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Abstract

Models of genesis for the Navan orebody are of two distinct types. An 

early hypothesis that mesothermal (though non-magmatic) deposition 

of ore began when a supernatant seawater brine still had access to the 

host sediments (during the early to mid-Lower Carboniferous), has 

been challenged by recent suggestions favouring a later (mid-Lower to 

Upper Carboniferous) mineralisation derived from cooler fluids 

traversing either the Carboniferous basin, or the underlying basement 

from the south. These models, characterized here as Irish Type and 

Mississippi Valley Type (MVT) respectively, are interrogated as to 

their particular predictions with regard to metal distributions and 

sulfur isotope patterns associated with various fault geometries.

An examination of the temporal relationship between mineralisation 

and known structural events has revealed that the onset of 

mineralisation occurred prior to, or coincident with the initial 

developments of the major ENE trending semi-listric extensional 

faults of early Lower Carboniferous age, that now control the general 

disposition of the orebody.

The basal 5 lens of the Navan Zn+Pb deposit contains -70  % of the 

known tonnage of the -90 Mt orebody and thus is the focus of the 

metal distribution examination. Lead distribution patterns especially 

suggest that migration of metal-bearing fluids was principally directed 

up early to mid Mississippian, near vertical NNE, NE and ENE minor 

normal faults. These faults predate or are coeval with the major 

extensional, partly listric, ENE faults which now control the general 

disposition of the deposit. Only where these major ENE faults cross
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putative deep-seated, NE (Caledonoid) and NW structures are they 

associated with lead enrichments.

A systematic 534S survey in the 5 lens across five minor NNE through 

to ENE- trending faults associated with distinct lead enrichments, and 

one ENE trending, partly listric, major extensional fault adjacent to 

that trend, revealed positive 834S values (+1 to +18%o) for galena, 

sphalerite and marcasite sampled within 3 m of all the faults on the 

profile. Sulfides with positive 834S values associated with the deep- 

seated, metal-bearing fluid generating the Navan deposit have been 

highlighted by previous workers (Anderson et al., 1998). The evidence 

reported here strongly suggests that the metal-bearing fluids rose 

through all the fractures. Conversely negative 834S values (-1 to -26 % o )  

were returned in galena and sphalerite sampled 3 m or more from 

these faults. These negative values indicate that locally derived 

bacteriogenic sulfide, reduced from seawater sulfate, dominated away 

from these faults. Pyrite 834S values suggest a background level of - 

29±3.0%c across the profile. However, pyrite 834S values as low as - 

34±2.7%c were recorded in one sample collected from within 1 m of a 

fault. Thus fluids containing highly fractionated, bacteriogenic sulfide 

also gravitated into these faults on at least one occasion. There is also 

evidence suggesting that the metal-bearing solutions periodically 

displaced the locally derived bacteriogenic sulfide-bearing fluid in and 

near the faults.

Mineral sulfide petrography is used to contextualize the sampling and 

to give a qualitative indication of the degree of chemical 

disequilibrium of the system. Mineral textures demonstrating 

comminution and dissolution are revealed by this study which, when
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coupled with evidence of isotopic overprinting, force the conclusion 

that mineralising fluids first invaded the host lithologies during early 

Lower Carboniferous times, coincident with active faulting. There is 

no evidence of reactivation of the minor fault sets encountered in the 

study area during post Chadian tectonism, though the major, partly 

listric, ENE extensional faults were reactivated at that time.

A genetic model, based on the hypothesis of Russell, 1974, and 

Russell, 1986, for the Navan deposit is presented. Highly saline early 

Lower Carboniferous seawater was allowed access to the basement via 

regionally major NE trending (Caledonoid) fault systems. These faults 

remained the focus of down-welling seawater throughout the duration 

of the mineralising system. Thus the formation waters at depth were 

re-charged and metals leached from the basement. Ore deposition was 

effected by bacteriogenic sulfide (reduced from early Lower 

Carboniferous seawater sulfate) reacting with the rising, metal-bearing 

mesothermal fluids.
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1. Introduction.

1.1 A brief history of the ‘Modern Era’ of Irish mining 

and the discovery of the Navan deposit.

Ireland has a long history of metal mining. Records of activity at Silvermines in 

particular date from the Middle Ages, and evidence suggests mining operations 

before historic records began (Rhoden, 1958; Andrew, 1993). Although these 

early miners traditionally worked for lead, silver was also extracted in payable 

values (Andrew, 1993). Irish gold is known to have been wrought during the 

Bronze Age, and several prospects are recognised today, notably in Co. Mayo 

(Cregganbaun), Co. Wicklow (Kilmacoo), and at Lack and Curraghinalt in 

Northern Ireland. Copper (with minor Zn, and Pb) was extracted from Avoca, in 

Co. Wicklow, during the latter eighteenth, nineteenth and twentieth centuries 

(Andrew, 1993; Gardiner et al., 1982; O’Brien, 1966; Platt, 1980).

This thesis deals with research conducted on one of five economic base-metal 

deposits that have so far been discovered during the 'modem era' (late 1950’s 

onwards). These Zn+Pb+Fe+/-Ag+/-Ba+/-Cu deposits are all located within the 

Irish Midlands. All are carbonate hosted and all are described as ‘Irish Type’, a 

hybrid variety of carbonate hosted Zn+Pb deposit defined as showing affinities to 

both the Mississippi Valley Type (MVT), and the Sedimentary Exhalative 

(SedEx) classifications (Hitzman and Beaty, 1996). This spate of exploration 

successes, plus a large number of currently sub-economic discoveries, prompted 

Singer (1995) to calculate that the Irish Midlands contained the highest known 

concentration of zinc per square kilometre of any country in the world.
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The first of the Irish Type deposits to be discovered was at Tynagh, Co. Galway, 

(Fig. 1-1 and Table 1-1), in 1961 (see Derry et al., 1965). This find was based on 

favourable information obtained from the Irish Geological Survey, along with 

complementary geochemical data and the known existence of an ENE trending 

(Lower Carboniferous) extensional fault (Schultz 1968). This was a similar 

scenario to the main Silvermines fault, south of Nenagh, Co. Tipperary (Fig. 1-1 

and Table 1-1), where lead/silver mineralisation had been worked since pre­

history (Rhoden, 1958). Encouraged by the discovery of the Tynagh deposit, 

renewed drilling in the Silvermines area by Consolidated Mogul had defined, by 

1964, a previously unknown area of economic mineralisation to the north of the 

main Silvermines Fault (O’Brien, 1966).

Tynagh (9.9Mt, at 5.7% Zn, 6.9% Pb, and 0.6% Cu), and Silvermines (17.7Mt, at 

6.43% Zn, 2.53% Pb, with 5.5Mt BaS0 4 ) (Andrew, 1993; Johnston, 1999), 

constituted, during the 1960’s, the most notable exploration successes in the Irish 

Midlands. However, a survey by the Irish Agricultural Institute published in 1968 

(see Libby et al. 1985) highlighted trace element, including zinc and lead, 

anomalies in stream sediments in the area immediately to the west of Navan, Co. 

Meath. Although initially viewed as unpromising due to the nearness of Navan 

town (possible pollution), and the property being the subject of previous 

exploration by a different company, acquisition in 1969 of prospecting licences 

(under the 1940 Minerals Development Act) allowed Tara Exploration and 

Development Company to confirm and enlarge the initial anomalies by shallow 

soil geochemistry and geophysical prospecting methods. The shallow soil 

geochemical survey indicated an area to the north of the River Blackwater (900m 

x 400m) having peak values of 5000ppm zinc and 2000ppm lead against
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background levels of 90 and 45ppm respectively. The anomalous zinc values 

continued east for almost 1400m; however, this tail was found to reflect the 

dominant drainage direction (Libby et al. 1985).

Following intensive field mapping that revealed mineralised boulders (float), and 

a mineralised outcrop north of the River Blackwater, an induced polarisation and 

resistivity survey identified anomalous zones on both sides of the river. During 

November 1970, the first diamond drill-hole, located on the highest geochemical 

and most favourable induced polarisation values north of the river, intersected 

12m of 8.5% zinc and lead combined. A subsequent drilling programme continued 

until August 1972, by which time 355 holes had been completed, realising (at a 

cut-off grade of 4% Zn+Pb), 69.9Mt at 10.09% zinc and 2.63% lead (Libby et al. 

1985). The Navan deposit, currently owned and operated by Outokumpu-Tara 

Mines Ltd, has been extracted at a rate of around 2.5Mt per year (1999 output 

equalled 2.02Mt at 7.38% Zn, 2.19% Pb, and 2.85% Fe). Current exploration is 

centred on an area to the southwest of the original discovery, and recent drilling 

has raised the total size of the orebody to ~90Mt (Ashton, in press).

Within the Irish base-metal ore-field, Navan is the largest deposit so far 

discovered. Two other deposits are currently being worked at Lisheen, Co. 

Tipperary (>20Mt), and Galmoy, Co. Kilkenny (6.7Mt). Along with the 

previously worked deposits (Tynagh and Silvermines), several minor prospects 

have also been defined (see Fig. 1-1 and Table 1-1).
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Deposit Tonnes

xlO 6

Zn% Pb% Cu% Agg/T Barite Status

Navan -90 10.09 2.63 - 11 Present Operating1

Lisheen >20 12.0 1.2 - 30 - Operating

Galmoy 6.7 10.9 1.0 - - - Operating

Silvermines 17.7 6.43 2.53 - 23 - Closed

Ballynoe** 5.5 - - - - 85% Closed

Tynagh 9.9 5.7 6.9 0.6 74 Present Closed

Gortdrum 3.8 - - 1.2 23 - Closed

Abbeytown 1.1 3.5 1.5 - 40 - Prospect

Aherlow 6.0 - - - - - Prospect

Allenwood ? 1.6 0.4 - - - Prospect

Ballinalack 5.7 6.78 1.13 - 27 - Prospect

Ballyvergin 0.15 - - 1.2 17.1 - Prospect

Boston Hill 0.8 2.7 1.1 - - - Prospect

Carrickittle <0.1 6.0 1.5 - - - Prospect

Clogherboy*** 0.34 5.8 1.2 - - - Prospect

Courtbrown 1.0 3.5 2.0 - 14 - Prospect

Gary cam 1.4 2.7 0.2 - - 36.1% Prospect

Harberton 5.4 8.17 Zn+Pb - - - Prospect

Bridge

Keel 1.8 5.83 1.16 - - Present Prospect

Mallow 4.2 7.7 1.0 0.7 27.5 - Prospect

Moyvoughly 0.13 6.5 1.0 - - - Prospect

Newtown ? 3.1 3.1 - - - Prospect

Cashel

Oldcastle 3.0 4.3 0.6 - - - Prospect

Rickardstown 3.5 2.2 1.1 - - - Prospect

Tatestown*** 3.6 6.9 Zn+Pb - - - Prospect

Table 1-1 Tonnages and grades of selected Irish carbonate hosted base-metal 
deposits (see also Fig. 1-1). (* Currently at ‘care and maintenance’ status, ** 

Formerly known as Magcobar (Silvermines), *** Satellite of the Navan deposit). 
Modified and updated from Johnston (1999).
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1.2 Location and Geological Setting.

The Navan deposit is located on the northern edge of the Eastern Irish Midlands, 

approximately 50-km north-northwest of Dublin on the south-western margin of 

the Lower Palaeozoic Longford Down Inlier. (Figs. 1-1, 1-2 and 1-3). The deposit 

is hosted by shallow-water argillaceous bioclastic carbonate lithologies of 

Courceyan and Chadian/Arundian age (360-345ma), (Anderson et al., 1998; 

Ashton, 1995; Ashton et al, 1992; Andrew, 1993).

Age
(Million
Years)

Period Events relating to the Navan area

355

Carboniferous

Generally weak deformation in foreland o f 
Variscan Orogeny.

Deposition o f deltaic sands and muds.

Development o f platform and basin carbonate 
depositional environments. Minor volcanism.

Trangression; limestone ramp sedimentation.

410
Devonian

Final closure o f Iapetus; deformation and 
metamorphism in Caledonian Orogeny. Intrusion 
o f Granites.

438

Silurian

Closure o f Iapetus Ocean; deposition in remnant 
marine basin.

Accretion o f oceanic sediments and Grangegeeth 
(arc) Terrane in subduction complex to Laurentian 
margin.

510

Ordovician

Volcanic arcs within and marginal to Iapetus 
Ocean

Deep marine sedimentation within and on 
margins o f Iapetus Ocean. Volcanism as ocean 
begins to close.

545 Cambrian Generation o f oceanic crust in newly formed 
Iapetus Ocean.

Table 1-2 Geological timescale of events leading up to and during the period 
covered by this Thesis (Adapted from MacConnell et al., 2001).
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Most of the mineralisation {->91%) lies within the Courceyan sequences and 

takes the form of complex ‘stratabound’ and occasionally discontinuous lenses 

separated by argillaceous and dolomitised arenaceous horizons (Fig. 1-4). Further 

mineralisation (~<3%) occurs within a Chadian/Arundian mega-conglomerate 

lying above an erosion surface that truncates the deposit to the south (Boyce et al., 

1983a; Anderson, 1990; Ashton et al., 1992; Andrew 1993; Rizzi, 1993; Ashton, 

1995; Ford, 1996; Anderson et al., 1998). There are also two associated sub- 

economic satellite bodies at Tatestown (3.6Mt, 5.3% Zn, 1.5% Pb) to the 

northwest and at Clogherboy (0.34Mt, 5.8%Zn, 1.2% Pb), to the southeast 

(Andrew, 1993) (Fig. 1-3 and Table 1-1).

The Lower Carboniferous host rocks to the Navan deposit unconformably overlie 

the Lower Palaeozoic rocks of the Longford Down Inlier (Figs. 1-2, 1-3 and 1-4). 

These Ordovician clastic, argillaceous and tuffaceous horizons, and Silurian 

greywackes, mudrocks and siliciclastics, form a series of fault bounded terrains 

Vaughan (1991). However, the precise nature of the structural geometries 

affecting these lithologies beneath the Navan deposit are not known (Phillips et 

al., 1976; Romano, 1980; Leeder, 1982; Freeman et al., 1988; Lee et al., 1990; 

Kneller, 1991; Murphy et al, 1991; Owen et al., 1992; Vaughan and Johnston, 

1992; Chadwick et al., 1993; Lenz and Vaughan, 1994; Todd et al., 1991; Corfield 

et al., 1996; Readman et al., 1997). It is generally held that the lithologies of the 

Longford Down Inlier represent a lateral continuation of the Southern Upland 

Group to the northeast in Scotland, and are therefore demonstrative of a series of 

accreted exotic terranes (Phillips et al., 1976; Romano, 1980; Leeder, 1982; 

Freeman et al., 1988; Lee et al., 1990; Kneller, 1991; Murphy et al, 1991; Owen et 

al., 1992; Vaughan and Johnston, 1992; Chadwick et al., 1993; Lenz and
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Vaughan, 1994; Todd et al., 1991; Corfield et al., 1996; Readman et al., 1997). 

This scenario predicts that the rocks of the Longford Down Inlier lie proximal to 

the proposed surface trace of the Iapetus Suture (‘Navan-Silvermines Fault’).

1.2.1 Lower Palaeozoic Stratigraphy

As previously stated, the Navan deposit is hosted by Upper Palaeozoic rocks that 

unconformably overlie rocks of Lower Palaeozoic age, which outcrop within the 

Longford Down Inlier to the northeast (Figs. 1-2 and 1-3). The rocks of the 

Longford Down Inlier have been divided into two distinct “suspect terranes”, the 

Central Terrane and the Grangegeeth Terrane (Murphy et al. 1991). The Central 

Terrane, consisting of much of the Longford Down Inlier, has been further sub­

divided into the Longford Down Northern Belt, and the Longford Down Central 

Belt. Each of these terranes comprises a fault-bounded unit that has been 

delineated on the basis of lithology, deformational and metamorphic history, and 

faunal provinciality (see Murphy et al. 1991 and references therein).

1.2.1.1 The Longford Down Northern Belt

The Longford Down Northern Belt consists of Ordovician, possibly Llanvirn to 

Llandeilo, and late Caradoc or early Ashgillian, greywackes with interbedded 

shales, cherts, spillites, metabentonites, feldspathic arenites, and cobble 

conglomerates (Murphy et al. 1991). The same authors describe the geochemistry 

of these units as being indicative of a volcanic arc setting located to the southeast, 

while the more felsic igneous and metamorphic detritus was derived from a 

continental margin to the northwest. The Silurian rocks of the Longford Down
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Northern Belt have been dated as Upper Wenlock/Lower Ludlow based on 

microfossils that occur in a black shale outlier (Murphy et al. 1991).

1.2.1.2 The Longford Down Central Belt

This terrane comprises Llandeilo/Caradoc basic to intermediate volcanics and 

epiclastics interbedded with carbonaceous shales (the Moffat Shales). The latter 

begin to dominate toward the southeast (Murphy et al, 1991). Pelagic facies 

include dark grey carbonaceous shales, olive grey mudstones, metabentonites and 

minor cherts (Murphy et al., 1991). Greywacke sandstones and metabentonites of 

Llandovery and Wenlock age overlie pelagic lithologies within the Silurian of the 

Longford Down Central Belt. (Murphy et al., 1991).

1.2.1.3 The Grangegeeth Terrane

The Grangegeeth Terrane comprises Ordovician and Silurian rocks which outcrop 

between Navan and Clogher Head in Co. Louth (Murphy et al., 1991), and form 

the Lower Palaeozoic basement beneath the Navan deposit. The Terrane is 

bounded to the north by the Navan Fault and to the south by the proposed Slane 

Fault (Fig. 1-2), which is delineated by aeromagnetic and gravity gradients 

(Murphy et al, 1991). The Ordovician lithologies consist of the basal 

volcaniclastics and Llanvirn sediments and mugearite flows of the Slane Group 

(Murphy et al., 1991). These are unconformably overlain by the Grangegeeth 

Group of proposed early Llandeilo to lower Caradoc age. This Group comprises 

volcanic conglomerates and related sediments (Romano, 1980; Murphy et al, 

1991). The overlying Mellifont Abbey Group of Upper Caradoc black shales, is
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followed by mudrocks and volcaniclastic sandstones of Ashgillian age (Murphy et 

al, 1991).

1.2.2 Upper Palaeozoic Stratigraphy.

The Carboniferous succession at Navan comprises a sequence of predominantly 

carbonaceous lithologies that represent a major marine transgression from south to 

north throughout the Courceyan, Chadian and Arundian (Fig. 1-4). These rocks 

are divided into three groups, the Navan Group, the Argillaceous Bioclastic 

Limestone (ABL) Group and the Fingal Group. The marine transgression occurred 

in response to the ultimately catastrophic subsidence of several fault-bounded 

basins within the Irish Midlands, e.g. the Dublin Basin, a result of an extensional 

tectonic regime predominating to the north of the developing Hercynian Orogeny.

1.2.2.1 The Navan Group (Courceyan).

1.2.2.1.1 The Red Beds.

Resting unconformably on the Lower Palaeozoic basement is the basal member of 

the Navan Group (Fig. 1-4). This unit comprises immature, proximal, 

terrestrial/littoral polymict conglomerates, sandstones and mudstones, and is 

known locally as the Red Beds. Sporadically containing caliche horizons, this unit 

is chiefly composed of detrital fragments sourced from the underlying Lower 

Palaeozoics (Mallon, 1997). Also, Everett (2000) suggests that the feldspars have 

a predominant Caledonian granitic source on the basis of lead isotopes. A zone of 

intense haematisation extends some way into the underlying Ordovician and 

Silurian lithologies. Although Courceyan in age, the Red Beds represent a
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continuing depositional environment similar to that of the Old Red Sandstone 

facies of predominantly Devonian aspect in the rest of the British Isles, most 

notably in the Central Midland Valley of Scotland. The thickness of this member 

at Navan ranges from 0 to at least 40m, and although the Red Beds steadily 

thicken to the south, they do not attain any great thickness until the northerly 

bounding faults of the Munster Basin are crossed, where thicknesses of 4000m or 

more are attained (Andrew, 1986a).

1.2.2.1.2 The Mixed Beds 

The Laminated Beds.

The Laminated Beds mark the beginning of the marine transgressive sequence 

(Strogen et al. 1990; Rizzi, 1993), (Fig. 1-4). They comprise bioturbated, thinly 

interbedded, bioclastic calcsiltites and bioclastic mudstones/shales and occasional 

more persistent yellow sandstones typical of a littoral/shallow water environment. 

Rizzi (1993) has identified several minor sub-aerial erosion surfaces within the 

unit indicating that at times the prevailing marine transgression was reversed. The 

existence within this unit of a chalcedonic silica layer, interpreted as replaced 

anhydrite (Ashton et al., 1986) along with sporadic, nodular and lensoid 

occurrences of gypsum indicate that at times evaporative, sabkha conditions 

dominated the environment.

The Muddy Limestone.

Above the Laminated Beds, the Muddy Limestone (Fig. 1-4), marks a change to 

deeper water conditions. These limestones predominantly comprise bioturbated, 

argillaceous, sparsely bio-clastic micrites, occasionally oncholitic, with horizons
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of syringopora corals. However, occasional polymict micro-conglomerates 

pervade the sequence, indicating minor erosive events, some of which penetrate 

the underlying Laminated Beds (Anderson, 1990; McNestry and Rees, 1992; 

Rizzi, 1993; Anderson et al., 1998).

1.2.2.1.3 Pale Beds.

The Pale Beds (Fig. 1-4), comprise a sequence of deeper water pelletal, oolitic and 

bioclastic carbonate lithologies with occasional argillaceous or arenitic members 

(Strogen et al., 1990). The basal unit within the Pale Beds sequence consists of 

clean, pale grey, variably oncholitic, ’birds-eye' micrites ( ‘birds-eyes’ are 

indicative of methane gas bubbles Shinn, 1983), up to 60m in thickness termed the 

Micrite Unit. This lithology forms the host to the basal ore lens (5-Lens) within 

the Navan deposit. A persistent thin green shale horizon exists within the basal 

parts of this unit that has been ascribed to an airborne volcanic ash deposit, similar 

to other such horizons in the Irish Midlands (Andrew, 1993). Another type of 

green shale derived from Silurian rocks forms the footwall to the Upper G and 

Ballynoe deposits at Silvermines (Andrew, 1995). Rizzi (1993) however, 

describes the Green Shale as a palaeosol, and as such representative of a period of 

minor re-emergence. This green shale horizon is used by the Mine Geologists as 

the footwall marker to the lowermost 5-Lens part of the deposit.

Several pervasively dolomitised calc-arenitic units occur within the Micrite Unit. 

One of these, the 5-Lens Dolomite (mine staff informal nomenclature) that 

towards the top becomes increasingly oolitic and peloidal, forms an important 

hanging-wall control to the localisation of ore grade mineralisation within the 

western areas of the deposit (Rizzi, 1993; Anderson et al., 1998). In the eastern
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part of the deposit the hanging-wall of 5-Lens is formed by a bioturbated, five- 

metre thick micaceous calcsiltite termed the Lower Dark Marker (LDM). 

However, this unit dies out rapidly to the south-west where the Lower Dark 

Marker Equivalent (LDQ), slightly higher in the succession, serves the same 

function. This unit is superseded by a ~160m succession of variously oolitic and 

bioclastic calcarenites and calcargillites. Various (sometimes dolomitised) units 

are used as ’marker’horizons within this succession, notably (from bottom to top):

i) The Lower Sandstone Marker (LSM), a massively bedded sandy calcarenite, 

which demarks the hanging-wall of 4-Lens;

ii) The Nodular Marker, a mud-rich, nodular, crinoidal calcsiltite, forming the 

hanging-wall of 3/2-Lens;

iii) The Upper Dark Marker (UDM), a sequence of dark shale units, denoting the 

hanging-wall of 1-Lens; and

iv) The Upper Sandstone Marker (USM), a clean massively bedded sandstone, 

which falls within the lithologies constraining the U-Lens (Ashton et al., 2001)

Lateral variation occurs within both the ’marker’ horizons and the Pale Beds 

sequences. At least three erosional episodes with their axes trending between 

north and northwest have been recognised (Anderson, 1990; Anderson et al., 

1998). One such channel feature has removed large volumes of the Micrite Unit in
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the eastern part of the deposit (Fig. 1-4). Infilled by calcic-micro-conglomerates 

this feature occurs between the Lower Sandstone Marker and the Nodular Marker 

(Andrew and Ashton, 1985; Anderson, 1990; Rizzi, 1993; Anderson et al. 1998).

1.2.2.1.4 Shaley Pales.

These rocks comprise bioclastic, locally bryzoan-rich, shales and calcarenites. 

Philcox, (1984, and 1989) has divided the Shaley Pales into three sub-members 

comprising:

i) The Lower Shaley Pales, a series of interbedded bioclastic sandstones, 

silts tones and shales;

ii) The Middle Shaley Pales, a sequence of sandstones and calcarenites; and

iii) The Upper Shaley Pales comprising chiefly richly bioclastic dark shales.

1.2.2.2 The Argillaceous Bioclastic Limestone (ABL) Group 

(Courcey an/Chadian).

Although this Group is absent within the immediate area of the Navan deposit, it 

does occur conformably overlying the Navan Group to the northwest of the 

Liscarton and Castle Faults. Philcox (1989) describes the basal member of the 

ABL Group as comprising a thick argillaceous mudstone horizon, overlain by an 

increasingly crinoidal, well-bedded, muddy limestone. This upward trend to 

dominantly crinoidal, bioclastic debris extends up-sequence until true Waulsortian 

mudstone facies is developed. This is considered to have been formed in relatively 

deep water (Strogen et al., 1990). The Supra-Reef Shale (Philcox, 1989) overlies 

the Waulsortian Limestone and marks the top of the ABL Group.



1.2.2.3 The Boulder Conglomerate (Chadian/Arundian).

Both the Navan Group and the ABL Group are truncated locally by a submarine 

erosion surface that excavates to the southeast (Boyce et al. 1983a; Philcox, 1989; 

Ford, 1996).

The erosion surface probably formed in response to gravitational instability 

caused by major extension and growth faulting in the Navan area during the 

Chadian (Boyce et al., 1983a; Philcox, 1989; Ashton et al., 1992; Ford, 1996). The 

erosion surface is overlain by a highly immature polymict mega-conglomerate 

termed the Boulder Conglomerate that contains clasts of both the Navan and ABL 

Group rocks interbedded with hemipelagic limestone (Boyce et al., 1983a; 

Binney, 1987; Ford 1996). To the south of the Navan Deposit the Boulder 

Conglomerate includes clasts of Lower Palaeozoic rocks indicating that the 

erosion event removed the complete Courceyan and Chadian sequences in that 

area (Anderson et al., 1998). The clast size and sorting within the Boulder 

Conglomerate is highly variable and Ashton et al. (1986) present evidence that 

some Waulsortian mudstone clasts may not have been fully lithified at the time 

they were entrained into this unit. The matrix comprises dark, often crinoid-rich 

shale that, within the area of the deposit, also contains pyrite and marcasite 

laminae. Philcox (pers. Comm.) has observed the cyclical deposition of various 

conglomeratic and thin calc-turbidite units (similar to the overlying Thinly 

Bedded Unit) within the Boulder Conglomerate.



1.2.2.4 Fingal Group (Arundian to Asbian).

1.2.2.4.1 Upper Dark Limestone.

The gradation from the Boulder Conglomerate into the Upper Dark Limestones is 

variable between an abrupt contact and a steady decrease in clast size (Ashton et 

al. 1986; Anderson, 1990; Anderson et al., 1998). The basal units of the Upper 

Dark Limestone are termed the Thinly Bedded Unit and consist of interbedded 

shales and calc-turbidites (Rees, 1987; Strogen et al. 1990). Common thin pyrite 

laminae are present within the shale units along with rare pyritic ’rip-up clasts’ 

within the calc-turbidites. Only minor stratiform mineralisation persists between 

the Boulder Conglomerate and the Thinly Bedded Unit. It comprises sometimes 

friable, unlithified, cross-bedded, thinly laminated, fine-grained framboidal pyrite 

and minor sphalerite and galena. In some horizons graded bedding and soft- 

sediment deformation structures occur. The occurrence and petrography of this 

pyrite strongly suggest that surface processes were involved in its deposition, and 

therefore indicates either that exhalative activity similar to that occurring at 

Tynagh and Silvermines (Boyce et al., 1983b; Banks, 1986; Boyce et al., 1999) 

may have occurred at Navan during the lowermost Arundian or, conversely, 

reworking of existing concentrations of pyrite-rich material took place. Whether 

these concentrations came about through diagenetic or hydrothermal processes 

remains unresolved.
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1.3 Diagenesis of the host rocks and dolomitisation.

Several studies have been completed on the diagenesis and subsequent 

dolomitisation of the host rocks to the Navan Deposit, most notably those by 

Anderson (1990), Rizzi (1993) and Peace (1999). All these studies utilised 

cathodoluminescence and staining techniques to indicate multiple stages of 

carbonate cementation. Anderson (1990) recognised three stages of calcite 

cementation,

i. early dark luminescent fringing cement,

ii. well-zoned, dull to bright yellow luminescent overgrowths,

iii. medium yellow, blocky cement.

Three stages of dolomitisation were recorded,

i. fine-grained (<50 fim), dull brown luminescent mosaic-type replacement of 

carbonate allochems. This dolomite forms up to 75% of the rock. The dolomite 

rhombs are reported as frequently displaying corroded margins.

ii. a dark, non-luminescent cement that occurs in veins within, and overgrowths 

to, the stage 1 dolomite rhombs. This dolomite frequently occurs in association 

with sulfides (see Vasconcetas et al., 1995; Vasconcetas and McKenzie, 2000).

iii. the last stage occurs as coarse cement. Non-luminescent except for a bright red 

band, this dolomite is restricted to veins and vugs.

Anderson (1990), and Anderson et al. (1998), conclude that the stage 1 dolomite is 

consistent with formation in a shallow burial environment, and that the later stages 

were synchronous with, and later than, the mineralising event.

That the stage 1 dolomite was precipitated at a shallow burial depth is also 

consistent with the more clastic members within the Pale Beds succession being
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preferentially dolomitised because of a greater original porosity over the more 

carbonate-rich members (Anderson, 1990; Anderson 1998).

Rizzi (1993) and Braithwaite and Rizzi (1997) have identified the existence of a 

‘dolomite plume' that they attribute to hydrothermal processes associated with the 

mineralising event. The plume is roughly concordant with NNE-NE faulting 

within the horst structure in the northern and north-western parts of the deposit 

and forms a major control on the localisation of ore in the western parts of 5-Lens. 

Peace (1999), and Peace and Wallace (2000), describe the diagenetic history of 

the Upper Pale Beds (host to the U-Lens), and the Boulder Conglomerate. Again, 

several generations of cement are recognised;

i. Initial fine, inclusion rich, syntaxial, fibrous (isopachous) calcite that is non- 

luminescent with dully-luminescent rims in CL light.

ii. A second cement of coarser, equant calcite, well zoned in CL, is further sub­

divided into;

a) Pre-mineralisation (complexly zoned non-luminescent to dull-bright bands)

b) Syn-mineralisation (bright), and

c) Post-mineralisation (dull to non-luminescent)

Dolomitisation is regarded by Peace (1999), and Peace and Wallace (2000), as 

pre-mineralisation, with only the later saddle dolomite apparently synchronous 

with sulfide emplacement.
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1.4 Structure

Several large NE/SW trending fractures cross the mine area and its periphery, 

namely the Randlestown and Castle Faults to the northwest, and the D Fault to the 

southeast (Figs. 1-3). These Caledonoid faults have a long history of reactivation 

up to and including the Hercynian (Phillips and Sevastopulo, 1986). Within the 

deposit itself major Lower Carboniferous extensional faulting is represented by 

the partly listric ENE trending B and T Faults to the southeast, and the Liscarton 

Fault to the northwest (Figs. 1-3 and 1-5), as well as related M, P and Y structures 

further to the southwest (Fig. 1-6), which downthrow to the south-southeast. 

These faults define a southwesterly plunging asymmetric horst structure in the 

northern part of the deposit (Fig. 1-7). As there is no sign of thinning of 

lithological units over the horst block, it is inferred that this structure did not 

develop until at least late Chadian times.

There are numerous minor steeply dipping normal faults that are, in places, 

apparently truncated by the larger, partly listric structures. The minor faults trend 

from NNE, through NE to ENE, and are confined to early to mid Lower 

Carboniferous lithologies. They predate or are coeval with the earliest movements 

on the major, partly listric, ENE trending extensional faults that locally penetrate 

some way into the overlying Arundian strata. The Liscarton Fault apparently 

delineates the northwest limit of the zone of economic mineralisation. Jointing 

within the carbonates trends to the northwest and is considered to be of Upper 

Carboniferous age (Ashton et al., 1986; Ashton, 1995). Regionally the host rocks 

have been tilted through minor folding of likely Upper Carboniferous age (Ashton 

et al., 1986), and currently dip at 15° to 20° to the southwest. Locally, however, 

the folding is more intense - especially in close proximity to faults.
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1.5 Detailed Mineralogy and Mineral Textures.

The detailed mineralogy and associated textures are described in Anderson (1990) 

and Anderson et al. (1998). The Navan orebody displays a stacked, tabular multi- 

lensoid stratabound geometry with -97% of the deposit being hosted by the Pale 

Beds sequences termed the Pale Beds Ore (PBO). The remaining -3%, located 

within the Boulder Conglomerate, is termed the Conglomerate Group Ore (CGO). 

As previously discussed, the chief ore minerals are sphalerite and galena. Pyrite 

and marcasite occur throughout the deposit but are mainly concentrated in the 

northeast parts of 5-Lens, 1-Lens and the Conglomerate Group Ore. Swarms of 

marcasite veins, trending slightly obliquely to, but occurring proximal to, the T 

Fault (and very locally the B Fault), are located in the footwall of this structure 

(Andrew and Ashton, 1985). Gangue minerals are mainly calcite and dolomite. 

Barite does occur throughout the deposit but is nowhere economic. A minor 

mineralogy comprising semseyite (Pb9SbgS2i), bournonite (PbCuSbS3), freibergite 

((Ag,Cu,Fe)i2(Sb,As)4Si3), pyrargyrite (Ag3SbS3), boulangerite (Pb5Sb4Sn), 

cylindrite (Pb4(Fe,Sn)4Sbi2Si6), argyrodite (AggGeSe) and jordanite 

(Pbi4(As,Sb)6S23) has been reported (Boast, 1979;Ashton et al. 1986).

Ore textures are diverse. The following styles have been recorded.

a) Massive replacement of host carbonates.

b) Mineralised, sub-vertical fractures (veins).

c) Bedding-parallel veins.

d) Geopetal infilling of cavities by sulfide rhythmites.

e) Erosion surfaces within geopetal cavities and bedding parallel veins.

f) Extensive (>5m bedding parallel) stratiform sulfide rhythmites.
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g) Deformation of sulfide rhythmites including boudinage, slumping and rollover 

structures.

h) Deformation of laminated stratiform framboidal pyrite including soft-sediment 

deformation (load casts), slumping, cross bedding, and rollover structures. (These 

features are chiefly concentrated in the CGO and overlying Thinly Bedded Unit).

i) Brecciation of all the above styles (especially in the Boulder Conglomerate) 

j) Disseminated sulfides.

Mineral textures are diverse. The following have been recorded; where applicable 

the predominant phases within the texture type are included in brackets;

a) Coarse-bladed sulfides (marcasite and galena).

b) Zoned sulfides (sphalerite).

c) Rhythmically banded sulfides (sphalerite).

d) Granular sulfides.

e) Cubic sulfides (galena).

f) Stalactitic sulfides.

g) Honeyblende sphalerite.

h) Dendritic sulfides (galena).

i) Laminated sulfides.

j) Replaced allochems (sphalerite).

k) Colloform (pyrite and sphalerite).

1) Framboidal (pyrite).
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Course-grained, euhedral sulfides (predominantly Tioneyblende sphalerite), are 

restricted to open fractures i.e. faults and joints.
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1L6 Existing models for metallogenesis within the Irish Midlands 

and previous investigations at Navan

Much debate has surrounded the base-metal deposits of the Irish Midlands with 

regard to their origin and process of emplacement (see discussions in Russell; 

1978, Hitzman and Beaty, 1996). Enough features occur regularly within each of 

the deposits for workers in the ore-field to classify these deposits as Irish-Type, as 

distinct from Mississippi Valley and Sedimentary Exhalative types. These features 

are;

1. The deposits are hosted by the lowermost ‘clean’ carbonate horizon in the 

Carboniferous succession (Waulsortian Mudbank Limestones or their immediate 

equivalents in the south Irish Midlands, Navan Group rocks in the north) 

(Andrew, 1993).

2. Most deposits are associated with ENE extensional faults that were 

demonstrably active during the early to mid-Lower Carboniferous. (Andrew, 

1993).

3. Studies at Silvermines, Tynagh and Navan have revealed a bimodal 

distribution of 8 34S ( s u l f id e )  values. By far the largest component of measurements 

(80 to 90%), comprise negative values centred on -15 per mil, attributed to the 

open system bacteriogenic reduction of seawater sulfate. The remaining 10 to 20% 

with a mean of ~+10 per mil is considered to have been sourced from diagenetic
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sulfides located in the Lower Palaeozoic basement (Anderson et al., 1989; Boyce 

et al., 1994, Fallick et al., 2001).

4. 5 34S ( s u l f a t e )  values are indistinguishable from those of Lower Carboniferous 

seawater. (Coomer and Robinson, 1976)

5. Fluid temperatures range from <100°C to around 250°C with salinities of 

between 10 and 30 wt% NaCl (Everett et al., 1999). However, because of the fine­

grained nature of the ore sulfides within the Irish Midlands, there is no data from 

many deposits, and some authors question these results (e.g. Hitzman and Beaty, 

1996).

Metallogenic models for the Irish Type deposits are essentially polarised around 

two end member propositions. First of these is the Mississippi Valley-Type 

(MVT) hypothesis (Fig. 1-8) which invokes either a migrating basinal brine, 

driven by increased geothermal gradients during basin extension, or by gravity 

induced flow resulting the hypothetical presence of nearby elevated topography 

(Lydon, 1986; Hitzman, 1995; and refs, in Hitzman and Beaty, 1996). Second, a 

model employing an isolated deepening convective cell sourcing seawater as a 

major component, as proposed by Russell (1978), which has the capacity to 

accommodate synsedimentary/syndiagenetic mineralisation similar to 

Sedimentary Exhalative (SedEx) deposits (Fig. 1-9).

Knowledge of the timing of metallogenesis within the Irish Midlands can aid 

elucidation of the more relevant model. The convective cell of Russell (1978) can 

operate at any time, requiring only a suitable convection driver, either heat or 

enhanced density contrasts. Although capable of functioning either at the same
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time as the host rocks were being laid down (syngenesis), or at a later juncture 

(epigenesis), the Russell (1978) model has however, become synonymous with a 

syngenetic/syndiagenetic age relationship. Conversely the topographic flow model 

of Hitzman (1995) and Hitzman and Beaty (1996) requires elevated topography, 

which, due to the developing Variscan Orogeny, the model locates to the south of 

the Irish Midlands. This situation would only pertain during the Upper 

Carboniferous and, therefore, given the age of the host-rocks, mineralisation could 

only be epigenetic.

While it has been demonstrated by various workers that deposits such as Tynagh 

and Silvermines can be classed, at least in part, as truly exhalative in nature 

(Boyce et al., 1983b; Banks, 1985; Boyce et al., 1999), and therefore the same age 

as the host rocks (~355Ma early Lower Carboniferous), the Navan deposit 

remains enigmatic in this respect (Ashton, 1995; Ashton et al., 1992; Andrew, 

1993; Anderson, 1990; Anderson et al., 1998; Ford, 1996, Peace 1999; Peace and 

Wallace, 2000). The presence of Boulder Conglomerate-infilled ‘neptunian dykes’ 

that dislocate lower Pale Beds hosted sulfide veins below the Erosion Surface 

suggests that mineralisation began before the Boulder Conglomerate was 

emplaced (Fig. 1-10). This conclusion is supported by rotated, truncated clasts of 

sulfide-bearing Pale Beds within, and stratiform sulfide mineralisation occurring 

both within and immediately above the Boulder Conglomerate (Ashton et al. 

1992), (Fig. 1-11). These textures also strongly suggest that mineralisation 

occurred prior to, during sedimentation of and perhaps after, deposition of the 

Boulder Conglomerate i.e. the late Chadian (345Ma). However, the precise nature 

and timing of sulfide emplacement has yet to be ascertained. Anderson 1990; 

Ashton et al., 1992; Ford, 1996; and Anderson et al 1998 favour a Chadian age
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(i.e. syndiagenetic/synsedimentary mineralisation), whereas Peace, 1999 and 

Peace and Wallace, 2000 propose a Holkerian (340Ma) age. In the latter’s view, 

mineralisation is entirely epigenetic. These arguments aside, the Navan deposit is 

generally considered to be Courceyan/Chadian in age because of the above- 

mentioned crosscutting relationship of the overlying Boulder Conglomerate 

(Boyce et al. 1983; Philcox, 1989; Ashton et al., 1992, Anderson 1990; Anderson 

et al., 1998; Ford 1996). Further to these textural relationships, Halliday and 

Mitchell (1983) have published a single K-Ar date of 366Ma ±11 (Courceyan to 

Chadian) whilst Symmons et al (in press), has produced a palaeomagnetic age of 

330Ma ± 8 (Holkerian).

Lead isotopes reflect a similar signature to that of the underlying Lower 

Palaeozoic/Dalradian basement. The distribution of the most radiogenic Pb at 

Navan (206Pb/204Pb = 18.2) persists vertically throughout the ore body (O’Keefe 

1986; LeHuray et al. 1987). However, a progressively less radiogenic signature 

increases with ascent through the orebody so that 1 Lens displays 206Pb/204Pb = 

17.6. (Mills et. al. 1987). The results of Mills et al. (1987) may indicate that whilst 

the lead source was mainly orogenic a small fraction was obtained from Dalradian 

rocks at depth below the Navan ore-body (but see discussion in Fallick et al., 

2001).

Sulfur isotope studies have revealed two dominant populations of 8 34S ( s u l f id e )  

(Anderson 1990; Anderson et al, 1998), -23%o to -5%c, and 0 to 15%o, and a 

smaller third grouping, -32%o to -28%o. Following Coomer and Robinson’s (1976) 

isotopic study at Silvermines, populations of lighter values have been interpreted 

as representing bacteriogenic reduction of seawater sulfate, (-23%c to -15%c), 

whereas the +8% o  to +15%o range represents hydrothermal sulfur postulated as
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being sourced from diagenetic sulfides in the Lower Palaeozoic basement (e.g. 

Anderson et al., 1989). Values straddling the two main populations indicate 

mixing of the two fluids. There is also an apparent correlation between 

sulfur(suLFiDE) values and mineral textures (Anderson 1990; Anderson et al., 

1998). Sulfur(suLFATE) reflects that of seawater sulfate during the Lower 

Carboniferous (Claypool et al., 1980). Analyses of carbonate isotopic 

compositions (5180  = -6.6% o  to -10.4%o and 813C = -0.2% o  to +2.5%o) within a 

proposed hydrothermal dolomite plume at Navan are indicative of a depositional 

fluid similar in composition to that of Carboniferous seawater (Braithwaite and 

Rizzi, 1997; but see also discussions in Vasconcelos et al., 1995 and Vasconcelos 

and McKenzie, 2000).

Because of the fine-grained textures of the sulfides, microthermometric data are 

rare, and in consequence may be unrepresentative of the mainstage ore 

depositional system. Further, Peace (1999) underlines the unreliability of fluid 

inclusion data from barite, as the inclusions are prone to stretching, and applies 

this argument to inclusions from the carbonate and sulfide phases. She reports 

wide variations in homogenisation temperatures in inclusions with similar 

salinities within diagenetic cements from the Upper Pale Beds. In contrast to the 

Everett et al (2000) findings, Peace (1999) favours a sulfide precipitation 

temperature at between 90 and 120°C. Fluids recognised at Navan, by Braithwaite 

and Rizzi (1997), Everett et al (2000), Peace (1999) and Everett (unpublished 

data) are given in Table 1-3.
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Host
mineral

Interpreted
paragenesis Th(°C)

Salinity 
(wt% NaCl 

equiv.)
Reference

Calcite Pre-ore (U Lens) 56.4-145.0
(n=49) 0.7-26.3 (n=22) Peace (1999)

Saddle
dolomite

Syn-ore (U 
Lens)

89.4-174.8
(n=40) 4.7-21.6 (n=4) Peace (1999)

5 Lens 
dolomite Syn-ore (5 Lens) 82.6-159.3

(n=6) No Data Braithwaite and Rizzi 
(1997)

Dolomite
plume Syn-ore (5 Lens) 100.5-134.3

(n=8) No Data Braithwaite and Rizzi 
(1997)

Stratal
dolomite Syn-ore (5 Lens) 59.7-102.3

(n=2) No Data Braithwaite and Rizzi 
(1997)

Sphalerite Syn-ore (5 Lens) 147.3 (n=l) No Data Braithwaite and Rizzi 
(1997)

Sphalerite Syn-ore (5 Lens) 186.9-260.5
(n=13) 15.1-17.2 (n=4) Everett et al. (1999)

Calcite Post-ore (U 
Lens)

66.2-158.0
(n=38) 3.6-22.0 (n=12) Peace (1999)

UDL, saddle 
dolomite

? 142.5 (n=l) No Data Peace (1999)

UDL,
sphalerite

? 67.6-139.9
(n=8) 5.3-5.9 (n=2) Peace (1999)

UDL-hosted
calcite

? 90.7 (n=l) 22.2 (n=l) Peace (1999)

Dolomitized
hostrock

Pre-syn ore (5 
Lens)

111.2-151.1
(n=6) 6.3-13.0 (n=5) Everett (unpublished 

data)
Dolomite 

veins, vugs
Syn-late-
orestage

97.8-184.2
(n=22) 7.2-26.5 (n=27) Everett (unpublished 

data)

Sphalerite Syn-ore (5 Lens, 
2-3 Lens)

75-156
(n=86) 5.4-18.2 (n=52) Everett (unpublished 

data)

Calcite Syn-late ore (5 
Lens, 2-3 Lens)

75-134
(n=29) 5.6-23.3 (n=31) Everett (unpublished 

data)

Sphalerite Syn- to post-ore 79-122
(n=ll)

24.3-24.9
(n=12)

Everett (unpublished 
data

Calcite Late sulphosalts 92.8-124
(n=7) 19.9-24.7 (n=9) Everett (unpublished 

data)

Calcite Post-ore veins 54-99 (n=7) 3.2-23.7 (n=l 1) Everett (unpublished 
data)

Table 1-3 Table of microthermometric results from the Navan deposit. (Braithwaite 
and Rizzi, 1997; Everett et al., 2000; Peace, 1999; and Everett, unpublished data).
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1.7 Aims

The identification of the routes taken by the metal bearing solutions and the 

locally derived bacteriogenic sulfide-bearing fluid is important for the 

understanding of the genesis of the Navan deposit. The delineation of these 

conduits has relevance to identifying

[

i i) The discovery of more ore within the Navan deposit,
!I
■ ii) The discovery of similar deposits,

I
iii) The likely source-rocks of the metals, and

iv) The timing of the metallogenic event.

v) Refinement of the genetic model.

A well-constrained palaeohydrological model therefore has implications with 

regard to exploration expenditure in and around the Navan ore-body, as well as 

throughout the Irish base-metal ore-field.

The most likely candidates for the source-rocks are either the Lower 

Carboniferous ‘Red Bed’ sequences underlying the host lithologies (Hitzman and 

Beaty, 1996), or the Lower Palaeozoic pile forming the (non-crystalline) basement 

(Russell, 1978; 1986). Personal observation suggests that the Lower

Carboniferous Red Beds at Navan have undergone little or no alteration other than 

in areas restricted to faulting or at the boundary with the overlying Laminated 

Beds. This is in accordance with the findings of Mallon (1997). However, 

significant alteration of certain lithostratigraphic members within the Lower

Palaeozoic basement has been observed. If a geochemical link between the Navan
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deposit and altered Ordovician and Silurian non-crystalline basement can be 

established it would imply that the Lower Palaeozoic prism played a larger role in 

permitting metal-bearing fluid migration than did the basal Carboniferous Red

Beds. Such an observation may indicate the existence of potential economic

mineralisation hosted by the Lower Palaeozoic basement similar to mineral 

deposits located within Cambrian to Silurian horizons elsewhere in the British 

Isles and thought to be of a similar age e.g. Tyndrum and LeadhillsAVanlockhead

I in Scotland, and the South West Shropshire Orefield on the Welsh Borders
j
| (Pattrick et al., 1983; Pattrick and Russell 1989).I

1 The question of which of the two models outlined above is best supported can be

addressed by three essential areas of study;

i) An examination of the spatial and temporal relationship between economic 

mineralisation and faulting of both Lower and Upper Carboniferous age,

ii) A comparison of the trends of major element distributions and prominent 

structures within both the deposit and the Lower Palaeozoic basement, and

iii) A sulfur isotope geochemical study to elucidate the pathways of fluid flow 

during mineralisation.

Timing the mineralistion event with respect to movements on faults that now 

control the disposition of the Navan deposit constrains the age of metallogenesis. 

Coupled with a more comprehensive investigation into the major element (Zn, Pb 

and Fe) distribution within the Navan deposit (see an earlier study by Andrew and
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Ashton 1985) elucidates the likely immediate source of the metal-bearing fluids, 

and probable fluid pathways within the deposit host.

To investigate fluid conduits highlighted by the major element study, a high- 

resolution analysis of 834S dispersion patterns across such structures was carried 

out to search for distinct emmanative centre(s) associated with the genesis of the 

orebody. The S34S work was based on the ability to recognise the proposed metal- 

bearing fluid (positive 834S values) (Anderson, 1990; Anderson et al., 1989; 

Anderson et al., 1998) representing around twenty percent of the total sulfide in 

the orebody (see also Fallick et al., 2001), and the proposed locally derived fluid 

bearing bacteriogenically reduced Lower Carboniferous seawater sulfate (negative 

834S values) (Anderson, 1990; Anderson et al., 1998; Fallick et al., 2001). A well- 

constrained palaeohydrological model for the Navan orebody would not only 

enable a more accurate identification of potential source areas, but also aid in 

improving the model for ore genesis and help establish the evolution of the 

depositional environment. This in turn assists in the identification of prospective 

ground likely to host economic mineralisation within the Irish orefield.
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Figure 1-1 Geological map of Ireland showing the distribution of Lower 
Carboniferous carbonates and the location of economic and sub-economic Zn+Pb 

deposits (see Table 1.1 for comparison of tonnages and grades).

(Diagram courtesy of Dr J H Ashton, Outokumpu-Tara Mines Ltd.)
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Figure 1-6 Plan of the major structures and their relationship to the geometry of 
ore lenses within the Navan deposit. (Adapted from Ashton et al. 2001).
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Figure 1-8 The topography-driven (MVT) model for fluid generation and flow 
for the generation of the Irish carbonate-hosted Zn/Pb deposits (after Hitzman and

Beaty, 1996).

(Diagram courtesy of Dr J H Ashton, Outokumpu-Tara Mines Ltd.)
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Figure 1-9 The deep convection (SedEx) model for fluid generation and flow for 

the generation of the Irish carbonate-hosted Zn/Pb deposits (after Russell, 1986). 

(Diagram courtesy of Dr J H Ashton, Outokumpu-Tara Mines Ltd.)
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Figure 1-10 'Neptunian dyke' within Pale Beds immediately below the Erosion 
Surface, infilled with Boulder Conglomerate material. Note that this feature cut 
across a series of Zn+Pb veins in the lower half of the photograph, (Hammer for 

scale). Extracted from Ashton et al., (1986).
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Laminated sulfide clast within black

Qnmineralised Pale Beds clasts

Bio-clasts (crinoid ossicles). shaly matrix.

Figure 1-11 Example of a laminated sulphide (mainly sphalerite) clast hosted by 
the Boulder Conglomerate (DDH U14898 @ 58.5m), in close proximity to crinoid 

ossicles and unmineralised Pale Beds clasts. Note that fine-scale replacement 
(dominantly sphaleritisation) of bioclastic debris is a common feature in the 

underlying Pale Beds ores (Anderson et al., 1998): these ossicles are not replaced
by sulfide.
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2. Faulting within the Navan deposit and its temporal 
relationship to mineralisation.

2.1 Aims

While previous work on the Navan deposit has revealed that a minimum age of 

mineralisation ~345Ma can be demonstrated (see Chapter 1), a constraint on the 

initiation of metallogenesis remains poorly defined. A study of underground 

exposure presented an opportunity to elucidate the relationships between 

mineralisation, Lower Carboniferous extensional faulting and an Upper 

Carboniferous strike-slip fault. Thus a constraint on the timing of economic 

mineralisation relative to the final movements on those structures could be 

established.

2.2 Method

In order that the relationship between mineralisation, the B Fault Complex, (one 

of the major, partly listric, extensional faults of late-Chadian age that control the 

current disposition of the orebody), and a dextral-reverse strike slip assemblage 

could be considered, exposures within the 1330 1-3 Lens Hanging Wall Access 

Drift, and associated crosscuts, were examined in detail (Fig. 2-1 and 2-2). The 

drift was driven in a roughly west-south-westerly direction into an area of 

economic mineralisation previously delineated by underground diamond drilling. 

Four crosscuts within the drift provide further exposures of the features under 

discussion. Underground mapping was completed at a scale of 1:250, while the 

1330 1-3 Lens development was progressing, and was accompanied by
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examination of underground diamond drill core to constrain the positions of major 

features (Fig. 2-3).

2.3 Evolution of faulting

Major, Caledonide faults trend NE around the area of the Navan orebody (i.e. the 

Randlestown, Castle and D Faults) (Philips and Sevastopulo, 1986; Ashton 1995). 

It is important to note that these fractures do not affect the deposit itself and are 

not associated with increases in the grade of mineralisation. These Caledonide 

faults now demonstrate dextral-reverse displacements that are thought to reflect 

reactivation during Upper Carboniferous tectonism (Philips and Sevastopulo, 

1986). The Navan deposit itself is affected by Lower Carboniferous extensional 

faults that fall into five main categories;

a) Minor, steeply dipping, near vertical, normal faults that trend NNE, NE and 

ENE, with throws of around 5 metres or less. These faults have dips that trend 

from E to predominantly SE (Ashton 1995).

b) Minor ENE-trending normal faults dip steeply to the SE and NW with throws 

of <10-30 metres. These fault-sets confine the central parts of an asymmetric horst 

block in the northern part of the deposit, (e.g. F-l, F-2 and F-3 etc.) (Ashton 

1995). (Fig. 2-1).

c) Major ENE, partly listric SE and NW dipping, extensional faults with throws 

of 100 to 200 metres that control the current disposition of the orebody, (e.g. the B 

and T faults). It is the development of these major faults, which is considered to
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have led to catastrophic footwall collapse, and in turn, the evolution of the erosion 

surface and superincumbent Boulder Conglomerate (Ashton 1995). (Fig. 2-1)

d) NE to ENE, listric, NW dipping faults that now demonstrate dextral-reverse 

displacement, thought to be a result of Upper Carboniferous tectonism, (e.g. A and 

C Faults) (Aston 1995). (Fig. 2-1)

e) A series of low angle displacements (M, P and Y Faults) that affect the 

southwestern extension of the orebody. These may not be faults sensu stricto, but 

slides underlying rafts of Shaley Pales that have slid into a the developing graben 

to the SSE, due to catastrophic footwall collapse of more major structures that 

remain unseen (Ashton et al., in press).

The Liscarton/Castle Fault System which downthrows to the northwest (Fig 2-1), 

together with the SE dipping faults defines a southwest plunging asymmetric horst 

in the northern part of the deposit (Fig. 2-1) (Anderson 1990; Ashton 1995). That 

this horst block did not fully develop until at least late Chadian times is suggested 

by a lack of thinning of lithological units over the structure. However, many of the 

minor bounding faults penetrate only Courceyan lithologies (Ashton 1995), 

implying movement on these structures during the early Lower Carboniferous. 

These numerous minor steeply dipping normal faults are, in places, truncated by 

the larger, partly listric structures (Ashton 1995). The minor faults trend from 

NNE, through NE to ENE. They predate or are coeval with the earliest 

movements on the major, partly listric, ENE trending extensional faults that 

locally penetrate some way into the overlying Arundian strata (Philips and
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Sevastopulo 1986; Ashton 1995). Upper Carboniferous deformation within the 

orebody is restricted to several NE to ENE trending dextral reverse faults, for 

example the A-C Fault complex (Fig. 2-1), and locally, intense folding of the 

hanging wall lithologies (Philips and Sevastopulo 1986; Ashton 1995).
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2.4 Results

2.4.1 Lithologies

The 1330 13LHWA (Figs. 2-2 and 2-3) development is driven into a B Fault 

footwall series of massively bedded bioclastic calcarenites, located below a 

bioclastic calcargillite member known, as the Nodular Marker that defines the top 

of 3 Lens. A common occurrence throughout the deposit is a build up of 

mineralisation beneath the Nodular Marker (see also Anderson et al., 1998), often 

attaining ore grade especially between the B and T Faults. The B Fault hanging 

wall lithologies exposed in the development are a sequence of clean calcarenites 

associated with the Upper Sandstone Marker and are the broad equivalent of the 

lithologies mineralised within the U Lens (see Peace, 1999, Ashton et al., in 

press.).

2.4.2 Mineralisation

All the major minerals associated with the Navan deposit are present in the 

examined exposure i.e. sphalerite, galena and pyrite/marcasite. Gangue 

mineralisation is in the form of calcite and, in places, dolomite. Textures within 

the 1330 1-3LHWA are typical of epigenetic, replacive mineralisation at Navan, 

chiefly comprising fine-grained massive, bedding parallel, crosscutting, and 

disseminated styles (See Figs. 2-4 to 2-7). Within the crosscutting styles there are 

both vein (Fig. 2-7), and breccia variations (Fig. 2-9). The vein style 

mineralisation contains both galena and sphalerite, with minor iron di-sulfides and 

gangue minerals. The breccia styles exposed within the mapped development (Fig. 

2-9), are typical of those seen throughout the deposit, being vertical to sub-vertical
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structures frequently attaining widths greater than 100mm. They are composed of 

rounded Pale Beds clasts having replacive pyritic and sphaleritic margins hosted 

by a fine-grained massive sphalerite matrix. Within the exposed area occurrences 

of the breccia styles of mineralisation appear to increase toward the B Fault 

structures, whilst the vein style mineralisation apparently increases away from the 

fault zone. Individual veins may be only 10mm in width, are vertical to sub­

vertical in orientation, and connect with bedding parallel or more massive poddy 

style mineralisation. They comprise chiefly fine-grained sphalerite, galena and 

iron di-sulfide mineralisation. However, some contain large quantities of 

carbonate in the form of massive calcite. Minor euhedral sphalerite crystals 

(~5mm) associated with euhedral calcite and minor dolomite occur in some of the 

fractures.

2.4.2.1 Mineralised Fractures

The data collected during this study is tabulated in Appendix 1. Fractures 

associated with vein style crosscutting mineralisation comprise two sets (Fig. 2-5). 

One set is observable at the junction between the 1330 13LHWA and the 1330 

13LHXR trending NW and NNE. The second set, located in the far west of the 

drift, trends ENE and NW both near to sub-vertical. In both instances the more 

westerly trending fracture set contains substantially more carbonate than the more 

northerly trending set. This suggests that whilst both sets connect with bedding 

parallel and poddy mineralisation and are thus associated with economic stage 

mineralisation, they are the result of two distinct events. At no point during this 

investigation was any evidence of movement along the mineralised fractures
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observed, suggesting that shear stress was not a significant component of their 

formation.

2.4.3 Structure

Of particular interest during this study was the inter-relationship between 

mineralisation, the B Fault extensional phase, and a sequence of sub-vertical, 

dextral, strike-slip faults exposed in the drift under investigation (Figs. 2-2 and 2- 

3). Although confined to the early to mid Lower Carboniferous, the exact timing 

of B Fault formation within the tectonic evolution of the deposit is not well 

constrained. It is considered to be largely pre-Boulder Conglomerate, as that 

lithology is apparently not displaced within the main mine area (Ashton et al., 

1986). However, to the southwest the B Fault does displace the Upper Dark 

Limestones, which overly the Boulder Conglomerate implying that movement on 

the fault, in places, continued until lower Arundian times (Ashton et al., in press).

2.4.3.1 B Fault System

Several B Fault branches are exposed that display dips between 32° and 50° to the 

south-southeast (Fig. 2-10). The strike of these faults overall remains at around 

267°. Within the area under discussion the local maximum throw on the B Fault is 

located in the branch exposed at the western end of the drift, where it forms a 1 

metre wide zone of black shaley gouge within which are located competent 

rotated blocks of Pale Beds lithologies forming a well defined fault breccia. 

Several B Fault-associated accommodation structures are present. One such 

structure exposed in the 1330 13LHXR, trends 069° and dips to the north at 44° 

(Fig. 2-4).
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2.4.3.2 Dextral Reverse Strike Slip Assemblage

Strike slip displacement within the area comprises a series of anastomising faults 

trending on average 256°, with near vertical dip angles (Figs. 2-2 and 2-3). Clearly 

defined slickensides indicate a shallow dextral-reverse sense of movement, based 

on slicken-crysts, of 076°/20°. It is important to remember that slickensides record 

only the latest sense of movement on a fracture surface. A major feature of the 

fault complex within this area is the large quantity of euhedral (vuggy) calcite 

precipitated within the fault planes, accommodated by the characteristically 

undulatory nature of the opposing fault surfaces Figs. 2-11 and 2-12). Where the 

strike slip assemblage intersects existing B Fault branches two outcomes have 

been noted (see Fig. 2-2 and 2-3):

i. Where the B Fault branch is favourably orientated, transverse movements are 

accommodated along the B Fault branch.

ii. Where the B Fault branch is not favourably orientated the B Fault branch is 

truncated and extensional movements (trend and plunge of slickensides = 

179°/44°), along the B Fault branch are preserved,

2.4.3.3 Jointing

Jointing exposed within the 1330 1-3 Lens development follows similar trends as 

seen elsewhere within the deposit and are essentially northwest trending fractures 

infilled with carbonate (see Ashton 1995). Occasional joint faces show deposition 

of euhedral ‘honeyblend’ sphalerite and very rarely chalcopyrite (Fig. 2-13).
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2.5 Interpretation

Determination of the nature of the relationships between the several generations of 

fractures and the differing styles of mineralisation was the prime purpose of this 

investigation. These are:

1. There are two distinct fracture sets containing fine-grained sulfides. One set 

sulfide rich (northwest to northeast trending). The other, carbonate rich (east- 

northeast trending) parallels the B Fault (Fig. 2-5).

2. No movement along mineralised fractures was observed implying that they are 

largely dilational.

3. The carbonate-rich ENE extension veins crosscut massive mineralisation in 

the immediate footwall of the B Fault (Fig. 2-5).

4. In places, sulfide vein mineralisation crosscuts the carbonate-rich ENE 

extensional veins (Fig. 2-7).

5. Massive mineralisation is built up within the footwall of the B Fault complex.

6. There is no mineralisation in the hanging wall lithologies of the B Fault, which 

are direct correlatives of the U Lens host lithologies.

7. At no point is fine-grained mineralisation seen occurring within the B Fault or 

any of its branches.
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8. Where mineralisation does occur along B Fault related branch fault planes it is 

coarse-grained euhedral ‘honey’ blende sphalerite.

9. Mineralisation associated with the dextral-reverse strike slip faulting is 

predominately carbonate rich with only minor coarse-grained euhedral sphalerite 

(Fig 2-14).

10. The B Fault branches and mineralisation are truncated and displaced by the 

dextral-reverse strike-slip fault assemblage.

These observations are interpreted below.

1. The existence of NE to NW trending, sulfide-rich, veins within the Navan 

deposit has been recorded elsewhere (see Andrew and Ashton, 1985), and 

therefore this study confirms their association with the distribution of high-grade 

mineralisation. The co-incidence of ENE trending carbonate-rich, sulfide-bearing 

veins, that parallel the B Fault, points to an overall evolution of tectonic stresses 

during the mineralising process, from roughly EW extension to SE-NW extension, 

which became the dominant stress-field during the development of the B Fault.

2. That these NW-NE and ENE mineralised fractures demonstrate only dilational 

characteristics implies that they did not form during the B Fault extensional phase. 

Instead, they must either pre-date, or post-date the B Fault. This, in turn, suggests 

that;
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a) The mineralised fractures formed pre-late Chadian or,

b) Post-early Arundian.

However,

3. The observation that carbonate infilled extensional fractures associated with 

the B Fault crosscut both sulfide-bearing veins, and massive mineralisation 

strongly suggests that the initiation of the mineralising event pre-dates the latest 

normal movements on the B Fault, and therefore must be pre-late Chadian in age.

4. That, in places, sulfide-bearing veins crosscut carbonate infilled extensional 

fractures associated with B Fault indicates that mineralisation continued 

throughout the evolution of the B Fault.

5. The observation that mineralisation is built-up in the immediate footwall of 

the B Fault complex suggests that either;

a) The B Fault acted as a seal to migrating metal-bearing fluids or,

b) The B Fault crosscuts a pre-existing mineralised trend.

6. That there is no mineralisation in the hanging wall lithologies of the B Fault, 

which are direct correlatives of the U Lens host lithologies, implies again, that 

either;
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a) The B Fault acted as a seal to metal-bearing fluids or,

b) The B Fault crosscuts a pre-existing mineralised trend.

Although at this locality the B Fault plane is infilled by a thick shaley gouge, this 

is not typical. More commonly, the B Fault comprises an open cavernous structure 

containing calcite +/- barite +/- minor pyrite (Fig. 2-14). Of course, it may be that 

this apparent permeability is the result of fluids moving through the structure 

during late Carboniferous tectonism. The part of this study dealing with metal 

distributions in the Navan orebody (Chapter 3) demonstrates the existence of 

strong NE mineralised trends within the deposit similar to those noted by Andrew 

and Ashton (1985). These trends are associated with NNE, NE and ENE, steeply 

dipping normal faults that are, in places, truncated by the major extensional faults 

(e.g. B Fault) implying that they pre-date the main extensional event. This 

evidence is in concordance with points 3 and 4 above, and therefore the 

displacement of a pre-existing mineralised trend as an explanation for the 

observed features is preferred.

7. That no fine-grained mineralisation is found within the plane of the B Fault, or 

any of its branches is a common feature of the orebody. However, this does not 

imply that it was never there, only that this absence may be the result of fluids 

capable of sulfide dissolution moving through the structure during a later event.
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8. The existence of coarse-grained, euhedral 'honey-blend' sphalerite along some 

of the B Fault branches suggests that at times metal-bearing fluids did access these 

fractures (Fig. 2-14).

9. The vuggy carbonate and coarse-grained euhedral sphalerite seen within the 

dextral-reverse, strike slip assemblage again implies metal-bearing fluids had 

access to this structure.

10. The observation that the dextral-reverse, strike-slip assemblage truncates and 

displaces all Lower Carboniferous structures suggests that it post-dates the 

formation of the B Fault, and is therefore younger that early Arundian. When 

coupled with the presence of other dextral-reverse, strike-slip faulting within and 

around the orebody, final movements of which are thought to have occurred 

during the Upper Carboniferous (see Phillips and Sevastopulo, 1986; Ashton 

1995; Ashton et al., 1992), I suggest that this structure is related to that event.

The occurrence of untypical euhedral ‘honeyblend’ sphalerite within the B Fault 

branches and within the dextral-oblique strike-slip assemblage, suggests that at 

certain times sulfides have been allowed to precipitate under conditions dissimilar 

to those prevalent during the economic mineralisation event. Textures exhibited 

by economic stage mineralisation indicate that the environment of deposition was 

far from chemical equilibrium both with respect to fluid mixing and wall-rock 

reactions (Anderson et al., 1998). For example, skeletal and dendritic crystal 

forms, stalactitic morphologies, coupled with the fine-grained nature of the 

mineralisation indicating rapid precipitation. A far more stable environment or
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one closer to chemical equilibrium must have existed during the later event. The 

presence of euhedral ‘honey-blend’ sphalerite in association with B Fault branches 

suggests that fluids moving along these fractures had come into contact with 

sulfides along their flow path, and re-precipitated dissolved base metal species as 

sulfides within favourable locations.

A sequence of events can be built up that covers the structural evolution of this 

part of the ore body in connection with the economic stage, and subsequent 

mineralisation events.

1. Development of northwest and northeast trending fracture sets.

2. Coeval or later economic mineralisation.

3. Development of east-northeast trending fractures during continued 

mineralising activity (possibly precursor fractures to the B Fault proper).

4. Development of the B Fault complex with continuing mineralisation and 

possible late mobilisation of sulfide phases causing precipitation of coarse-grained 

euhedral sphalerite on the B Fault branches.

5. Development of the dextral reverse strike slip fault assemblage and jointing, 

again with minor mobilisation and precipitation of sulfides.
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2.6 Conclusions.

This study elucidates the age of mineralisation in relation to timable events during 

the evolution of the Navan deposit. Access to a drift located in the hanging wall of 

1-3 Lens has allowed the mapping of six generations of mineralised and 

unmineralised fractures. The temporal relationship of these structures indicates 

that three fracture sets, northeast, northwest, and east-west trending, existed prior 

to, or during the mineralising event. These fractures are purely dilatational in 

character. Carbonate-infilled extensional veins associated with the B Fault (one of 

a series of major, partly listric, extensional faults that control the current 

disposition of the orebody) cut across the mineralised NE, NW and E-W fractures, 

as well as massive and disseminated ore. Conversely, this mineralisation crosscuts 

the carbonate-infilled extensional veins elsewhere within the same exposure. 

Northwest trending joint sets as well as an east-west trending sub-vertical, dextral- 

reverse strike-slip fault complex, post-date all the above structures, and are 

interpreted as the result of Upper Carboniferous tectonism. Other than the 

occurrence of light coloured, coarse-grained, euhedral ‘honey-blend’ sphalerite 

along fracture surfaces, no sulfide mineralisation is associated with those putative 

Upper Carboniferous structures at this particular exposure. These observations 

force the conclusion that mineralisation within this part of the Navan deposit was 

concurrent with the initial development of the B Fault, and continued during the 

evolution of that major structure through to the late Chadian.
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Figure 2-1 Structural plan of the Navan deposit showing the location of the study
area covered by Chapter 2.
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Structural plan of the 133013LHWA and associated crosscuts.

1330 13LHXR 
(Fig. 2-4)

20 metres

1330 13LHWA

Sufide-Rich 
Veins (NW)A

1330 13LHXL

Line of section in Fig. 2-3

B Fault Compl ex 
Strike-Slip Assemblage 
Mineralised Fractures

Carbonate-Rich Veins 
(ENE)

Figure 2-2 Plan of the 1330 13LHWA development showing line of section in
Figure 2-3. (See text for details)
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Main Branch of the Dextral-Reverse 
Strike-Slip Assemblage

1330
.13LHW A

Minor Branches of 
the Dextral- 

Reverse Strike-Slip 
Assemblage

SE
Nodular Marker

Upper Sandstone 
Marker

Main Branch of the B Fault

10 metres

B Fault Footwall Branches

Figure 2-3 Interpreted section along the line shown in Fig. 2-2 showing the 
relationships between the B Fault (and its branches), and the dextral-reverse,

strike-slip assemblage.
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Vuggy Calcite Infill

Sulfide-Rich Veins 
Trending NW 8 Metres

Massive mineralisation Displaced by B Fault Structures
Dextral Reverse Strike-Slip Fault

B Fault Related Structures (Some Displaced By Dextral Reverse Strike-Slip Fault)

Figure 2-4 Sidewall sketch of the 1330 13LHXR (looking west). Note the north 
dipping B Fault related fracturing (accommodation structures) are displaced by the 

dextral-reverse strike-slip fault. Both fault complexes displace massive/poddy 
sulfide mineralisation. (See also Fig 2-6).
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Disseminated mineralisation

\

Sulfide-Rich Vein 
Trending NW Carbonate-Rich Vein 

Trending ENE

Floor o f driftz__

2 Metres

Figure 2-5 Sidewall wall sketch of the relationship between sulfide and carbonate 
rich vein-sets as exposed in the 1330 13LHWA (looking east).
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Figure 2-6 View of the sidewall of 1330 13LHXL (looking east). Note that en- 
echelon carbonate veins (dipping to the SSE, parallel to the B Fault) both cross­
cut massive sulfide mineralisation, and in turn are themselves cross-cut by minor 

sulfide-rich veining (See Fig. 2-7 and compare with Fig. 2-8).

(Hammer for scale).
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Figure 2-7 Extensional (carbonate-rich) veining (associated with the B Fault) 
cross-cut and displaced by sulfide-rich veins. Locality = 1330 13LHXL looking

west.

(Ruler for scale).
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Figure 2-8 A recent exposure (October 2001) in the 1150 B17P2XLA 
development. Note the relationships between extensional, en-echelon veining 

(carbonate-rich), and sulfide mineralisation (here associated with a NNE trending 
minor structure (throw = ~3m) in the footwall of the Liscarton Fault) Compare

with Fig. 2-6.

Width of view = 2 metres.
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t lUpfrp

Figure 2-9 Breccia in footwall of the B Fault. Note the sphalerite-rich matrix, and 
angular clasts of unreplaced carbonate host-rock.
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Figure 2-10 A Minor footwall branch of the B Fault as exposed in the south 
sidewall of the 1330 13LHWA. These minor footwall branches dip between 32° 

and 50° to the south-south-east. The strike of the B Fault complex overall remains
at around 267°. (Ruler for scale).

86



Figure 2-11 View of the main branch of the dextral-reverse strike-slip 
assemblage, as exposed in the 1330 13LHWXL (looking west). The fault is 
exposed just to the right of the hammer (for scale). Not the juxtaposition of 
intensely mineralised pale beds to the left and barren Pale Beds to the right.
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Figure 2-12 Close-up view of the main branch of the dextral-reverse, strike-slip 
assemblage, as exposed in the 1330 13LHWXL (looking west). Note the inclusion 
of coarse grained sphalerite, along with carbonate mineralisation within the fault

plane.

Hammer for Scale.
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Figure 2-13 Occurrence of chalcopyrite on joint surfaces (loc. = 1075 2636F).
Width of view = 500mm.
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Figure 2-14 Close-up of coarse-grained sphalerite and carbonate mineralisation 
within the fault plane of the main branch of the dextral-reverse, strike-slip 

assemblage, as exposed in the 1330 13LHWXL (looking west).

Hammer for Scale.
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Figure 2-15 Exposure of the B Fault in the 1050 271 OF. Note open cavaties and 
calcite infill along fault plane. Width of view = 5m. Note also, massive sulfide 

mineralisation in footwall and barren hanging wall.
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3. Major element (Zn, Pb and Fe) distribution study.

3.1 Introduction.

The common sense view that the major, partly listric ENE faults acted as conduits 

for metal-bearing fluids at the Silvermines Zn+Pb+barite SedEx deposit, has been 

shown by Taylor (1984), using Pb:Zn distribution patterns, to be incorrect. 

Furthermore, using metal distribution patterns in the same way at Navan, Andrew and 

Ashton (1985) went on to show that the partly listric, major extensional faults also did 

not coincide with high Zn+Pb trends. Instead, as at Silvermines, it appeared that more 

minor fractures acted as the feeders.

Since those early studies, upgraded software and the amassing of a greatly enhanced 

dataset over a much larger area of the Navan deposit has allowed the opportunity to 

augment the original findings. This study confirms that metal enrichment trends 

(particularly as revealed by the Pb isochores within the basal, 5 Lens) at Navan are 

more closely related to the minor NNE, NE and ENE fractures than the major ENE 

extensional faults.

The parts of this chapter dealing with Pb distributions contribute to the relevant 

sections of Blakeman et al., (in press), and a subset of the complete data used is 

included on a CD-ROM located in the back of this Thesis. The full dataset is available 

from Outokumpu-Tara Mines Ltd.

3.2 Hypothesis

Taking a lead from Taylor and Andrew (1978) and Taylor (1984) who demonstrated 

that Pb enrichment is the clearest indicator of feeder zones at Silvermines, the major 

element distributions within the Navan deposit have been investigated. Such a study
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was expected to confirm the previously identified metal enrichment trends at Navan 

(Andrew and Ashton, 1985), and enhance their patterns. In addition, finding similar 

patterns outside the original study area of Andrew and Ashton (1985) was anticipated. 

Such patterns may also be expected to continue below the economically mineralised 

horizons indicating likely feeder zones stemming from the Lower Palaeozoic 

basement hosted structures.

3.3 Scientific method

The major element study was primarily focused on the lowest twenty-one metres 

above the orebody assay-footwall within the Micrite Unit (Fig. 1-4). The lithological 

footwall of the orebody is delineated by a green shale horizon (see fig. 3-2) 

recognisable throughout most of the deposit, and located in the lower part of the 

Micrite Unit (Fig. 1-4). The Micrite Unit forms a distinctive pale grey horizon 

containing oncholitic and 'birds-eye' textures. Located twenty-one metres above the 

orebody footwall is the base of a dolomitic calc-arenite termed the 5 Lens Dolomite 

(Fig. 3-3), which forms an important control to ore localisation in the western part of 

the deposit (Rizzi, 1993; Anderson et al, 1998). This lowest part of 5 Lens represents 

the most pervasively mineralised horizon within the Pale Beds sequence. Major 

element plots have been produced for Zn, Pb, and Fe, as well as total Zn+Pb, and 

metal ratios (Zn:Pb). Major element distribution plots have also been produced for the 

complete sequence of mineralised stratigraphy.

3.4 Analytical technique

Outokumpu Tara Mine's computerised ore reserve system, based on vertical 3m 

stratigraphic slicing (Ashton & Harte, 1989), has been used to determine the
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percentage metal distributions within the ore-bearing horizons. Average metal 

contents have been calculated for 1 Ox 10m blocks using appropriate 3m stratigraphic 

slice ranges and inverse distance weighting methods. Within the Navan deposit 

therefore, the amalgamation of appropriate, consecutive slices allows elucidation of 

the average metal grade distributions within the respective Lenses. However, 

complications are caused by areal variations in the thickness of particular units which, 

along with the restricted horizontal extent of some lithologies within the Pale Beds 

sequence, means that distinct calculations are required for four separate geographical 

divisions of the deposit (Fig. 3-1).

The Navan deposit is not only separable into a series of vertical, strati graphically 

delineated lenses, but also horizontally into zones defined by the major faults in the 

deposit (Fig. 3-1). The area north of the B Fault is referred to as Zone 1. Zone 2 is 

located between the B and T Faults, while Zone 3 is located to the south of the A 

Fault in the main mine area and to the south of the T Fault towards the south west. To 

accommodate the variances in stratigraphical thickness each Zone is further sub­

divided into an eastern and western sub-zone. This is shown in Fig. 3-land detailed in 

Table 3-1 below.

This study is necessarily focused on height intervals above the deposit footwall (i.e. 

the slices of Ashton and Harte, 1989), rather than true stratigraphic divisions. 

Distribution plots for the complete deposit above Slice 4 therefore, are not truly 

compatable from Zone to Zone. However, plots are included that cover the vertical 

thickness from the base of Slice 1 to the top of Slice 7 (some 24m) in order to show 

the overall metal distribution patterns for the lower part of 5 Lens. The top of Slice 7 

in the western part of 5 Lens corresponds with the base of the 5 Lens Dolomite which
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acts as a major control on the localization of ore-grade mineralisation in the area (see 

Fig. 3-3).

Further complications arise when distribution plots are produced for 3 Zone East, 

immediately south of the A Fault. Here structural complexity has contrived to produce 

intense folding and faulting within the Pale Beds making it impossible, using the 

slicing system, to distinguish between the various stratigraphical horizons. Therefore, 

due to the structural complexity and the limited nature of mineralisation in Zone 3 

East, it has been decided that that data should be ignored for the purposes of this 

study. Enough information is available from the far larger areas of Zones 1, 2 and 3 to 

the north of the A Fault. In accordance with the computerised ore reserve system in 

use at Outokumpu-Tara Mines Ltd, the slice ranges for the individual lenses per mine

area are listed in Table 3-1.

Main mine area Zone 1 
(north of the B 

Fault)

Zone 2 
(between the B 
and T Faults)

Lens Markers Slices Slices
1 UDM-NOD 45-31 46-32
3 NOD-LSM 30-20 31-21
4 LSM-LDM/Q 19-12 20-13
5 LDM/Q-5F 11-03 12-03

Far west (Zones 1 and 2)
Lens Markers Slices

U LSP-USM 66-52
0 USM-UDM 51-47

4W LSM-LDQ 20-16
5U LDQ-DOL 15-08
5L DOL-GS/5F 07-03

Far west (Zone 3)
Lens Markers Slices

U LSP-USM 66-52
1 LSM-UDM 32-46

Table 3-1 Distribution of slices relative to ore-lenses, markers horizons, and mine
areas within the Navan deposit.

UDM = Upper Dark Marker, NOD = Nodular Marker, LSM = Lower Sandstone Marker. LDM/Q = 
Lower Dark Marker or Lower Dark Marker Equivalent, GS/5F = Green Shale or 5 Lens Assay 
footwall, LSP = Lower Shaley Pales. USM = Upper Sandstone Marker, DOL = 5 Lens Dolomite. 4W = 
4 Lens West. 5U = 5 Lens Upper. 5L = 5 Lens Lower.
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3.5 Metal distribution patterns within slices 1 to 4, and 

lower 5 Lens.

3.5.1 Lead distribution within slices 1-4, and lower 5 Lens.

The distribution of Pb values between 1 percent and >7 percent within the lowest 

6 metres (slices 1 and 2) of the basal, 5 Lens of the Navan deposit are shown in 

Figs. 3-4 and 3-5. Distinct isolated enrichments can be recognised in association 

with the B Fault. These isolated enrichments contain Pb values greater than 7 

percent. Further areas of enrichment (up to 3%) can be seen close to and at the T 

fault as well as at several minor faults in the northern portion of the deposit. A 

clearly defined NE trend connecting the areas of greater enrichment seen in Slice 

1 (Fig. 3-4) can also be observed in Slice 2 (Fig. 3-5). Figure 3-6 shows the Pb 

distribution in Slice 3, the interval immediately above the Green Shale and the 

generally accepted lowest economically mineralised horizon in the Navan deposit. 

The NE trend observed in Slice 2 is now strengthened, and elongated by the 

appearance of a distinct enrichment (up to 20% Pb) to the south-western end of 

the T Fault. A parallel zone of enrichment has now become visible associated with 

a series of NE trending minor structures between the B and T Faults in the eastern 

part of the deposit. Further enrichments (up to 12.5%) occur throughout the zone 

between the B and T Faults, along with other zones, now appearing to the north of 

the B Fault. The patterns shown in Slice 4 (Fig. 3-7) mimic those already seen in 

the underlying slices. Distinct trends of enrichment are beginning to coalesce, 

most noticeably between the B and T Faults. To the north of the B Fault, in the 

western part of the deposit, a NNE trend is associated with a series of minor
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steeply-dipping NNE and NE trending normal faults. Further enrichments are now 

seen associated with ENE trending faults in the north of the orebody. Figure 3-8 is 

a composite of all slices within the lower portion of 5 Lens (slices 1 through 7). 

All enrichments are distinctly associated with NNE and NE trends, and run 

obliquely to the major extensional faults.

3.5.2 Zinc distribution within slices 1 to 4, and lower 5 Lens.

The distribution of Zn values between 1 percent and >8 percent within the lowest 

6 metres (slices 1 and 2) of the basal, 5 Lens of the Navan deposit are shown in 

Figs. 3-9 and 3-10. As with the Pb data, distinct isolated enrichments can be 

recognised in association with the B Fault. These isolated enrichments contain Zn 

values greater than 8 percent. A further centre is recognisable, associated with the 

F5 fault in Zone 2 East. Further areas of enrichment (up to 3%) can be seen close 

to and at the T fault, while the minor faults in the northern portion of the deposit 

appear to localise values in excess of 6%. The clearly defined NE trend in Slice 2 

Pb data (Fig. 3-5) connecting the areas of greater enrichment seen in Slice 1 (Fig. 

3-4) is not as pronounced in the Zn data (Figs. 3-9 and 3-10). The patterns 

observed in Slice 1 are repeated, although the grades are reduced. Figure 3-11 

shows the Zn distribution in Slice 3. Remember Slice 3 represents the lowermost 

part of the orebody proper and the importance of this unit in localising high-grade 

mineralisation is immediately apparent with Zn grades in excess of 35% in parts 

of Zone 2. Although more diffuse, the NNE, NE to ENE trends observed in the Pb 

data in Slice 3 are quite visible within the Zn data. However, also strongly visible 

are a series of NW trending grade enrichments within Zone 2 and the central parts 

of Zone 1. The patterns shown in Slice 4 (Fig. 3-12) mimic those already seen in
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the underlying slices, with the exception of the NW trending enrichments seen in 

Slice 3. As with the Pb data distinct trends of enrichment are beginning to 

coalesce, most noticeably between the B and T Faults. To the north of the B Fault, 

in the western part of the deposit, a NNE trend is associated with a series of minor 

steeply-dipping NNE and NE trending normal faults. Further enrichments are now 

seen associated with ENE trending faults in the north of the orebody. Figure 3-13 

is a composite of all slices within the lower portion of 5 Lens (slices 1 through 7). 

All enrichments are distinctly associated with NNE and NE trends, and run 

obliquely to the major extensional faults.

While not visible in the Pb data, overall the Zn distribution plots for slices 3 (Fig. 

3-11), and 4 (Fig. 3-12), as well as the plot for slices 1 through 7 (Fig. 3-13) show 

stronger enrichments to the north-east of the study area.

3.5.3 Iron distribution within slices 1 to 4, and lower 5 Lens.

The distribution of Fe values between 1 percent and >8 percent within the lowest 

3 metres (slice 1) of the basal, 5 Lens of the Navan deposit are shown in Fig. 3-14. 

The enrichments at this horizon seen in the Pb (Fig. 3-4) and Zn (Fig. 3-9) data, 

associated with the B Fault, are not repeated in the Fe data. Instead more minor 

faults in the northern portion of the deposit appear to localise values in excess of 

6%; for example, the F3 fault and the junction of the F26 and one of it’s branches. 

Lower grade enrichments, up to 3% can also be seen associated with the FI and 

F25 faults in the north-eastern part of Zone 1. Zone 2 East shows only minor 

enrichments, less than 3%, associated with the set of NE trending faults remarked 

upon in the Pb data. Figure 3-15 shows the Fe distributions in Slice 2. Note that 

the maximum grade shown is half that of Slice 1 (Fig. 3-14). Note the highly
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localised, but nevertheless ubiquitous occurrence of distinct Fe enrichments 

associated with NE faulting in and around the horst. There appear to be NW 

trending breaks in the Fe values within this dataset. However this orientation 

coincides with diamond drilling profiles. Thus the strong NW trends visible here 

are likely an artefact of the DDH profiles rather than reflecting a hidden structural 

control. Further Fe enrichments in Slice 2 are visible in Zone 2, especially in 

association with the T Fault and the NE end of the B Fault. These zones of Fe 

enhancement are repeated in Slice 3 (Fig. 3-16) where values in excess of 16% are 

seen to the north of the T Fault. This is not surprising as several arrays of 

marcasite veins occur throughout that area which trend more north-easterly than 

the T Fault itself (Andrew and Ashton, 1985). North of the B Fault Fe 

enhancements are associated with the FI, F2, F3, F24 and F25 fault systems. Two 

limited areas also occur in association with the B Fault towards the south-west. In 

Slice 4 (fig. 3-17) the last two mentioned areas of Fe enrichments have 

disappeared. However, the zones previously remarked upon north of the T and B 

Faults, and in the north-east part of Zone 1, are still clearly visible. A further small 

area has also appeared associated with a flexure in the T Fault towards the south­

west, which is also present, but at a reduced grade, in the underlying slices. Figure 

3-18 is a composite of all slices within the lower portion of 5 Lens (slices 1 

through 7). Apart from the area in the T Fault footwall where marcasite veins run 

oblique to that structure, all enrichments are distinctly associated with minor 

NNE and NE faulting.

While not visible in the Pb data, overall the Fe distribution plots for slices 3 (Fig. 

3-16), and 4 (Fig. 3-17), as well as the plot for slices 1 through 7 (Fig. 3-18) show 

stronger enrichments to the north-east of the study area.

99



3.5.4 Distribution of Zn+Pb values within slices 1 to 4, and lower 

5 Lens.

While the single element plots can be used to define likely structures that acted as 

fluid conduits during the mineralising process, the use of Zn+Pb distributions can 

help identify either those structures that accommodated most fluid flow, or the 

areas within the host lithologies that acted as the most efficient traps. The Fe data 

has not been combined with the Zn and Pb data because it shows different 

distributions and therefore may indicate differing processes involved in its 

localization. The significance of the disparity of Fe compared to Pb and Zn 

distributions is discussed below. Fig. 3-19 shows the total Zn+Pb in the 

lowermost Slice 1. As expected from the individual Zn and Pb plots, isolated areas 

of enrichment are clearly visible along the trend of the B Fault. Similarly, isolated 

pockets of enhanced grade are seen in association with the NE trending faults in 

Zone 2 East. Both these occurrences contain total metal grades in excess of 16%. 

Slice 2 (Fig. 3-20), again shows expected peaks in grade associated with the B and 

T faults with values upwards of 14% especially adjacent to the T Fault. Fig. 3-21 

shows the total-metal variations in Slice 3. The strong NE trends seen in the Pb 

data are still visible, although more diffuse due to the inclusion of the previously 

described Zn data. Of note in comparison with the Zn only data is the almost total 

disappearance of the NW trends seen in Zone 1. However, they are still present in 

Zone 2. A strong NW trend is also apparent running between Zones 1 East and 2 

East. This is clearly a major feature and is mirrored by a more minor NW trend 

visible in Zone 2 West. Zn+Pb grades for Slice 4 are show in Fig. 3-22. Again the 

previously noted NW trending feature running between Zones 1 and 2 in the east
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of the deposit is a dominant feature. Similarly, several more minor NW trends are 

also apparent.

Figure 3-23 shows the %Zn+Pb values for slices 1 through 7. Although Zn+Pb 

values follow the minor faulting to the north of the B Fault, it can be seen that an 

increase in Zn:Pb values occurs to the north-east of the study area.

3.5.5 Distribution of Zn:Pb values within slices 1 to 4, and lower 5 

Lens.

Metal ratio plots have the potential to show at a glance likely feeder structures 

especially when two metals with differing solubilities are combined. For an 

example the success of this technique has been demonstrated by Taylor and 

Andrew (1978) and Taylor (1984). Using Zn:Pb plots, these authors have 

delineated feeder zones at Silvermines. In the present study a lower-end cut-off of 

1% total metal has been applied to the data in order to exclude excessive ratios 

(greater than 40).

Fig. 3-24 shows the Zn:Pb distribution in Slice 1. As expected the lowest ratios 

are seen where comparably higher Pb grades are present. However, of note is the 

extended area of predominantly lower Zn:Pb values (1 to 4) in Zone 2 East. This 

indicates an overall increase in the amount of Pb within this area, although the NE 

trending faults still attain Zn:Pb ratios of greater than 22. Compared with an 

overall initial ratio of close to 5:1 (69.9Mt at 10.09% zinc and 2.63% lead, Libby 

et al., 1985), Zone 2 East is comparatively Pb enriched in Slice 1. Slice 2 (Fig. 3- 

25) demonstrates elongated (Zn:Pb = <5) trends that mimic Pb enhanced patterns 

in higher slices. Zn:Pb ratios greater than 5 only pertain away from the putative
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feeder structures. Within Slice 3 (Fig. 3-26) the first appearance of Zn:Pb values 

of less than unity appear. Again these trends, albeit isolated, are aligned in the 

same orientation as those seen in the Pb only data. High Zn:Pb (>30) ratios are 

isolated and only occur associated with structures that show both Zn and Pb 

enrichments. Similarly Slice 4 data (Fig. 3-27), repeats the pattern. The values 

towards the south-west of Zone 1 West are on the limit of the deposit and 

represent relatively weakly mineralised horizons. Here then, the metal ratios are 

comparatively insignificant.

Figure 3-28 shows the Zn:Pb values for slices 1 through 7. It can be seen that an 

increase in Zn:Pb values occurs to the north-east of the study area.
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3.6 Interpretation of metal distribution patterns within slices 1 to 

4, and lower 5 Lens. 

3.6.1 Lead.

The expected role of the minor NNE, NE and ENE structures in localising ore- 

grade mineralisation has been demonstrated. That no Pb trend coincides with the 

strike directions of the major ENE, partly listric extensional faults, is in line with 

the findings of Andrew and Ashton (1985). One of the advantages of the method 

used to delineate likely feeders is the facility to separate the lower section of the 

basal, 5 Lens of the Navan deposit into 3-metre slices. Distinct Pb enrichments 

associated with the major extensional faults, certainly in the lowermost slices, are 

revealed that otherwise would have been invisible at lower resolutions had the 

results been totalled for all the slices. The Pb enhancements are not linear, but 

instead form areas of isolated enrichment. These highs are arranged along a north­

easterly trend that parallels Caledonoid structures/faults seen in the vicinity of the 

orebody (Fig. 3-29). These patterns strongly suggest the influence of either 

Caledonoid fault complexes (e.g. Randlestown, Castle and D Faults) (Fig. 1-3), or 

near vertical, highly permeable Lower Palaeozoic lithologies acting as fluid 

conduits. The isolated areas of enrichment along the B and T Faults are interpreted 

as delineating intersections of those fractures with such basement structures and/or 

lithologies.

3.6.2 Zinc.

As with the Pb data, the expected role of the minor NNE, NE and ENE structures 

in localising ore-grade mineralisation has been demonstrated. That no Zn trend
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coincides with the strike directions of the major ENE, partly listric extensional 

faults, is again in line with the findings of Andrew and Ashton (1985). As with the 

Pb data, distinct Zn enrichments associated with the major extensional faults, 

certainly in the lowermost slices, are revealed that otherwise would have been 

invisible at lower resolutions. Again the Zn enhancements are not linear, but 

instead form areas of isolated enrichment. Thus the same interpretation applies to 

the Zn data as the Pb data. However, NW trends are clearly visible within the Zn 

data, especially in Slices 3 and 4, and these have no immediately obvious cause. 

Minor NW trending sulfide veins have been reported in the Navan deposit by 

previous workers (Andrew and Ashton, 1985), and similar structures are reported 

in this study (see Chapter 2). These structures are nonetheless very minor features 

and would not be expected to produce such pronounced anomalies as are visible in 

the data. Three possibilities therefore remain to explain these phenomena

a) Jointing within the deposit host rocks is aligned along NW trends, and 

mineralising fluids circulated within these structures.

b) Exploration, development and production diamond drilling within the 

orebody conducted on NW profiles thereby artificially increasing the importance 

of those trends.

c) There are major lithological variations within the Pale Beds sequences that 

strike NW. Preferential replacement of these horizons would produce similar 

patterns.
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In discussion of the above it can be pointed out that:-

a) More sophisticated statistical analytical techniques can be applied to this 

dataset. This would reveal whether the apparent major NW trends can be 

removed, suggesting ‘noise’ caused by the drilling profiles.

b) Anderson et al. (1998) report variations in lithological thickness within the 

basal Pale Beds (see fig. 1-?), as well as differences in lithology across the same 

horizons. These variations however do not occur at the same frequency as the 

observed NW trends in the Zn data, and therefore, if there is a control present, it is 

not acting alone.

c) The presence of jointing in the Navan deposit has been attributed to Upper 

Carboniferous compressional tectonism. Following the findings of Chapter 2, and 

in agreement with previous workers (e.g. Andrew and Ashton, 1985; Ashton et al., 

1992; and Anderson et al., 1998), the jointing clearly post-dates metallogenesis at 

Navan, and therefore could not have been a control on fluid flow at the time.

To summarise, the noted occurrence of major NW metal trend are likely a product 

of NW drilling profiles employed in the delineation of the orebody. Minor sulfide 

veins (Andrew and Ashton, 1985; and Chapter 2) possibly represent very minor 

fracture arrays present at the time of mineralisation.

The noted concentration of higher %Zn values towards the north-east of the study 

area cannot, at this time, be explained. The area of the Navan deposit to the north­
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east (Nevinstown) remains the subject of ongoing legal action and therefore all 

data remains commercially confidential. Also, some, if not a substantial part of the 

Navan deposit has been removed by post-Carboniferous erosion. That the higher 

concentrations of Zn to the north-east represent an overall fluid-flow regime from 

the south-west, based on relative metal solubility, may be the case, but this 

hypothesis cannot be substantiated by this study.

3.6.3 Iron.

The Fe distribution patterns throughout the 4 slices under investigation are 

distinctly different from those exhibited by either the Zn or Pb datasets. Iron 

enrichment remains isolated in occurrence, being concentrated in the main to an 

area just north of the T Fault. Here, as exposed in the 1230-3 Zone Access Drift, 

marcasite veining constitutes the most important phase (Andrew and Ashton, 

1985). In a similar fashion the area of enhanced Fe values centred on the FI, F2, 

F3, F24 and F25 faults in the north-east of Zone 1 contains, where observable in 

underground exposure, high incidences of marcasite, although pyrite is also 

present. From the isotopic work described in Chapter 4 it is suggested that 

marcasite in the Navan deposit is precipitated directly from the metal-bearing 

fluid with no interaction with the local fluid that bears the bacteriogenically- 

reduced seawater sulfate. Therefore, a high incidence of marcasite is a clear, 

macro-scale, indicator of zones of metal-bearing fluid ingress at Navan.

The work described in Chapter 4 demonstrates that marcasite is restricted to likely 

feeder zones delineated by the Pb enrichments described above. The presence of 

pyrite however, through it’s almost ubiquitous 834S signature of between -30 and 

-40 per mil. indicates strongly the presence of the local fluid bearing 

bacteriogenically reduced seawater sulfate. The Fe patterns within the Navan
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deposit, coupled with the distribution of the two FeS2 polymorphs, marcasite and 

pyrite, variously indicate not only conduits for the metal-bearing fluid, but also 

zones of mixing between that fluid and the local bacteriogenic sulfide-rich fluid. 

The Fe (marcasite) distribution within the lowermost slices of 5 Lens suggests that 

some of the metal-bearing fluid gained access into the deposit in and around the T 

Fault. Indeed this zone falls at the south-western end of distinct Pb enrichment. 

The relative absence of Pb (and Zn) in the immediate area strongly suggests that 

an Fe rich fluid was a precursor to the metal-bearing fluid that ultimately 

produced the Navan deposit. This might be expected given the relative solubilities 

of the respective metals during the initiation of upward fluid flow within 

developing fractures. This possibility is discussed further in the Chapter 5 dealing 

with the genetic model.

As with the Zn data, the noted concentration of higher %Fe values towards the 

north-east of the study area cannot, at this time, be explained. The area of the 

Navan deposit to the north-east (Nevinstown) remains the subject of ongoing legal 

action and therefore all data remains commercially confidential. Also, some, if not 

a substantial part of the Navan deposit has been removed by post-Carboniferous 

erosion. That the higher concentrations of Fe to the north-east represent an overall 

fluid-flow regime from the south-west, based on relative metal solubility, may be 

the case, but this hypothesis cannot be substantiated by this study.

3.6.4 Zinc+Lead.

The Zn+Pb plots serve to underline the role played by the NNE, NE and ENE 

minor faults highlighted most strongly by the Pb data. As with the Pb and Zn data 

therefore, the interpretation of the Zn+Pb plots is that these metal patterns strongly
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suggest a deep-seated control on conduits providing metal-bearing fluids access 

into the Navan deposit. Again the major lineaments of the combined metal plots 

run oblique to, and are displaced by, the major extensional faults in the orebody 

implying that the majority of movement on these larger faults occurred after the 

mineralisation in these slices was emplaced, or that they, as relatively shallow 

angle faults did not have the permeability to be exploited by the metal-bearing 

fluid.

As with the Zn and Fe data, the noted concentration of higher %Zn+Pb values 

towards the north-east of the study area cannot, at this time, be explained. The 

area of the Navan deposit to the north-east (Nevinstown) remains the subject of 

ongoing legal action and therefore all data remains commercially confidential. 

Also, some, if not a substantial part of the Navan deposit has been removed by 

post-Carboniferous erosion. That the higher concentrations of %Zn+Pb to the 

north-east represent an overall fluid-flow regime from the south-west, based on 

relative metal solubility, may be the case, but this hypothesis cannot be 

substantiated by this study.

3.6.5 Zinc:Lead.

The linear patterns of the Zn:Pb plots remain consistent with those observed in the 

Pb, Zn and Zn+Pb plots. The interpretation of these plots therefore, is as above. 

Further, as with the Zn, Fe and Zn+Pb data, the noted concentration of higher 

Zn:Pb values towards the north-east of the study area cannot, at this time, be 

explained. That the higher value of Zn:Pb to the north-east represent an overall 

fluid-flow regime from the south-west, based on relative metal solubility, may be 

the case, but this hypothesis cannot be substantiated by this study.
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3.7 Conclusions.

The role of the minor NNE, NE and ENE structures in localizing ore-grade 

mineralisation is demonstrable. The lead and zinc enhancements are not constant 

along the strike directions of the major ENE, partly listric extensional faults, 

although areas of isolated enrichment do occur within these faults. The highs are 

arranged along a north-easterly trend that parallels the Caledonoid structures and 

faults seen in the vicinity of the orebody (Fig. 3-29). This finding is consistent 

with that of Andrew and Ashton (1985). These patterns strongly suggest the 

influence of Caledonoid fault complexes on mineralisation (e.g. Randalstown, 

Castle and D Faults) (Figs. 1-2 and 1-3). The isolated areas of enrichment along 

the B and T Faults I interpret as delineating intersections of those fractures with 

such basement fault zones. Thus the listric faults have not acted as major conduits 

to the mineralising solutions, contrary to the expectations of the MVT model.
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Figure 3-1 Structural plan of the Navan deposit showing the location of Mine
Zones discussed in the text.



Figure 3-2 The basal Green Shale of the Navan deposit. Located within the 
Micrite Unit. Located in the 1050 271 ONE development. This horizon marks the 
base of Slice 3 (see text). See Rizzi and Braithwaite (1996) for a discussion on

origin.
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Figure 3-3 Ore-5 Lens Dolomite contact (corresponding to the top of Slice 7 (see 
text). Located in the 1050 271 OF development. See Anderson et al., (1998) for a 
discussion on the importance of this unit in localizing ore-grade mineralisation.
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Figure 3-4 Distribution of %Pb in Slicel of the Navan deposit.
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Figure 3-5 Distribution of %Pb in Slice 2 of the Navan deposit.
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Figure 3-6 Distribution of %Pb in Slice 3 of the Navan deposit.
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Figure 3-7 Distribution of %Pb in Slice 4 of the Navan deposit.
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Figure 3-8 Distribution of %Pb within the lowermost 24m of 5 Lens (Slices 1 to
7) in the Navan deposit.
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Figure 3-9 Distribution of %Zn in Slice 1 of the Navan deposit.
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Figure 3-14 Distribution of %Fe in Slice 1 of the Navan deposit.

LISCARTON FAULT
F25

RANDALSTOWN FAULT

CASTLE 
FAULT 
COMPLEX

TFAULT PLANE

YFAULT

260MMFAULT

B FAULT

- >4%  Fe
- 3.5 to  4%  Fe

- 3 to  3.5%  Fe
- 2.5 to  3%  Fe
- 2 to  2.5%  Fe 
-1 .5  to  2%  Fe
- 1 to  1.5% Fe
- 0.5 to  1% Fe

- 0  to  0.5%  Fe

TFAULT

Figure 3-15 Distribution of % Fe in Slice 2 of the Navan deposit.

118



LISCARTON FAULT

RANDALSTOW N FAULT
F26

CA STLE 
FAULT 
COMPLEX

Z O N E  O F  M a  V E IN S  IN 
T H E  F O O T W A L L  O F  THE 
T  F A U L T

T FAULT PLANE

YFAULT

2 5 0 M

M FAULT

- >16%  Fe
- 14 to  16%  Fe
- 12 to  14%  Fe
- 10 to  12%  Fe
- 8  to  10%  Fe
- 6 to  8 %  Fe
- 4  to  6 %  F e
- 2 to  4 %  F e
- 0 to  2%  Fe

B FAULT T FAULT

Figure 3-16 Distribution of %Fe in Slice 3 of the Navan deposit.
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Figure 3-21 Distribution of %Zn+Pb in Slice 3 of the Navan deposit.
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Figure 3-22 Distribution of %Zn+Pb in Slice 4 of the Navan deposit.
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1 to 7) in the Navan deposit.

122



LISCARTON FAULT
F25

RANDALSTOWN FAULT

CASTLE 
FAULT 
COMPLEX

f.

T FAULT PLANE

YFAULT

M FA U LI
250M

B FAULT

|  - >25 Zn:Pb 
1 - 22 to 25 Zn:Pb 
|  - 19 to  22 Zn:Pb

- 16 to  19 Zn:Pb

- 13 to 16 Zn.Pb 

I  -10  to  13 Zn:Pb 
J  - 7 to 10 Z irP b  

|  - 4 to 7 Z n :P b
- 1 to 4 Zn:Pb

T FAULT

Figure 3-24 Distribution of Zn Pb values in Slice 1 of the Navan deposit.
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Figure 3-25 Distribution of Zn:Pb values in Slice 2 of the Navan deposit.

123



LISCARTON FAULT F26

RANDALSTOWN FAULT
F24

CASTLE 
FAULT 
COMPLEX

TFA U LT PLANE

YFAULT

FAULT
250 M

■  - >33 Z n :P b
■  - 29 to  3 3 Z n :P b
■  • 25 to  29 Z n :P b

- 21 to  25 Z n :P b
- 17 to  21 Z n :P b

■  - 13 to  17 Z n :P b
■  - 9 to  1 3 Z n :P b

- 5 to  9  Z n :P b
- 1 to  5 Z n :P b

B FAULT
T FAULT

Figure 3-26 Distribution of Zn:Pb values in Slice 3 of the Navan deposit
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Figure 3-29 Diagram demonstrating the distribution of fault azimuths (based on 
60 measurements) within the Navan deposit, compared to the trend directions of 

15 recognisable Pb enhancements in 5 lens. In the event the Pb isochores most 
clearly show the relationship between metal enhancements and minor NNE to 

ENE minor faulting, rather than the ENE partly listric, locally major faults.
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4. 834S variations with respect to possible feeder 

structures

4.1 Introduction

The basal 5 lens of the Navan Zn+Pb deposit contains -70 % of the known 

tonnage of the -90 Mt orebody and thus is the focus of this examination (for 

location of study area see Fig. 4-1). The study was centred on the lowest twenty- 

one meters of the basal 5 lens of the Navan deposit (Fig. 4-4). The lithological 

footwall of the orebody is delineated by a green shale recognizable throughout 

most of the deposit, and is located in the Micrite Unit (Fig. 3-2). The base of a 

dolomitic calc-arenite termed the 5 lens Dolomite (Fig. 3-3), which acts as an 

important control to ore localization in the western part of the deposit (Rizzi, 

1993; Anderson et al., 1998), was chosen as the upper stratigraphic limit of the 

study.

Metal distribution patterns (particularly Pb), suggest that migration of metal- 

bearing fluids was principally directed up early to mid Lower Carboniferous, near 

vertical NNE, NE and ENE minor normal faults (see Chapter 3 and Fig. 3-29). 

These faults predate or are coeval with the major extensional, partly listric, ENE 

faults which now control the general disposition of the deposit (see Chapter 1 and 

2). Only where these major ENE faults cross putative deep-seated, NE 

(Caledonoid) and NW structures are they associated with lead enrichments.

A systematic 834S survey in the 5 lens across five minor NNE through to ENE- 

trending faults associated with distinct lead enrichments and one ENE trending,
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partly listric, major extensional fault adjacent to that trend, has been completed. 

This tested the hypothesis that the metal-bearing fluid (associated with positive 

834S values), utilised the more minor (NNE to ENE) trending faults identified by 

the metal distribution isochores. Mineral sulfide petrography is used to 

contextualize the sampling and to give a qualitative indication of the degree of 

chemical disequilibrium of the system.

The contents of this chapter form parts of Blakeman et al., (in press) (Enc.).

4.2 Sulphur Isotopes

Anderson (1990) and Anderson et al. (1998) demonstrated that 834S within the 

Navan deposit has a bimodal distribution with some 80 percent of the sulfide 

having negative values (Fig. 4-2). They interpreted this pattern as a reflection of 

the mixing of a deep-seated, metal-bearing fluid possessing a low sulphur:metal 

ratio (positive 834S values), with a local fluid containing bacteriogenically-reduced 

sulfide (negative 834S values) derived ultimately from Lower Carboniferous 

seawater sulfate. Without this large mass of bacteriogenic sulfide, the Navan 

deposit would only have been about a fifth of the size (Anderson et al., 1998). 

Since then Fallick and his co-workers have demonstrated that 90% of the sulfide 

ore at Navan was precipitated with bacteriogenic sulfide and that only -10% of 

the sulfide, that with the positive 834S values, was probably acquired from 

diagenetic sulfides remobilised by the deep-seated metal-bearing fluid within the 

underlying Lower Palaeozoic basement (Fallick et al., 2001). Anderson et al. 

(1998) also noted a correlation between 834S values and mineral textures and 

Paragenetic position (Fig. 4-13). Minerals precipitated later in the paragenetic 

sequence in hand specimen-scale samples exhibited values that are more negative.
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Coarse bladed, zoned and granular textures exhibit relatively high 534S values 

from -1 to +15 per mil. Bedding-parallel replacement textures show a range of 

values from -23 to -15 per mil. Framboidal pyrite in the Conglomerate Group Ore 

and colloform pyrite/marcasite in the upper parts of the deposit have values 

ranging from -37 per mil to -28 per mil.

In order to test the hypothesis that the metal distribution patterns define the metal- 

bearing fluid conduits, the origin of the fluids in the palaeohydrological system 

operating at the time of mineralisation needs to be determined. This 

characterisation has been sought by completing a high-resolution 834S and ore 

mineral textural study systematically across five minor faults, associated with an 

enhanced Pb trend, and one adjacent major fault within the Navan 5 Lens (Figs. 4- 

5 and 4-6).

4.2.1 Hypotheses

Two end-member hypotheses to explain the Pb distribution patterns in the basal 5 

Lens are considered:

1. That mineralisation occurred after the full development of the B and T Faults, 

these faults acting as the main conduits for the upwelling metal-bearing fluids 

(Fig. 4-3). This hypothesis could be thought of as a variant of the hypothesis 

generally used to explain “Mississippi Valley-Type” mineralisation.

2. That mineralisation occurred prior to/coeval with initial movements on the B 

and T Faults, but during/after the development of the early steeply dipping minor 

NNE, NE and ENE normal fault sets. All faults would have acted both as feeders
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for the upwelling metal-bearing fluids, and loci for the downdrafts of 

bacteriogenic bearing-seawater-derived solutions (Fig. 4-4). This hypothesis has 

been adumbrated under the appellation, “Irish Type” mineralisation.

In the first hypothesis it is envisaged that rapid subsidence within the Dublin 

Basin lying to the south of Navan, allowed the development of major partly listric 

extensional faults, which tapped metal-rich fluids rising from depth, as described 

by Anderson et al. (1998). These hot mineralising fluids would have accessed the 

minor fault sets where they abutted against the major faults (Fig. 4-3). Down- 

flowing, locally derived, bacteriogenic bearing-bearing fluids used the minor fault 

sets to gain access to the host rocks. As these two fluids mixed, an increasingly 

negative 834S signature with distance from the B and T Faults would be apparent. 

In addition, bladed marcasite and galena signifying rapid precipitation/deposition 

(Anderson et al.1998) would only occur at and close to the major extensional 

faults.

In contrast, an expectation from the second model is that positive 834S signatures 

would be associated with both major and minor faults of all trends (Fig. 4-4). That 

is, these signatures would be found in sulfides in the major, partly listric, ENE, 

extensional faults, as well as in the earlier/coeval, NNE, NE and ENE fractures. 

Mineral textures indicating rapid precipitation/deposition (Anderson et al.1998), 

would also be expected to be associated with all the faults.

4.2.2 Scientific methods

130



4.2.2.1 Sampling, reflected light microscopy and isotopic 
technique.

Sampling: As the objective was to elucidate the sources of the sulphur and the 

relationship of ore depositional processes to faulting and thereby to assess the 

relative merits of the two hydrogeological hypotheses, a profile survey of S34S 

values across the various fault generations has been completed. A suite of samples 

were selected to cover material exhibiting all the ore textures and parageneses 

described in Anderson et al. (1998). The profile (Fig. 4-5 and 4-6) is located in the 

north-eastern section of the deposit (see Fig. 4-1). The study was concentrated in 

the lowermost 5 lens within the Micrite unit and beneath the 5 lens Dolomite (Fig 

4-5). The profile intersects the B Fault (trending ENE) and five minor faults 

trending from NNE to ENE associated with a distinct lead enrichment trend (Fig. 

4-6). Ninety-five samples were analysed from nineteen diamond drill-hole (DDH) 

cores taken along the profile length (~115 m). See Appendix 1.

Reflected light microscopy: Polished blocks have been examined in 

reflected light to ascertain mineral parageneses and to give an indication of the 

dynamism or otherwise of conditions at, and following, the time of mineral 

precipitation in an area singled out for this isotopic study (see profile in Fig. 4-5 

and 4-6).

Isotope technique: In situ laser analyses of sulfide 534S in polished blocks, 

selected on the basis of the petrological study, were made using the established 

technique described by Kelley and Fallick (1990). The sulphur dioxide produced 

was analysed on-line by a VG SIRA 2 mass spectrometer. All sulphur isotope 

results are expressed in conventional delta (S34S) notation, as per mil (%o)
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deviations relative to Canon Diablo troilite (CDT). Reproducibility based on 

complete duplicate analyses (including combustion) was better than 0.3 % o.

4.3 Results

4.3.1 Mineral textures

Figure 4-7 illustrates the textures observed 0.5 meters into the footwall of a NE 

trending fault intersection (DDH U12477). Early comminuted marcasite blades 

are surrounded by paragenetically later coarse granular sphalerite. Figure 4-8 

exemplifies the textures found in DDH U 12473 located one meter into the 

footwall of a NE striking normal fault toward the NW end of the profile. Here 

resorbed cubic galenas that now show pseudo-dendritic (skeletal) textures, are 

surrounded by pyrite (including framboidal pyrite) with minor cubic crystalline 

centres. Sphalerite and dolomite enclose this assemblage. Figure 4-9 illustrates 

sample DDH U 12472, located one meter into the hanging wall of a NE trending 

fault. Here, comminuted clasts of early sphalerite sit in a sea of minor barite and 

pyrite overgrown by colloform pyrite. Later galena predates a sphalerite 

‘honeyblende’ matrix. The photomicrograph of sample DDH U12493 from the 

NW end of the profile, ~5 m into the footwall of a NNE trending early minor 

fault, displays early galena surrounded by framboidal pyrite which is in turn cut 

by later sphalerite (Fig. 4-10). DDH U 12478 is located 15 m away from any 

observed fault (Fig. 4-11). Here sphalerite is intergrown with dolomite and minor 

pyrite.
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To generalize in the area of study, it appears that early comminuted bladed 

marcasite predates bladed galena and granular sphalerite. Then resorbed cubic 

galenas predate framboidal pyrite. Sphalerite and dolomite follow. Galena is also 

surrounded by framboidal pyrite, which in turn is cut by later sphalerite. Yet early 

sphalerite (some with truncated colloform textures) is enclosed by minor barite 

and pyrite; the ensemble overgrown by colloform pyrite. Later galena predates a 

sphalerite ‘honeyblende’ matrix. Elsewhere sphalerite is intergrown with dolomite 

and minor pyrite. This chaotic paragenesis is indicative of deposition in far-from- 

equilibrium conditions, conditions implied too by the colloform, rythmically 

banded sphalerite of Anderson et al. (1998) as well of the rapidly fluctuating 

sulphur isotopes seen in a composite galena blade (Kelley and Fallick, 1990; 

Anderson et al., 1998 (figures 13B and 24) and see Letnikov, 1997).

4.3.2 Isotope results

The sulphur isotope results are listed in Appendices 2 and 3, and illustrated in 

Figures 4-7 to 4-12, and Figures 4-14 and 4-15. Half a meter into the footwall of a 

NE trending fault intersection (DDH U 12477) the 534S values of all the sulfides 

are positive. Early comminuted marcasite blades have an average 834S of +17.1%o. 

The surrounding coarse granular sphalerite averages +5.8% o  and the bladed galena 

averages +10.9% c  (Fig. 4-7). Values of 834S in minerals in DDH U12473 located 

one meter into the footwall of a NE striking normal fault are more varied. Pseudo- 

dendritic galenas have an average 834S of -7.4%c; the surrounding framboidal 

pyrite averages -16.5%c, whereas the later sphalerite returns to the heavier value of 

+4.3%o (Fig. 4-8).
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One meter into the hanging wall of a NE trending fault, sulfides in sample DDH 

U 12472 range to appreciably light values. For example, 834S in comminuted clasts 

of early sphalerite ranges from -1.4%o to -17.4%c, and colloform pyrite 

overgrowths have an average S34S of -28.9% o. Also later galenas have average 

834S of -17.2%o, and the later sphalerite ’honeyblende’ matrix has 834S ranging 

from -7.7%o to -22.1%c (Fig. 4-9). Low 834S values are also a feature of sample 

DDH U 12493 collected from ~5 m into the footwall of a NNE trending early 

minor fault. Galena averages -11.4%o, framboidal pyrite -29.9%o, and later 

sphalerite averages -13.2%o (Fig. 4-10). Values of 834S continue to be low 15 m 

away from any observed fault, as in the sphalerite in DDH U 12478 that averages - 

9.7% o  and minor pyrite, which returns an average 834S of -25.3 % o  (Fig. 4-11).

Were the sulfides to have been precipitated in isotopic equilibrium pyrite should 

always have the highest S34S, with sphalerite next highest, and galena the lowest 

834S (Ohmoto and Goldhaber, 1997). At the likely highest temperature of 

hydrothermal ore deposition at Navan (i.e. 200°C; Everett and Wilkinson, 2000), 

the isotopic differences should be around the following: 834SPy.Sp = 1.3%o; 834Spy.ga 

= 4.5%c; 834Ssp-ga = 3.3%c (Ohmoto and Goldhaber, 1997). In all of the specimens 

analysed, isotope relationships indicate disequilibria. The S34S values in sphalerite 

are lower than those in the associated galena, and the pyrite has lower 834S values 

still than either sphalerite or galena. Plots of the frequency distribution of 834S 

values in sulfide phases are given in Figure 4-14. The observed patterns bear 

favourable comparison with the findings of Anderson et al., (1998) for the Navan 

deposit as a whole, and Anderson (1990) for 5 lens in particular (see Fig. 4-2).
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Figure 4-15 shows the distribution of 834S values with respect to distance from the 

nearest fault, and its location in either the footwall or hanging wall. Bladed 

marcasite (Fig. 4-15c), which only occurs within 3 m of a fault, has the most 

positive 834S (+9.6%o  to +17.5%o) (see also Anderson et al., 1998). Galenas (Fig. 

4-15b) similarly show positive 834S close to faults (+9.3%c to +15.8%o), whereas 

away from faults only negative values are encountered (-5.9%o to -26.4%o). 

Sphalerite (Fig. 4-15a) behaves as galena, more positive 834S values being 

dominant within ~3 m of the nearest fault (+0.8%o to +10.0%o) and only negative 

834S (-1.4%o to -22.1%o) values occur in more distal samples. On the other hand, 

pyrite 834S values display a different pattern (Fig. 4-15c). The apparent 

background is constant at a 834S value of ~-30%o. A positive shift occurs only 

within 3 m of the fault, in both the footwall and hanging wall, although there is a 

strong negative shift close to the fault plane itself (see also Fig. 4-12).
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4.4 Interpretation of sulphur isotope analyses and 

mineral textures

Precipitation of sulfides with positive 534S values took place directly from 

cooling, and therefore increasingly super-saturated, decreasingly buoyant, metal- 

bearing fluids. These fluids not only invaded the faults, they also initially 

displaced the dense bacteriogenic bearing-bearing fluids from a zone in the 

footwall host rock up to 3 meters across (Fig. 4-15) (c.f., Rizzi, 1992). To explain 

this disposition of the isotope values it may be speculated that hydrostatic pressure 

may have been lower in the footwall, perhaps a result of gravitation of the ambient 

brine to depth during tectonism, so encouraging the development of secondary 

convection cells in and paralleling the minor faults (Sibson et al., 1975).

According to Anderson et al. (1998) the sulphur to metal ratio present in the 

hydrothermal fluid was low. Experimental work by Bischoff et al. (1981) also 

illustrated that the sulfur-bearing capacity of the hydrothermal ore fluids feeding 

the Irish deposits was low. Thus, the additional bacteriogenic sulfide source is 

essential to achieve high tonnage. Fallick et al. (2001) illustrate that at Navan 

more than 90% of ore grade sulfide was bacteriogenic. The observation that 

negative S34S values reflect the dominance of bacteriogenic sulfide away from the 

feeder faults is in concert with their results. The positive 534S values in galena and 

sphalerite samples correlate with high lead concentrations. Thus while the minor 

NNE, NE and ENE faults, as well as the B fault, acted as conduits for the metal- 

bearing fluids, the conclusion is forced that the earlier near vertical set was the 

more exploited (Fig. 4-15a and 4-15b). It follows that the second of the two
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alternative hypotheses, i.e., the syn-diagenetic mesothermal or Irish Type model, 

depicted in Figure 4-4, is the more consistent with the mineralogical and isotopic 

constraints.

The Irish Type model is also favoured by the further observations discussed 

below. The distribution, textures and 834S values shown by marcasite and pyrite 

contrast with those of galena and sphalerite. Marcasite occurs only within ~3 m of 

a fault plane and displays high positive S34S values (Figs. l-14c and 4-15c). 

Conversely, pyrite reflects a somewhat similar pattern to galena and sphalerite 

with a positive shift in 834S within ~3 meters of the faults (Fig 4-15a, b and c). 

However, sample DDH U12498 (Fig. 4-12), located within one meter of a NE 

trending minor fault, returned strongly negative S34S values. This result is 

interpreted as reflecting the gravitation of bearing-bearing saline seawater 

containing highly fractionated bacteriogenically-reduced sulfide from above, into 

the feeder conduits on at least one occasion.

It is important to note here that pyrite 834S is always substantially lower than the 

base-metal sulfide 834S, i.e. the extent of bacteriogenic fractionation is greater 

leading up to pyrite deposition, than that operating during Zn+Pb sulfide 

deposition. This is highlighted by sample DDH U 12472. Here the extremely low 

S34S pyrite deposition occurs before and after base-metal sulfide precipitation, 

indicating that a change in the sulfuretum (the bacteriogenic sulfide producing 

system) takes place before and after mineralisation pulses. It may be that this 

excursion and reversion reflects a bacterial consortium operating in more 

oxidising conditions during periods of quiescence (pyrite deposition), allowing 

increased disproportionation cycles during dissimilatory bacterial reduction of 

sulfate, likely involving intermediate, largely bacterially-mediated reactions with 

thiosulfate, sulphite and sulphur (Jprgensen, 1990; Thamdrup et al., 1993; 

Canfield and Thamdrup, 1994; Finster, et al., 1998; Cypionka et al., 1998). A
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corollary of this observation is that the sulfide in pyrite cannot be the source of 

base-metal sulfide, as remobilised pyrite sulfide would simply retain its original 

8 34S  signature (see also Boyce et al., 1983b, and Anderson et al., 1989). 

Furthermore, the extent of bacteriogenic fractionation (on average in the base- 

metal sulfides 8 34S suifate-suifide = 36%o\ greater for pyrite) in all sulfides indicates a 

dominance of open system reduction of sulfate. Thus, whilst it is clear from these 

observations that bacteriogenic sulfide penetrated beneath the seafloor, the 

seawater sulfate reservoir was accessed throughout the main mineralising event.

Evidence of oscillations in the mixing front between the predominantly metal- 

bearing hydrothermal solutions and bacteriogenically reduced sulfide bearing 

fluids can be gleaned from sample DDH U12473 (Fig. 4-8). Here early galena is 

partially resorbed and overgrown by later pyrite with a bacteriogenic signature. 

But still later sphalerite overgrowths show a strong positive shift in their 834S 

signatures, indicating deposition from later hydrothermal, positive 834S-rich 

solutions.

Whether pyrite or marcasite are precipitated from low to medium temperature 

hydrothermal solutions depends on pH (Murowchick and Barnes, 1986; Schoonen 

and Barnes, 1991). In this study, marcasite is seen to be precipitated 

paragenetically early in an environment dominated by deep-seated, metal-bearing 

fluids with positive 834S values. The conditions of the hydrothermal fluids 

prevailing during the very earliest phase of sulfide deposition (prior to reaction 

with the micrite units) are likely to be acidic (Bischoff et al., 1981). Thus 

marcasite precipitation is favoured. Moreover the marcasite is bladed, a 

morphology to be expected where precipitation was rapid under relatively low pH
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conditions. It is also comminuted (samples DDH U12477 and U12472; Figs 4-7 

and 4-9 respectively), a texture indicative of early post-depositional fault related 

and/or hydraulic/chemical brecciation (Sawkins, 1969). It is reiterated that 

marcasite is only found in or near faults and always carries a positive 834S value 

and bladed texture, indicating that the incoming hydrothermal fluid was acidic.
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4.5 Conclusions

A profile located within the basal 5 lens which represents -70 percent of the 

known tonnage of the Navan orebody was subjected to a detailed 834S survey, 

based on a careful petrographic, structural and metal distribution study. The 

profile traverses both minor NNE, NE and ENE fractures each associated with 

distinct lead enrichments, and one partly listric, major ENE fault, the B fault, with 

occasional lead enrichment. Sulfides with relatively high 834S (0 to +17%c) are, 

without exception, found within 3 meters of both the minor, steeply dipping NNE, 

NE and ENE normal faults, as well as the B fault. Combined with the lead 

distribution patterns, this sulphur isotope pattern points to the role of the minor, 

steeply dipping, normal structures as hydrothermal feeders. The partly listric B 

fault, although accommodating metal-bearing fluid flow, played a secondary role 

in the genesis of 5 lens. Bacteriogenic sulfide (834S <-5%o) dominates away from 

these faults (and throughout the deposit in general: Anderson et al., 1998; Fallick 

et al., 2001).

The presence of negative 834S values associated with pyrite close to these 

fractures shows that, at times, the locally derived cooler bacteriogenic bearing- 

bearing saline seawater-derived fluid also gained access to these faults. The fact 

that where observed in drill-core and underground exposure, the minor faults 

along the investigated profile are infilled by carbonate, also indicates that fluids 

were capable of moving freely within these fractures, allowing simultaneous 

access to hydrothermal solutions from below as well as to seawater-derived brine 

from above. These observations are not consonant with fault-trapping, and are 

inconsistent with the expectations of the MVT model of mineralisation for Navan.
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The textural observations reported here indicate that active faulting took place 

during the earliest part of the mineralising process. These active faults allowed 

pulses of the deep-seated hydrothermal metal-bearing fluid to periodically 

displace the locally derived bacteriogenic bearing-bearing fluid. The chemical and 

physical disequilibria between these two fluids is reflected in the mineral phase 

boundaries and the disordered 834S values recorded for adjoining sphalerite, 

galena and pyrite (Figs. 4-7-4-11; Appendix 1).

No evidence can be discerned on the minor NNE, NE and ENE faults on the 

profile, which anyway are confined to early to mid Lower Carboniferous 

Ethologies, to demonstrate movements during late Carboniferous tectonism. 

Therefore, the onset of metallogenesis at Navan must be placed early in the rifting 

history of the Irish Midlands, i.e. during the early to mid Lower Carboniferous. 

This conclusion is in agreement with the arguments of Ashton et al., (1992), and 

Anderson et al., (1998). It is also in concert with observations at the Silvermines 

and Tynagh SEDEX deposits (e.g. Russell, 1975; Taylor and Andrew, 1978; 

Boyce et al., 1983b, 1999; Banks, 1985).

The conclusion that a deep-seated Caledonoid structure (or suite of structures), 

was one of the controls of mineralisation at Navan, and that metal-bearing fluids 

flowed through the basement, is consistent with the findings of Anderson et al. 

(1989) and Boyce et al. (1983b) that diagenetic sulfides within the basement 

Ethologies were the source of positive S34S values associated with the metal- 

bearing fluid. Such a deep hydrological system is also compatible with fluid
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inclusion, isotopic, and halogen studies conducted elsewhere in the Irish orefield 

(Boyce et al., 1983b; Samson and Russell, 1987; Banks and Russell, 1992; Everett 

et al., 1999a and b; Gleeson et al., 1999).
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Figure 4-1 Structural plan of the Navan deposit showing the study area covered 
by Chapter 4. (See also Figs. 4-5 and 4-6).
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Figure 4-2 Histogram showing the known distribution of sulfur isotope results 
within 5 lens (extracted from Anderson, 1990).
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Figure 4-3 Cartoon model illustrating mineralisation supposedly post-dating the 
full development of the B and T Faults, i.e., these faults acted as the main conduits 

for the metal-bearing fluids (the MVT paleohydrological model).
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Figure 4-4 Cartoon model illustrating the occurrence of mineralisation 
during/after the development of the early steeply dipping minor NNE, NE and 

ENE normal fault sets, but in the main, prior to movements on the B and T Faults 
(Syn-depositional mesothermal or Irish Type model). The minor NNE, NE and 

ENE normal faults carry the bulk of the upwelling hot metal-bearing fluids but are 
also the loci for the downdrafts of bacteriogenic sulfide-bearing seawater-derived 

solutions. In the event, this model is favoured by the analyses presented here.
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Figure 4-5 Stratigraphic cross-section of profile showing location of lithologies
and structures discussed in text.
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samples).

148



Figure 4-7 Photomicrograph of DDH U 12477 located 0 5m into the footwall of a 
minor NE trending fault. Note comminuted early marcasite (Ma), collomorphic 

pyrite overgrowths (Py), and late course-grained sphalerite (Sp).
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Figure 4-8 Photomicrograph of DDH U12473 located lm into the footwall of a 
minor NE trending fault, showing highly resorbed (pseudo-dendritic) galena (Ga), 

later framboidal pyrite (Py), and finally course grained sphalerite (Sp), and
dolomite (Dol).
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Coarse Sp matrix

Core of clast

Figure 4-9 Photomicrograph of DDH U12472 located less than lm  into the 
hanging wall of a minor NE trending fault, showing clasts of comminuted 

sphalerite (Sp) (with minor pyrite and barite), overgrown by collomorphic pyrite 
(Py) and galena (Ga), and a subsequent infilling matrix of fine- to course-grained 

'honeyblende' sphalerite (Sp). Ca is calcite.
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Figure 4-10 Photomicrograph of DDH U12493 located ~5m into the footwall of a 
minor NNE trending fault, showing early galena (Ga), later ffamboidal pyrite 

(Py), with fine- to coarse-grained cross-cutting sphalerite (Sp).
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Figure 4-11 Photomicrograph of DDH U12478 located 15m away from any 
observed fault. Note intergrowths of fine-grained sphalerite (Sp) and dolomite

(Dol).
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Figure 4-12 Photomicrograph of U14298 showing plumose-framboidal pyrite 

(average 534S = -33.5 per mil ), from within lm of a fault plane.
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5. A Genetic Model for the Navan Deposit.

5.1 Introduction.

This study has highlighted evidence that places the onset of metallogenesis at 

Navan early in the Lower Carboniferous. Mineralisation occurred during the 

phases of tectonic extension that would lead ultimately to the development of 

horst and graben topography within the North Dublin Basin by the late Chadian. 

Only the genetic model of Russell (1978 and 1986), developed for the whole Irish 

Base-Metal Orefield, can accommodate mineralisation at that time. Thus what 

follows fine-tunes the hypothesis of Russell (1978 and 1986) with particular 

reference to the Navan deposit.

The model developed here suggests that Irish Style Mineralisation is an integral 

part of developing extensional shallow marine carbonate marginal environments 

since the start of the Carboniferous; thereby potentially widening the theatre of 

exploration outside the bounds of the Irish Midlands. It describes, in temporal 

progression, the development of the conduits used by both the metal-bearing and 

the bacteriogenically reduced sulfide-bearing fluid. Chemical and physical 

observations are highlighted where appropriate.
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5.2 Genetic model.

5.2.1 Onset of extension and marine transgression.

Early NNW-SSE extension within the Dublin Basin reactivated Caledonoid faults. 

Thus basement structure control led to an array o f faults within the overlying 

Courceyan rocks which trend slightly west o f north to north-east. This fault 

complex is bounded by the Randlestown and the D (Slane/Boundary) Faults. 

These larger, bounding faults accommodated the major proportion o f lateral 

movement at this time.

The northward marine transgression during the early Courceyan coincided with 

basement-controlled faulting. The seawater was highly saline, a result of 

evaporation within a sabkha located in the Navan area. Thus early Carboniferous 

seawater gained access to the basement through active, near vertical faults (Fig. 5- 

1). The formation waters occupying fractures within the Lower Palaeozoic rocks 

were thereby, continually recharged as in the Russell model (Russell, 1968; 

Russell 1978). The extension-related fracturing allowed the initiation of an open 

hydrothermal convective system. The major conduits for the down flowing dense 

seawater were the larger Caledonide faults (Fig. 5-1). Of all the faults in the 

Navan area it was only those of Caledonian age that were in existence at the onset 

of the marine transgression. Yet these major structures were not utilised in 

accommodating the rising solutions. We know this because the zinc and lead 

grades fall off dramatically as these structures are approached. This seeming 

contradiction may hold the clue to the siting of the convective updraft. Recall that
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the Navan orebody is a by-product of the dissipation of thermal energy by mass 

transfer. In general natural (as opposed to forced) open convective structures are 

organised from the surface rather than the base (e.g. Pearson, 1958; Anderson, 

2001). As the surface tension of aqueous fluids at 200°C is nearly an order of 

magnitude less than cold waters, it follows that the former are able to exploit 

lower permeabilities. Thus gravitation to depth of a dense brine of surface 

derivation was facilitated by existing fractures and the momentum of flow was 

maintained by an increase in permeability consequent to extensional tectonics. 

The now heated water, still pressurised from above, could migrate, less hindered 

by viscosity, into less fractured basement, and rise buoyantly to the surface in 

‘less obvious” structures (Fig. 5-2). Thus, the two corridors of relatively 

unmineralised ground that follow the trace of both the Randlestown and D faults 

can be explained.

5.2.2 Continued extension and development of the ‘Dolomite 

Plume’.

Continued extension within the Dublin Basin resulted in the earlier faults within 

the early to mid Lower Carboniferous lithologies being obliquely aligned to the 

principal axes o f extension (NNW-SSE). They were therefore incapable o f 

accommodating the movement required. Thus a major ENE trending fault system 

developed to accommodate this phase o f extension. This fault system was open to 

both early Lower Carboniferous seawater from above and fractures within the 

basement acting as conduits for the upwelling metal-bearing fluid.
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It may also be predicted from this scenario that the majority of dolomites at Navan 

prove to be of marine origin and not hydrothermal as postulated by Braithwaite 

and Rizzi (1 9 9 6 )  and supposed by Peace (2 0 0 0 ) . Afterall, empirical analyses of 

submarine springs (e.g. Von Damm, 19 9 0 ) as well as the specific rock water 

studies of Bischoff et al. (1 9 8 1 ) , show concentrations of magnesium in 

hydrothermal solutions to be vanishingly small. Downward flowing marine waters 

would have passed through the Lower Carboniferous sediments both prior to 

entering the basement or replacing the original interstitial fluids, giving an 

opportunity to precipitate dolomite within the carbonate succession (Figs. 5 -2  and 

5 -3 ). Supporting this hypothesis is the data of Rizzi (1 9 9 3 ) . Analyses of carbonate 

isotopic compositions (8 180  = -6.6% c to -1 0 .4 % o  and SI3C = -0 .2 % o  to +2.5% o) 

within dolomites at Navan are indicative of a depositional fluid similar in 

composition to that of Carboniferous seawater (Braithwaite and Rizzi, 1 9 9 7 ).

5.2.3 Updraughts established within the developing horst and the 

mixing of fluids.

Convective circulation resulted in thermal up-draughts located away from the 

larger faults, within the developing horst blocks. As the horst blocks matured 

further, the regional faults, i.e. Randallstown and D, remained within graben 

structures. With basin geometries thus, the overlying cold dense water column 

was capable o f overpowering any initially weak thermal updraughts. Metal- 

bearing fluids were thus focused into the host lithologies along relatively minor 

extensional faults active from the very outset o f extension. The relationship 

between this generation o f faulting and the metal-bearing fluid is highlighted by
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*hils study. Metal-bearing fluids, having precipitated some metals along with all o f 

the? available sulfide, rapidly attained a more acidic, and therefore corrosive, 

character -  notionally:

Z111CI2 + H2S —►ZnS+2HCl

Am acidic metal-bearing fluid now existed that was highly efficient at corroding 

further fluid pathways horizontally through the more reactive members o f the 

carbonate host. As this fluid progressed it utilised the existing porosity to access 

dissolved bacteriogenically reduced seawater sulfate present within the residual 

pore waters. Thus permeability was enhanced by the corrosive nature o f the 

metal-bearing fluid allowing further volumes o f metal-bearing fluid to enter the 

system.

By now extensive mineralisation within the Pale Beds hosts of the Navan deposit 

was ongoing, fed by the regionally minor fault arrays Figs. 5-2 and 5-3). This was 

achieved on a deposit scale by two distinct, but interacting processes (Fig. 5-4).

i) Down flow of bacteriogenic sulfide enriched seawater within the minor fault 

arrays that had penetrated within at least tens of metres of the seafloor. Thereby 

allowing access to fluids enriched in sulfide produced by an extensive surficial 

sulfuretum to mix with the metal-bearing fluid.

ii) Replacement of reactive sequences within the host rocks (e.g. 5 Lens Micrites) 

that already contained interstitial waters enriched in bacteriogenically reduced
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sulfide. This extensive replacement of the host took place by repeated pulses of 

acidic metal-bearing fluid corroding the more reactive hosts and releasing 

bacteriogenic sulfide to form metal sulfides.

Anderson et al., (1998) and Fallick et al., (2001) in particular, have pointed to the 

importance of the presence of bacteriogenic sulfide at Navan. Further to their 

findings this Thesis presents data in concert with that of Anderson (1990) and 

Anderson et al. (1998) demonstrating that individual sulfide phases are associated 

with a specific 534S signature. For example mean values of 834S(zns) = -12.7 per 

mil and 834S(PbS) = -13.9 per mil have been reported by Fallick et al. (2001). These 

values are considerably higher than the values reported for 834S(Pyrite) of —30 per 

mil (Anderson 1990 and this study). Any remote, or historic, sulferetum could 

only produce a homogenous 834S signature across the respective sulfide phases. 

Fractionation of 34S therefore, must have been ongoing during metal sulfide 

deposition involving an active sulferetum predominantly located in the surficial 

environment at, and immediately above the developing orebody. Further 

understanding of this process is achieved by a comparing the Navan deposit with 

the Tatestown/Scallenstown satellite (Andrew and Proustie, 1986) to the north­

west. At Tatestown/Scallenstown (3.6mt) 834S values between -4  and +13 per mil 

dominate the ZnS and PbS phases (Caulfield et al., 1986). However, 834S(pyrite) 

values are centred around -20 per mil (Caulfield et al., 1986) indicating that 

bacteriogenic processes must have ongoing during mineralisation. The epigenetic 

Tatestown/Scallenstown satellite (Andrew and Proustie, 1986), is hosted 

exclusively by 5 Lens equivalent lithologies. It follows that either a buried 

sulferetum was operating or reactivated at the time of metallogenesis, or that
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downdrafts of seawater enriched in sulfate reducing bacteria were capable of 

mixing with the metal-bearing fluid within the ore-depositional horizons 

themselves. A similar situation would have pertained at Navan, and this process 

would account for the very low values found in 5 Lens pyrites away from the 

feeder conduits. This process is further supported by the occurrence of barite 

throughout the Navan deposit (including 5 Lens), with a 834S signature of ~+20 

per mil (Anderson, 1990; Anderson et al., 1998). This strongly suggests that 

Lower Carboniferous seawater had access to the ore-bearing horizons at the time 

of mineralisation (Figs. 5-4 and 5-5).

5.2.4 Full extension and the role of the Boulder Conglomerate as 

a host.

The later stages o f extension resulted in gravitational instability and catastrophic 

footwall collapse affected the larger structures. Erosive debris flows dissected the 

flanks o f the horst block eroding and redistributing previously mineralised Pale 

Beds.

By the time full development of the major listric, extensional faults had occurred 

sequences of predominantly argillaceous material were being deposited within the 

grabens (the Tober Colleen Mudstone of McConnell et al., 2001) (Fig. 5-6). This 

combination of reduced seismic activity and deposition of mudstone ultimately 

resulted in the damming of the down-draught zones thereby starving the 

hydrothermal cell of fresh fluids. Meanwhile waning updraughts continued within 

the horst centred fault zones, leading to replacive mineralisation of the Boulder
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Conglomerate (Conglomerate Group Ore) and in places possible exhalation on to 

the sea floor (Figs. 5-7 to 5-10, and 5-12 to 5-14).

5.2.5 A change of environment and the waning of mineralising 

activity.

The Upper Dark Limestones represent an environment dominated by turbidite 

deposition. Erosive turbidites ultimately led to the destruction o f the environment 

supporting the surficial sulferetum thereby denying any remaining rising metal- 

bearing fluid access to a ready sulfide reservoir. Thereby, the replenishment o f 

sulphate-reducing bacteria to the ore-depositional horizons was ended. The toxic 

metal bearing fluid eventually poisoned any surviving sulfuretum at depth.

Thus an environment now pertained that was not conducive to Irish Style 

mineralisation. The source of the metal-bearing fluid (Lower Carboniferous 

seawater) was denied access to the basement, and the predominant source of the 

sufide required to permit precipitation of the metals was removed. It is not 

envisaged that this was a sudden process as minor iron-rich bedding-parallel 

pyritic mineralisation pertains within the lower-most parts of the Thinly Bedded 

Unit (Fig. 5-11).
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5.2.6 Summary

The above model accounts for why the Navan deposit formed where and when it 

did. The source of the metal-bearing fluid and the pathways taken to access the 

Lower Palaeozoic basement were available from the very outset of extension 

during the lower Courceyan. Developing stable horst blocks fractured by 

regionally minor extensional faulting allowed rising metal-bearing fluids to access 

the reactive hosts of the Navan deposit and precipitate metals as they mixed with a 

locally produced bacteriogenic sulfide-bearing fluid. The bacteriogenic sulfide 

was produced by a sulfuretum that was intimate, and partly fed by, the 

mineralising process, at times utilising metals (especially iron) from the metal- 

bearing fluid to achieve greater fractionations during periods of low metal-bearing 

fluid ingress.

This situation pertained until the end of the Chadian/early Arundian when 

accelerated extension within the Dublin Basin led to the collapse and erosion of 

the horst margins. A predominance of mudstone deposition coupled with the end 

of extension resulted in the ultimate choking of the downdraft zones, followed by 

the development of an erosive turbidite environment that eventually removed the 

sulfide-producing factory. A period therefore, of roughly 10 million years (from 

the start of the Courceyan to the end of the Chadian/early Arundian) 

accommodated the complete mineralising process.

An intimacy of the mineralising process with extensional tectonism and (in 

Ireland) carbonate margins is inferred. An added essential factor is the presence of 

a co-existing sulfuretum (Fallick et al., 2001) to produce the large volume of 

sulfide required (at Navan, around 5 million tonnes of sulfur). Therefore, it 

follows that any exploration model for Irish Style mineralisation must take into
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account the factors that control the development and distribution of large, highly 

active sulfureta as well as areas of suitable structural geometries, within hosts of 

early Lower Carboniferous age.
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Lower Palaeozoic Basement

Regionally M ajor Caledonoid 
Sub-Vertical Faults (e.g. 

Randalstown and D faults) 
Accommodate Down-flowlnto  

the Basement

Figure 5-1 Schematic diagram illustrating the conditions 
pertaining during the lowermost Courceyan. Cold, dense, highly 
saline Lower Carboniferous seawater gains access to the Lower 

Palaeozoic basement via regionally major Caledonoid faults in and 
around the Navan area that are under extension
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R andalstow n an d  D  fau lts) 
C ontinue to A ccom m od ate  

D ow n-flow

Figure 5-2 Schematic diagram showing continued NNW-SSE 
extension leading to development of incipient horsts with minor NNE- 
NE faulting (Note that the regionally major Caledonoid faults remain 

within the developing grabens). (Mid-Courceyan).

1 = Initially weak pulses of hot (buoyant), metal-bearing solutions are 
concentrated into the developing horsts along the NNE-NE fault 
arrays.

2 = Down-flowing cold seawater (enriched in bacteriogenic H2S and 
sulfate reducing bacteria) circulates within the same structures, leading 
to the precipitation of dolomite, and ultimately mixing with the metal- 
bearing fluid to precipitate metal sulfides.

3 = Developing ‘Dolomite Plume’ precipitated from down-flowing 
Lower Carboniferous seawater (see Braithewaite and Rizzi, 1997), 
(also enriched in bacteriogenic H2S and sulfate reducing bacteria). 
Vasconcetas et al., (1995) and Vasconcetas and McKenzie, (2000) 
report the intimacy of sulfate-reducing bacteria with dolomite 
producing systems.
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Figure 5-3 Schematic diagram illustrating the development of 
locally major ENE trending partly listric faults that truncate the 

earlier NNE-NE faulting within the horsts. (Late Courceyan -  Early 
Chadian). ABL = Argillaceous Bioclastic Limestone.

1 = Rising, hot (buoyant), metal-bearing solutions continue to be 
concentrated into the developing horsts along the more minor fault 
arrays, as well as the now developing ENE partly listric faults where 
those faults intersect basement structures at depth.

2 = Down-flowing cold seawater (enriched in bacteriogenic H2S and 
sulfate reducing bacteria) continues to circulate within the minor 
NNE-NE faults and now also the partly listric ENE faults, ultimately 
mixing with the metal-bearing fluid to precipitate metal sulfides. 
Precipitation of dolomite continues.
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Zone D om in ated

Figure 5-4 Schematic diagram demonstrating the details of 
metal-sulfide and sulfate precipitation.

Active faulting during mineralisation (see Chapters 2 and 4) 
allows pulses of buoyant, metal-bearing fluid to enter the feeder 
fault arrays, and mix with the supernatant brine enriched in 
bacteriogenic H2S, and sulfate reducing bacteria (see Chapter 4). 
Metal precipitation is concentrated beneath dolomitised or more 
argillaceous members within the Pale Beds sequence (as per 
Anderson, 1990, Anderson et al., 1998). Interstitial waters 
(enriched in bacteriogenic H2S), within the Pale Beds are 
released to the developing system by the interaction of acidic 
metal-precipitating fluids and the carbonate-rich host. Thus 
metal-sultides proximal to the feeder faults are dominated by 
positive 534S values (metal-bearing fluid signature), while more 
distal mineralisation acquires the negative signatures associated 
with bacteriogenic sulfide (see Chapter 4). Metal-sulfates 
(dominated by barite -  see Fig 5-5) retain the 534S value of 
Lower Carboniferous seawater (~+20 534S per mil.) throughout.
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Figure 5-5 Exposure of barite mineralisation in 5 Lens (white lathes), (834S = 
~+20 per mil., Anderson, 1990; Anderson et al., 1998), surrounded by massive 
sphalerite mineralisation. (Locality = 1075 2636F). Width of view = I metre.
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Figure 5-6 The development of the Boulder Conglomerate (late 
Chadian) above the Erosion Surface. Deposition of argillaceous units 
(e.g. the Tobercolleen Mudstone) within the grabens ultimately dams 

the downdraught part of the convection cell, leading in turn to the 
ultimate cessation of mineralising activity in the horsts.

1 = Much reduced flow of metal-bearing solutions from depth as the 
feed waters to the Cell are gradually diminished.

2 = Developments of minor replacive mineralisation (pyrite-rich), 
within the Boulder Conglomerate (Conglomerate Group Ore), (Ford, 
1996), proximal to feeder faults.

3 = Possible development of exhalites (pyrite-rich) on the late 
Chadian/early Arundian sea-floor (See Figs. 5-7 to 5-10, and 5-12 to 
5-14).
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Figure 5-7 Surficial depositional processes of sulfides within the Conglomerate 
Group Ore? Pyrite rich debris flow within the Conglomerate Group Ore. Note the 
inclusion of carbonate and shale rip-up clasts. Ten pence coin for scale (NO 1604

@ 482.1m)

Figure 5-8 Exhalative processes? Shale-sufide-carbonate rhythmites (NO 10627 @ 
430 metres). Two pence coin for scale.
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Figure 5-9 Exhalative processes? Close-up of Shale-Sulfide-carbonate rhythmites 
(NO 1062 @ 428 metres) Two pence coin for scale.

Figure 5-10 Exhalative processes? Flazer-bedded pyrite-shales within the 
Conglomerate Group Ore (NO 1627 @415 metres). Two pence coin for scale.
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Figure 5-11 Early Arundian times. The deposition of the basal unit 
of the Upper Dark Limestones (Thinly Bedded Unit) buries the horst 

and graben topography of the late Chadian, thereby finally sealing 
off local feeders to the convective cell. However, more distal 

regionally major Caledonoid structures may continue to feed the 
system before they too are blocked.

1 = Much reduced upward flow of metal-bearing fluids (due to 
reduced flow in the down-draught zones) continues to feed minor 
mineralising activity within the Pale Beds and the Boulder 
Conglomerate.

2 = Occasionally iron-rich fluids seep onto the seafloor proximal to 
areas of underlying Conglomerate Group Ore during the earliest 
deposition of the Thinly Bedded Unit, leading to pyrite-rich bedding 
parallel mineralisation within the lowermost parts of this lithology 
(see Figs. 5-12 to 5-14).
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Figure 5-12 Exhalative processes? Bedding parallel, framboidal pyrite-rich 
mineralisation within the basal parts of the Thinly Bedded Unit containing shale 

rip-up clasts. Note also the suggestion of an infilled depression. (Locality = 14355
221) Width of view = 4 metres.

Figure 5-13 Exhalative processes? Distorted (roll-over structure) bedding parallel 
pyrite mineralisation in the base of the Thinly Bedded Unit. (Locality = 1465

202). Pen-knife for scale.
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Figure 5-14 Exhalative processes? Detail of bedding parallel pyrite mineralisation 
within the base of the Thinly Bedded Unit (Locality = 1465 202). Note pyrite rip- 

up clasts within shale members, and bedding within the pyrite truncated by the 
base of the mudstone. Pen-knife for scale.
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6. Conclusions.

Arguments in favour of a deep-seated Caledonoid control of the mineralisation at 

Navan are reinforced by this study. Moreover, the conclusion that metal-bearing 

fluids flowed through the basement is consistent with the findings of Anderson et 

al. (1989) that diagenetic sulfides within the basement lithologys were the source 

of positive 834S values associated with the metal-bearing fluid. Such a deep 

hydrological system is compatible with fluid inclusion, isotopic, and halogen 

studies conducted elsewhere in the Irish orefield (Everett et al., 1999; Gleeson et 

al., 1999).

Detailed observations of the relationships between early to mid Lower 

Carboniferous extensional faulting, putative Upper Carboniferous faulting 

representative of a compressional tectonic regime, and sulfide mineralisation has 

revealed that the mineralising event occurred concurrently with active extensional 

faulting during the early to mid Lower Carboniferous.

A distinct correlation between positive 834S values and high lead enrichments 

associated with early to mid Lower Carboniferous faults has also been revealed, 

and indicates that the minor, steeply dipping normal NNE, NE and ENE trending 

faults at Navan acted as foci for the metal-bearing solutions. The presence of 

negative 834S values associated with pyrite samples close to these fractures shows 

that, at times, the locally derived bacteriogenic-sulfide bearing fluids also 

circulated within the faults. Micro-textural observations indicate that active 

faulting took place during the earliest part of the mineralising process, which may 

also have allowed pulses of the hydrothermal, deep-seated metal-bearing fluid to 

displace the locally derived bacteriogenic sulfur-bearing fluid. No evidence has
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been discerned on the minor NNE, NE and ENE faults observed during this study, 

which anyway are confined to early to mid Lower Carboniferous lithologys, to 

demonstrate movements during late Carboniferous tectonism. Therefore, placing 

metallogenesis at Navan early in the rifting history of the Irish Midlands, i.e. 

during the early to mid Lower Carboniferous, is forced by the observations made 

during this study. This conclusion is consistent both with the arguments of Ashton 

et al. (1992), and Anderson et al. (1998), on Navan, as well as with observations 

elsewhere in the Irish Orefield, notably the Silvermines and Tynagh deposits (e.g. 

Taylor and Andrew 1978; Boyce et al.1983b, 1999; Banks 1985).

There is now overwhelming evidence that metallogenesis in the Irish Midlands 

took place during the early to mid Lower Carboniferous. It involved syndiagenetic 

replacement and in places exhalative deposition. For example, the discovery of 

fossilised vent structures (Larter et al., 1981) and fauna (Boyce et al., 1983b; 

Banks, 1985; and Boyce et al., 1999), demonstrates seafloor exhalative activity at 

both Silvermines and Tynagh around 355Ma. Consistent with these findings is the 

fact that about 98 percent of the total tonnage of base metals (economic and non­

economic) within the Irish ore-field occurs within early to mid Lower 

Carboniferous strata (and see Andrew 1986; Johnson 1999), a pattern of 

significance in mineral exploration. Only about 2 percent of the mineralisation 

occurs within supra-Chadian lithologys. These are tightly clustered into the 

Kildare District in the eastern Irish Midlands (Hitzman and Beaty, 1996). The 

results reported here reinforce recognition within the Irish base-metal ore-field of 

the significance of bacteriogenic sulfide to overall tonnage (Boast et al., 1981; 

Boyce et al., 1983b; Anderson et al., 1998; Fallick et al. 2001.). When this 

evidence is combined with the findings of this study (active extensional faulting
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during mineralisation), it becomes apparent that the major metallogenic event in 

the Irish Midlands occurred between 355Ma and 345Ma.

Of the current published models for the genesis of the Irish base metal ore-field 

only that of Russell (1978; 1986), invoking circulation of seawater derived metal- 

bearing fluids through the Lower Palaeozoic basement, at temperatures >200°C, 

leading to epigenetic and syndiagenetic replacive mineralisation, and in some 

deposits, syngenetic exhalation onto the sea floor, is consistent with the findings 

of this thesis: that is, mineralisation took place during active faulting, including 

the reactivation of basement structures, in the early to mid Lower Carboniferous.
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8. APPENDICES

APPENDIX 1
Table of structural data presented in Chapter 2.

North east trending mineralised fractures (sulfide rich).

1. 015/85S, at junction of 1330 13LHWA/1330 13LHXR (see p67 and fig. 2-2).
2. 010/78S, at junction of 1330 13LHWA/1330 13LHXR (see p67 and fig. 2-2).

North west trending mineralised fractures (sulfide rich).

1. 310/80S, at junction of 1330 13LHWA/1330 13LHXR (see p67 and fig. 2-2).
2. 305/75S, at junction of 1330 13LHWA/1330 13LHXR (see p67 and fig. 2-2).
3. 345/68S, at junction of 1330 13LHWA/1330 13LHXR (see p67 and fig. 2-2).
4. 350/75S, at far west of 1330 13LHWA (see p67 and fig. 2-2).
5. 365/85S, at far west of 1330 13LHWA (see p67 and fig. 2-2).

East, north east trending mineralised fractures (carbonate rich).

1. 078/75S, at far west of 1330 13LHWA (see p67 and fig. 2-2).
2. 080/80S, at far west of 1330 13LHWA (see p67 and fig. 2-2).
3. 080/75S, at far west of 1330 13LHWA (see p67 and fig. 2-2).
4. 075/78S, at far west of 1330 13LHWA (see p67 and fig. 2-2).
5. 075/75S, at far west of 1330 13LHWA (see p67 and fig. 2-2).
6. 077/80S, at far west of 1330 13LHWA (see p67 and fig. 2-2).

B Fault system.

B Fault.

1. 267/45S, at far west of 1330 13LHWA (see p68 and fig. 2-2).

B Fault branches.

1. 245/50S, 1330 13LHXL (see p68 and fig. 2-2).
2. 250/45S, 1330 13LHXL (see p68 and fig. 2-2).
3. 252/50S, 1330 13LHXL (see p68 and fig. 2-2).
4. 248/32S, 1330 13LHXR (see p68 and fig. 2-2).
5. 240/40S, 1330 13LHWA (see p68 and fig. 2-2).
6. 238/40S, 1330 13LHWA (see p68 and fig. 2-2).
7. 245/55S, 1330 13LHWA (see p68 and fig. 2-2).
8. 230/70S, 1330 13LHWA (see p68 and fig. 2-2).
9. 230/60S, 1330 13LHWA (see p68 and fig. 2-2).
10. 228/50S, 1330 13LHWA (see p68 and fig. 2-2).

203



APPENDIX 1 (cont.)

Table of structural data presented in Chapter 2.

B Fault accommodation structure.

1. 069/44N, 1330 13LHXR (see p68 and fig. 2-2).

Dextral reverse strike slip assemblage.

1. 260/90, 1330 13LHXL (see p69 and fig. 2-2).
2. 250/88N, 1330 13HXR (see p69 and fig. 2-2).
3. 255/90, 1330 13LHWA (see p69 and fig. 2-2).
4. 255/90, 1330 13LHWA (see p69 and fig. 2-2).
5. 258/90, 1330 13LHWA (see p69 and fig. 2-2).
6. 260/90, 1330 13LHWA (see p69 and fig. 2-2).
7. 267/85, 1330 13LHWA (see p69 and fig. 2-2).
8. 256/90, 1330 13LHWA (see p69 and fig. 2-2).

Slicken-crysts in dextral reverse strike slip assemblage.

1. 076/20, 1330 13LHWA (see p69 and fig. 2-2).
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APPENDIX 2

Table of sulfur isotope data from the profile (see Chapter 4).

Sample # Mineral Texture 5 34S c d t(% q ) Distance from fault Figure
U 12477-1 Sp Granular +6.8
U 12477-3 Ma B laded +16.7
U 12477-4 Sp Granular +5.6
U 12477-5 Ma B laded +17.5
U12473-1 Ga Cubic -5.9
U12473-3 Sp Honeyblende -8.0
U12473-4 Ga Cubic -9.4
U 12473-5 Py Framboidal -18.8
U 12473-6 Sp Granular +2.2
U12473-7 Py Framboidal -16.3
U12473-9 Sp Granular +4.3
U12473-11 Py Framboidal -14.4
U 12472-2 Sp Core‘Banded -11.4
U 12472-8 Sp Core‘Granular -1.4
U 12472-12 Sp Core‘Honeyblende -4.4
U12472-16 Sp Core‘Honeyblende-17.4
U 12472-22 Sp Core‘Honeyblende -5.0
U 12472-3 Py o-g2Collomorphic -31.4
U 12472-7 Py o-g2Collomorphic -29.5
U 12472-11 Py o-g2Collomorphic -29.2
U 12472-15 Py o-g2Collomorphic-25.6
U12472-1 Ga o-g3Collomorphic-10.9
U12472-6 Ga o-g3Collomorphic-19.0
U 12472-10 Ga o-g3Collomorphic-20.4
U 12472-23 Ga o-g3Collomorphic-18.6
U 12472-4 Sp Late4Honeyblende-19.8
U 12472-5 Sp Late4Honeyblende-10.0
U12472-9 Sp Late4Honeyblende-17.6
U 12474-13 Sp Late4Honeyblende-14.2
U 12472-17 Sp Late4Honeyblende-17.6
U 12472-18 Sp Late4Honey blende-7.7
U 12472-20 Sp Late4Honeyblende-22.1
U 12472-19 Sp Late4Honeyblende-16.0
U 12472-24 Sp Late4Honeyblende-13.9
U12493-1 Ga Cubic 11.6
U 12493-2 Ga Cubic 9.6
U 12493-3 Ga Cubic 14.8
U 12493-4 Sp Honeyblende 14.6
U 12493-5 Sp Honeyblende 11.4
U 12493-6 Ga Cubic 9.5
U 12493-7 Sp Honeyblende 14.5
U 12493-8 Py Framboidal 29.9
U 12493-9 Sp Honeyblende 12.4
U12478-1 Py Framboidal 25.1
U 12478-2 Py Framboidal 25.4
U 12478-3 Sp Honeyblende 10.4
U 12478-4 Py Framboidal 25.2
U 12478-5 Sp Honeyblende 9.0
U 12473-12 Sp Granular +6.5
U 12484-1 Ga Cubic 9.5
U 12484-2 Py Collomorphic 29.2
U 12484-3 Py Collomorphic 10.0
U12483-1 Py Framboidal 26.6

~\

<lm  into footwall ^  
d m  into footwall
d m  into footwall Figure 4-7
d m  into footwall 
l-2m into footwall 
l-2m into footwall 
l-2m into footwall 
l-2m into footwall
l-2m into footwall Figure 4-8
l-2m into footwall 
l-2m into footwall 
1-2m into footwall j  
1 to 2m into hanging wall A 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall vFigure 4-9 
1 to 2m into hanging wall /
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall 
1 to 2m into hanging wall J  
5m into footwall ^
5m into footwall 
5m into footwall 
5m into footwall
5m into footwall a  Figure 4-10 
5m into footwall 
5m into footwall 
5m into footwall 
5m into footwall 
15m into hanging wall 
15m into hanging wall 
15m into hanging wall Figure 4-11 
15m into hanging wall 
15m into hanging wall 
1 -2m into footwall 
10m into footwall 
10m into footwall 
10m into footwall 
10m into footwall

J
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APPENDIX 2(Cont.)
Table of sulfur isotope data from the profile (see Chapter 4).

Sample # Mineral Texture §34SCdt(%o) Distance from fault Figure

U12503-3 Py Framboidal -33.2 10m into footwall
U 12487-1 Ma Bladed +15.7 2-3m into footwall
U 12487-2 Sp Granular +4.0 2-3 m into footwall
U 12487-3 Sp Granular +8.7 2-3 m into footwall
U 12487-4 Sp Granular +7.1 2-3 m into footwall
U 12487-5 Ma Bladed +12.7 2-3m into footwall
U12487-6 Ma Bladed +16.3 2-3m into footwall
U12487-7 Sp Granular +6.7 2-3 m into footwall
U12487-8 Sp Granular +1.6 2-3m into footwall
U 12507-1 Py Framboidal -9.4 2-3m into footwall
U12507-2 Py Framboidal -18.2 2-3m into footwall
U 12507-4 Py Framboidal -14.2 2-3m into footwall
U 12507-5 Ma Bladed +9.6 2-3 m into footwall
U 12474-2 Sp Granular -2.62 l-2m into footwall
U 12474-3 Ga Bladed +15.8 l-2m into footwall
U 12474-5 Ga Bladed +9.3 l-2m into footwall
U 12474-6 Sp Granular +7.9 l-2m into footwall
U 12474-7 Py Framboidal -24.5 l-2m into footwall
U12491-1 Sp Granular +9.9 <lm  into footwall
U12491-2 Ma Bladed +16.8 <lm  into footwall
U 12494-1 Sp Granular +0.8 d m  into footwall
U12498-1 Py Framboidal -32.3 d m  into footwalk
U 12498-2 Py Framboidal -28.4 d m  into footwall
U 12498-3 Py Framboidal -34.3 d m  into footwall
U 12498-4 Py Framboidal -35.1 d m  into footwall * Figure 4-12
U12498-5 Py Framboidal -35.4 d m  into footwall
U 12498-6 Py Framboidal -35.3 d m  into footwall,
U12505-1 Ma Bladed +14.8 d m  into footwall
U 12505-2 Sp Granular +4.5 d m  into footwall
U12505-3 Ma Bladed +11.9 d m  into footwall
U 12504-1 Ga Cubic -6.3 1 to 2m into hanging wall
U 12504-2 Sp Honeyblende -16.3 1 to 2m into hanging wall
U12510-1 Ga Cubic -26.4 1 to 2m into hanging wall
U12510-2 Sp Honeyblende -21.3 1 to 2m into hanging wall
U 12496-1 Ga Cubic -9.2 3m into hanging wall
U 12496-2 Py Framboidal -20.2 3m into hanging wall
U 12496-3 Sp Honeyblende -9.7 3m into hanging wall
U 12499-2 Py Framboidal -32.0 10m into hanging wall
U 12499-3 Sp Honeyblende -19.5 10m into hanging wall

1 Sample taken from core of clast exhibited in Fig. 4-9
2 Sample taken from Py overgrowth of clast as exhibited in Fig. 4-9.
3 Sample taken from Ga overgrowth of Py as shown in Fig. 4-9.
4 Sample taken from coarse grained Sp shown in matrix in Fig. 4-9.
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APPENDIX 3

Table of laboratory standard sulfur isotope data (see Chapter 4).

Sample Mineral Line No. 8^S cdtC&o)
Actual

S^ScDT^c)
Measured

Disparity
(Meas-Act)

Comment

CP-l CuFeS2 SA5507 -4.6 -4.9 -0.3
CP-l CuFeS2 SA5518 -4.6 -4.4 0.2
CP-1 CuFeS2 SA5635 -4.6 -4.4 0.2
CP-l CuFeS2 SA5653 -4.6 -4.7 -0.1
CP-l CuFeS2 SA5665 -4.6 -4.8 -0.2
CP-l CuFeS2 SA5667 -4.6 -4.7 -0.1
CP-l CuFeS2 SA5676 -4.6 -4.6 0.0
CP-l CuFeS2 SA6038 -4.6 -5.2 -0.6 Low Yield

CP-l Mean (±la) = -4.7 ± 0.3%o, without Low Yield sample: -4.6 ± 0.2%o
IAEA-S-3 Ag2S SA5514 -31 -30.9 0.1
IAEA-S-3 Ag2S SA5662 -31 -30.4 0.6 Outlier of group of 3
IAEA-S-3 Ag2S SA5663 -31 -30.9 0.1
IAEA-S-3 Ag2S SA5664 -31 -31.1 -0.1
IAEA-S-3 Ag2S SA5673 -31 -30.9 0.1
IAEA-S-3 Ag2S SA5696 -31 -31.1 -0.1
IAEA-S-3 Ag2S SA6024 -31 -31.7 -0.7 Extreme result

IAEA-S-3 Mean (±la) = -31 ± 0.4%©, without outlier and 
extreme result: -31 ± 0.1 %c

NBS 123 ZnS SA5499 17.1 17.2 0.1
NBS 123 ZnS SA5504 17.1 15.0 -2.1 Very low yield
NBS 123 ZnS SA5645 17.1 17.2 0.1
NBS 123 ZnS SA5658 17.1 17.1 0.0
NBS 123 ZnS SA5666 17.1 17.1 0.0
NBS 123 ZnS SA6031 17.1 18.5 1.4 Preceding line 

extraction highly 
contaminated, 
therefore result 
suspect.

NBS 123 Mean (±1g) = 17.1 ± 0.1 %o, without v. Low Yield 
and contaminated samples_______________________________
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