption of the normal function of 

pl05Rb, and the resulting alterations in cell cycle control, may provide optimal 

conditions for the action of E8 gene by providing cell survival and clonal 

expansion.
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In established cells one or more immortalizing events have already 

occurred and any of these may allow the expression of E8 transformation 

potential. For example, it has been shown that a member of the cell cycle 

inhibitor family, p l6 INK4a, that induce Gi arrest (for review see Hunter and Pines,

1994) is lost in the NIH-3T3 fibroblasts (Quelle et al., 1995) therefore the loss of 

P16INK4a promotes cell proliferation and this event may complement the 

expression of E8 functions in NIH-3T3 cell.

The asparagine residue at position 17 appears to be critical for the integrity 

of BPV-4 E8 biological function. Mutation of this single amino acid produces 

profound changes in the activity of the protein. Mutation to an alanine creates a 

hypertransforming molecule with increased ability to induce anchorage 

independent growth, and mutation to a serine residue leads to an intermediate state 

that allows only the maintenance of the anchorage independent growth.

Another critical domain of BPV-4 E8 is the hydrophilic tail of the protein, 

required for anchorage independent growth. Neither E8T or E5T are capable of 

conferring anchorage independent growth, nor is the E8N-E5C chimera. On the 

contrary E5N-E8C is equally capable of inducing this transformed phenotype as 

wild type E8 or wild type E5. These results indicate the importance of an intact 

hydrophilic tail for anchorage independent growth and also demonstrate that the 

individual C-terminal domains of E8 and E5 are not functionally interchangeable.

The ability of E8 to induce anchorage independent growth can be separated 

from the ability of forming foci or growing in low serum. Interestingly, cells 

expressing BPV-1 E5 were incapable of forming foci. Thus, the ability to form
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foci, and growth in low serum can be dissociated. The results obtained also 

suggest that E8 acts differently from BPV-1 E5 to bring about cell transformation.

Table 5.5 Summary of transformation characteristics of cells expressing E8 

or its mutants

Cell type Focus formation Growth in low 

serum

A.I. growth

Control (no E8 ) - - -

E8  wild type + + +

BPV-1 E5 - + +

E8  N17S - - +

E8  N17Y - - -

E8  N17A + + ++

E8 T - - -

E8N-E5C - - -

E5N-E8C - - +

E5T nd - -

All cell lines contain BPV-4 E7, T24 ras (activated ras) and HPV 16-E6. 

A.I. anchorage independent growth 

+ represent the extent of expression of the characteristic.
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CHAPTER SIX

ANALYSIS OF THE EFFECT OF BPV-4 ES AND MUTANTS ON TRANS- 

ACTIVATION OF THE CYCLIN A  PROMOTER

6.1 Introduction

The cell cycle is the sequence of events through which a cell duplicates its 

genome, grows, and divides into two daughter cells. The ability of a cell to 

duplicate is one of the most fundamental properties that defines life. Most 

cancers are in essence caused by deregulation of the cell cycle.

The cell cycle is divided into four phases: the Gi (gap 1) phase before 

DNA replication, DNA replication itself (DNA synthesis) (S phase), the G2 (gap 

2) phase before cell division, and finally cell division (mitosis) (M phase). The 

stages outside M phase are collectively known as interphase. Quiescent 

mammalian cells that are not actively growing reside in Go, a resting state. In 

mammalian cells, cell growth control is exerted primarily in the Gi phase. The 

factors modulating exit from Go and progression through Gi are critical for 

determining overall growth rate.

Work in yeast revealed the presence of checkpoints in the cell cycle which 

are required to ensure that the cell division process is successful. The Gi/S 

checkpoint ensures that DNA is intact and undamaged before replication proceeds
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and the G2/M checkpoint appears to ensure that DNA replication has successfully 

completed before cell division occurs (Forsburg and Nurse, 1991; Nasmyth, 

1993).

However, some of the controls exerted on progression through the cell 

cycle are lost when cells become transformed; in particular the controls or check

points at the Gi/S and the G2/M transitions are less stringent or even absent in 

cancer cells. It has been shown that some of the most fundamental changes in 

transformation are in the protein kinase complexes that are thought to regulate cell 

cycle checkpoints (Pines, 1995). The most intensively studied of these regulators 

are complexes between members of the cyclin and the cyclin-dependent kinase 

(CDK) families.

6.1.1 Cyclins and Cyclin-Dependent Kinases (CDKs)

Cyclins are defined as proteins that share homology in a region of 

approximately 100 amino acid called the cyclin box. The cyclin box binds 

members of a well-conserved family of protein kinases that have the defining 

property of requiring a cyclin partner for their activation. Hence their designation 

as cyclin dependent kinases (Pines, 1995).

In invertebrate oocytes, it was observed that cyclins were synthesised 

during interphase and destroyed at the end of mitosis. Initially, two cyclins, A and 

B, were identified. Subsequently, six families of mammalian cyclin genes have 

been identified; they are classified by the extent of sequence homology and by the
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point in the cell cycle at which they function. Cyclins are divided into two 

functional classes: those that act at the G2/M boundary (cyclins B1 and B2) and 

those that act at the Gi/S boundary (cyclin C, D, and E). Cyclin A is the 

exception; it is present and functioning from late Gi to S through M phase (Pines, 

1992; Sherr, 1993).

Progression through the cell cycle in mammalian cells, including 

anchorage-dependent passage through Gi (Guadagno and Assoian, 1991), is 

controlled by the co-ordinate activation of cyclin-dependent kinases (CDKs). 

CDK activity is regulated at multiple levels including the phosphorylation of 

specific residues that activate or inhibit the kinase, and the availability of related 

cyclins; consequently the expression of cyclins is strictly regulated in normal cells.

D-type cyclins (Dl, D2, or D3) complexed to CDK4 or CDK6  are required 

for progression through to early/mid Gi phase of the cell cycle and in the decision 

to embark on a new cell cycle or to enter a quiescent state (Go) after mitosis, 

linking cell exposure to external cues to entry into the cell cycle (Won et al., 1992; 

Baldin et al., 1993). Cyclin E is expressed in late Gi and is also required for entry 

into S phase in mammalian fibroblasts (Resnitzky et al., 1994; Ohtsubo et al.,

1995), while cyclin A is first expressed at the Gi/S transition and is required for 

the successful completion of S-phase and passage through G2 (Girard et al., 1991; 

Pagano et al., 1992). Cyclin B is first expressed in S-phase and its complex with 

cdc2 is a key regulator of mitosis (Hayles et al., 1994).
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Another level of control of cyclin-CDK complexes is via a strong 

inhibition of activity by two families of small proteins: the INK family, pl5, p l 6 , 

p i9 which target cyclin D-CDK4/CDK6 complexes and prevent cyclin binding, 

and members of the Kip/Cip family composed of p21, p27 and p57, which target 

cyclin A - and E-CDK2 complexes (Sherr and Roberts, 1995).

Cyclin A gene expression is regulated at the level of transcriptional 

initiation with expression being repressed in Gi and strongly induced as cells enter 

S-phase (Henglein et al., 1994). The absence of degradation of cyclin A might 

lead to unregulated and premature DNA synthesis and to cell proliferation, thus 

contributing to cell transformation. Nevertheless, changes in cyclin A expression 

appear to be rare in most types of cancer. Cyclin E-CDK2 activity has been 

shown to be required for cyclin A transcription in established murine fibroblast 

(NIH-3T3) cells (ZerfassThome et al., 1997). Cyclin A expression is down- 

regulated in NIH-3T3 cells maintained in suspension or in low serum culture 

conditions; under these conditions p27iapi is elevated and blocks cyclin E-CDK2 

mediated de-repression of the cyclin A promoter (ZerfassThome et al., 1997). 

Also, cells maintained in low serum (Firpo et al., 1994) or in suspension 

(Guadagno et al., 1993; Fang et al., 1996) do not express cyclin A and cannot 

progress into S-phase. Constitutive expression of cyclin A allows NRK 

fibroblasts to proliferate in suspension (Guadagno et al, 1993), while induction of 

cyclin A expression is sufficient to promote entry into S-phase of fibroblasts made 

quiescent by serum withdrawal (Resnitzky et al., 1994).
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The intracellular concentration of p27iapi is a major element of cell cycle 

progression through the GI restriction point (Coats et al., 1996) and has emerged 

as a key target for viral oncoproteins. Both human Adenovirus E1A and HPV-16 

E7 proteins can inactivate p27 by forming complexes which make p27 non

functional in vitro and in vivo (Mai et al., 1996; ZerfassThome et al., 1996). 

Furthermore, BPV-4 E8 , in NIH-3T3 cells inactivates p27Kn>I and trans-activates 

cyclin A gene promoter in both high and low serum conditions (O’Brien and 

Campo, 1998).

Hence we decided to measure cyclin A promoter activity in our stable 

transfectant cell lines (chapter 4) to determine if, as in NIH-3T3 cells E8  can de

regulate expression of cyclin A, and to investigate the correlation between 

promoter activation of cyclin A and cell transformation brought about by the 

different E8  mutant forms as described in chapter five. We were also interested to 

test the ability of additional mutants including A15G-A20G, A15P-A20P, ARLD, 

DRLD, SRLD, to activate the cyclin A promoter in short term transfection 

experiments.

6.2 Experimental procedure

6.2.1 Cyclin A promoter activity measurement

Growing stable transfectant cells (105) (chapter 4) were plated in each 

well of a 6  well plate, in duplicate, and transiently transfected with calcium 

phosphate as detailed in chapter 2.2.3.5., using 1 \ig of luciferase reporter plasmid
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driven by the human cyclin A promoter. Reactions were made up to 3 fig with 

sonicated salmon sperm DNA. Co-transfection classes are shown in table 6.1. 

After 16-18hr., cells were washed twice with 2ml. PBS and incubated in low 

serum or growth medium for a further 24 hr. before being harvested and lysed in 

reporter lysis buffer. Luciferase activity was determined using a luminometer 

with automatic injection (chapter 2.2.3.6).

Table 6.1 Co-transfection of stable transfectants

pZipneo E7 (no E8 ) + 2fig SSD + lfig luciferase reporter plasmid

pZipneo HAE8  + 2fig SSD + lfig luciferase reporter plasmid 

pZipneo HAE8  N17S + 2fig SSD + lfig luciferase reporter plasmid 

pZipneo HAE8  N17Y + 2fig SSD + lfig luciferase reporter plasmid 

pZipneo HAE8  N17A + 2fig SSD + lfig luciferase reporter plasmid 

pZipneo HAE8  E8 T + 2fig SSD + lfig luciferase reporter plasmid 

pZipneo HAE8N-E5C + 2fig SSD + lfig luciferase reporter plasmid 

pZipneo HAE5N-E8C + 2fig SSD + lfig luciferase reporter plasmid 

pZipneo HAE5 + 2fig SSD + lfig luciferase reporter plasmid 

SSD = Salmon sperm DNA
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6.2.2 Results and discussion

Under normal growth conditions BPV-4 E8  wild type expression led to at 

least a 200 fold increase in cyclin A promoter activity when compared with 

control cells transfected with 2 pg of the empty vector, pZipneo (Figure 6.1a). A 

similar activation was observed with BPV-1 E5 wild type (at least a 180 fold 

increase) (Figure 6.1a). Of the E8  mutants, only E8N17A had comparable 

promoter trans-activation activity with at least a 150 fold increase (Figure 6.1a); 

low levels of trans-activation were observed with mutant E8N17S (at least a 14 

fold increase) and with E5N-E8C (at least a 18 fold increase) (Figure 6.1b). In 

cells expressing the other mutants including E8N17Y, E8 T and E8N-E5C the 

cyclin A promoter was slightly but significantly transactivated, with at least a 6  

fold increase above the control cells containing only pZipneo plasmid. However, 

the same level of transactivation was observed for PalF transfectants which did 

not contain E8 , but harboured BPV-4 E7, activated ras and HPV-16 E6  (Figure 

6.1b). Therefore, this 6  fold increase in activity is probably due to the effect of E7 

and/or activated ras. It has been reported that activated ras induces significant 

overexpression of cyclin D (Filmus et al., 1994) and that the overexpression of 

cyclin D leads to pl05Rb phosphorylation. The phosphorylated form of pRb loses 

its affinity for E2F transcription factor, and releases E2F which results in 

induction of cyclin A promoter (Schulze et al., 1995). Therefore only values of 

trans-activation higher than those observed in E7 cells can be ascribed to E8 . The 

ability of E8  to trans-activate the cyclin A promoter correlates with its ability to
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induce anchorage independent growth: E8  mutants capable of inducing anchorage 

independent growth can trans-activate the cyclin A promoter, although to different 

extents.

When the cells were maintained in low serum for 24hr, promoter activity 

remained high in the case of wild type E8  and E8N17A; low levels of trans

activation were also observed with E5N-E8C, but not with the other mutants or 

control cells (Figure 6.1a & b). BPV-1 E5 wild type could trans-activate the 

promoter in low serum , but apparently to a lesser extent than E8  wild type, 

suggesting a higher degree of growth factor dependence (Figure 6.1a).

Cells expressing E5N-E8C can trans-activate the cyclin A promoter to the 

same extent in high and low serum but to a lesser degree than either E8  or E5 

(Figure 61a and 61b); however these cells fail to grow in low serum. One possible 

explanation for this apparent discrepancy is that cells expressing E5N-E8C do 

proliferate in low serum but this is balanced by cell death, resulting in little or no 

cell growth. This would have to be tested.

These results indicates that trans-activation of the cyclin A promoter in 

low serum correlates with the ability of the cells to continue growth in these 

conditions, with the exception of E5N-E8C.

To investigate whether the differences in cyclin A promoter activity 

between control cells and those expressing BPV-4 E8  wild type or its mutants 

were due to differences in transfection efficiency between cell lines, the cyclin A
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Figures 6.1(a, b), 2, and 3: 

Trans-activation of the human cyclin A promoter

To measure of the cyclin A promoter activation, the luciferase reading for 

each sample (stable and short-term transfection) was corrected according to the 

following equation:

The fold induction of luciferase activity is given after normalisation for 

cellular protein content (Sample’s luciferase reading - background luciferase 

reading (Lysis buffer) + protein concentration of related samples) and, in each 

case, mean values from duplicate samples are given for a representative 

experiment.

The reading with the empty vector (pZipneo) was set at 1, and the luciferase 

reading of the samples were normalised to the control reading.

Once normalised, the results from all the separate experiments were 

amalgamated; the average luciferase reading and the standard error of the mean 

(S.E.M), were calculated for each transfection class. The experiment performed 

at least twice.

Bar =standard error of mean
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reporter gene plasmid (lpg) was also transiently co-transfected with BPV-4 HAE8  

wild type and some of its mutants in PalF cells (table 6.2). The procedure of this 

experiment was explained in section 6.2.1. Control including co-transfected 

luciferase reporter gene plasmid with pZipneo (empty vector), was performed at 

the same time to ensure that the experimental conditions were correct.

Qualitatively similar results were obtained in transient transfection 

experiments to those obtained with stable transformants (Figure 6.2). This 

demonstrates that the differences in cyclin A promoter activity between control 

cells and those expressing E8  wild type, its mutants, or E5 were not due to 

differences in transfection efficiency between cell lines. In addition, a C-terminus 

truncated forms of BPV-1 E5 (E5T) comprising the membrane-localized region of 

E5 domain was incapable of trans-activating the cyclin A promoter, as was E8 T. 

The differences in the level of cyclin A promoter activation between transiently 

and stably transfected cells can be partially attributed to the proportion of cells in 

each population carrying the transfected DNA.

These results extend those obtained previously with NIH-3T3 cells 

expressing E8  (O’Brien and Campo, 1998) in which the cyclin A promoter is 

transactivated by E8 , and confirm that cyclin A transactivation correlates with 

anchorage independent growth and with proliferation in low serum.

Since E8  has a postulated a-helical domain, we were interested in 

determining whether this domain is responsible for the biological activity of the 

protein. Proline has the property of forcing a bend in the main chain and of
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Table 6.2 Short-term transfection classes

2 pig pZipneo + lpig luciferase reporter plasmid

2 pig pZipneo HAE8  + lpig luciferase reporter plasmid

2 pig pZipneo HAE8 T + lpig luciferase reporter plasmid

2 pig pZipneo E8N-E5C + lpig luciferase reporter plasmid

2 pig pZipneo E5N-E8C + lpig luciferase reporter plasmid

2 pig pZipneo HAE5 + lpig luciferase reporter plasmid

2 pig pZipneo E5T + lpig luciferase reporter plasmid

2 pig pZipneo HAE8  A15G-A20G + lpig luciferase reporter plasmid

2 pig pZipneo HAE8  A15P-A20P + lpig luciferase reporter plasmid

2 pig pZipneo HAE8  ARLD + lpig luciferase reporter plasmid

2 pig pZipneo HAE8  DRLD + lpig luciferase reporter plasmid

2 pig pZipneo HAE8  SRLD + lpig luciferase reporter plasmid

Each transfection class was performed twice
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disrupting an a  helix. Thus alanine residues at positions 15 and 20 were changed 

to proline (E8  mutant A15P-A20P). The same two alanine residues were also 

mutated to the chemically similar amino acid glycine (E8  mutant A15G-A20G) to 

control for any effect due to changes in residues rather than in structure.

These mutants were tested for their ability to trans-activate the cyclin A 

promoter in transient transfection assays as described for the other mutants.

As shown in figure 6.3., under normal growth conditions PalF cells 

transiently transfected with E8  wild type led to at least a 7.5 fold increase in cyclin 

A promoter activity, compared with control cells transfected with empty vector 

(pZipneo). Mutant A15G-A20G could trans-activate the cyclin A promoter at 

least 4 fold but to a lesser extent than E8  wild type; cells transiently transfected 

with E8  mutant A15P-A20P did not transactivate the cyclin A promoter.

When the cells were maintained in low serum conditions for a 24hr. period 

following transfection, promoter trans-activation was sustained in the case of E8  

wild type (at least a 5.2 fold increase). Neither A15G-A20G or A15P-A20P 

significantly trans-activated the cyclin A promoter in these conditions (Figure 

6.3).

Taken together, these results suggest that substitution of these two amino 

acids with proline could alter the conformation of the hydrophobic domain and 

that the postulated a-helix form of E8  may have an effect on cell transformation. 

They also point to the importance of the nature of these residues for the E8
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functions, as their mutation to glycine impaired the transactivation ability of E8 

although to a lesser extent than the proline substitution.

In the C-terminus hydrophilic tail of E8 there is a possible casein kinase II 

(CKII) phosphorylation sites (TRLD) at positions 36-39. We were interested in 

determining the possibility that E8 might be phosphorylated by CKII and whether 

this phosphorylation could affect its biological activities.

To study the effect of phosphorylation by CKII of the putative site on the 

biological activities of E8, three mutations were generated in this site. The 

threonine was changed to aspartic acid, alanine, or serine, in mutants DRLD, 

ARLD and SRLD respectively. Aspartic acid is negatively charged, mimicking a 

phosphorylated amino acid. Alanine can not be phosphorylated, but serine, like 

threonine, can be phosphorylated by CKII.

These mutants were tested for their ability to trans-activate the cyclin A 

promoter in short term transfection experiments.

Under normal growth conditions, PalF cells transiently transfected with E8 

wild type led to at least a 7.5 fold increase in cyclin A promoter activity when 

compared with parental or control cells transfected with empty vector (pZipneo). 

Cells transiently transfected with mutant ARLD, which has lost the putative CKII 

phosphorylation site, showed no significant increase in cyclin A promoter activity; 

those with the mutant DRLD, which is negatively charged, showed about a 3.2 

fold increase in cyclin A promoter and those with mutant SRLD, which
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maintains both the putative CKII site, showed about a 5 fold increase in cyclin A 

promoter activity (Figure 6.3).

When the cells were maintained in low serum conditions for 24 hr. period 

following transfection, promoter trans-activation was sustained in the case of E8 

wild type, with at least a 5.2 fold increase. Mutant SRLD induced a 2.5 fold 

increase in cyclin A promoter activity; mutant DRLD induced about a 2 fold 

increase and mutant ARLD was totally incapable of promoter trans-activation 

(Figure 6.3).

In brief, cells transiently transfected with mutant ARLD, which has lost the 

putative CKII phosphorylation site, show less cyclin A promoter activitation than 

those with the negatively charged mutant DRLD or with mutant SRLD in high and 

low serum conditions. Cells transiently transfected with mutant SRLD, which 

maintains the putative CKII site, show more cyclin A promoter activity than either 

mutants DRLD or ARLD in both high and low serum conditions.

These results support the possibility that BPV-4 E8 might be 

phosphorylated by CKII and that this phosphorylation could have an effect on the 

biological activities of the protein.

Also, low levels of trans-activation of the cyclin A promoter by mutant 

SRLD in low serum conditions and mutant DRLD in both high and low serum 

conditions compared with wild type E8 show that the substitution of a single 

amino acid in the hydrophylic tail has an effect on the ability of the protein to 

trans-activate the cyclin A promoter.
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Therefore, analysis of the transformation status of established lines 

containing these mutants (A15G-A20G, A15P-A20P, ARLD, DRLD, SRLD) 

could be particularly interesting. We would expect the transformation phenotype 

to be related to the ability of the E8 mutants to trans-activate the cyclin A 

promoter.

In conclusion, we have demonstrated that in PalF cell, as in NIH-3T3 cells 

(O’Brien and Campo, 1998), E8 expression promotes transcriptional trans

activation of the cyclin A promoter under conditions where cyclin A transcription 

is normally diminished or is not detectable in control cells.

Trans-activation of the cyclin A promoter correlates with the ability of the 

PalF cells to grow in suspension; E8 mutants still capable of conferring these 

phenotypes can trans-activate the cyclin A promoter, despite doing so to different 

extents.

We conclude that mutations which selectively abolish the ability of E8 

protein to trans-activate the cyclin A promoter cause defects in transforming 

activity.
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CHAPTER SEVEN 

GAP JUNCTIONAL INTERCELLULAR COMMUNICATION (GJIC)

7.1 Introduction

7.1.1 Gap junctional intercellular communication (GJIC)

Gap junctional intercellular communication (GJIC) is a characteristic 

feature of most normal tissues. Apart from a few terminally differentiated cells, 

such as skeletal muscle, erythrocytes, and circulating lymphocytes, most cells in 

normal tissues generally communicate via gap junctions. These junctions exist in 

almost all animals, both vertebrates and invertebrates (for review see Kumar and 

Gilula, 1996).

The gap junction channel is composed of two hemi-channels termed 

connexons. Each hemi-channel joins end-to-end with a connexon in the opposing 

membrane of another cell to provide a direct aqueous pathway between the 

cytoplasms of the coupled cells for the intercellular exchange of cytoplasmic ions 

and small molecules (metabolites, cofactors, second messengers, etc.) with 

molecular weight up to ~1000Da., thus mediating signalling between adjacent 

cells. The molecular movement through the channels occurs by passive diffusion. 

Consequently, this type of communication may be an important mechanism for
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regulating events between cells during embryogenesis (Warner et al., 1984) and 

during normal function of organs.

During embryogenesis and tissue differentiation, the specificity of gap 

junction formation produces complex patterns of communication by establishing 

well-defined communication compartments, group of cells joined to each other by 

gap junctions but not to cells in other compartments (Pitts et al., 1988).

GJIC is probably involved in several fundamental processes, e.g. 

development, differentiation and growth control (Loewenstein, 1979; Caveney, 

1985). It has been considered that highly metastatic cells could avoid inhibitory 

signals from adjacent cells, thus aiding their malignant phenotype, by reducing or 

completely abolishing their ability for gap-junctional communication. Previous 

data have indicated that reduction and/or loss of junctional communication may, 

in some instances, be correlated with the metastatic phenotype (Hamada et al., 

1991). The loss of GJIC has also been postulated to be important in 

carcinogenesis and in maintaining the transformed phenotype of initiated cells 

(Loewenstein, 1979; Trosko et al., 1990; Yamasaki, 1990). Many tumor cells 

exhibit aberrant GJIC among themselves or with normal surrounding cells (Mensil 

et al., 1993; Budunova and Slaga, 1994).

Furthermore a number of tumor promoters, including 12-0- 

tetradecanoylphorbol-13-acetate (TPA), have been shown to decrease GJIC in 

culture (Yotti et al., 1979; Li et al., 1996) and possibly also in the intact tissue in
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vivo (Sugie et al., 1987; Mensil et al., 1988; Neveu et al., 1990). Thus there are 

reasons to believe that GJIC may be involved in cancer development. Hence, the 

components of intercellular communication have been a focus of recent research.

7.1.2 General structure and composition of Gap junction

Gap junctions are simple aggregates of transmembrane channel particles 

called connexons. Each connexon is composed of 6 subunits (each subunit is 

composed of 4-a helices), arranged symmetrically around an axial water-filled 

channel with a diameter of 1-2 nm.

A number of molecules are implicated in cell-cell communication through 

the formation of intercellular gap junctions, with integrated involvement in cell 

adhesion. The identity of the subunit components of connexons remains the target 

of controversy, the debate revolves around two types of proteins, ductin and 

connexin (Finbow & Pitts, 1993; Finbow, 1997).

Connexins are a family of proteins ranging in size from 26 kDa to 50 kDa 

and are expressed in a cell specific manner in a variety of mammalian cells 

(Willecke et al., 1991). Connexins play a part in gap junction structure and/or 

control of channel permeability (Beyer et al., 1987; Nicholson et al., 1987; Kistler 

et al., 1988). Although it is argued that these proteins form the gap junction 

channel, no connexin has been identified in invertebrates despite the successful 

isolation of gap junction from such organisms, and evidence lends weight to the
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argument that gap junctions consist of ductin rather than the more popularly 

believed connexins (Finbow and Pitts 1993; Finbow 1997).

The ductin polypeptide forms a membrane-membrane channel independent 

of the connexin. Ductin has been identified as a target for papillomaviral 

oncoproteins (Finbow et al., 1995). Thus, the study of ductin is of particular 

interest to our work.

7.1.2.1 Ductin

Ductin is a polypeptide with a molecular mass of 16 kilodalton. It is very 

hydrophobic and is thought to contain four transmembrane segments arranged as a 

four a-helical bundle (Finbow et al., 1992), which varies in length between 

species from 155-165 residues (Finbow and Pitts 1993; Finbow et al., 1995). The 

mass and primary structure of ductin are therefore highly compatible with the 

predicted structure of the connexon subunit polypeptide.

It was first found to be the major protein component of a connexon-like 

channel of gap junctions from both vertebrate and invertebrate sources (Finbow et 

al., 1993). Antibodies to invertebrate ductin bind to isolated gap junctions 

(Buultjens et al., 1988) and gap junctional regions in tissue section (Leitch and 

Finbow 1990). GJIC has been inhibited by the injection of anti-ductin antibodies 

into mammalian and invertebrate cells (Finbow et al., 1993). Likewise, the 

lipophilic reagent N,N’-dicyclohexylcarbodiimide, which reacts specifically with a
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conserved glutamic acid residue in the fourth transmembrane domain of ductin, 

also blocks GJIC (Finbow et al., 1992 and 1993). These data show ductin to be 

involved in gap junctional communication and together with the structural studies 

(Holzenburg et al., 1993), make ductin a fitting and likely component of the gap 

junction channel (For a more extensive review see Finbow and Pitts, 1993).

Ductin has also been identified as subunit c of the membrane sector (Vo) of 

the H+- ATPase (V-ATPase) (Mandel et al., 1988). The V-ATPase is a protein 

complex made up of ten subunits which consist of two sectors, a cytoplasmic 

catalytic sector, Vi, that is the site of ATP hydrolysis, and a membrane sector, Vo, 

which mediates the translocation of protons across the lipid bilayer (for review see 

Finbow and Harrison, 1997). This V-ATPase is a universal transmembrane 

proton pump of eukaryotes and is responsible for the acidification of cytoplasmic 

organelles such as lysosomes, synaptic vesicles and Golgi (Harvey and Nelson, 

1992; Nelson, 1992). Ductin provides the pathway for proton translocation in the 

Vo sector of the vacuolar H+-ATPase.

7.1.2.1.1 Interaction between viral oncoprotein and ductin

Ductin has been found to complex with a number of viral proteins. The E5 

protein of BPV-1 has been shown to interact with the 16-kilodalton ductin via its 

hydrophobic transmembrane domain (Goldstein et al., 1992a). This interaction is 

important as it has been shown to be necessary, but not sufficient, for E5
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transformation (Kulke et al., 1992; Goldstein et al., 1992b): mutations within the 

transmembrane region of E5, that maintain the ability of E5 to complex ductin, 

make the protein non transforming (Sparkowski et al., 1996).

Other viral oncoproteins such as BPV-4 E8, HPV-16 E5, HPV-6 E5 and 

human T-cell leukaemia virus type 1 p l2 ! also bind to ductin (Conrad et al., 1993; 

Franchini et al., 1993; Faccini et al., 1996). This suggests that ductin is a common 

cellular target for these viral oncoproteins, and underlines the important role that 

ductin plays in the cell.

The binding of E5 or E8 protein to the gap junction form of ductin appears 

to lead to disruption of gap junctional intercellular communication, as 

demonstrated for HPV-16, and BPV-4 (Oelze et al., 1995; Faccini et al., 1996).

Complex formation between E5 and the vacuolar H+-ATPase form of 

ductin is likely to lead to the inhibition of the acidification of endosomes and to 

the consequent disruption of cellular protein processing and sorting; this would 

result in the retention and recycling of undegraded EGF receptors from endosomal 

compartments (Straight et al., 1995), providing a possible explanation for the 

observed co-operation between HPV-16 and epidermal growth factor receptors in 

transformation (Banks and Matlashewski, 1993). BPV-1 E5 interacts directly also 

with growth factor receptors, and different receptors provide a target for E5 

interaction depending on cell context (Goldstein et al., 1992a; Cohen et al., 1993; 

Petti and DiMaio, 1994). Thus the EGF receptor, PDGF receptor and CSF-1

1 6 0



Chapter Seven GJIC

receptor all show stimulation in BPV-1 E5 transformed cells. Therefore, the 

mitogenic response is potentiated directly by E5 through its interaction with the 

activation of growth factor receptors, and indirectly by E5 complexing ductin, 

inhibiting vacuolar H+-ATPase function and/or recruitment to endocytotic 

vesicles, and so inhibiting receptor down-regulation. It has not yet been 

determined whether BPV-4 E8 can interact with the ATPase form of ductin or 

inhibit acidification of vacuoles.

As discussed above, ductin is the major component of a connexon channel 

of gap junctions, and antibodies that bind to ductin block GJIC (Serras et al., 

1988; Finbow and Pitts, 1993). Furthermore, binding of HPV-16 E5, and BPV-4 

E8 proteins to ductin, appears to block GJIC (Oelze et al., 1995; Faccini et al., 

1996).

To examine the correlation between ductin binding, down regulation of 

GJIC and cell transformation, the panel of E8 mutants and chimeras described in 

chapters 3 was analysed for ductin binding, and PalF transformants were assayed 

for functionality of gap junctions.
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7.2 Experimental procedure

7.2.1 Interaction of BPV-1 HAE8, its mutants, and BPV-1 HAE5 with ductin

To examine their interactions with ductin, co-immunoprecipitations of in 

vitro translated E8 wild type, mutants and BPV-1 E5 by monoclonal antibody 

against HA and a polyclonal antibody raised against 16k ductin were performed. 

The immunoprecipitated proteins were separated by SDS-PAGE (14% 

polyacrylamide) and visualized by autoradiography (as described by Faccini et al., 

1996). This analysis was conducted by Dr A. M. Faccini.

7.2.2 Gap Junctional Intercellular Communication (GJIC) Measurement

Gap junction mediated cell to cell communication or junctional coupling 

can be detected and quantified in vitro by visualization of cell to cell transfer of a 

fluorescent probe (such as Lucifer Yellow) microinjected into a single cell. The 

dye passes through gap junctions but not across the non-junctional membrane 

(Pitts and Kam, 1985; Pitts et al., 1988).

Dye transfer

In this experiment the level of GJIC was kindly examined by Dr John Pitts, 

by microinjection of Lucifer yellow CH.

Cells were grown in 60mm tissue culture dishes until 80-100% confluent 

(in contact). Immediately prior to the dye injection the medium was removed 

and replaced with fresh culture medium. The cells were then transferred to a
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37°C microscope stage and the lid of the dish removed. An individual cell was 

selected and injected with dye using micro electrodes made from “kwik-fill” 

thin-wall glass capillaries which were filled with lOpl of 4% Lucifer Yellow CH 

as described by Pitts and Kam (1985). The cells were injected with dye, and the 

number of fluorescent cells was counted over a 2 minute period using a current 

of lOnA in 0.5 second pulses at 1Hz and the process monitored using a Leitz 

Diavert inverted microscope with UV (epi-illumination) or visible (phase 

contrast) light sources. The extent of dye spread to the neighbouring cells was 

recorded (Table7.1) and photographed immediately. Untransfected PalF cells 

were assayed for the baseline GJIC level.

7.3 Results and Discussion

7.3.1 Mutational analysis of complex formation

Figure 7.1 shows that ductin forms stable complex with HAE8, its mutants 

including N17S, N17Y, N17A, E8T, and with BPV-1 E5. Ductin also interacts 

with E8N-E5C (not shown). However, the interaction between the reciprocal 

chimera E5N-E8C and ductin is still unclear.

It has been shown that binding of BPV-1 E5 to ductin requires the N- 

terminal hydrophobic domain and that glutamine at position 17 is important for 

ductin interaction and for the transforming function of the protein (Goldstein et 

al., 1992a, b; Sparkowski et al., 1994,1996). We decided to test whether the
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Figure 7.1 In vitro association of ductin with E8 wild type and its 
mutants.
Co-immunoprecipitation of in vitro  translated E8/E5 wild type, 
and examples of E8 mutants by monoclonal antibody against HA 
(for HA tagged E8/E5) and a polyclonal antibody raised against 
16k ductin. The immunoprecipitated proteins were separated by 
SDS-PAGE (14% polyacrylamide) and visulized by 
autoradiography (as described by Faccini et al., 1996). This 
analysis was conducted by Dr A. M. Faccini.
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equivalent residue 17, asparagine, in the E8 polypeptide is also crucial for ductin 

binding and cell transformation.

Results from these experiments show that the C-terminal hydrophilic 

domain of this protein is not necessary for binding to ductin. Changing asparagine 

17, to serine, tyrosine, and alanine did not affect the level of binding to ductin. 

Therefore, unlike BPV-1 E5, this residue does not appear to be crucial for binding 

to ductin. As described in chapter five, mutation of this single amino acid to a 

tyrosine residue abolishes the transforming capacity of E8, while mutation to an 

alanine residue produces a hypertransforming molecule with increased ability to 

induce anchorage independent growth, and mutation to a serine residue leads to an 

intermediate state that allows only the maintenance of the anchorage independent 

growth.

Taken together, these data suggest that the ability of BPV-4 E8 to bind 

16k ductin in vitro does not correlate with cell transformation.

7.3.2 Gap Junctional Intercellular Communication (GJIC) and BPV-4 E8 

wild type, its mutants, and BPV-1 E5

We have previously shown (Faccini et al., 1996) that there are no 

detectable differences between E8 and HAE8 regarding binding to ductin and 

down-regulation of GJIC. Thus it is expected that the presence of the HA epitope 

in the E8 mutants will not affect their behaviour.
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Transfectant cells were compared to non-transfected parental PalF cells 

and to control PalF cells lacking E8 but harbouring all the other oncogenes (Table 

7.1). Untrasfected PalF cells showed extensive dye spread to an average 28.3 cells 

(Table 7.1; Figure 7.2). PalF cells expressing E8 showed a marked reduction in 

gap junction intercellular communication in two independent clones (Table 7.1; 

Figure 7.2). The same was observed with wild type BPV-1 E5 (Figure 7.2), 

whereas PalF cells not expressing only E8 showed control levels of GJIC (Table 

7.1; Figure.7.2).

These results show that BPV-4 E8/BPV-1 E5-expressing PalF cells down- 

regulate gap junction intercellular communication. To our knowledge the down- 

regulation of GJIC by BPV-1 E5 has not been reported previously, and this is the 

first time that loss of GJIC with BPV-1 E5 has been shown.

In contrast, immortalization of PalF cells with HPV-16 E6, BPV-4 E7, and 

activated ras was not accompanied by a disruption of gap junctional 

communication (Table 7.1) and these cells communicated well. This indicates 

that sustained loss of junctional communication is not a necessary feature of 

immortalization of this cell type, and that morphological transformation alone is 

not sufficient to cause the loss of GJIC observed in E8-expressing PalF (Table 7.2; 

Figure 7.2).

Mutational analysis of E8 showed that only E8N17A down-regulated 

GJIC; although all the other mutants bound to ductin in vitro, the cells expressing

1 6 6



Chapter Seven GJIC

them showed control levels of GJIC (Table 7.1 & 7.3; Figure 7.2). These data 

indicate that the ability of BPV-4 E8 to bind 16k ductin is not sufficient for 

down-regulation of GJIC (Table 7.3). Although the mechanism underlying GJIC 

down-regulation has thus far not been elucidated, there might be two possibilities: 

firstly the binding to 16k has been observed only in vitro, and it is not known 

whether any of the E8 proteins bind in vivo; secondly the effect of mutant forms of 

E8 is different from the wild type.

As described earlier in chapter five, cells expressing E8N17S and E5N- 

E8C showed anchorage independent growth, and, as shown in chapter six, low 

levels of trans-activation of the cyclin A promoter were observed with these 

mutants. The respective transfectants displayed normal level of GJIC (Table 7.1;

7.4). Therefore, down-regulation of GJIC, anchorage independent growth and 

cyclin A promoter activation are independent functions.

As shown in chapter five, PalF cells expressing BPV-4 E8 continue to 

proliferate in low serum and are capable of forming foci; of the mutants, only 

E8N17A allowed cells to grow in low serum and form foci; this is the only E8 

mutant that can down-regulate gap junction intercellular communication (Table

7.4). These data suggest that down regulation of GJIC correlates with 

proliferation in low serum, and with focus formation. However it must be 

pointed out that cells expressing BPV-1 E5 showed reduced GJIC but were unable
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to form foci. Thus this relationship could not provide direct evidence that down- 

regulation of GJIC involved in the forming foci.

7.4 CONCLUSIONS 

Mutational analysis of E8 suggests that;

The ability of E8 to bind 16k ductin does not correlate with cell 

transformation, these results concur with those obtained previously with 

mutational analysis of BPV-1 E5 in which E5 mutants still capable of complexing 

ductin had lost the ability to transform cells (Goldstein et al., 1992b; Sparkowski 

et al., 1996).

PalF cells expressing BPV-4 E8 block gap junction intercellular 

communication.

Morphological transformation alone is not sufficient to cause the loss of 

GJIC observed in E8-expressing PalF.

Loss of junctional communication is not a necessary feature of 

immortalization of this cell type

The ability of BPV-4 E8 to bind 16k ductin is not sufficient for down- 

regulation of GJIC.

Down-regulation of GJIC, anchorage independent growth, cyclin A 

promoter activation and focus formation are independent functions.

Down regulation of GJIC correlates with proliferation in low serum.

All these results are summerized in table 7.4
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Table 7.1 Levels of gap junctional intercellular communication (GJIC) in 

control PalFs (untransfected PalF cells) and each separate clone of PalF

transfectants

Cell Line Description No. of 
injection

Mean no, cells dye 
spread to ± S.D.

PalF normal Untransfeted
PalFs

20 28.3 ± 7.40

E7i Control (no E8) 20 12.8 ± 3.57
E7a 20 34.5 ± 9.31
E7g 20 30.6 ± 10.03
E5i BPV-1 E5 20 2.8 ± 2.19
E5d 20 3.9 ± 1.25
E8a BPV-4 E8 wild 20 4.6 ± 2.32
E8b type 20 6.25 ± 4.07
E8b 20 5.15 ± 2.60
Mut. la N17S 20 29.05 ± 8.51
Mut. le 20 12.7 ± 5.34
Mut. lc 20 46.75 ± 5.42
Mut. 2f N17Y 20 35.4 ± 10.24
Mut. 2g 20 23.05 ± 9.49
Mut. 3a N17A 20 4.8 ± 1.63
Mut. 3a 20 3.45 ± 1.62
Mut. 3b 20 5.1 ± 1.26
Mut. 3b 20 3.75 ± 1.60
Mut. 3f 20 3.85 ± 1.78
Mut. 4a E8T 20 16.87 ± 6.13
Mut. 4f 20 46.75 ± 5.42
Mut. 6a E8N-E5C 20 24.5 ± 6.6
Mut. 6e 20 30.4 ± 9.08
Mut.7b E5N-E8C 20 37.7 ± 8.7
Mut 7u 20 8.2 ± 3.65
E5Ta E5T 20 40.1 ± 8.19
E5Tb 20 31.35 ± 7.40
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Table 7.2 Summary of the levels of gap junctional intercellular 

communication (GJIC) in control PalFs and PalF transfectants: Comparison 

with morphological transformation.

Cell type Morphological

transformation

GJIC 

mean3 ± S.D.

PalF (control)b - 28.3 ± 7.40

pZipneoE7 + 25.96 ± 12.45

pZipneoHAE80 + 5.33 ± 3.12

N17S + 29.5 ± 15.38

N17Y + 29.225 ±11.69

N17A + 4.19 ± 1.73

E8T + 31.81 ± 16.04

E8N-E5C + 27.45 ± 15.82

E5N-E8C + 22.95 ± 15.91

HAE5d + 3.35 ± 1.84

E5T + 35.72 ± 8.98

+ = positive

All transfectants contained BPV-4 pZipneo E7, activated ras and HPV-16 E6 

a Mean numbers of fluorescent coupled cells ± standard deviations were 

calculated from table 7.1 

b Refers to parental PalF cells 

c Refers to BPV-4 pZipneoHAE8 

d HAE5 = BPV-1 pZipneoHAE5
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Table 7.3 Summary of comparison between GJIC and ductin binding with

E8 wild type, mutants and BPV-1 E5.

Cell type3 GJIC down 

regulation

Binding to 16k ductin 

(In vitro)

Control (no E8) - -

E8 wild type + +

N17S - +

N17Y - +

N17A + +

E8T - +

E8N-E5C - +

E5N-E8C - ?

BPV-1 E5 + +

E5T - +

a All cell lines contain BPV-4 E7, activated ras and HPV 16-E6 

+ = Positive

- = Negative for down regulation of GJIC / ductin binding
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Table 7.4 Summary of transformation characteristics of cells expressing E8 

or its mutants

Cell type A.I.
growth

LS
growth

Focus
formation

Cyclin A 
activation 
HS LS

Binding 
to 16k 
ductin 

(In vitro)

GJIC
down

regulation

Control (no E8) - - - - - - -

E8 wild type + + + ++++/+++ + +

E8 N17S + - - + - + -

E8 N17Y - - - - - + -

E8 N17A ++ + + +++ ++ + +

E8T - - - - - + -

E8N-E5C - - - - - + -

E5N-E8C + - - + + ? -

BPV-1 E5 + + - ++++ ++ + +

E5T - - nd +/- - + -

All cell lines contain BPV-4 E7, activated ras and HPV 16-E6.

A.I., anchorage independent growth; HS = high (10%) serum; LS = low (0.5%) 

serum.

The + represent the extent of expression of the characteristic.
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Figure 7.2 Down-regulation of GJIC in virally-PalF transfectants as assayed 

by dye transfer analysis.

Control cells (no E8) were transfected with pZipneoE7, pT24ras, and pJQ-16E6, 

while other cells were transfected additionally with an E8 wild type or mutant forms 

of E8 as noted in each panel.

The microinjected cell is marked by a black dot.

A is phase contrast and B is fluorescence micrographs.
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Control (no E8)
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CHAPTER EIGHT 

DISCUSSION

8.1 Introduction

Bovine papillomavirus type 4 induces papillomas of the upper alimentary 

canal of cattle, which can progress to malignancy in animals eating bracken fern 

(Jarrett et al., 1978; Campo et al., 1980 and 1994a, b). BPV-4 alone, when 

transfected into PalF cells in vitro, is non transforming. The transforming 

potential of BPV-4 is only realised when BPV-4 DNA is cotransfected into PalF 

cells with an activated ras gene. These partially transformed PalFs have an 

extended proliferative life span, are capable of anchorage independent growth but 

are not immortal or tumorigenic in nude mice (Jaggar et al., 1990).

The transforming genes of BPV-4 are the E7 and E8 open reading frames. 

E7 is one of the transforming gene of BPV-4, in that, in co-operation with 

activated ras, it induces morphological transformation of PalF cells in the absence 

of other viral genes. Nevertheless, although morphologically transformed, E7 

expressing PalF cells are not capable of growing in suspension, thus showing that 

other viral gene(s) encode function(s) that confer anchorage independent growth. 

Previous work has shown that this property is dependent on the presence of the E8 

ORF (Pennie et al., 1993).
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The E8 ORF encodes a small, 42 amino acid long protein that is composed 

of two domains: a very hydrophobic region, theoretically capable of forming a 

transmembrane a-helix, encompassing the first 30 amino acids of the protein, and 

a second region of mainly hydrophilic amino acids comprising the C-terminal 12 

residues. It is localised to the cell membranes (Pennie et al., 1993). In vivo, E8 

expression is limited to the basal and suprabasal layers of early papillomas, i.e., 

not in areas of vegetative viral DNA replication, with decreased expression in late 

stage papillomas (Anderson et al., 1997); E8 is therefore a true early protein.

In addition, E8 binds to 16k ductin in vitro and down-regulates gap 

junction intercellular communication (GJIC) in primary bovine fibroblasts 

(Faccini et al., 1996).

When expressed in an established murine fibroblast cell line (NIH-3T3) E8 

is transforming by itself; E8-3T3 cells can grow in low serum and in suspension, 

and these cellular phenotypes are associated with the ability of E8 to trans-activate 

the cyclin A gene promoter, to increase cyclin A protein level and cyclin A 

associated kinase activity and to inhibit the function of the negative regulator of 

cell cycle, p27Kipl (O’Brien and Campo, 1998).

The work described in this thesis extended the analysis of the functions of 

BPV-4 E8 in PalF cells and investigated cell behaviour in relation to: 

morphological transformation, anchorage independent growth, focus formation, 

cell population growth in low serum, tumorigenicity in nude mice, trans-activation 

of the cyclin A promoter, binding to ductin and down regulation of GJIC. To
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segregate the different transforming functions of E8 and therefore to define critical 

residues and its functional domains, we also tested a panel of E8 mutants and 

chimeras constructed with BPV-1 E5 for their transforming ability in PalF cells.

8.2 Cell transformation by the BPV-4 E8, its mutants, and BPV-1 E5 gene in 

vitro

As previously reported (Pennie et al., 1993), results obtained in this study 

demonstrated that PalF cells expressing BPV-4 E8 can grow in suspension culture 

(Figure 5.1a), the same was also observed for BPV-1 E5 transformed cells (Figure 

5.1b). This demonstrates that E8 overrides the control mechanisms that arrest 

anchorage-dependent cells in late Gi phase of cell cycle when maintained in 

suspension (Guadagno and Assoian, 1991). In addition to anchorage independent 

growth, PalF cells expressing E8 can grow in low serum and escape contact 

inhibition. PalF cells which do not express E8 do not show any of these 

phenotypes, despite the presence of BPV-4 E7, HPV-16 E6 and activated ras.

Although PalF cells expressing E8 were capable of anchorage independent 

growth, these transformed cells were not tumorigenic in nude mice (section 5.1.4). 

This result concurs with the study of Pennie et al (1993) and suggests that 

additional factors are needed for full transformation of PalF cells, thus mimicking 

the natural history of upper alimentary canal carcinoma in cattle, where the 

progression of BPV-4 induced papillomas to carcinomas is co-factor dependent.
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The contribution of E8 to transformation cannot be assessed in isolation as 

cell lines cannot be derived from cells transfected with E8 in the absence of E7 

(Jaggar et al., 1990; Pennie et al., 1993). Our results also show that BPV-1 E5 

like E8 needs E7 to allow expansion of PalF cell lines.

Conversely, unlike PalF cells, when E8 is expressed in an established 

rodent fibroblast cell lines (NIH-3T3) it is transforming (O’Brien and Campo, 

1998). Interestingly, previous studies have also shown that BPV-1 E5 is capable 

of transforming established mouse fibroblasts and keratinocytes in the absence of 

other viral gene products (Leptak et al., 1991). Also, transformation of 

established cells with BPV-4 genes does not require co-transfection with activated 

ras (Smith and Campo, 1988). Therefore, the survival of established cells 

expressing E8 or BPV-1 E5 alone and the requirement of E8/E5 in combination 

with E7 in PalF cells may be due to inherent differences between established and 

primary cells.

In established NIH-3T3 fibroblast cells it has been shown that a member of 

the cell cycle inhibitor family, plO1̂ 4*, that induce Gi arrest (for review see 

Hunter and Pines, 1994) is lost (Quelle et al., 1995). Loss of p l6INK4a promotes 

cell proliferation and this event results in cell immortalization which may provide 

optimal conditions for the action of E8 in NIH-3T3 cells.

The absolute requirement for an intact E7 ORF for transformation of PalF 

cells by E8 is probably due to the inactivation of the tumor suppressor p i05 Rb by 

E7. Although the interaction between BPV-4 E7 and pl05 Rb has not been
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directly demonstrated, the presence in E7 of a putative pRb binding domain and 

the observation that deletion or mutation of this domain abrogate cell 

transformation, strongly suggest that E7 interacts with and inactivate pl05 Rb 

(Jaggar et al., 1990; Pennie et al., 1993; Jackson et al., 1996).

Studies on BPV-1 E5 have been shown that glutamine at position 17 is 

critical for cell transformation (Sparkowski et al., 1994; Sparkowski et al., 1996). 

This appears to be the case for the aspargine residue in the same position in BPV- 

4 E8. Our analysis of E8 mutants show that mutation of this single amino acid 

produces profound changes in the activity of the protein. Mutation to a tyrosine 

residue completely abolishes the transforming capacity of E8, while mutation to 

an alanine causes a hypertransforming molecule with a greater ability of inducing 

anchorage independent growth (Figure 5.1a), and mutation to a serine residue 

leads to an intermediate state that allows only the maintenance of the anchorage 

independent growth.

These results show that the residue is critical for the biological activities of 

BPV-4 E8 although its role is unknown. It is important to note that substituting 

serine at position 17 in BPV-1 E5 produces a hypertransforming protein 

(Sparkowski et al., 1994), while the same substitution in BPV-4 E8 actually 

decreases the transformation potential of the protein.

Studies with mutant forms of E8 also suggest that the hydrophilic C- 

terminal tail of the protein is required for the transformating activity of this 

protein. The truncated E8 mutant (E8T) is transformation defective. Supportive
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data that the C-terminal tail of E8 is essential for PalF transformation are 

provided by the chimera E8N-E5C, containing of the hydrophobic domain of E8 

and the hydrophilic tail of E5, which is incapable of inducing a transformed 

phenotype in PalF cells. Both the membrane domain of E8T and the E8N-E5C 

chimera may adopt an altered non functional conformation or have a different 

cellular distribution to wild type E8.

Clearly the C-terminus hydrophilic tail of E8 is necessary for cell 

transformation and cyclin A promoter activation. This is confirmed by the 

preliminary studies conducted with forms of E8 mutated in the putative CKII 

phosphorylation site present in the tail. This will be discussed later in section 8.3.

The transformation defective property of E8N-E5C also points to the non 

equivalence of the domains of E8 and E5; while the tail of E5 cannot substitute for 

the tail of E8, the reciprocal exchange leads to a chimeric molecule (E5N-E8C) 

still retaining the ability to induce anchorage independent growth.

The mutant forms of E8 show that the several transforming functions can 

be segregated. The ability to induce anchorage independent growth can be 

separated from the ability of forming foci, or of growth in low serum. Focus 

formation and growth in low serum still co-segregate in the E8 mutants, but, 

interestingly, not in BPV-1 E5, which cannot induce escape from contact 

inhibition, while allowing growth in low serum (Table 7.4).

Altogether, the mutational analysis of E8 indicate that the multiple 

transforming functions of E8 can be segregated, which probably reflects the
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complex interactions of the domains of E8 with different cellular targets such as 

growth factor receptors.

8.3 The ability to grow in suspension correlates with trans-activation of the 

cyclin A promoter

It has been shown previously that BPV-4 E8, when expressed in NIH-3T3 

cells is capable of transactivating an exogenous (human) cyclin A promoter and 

can deregulate expression of endogenous cyclin A and associated kinase activities 

and also inhibit the functions of the negative regulator of cell cycle p27Kipl 

(O’Brien and Campo, 1998). The authors proposed that deregulated expression of 

cyclin A and its associated kinase activities may underlie the phenotype of BPV-4 

E8 transformed NIH-3T3 cells, as E8-NIH-3T3 cells were capable of growth in 

low serum and in suspension.

In PalF cells expressing E8, as in NIH-3T3 cells, the cyclin A promoter 

was trans-activated under conditions (low serum) where cyclin A transcription 

was normally diminished or was not detectable in control cells. Therefore, the 

normal mechanisms which restrict cyclin A transcription have been lost in PalF 

cells expressing E8 (Figures 6.1a, 6.2, and 6.3).

The delineation of the mechanism by which E8 achieves this activation of 

the cyclin A promoter will require more detailed studies. Repression of cyclin A 

transcription in cells in low serum or suspension culture has been attributed to 

p27KlPi via its ability to block cyclin E-CDK2 kinase activity which is required for
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de-repression of the cyclin A promoter through a variant E2F site (ZerfassThome 

et al., 1997). The intracellular concentration of p27KIPI is a major element of cell 

cycle progression through the G1 restriction point (Coats et al., 1996) and has 

emerged as a key target for viral oncoproteins. It has recently been reported that 

both human Adenovirus E1A and HPV-16 E7 proteins can inactivate p27KIPI by 

forming complexes which make p27KIPI non-functional in vitro and in vivo (Mai et 

al., 1996; ZerfassThome et al., 1996). In the case of E1A, the interaction appears 

direct, at least in vitro, while for E7 the presence of a bridging protein is required 

for complex formation. Such an interaction is unlikely to occur for E8 as its 

expression is restricted to cellular membranes (Pennie et al., 1993) and may not be 

available to interact directly with p27Kn>I which is located mainly in the cell 

nucleus (Reynisdottir and Massague, 1997).

The regulation of p27KIPI expression is disrupted by E8 suggesting that 

p27Km is non functional in NIH-3T3 cells expressing BPV-4 E8 as elevated level 

of p27Ia?Ido not correlate with cell cycle exit (O’Brien and Campo, 1998).

Building on this information we suggest that in PalF cells, as in NIH-3T3 

cells, E8 may act, in part, by abrogating p27KIPI function without promoting 

degradation of this CDK inhibitor. Further work is required to test this possibility.

We have extended our analysis of BPV-4 E8 functions in primary bovine 

cells to test for a correlation between promoter activation and cell transformation 

produced by the different E8 forms as described in chapters five.
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Analysis of E8 mutants, indicate that the asparagine residue at position 17 

is critical for the ability of E8 to trans-activate the cyclin A promoter, as mutation 

of this single amino acid produces profound changes in the activity of the protein. 

Mutation to a tyrosine residue abolishes the cyclin A promoter trans-activation, 

mutation to a serine residue leads to low promoter activity, but significantly above 

control, and mutation to an alanine produces promoter trans-activation activity 

comparable to E8 wild type.

Another critical domain of E8 is its hydrophilic tail which is required for 

the cyclin A promoter trans-activation and for transformation. Neither E8T or 

E5T are capable of promoter trans-activation, nor is the E8N-E5C chimera. On 

the contrary E5N-E8C trans-activates the cyclin A promoter slightly, but 

significantly above background (Figure 6.2). These results indicate the 

importance of the intact hydrophilic tail of E8 for cyclin A promoter trans

activation.

In this study, we conclude that the ability of BPV-4 E8 to trans-activate the 

cyclin A promoter correlates with the ability to induce anchorage independent 

growth. We also show that mutations which selectively abolish this activity cause 

a defect in transforming activity. These findings agree with the studies that the 

ability of E8 to transform NIH-3T3 cells, as assessed by anchorage independent 

growth, is associated with trans-activation of the cyclin A promoter (O’Brien and 

Campo, 1998).
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The data obtained in co-transfection experiments with cyclin A reporter 

plasmid and expression plasmid for E8 mutant A15P-A20P showed that changing 

the alanine residues at positions 15 and 20 to a proline, which has the property of 

forcing a bend in the main chain and of disrupting an a-helix, abolished cyclin A 

promoter trans-activation. Mutation of the same alanine residues to glycine, a 

conservative mutation which should not disrupt an a-helical conformation, in 

mutant A15G-A20G leads to low promoter activity but still significantly above 

background (Figure 6.3). These data suggest that substitution of two amino acids 

could alter the a-helix conformation of the hydrophobic domain with 

consequences for cyclin A promoter activation and cell transformation and also 

emphasise the importance of the nature of these residues for the E8 functions.

Results from co-transfection experiments also show that in E8 the putative 

CKII site appears to be critical for the biological activity of this protein, as 

mutation of threonine at position 36, in the putative CKII site, produces profound 

changes in the exogenous cyclin A promoter trans-activation. Thus the E8 mutant 

with an alanine residue at position 36, which cannot be phosphorylated, shows 

less cyclin A promoter transactivation than the mutant with the negatively charged 

asparatic acid residue or with a serine residue in both high and low serum. 

Mutation to a serine, which maintains the putative CKII site, shows more cyclin A 

promoter activity than either aspartic acid or alanine (Figure 6.3) in both high and 

low serum. Therefore, these data point to the possibility that BPV-4 E8 is 

phosphorylated by CKII and that this phosphorylation has an effect on the
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biological activities of this protein as confirmed by loss of transformation by E8T 

and loss of the cyclin A promoter activation.

8.4 BPV-4 E8 proteins bind ductin and disrupts GJIC in PalF cells but this 

interaction is not sufficient for down regulation of GJIC

The E8 polypeptide of BPV-4 has homology in length, hydrophobicity, 

cellular membrane localization and putative a-helix structure with BPV-1 E5 

(Burkhardt et al., 1989; Jackson et al., 1991; Pennie et al., 1993). Due to the 

similarities between the BPV-4 E8 and BPV-1 E5 proteins, it was proposed that 

these two proteins may share some common function(s).

The E5 polypeptide of BPV-1 has been shown to interact with a number of 

cellular proteins, including growth factor receptors (Martin et al., 1989; Petti et al., 

1991) and a 16 kDa ductin protein (Goldstein and Schlegel, 1990), identified as a 

component of gap junctions and of the vacuolar ATPase (Finbow et al., 1991; 

Holzenburg et al., 1993). Other viral oncoprotein such as HPV-16 E5, HPV-6 E5 

and human T-cell leukaemia virus type 1 pl2* also bind to ductin (Conrad et al., 

1993; Franchini et al., 1993). This suggests that ductin is a common cellular 

target for these viral oncoproteins, and underlines the important role that ductin 

plays in the cell.

Complex formation between E5 and the vacuolar H+-ATPase form of 

ductin may result in altered endocytosis pH which favours prolonged ligand- 

receptor interaction. Thus a growth factor receptor would be actively signalling
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for longer and this may contribute to cell transformation. Furthermore, by 

interfering with 16 k ductin in gap junctions, effective cell-cell communication 

may be reduced sufficiently for the E5 expressing cell to escape proliferative 

control signals provided by neighbouring cells (Campo, 1992).

The similarity between BPV-4 E8 and BPV-1 E5 proteins and the proposal 

that these two oncoproteins may share some common function(s) led to the 

hypothesis that E8 would bind ductin. Indeed we have shown that this is the case 

and that in vitro E8 interacts directly with ductin (Faccini et al., 1996). Therefore 

ductin may be a target for E8 protein, in vivo, during cell transformation.

Ductin is a structural component of gap junctions. Gap junctions are 

channels for small molecular weight secondary messengers, important in the 

homeostatic control in a tissue (Holder et al., 1993): if a transformed cell is 

released from the control of the surrounding normal cells, it can proliferate freely 

and give rise to an expanding transformed clone.

Our study shows a marked loss of GJIC in PalF cells transformed by BPV- 

4 E8 and that this loss depends on the expression of E8 ORF. We found the same 

for BPV-1 E5, and this is the first time that BPV-1 E5 has been shown to down- 

regulate GJIC. Transformation is often associated with a loss of GJIC (Mensile 

and Yamasaki, 1993). However morphological transformation of PalFs by E7 has 

no significant effect on GJIC (Table 7.1; Figure 7.1). Therefore morphological 

transformation alone is not sufficient to cause the loss of GJIC observed in E8/E5- 

expressing PalFs. As loss of coupling is dependent on the expression of E8, a
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possible mechanism for the marked reduction in gap junctional communication 

could be the binding of the E8 polypeptide to ductin. It is interesting that HPV-16 

E5, which has been shown to bind to ductin (Conrad et al., 1993), when expressed 

in an established cell line also inhibits GJIC and does so to an extent similar to 

that found in this study (Oelze et al., 1995). This implies a common mechanism 

in that these two proteins, E8 and E5, interfere with GJIC through interaction with 

ductin.

The lack of GJIC in papillomavirus transformed cells attributable to the 

viral E5/E8 protein, is probably an early event in transformation. By isolating the 

newly infected basal and suprabasal cells from the surrounding normal, i.e., non

infected, cells, E8 allows other transformation events to take place. Once the 

transformed cells have established themselves, continued expression of the 

oncoprotein is no longer necessary. The expression of E8 only in deep layers of 

early stage papillomas (Anderson et al., 1997) support this hypothesis.

This proposed model of E8 function would suggest that the E8 protein is 

critical for the induction of BPV-4 mediated cellular transformation and papilloma 

development.

Our panel of E8 mutants and chimeras was analysed for their association 

with ductin and correlation with down regulation of GJIC and cell transformation. 

Analysis of E8 mutants shows that E8N17Y, E8T, and E8N-E5C maintain the in 

vitro interaction with ductin but are transformation defective. Therefore the 

ability of E8 to bind 16k ductin does not correlate with cell transformation, in
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agreement with results obtained previously with E5. Some mutant forms of E5 

maintain the ability to complex with ductin but are non transforming (Sparkowski 

et al., 1996). This study, therefore, suggests that additional cellular targets might 

be needed for E8-mediated cell transformation particularly in PalF cells. 

Activation of growth factor receptors may also be an important aspect of the 

transformation activity of BPV-4 as increased numbers of EGF receptors are 

observed in alimentary canal cancer cells (Smith et al., 1987). Further analysis of 

possible interaction of E8 with other cellular proteins e.g. growth factor receptors 

would also be of interest. Our previous results led to the hypothesis that the 

interaction of these viral oncoproteins with ductin causes down regulation of GJIC 

(Faccini et al., 1996). Thus we investigated the E8 mutants to determine whether 

16k ductin binding was sufficient for down regulation of GJIC. Only E8N17A 

bound 16k ductin and down regulated GJIC; all the other mutants bound to ductin 

but showed levels of GJIC comparable to control cells (Table 7.1).

These data show that the ability of BPV-4 E8 to bind 16k ductin in vitro is 

not sufficient for down-regulation of GJIC (Table 7.2). The relevance of ductin 

binding to the in vivo studies is still unclear, and also it could be proposed that the 

effect of mutant forms of E8 is different from the wild type.

Moreover, cells expressing E8N17S and E5N-E8C, capable of anchorage 

independent growth, displayed normal level of GJIC (Table 7.4 ). Therefore, 

these results show that down-regulation of GJIC and anchorage independent 

growth are independent functions of E8.
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Our data suggest a correlation between down regulation of GJIC, and 

proliferation in low serum: E8N17A cells are capable of both growth in low serum 

and of down-regulation of gap junction intercellular communication. Cells 

expressing all the other mutants were incapable of growth in low serum and of 

focus formation (Table 7.4) and showed normal levels of GJIC. However down- 

regulation of GJIC can not be correlated with focus formation, at least in the case 

of BPV-1 E5, as cells that expressed E5 showed reduced GJIC, but were unable 

to form foci.

8.5 Summary

In this thesis we have further characterised the transforming activities of 

BPV-4 E8 in PalF cells. In addition to growing in suspension, we show that PalF 

cells expressing E8 down-regulate GJIC, can grow in low serum and are not 

contact inhibited. In agreement with the finding in NIH-3T3 cells (O’Brien and 

Campo, 1998), in PalF cells, E8 expression promotes trans-activation of the cyclin 

A promoter. Transactivation of the cyclin A promoter correlates with the ability 

of the PalF cells to grow in suspension. This concurs with the finding of O’Brien 

and Campo (1998) in that E8 mediated cell transformation is due to the ability of 

the viral protein to deregulate cyclin A expression and associated kinase activities.

Studies with the mutant forms of E8 show that different transforming 

function of E8 can be segregated and demonstrate that both the residue at position 

17 in the hydrophobic domain and the hydrophilic C-terminal tail of the E8 are
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crucial for E8 function. The use of E8 mutants also indicated that the ability of E8 

to bind ductin is not sufficient for down regulation of GJIC, and that loss of GJIC 

and anchorage independent growth are independent functions of E8.

Our co-transfection analysis of additional E8 mutants suggest that 

substitution of alanine with proline, which is expected to alter the conformation of 

the hydrophobic domain, may have an effect on cell transformation. Also data 

obtained in short-term transfection experiments with the other forms of E8 

mutants in the putative casein kinase II site support the possibility that BPV-4 E8 

might be phosphorylated by CKII and that this phosphorylation could have an 

effect on the biological activities of this protein.

Despite the overall amino acid, structural, and subcellular localization 

similarity between E8 and BPV-1 E5 which suggests common functions, there are 

differences between the two proteins. In vivo, E8 is expressed only in the deep 

layers of papillomas, where little or no viral DNA replication take place 

(Anderson et al., 1997). This restricted localization in the papillomas is not 

shared by BPV-1 E5 which is expressed not only in the deep layers but in the 

differentiated ones as well (Burnett et al., 1992). Therefore, the different location 

in the papillomas suggests that the two proteins may also have different functions. 

Also critical amino acids, which are important for dimerization (Horwitz et al., 

1988), are either missing, such as the two cysteine residues in the C-terminal 

domain, or different in E8, such as the presence of possible CKII sites (TRLD) at
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positions 36-39 of E8. Thus these distinct amino acid residues in E8 and E5 may 

contribute to their functional differences.

In agreement, results in this thesis show that there are differences between 

the two transforming proteins in the PalF system: E8, but not E5, allows cells to 

escape from contact inhibition, and the same amino acid substitutions have 

different effects. These observations suggests that these small papillomavirus 

proteins may have different mechanisms of achieving cell transformation.

8.6 Future work

The results obtained in this thesis show that the ability of E8, its mutants, 

or BPV-1 E5 to trans-activate the cyclin A promoter in transient transfection 

experiments was qualitatively similar to those obtained with stable transformants 

(section 6.2.2). Building on the information obtained from the mutational analysis 

of E8, we would expect the transformation phenotype to be related to the ability of 

E8 mutants to trans-activate the cyclin A promoter. Therefore, it would be of 

particular interest to analyse the transformation status of established lines 

containing mutants A15G-A20G, A15P-A20P, ARLD, DRLD, and SRLD.

Results obtained by O’Brien and Campo (1998) demonstrated that the 

ability of E8 to deregulate expression of the cyclin A promoter in NIH-3T3 cells 

is associated with inactivation of CDK inhibitor p27fQpl as elevated levels of 

p27Kjpl do not correlate with cell cycle exit. It is still unclear whether in PalF cells 

E8 can do so. We suggest that in PalF cells, as in NIH-3T3 cells, E8 may act by

194



Chapter Eight Discussion

abrogating p27KIPI function without promoting degradation of this CDK inhibitor. 

Further work is required to test this possibility.

Normal cells maintained in suspension do not express cyclin A and cannot 

progress into S phase (Guadango et al., 1993; Fang et al., 1996). Constitutive 

expression of cyclin A allows NRK fibroblasts to proliferate in suspension 

(Guadango et al., 1993). It has been shown that E8 in NIH-3T3 cells induces 

trans-activation of the cyclin A promoter and increases endogenous protein levels 

in cells maintained in suspension culture (O’Brien and Campo, 1998). It would be 

interesting to determine whether PalF cells expressing E8 can trans-activate the 

endogenous cyclin A promoter and give rise to an increase in the level of the 

endogenous cyclin A protein.

While results in this thesis show that E8 is capable of transforming PalF 

cells, it is not yet known if these transforming phenotypes are displayed by 

primary keratinocytes. It would be of great interest to repeat these studies in 

primary bovine keratinocytes as these are the natural target cell for infection by 

BPV-4.
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