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| Abstract

This research project is related to the modelling of the new generation of power
electronics-based plant components presently emerging as a result of the recently
developed concept of Flexible AC Transmission Systems (FACTS). These new power
network technologies represent the application of power electronics in AC power
systems to provide adaptive power flow control under both steady state and emergency
conditions. These technologies may have a profound impact on the electricity supply

industry world wide over the next decade.

The economical and operational benefits afforded by this form of electronic control are
many, however, this is at the expense of a sharp increase in network planning and
operational complexity. As the various controls present in the network interact with
each other, good power system tools are required in order to carry out power system
studies. In a secure operating environment, the operation of these devices would have to
be well co-ordinated and advanced computational tools, such as Optimal Power Flows
are required in order to aid planning and control engineers to achieve this task.

This research addresses the issue of FACTS models suitable for steady state solutions of
large-scale power networks. Considerable progress has been made in Load Flow studies
which include realistic FACTS device models. However, very little work has been done
in tackling the more complex issue of OPF solutions where FACTS devices are
included. Nevertheless, it is this application tool that needs to be well developed if the
value of the FACTS technology is to be demonstrated from the power system economics

and security viewpoints.

The aim of this research work is to develop FACTS device models suitable for large-
scale Optimal Power Flow studies. The models represent the various steady state
operating control features of the FACTS devices using generalised nodal admittances.
Models are developed for the following FACTS devices: Phase-Shifting Transformer,
Load Tap-Changing Transformer, Static Var Compensator, Thyristor Controlled Series
Capacitor, Interphase Power Controller, Unified Power Flow Controller and High
Voltage DC link. The FACTS models are integrated into an efficient Newton Optimal

Power Flow program.

The robustness of the convergence of the various steady-state FACTS device models has
been thoroughly investigated. The newly developed FACTS OPF* computer program
has been used to study several electrical power networks, some of the them
corresponding to test networks available in the open literature, and a number of other
real-life electric networks where hundreds of variables are to be optimised.

* A computer program user’s manual was written. It includes documented listings and flow diagrams.
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Chapter 1

Introduction

1.1  Why Flexible Alternating Current Transmission Systems ?

The lack of fast load flow control in electric power systems is one of the crucial factors
that has affected the way power systems have evolved. Traditionally AC power systems
have been controlled with electro-mechanical devices, with their slow response times.
The ensuing slow speed control has rendered the AC transmission systems to be
inflexible and over-designed. In meshed AC power systems, the power flows are largely
distributed as a function of the transmission line impedance: a transmission line with a
low impedance will take larger power flows across it than a transmission line with high
impedance. This is a problem beyond the control of operation engineers or one which
can only be contained with great difficulty. Examples of operating problems which the
unregulated flow of active and reactive power give rise to are: loss of stability, loop
flows, voltage limit violations, thermal limit violations and high short circuit levels [1-
3]. In the long-term these problems could in principle be solved by building new power
plants and transmission facilities, but during actual operation, load shedding becomes a

last resort option.

The electricity supply industry world-wide is facing a great many challenges in its
program of expansion; a variety of economic and environmental pressures are some of
the difficulties which prevent licensing and building new transmission lines and electric
power plants. Additionally, the use of transmission facilities by bulk supply users and
deregulation of the electricity supply industry, requires maintaining acceptable levels of
network reliability and stability. As a result of these circumstances, high performance
control of the power system is becoming imperative. As explained above, the electro-
mechanical devices with their slow responses may no longer be the preferred option.
The industry is currently looking at ways of maximising power flows while enhancing
network security by employing power electronics-based controllers in the high-voltage
side of the power network.

Flexible Alternating Current Transmission Systems (FACTS) is a title used to
encompass all the newly emerging devices [4-24]. FACTS can be defined as AC
transmission systems incorporating power electronics-based equipment into the high
voltage side of the network so as to make it electronically controllable. ‘High Power
Electronics and Flexible AC Transmission System’ was the topic of a speech delivered
by N.G. Hingorani on 19 April, 1988 at the American Power Conference’s 50™ Annual
Meeting in Chicago [8]

There is widespread agreement that power electronics-based equipment is potential
substitutes for conventional electro-mechanical solutions. Although they are, in general
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more expensive, they offer a number of unique functions which cannot be achieved with
conventional equipment. FACTS controllers make use of the latest high-current, high-
power electronics technology to ensure effective power flow and voltage control. Of
course, advanced control techniques and software will be needed to plan and operate
FACTS-upgraded networks.

FACTS devices have the ability to control, in an adaptive fashion, key network
parameters that have a direct bearing on the operation of the power system. They are
designed to control one or more of the following power system parameters: voltage
magnitude, line impedance, phase angle, active power flow and reactive power flow.
The ability to control the line impedance and the nodal voltage magnitudes and angles at
both the sending and receiving ends of key transmission lines with almost no delay will
increase significantly the transmission capabilities. For instance, series FACTS
controllers may be used to increase the power transfer capability of transmission
networks and to provide direct control of power flows over designated transmission

routes.

1.2 Inherent Limitations of Transmission Systems

The characteristics of a system will change over time as the load grows and new
generation is added. If the transmission facilities are not upgraded sufficiently the power
system may become susceptible to both steady-state and transient stability problems as
stability limits are approached.

The ability of the transmission system to transmit power becomes impaired by one or
more of the following steady-state limitations [1,2]:

e Angular stability limits.

¢ Voltage magnitude limits.

e Thermal limits.

and the following dynamic limitations:

e Transient stability.
¢ Dynamic stability.

These parameters define the maximum electric power that can be transmitted without
causing damage to transmission lines and electric equipment. In principle, limitations on
power transfer can always be relieved by the addition of new transmission and
generation facilities. Alternatively, FACTS devices should allow the same objectives to
be met with a minimum of system changes. The potential benefits brought about by
FACTS devices include a reduction of operation and transmission investment costs,
increased system security and reliability, and an increase of power transfer capabilities
[1,2].

1.3 FACTS Controllers

Power flow control has traditionally relied on generator control, transmission line and
reactive compensation switching, and voltage regulation via tap-changing and phase-
shifting transformers. Phase-shifting transformers have been used for the purpose of
regulating active power in AC transmission networks [4-9]. Some of them are
permanently operated with fixed angles, but in most cases they are fitted with variable
tapping facilities. Another kind of controller is the series reactor which is used to reduce



power flow and short circuit levels in a given line or node of the network. Series
capacitors, on the other hand, are used to shorten the electrical distance of the line,
hence, increasing power flow [13-17]. Series compensators may be installed in several
locations of the power network, and are switched on and off according to both load and
voltage conditions. For instance, in longitudinal power systems, which are identified by
a low degree of interconnection and long transmission lines between major generation
and load centres, series capacitive compensators are bypassed during minimum loading
in order to avoid transmission line overvoltages due to excessive capacitive effects in
the system. Conversely, during maximum loading, series capacitive compensators are
fully utilised in order to increase the transfer of power from generating sites to load
centres, without subjecting transmission lines to overloads.

Until recently these solutions served the requirements of the electricity supply industry
well. However, deregulation of the industry and difficulties in securing new rights-of-
way have created the need for newer and more advanced technological developments
based on high-voltage, high-current solid state devices. In partnership with
manufacturers and research organisations, the Supply Industry has embarked on an
ambitious program to develop a new generation of power electronic-based plant
components. The impact of these developments is beginning to be felt in all three areas
of the business: generation, transmission and distribution.

High-Voltage Direct Current power converters, Thyristor Controlled Reactors and
Shunt-connected Thyristor Switched Capacitors have been in existence for many years
although their operational characteristics resemble those of FACTS devices [1,2,61-64].
Power electronics-based versions of phase-shifting and tap-changing transformers were
embraced at an early stage by the proponents of FACTS technology [4-9]. These
devices together with the electronically controlled series compensator, can be
considered to belong to the first generation of FACTS devices. The Unified Power
Flow Controller, Static Compensator and Interphase Power Controller are more recent
developments [10-13,18-24]. Their control capabilities and intended function are much
more sophisticated than those of the first wave of FACTS devices. They are said to
belong to a second generation of FACTS devices.

Most of the FACTS devices perform useful roles during both steady-state and transient
conditions, however, there are FACTS devices which are specifically designed to
operate only under transient power system conditions, e.g. Hingorani’s SSR Damper [3].
The applications of FACTS controllers to the solution of the steady-state operating
problems are presented in Table 1.1 [2], and a brief description of their operation, as
given by IEEE [1,2], is reproduced below for completeness:

Thyristor Controlled Reactor (TCR). This is a shunt-connected, thyristor controlled
reactor whose effective reactance is varied in a continuous manner by partial conduction
control of the thyristor valve.

Load Tap-Changing Transformer (LTCT). This controller can be considered a
FACTS device if tap changes are controlled by thyristors. The LTCT provides a rapidly
varying output voltage.

Thyristor Controlled Phase-Shifting Transformer (TCPST). This controller is a
phase-shifting transformer adjusted by thyristor switches to provide a rapidly varying
phase angle.

Thyristor Controlled Series Capacitor (TCSC). This FACTS controller is a
capacitive reactance compensator which consists of series capacitor banks shunted by a



thyristor controlled reactor in order to provide a smoothly variable series capacitive
compensation.

Table 1.1. FACTS controller applications to overcome operating problems [2].

Issue Operating Problem Corrective Action FACTS device
Low voltage at heavy load Supply reactive power TCSC, STATCOM
High voltage at high load [ Remove reactive power TCSC,TCR
supply
Absorb reactive power TCR, STATCOM
Voltage High voltage following Absorb reactive power TCR
Limits outage
Low voltage Supply reactive power STATCOM, TCSC
following outage Prevent overload IPC, TCSC
Supply reactive power IPC, TCSC, UPFC
Load voltage and overload pp and p STATCOM
limit overload
Thermal | Line/transformer overload Reduce overload TCSC, UPFC
Limits TCR, IPC
Tripping of parallel circuit Limit circuit loading IPC, UPFC, TCR
Parallel line load sharing Adjust series reactance IPC, UPFC, TCSC
Loop Post-fault sharing Rearrange network oruse | IPC, TCSC, UPFC
flows thermal limit actions TCR
Flow direction reversal Adjust phase angle IPC, UPFC

Interphase Power Controller (IPC). This controller is a series connected power
controller consisting of inductive and capacitive branches subjected to separate phase
shifted voltage magnitudes. The active power transfer is set by adjusting the phase
shifters and/or the impedances. The reactive power can be controlled independently

from the active power.

Static Synchronous Compensator (STATCOM). This controller is a static
synchronous condenser operated without an external electric energy source as a shunt-
connected static var compensator whose capacitive or inductive output current can be
controlled independently of the AC system voltage magnitude. The output current is
adjusted to control a specific parameter of the electrical power system. The node voltage
magnitude is usually controlled but reactive power injection may also be used.

Unified Power Flow Controller (UPFC). The UPFC is a combination of a Static
Synchronous Compensator and a Static Synchronous Series Compensator which are
coupled via a common dc link, to allow bi-directional flow of real power between the
series output terminals of the SSSC and shunt output terminals of the STATCOM. The
UPFC, by means of an angularly unconstrained, series voltage injection, is able to
control, concurrently or selectively, the transmission line impedance, nodal voltage
magnitude and the real and reactive power flow in the line. The UPFC may also provide
independently controllable shunt reactive compensation.

Power electronics and control technologies have been applied to electric power systems
for many years. The first devices were High Voltage DC Transmission (HVDC)
converters and Static Var Compensators (SVC), which are already well established
[1,2,61-64]:

High Voltage DC Transmission (HVDC) Converter. It is a controller whose
objectives are: a) to transmit large block of electrical energy with minimum losses; b) to
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control all DC parameters with sufficient accuracy and speed of response; ¢) to ensure
stable converter operation in the presence of small system disturbances; d) to connect
systems with different operational frequency.

Static Var Compensator (SVC). This is a shunt-connected static var
generator/absorber whose output is adjusted to exchange capacitive or inductive current
S0 as to maintain or control specific parameters of the electrical power system.

1.4 Background of Optimal Power Flow

Electric power systems have experienced continuous growth in all three sectors of the
industry, namely generation, transmission and distribution. In the past, transmission
systems contained only a low degree of interconnection, hence, it was not complicated
to share the load among several generating units. The increase in both the load size and
complexity of the power networks, brought about by the widespread interconnection of
transmission systems, some of them encompassing continental distances, introduced
major difficulties into the operation of electrical power networks. It became necessary
for many electrical utilities to operate their systems closer to the system operating
capacity. It became impractical to diagnose the existing network conditions and to
determine appropriate operating strategies based on observation and experience of the
operator. The operating philosophy had to be revised and new concepts based on
economic considerations were adopted. The possibility of using computational resources
as a basic tool in the operation of the system was deemed not just desirable but essential.
This is the background from where Optimal Power Flows arose in power systems [25-

52].

Optimal Power flows can be understood if one thinks in terms of conventional power
flows, where the objective is to determine the steady-state operating conditions of the
network [53-56,58-60]. Voltage magnitudes and angles at all nodes of the network
corresponding to specified levels of load and generation are determined first. Power
flows throughout the network are calculated afterwards. It is most likely that this
solution, while feasible will not yield the most economic generating schedule or an
operating point where minimum losses are incurred [25,47]. The optimal power flow
solution, on the other hand, includes an objective function which is optimised without
violating the system operating constraints. These include the network equations, loading
conditions and physical limits on the active and reactive power generation [26,27]. The
choice of the objective function depends on the operating philosophy of each power
system. The most common objective function is the active power generation cost. The
Economic Dispatch is a particular case of the Optimal Power Flow problem.

1.5 Why Newton’s Method ?

The optimal operation of the power network gives rise to a non-linear set of equations
which are normally solved by iteration. The method used in this research is Newton’s
method. It should be noted that if simplifying assumptions are made in the operation of
the power system then linear programming techniques can be used instead. The latter
have been used extensively for solving conventional Optimal Power Flow problems.
They are highly developed, leading to fast and reliable solutions. However, FACTS
devices are highly non-linear and their inclusion in linear programming-based
algorithms becomes difficult without sacrificing model fidelity. Hence, Newton’s
method has been adopted in this research as the vehicle for solving the FACTS Optimal
Power Flow problem. So far, the result obtained using this method have been very
encouraging [37,38,48,50].



The main benefits of having active powers optimally scheduled are related to economic
factors [27]. However, additional advantages could be:

e To establish limits for complying with stability considerations and with thermal
ratings of transmission lines [2].

¢ To model accurately the active power losses as given by the power balance equations.
Reactive power mismatches are also readily available [28,29].

On the other hand, the distribution of generated reactive power is directly related to the
quality of service which the power company can deliver. The following items can be
potential benefits:

¢ Good voltage magnitude profile.
e Stability enhancement by avoiding low voltage levels in the transmission system [2].

o Decreased active power generation costs by minimising active power transmission
losses [28,29].

The economic aspect is a matter of paramount importance to electricity companies. The
price of fuel and its strategic importance motivates them to operate electric plants with
maximum efficiency. By doing so, the cost per kilowatt-hour to customers can be:
reduced. Even small reductions in the amount of fuel and transmission losses represent
large amounts of money to be saved if one considers that network operation takes place

over a long time horizon.

1.6 Motivation Behind this Research

In order to determine the usefulness of this new generation of power system devices on
a network-wide basis, it will become necessary to upgrade most of the analysis tools
which power engineers rely upon to plan and to operate their systems. Before
meaningful results can be obtained from application studies, realistic models for the
transmission systems and relevant FACTS controllers need to be created, verified and
implemented in existing or newly developed power system software. Some of the tools
which require immediate attention are:

For steady-state studies:
e Load Flows.

e Optimal Power Flows.
o State Estimation.

e Harmonic Analysis.
And for transient studies:

e Transient Stability.
e Small Signal Stability.
e Electro-Magnetic Transients.

This research is concerned with FACTS models suitable for steady state solutions of
large scale power networks. Considerable progress has been made in this field and an
extensive program of research which addresses realistic FACTS device models suitable
for conventional load flows studies has just been completed [24]. However, very little
work has been done world-wide in tackling the very pressing issue of OPF solutions



where FACTS devices are included. So far, only one reference can be found in open
literature where the series compensator and the phase-shifting transformer have been
modelled. Linear programming techniques were used in that work and the authors have
reported extreme complexity in carrying out their task, particularly in the case of the
phase-shifting transformer. The reason is that the phase-shifting transformer is a non-
linear device that cannot be accommodated easily within the frame [57] of reference
offered by linear programming. In contrast, no such difficulties are experienced when
incorporating these or other more complex devices in Newton’s method. For instance,
the UPFC is a far more sophisticated device than the phase-shifting transformer. The
realisation and computer implementation of the UPFC model is much more challenging

than the phase-shifting transformer.

1.7 Purposes and Objectives of the Present Work
The objectives of the research carried out in this thesis were as follows:

e To develop a robust and efficient algorithm for the solution of Optimal Power Flows
capable of solving large-scale electrical power networks. Newton’s method was used
as the main numerical algorithm and the equal incremental cost criterion is used to
provide starting conditions to the OPF solution, which eliminates the need for using a

load flow solution.

e To develop FACTS device models suitable for large-scale power system studies. The
models must represent the various steady state operating control features of the
device. For example, the Unified Power Flow Controller must be able to maintain
active and reactive power flows at the target values chosen by either the OPF
algorithm or the user. The models to be developed are:

e Phase-Shifting Transformer.

e Load Tap-Changing Transformer.

Static Var Compensator.

Thyristor Controlled Series Compensator.

Interphase Power Controller .
Unified Power Flow Controller.

e High Voltage DC link.

e To integrate the various FACTS models into a Newton Optimal Power Flow
program. The program must maintain efficiency without compromising the strong
convergence characteristics of Newton’s method.

e To compare answers provided by the Optimal Power Flow program with those of a
leading software vendor by solving a wide range of networks. The PSS/OPF module
of the Power Technologies Inc. (PTI) package is used for this purpose. This software
is highly reliable and used throughout the world, however, it should be mentioned
that the package does not have FACTS device modelling capabilities.

e To compare the results given by the Optimal Power Flow program and a
‘conventional’ FACTS load flow program [24]. The latter is supplied with scheduled
generating powers and generating voltages as given by the OPF solution

e To investigate the robustness of the convergence by using the newly developed
digital program to solve several types of electrical networks corresponding to test
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networks available in the open literature, and real life electric networks with
hundreds of variables to be optimised.

1.8 Publications

The following publications were generated during the course of the present research:

1

.8.1 Transaction-graded Papers

Ambriz-Pérez H., Acha E., Fuerte-Esquivel C.R. and De la Torre A.: ‘Incorporation
of a UPFC model in an Optimal Power Flow using Newton’s Method’, IEE
Proceedings on Generation, Transmission and Distribution. Vol. 145, No. 3, May

1998, pp. 336-344.

Ambriz-Pérez H., Acha E. and Fuerte-Esquivel C.R.: ‘Advanced SVC Models for
Newton-Raphson Load Flow and Newton Optimal Power Flow Studies’, Accepted
for publication in IEEE Transactions on Power Systems, 1998.

Fuerte-Esquivel C.R., Acha E. and Ambriz-Pérez H.: ‘A Comprehensive Newton-
Raphson UPFC for the Quadratic Power Flow Solution of Practical Power
Networks’, Accepted for publication in IEEE Transactions on Power Systems, 1998.

Acha E., Ambriz-Pérez H. and Fuerte-Esquivel C.R.: ‘Advanced Transformer
Control Modelling in an Optimal Power Flow Using Newton’s Method’, Accepted
for publication in IEEE Transactions on Power Delivery, 1998.

Ambriz-Pérez H., Acha E. and Fuerte-Esquivel C.R.: ‘TCSC-Firing Angle Model for
Optimal Power Flow Solutions Using Newton’s Method’, Submitted to IEEE
Transactions on Power Delivery, 1998.

Fuerte-Esquivel C.R., Acha E. and Ambriz-Pérez H.: ‘A Thyristor Controlled Series

Compensator Model for the Power Flow Solution of Practical Power Networks’,
Accepted for publication in IEEE Transactions on Power Systems, 1998.

1.8.2 Conference Papers

Acha E., Ambriz-Pérez H., Tan S.G. and Fuerte-Esquivel C.R.: ‘A New Generation
of Power System Software Based on the OOP Paradigm’, Proceedings of the
International Power Engineering Conference 1997 (IPEC 97), Singapore 22-24 May

1997, pp. 68-73.

Acha E., Ambriz-Pérez H., Fuerte-Esquivel C.R. and Chua C.S.: ‘On the Auditing of
Individual Generator Contributions to Optimal Power Flows, Losses and Costs in
Large, Interconnected Power Networks’, Proceedings of the International Power
Engineering Conference 1997 (IPEC 97), Singapore 22-24 May 1997, pp. 513-518.

Acha E. and Ambriz-Pérez H.: ‘FACTS Devices Modelling in Optimal Power Flows
Using Newton’s Method’, Accepted for presentation at the 13" Power System
Computation Conference (PSCC), Norway June 28-July 2" 1999,

1.9 Contributions

The main contributions of the research work are summarised below:

A complete methodology for developing efficient and reliable Optimal Power Flow
programs using Newton’s method has been presented. A digital computer program
has been written in C++, which is able to solve large-scale power networks.
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e Efficient handling of inequality constraints has been implemented. The Multipliers
method is used to handle all the state variables of FACTS devices, leading to highly
efficient Optimal Power Flow solutions of constrained power networks. The method
does not require structural changes in the linearised system of equations during the
iterative solution of the Newton Optimal Power Flow. On the other hand, the
inequality constraints on functions of variables, such as controllable sources of
reactive power, are handled efficiently by using quadratic penalty functions.

e A general framework of reference for unified iterative solutions is presented. The
power flow equations for modelling the FACTS devices are incorporated directly into
the set of linearised system equations to be solved in the Optimal Power Flow.

e A complete three-winding transformer model with<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>