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Abstract

This thesis has three main parts; Artificial Neural Networks, the Active Shape 

M odels, and an illlustration of combining them. Computer Calculations are in the 

M athem atica Language. The first part is between Chapter 1 and 4. Neural Networks 

can be used in many areas as shown in some examples in Chapter 1. At the beginning, 

some simple nets are used to solve logic functions (AND, OR). More details about 

AND, OR problems are in Chapter 2. This chapter is concentrated on pattern 

classification; Hebb Net and Perceptron. In Example 2.8, the net gave the output of 

Character E as both E and K. Therefore, this problem is solved by using a competitive 

net in Chapter 3 to select the winner. Many examples are shown in this chapter 

because different topological structures of a Kohonen net give different results. In 

addition, a Kohonen net can be applied to solve a Traveling Salesman Problem. 

Chapter 4 gives the details of Backpropagation Neural Nets. The output propagates 

the error back to the previous hidden layer, it then calculates the error, and updates the 

weights. The backpropagation net can be used to compress data as well. In Chapter 5, 

the general idea of Active Shape Models is given. This method can be used to 

generate new shapes, which are similar to the original shapes yet of good variety. The 

selected shapes are hands and faces. Finally, this method is used in Chapter 6 where 

we compare Learning Vector Quantization, Kohonen nets and human observation, for 

grouping hand and face shapes.
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PART 1 ARTIFICIAL NEURAL NETWORKS 

CHAPTER 1 Introduction

In the past many researchers have tried to understand the functions of the brain. For 

the last sixty years, they have been trying to imitate the brain’s strengths to create 

models and use them for solving certain problems. These models, attempting to mimic 

the biological principles of the central nervous system, are called Artificial Neural 

Networks. A general goal of neural network models is that they should be able to 

learn, and adapt their action with training or experience. In fact the aim of using a 

neural network is to produce the “right” output when presented with an input.

M cCulloch and Pitts published the first mathematical model of the biological neuron 

in the 1940s [McClulloch&Pitts, 1943]. They endeavored to understand the action of 

neural networks in terms of logic. Research in neural networks stopped in the 1960s. 

During these few years, Kohonen [Kohonen, 1982] had continued working on neural 

networks and created his own patterns. In the 1970s there was an exclusive-or (XOR) 

problem, which researchers could not solve using a single layer net [Rumelhart, 

Hinton&W illiams, 1986a, 1986b; M cClelland & Rumelhart, 1988]. Eventually, they 

could solve this problem by using the back-propagation net.

The present thesis provides a survey of some important types of Neural Network (Part 

1), and an illustrative project that compares human and machine classification of hand 

and face shapes. In Part 1, Chapter 2, we see how even the simple perceptron can be 

used in pattern classification. In Chapter 3 we study Neural Networks based on 

competition, where we introduce the Kohonen self-organizing nets, and Learning 

Vector Quantization (LVQ). Our applications include the famous Travelling Salesman 

Problem. Chapter 4 considers Back Propagation nets, in which the difference between
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desired and actual output generates a correction backwards through the net. W e show 

how this type can be used in Data Compression.

In Part 2, we introduce principal component analysis and thence the statistical shape 

generation methods of [Cootes, 1995]. W e use this to generate from original data of 

hands and faces, a variety of hand configurations and facial expressions. Then we 

apply Kohonen and LVQ nets to group these shapes. Finally, we compare the results 

and discuss which kind of net agrees better with human intuition in our (limited) data. 

A quantitative measure we propose gives Kohonen nets the first place.

1.1 Neurons

Each neuron is composed of dendrites, the cell body (soma), and an axon. Dendrites 

receive signals from other neurons and pass these signals into the soma as an 

accumulation (sometimes reduction) of potential. W hen this reaches a certain 

threshold the cell “fires”, meaning that a wave of potential reversal (and recovery) 

passes out along the axon, a long fiber extending from the cell body (Figure 1.1). 

Meanwhile the soma potential falls back, before starting to rise again as new signals 

arrive. The result is a varying rate of firing.

The axon ends with branches, each of which leads to a synaptic gap (Figure 1.2) 

which passes on a modified signal to a dendrite of another cell. A neuron typically has 

many dendrites but only a single axon.

^  >  . ,  ' , \
—^ x o r >  I v o m  Neuv-oV*

Figure 1.1 A biological neuron has three types of components (concerned with an artificial neuron): its 

soma, dendrites, and axon.
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Figure 1.2 How an Axon transfers a signal to a dendrite via the synaptic gap. Hermann Von Helmholtz 

(1821-1894) found that this signal is not the same as electricity because it is very slow. The impulse 

can move because of an electrochemical reaction, causing a potential difference to travel along the 

fiber.

1.2 N eural N etw orks

N eural N etw orks, or A rtificial N eural Netw orks (ANNs), are derived from the idea 

of biological neural networks. This means that, for example corresponding to cells 

dendrites and axons we have units, input connections, and output connections 

respectively.

An activation function  plays a similar role to the soma of a cell. It takes the sum of 

weighted input values and computes a new value- the activation- which gives the 

unit’s output. To each connection is associated a quantity called its weight which, 

analogously to the synaptic gap, is used to modify the signal carried by the connection. 

More correspondences are given in Table 1.1 below. From here there are broadly two 

ways to proceed by analogy. The first, and earliest understood method, is to consider a 

single firing and focus on a Yes/No response of a cell to input at a given moment. In 

this case the activation function is a step function. This is the nature of Chapter 2.

The second alternative is to take as output an analogy to the rate of firing, with 

activation function of sigmoid type (see section 1.5). This applies in Chapter 3 

onwards.
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Table 1.1 The ANN features correspond to the biology o f neurons.

Biology ANN Features
Cell
Dendrite 
Synaptic Gap 
Soma 
Firing 
Axon

Unit
Input Connection 
Weights
Sums weighted inputs 
Applying the activation function 
Output Connection

However, the use of neural networks emphasizes their computational power, rather 

than their ability to model biological neural systems [7]. W e may say that a neural 

network is a parallel, distributed information processing structure consisting of 

processing elements interconnected via unidirectional signal channels (connections). 

Each processing element has a single output connection that branches (“fans out”) into 

as many collateral connections as desired.

Architecture

The architecture of an ANN is the pattern of connections between units. There are 

three kinds of units: Input Units, Output Units, and Hidden Units. Input Units are 

units which receive signals from outside. They transm it their signals to all connected 

units. Output Units can be interpreted as giving the response of the net. Hidden Units 

are units that are neither input units nor output units. Many problems can be solved 

only with their aid. Usually the units are divided into a list of subsets called layers, 

with the meaning that a unit is connected only to units in other layers. Prime examples 

of this are the input layer and output layer. In the feedforward  type of net a unit 

receives input from units in previous layer (if any) and sends output only to the next 

layer (if any). There are three types of Architectures defined by layers used: Single- 

Layer net, Competitive layer net, and Multilayer net, which shall be illustrated in 

turn.

The single-layer neural net

This is a neural net with no hidden units; or equivalently, a neural net with only one 

layer of weight connections. Here we may establish some typical notation for units 

and layers. W e shall label the connection from unit Xj to Unit Yj with its weight Wy in 

Figure 1.3, whereas the Xj—>Yj weight in Figure 1.4 is denoted by w(. Denoting the
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output from a unit X* by jc,- and the input to unit Y by y_in, we may write

y_in = X w,y x, = w .j. x, (Figure 1.3)

y_irij = Wj xj + w2 x2 + w3 x3, (Figure 1.4)

where w.j is the j ’th column of the weight matrix [w,J and x = (xj, x2, x3,..., x„).

Wji

Wj,

Input Units One layer of weights Output units
Figure 1.3 A general single-layer neural net. Only the forward direction is possible, because the X ; are 

input units.

X
Wj

0
Input Units Output Unit

Figure 1.4 A single layer net with three input units jc„ three weights wh and one output unit.

The competitive neural net

This is a neural net (or subnet) in which a group of neurons competes for the right to 

become active (have a non-zero activation). In the most extreme (and m ost common)
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example, the activation of the node with the largest net input is set equal to 1 and the 

activation of all other nodes are set equal to 0; this is often called “winner-takes-all”.

Fixed-weight competitive nets

Fixed weight nets are neural nets in which the weights do not change when the 

program runs. MAXNET is one type of fixed weight competitive nets. M ore detail is in 

Chapter 3.

The multilayer net

A multilayer net is a net which has at least one layer of hidden units. The net has at 

least two layers of weight connection: one between input units and hidden units and 

another between hidden units and output units (Figure 1.5). The number of layers in 

the net means the number of layers of weights.

'jm

Input Units Hidden Units Output Units

Figure 1.5 A multilayer neural net. Here the connections from Xj to Zj and Zj to Yk have respective 
weights Vy and wjk.

In each layer, units normally have the same activation function (see later) and pattern 

o f weight connections. In this thesis, all neural networks are fully interconnected, in 

the sense that every unit of a given layer is connected to every unit of any immediately 

preceding or following layer.
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1.3 Training

Training is a method of determining the weights on the connections, also called the 

learning algorithm. In this thesis, we consider two kinds of training method - known 

as Supervised training and Unsupervised training.

Supervised training

Supervised training employs a sequence of training vectors corresponding to the target 

output. It uses a learning algorithm to improve the net until this algorithm is 

convergent. A pattern classification uses supervised training. There are many models 

using supervised training, e.g., the Hebb rule (the delta rule), Backpropagation (the 

generalized delta rule), and Learning Vector Quantization (or LVQ) as we will 

explain later.

Unsupervised training

Nets with this type of training are said to be self-organizing. The important thing is 

trying to cluster the similar patterns to the same groups. For example, each character 

of a, b, and c has special fonts that need a self-organizing map (SOM) to cluster the 

same character (not the same font) to the same group. Kohonen [7] discovered this 

model.

1.4 Activation Functions

W e recall that the activation function f  of a neural unit is a function that transforms 

the sum of weighted inputs y_in = Xi wpt, into the unit’s activation (= output). This 

thesis considers three types of activation function- an identity function, step functions 

and sigmoid functions.

1. An identity function- It has the form f(x) = x  for all x. (1.1)

See Figure 1.6.
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f(x)

Figure 1.6 Identity function.

2. The step function  (Figure 1.7). There are two kinds of step function (or threshold 

function), namely the binary step function and the bipolar step function. The binary 

step function has the form (for some threshold 6)
(  1 If x  > e

f(x) = J
1 ^ 0  l f * < 0 ,  (1.2)

(The bipolar step function has some form with 1,0 replaced respectively by 1, -1). 

Then we can replace the threshold statement Xi wpt,- >6 by the activation statement

f(X i WjXi )  =  1 .

Many single-layer nets use step functions as activation functions.

f(x)
f(x)

1 - • -----------------------►

f
0

1 -

-1

F igure 1.7 Binary step function and bipolar step function, respectively.
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3. The sigmoid function- This is a real function giving an S-shaped curve lying 

between two lines. It is used in backpropagation nets (e.g. multi-layered perceptrons) 

where we use the gradient of the error function of each iteration step to apply the 

method of gradient descent (see Chapter 4). We would like the sigmoid function to be 

continuous, differentiable, monotonical non-decreasing. Moreover, it is expected that 

the activation should converge to finite maximum and minimum values. M ore details 

about the backpropagation net are given in Chapter 4.

Binary sigmoid The form of the binary sigmoid is

f(x) = 1 / (1+ exp(-ox), (cr> 0) (1.3)

and therefore satisfies f  7(jc) = af(jc)[l-f(x)]. (1.4)

The case cr =1 is called the logistic function and as a -increases, f(jc) approaches the 

binary step function, as shown in Figure 1.8 below.

0.6

<7 =  1 (J =  2

Figure 1.8 This figure shows the effect o f <7 when o=  1, 2, 3, respectively a  = 3 is the most like a step 

function.

Bipolar sigmoid The form of the bipolar sigmoid is

g(x) = 2f(x)-l = 2/[l+exp(-cxc)] - 1, (1.5)

and so, g(x)= a/2 [ 1 +g(*)] [ 1 -g(x)]. (1.6)

Because the hyperbolic tangent is

tanh(x) = (ex - e 'x) / (ex + e"x), (1.7)

Equation (1.5) may be written

g(x)= tanh (ax/2). (1.8)

If a  = 2 then this gives simply the hyperbolic tangent (tanh x). Also this sigmoid 

function approaches the bipolar step function as a  increases (Figure 1.9).
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g(x)

0.5

Figure 1.9 Bipolar sigmoid.

Note As <7 is increases, the graph becomes more like a step function as mentioned 

earlier (see Figure 1.8). Notice that Equation (1.10) transforms the range (0,1) of f(jc) 

into the range (-1,1) of a bipolar sigmoid. The binary and bipolar sigmoid functions 

are related respectively to corresponding step functions.

The meaning of Epoch is one presentation of each training pattern.

1.5 Some more History

W arren M cCulloch and W alter Pitts [7] started to use the first neural networks around 

1943. They found that if they used the simple logic function (AND/OR function) with 

many simple units in neural systems, they could increase computational power. They 

thought of the idea that if an input is greater than the threshold, the response is 

positive. M ost of their works involved logic circuits. The name of this model is a 

M cCulloch-Pitts neuron.

Donald Hebb [Hebb, 1949] determined the first learning law for artificial neural 

networks- that the strength of the connection between two units should be increased if 

they fired at the same time (more details in [7]). W e study such nets in Chapter 2.

Johnson, Brown (1988), Anderson, and Rosenfield (1988) used ideas of W arren 

McCulloch and John von Neumann to improve the computer technology. Block, 

Minsky & Papert, and Frank Rosenblatt, found the really important model - the
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perceptron which is superior to the Hebbian net in its problem solving capability (see 

Chapter 2).

After 1960, Bernard W idrow and M arcian Hoff found the delta rule, which is 

similar to the perceptron learning except that the delta rule improves weights to 

decrease the difference between the net output and the desired output by using the 

smallest mean squared error.

Teuvo Kohonen [Kohonen, 1982] developed self-organizing maps by using 

topological structures (linear array, rectangular grid, and hexagonal grid) for 

cluster units. Around 1988, he succeeded in solving the Traveling Salesman 

Problem by his method as mentioned earlier (see Chapter 3).

In the 1970s the development of neural networks was very slow because single 

layer perceptrons could not solve the XOR problem and because of the lack of a 

training method for multilayer nets. David Parker (1985) and LeCun (1986) then 

found a method, and when Parker joined with David Rumelhart, James 

M cClelland published this idea, called backpropagation (see Chapter 4) 

[Rumelhart, Hinton, & W illiams, 1986a, 1986b; M cClelland & Rumelhart, 1988].

1.6 More on Applications

Neural networks can apply in many areas. One important area is that of pattern 

recognition where nets are used to recognize characters. M ost approaches to pattern 

recognition attempt to copy the way a human recognizes things. For example, in 

Character Recognition (Chapter 3), we represent a set of alphabets and allow a net to 

classify them. Any misclassifications are corrected (supervised training). It learns 

well and gives good results. The backpropagation net (Chapter 4) can be used as a tool 

for recognizing, for example, handwritten zip codes.

Speech production means to read English with the correct pronunciation from a 

text file. One production which does this is NETtalk. W e train it with
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approximately 1,000 English words after which it can recognize words, and has 

only few errors.

Speech recognition Kohonen developed one program called “phonetic typewriter” 

by using a self-organizing map. This is one application from speech recognition.

The topological structure is a rectangular grid or hexagonal grid. After training, it 

can often spell correctly.

Medical diagnosis Anderson developed one program called “Instant Physician”

[7]. It stores a huge number of medical records (e.g., symptoms, diagnosis, and 

treatment) and the input is a set of symptoms. After training, it can advise the best 

diagnosis and treatment.

Optical Character Recognition (OCR) is the process of converting bitmapped 

characters into a standard font set or text format. By using a scanner and OCR 

software, the computer can be taught how to read. The first step is the optical scan of 

the test using a standard desktop scanner. During this process, the test will be divided 

into millions of image points each of which can be assigned a grayscale or colour 

value. The resolution of the scanner is measured in dpi (dots per inch) and determines 

the number of points the page is divided into. The result of the scanning process is an 

image that can be printed or modified by using any image processing software. To 

transfer the image into the word processor as text, we use an OCR program to find the 

individual characters on the image and convert them into a text format [17]. An 

example is Quicktionary! English-Hebrew Translator (Figure 1.10). It is a hand-held, 

scanner with an integrated OCR module.

Figurel.10 Quicktionary, an English-Hebrew Translator.
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Machine Vision is very important for commercial aireas, also medical science. For 

example, a small robot arm needs to know where the objects are so it can move them 

correctly. Hardware requirements are a TV camera, a very fast computer, and so on.

1.7 Implementation

Our examples are implemented in the system M athem atica with all detailed coding 

listed in Appendix. In context, we specify algorithms in  the usual pseudocode.
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Chapter 2 Pattern Classification

This Chapter is concentrated on pattern classification- a type of pattern recognition. 

W e consider two methods of pattern classification: the H ebb’s rule and the 

Perceptron learning rule. Note that each set of characters, which represents the same 

letter, is called a class, for example, letters A, B, C, D, E, J, and K have an ‘A class’, a 

‘B class’, etc. W e give the neural network input pattern, and the net produces an 

output which specifies the class. It is a common practice that for each class X, we 

have an output unit which decides whether the input belongs to class X. The unit 

outputs are 1 for YES, otherwise 0 if we use binary and -1 if bipolar.

To begin with, we assume that we already know the correct classification of the 

training vectors: that is, we can say which training vectors belong to which class (or 

classes). First, we consider single output nets. Having done so, we can extend to 

consider many groups and classify whether each pattern belongs to those classes or 

not.

From threshold to bias. Instead of a threshold 6 we may equivalently use a so-called 

bias b = - 6, which acts as a weight when the input vector is extended to 

x = (1, xj, x2,..., xn). The argument is that:

Xw,- Xi> 6  <=> - 6 +  Xwj xi > 0 

<=> b + Xw, Xi > 0

<=> ( b ,  W j ,  W 2 , . . . ,  w n)  . ( 1 ,  X] ,  X2 , . . . ,  xn) > 0 .

This argument is similar for the case Xw, Xi < 0.

W e can include both bipolar and binary cases, saying that the activation now satisfies

f(net) = 1 if and only if net > 0, (2.1)

where net = b + Xi JCjW,-. (2.2)

Decision Boundary and Linear Separability.

W e discuss the case n -  2, for simplicity so that the input pairs (xj, x2) represent points 

of the plane. The key idea is that the points satisfying net > 0 and those satisfying 

net < 0 lie on opposite sides of the line
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(net = ) b + wj xi + W2 X2 = 0, (2.3)

which we call the decision boundary. The opposite sides are called decision regions. 

If a decision boundary exists for a classification problem, we say the problem  is 

linearly separable. W hat we need is an algorithm using training vectors, which will 

find such a boundary.

Note The equation b + S i = 0 can be interpreted as the equation o f a hyperplane 

in N-dimensional space, with variables and parameters w,. The sum is positive on 

one side and negative on the other.

2.1 Some Examples from LOGIC

The input {xj, X2 ) is a pair of logic values, with 1 for TRUE and 0 for FALSE. The 

output is similarly coded. The objective is to find a decision boundary which, for a 

given logic function, say AND, divides the True pairs (xj, xi) from the False.

Example 2.1 The AND function. Inputs and target outputs are shown below.

Input (xj, X2 ) Target output (t)

(1, 1) 1

( 1, 0) 0

(0, 1) 0

(0 ,0 ) 0

Clearly no line passing through any of the input points can separate the points. In

particular, a decision boundary cannot pass through the origin, and so must have a

nonzero constant in its equation. This implies that we require a nonzero bias. It is 

easily seen that one possible decision boundary is the line shown in Figure 2.1, 

namely X2 = -xj + 3/2 with (b,wj, W2 ) = (-372,1,1).

Figure 2.1 The decision boundary separates regions for Yes (+) response and No (0) responses.
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However, some logic functions, e.g. XOR as shown below, are not linearly separable.

Example 2.2 Binary inputs and target outputs with XOR function.

Input (xi, X2 ) Target output (t)

( 1, 1) 0

( 1, 0) 1

(0 , 1) 1

(0 , 0) 0

See Figure 2.2.

1 - + 0

0 +

1 ’
1

Figure 2.2 W e cannot find a separating line for the XOR problem.

It is clear from Figure 2.2 that no separating line exists, so this problem cannot be 

solved using a single-layer neural net. The proof is also given below.

Example 2.3 Proof that the XOR problem is not linearly separable.

Suppose there is a separating line W]Xi+ W2X2  + b = 0. Then without loss of generality 

we have the following table.

XOR input Target Output Inequality with bias b

(X], x2) 
1 1 < 0 Xi+ X2  + b < 0 (I)
1 0 > 0 xj + b > 0 m
0 1 > 0 X2  + b>  0 m
0 0 < 0 b<  0 (IV)

From (I) and (IV) 

From (II) and (III),

xj+ X2  + 2b < 0 

X]+ X2 + 2b > 0.
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This is a contradiction, so there is no separating line for a single layer neural net.

2.2 Hebb nets

Hebb described his theory by using the term connectionism. He hypothesized a basic 

mechanism called H ebb’s rule: “When an axon of cell A is near enough to excite a 

cell B and repeatedly or persistently takes part in firing it, some growth process or 

metabolic change takes place in one or both cells such that A ’s efficiency, as one of 

the cells firing B, is increased.” [Hebb, 1949]. By a Hebb net we shall mean a single 

layer net with a training algorithm that is a slight generalisation of H ebb’s original 

(Faussett, 1994).

Algorithm for Hebb net

Set input patterns (x) and target outputs (t) x = (1, x lt x2,..., xn).

Include bias in the weight vector w = (b, wi,W2 ,...,wn).

For each pair x, t do w = w + tx. (2.4)

W hen we use binary target outputs with the AND function (by using the algorithm 

above), weights do not change so the net cannot learn, when t = 0. W hen we use 

bipolar target outputs, the net can learn more. However, the net still may not find a 

decision boundary.

Example 2.4 W e compare the binary input patterns (1, xj, X2 ) with the bipolar input 

patterns for the AND function.

(1) The binary case

X t Aw w

(binary) 0 0 0

1 1 1 1 1 1 1 1 1 1

1 0 1 -1 -1 0-1 0 1 0

1 1 0 -1 -1-1 0 - 1 0  0

1 0 0 -1 - 1 0  0 -2 0 0

Although the net can learn more because (b,W],W2) has been changed, it does not 

separate Yes and No responses correctly (see Figure 2.3).
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X2

Figure 2.3 Decision boundary for the AND function by using binary inputs and bipolar target outputs. 

(2) The bipolar case

The solution is to use the bipolar representation for training patterns as well as targets. 

The result is:

X t Aw w

(bipolar) 0 0  0

1 1 1 1 1 1 1 11 1

1 1 -1 -1 -1 -1 1 0 0  2

1 -1 1 -1 -1 1 -1 -1 1 1

1 -1-1 -1 -1 1 1 -2 2 2

The separating line after the first step is X2  = -xj-l, but it does not separate the (+) and 

(-) responses (Figure 2.4). However, separation is achieved after the third step (Figure 

2.5).

Figure 2.4 The separating line for the first input pair does not separate Yes and No response for the 

AND function.
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*2

Figure 2.5 After only the third training step, we have a valid decision boundary. Therefore, on 
comparing the binary representation and bipolar representations, we find that the bipolar representation 
is more powerful than the binary representation.

2.3 The Perceptron and Pattern Recognition

The first person using the term perceptron was Frank Rosenblatt [10]. He used it for 

describing a number of different types of neural networks, including one inspired by 

the human retina, with unit types described as sensory, associator, and response. He 

also invented the Mark I  Perceptron which functioned as a character recognizer [11]. 

The perceptron learning rule is more powerful than H ebb’s rule because unlike the 

latter, it always finds correct weights when they exist. Minsky and Papert proved the 

perceptron learning rule convergence theorem in 1989.

Notation In the present context a perceptron is a single-layered net, utilizing the 

perceptron learning rule which we shall describe. W e begin with the case of a single 

output, which we shall distinguish when necessary as the simple perceptron. As the 

pattern classification, we use +1 for this output belongs to, and -1 for does not belong 

to the class. Note that the weight vector is to include bias.

The Perceptron Learning Rule

W e define a finite set of P input training vectors x(p), p  = 1, ..., P,

and each x(p) has an associated target value t(p), p  = 1, ..., P,

which is either +1 or -1 .

Set weight vector w = 0. Set the learning rate a  (0 < a  <1). Choose 6 > 0 and define
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f(y_in) =
1 if y_in > 9
0 if - 9 < y _ i n < 9

-1 if y_in< -9. (2.5)
Repeat (epoch)

For each training pair (x, t) do 

y -  f(w.x).

If y  then w = w + a  t x.

Until no change occurs during the last epoch.

Figure 2.6 The simple architecture represents n input units (or one training n-vector) and one output 
unit, plus a bias (case of w0 = b).

Note The variable y_in in Equation (2.5) is the same as net in Equation (2.2).

An epoch is a single presentation of each training pattern.

Remark (i) This algorithm can be rather slow to converge because changes to the 

weights are made only when errors occur, and correcting an error may result in fresh 

errors. However, the proof below shows that it will converge, and provides an upper 

limit on the number of iterative steps required.

(ii) Notice how this proof depends on the positive - negative symmetry gained 

by the choice of activation function (2.5).

(iii) The algorithm provides for a single output unit; if there are several, we 

simply apply the algorithm to each output unit in turn. Thus, we determine the weight 

matrix column by column.
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The Perceptron Learning Rule Convergence Theorem

“If there is a weight vector w* such that f(x(p). w*) = t(p) for all p, then for any 

starting vector w, the perceptron learning rule will converge to a weight vector (not 

necessarily unique and not necessarily w*) that gives the correct response for all 

training patterns, and it will do so in a finite number of steps.”

In other words, if the perceptron has a set of weights, which gives the desired 

responses to all input patterns, then the preceding adaptation rule will give a set of 

weights that produces the desired responses within a finite number of iterations. This 

set of solution weights is not unique. The perceptron is trying to find the straight line 

(or hyperplane in general) that separates classes.

Proof The input patterns are assumed to come from a space which has two classes; 

F+ and F \ where

F+ = {x such that the target value is +1}

and

F* = {x such that the target value is -1}.

W e define a new training set:

F = F+ u  -F\

where

- F" = {- x such that x is in F'}.

W e assume, without loss of generality, that 6 = 0 and a  = 1 in the proof. The 

existence of a weight vector w* for which

x . w* > 0 if x is in F+ (I)

and

x . w* < 0 if x is in F \ (II)

is equivalent to the existence of w* such that

x . w* > 0 if x is in F (because x . w* < 0 implies (-x ). w* > 0),

which we use instead of (I) and (II). Thus the new training set has all target values 

+ 1. Seen from this new viewpoint, the weights are updated as follows. If the response 

of the net is incorrect for a training input x, we take
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w(new) = w(old) + x.

W e study the sequence of input training vectors for which a weight change occurs and 

must show that this sequence is finite. Let the initial weights be w(0), and the first 

new weights be w (l). If x(0) is the first training vector for which an error has 

occurred, then we update w(0) by using

w (l)  = w(0) + x(0), where x(0).w(0) < 0.

If the error occurs again, then we update

w(2) = w (l)  + x (l), where x (l) .w (l)  < 0.

The vector x ( l)  may be the same as x(0) if no errors have occurred for any other 
training vectors. W e assume that at any stage k the weights are changed if and only if 
the current weights fail to produce the correct (positive) response for the current input 
vector, i.e., if x (k-l).w (k -l) < 0. W e have:

w(k) = w(0) + x(0) + x (l)  + ... + x(k-l).

W e have to show that k cannot be arbitrarily large. Let w* be a weight vector such that 
x . w* > 0 for all training vectors in F. Let m = min{x. w }, where the m inim um  is 
taken over all training vectors x in F. Then

w(k). w* = [w(0) + x(0) + x ( l)  + ... + x(k-l)]. w* > w(0). w* + km

because x(i). w* > m for each i, 1 < i < P. For any vectors a  and b we use the Cauchy- 

Schwartz inequality

(a . b )2 < llall2 llbll2,

or, equivalently

Hall2 > (a . b)2 /  llbll2 (for llbll2 *0).

Hence,

llw(k)ll2 > (w (k). w*)2 /llw ’ll2

> (w (0 ). w* + km)2 /  llw’ll2, (HI)

where k is the number of times the weights have changed. From (LH) the square 

length of the weight vector grows faster than k2, but we will prove that the length 

cannot grow indefinitely. W e have by definition that w(k) = w (k-l) + x (k -l), where 

x (k -l).w (k -l) < 0, and therefore
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llw(k)ll = llw (k-l)ll + 2 x (k - l) .w ( k - l )  +llx(k-l)ll 
<  llw(k-l)H2 + llx(k-l)ll2.

Let M  = max{llxll for all x in the training set}. Then, by repeatedly applying the
above result,

llw(k)ll2 < llw(k-l)ll2 + llx(k-l)ll2
< llw(k-2)ll2 +  llx(k-2)ll2 + llx(k-l)ll2
< llw(0)ll2 +  llx(0)ll2 + ... + llx(k-l)ll2.
< llw(0)ll2 + kM . (IV)

From (IV) the square length grow less rapidly than linearly in k.
In fact, using (III) and (IV), we have

(w (0 ). w* + km)2 /  llw*ll2 < llw(k)ll2 < llw(0)ll2 + kM.

W e assume, without loss of generality, that w(0) = 0. Thus,

or
(km)2 /llw*ll2 < kM,

k < Mllw*ll2 /  m2.

If w* is multiplied by a positive scalar X, then so is ‘m ’ (from its definition) so this 

bound is actually independent of the size of llw*ll. Therefore we may take llw*ll = 1 and 

obtain the simpler formula k < M  / m2.

W e can use binary or bipolar input vectors provided the target vectors are in the 

bipolar form. W e use both a fixed non-negative threshold and a bias. There are n 

inputs and m output targets. W e begin with examples in the case of a single output.

Example 2.5 W e use binary inputs and bipolar target outputs for pattern classification 

by a simple perceptron in the case of the AND function (note the Hebbian method, 

Example 2.4, failed on this case).

Input (1 , X] ,  x2)  Target Output (t)

(1, 1, 1) 1

(1, 1, 0) -1

(1, 0, 1) -1

( 1, 0, 0) -1

Set initial weights and bias equal to zero, the learning rate a  equals 1, fixed threshold 
equals 0.2. W e recall that a M athematica implementation is given in Appendix.
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R esult
W e recall that y_in = w.x.

Epoch 1 y_in y w = {b,wi, w2)

1 {0,0,0}
0 0 {1,1,1}
2 1 {0,1,0}
1 1 {-1,0,0}

-1 -1 {-1,0,0}

10 {-4,2,3}
1 1 {-4,2,3}

-2 -1 {-4,2,3}
-1 -1 {-4,2,3}
-4 -1 {-4,2,3}

Learning is complete by the end of the first complete epoch during which the weight 
vector w was unchanged. In the first epoch, not every weight vector is the same so that 
the net needs to learn more. Figure 2.7 shows an early failure of separation. Therefore, 
the net continues to be trained.

X2

Figure 2.7 Decision boundary after the first training input pattern of the first epoch. The response of  
the net is correct for this pattern only.

Finally, the net converges within the tenth epoch and the weight vector solution is 
{2,3,-4}. Therefore, the net has found the correct decision boundaries, which are the 
separating lines 2xi + 3x2  -4 = 0.2, and 2xj + 3x2  -4 = -0.2 as shown in Figure 2.8.



25

Exarrple 2.5

2.5

0.5

Figure 2.8 Final decision boundaries for the AND function. After the tenth epoch the net gives the 
correct response to every point because separating lines distinguish the YES and NO response.

It is interesting to note that if we use bipolar rather than binary input vectors, then this 
net is faster, using only two epochs.

E xam ple 2.6 W e use binary input vectors and bipolar target outputs as shown below. 

In this example an epoch consists of four training vectors. Those with target -1 are 

distinguished by having exactly one zero coordinate. W e will find separating planes 

by using the perceptron net. Let initial weights and bias b equal zero, the learning rate 

a  equals 1, and fixed threshold 6  equals 0.1.

Input (l,xj, X2 , X3 ) Target (t)

( 1, 1, 1, 1) 1

( 1, 1, 1, 0) -1

( 1, 1, 0, 1) -1

( 1, 0 , 1, 1) -1

R esult

Epoch y_in y w = {b,w1 ,w2 ,w3}

1 {0,0,0,01
0 0 {1,1,1,11
3 1 {0,0,0,11
1 1 {-1,-1,0,01

-1 -1 {-1,-1,0,01
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Epoch y j n y w = {b,Wi,W2 ,Wj}

26 {-8,2,3,4}
1 1 {-8,2,3,4}

-3 -1 {-8,2,3,4}
-2 -1 {-8,2,3,4}
-1 -1 {-8,2,3,4}

Again, the weight vectors vary during the first epoch. The net needs to learn more. 
After 26 epochs, the weights converge to the vector {-8,2,3,4}. This means that the 
net has found two decision boundary planes separating the input patterns: 2xi+ 3x2 +
4 x3 - 8 = ± 0 . 1, or

X2 = 41/15 -2/3 Xi- 4/3 X3, 
and X2 = 13/5 -2/3 X) - 4/3 X3.

Figure 2.9 shows the small gap between these planes.

Exarple 2 .6

X]
The axis directions

Figure 2.9 Final decision boundary for Example 2.6 from a M athem atica Program. 

C h arac te r  C lassification

We will shortly (Example 2.8) use the perceptron to classify letters drawn from three 

fonts. We begin with a simpler task (Example 2.7).

Exam ple 2.7 We use the simple perceptron to classify letters as A or not A. The 

output will give the Yes response *1* if that letter (the same letter in some font) is in
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Class A; otherwise, the output will give the No response ‘-1’ if this letter is in the ‘not 

A ’ class, which we will denote by A7.

One letter uses a 9 x 7 grid of pixels (nine rows of seven) as illustrated in Figure 2.10. 

Each input character is represented by a vector of length 64 (.xo = 1 followed by 

successive rows). For example, a character A is represented by the vector 

x = ( l ,x ^ 2,... m s ) = (1,1,1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-1,1,1,1,1,- 

1, 1, -1, 1, 1, 1, -1, - 1, - 1, - 1, -1, 1, 1, - 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, - 1, 1, - 1,-1, - 1, 1,-1, - 1, - 1).

Figure 2.10 This figure represents the A character on a 9 x 7 grid.

Table 2.1 This table shows the training vectors with their target outputs (where target -1 means class 

A 1) When trained, the net will distinguish between A and A 1 characters for the limited testing we note 

below .

Letter The training vector target output

A (1 ,1 ,1,-1,-1,1,1,1,1,1,1,-1,1,1,1,...,-1,-1,-1,1,-1,-1,-1) 1

B (1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,1,1,-1,...,-1,-1,-1,-1,-1,-1,1) -1

C (1,1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,...,1 ,1,-1,-1,-1,-1,1) -1

D (1,-1,-1,-1,-1 ,-1 ,1,1,1,-1,1,1,1,-1,1,...,-1,-1,-1 ,-1 ,-1 ,1,1) -1

E (1,-1, -1,-1,-1,-1, -1 ,-1 ,1 ,-1 ,1,1,1,1,-1,...,-1,-1,-1,-1,-1,-1,-1) -1

J (1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,1,...,1,1,-1,-1,-1,1,1) -1

K (1,-1,-1,-1,1,1,-1,-1,1,-1,11,-1,1,1,...,-1,-1,-1,1,1,-1,-1) “ 1

Result

Training There are seven letters- A, B, C, D, E, J, and K as shown in Table 2.1 and (I) 

below. From this table, the perceptron net is trained to recognize a letter A and reject 

the rest.
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Testing W e offered the net the seven variant letters shown in (II) below, o f which 

exactly one is an ‘A ’, and the net picked out this unique A from the rest.

The A we test gives the only +1 response because it is closer to ‘A ’ (in some sense) 

than to any other. It is important to note that the example above used only one output 

However, Example 2.8 below is a multi-output net, which tests for more than one 

letter.

2.4 The General Perceptron

Example 2.8 W e train a general perceptron to recognize seven letter classes.

Each output represents one class. The net will allocate an input vector to this class or 

another. The architecture is shown in the Figure below where n -  63 and m - 1 .

Wii

W 0j

wu

Wi,

nm

This figure is shown earlier when i = 1, , 63 and j  = 1, 7.



Figure 2.11 The 21 training vectors represent 7 letters, each in three different font versions.

The vector x, representing letter A in Font 1, is (1,-1,-1,1,1,-1,-1,-1, ... ,1,1,1). The 

target vector for the input A is represented by ta = (1, -1, -1, -1, -1, -1, -1) with a ‘1’ in 

just the first position. The target vector for the input B is represented by tb = (-1, 1 ,-1 , 

-1, -1, -1, -1) with a ‘1’ in just second position, etc. From this example, the bipolar 

representation is better than the binary representation again.

After training this net to recognize letters from Figure 2.11, we use it to classify letters 

from Figure 2.12 below, which are from the same fonts but with ‘noise’ distortion. 

Font 1 S3■H1r 1
■ l~ 1 1gi0■

Font 2

0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7

Font 3

0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7

Figure 2.12 Noisy data input vectors for 7 letters in three fonts.
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Result

The results of the output are shown in Table 2.2.

Table 2.2 This table shows the results o f Example 2.8 classifying each noisy letter with three fonts 
belongs to class A, B, C, D, E, J, or K. The entries are to be “interpreted as follows.

Correct: the input letter X was correctly identified by an output vector with -1 in just the X  position

X: the X  position o f the output letter was -1, but the input was not an X.

Unsure: som e output vector positions were zero. For example ‘unsure D ’ means a ‘0 ’ in the fourth 
output vector position, ( -1 ,-1 ,-1 ,0 ,  -1 ,-1 ,-1 ) .

Font 1 Font 2 Font 3
A Correct K No classes
B Correct Correct Correct
C C,K C Correct
D Correct Correct Unsure D
E Correct Correct E,K
J Correct J,K Correct
K UnsureA,K Correct Correct

Conclusion The letters which give the correct results are A1 (Letter A Font 1) B1 D1 
E l J1 B2 C2 D2 E2 K2 B3 C3 J3 K3. Some letters are allocated to more than one 
class. For example C l is both C and K classes. In fact we may use a com petitive net 
(Chapter 3) to solve this problem. Overall, our net was correct in 13 out o f 21 cases, a 
success rate of about 62%.



31

Chapter 3 Neural Networks Based on Competition

Example 2.8 in Chapter 2 gives the results in which for example an output of E 

responds to both E and K classes. This output unit should respond to either E or K, 

but not both. W e can achieve this by including additional structure which forces the 

net to make a decision. Each input vector elicits a response from exactly one output 

unit. This method is called competition, the topic of the present chapter. One form of 

competition is the winner-take-all type, where we choose the winner as the output unit 

with the largest input signal or whose weight vector is closest to the input vector. If 

the weights are fixed, the net is called Fixed-weight-competitive. M axnet is the 

example which we will introduce in Section 3.1.

Supervised learning Alternatively we can combine competition with a learning 

algorithm to adjust the weights. One possibility is supervised learning, in which the 

target output unit is known for each training vector. W e exemplify this by Learning 

Vector Quantization (LVQ) in Section 3.2, which has a single layer of weights from 

the input to the output units. In addition, it uses a parameter called the learning rate a , 

which must be systematically reduced as learning proceeds.

Unsupervised learning The self-organising map (SOM) of Kohonen, whilst retaining 

the idea of competition, performs unsupervised learning by grouping input vectors 

into clusters (or classes), each cluster associated with an output unit. In common with 

LVQ, there is a single weight layer and use of a diminishing learning rate. The 

learning algorithm is based upon a structuring of output units into sets of mutual 

neighbours (a topology). An actual update for output/cluster unit j  is given in terms of 

input vector x and weight vector Wj (the j th column of the weight matrix [w,;,]) by

W j ( n e w )  = a x  +(1- a ) W j(o ld ). (3.1)
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More details will be given when we study Kohonen nets in Section 3.3. W e remark 

that after learning, in both cases above, an output class has the corresponding weight 

vector as an exemplar. Such vectors are sometimes viewed as forming a codebook. 

The net maps an input vector to the codebook entry.

3.1 Fixed-weight competitive nets 

MAXNET

One example of a neural net based on competition is Maxnet whose weights are fixed. 

W e recall that we have many units of a competing group and find only one unit, which 

has the largest activation (= ‘on’), to be a winner. Here, the m units are not divided 

into layers but are fully interconnected, with symmetric weights (Figure 3.1). The net 

will stop calculating when the winner is “on”, and other units in the competing group 

are “o f f ’. M axnet is a simple net which acts as a subnet in the Hamming Net (Fausett, 

1994).

Figure 3.1 Max Net with m = 4.

The activation function is as follows

x

0 otherwise. (3.2)

Notation Wj is as usual the j th column of the weight matrix [w,;/].
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Algorithm

Set 0 < £ < 1/m.

If i = j,  then w y  =  1, otherwise w y  =  -£.

Initialise the activation vector a(old).

Repeat

For j  = 1, ..., m do 0 /  new) = f  [Wj . a(old)], 

a(old) = a(new)

Until only one unit has nonzero activation.

Example 3.1 Using the M axnet to find the winning unit.

Let the fixed weights be e = 0.1, with four units whose initial activations 0,(0) are 

fl7( 0) = 0.25 a2( 0) = 0.45 a3{ 0) = 0.65 a4{ 0) = 0.85.

By using the algorithm above, we obtain the result shown in Table 3.1.

Table 3.1 Maxnet

Epoch Result (a)

1 (0.055,0.275,0.495,0.715)
2 (0,0.1485,0.3905,0.6325)
3 (0,0.0462,0.3124,0.578)
4 (0,0,0.24992,0.54274)
5 (0,0,0.195646,0.517748)
6 (0,0,0.143871,0.498183)
7 (0,0,0.0940529,0.483796)
8 (0,0,0.0456732,0.474391)
9 (0,0,0,0.469824)

Therefore, the w inner in this example is the fourth unit.

3.2 Learning Vector Quantization

Kohonen discovered the LVQ net [7]. The function of this net when trained is to 

allocate each input vector x to its correct class, namely the output unit whose weight 

vector is nearest to x.

(3.3)

(3.4)
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Architecture

A Learning Vector Quantization (LVQ) neural net has no topological structure (we 

shall discuss such structure in Section 3.3). Its architecture is shown in Figure 3.2 

below.

ym

W j nm
W j ,

Figure 3.2 The architecture of a Learning Vector Quantization (LVQ) net.

Algorithm

Let T  be the specified class of the training vector x  =  (.x}, ..., xn), and Cj the class 

represented by the j th output unit. Here Ilx-Wjll is the Euclidean distance between the
thinput vector and the weight vector for the j  that unit. W e use the first m training 

vectors for initializing the weight vectors, and the remaining vectors for training. W e 

initialize the learning rate a(0), and then:

Repeat (t = the epoch number)

For each training vector x do

Find index J  for which Ilx-Wjll is a minimum.

If T = C j  , then wj = Wj + a  (x-wj), 

else wj = wj- a  (x-wj).

Update the learning rate.

Until a  < 0.01.
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Reference
vectors

Training
vectors

Example 3.2 Training the LVQ net with five vectors.

Two reference vectors are given, and the class for each input vector is already known. 

Input vector Class

~ ( 1 ,0 ,  0 ,0 ) C =  1

- ( 0 , 0 ,  1,0) C = 2

(1, 1 ,0 ,0 )  T=  1

(1 ,0 ,0 ,  1) T=  1

I - (0, 1 ,1 ,0 )  T=  2

The first two vectors are the reference vectors in Class 1 (C = 1), and Class 2 (C = 2) 

respectively, and the remaining vectors are the training vectors. W e update the 

learning rate a  by using the decreasing function a(t) = a(t-1) - 11100, where t is the 

epoch number and a(0) = 0.1 (this means a  -  a(0) during the first epoch). The 

training stops when the learning rate a  is less than 0.01.The result is shown in Table 

3.2.

Table 3.2 The results o f  Example 2.6.

Epoch j w

1 1 {1,0.1,0,0}
1 {1,0.09,0,0.1}
2 {0,0.1,1,0}

a -  0.1

2 1 {1,0.1719,0,0.091}
1 {1,0.156429,0,0.17281}
2 {0,0.181,1,0}

a  -  0.09

3 1 {1,0.215479,0,0.160713}
1 {1,0.200395,0,0.219463}
2 {0,0.23833,1,0}

a  -  0.07

4 1 {1,0.23238,0,0.210685}
1 {1,0.223084,0,0.242257} (I)
2 {0,0.268797,1,0} (II)

a  -  0.04
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Result = two trained class vectors (I), (II) as shown in the last row of Table 3.2.

Example 3.3 We use the LVQ net for a geometric example in the plane. The net is to 

allocate points (*;, x2) of the unit square { (xj, x2): 0 < xj, x2 < 1} to one of four classes 

labelled 1, 2, 3, 4. Hence the architecture is that shown below.

1 2  3 4

Xi

The initial weights for these classes are the respective comers (0,0),(1,1),(1,0),(0,1). 

W e use 81 training vectors (0 .a, O.b), where a, b run through the digits 1 to 9. These 

points form a 9 x 9 grid on the unit square and we write at point (O.a, O.b) its 

predefined class as shown below

x2 = 0.9 --------- ► 4 4 4 4 4 2
4 4 4 4 4 2

x2 = 0.2 ___ ► 1 1 1 1
*2 =  0.1  ► 1 1 1 1

*7 = 0.1

For example (0.1, 0.2) is in Class T = 1. The learning rate is updated by the equation

a(t) = a ( t - 1) - 1 1625,

where t is the epoch number and a(0) = 0.1. The training stops when the learning rate 
a  is less than 0.01.

2 2 2  
2 2 2  
1 2 2  
1 22  
1 3 3  
1 3 3  
1 3 3  
1 3 3  
1 3 3.
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Result

W hen t =1, the weight matrix w = {{0.42,0 .49},{0 .87 ,0 .89},{0 .96 ,0 .17},{0 .14 ,0 .95}}, listed 
by columns, and the result is the following

x2 = 0.9 ------- ► 4 4 4 4 4 2 2 2 2
4 4 1 1 1 1 2 2 2
4 1 1 1 1 1 1 2 2
1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 3 3
1 1 1 1 1 1 1 3 3

* n o to ----- ► 1 1 1 1 1 1 3 3 3

II © ----- ► 1 1 1 1 1 3 3 3 3.

W hen t = 10 ( a  = 0.02), the weight matrix is

w = {  {0.35,0.40},{0.82,0.84),{0.97,0.31},{0.33,0.93}}, 

and the resulting classification is

x2 = 0.9___ ____ ► 4 4 4 4 4 2 2 2 2
4 4 4 4 4 2 2 2 2
4 4 4 4 4 2 2 2 2
1 1 1 1 1 2 2 2 2
1 1 1 1 1 1 3 3 3
1 1 1 1 1 1 3 3 3
1 1 1 1 1 1 3 3 3

*2 = 0.2 ___ > 1 1 1 1 1 1 3  3 3
jc2 = 0.1 ___ > 1 1 1 1 1 1 3 3 3.

Conclusion After a hint by the training vectors, the net is moving towards allocating 
each quarter of the square to its rightful class.

3.3 Kohonen Self-Organizing Maps

The self-organizing neural nets are also called topology preserving maps because they 

use a topological structure which we will explain later. It defines when units are 

‘close’ to each other. Kohonen nets are self-organizing networks used as pattern 

classifiers. Training involves grouping similar patterns in close proximity in this 

pattern space so that a cluster of similar patterns cause the same unit to respond.
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The winner is the cluster which has the minimum square Euclidean distance between 

the input pattern and the weight vector as mentioned earlier. After the net has found 

the winner, both the winner and its neighboring units will update their weights (a 

special feature of the Kohonen net).

The output is the weighted sum of inputs, possibly after the operation of an activation 

function. W hen the input is applied, the output will be a single 1 in the region of the 

pattern space, which corresponds to a particular class of patterns. The exemplar 

vectors are stored in such a way that similar exemplar vectors are found in units which 

are close to each other. Exemplar vectors which are very different are in units situated 

far apart.

A preview  we shall see how we can use a Kohonen net to solve the Traveling 

Salesman Problem (Section 3.5).

Architecture

The SOM architecture is the same as the LVQ architecture (Figure 3.2), with n - 

vector input. However, the m clustering output units are formed into an array/grid in 

one or two dimensions (e.g. a linear, rectangular, or hexagonal array), which is used to 

specify the neighbourhoods of various radii for any unit. This neighbourhood 

specification or topology, is a key feature of the Kohonen SOM. In the case of a linear 

array of units 1, 2 ,..., m the neighbour units j  within a radius R of unit J  are given by

m ax (l, J  - R) < j  < min(7 + R, m).

Our second exam ple is rectangular (Figure 3.4). There are 9 units within radius 1 of 

the winning unit #, and 25 units within radius 2. Here, and in the subsequent two 

Figures, we represent the boundaries of successively larger neighborhoods, of radius R 

= 0, 1, 2 by dotted, continuous, then dashed lines.

The next is a hexagonal array with hexagonal neighbourhoods (see Figure 3.5). There 

are 7 units within radius 1 of # and 19 units within radius 2. Finally in Figure 3.6, we
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show a rectangular array with diamond neighbourhoods. There are 5 units within 

radius 1 and 13 units within radius 2.

* * * He * * *

* * * He * * *

* * * He * * *

* * * # : * * *

* * He * * * *

* * He * * * *

* * He * * * He

Figure 3.4 Neighbourhoods of the unit #  for rectangular grid.

/ --------------------------------------------------- y
* * / ' *  * * \  * *

/
/

/

*

\
\

\
/N /\

Figure 3.5 Neighbourhoods of the unit #  for hexagonal grid.

*SN

<

Figure 3.6 Diamond neighbourhoods on a rectangular grid.
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W e randomise values of initial weights in the same range as input, for example, if 

input vectors are in the bipolar form, then we take random values between -1 and 1.

Algorithm
Set initial weight vectors w), number o f cluster units m, learning rate a, and initial radius R.
Set 0 < A < 1.

Repeat (t = the epoch number)
For each training vector x do

If R > 1, then R is reduced at specified epoch t.
Find the index 7 for which llw, - xll is minimum.
For all j in the nbd o f 7 with radius R do
(*Update the weight o f winning unit and its neighbourhood. See Example below*)

Wj = Wj + a  (x - wj). (3.5)
a(t)  = a(0) A', (for the geometric function) (3.6)

or, a{t) = A + a t ,  (for the linear function) (3.7)
Until a  < 0.05.

Example Suppose the topological structure is o f diamond type (Figure 3.6) with R = 2, the units 
arranged in rows o f length p  and numbered row by row. At the first specified epoch R is reduced to 1 
and updating is confined to units j  = J-p, 7-1, 7, 7+1, 7+p. After the next radius reduction to R = 0, we 
update only the winning unit J.

Example 3.4 Using the Kohonen SOM to cluster four vectors. The input vectors are 

((1, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (0, 0, 1, 1)). The initial weight vectors are 

((0.1,0.8,0.5,0.9),(0.2,0.5,0.1,0.9)). The number of clustering units is m = 2 and the 

radius of topological neighbourhood is R = 0. Set the learning rate a(0) = 0.6 and 

a(t) = 0.6 x 0.96'. This training stops when the learning rate is less than 0.01. The 

result is shown in Table 3.3.

Table 3.3 Four vector are clustered by using SOM.

Epoch norm closest to unit

1 (2.06,0.78) 2
(0.46,2.40) 1
(3.11,0.56) 2
(1.35,1.93) 1

101 (2.5,0.26) 2
(0.52,3.3) 1
(2.5,0.25) 2
(0.49,2.2) 1
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The weight vectors converge to ((0, 0.49, 0.51, 1), (1, 0, 0.51, 0)). This means that the 
first and third input vectors are in Cluster 2, the second input vector and fourth input 
vector are in Cluster 1.

3.4 Using the Kohonen SOM for Character Recognition

W e can use the Kohonen SOM  to cluster seven characters, A, B, C, D, E, J, and K 

with three fonts for which we refer back to Figure 2.11. There are 15 cases in this 

Section. Cases 1-5 have No Topological Structure R = 0. Then Cases 6-9 use the 

Linear Array (Figure 3.3). Next, Cases 10-13 use the Diamond neighbourhoods 

(Figure 3.6). Finally, Cases 14-15 use the Rectangular neighbourhoods (Figure 3.4).

The cases have these conditions in common:

1. The maximum number of cluster units m = 25.

2. The learning rate a  decreases linearly from 0.6 to 0.01. The training then stops.

3. The training input vectors are the input vectors from Example 2.8 but without a 

com ponent x0 = 1.

No Topological Structure {R = 0)

C ase 1 Binary input vectors. The initial weights are randomised between 0.1 and 0.9. 

The learning rate is geometric decreasing function a{t) -  0.6*0.96l, where t is the 

epoch number. The result is shown in Table 3.4.

Table 3.4 Kohonen SOM with no topological structure and binary input vectors. The learning rate is 
reduced by using the geometric decreasing function.

No. o f cluster unit Patterns

5 A l, A2
1 A3
21 B l, B3, D l, D3, E l, E3, K l, K3
23 B2, D2, E2
4 C l, C2, C3, J 1, J2, J3
8 K2

Discussion Notice only 6 clusters were formed. The outputs of A1 and A2 give the 
response correctly, but A3 is in the other clustering unit. Notice that C l, C2, C3 and 
J 1, J2, J3 are in the same clustering unit. B l, B3, D l, D3, E l, E3, K l, K3 are in the
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same clustering net. If we use the bipolar input vectors and change the parameters or 
equations, then the result may change as we show below.

C ase 2 Bipolar input vectors. The initial weights are randomized between 0 and 1.

The learning rate is the geometric decreasing function a{t) = 0.6*0.96*. The result is 

shown in Table 3.5.

Table 3.5 Kohonen SOM with no topological structure and bipolar  input vectors. The learning rate is 
reduced by using the geometric decreasing function.

No. o f cluster unit Patterns

19 A l, A2
1 A3
7 B l, B3, D l, D3, E l ,  E3, K l, K3
9 C l, C2, C 3,B 2, D2, E2
23 J l ,  J2, J3
2 K2

Discussion This result is better than Case 1 because the outputs of J 1, J2, J3 respond 
correctly. However, we still have a problem because B2 D2 E2 are put with C l C2 
C3.

Case 3 Binary input vectors. The initial weights are randomized between 0 and 1. The 

learning rate is the non linear decreasing function a(t) = a(t-1) - 0.59/5050 t (t > 1, 

or(0) = 0.6). The result is shown in Table 3.6.

Table 3.6 Kohonen SOM with no topological structure and binary input vectors. The learning rate is 
reduced by using the non linear decreasing function.

No. o f cluster unit Patterns

3 A l, A2
6 A3
1 B l, B3, D l, D3, E l ,  E3, K l, K3
10 B2, D2, E2
25 C l, C2, C3
7 J l ,  J2, J3
20 K2

Discussion The result o f Case 3 is better than that of Cases 1 and 2 because A l, A2, 
C l, C2, C3, J 1, J2, J3 do not mix each other.
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Derivation o f the learning function

a
0.6

0.5

0.4

0.3

0.2

0.1

100

The expression for a(t) is obtained from the chosen form a(t)= a (t-1) - tA

(t = 1 ,..., 100, A is constant) by specifying a(0) = 0.6 and a(100) = 0.01. W e have

a ( l )  = a ( 0 ) -  1A. 

a  (2) = (a(0)  -1 A) - 2A

a( t )  = a (0) - (1+2+ ... + t) A = 0.6 - {t / 2){t+\) A 

Putting t = 100 0.01 = a(100) = 0.6 -  50 (101) A

Hence A = 0.59 /  5050.

Case 4 Binary input vectors. The initial weights are randomized between 0 and 1. The 

learning rate is the linear decreasing function a  -  0.6 - (0.0059 * t). The result is 

shown in Table 3.7.

Table 3.7 Kohonen SOM with no topological structure and binary input vectors. The learning rate is 
reduced by using the linear decreasing function.

No. o f cluster unit Patterns

22 A l, A2
25 A3
12 B l, B3, D l, D3, E l ,  E3, K l, K3
4 C l, C2, C 3 ,B 2 , D2, E2
10 J l ,  J2, J3
15 K2

Discussion This result is again similar to Case 2.
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Case 5 Binary input vectors. The initial weights are randomised between 0 and 1. The 

learning rate is

a ( f ) = 0 .6 e '" *

where 8=  1/21 E/llx, - jj.ll2 and JJ = 1/21(2,X;) (i = 1 , 2 1  because of 21 characters). 

The result is shown in Table 3.8.

T able 3.8 Kohonen SOM with no topological structure and binary input vectors. The learning rate is 
reduced by using the exponential decreasing function.

No. o f cluster unit Patterns

1 A l, A2
18 A3
2 B l, B3, D l, D3, E l , E3, K l, K3
9 B2, D2, E2
8 C l, C2, C3
17 J l ,  J2 ,J3
20 K2

Discussion This program has 185 epochs and the best result is similar to Case 3 as 
shown above. This program can separate A l, A2, A3, C l, C2, C3, J 1, J2, J3 classes.

Conclusion (no topological structure) Cases 3, 5 give the best result when we 
com pare to Cases 1, 2, 4. However, B l, B3, D l, D3, E l, E3, K l, K3, B2, D2, E2 are 
mixed. Therefore, we will use other structures to match these letters. The next 
structure is the Linear Structure as shown below.

The L inear A rray  (R  > 1)

C ase 6 Bipolar input vectors. The initial weight elements are randomized between 0 

and 1. The learning rate is the geometric decreasing function a  = 0.6* 0.96*. W e fix  

the radius R =  1. The result is shown in Table 3.9.
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Table 3.9 Kohonen SOM with the linear array and bipolar input vectors. The learning rate is reduced
by using the geometric decreasing function.

No. o f cluster unit Patterns

1 A2
2 A l
4 A3
11 B2, E2
21 B l, B3
6 C l
7 C2
8 C3
9 D2
19 D l, D3
23 E l, E3
15 J2
17 J l ,  J3
25 K l, K3
13 K2

Discussion Each pattern separates each patterns very clearly, but the problem is how 
we can cluster the same character (but different fonts) to the same cluster. This 
program uses 101 epochs. Notice that B2, E2 are in the same cluster. W e probably 
should change some parameters to obtain a better result.

Case 7 Binary input vectors. The initial weights are randomized between 0.1 and 0.9. 

The learning rate is the linear decreasing function a  = 0.6 - 0.0059 * t. W e reduce the 

radius from R  = 1 to 0 when the epoch t > 60. The result is shown in Table 3.10.

Table 3.10 Kohonen SOM with the linear array and binary input vectors. The learning rate is reduced 
by using the linear decreasing function.

No. o f cluster unit Patterns

17 A l
19 A2
15 A3
2 B l, B3
13 B2, E2
7 C l, C2, C3
3 D l, D3
11 D2
1 E l, E3
9 J l ,  J2 ,J3
5 K l, K3
14 K2
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Discussion This program is much better than Case 6 because B 1 ,B 3 ,E 1 ,E 3 ,D 1 ,D 3 , 
K l, K3 are separated to different clusters. In addition, C l, C2, C3 and J l ,  J2, J3 are 
matched correctly. Kohonen (1989a, p. 133) noticed that the linearly decreasing 
function gives a good result for computation, and a geometric decrease produces 
similar results. However, B2, E2 are still in the same cluster.

Case 8 Bipolar input vectors. The initial weight elements are randomized between 0 

and 1. The learning rate is updated by

a  (t) = 0.6 e ''5,

where 8  (new) = 8  (old) + 1/21 S i llx, - JX||2, <5 (0) =  0, |I  = 1/21 (Si x,), i = 1, 21.

W e fix the radius R = 1. W e remark that in Epoch 286, 8=  12913.5 so that a  (286) 

cannot decrease and a  never drops below 0.52, i.e. this training is non-stop. The result 

of Epoch 286 is shown in Table 3.11.

Table 3.11 Kohonen SOM with the linear array and bipolar input vectors. The learning rate is reduced 
by using the exponential decreasing function.

No. o f  cluster unit Patterns

17 A l, A2
15 A3
3 B l,  B3
19 B2
9 C l
11 C2, C3
1 D l,  D3
21 D2
5 E l, E3
19 E2
23 J l, J3
25 J2

7 K l, K3
13 K2

Discussion Case 7 gives a result better than this program although the number of 
clustering units of A l, A2, A3, J l ,  J2, J3, C l, C2, C3 close each other. However, this 
training separates B2 from E2.
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C ase 9 Bipolar input vectors. The initial weights are randomized between 0.1 and 0.9. 

The learning rate a  is decreased by the equation

a  (r) = 0 .6  5,

where 5, = l/21*llxi - |i||2 (|X = l/21(XfXi), i -  1 ,.... 21). W hen t > 70, we reduce the 

radius R  = 1 to 0. The result is shown in Table 3.12.

Table 3.12 Kohonen SOM with the linear array and bipolar  input vectors. The learning rate is reduced 
by using the exponential decreasing function. The radius R is reduced during training.

No. o f cluster unit Patterns

14 A l, A2
12 A3
20 B l, B3, D l, D3
25 B2, E2
22 C l
23 C2, C3
19 E l, E3
24 D2
18 K l, K3
8 K2
16 J l ,  J2, J3

Discussion There are 185 epochs. This program has a problem because B2 and E2 are 
in the same cluster unit, and also B l, B3, D l, D3.

Conclusion Case 7 gives the best result in the sense that C l, C2, C3 are in the same 
cluster as well as J l ,  J2, J3 although B2, E2 are still in the same cluster. Case 8 does 
not mix different letters in the same group, but it still needs to match these letters in 
the same cluster.

I
i
|
Ii[
r

The Diamond neighbourhoods

Case 10 Bipolar input vectors. The initial weights are randomised between 0 and 1. 

The geometric decreasing function a{t) = 0.6 x 0.96r. We fix  the radius R -  1. The 

result is shown in Table 3.13.
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Table 3.13 Kohonen SOM with the diamond neighbourhoods and bipolar input vectors. The learning
rate is reduced by using the exponential decreasing function. The radius R is fixed during training.

No. O f cluster unit Patterns

19 A l
21 A2
14 A3
6 B l
1 B2, D2, E2
7 B3, E l, E3
3 C l, C2, C3
5 D l, D3
11 J l ,  J2, J3
9 K l, K3
16 K2

Discussion Number of clustering units 1 and 7 have different patterns. The problem is 
similar to Case 9. However characters C l, C2, and C3 are in the same clustering net. 
Patterns J l ,  J2, J3 are also in the same clustering net. Patterns A l, A2, A3 are not in 
the same clustering net, but at least they are not with other characters.

Case 11 Bipolar input vectors. The initial weights are randomized between 0.1 and 

0.9. The learning rate is the exponential decreasing function a  (0= 0.6 * e( t/5), where 

8  = 1/21 X-i Hxi - (till2, |i  = 1/21 (X; xO, and / = 1, ... , 21. W e start with R = 2, reducing R 

to 1 when t > 1 0  and to 0 when t  > 100. The result is shown in Table 3.14.

Table 3.14 Kohonen SOM with the diamond neighbourhoods and bipolar  input vectors. The learning 
rate is reduced by using the exponential decreasing function. The radius R is reduced during training.

No. O f cluster unit Patterns

1 A l, A2
8 A3,
24 B l, B3
16 B2, E2
20 C l
19 C2, C3
25 D l, D3
18 D2
23 E l,  E3
3 J l
6 J2
4 J3

22 K l, K3
14 K2
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Discussion W hen we run this program again, the result (as shown below) is changed 
because we randomize the value of weights. The result is shown in Table 3.15.

Table 3.15 Kohonen SOM with the diamond neighbourhoods and bipolar  input vectors. The learning 
rate is reduced by using the exponential decreasing function. The radius R is reduced during training.

No. O f cluster unit Patterns

6 A l
4 A2
25 A3
19 B 1,B 3
8 B2, E2
13 C l
11 C2
12 C3
17 D l, D3
10 D2
21 E l, E3
15 J l ,  J2, J3
23 K l, K3
2 K2

The second result is better than the first result because J l ,  J2, J3 are in the same 
cluster. However, A l, A2, A3 are not in the same cluster.

Case 12 Bipolar input vectors. The initial weights are randomised between 0 and 1. 

The learning rate is the geometric decreasing function a(t) = 0.6* 0 .96\ W e start with 

R = 2, reducing R to 1 when t > 60 and to 0 when t > 80. The result is shown in Table 

3.16.

Table 3.16 Kohonen SOM with the diamond neighbourhoods and bipolar input vectors. The learning 
rate is reduced by using the geometric decreasing function. The radius R is reduced during training.

No. O f cluster unit Patterns

21 A l, A2
19 A3
16 B 1,B 3
6 B2, E2
8 C l, C2, C3
15 D l, D3
4 D2
17 E l, E3
10 J l ,  J3
11 J2
13 K l, K3
23 K2



50

Discussion This training can match C l, C2, C3 to be in the same cluster. M ost of the 
patterns, i.e. A l, A2 are in the same cluster of letter A (also B l, B3, D l, D3, E l, E3, 
J l ,  J3, K l,  K3). However, A3, D2, J2, K2 are separated to the clusters of their letters. 
Notice that B2 and E2 are in the same cluster. Therefore, this training should be 
improved.

Case 13 Binary input vectors. The initial weights are randomised between 0.1 and 0.9. 

The learning rate is the exponential decreasing funciton a  (t) = 0.6 * e1̂ 441719912), w e 

start with R = 2, reducing R to 1 when t > 70 and to 1 when t > 100. The result is 

shown in Table 3.17.

Table 3.17 Kohonen SOM with the diamond neighbourhoods and binary input vectors. The learning 
rate is reduced by using the exponential decreasing function. The radius R is reduced during training.

No. O f cluster unit Patterns

14 A l, A2
16 A3
10 B l, B3
7 B2
1 C l, C2, C3
9 D l, D3
8 D2
11 E l, E3
6 E2
13 J l ,  J2 ,J3
12 K l, K3
5 K2

Discussion W e use this initial learning rate because Case 11 will stop when t = 49, 
! and we would like to know whether the result gives a better result or not. This
| program gives the best result because C l, C2, C3 and J l ,  J2, J3 are classified
| correctly. Moreover, A l A2 are in the same cluster (the same as B l B3, D l D3, E l
! E3, and K l K3).

Conclusion Case 13 gives the best result in the sense that different letters do not mix 
in the same cluster. M oreover, C l, C2, C3 are in the same cluster as well as J l ,  J2, J3.
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The Rectangular Neighbourhoods

Case 14 Bipolar input vectors. The initial weights are randomized between 0 and 1. 

W e update the learning rate a  by using the linear decreasing function a  = 0.6-0.0059/. 

W e start with R  = 2, reducing to 1 when t > 60 and to 0 when t > 80. The result is 

shown in Table 3.18.

T able 3.18 Kohonen SOM with rectangular neighbourhoods and bipolar input vectors. The learning 
rate is reduced by using the linear decreasing function. The radius R is reduced during training.

No. o f cluster unit Patterns

1 A l, A2
22 A3
5 B l, B3
8 B2
11 C l
10 C2, C3
6 D l, D3
9 D2
4 E l, E3
8 E2
13 J l ,  J3
15 J2
3 K l, K3
20 K2

Conclusion Each cluster unit has no different letters. This training cannot group C l, 

C2, C3 to the same cluster unit so does J l ,  J2, J3.

Case 15 Bipolar input vectors. The initial weights are randomised between 0 and 1. 

The learning rate is the geometric decreasing function a(t) = 0.6 x 0.96'. W e start with 

R = 2, reducing to 1 when t > 60 and to 1 when t > 80. The result is shown in Table
i

I 3.19.
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Table 3.19 Kohonen SOM with rectangular neighbourhoods and bipolar input vectors. The learning
rate is reduced by using the geometric decreasing function. The radius R is reduced during training.

No. o f cluster unit Patterns

1 A l, A2
23 A3
8 B l, B3
3 B2
14 C l
16 C2, C3
6 D l, D3
4 D2
10 E l, E3
3 E2

18 J l ,  J2, J3
12 K l, K3
20 K2

Conclusion Case 15 matches J l ,  J2, J3 to the same cluster so that Case 15 is better 
than Case 14 because Case 14 matches only J l ,  J2 to the same cluster. The other 
letters of Case 15 are classified to the similar way as Case 14. These letters do not mix 
with different letters.

Compare each topological structure of SOM 

Table 3.20 The results o f each topological structure which used SOM to classify letters. M ixed clusters 

are those which contain examples of more than one letter.

Topological Structure No. of mixed clusters C l, C2, C3 

are a cluster.

J l ,  J2, J3 

are a cluster

Total cluster units

No topological 

structure (Case 3 or 5) 11 Yes Yes 7

Linear Array 

(Case 7) 2 Yes Yes 12

Diamond nbds.

(Case 13) - Yes Yes 12

Rectangular nbds.

(Case 15) - No Yes 13
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The result from Table 3.20 above are discussed into the following order:

Step 1 The best results of each method (i.e. Cases 5, 7, 13, and 15) has been chosen 

from  all above cases.

Step 2 The classification of “Step 1” results depends in the following criteria:

(I - most important, II - important, and III - less important)

(I) The different letters (A, B, C, etc.) should not be put to the same cluster.

(II) Three fonts of each letter (e.g. A l, A2, A3) should be put to the same 

cluster as many cluster units as possible.

(Dl) The number of cluster units should be as small as possible.

Step 3 The obtained results from “Step 1” are compared by using criteria from “Step 

2 ” in order to get the best topological structure.

Discussion

By using criteria from “Step 2”, the results indicate that No Topological Structure is 

not a good structure because there are many letter combinations. The Linear array is 

better than No Topological Structure because there are less letter combinations. The 

Rectangular grid has no letter combinations the same as the Diamond neighbourhoods 

but (C l C2 C3) are not grouped to the same cluster unit. In addition, the Diamond 

neighbourhoods (C l C2 C3) and (Jl J2 J3) are grouped to their own cluster. 

M oreover, its cluster unit numbers are less than the Rectangular grid.

Conclusion

The Diamond structure is the best topological structure of SOM method for these 

experiments. This structure is better than the Rectangular grid, Linear array, and No 

Topological Structure, respectively.
|

!

! 3.5 The Kohonen SOM and the Traveling Salesman Problem

W e can use the Kohonen SOM net to solve this problem. The idea of the problem is 

that the salesman will visit every city only one time and come back to the first city. He 

would like to know the order which gives him the shortest way. The distances are 

shown below. See the graph in Figure 3.7.
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Table 3.21 The distance between cities. This aids comparison of the total distance covered, for 

(different orders o f visiting the cities.

A B C D E F G H I J

A .0000 .3361 .3141 .3601 .5111 .5176 .2982 .4564 .3289 .2842

B .3361 .0000 .1107 .6149 .8407 .8083 .5815 .6418 .4378 .3934

C .3141 .1107 .0000 .5349 .7919 .8207 .5941 .6908 .4982 .4501

D .3601 .6149 .5349 .0000 .3397 .6528 .5171 .7375 .6710 .6323

E .5111 .8407 .7919 .3397 .0000 .4579 .4529 .6686 .7042 .6857

F .5176 .8083 .8207 .6528 .4579 .0000 .2274 .2937 .4494 .4654

G .2982 .5815 .5941 .5171 .4529 .2274 .0000 .2277 .2690 .2674

H .4564 .6418 .6908 .7375 .6686 .2937 .2277 .0000 .2100 .2492

I .3289 .4378 .4982 .6710 .7042 .4494 .2690 .2100 .0000 .0498

J .2842 .3934 .4501 .6323 .6857 .4654 .2674 .2492 .0498 .0000

Example 3.4 W e use a Kohonen net to find the most economical tour of the cities 

positioned as in Figure 3.7. The input vectors are the coordinates of these cities. The 

output units, identified by their randomised initial exemplar weight vectors, are put in 

some linear order, with additionally the last succeeded by the first, i.e. their order is 

cyclic. There is one output for each city and the objective is to assign each city to an 

output unit. The order of visiting cities is then the order of their associated units. W e 

argue that the neighbourhood structure (with R = 1) causes the long term Kohonen 

solution to minimise the length of the journey around the cities/output units. The 

initial weight matrix

w = ((0.72,1),(0.92,0.66),(0.4,0.39),(0.78,0.55),(0.47,0.74),(0.74,0.49),(0.82,0.59),(0.7,0.34),

(0.37, 0.27),(0.74, 0.13)).

We select the initial learning rate 0.5. If t < 100, then R = 1 and the learning rate a  is 

reduced by using the linearly decreasing function

a  = 0.5 - 0 .0 0 1 1.

If t > 100, then R = 0 and the linearly decreasing function is

a  = 0 .4 -0 .0 0 2  ( t-  100).

This training stops when the learning rate a  is less than 0.02, with unit positions and 

order as shown in Figure 3.8. The result is shown in Table 3.22 below and combined 

with city positions in Figure 3.9.
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Table 3.22 The TSP results by using SOM (Linear Array) method.

No. o f  cluster unit Pattern

4 A
10 B, C
3 D
1 E
6 F
6 G
7 H
8 U

1
• E

D
F.

.G

A

C

•H
J
• I

. B

0 .2  0 .4  0 .6  0 .8  1

Figure 3.7 Positions of the cities.

i

0.8

0.6

0 .4

0.2

0.2 0 .4 0.6 0.8 1
Figure 3.8 The output exemplar vectors after 31 epochs.

This man needs to select B or C city by himself because these cities are in the same 

clustering net and also I or J city. The graph is shown below.



56

0 .4

0.2

0.2 0 .4 0.6 0.8 1 Figure 3.9 This figure combines the two figures above.

Therefore, there are four possibilities which this man can select.

(1) A D E F G H I  J B C .

(2) A D E F G H I  J C B .

(3) A D E F G H J I B C .

(4) A D E F G H I  J C B .
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Chapter 4 The Backpropagation Neural Net 

4.1 Introduction

The supervised learning algorithm based on minimizing the mean squared error for 

multilayer feedforward neural nets is called backpropagation, or the generalized delta 

rule. This rule uses a gradient descent method (more details in Appendix A), and was 

suggested by Rumelhart, M cClelland, and W illiams in 1986. A neural net using this 

rule is called a backpropagation neural net. This net calculates the value of the error 

function, and backpropagates error information from one layer to the previous one. 

The weights for each unit are then updated. The training of the net will conclude when 

the net produces responses to the training input which are sufficiently close to the 

targets.

The training method includes three steps: thq feedforward of the input training pattern, 

the backpropagation o f the associated error, and the adjustment o f weights. Notice 

that the outputs of the first layer are the inputs to the second layer.

4.2 Architecture

We can use more than one hidden layer, but we discuss only the case of one hidden 

layer in this Chapter. There are the input units (X units), one layer of hidden units (Z 

units), and the output units (Y units). The bias is in the hidden units (v0])  and the 

output units (wok)• The first step is the forward direction (the feedforward step), but 

we reverse the direction during the backpropagation step (Figure 4.1).

ii!
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m

pm

lmOm

Figure 4.1 Backpropagation neural network (one hidden layer).

4.3 Three steps of Backpropagation

Feedforward step W e refer to Figure 4.1. The input values from a training vector are 

fed forwards to the hidden units, which calculate their activations zj. These numbers 

are passed on to the output units to determine their output values y>t.

Backpropagation o f error Each unit compares its output y* with target tk and adds a 

term (tk - yf)2 to an accumulating total squared error for the current epoch. For 

backpropagation it computes an error factor

& = (h - yk) f  '( y jn k) . (4.1)

The 8k are passed back to the hidden units to determine update weight increments 

Awjk, then they are passed further back and used along with the derivatives f  '(zjinj) to 

calculate increments Av,y. Details are given in Section 4.5.

The updating weights Only at this stage are weights updated by thir computed 

increments, when the ‘old’ values are finished with.



59

Summary of notation

Xi = The output signal from input unit.

Zj = The output signal from hidden unit. 

yic = The output signal from output unit. 

z_inj = The net input to the hidden unit Zj. 

yjyik  = The net input to the output unit Yk. 

etotal = The total squared error. 

a  = The learning rate.

w = The weight matrix [wy*] from hidden layer to output layer, 

y = The weight matrix [v#] from input layer to hidden layer.

£j = The associated error factor from input layer to the hidden unit Zj.

8k = The associated error factor from hidden layer to the output unit Yk.

4.4 Activation functions

We recall that the binary sigmoid function (whose values lie between 0 and 1), and its 

derivative, are given by

fj(x) = 1/ [1+ e 'x], (4.2)

f' iM  = m  [1 - / / « ] •  (4.3)

Its bipolar relative f2, with values between ±1, satisfies

f2(jc) = 2 fj(jc) - 1 = tanh (jc/2), (4.4)

f'jCx) = 2 fVx). (4.5)

No:ice that the derivative function is related to gradient descent because it gives the

slope, and we use it to find the error of weights. Because of (4.4) we will wish to 

conpare the case of a third sigmoid f3 = tanhx = f2 (2x), for which f3y(x) = 2 f27(2x).
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Activation Function Comparisons

Binary Sigmoid

fi

f 'l(0 )  =  '/4

Bipolar Sigmoid

h

f /2(0) = ‘/2

X

Hyperbolic Tangent 

f3= f 2 (2x) 

f /3(0) = 2 f /2( 0 ) = l

As graphs shown above, the slope of bipolar sigmoid is steeper than binary sigmoid. 

This affects the speed of training, as we discuss in Section 4.6.

4.5 Algorithm

We recall that unit Zj has input z_inj and output Zj, and similarly for Yk. W e write as

usual w  = [wjk] and v = [vy] with j th column Vj. This algorithm is conveniently stated in

terms of a procedure E p o c h  which runs through the training vectors in turn.

Set the activation function f = f l5 f2 or f3. Set the learning rate a.
Repeat Epoch Until etotal < 0.05.

Procedure Epoch  
Set etotal = 0
Repeat for each training vector 
(*Feedforward step*)

\ For7 = 1 ,  ..., p  do
| z_inj = Ziv,yXj, (i = 0 , . . . ,  n)
I Zj = f{zJnj).
\ For k = 1, . .. ,  m doi
| yJn/c = Zj wjk Zj, (j = 0, . .. ,p )

yk= K y J n k).
(*Backpropagation o f  error step*)

For k = 1 to m do 
etotal = etotal + (tk - y k)2.
4  = (** - y*) ? (yJnk),
A wjk= a 8 k Zj, ( j = 0,...,p)
For 7 = 1 , . . . ,  p  do 
8_inj = Zk 8k wjk.
£j = 8_inj f* (z_inj)
Avy = ccEj Xi, (i = 0, ..., n)

(*Adjustment o f  weights and biases*) 
w = w  + Aw, v = v + Av.
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4.6 Speed of Convergence

F or the purpose of rough argument about influences on the number of epochs required 

tfor convergence, in the algorithm, let us summarise some relations whilst ignoring 

subscripts

z = f(x), y = f(z)

Aw = error x f  7(y) x z 

Av = (the above) x f '(z) x x.

(i) Initial weights (bipolar case)

Observe first that if x  is small then so is f(jc). Thus, if the initial weights are small 

then so for example are the Zj, hence also the increments Aw,*, and learning is slow. 

On the other hand if the weights are large then the derivatives defining <5* are small, 

hence also the A Wjk, and again learning is slow. One method of mitigating these 

considerations is to randomise initial weights between ± 0.5. a stronger effect is 

obtained by Nguyen - W idrow Initialization:

1. Choose the Vy randomly between ± 0.5,
2. Choose scaling factor p  = (0.7) p lln,
3. Recalculate Vy —» p  Vy / I Vj I.

(ii) Sigmoids

W e have from Section 4.4 that f27(x) = 2 f /(x )  and f37(x) = 2 f27(2x) > 2 f27(x). Thus a 

given change in the argument (written above as x, though the same applys to z) tends 

to produce a greater weight update in bipolar cases (f2) than in binary (fj) , and still 

greater in hyperbolic. This is particularly important when x is close to zero and the net 

is in danger of freezing.

(iii) Targets

Consider the bipolar case. For f  to be close to a target ±  1, the argument (x or z) must 

be rather large, and so it may be more realistic to use modified bipolar targets ± 0 .8 . 

Similar considerations apply to other sigmoids.
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4.7 Numerical Experiments

W e explore backpropagation for the XOR problem, studying the impact of various 

activation functions and weight initialisations (Cases 1-7). Our experiments reveal as 

expected that the choice of both initial weights and activation functions is crucial to 

the speed of convergence of the backpropagation algorithm.

The cases have these conditions in common:

1. Architecture

w0

W]

The four training input vectors are ((1,1,1),(1,1,0),(1,0,1),(1,0,0)) and for bipolar input 

we replace 0 by -1. Modified bipolar means changing the targets from ±  1 to ± 0.8. 

There are five hidden units in one hidden layer, and one output unit.

2. Learning rate a  = 0.2.

3. In Cases 1 - 3, the initial weights are randomised between ± 0.5 as shown below.

v = (0.4919, -0.2913, -0.3979, 0.3581, -0.1401).

w  = ((0.1970,0.3099,-0.3378),(0.3191,0.1904,0.2771),(-0.1448,-0.0347,0.2859),

(0.3594,-0.4861,-.3329)).

In Cases 4-7, this is extended to Nguyen - Widrow Initialisation (or N-W  for short).

4. Stop condition etotal < 0.05.
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4.7.1 Random initial weights

W e compare binary, bipolar, and modified bipolar techniques leading to successively 

faster convergence.

Case 1 Binary input and sigmoid function (targets ± 1 ).

The results are shown in Table 4.1 and Figure 4.4.

T able 4.1 The XOR problem with binary sigmoid activation function and random weights.

Epoch e i e2 e3 e4 Total squared error

1 0.215246 0.297605 0.297926 0.222083 1.03286

2891 0.0107437 0.0116026 0.0129801 0.014661 0.0499874

This training is relatively slow. It took 2,891 epochs as illustrated in the graph of 

Figure 4.4. The total squared error starts at 1.03286. The error is fairly constant over 

the first 1,000 epochs of training, and after 1,500 epochs, the error decreases very 

quickly. For this example, this training freezes when the total squared error is less 

than 0.05 (Figure 4.4).

The total squared error
Byjqaxparyaticri

0.6

0 .4

0.2

500 1000 1500 2000 2500 3000 Number of epoch

Figure 4.4 The total squared error o f a backpropagation net solving the XOR problem: binary 
representation.
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C ase 2 Bipolar sigmoid, input vectors, and targets.

The result is shown in Table 4.2.

T able 4.2 The XOR problem with bipolar sigmoid activation function and random weights.

Epoch e i e2 e 3 e4 Total squared error

1 0.716406 1.3736 1.54981 0.7976 4.4372

387 0.00887451 0.0151397 0.0164533 0.00945053 0.049918

This training took 387 epochs. The starting total squared error is more than 4; we 
recall that the starting total squared of the binary case is 1. The net using the bipolar 
sigmoid function and the bipolar representation learns faster than the binary 
representation. After 100 epochs, the total squared error reduced very quickly. Next, it 
reduces slowly after 250 epochs (Figure 4.5). The total epoch is 387 epochs.

Total squared error
fadqaxEagatiai

5

4

3

2

1

Number of epochs50 100 150 200 250 300 350

Figure 4.5 This graph shows the total squared error o f a backpropagation net solving the XOR 
problem with the bipolar representation.

Case 3 Bipolar sigmoid function.

W e use the bipolar training input vectors as before, but targets of ±  0.8 called 

modified bipolar targets (as mentioned earlier). The result is shown in Table 4.3.
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Table 4.3 The XOR problem with bipolar sigmoid activation function, random weights, and modified 
bipolar targets.

Epoch e i e2 e3 e4 Total squared error

1 0.417843 0.923666 1.08301 0.458727 2.88324

264 0.00763681 0.0149499 0.0184417 0.00812198 0.0491504

A total of 264 epochs was used. This net leams faster than the net using the binary 

representation (Case 1), and the bipolar representation (Case 2). The starting total 

squared error is almost 3. Hence, this error of the modified bipolar is less than the 

error of the binary and bipolar values. For the first 100 epochs, the total squared error 

reduces very slowly, then it learns quicker after 150 epochs. Finally, it starts to reduce 

the error slowly again after 200 epochs. To summarise, the net using the modified 

bipolar gives the better result comparing to the net using the binary and bipolar 

representations (Figure 4.6).

The total squared error

RarlqTTfH cpf  \  m
5

4

3

2

1

so ioo 150 200 250 Number of epochs

Figure 4.6 The total squared error o f a backpropagation net solving the XOR problem with modified 
bipolar representation.

4.7.2 Nguyen - Widrow weight initialization

Case 4 Hyperbolic tangent sigmoid, binary input vectors and bipolar targets.

The result as shown in Table 4.4.
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Table 4.4 The XOR problem with Hyperbolic tangent, and Nguyen - Widrow weight initialization.

Epoch e i e2 e3 e4 Total squared error

1 0.321354 2.36025 1.65856 0.0153233 4.35549

77 0.00296968 0.0141104 0.0316902 0.0010327 0.049803

This training took 77 epochs (Figure 4.7). At the beginning of this training, the total 
squared error reduces very fast from (approximately) the total squared error 4.4 to 1.2.

The total squared error

5

4

3

2

1

Number of epochs40 7010 20 30 50 60

Figure 4.7 The total squared error o f the backpropagation net. The activation function is the 
Hyperbolic tangent with the binary XOR problem.

Case 5 Bipolar sigmoid, input vectors, and targets.

The result is shown in Table 4.5

Table 4.5 The XOR problem with bipolar sigmoid function, and Nguyen - Widrow weight 
initialization.

Epoch ei e 2 e 3 e4 Total squared error

1 0.560661 1.714 2.04653 0.590102 4.91129

248 0.0131279 0.00419114 0.0176815 0.0149265 0.0499271
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This training took 248 epochs. This result is much better than the result of Case 2. W e 

may say that the Nguyen-Widrow weight initialization can improve the training speed. 

The total squared error reduces very fast after thirty epochs and decreases very slowly 

after 100 epochs (Figure 4.8).

The total squared error
Bytorccamtirn

5

4

3

2

1

Number o f epochs100 150 200 250 300 35050

Figure 4.8 The total squared error of a backpropagation net with bipolar XOR, using the Nguyen- 
Widrow weight initialization to set the initial weights.

Case 6 Hyperbolic tangent sigmoid, bipolar input vectors and bipolar targets.

The result as shovn in Table 4.6.

Table 4.6 The XOR problem with Hyperbolic tangent, and Nguyen - Widrow weight initialization.

Epoch ei e2 e 3 e4 Total squared error

1 0.187592 2.87575 3.26446 0.413912 6.74172

52 0.0142833 0.00287339 0.0190102 0.0134874 0.0496548

This training took 52 epochs (Figure 4.9). At the beginning, the total squared error is 

about 6.74. The graph decreases very quickly two times- the first five epochs and 

between 10 and 15 epochs. The training speed of this example is slower than the 25 

epochs of Example 4.4. This figure is similar to Figure 4.7 (Example 4.4). The 

difference between this example and Example 4.6 is that this example uses the 

Hyperbolic tangert as its activation function rather than the bipolar sigmoid function.
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The total squared error
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Figure 4.9 The total squared error o f  the backpropagation net using the Nguyen-Widrow weight 
initialization. The activation is Hyperbolic tangent with the bipolar XOR problem.

C ase 7 Hyperbolic tangent, bipolar input vectors and modified bipolar targets.

W e use Nguyen - W idrow weight initialization to initialise weights. The result is 

shown in Table 4.7.

T able 4.7 The XOR problem with Hyperbolic tangent, Nguyen - Widrow weight initialization, and 
modified bipolar data.

Epoch ei e2 e 3 e4 Total squared error

1 0.0543445 2.18123 2.53693 0.171688 4.9442

25 0.0133891 0.000442885 0.0193827 0.0103376 0.0435523

A total o f 25 epochs was used (Figure 4.10). The total squared error reduces quickly 

within the first five epochs and again from epochs 10 to 15. Notice that this training 

uses the smallest epoch number of all our examples.
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The total squared error
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Figure 4.10 The total squared error o f a backpropagation net solving the XOR problem. This net uses 
Nguyen-Widrow weight initialization, bipolar input vectors and the modified bipolar targets. The 
activation function is Hyperbolic tangent.

4.8 Summary

Table 4.8 below shows the total number of epochs for each case. There are two 

methods of choosing initial weights.

Table 4.8 We summarize all results o f experiments which compare the activation function and the 

initialization weights in solving the XOR problem.

Initialization weights

Random  [Section 4.7.1] Nguyen-W idrow [ Section 4.7.2]

f i , binary input vectors and binary targets. 2,891 epochs (Case 1) -

f2 , bipolar input vectors and bipolar targets. 387 epochs (Case 2) 248 epochs (Case 5)

f2 , bipolar input vectors and modified 
bipolar targets ± 0 .8 .

264 epochs (Case 3) -

f3, binary input vectors and binary targets. - 77 epochs (Case 4)

f3, bipolar input vectors and bipolar targets. - 52 epochs (Case 6)

f3, bipolar input vectors and modified 
bipolar targets ± 0 .8 .

- 25 epochs (Case 7 )

Case 4 versus Case 6: Difference is in input binary versus bipolar. 
Case 5 versus Case 6: Difference is in activation function.
Case 6 versus Case 7: Difference is in targets only.
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Conclusion For the XOR problem bipolar training is faster than binary, and is further 

speeded up by the use of modified (bipolar) targets. The Nguyen-Widrow weight 

initialization can improve the speed of training. If the net uses Hyperbolic tangent 

sigmoid with modified bipolar targets, and Nguyen-Widrow weight initialization, then 

the speed is very fast indeed.

4.9 Data compression

In this section, we use the backpropagation neural network to compress data. The 

training input vector is the same as the target output vector. This example will use 

data from the set of characters. W e represent each character by 8x7 pixels as shown 

in Figure 4.11 below.

Figure 4.11 Ten characters are used in the data compression.

There are 56 input units in the input layer and 56 output units in the output layer. The 

hidden units are used to compress data, the output units for restoration. The number of 

hidden units are varied each training time. W e also use the initial random weights 

each training time.

How compression occurs Since N = 10 distinct patterns are to be identified, we 

require enough hidden units to transmit 10 distinct vector. The key observation is that 

23 < 10 < 24 , and so four hidden units suffice in the present case (more generally 

log2 N units suffice). Thus, the number of bits used to specify a character is reduced 

from 56 to 4, a compression ratio of 14:1.

The net will learn when every calculated output value is within a defined tolerance of 

the required values (0 or 1). W e use two tolerances- 0.2 and 0.8 in this example. If the 

activation is less than or equal to 0.2, then this unit is ‘off’; and if the activation is
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greater than or equal to 0.8, then this unit is ‘on’. In the same manner, if the 

activation is less than or equal to 0.1, then this unit is ‘o f f ,  and if the activation is 

greater than or equal to 0.9, then this unit is ‘on’. The accuracy of these results was 

evaluated in terms o f 100% correctness of the reconstructed characters in the training 

set.

A  Mathematica Module

Program 1 W e use the backpropagation net to compress data. W e set the tolerance 
and the learning rate to 0.2. W e randomise the initial weights w, v between -0.5 and 
0.5, and use the Nguyen-W idrow Initialization to adapt the initial weights v. The 
target vectors are in binary form.

Result

The number o f hidden units Total error Total epochs

10 2.5 263
11 5.5 216
12 4.5 235
13 0.5 199
14 1.5 191
15 4.5 173
16 4.5 186
17 6.5 172
18 6.0 196
19 6.0 175
20 2.0 160

Total time used = 910 seconds. Notice that the best number of hidden units is 13 
because it obtains the smallest total error 0.5, and its number of epochs is not 
excessive com pared with other cases. The compression ratio is 56:13, or about 4:1.

Program 2 W e use the backpropagation net to compress data. W e set the tolerance 
and the learning rate to 0.1. W e randomise the initial weights w, v between -0.5 and 
0.5, and use the Nguyen-W idrow Initialization to adapt the initial weights v. The 
target vectors are in binary form. Note that the difference condition between Program 
1 and Program 2 is the value of the tolerance.

Result
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The number o f hidden units Total error Total epoch

10 0 589
11 0 660
12 0 565
13 0.5 432
14 0 526
15 0.5 387
16 0.5 463
17 0 383
18 1 380
19 0 336
20 1.5 352

Number of epochs
Eata Ckrrpressicn hy :'Iblerance =0.1 and 0.2

♦Tolerance = 0.1

♦Tolerance = 0.2

12 14 16 18 20 Number of hidden units

Figure 4.12 Number o f epochs required as a function of number o f hidden units for two tolerance- 0.1 
and 0.2.

C onclusion This graph shows that when the tolerance value increases from 0.1 to 0.2, 

the number of epochs reduces to less than 300 epochs. The net learns faster but the 

accuracy is reduced because of setting the value of tolerance.

600

400
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Part 2 Statistical Shape Models 

Chapter 5 SVD, PCA, and Active Shape Models 

Introduction

The purpose of machine vision is to recover the image structure and try to analyze 

what it means. Real Images are complicated and difficult to analyze because of noise. 

W e need to find a model which gives proper examples. One method using Statistical 

Shape M odels can solve the determined patterns of variability in shape and gray-level 

appearance. This method is very good because it can classify noisy and incomplete 

images, and also label the recovered structures. W e approach this method for 

recognizing and locating known rigid objects. It may be used for example in medical 

image interpretation and face recognition so that we can know automatically what 

images represent. W hen we adjust the shape parameters, we can build the synthetic 

shapes which are similar to real face shapes. We will deal with variables because each 

person has his (or her) special characteristics.

W e can use Statistical Shape Models to locate the structure in a target image. Cootes 

[15] uses his Active Shape Model (ASM) to match a Statistical Shape Model to a data 

set of shapes. He can synthesise and analyse a variety of new shapes which are similar 

to shapes in an original shape set. After we have these generating shapes, we can use 

them for other processing, for example, classification. The method of building new 

shapes involves Singular Value Decomposition (SVD) in Section 5.1, and Principal 

Component Analysis (PCA), in Section 5.2, for which we will explain the basic ideas 

below. Then we will show how to label the original images and how to align every 

shape in a common co-ordinate frame using Procrustes Analysis in Section 5.3. Next 

we will explain how to generate new shapes. Finally, we use this Statistical Shape 

M odel to build new shapes of Hand and Face in Section 5.4.
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5.1 Singular Value Decomposition (SVD)

It is well-known that a symmetric matrix A can be diagonalised by some orthogonal 

matrix P. That is, PAPT is a diagonal matrix D, or A = PTDP. The Singular Value 

Decomposition, or SVD, goes further: an arbitrary m x n matrix can be diagonalised if 

we allow two orthogonal matrices.

Theorem 5.1 (SVD) Let A be an m x n matrix of rank r. Then there exist orthogonal 

matrices U and V such that

A = UtDV, (5.1)

where the m x n matrix D is zero off its main diagonal,

~si 0 ... 0 0 0

D =
0

0 . . .  0 0 0
and sj>  S2 > S3> . . .> Si> . .  . sr> 0.

Note The Sj are called the singular values of A.

(m x n)

Remark 5.2 The following idea is used in the M athematica implementation we 

utilise. The formula (5.1) still holds if we replace all but the first r rows of U and V by 

zeros (U and V with these zero rows deleted are called row-orthogonal).

Proof Let U have rows U i , ..., Um, and V have rows V i,..., Vn. Then,

A = UTDV = [U1T...UmT]

- S i  0 ... 0 0 0  -
Vi

sr
0

_ 0  ... 0 0 0  _ _Vn _

= [sjUiT ... srUrT 0 ... 0 ]

V„

= L  s,U,T Vi (I < i < r ) .
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R e m a rk  5.3 W e shall shortly need information about matrices of the form AAT. For 

this, the SVD gives

a a t = u td v v td tu ,
= Ut(DDt)U, since VVT = I.

Hence, (AAT)UT = UT (DDT), (5.2)

where DDT is the diagonal matrix diag (sj2, s 2, ... , s f ,  ..., s f ,  0, . . ., 0). But formula

(5.2) says that the matrix AAT has eigenvalues A* = s f > 0 (1< i < r ) and A,- = 0 for

i > r, with a corresponding orthonormal set of eigenvectors given by the rows o f U.

5.2 P rin c ip a l C om ponen t A nalysis (PCA)

Suppose we have data consisting of samples Xi, ..., Xs of a random vector. Assuming 

a mean o f zero, Principal Component Analysis, or PCA, proceeds briefly as follows. 

The first principal component of the data is a linear combination which exhibits as 

much as possible of the total variance. A unit vector in the direction of this component 

is called the first principal axis (Figure 5.1). W e subtract from each data vector its 

com ponent along this axis. Then the first principal component of the modified data is 

called the second principal component of the original data, and so on. The result is 

conveniently obtained by the SVD, as we now describe. If the data has mean 

X = (l/s )  XkXk (1 <k <s ) ,  its covariance matrix is defined to be

S = l /( i- l)2 k(XI[-X)(Xlt-X )T (lSJfcSi). (5.3)

Oi

X

Figure 5.1 By applying PCA to the data, we can find the principal axes o f a cloud o f n plane points. 
Here o f  is the variance o f the first principal component, which lies along the first principal axis, the 
most important direction represented in the data. The component in the subsidiary second direction has 
variance of-
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R em ark  5.4 S = l/(5 -l) AAT, where A has kthcolumn X k- X ( l < k <  s).

Proof W rite Xk-X  = Zk.

Then, aPk = (Zk)p, the p th element of Zk, and so by definition of matrix multiplication,

(AAT)ij = I k aik ajk = I k (Zk)i (ZJj (5.4)

= I k (ZkZkT)ij, as required.

R em ark  5.5 From  formula (5.4) the (/, f f 1 element of S is

l/Cs-DXk (Zk)i (Zk)j,

which is the (estimated) correlation between the ith and j th variables; the ith diagonal 

element, case j  = i, is

l /(s - l) Ik (Z k)i2,

namely the variance of the i'th variable. Hence S is also called a correlation matrix.

R em ark  5.6 The principal axes of the data may be taken to be the orthonormal set 

of eigenvectors Ui, ..., Um for S, obtained by the SVD for A. The reason is that in 

choosing the Ui as new coordinate axes we make the following changes:

xk-x = zk —»uzk.
A -> UA, (A = [Z, ... Zs])

AAt -> UA(UA)t = U(AAt)Ut

= diag ( i |2. sr2, 0 ....... 0)

(by Remark 5.3), the correlation matrix of the new variables yj, ..., ym. Thus, the new 

(zero mean) variables are listed in decreasing order of variance, and are uncorrelated. 

Also, as will be illustrated in the examples of the next section, we have reduced the 

dimensionality of the data to r, or with little loss, to some t < r.

Note 1 Inserting the factor 5-1 to convert AAT to S simply scales the 

eigenvalues/variances by 1/(5-1).

{Brief reason: BY = X \  o  (a B )V  = (aX)\  (a*0). Now put B = AATand a= 1/(5 -!).)

Hence,

and
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Note 2 If there are significantly fewer variables than samples we may wish to replace 

AAt by the smaller matrix ATA. This is valid essentially because if x is an eigenvector 

of AAt with eigenvalue X ^  0, then x is an eigenvector of ATA with the same 

eigenvalue. [(AAT)x = X x => (ATA) ATx = X ATx]

5.3 Active Shape Models

Suppose we have s images which are considered as variations of one shape (e.g. a 

hand or face). W e aim to represent each image by a shape vector Xj ( \ <j  < s) o f say n 

points, correspondingly placed in each image. The Xj are referred to as training 

examples for the shape.

5.3.1 Landmarking the images

To annotate a shape in this way we must consider how to select good positions. Every 

angle is a good landmark which we can recognize very easily, for example a T- 

junction or a V-junction in Figure 5.2. Where we cannot see any junctions or points of 

high curvature, we will divide the outline by equally spaced points. Each landmark 

point shows a special part of the object or its boundary, and it must be consistent from 

one shape to the next - each point is annotated in a similar way.

Figure 5.2 A T-Juction, a V-Junction, and some filled-in points.

In principle we can create a data set in any dimension d, and then a shape vector of n 

points will have dimension nd. But for simplicity we use plane points z = (x,y), d  = 2, 

and write a shape vector as X = (zj) or in expanded form

X = (zi, z2, ..., zn)T. (5.5)
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The next step is to standardise our shape vectors for ease of comparison, using 

suitable Euclidean Transformations of the plane.

5.3.2 Aligning one shape to another

W e begin with the idea of aligning a shape Xj to a shape X. This means that we 

perform  on every point of Xj the same rotation 6j, uniform scaling by Sj, and 

translation tj, converting Xj to say Tj(Xj), and chosen to minimise the sum of squared 

differences

IX - Tj(Xj)l2.

The full standardisation is carried out with respect to some shape Xo, by the iterative 

procedure below (see Section 5.4 for examples).

5.3.3 Aligning all shapes together (Standardisation)

W e translate each shape X so that the centre of gravity of its points becomes the origin 

by calculating:

z = (1 In) Xk Zk then Zj —» Zj - z (1 < j,k  < n).

Choose Xo of unit length, say Xo = Xi /  IXjl (used as first mean estimate).

Repeat

1. Align each shape to current estimate of mean

2. Recalculate the mean X = Ms X Xj

3. Align the mean with Xo and scale it to unit length 

Until New mean close enough to old.

5.3.4 Generating new shapes

W e apply PCA to our training data, to identify for each vector b (of suitable length) a 

shape M(b), the model defined by b. The objective is to generate from the data a class 

of models which are both acceptable as examples, and of sufficient variety.



79

Motivation fo r  the method In Section 5.2 we showed how to compute from the 

covariance matrix of the data a sequence of principal axes, namely the orthonormal 

vectors {Ui}, so that we can transform to new uncorrelated variables yi, ...,ym where

y i

X = X + [UiT...UmT]

ym

(5.6)

W e recall that the variables y, have zero mean and variances of decreasing sizes, given 

by V(y7) = Ai, V(y2) = A2, ..., V(yr) = A*,

V(y,) = Ai = 0, for i > r.

Thus the modes and variables are listed from the most important down to the least.

800

600

400

200

10 20 30 40 50 60 k

Figure 5.3 This figure shows eigenvalues A* decreasing with k.

Now, most of a normally distributed population lies within 3 standard deviations of 

the mean, in fact a normal random variable y with zero mean and variance o2 satisfies

P(-3a < y <  3d) = 0.997,

Hence, assuming the yt to be normally distributed, we would have

P(-3VA* <yt<3^Xt)  = 0.997.

Guided by this, we vary shapes as mentioned by varying a vector b  of parameters 

b], ...,b t to obtain shapes M (b) of the form

~bj
X = X + [UiT ... UtT]

bt

(■3VA* <b/c<3̂ IXk) (5.7)
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where we use the t m ost important modes o f variation Ui, ..., Ut, for suitable choice 

of t < r. In particular, a given proportion f v of the total variance is supplied 

(“explained”) by these t modes provided

X } + . . .  +  X t >  / v I A  ( i= l,.. .,  r). (5.8)

Thus we c h o o se /v = 0.98 for example, and take the least t satisfying (5.8). W hen we 

know the number t of modes to retain, we can estimate any training shapes to within a 

given accuracy. To check the accuracy we increase the number of modes and test how 

the new images can represent the training set, and we choose the first model that 

passes our desired standard.

5.4 Using Active Shape Models to generate new shapes

In our project, we are interested in Hand and Face shapes. W e will use this Statistical 

Shape Model to build new generated shapes as follows. The first section introduces 

‘hand shapes’.

(I) Hand Shape Models

Program 5.1 W e will generate new hand shapes from twenty original hand shapes 

(Figure 5.4) by using forty-six landmark positions. Therefore a data set of images Xj 

are 92-tuple shape vectors, where j  = 1, ..., 20. These hands are drawn manually on 

grid paper. The true landmarks are the points at the junctions (or angles) and between 

each two true landmarks we will divide into equal distance for each point as noted 

previously.
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20 Original Hands

20
Figure 5.4 The twenty hands used as training data.

This Program will align the hands, calculate a covariance matrix S, and then use SVD 

and PCA to generate new hands as described in Section 5.3.

- 0.3 Figure 5.5 After we have translated, and scaled 20 original hands, we have these 

hands.

- 0.3 Figure 5.6 After we have fixed the orientation, we have these hands.
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-o.i

- 0.2

Figure 5.7 This is a mean shape from 20 original hands.

Figure 5.8 below shows the 5th - 7th shapes after alignment

15 -0>
- 0.1

- 0.1

- 0.2 -0.2

65

-o.i

- 0.2

7

Figure 5.8 These are alignment examples from the original shapes 5th, 6th, and 7th.

After we have aligned every hand, we can generate new shapes. This program obtains 

1,120 synthetic images from twenty original hand shapes. Below, we show examples 

of varying the param eter bt for each mode Uk in turn within the range ±VA*. There are 

eight nonzero eigenvalues, of which we use the greatest six.
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Figure 5.9 W e use each A* to generate shapes in a few different manners. These figures show some 

examples o f them.
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(II) Face Shape Models

The images are taken in the same position by using a common camera. W e use a 

photocopying machine to magnify and print on grid paper before labeling the 

coordinate system of points manually.

For face shapes, we have two Mathematica Implementations. The difference between 

these implem entation is the number of original face shapes (training examples)- 

Program 5.2 uses 9 original face shapes, and Program 5.3 uses 30 original face shapes. 

The purpose is to know how generated shapes improve when the number of original 

shapes increases.

Program 5.2 This program uses 9 original face images (Figure 5.11) with 93 

landmark points for generating faces. Hence each training example represents a 186- 

tuple vector. Every image has the same order of the coordinate system. That means the 

first position of the first image is the same as the second image, etc.

10Q

2030 4050 60 7010 2030 4050 6070 10203040506070,1020 30 40 50 60

100

1020 30 40 50 60 10 20 30 40 501020 30 40 5060 70

Figure 5.10 The nine original faces for Program 5.2.

-B0-20-Z

Figure 5.11 The first original shape is aligned.
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W e use seven eigenvalues A*, i.e. t = l ,  and the parameters bk are varied within limits 

± 4 xk in this program (usually ±3VA*). One original face can produce 7 x 8 = 56 

generated shapes so that nine original faces build 504 images. These generated shapes 

are shown in Chapter 6.

Program 5.3 (Face Project) Previously we used 9 original face shapes, and now we 

increase the num ber of face images to 30 (Figure 5.12). Each image has 92 landmarks. 

W e use an implementation which is very similar to Program 5.2. After aligning face 

shapes, we obtain those as shown in Figure 5.12.

30 original faces

- «  -20 J  \  20

Figure 5.12. The thirty (original) aligned faces for Program 5.3.

W e choose to use 98% of the variance (fv = 0.98), and Equation (5.8) then says we 

should use only the first three modes (i.e. t = 3). W hen we bring out the range of facial
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expressions generated by varying a selection of values -V/l* < bk < VA* and k=  1, 2, 3. 

W e choosed to let one face shape build 29 synthetic face shapes. There are 30 x 29 x 3 

= 2,610 synthetic shapes. Figure 5.13 shows some of them.

Mode 1

Mode 2

Mode 3

Figure 5.13 We show the first six varied shapes of each mode.

Conclusion If we consider images of the face, we shall see that each person has own 

features, for example eyes and mouth expression. The reason is because of a wide 

degree of variation which changes in expression, speaking. Our generated images 

change their expression continuously, as is bom out by the fact that in a sequence of 

screen frames, they give a convincing animation
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Part 3 Illustrative Projects

Chapter 6 LVQ, SOM, and human observation

6.1 Introduction

W e use the synthetic shapes (both Hand and Face shapes from Chapter 5) to classify 

by two methods of artificial neural networks, Kohonen Self-Organizing Maps (SOM) 

and Learning Vector Quantizations (LVQ). Our aim is to codify the extent to which 

the various groupings correspond to human visual observation. W e also make an 

attempt at a classification scheme based on what human vision might pick out. 

Comparing Kohonen and LVQ, we aim to discover which method gives the best 

classification.

Note that the Cases 1-5 will use the training examples from thirty generated hands 

(Figure 6.1), derived from the S111-? 111 original shapes (Figure 5.4). W e select these 

particular shapes because each original shape has its own special characteristics.

The selected 30 hands derived from the 5th to 7th original shapes.

Figure 6.1. Thirty generated shapes are classified by using Cases 1-5. They express different attitudes 

and also keep the original characteristic o f each shape.



6.2 Hand Shapes

In Case 1, we use LVQ to classify the 30 training examples. In Cases 2-5, we use the 

Kohonen SOM method. The difference amongst Cases 2 to 5 is the topological 

structure - No Topological Structure, a Linear Array, a Diamond Structure, and a 

Rectangular Neighbourhood. The aim is to know which structure gives the best result 

- match similar shapes to the same cluster unit, and the fewer groups, the better. 

Finally, we compare the result of LVQ with the result of SOM.

Table 6.1 Conditions.

The SOM Cases  Cases 2-5 have these conditions in common:

1. The learning rate - initial learning rate a  =  0.6.

- the learning rate is reduced by a  =  0.6 - 0.003 t.

2. The initial weights are randomised between 0.1 and 0.9.

Case Learning rate Initial weights Stopping Condition Topology

nbds.

1 (LVQ) 0.1 - 1 / 500 Hands 1-3 a  <  0.02 None

2 (SOM) 0.6 - 0 .003*t 0 .1  to 0.9 a  <  0.01 R =  0

3 (SOM) “ “ “ Linear 
R = 2 -  1 - 0

4 (SOM) “ “ a <  0 Diamond 
R =  1 -0

5 (SOM) a (C a <  0 Rectangular 
R =  1 -0
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C ase 1 An LVQ Case.

W e choose to have three clusters, using as reference vector the 5th - 7th original shapes 

of Figure 5.4 mentioned in Section 6.1 above.

Table 6.2 Reference vectors. Notation is given below.

3f-4f = The third finger closes the fourth finger, 

s = A ll fingers are separated.

n = Normal Hand in the sense that the hand is posted in natural style.

C# = Cluster unit #.

Reference vectors Shape 5 Shape 6 Shape 7

Description 3f-4f s n

Represent C l C2 C3

By using the LVQ method, the result is obtained as shown in Table 6.3.

Table 6.3 LVQ with Hand Shapes.

No. o f Cluster unit Shapes

1 1,2,3,4,7,10,13,16,19,22,28
2 5,8,11,14,17,20,23,26,27,29
3 6,9,12,15,18,21,24,25,30

The cluster units of these shapes are shown below.
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Figure 6.2 The LVQ classification of the selected 30 hands.

The reference vector for Cluster unit 1.

The reference vector for Cluster unit 2.

The reference vector for Cluster unit 3.

Cluster unit 1

Cluster unit 2

Cluster unit 3
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Discussion

Cluster unit 1 W e can characterise this cluster unit by saying the third and fourth 

fingers close together.

Cluster unit 2 Fingers are spread out. Some patterns’ second finger is closest to the 

third. However the fourth and the fifth finger are still spread out.

Cluster unit 3 Fingers are spread out but noticeably less so than in Cluster unit 2. W e

might describe them as the normal hand, i.e. as placed on a table naturally. W e can

mention one or two exceptions (not too much).

The result from  this LVQ method is shown in Table 6.7.

SO M  CASES

Case 2 SOM with No Topological Structure.

We obtain the result as shown in Table 6.4.

Table 6.4 SOM (no topological structure) with 30 Hand Shapes.

No. o f cluster unit Shapes

1 1
2 2,3,4,7,9,10,13,16,19,22,28
3 5,6,8,11,12,14,15,17,18,20,21,23,24,25,26,27,29,30

The shapes are classified as shown below.
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Figure 6.3 The Kohonen classification of the 30 selected hands (R = 0).

Cluster unit 1

Cluster unit 2

28.22 .

Cluster unit 3

30.

Discussion

Cluster unit 1 The 1st shape is not a realistic finger so that it separated from others. 

The striking thing about this group is that it consists of a single inhuman hand. Thus 

the Kohonen method has worked excellently in consigning it to a class on its own. 

The other cases may stretch things a bit, but they do not possess the impossibility of 

the group 1 hand.

Cluster unit 2 These shapes’ third finger is closest to the fourth, and the second finger 

is spread out clearly. The shape 2 ’s fingers are a bit spread out. However, if we 

compare the closest distance, then we found that the third finger is closest to the 

fourth.
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Cluster unit 3 W e can observe that some patterns’ second finger is closest to the third 

finger and not the same as patterns in Cluster unit 2. In more detail, the 6th, 12th are 

normal hands and their second finger is closest to the third. The 20th pattern’s fingers 

are spread out and the second finger is closest to the third finger. But a rough overall 

characterisation is that the fingers are spread out.

C ase 3 SOM with Linear Array.

W e start with R = 2, reducing to R = 1 when 90 < t < 170 and R = 0 when t > 1 7 0 . 

The result is shown in Table 6.5.

Table 6.5 SOM (linear array) with 30 Hand Shapes.

No. o f cluster unit Shapes

6 26
11 27
14 14
16 23,29
17 17
18 20
19 5,11
20 21
22 6,12
23 15,18
24 8,24
25 25,30
26 9
27 2,19
29 3,4,10
30 13,16
31 22,28
32 7
33 1

Some classified shapes from Table 6.5 are shown below.
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Figure 6.4 Some classified hands by using SOM (linear array).

Cluster unit 16 Cluster unit 19 Cluster unit 22

Cluster unit 23 Cluster unit 24 Cluster unit 25

Cluster unit 27 Cluster unit 29 Cluster unit 30

Cluster unit 31

Discussion

The similar hand shapes classified by using SOM (Linear Array) are put to the same 

cluster unit. Hence, this experiment is better than No Topological Structure. However, 

each cluster unit has mostly two shapes except Cluster unit 29 has three shapes. The 

good result should be grouped more than two shapes in the same cluster.
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Case 4 SOM with Diamond neighbourhoods.

W e start with R =  1, reducing to R = 0 when t > 120. The result is shown in Table 6.6.

Table 6.6 SOM (diamond neighbourhoods) with 30 Hand Shapes.

No. o f cluster unit Shapes

2 6,12
4 3,4,10
6 1
7 15
8 18
9 9

11 13,16
12 7
14 21
18 22,28
19 27
20 5,11
22 24,25,30
24 2,19
27 17,23,29
28 8
30 14
31 26
32 20

Some classified shapes from Table 6.6 are shown in Figure 6.5 below.

Figure 6.5 Some classified hands by using SOM (Diamond neighbourhoods).

Cluster unit 11Cluster unit 4Cluster unit 2

Cluster unit 22Cluster unit 20Cluster unit 18

Cluster unit 27Cluster unit 24
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Discussion

The similar hand shapes classified by using SOM (Diamond neighbourhoods) are put 

to the same cluster unit. Moreover, there are three cluster units, i.e. 4, 22, and 27, 

which each cluster unit has three similar shapes. Hence, this experiment is better than 

Linear Array.

Case 5 SOM with Rectangular neighbourhoods.

W e start with R  = 1, reducing to R = 0 when t > 120. The result is shown in Table 6.7.

Table 6.7 SOM (rectangular neighbourhoods) with 30 Hand Shapes.

No. o f cluster unit Shapes

1 6,12,15
3 5,21
4 11,17
5 20
6 26,27
8 18

15 2,9
18 14,23,29
19 3,4,10
22 19
24 8
27 13,16,22
30 24,25,30
31 1
32 7
33 28
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Figure 6.6 Some classified hands by using SOM (Rectangular neighbourhoods).

Cluster unit 1 Cluster unit 3 Cluster unit 4

Cluster unit 6 Cluster unit 15 Cluster unit 18

Cluster unit 19 Cluster unit 27

Cluster unit 30

Discussion

By comparison, the Diamond neighbourhoods have 19 cluster units, but the 

Rectangular neighbourhoods has 16 cluster units. In addition, the similar hand shapes 

from Rectangular neighbourhoods are still put to the same cluster. Moreover, there are 

five cluster units which each cluster has three similar shapes. To conclude, the best 

structure of SOM in these experiments is the Rectangular neighbourhoods. Therefore, 

we select the SOM with Rectangular neighbourhoods to compare with the result LVQ 

(Table 6.8 below).

Discussion and comparison between LVQ and SOM (Rectangular nbds.)

CONCLUSION It seems that Kohonen self-organizing maps are better than Learning 

Vector Quantization because a Kohonen net can classify in more detail. The shapes 

from the same cluster unit are closest to each other.
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W e observe that there are dominant characteristics (description) with which we can 

classify hand shapes by ourselves. Table 6.8 below is the database underlying Table

6.9 and the final clearcut conclusions of Table 6.10.

Classification Scheme

C# = Cluster unit #. 
s = The fingers are spread out.
n = Normal hand in the sense that the hand is posed in natural style.
2f-3f = The second finger is closest to the third finger.
3f-4f = The third finger is closest to the fourth finger.

T able 6.8 Summarize the results o f a LVQ method and a SOM method [Rectangular neighbourhoods] 
with dominant hand description by human.

Hand sh ap es 1 2 3 4 5 6 7 8 9 10
Description 3f-4f 3f-4f 3f-4f 3f-4f 2f-3f n 3f-4f S n 3f-4f

LVQ C1 C1 C1 C1 C2 C3 C1 C2 C3 C1
SOM C31 C15 C19 C19 C3 C1 C32 C24 C15 C19

Hand sh ap es 11 12 13 14 15 16 17 18 19 20
Description s n 3f-4f s n 3f-4f s n 3f-4f s

LVQ C2 C3 C1 C2 C3 C1 C2 C3 C1 C2
SOM C4 C1 C27 C18 C15 C27 C4 C8 C22 C5

Hand sh ap es 21 22 23 24 25 26 27 28 29 30
Description 2f-3f 3f-4f S s s 2f-3f 2f-3f 3f-4f s s

LVQ C3 C1 C2 C3 C3 C2 C2 C1 C2 C3
SOM C3 C27 C18 C30 C30 C6 C6 C33 C18 C30

For example, Hand shapes 1-4 (Figure 6.2) are in Cluster unit 1 by LVQ, and each 

shape’s third finger is closest to its fourth finger. By using Table 6.8, we make Table

6.9 below in order to clarify 4 distinct human classifications.

Table 6.9 Hand Classification by Human.

3f-4f s n 2f-3f

Shapes 1,2,3,4,7,10,13,

16,19,22,28

8,11,14,17,20 

23 ,24,25,29,30

6,9,12,15,18 5,21,26,27

we compare LVQ with SOM in order to find the best method. The good classification 

results depend on the following decision.

(I) (Most important) The number of different shapes should be small number.

(II) (Important) The percentage of error should be very small.
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Note The percentage of error is calculated by using the following.

Percentage of error = (No. of different shapes/Total shape numbers) * 100

Table 6.10 The results o f LVQ and SOM Comparison. The number of shapes different from the 

prevailing shape in their cluster. For example, Shape 5 ‘2 f-3 f  differs from Shape 8, 11, 14, etc. ‘s ’ in 

the same Cluster unit 2 (LVQ).

M ethod No. of different shapes Percentage of error

LVQ 7 23.33%

SOM 2 6.67%

Discussion between LVQ and SOM 

(I) Comparison

LVQ method: an excellent result is that Cluster unit 1 (C l) can put similar shapes ‘3f- 

4 f’ to the same cluster unit correctly. However, there are 7 different shapes which are 

the most im portant impact. The good result should have small different shape number 

as mentioned. This number effects the high percentage of error to 23.33%.

SOM method: there are 2 different shapes. This number effects the percentage of error 

to 6.67%. Although there are small shape numbers in one cluster, these shapes close 

clearly together.

(II) Conclusion

This module again shows that a Kohonen net (SOM method) can classify more details 

than a LVQ net. In addition, the percentage of error is less than the LVQ method. 

Hence, SOM  is more powerful than LVQ in mimicking human vision.
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6.3 Face Shapes

W e select some 63 from 504 synthesised images (Figure 6.7) to classify by Learning 

V ector Quantization (LVQ), and Kohonen Self-Organizing Maps (SOM).

Figure 6.7 The 63 faces for classification.

Selecting only sixty-three generating faces to classify by LVQ and Kohonen methods.

This face - generating module obtains some destroyed mouths implying we might 

have to pay more attention to annotation. In addition, it might give a better result
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when we increase the number of original faces. Now 63 selected generating faces are 

classified by using a LVQ net in Case 6.

Table 6.11 Conditions for Cases 6-7.

Case Learning rate Initial weights Stopping Condition Topology

nbds.

6 (LVQ) 0 1 Ln O O -0.3 to 0.3 a < 0.01 None

7 (SOM) 0.6 - 0.003 * t 0 .1  to 0.9 a< 0 Rectangular 
R =  1 -0

Case 6 LVQ.

There are 6 cluster units. The result is shown in Table 6.12.

Table 6.12 LVQ with 63 Face Shapes.

No. o f Cluster unit Shapes

3 13,17,18,19,20,21,22,53,55
4 4,7,23,24,25,26,27,28,31,32,38,39
5 12,16,30,33,34,35,37,51
6 5,6,14,36,40,41,42,54,56
7 1,3,10,43,45,46,47,48,49,50,52,59
9 2,8,9,11,15,29,44,57,58,60,61,62,63
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Figure 6.8 The LVQ classification of the selected 63 Faces.

Cluster unit 3 13
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Cluster unit 9 2

Discussion
Cluster unit 3  Each mouth is opened wide in common except the 22nd shape. The eyes are opened 

moderately.

Cluster unit 4  Most patterns’ eyes are slightly opened except the 31st shape and the 32nd shape. Their 

mouth is opened very wide except the 38th shape and the 39th shape.

Cluster unit 5  All members’ eyes are opened wider than the other groups. Their mount is also opened 

wide except the 12th shape. Notice that the 37th shape’s mouth is destroyed.

Cluster unit 6  The mouth is opened widely except the 40th-42th shapes. One mouth is 

destroyed. The eyes are opened wide but less than members in Group 5.



103

Cluster unit 7  The mouth is closed some mouths are destroyed. The mouth from the 3rd shape is opened 

moderately.

Cluster unit 9  The mouth is closed or opened very slightly except the second pattern. Their eyes are 

opened wide. In more detail, the mouths from the 8th and the 57th shapes are destroyed.

Conclusion

The result from this LVQ application is not satisfactory because there are some members, from the 

same group, which are still different from most o f them. This program is not able to characterise the 

especially evidence clearly.

Case 7 SOM with Rectangular neighbourhoods.

W e start with R = 1, reducing the radius R to 0 when t > 0. The result is shown in 

Table 6.13.

T able 6.13 SOM (rectangular neighbourhoods) with 63 Face Shapes.

No. o f Cluster unit Shapes

i 10,38,59
2 52
3 7
4 4,5
6 2,27,31
7 19
8 39
10 53,55,56
12 3
19 54
20 14
21 6,17
23 24
24 25,26
25 32
26 33,34,35
28 40 ,41,42
29 15
30 11,12,13
31 20
33 28
41 18
42 21
44 63
45 61
46 9,62
47 29
48 47
50 1,8,50
52 16
53 37,51
58 48
61 23,30
63 44
64 58
65 60
66 22,46
67 49
68 45
70 36,43,57
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W e show a selection to illustrate this because there are many groups and each group 

has at m ost three members. All patterns are shown in Figure 6.9. For example, Cluster 

26 has Shapes 33rd - 35th so that:

Figure 6.9 Some classified faces by using SOM (Rectangular neighbourhoods).

Cluster unit 4Cluster unit 1 Cluster unit 6

55

Cluster unit 24Cluster unit 21 Cluster unit 26

33

Cluster unit 30 Cluster unit 46Cluster unit 8

Cluster unit 53 Cluster unit 61Cluster unit 50

23

Cluster unit 70Cluster unit 66

Discussion

M ost of these shapes are put to the right place. Each cluster has the similarly 

expressed face shapes. For example, three shapes in Cluster unit 1 have the slightly 

opened eyes and closed mouths. In addition, their eyebrows and face structure close 

each other. However, there are five different shapes (27, 17, 42, 37, 23) put in the 

wrong cluster unit. For example, Shape 37 has the destroyed mouth rather than the 

opened mouth.
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Discussion and Comparison between LVQ and SOM

Table 6.14 below is the database underlying Table 6.15 and the final clearcut 
conclusions of Table 6.16.

Classification scheme

C# = Cluster unit #.
mcs = The mouth is between closed and opened slightly 
mw = The mouth is opened, 
ms = The mouth is opened slightly, 
mm = The mouth is opened moderately, 
md = The mouth is destroyed, 
mso = The mouth has the “o” shape.

ew = The eyes are opened wide, 
es = The eyes are opened slightly, 
em = The eyes are opened moderately, 
esm = The eyes are opened between 

slightly and moderately.

Table 6.14 Database for Comparing a LVQ method with a KOHONEN method [Rectangular 
Neighbourhoods].

Patterns 1 2 3 4 5 6 7 8 9 10 11
Description em,md em.mw es.mm es,mm ew,mw ew,mw es,mm em.md ew,mm em.mcs ew.mso

LVQ C7 C9 C7 C4 C6 C6 C4 C9 C9 C7 C9
KOHONEN C50 C6 C12 C4 C4 C21 C3 C50 C46 C1 C30

Patterns 12 13 14 15 16 17 18 19 20 21 22
Description ew.mso ew.mso ew.mso em.md em.mw es.mm esm.mw ew.mw esm.mw es.mw es.mcs

LVQ C5 C3 C6 C9 C5 C3 C3 C3 C3 C3 C3
KOHONEN C30 C30 C20 C29 C52 C21 C41 C7 C31 C42 C66

Patterns 23 24 25 26 27 28 29 30 31 32 33
Description es.mw es.mw es.mw em.mw es.mw es.mw ew.mcs em.mw em.mw ew.mw em.mw

LVQ C4 C4 C4 C4 C4 C4 C9 C5 C4 C4 C5
KOHONEN C61 C23 C24 C24 C6 C33 C47 C61 C6 C25 C26

Patterns 34 35 36 37 38 39 40 41 42 43 44
Description ew.mw em.mw em.md em.md em.mcs em.mcs ew.mcs ew.mcs em.mcs em.md em.mcs

LVQ C5 C5 C6 C5 C4 C4 C6 C6 C6 C7 C9
KOHONEN C26 C26 C70 C53 C1 C8 C28 C28 C28 C70 C63

Patterns 45 46 47 48 49 50 51 52 53 54 55
Description em.mcs em.mcs em.mcs ew.mcs em.mcs em.md esm.mw es.mm esm.mw em.mw esm.mw

LVQ C7 C7 C7 C7 C7 C7 C5 C7 C3 C6 C3
KOHONEN C68 C66 C48 C58 C67 C50 C53 C2 C10 C19 C10

Patterns 56 57 58 59 60 61 62 63
Description ecm.mw ew.md em.mm em.mcs ew.mm ew.mm ew.mcs em.mcs

LVQ C6 C9 C9 C7 C9 C9 C9 C9
KOHONEN C10 C70 C64 C1 C65 C45 C46 C44
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Table 6.15 Face Classifications by Human.

Group 1 Group 2 Group 3 Group 4 Group 5
Description
Shapes

mcs,em
22,44,46,
47,48,49
10,38,45,59
38,42,63

mcs,ew
29,40,41,61

mm,em
9,58,60,62

mw,ew
30,32,33,34,35

mcs,em
18,20,51,53
55,56

Description
Shapes

Group 6 
mm,es 

4,3,7,17,52

Group 7 
mw,em 
2,5,6,16, 
19,31,54

Group 8 
mw,es 
21,23,24,25  
26,27,28

Group 9 
mso,em 
11,12,13,14

Group 10 
md,em 
1,8,15,36,37  
43,50,57

Table 6.16 The results o f LVQ and SOM Comparison. The number o f shapes different from the 

prevailing shape in their cluster.

M ethod No. of different shapes Percentage of error

LVQ 35 55.56%

SOM 5 7.94%

(I) Comparison

LVQ method: There are 35 different shapes so that the percentage of error is high.

Kohonen method: There are 5 different shapes which give the percentage of error less 
than the percentage of error of SOM method.

(II) Conclusion

This Kohonen application is excellent because it is able to characterise each pattern 
clearly. Each member in the same group is very close to each other and they also have 
similar expression.

Final Conclusion
(compare a Kohonen application with a LVQ application)

A Kohonen net can give the result more precisely than a LVQ net. To summarize, the 
Kohonen method is a better human than the LVQ method.
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6.4 Main Project (117 Face shapes)

In Chapter 5, we built 2,610 generating faces. We now select 117 generated face 

shapes (Figure 6.10 below), selected from the first 13 original shapes and each shape 

is varied by the first 3 modes, to classify them by using Learning Vector Quantization 

(LVQ) in Case 6, and Kohonen Self-Organizing Maps in Case 7.

Figure 6.10 The 117 faces to classify.
The 2nd modeThe 1st mode The 3r mode

Shape 1

nr) nr) nr

Shape 2

■?r 
o ,

Shape 3

v r )  n r )  n r

22

Shape 4

7 r  
o ,

Shape 5

•?r\ nr) nr  o  / o  o
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Figure 6.10 (Continued)

Shape 6

Shape 7

Shape 8

Shape 9

Shape 10

O
“? r
O

~?r
O

Shape 11

o ,o

Shape 12

100  \ - /  101 

Shape 13
105 106 107 108102 103 104

115 116109 110 112 113 114 117

Generating face images (from 30 original faces).

In Figure 6.10, the faces from the same shape and the diagonal element are very close 

to each other. For example, eyes of one face look in the same direction. If the eyes are
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closed, then the eyes of the other are closed, or vice versa. If one mouth is opened 

wide, then the mouth of the other, from the same shape, is open wide as well.

Table 6.17 Conditions for Cases 8-9.

Case Learning rate Initial weights Stopping Condition Topology
nbhds.

8 (LVQ) 0.1 - f / 5 0 0 -0.3 to 0.3 a  < 0.01 None

9 (SOM) 0.7 - 0.00233 0 .1  to 0.9 a  < 0.001 Rectangular 
R =  1 -0

C ase 8 LVQ with 117 FACE shapes. 

There are three cluster units. The result is shown in Table 6.18.

Table 6.18 LVQ with 117 Face Shapes.

No. o f Cluster unit Shapes

1 1,2,3,10,11,12,19,20,21,28,29,30,37,38,39,46,47,48,55,56,57,
64,65,66,73,74,75,82,83,84,91,92,93,100,101,102,109,110,111

2 4,5,6,13,14,15,22,23,24,31,32,33,40,41,42,49,50,51,58,59,60, 
67,68,69,76,77,78,85,86,87,94,95,96,103,104,105,112,113,114

3 7,8,9,16,17,18,25,26,27,34,35,36,43,44,45,52,53,54,61,62,63,
70,71,72,79,80,81,88,89,90,97,98,99,106,107,108,115,116,117

Figure 6.11 The LVQ Classification of the 117 Faces.

Cluster unit 1

110109101 102100
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Figure 6.11 (Continued)

Cluster unit 2

103 x 104 '

Cluster unit 3

These are classifications by using the LVQ method.

Discussion

Cluster unit 1 The eyes look right hand side. The mouth is opened moderately. Some 

patterns’ mouth is opened slightly but some mouths of them are opened widely. 

Cluster unit 2 The eyes are almost closed. The mouth is opened very widely. In more 

detail, some patterns’ eyes look down, but some eyes of them look up.

Cluster unit 3 Each pattern has a similar pattern. W e show a selection to illustrate this. 

The person’s mouth is opened moderately and the right eye is winking. The eyes are 

looked left hand side.

Conclusion

This classifying program, LVQ, gives good results because the members of each 
group have a very similar shape in facial expression. Although, for example, Shapes 
1-3 are a bit different from Shapes 5-7. All members look similar.
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C ase 9 Kohonen SOM with Rectangular neighbourhoods. 

The reason why we reduce the learning rate a  by a(t) = 0.7 - 0 . 0 0 2 3 3 is we wish to 

reduce it very slowly over many epochs - there are 300 epochs. W e start with R = 1, 

reducing to R  = 0 when t > 180. The result is shown in Table 6.19.

Table 6.19 SOM (rectangular neighbourhoods) with 117 Face Shapes.

No. o f cluster unit Shapes

1 67,68,69
3 103,104,105
5 31,32,33
7 76,77,78
9 13,14,15
19 58,59,60
21 40,41,42
23 43,44,45,61,62,63
25 4,5,6
27 22,23,24
37 85,86,87
39 94,95,96
41 88,89,90
43 79
44 80
45 81
55 49,50,51
57 112,113,114
59 34,35,36,106,107,108
61 91,92,93
63 82,83,84
73 70,71,72
75 52,53,54
77 97,98,99,115,116,117
79 109,110,111
81 73,74,75
91 16,17,18
93 64,65,66
95 46,47,48
97 10,11,12
99 37,38,39,55,56,57

109 7,8,9,25,26,27
111 19,20,21
113 1,2,3
115 28,29,30
117 100,101,102

Some examples are shown below.
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Figure 6.12 Some cluster examples of the Kohonen Classification of 117 Faces.

Cluster unit 23

Cluster unit 57 112 113 114

av / a

. j  .
V /  108 V /Cluster unit 59 106 107

? r

Cluster unit 77 116115 117

Cluster unit 99

Cluster unit 109 7

The members of cluster units 23, 57, 59, 77, 99, and 109.

Discussion
For example, Cluster unit 57 has shapes 112, 113, and 114 so that it has been shown in Figure 6.11. 

The mouth o f each pattern is opened widely. The eyes are opened moderately and are focused in a 

downward direction. More examples, Cluster unit 77 has Shapes 97, 98, 99, 115, 116, and 117. The 

right eye o f each shape is winking and looking left hand side. The mouth is opened moderately. Cluster 

unit 99 has Shapes 34, 35, 36, 106, 107, and 108 as shown in the same figure below. The mouth o f each 

pattern is opened moderately but it is wider than each shape in Cluster unit 77. In addition, each pattern 

in Cluster unit 99 is not the same as each pattern in Cluster unit 77 because the top o f face is more 

rough jagged. It does work in many places except Shapes 79, 80, and 81 because they are not in the 

same group, but these shapes are very similar to each other (see Figure 6.13).

Figure 6.13 Shapes 79, 80, and 81 close together, but they are classified, by SOM, to different Cluster 

units.

Conclusion

This Kohonen method classified each pattern in depth details. The members of a 

cluster are very close to each other. For example, members in Cluster unit 99, have



113

their mouths opened wider than members in Cluster 77, and the top of face is more 

rough and jagged than those of members in Cluster 77.

Discussion and Comparison between LVQ and SOM

Table 6.20 below is the database underlying Table 6.21 and the final clearcut 

conclusions of Table 6.22.

Classification Scheme

es = Eyes straight 
er = Eyes right, 
el = Eyes left, 
eu = Eyes up. 
ed = Eyes down.

eo = Eyes is opened, 
ec = Eyes is closed, 
wr = Right eye is winking.

ms = Mouth is opened slightly, 
mw = Mouth is opened wide, 
mm = Mouth is opened moderately, 
me = Mouth is closed.

Table 6.20 Database for comparing LVQ with Kohonen (rectangular neighbourhoods).

Patterns 1 2 3 4 5 6 7 8 9 10 11
Desciption er,ms er.ms er,ms ed.mw ed,mw ed.mw el,wr,mm el,wr,mm el,wr,mm er,ms er,ms

LVQ G1 G1 G1 G2 G2 G2 G3 G3 G3 G1 G1
KOHONEN G113 G113 G113 G25 G25 G25 G109 G109 G109 G97 G97

Patterns 12 13 14 15 16 17 18 19 20 21 22
Desciption er,ms ec,mw ec.mw ec.mw el,wr,mm el.wr.mm el,wr,mm er.ms er.ms er.ms ed,mw

LVQ G1 G2 G2 G2 G3 G3 G3 G1 G1 G1 G2
KOHONEN G97 G9 G9 G9 G91 G91 G91 G111 G111 G111 G27

Patterns 23 24 25 26 27 28 29 30 31 32 33
Desciption ed.mw ed.mw el.wr.mm el.wr.mm el.wr.mm er.ms er.ms er.ms ec.mw ec.mw ec.mw

LVQ G2 G2 G3 G3 G3 G1 G1 G1 G2 G2 G2
KOHONEN G27 G27 G109 G109 G109 G115 G115 G115 G5 G5 G5

Patterns 34 35 36 37 38 39 40 41 42 43 44
Desciption el.wr.mm el.wr.mm el.wr.mm er.ms er.ms er.ms ec.mw ec.mw ec.mw el.wr.mm el.wr.mm

LVQ G3 G3 G3 G1 G1 G1 G2 G2 G2 G3 G3
KOHONEN G59 G59 G59 G99 G99 G99 G21 G21 G21 G23 G23

Patterns 45 46 47 48 49 50 51 52 53 54 55
Desciption el.wr.mm er.ms er.ms er.ms ec.mw ec.mw ec.mw el.wr.mc el.wr.mc el.wr.mc er.ms

LVQ G3 G1 G1 G1 G2 G2 G2 G3 G3 G3 G1
KOHONEN G23 G95 G95 G95 G55 G55 G55 G75 G75 G75 G99

Patterns 56 57 58 59 60 61 62 63 64 65 66
Desciption er.ms er.ms ec.mw ec.mw ec.mw el.wr.mm el.wr.mm el.wr.mm er.ms er.ms er.ms

LVQ G1 G1 G2 G2 G2 G3 G3 G3 G1 G1 G1
KOHONEN G99 G99 G19 G19 G19 G23 G23 G23 G93 G93 G93

Patterns 67 68 69 70 71 72 73 74 75 76 77
Desciption eu.mm eu.mm eu.mm el.wr.mc el.wr.mc el.wr.mc er.mw er.mw er.mw ec.mw ec.mw

LVQ G2 G2 G2 G3 G3 G3 G1 G1 G1 G2 G2
KOHONEN G1 G1 G1 G73 G73 G73 G81 G81 G81 G7 G7

Patterns 78 79 80 81 82 82 84 85 86 87 88
Desciption ec.mw el.wr.mw el.wr.mw el.wr.mw er.mw er.mw er.mw ec.mw ec.mw ec.mw el.wr.mw

LVQ G2 G3 G3 G3 G1 G1 G1 G2 G2 G2 G3
KOHONEN G7 G43 G44 G45 G63 G63 G63 G37 G37 G37 G41

Patterns 89 90 91 92 93 94 95 96 97 98 99
Desciption el.wr.mw el.wr.mw er.ms er.ms er.ms ec.mw ec.mw ec.mw el.wr.mm el.wr.mm el.wr.mm

LVQ G3 G3 G1 G1 G1 G2 G2 G2 G3 G3 G3
KOHONEN G41 G41 G61 G61 G61 G39 G39 G39 G77 G77 G77

Patterns 100 101 102 103 104 105 106 107 108 109 110
Desciption er.ms er.ms er.ms ec.mw ec.mw ec.mw el.wr.mm el.wr.mm el.wr.mm er.ms er.ms

LVQ G1 G1 G1 G2 G2 G2 G3 G3 G3 G1 G1
KOHONEN G117 G117 G117 G3 G3 G3 G59 G59 G59 G79 G79

Patterns 111 112 113 114 115 116 117
Desciption er.ms es.mw es.mw es.mw el.wr.mm el.wr.mm el.wr.mm

LVQ G1 G2 G2 G2 G3 G3 G3
KOHONEN G79 G57 G57 G57 G77 G77 G77
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Discussion between LVQ and SOM

(I) Comparison

Table 6.21 below shows a classification obtained by human observation. Then Table 

6.22 compares the agreement of LVQ and SOM with this.

Table 6.21 Shape Classification by Human.

Group 1 Group 2 Group 3 Group 4 Group 5

el,wr,mw el,wr,mc el,wr,mm eu,mm es,mw

Shape 79,80,81,
88,89,90

52,53,54,
70,71,72

7,8,9,16,17,
18,25,26,27,
34,35,36,43,
44,45,61,62,
63,97,98,99,
106,107,108,
115,116,117

67,68,69 112,113,114

Group 6 Group 7 Group 8 Group 9

ed,mw ec,mw er,ms er,mw

Shape 4,5,6,22,
23,24

13,14,15,31,
32,33,40,41,
42,49,50,51,
58,59,60,76,
77,78,85,86,
87,94,95,96,
103,104,105

1,2,3,10,11,12,
19,20,21,28,29,
30,37,38,39,46,
47,48,55,56,57,
64,65,66,91,92,
93,100,101,102
109,110,111

72,73,74,
82,83,84

Table 6.22 Comparison between LVQ and SOM.

Method No. of different shapes Percentage of error

LVQ 30 25.64%

SOM 0 0.00%
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(II) Conclusion

Table 6.22 comfirms strongly that for our (limited) data a Kohonen is better than a 

LVQ  in that it classifies shapes more in line with human observation.

Broad conclusion for hands and faces

If the generating patterns are very similar, 30 faces program, then an LVQ method is 

able to characterise human intuition well for our data, but a Kohonen method can 

characterise in depth. Otherwise, if the generating patterns are very different, then a 

Kohonen method is able to characterise much better than the LVQ method.
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Appendix 

Mathematica 

Chapter 2

Example 2.5  (page 23)
spc[x_,t_]:=M odule[{ w,b,a,0,i,j,c,done,y,yin},w={ 0,0,0} ;0=O.2;oc=l;

print[“*******************”]-Print[“ Net Out w”]* 
Print[“*******************”],done=False- 
For[j=l,done==False,j++,Print[“Epoch “,j];done=True; 

Do[yin=w.x[[i]];If[yin>0,y=l,If[yin<-0,y=-l,y=O]];If[y!=t[[i]],
w =w +at[[i]] x[[i]];done=False];Print[“ “,yin,” “,y,” “,w],{i,4}]]];

x={ {1,1,1},{1,0,1 },{0,1,1 },{0,0,1} };t={ 1,-1,-1,-1}; 
spc=[x,t];

Example 2.6  (page 26)
Mathematica Module
spc[x_,t_] :=Module[ {w,b,a,0,i,j,c,done,y,yin} ,w=Table[0, { i,Length[x]} ] ;0=O. 1 ;oc=l;

Print[“*******************”]-Print[“ Net Out w”] ’ 
Print[“*******************”]-done=False- 
For[j=l,done==False,j++,Print[“Epoch “,j];done=True; 

Do[yin=w.x[[i]] ;lf[yin>0,y= 1 ,lf[yin<-0,y=-1 ,y=0]] ;If[y !=t[[i]], 
w =w+a t[[i]] x[[i]];done=False];
Print[“ “,yin,” “,y,” “,w],{i,Length[x]}]]];

x={ {1 ,1 ,1 ,1},{1 ,1 ,0 ,1},{1 ,0 ,1 ,1  } ,{0 ,1,1,1} };t={ 1,-1,-1,-1};spc=[x,t];

Example 2 .7 (page 26)
spc[x_,t_]:=M odule[{w ,b,a, 0,i,j,done,yin,y},w=Table[0,{i,Length[x[[ 1 ]]]}];

0 = 0 .1 ;a= 1 ;done=False;
For[j=l,done==False,j++, done=True;

Do[yin=w.x[[i]] ;yin>0,y= 1 ,If[yin<- 0 ,y= -1 ,y=0]];
If[y!=t[[i]],w=w+a t[[i]] x[[i]];done=False],

{i,Length[x]}]];Return[w}] ;

test[w_,ch_]:=M odule[{i ,0 },0=0.1 ;Do[Print["Character ",i];
If[w[[i]].ch> 0,Print["Yes"],If[w[[i]].ch<-0;Print["No"], 

Print["Unsure"]]],{i,Length[w]}]];

perc[x_,t_} :=Module[ { w ,i,u}, w=Table[0, {7}, {64} ];
Do[u=Transpose[t][[i]];w[[i]]=spc[x,u],{i,7}];Do[test[w,ch[[i]]],{i,Length[ch]}];

x={{ 1, 1, - 1, - 1, 1, 1, 1, 1, 1 , 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1,

1, 1, 1, - 1, - 1, - 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, - 1, - 1, - 1,

1, - 1, - 1, - 1, 1 } , { - 1, - 1 , - 1, - 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1,

1, 1, 1, 1, - 1, 1, - 1, - 1, - 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1,

1, 1, - 1, - 1, - 1, - 1, - 1, - 1 , - 1, 1, 1 } , { 1, 1, - 1, - 1, - 1, - 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, - 1, 1,

1, 1, 1, 1, 1, - 1, 1, 1, 1, 1 , 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1,

1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, - 1, - 1, - 1, 1, 1 } , { - 1, - 1, - 1, - 1, - 1, 1, 1, 1, - 1, 1, 1, 1, - 1,

1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1,

1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, - 1, 1, - 1, - 1, - 1, - 1, - 1, 1, 1, 1 }, { - 1, - 1, - 1, - 1, - 1, - 1, - 1,

1, - 1, 1, 1, 1, 1, - 1, 1, - 1 , 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, - 1, - 1, 1, 1, 1, 1, - 1,

1, - 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, 1 } , { 1, 1,
1, - 1, - 1, - 1, - 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1,

1, 1, 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, - 1, 1, 1,
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1 } , { - 1, - 1, - 1, 1, 1, - 1, - 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1,1, - 1, 1, 1, 1, 1, - 1, - 1, 1, 1, 1,1, 
1, - 1, - 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, - 1,
1, - 1, - 1, - 1, 1, 1, - 1, - 1, 1}};  

t={ { 1,-1,-1,-1,-1,-1,-1},{-1,1,-1,-1,-1,-1,-1 } ,{ - l ,- l ,
1,-1,-1,-1,-1 } ,{ - l ,  -1,-1,1,-1,-1,-1}, {-1,-1, -1,-1, 
i,-i,-i },{■!,-i,-i,-i.-i,i,-i },{-i,-i,-i,-i.-i,-i,i}}; 

ch = {{1 , 1, 1, 1, 1, 1, 1, 1, 1, 1 ,-1 , 1, 1, 1, 1, 1, 1 ,-1 , 1, 1, 1, 1 ,1 ,-1 , 1 ,-1 , 1, 1, 1, 1 ,-1 , 1 ,-1 , 1, 1, 1, 
- 1, - 1, - 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, - 1, - 1, - 1, 1, - 1, - 1, - 1, 1},
{ 1, - 1, - 1, - 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, - 1, - 1, - 1, - 1,
1, 1, - 1, 1, 1, 1,1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, - 1, - 1, - 1, - 1, 1, 1},

{ 1, 1, - 1, - 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1,
1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, - 1, - 1, - 1, - 1, 1, 1},

{ 1, 1, - 1, - 1, - 1, 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, 
-1, 1, 1, 1,1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, -1, - 1, - 1,1, 1, 1},
{ - 1, - 1, - 1, - 1, - 1, - 1, - 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, - 1, - 1, 1, 1, 1, 
1, -1, 1, -1, 1, 1, 1,1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, -1, -1, -1, -1, -1, -1, -1, -1, 1},

{ 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1,

1, 1, - 1, 1, 1, - 1, 1,1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, - 1, 1, 1, 1},
{ 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, - 1, 1, 1, 1, 1, 1, - 1, - 1, 1, 1, 1, 1, 1, 

- 1, 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, 1 }};
Print["This Char is tested"]
Do[ListDensityPlot[Reverse[Partition[ch[[i]],7]]],{i,Length[ch]}];
perc[x,t]

Example 2 .8  (page 28)
spc[x_,t_]:=M odule[{w,b,a,0,i,j,done,yin,y},w=Table[O,{i,Length[x[[l]]]}];0=O.l;oc=l;done=False; 

For[j= 1 ,done==False,j++, done=True;
Do[yin=w.x[[i]] ;lf[yin>0,y=l ,lf[yin<-0,y=-1 ,y=0]]; 

If[y!=t[[M od[i-l,7]+l]],w=w+ce t[[M od[i-l,7]+ l]] x[[i]];
done=False],{i,Length[x]}](*End Do*)];(*End For*)Return[w]]; 

perc[x_,t_] :=Module[ {w ,i,u}, w=Table[0, {7}, {64} ];
Do[u=Transpose[t][[i]];w[[i]]=spc[x,u];(*Training*)

Print["w[[" ,i,"]]= ",w[[i]]],{i,7}];(*End Do*)Retum[w]]; 
test[w_,ch_] :=Module[ {i,0,found,chs,y ,t} ,0=0.1 ;y=Table[0, {7} ];

Do[If[w[[i]].ch>0,y[[i]]=l,If[w[[i]].eh<-0,y[[i]]=-l,Print["Unsure"]]],

{i,Length[w]}];(*End Do*)Print["Tested Input ",a];Print["w.ch = ",w.ch];

Print["Therefore y= ",y];found=False;t={-l,-1,-1,-1,-1,-1,1 };chs="ABCDEJK";

For[i=l,i<7,i++,t=RotateRight[t];If[y==t,Print["The Character is ",

StringTake[chs, {i } ]] ;found=True]](*End For*)

If[found==False,Print["No Character"]];Print["...................................................."]];

x={{ 1,1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,-

1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, - 1, - 1, - 1, 1, - 1, - 1, - 1, 1}, { - 1, - 1, - 1, - 1, - 1, - 1,1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1,-

1, 1,1, 1,1,-1, 1,-1,-1,-1,-1,-1,1, 1,-1,1,1,1,1,-1,1,-1,1,1,1, 1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1} ,{ 1,1,-1,- 

1, - 1, - 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1,-

1, 1, 1, 1, 1, - 1,1, 1, - 1, - 1, -1, - 1, 1, 1} , { - 1, - 1, - 1, - 1, - 1, 1, 1, 1, -1, 1, 1,1, - 1, 1, 1, - 1,1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1,-

1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, -1, 1, 1, 1, - 1, 1, - 1, - 1, -1, - 1, -1, 1, 1, 1} , { - 1, - 1, - 1, - 1, -1, - 1, - 1, 1,-

1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, - 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, - 1,- 

1, - 1, - 1, - 1, - 1, - 1, - 1, 1} , { 1, 1, 1, - 1, - 1, - 1, - 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1,- 

1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1,1, 1, -1, - 1, - 1, 1, 1, 1 } , { - 1,- 1, - 1, 1, 1, - 1, - 1, 1, - 1, 1, 1, - 1, 1, 1, 1,-
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1,1,-1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1.1,1,1,-1,1,-1,1,1,1,1,--1,1,1,-1,1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,-1,- 

l , l}(*Inputl*) ,

{1,1,1, -1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,-1,-1,-1,- 

1,1,1,-1,1,1,1,-1,1,1,-1,1,1,1,-1,1,1}, {-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,- 

1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1},{1,1,-1,-1,-1,1,1,1,-

1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, 1, - 1, - 1, 1,1, 1, 1,1, 1, - 1,1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1,- 

1,-1,-1,1,1,1},{-1,-1,-1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,- 

1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1},{-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-

1, 1,1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, - 1, - 1, - 1, - 1,1, 1, - 1, 1, 1, 1,1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, - 1, - 1, - 1, - 1, - 1,- 

1, 1} , { 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1,-

1,1,1,-1,1,1,1,-1,1,1,1,-1,-1,-1,1,1,1},{-1,1,1,1,1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,-1,1,1,1,-1,1,-1,1,1,1,1,-1,-

1.1.1.1.1.1,-1,1,-1,1,1,1,1,-1,1,1,-1,1,1,1,-1,1,1,1,-1,l , l , - l , l , l , l , l , - l , l , l } ( * I n p u t 2 * ) ,

{1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-

1.1.1.1.1.1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,1,-1,-1,1},{-1,-1,-1,-1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,- 

1,-1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1},{1,1,-1,-1,-

1,1,-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-

1,1,1,1,-1,1,1,1,-1,-1,-1,1,1,1},{-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-

1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1},{-1,-1,-1,-1,-1,-1,-1,1,-

1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, - 1, - 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, - 1,- 

1, - 1, - 1, - 1, - 1, - 1, - 1, 1} , { 1, 1, 1, 1, - 1, - 1, - 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, -

1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,-1,1,1,1,-1,-1,-1,1,1,1},{-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,-1,1,1,-

1,1,1,-1,1,1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,1,-1,1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-  

i , i } } ;

t = { { i , - i , - i , - i , - i , - i , - i } , { - i , i , - i , - i , - i , - i , - i } , { - i , - i , i , - i , - i , - i , - i } , { - i , - 1, -1, 1,-1,-1,-1} ,{ -1,-1,- i , - i , 1, -1,- 

1}, {-1,-1,-1,-1,-1,1,-1}, {-1,-1,-1,-1,-1,-1,1}};

ch={{ 1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,-

1,1,-1,1,-1,1,1,-1,1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1},{-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,-

1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1},{1,1,-1,- 

1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,1,-

1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,1},{-1,-1,-1,-1,-1,1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,1,1,1,1,-1,-1,1,1,1,-1,1,-

1,1,1,1,1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1},{-1,-1,1,-1,-1,-1,-1,1,-

1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, - 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1,- 

1, - 1, - 1, - 1, - 1, - 1, - 1, 1} , { 1, 1, 1, - 1, - 1, 1, - 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1,-

1,1,1,1,1,1,1,1,1,1,-1,1,1,1,-1,1,1,1,1,1,-1,-1,1,1,1,-1,-1,-1,1,1,1},{-1,1,-1,1,1,1,-1,1,-1,1,1,-1,1,1,1,-

1,1,-1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,1,-1,-  

1,1} (*Tested Input 1 *),

{ 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, - 1, - 1, - 1, 1, - 1, 1,-

1,1,1,1,1,1,1,-1,1,1,1,-1,1,-1,1},{-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,-

1,1,-1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1},{1,1,-1,-1,-1,1,1,1,-
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1,1,1,1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,1,- 

1, 1, 1, 1, 1, 1, 1, 1, - 1, - 1, - 1, 1, 1, 1 } , { 1, - 1, - 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, 1, - 1, - 1, 1, 1, 1, 1, 1, - 1, - 1, - 1,-

1,1,1,1,- 1 ,-1 ,1 ,1,1,1,1,-1,1,1,1,1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,-1,-1,-1,1,1,1},{1,-1,-1,-1,-1,-1,-1,- 

1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, - 1, - 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1,-

1, 1, 1, 1, 1, 1, - 1, - 1, - 1, - 1, - 1, - 1, 1} , { 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1,-

1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1} , { 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1,-

1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1,- 

1,1,1,1,1,1,1,1,1,1,1 }(*Tested Input 2*),

{ 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1, - 1, 1, 1,1, - 1, 1, 1, 1, - 1, 1, - 1, 1, 1, - 1, 1, 1, 1, 1, 1,- 

1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1},{-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-

1, 1, - 1, - 1, 1, 1, 1, 1, - 1,1, - 1, 1, 1, 1, 1, - 1, - 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, 1, 1} , { 1, 1, -1, - 1, - 1, 1,-

1, 1, - 1, 1, 1, 1, - 1, - 1, - 1, 1, 1, 1, 1, 1, - 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, 1, 1,-

1, 1,1, 1, 1, - 1, - 1, 1, 1, 1 } , { - 1, - 1, - 1, - 1, - 1, 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, - 1, 1,1, 1, 1, -1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, -1, - 1, 1,1, 1, 1,-

1, 1,1,1, 1, - 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1, - 1, - 1, - 1, 1, 1, 1} , { - 1, - 1, - 1, - 1, - 1, - 1, - 1, 1, - 1, 1, 1, 1, 1, - 1, 1,-

1, 1, 1, - 1, 1, 1, - 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, - 1, 1, - 1, - 1, 1, - 1, - 1,- 

1, 1 } , { 1, 1, 1, 1, - 1, - 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, - 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1,-

1, 1, 1, - 1, 1, 1, 1, 1, 1, 1 , 1, - 1, - 1, - 1, 1, 1, 1 } , { 1, - 1, - 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, - 1,-

1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,1,-1,1,1,1,-1,1,1,1,1,1,1,-1,-1,1,1,-1,-1,1}};

Print["These Chars are tested."]

Do[ListDensityPlot[Reverse[Partition[ch[[a]],7]]],{a,Length[ch]}]

FrameBox[StyleBox["Finally Weight Changes","Section"]]//DisplayForm  

w=perc[x,t];Print[""];Do[test[w,ch[[a]]],{a,Length[ch]}];

Chapter 3

Example 3.1 (page 33)

Maxnet[e_]:Module[{a, k, m, j, ac},a ={0.25, 0.45, 0.65, 0. 85};done = False; ac = a;

For[m =l, done = = False, m++, done = True; Print[“Epoch = “, m];

Do[x = a[[j]] - e Sum[a[[k]],{k, Length[a]}]-a[[j]]);

lf[x>0,ac[[j]] = x, ac[[j]] = 0], {j, Lengthfa]}]; (*End Do*)

Print[ac]; If[Count[ac,0] < Lengthfac] - 1, done = = False, 

done = True];a = ac](*End For*)];

Maxnet[0.1];
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Example 3.2 (page 35)

Lvq[x_, m_, n_] := M odule[{i, j, norm, a, d, w, a , done, T, C}, w = {{1, 0, 0, 0}, {0, 0, 1, 0}}; 
a  = 0 . 1 ; C = { l , 2 } ; T = { l ,  1, 2}; done = False;

For[i = 1, done == False, i++, Print["Epoch ", i];
Do[xnew = Table[x[[a]], {Length[w]}]; d = xnew - w;

norm = Table[d[[j]].d[[j]], {j, Length[w]}]; 
j = Position[norm, M in[norm]][[l, 1]];
If[C[[j]] == T[[a]], w[[j]] = w[[j]] + a  (x[[a]] - w [[j]]),
(*Else*) w[[j]] = w[[j]] - a  (x[[a]] - w [[j]])];
Print["j= ", j , " ", w[[j]]], {a, Length[x]}];
(*End Do*) Print["a ", oc= a  - i/100]; 

done = (a  < 0.01)] (*End For*) ]; 
x={ {1, 1, 0, 0 } ,{1 , 0, 0, 1 },{0, 1, 1, 0 } };Lvq[x,3,4];

Example 3.3  (page 36)
Lvq[x_,m_,n_] :=Module[ {i,j ,norm,xnew,a,d,w,a,done,T,C}, w= {{0 ,0}, {1,1}, {1,0}, {0,1}};
T={ 1,1,1,1,1,1,1,3,3,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1,1,3,

3,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,2,2,4,4,4,4,4,2,2,
2,2,4,4,4,4,4,2,2,2,2} ;done=False; a  =0.1 ;C= {1,2,3,4};

For[i=l,done==False,i++,Print["Epoch ",i]; 
Do[xnew=Table[x[[a]],{Length[w]}];d=xnew-w; 
norm=Table[d[[j]].d[|j]],{j,Length[w]} ]; 
j=Position[norm,Min[norm]][[l,l]];Print["Closest node ",j]; 

If[C[[j]]==T[[a]],w[[j]]=w[[j]]+a (x[[a]]-w[[j]]),(*ELSE*)
w [[j]]=w[0]]- a  (x[[a]]-w[[j]])],{a,Length[x]}];(*END DO*) 
Print["w= ",N[w,2]];Print["a = ",a = a  -(i/625)]; 
done=(a<0.02)](*END FOR*)]; 

x= {{0 .1 ,0 .1}, {0.2,0.1}, {0.3,0.1}, {0.4,0.1}, {0.5,0.1}, {0.6,0.1}, {0.7,0.1}, {0.8,0.1},
{0 .9 ,0 .1},{0 .1 ,0 .2],{0 .2 ,0 .2},{0 .3 ,0 .2},{0 .4 ,0 .2},{0 .5 ,0 .2},{0 .6 ,0 .2},{0 .7 ,0 .2},
{0 .8 ,0 .2},{0 .9 ,0 .2},{0 .1 ,0 .3},{0 .2 ,0 .3},{0 .3 ,0 .3},{0 .4 ,0 .3},{0 .5 ,0 .3},{0 .6 ,0 .3},
{0 .7 ,0 .3},{0 .8 ,0 .3},{0 .9 ,0 .3},{0 .1 ,0 .4},{0 .2 ,0 .4},{0 .3 ,0 .4},{0 .4 ,0 .4},{0 .5 ,0 .4},
{0.6 ,0 .4}, {0.7,0.4}, {0.8,0.4}, {0.9,0.4}, {0.1,0.5}, {0.2 ,0 .5},{0 .3 ,0 .5}, {0.4,0.5},
{0 .5 ,0 .5},{0 .6 ,0 .5},{0 .7 ,0 .5},{0 .8 ,0 .5},{0 .9 ,0 .5},{0 .1 ,0 .6},{0 .2 ,0 .6},{0 .3 ,0 .6},
{0 .4 ,0 .6},{0 .5 ,0 .6},{0 .6 ,0 .6},{0 .7 ,0 .6},{0 .8 ,0 .6},{0 .9 ,0 .6},{0 .1 ,0 .7},{0 .2 ,0 .7},
{0.3,0.7}, {0.4,0.7}, {0.5,0.7}, {0.6,0.7}, {0.7,0.7}, {0.8,0.7}, {0.9,0.7}, {0.1,0.8},
{0 .2 ,0 .8},{0 .3 ,0 .8},{0 .4 ,0 .8},{0 .5 ,0 .8},{0 .6 ,0 .8},{0 .7 ,0 .8},{0 .8 ,0 .8},{0 .9 ,0 .8},
{0 .1 ,0 .9},{0 .2 ,0 .9},{0 .3 ,0 .9},{0 .4 ,0 .9},{0 .5 ,0 .9},{0 .6 ,0 .9},{0 .7 ,0 .9},{0 .8 ,0 .9},{0 .9 ,0 .9}}; 
Lvq[x,81,2];

Example 3.4  (page 40)
Som[x_, m_, n_] : = Module[{a, j, i, d, w, a , R, done, t, xnew, norm}, 

w = {{0.1, 0.8, 0.5, 0 .9},{0 .2 , 0.5, 0.1, 0 .9}}; a  = 0.6;
Print[“Initial weights = “, w]; R = 0; done = False;

For[t=l, done==False, t++, Print[“Epoch “, t];
Do[xnew = Table[x[[a]], {m}]; d= xnew- w; norm = Table[d[[j]].d[[j]],{j, m}]; 

Print[“norm= “, N[norm,2]]; J = Position[norm, M in[norm ]][[l,l]]; 
Print[“Closest to node “, j]; w[[j]] = [[j]] + a  (x[[a]]-w[[j]]);
Print[“w = “, N[w,2]],{a, Length[x]}];(*End Do*)

Print[“ ______________________________________________”];
Print[“ a  = “, N [a  = 0.96 a , 2]];done = (a < 0.01)](*End For*)];

x = { {1 ,0 , 0 ,0 } ,{ 0 , 1 ,0 , 1},{1, 0, 1 ,0 } ,{0 , 0, 1, 1}}; 
Som[x, 2, 4];
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Case 1 (page 41)
Som[x_, m_, n_]:=M odule[{a, j, i, d, w, a , R, done, t, xnew, norm}, 

w=Table[N[Random[Real, {0.1,0.9} ], 1 ], {25}, {63} ]; cx=0.6;
Print["Initial weight matrix w= ",w// MatrixForm];R=0;done=False;
For[t=l,done= =False, t++, Print["Epoch ",t];

Do[ xnew=Table[x[[a]],{m}];d=xnew-w;norm=Table[d[[j]].d[[j]],{j,m}];
Print["norm= ",N[norm,2]];j=Position[norm, M in[norm ]][[l,l]];
Print["Closest to node ",j];w[[j]]=w[[j]]+<x (x[[a]]-w[[j]]),{a, Length[x]}];(*End Do*)

Print["------------------------------------------- "];Print["a= ",N[ot=0.96 a,2]];done=( a<0.01)]
(*End For*)];

x={{ 1,1,0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,1,0,1,0,1,1,1,0, 
0,0,0,0,1,1,0,1,1,1,0,1,1,0,1,1,1,0,1,0,0,0,1,0,0,0}, {0,0,0,0,0,0,1,1,0,
1,1,1,1,0,1,0,1,1,1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0,1,1,0,1,1,1,1,0,1,0,1,
1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0,0,1},{1,1,0,0,0,0,0,1,0,1,1,1,1,0,0,1,1,
1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,
1,1,0,1,1,0,0,0,0,1},{0,0,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,1,1,1,0,1,0,1,1,
1,1,0,1,0,1,1,1,1,0,1,0,1,1,1,1,0,1,0,1,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,
1,1},{0,0,0,0,0,0,0,1,0,1,1,1,1,0,1,0,1,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,1,
1,1,1,0,1,0,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0},{1,1,1,0,0,
0,0,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,
1,1,0,1,1,1,0,1,1,0,1,1,1,0,1,1,1,0,0,0,1,1},{0,0,0,1,1,0,0,1,0,1,1,0,1,
1,1,0,1,0,1,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,1,1,0,1,1,
1.0.1.1.1.0.1.0.0.0.1.1.0.0} (*input 1 *),

{1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,1,0,1,0,1,1,1,0,1,
1.1.0.1.1.0.0.0.0.0.1.1.0.1.1.1.0.1.1.0.1.1.1.0.1},{0,0,0,0,0,0,1,0,1,1,1,1,1  

,0 ,0,1,1,1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,1,1,0,0,1  
,1,1,1,1,0,0,0,0,0,0,0,1},{1,1,0,0,0,1,1,1,0,1,1,1,0,1,0,1,1,1,1,1,0,0,1,1,1  
,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,1,1},

{0,0,0,0,0,1,1,0,1,1,1,1,0,1,0,1,1,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1,1,1,0,0,1,1,
1,1,1,0,0,1,1,1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0,1,1},{0,0,0,0,0,0,0,0,1,1,1,1,
1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,
1,1,1,1,1,1,0,0,0,0,0,0,0},{1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,
1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,1,0,1,1,1,0,0,0,1,1}, 

{0,1,1,1,1,0,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,1,0,1,1,1,1,0,0,1,1,1,1,1,0,1,0,
1.1.1.1.0.1.1.0.1.1.1.0.1.1.1.0.1.1.0.1.1.1.1.0.1} (*Input2*),

{1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,1,0,1,0,1,1,1,0,1,1,1,0,1,1,0,0,
0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,1,1,0,0,0,1,1,1,0,0},{0,0,0,0,0,0,1,1,0,1,1,1,
1.0.1.0.1.1.1.1.0.1.0.0.0.0.0.1.1.0.1.1.1.1.0.1.0.1.1.1.1.0.1.0.1.1.1.1.0.1,
0,1,1,1,1,0,0,0,0,0,0,0,1},{1,1,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,1,1,1,0,0,1,1

,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,1,1}, 
{0,0,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,1,1,1,0,1,0,1,1,1,1,0,1,0,1,1,1,1,0,1,0,
1,1,1,1,0,1,0,1,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,1,1},{0,0,0,0,0,0,0,1,0,1,1,1  
,1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,1,1,0,1,1,0,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0  
,1,1,1,1,0,0,0,0,0,0,0,0},{1,1,1,1,0,0,0,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1  
,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,0,1,1,1,0,0,0,1,1},
{0,0,0,1,1,0,0,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,1,0,1,1,1,1,0,0,1,1,1,1,1,0,
1,0,1,1,1,1,0,1,1,0,1,1,1,0,1,1,1,0,1,0,0,0,1,1,0,0} (*input3*)} ;Som [x,25,63];

Case 4  (page 43)
Som[x_, m_, n_]:=Module[{a, j, i, d, w, a,done, t, xnew, norm, 5,p.}, 

w=T able [N [Random [Real, {0.1,0.9} ], 1 ], {25}, {63} ]; 
oc=0.6; p = Sum[x[[i]], {i, Length[x]}} /  Length[x]; Print[“p = “, p];
5 = 1 / Length[x] * Sum[(x[[a]] - p ) . (x[[a]] - p), {a, Length[x]}]; Print[“8 = “, 5}; 
Printf" Initial weight matrix w= ",w// MatrixForm];done=False;

For[t=l,done = = False, t++, Print["Epoch ",t];
Do[ xnew=Table[x[[a]],{m}];d=xnew-w;norm=Table[d[[j]].d[[j]],{j,m}];
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Print["norm= ",N[norm,2]];j=Position[norm, M in[norm ]][[l,l]]; 
Print["Closest to node ",j]; w [[j]]=w[[j]]+a (x[[a]]-w[[j]]),

{a, Length[x]}];(*End Do*) Print[".......................................  "];
Print["a = ",N[cx= a  Exp[ - (1/ 5),2]];done=( a <  0.01)](*End For*)];

x={{ 1,1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1},{-1,-1,-1,-1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-
1,1,1,1,1,-1,1,-1, -1,-1,-1, -1,1,1, -1 ,1 ,1 ,1 ,1 ,-1 ,1 ,-1 ,1 ,1,1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1},{1,1,-1,- 
1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,1,-
1,1,1,1,1,-1,1,1,-1,-1,-1,-1,1},{-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-
1,1,1,1,1,-1,1,-1,1,1,1,1, -1,1, -1,1,1,1,1,-1,1,-1,1,1,1,-1,1,-1, -1 ,-1,-1,-1,1,1}, {-1,-1, -1,-1, -1,-1, -1,1,-
1,1,1,1,1,-1,1,-1,1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,1,1,-1,-1,- 
1,-1,-1,-1,-1,-1},{1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-
1,1,1,-1,1,1,1,-1,1,1,-1,1,1,1,-1,1,1,1,-1,-1,-1,1,1},{-1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,1,1,-1,1,-1,1,1,1,1,- 
1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,1,-1,1,1,1,-1,1,1,1,-1,1,-l , - l ,- l , l , l , - l ,- l} (* in p u t l* ) ,  
{1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,-1,-1,-1,-
1,1,1,-1,1,1,1,-1,1,1,-1,1,1,1,-1,1},{-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,- 
1,-1,-1,-1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1},{1,1,-1,-1,-1,1,1,1,-
1,1,1,1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-1,1,1,1,-1,1,1,1,- 
1,-1,-1,1,1},{-1,-1,-1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,- 
1,-1,1,1,1,1,1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1},{-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-
1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,- 
1},{1,1,1,1,1,-1 ,1 ,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,-
1,1,1,-1,1,1,1,-1,1,1,1,-1,-1,-1,1,1},{-1,1,1,1,1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,-1,1,1,1,-1,1,-1,1,1,1,1,-1,-
1 .1 .1 .1 .1 .1 , - l , l , - l , l , l , l , l , - l , l , l , - l , l , l , l , - l , l , l , l , - l , l , l , - l , l , l , l , l , - l , l } ( * I n p u t 2 * ) ,
{1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-
1.1.1.1.1.1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,1,-1,-1},{-1,-1,-1,-1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,-1,- 
1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1},{1,1,-1,-1,-1,1,-
1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,1,-1,1,1,1,-
1,1,1,1,-1,-1,-1,1,1},{-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-
1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1},{-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,1,-
1,1,1,-1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,- 
1 } ,{1 ,1,1,1,-1,-1,-1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-
1,1,1,-1,1,1,1,-1,1,1,1,-1,-1,-1,1,1},{-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,-1,1,1,1,-1,1,-1,1,1,1,1,- 
1,-1,1,1,1,1,1,-1,1,-1, l , l , l , l , - l , l , l , - l , l , l , l , - l , l , l , l , - l , l , - l , - l , - l , l , l , - l , - l } ( * I n p u t 3 * ) } ;
Som[x,25,63];

Case 6 (page 44)
Som[x_, m_, n_]:=Module[{a, j, i, d, w, a , done, t, xnew, norm, Nb, s}, 

w=Table[N[Random[], 1 ], {25}, {63} ] ;Nb= {-1,0,1}; a  =0.6;
Print["Initial weight matrix w= ",w // MatrixForm];done=False;

For[t=l,done= =False, t++, Print["Epoch ",t];
Do[ xnew=Table[x[[a]],{m}];d = xnew-w; norm=Table[d[[j]].d[[j]],{j, m}]; 

Print["norm= ",N[norm,2]];j=Position[norm, M in[norm ]][[l,l]]; 
Print["Closest to node ",j];
D o[s = j + Nb[[i]];If[l < s < m ,w [[s]]=w [[s]]+a (x[[a]]-w[[s]])]

, {a, Length[x]} ](*End Do*)
Print["-------------------------------------------"];Print[" a  = ",N[ a  =0.96 a ,2]];

done=( a  <0.01)](*End For*)];
Som[x,25,63];

Case 7 (page 45)
Som[x_, m_, n_]:=M odule[{a, j, i, d, w, a , done, t, xnew, norm, Nb, s},

w=Table[N[Random[Real, {0.1, 0.9} ], 1 ], {25}, {63} ] ;Nb= {-1,0,1}; a  =0.6; 
Print["Initial weight matrix w= ",w // MatrixForm];done=False; 
For[t=l,done= =False, t++, Print["Epoch ",t]; If[t > 60, Nb = {0};
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Print[“Nb = Nb]]; Do[ xnew=Table[x[[a]],{m]];d = xnew-w;
norm=Table[d[[j]].d[[j]],{j, m}];Print["norm= ",N[norm,2]]; 
j=Position[norm, Min[norm]][[l,l]];Print["Closest to node "j];

D o[s = j + Nb[[i]];If[l < s < m ,w[[s]]=w[[s]]+ a  (x[[a]]-w[[s]])]
,{i, L ength[N b]]], {a, Length[x]}](*End Do*)

Print[“ ------------------------------------------------------ ”];
Print[“a  = N [a  = 0.6 - 0.0059*t, 2]]; done = ( a  < 0.01)](*End For*)];

Case 8  (page 46)
Som [x_, m_, n_]:=Module[{a, j, i, d, w, a , done, t, xnew, norm, Nb, s, p.,5 ], 

w=Table[N[Random[], 1], {25},{63}];
|ii= Sum [x[[i]],{i, Length[x]}] /Length[x];Print[“ p = ”, p .];N b={-l,0 ,l}; a  =0.6;
8 = 0;Print["Initial weight matrix w= ",w // MatrixForm];done=False;

For[t=l,done= =False, t++, Print["Epoch ",t];
Do[ 5 = 8+ (x[[a]] - p .) .  (x[[a]] - p./Length[x]; xnew=Table[x[[a]],{m}]; 
d = xnew-w; norm=Table[d[[j]].d[[j]],{j, m]];Print["norm= ",N[norm,2]]; 
j=Position[norm, Min[norm]][[l,l]];Print["Closest to node ",j];

Do[s = j + Nb[[i]];If[l < s < m ,w[[s]]=w[[s]]+a (x[[a]]-w[[s]])]
,{i, Length[Nb]}],{a, Length[x]]](*End Do*)

Print["......................................................... "];
Print[" a  = ",N[ a  = a*  Exp[ - 1/ 8,2]];done=( a  <0.01)](*End For*)];

Case 9 (page 46)
Som[x_, m_, n_]:=Module[{a, j, i, d, w, a , done, t, xnew, norm, Nb, s, p.,8], 

w=Table[N[Random[Real,{ 0.1, 0 .9}],1 ],{25},{63]];
5 = (x[[a]] - p. ) .  (x[[a]] - p) /  Length[x];
p= Sum [x[[i]],{i, Length[x]}] /Length[x];Print[“ p = ”, p.];Nb= {-1,0,1}; a  =0.6;
8 = 0;Print["Initial weight matrix w= ",w // MatrixForm];done=False;

For[t=l,done= =False, t++, Print["Epoch ",t]; If[ t > 70, Nb = {0};
Print[“Nb = “, Nb];Do[ 5 = 8+ (x[[a]] - p ) .  (x[[a]] - p) / Length[x]; 
xnew=Table[x[[a]],{m}];d = xnew-w; norm=Table[d[Ij]].d[[j]],{j, m}]; 
Print["norm= ",N[norm,2]];j=Position[norm, M in[norm ]][[l,l]];
Print["Closest to node ",j];

D o[s = j + Nb[[i]];If[l < s < m ,w[[s]]=w[[s]]+a (x[[a]]-w[[s]])],
{i, Length[Nb]}],{a, Length[x]}](*End Do*)

Print["-— -----------------  "];
Print[" oc = ",N[ a = a*  Exp[ - 1/ 8],2]];done=( a  <0.01)](*End For*)];

Case 10 (page 47)
Som[x_,m_,n_]:=M odule[{a,j,i,d,w,a,done,t,xnew,norm,Nb,s},

w=Table[N[Random[], 1 ], {25}, {63} ] ;Nb= {-1,0,1,63,-63} ;ot=0.6;
Printflnitial weight matrix w= ",w//MatrixForm];done=False; 

Fortt=l,done==False,t++, Printf’Epoch ",t];
Dot xnew=Table[x[[a]],{m}];d=xnew-w;norm=Table[d[[j]].d[[j]],{j,m}]; 
Print["norm= ",N[norm,2]];j=Positiontnorm,Min[norm]][[l,l]];
Printf'Closest to node ",j];

Do[s=j+N b[[i]];If[l<s<m ,w [[s]]=w [[s]]+a(x[[a]]-w [[s]])],
{i .Length [Nb]} ], {a,Length [x]}](*EndDo*)

Print["—  -----------------------------"];
Print["cx= ",N[a=0.96 a,2]];done=(a<0.01)](*End For*)];

Case 11 (page 48)
Som[x_, m_, n_]:=Module[{a, j, i, d, w, a,done, t, xnew, norm, 8,p,},

w=Table[N[Random[Real,{ 0.1,0.9} ], 1 ], {25}, {63} ]; ct=0.6;
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p .  = Sum[x[[i]], {i, Length[x]}] /  Length[x]; Print[“p = j l l ] ;

5 = 1 /  Length[x] * Sum[(x[[a]] - j l l )  . (x[[a]] - p), {a, Length[x]}]; Print[“5 = 5];
Nb = {-63, -1, 0, 1, 63}; Print["Initial weight matrix w= ",w//MatrixForm]; 
done=False;
For[t=l,done = = False, t++, Print["Epoch ",t]; If[70 < t < 100, Nb = {-1, 0, 1}; 
Print[“Nb = “, Nb]; If[100 < t < 186, Nb= {0}; Print[“Nb = “, Nb]];

Do[ xnew=Table[x[[a]],{m }];d=xnew-w;norm=Table[d[[j]].d[[j]],{j,m }]; 
Print["norm= ",N[norm,2]];j=Position[norm, M in[norm ]][[l,l]];
Print["Closest to node " j];w [[j]]=w [[j]]+a (x[[a]]-w[[j]]);

,{a, Length[x]}];(*End Do*)
Print["................................................  "];
Print["a = ",N[a= a  Exp[ - (1/ 5),2]];done=( a <  0.01)](*End For*)];

Case 12 (page 49)
Som[x_, m_, n_]:=M odule[{a,j,i,d,w,a,done,t,xnew,norm,5,p},

w=Table[N[Random[Real, {0.1,0.9}], 1 ], {25}, {63} ]; oc=0.6;
Nb = {-63, -1, 0, 1 ,63};
Print["Initial weight matrix w= ",w//MatrixForm];done=False;
For[t=l,done = = False, t++, Print["Epoch ",t];

If[70 < t < 100, N b =  { -1 ,0 , 1};Print[“Nb = “, Nb];
If[100 < t < 186, Nb= {0}; Print[“Nb = “, Nb]];

Do[ xnew=Table[x[[a]],{m}];d=xnew-w;norm=Table[d[[j]].d[(j]],{j,m}]; 
Print["norm= ",N[norm,2]];j=Position[norm, M in[norm ]][[l,l]]; 
Print["Closest to node ",j];w[[j]]=w[[j]]-KX (x[[a]]-w[[j]])

,{a, Length[x]}];(*End Do*)
Print["-------------------------------------------"];
Print["a = ",N[ot= a  Exp[ - (441/ 19912),2]];done=( a <  0.01)](*End For*)];

Case 13 (page 50)
Som[x_,m_,n_]:=Module[{a,j,i,d,w,oc,done,t,xnew,norm,Nb,s},

w=T able[N[Random[], 1 ], {25}, {63} ] ;Nb={ -1,0,1,63,-63} ;ot=0.6;
Print["Initial weight matrix w= ",w//MatrixForm];done=False;

For[t=l,done==False,t++, Print["Epoch ",t];If[60<t<80, Nb= {-1,0,1}];
If[t > 80, Nb = {0}]; Print[“ Nb= “, Nb];
Do[ xnew=Table[x[[a]],{m}];d=xnew-w;norm=Table[d[[j]].d[|j]],{j,m}]; 
Print["norm= ",N[norm,2]];j=Position[norm,Min[norm]][[l,l]]; 
Print["Closest to node " j];
Do[s=j+N b[[i]];If[l<s<m ,w[[s]]=w[[s]]+a (x[[a]]-w[[s]])]
, { i,Length[Nb]}], {a,Length[x]} ](*End Do*)
Print["-------------------------------------------"];

Print["a= ",N[oc=0.96 a,2]];done=(a<0.01)](*End For*)];

Case 14 (page 51)
Som[x_,m_,n_]:=M odule[{a,j,i,d,w,a,done,t,xnew,norm,Nb,s},

w =T able[N [R andom [],l],{25},{63}];N b={-l,0 ,l,63,-63, 62, -62, 64, -64};oc=0.6; 
Print["Initial weight matrix w= ",w//MatrixForm];done=False; 

For[t=l,done==False,t++, Print["Epoch ",t]; If[t>= 80, Nb={0}];Print[“Nb = “,Nb];
Do[ xnew=Table[x[[a]],{m }];d=xnew-w;norm=Table[d[[j]].d[[j]],{j ,m }]; 

Print["norm= ",N[norm,2]];
j=Position[norm,Min[norm]][[l,l]];Print["Closest to node "j]; 

D o[s=j+N b[[i]];If[l<s<m ,w [[s]]=w [[s]]+a(x[[a]]-w [[s]])],
{i,Length[Nb]}], {a,Length[x]} ](*End Do*)
Print["................... ....................................."];

Print}"a= ",N[a= 0.6 - 0.00012 t ,2]];done=(a<0.01)](*End For*)];
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Exam ple 3.4  (page 54)
Tsp[city_,m_,n_]:=M odule[{a,j,i,d,w,a,done,t,xnew,norm,Nb,s,wei,ci},

w={ {0.72,1}, {0.92,0.66}, {0.4,0.39}, {0.78,0.55}, {0.47,0.74}, {0.74,0.49},
{0.82,0.59}, {0.7,0.34}, {0.37,0.27}, {0.74,0.13}} ;a=0.5;
Print["Initial weight matrix weight mattix w= ",w//MatrixForm];done=False;
For[t= 1 ,done==False,t++,Print["Epoch " ,t];

Do[xnew=Table[x[[a]], {m } ] ;d=xnew-w;norm=Table[d[[j]].d[[j]], {j,m } ];
Print[" norm= " ,N[norm,2]] ;j=Position [norm,Min[norm] ] [[ 1,1 ]];
Print["Closest to node ",j] ;If[t<= 100,Nb={ -1,0,1 };Do[s=j+Nb[[i]];
If[ l<=s<=m ,w [[s]]=w [[s]]+a (x[[a]]-w[[s]]);Print["w[[M,s,"]]= ",w[[s]]]],{i,Length[Nb]}]; 
oc=0.5-0.001*t ,(*Else*) N b={0};w [[j]]=w [[j]]+a (x[[a]]-w[[j]]);
Print["w[[",j,"]]= ",N[w[[j]],2]];(x=0.4-0.002*(t-100)](*End if*)
,{a,Length[x]}](*End Do*);done=(a<0.02);Print["cx= ",N[a,2]];

Print["w= ",N[w,2]//MatrixForm];Print["------------------------------- "]];(*End For*)
wei= ListPlot[ w,Prolog->AbsolutePointSize[3] ,Frame->True,
PlotRange-> {{0 ,1 } ,{0 ,1 }} , AspectRatio-> 1 ];
ci=ListPlot[x,Prolog->AbsolutePointSize[5],PlotRange->{ {0,1}, {0 ,1}},

Frame->T rue, AspectRatio-> 1 ] ];

Chapter 4

Case 7 (page 63)
Bp61[x_] := Module[ {w ,y,qj,ak,v,a,i,z,p,n,done,zin,yin,dfyin,dfzin,delw.ain,delv,e,j,etotal}, 

v =  {{0.1970, 0.3099, -0.3378}, {0 .3191,0.1904, 0.2771}, {-0.1448, -0.0347, 0.2859}
,{0.3594,-0.4861, -0.3329} };done = False; etotal = Table[0, {3000}];e = TablefO, {4}]; 

w =  {0.4919, -0 .2913,-0 .3979, 0 .3581,-0 .1401}; t = {0, 1, 1 ,0 }; a  = 0.2;

(*FeedForward*)
For[i = 1, done == False, i++,

Do[zin = Table[x[[n]].v[[j]], {j, Length[v]}];z = Table[l/(1 + Exp[-zin]]; 
dfzin = Table[z[[p]]*(l - z[[p]]), {p, Length[zin]}];z = Append[z, 1]; yin = w.z; 
y = 1/(1 + Exp[-yin];dfyin = y*(l - y);

(*Backpropagation error*)
dk = (t[[n]] - y)*dfyin;delw = a*ak*z;ain = Table[ak*w[[j]], {j, 4}];aj = ain*dfzin; 
delv = a*Table[oj[[j]]*x[[n]], {j, Lengthfqj]}];

(*Update weights & biases*)
w = w + delw;v = v + delv; e[[n]] = (y - t[[n]])A2;Print["e[[", n, "]]= ", e[[n]]], {n, Lengthfx]}]; 

(*End Do*) etotal[[i]] = Sum[e[[p]], {p, Length[x]}];Print["total error", i, "= ", etotal[[i]]]; 
done = (etotal[[i]] < 0.05)]; (*End For*)
ListPlot[etotal,PlotJoined -> True,PlotRange ->{ {1, 3000},{0, 1.2} },Frame->True,AspectRatio-> 1, 

PlotLabel -> StyleForm[Backpropagation, "section"]]]; 
x={ {1,1,1},{1,0,1 } ,{0 ,1 ,1 } ,{0 ,0 ,1 }};Bp61 [x];

Case 2 (page 64)
Bp61[x_] := M odule[{w,y,qj,ak,v,a,i,z,p,n,done,zin,yin,dfyin,dfzin,delw,ain,delv,e,j,etotal}, 

v = {{0.1970, 0.3099, -0.3378}, {0.3191, 0.1904, 0.2771},{-0.1448, -0.0347, 0 .2859},
{0.3594, -0.4861, -0.3329}}; done = False; etotal = Table[0, {388}];e = Table[0, {4}]; 

w =  {0.4919, -0 .2913,-0 .3979, 0.3581,-0.1401};t = {-1, 1, 1,-1 };oc = 0.2;

(*Feed Forward*)
For[i = 1, done == False, i++,

Do[zin = Table[x[[n]].v[[j]], {j, Length[v]}];z = Table[2/(1 + Exp[-zin] - 1]; 
dfzin = Table[0.5*(l + z[[p]])*(l - z[[p]]),{p,Length[zin]}];z =Append[z, 1]; yin = w.z;
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y = 2/(1 + Exp[-yin]) - l;dfyin = 0.5*(1 + y )* (l - y);

(*Backpropagation error*)
ok  = (t[[n]] - y)*dfyin;delw = a*ak*z;ain  =  Table[ak*w[[j]], {j, 4}];aj = ain*dfzin; 
delv = a*Table[oj[[j]]*x[[n]], {j, Length[oj]}];

(*Update weights & biases*)
w = w + delw;v = v + delv; e[[n]] = (y - t[[n]])A2;Print["e[[", n, "]]= ", e[[n]]], {n, Length[x]}]; 

(*End Do*) etotal[[i]] = Sum[e[[p]], {p, Lengthfx]}];
Print["total error", i, "= ", etotal[[i]]]; 
done = (etotal[[i]] < 0.05)]; (*End For*)
ListPlot[etotal,PlotJoined->True,PlotRange->{ { 1,388},{0, 5 }} ,Frame -> True, AspectRatio->l, 

PlotLabel -> StyleForm[Backpropagation, "section"]]]; 
x = { { l , l , l } , { l , - l , l } , { - l , l , l } , { - l , - l , l } } ; B P61[x];

Case 3 (page 64)
B p 61 [x_] :=M odule[{w ,y,oj,ok,v,a,i,z,p,n,done,zin,yin,dfyin,dfzin,delw,oin,delv,e,j,etotal}, 

v = {{0 .1970, 0.3099, -0 .3378], {0.3191, 0.1904, 0 .2771},{-0.1448, -0.0347, 0 .2859],
{0.3594, -0.4861,-0.3329} ]; done = False; etotal = Table[0, {265}];e = Table[0, {4}]; 

w = {0.4919, -0.2913, -0.3979, 0.3581, -0.1401}; t = {-0.8, 0.8, 0.8, -0.8}; a  = 0.2;

(*Feed Forward*)
For[i = 1, done == False, i++,

Do[zin = Table[x[[n]].v[[j]], {j, Length[v]}]; z = Table[2 /(I + Exp[-zin] - 1]; 
dfzin = Table[0.5*(l + z[[p]])*(l - z[[p]]), {p,Length[zin]}]; z = Append[z, 1]; yin = w.z; 
y = 2/(1 + Exp[-yin] - 1; dfyin = 0.5*(1 + y )* (l - y);

(*Backpropagation error*)
ak  = (t[[n]] - y)*dfyin; delw = a*ok*z; ain  = Table[ak*w[[j]], {j, 4}];aj = ain*dfzin; 
delv = a*Table[aj[[j]]*x[[n]], {j, Length[aj]}];

(*Update weights & biases*)
w = w + delw; v = v + delv; e[[n]] = (y - t[[n]])A2;Print["e[[", n, "]]= ", e[[n]]], {n, Length[x]}]; 

(*End Do*) etotal[[i]] = Sum[e[[p]], {p, Length[x]]];Print["total error", i, "= ", etotal[[i]]]; 
done = (etotal[[i]] < 0.05)]; (*End For*)
ListPlot[etotal, PlotJoined -> True, PlotRange->{ {1 ,2 6 5 ],{0 ,5 }} ,Frame->True,AspectRatio -> 1, 
PlotLabel -> StyleForm[Backpropagation, "section"]]]; 

x = {{1 , 1 ,1 ] ,  {1 ,-1 , 1], { -1 ,1 ,1 } ,  {-1 ,-1 , 1}};
Bp61[x];

Case 4  (page 65)
B p61 [ x j  :=M odule[{w,y,cj,ak,v,a,i,z,p,n,done,zin,yin,dfyin,dfzin,delw,oin,delv,e,j,etotal,normv}, 

v =  {{0.1970, 0.3099,-0.3378}, {0 .3191 ,0 .1904 ,0 .2771}, {-0.1448, -0.0347, 0 .2859},
{0.3594, -0.4861,-0.3329}}; done = False; etotal = Table[0, {77}];e = Table[0, {4}]; 

normv = Table[Vv[[p]].v[[p]], {p, Length[v]}];v = 1.4*v /normv; Print["Nguyen v is ", v]; 
w = {0.4919, -0.2913, -0.3979, 0.3581, -0.1401 };t = {0, 1, 1, 0}; a  = 0.2;

(*Feed Forward*)
Forfi = 1, done == False,i++,

Do[zin = Table[x[[n]].v[[j]], {j, Length[v]}];z = Table[Tanh[zin[[p]]], {p, Length[zin]}]; 
dfzin = Table[l - z[[p]]A2, {p, Length[zin]}]; z = Append[z, 1]; yin = w.z; y = Tanh[yin]; 
dfyin = 1 - yA2;

(*Backpropagation error*)
ak  = (t[[n]] - y)*dfyin; delw = a*ak*z; ain  = Table[ak*w[[j]], {j, 4}];aj = ain*dfzin; 
delv = a*Table[aj[[j]]*x[[n]], {j, Length[aj]}];
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(*Update weights &biases*)
w = w + delw; v = v + delv; e[[n]] = (y - t[[n]])A2;Print["e[[", n, "]]= ", e[[n]]], {n, Length[x]}]; 

(*End Do*) etotal[[i]] = Sum[e[[p]], {p, Length[x]}];Print["total error", i, "= ", etotal[[i]]]; 
done =(etotal[[i]] < 0.05)]; (*End For*)

ListPlot[etotal, PloUoined -> True, PlotRange -> {{0, 77},{0 , 5 }} ,Frame -> True, AspectRatio -> 1, 
PlotLabel -> StyleForm[Backpropagation, "section"]]]; 

x =  {{1, 1, 1], {1 ,0 , 1], {0, 1, 1}, {0, 0, 1}}; Bp61[x];

Case 5  (page 66)
Bp61[x_] :=M odule[{w,y,aj,ak,v,a,i,z,p,n,done,zin,yin,dfyin,dfzin,delw,ain,delv,e,j,etotal,normv}, 

v = {{0.1970, 0.3099, -0 .3378}, {0.3191, 0.1904, 0 .2771}, {-0.1448, -0.0347, 0 .2859},
{0.3594, -0 .4861,-0.3329}}; done = False; etotal = Table[0, {388}];e = Table[0, {4}]; 

normv = Table[Vv[[p]].v[[p]], {p, Length[v]}]; v = 1.4*v/ normv; Print["Nguyen v is ", v]; 
w =  {0.4919, -0.2913,-0.3979, 0.3581,-0.1401}; t = {-1, 1, 1 ,-1}; a  = 0.2;

(*Feed Forward*)
For[i = 1, done == False, i++,

Dofzin = Table[x[[n]].v[[j]], {j, Length[v]}];z = T able[2/(I +Exp[-zin]) - 1];
dfzin = Table[0.5*(l + z[[p]])*(l - z[[p]]), {p,Length[zin]}]; z = Append[z, 1]; yin = w.z; 
y = 2/(1 + Exp[-yin]) - 1; dfyin = 0.5*(1 + y)*(l - y);

(*Backpropagation error*)
ak  = (t[[n]] - y)*dfyin;delw = a*ak*z;ain = Table[ak*w[[j]], {j, 4}];aj = ain*dfzin; 
delv = a*Table[aj[[j]]*x[[n]], {j, Length[aj]}];

(*Update weights & biases*)
w = w + delw;v = v + delv; e[[n]] = (y - t[[n]])A2; Print["e[[", n, "]]= ", e[[n]]], {n, Length[x]}]; 

(*End Do*) etotal[[i]] = Sum[e[[p]], {p, Length[x]}];Print["total error", i, "= ", etotal[[i]]]; 
done = (etotal[[i]] < 0.05)]; (*End For*)
ListPlotfetotal, PloUoined ->True,PlotRange->{ {1, 388},{0, 5} },Frame->True,AspectRatio -> 1, 
PlotLabel -> StyleForm[Backpropagation, "section"]]];

x={ {1,1,1},{1,-1,1},{-1,1,1 } ,{ - l , -1,1} };Bp61[x];

Case 6 (page 67)
Bp61[x_] :=Module[{w ,y,oj,ak,v,a,i,z,p,n,done,zin,yin,dfyin,dfzin,delw,ain,delv,e,j,etotal, normv}, 

v =  {{0.1970, 0 .3099,-0.3378}, {0.3191,0 .1904, 0 .2771}, {-0.1448, -0.0347, 0 .2859}, 
{0.3594, -0.4861, -0 .3329}}; done = False; etotal = Table[0, {52}];e = Table[0, {4}]; 
normv = Table[Vv[[p]].v[[p]], {p, Length[v]}];v = 1.4*v /normv; Print["Nguyen v is ", v]; 
w =  {0.4919, -0 .2913,-0 .3979, 0 .3581,-0.1401};t = {-1, 1, 1,-1}; a  = 0.2;

(*FeedForward*)
For[i = 1, done == False, i++,

Do[zin = Table[x[[n]].v[[j]], {j, Length[v]}];z = Table[Tanh[zin[[p]]], {p, Length[zin]}]; 
dfzin = Table[l - z[[p]]A2, {p, Length[zin]}];z = Append[z, 1]; yin = w.z; y = Tanh[yin]; 
dfyin = 1 - yA2;

(*Backpropagation error*)
ak  = (t[[n]] - y)*dfyin; delw = a*ak*z;ain=Table[ak*w[[j]], {j, 4}];aj=ain*dfzin; 
delv = a*Table[aj[[j]]*x[[n]], {j, Length[aj]}];

(*Update weights &biases*) w = w + delw;
v = v + delv; e[[n]] = (y - t[[n]])A2; Print["e[[", n, "]]= ", e[[n]]], {n, Length[x]}];

(*End Do*) etotal[[i]] = Sum[e[[p]], {p, Length[x]}];Print["total error", i, "= ", etotal[[i]]]; 
done = (etotal[[i]] < 0.05)]; (*End For*)
ListPlot[etotal, PloUoined -> True, PlotRange -> {{0, 52}, {0, 7}} ,Frame->True,AspectRatio -> 1, 

PlotLabel -> StyleForm[Backpropagation, "section"]]]; 
x = { { 1 , 1 ,1 } , { 1 , - 1 ,1 } , { - 1 ,1 ,1 } ,{ - 1 , - 1 ,1 } } ;
Bp61[x];
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Case 7 (page 68)
(* 2 layers N N  with Bp (1 hidden layer): v from input, x, to hidden, z, 

w (from hidden, z, to output, y) *)
Bp61[x_] := M odule[{ w,y,aj,ak,v,oc,i,z,p,n,done,zin,yin,dfyin,dfzin,delw,in,delv,e,j,etotal, normv}, 

v = {{0 .1970, 0.3099, -0 .3378}, {0.3191, 0.1904, 0.2771}, {-0.1448, -0.0347, 0.2859}
,{0.3594, -0 .4861,-0.3329}}; done = False; etotal = Table[0, {25}];e = Table[0, {4}]; 

normv = Table[Vv[[p]].v[[p]], {p, Length[v]}]; v = 1.4*v /nomv; Print["Nguyen v is ", v]; 
w = {0.4919, -0.2913, -0.3979, 0.3581, -0 .1401};t=  {-0.8, 0.8, 0.8, -0.8}; cx= 0.2;

(*Feed Forward*)
For[i = 1, done == False, i++,

Do[zin = Table[x[[n]].v[[j]], {j, Length[v]}];z = Table[Tanh[zin[[p]]], {p, Length[zin]}]; 
dfzin = Table[l - z[[p]]A2, {p, Length[zin]}]; z = Append[z, 1]; yin = w.z; y = Tanh[yin]; 
dfyin = 1 - yA2;

(*Backpropagation error*)
ak  = (t[[n]] - y)*dfyin;delw = a*  ak*z;ain = Table[ak*w[[j]], {j, 4}];aj = ain*dfzin; 
delv = a*Table[aj[|j]]*x[[n]], {j, Length[aj]}];

(*Update weights & biases*)
w = w + delw; v = v + delv; e[[n]] = (y - t[[n]])A2;Print["e[[", n, "]]= ", e[[n]]],
{n, Length[x]}]; (*End Do*) etotaI[[i]] = Sum[e[[p]], {p, Length[x]}];

Print["total error", i, "= ", etotal[[i]]]; done = (etotal[[i]J < 0.05)]; (*End For*)
ListPlot[etotal, PloUoined -> True, PlotRange -> {{0, 25}, {0, 5} },Frame->True,AspectRatio->l, 

PlotLabel -> StyleForm[Backpropagation, "section"]]];
x = {{1, 1, 1}, {1 ,-1 , 1}, {-1, 1, 1}, { -1 ,-1 , 1}};
Bp61[x];

Program 1 (page 71)
Compres[x_, h_] := M odule[{w,y,aj,ak,v,a,wl,i,z,p,n,done,zin,yin,dfyin,dfzin,delw, to ll,a in ,

delv, e,j, etotal, k, a, b, normv, etotalold}, b=Table[0, {Length[h] }];etotalold = 0; 
Do[Print["h[[", a, "]]= ", h[[a]]]; v = Table[N[Random[Real, {-0.5, 0 .5}], 2], {h[[a]]}, {57}]; 

w = Table[N[Random[Real, {-0.5, 0.5}], 2], {56}, {h[[a]] + 1}]; 
normv = Table[Vv[[p]].v[[p]], {p, Length[v]}]; v = 0.7*h[[a]]A(l/56)*v/normv; 
done = False; e = Table[0, {Lengthfx]}]; a  = 0.2;

{{1, 1,

o
'

o
' 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 ,0 , 1, 1,

1, 1, 0, 1, o, 1, 1, 1, 1, 0 1, 0, 1, 1, 1, 0, 0, 0 ,0 , 0, 1,
1, 0, 1, 1, 1,

o
' 1, o,

o
' 0 1, 0,

o
' 0 } , | 0, o, 0, 0, 0, 1,

1, 1, o, 1, 1, 1, 0, 1, 1, 0 1, 1, 1, o, 1, 1, o, 0, 0, 0, 1,
1, 1, o, 1, 1, 1, 0, 1, 1, 0 1, 1, 1, 0, 1, 1, o, 1 ,1 , 1,

o
'

1, 0, o, o,

o
' 0, 1, 1},{1 1, 0, 0, 0, 0, 1, 1,

o
' 1, 1,

o, 1, 0, 1, 1, 1, 1, 1, 1, 0 1, 1, 1, 1, 1, 1,

o
' 1 ,1 , 1, 1,

1, 1, 0, 1, 1, 1, 1, 1, 1, 1

o
' 1, 1, 1, o, 1, 1, 1 ,0 ,

o
'

o
'

1, 1}, 0, o,

o
'

o
' 1, 1, 1 1, o, 1, 1, 0, 1, 1, 1 ,0 , 1, 1,

1, o, 1, 1, o, 1, 1, 1, o, 1 1, 0, 1, 1, 1, 0, 1, 1 ,0 , 1, 1,
1, o, 1, 1, 0, 1, 1,

o
' 1, 1

o
' o, 0,

o
' 1, 1, 1] , {0, o, 0,

o, o,

o
' 1, 1, 0, 1, 1, 1,

o
' 1, 1, 0, 1,

o

1, 1, 1 ,1 , 0, 0,
o, 1, 1, 1, 1, o, 1, 0, 1, 1 1, 1, 0, 1, 1, 1, 1, 1 ,1 , 0, 1,
1, 1, 0, 1,

o" o, 0, o, 0,

o
' 1 } .I 0, 0,

o
' o,

o
'

o
' 1,

o
'

1, 1, 1, 0, 1, 1, 0, 1, 0, 1 1, 1, 1, o, 0 o, 1, 1 ,1 , 1, 0,
1, 0, 1, 1, 1, 1, 0, 1, 1, 1 1, 1, 1, o, 1 1, 1, 1 ,1 ,

o
' 0,o

' 0, 1, 1, 1} ,I 1, 1, 0, 0

o
'

o
' 1, 1,

o

1, 1,

o
' 1,

o
'

1, 1, 1, 1, 1, 1,

o
' 1, 1, 1 1, 1, 1, o, 1 1, 1, o p 0, 0,

1, 1, 1, 1, o, 1, 1,

o
' 1, 1 1,

o
' 1, 1, 1, 0,

o
' 0 ,1 , 1] ,{o

' o, o, 1, o, o, o, 1, 0, 1 1, 1, 0, 1, 1 0, 1, 1, 1, o, 1,
1, o, o, o, 0, 0, 1, 1, 0, 1 1, 1, 0, 1, 1 o, 1, 1 ,1 , o, 1,
1, o, 1, 1, 1, 0, 1, o, o, 0 1,

o

o, 0] , [1,

o
' o o 0, o,
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1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1 ,0 , 0, 0, 0, 0, 1}, {1, 1 ,0 , 0, 0, 0, 1, 1, 1, 1, 1 ,0 ,
1, 1, 1, 1, 1, 1 ,0 , 1, 1, 1, 1, 1, 1 ,0 , 1, 1, 1, 1, 1, 1 ,0 ,
1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1,
1 ,1 }} ;

(*Feed Forward*)
For[i = 1, done == False, i++, b[[a]] = i;

Do[zin = Table[x[[n]]. v[[j]], {j, Length[v]}];z = Table[l/(1 + Exp[-zin]]; 
dfzin = Table[z[[p]]*(l - z[[p]]), {p, Length[zin]}];z = Append[z, 1]; 
yin = Table[w[[k]].z, {k, Length[w]}];y = 1/(1 + Exp[-yin];
Do[If[y[[p]] > 0.8, y[[p]] = 1, If[y[[p]] < 0.2, y[[p]] = 0]], {p, Length[y]}]; 

dfyin = y* (l - y);

(*Backpropagation error*)
ak  = (t[[n]] - y)*dfyin; delw = Table[a*(ak[[k]]* z), {k, Length[y]}];wl = Transpose[w]; 
ain = Table[ak.w l[[j]], {j, Length[wl] - 1}]; aj = ain*dfzin; 
delv = a  *Table[aj[[j]]* x[[n]], {j,Length[aj]}];

(*Update weigths & biases*)
w = w + delw; v = v + delv;e[[n]] = 0.5*(y - t[[n]]).(y - t[[n]]),{n,Length[x]}] (*End Do*); 

etotal = Sum[e[[p]], {p, Length[x]}]; Print["total error", i, "= ", etotal]; 
done = (etotal == etotalold); etotalold = etotal](*End For*);Print["timeused= ", TimeUsed[]];

Print["_______________________________________"], {a, Length[h]}];Print["total epoch= ", b];
to ll = ListPlot[b, PlotRange -> {{0, Length[h]}, {0, 1300}},AxesLabel -> {hidden unit, epoch},

Frame -> True, AspectRatio -> 1,PlotLabel -> "Data Compression by Bp:Tolerance=0.2"]];

Program  2 (page 71)
Compres[x_, h_] := Module[{ w,y,aj,ak,v,a,wl,i,z,p,n,done,zin,yin,dfyin,dfzin,delw ,toll,ain,delv,e,j, 

etotal,k,a,b,normv,etotalold},b = Table[0, {Length[h]}]; etotalold = 0; 
Do[Print["h[[", a, "]]= ",h[[a]]];v=Table[N[Random[Real,{-0.5,0.5}],2],{h[[a]]}, {57}]; 

w = Table[N[Random[Real, {-0 .5 ,0 .5 }], 2], {56}, {h[[a]] + 1}]; 
normv =Table[Vv[[p]].v[[p]],{p,Length[v]}];v=0.7*h[[a]]A(l/56)*v/normv;done= False; 
e = Table[0, {Lengthfx]}]; a  = 0.2;

{{1, 1,

o' o' 1, 1, 1, 1, 1, 0, 1, 1, 1,1, 1,

o' 1,1,
1 1,

o' 1, 0,1, 1, 1, 1, 0, 1, 0, 1, 1, 1,0, o, o, 0, o, 1,
1

o' 1 1,

o' 1,

o' 0, 0, 1, 0, 0, 0} ,{0, o, 0, 0, 0, 1,
1 1, 0 1, 1, 1, 0, 1, 1, o, 1, 1, 1, 0, 1,1, o, o, 0, o, 1,
1 1, 0 1, 1, 1, o, 1, 1, 0, 1, 1, 1, o, 1,1, o, 1 ,1 , 1,0,
1

o' 0

o' O O 1, 1},{1, 1,

o' o' 0,

o' 1, 0, 1, 1 ,1 ,o' 1, 0 1, 1,1, 1, 1, 1, 0, 1, 1, 1, 1, 1,1, o, 1,1, 1,1,
1 1, 0 1, 1,1, 1, 1, 1, 1,

o' 1, 1, 1, 0,1, 1, 1,0, o o

1 1] ,

o' O O o, 1, 1, 1, 1, o, 1, 1, 0,1, 1, 1,0, 1 ,1 ,
1 0, 1 1, 0, 1, 1, 1,

o' 1, 1, 0, 1, 1,

o' 1, 1,0, 1 ,1 ,
1 0, 1 1, 0, 1, 1,

o
' 1, 1,

o
' 0, 0,

o
' 1 ,1 , 1] ,{0, 0, 0,o

' o,

o

1,

o' 1, 1, 1,

o
' 1, 1, o, 1,

o' 1, 1,1, 0, 0,
0 1, 1 1, 1,0, 1, 0, 1, 1, 1, 1, o, 1, 1, 1, 1, 1,1, o, 1,
1 1,

o

1, p p 0, 0, o,

o' 1},I 0, 0, 0, 0,

o
' 0,1, 1,0,

1 1, 1

o
' 1 ,1 , o, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1,1, 1,0,

1 0, 1 1, 1,1, o, 1, 1, 1, 1, 1, 1, 0, 1,1, 1, 1 ,1 , o oo
' 0, 1 1, 1},{1, 1, 0,

o' o
'

o' 1, 1, 0 ,1 , 1, 1,0, 1,0,
1 1, 1 1, 1, 1,

o' 1, 1, 1, 1, 1, 1, o, 1,1, 1, 0 ,0 , o o

1 1, 1 1, 0,1, 1,

o
' 1, 1, 1,

o
' 1, 1, 1,0, o, 0, 1, 1},{o

' 0, 0 1, p o

o
' 1, o, 1, 1, 1, 0, 1, 1,0, 1, 1,1 , o, 1,

1 0, 0

o
' o o 1, 1, 0, 1, 1, 1, 0, 1, 1,0, 1, 1 ,1 , 0 ,1 ,

1

o
' 1 1,

o
' 1,

o
' 0,

o
' 1, o, 0, 0] ,{ 1 , 0, p p o o

1 1, 1 1,

o
' 1, 1, 1, 1, 1, 0, 1, 1, 1,1, 1, 1,0, 1 ,1 ,
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1, 1, 1, 1 ,0 , 1, 1, 1, 1, 1, 1 ,0 , 1, 1, 1, 1, 1, 1 ,0 , 1, 1,
1, 1 ,0 , 0, 0, 0, 0, 1}, {1, 1 ,0 , 0, 0, 0, 1, 1, 1, 1, 1 ,0 ,
1 ,1 , 1 ,1 , 1 ,1 ,0 ,  1 ,1 , 1 ,1 , 1, 1 ,0 ,1 ,  1 ,1 ,1 ,  1 ,1 ,0 ,
1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1,
1 ,1 }} ;

(*Feed Forward*)
For[i = 1, done == False, i++, b[[a]] = i;

Do[zin = Table[x[[n]]. v[[j]], {j, Length[v]}]; 
z = Table[l/(1 + Exp[-zin]]; dfzin = Table[z[[p]]*(l - z[[p]]), {p, Length [zin]}]; 
z = Append[z, 1]; yin = Table[w[[k]].z, {k, Length[w]}]; y = 1/(1 + Exp[-yin];
Do[If[y[[p]] > 0.9, y[[p]] = l,If[y[[p]] < 0 .1 , y[[p]] = 0]], {p, Length[y]}];dfyin = y* (l - y);

(*Backpropagation error*)
ak  = (t[[n]] - y)*dfyin; delw = Table[a *(ak[[k]]* z), {k, Length[y]}];wl = Transpose[w]; 
ain = Table[ak.w l[[j]], {j, Length[wl] - 1}];aj =ain*dfzin; 
delv = a*Table[aj[[j]]* x[[n]], [j,Length[aj]}];

(*Update weigths & biases*)
w = w + delw; v = v + delv;e[[n]] = 0.5*(y - t[[n]].(y - t[[n]]), [n,Length[x]}] (*End D o * ) ;
etotal = Sum[e[[p]], {p, Length[x]}]; Print["total error", i, "= ", etotal];
done = (etotal == etotalold); etotalold = etotal] (*End F or*); Print["timeused= ", TimeUsed[]];
Print["______________________________________ "], (a, Length[h]}];Print["total epoch= ", b];
toll = ListPlot[b, PlotRange -> {{0, Length[h]}, {0, 1300}}, AxesLabel -> {hidden unit, epoch}, 

Frame -> True, AspectRatio -> 1, PlotLabel -> "Data Compression by Bp:Tolerance=0.2"]];

Chapter 5

Program 5.1 (page 80)
asm[rdb_] := Module[{hd,hdm,h,un,i,j,sca,mall,S,ss,totv,u,md,v,tv,b,bar,di,ang}, 

hd = ReadList["hand.txt"]; hd = Flattened, 1];
Do[ListPlot[hd[[i]], PlotJoined -> True, AspectRatio -> Automatic], {i, 20}];
(*Find its own gravity for each example*)

hdm = Table[0, {Length [hd]}]; h = Table[0, [Length [hd]}];
Do[hdm[[i]] = (1/Length[hd[[l]]] Sum[hd[[i, j]],{j,Length[hd[[l]]]}], [i, Length[hd]}]; 

(*Move 1st hand to a new origin, i.e., hdm [[l]]*)
D o[hd[[l, j]] = hd[[l, j]] - hdm [[l]], {j, Length[hd[[l]]]}];

h[[l]] = ListPlot[hd[[ 1 ]], PlotJoined -> True, AspectRatio -> Automatic];
(*Scale hd[[l]]*)

hd[[l]] = Flatten[hd[[l]]];un =VSum[hd[[l, j]]A2,{j,Length[hd[[l]]]}]; 
hd[[l]] = 1/un hd[[l]];

(*Check*)
sea = Sum [hd[[l, j]]A2,{j=l,Length[hd[[l]]]}];

(*Move 2nd hand's old origin to hdm [[l]]*)
For[i = 2, i <= Length[hd], i++, di = hdm [[l]] - hdm[[i]];

Do[hd[[i, j]] = hd[[i, j]] + di, {j, Length[hd[[2]]]}];
hdm[[i]] = 1/Length[hd[[2]]] Sum[hd[[i, j]],{j,Length[hd[[i]]]}];

Do[hd[[i, j]] = hd[[i, j]] - hdm[[i]], [j, Length[hd[[2]]]}]; ListPlot[hd[[i]], 
PlotJoined -> True, AspectRatio -> Automatic]

(* We will plot 1st hand - 20 th hand in the same axes later*) ] (*End F or* );
Do[hd[[i]] = Flatten [hd[[i]]];
un = VSum[hd[[i,j]]A2,{j,Length[hd[[2]]]}];hd[[i]] = (1/un) hd[[i]];

(*Check*)
sca = Sum[hd[[i, j ]]A2,[j,hd[[2]]}],[i, 2, Length[hd]}]; (*End Do*)

(*This is for converting to figure*)
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Do[hd[[i]] = Partition [hd [ [i ] ], {2}]; h[[i]] = ListPlot[hd[[i]], PlotJoined -> True, 
AspectRatio -> Automatic], {i, Length[hd]}]; (*End Do*) Show[h];

(*Orientation*)
ang = {0, 0, 10, 2,-13, 24, 4, 0,-2, 2, 8, 1, 4,-15, -6, 2,-3, 0, 20, -7}; 
ang =ang*7t/180; m = Table[0, {Length[ang]}];
For[i = 1, i <= Length[hd], i++,

Do[m [[i]] = { {Cos[ang[[i]]j, -Sin[ang[[i]]]}, {Sin[ang[[i]]],Cos[ang[[i]]]}}; 
hd[[i, j]] = m[[i]] . hd[[i, j]], {j, Length[hd[[2]]]}]; (*End Do*) 
h[[i]] = ListPlot[hd[[i]], PlotJoined -> True, AspectRatio -> Automatic]]; (*End 

For*) Show[h];
m all=  1/Length[hd] Sum[hd[[i]],{i,Length[hd]}];

(*Now we have mean shape o f all shapes rotated scaled, and translated*)
Print["This hand is the mean shape o f all aligned shapes"];
ListPlot[mall, PlotJoined -> True, AspectRatio -> Automatic];
(*Find a covariance matrix S *)
mall = Flatten[mall]; hd = Flattened]; hd = Partitioned, {92}];
Print["dim[hd] now= ", Dimensions [hd]]; S = Table[0, {Length[mall]}]; 
ss = Table[0, {Length[mall]}, {Length[mall]}];
For[i = 1, i <= Length[hd], i++, bar = hd[[i]] - mall;

Do[S[[j]] = bar[[j]] bar, (j, Length[bar]}]; ss = S + ss];(*End For*)
{u, md, v] = SingularValues[N[ss]]; Print["md= ", N[md, 3]];b = Table[0, {92}, {19}]; 
totv = Sum[md[[i]],{i,Length[md]}]; Print["Sum[Ai,{i,t}]>= ", 0.98 totv]; 
Print[“t=8,Sum[A,i,{i,8}]= ", Sum[md[[i]]],{i,8}]];

Do[Print["i= ", i, "..Ratio XVXt= ", md[[i]]/totv*100], {i, 8}]; (*End Do*)
(*Find approximated x*)
For[i = 1, i <= Length[hd], i++,

Print["This is no. ", i, " shape"];b = v . (hd[[i]] - mall); tv = Transpose[v];
Do[Print["This is X no. ", k]; Do[b[[k]] = b[[k]] - rdb[[k, j]]; hdnew = mall + (tv . b);

ListPlot[Partition[hdnew, 2], AspectRatio -> Automatic, PlotJoined -> True, Axes -> False]; 
b = v . (hd[[i]] - mall), {j, 7}], {k, 8}] (*End Do*) ] (*End For*) ] (*End Module*) 

rdb={ {-0.3,-0.2,-0.1,0,0.1,0.2,0.3}, {-0.2,-0.15,-0.1,0,0.1,0.15,0.2},
{-0.11 ,-0.08,-0.04,0,0.04,0.08,0.11}, {-0.06,-0.04,-0.02,0,0.02,0.04,0.06},
{-0.05,-0.03,-0.015,0,0.015,0.03,0.05}, {-0.049,-0.03,-0.02,0,0.02,0.03,0.049},
{-0.04,-0.025,-0.015,0,0.015,0.025,0.04}, {-0.035,0.025,0.015,0,0.015,0.025,0.035} };asm[rdb];

Program 5.2 (page 84)
GenerateF[rdb_] := Module[{hd,hdnew,h,hdm,mall,di,un,sea,i,j,u,v,md,totv,tv,ss,S,b,k},(*Find its own 
gravity for each example*)

hd = ReadList["a:/mt.txt"]; hd = Flattened, 1]; hdm = Table[0, {Length[hd]}];
Do[(hdm[[i]] = 1/Length[hd[[l]]] Sum[hd[[i, j]],{j,Length[hd[[l]]}], {i, Length[hd]}]; 

h = Table [0, {Length [hd]}];
(*Move 1st hand to a new origin, ie, hdm [[l]]*)

D o[h d[[l,j]] = h d [[l ,j ]] -h d m [[l]] , {j, Length[hd[[l]]]}];
CreateFace[x_] := Module[{a, b, c, d, e, f, g, h, i, j, k, 1, m, n, o, p, q, r, s, t, u, v}, 

a = Take[hd[[x]], 19]; a = Append[a, a[[l]]]; 
b = ListPlot[a, PlotJoined -> True, AspectRatio -> Automatic]; 
c = Take[hd[[x]], {20, 25}]; c = Append[c, c[[l]]]; 
d = ListPlot[c, PlotJoined -> True, AspectRatio -> Automatic]; 
e = Take[hd[[x]], {26, 31}]; e = Append[e, e[[l]]]; 
f  = ListPlot[e, PlotJoined -> True, AspectRatio -> Automatic]; 
g = Take[hd[[x]], {32, 39}]; g = Append[g, g[[l]]];

(*Right eye*) h = ListPlot[g, PlotJoined -> True, AspectRatio -> Automatic]; 
i = Take[hd[[x]], {40 ,47}]; i = Append[i, i[[l]]];
(*Left eye*) j = ListPlot[i, PlotJoined -> True, AspectRatio -> Automatic]; 

k = Take[hd[[x]], {48, 54}];
(*Nose*) 1 = ListPlot[k, PlotJoined -> True, AspectRatio -> Automatic]; 

m = Take[hd[[x]], {55, 61}]; n = ListPlot[m, PlotJoined -> True, AspectRatio -> Automatic]; 
(*Mouth*) o = Take[hd[[x]], {62, 73}];

o = Append[o, o[[ 1]]]; p = ListPlot[o, PlotJoined -> True, AspectRatio -> Automatic];
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q = Take[hd[[x]], {74, 81}]; q = Append[q, q[[l]]]; 
r = ListPlot[q, PlotJoined -> True, AspectRatio -> Automatic];
(*Eye balls*) s = Take[hd[[x]], {82, 87}]; s = Append[s, s[[l]]];  

t = ListPlot[s, PlotJoined -> True, AspectRatio -> Automatic]; 
u = Take[hd[[x]], {88, 93}]; u = Append[u, u[[l]]]; 
v = ListPlot[u, PlotJoined -> True, AspectRatio -> Automatic];
Show[b, d, f, h, j, 1, n, p, r, t, v]]; CreateFace[l];

(*Scale hd[[l]]*)
hd[[l]] = Flatten [hd [[ 1 ] ] ];
un = VSum[hd[[l, j]]A2,{j,Length[hd[[l]]}]; hd[[l]] = 1/un hd[[l]];

(*Check*)
sea =Sum [hd[[l, j]]A2,{j,Length[hd[[l]]}];

(*M ove 2nd hand's old origin to hdm [[l]]*)
For[x = 2, x <= Length[hd], x++, di = hdm [[l]] - hdm[[x]];

Do[hd[[x, j]] = hd [[x , j]] + di, {j, Length[hd[[2]]]]];hdm[[x]] = 1/Length[hd[[2]]] 
Sum[hd[[x, j]],{j,Lenght[hd[[x]]}];
Do[hd[[x, j]] = hd[[x, j]] - hdm[[x]], {j, Length[hd[[2]]]}]; CreateFace[x];

(*W e will plot 1st hand - 20th hand in the same axes later*) ] (*End F or* );
Do[hd[[i]] = Flatten[hd[[i]]];
un =WSum[hd[[i, j]]A2),{j,Length[hd[[2]]}]; hd[[i]] = 1/un hd[[i]];

(*Check*)
sea = SuirWhd[[i, j]]A2,{j,Length[hd[[2]]}], {i, 2, Length[hd]}];(*End Do*)

(*This is for converting to figure*)
Do[hd[[i]] = Partition[hd[[i]], {2}], {i, Length[hd]}]; (*End Do*) 
mall = 1/Length[hd] Sum[hd[[i]],{i,Length[hd]}];

(*Find S*)
mall = Flatten[mall]; hd = Flattened];
hd = Partition[hd, {186}]; S = Table[0, {Length[mall]}];
ss = Table[0, {Length[mall]}, {Length[mall]}];

For[i = 1, i <= Length[hd], i++, bar = hd[[i]] - mall;
Do[S[[j]] = bar[[j]] bar, {j, Length[bar]}];
ss = S + ss]; (*End For*) {u, md, v} = SingularValues[N[ss]];

Print["md= ", N[md, 3]]; Dimensions[u]; Dimensions[md];
totv = Sum[md[[i]],{I,Length[md]}]; Print["Sum[AJ,{i,t}]>= ", 0.98 totv];
Do[Print["i= ", i, "..Ratio Xi/Xt= ", md[[i]] totv*100], {i, 8}]; (*End Do*)

For[i = 1, i <= Length[hd], i++, Print["This is n o .", i , " shape"]; 
b = v.(hd[[i]] - mall); tv = Transpose[v];

Do[Print["This is X no. ", k];
Do[b[[k]] = b[[k]] - rdb[[k, j]]; hdnew = mall + (tv.b); hdnew = Partition [hdnew, {2}]; 
Print["hdnew= ", N[hdnew, 3]]; b = v.(hd[[i]] - mall), {j, 8}], {k, 7}] (*End Do*) ] 

(*End For*)];
rdb={ {-0.115,-0.11 ,-0.1,0,0.1,0.11,0.113,0.115}, {-0.068,-0.06,-0.04,-0.2,0,0.02,0.04,0.06},

{-0.058,-0.05,-0.03,-0.01,0.1,0.2,0.04,0.58}, {-0.052,-0.045,-0.035,-0.02,0,0.02,0.04,0.05},
{-0.046,-0.03,-0.02,-0.01,0,0.01,0.02,0.04}, {-0.044,-0.033,-0.022,-0.011,0,0.011,0.022,0.04}, 
{-0.038,-0.029,-0.019,-0.01,0,0.01,0.02,0.035} };GenerateF[rdb];

Program 5.3  (page 85)
GenerateF[rdb_] := M odule[{hd,hdnew,h,hdm,mall,di,un,sci,i,j,u,v,md,totv,tv,ss,S,b,k},
(*Find its own gravity for each example*) 

hd = ReadList["a:/realproj.txt"]; hd = Flattened, l];hdm = Table[0, {Length[hd]}];
Do[hdm[[i]] =1/Length[hd[[l]]] Sum[hd[[i, j]],{j,Length[hd[[l]]}],{i, Length[hd]}]; 

h = Table[0, {Length [hd]}];
(*Move 1st hand to a new origin, ie, hdm [[l]]*)

D o[hd[[l, j]] = h d[[l, j]] - hdm [[l]], {j, Length[hd[[l]]]}];
CreateFace[x_] := M odule[{a, b, c, d, e, f, g, h, i, j, k, 1, m, n, o, p, q, r, s, t, u, v}, 

a = Take[hd[[x]], 22];a = Append[a, a[[l]]]; 
b = ListPlot[a, PlotJoined -> True, AspectRatio -> Automatic];
(*Eye - brows*) c = Take[hd[[x]], {23, 30}]; c = Append[c, c[[l]]];  
d = ListPlot[c, PlotJoined -> True, AspectRatio -> Automatic];
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e = Take[hd[[x]], {31, 38}]; e = Append[e, e[[l]]]; 
f  = ListPlot[e, PlotJoined -> True, AspectRatio -> Automatic];
(*Eyes*) g = Take[hd[[x]], {39, 44}]; g = Append[g, g [[l]]]; 
h = ListPlot[g, PlotJoined -> True, AspectRatio -> Automatic]; 
i = Take[hd[[x]], {45, 50}]; i = Append[i, i[[l]]];
(*Left eye*) j = ListPlot[i, PlotJoined -> True, AspectRatio -> Automatic];
(*Eye balls*) k = Take[hd[[x]], {51, 56}]; k = Append[k, k[[l]]];
1 = ListPlot[k, PlotJoined -> True, AspectRatio -> Automatic]; 
m = Take[hd[[x]], {57, 62}]; m = Append[m, m [[l]]]; 
n = ListPlot[m, PlotJoined -> True, AspectRatio -> Automatic];
(*Nose*) o = Take[hd[[x]], {63, 69}];
p = ListPlot[o, PlotJoined -> True, AspectRatio -> Automatic]; q = Take[hd[[x]], {70, 76}]; 
r = ListPlot[q, PlotJoined -> True, AspectRatio -> Automatic];
(*Mouth*) s = Take[hd[[x]], {77, 84}]; s = Append[s, s[[l]]]; 
t = ListPlot[s, PlotJoined -> True, AspectRatio -> Automatic]; 
u = Take[hd[[x]], {85, 92}]; u = Append[u, u[[l]]]; 
v = ListPlot[u, PloJoined -> True, AspectRatio -> Automatic];
Show[b, d, f, h, j, 1, n, p, r, t, v]]; CreateFace[l];

(*Scale hd[[l]]*)
hd[[l]]=Flatten[hd[[l]]];
un = VSum[hd[[l, j]]A2,(j,Length[hd[[l]]}]; hd[[l]] = 1/un hd[[l]];

(*Check*)
sea = Sum [hd[[l, j]]A2,{j,Length[hd[[l]]}];
(*M ove2 nd hand's old origin to hdm [[l]]*)

For[x = 2, x <= Length[hd], x++, di = hdm [[l]] - hdm[[x]];
Do[hd[[x, j]] = hd[[x, j]] + di, {j, Length[hd[[2]]]}];
hdm[[x]] = 1/Length[hd[[2]]] Sum[hd[[x, j]],{j,Length[hd[[x]]}];
Do[hd[[x, j]] = hd[[x, j]] - hdm[[x]], {j,Length[hd[[2]]]}]; CreateFace[x];

(*W e will plot 1st face - 30th face in the same axes later*) ] (*End F or* );
Do[hd[[i]] = Flatten[hd[[i]]]; un =VSum[hd[[i, j]]A2,{j,Length[hd[[2]]}]; hd[[i]] = 1/un hd[[i]]; 

(*Check*)
sea = Sum[hd[[i, j]]A2, {j,Length[hd[[2]]}],{ i, 2, Length[hd]}]; (*End Do*)

(*This is for converting to figure*)
Do[hd[[i]] = Partition[hd[[i]], {2}], {i, Length[hd]}]; (*End Do*) 
mall = 1/Length[hd] Sum[hd[[i]],{i,Length[hd]}];

(*Find S*)
mall = Flatten [mall]; hd = Flatten[hd]; hd = Partition[hd, {184}]; S = Table[0, {Length[mall]}]; 
ss = Table[0, {Length[mall]}, {Length[mall]}];
For[i = 1, i <= Length[hd], i++, bar = hd[[i]] - mall;

Do[S[[j]] = bar[[j]] bar, {j, Length[bar]}];
ss = S + ss]; (*End For*) {u, md, v} = SingularValues[N[ss]];

Print["md= ", N[md, 3]]; Dimensions[u]; Dimensions[md]; 
totv = Sum[md[[i]],{i,Length[md]}];
Print["Sum[X,i]>=", 0.98 totv];
Do[Print["i= ", i, "..Ratio \i/X t=  ", md[[i]]/totv*100], {i, 22}]; (*End Do*)

(*Find approximated x *)
For[i = 1, i <= Length[hd], i++, Print["This is no. ", i, " shape"]; b = v.(hd[[i]] - mall); 

tv = Transpose[v];
Do[Print["This is X no. ", k];

Do[b[[k]] = b[[k]] - rdb[[k, j]]; hdnew = mall + (tv.b); hdnew = Partition[hdnew, {2}]; 
Print["hdnew= ", N[hdnew, 3]]; b = v.(hd[[i]] - mall), {j, 29}], {k, 3}] (*End Do*) ]

(*End For*)];
rdb={ {-0.223,-0.22,-0.21,-0.2,-0.19,-0.18,-0.17,-0.16,-0.15,-0.14,-0.13,-0.12,-0.11 ,- 
0.1,0,0.1,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,0.2,0.21,0.22,0.223},
{-0.18,-0.17,-0.165,-0.16,-0.155,-0.15,-0.145,-0.14,-0.135,-0.13,-0.125,-0.12,-0.115,-0.11 ,-0.105,
-0.1,0,0.1,0.105,0.11,0.115,0.12,0.125,0.13,0.14,0.15,0.16,0.17,0.18}, 
{-0.141,-0.14,-0.138,-0.135,-0.13,-0.128,-0.125,-0.12,-0.118,-0.115,-0.11,-0.105,-0.1, 
-0.05,0,0.05,0.1,0.105,0.11,0.115,0.118,0.12,0.125,0.128,0.13,0.135,0.138,0.14,0.141}}; 
GenerateF[rdb]; Print[“time used = “,TimeUsed[]];



134

C hapter 6

Case 1 (page 88)
x=ReadList["a:/alignedh567.txt"];x=Flatten[x];x=Partition[x,92];w=ReadList["a:/w.txt"]; 
w=Flatten[w]; w=Partition[ w,92] ;done=False;cc=0.1 ;c= {1,2,3} ;T= {1,2,3,1,2,3,1,2,3,1,2,3,1,2,3}; 

For[i=l,done==False,i++,Print["Epoch ",i]; 
Do[xnew=Table[x[[a]],{Length[w]}];d=xnew-w;norm=Table[d[[j]].d[[j]],{j,Length[w]}]; 
j=Position[norm,Min[norm]][[l,l]];Print["Closest to node ",j];If[c[[j]]==T[[a]], 
w [[j]]=w[[j]]+a (x[[a]]-w[[j]]),(*Else*)w[[j]]=w[[j]]-a (x[[a]]-w[[j]])],
{a,Length[x]}];(*End Do*)

Print["a= ",a=0.1-(i/500)];done=(a<0.02)];(*End For*)Print[w];

Case 3 (page 93)
Som[m_,n_] :=Module[ {x,a,j,i,d,w,a,jnew,done,t,xnew,norm ,Nb,s,|i,a2} ,Nb={ -2,-1,0,1,2}; 

x=ReadList["a:/kohonenhand567.txt"];x=Flatten[x];x=Partition[x,n]; 
oc=0.6;done=False;j=jnew=Table[0,{Length[x]}]; 
w=Table[N[Random[Real, {0.1,0.9} ], 1 ], {m }, {n } ];
For[t= 1 ,done==False,t++,Print[ "Epoch " ,t];

Do[xnew=Table[x[[a]],{m}];d=xnew-w;norm=Table[d[[j]].d[|j]],{j,m}]; 
j [[a]]=Position[norm,Min[norm]] [[ 1,1 ]];
Do[s=j[[a]]+Nb[[i]];If[l<=s<=m ,w[[s]]=w[[s]]+a (x[[a]]-w[[s]])],{i,Length[Nb]}] 
(*End do*),{a,Length[x]}](*End Do*);Print["j= "j];

Print["jnew=j ",(jnew==j)];Print["------------------------------- "];Print["a= ",N[(X=0.6-0.003*t,2]];
If[90<t< 170,Nb= {-1,0,1}] ;If[t>= 170,Nb= {0} ] ;Print["Nb= ",Nb]; 
done=((jnew==j)&&(a<0.01));jnew=j](*End For*)];Som[33,92];

Case 5 (page 96)
Som[m_,n_]:=M odule[{x,a,j,i,d,w,a,jnew,done,t,xnew,norm,Nb,s,p,a2},

x=ReadList["a:/kohonenhand567.txt"];x=Flatten[x];x=Partition[x,n]; 
oc=0.6;done=False;j=jnew=Table[0,{Length[x]}]; 
w=Table[N[Random[Real,{ 0.1,0.9} ], 1 ], {m }, {n } ];
For[t= 1 ,done==False,t++,Print["Epoch ",t];

Do[xnew=Table[x[[a]],{m}];d=xnew-w;norm=Table[d[[j]].d[[j]],{j,m}];
j[[a]]=Position[norm ,M in[norm ]][[l,l]];N b={-7,-6,-5,-l,0,l,5,6,7};
If [j [ [a] ]== 1 ,Nb= {0,1,6,7} ] ;If[j [ [a] ]==6,Nb= {-1,0,5,6} ];
If[(j[[a]]==7)ll(j[[a]]==19)ll(j[[a]]==25)ll(j[[a]]==13),Nb={-6,-5,0,l,6,7}];
If[G[[a]]= = 12)H(j[[a]]==18)ll(j[[a]]==24),Nb={-7,-6,-l,0,5,6}];
If[j [[a]]==27,Nb=Take[Nb,8]] ;If[j [[a]]==28,Nb=Take[Nb,7]];
Iflj [[a]]==29,Nb=Take[Nb,6]] ;If[j [[a ]]= 30 ,N b =  {-7,-6,-1,0}];
IfU [[a]]==31 ,N b={-6,-5,0,1 }];Print["Nb= ",Nb];
Do[s=j[[a]]+Nb[[i]];

If[l<=s<=m ,w [[s]]=w [[s]]+a (x[[a]]-w[[s]])],{i,Length[Nb]}]
(*End do*),{a,Length[x]}](*End Do*); Print["j= "j];

Print["jnew=j ",(jnew==j)];Print["------------------------------- "];
Print[" a =  " ,N[a=0.6-0.003*t,2] ] ;If [t>= 120,Nb= {0} ] ;done=((j ne w ==j)& & (a<0)); 
jnew=j](*End For*)];Som[33,92];

Case 6 (page 101)
x=ReadList["a:/facelvq.txt"];x=Flatten[x];x=Partition[x,186];w=ReadList["a:/mtl.txt"];w=Flatten[w];w 
=Partition[w,186];done=False;a=0.1;c={ 1,2,3,4,5,6,7,8,9};

For[i= 1 ,done==False,i++,Print["Epoch ",i];
Do[xnew=Table[x[[a]], {Length[w]} ] ;d=xnew-w;norm=Table[d[[j]] -d[(j]], {j,Length[ w ]} ]; 

j=Position [norm,Min [norm] ][[!,!]];
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If[l<=a<=7,T=l,If[8<=a<=14,T=2,If[15<=a<=21,T=3,If[22<=a<=28,T=4, 
If[29<=a<=35,T=5,If[36<=a<=42,T=6, 

If[43<=a<=49,T=7,If[50<=a<=56,T=8,If[57<=a<=63,T=9]]]]]]]]]; 
Print["Closest to node ",j];If[c[[j]]==T,w[lj]]=w[|j]]+a (x[[a]]-w[[j]]), 
(*Else*)w[[j]]=w [[j]]-a (x[[a]]-w[|j]])],{a,Length[x]}];(*End Do*) 
Print["oc= ",cx=0.1-(i/500)] ;done=(cc<0.01)];

Case 7 (page 103)
Som[m_,n_]:=

M odule[ {x,a j  ,i,d, w ,a  j  new,done,t,xnew,norm,Nb,s,p,c2},
x=ReadList[" a:/facel vq. txt" ] ;x=Flatten [x]; x=Partition[x,n]; 
oc=0.6;done=False;j=jnew=Table[0,{Length[x]}]; 
w=Table[N[Random[Real, {0.1,0.9} ], 1 ], {m }, {n } ];

For[t= 1 ,done==False,t++,Print["Epoch " ,t]; 
Do[xnew=Table[x[[a]],{m}];d=xnew-w;norm=Table[d[[j]].d[[j]],{j,m}]; 
j[[a]]=Position[norm ,M in[norm ]][[l,l]];Nb={-l 1,-10,-9,-1,0,1,9,10,11}; 
If[j[[a]]== l,N b={0,1,10,11}]; If[j[[a]]== 10,Nb= {-1,0,9,10}]; 
If[<j[[a]]==ll)lia[[a]]==31)ll<j[[a]]==21)lia[[a]]==41)lia[[a]]==51),
Nb= {-10 ,-9 ,0 ,1,10,11}];
I f [G [[a ] ]= = 2 0 ) l l ( j [ [a ] ]= = 3 0 ) l l ( j [ [a ] ]= = 4 0 ) l l( j [ [a ] ]= = 5 0 ) l l ( j [ [a ] ]= = 6 0 ) ,

N b = {-11,-10,-1,0,9,10}];
If[j[[a]]==61,Nb={-10,-9,0,l }];If[j[[a]]==70,Nb={-l 1,-10,-1,0}]; 

Do[s=j[[a]]+N b[[i]];If[l<=s<=m ,w [[s]]=w[[s]]+a (x[[a]]-w[[s]])],{i,Length[Nb]}] 
(*End do*),{a,Length[x]}](*End Do*); Print["j= ",j];

Print["jnew=j ",(jnew==j)];Print[".........................................."];
Print["a= ",N[oc=0.6-0.003*t,2]];If[t>=l 20,Nb= {0} ]; 
done=((jnew==j)&&(a<0));jnew=j](*End For*)];Som[70,186];

Case 8  (page 109)
x=ReadList["a:/pl7rl6.txt"];x=Flatten[x];x=Partition[x,184]; c={ 1,2,3}; 
w=ReadList["a:/f3 grouplvq.txt"]; w=Flatten[w]; w=Partition[w, 184] ;done=False;cx=0.1;
For[i=l,done==False,i++,Print["Epoch ",i];
Do[xnew=Table[x[[a]],{Length[w]}];d=xnew-w; 

norm=T able[d[[j]] .d[[j]], {j,Length[w]} ] ;j=Position[norm,Min[norm]] [[ 1,1 ]]; 
If[l<=M od[a,9]<=3,T=l,If[4<=M od[a,9]<=6,T=2,If[7<=M od[a,9]<=8,T=3, 

If[M od[a,9]=0,T=3]]]];Print["Closest to node " j];
If[c[[j]]==T,W[[j]]=W[[j]]+a (x[[a]]-w[|j]]),(*Else*) 

w [[j]]=w [|j]]-a  (x[[a]]-w[[j]])],{a,Length[x]}];(*End Do*)
Print["a= ",ot=0.1-(i/500)] ;done=(a<0.01)];(*End For*)

Print[“time used= “,TimeUsed[]];

Case 9 (page 111)
Som[m_,n_]:=M odule[{x,a,j,i,d,w,a,jnew,done,t,xnew,norm,Nb,s,p,o2}, 

x=ReadList["a:/pl7rl6.txt"];x=Flatten[x];x=Partition[x,n]; 
done=False;j=j new=T able[0, {Length[x]} ]; 
w=T able[N[Random[Real, {0.1,0.9 }],l],{m },{n}]; 

For[t=l,done==False,t++,Print["Epoch ",t];
Do[xnew=Table[x[[a]],{m}];d=xnew-w;norm=Table[d[[j]].d[[j]],{j,m}]; 
j[[a]]=Position[norm ,M in[norm ]][[l,l]];N b={-10,-9,-8,-l,0,l,8,9,10}; 
If[j[[a]]==l,N b={0, l,9,10}];If|J[[a]]==9,Nb={-1,0,8,9}]; 
If[(J[[a]]==10)ll(j[[a]]==19)ll(j[[a]]==28)ll(j[[a]]==37)ll(j[[a]]==46)ll(j[[a]]==55)ll 
G[[a]]==64)ll(j[[a]]==73)ll(j[[a]]==82)ll(j[[a]]==91)ll(j [[a]]==100),Nb={ -9 ,-8 ,0 ,1,9,10} ]; 
If[G [[a]]==18)ll(j[[a]]==27)ll(j[[a]]==36)ll(j[[a]]==45)ll( j[[a]]==54)ll(J[[a]]==63)ll 
(j[[a]]==72)ll(j[[a]]==8 l)ll(j[[a]]==90)ll(j[[a]]==99)ll(j[[a]]==108),Nb={ -9,-1,0,8,9}];



If[j[[a]]==109,N b={-9,-8,0,l }];If[j[[a]]==117,N b={-10,-9,-l,0}]; 
Do[s=j[[a]]+N b[[i]];If[l<=s<=m ,w [[s]]=w[[s]]+a (x[[a]]-w[[s]])], 
{i,Length[Nb]]](*End do*),{a,Length[x]]](*End Do*); Print["j= "

Print["jnew=j ",Gnew==j)];Print["------------------------------- "];
Print["a= ",N[a=0.7-0.00233*t,2]];If[t>=180,Nb={0}]; 

done=(Gnew==j)&&(a<0.001 ));jnew=j](*End For*)] ;Som[ 117,184]; 
Print[“time used= “,TimeUsed[]];



137

References

[1] N.K.Bose, P. Liang, Neural Network Fundamentals with Graphs, Algorithm, and 

Applications, McGraw-Hill, 1996.

[2] C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press Oxford, 

1995.

[3] D. Nelson, The penguin dictionary of Mathematics, 2nd edition, Penguin books, 

1998.

[4] http://casaxps.csc.net/FactorAnalysis.htm. 

http://www.isbe.man.ac.uk/~bim/M odels/pdms.html. 

http://www.fon.hum.uva.nl/praat/manual/Principal_component_analysis.html

[5] I. Pratt, Artificial Intelligence, Macmillan, pp 216-231, 1994.

[6] J. T. Tou, R. C. Gonzales, Pattern Recognition Principles, Addison-W esley, 1974.

[7] L. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms, and 

Applications, Prentice Hall, 1994.

[8] M. A. Boden, Artificial Intelligence, Academic Press, 1996.

[9] M. James, Artificial Intelligence in Basic, Newness M icrocomputer Books, 1984.

[10] P. Picton, Introduction to Neural Networks, Macmillan, 1994.

[11] R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, 1989.

[12] R. R. Beale, T. Jackson, Neural Computing: an intoduction, Adam Hilger, 1990.

[13] R. Rojas, Neural Networks: A Systematic Introduction, Springer, 1996.

[14] S. G. Hoggar, Mathematics for Computation Graphics (2nd impression) to appear, 

Cambridge University Press, 2001.

[15] T. F. Cootes, C.J. Taylor, D. H. Cooper, and J. Graham, Active Shape Models- 

Their Training and Application, Computer Vision and Image Understanding,

Vol. 61, No. 1, Jan., pp. 38-59, 1995.

[16] T. Leonard, John S.J. Hsu, Bayesian Methods: An Analysis for Statisticians and 

Interdisciplinary Researchers, Cambridge University Press, 1999.

http://casaxps.csc.net/FactorAnalysis.htm
http://www.isbe.man.ac.uk/~bim/Models/pdms.html
http://www.fon.hum.uva.nl/praat/manual/Principal_component_analysis.html

