
Runtime Resolution of Feature Interactions in
Evolving Telecommunications Systems

Stephan Reiff-Marganiec

A Dissertation submitted to the University of Glasgow in partial fulfillment of the
regulations for the degree of Doctor of Philosophy

May 2002

Department of Computing Science
University of Glasgow

Glasgow, UK

ProQuest Number: 13818748

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818748

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW 4
u n i v e r s i t y
l i b r a r y -

\ \5 (/<
c o n \

A bstract

Feature interactions in telecommunications is an active research area. Many
approaches to solve the so-called feature interaction problem have been proposed.
However, all these approaches consider feature interaction as a somewhat isolated
problem, in particular it is not seen in the context of evolving legacy systems and third
party features in a deregulated market environment. An exception is the approach
by Marples and Magill [MM98, MarOO], which presents an interaction detection
mechanism and an essentially manual resolution approach.

We develop an automatic resolution approach that can be integrated with Marples
and Magill’s detection mechanism. We distinguish two key concepts, namely solutions
and resolutions. The former are essentially possible behaviours of the system, they are
not qualified as desirable or undesirable, the latter are the desirable solutions. Our
approach allows for automatic removal of undesired behaviour and selection of the
“best” desired behaviour.

The correctness, complexity and suitability of our approach are analysed. Two case
studies support these more theoretical considerations.

Our approach is transferable to other areas, such as quality of service management,
and is not restricted to network architectures with a single point of control.

D eclaration

The studies outlined in this thesis were undertaken in the Department of Computing
Science, University of Glasgow, under the supervision of Professor Muffy Calder. This
dissertation has not been submitted at any other university. All of the work was
performed by the author, except where otherwise indicated.

Work described in some sections has been previously published, in particular: the idea
of the hybrid approach (Chapter 4) has been published in [CROO], the specification of
the solution space (Sections 5.1 to 5.5) is published as [ReiOO], the running example
(Chapter 3) was developed in the context of the feature interaction contest [KMMROO]
and initial ideas for resolution rules (Section 6.2) have been formulated in [CMRT02],

Material presented in Chapters 5, 6 and 7 is developed solely by the author.

Stephan Reiff-Marganiec
Glasgow, April 2002

Although the telegraph, together with the ensuing telecommunications revolution,
came in the nineteenth century, its origins can be traced all the way back to 1753.
An anonymous letter in a Scottish magazine described how a message could be sent
across large distances by connecting the sender and receiver with 26 cables, one for
each letter of the alphabet. The sender could then spell out the message by sending
pulses of electricity along each wire. For example, to spell out h e llo the sender would
begin by sending a signal down the h wire, then down the e wire and so on. The
receiver would somehow sense the electrical current emerging from each wire and read
the message. However, this ‘expeditious method of conveying intelligence’, as the
inventor called it, was never constructed, because there were technical obstacles that
had to be overcome.

Simon Singh, The Code Book (p. 60)

Acknow ledgem ents

I wish to thank Prof. Muffy Calder for many stimulating discussions and for always
querying explanations of key concepts until I expressed them in a precise form. Muffy’s
guidance throughout this work proved invaluable and without her this thesis would
not exist.

EPSRC is to be thanked for funding the Hybrid Feature Interaction Project
(GR/M03429/01) which provided my financial support over the past three years.
In the framework of this project, I had extensive contact with Prof. Evan Magill,
Dave Marples and Mario Kolberg - thank you for the time spent discussing technical
aspects.

The work was not conducted in isolation, and many other people have provided me
with valuable thoughts. I want to thank my fellow students and the staff in the
Department of Computing Science here at Glasgow for providing a stimulating research
environment. Special thanks are due to Dr Alice Miller for completing the arduous
task of proof reading a draft of this thesis.

Finally, I wish to express thanks to my wife for her patience when I was only talking
about telephone switching systems for days on end.

Thank you!

Stephan

C ontents

1. Introduction .. 1

1.1 Background to R esearch.. 1

1.2 Research Q uestions... 3

1.3 Outline of R e p o r t ... 5

1.4 Basic Terminology... 6

1.5 Delimitations of Scope and Key A ssum ptions.. 6

1.6 Contributions of D issertation.. 7

1.7 Summary.. 8

2. B ack grou n d .. 10

2.1 Introduction.. 10

2.2 General Literature on FI Detection and R eso lu tio n 10

2.2.1 Telephone Switching System s... 10

2.2.2 Feature Interaction ... 12

2.2.3 The Problem .. 12

2.2.4 Related W o rk .. 13

2.3 Review of the Transactional Approach.. 21

2.4 Summary.. 24

3. Running E xam ple.. 25

3.1 Introduction.. 25

3.2 F e a tu re s .. 25

3.2.1 The Role of S ta te s .. 28

3.3 Control Messages ... 29

3.3.1 Terminal Messages.. 30

C ontents vii

3.3.2 Feature Messages... 31

3.3.3 Billing M essages... 31

3.4 Scenarios.. 32

3.5 Summary.. 33

4. A Hybrid Approach to F I ... 34

4.1 Introduction... 34

4.2 A Hybrid A pproach... 34

4.3 Detection and Resolution Process... 36

4.4 Feature Interactions... 36

4.4.1 Aside: The Feature Manager and Call Control in the IN standard 39

4.5 Summary.. 41

5. Potential R eso lu tio n s ... 42

5.1 Introduction... 42

5.2 The Solution S p a c e ... 42

5.3 Specification of the Solution S p a c e .. 43

5.3.1 M essages... 43

5.3.2 Features ... 44

5.3.3 Feature Interaction .. 45

5.3.4 The Feature M anager... 45

5.4 Construction of the Solution S pace .. 46

5.4.1 Overlapping Interleaving.. 46

5.4.2 O verlap .. 48

5.4.3 Construct .. 49

5.5 Application to Running E xam ple .. 50

5.6 D iscussion... 51

5.7 Operational Specification.. 52

5.8 Haskell Im plem entation... 53

5.8.1 M essages... 53

C ontents viii

5.8.2 Features and Cocoons... 54

5.8.3 Feature Interaction .. 56

5.8.4 The Feature M anager... 56

5.8.5 Committing a Resolution ... 57

5.9 Construction of the Solution S p ace .. 57

5.9.1 Feedback ... 59

5.10 Application to Running E xam p le ... 63

5.11 Summary.. 65

6. R e so lu tio n ... 66

6.1 Introduction... 66

6.2 Identifying Resolutions.. 66

6.3 An Exam ple... 67

6.4 Message Independent Rules - E x trac tio n ... 68

6.4.1 D up licates .. 68

6.4.2 Satisfying Features... 69

6.4.3 P rio ritie s ... 70

6.4.4 Choosing One R eso lu tio n ... 72

6.5 Message Dependent R u les.. 73

6.5.1 Implementation.. 75

6.6 Application Order and Necessity of Rules... 78

6.7 On-the-fly P ru n in g ... 79

6.7.1 Implementation and Exam ple... 80

6.8 Sum m ary.. 81

7. E v a lu a tio n ... 82

7.1 Introduction.. 82

7.2 C orrectness.. 82

7.2.1 Proving Correctness... 83

7.2.2 Correctness of Construction.. 83

C ontents ix

7.2.3 Correctness of P ru n in g .. 87

7.2.4 Correctness of the On-the-fly A pproach .. 90

7.3 Analysis of Complexity.. 91

7.4 Transactional A pproach .. 95

7.5 Analysis of Scenarios... 97

7.5.1 Running Example: Multiple Point of Call C o n tro l 97

7.5.2 DESK Features: Single Point of Call C ontro l.....................................100

7.6 Appropriateness and Suitab ility ...103

7.7 A Hybrid Approach - R ev isited ...106

7.8 Summary..107

8. C onclusions an d Im p l ic a t io n s ..108

8.1 Introduction.. 108

8.2 Reflection on Research P ro b le m s .. 108

8.3 Transferability to Other A reas ..I l l

8.4 L im ita tio n s .. I l l

8.5 Further Research..112

8.5.1 Technology S h if t ... 114

A. Form al D escrip tion o f th e F e a tu r e s ..116

A.l Introduction.. 116

A.2 Basic C a l l ... 116

A.3 Call Forwarding on Busy ..117

A.4 Calling Number D isp lay .. 118

A.5 Calling Number Delivery B lo ck in g ... 118

A.6 Call T ra n s fe r ... 119

A.7 Call Waiting ... 120

A.8 Group R in g in g ...120

A.9 Reverse C h a rg in g ... 121

A. 10 Ringback when F ree..121

C ontents x

A. 11 Split B illing ...122

A.12 T e e n lin e .. 122

A. 13 Terminating Call Screening... 123

A. 14 Three Way C a l l in g ...124

A. 15 Voice M a il... 124

B. Haskell Code L istin g s .. 125

B.l Module Dependencies.. 125

B.2 T re e .h s ...126

B.3 Message.hs.......................................* ... 130

B.4 Features.hs ...130

B.5 M ain.hs...138

B ibliography... 142

List o f Figures

2.1 Software Architecture of D e sk . .. 22

4.1 Adaptive Development Process .. 35

4.2 The Initial Behaviour of the Feature M anager... 35

4.3 Detection and Resolution P rocess... 36

4.4 Detection and Resolution P rocess... 39

4.5 Overview: end-to-end call in IN networks... 40

4.6 Call Control and Service Switching Functions in I N 40

5.1 Simple Solution S p a c e .. 43

5.2 Overlapping Interleavings .. 47

5.3 Hierarchy of Functions in the Construction P ro c e s s 58

5.4 Feedback: Solution Space and Statestack 1 .. 61

5.5 Feedback: Solution Space and Statestack 2 .. 61

5.6 Solution space constructed for CND and CFB using F eedback 64

6.1 The Constructed Solution Space for Example 6.3.1 67

6.2 The Constructed Solution Space for Example 6.3.1 with Duplicates
Rem oved... 69

6.3 The Constructed Solution Space for Example 6.3.1 after Extracting
Traces Satisfying most F ea tu res ... 71

6.4 The Constructed Solution Space for Example 6.3.1 after Extraction by
Priorities by Connection N u m b er.. 72

6.5 The Constructed Solution Space for Example 6.3.1 after Extraction by
Weighted P rio r it ie s 73

6.6 The Constructed Solution Space for Example 6.3.1 after Choosing one
T r a c e ... 74

List o f Figures xii

6.7 The Constructed Solution Space for Example 6.3.1 after Pruning 78

7.1 Solution Space and Maximum D ep th .. 86

7.2 Pruning - an E xam ple .. 88

7.3 Example Runtimes (Empirical R e su lts) ... 93

A.l Basic Call M odel.. 117

A.2 Call Forwarding on Busy M odel... 117

A.3 Calling Number Display M o d e l ... 118

A.4 Calling Number Delivery Blocking M odel...118

A.5 Call Transfer M odel...119

A.6 Call Transfer Model - Everyone................ 119

A.7 Call Waiting M o d el...120

A.8 Group Ringing Model ... 120

A.9 Group Ringing Model - Everyone.. 121

A. 10 Reverse Charging M odel...121

A. 11 Ringback when Free M o d el... 122

A. 12 Split Billing M o d e l ...122

A. 13 Teenline M odel... 123

A.14 Terminating Call Screening M o d e l..123

A. 15 Three Way Calling M odel.. 124

A. 16 Voice Mail M o d e l ..124

B .l Module Dependencies of Haskell M o d e l... 125

Chapter 1

Introduction

1.1 Background to Research

Three intertwined problems motivate the research presented in this dissertation.
The Feature Interaction Problem, Legacy Systems and Deregulation of the
Telecommunications Market each pose interesting problems on their own, in
telecommunications switching software the three areas combine to form a challenging
problem.

Features provide additional functionality to a basic service. In the telecommunications
setting this could be a call waiting facility, and in an automobile industry setting an
engine immobiliser. Packaged software might have features such as an equation editor
or a movie playback plug-in.

With the presence of multiple features in a single system, it is not unlikely that they
affect each others functionality; when they do so we encounter a feature interaction.
These interactions can provide useful behaviour, and thus be desired. However, if
interactions lead to behaviour that is inconsistent with the user expectations or even
to breakage of the system, then they are clearly undesired.

The feature interaction problem in telecommunication systems was recognised to be
important by industry and academia towards the end of the 1980s and since then
an active feature interaction community has developed. The ongoing work is best
represented by the series of International Feature Interaction in Telecommunications
Workshops [VGL92, BV94, C095, DBL97, KB98, CM00].

Traditionally, feature interactions were resolved at design time - experienced designers
were able to identify interactions using pragmatic approaches. This was made possible
by the rather small number of features and the fact that most features were produced
by the same company that developed the respective base product. Often features were
integrated by simply adding to the code of the original system.

A change in user expectations and the market situation has led to the requirement
for more features. Users expect more features, and operators want to provide more
features as base services are becoming less profitable. Thus, the number of developed
features is growing rapidly and a quick time-to-market is required to maximise profits,
both of which are proving challenging to the traditional, pragmatic approach of
integrating features.

Chapter 1. Introduction 2

In addition to the growing number of features, two further complications have been
recognised thus rendering the pragmatic approaches even less useful: fragility of legacy
code and multi vendor environments.

The switching software in modern telecommunications switches - also called stored
program control switches (SPC)[RV94] - is large, often insufficiently documented (or
the documentation is out-dated) and generally fragile. The software may have evolved
over a period of years, even decades. The fragility and poor documentation makes the
current approach of simply integrating features at a source code level undesirable
(independent of the feature interaction problem). However, the external interaction
with the legacy system can be assumed to be well documented or understood, thus it
is known which kind of events lead to which responses from the system.

Deregulation of the market introduces two problems. On one hand a highly
competitive multi-vendor environment requires quick time to market of new
developments to maximise profits. In addition, features stemming from different
vendors must co-exist. Resolving interactions at design-time becomes impossible, as on
one hand the source code and documentation of competitors features are unavailable
for proprietary reasons and on the other hand an operator might encounter new
features at runtime only.

In the telecommunications domain we encounter a combination of market deregulation
and large, evolving legacy systems together with feature interactions. A solution to
the feature interaction problem in this domain must take diverse factors into account:
documentation of legacy systems cannot be trusted and implementation details of third
party features are unknown. Neither legacy nor third party features can be changed;
they are, however, required to work together. Quick time to market complicates
elaborate testing in the context of an ever growing number of features, especially
when several vendors introduce new features simultaneously.

Despite a large body of work existing in the feature interaction area, little attention has
been given to resolution techniques. In the offline work, resolution of found interactions
is achieved by redesign, and thus is a smaller issue. However, in the online context,
resolution is crucial. There is currently no method that can resolve interactions at
runtime without requiring human input at runtime or predefined tables of interaction
scenarios with their respective resolutions. The exception is work based on feature
negotiation which requires new architectures and hence is not practical in a legacy
context.

As feature interaction poses a problem for the development of new services and both
new services and legacy systems are in use in a deregulated market a resolution method
that is suited to this context is required. We show the feasibility of such a method.

C hapter 1. Introduction 3

1.2 Research Questions

The overall aim of our approach is to detect and resolve feature interactions in evolving
telecommunications systems. It is useful to identify the particular problems tha t we
need to overcome.

Aims

Detect and resolve feature interactions

• in the presence of large legacy systems

— no reliable documentation

— fragile code

• in a deregulated market

— no design time information about third party features

— short development periods

— the presence of other features might only be recognised at runtime

We develop an approach to resolve and detect feature interactions in the context of
evolving legacy and third party systems addressing the above aims with a number of
objectives.

Objectives

The approach shall

• be embeddable in legacy and new architectures

• not require changes to features or legacy code

• not require design information of features or legacy code

• automatically detect and resolve interactions at runtime

The last objective ensures that features can be developed quickly. Individual features
can be developed separately and only the under the constraints possible testing and
interaction avoidance techniques need to be performed. The runtime approach resolves
any arising (and remaining) interactions with all features from the same and other
vendors.

Chapter 1. Introduction 4

To fulfil the objectives we envision a process that first quantifies potential solutions
and second identifies the “best” such solution. The notion of quantifying potential
solutions leads to questions such as:

• W hat is a solution?

• How many solutions are there?

• How do we find them all?

• How can solutions be found at runtime assuming only observable behaviour of
features?

We are concerned with selecting one of the possible solutions - preferably the best.
Again, we need to answer a number of questions:

• When is a solution good/bad?

• W hat are acceptable solutions?

• When can we say a solution is better than another (assuming both are good)?

• Does a partial order based on quality of solutions exist?

• How can we describe bad behaviour in a general way?

• W hat information is required, and do messages contain the relevant information?

• How can good solutions be extracted from the solution space at runtime?

Finally, the analysis of the applicability raises the questions:

• When can we resolve interactions and when not; and if not, why not?

• How important is the system architecture?

• Is the complexity of the approach acceptable for a runtime environment?

• How well does the approach scale?

• W hat is the scope of applicability? Is it transferable? Will it work with new
features?

• How effective is the approach?

Chapter 1. Introduction 5

We answer all these questions, though some answers are more in depth than others.
Clear answers are provided to the questions about solutions and good solutions.
Though, we find that a numeric answer as to how many solutions exist is not possible
for the general case and finding all possible solutions might not be feasible at runtime
- though we also show that if it is not feasible it is not required. The applicability
questions are also answered, though scalability and complexity would benefit a further
analysis in an operational system.

In this dissertation we show:

Thesis Statement

An automatic runtime approach to resolve feature interactions in multiple point
of call control environments in the presence of legacy and third party features is
desirable. We demonstrate the feasibility of such an approach using a transactional
approach.

1.3 Outline of Report

In the next chapter we give a more detailed description of the research context. In
particular we concentrate on the Transactional Approach presented by Marples and
Magill [MM98, MarOO], as this forms the basis for our work. Chapter 3 introduces a
running example - a basic call model and a set of 14 features. We have advocated a
hybrid approach [CMM99, CROO] which will be discussed in detail in Chapter 4.

Having provided a detailed background, we then proceed to consider the main research
issues. We specify and implement a method of detecting interactions and computing
all possible solutions to a detected interaction (Chapter 5). This builds on Marples
and Magill’s work, providing several extensions. In Chapter 6 we define novel methods
for resolving detected feature interactions. Chapter 7 explores issues of correctness
and complexity of the presented approach. An empirical evaluation of two sets of
features leads to a discussion on success and suitability - a critical evaluation of the
approach.

Finally our main conclusions are summarised in Chapter 8. We also consider the
transferability of the presented approach to areas outwith feature interaction in
telecommunications, and how new developments and the paradigm shift to Voice over
IP impacts on the whole research area.

Two appendices provide detailed description of the features from the running example
(Appendix A) and the Haskell source code of the implementation (Appendix B).

Chapter 1. Introduction 6

1.4 Basic Terminology

Throughout this document we use a number of terms, they are also used in the relevant
literature. Here we briefly introduce them and discuss how they are used.

We use the term interaction to mean that two or more features are active at the
same time because they either trigger each other or react to the same external trigger.
When referring to interactions, no judgement is made as to whether they are desired
or undesired.

In the literature the terms interaction, interworking and interference are sometimes
used. Most authors provide their own definition and thus the terms might refer to
the same concept or to different ones depending on the author (i.e. some authors use
different terms to qualify between desirable and undesirable interactions, while others
simply use all three terms interchangeable).

Service and feature are sometimes used interchangeably. The IN standard [ITU93b]
distinguishes the two as follows: a features is additional behaviour (network capability)
provided by the switching system and a service is a combination of features provided
by the operator to the customer. For our purpose the difference is irrelevant and we
will simply use the term feature to describe the components adding behaviour to the
system.

We use the terms online and runtime interchangeably.

1.5 Delimitations of Scope and Key Assumptions

Our aim is to develop a resolution mechanism for feature interactions in the specific
context of legacy systems and third party components. The key assumptions and
delimitations are such that the method is realistic for this setting.

We assume that the interacting components, called features, are either third party or
legacy software - thus the approach does not make use of internal state or other internal
information of these features. Rather it concentrates on the exchanged messages at
the interface, i.e. the observable behaviour. For our purpose, a feature is simply a
black box that receives messages and might respond with messages (it could simply
consume input without an observable reaction).

Message passing is the communication mechanism between parts of the system. In
telecommunications systems this is natural, but we also find that other component
based systems communicate with event (or message) exchange. However, the approach
does not depend this. W hat is crucial is that the communication between the
components can be intercepted, delayed and blocked.

We must be able to introduce a new component, the feature manager, into the system
between the features and the environment. In the standard for advanced intelligent

C hapter 1. Introduction 7

networks [ITU93b] this component is already included in the architecture. However,
in non-IN systems, which legacy systems often are, a new system component must be
incorporated. As the feature manager must be able to intercept all messages between
the features and the environment and block these whenever required, it only requires
to interface the present components. Thus the components do not need to be changed,
it is the communication path that must be routed through the feature manager.

The transactional approach we adopt requires a way of resetting a part of the system
to an earlier state. The part concerned involves the features and all global variables
that are affected. It is assumed that the features do not have any side effects (other
than changing certain well known global variables, such as the status of the phone
line). There are several ways to restore an earlier state of the system: we can start
new instances and rollback to previous ones or we can rollback to an initial state and
replay messages - the latter being very similar to techniques used for error recovery
in database systems. These are just two possibilities, though others might be thought
of. The system must allow for at least one such method.

We can imagine features that require further user input (in fact the Teenline feature
that we introduce later requires the user to enter a PIN number). However, we assume
that no feature can gain control over the system to the extend were it can block other
features receiving messages and responding to the same.

Although we do not expect to know details of the internal working of each feature, we
require some understanding of the ontology of messages. We can place our knowledge
on a scale ranging from nothing to knowing all detail. However, knowing nothing
is not very realistic, as we are aware of the structure of the message (in the case of
the features a message contains an event and maybe a parameter). As we are able
to interact with the feature we also know the message set, and that messages have
a consistent meaning. For each message the semantics is also known, as otherwise
responses from the system would be meaningless.

The success of the resolution depends on the available information. Thus, the richer
the information in the exchanged messages, the better the resolutions will be. However,
we show that even relatively minimal information will permit adequate resolution.

In summary, we assume a system where communication between components (such as
features and legacy systems) can be intercepted, delayed and blocked. The internal
behaviour of components is not of interest to us. Knowledge of the semantics of the
exchanged messages improves the quality of the resolutions but is not strictly required.

1.6 Contributions of Dissertation

The main contribution of this dissertation is an automatic, runtime approach to
resolve detected feature interactions in telecommunications systems. The approach
addresses problems in conjunction with the existence of large, evolving legacy systems
in a deregulated market environment. We show the technical details of such an

Chapter 1. Introduction 8

approach and analyse the requirements and success in case studies, thus proving the
desirability and feasibility.

Despite the work being primarily conducted in the context of telecommunications
systems and thus concentrating on features of telecommunications switching systems,
the approach does not depend fundamentally on domain specific assumptions. The
approach has been transferred to interactions of quality of service management features
in a multimedia context [BR01].

The approach allows resolution of detected interactions in telecommunications systems
at runtime. We require only minimal information about the features in the system,
namely an understanding of the exchanged messages. Thus the approach is applicable
in a legacy context where details of the implementation are often not available, and
also in a multi-vendor environment where the internal working of components is
unavailable.

This work is novel, because it tackles the problem of reso lv ing feature interactions
in th e co n tex t o f legacy system s and a d ereg u la ted m arke t. There are two
related approaches Marples and Magill [MM98, MarOO] and Buhr et al. [BAE+98].
We distinguish our approach in the following way.

Marples and Magill’s work, which we build upon, is restricted to single point of call
control settings that are realistic for PBXs, but not in public networks. Furthermore,
they only provide a crude resolution mechanism as their work concentrated on
detection. However, we show that it is possible to extend the approach in a form
that allows for completely automatic resolution based on a theory of interactions.
Our approach allows for multiple point of call control settings.

Buhr et al. [BAE+98] use a blackboard via which features can negotiate a resolution.
However, the blackboard approach requires a new system architecture. In the context
of large legacy systems this is not suitable. In their approach features are represented
by agents which interact to achieve the goals of the features - this is generally not
applicable in legacy systems. Our method, on the other hand works in existing legacy
architectures.

1.7 Summary

We have presented an overview of the background of the research and of the research
questions that we need to address. In addition we have provided an outline of the
report and discussed the basic terminology that we will use and the key assumptions
that we make. Thus, we have provided the necessary vocabulary and setting for the
research.

The thesis presents an automatic runtime approach for the detection and resolution
of feature interactions in telecommunications systems. The work builds on the ideas
of Marples and Magill, but is clearly novel and distinct. A clear advantage over

Chapter 1. Introduction 9

other promising runtime approaches (e.g. using blackboards) is that we complement
an existing architecture rather than requiring fundamental architectural changes of
the system to be made.

Chapter 2

Background

2.1 Introduction

In Chapter 1 we briefly presented the feature interaction problem and highlighted that
many approaches have been developed to tackle it. We now present the background
and the problem in more detail.

We argue that most approaches are unsuitable for an evolving legacy system - one of
our targets is to support such systems. Our other target, multi vendor environments,
requires interactions to be detected and resolved at runtime, thus we will concentrate
on the proposed runtime approaches. Our work extends the transactional approach
of Marples and Magill, hence this will be discussed in some detail.

2.2 General Literature on FI Detection and Resolution

2.2.1 Telephone Sw itching System s

The simplest telephone network has two users connected by a wire and is often called
the “tin-cans-connected-by-wire” model. When more users are in the network, they
could have such connections to each other. Replacing the multiple handsets (cans) at
each terminating end would introduce the need for a switching facility (at the users
end). This system would need N (N — l) /2 two-way wires to connect N users.

Reducing the amount of wiring required is achieved by concentrating the switches in
a local exchange - hence we obtain what is commonly called a telephone switch (or
telephone exchange). Several of these switches can be interconnected, in the same
fashion as telephones are connected to the local exchange. We concentrate on the
internal workings of these exchanges, encapsulated in the term telephone switching
systems.

The lines (wires) from the subscribers terminate in SLTU’s (subscriber line termination
units), which form one side of the main distribution frame (MDF). The other side is
formed by switching equipment. Jumpers physically connect SLTU’s to the switching
equipment, thus simplifying reconfiguration. Both the users’ lines and the equipment
are numbered (directory numbers and equipment numbers). The relation between
these is either stored in logic circuits (electromagnetical switches) or in databases
(stored program control switches).

C hapter 2. Background 11

The development of stored program control switches (SPC) started in the early 1960s,
with a coupling of telephony and electronic circuits and computers. The 1ESS (AT&T
Bell Labs, 1965 [KKV64]) was the first public SPC switch. SPC switches have mostly
replaced electromagnetical ones, and offer many advantages. The most important
advantage for our work is that they allow the addition of subscriber facilities or, in
our terms, features.

Switching itself is a challenging engineering problem; we distinguish between packet
and line switched networks. Computer networks are usually packet switched, telephone
networks line switched (although developments like Voice over IP deliver standard
telephone services over packet switched networks). Data can be split easily into smaller
chunks and these chunks can be delivered within certain time intervals, which naturally
fits packet switching. Speech on the other hand is continuous and problems occur as
variations in the delivery process (e.g. delays) complicate reconstruction (of split data).
Nevertheless, we will not consider these issues in further detail here, because current
features in telecommunications systems are not concerned with quality of service.

Stored Program Switches

Stored program switches are described extensively in [RV94]; we only consider the
aspects relevant to our work here.

The SLTUs are scanned in regular intervals for incoming signals (such as offhook),
detected signals are placed in a queue and passed on to the call processing programs.
The processing depends on the signal, e.g. an onhook requires the call to be cleared
down, all connected equipment (memory resources or physical connections to signal
generators) to be released and data for billing to be gathered. Offhook signals require
a dial-tone to be generated and connected to the respective line and memory to be
allocated for the processing.

In order to store data about the users, two kinds of record are kept in memory: the
call record and the subscribers record. The former is used to store call specific data,
such as start and end time, current state of the call process and the switch path. The
latter contains subscriber specific data. It is in here that the equipment numbers and
directory numbers are related, and the class of service record (which is a part of the
subscriber record rather than an entity of its own) is stored.

The class of service record consists of transient and semi-permanent data. Transient
data can be changed by the user or during a call, semi-permanent data only by the
network operator. Typical transient information is the line status (e.g. busy, engaged)
or the activation status of features (e.g. call forwarding is activated to forward calls to
number 456). The line type (e.g. domestic, business, ISDN) or a barring level (e.g. no
international calls, no outgoing calls or no incoming calls) as well as information
regarding subscription to features (the user can subscribe to a feature, whether it is
activated or not by the user is not an issue for the operator, i.e. the user might still
get charged) is stored in the semi-permanent data.

Chapter 2. Background 12

It should be noted that these records are used and accessed by the basic call software
and features that are integrated with the basic call. These records shall not be accessed
by third party features, and use might be restricted for new (proprietary) features in
general.

2.2.2 Feature Interaction

Recall that features provide additional functionality to a basic service. Typical
examples for telecommunications systems are call waiting or three way calling. The
basic service in telecommunications is often called POTS (Plain Old Telephone
Service). POTS provides basic connectivity between two users which is then extended
by features. For example, the call waiting feature provides the capability that the
subscriber can be notified of an incoming call and then toggle between two calls.

The notion of feature interaction problem was introduced for the first time at the
seventh International Conference on Software Engineering for Telecommunications
Systems by Bowen et al. [BDC+89]. Since then many researchers in industry and
academia have considered the problem. The results of this research have been mainly
reported in the series of proceedings from the International Workshop on Feature
Interactions in Telecommunications Systems (the first of which was not formally
published), [VGL92, BV94, C095, DBL97, KB98, CMOO].

As pointed out by Velthuijsen et al. [VGL92], feature interactions axe not a problem
restricted to telecommunications software, but apply to all large software systems that
require constant upgrading. Furthermore, they claimed that “the feature interaction
problem has been a major obstacle to the rapid development of new telephone
services” , which provided a strong motivation for research in the area by highlighting
the importance of the problem.

2.2.3 T he Problem

The problem can be expressed in a simple way, considering features and their
interworking: each feature on its own works as expected, but two (or more) together do
not function as specified. Thus, when considering interactions we make the important
assumption that individual features work correctly.

Cameron et al. [CGL+94] defined feature interactions as:

Definition 2.2.1 (Feature Interaction) All interactions that interfere with the desired
operation of the feature and that occur between a feature and its environment,
including other features or other instances of the same feature. Additionally,
interference of one part of a feature with another part of that feature (e.g. in the case
of distributed implementation of a feature) is considered to be a feature interaction.

Chapter 2. Background 13

It is important to point out that feature interactions can be desired and undesired:
sometimes we want a feature to change the behaviour of another one, in which case
we have a desired interaction. The problematic interactions are the undesirable ones,
as these might lead to anything from user annoyance to a breakdown of the network.

Originally, this problem tended to exist within a single organisation providing services.
Hence the problem could be coped with due to a relatively small number of features
and knowledge of coding details of each feature. Interactions were detected manually.
Changes in the telecommunications industry complicate the problem for the following
reasons:

• the industry is developing from a monopolised situation to a multi-vendor
environment due to market deregulation,

• the number of features required and provided is growing rapidly,

• changes in the network architectures, e.g. IN (intelligent network), make it easier
to provide features,

• call control is becoming more distributed, geographically (a call might be
controlled by several switches) as well as through a stricter separation of
hardware and software (and ever more consistent modularisation of the latter),

• legacy systems (e.g. operational code and hardware) have been so expensive in
their development and deployment that the only option is to incorporate them.

2.2 .4 R elated W ork

Most published work on feature interaction refers to the POTS (Plain Old Telephone
System) or Intelligent Network (IN) ([ITU92, ITU93a, ITU97]) context. However,
Tsang and Magill ([TMK97]) consider feature interactions in broadband networks
and, more recently, several contributions to the last Feature Interaction Workshop
[HalOO, LSOO, ZJOO, BPOO] discuss feature interactions in other domains such as e-mail,
mobile services and internet telephony.

We assess some of the existing approaches. A particular interesting paper is the
Feature Interaction Benchmark [CGL+94], which is one of the most cited papers in
the area, although the authors believe it to be out-dated by now 1.

Taxonomy of Feature Interactions

Cameron et al. [CGL+94] developed a benchmark to support classification of
interactions and to judge the coverage of detection and resolution approaches. They
suggest two main categorisations: nature of interactions, and cause of interactions.

1 Personal communications with the authors

Chapter 2. Background 14

As the benchmark is used widely, we briefly outline the main points. Note that the
benchmark does not classify solutions, but rather attempts to provide a partitioning
of the problem.

In the context of interactions, three dimensions have been identified:

1. Kind of feature involved in the interaction (customer features - system features)

2. Number of users involved in the interaction (single user - multiple user)

3. Number of network components involved in the interaction (single component -
multiple components)

Customer features are those that a customer can use, e.g. call waiting or call
forwarding, whereas system features are those concerned with administration and
operation (e.g. billing). Single user interactions are those where features subscribed
to by one user interact (e.g. call waiting and call forwarding on busy). Multiple user
interactions are those with interactions between features subscribed to by different
users (e.g. call forwarding on busy and terminating call screening). Single component
interactions arise when features at one network node (or component) interact, multiple
component interactions arise when multiple network nodes are involved.

This benchmark paper concentrates mainly on customer features, as the authors
claim that system features cause fewer interactions. Five categories of interactions
are explored:

SUSC (Single-User-Single-Component) interactions: These occur because one user
subscribes to incompatible features on the same network node. They occur in
two flavours: functional ambiguities (different features handle the same situation
differently) and one feature hindering another in its proper execution.

SU M C (Single-User-Multiple-Component) interactions: These occur because the
features deployed in one node of the network are unaware of those in a different
component, but the user’s services are provided by both nodes.

M U SC (Multi-User-Single-Component) interactions: These occur when several
people share a physical phone line and hence the subscribed features. Users
might set up two contradictory features like call forwarding to a number and
originating call screening to the same number.

M U M C (Multi-User-Multi-Component) interactions: These occur when users
subscribe to features provided on different nodes and those features are not
compatible with each other.

C U SY (Customer-System) interactions: These can occur at points where
administration and user features are activated simultaneously. Probably the
largest area in this class is interactions with billing features.

C hapter 2. Background 15

A number of causes of interactions can be identified. These causes fall into three
groups:

Violation of feature assumptions: The development of a feature relies on certain
assumptions, like availability of data, call control or the signalling protocol.
Over time these assumptions may lose their validity and hence the feature can
no longer operate properly.

Limited network support: A network is a physical entity and as such restricted.
The most obvious restriction is bandwidth shortage, leading to competition
between features and hence to interaction.

General Problems of distributed systems: Many problems of distributed
systems are well known, for example race conditions and/or resource contention.

We can see that interactions occur at different levels in the system and have multiple
causes. However, there is no claim that the above list is exhaustive. A complete
solution would need to address all those problems and also consider those which
additionally might occur.

Some of the examples provided by Cameron et al. might in fact not be interactions. For
example the dialling of an 0800 number from outside the country being not possible is
not an interaction, it is merely a defined delimitation. Multiple users using different
(and maybe contradicting) features on the same physical telephone is also not an
interaction - at least as long as telephone systems cannot distinguish user identities
other than by equipment numbers .

The features analysed by Cameron et al. are solely concerned with call control and
billing in an IN architecture. A current taxonomy would need to take many more
aspects into account.

We will return to the introduced interaction categories. As for the causes of
interactions, solutions can be achieved at a different level. For example, there is
much active work to handle intricacies of distributed systems. The restriction imposed
by limited network support loose importance in the context of new communications
architectures with rich communications protocols and more flexible terminals.

A New Taxonomy

As we have shown, the taxonomy provided by Cameron et al. [CGL+94] is rather
dated. We consider the following questions and issues crucial when attempting to
classify features and feature interactions:

1. Shared trigger vs. sequential action: Are features triggered by the same event or
does one feature’s response lead to the triggering of another feature?

Chapter 2. Background 16

2. Technical interaction vs. user intention violation: Is the interaction caused by
the features dictating inconsistent reactions in a given state or simply by the
unfulfillment of a user expectation?

3. Subscriber vs. non subscriber: e.g. forwarding affects both the subscriber and the
caller (who is not the subscriber), whereas outgoing call barring only affects the
subscriber.

4. Single vs. multiple points of call control: In some architectures calls are controlled
centrally, in others not, which has an impact on feature interaction handling.

5. Nature of features: Features can be grouped by behaviour, e.g. call control, billing,
quality of service or management features.

6. Call control behaviour: e.g. all forwarding features are similar in some way,
conferencing features are again similar.

7. Inter vs. intra portfolio: Do features belong to the same provider or do they belong
to different providers?

Due to the fast evolution of the telecommunications area it is impossible to claim tha t
this set of questions is or will remain complete. But, we assert that this taxonomy
allows us to pitch our work in the area. We address technical interactions in both
single and multi point of call control systems. Our approach works for detection and
resolution of both shared trigger and sequential action interactions.

Technical interactions are similar to Type I interactions as defined by Hall [Hal98].
Type I interactions are classified to be those where two features expect the system to
move into inconsistent states or to exhibit inconsistent observable actions. In contrast
Type II occurs, in the absence of a Type I interaction, when one feature disrupts the
state properties that another has assumed. Type III interactions occur in the absence
of Type I and Type II when the system fails to meet the user requirements, and thus
compare to user intention violations.

The features that we have investigated are either billing or call control - currently
quality of service and management features are only emerging. In Chapter 3 we give
a running example and give categories of features. All features within a category
are similar enough to be handled in the same fashion by detection and resolution
approaches, hence the rather select set of features in the running example does indeed
represent a much larger set of features as can be found for example on Lucent’s
PathStar switch [Luc].

For the purpose of this thesis we assume that we deal with an inter provider portfolio
of features, as this group is more challenging. Our method will also apply to intra
provider portfolios, but better methods can be found there, as more information is
available (which can be used to detect and resolve interactions during design time).

Chapter 2. Background 17

Approaches to the Feature Interaction Problem

Several authors have classified approaches according to certain criteria. We will not
discuss these classifications (there is no additional gain in showing how the body of
work can be ordered), but rather concentrate on the techniques developed to solve the
feature interaction problem. For the purpose of this section we distinguish approaches
that identify a service engineering process, those that use formal reasoning to improve
certain phases of the development process (usually design) and those tha t attem pt to
detect and resolve feature interactions at runtime.

Service Engineering Approaches

Service engineering uses techniques developed in the general context of software
engineering. The techniques are mostly applicable at the requirements or specification
phase of a general software engineering process.

Notably, studies using use case maps (or models; UCM) [NKHLOO, ACC+00, KS94]
have been applied on industrial scale systems to obtain results about their usefulness.
Other, more academic, techniques involve specifications in some formal notation,
where static analysis of the composition of the specified features enables feature
interaction detection [Tur98, Pre97, KCK+95].

Many of the approaches in this category provide automatic approaches for filtering
[KKM94, NKHLOO, HS98, BreOO], that is identifying scenarios which might be prone
to interactions. These cases then need to be analysed using various techniques, either
automatically or manually. Nakamura et al. [NKHLOO] show tha t about half of all
possible interaction scenarios can be removed using their filtering technique because
no interaction will occur. Performing more detailed analysis upon the remaining
scenarios, they show that about 42% lead to interactions.

Once interactions have been detected at the specification stage, the feature
specification can be adapted to remove any occurring interactions. As the detection
process is automatic (or at least semi-automatic) there is the potential to cope with
a growing number of features. However, as the approaches target the specification
and requirements level, they are only applicable to known feature sets - i.e. those
features where the relevant details are available when the process is applied. While
the approaches allow for features of one vendor to interwork as expected, they are
unsatisfactory in a multi-vendor environment where many details are not available
and new features are often only encountered at runtime.

Some approaches [KKOO, Kim97] consider service engineering from a management
perspective, thus taking into account that a deregulated market poses problems that
are disjunct from the pure technical issues. These approaches are interesting in their
own right, but are less relevant here, as we concentrate on the technical side of the
problem.

Chapter 2. Background 18

Formal Reasoning Approaches

Formalisms can be used for specification, as discussed above, but many approaches go
further by using formal reasoning techniques. Formal reasoning is based on models
of the system, so an immediate drawback is that the models might not accurately
represent the implementations. However, interesting results have been achieved -
mainly with respect to a better understanding of the problem. We can distinguish
three groups of approaches: those specifying behaviour of features as formal models,
using automata or transition systems, those specifying properties formally, using a
logic, and those using a combination of both.

Property only approaches [BJK94, RH97, FNOO] usually apply theorem proving or
model checking techniques to identify inconsistency or unsatisfiability of properties
once they are combined.

Behaviour only specifications are often used with specifically developed tools, or if
standard languages such as CSP or L o t o s are used, the existing tools are employed.
Analysis resulting in e.g. deadlock, non-reachability or non-determinism means that
a feature interaction exists. Examples of such approaches are [Tho97, AA97, Y098,
KBOO].

Combining models of behaviour with specified properties is used in several approaches
[SL95, Gib97, Tho97, PR98, KL98, dORZ98]. All these approaches use the same
definition of feature interaction: if feature F\ \= 0i and F2 1= 02 but F\ © F2 0i A 02,
then an interaction exists (01 and 02 are properties). Common to the approaches is
the use of standard tools for simulation or model checking. However, the state space
explosion problem generally does not allow for complete analysis. Recently Calder
and Miller [CM01] succeeded in fully model checking systems of four users with two
features using the model checker S p i n .

Discussion: Service Engineering and Formal Reasoning Approaches

The formal reasoning based approaches have two major drawbacks, one being that
the state space explosion problem generally disallows complete assurance of detection
of all interactions and the other being that the approaches are applied to models of
the features. The latter requires a good understanding of the available features and
an awareness of which features will be available. However, as discussed earlier, this
is often not possible. Furthermore, models are abstractions of the real system. In
the abstraction process, new interactions could be introduced as well as existing ones
removed. The approaches prove very useful, for testing developed features for possible
interaction, but fail in multi-vendor environments.

The service engineering and formal reasoning approaches are not only less applicable
in multi-vendor settings, but are unsuitable within a legacy systems context. Legacy
systems have already been developed (thus changing specifications is not possible).
Their evolution over time means that specification details, as well as properties

Chapter 2. Background 19

extracted from the documentation, might be incorrect. In both classes of approaches,
resolution occurs as redesign or changes to the requirements, which clearly is not
possible in a legacy system.

R u n tim e A pproaches

Runtime approaches attempt to overcome the problem posed by having multiple
vendors by proposing ways of detecting and resolving interactions at runtime. This
has the advantage that the real implementation of features can be used, rather
than abstractions and models of them. Further, the features exist in their natural
environment. Clearly this allows for quick development of features, as each feature
can be designed separately. Interaction handling is removed from the development
stage, the runtime approach handles possible interactions. However, it is still desirable
to apply design time techniques whenever possible, rather than completely relying on
runtime approaches.

A number of runtime approaches have been developed, and we can broadly distinguish
three classes: one and two phase feature managers and negotiation based approaches.
Note that one and two phase only reflects the number of distinct online phases, most
of the one phase approaches require some information from an offline phase.

F ea tu re M an ag er - O ne P h ase A pproaches. A basic feature manager is defined
by the ITU-T standard for Intelligent Networks [ITU93a]. However this only prevents
multiple instances of IN and non-IN services being active in the same call segment.
More advanced approaches use feature managers to detect and resolve interactions. By
using information about the features and their potential interactions multiple features
can be allowed to be active across the call (in one or more call segments).

Homayoon and Sing [HS88] propose such an approach, whereby the feature manager is
provided with a number of tables describing relations between two features. The status
of one of the features is examined and then the activation or use of the second is allowed
or disallowed according to its relation to the first feature. Similarly, Cain [Cai92]
proposes a feature manager that only passes events to features that are known to be
non-interacting using information contained in tables. Activation is not considered.

Fritsche [Fri95] determines at runtime which features are - in their term - “interested”
in a proposed event. A specification of the features is provided to the feature manager
in the form of roles, i.e. a feature’s impact on a device. Features effect changes to
devices and the feature manager observes whether roles are violated (an interaction).
Interactions thus found are resolved by a predefined resolution matrix.

All these approaches require data about interaction and resolution in the form of
tables to be provided to the feature manager - thus they are not useful in the context
of legacy and third party systems. Marples and Magill [MM98] propose a feature
manager approach that does not require a priori data, but assumes an interaction to
have occurred when more than one feature intends to handle an event. They then use

Chapter 2. Background 20

a rollback and commit algorithm to determine possible resolutions at runtime. Their
resolution mechanism is a simple precedence scheme. As our work is based on this
approach, we will explore it in more detail in the next section. The approach was
initially presented by Marples and Magill [MM98] and was further refined by Marples
[MarOO]. For the remainder of this document we refer only to the work of Marples
[MarOO] as this provides the more comprehensive reference.

Feature Manager - Two Phase Approaches. The one phase approaches
described above require data about the features and their potential interaction
acquired during an offline stage, the exception being [MM98]. However, some two
phase approaches circumvent this requirement.

Aggoun and Combes [AC97] propose a “pre-deployment” phase where a passive
observer gathers information about the feature behaviour in the network. The
gathered information is then used by the active observer (essentially a feature manager)
in the operation phase of the service to detect and resolve interactions. Similarly,
Tsang and Magill [TM97] gather behaviour “signatures” of features in an isolated
online environment (with just the feature under observation being active) and store
these in a database. The feature manager then accesses this database during public
network operation to detect and resolve interactions.

Both approaches require features to be executed in an isolated environment, which
might not always be practical. Moreover, it is impossible to gather information about
features at other network nodes that might interact when the respective users are
involved in a call.

Negotiation Approaches. A markedly different alternative is provided by the
negotiation approaches. Here, features and resources are represented by agents able
to communicate with each other to negotiate on their goals. Successful negotiation
means that an interaction has been resolved (or that none existed).

In an early paper [Vel93], Velthuijsen evaluates a number of distributed artificial
intelligence techniques (DAI) to help resolve the feature interaction problem. Several
approaches have since been developed using DAI techniques [BAE+98, AKGMOO].
Griffeth and Velthuijsen also use negotiating agents to detect and resolve interactions
[GV94]. A resolution is a goal acceptable by all parties and is achieved by exchanging
proposal and counter-proposals amongst the agents. Different methods for negotiation
have been envisioned: direct (agents negotiate directly without a negotiator), indirect
(a dedicated negotiator controls the negotiation and can propose solutions based
on past experience) and arbitrated (an arbitrator takes the scripts of the agents
and has sole responsibility to find a solution). Griffeth and Velthuijsen concentrate
on indirect negotiation. The negotiation approach has been implemented in the
“Touring Machine” platform [ABB+93], though no conclusive report about success
(or otherwise) is provided.

Rather than using direct negotiation, Buhr et al. [BAE+98] make use of a blackboard.
Features are represented by agents which exchange information by writing to a public

Chapter 2. Background 21

data space (the blackboard). Other agents can change the information written to the
blackboard and a common goal can be negotiated. The success of the technique is
reflected in its use in Mitel’s MediaPath product. Amer et al. [AKGMOO] also use the
blackboard technique, but extend their agents to make use of fuzzy policies. Agents
set truth-values (0 to 100) to express the desirability of certain goals. These values
are then adapted as the call progresses, depending on the values of other agents. In
the case of conflict, an event with the highest truth-value is executed.

Negotiation approaches are capable of handling interactions between features provided
by several vendors, as long as a consistent mechanism for negotiation exists. However,
negotiation requires communication between agents or features. The impact is that
in general significant architectural changes are required. However, in the context of
legacy systems, architectural changes are not an option. Hence the approaches, despite
looking promising, fail in this context.

Note that those disadvantages become less relevant when new emerging architectures
with APIs such as JAIN (Java API’s for Advanced Networks) [JAI] or PARLAY [Par]
are considered. Richer protocols (e.g. SIP [HSSR99] or H323 [ITU00]) facilitate for
the required inter-agent communication.

A more complete, though slightly outdated, summary of the feature interaction
research field is provided by Keck and Kuehn [KK98]. A more recent review by Calder
et al. [CKMR01] includes a forecast for the field (we will return to this in Chapter 8).

Of the presented work, Marples’s [MM98] approach seems to be the most flexible, as
it can handle legacy systems as well as third party features. Furthermore, it adapts to
new architectures. However, the major draw-back is the weak resolution mechanism.
Our work extends the resolution mechanism. We will now present Marples’s approach
in more detail.

2.3 Review of the Transactional Approach

The motivation for the transactional approach [MarOO] is that interactions between
features developed by independent parties in conjunction with legacy systems should
be detected and resolved. The approach is required to work with more than two
interacting features.

The requirements are that we have no prior knowledge of the features, that the features
must remain unchanged, that the solution can be incorporated within a legacy system
and that it can be employed in a runtime system. This last requirement implies that a
mechanism to deal with unexpected behaviour is required. Marples allows features to
“fail” , as long as they do safely - i.e. they do not affect the rest of the network and do
not confuse the user. There must be a way of recovering from unexpected behaviour
(e.g. the user going onhook) and the network operator must be able to prevent this
from taking place again in the future.

Chapter 2. Background 22

Feature 1 Basic Call Feature n

Feature Manager

Fig. 2 .1 : Software Architecture of D e sk

Marples does not provide an automatic resolution mechanism. Instead his method
detects an interaction and then determines whether this interaction was seen
previously (e.g. from information held in a database). If the interaction has been seen
before, the earlier resolution is retrieved (e.g. looked up in a database) and applied;
otherwise the possible solutions are presented to the network operator.

The experimental results are based on the D e sk testbed. D e sk was developed by
Marples et al. [MMS95, MTMS95] to experiment with feature interaction techniques.
The initial target was interaction detection, which explains the crude resolution
techniques.

D e sk consists of two major subcomponents, the hardware sub system (HSS) and
the software sub system (SSS), as shown in Fig. 2.1. The HSS represents the terminal
devices, the SSS the switch. A detailed description can be found in [CMRT02], however
much of the detail provided therein is not relevant here. What is important is that
D e s k assumes a single point of call control. That is, there is a central point at which
one can observe all messages that are received from or sent to any user in the system.
This is where the feature manager is located.

The features and legacy software are encapsulated in a transactional cocoon. It is this
idea that allows features to remain unchanged. The feature manager communicates
directly with the cocoons, using essentially two types of messages: control messages
that steer the transactional process and feature messages that represent actual
telecommunications events.

At runtime, the feature manager passes incoming messages from the switching
hardware to all the cocoons - for simplicity we assume that this happens in parallel.

The cocoon passes feature messages on to the encapsulated feature. When a message
is processed by a feature two possible behaviours can occur: the message triggers a
response (one or more messages) or it does not. All triggered responses are sent back
to the feature manager, concluding with a transaction finished message. The latter
is also sent by features not responding with a proper message2. Before sending a
feature message the feature manager sends a start-transaction message which forces

2 Any message apart from the transaction finished message is a proper message.

C hapter 2. Background 23

the cocoon to create a copy of the feature (thus enabling it to revert to the feature’s
previous state).

The responses are collected by the feature manager, added to a list of responses, and,
once all responses are collected, they are evaluated.

There are three possible outcomes:

1. the feature manager did not receive any proper messages,

2. the feature manager received exactly one proper message,

3. the feature manager received multiple proper messages.

The first case occurs when no feature produced an observable response to the trigger
event, the call will progress as if no feature manager was in the system. It is the latter
two cases which are interesting. The possibility that more than one feature might
reply and the consequent potential for an interaction is indeed the motivation for the
feature manager. Rather than discuss the resolution of an interaction at this point,
we explore the space of possible resolutions in the following way.

The feature manager stores the current state and initiates copies of the feature
processes. The current state includes the list of events and other local information;
it describes a snapshot of the system from the viewpoint of the feature manager.
Assuming that at least one message has been received, the first message is fed to
the copies of the features (again after issuing the start-transaction message). The
responses are then gathered and processed. Part of this processing may involve further
message exchanges with the (copies of the) features.

This process terminates when there are no further responses. At this point, we have
a sequence of messages and responses, which we consider as a branch in a behaviour
tree. To construct the rest of the tree, a rollback to an earlier state is initiated by the
feature manager (a rollback message is send to the cocoons), the next event is farmed
out (Marples’s term), a new branch is generated, and so on. Once all events have been
processed a full behaviour tree has been constructed.

When a single trigger led to more than one response, Marples refers to a Shared
Trigger Interaction (STI), if a fed back response triggers another feature he refers to a
Sequential Action Interaction (SAI). Indeed, he considers a third group of interactions,
Missed Trigger Interactions (MTI) which occur when a feature does not respond
because another feature concealed the trigger point. His approach addresses the first
two groups [MarOO].

It remains to select the most promising path in that tree, which constitutes the
resolution. As described earlier, this is done manually by an operator choosing a
branch from the behaviour tree.

When the path is selected, it is committed by sending out the appropriate messages
to the hardware subsystem, ensuring that features are in the right states.

C hapter 2. Background 24

The approach depends on certain assumptions about the system, namely that it is
possible to create copies of all the associated processes. This might not always be
possible, particularly in a legacy system. However, one might emulate process copies
if the system provides the functionality to reset a process to a certain state. In this
case, in order to emulate multiple copies, stacks of all messages are maintained, the
control process is reset and messages are replayed from the stack to obtain a process in
the desired state. This is very much like failure recovery in database systems employing
a rollback-commit strategy. For further details of the construction of the behaviour
trees, see [CMM99].

The major disadvantage of this approach is that there is no automatic resolution
mechanism. Resolution involves an operator selecting branches from a tree (and maybe
looking up previous resolutions in a database).

A further disadvantage is the restriction to single point of call control, which reflects
PBXs (Private Branch Exchanges) accurately, but does not exist in PSTNs (Public
Switched Telephone Networks).

Overall, Marples’s approach provides very promising technology, assuming that these
two weaknesses can be remedied. This is the goal of this dissertation.

2.4 Summary

We have shown that the community investigating the feature interaction problem is
very active. Many different approaches have been used to find solutions to the problem.

A special emphasis was placed on the classification of the problem in the benchmark
paper [CGL+94], a widely accepted classification of the problem of feature interactions,
whereby some shortcomings have been highlighted and a new taxonomy was defined.
We have not discussed the literature that concentrates on building a classification of
solution approaches as this seems of little benefit for the current work.

Solution approaches from three different viewpoints - service engineering, formal
reasoning and runtime - have been introduced and their advantages and disadvantages
discussed. We have then presented a particular runtime approach, namely the
transactional approach of Marples [MarOO] - which forms the foundation for this
dissertation.

Chapter 3

R unning Exam ple

3.1 Introduction

In this dissertation we use a number of features as a benchmark. In this chapter we
introduce the benchmark set of features, summarise the meaning of control messages
and describe the scenarios which will be considered.

3.2 Features

Large numbers of features can be imagined, and indeed have been developed
by providers and developers of telecommunications equipment. For example, the
advertisement for Lucent’s PathStar switch announces more than 80 features [Luc].
However, detailed specifications are rarely publicly available. For this reason we have
to draw on published resources containing a small number of well understood features.
An obvious choice is provided by the feature sets from either of the two FIW feature
interaction detection contests: the first in 1998 [GBG098] and the second in 2000
[KMMR00].

Considering the 59 PathStar features for which names (but no details) are provided,
we can identify the following classes of features (numbers in brackets show how many
features are in the respective class):

• POTS basic call(l)

• Screening features, such as anonymous call rejection (6)

• Group ringing features, such as hunting and group ringing (8)

• Call waiting features (3)

• Call forwarding features (4)

• PC telephony features (4)

• Billing and call logging features, such as call record generation (3)

• Dialling features, such as hotline and direct dialling (16)

• Calling identity delivery and tracing (9)

Chapter 3. R unning Exam ple 26

• Three way calling (1)

• Automatic Callback (1)

• Ringing features, such as distinctive ringing (2)

We have decided to use the features of the second contest, because they are described
by finite state machine description techniques. In contrast, the C h ise l [AGG+98,
TurOO] notation used in the first contest is relatively unknown, especially outside the
telecommunications domain.

The contest provides a set of 12 features in addition to the basic call (which we also
treat as a feature). A further feature, Calling Number Display, is also introduced.
Some features are composed of two parts: a subscriber part and a part located at
every user to provide additional behaviour. An example is Terminating Call Screening
where the subscriber screens certain incoming calls and the information tha t a caller is
screened needs to be relayed back to the subscriber. In order for the caller to evaluate
the response he has a general enhancement to basic call, i.e. the part located at every
user.

The contest features cover all of the classes identified for the PathStar switch, but
ringing, PC telephony and dialling features. As dialling and ringing form part of some
other features they are partly covered. PC telephony features are not relevant in the
classic telephony context. Thus, the contest features provide a reasonable coverage of
currently available features.

Below we informally describe the features, and discuss some general issues related to
modelling the features. The detailed formal descriptions can be found in Appendix A.

Basic Call allows for call setup, teardown and basic connectivity between two users.
It is often referred to as POTS (Plain Old Telephone System). Note that it is
symmetric, i.e. both sides can terminate a call (not currently the case within the
BT network).

Call Forwarding on Busy. All calls to the subscriber’s line are redirected to a
predetermined number when the subscriber’s line is busy. For billing, it is
assumed that the subscriber pays the charge for the forwarded call from his
location to the location to which the call has been forwarded.

Calling Number Display requests the caller’s number for display, assuming that the
subscribers telephone has a facility to display the number.

Calling Number Delivery Blocking. Usually the caller’s identity is available at the
terminating side, for evaluation by the callee if required (e.g. caller number
display or terminating call screening). This feature blocks the provision of the
callers number at the terminating side.

C hapter 3. R unning Exam ple 27

Call Transfer allows the subscriber to transfer the current call to a third party. That
is, while being in a call the subscriber can put the second party on hold and can
setup a call to a third party. Once the subscriber goes onhook the second party
of the first call and the third party are connected. This is effectively a mid-call
call forwarding. The subscriber may transfer a call independent of being caller
or callee in the original call.

Call Waiting. The subscriber is notified of an incoming call while he is busy in a
conversation and can accept the new call by putting the originating call on hold.
The subscriber is then able to toggle between the two calls.

Group Ringing allows for an incoming call to ring at three phones. The phone which
goes offhook first is connected to the calling party. The remaining two phones
stop ringing.

Reverse Charging is also known as freephone billing, and allows the subscriber to be
charged for all calls in which the subscriber is the terminating party.

Ringback when Free. When a call attempt is made to a busy subscriber with this
feature subscribed, the caller is informed that he will be called back, as soon
as the other person becomes available. Once the subscriber terminates his/her
current call a connection to the stored number will be established.

Split Billing allows costs to be shared between the partners in a call. A company
might provide local call charge lines to customers as a service, in which case the
customer (and originator of a call) pays the local charges and the company the
rest.

Teenline. During a pre-set time of day, this feature restricts all outgoing calls from
the subscriber’s telephone. To place an outgoing call during that time a PIN is
required.

Terminating Call Screening. The originators of all incoming calls to the subscriber’s
telephone are screened against a screening list. If the originator of an incoming
call matches an entry in the list, then an announcement is played to the originator
and the call is cancelled.

Three Way Calling allows a user already connected to bring a third partner into the
call. Any side of the first call (as long as it subscribes to Three Way Calling) can
set up a connection to the new party. This is established by putting the current
partner on hold, connecting to the third side and then joining both lines. The
three way call is terminated with any party going onhook.

Voice Mail. Voice mail works in a similar way to an answering machine, by offering
the possibility to leave messages if the called user is not available. The stored
messages can be played back by the subscriber.

Chapter 3. Running Exam ple 28

3.2.1 T he R ole o f S tates

In this section we discuss the problems introduced by the use of states. We show a
number of examples and then generalise the observations.

The detailed description of features in the contest is dependent on state information.
For example, Call Forwarding on Busy is only triggered if the Basic Call is in certain
states. A feature is integrated into the system by adding or replacing transitions in
the Basic Call description. However, since state information is not available due to
the nature of legacy and proprietary systems, we need to redesign some of the features
slightly.

Changes we make are to ensure that the features are triggered and terminated
appropriately. The following examples should illustrate this. Note that state labels
in the examples refer to the contest description, appendix A contains the updated
diagrams.

Example 3.2.1 Call Forwarding on Busy is triggered by an incoming alert (Laleri) message
in a basic call state where the user is known to be busy. However, in our setting we are
only aware of basic call being busy when the outgoing busy message (oJ)usy) is sent by basic
call and then fed back to the features. Hence O-busy is a more suitable trigger.

Example 3.2.2 The recording part of Voice Mail is described as starting in basic call state
BC9 and immediately sends a response. However, in the message based description we
require this feature will never be triggered. So we require an initial trigger event. Further,
repetitive behaviour of the BC (due to the original replacing of states all potential transitions
have to be included) can be removed. In this case, O-timeout, which is fed back, can be assumed
as best trigger event.

Example 3.2.3 The Everyone module of Call Transfer exhibits a choice of initial
behaviours, depending on whether it is located at the originating or terminating end of
a call. In this case it is necessary to include new initial trigger events that determine at which
side of the call the feature is located. Similar to the previous example we see that the two
given original states are either BC7 or BC11, which can be reached by either Lconnect or the
fed back o-connect. Hence we will introduce those events as new triggers leading to a new
state. In this new state the feature responds to Linform or Lnotify in the expected way or
can be reset to idle by either Lonhook or Ldisconnect (the events which trigger a transaction
from states BC7 and BC11)

Example 3.2.4 The final form of change is illustrated by the Teenline feature. This feature
might result in a terminating state where the action is a response being sent (here BC2).
However, BC2 is a state from which a dialtone is sent so that the call can progress as expected
- i.e. the user has the chance to dial a number. We find that the dialtone should be included
in the teenline features responses (replacing the tau message).

These four examples illustrate problems occurring when state information is not
available. We can generalise from the examples to identify the following measures

Chapter 3. Running Exam ple 29

which have been applied to the feature descriptions from the contest to produce the
descriptions in appendix A:

• replace the original trigger with a more suitable one (example 3.2.1),

• introduce a new trigger for those features with an initial state tha t only allows
for responses to be send (example 3.2.2),

• introduce a new trigger that places a feature in a waiting state and allow it
to quit this waiting state when a feature has multiple distinct initial states,
(example 3.2.3),

• introduce a new response, when a feature would exit into a basic call state that
produces a response (example 3.2.4),

• remove messages that only duplicate behaviour which the basic call process
would exhibit anyway.

One could argue that our attempts to ensure that a feature is triggered by an incoming
trigger message are superfluous. For example an alarm feature which is triggered by
an internal clock appears to exhibit spontaneous behaviour. A closer analysis reveals
that this is not true: the alarm feature is triggered by an incoming trigger message,
namely when the user sets up the alarm. Clearly, this shows that the incoming trigger
exists. As we do not consider time between events our effort is justified.

3.3 Control Messages

We can only observe the behaviour of features by analysing the messages that are
passed around the system. Thus an informal understanding of the meaning of messages
is required.

All messages consist of two parts: the event and an argument. A denotes a null
argument.

There are three main groups of messages. Firstly messages exchanged between the
terminal devices and the features (and vice versa) - we refer to them as terminal
messages. Secondly, messages exchanged between features associated with different
terminal devices, referred to as feature messages. Thirdly, messages with billing
information (billing messages). Each of these types is discussed in more detail below,
the list is exhaustive for the given features though new features might introduce
additional messages.

Chapter 3. Running Exam ple 30

3.3.1 Term inal M essages

A terminal is used as a device which provides the interface between the user and the
network model. We cannot distinguish between actions from the user and the device.
We distinguish between messages originating from the terminal and those initiated by
the features.

User initiated messages:

(offhook, -) the terminal has gone offhook.

(dial, number) the terminal dialled the number number.

(onhook, -) the terminal has gone onhook.

(flash, -) the terminal flashes, that is goes onhook briefly and then offhook again. Usually
this behaviour is created by pressing the flash button on a phone.

Feature initiated messages:

(diaLtone, -) a dialtone has been initiated.

(ringtone, -) a ringtone has been initiated.

(busy tone, -) a busytone has been initiated.

(timeout.-tone, -) a timeout.tone has been initiated.

(disconnect-tone, -) a disconnect_tone has been initiated.

(connect, -) a connection has been established.

(stop-alert, -) the terminal stops ringing.

(alert, -) the terminal starts ringing.

(announce, message) an announcement message is played. For instance, a notification that
the called party is not available but a message can be left.

(display, information) some information is displayed, e.g. the callers identity. It is assumed
that the terminal device has a suitable display facility.

(cwtone, -) a call waiting tone has been initiated signalling that the call is currently on hold
or that another call attem pt is being made (depending on the situation of the user).

(store-msg, msg) the message (voice) from the calling party is stored in the mailbox.

(store.read, msg) the message (voice) from the mailbox is transmitted to the terminal.

(store-clear, -) the message stored in the mailbox is removed.

Note that tones are stopped when any subsequent message is sent or received.

Chapter 3. R unning Exam ple 31

3.3.2 Feature M essages

Messages commencing with “o_” are sent by a feature, those starting with “L” are
received by a feature. All of these messages come in pairs due to the fact that they are
the same message, just with a different direction from the viewpoint of a particular
feature. Note that the conversion from “o_”-messages into “z_”-messages is performed
within the switch and is not of concern here. We will only describe the meaning of
outgoing messages, i.e. those starting with “o_” . Clearly the recipient of the messages
is the (potential) partner in the call.

(o-alert, -) notifies that a call attem pt is being made.

(ostopalert, -) notifies that a call attem pt is being dropped.

(o-disconnect, -) notifies that a call (that was connected) has been terminated.

(o-connect, -) notifies that a call has been answered, i.e. the called party has gone offhook.

(o-timeout, -) notifies that the system has timed out a connection attem pt due to the call
not being answered, within the system internal timebounds.

(o-busy, -) informs about busy status, in this case the called party is busy.

(o-free, -) informs about busy status, in this case the called party is free.

(o^inform, information) communicates information. It is used here for features th a t expect
an announcement or other notification to be made at the other side of the call.

(o-msg, msg) prompts the voicemail feature to transmit messages to be stored.

(ojnotify, Z) notifies that a call is being forwarded to Z.

(o-request, query) requests information, for example the caller identification.

3.3.3 B illing M essages

Billing events are sent from the features to the billing system - we are not concerned
with details of the billing system here. The global time is passed as a parameter so
that the duration of some activity can be measured and a corresponding charge levied.
Note that we have abstracted the messages slightly, so that they no longer contain
information about the users involved. Clearly, this information would be needed to
create correct bills, but as we are only concerned with interaction this is not required
here.

(billingstart, time) Start charging for a call.

(billingstop, time) The counterpart to the billingstart event. Upon receipt of this event the
duration of a call can be calculated and the user be charged with the correct amount.

(billing-forwarded, Z) The billing system is notified that a call has been forwarded to user Z.
Hence the forwarding can be taken into account for billing.

(billing-reverse, -) The billing system is notified that for the next event (billingstart, time)
the terminating side of the call is charged.

Chapter 3. Running Exam ple 32

(billingsplit, factor) The billing system is notified that for the next event (billingstart, time)
both users are charged according to the factor. For instance, the subscribing user will
pay 30% of the charge if the factor is 70. In addition the factor can be used to code
policies like the caller only pays a local call charge and the subscriber the remainder
etc.

(billingsnhook, time) The billing system is notified that a terminal is going onhook.

(billing-offhook, time) The billing system is notified that a terminal is going offhook.

3.4 Scenarios

Scenarios describe configurations of the telephone system to varying levels of detail.
They are usually created in a rather pragmatic way, whereby the experience and
intuition of the designer has a major impact on the quality. Scenarios are required
for evaluation of features as well as for feature interaction detection and resolution
methods. Scenarios are valuable for testing, and are indeed used in current testing
practice.

A typical scenario describes the system configuration and the state of the users.
Consider the following example:

Exam ple 3.4.1 Assume four users: A, B, C and D. B subscribes to both Call Forwarding
Busy (initialised to forward calls to C) and Call Waiting. B is in conversation with D. A rings
B.

It is very easy to invent scenarios, but it is not possible to ensure that all possibilities
are covered. It seems possible to use combinatorial techniques to list all cases.
However, this requires a framework that defines how many users must be considered
in order to ensure that all interactions between two or more features are detected.
Such a framework does not exist.

Current interaction detection approaches mostly consider 2-way interactions, that is
where 2 features are subscribed to by the users in the system. In addition, some work
on 3-way interaction has been done and there has been much discussion concerning
the desirability of 3-way interaction analysis. It is basically argued that “true” 3-way
interactions [TM00], defined to be those where no interaction exists between any pair
of the concerned features, are extremely rare.

A runtime approach must be able to handle any number of simultaneously subscribed
features, hence we propose analysing n-way interactions. This is motivated by the fact
that large numbers of features are available to users.

We will revisit the idea of scenarios when evaluating our approach.

Chapter 3. Running Exam ple 33

3.5 Summary

We have identified a set of features, provided their informal specifications and discussed
the concept of scenarios.

Chapter 4

A H ybrid Approach to FI

4.1 Introduction

As discussed earlier, feature interaction techniques can be classified as offline or online,
each with their own strengths and weaknesses. In this thesis the aim is to combine the
strengths of both and thus reduce the weaknesses - the result is a hybrid approach.

This chapter gives an overview of the envisioned hybrid approach, and discusses the
advantages of such an approach. A suitable online detection method is available from
the work of Marples [MarOO]. However, as shown earlier, the method’s resolution
approach is weak. Here we show how the hybrid approach allows for further
development of the detection technique and how it supports building a stronger
resolution method, thus resulting in a comprehensive solution for dealing with feature
interactions.

4.2 A Hybrid Approach

We expect our feature manager not only to detect interactions between new features
and the legacy system, but to resolve detected interactions in a satisfactory way.
Sometimes the resolution will involve the suppression of a number of features, raising
the question: which ones? At other times it may be possible to interleave features or
to run them in a particular order. In any of these cases the feature manager must be
able to make those decisions.

For detection, we follow the transactional approach proposed by Marples [MarOO] in
which the legacy system and the new features are treated as black boxes embedded in
transactional cocoons. The cocoons permit rollback and commit facilities. This allows
one to experiment at runtime with different sequences of possible inputs and thereby
to choose the best resolution.

Building on this detection mechanism, we aim to develop resolution methods. The
information required in order to choose a “best” resolution is derived from an offline
analysis of feature behaviour. This information is in the form of general rules (referred
to as resolution rules) and thus is independent of the features actually deployed. The
main contribution of this thesis is to show that this is indeed possible and to show
how it can be achieved.

C hapter 4. A H ybrid A pproach to FI 35

The rules may be gathered from an analysis of the behaviour of a formal model of the
system.

The formal model is more than just an abstraction, or specification, of intended or
required behaviour. It is an integral part of the incremental process of the development
and refinement of those intentions or requirements. That is, it is part of a adaptive,
experimental process, as advocated by Calder [Cal98] and Calder and Reiff [CROO].
Figure 4.1 illustrates this process.

New N (Legacy N f Feature
Features / Switch y Manager

Offline
Analysis Model

New
Features

Legacy
Switch

Feature
Manager

Fig. 4.1: Adaptive Development Process

The initial step in the process is to develop an (initial) formal model of the online
system, i.e. the legacy switch, a relatively uninformed feature manager, and the
features. Dotted lines denote this step. This model provides us with a platform from
which to experiment and reason about observable behaviour of the legacy system and
the new features.

The feature manager in this initial stage is concerned with identifying all possible
solutions, i.e. constructing the solution space, as shown in Fig. 4.2.

So lu t io n S p a c e

Fig. 4.2 : The Initial Behaviour of the Feature Manager

In the model the input to the feature manager is formed by example features.
Implementation details of these example features are assumed to be known to allow for

C h ap ter 4. A H ybrid A pproach to FI 36

analysis. The feature manager constructs the solution space by probing the features,
thus enabling that (in an operational system) the knowledge of the feature behaviour
is not required.

Properties of this system enable the identification of resolution rules such as “event
x should never be followed by event y, otherwise inconsistent behaviour is given to
the user” or “events x and y should never be offered simultaneously” (e.g. a spoken
announcement and a busy tone).

In the next step, the derived rules are used to guide the feature manager. T hat
is the uninformed feature manager will be replaced with a better informed version
incorporating algorithms to resolve interactions. This alters the system behaviour, so
we can derive new rules, further enhance the feature manager, observe more behaviour,
and so on.

4.3 D e te c tio n a n d R e so lu tio n P ro cess

The detection and resolution process is represented by Fig. 4.3. The construction of
the solution space is identical to th a t used by the uninformed feature manager.

R e s o lu tio n R u le s ii

F e a t u r e

S o lu t io n S p a c e S o lu t io n S p a c e R e s o lu t io n S p a c e R e s o lu t io n
F e a t u r e

F e a t u r e

F e a t u r e

Fig. 4.3 : Detection and Resolution Process

During the offline analysis we identified rules that are applied to reduce the solution
space to a set of valid solutions. Finally, the best (valid) solution is selected. The
rules themselves can be refined subsequently by a better understanding gained from
applying them , leading to the iterative nature of the adaptive development process.

We stress th a t at runtime the implementation details of the features are unknown. The
feature m anager’s explorative m ethod allows the identification of all possible solutions.

4.4 F e a tu re In te ra c t io n s

Feature interaction simply refers to the fact tha t there is a “point of contact” between
two or more features, not discriminating between desired and undesired interactions.

C hapter 4. A Hybrid Approach to FI 37

In general it is difficult to decide whether or not an interaction is desired, as factors like
user expectations play a major role in this classification. Our approach for detection
is based on these contact points, but for resolution it will be necessary to distinguish
between desired and undesired effects.

We identify two kinds of interactions, which we define as follows:

Definition 4.4.1 (Technical Interaction) A technical interaction occurs when several
features triggered by the same event or features triggered by an earlier response request
that the call is continued in distinct, non-unifiable ways. That is, there is no system
state which satisfies the behaviour of all requests.

Definition 4.4.2 (User Intention Violation) A user intention violation occurs when a
user observes unexpected behaviour in a call that progresses (i.e. where no technical
interaction has occurred).

Clearly both can be seen as an interaction, as there is a point of contact between
the features. (We note that Marples does not distinguish between these two types of
interaction.) Let us consider some examples to illustrate the difference:

Example 4.4.1 (CT-RC) Assume user B subscribes to Call Forwarding which forwards all
incoming calls to user C. C subscribes to Do Not Disturb, which plays a polite message
informing that C is currently unavailable. A calls B and gets forwarded to C. A now hears C ’s
message. Clearly being connected to C is not what A expected, hence we could classify this
as a u se r in ten tio n v io lation . This is not a technical interaction, as both features behaved
correctly and more importantly the system is not placed in unexpected states (thus remaining
stable and allowing the call to progress).

Example 4.4.2 (CFB-CW) User A subscribes to both Call Forwarding Busy and Call
Waiting. A is talking to B and receives a call from C. This causes a tech n ica l in te rac tio n :
a forwarding attem pt and the announcement of a call waiting tone. Each of these responses is
invalidated by the other, there is no meaningful state of the system satisfying both behaviours
simultaneously. Namely, if the call is forwarded, the call is not in a waiting position and vice
versa.

Clearly in the context of multiple features, both kinds of interaction might occur
simultaneously, for example upon receiving trigger t features fa and fa produce a
technical interaction and features fa and fa lead to a user intention violation. To
resolve technical interactions, all but one feature involved in the technical interaction
must be disabled, in the example fa and either fa or fa can proceed.

We will concentrate on detecting technical interactions. Note tha t in new systems it
would be possible to express user intentions in form of policies, which however will
shift the problem from feature to policy interactions.

In sections 2.2.4 and 2.3 we have outlined other classifications for interactions, namely
Shared Trigger Interactions (STI), Sequential Actions Interactions (SAI) and Missed

Chapter 4. A H ybrid Approach to FI 38

Trigger Interactions (MTI)[MarOO] and the more classic classes (defined in [CGL+94]):
MUSC, SUSC, MUMC and SUMC.

Before showing how these classifications relate to our distinction of user intention
violation and technical interactions, we need to discuss two issues: call control points
and a notion of stable state.

Points of call control. A call can be controlled either from a single point (as in
a PBXs) or from multiple points (as in a PSTN). The number of call control points
impacts on the availability of data and the required messages. As an example consider
a call attem pt to a busy user. In a single point of call control (SPCC) setting, the
switching software simply checks the status of the called user in a table and supplies
the caller with ether a busytone or a ringing tone. In a multiple point of call control
(MPCC) setting the caller’s switching software generates an outgoing call attempt and
awaits a response from the callee’s switch containing information regarding the busy
status of the callee. D e s k uses SPCC, our running example employs MPCC.

The impact of call control points on interaction detection and resolution is significant:
in a SPCC setting features from both involved parties can be queried, that is all data
available to them can be accessed and resolution mechanisms can influence features at
both ends of the call. In MPCC settings this is not possible, the only data available
is that belonging to the local user and that transmitted from the remote end via
messages. Additional information might be queried, resulting in a further message
exchange. Furthermore, a resolution involving state changes or termination of remote
end features is in current telephone systems not possible - only local features can be
influenced.

Stable states. For SPCC a stable state is one where a user input can be received
- i.e. the last user event has been processed and all internal messages have been
consumed. In Marples’s [MarOO] work this is described as a state with no events
or responses pending. In MPCC a stable state is one where either a user or a
remote switch event can be received - again all previous events have been dealt
with. The impact of this seemingly small change can best be shown with an example:
consider two users with call forwarding features (for simplicity assume unconditional
forwarding). A forwards to B and B to A. When A receives a call it is forwarded to
B. The next event will be a forward from B to A. In a SPCC setting this occurs before
the next stable state is reached, in MPCC after the next stable state was reached.

Our detection and resolution algorithm does not span across stable states (we cannot
revert a decision that has been made after it is committed to the network). Thus, we
are able to detect the forwarding loop with our approach in a SPCC setting but not in
a MPCC setting. We will consider this in more detail when evaluating our approach
in section 7.6.

The given classifications of interactions are orthogonal, they all divide the same space
of possible interactions into different partitions. Cameron et al. [CGL+94] defined the
classes for IN networks (which assume MPCC), Marples for SPCC. However, Marples
classes can be mapped onto MPCC settings.

C hapter 4. A H ybrid A pproach to FI 39

9 User Intention V iolation

O Technical In teractions
susc

< \ \

OS OCS(6> 1

Fig. 4.4: Detection and Resolution Process

Analysing the feature interactions described in Cameron et al. [CGL+94] we obtain
overlaps as shown in Fig. 4.4. Notably no class completely encapsulates any of the
others with the exception that all MUSC interactions are user intention violations.
All three classifications are suitable for classifying feature interactions independent of
the number of call control points and the specified notion of stable states.

4.4 .1 A side: T h e F eature M anager and Call C ontrol in th e IN
standard

We have discussed the idea of single versus multiple points of call control and also
that of a feature manager. Features and their handling have been envisioned in the
current standard for intelligent networks (IN) [ITU93b], where the above ideas are also
introduced. IN supports both single point of call control and multiple points of call
control the former is relevant for Private Branch Exchanges (PBXs), the latter for
the Public Switched Telephone Network (PSTN). Multiple points of call control can
be seen to be more im portant, as a PBX is usually a proprietary product and hence an
international standard describing its working is less relevant. Further, multiple points
of call control are technically more challenging, as one side only has a restricted or
abstract view of the other side in the call. Calls are typically made up of segments
from one switch to another where each switch has independent call control and no
direct control over actions at another switch (see Fig. 4.5). Obviously some protocol
is required for correct inter-operability of two switches on shared segments.

A close look at the SSF/C CF (service switching function/call control function) part
reveals a complex internal structure (Fig. 4.6). The basic call manager (BCM) handles
basic call setup and connectivity, but also recognises IN trigger events and passes these
to the SSF. The BCM has associated resources and data and also communicates with
the Bearer Control (which takes care of the interaction with the medium).

More interestingly, IN triggers passed to the SSF are received by a feature interaction

Chapter 4. A Hybrid Approach to FI 40

SCFSCF

CCF

SSF

CCF

SSF

SDF

SRF

SDF

SRF

Fig. 4.5 : Overview: end-to-end call in IN networks

manager (FIM). The FIM communicates via the IN service switching manager
(IN-SSM) with the service logic (also referred to as service control function (SCF)).
The SCF is basically what we refer to as features. Similar to the BCM, the IN-SSM
has access to private resources and data. The IN-SSM provides the features with an
abstract view of the call as well as access to its call control and its own resources.

SRF

SSF

CCF

SCF
Access

Manager

IN-FIM

and data

BCM

Non-IN
FIM

IN-SSM

SCF

Bearer
control

BCM

and data

IN-SM

Fig. 4.6: Call Control and Service Switching Functions in IN

The feature interaction manager/call manager (FIM/CM) is “the entity that provides
mechanisms to support multiple concurrent instances of IN service logic instances and
non-IN service logic instances on a single call. In particular the FIM/CM can prevent
multiple instances of IN and non-IN service logic instances from being invoked. The
ability of the FIM/CM to arbitrate between multiple instances of IN and non-IN
service logic instances is for further study. The FIM/CM integrates these interaction

Chapter 4. A Hybrid Approach to FI 41

mechanisms with the BCM and IN-FM1 to provide the SSF2 with a unified view of
call/service processing internal to the SSF for a single call.” [ITU93b, p6]

Let us analyse this description in more detail. The FIM can coordinate events
reporting to the IN-SSM (thus influence the abstract view), impact on BCM (by
coordinating suspension or resumption of the basic call) and provide:

• a service logic instance selection mechanism to determine which service logic to
invoke or block (a targeting of trigger events to individual features),

• mechanisms to support simple restricted service logic interaction between
simultaneous active features on the same call segment and

• mechanisms to prohibit simultaneous active features using static or dynamic
mechanisms.

Static mechanisms are basically service management functions (via provisioning),
normally based on resolution tables. The tables show potential problems between
features. Dynamic mechanisms “may involve more complex capabilities” [ITU93b,
p34]. Proposed dynamic methods are priorities and precedences of features or
exclusion of features (i.e. prohibiting new ones while others are still active).

In conclusion, our approach can integrate the basic ideas of IN (the standardised
architecture provides similar, but cruder, concepts). We extend the defined (IN)
feature manager by providing the afore-mentioned “more complex capabilities” , thus
giving the feature manager a stronger resolution mechanism. Further, our approach
removes the need for the feature manager to know details about the features, which
the approach in the IN standard [ITU93b] clearly requires. We also address the issue
of arbitration between multiple features which was left for “further study” in the IN
standard.

4.5 Summary

In this chapter we have described the concept of a hybrid approach. We have discussed
a classification of interactions and call control issues. Our approach improves on
Marples detection work, in that we consider more realistic call control based on the
IN approach.

1 We assume a typing error in the document, the component referred to is the IN-SSM
2 We assume a typing error in the document, the component referred to is the SCF

Chapter 5

P otentia l R esolutions

5.1 Introduction

In this chapter we will consider several issues concerned with the question: What
are potential resolutions when an interaction has been detected? Recall that detected
means that more than one feature responded to a trigger or that at least one feature
responded to a fed back response. This chapter makes the idea of detected interaction
more precise.

The specification of a solution space, a set of all possible solutions, leads to an
initial approach of constructing the same. This provides the precise understanding
of detected interactions and solutions, but is somewhat restricted in comparison to
realistic features. Thus for further analysis a better model needs to be found. Process
algebra seems a very good candidate notation, so we discuss why have chosen Haskell
instead. Finally, details of the Haskell implementation are discussed.

5.2 The Solution Space

Marples’s idea of exploring whether several interacting features might be allowed to
proceed in a certain order, inspired our goal to allow as many interacting features to
proceed as possible. To this extent a sound understanding of the possible solutions is
required. Let us make precise the terms solution, solutions space and resolution.

For a given set of features, a solution is a trace of one or more of those features
running concurrently. That is, it is an interleaving of messages generated by a subset
of the features.

For a given set of features, the solution space is the set of all traces, for all subsets
of the features.

A very simple solution space (for 3 features, each of which is executed ’’atomically” ,
i.e. there is no interleaving here) is illustrated in Fig. 5.1. It should be noted that the
solution space might contain many traces that lead to a violation of required properties
(i.e. there might be traces that represent incorrect behaviour).

For a given set of features, a resolution is a trace in the solution space that does not
violate any specified properties.

C hapter 5. P o ten tia l R eso lu tion s 43

I \ I \ I \

Fig. 5.1: Simple Solution Space

The solution space depends on the granularity of the interleaving. A coarse grained
interleaving would allow features to be run in any order but does not allow messages of
features to be interleaved. In this case the solution tree grows exponentially with the
number of interacting features. A fine grained interleaving would also allow individual
messages to be interleaved thus resulting in a solution space growing exponentially in
both the number of features and the length of their responses. We adopt the latter,
which clearly includes the former.

5.3 Specification of th e S o lu tion Space

In this section we develop a specification of the solution space: we consider messages
as basic building blocks, then features. The solution space is the result of a feature
manager function applied to a number of features.

5.3 .1 M essages

A message consists of an event (a type and possibly a value) and an associated I/O
aspect. Examples of event types are dial or alert; the value depends on the type
(e.g. dial has the dialled number as value, dial-tone does not require a value, and
announce has an event value indicating the announced message). The I/O aspect
indicates whether the message is input to or output from a feature.

Convention: input messages are preceded by +, output messages are preceded by —

We write a message ra as (± , even t typ e , even t va lu e) or, when we are only concerned
about the I/O aspect, as -fra or -n i . The null value is denoted by and, by abuse
of notation, r is also a special null message (r is an output message).

Example 5.3.1 The following are valid messages: (+, dial, n), (—,announce, “screened”) and
(—, i-alert, -).

Chapter 5. P otential R esolutions 44

We require relations between messages. Two messages a and b are said to be

equal when their event types, values and their I/O aspects are equal, written a = b.

duals when their event types and values are equal but their I/O aspects are not
equal, written a == b.

Example 5.3.2

• (+ ,2_a/er£,-) = (+,i_a/er£,-)

• (+,ijalert,~) = (—,i-alert,-)

5.3.2 Features

Definition 5.3.1 (Alphabet) An alphabet is a set of messages partitioned into 2

non-empty sets: input messages and output messages.

Definition 5.3.2 (Trace) A trace over an alphabet is a non-empty finite sequence of
elements of the alphabet starting with an input message. F irst(t) is the first element
in a trace t.

Convention: A trace is obtained by juxtapositioning elements of the alphabet.

Example 5.3.3 Consider the alphabet:
a = {(+,z_a/ert,-), (—, announce, “screened”), (—,ojrequest, “callerid”),

(+ ,iJnform, “id”), r}.
Some of the possible traces over a are:

(+ ,i-alert,-)(—,announce, “screened”) and
(+,i-inform , “id”)(—, announce, “screened”)(—, announce, “screened”)

The Terminating Call Screening feature is defined by the trace set:
F t c s — {(+,i~alert,-)(—,ojrequest, “callerid”)(+ ,iJnform, “id”) (— ,announce, “screened”),

(+,ijalert,-)(—,ojrequest, “callerid”)(+, i-inform, “id”)r} .

Definition 5.3.3 (Feature) A feature is a set of traces over an alphabet. We assume
the alphabet is minimal (i.e. each element of the alphabet occurs in at least one trace).

Convention: feature F{ has alphabet a*.

Chapter 5. P otential R esolutions 45

Example 5.3.4 This example shows the trace sets for some features. The label at the right
column will be used later to reference the respective trace.

Split Billing:
Fsb = {(+, dial, number)(—, billing split, factor), t ^

(+, dial, number) r} t(2)
Reverse Charging:

F r c — {(F, dial, number){—,billing . . r e v e r s e t(3)
(+, dial, number) t} t(4)

Calling Number Display:
F c n d — {(+ ,i-alert,-){—,ojrequest, “id”)(+,z_m /orm , “id”)(—,display, “id”), t(5)

(+, ijalert,-)(—, ojrequest, “id”)(+ , i j a l e r t , o J m s y , -)
(+,iJnform, “id”)(—,display, “id”)}. t(6)

Call Forwarding on Busy:
F c f b = {(+,oJbusy,-)(—, 0 -alert,-)(—,billing-forwarded,D)(—,ojnotify,D)} t(7)

5.3 .3 Feature Interaction

Now we can formalise the concept of an interaction:

Definition 5.3.4 (Feature Interaction) We say that n features F\...Fn with respective
alphabets a i...a n interact iff

j : ((1 < i , j < n) f \ (i ^ j)) A (3 + a E on A (36 E aj : a = 6))

Features interact if they have common input messages in their respective alphabets,
or one alphabet contains an input message that is the inverse to an output message in
another alphabet. Note that we do not consider the case where a nd 6 are both output
messages. This is because output messages will only occur simultaneously if they are
triggered by the same event. Thus a corresponding pair of matching input messages
would exist. This definition clearly reflects the previously discussed concept of feature
interactions being caused by points of contact between features (section 4.4).

5.3 .4 T he Feature M anager

The purpose of the feature manager is to detect and resolve interactions. Hence the
feature manager has to distinguish between features which do and do not interact in
the sense of Definition 5.3.4.

The feature manager is defined as follows:

Let F \,...,F n be features and let e be an input message, where e E ol\ U ... U a n .

Chapter 5. P otentia l R esolutions 46

Definition 5.3.5 (Feature Manager) The feature manager is a function, defined as:

E xtract(T , e) returns a set of traces T ' C T such that \ / t : (t 6 T') A F irst(t) = e.

Prune{T) returns a set of traces V C T, where all the traces in V represent possible
resolutions.

Construct(Fi, ...,Fn) constructs the solution space of features F i,...,F n and will be
considered in detail in section 5.4.

It may seem surprising that Extract can return more than one t race, after all we are
looking for a single resolution. To motivate our definition, consider a simple single
feature example: F = {-\-a — 5 + c — d, +a — 6 + e — /} . Both traces are equally good
resolutions when the trigger is a, but when the call progresses either c or e will occur
as trigger, forcing the other trace to be irrelevant. However, this is not an interaction
and we expect the feature manager to return both traces. The decision as to which
trace should finally be chosen is dependant on a later trigger event. Therefore, we
cannot make the decision at this point and must return a set. Similar scenarios can
arise between multiple features, thus leading to the above understanding of Extract.

5.4 Construction of the Solution Space

The role of the Construct function is to construct the solution space, i.e. the set of
all potential solutions. The complexity of the definition reflects the complexity of the
task: Construct returns a set containing all the individual features traces and all traces
representing interleavings of multiple features. The latter are constructed using the
function overlap, which in turn depends on the concept of overlapping interleavings.
We consider the concept of overlapping interleaving and then the functions overlap
and construct, showing examples for each.

5.4.1 O verlapping Interleaving

The following definition, illustrated with figure 5.2, makes precise the concept of
“overlapping interleaving” .

In the following, to increase legibility we substitute a = a\...an for t\ and b = bi...bm
for t 2 - Let concat be a function concatenating sequences. Let i be the first occurrence
of the longest prefix of a occurring1 in b. Let j be the length of that prefix.

1 a message m occurs in a and b if there are messages ax and by such that ax = by.

Extract(Prune(C onstruct(F i, ..., Fn))),e)
if Fi, ...,Fn interact

Extract((Fi U ... U Fn), e)
otherwise

Chapter 5. P otential R esolutions 47

b, b n f 1 int

Fig. 5.2: Overlapping Interleavings

Definition 5.4.1 A trace t is an overlapping interleaving of t\ and ti, if and only if

t = conca t(b i...b i-i,f(i,j,a ,b),in t(a j+i...an,bj+i...bm))

where the function / , which computes the event sequence arising from the prefix, is
defined as follows:

f t ' i j bi if fli — bi/ (z , l , a , 6) = {
bidi if ai = b{

concat(f(i, j — 1 , a, b), aj) if a,j = bi+j-1

conca t(f(i,j — 1 , a, b), aj, bi+j-1) if aj = bi+j-1 and
aj is an output message

concat{f(i, j — 1 , a, b),bi+j- \ ,a j) if aj = bi+j-\ and

bi+j- 1 is an output message

and the function int, which computes an interleaving is defined as follows:
i n t (s \ , s n), an interleaving of sequences s \ , . . . ,s n with length | s i | , | s n |
respectively, is a new sequence S such that

• isi = X > i,
i= l

• Va : (a G S) (a G Si V ... V a G sn),

• the relative order of the elements is preserved in S (i.e. if an element a occurs in
a sequence before b, then they do so in S).

We are now in a position to present some examples which illustrate the above
definition. For readability we do not show the event value.

Example 5.4.1 oi2(t^e+ t^) = the set of all overlapping interleavings between t(6) and t f jy
Note that the o-busy output of t (6) is input to t(7). The longest prefix of t(7) in t(6) is the
sequence (oJbusy), occurring at position 4 in £(6). There are several t 6 oi2(t^6y t ^) , as we
shall show:

Chapter 5. Potential R esolutions 48

£ = concat(+i-alert — o-request + i-alert,
in t(+ iJnform — display, —ojalert — billing, forwarded — o .notify))

= concat(+i.alert — o.request + i.alert — o.busy + o.busy,
in t(+ i.in form — display, —o.alert — billing .forwarded — o.notify))

As int can return ten different values, we obtain ten different traces t that are overlapping
interleavings of the two input traces. All ten traces have the common prefix
+i.alert — o.request + i.alert — oJbusy + o.busy,
their respective endings are:

+ i-inform — display — o.alert — billing .forwarded — o.notify
+ i-inform — o.alert — display — billing, forwarded — o.notify
+ idn fo rm — o.alert — billing, forwarded — display — o.notify
+ i.in form — o.alert — billing .forwarded — o.notify — display
— o-alert + i-inform — display — billing, forwarded — o.notify
— ojalert + i.in form — billing, forwarded — display — o.notify
— o.alert + i.in form — billing .forwarded — o.notify — display
— ojalert — billing .forwarded + i.in form — display — o.notify
— o.alert — billing .forwarded + i.in form — o.notify — display
— o.alert — billing, forwarded — o.notify + i-inform — display

5.4.2 Overlap

The function overlap(t\, ...tn) returns the set of all “overlapping interleaving”
sequences that can be generated from the ti in the input. This includes all those
generated from just 2 traces, those from 3 traces, up to those from n traces. We first
consider the function, oz2 , that computes all “overlapping interleavings” of 2 traces
and then build up a function for n traces.

Assume that T (t i , t 2) — {t \ t is an overlapping interleaving of t\ and £2 }-

oi2 returns either an empty set or a set of traces as follows:

oi2(t = I ^ if V(*’•?)•(* ^ 3) A G V -a € ttf)) - » -Ht = F irst(tj)
lj 2 \ T (t 1 , t2) otherwise

Example 5.4.2 A trivial exam ple overlapping interleaving is:
o i2 (£ (!),£(5)) = {} Reason: The alphabets are distinct.

However,
o£2 (£(6) , £(7)) and o£2 (£(!),£(3)) are non-empty because the output of £(6) is input to £(7) and
£(i) and £(3) have a common input.

Finally we consider the general overlap function, operating on n traces (n > 2). We
distinguish two cases:

Chapter 5. Potential R esolutions 49

a) if n = 2
overlap(ti, = o i2 (ti,tn)

b) otherwise
/ n

overlap(ti,...,tn)= (| J [|J { < » 2 (t i , t)\t G overlapfa , ..., f;_i, t < + i , t n)}
for all t i = l

U ([J overlap(ti, ...,tn)
v* = l

In words, we successively choose all subsets of the given set of traces with exactly
one element less. We then compute all overlaps of this subset. In the case of the set
containing two elements we have encountered the case where we simply apply oi2 to
the two traces. If there is more than one trace, we recursively choose all subsets with
one element less and compute their overlaps. In the recursive case each trace of the
set of computed overlaps is overlapped again using oi2 with the trace that was not
included in the subset. Thus we obtain the set of all overlaps as required.

5.4.3 C onstruct

Let tij be the j-th message of the i-th feature. Recalling that features are sets of traces,
| i s the number of traces of feature Fi by use of standard notation.

Construct(F \ ,..., Fn) = SingleFeat{F \ ,..., Fn) U M ultipleFeat(F i, ..., Fn)
n

SingleFeat{F \ ,..., Fn) = Fi
i= 1
|F i|* ...* |F n |*n!

M ultipleFeat(Fi, ...,Fn) = (J overlap(tgj, ...,thk)
i= 1

We assume the following conditions on the variables: g ^ h and g ,h € {l..n} and
j e { l..|F5|} and k G { l..|F h|}.

Example 5.4.3 This example constructs the solution space from the Calling Number Display
and Call Forwarding on Busy features.
Construct{FcND, F c f b) = SingleFeat(FcND> F c f b) C

MultipleFeat(FcND, Fc f b)
= F c n d U F c f b U overlap^) , < (7)) U overlap(t{6), t (7))

Chapter 5. P otential R esolutions 50

5.5 Application to Running Example

An implementation of this specification has been developed using the Python [Pyt]
programming language.

In example 5.5.1 we show some sample output. This example shows the complete
solution space for the Calling Number Display (CND) and Call Forwarding on Busy
(CFB) features defined in section 3.2. Note that traces 0 to 9 are the traces belonging
to the set M ultipleFeat and the remaining are those of the SingleFeat. In particular
trace 10 is the original trace from the CFB feature, traces 11 and 12 are from the
CND feature. Note that neither extraction nor pruning has been applied, hence the
complete solution space is returned.

Example 5.5.1

+-------------------------- pretty print traces
| +--------------------the feature manager
I |---+---------------- extraction off
| | | +------------- pruning off
I I I I +---------- trigger event, only relevant if extraction is on
I I I I I + ---- the two features CFB and CND
I I I I I I

» > print(fm(0, 0, "a", thcfb, thcnd))
These features interact, finding resolution ...

0 : (+,i _ a l e r t o _ r e q u e s t ,id)(+,i . a l e r t o . b u s y ,-)(+,o.busy, -)
(+,i.inform,id)(-.o.alert,-)(-,billing_forwarded,D)(-,o.notify,D)
(-.display,id)

1 : (+,i.alert,-)(-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
(+,i.inform,id)(-.o.alert,-)(-.billing.forwarded.D)(-.display,id)
(-,o_notify,D)

2 : (+,i.alert,-)(-.o.request,id)(+,i.alert,-)(-.o.busy,-)(+,o.busy,-)
(+,i.inform,id)(-.o.alert,-)(-,display,id)(-.billing.forwarded.D)
(-.o.notify,D)

3 : (+,i.alert,-)(-.o.request,id)(+,i.alert,-)(-.o.busy,-)(+,o.busy,-)
(+,i.inform,id)(-.display,id)(-.o.alert,-)(-.billing.forwarded.D)
(-.o.notify,D)

4 : (+,i.alert,-)(-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
(-,o.alert,-)(+,i.inform,id)(-.billing.forwarded.D)(-,o.notify,D)
(-.display,id)

5 : (+,i.alert,-)(-.o.request,id)(+,i.alert,-)(-.o.busy,-)(+,o.busy,-)
(-,o.alert,-)(+,i.inform,id)(-,billing.f orwarded,D)(-,display,id)
(-.o.notify,D)

6 : (+,i.alert,-)(-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
(-,o.alert,-)(+,i.inform,id)(-,display,id)(-.billing.forwarded,D)
(-.o.notify.D)

7 : (+,i.alert,-)(-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
(-.o.alert,-)(-.billing.forwarded.D)(+,i.inform,id)(-.o.notify,D)

C hapter 5. P otential R esolutions 51

8 :

10
11
12

(-.display,id
(+,i_alert,-)
(-,o_alert,-)
(-,o_notify,D
(+,i_alert,-)
(-,o_alert,-)
(-.display,id
(+,o.busy,-)(
(+,i_alert,-)
(+,i_alert,-)
(-.display,id

-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
-,billing.f orwarded,D)(+,i.inf orm,id)(-,display,id)

-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
-,billing.f orwarded,D)(-,o.notify,D)(+,i.inform,id)

.o.alert,-)(-.billing.forwarded.D)(-,o.notify.D)
-.o.request,id)(+,i.inform,id)(-.display,id)
-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,i.inf orm,id)

5.6 Discussion

The specification of the solution space leads us to a clear understanding of the
solution space and in particular highlights how traces from individual features can
be interleaved. This also provides a picture of the complexity; namely that the
solution space increases exponentially in the number of features and the length of the
interleaved part of the traces. The solution space provides a basis for the development
of extraction and pruning methods.

We require two distinct methods to obtain resolutions from the solution space: pruning
by general rules which removes traces illustrating “bad” behaviour and extraction
which identifies “good” behaviour. The pruning rules express message patterns, like
“two consecutive announcements are not allowed” or “an onhook followed by a number
of messages can only be followed by another onhook if the messages contains an
offhook” . Because these patterns do not relate messages to features, we refer to them
as general rules.

We can identify two weaknesses with this specification.

First, the notation is precise but not expressive enough. For example, we require a
way to express looping behaviour in some features (as is the case for three way calling
when users can toggle several times between partners).

Second, when constructing the overlapping interleaving, we violated our key
assumption of not knowing the internal behaviour of features. Thus it is difficult
to see how this approach helps to fulfil our aim, namely the development of an online
feature manager that can handle black box features.

So, rather than defining pruning methods for this specification, we will reconsider the
specification, thus addressing the above weaknesses.

C hapter 5. P otentia l R esolutions 52

5.7 Operational Specification

When developing the specification of the solution space we have mainly concentrated
on what the solution space is. However, in the context of the transactional approach
it is very important to see how we obtain the solution space, that is the operational
aspect is very important.

From the conclusions above it is clear that the notation is not suitable. A suitable
notation should:

• offer a natural way of expressing events (or messages) as basic concept,

• allow looping behaviour of features to be expressed,

• include (or allow definition of) tree data types (to handle the solution space)

In addition it would be preferable to have some of the following:

• a recognised notation (maybe even standardised)

• tool support for the notation (for simulation and verification)

After considering various formal notations, process algebras seem a natural choice.
The basic terms in process algebras are actions which are combined by sequencing and
choice operators. Sending or receiving messages can be treated as events. Parallelism
operators seem a useful way to describe interleavings. The requirement for complex
data types suggests L o t o s [IS089]. L o t o s combines process algebra with an algebraic
data type definition language (Act One). Furthermore, L o t o s is standardised by
the International Organization for Standardization (ISO-8807) and well known in
the telecommunications area. Extensive tool-sets for verification and simulation are
available in the form of C a e s a r / A l d e b a r a n [CAD] and T o p o / L o l a [LOL].

An extensive case study [ReiOl] was performed, in which a L o t o s model of a feature
manager and the features from the second contest was developed. The solution space
is implemented as a tree datatype and simple extraction rules are defined to reduce
the solution space.

L o t o s seems a good choice to perform the task at hand, but several problems were
encountered: the model was too large to be handled effectively for verification by the
tools. In addition our verification would require reasoning about the tree data type,
whereas the available tools are aimed at reasoning about processes and not data types.

Customising the model to handle different numbers of features is not straightforward,
as each feature introduces additional events in the feature manager process and several
other aspects of the model must be adapted to cope with any given number of features.
This was automated by a script, and thus presents only a minor drawback.

Chapter 5. P otential R esolutions 53

Most significantly, reducing the solution space is intended to be implemented
exclusively as functions on trees. Pruning adds a significant amount of data type
definitions as a complete method for defining regular expressions and finding matches
to the same in the solution space is required. Considering that a model containing three
features amounted to roughly 30 pages of L o t o s code, half of which was definition of
messages and trees not including pruning the additional increase suggests that L o t o s

would be unsuitable in this case.

Considering these results, an alternative notation was found in Haskell [Tho99, Has]
together with the Hugs in te r p r e te r [Hug] and the Glasgow Haskell Compiler [ghc].
Functional programming fulfils all of our requirements, apart from verification tools.
However, functional programming naturally leads to inductive reasoning, so this is not
a major drawback. Data type definitions are relatively straight forward in functional
programming languages, leading to a clearer model and more efficient prototypes.

We now investigate the improved construction of the solution space using Haskell.

5.8 Haskell Implementation

The construction of the solution space follows Marples approach: The feature manager
receives a trigger event which is issued to all features. Responses are collected and fed
back to all the features until no further responses are received. During the feedback
process the solution space is constructed.

5.8.1 M essages

Messages are defined in the Haskell module Message.hs. Three enumeration types
provide values for events (type: Event), arguments (type Arg) and the IO-aspect (type
Io). Natural equivalence and partial order relations are imposed on the three types
(by membership in the respective Haskell classes). Messages consist of a quadruple:

type Message = (Io, Event, Arg, In t)

where the fourth argument represent the message destination. The destination field
is used by the feature manager and the cocoons. A cocoon will ignore all messages
where the destination value differs from 0 and its own identity value. This mechanism
allows the feature manager to either target particular features (destination > 0) or
broadcast messages to all features (destination = 0).

Example 5.8.1 The following are messages:
(Rev, Onhook, Nil, 0) and (Snd, Billing split, Splitfactor, 0).

Chapter 5. P otential R esolutions 54

It is necessary to compare individual parts of a message with fixed values. Projection
functions have been defined to extract the appropriate parts of the tuple. Equality
tests on values of type Message are inherent.

Messages can be partitioned into feature messages and transaction control messages.
The former are messages describing the intended behaviour of features and have been
described in detail in Chapter 3. The latter, of which there are 4, are used by the
feature manager to control the transactional cocoons. The functions is-tcmsg and
is-fmsg tell us which class of messages a message belongs to.

5.8.2 Features and C ocoons

Features and cocoons are defined in the module F eatu res .hs. Recall that features are
extensions to the basic behaviour of a system. We treat the basic system in the same
manner as other features. Hence we essentially see features as a black boxes that react
to a trigger event by providing a (possibly empty) response. Features are modelled as
functions, and initial and final state of a transaction are passed as values. However, as
this information will not be available in the operational system, the feature manager
does not make use of it. Thus, the requirement of features being treated as black
boxes is satisfied.

Definition 5.8.1 (Feature) A feature is a function:
featbehave :: Int —► Message —► Int —> (In t, Queue Message)
such that featbehave s m f is the new state and the response of feature / in state s to
message m.

Example 5.8.2 featbehave 1 (Rev, Dial, Nil, 0) 1 leads to a call of tl 1 (Rev, Dial Nil, 0),
thus evaluating the behaviour from a teenline feature (which in the im plem entation is feature

!) •

featbehave returns pairs of the new state and the response of a feature. Note that
features can be seen to have moved into a new state in their automata representation
(or not), as well as produce an empty response or not. All combinations are possible:

Example 5.8.3
tl 1 (Rev, Dial, Nil, 0) (2 , enqueue emptyQueue (Snd, Announce, Wrongpin, 0))
bcs 1 (Rev, I-alert, Nil, 0) ~~+ (1, enqueue emptyQueue (Snd, O-busy, Nil, 0))
ct 7 (Rev, I-disconnect, Nil, 0) (0, emptyQueue)
tl 2 (Rev, Connect, Nil, 0) (2, emptyQueue)

Features are encapsulated in a transactional cocoon. The cocoon is the point of
interaction of the feature manager with the feature. More importantly the cocoon
controls the transactional mechanism that is used to explore possible behaviour by
polling features reactions in order to construct the solution space. The control of the

Chapter 5. P otential R esolutions 55

construction process is part of the feature manager process. Each cocoon is associated
with a given feature throughout the runtime of the system.

Definition 5.8.2 (Cocoon) A cocoon is a function:
cocoon :: Int —► Stack Int —► Int —► Int —> Message —> RooZ

—» (Queue Message, CState)
such that cocoon cs rb fid co m f is the new state of a cocoon and the response of the
associated feature obtained by featbehave cs m fid.

Definition 5.8.3 (State of a Cocoon) The state of a cocoon is a 4-tuple
CState = (Int, Stack Int, Bool, Int)
containing the features current state, a rollback stack, a flag identifying whether the
cocoon is in playback mode and the identity of the associated feature.

Rather than defining each of these elements more precisely we describe the behaviour of
the cocoon. Upon receipt of a message the cocoon determines whether a transaction
control message or a feature message has been received and whether the received
message has indeed been targeted at this cocoon. If the message is not targeted at the
cocoon it will simply be ignored, resulting in an empty queue and the current state of
the cocoon being returned.

When a feature message is received, the cocoon may or may not be in playback mode.
A cocoon in playback mode has the role of re-instantiating a certain feature state
(usually after the feature manager has made a decision as to which features shall be
executed and which blocked). In this mode no responses from the feature are collected
(they will have been obtained earlier and are part of the stored resolution). Thus an
empty queue and a new state of the cocoon are returned. If, more interestingly, the
cocoon is not in playback mode, the return value is the response of the feature and
the new cocoon state.

Upon receipt of a transaction control message if the cocoon is in playback mode and the
control message is a CommiLtransaction message, then playback will have finished and
an empty queue and a new state are returned. If we are not in playback there are four
distinguished cases, dependent on the control message (we use the same messages as
were advocated by Marples [MarOO]). All four cases return an empty feature response
as the features play no role in this process. The state of the cocoons changes and the
new state is returned.

• Start-transaction: A new transaction is started, and the current state of the
cocoon is saved on the rollback stack.

• AborLtransaction: We are no longer interested in the whole series of
transactions, hence the new state becomes the state of the cocoon before the
first transaction: the bottom element of the rollback stack.

C hapter 5. Potentia l R esolutions 56

• Rollback-transaction: We want to go back one level, i.e. undo the last
transaction. The new state is obtained by popping the last element from the
stack and making this the new state.

• CommiLtransaction: Committing a transaction requires the cocoon to be
returned to its initial state. This can be achieved performing the same action
as for AborLtransaction. Because the new state is not returned from construct
the abort message is not actually sent. The cocoon enters playback mode, and
the feature manager will now play back the messages so tha t features can be
advanced to the correct states.

5.8.3 Feature Interaction

The earlier definition of feature interaction (Definition 5.3.4) must be slightly adapted
to be useful within a Haskell setting. We do not have the same knowledge about
features as was assumed earlier, namely we do not know the complete set of traces of
a feature. The only information available is whether a feature reacts to a trigger event
or not. The definition of feature interaction is equivalent to the intuitive understanding
of Definition 5.3.4:

Definition 5.8.4 (Feature Interaction) Features interact iff
• more than one feature has responds to a trigger message, or

• a response is received upon feeding a response back to the features.

The first case simply means that more than one cocoon has returned a non-empty
queue as response to a feature message. The second case means that a feature has
responded with a message that acts as trigger to another feature. Note that these two
cases can occur in any order, between any number of features and in any quantity.
For example the original trigger might just produce one response, but the feedback
thereof leads to several features responding. The new feedback can again produce
more responses. This process could be potentially infinite (call forwarding loops in
systems with single point of call control for example) so an operational system would
require the amount of feedback allowed to be restricted. We return to this issue in
Chapter 7.

Note that no judgement about the desirability of the interaction is made at this
point: the responses can clash thus leading to inconsistent behaviour or they can be
complimentary and co-exist without any problems. Pruning will handle inconsistent
behaviour and we investigate this later.

5.8 .4 T he Feature M anager

The role of the feature manager is to detect and resolve interactions, as specified
earlier. In addition, the feature manager has to control the transactional cocoons as
part of the feedback process and the rollback and commit mechanism.

C hapter 5. Potentia l R esolutions 57

Definition 5.8.5 (Feature Manager) The feature manager is a function
fm :: [CState] —► Message —>• RegExpr Message —> Augtree Message
such that /m fs m rules is a resolution to any potentially detected interactions
observing the rules rules in a system with features fs.

The feature manager is implemented as :

f m f s m rules = extract (prune (extractdup (construct fs m)) rules)

The functions extract, extractdup and prune which identify a resolution in the solution
space are to be refined in Chapter 6 . The next two sections will address the problem
of committing a resolution and the construct function. The feature manager and all
listed subfunctions are defined in the Haskell module Main.hs.

5.8.5 C om m itting a R esolution

Assuming that we have identified a single resolution (the solution space consists of a
tree with a single leaf node), we need to consider how this resolution is committed to
the system.

In the process of constructing the solution space, features are queried repeatedly about
responses to messages and we don’t know which state they are currently in. W hat we
do know however, is that we can return them to their former state (i.e. the state they
had before the trigger event was received). Committing the chosen resolution involves
sending the respective responses to the user and/or remote switch and updating some
features to a new state.

The function commit has the purpose of doing this:

commit :: Augtree Message —> [CState] —* ([Message], [CState])

The commit process is initiated by the feature manager issuing a Commit-transaction
message to all features and is terminated by a second such message (we could have
used a different message, but decided to not introduce any further messages).

5.9 Construction of the Solution Space

The complex construction process has been split into several functions.

construct :: [CState] —> Message —> Augtree Message

is the main function. The solution space is constructed from a list of current cocoon
states and a message. Figure 5.3 provides an overview of sub-functions. We briefly
describe the purpose of the individual functions before describing the most interesting
one, feedback in more detail.

Chapter 5. P otential R esolutions 58

construct

toallcocoons construct 1

feedbackctrl toallcocoons

feedbackctrll m ak e fla g s

. feedback.

nonemptyQs emptyQs allQsEmpty toallcocoons choosesome getMsgFromQ appendQs

getChosenMsg

remFromAUQs

Fig. 5.3: Hierarchy of Functions in the Construction Process

construct returns the solution space obtained by constructl and initiates the
transaction management.

constructl gathers responses to the trigger event and then initialises the feedback
process. It also inserts the trigger message as root in a new tree.

toallcocoons enables a message to be passed to all cocoons and then for the responses
to be returned.

feedbackctrl assures that feedback is run the required number of times with the correct
arguments. Depending on the number of features different cases have to be
explored. In particular we must explore all branches involving 1 feature, then
all those involving any combination of 2 features, and then all those with 3 and
so on. This is achieved by passing the list of flags, generated by makeflags to
feedbackctrll which controls the actual feedback process.

makeflags guarantees that all permutations of features are explored. A list of
multibit-flags is generated. Each flag represents a feature being enabled or
disabled. The case of all features being disabled is obviously not interesting,
and so is not considered. For example, the set of flags for 2 features is
[[True, False], [False, True], [True, True]].

feedback controls the rollback process, initiates the feeding back of messages to
features and inserts responses into the tree. We will consider this process in
more detail in Section 5.9.1.

nonemptyQs counts the number of non-empty queues in a list of queues.

emptyQs returns a list of empty queues, it basically empties all queues in the input
list.

C hapter 5. P otential R esolutions 59

allQsEmpty reports whether all queues in a list are empty.

choosesome allows one to disregard replies from some features. As we cannot
physically disable the features, it seems easiest to simply ignore their responses.

getMsgFromQ controls the extraction of a message from a particular queue.

getChosenMsg extracts a message from the head of a particular queue.

remFromAUQs removes a particular message from all queues in which it occurs as
front element.

appendQs appends the content of queues in one list to the queues at the same position
in a second list to obtain a list of merged queues.

To summarise, construct initiates the whole construction process, a new tree is
constructed with the trigger message as root node. Then all settings of different
features are explored by feedback whereby feedbackctrl ensures that all possible settings
have been considered. The resulting solution space contains the branches that have
been added by the individual feedback processes. Note that this can lead to duplicate
subtrees. For example, consider a system containing 3 features / i , and /b, in which
only / i and fo react to the trigger event. In this setting we would expect that the
traces generated with all three features enabled are the same as those with only f \
and / 2 present. Traces with 2 features present one of which is fs will be equal to those
with just the other feature present.

5.9.1 Feedback

Feedback has to ensure that all possible interleavings of the responses are explored.
We have decided on a fine grained interleaving, that is any order of the responses must
be explored, independent of the feature which sent them. Responses will be added to
the message queues and it is irrelevant whether responses in the queues occurred as
result of the first trigger or of any subsequent feedback.

Recall that all combinations of any number of features have to be explored, including
those involving only one feature.

Feedback has been split into two parts: feedbackcontrol which controls the exploration
of the different combinations of activated features, and feedback which ensures the
correct construction of a tree with a certain number and combination of enabled
features .

feedback is a function that takes a multibit flag representing the enabled status of
the features, a list of message queues (one queue per feature), the current state of
the features, the solution space constructed so far, an integer representing how many
branches have been explored so far and a state stack. The feedback function returns
the solution space with any new solutions inserted together with the new state of

Chapter 5. Potential R esolutions 60

the features. The reason for the inclusion of the state stack as input may not be
immediately obvious. It is used to store state information and contains the old message
queues as well as how many branches have been explored starting from these queues.
Note that the stack does not store the state of the features (this information is handled
by the cocoons).

feedback :: [Bool] —» [Queue Message] —> [CState] —> (Augtree Message) —* Int
—► StateStack —► (Augtree Message, [CState])

such that feedback bs qs fs t c is the solution space with all traces obtainable from qs
and the enabled fs inserted.

feedbackctrl calls feedback several times, once for each combination of enabled features
(as represented by the list of multibit flags). The variable c denotes the number of
currently explored branches, and is initially set to 0 .

Let us now consider the details of feedback. We distinguish 4 cases:

1. All message queues are empty and the state stack is empty,

2 . All message queues are empty and the state stack is non-empty,

3. At least one message queue is non-empty and c is less than the number of
non-empty message queues,

4. At least one message queue is non-empty and c is equal to the number of
non-empty message queues.

An example will illustrate these cases. Assume a system with three features, starting
from a point in the system where the features have received a trigger and the message
queues containing the responses are: Q1 = [a, b, c], Q2 = [b,d] and QS = [e]. The
value of c is 0, i.e. no branches have been explored yet. Further assume that we are
currently interested in the case were all three features are active. Let Cl, C2 and CS
represent states of the three cocoons, so the current state stack and to the solution
space constructed so far. Feature 3 reacts to receiving a message a with the response
/ and no other features respond to any message. For the changes to the stack and
tree we refer to Fig 5.4 and its continuation in Fig. 5.5. The bottom half of the figures
represents the stack, the top half the tree. The node labelled M represents the insertion
marker.

Example 5.9.1
feedback [T, T, T] [[a, 6 , c], [b, d], [e]] [Cl, C2, C3] to 0 so

This is an instance of the third case: there is at least one non-empty message
queue and c is less than the number of non-empty message queues.

Chapter 5. P otentia l R esolutions 61

Fig. 5.4 : Feedback: Solution Space and Statestack 1

Fig. 5.5 : Feedback: Solution Space and Statestack 2

We are required to pick one message from a non-empty queue, insert this message
into the tree and feed it back to the features. Before the message can be fed back,
a new starLtransaction message needs to be sent to instruct the cocoons to save all
respective information for a potential rollback. The new responses must be collected
and added to the message queues. Feedback will be recursively performed after the
current state has been stored on the stack.

Because c = 0, the message must be chosen from the first non-empty queue, giving us
the following:

Example 5.9.2
feedback [T, T, T] [[6 , c], [b, d], [ej]] [Cl, C2, C3] tl 0 si
Note that Feature 3’s response / has been added to the third queue.

C hapter 5. P otentia l R esolutions 62

Clearly we can continue in the same way for some more steps:

Example 5.9.3
feedback [T, T, T] [[c], [d], [e,f]} [Cl, C2, C3] t2 0 s2
Note that b has been removed from all queues where it occurred as head, thus implementing
the overlap as discussed in section 5.4. The feedback process continues as follows:

feedback [T, T, T] [Q, [d], [e,f]} [Cl, C2, C3] tSOsS
feedback [T, T, T] [0, 0, [e,/]] [Cl, C2 , C3] *4 0 s4
feedback [T, T, T] [[], Q, \f}] [Cl, C2, C3] *5 0 s5
/eedftacA: [T, T, T] [0, 0, []] [Cl, C2 , C3] t6 0 s6

We are now in a position where all message queues are empty and the state
stack is non-empty (case 2). No feature has responded to the most recent event
(either the trigger or a fed back response) and all previous responses have already
been fed back. However we can rollback to a previously stored state by popping the
topmost state from the stack. We then reinstantiate feedback.

To rollback, the state of the message queues and number of explored branches are as
popped from the state stack. The cocoons are sent a rollback message so that they
can restore previous states of the features. It only remains to shift the insertion point
in the tree: movemarker moves the InsMarker M leaf up one level in the tree so that
it becomes a child of its current grandparent.

The InsMarker M denotes the point at which the next node should be inserted. This
insertion point is always the leftmost leaf of the leftmost branch (a decision made for
efficiency reasons; accessing elements at the start of a list is fastest in Haskell). During
rollback, if the insertion point is the root of the tree, we cannot move any further up,
so we are done. If the insertion point is a leaf of the root node again we cannot move
up. If the insertion point is at least two levels down in a tree we have to distinguish
whether it is exactly two levels down or whether it is even further away. In the latter
case we recursively call movemarker to have the marker moved. If it is exactly two
levels down from node n (this can also be the root node), we insert the marker as a
new child of n and remove the marker from its previous location.

Now, we call feedback again:

Example 5.9.4
feedback [T, T, T } [0, Q, \f}] [Cl, C2 , C3] t l 1 s7

Now at least one message queue is non-empty and c is equal to the number
of non-empty message queues (case 4). We have explored all possible behaviours
from the current position and simply need to rollback further. This is achieved by
recursively calling feedback with the current arguments ensuring that the queues are
emptied first. This results in the following sequence of calls:

Chapter 5. P otential R esolutions 63

Example 5.9.5
feedback [T, T, T] [[], 0, []] [Cl, C2, C3] t7 1 s7
feedback [T, T, T] [0, Q, [e,/]] [Cl, C2, C3] t8 1 s8

feedback [T, T, T] [Q, 0, []] [Cl, C2, C3] t8 1 s8

feedback [T, T, T} [0, [d], [e,f]\ [Cl, C2, C3] t9 1 s9

At this point c is again less then the number of non-empty queues, which means that
there is a possible interleaving that has not been explored. Since c = 1 this interleaving
is obtained by picking the message from the second non-empty queue. This results in
the following sequence of calls:

Example 5.9.6
feedback [T, T, T] [0, [d], \f}] [Cl, C2, C3] tlO 0 slO
N ote that we entered a new level w ith no possibilities explored, hence c is again 0.
feedback [T , T, T] [[], [], [f]} [Cl, C2, C3] t i l 0 s ll
feedback [T, T, T] [0, 0, []] [Cl, C2, C3] tl2 1 s l2

feedback [T, T, T] [[], D , I/]] [Cl, C2 , C3] il3 1 sl3
feedback [T, T, T] [Q , D , []] [Cl, C2 , C3] 113 1 sl3
feedback [T, T, T\ [0, [d], \f]} [Cl, C2, C3] tl4 1 sl4
feedback [T, T, T] [0, [d], 0] [Cl, C2 , C3] tl5 0 sl5
feedback [T, T, T] [0, Q, []] [Cl, C2, C3] tl6 0 sl6
feedback [T, T, T] [0, [d], Q] [Cl, C2 , C3] tl7 1 al7

This process continues until all m essage queues are em p ty and th e s ta te s tack
is em pty . This is the case 1 and arises when no feature has responded to the most
recent event and all previous responses have already been fed back. The empty stack
indicates that we cannot rollback any further. Consequently, we know that we have
finished and hence all that remains is to return the tree and the current state of the
features.

5.10 Application to Running Example

So far we have described the construction of the solution space in the Haskell
implementation by showing isolated parts and explaining some of those with the help
of small examples. In this section we will show a more complex construction to provide
the complete picture.

Recall the implementation of the feature manager:

fm fs m rules — extract (prune (extractdup (construct fs m)) rules).

Chapter 5. P otential R esolutions 64

For the purpose of this example we assume that extract, prune and extractdup are
identity functions (i.e. we only want the feature manager to construct the solution
space).

main = fm [(0, emptyStack, False, 2), — Call Forwarding Busy in State 0
(1, emptyStack, False, 7)] — Calling Number Display in State 1
(Rev, I-alert, Nil, 0) — Lalert as trigger message
(MkRE (Snd, Onhook, Nil, 0)) — dummy, pruning is disabled

This example call constructs the solution space for the Call Forwarding Busy and the
Calling Number Display feature. CND is in a state where it responds to Lalert by
producing a trigger for CFB. The expected output is a tree containing two solutions:
one solution representing the interleaved behaviour and one for the behaviour of CND
(i.e. when CFB is disabled). The case when CND is disabled does not lead to the
construction of a solution, as CFB does not react to the provided trigger.

hugs > main

((Rev,I_alert,Nil,0),{0>) [((Snd,0_busy,Nil,0),{1})
[((Snd,0_alert,Nil,0),{2>)

[((Snd,Billing_forwarded,N i l ,0),{ 2 »
[((Snd,0_notify,Nil,0),{2» []]]]

((Snd,0_busy,Nil,0),{1»[]
]

The output is illustrated in Fig. 5.6.

Fig. 5.6 : Solution space constructed for CND and CFB using Feedback

Note that the output differs marginally from the result produced in section 5.5. These
differences occur because we only have a very restricted view of the feature behaviour
in the implementation whereas in the specification a complete knowledge was assumed.

C hapter 5. P otential R esolutions 65

5.11 Summary

We introduced the notions of solution, solution space and resolution. A specification
and implementation for the construction of the solution space was completed with
applications to the running example.

Chapter 6

R esolution

6.1 Introduction

In the previous chapter we constructed all possible solutions. However, recall that
solutions are not necessarily resolutions for a feature interaction. Recall that a
resolution is a solution that does not violate any of the specified properties. Hence it
remains to remove all those that don’t form resolutions from the solution space giving
us a resolution space. We can then extract the best resolution.

In this chapter we discuss how we can distinguish bad and good solutions, and also
how we find the best resolution. The term pruning is used to describe operations
that remove bad solutions, operations identifying the best resolution are referred to
as extraction. Each operation is based on a rule which has been derived empirically
by analysis of examples. Application order is significant.

We consider how resolution fits into the overall runtime approach. A simple
composition of construction and pruning is briefly considered, followed by a more
efficient on-the-fly approach.

6.2 Identifying Resolutions

We base the operations of pruning and extraction on rules. The purpose of the rules
is to discriminate between bad and good solutions and also to describe the quality of
resolutions. Recall that the rules are identified by an offline analysis of the behaviour
of the model, as described in sections 4.2 and 4.3.

Rules can take different forms and this section provides only an overview, details are
explored in the following sections. Two classes of rule can be distinguished: message
dependent rules and message independent rules. Examples describing concrete good
or bad behaviour constitute a further class; however, they are of little interest, and
hence we will not consider them further.

Message independent rules can include concepts such as priorities of features and
the satisfaction of the maximal number of features. A feature is considered to be
satisfied when its intended behaviour can be exhibited, and clearly it is best to choose
a resolution that satisfies the largest number of features. Message independent rules
are used for extraction of the best resolution.

Chapter 6. R esolution 67

Fig. 6.1 : The Constructed Solution Space for Example 6.3.1

Message dependent rules can be seen to be more powerful, but they also require more
information. In order for message dependent rules to be useful, a semantics on the
messages is required. This allows one to develop relations on messages, such as a
class of treatments, or a class of billing messages. This understanding enables us to
build grammars describing good or bad behaviour, for example “a treatment following
an onhook message is not useful unless there was an offhook in between” . Message
dependent rules are used for pruning the solution space.

In section 6.4 we will consider extraction rules and in section 6.5 we will discuss
pruning and its implementation.

6.3 An Example

Throughout this section we consider the following example to illustrate the application
of the different rules.

Example 6.3.1 Assume the presence of four features in the system: Teenline, Split Billing,
Reverse Charging and Terminating Call Screening. Teenline is initially in state 1, the others
are in state 0. The trigger event is dial. From the feature definitions (Appendix A) we know
that the first three features react to a dial trigger in the given states, TCS does not react to
this trigger. The respective responses are: announce(wrongpin), billingsplit(splitfactor) and
billing-reverse. Feedback does not lead to any further responses.

Figure 6.1 gives an indication of the complete solution space as constructed by the
method described in Sections 5.8 and 5.9. Note that throughout this chapter we
have labelled the branches rather than the nodes of the trees, thus the figures deviate
slightly from the actual solution space data structure - we assume the relation to be

Chapter 6. R esolution 68

obvious. As the labels are barely visible, the tree has been colour and pattern coded:
branches labelled by the same messages are assigned the same colour and pattern. We
will use this colour/pattern encoding throughout the remainder of this chapter. The
assignment of colours and patterns to messages is as follows:

announce(wrongpin) blue dotted
billingsplitfsplitfactor) green solid
billing-reverse red dashed

The implementations of fm and extractTree have been adapted to the particular
rule that we wish to apply. We will demonstrate these implementations
with respect to four different rules in the subsequent sections.The function
fm fs m rules is initialised with the following parameters to encode the example:
fs = [(1, emptyStack, False, 1),(0, emptyStack, False, 3), (0, emptyStack, False, 4), (0,
emptyStack, False, 5)] and m = {Rev, Dial, Nil, 0). The rules parameter is only

relevant when pruning is applied.

6.4 Message Independent Rules - Extraction

Message independent rules are characterised by not requiring any information about
the semantics of the messages. Thus, they can be applied to a solution space without
any knowledge of the messages occurring therein. However, it is assumed that a
comparison between messages is possible and that we are able to differentiate between
messages from different features (i.e. we know which messages originated from the
same feature).

6.4.1 D uplicates

In Section 5.9 we have mentioned that the solution space might contain several
duplicate branches. Consider the example again: assume 3 features (/i , / 2 , fs) two
of which (/i and / 2) respond to the same trigger. It is to be expected tha t a branch
corresponding to this trigger with all three features active is identical to one with
feature fs disabled. Furthermore any branch with two features active, one of which is
fs , is identical to the branch with just the other feature active.

Rule 1 Duplicate subtrees sharing the same parent can be removed.

Removal of duplicates as been implemented as a function on the tree datatype:

extractdupTree :: Ord a => Augtree a —> Augtree a.

The recursive implementation is rather obvious. Note, that if a tree is an InsMarker
- denoting the point for the next insertion - it can be replaced with an EmptyTree

Chapter 6. R esolution 69

Fig. 6 .2 : The Constructed Solution Space for Example 6.3.1 with Duplicates
Removed

as we do not wish to perform further insertions (recall that the solution space has
been completely constructed1). Applying extractdupTree operation to the example
tree (Fig. 6.1), we can reduce the tree to Fig. 6.2. The respective equation of fm is:
fm fs m rules = extractdup(construct fs m).

Obviously a duplicate branch will not provide a new solution, so all duplicates can
safely be removed. Hence, Rule 1 is considered safe. It is advisable to apply this rule
straight after the construction is completed in order to reduce the complexity of the
tree and make the other, subsequently applied, operations more efficient.

6.4.2 Satisfying Features

A feature is satisfied by a trace when its intended behaviour is exhibited. So, if a
feature f \ responds with messages a i, <22 and <23 in that order, every trace in the tree
containing these messages in that order satisfies Feature f \ .

The construction of the solution space maintains the relative order of messages as
intended by a feature. However, the messages can be arbitrarily interleaved with
responses from other features. If feature f^ responds with 61 and 62 then some possible
traces satisfying both f \ and / 2 are a \.<2 2 .0 3 . 61.62 and a1 .b1 .b2 .a2 .a3 , but a1 .b2 -b1 .a3 .a2

is not acceptable.

A user subscribing to a number of features would expect all to work. We have seen
that this is not always possible (by definition of the feature interaction problem), but
we want to satisfy as many features simultaneously as possible.

1 The InsMarker could also be replaced at the end of the construction phase

C hapter 6. R esolution TO

Rule 2 Traces containing messages from the largest possible number of features are
better.

Again, this rule has been implemented as an operation of the tree data type. Note
that the tree datatype carries information about the origin of each message, as we
have indicated earlier, i.e. every node contains the message and a number identifying
the originating feature.

The implementation requires two passes through the tree. In the first pass a list
containing the number of different features in each trace (starting at the root and
ending in a leaf) is constructed. The second pass removes all branches that lead to a
leaf for which the number of features along the trace is less than the maximum value
in the list.

Let us consider the implementation in slightly more detail. The multiple passes
required are represented by the application of several functions. In particular
the function exmostsat 1 :: Ord a =>- Set Int —> AugTree a —► [Int] —> [Int]
produces the list of features satisfied along all traces.
exmostsat2 :: Ord a => Augtree a —* [Int] —> Augtree a removes the unwanted
branches. The main function uses the two subfunctions to perform the extraction of
the branches with the most satisfied features:

exmostsat :: Ord a => Augtree a —> Augtree a
exmostsat t =exmostsat2 t (exmostsat1 empty Set t [])

Applying this operation to the solution space of example 6.3.1 (Fig. 6.1), we can
reduce the tree to that shown in Fig. 6.3. The respective definition of fm is:
fm fs m rules = extract (construct fs m) where extractTree t = exmostsat t.

In contrast to removing duplicate branches, this extraction method is unsafe, as it
removes resolutions.

Due to the unsafe nature of this operation an application to the unpruned tree is
not advisable. Consider for example a tree which contains a trace involving messages
from 4 different features, whereas all other traces involve less features. Clearly the
trace satisfying 4 features will be the only one retained after applying Rule 2. Now,
consider that this branch may contain conflicting messages, i.e. it represents unwanted
behaviour, which means we have not been able to find a resolution. From this example
we deduce that Rule 2 must be applied after the pruning process (see section 6.5),
i.e. to the resolution space rather than the solution space.

6 .4 .3 P r io r i t ie s

A simple, but nevertheless effective method of extraction is prioritising features. We
do not possess information about features’ identities per se, but we do know their

Chapter 6. Resolution 71

Fig. 6.3 : The Constructed Solution Space for Example 6.3.1 after Extracting Traces
Satisfying most Features

relative position in the network. For example, we know that a message has been
received from feature fi, but we do not know the identity of feature fi (i.e. whether
fi is call waiting, three way calling or any other feature). We refer to i as the features
connection number.

A simple precedence scheme is as follows: Let features with a low connection number
have higher priority. Assume that the lowest connection number is 1. This definition
implies that trace i has precedence over trace j if trace i satisfies feature 1. We can
continue this by saying that from the remaining traces those satisfying feature 2 are
preferable to all remaining ones and so on.

Rule 3 Traces satisfying features with the highest priority are preferable.

Clearly this scheme could be extended to a system of weighted priorities in which
each feature has an associated weight (where the features with the highest weight are
preferable). Each trace would then have a weight equal to the sum of the weights
of the features satisfied by that trace. The trace with the highest weight would be
preferred.

We have implemented these two ways of prioritising features, extraction by priority
by connection number and extraction by priority by weight. The respective function
declarations are given below and the results of applying these versions of the rule to
the example can be seen in Figs. 6.4 and 6.5:

expriobynumber :: Ord a => Augtree a —> Augtree a

expriobyweight :: Ord a =>- Augtree a —* [Int] —> Augtree a

Chapter 6. R esolution 72

Fig. 6.4 : The Constructed Solution Space for Example 6.3.1 after Extraction by
Priorities by Connection Number

fm is implemented as fm fs m rules = extract (construct fs m) and extractTree is
implemented as

extractTree t — expriobynumber t and
extractTree t = expriobyweight t [0, —1,5 ,2 , 2]

respectively. The list specified in the extractTree t = expriobyweight contains the
weight for the input trigger event (a 0 in our example, i.e. the case where the
destination field in messages is 0) followed by the weights of the individual features.

This extraction method is unsafe - once traces are removed all remaining traces may
in fact not be resolutions. Indeed this situation arises when the weighted extraction
method is applied to example 6.3.1. All retained traces contained two contradictory
billing messages and hence clearly are not resolutions.

6.4.4 Choosing One R esolu tion

A “best” resolution is not necessarily unique. Suppose that after removing duplicates
and pruning we have already extracted resolutions which satisfy most features and
applied a priority scheme, but a tree still remains with more than one trace. At this
point we have found more than one resolution that we would classify as the best, but
obviously the system can only commit to one trace. However, if both traces represent
behaviour that from a qualitative point of view is indistinguishable, we can simply
choose one.

Rule 4 If there are a number of “best” resolutions, choose one.

Note that it would be preferable from the user’s point of view if this is a
deterministic choice. The user is not (and shall not be required to be) aware

Chapter 6. R esolution 73

HSnd.BiIling_splil.Sphifaaor.0).14|) N HSnd.BiUing_rev<

((Snd.Billmg_revef3«i.Nil.O). {3)) (l.Snd.Billuig_spli(.Spli(factor.O). {41)

Fig. 6.5 : The Constructed Solution Space for Example 6.3.1 after Extraction by
Weighted Priorities

of the resolution process and the presented behaviour must be consistent across a
number of separate calls. We have implemented this rule such that it simply chooses
the leftmost branch of the tree, mainly because this is most efficient with respect
to our implementation. The definition of the corresponding function is given by:
expickone :: Ord a => Augtree a —> Augree a.

Applying this rule to our example solution space, we obtain the solution space shown in
Fig. 6 .6 . The respective definition of fm is: fm fs m rules = extract(construct fs m),
where extractTree t = expickone t.

6.5 Message Dependent Rules

A semantics of messages allows us to define more sophisticated rules, we will consider
these now. While it might seem unreasonable to have a semantics of messages,
especially in a setting where the internal behaviour of the features is unknown,
some knowledge about the semantics of messages is practical due to the message
set in telephone switching systems being very restricted. New features cannot simply
introduce new messages, they rather need to rely on the existing ones. Clearly, the
user requires consistent meaning of the signals received.

Messages can be grouped in classes. These include the rather obvious classes
“billing messages” , “user messages” and “system messages” - similar to Chapter
3. In addition, and more interesting, we can have classes like “announcements” ,
“treatments” , “tones” , “hookevents” .

Classes of messages can be overlapping, for example “announcements” is a subclass
of “treatments” and “tones” intersects with “treatments” (ringtone is a tone, but not

Chapter 6. R esolution 74

«Rcv.D ial.N il.O),(0|)

((SiKLBilling_splii.Spliifacior.0M41)

I ((Snd.Billing_reverse.Nil,0).{3})

■ ((Snd.Announcc.Wrongpin.O).| 1()

Fig. 6.6 : The Constructed Solution Space for Example 6.3.1 after Choosing one Trace

a treatment, whereas busytone is both a tone and a treatment and announce is a
treatment but not a tone).

We wish to express rules that describe sequences of messages. These sequences are
required to place an ordering on the occurrence of messages, but also to express the
absence of a message. Often we wish to refer to whole classes in a simple way. We
have seen such an example before: “a treatment following an onhook message is not
useful unless there was an offhook in between” .

We use regular expressions to express these rules. Empirical evidence shows that
regular expressions were sufficient to express any rule we required. Extra capabilities
of context free grammars like counting the occurrence of certain messages was not
required in any of the occurring cases. This was to be expected, as messages send to
setup, manipulate and tear down calls result in events that must be interpreted by
a human user and a telephone system does not usually require the user to count the
occurrence of events, i.e. the third ring is equal to the first in its meaning. The used
data type for regular expressions is:

data RegExpr a —MkRE a
| Concat (RegExpr a) (RegExpr a)
| Union (RegExpr a:) (RegExpr a)
| Kstar (RegExpr a)
| Plus (RegExpr a)

Exam ple 6.5.1 Let tre a tm e n ts be the class of all announcements and tones (apart from
ringtone).
Then “a treatment following an onhook message is meaningless unless there was an offhook
in between” can be expressed as the following pruning rule (i.e. the rule describes unwanted
behaviour) using the textual no tatiom onhook .(-o ffhook)* .trea tm ents

Chapter 6. R esolution 75

Having decided to use regular expressions, a good repertoire of matching techniques
is available. We can adapt standard algorithms for matching regular expressions on
strings to algorithms for matching regular expressions in trees. We describe details of
this in the following section.

6.5.1 Im plem entation

Regular expression matching is performed with the aid of a deterministic finite state
automaton (DFA). The DFA is executed on an input string, and a match is achieved
when the DFA reaches a final state. We will now consider the construction of the DFA
and then show how the matching is performed.

The DFA is constructed from a regular expression in two steps, following the
description in [ASU8 6]. First a non-deterministic finite state automata (NFA) is
constructed from a regular expression. The NFA is then converted into a DFA. A
Haskell implementation exists by Thompson [ThoOl], but this works on strings of
characters and therefore was adapted for our purpose (the implementation is not very
efficient, but we discuss this later).

In general, a DFA accepting the same language as an NFA is constructed using a
subset construction algorithm and thus can be exponentially larger in the number of
states. However, “in practice this worst case occurs rarely” [ASU8 6 , p ll7] . There are
other algorithms for the construction of DFAs from regular expressions. For example,
McNaughton and Yamada’s [MY60] technique can be used to convert a syntax tree
into a DFA, however they are of similar runtime complexity.

It is possible to execute the NFA, i.e. determine whether the input is accepted by the
NFA, and thus save the extra effort required to generate the DFA. However, simulation
of the DFA only depends on the length of the input, i.e. it has complexity 0 (n) whereas
simulating the NFA has complexity O(nra) as it depends on both the length of the
input and the length of the regular expression2. An optimisation of the runtime of
the matching could be achieved by optimising the DFA [ASU8 6 , ppl41]. However, we
discard such considerations here to maintain a clear implementation.

As the regular expression describing the properties (i.e. unwanted behaviour) usually
remains unchanged for longer periods, the construction of the DFA introduces a
startup latency which is easily justified by the large number of simulations that
is required: whenever an interaction is detected the whole solution space must be
searched for any occurrences of matching sequences.

A matching pattern is found in a string when the automata executed on that string
has reached an accepting state. It is required to attempt a match from every position
of the string, thus for a string of length n, n executions of the automata are required.

Our input is a tree rather than a string, hence we must attempt to match starting
from every position of every trace to ensure that all traces of the tree are searched for

2 Myers [Mye88] shows an O (j ^) algorithm using the four Russians paradigm.

C hapter 6. R esolution 76

possible matches (note we match on messages, i.e. on tuples rather than on characters).
We will now consider the implementation, showing how the general algorithm for
searching for patterns in strings can be adapted to search for patterns in trees. Let
onlymarkers :: Ord a =>• [Tree a] —» Bool be a function returning true if all trees in
the list have the value DelMarker, let compact :: Ord a =>• [Tree a] —> [Tree a] be
the function that removes any trees with values DelMarker or EmptyTree from the
list (returning a potentially empty list).

prunetraverse :: Ord a => RegExpr a —> Tree (a, In t) —* Tree (a, Int)
prunetraverse re t =prunetraversel (re2 dfa re) t

prunetraverse1 :: Ord a => DFA a —► Tree (a, Int) —► Tree (a, Int)
prunetraversel dfa EmptyTree = EmptyTree
prunetraversel dfa InsMarker =InsMarker
prunetraversel dfa DelMarker =DelMarker
prunetraversel dfa (Mk n xs) \ onlymarkers pi = DelMarker

| otherwise = useDFA2prune dfa (Mk n (compact pi))
where

pi = map (prunetraversel dfa) xs

After the DFA for the given regular expression has been constructed, we traverse
through the tree, attempting to match the regular expression from the root. Nested
in the traversal new matching attempts are performed on the subtrees - upon finding
a match the tree is pruned. Pruning is represented by replacing a tree with the
special base case DelMarker. Should the pruning result in all subtrees of a node being
removed, we continue the pruning by replacing the node with a DelMarker. Otherwise
the list of subtrees is compacted, meaning that all DelMarker entries are removed.

useDFA2prune v.Orda =$■ DFA a —* Tree (a, Int) —> Tree (a, Int)
useDFA2prune (s, a, tr) input\ isMemberSet a s = DelMarker

| otherwise = useDFA2prunel a tr s input

After testing whether we have already reached an accepting state we recurse through
the tree. Note, here we actually progress through the DFA as well as the tree, rather
than just shifting the starting point of the matching attempt. Clearly an EmptyTree
or a DelMarker does not match the regular expression, so we cannot prune such a
branch. In the case that a node with subtrees is found, the subtrees are pruned. Let
goto s a be a function returning the target state reached from the current position
s by following the transition labelled a. After applying the function two choices are
possible:

• An accepting state is reached, in which case the respective subtree must be
pruned.

Chapter 6. R esolution 77

• goto s a returned —99, i.e. we have found a transition leading to an error state
- meaning that we have not found a match.

Again (as with the traversal to shift the start of the matching attempt), if all subtrees
have been pruned the parent is removed as well, otherwise DelMarker trees are
removed from the list of subtrees.

useDFA2prunel : : Ord a => Set (Set Int) —> T T B L a —► Set Int
—► Tree (a, In t) —► Tree (a, In t)

useDFA2prunel a tr s EmptyTree =EmptyTree
useDFA2prunel a tr s InsMarker = InsMarker
useDFA2prunel a tr s DelMarker =DelMarker
useDFA2prunel a tr s (Mk n xs) | isMemberSet a gto = DelMarker

| gto == —99 = (Mk n xs)
| onlymarkers pi = DelMarker
| otherwise = Mk n (compact pi)

where
gto = goto s tr (fst n)
pi = map (useDFA2prunel a tr gto) xs

In the following example we apply pruning to the example tree Fig. 6.1. Clearly
the given billing messages are contradictory, as with one the caller should not pay
anything, with the other the caller carries a share of the call costs. Hence, it is not
meaningful to commit to a branch with both those messages present.

Let non-bsbr be the class of messages containing all messages apart from billingsplit
and billing-reverse. The regular expression describing the unwanted solutions is as
follows:
(billingsplit. (non-bsbr) *. billing-reverse)—(billing-reverse. (non-bsbr) *.billingsplit).

The tree shown in figure 6.7 is obtained from example 6.3.1 using
f m f s m rules = prune (construct fs m) rules and the following instantiation of
rules:

(Union (Concat (Concat (MkRE (Snd, B illingsplit, Split)'actor, 0))
(Kstar (Union (MkRE (Rev, Dial, Nil, 0))

(MkRE (Snd, Announce, Wrongpin, 0)))))
(MkRE (Snd, Billing-reverse, Nil, 0)))

(Concat (Concat (MkRE (Snd, Billing-reverse, Nil, 0))
(Kstar (Union (MkRE (Rev, Dial, Nil, 0))

(MkRE (Snd, Announce, Wrongpin, 0)))))
(MkRE (Snd, Billingsplit, Splitfactor, 0))))

Note that in this example non-bsbr is represented by Dial\Announce, so only these
messages together with B illin g S p lit and Billing-Reverse (as opposed to all possible
messages) occur in the example. This is to simplify the example.

Chapter 6. R esolution 78

Fig. 6.7: The Constructed Solution Space for Example 6.3.1 after Pruning

6.6 Application Order and Necessity of Rules

We have discussed two categories of rules, message dependent rules and message
independent rules. The latter consist of more than one rule. An obvious question
to ask at this point is what is an application order of rules? This only arises as
a question when the application order of rules matters, which we consider from a
functional and a performance aspect.

We have devised four message independent rules: removing duplicates, satisfying
features, priorities and selecting one resolution. Further we have one message
dependent rule, pruning using pattern matching. We have already identified that
most of the message independent rules are unsafe, the exception being the removal of
duplicates. Clearly, this suggests that application order is critical.

Recall that extraction rules (i.e. message independent ones) remove resolutions,
whereas pruning removes unacceptable solutions. Removing unacceptable solutions
is certainly desired, thus we can consider pruning safe.

The suggested application order is:

1 . extract duplicates

2 . prune

3. extract traces satisfying most features and then apply extraction by priorities
(or vice versa)

4. select one resolution

C hapter 6. R esolution 79

We can also distinguish the presented rules by their necessity. Clearly pruning is
essential, as it removes undesired behaviour. Selecting one branch is also required,
ensuring that indeed only one resolution remains. The remaining rules influence
performance (removing duplicates) or the quality of solutions (priorities, satisfaction
of most features). Having established priorities allows for a more fine tuned resolution,
as user preferences can be reflected in the priorities.

In conclusion, application order is relevant as some rules are safe and others are unsafe.
Moreover, different application orders of unsafe rules result in solutions of different
quality. We also note that some rules need not be applied at all, thus changing the
quality of the solution.

6.7 On-the-fly Pruning

So far we have presented construction and pruning independent of each other, indeed
we have assumed that pruning is applied to a fully constructed solution space. This
approach is referred to as “construct-prune” .

A major drawback of this approach is the complexity: a large number of branches
must be constructed that will be discarded. For a runtime approach, complexity is a
very important issue. We therefore propose an “on-the-fly” approach.

Basically, on-the-fly resolution works by trying to apply pruning to the current
solution under construction. As soon as the behaviour is identified as undesired,
the construction of the current solution is aborted. The part constructed since the
last choice is then removed and construction of another solution is attempted. This
will greatly reduce the complexity if many features are involved; bad solutions can be
identified early in the construction.

Clearly, both construct-prune and on-the-fly should result in the same resolution being
found. Note that message independent rules, i.e. extractions, can not be embedded
in the “on-the-fly” process but still have to be applied to the resulting solution space
- until the complete solution space has been constructed, we do not know that two
subtrees are equal. In the same way, before the construction is complete we do not
know which solution satisfies the largest number of features.

The on-the-fly mechanism requires some minor changes to the implementation.
Notably a new insertion procedure for the solution tree is required, which does not
insert unwanted branches and reports the success of an insertion. The feature manager
is required to react to the feedback from an attempted insertion and proceed with its
abort-commit mechanism accordingly.

We now discuss the details of the required changes and provide an example.

C hapter 6. R esolution 80

6.7.1 Im plem entation and Exam ple

The on-the-fly algorithm uses a tree that in addition to the information in an Augtree
stores a set of states of a DFA at each node. We refer to this data structure as
OTFTree. Once the on-the-fly algorithm terminates the tree is converted into an
Augtree (only messages and a set of feature numbers stored at each nodes) as used in
the Construct-Prune approach. This conversion is trivial - the additional information
on DFA states in each node is removed.

Insertion of elements is handled by:

insertOTFTree :: Ord a =>■ OTFtree a —► (a, Set In t) —» DFA a
—> (Bool, OTFtree a)

The insertion in the Otf tree is more complex than insertion in the Augtree. Again an
InsMarker is used to indicate the next insertion position. The element to be inserted
is, as before, a pair consisting of a message and a set of feature numbers. Insertion
returns a pair (Bool, Otftree a), where the first element indicates the success of the
insertion and the second contains the new tree. If the insertion is successful, the new
element together with a set of DFA states will have been inserted. Should the insertion
fail, a DelMarker is inserted.

This leaves two open questions: when does insertion fail? and why do we need the
DFA states? Recall that the DFA is the recogniser for patterns in the pruning rules.
A match means that we have found a sequence of messages that is undesired; we
wish to prune this branch. Clearly, this answers the first question - insertion fails
when we have found a sequence matching the rules. The DFA states stored represent
all possible states the DFA can be in at this point. Initially the DFA is in its start
state, we insert the root node after which the DFA can still be in its start state (we
could start a new search from here onwards). It could also be in the state reached by
following the transition labelled with the trigger event. With each inserted node the
set of DFA states increases provided the DFA can reach a new state from any of the
current states.

Obviously a test for failure of insertion must be incorporated in the feedback process
of the feature manager - if insertion fails we want to rollback immediately. Recall
that feedback distinguishes 4 cases, but only in one case can insertions occur. That
is when we still have messages in the response queues waiting for feedback and we
have not explored all possibilities. Hence we are only required to adapt this case. We
actually split this case by distinguishing success of insertion as an extra condition.
If the insertion is successful, we proceed in the same fashion as before, otherwise we
simply rollback. The rollback on failure of insertion is equivalent to a rollback when
we cannot explore a branch any further.

Some minor changes have been implemented to allow as much code reuse as possible.
The feature manager can be customised by a flag depending on whether the on-the-fly

Chapter 6. R esolution 81

or the construct-prune approach is required. The construct, construct1, feedbackctrl,
feedbackctrll and feedback functions have been duplicated and adapted to handle the
different tree datatype. The feedback also handles the new insertion routine. Note that
construct converts the OTFTtree into an Augtree for further processing by extraction.

The respective function declarations are:

otfconstruct :: [CState] —> Message —► RegExpr Message —> Augtree Message
otfconstruct 1 :: [CState] —> Message —> DFA Message —► OTFtree Message
otffeedbackctrl :: ([Queue Message], [CState]) —> OTFtree Message

—* DFA Message —> OTFtree Message
otffeedbackctrll :: [[R0 0 /]] —> [Queue Message] —> [C5fa£e] —> OTFtree Message

—> DFA Message —> OTFtree Message
otffeedback :: [RooZ] —> [Qwewe Message] —> [CS'fafe] —> (OTFtree Message)

—> Int —> StateStack —► DFA Message —> (OTFtree Message, [CState])

Example 6.7.1 Applying the on-the-fly approach to Example 6.3.1 yields the same solution
space as shown in Fig. 6.7.

Example 6.7.1 shows that the expected result was obtained. This was obtained using
the same time but slightly less memory (3,789,920 bytes as opposed to 3,877,672
bytes) 3 than the construct-prune method. This does not look very promising but, we
need to consider that in the given example most traces only match once the traces
are completely constructed. Consequently, not much exploration work can be saved
(and in fact because there might be duplicate branches the matching has to be done
more often). We have seen examples where the on-the-fly method outperformed the
construct-prune method roughly 2:35 (7 features, shown in Fig. 7.3). As we show when
analysing the complexity in section 7.3 the worst case behaviour of the on-the-fly
approach is indeed similar to that of the construct-prune approach, but in larger
scenarios with deep trees a significant saving can be made by early pruning.

6.8 Summary

We have identified a number of rules which allow us to obtain resolutions by applying
respective operations to the solution space. The rules fall into two categories: message
dependent and message independent. The application order of rules was discussed.
A more efficient on-the-fly approach has been developed thus tightly integrating
construction and pruning.

3 Time and memory measurements were performed using ghcprof

Chapter 7

Evaluation

7.1 Introduction

In this chapter we consider the correctness and complexity of our approach. We
discuss why our approach is transactional, but does not coincide with the classical
model. In addition we apply our method to two distinct feature sets: the features
used by Marples [MarOO] and the running example from Chapter 3.

Having shown that the approach is correct we consider whether it is indeed appropriate
and suitable to solve the posed problem. We clarify the role of the semantics of
messages.

We revisit the idea of a hybrid approach as discussed in Chapter 4.

7.2 Correctness

In order to show that the construct-prune and the on-the-fly approach proposed in
the previous chapters actually deliver the correct results we need to analyse their
behaviour. We identify three theorems that define what we mean by correctness (of
construction, pruning and the on-the-fly approach respectively).

Theorem 1 (Correctness of Construction) The solution space is constructed correctly
iff

1 . all possible interleavings are inserted and

2 . every trace in the solution space can be generated by the feature automata and

3. the construction terminates

Theorem 2 (Correctness of Pruning) Pruning is correct iff

1 . no trace in the resulting resolution space violates the properties defined by the
rules and

2 . every trace from the solution space not violating rules is part of the resolution
space and

Chapter 7. Evaluation 83

3. the pruning terminates

Theorem 3 (Correctness of the on-the-fly Approach) The on-the-fly approach is
correct iff

1 . every trace in the resolution space can be simulated by the feature automata
and

2 . no trace in the resulting resolution space violates the properties defined by the
rules and

3. every possible interleaving not violating rules is part of the resolution space and

4. the process terminates

7.2.1 Proving C orrectness

We have developed our implementation in Haskell, under the assumption that it is
possible to reason about program behaviour. The Haskell implementation provides a
basis for a formal proof, as the implementation is essentially in the form of left-right
rewrite rules. However, a proof requires a further formalising of the approach,
depending on the automated technique used. This formalisation is a large task and is
not mathematically interesting.

Furthermore, as the whole system depends on the features, it would be desirable to
reason about arbitrary features. Clearly we can only reason about the implemented
features - it is not possible to reason about features in general, as no coherent structure
of the same exists. Thus, the proof would be based on case analysis, where splits are
made dependent on the features under consideration. We believe that in the given
context this type of reasoning is undesirable as the detail distracts from the concept.

We therefore reason on a more conceptual and less formal level. In the following we
aim to provide insight into why the presented theorems hold without losing sight of
the intuition behind the approach.

7.2.2 C orrectness o f C onstruction

1. Insertion of Interleavings

The construction of the solution space ensures that if there are no responses to a trigger
only the trigger will be inserted into the solution space. If only one feature responds
to a trigger and there is no further response triggered by the feedback process, only
the single response is inserted. In both these cases no interleaving occurs, so there is
only one possible trace (which is inserted); hence the insertion is trivially correct.

Chapter 7. Evaluation 84

Two cases remain to be considered: more than one feature responds to a trigger and
further responses are triggered by fed back messages. We will discuss these in turn.

If more than one feature responds to the initial trigger, each feature’s responses axe
placed in a separate queue. Crucially, having separate queues allows one to maintain
the relative order of the responses. The feedback process has been described in detail in
section 5.9.1. In effect, the feedback mechanism ensures that all possible permutations
of the response messages (subject to the relative order being maintained) are tried,
and each is inserted into the tree. This essentially is the generation of all possible
overlapping interleavings as described in section 5.4.

The process is the same when fed back messages trigger further responses. The new
responses are simply added to the end of the respective queues. Clearly these further
responses are only interleaved with parts of the traces that still need to be constructed,
as they should never occur before the respective trigger event. Adding new responses
to the end of the queues maintains the relative order.

We can conclude that all interleavings are indeed constructed.

2. Traces and Feature Automata

Features are described by finite state automata, as shown in Appendix A. By the
feature automata being able to simulate a trace we mean that when considering a
trace, there is at least one automaton that can make a move for each element in the
trace. Recall that transitions are labelled with an input/output pair.

Considering examples, we can distinguish three cases:

• The trace is of the form t.m s , where t is the trigger event and ms are the
responses of one feature (i.e. there is a feature automaton with a transition
t/m s.

• The trace is of the form t.m \.m 2 ...mn where t is the trigger event and the
trigger event and m \ , m 2 -..mn is an interleaving of responses from several features
(i.e. there are several feature automata with transition labelled by t /m with the
(between features possibly different) m being composed of any of m i ,m 2 ...mn
maintaining the relative order and ensuring that all mi occur in at least one
transition).

• The trace is of the form t.m i.m 2 ...mi(.--mTU where again t is the trigger event
and the m; are responses from one or more features. Note that mk is a response
of one feature that (upon feedback) triggered a further response. In this case
there is at least one feature automaton with a transition t /m with m containing
mk and one with a transition labelled by m ^/M where M is composed of any of

again maintaining the relative order.

Chapter 7. Evaluation 85

3. T erm in a tio n

Constructing the solution space is general recursive (as opposed to primitive recursive),
as the recursion occurs over a number of arguments that might increase or decrease
depending on the feature behaviour. As an example, the message queues can shorten
when no features respond but might also lengthen when features respond. Rollback
reduces the size of the state stack, but new transactions increase the size. So in
general, construction might not terminate. However, as the construction is bounded
by a maximum depth and the constructed tree has only finite width, construction
indeed terminates as explained below:

L ooping beh av io u r of fea tu res can lead to infinite traces. Recall that one of
the drawbacks of the initial specification was the restriction to finite traces. We can
distinguish two kinds of loops: those where one feature produces looping behaviour
and those where loops occur because of the mutual triggering of several features.

Clearly the case that one feature produces looping behaviour as result of a single
trigger event should not occur. Although features should be able to loop to an earlier
state (e.g. call waiting which allows toggling between two calls) features should not
respond with an event that re-triggers them. The latter would cause non-termination
of a single feature and eventually break the system. Thus we can conclude tha t this
behaviour could only arise as the result of an incorrect implementation of the given
feature.

Assuming correct implementation of all features, looping behaviour might still occur
between a number of features. The most obvious example being a call forwarding
loop: Two users subscribe to call forwarding unconditional, where user A’s forwarding
is to B and B’s forwarding is set to A. Upon User A receiving a call, the call will be
forwarded to B to be forwarded to A, and so on. This behaviour could potentially
prevent the termination of the construction algorithm.

To show that the algorithm terminates we need to show that the constructed tree is
indeed of finite depth and breadth.

By allowing the constructed tree to only extend to a specified m ax im um d ep th ,
we can ensure that the tree will have finite depth. There are three cases, shown in
Fig. 7.1: a) All traces terminate before the maximum depth is reached, b) some traces
terminate after the maximum depth is reached and c) all traces terminate after the
maximum depth is reached.

Case (c) should never occur by judicious choice of the maximum depth. Recall that
the solution space contains traces produced by the execution of a single feature, in
addition to all the possible combinations. Thus, we have a minimum maximum: the
maximum length of a features trace.

The maximum depth can be chosen arbitrarily large, however a sensible bound should
take into account that the depth should be reachable in short period of time. We
assumed that a feature can safely operate within depth 1 0 (that is a trigger produces

Chapter 7. Evaluation 86

Fig. 7.1: Solution Space and Maximum Depth

no more than 10 response messages from one feature). In fact for the given features
the maximum is 8 for group ringing, mostly features respond with 1 to 3 messages. A
maximum size of 50 was chosen in the model to provide enough margin for interleaved
traces.

The mutual triggering leading to looping behaviour discussed previously could result
in case (b), i.e. that some traces are deeper than the given maximum depth, and
forms the main reason for the introduction of the boundedness in the algorithm. The
described scenario forms an infinite loop which maps onto an infinite trace - this case
needs to be dealt with to prevent non-termination of the algorithm.

Some traces might be longer than the maximum depth without resulting from infinite
looping behaviour. Here it could be argued that potentially good behaviour might be
presented by the trace formed as interleaving of a number of features. However,
recalling that time is at a premium in a runtime approach, it is justifiable that
constructions continuing for too long are terminated. Should this case occur too
frequently, the chosen maximum depth might be non-optimal and can be increased
accordingly.

Case (a) represents the setting where no loops occurred and all the interleavings could
be constructed within the provided depth bound.

Finite breadth is ensured as at every node in the solution space it is known how many
children there will be. In addition the number of children is always finite, because it
is equal to the number of non-empty response queues. As there is one queue for each
feature the number of children is at most equal to the number of features.

New insertions only occur when we have tried to construct fewer subtrees than the
current node can have. Each subtree starts with a message taken from the front of a
queue. Placing an order on the response queues allows us to order the subtrees thus
providing a means of guaranteeing that no subtree is generated twice.

C hapter 7. Evaluation 87

Note, that the construction process is similar to a bounded depth first search. We
have shown that the depth and breadth of the tree are finite and also that no insertion
is attempted twice. From this we can conclude that construction terminates.

7.2.3 C orrectness o f Pruning

U nder-Pruning

The implementation of the pruning process was described in section 6.5. We must
prove that all traces which match the pattern describing bad behaviour are removed.

The pattern, i.e. the message sequences describing bad behaviour, is provided as a
regular expression. The expression is converted into the corresponding automaton
which is used by the matching algorithm - this is a standard technique.

The matching has to be performed on the solution space which has a tree structure.
The tree is searched recursively, that is after attempting to find a match at the root
node, we move on to the child nodes. At each child node we continue the match
started earlier but also start a new matching process; in some sense one could say that
a number of match processes are run concurrently.

When a match is found, the node is replaced with a special leaf node, DelMarker.
If the node is a leaf node, then the current trace needs to be removed back to the
last “decision point” . If we find the match in an internal node the trace since the
last decision point needs to be removed regardless of any subsequent messages. As
an example, consider a user going onhook and then receiving an announcement. The
user has received an announcement after going onhook, and so regardless of the events
occurring afterwards, this trace must be removed.

Once a DelMarker is inserted in the tree, we do not follow this path any further.
Equally, not finding a match on a trace and reaching a leaf node means we do not
follow the path any further. In both cases we backtrack to the parent node. At the
parent node we consider whether all children are marked for deletion, if so the parent
is marked. If not, all children marked for deletion are simply removed. This process
continues up through the tree until the root node is reached and we cannot backtrack
any further.

Figure 7.2 shows an example solution space and the resulting resolution space on
pruning assuming the pattern describing unwanted behaviour to be abaa.

The remaining tree does not contain any traces that match the given pattern, hence
only traces that are not violating the described property remain after pruning, hence
under-pruning does not occur.

C h ap ter 7. E valuation 88

Solution Space Resolution Space

b

a

a

c

d

Fig. 7.2: Pruning an Example

O ver-P ru n in g

In the previous section we have shown that the deletion of nodes is propagated
backwards through the tree. One could argue that we could delete too many nodes by
doing this. We investigate now why we do indeed delete the right number of nodes.

We consider three cases: the removed part of a trace starts with the first element in
the pattern and then includes the complete pattern; the removed part of a trace is
only a suffix of the pattern and the removed trace contains events earlier than the
pattern started (Cases two and three can be seen in Fig. 7.2). We will justify all three
cases now.

If the removed trace starts with the first element of the pattern , we have removed
obstructing behaviour. Possibly behaviour following the obstructing part was also
removed, but this has been justified in the previous section. Hence in this case no
over-pruning can occur.

The case that only a suffix of the pattern is removed seems more likely to cause
underdeletion, as we might not have removed all obstructing behaviour.

On the other hand, if all subtrees of a node have been deleted, how do we justify
propagation of the deletion back towards the root, and potentially before the first
message of the matching pattern occurred? This case occurred in the right subtree of
the example above.

Assuming tha t we have deleted all subtrees of a node, consider the meaning of the
trace from the root to this node. The behaviour is only partial w.r.t. the expected
behaviour of the features. A trace up to a certain node expresses messages taken from
a number of features that have been interleaved. By this point however the behaviour
of all features from which messages have been taken is incomplete and the trace should
be removed. For example, we could find situations were a user is connected but billing
is not initiated at all, because the billing message occurred later in the removed part.

Chapter 7. Evaluation 89

Assume a trace with 4 features, where two produce the conflicting behaviour and this
occurs after the other two have completely exhibited their behaviour. The backward
pruning will remove the good behaviour of the other two features as well, but there
will also be traces in the solution space that are generated by just the non-obstructing
features being active - hence no possible resolution has been removed. In general,
when some features have exhibited their complete behaviour before the point at which
the sequence is removed, backwards pruning will only remove behaviour that exists in
the solution space at a different place.

In the extreme, backward propagation could lead to the removal of the root node and
hence all solutions would be deleted - clearly this would be considered as overpruning.
The case that all subtrees of the root node have been deleted will not occur, as some
subtrees represent behaviour of individual features which we always deem to be correct.

In section 7.2.2 we have shown that all possible traces are inserted. In this section
we saw that the deletion process only removes those traces that violate the given
properties. Hence all traces not violating the properties are part of the resulting
solution space.

Termination

Pruning consists of

1. construction of the DFA from a regular expression

2 . traversing the tree to start the matching from every position (prunetraverse 1)

3. matching the regular expression to a path (useDFA2prune)

The construction of the DFA from the regular expression uses a standard algorithm,
details of which were discussed in chapter 6 . The algorithm is known to terminate.

However, the traversal of the tree combined with the matching is non-standard, hence
it should be shown that both parts do indeed terminate.

Both functions are defined by primitive recursion over trees. Trees are ordered by a
natural well-founded ordering: any tree is larger than its subtree.

In the case of the tree data type used in our model:

• InsMarker, DelMarker, EmptyTree are trees

• (Mk n ti. . .tfc) is a tree

• nothing else is a tree

Chapter 7. Evaluation 90

We define the ordering > on trees according to the size of the tree.

InsM arker = D elM arker = Em ptyTree

(M kTree n t\...tk) > InsM arker

V(z|l < i < k).(M kTree n t\...tk) > U

All that remains to be shown is that the functions prunetraverse 1 and useDFA2prune
indeed reduce the size of the argument in the recursive case and that they consider the
base case. Both functions define return values for the base cases of the tree data type
and the recursive case follows the general format f (M k n t\...tk) = f(h)---f(tk)- Our
ordering on trees confirms the required reduction of argument size, as per definition
V(z11 < i < k) . (Mk n t\...tk) > U.

7.2.4 C orrectness o f th e O n-the-fly Approach

Traces and Feature Automata

By similar reasoning we argue that all traces that are part of the solution space can
indeed be simulated by feature automata. The only difference in this case is tha t the
solution space constructed by the on-the-fly method does not contain any traces that
violate the pruning rules. The on-the-fly construction simply inserts fewer traces into
the tree. The resulting solution space forms a subset of the solution space generated
by the construct-prune approach (immediately after construction). Hence the traces
in the current solution space would also exist in the full (i.e. un-pruned) solution space
as constructed earlier. As all traces from the full solution space can be simulated by
feature automata, all traces constructed by the on-the-fly method can be simulated.

Traces and Rules

The data structure used to store the solution space is a slightly extended version of that
used in the construct-prune approach: in addition to the information stored in nodes
in the construct prune approach, we store a list of states of the matching automata.
This state list contains all possible states of the matching automata, assuming it had
been restarted and continued in any of the previous nodes along the current trace.

When a new insertion is performed, it is first checked whether the new element would
cause the matching automata to reach an accepting state from any of the possible
states. If this is the case, we insert the deletion marker and discontinue construction.

This leads to a solution space where we never insert any trace that violates the rules,
which is exactly what we require.

Chapter 7. Evaluation 91

Completeness of Solution Space

Inserting new nodes into the tree is performed in exactly the same way as in the
construct-prune approach, provided no rule is matched upon insertion. When a rule
is matched no insertion of the new message occurs, we rather insert the special leaf
DelMarker as described before.

Upon rolling back we apply the same backwards propagation of the DelMarker as
discussed in the pruning method.

The arguments for the construction and for pruning allow us to conclude that indeed
all traces not violating the specified properties are inserted into the solution space,
thus it is complete, i.e. no possible resolutions are missing.

Termination

The same argument as that used for construction can be applied here. The only
difference is that before a message is inserted into the tree a check is carried out as to
whether this message results in a match w.r.t. a pruning rule. The check for match
is simply a call to a function of the matching DFA to determine whether the message
will result in the automaton reaching an accepting state.

In case a match occurs, the trace under construction is aborted and a new trace
is attempted. Note that again the depth is finite, as limited by the given bound.
The width does not increase, as matching a rule only leads to a non-insertion of the
message. Again no traces are constructed twice, as the same construction mechanism
as before is used.

We can conclude that the on-the-fly approach terminates.

7.3 Analysis of Complexity

We consider the complexity of the construction, the pruning and the on-the-fly
approach in turn.

Construction. The complexity of construction is best measured w.r.t. the size of the
constructed solution space. Construction consists of issuing a message, collecting the
responses, inserting one message in the solution space and issuing the next message.
Occasionally rollback occurs.

Sending a message to the features and collecting the responses is of complexity 0(1),
i.e. it takes constant time. Hence we can ignore this. The other two factors depend
on the size of the solution space.

Insertion involves a search through the solution space to find the next insertion point.
We have stated that insertions always occur in the leftmost branch of the tree. Hence,

C hapter 7. Evaluation 92

finding the insertion point means that, in the worst case, we need to search to the end
of the leftmost branch.

Rollback means restoring some features to an earlier state (which can be assumed to
be performed in constant time) and also moving the insertion marker. The latter is
in complexity similar to insertion, the marker must be found after which moving is
straight forward. As both insertion and moving the insertion marker depend on the
length of the leftmost branch we should consider how long this will be. The length of
a branch depends on the number of features involved. With just one feature, a branch
will be as long as the sequence of responses to the trigger event. W ith a number of
features, the length of the branch is simply the sum of the length of the responses of
the features. Hence, if we have many interacting features the branches will be longer
and furthermore if the responses of each feature grow, so too will the length. To give
an upper bound, the longest branch will be at most 0 (m ax(nm ,m axdepth)), where
n is the number of features and m is the length of the longest response and maxdepth
is the maximal depth.

The number of branches inserted into the tree depends on the number of features and
the length of their responses. In fact, the size of the solution space is exponential in
the number of features and the length of the responses. However, this is a worst case
bound, which in practice rarely occurs. For the solution space to reach this worst case,
all features present would be required to be triggered and add to the responses.

Practical experiments showed that the considered solution spaces have been
constructed relatively quickly. Figure 7.3 shows the time required for construction
as well as the size of example solution spaces from the running example. The results
were measured by the Haskell profiler ghcprof and all experiments were conducted on
a P3-450 running the Linux Operating System. The smallest time-unit reported by the
profiler is 0 .0 2 seconds, hence results of 0 mean that no more than 0 .0 2 seconds have
elapsed. The indicated times exclude the time required to print the structure to the
screen, as this is not part of the real construction effort. Note that the representation
of the runtimes uses two different scales on the y-axis to show small (i.e. < 15secs)
values more clearly.

P ru n in g complexity is a different issue. Here we can distinguish the construction
of the DFA (which has been discussed earlier, it only adds startup latency) and the
actual pruning. Pruning depends on the size of the solution space. Recall tha t we
need to attem pt to reach an accepting state of the DFA following transactions labelled
with the same messages as occur in the tree. This has to be repeated at every node
in the tree.

As at every point in the DFA only one transition with a given label is possible, the
complexity arises from the number of alternative transitions possible. Starting from
any point in the tree and traversing the child trees, a worst case is given by a nested
traversal of the tree. However, the inner traversal has a reduced space to search; only
the nodes in the subtree must be considered. Furthermore, once a match has been
found the search is stopped, as the subtree is immediately removed.

C hapter 7. E valuation 93

Size of Solution Space

</>

o
z

:a> —
E
3
z 10 .

—

Runtime

2 F’s: 3 F's: 4 F's: 5 F s : 6 F’s: 7 F's: 2 F s : 3 F's: 4 F s :
RC-TL RC-SB- BCS-RC- BCS-CT- BCS-CT- BCS-CT- BCS- BCS- BCS-CT-

TL SB-TL RC-SB- RC-SB- RC-SB- CFB CW- CW-
TL TL-TWC TL-TWC- RBWF TWC

VMPB

BCS-CT BCS-CT
CW-GR

CND-CT RBWF
TL-VMR TL-TWC

VMPB

■ Construct only ■ Construct P rune □ On-the-Fly □ CP-FF ■ OTF-FF

Fig. 7.3: Example Runtimes (Empirical Results)

In practice, runtime seems rather long, as the results in Fig. 7.3 (Construct-Prune)
show. Note that the time required to construct the DFA has been extracted from the
shown figures to enable a better comparison to be made.

Further analysis indicates that one particular function is the cause of this disappoint ing
runtime. This function is findfinal which determines the state we can move to in the
DFA given a starting state and a label. Figure 7.3 (CP-FF) shows the results when
the runtime for findfinal is ignored, which seem much more reasonable. In fact, they
are more realistic, as an implementation for a switching system would not use a linear
list to store the transition table but rather make use of a hash table. This would
provide constant time access, rather than O(n) worstcase complexity (with n being
the length of the list) which occurs in our implementation.

Chapter 7. Evaluation 94

On-the-fly. To avoid a large number of solutions being generated just to be removed
we proposed the on-the-fly approach. Here pruning occurs during construction, thus
one would assume that a smaller solution space is constructed and hence searches are
performed faster.

The on-the-fly method requires fewer traversals of the tree, as the pruning occurs
during insertion and the relevant information about the potential start points for
matching must be stored in the tree. Clearly this increases the footprint of the tree
structure.

We note that pruning after the construction is applied to a solution space where
duplicates have been removed. Thus the searched space is potentially smaller. The
on-the-fly method does not allow for the removal of duplicates before pruning (we
only know what a duplicate is when the whole tree has been constructed). Thus,
in the worst case, the space searched by the pruning algorithm during the on-the-fly
approach can be larger than in the construct-prune approach. However, this worst
case occurs only if no pruning is possible or if for every pruning attempt a match can
only be achieved when a leaf node is reached, and duplicates do indeed exist in the
specific solution space. In general, we are often able to prune early in the construction.
This especially applies to long branches, and thus we can make a significant saving.
Again, findfinal has a significant impact on the runtime, so Fig. 7.3 shows both results
with and without the time used by findfinal (On-the-Fly and OTF-FF respectively).

Overall, the complexity of the two presented approaches has a startup latency for the
construction of the DFA and then during runtime a theoretical worst case of a multiple
of a exponential complexity (the solution space is bounded in depth and the width
depends on the possible combinations of features), However, this theoretical worst
case was never reached in the practical trials, thus making the approach tractable.

Scalability

Scalability is an issue that must be considered, especially in the context of an increasing
number of features available to each user. There are two other aspects to scalability;
the number of users that are served by one exchange and the number of exchanges.
Here we consider primarily the scalability with respect to a growing number of features,
as this is the dimension that is motivated in the context of the feature interaction
problem. However, we also comment on the other two dimensions.

Considering additional features, we can have two possible outcomes: they do not
interact with any of the existing ones or they interact.

A non interacting feature, i.e. one that does not respond to the given trigger or and fed
back messages, introduces duplicate traces as explained earlier. That is, it leads to a
larger breadth of the solution space, but it will not influence the depth of the solution
space. If the new feature does indeed interact with existing features then, in addition
to adding more possibilities it also adds to the length of individual solutions. In this

Chapter 7. Evaluation 95

situation the on-the-fly approach facilitates scalability: if the trace must be pruned
then chances are that pruning can occur early in the construction, thus ensuring that
the full length of the trace need not be explored.

Scalability with respect to a growing number of exchanges is of little relevance, as
current communications are between only a few (normally two) users. As we do not
exchange information beyond that transmitted in normal communications mechanisms
between exchanges, this dimension is not relevant for our approach. However,
scalability with respect to growing numbers of users on a single switch is relevant,
as all users might be simultaneously involved in calls. In this case a large number of
solution spaces has to be generated and as we have seen this can require a significant
amount of resources. However, only practical trials on an operational exchange can
provide details here. This issue is not only specific to interaction handling, as simply
allowing more features being enabled on a switch increases the amount of resources
required.

Overall, when we compare the results obtained for construction only with those that
also include resolving (either by the construct-prune or the on-the-fly method) we
can see that resolution introduces only a minimal overhead. Marples’s construction
method is essentially identical to ours, and he accepted his runtimes as suitable (at
least he does not argue to the contrary). We conclude that our runtimes are like
Marples’s, and using the on-the-fly method can even undercut his.

7.4 Transactional Approach

We refer to our approach as transactional. This is partly historical, Marples used this
term for his approach which we extended. However, the approach makes use of ideas
from transactional consistency and error recovery approaches for distributed systems.
We will now investigate how close the link is.

Traditionally transactional approaches in distributed systems have been developed to
handle error recovery and maintain consistency. There is a significant body of work
in this context. The main concerns are to provide a well defined system state after a
failure, to delimit the loss of data and to maintain consistency of data. Whilst this is
clearly useful in say a banking system, we are not concerned with failure here.

In the context of transactional approaches, four properties are considered: atomicity,
consistency, isolation and durability. They are often referred to as ACID properties
[Wei89]. The granularity of a transaction is provided by atomicity: a transaction
is indivisible. In the case of failure, this means that a transaction has either
been executed completely or not at all. Commit is usually used to confirm the
complete execution, abort to return to an earlier checkpoint. Consistency means
that each transaction, when completely executed on its own preserves the invariants
of the system (i.e. transition does not introduce data inconsistencies). Isolation (or
serializability) relates to a group of transitions: if they are executed in parallel they

Chapter 7. Evaluation 96

are indistinguishable from being executed in series in any order. Durability means
tha t the effects of committed transactions survive future failure.

As we are not concerned with failure here, durability is not an issue. During the
construction of the solution space, we generate checkpoints, to which we return to
explore further possibilities. However, the concept of failure is irrelevant.

More interestingly, we have spoken about transactions and we need to decide what
a transaction is in our system, before discussing the applicability of the atomicity,
consistency and isolation properties. There are three candidates for a transaction:

1. a single message of a single feature

2. all messages of a single feature

3. a complete solution

All three lead to very different interpretations of the properties, and we consider them
in turn.

1. A single message of a single feature

Assuming a transaction to be at the level of a single message, we do not obtain
consistency: either all messages of a feature must be considered or none. Isolation is
not possible, when messages of different features are interleaved, the order of these
messages might matter whereas isolation would require that the order is irrelevant.

2. All messages of a single feature

Should a transaction be at this level, consistency is granted and isolation is also
provided. However, we discard many possible solutions, as interleaving is now at a
feature level (or coarse grained) as discussed earlier.

3. A complete solution

Having a complete solution as transaction satisfies the consistency requirement.
However, isolation becomes meaningless, as no possible concurrent actions are
available.

We can see that independent of the definition of a transaction one or more of the
ACID properties is violated. Hence, one might question that we can use the term
transactional to describe our approach. However, we believe that due to the close
resemblance of the behaviour of the construction and error recovery this term is indeed
justified.

C h ap ter 7. E valuation 97

C N D B R B W F T W C

C N D

C N D B

R B W F

T W C

Tab. 7.1: Results from the Running Example

7.5 A nalys is o f Scenarios

7.5 .1 R u n n in g E xam ple: M u ltip le P o in t o f C all C ontrol

The number of potential combinations of features and the states they can be in is large.
For the purpose of the analysis we have considered a small selection of scenarios. In
particular, we consider two-way combinations of all features, but do so only in selected
states and with selected input messages. In MPCC settings all considered features are
located at the same user, features at the remote end can not be influenced. Thus,
in this analysis the features are indeed all located with the same user. Interactions
between features on different call sides cannot be detected using the given detection
m ethod as not enough information is available (we will discuss this later at the example
of call forwarding loops). However, this is not a drawback of the resolution mechanism,
it merely identifies a weakness of the detection method. 105 two-way cases have been
analysed and the results are summarised in Tab. 7.1.

We distinguish five (distinct) results, marked with symbols as follows.

1. an interaction has been detected, but all features request the same action,

2. “T ” : a technical interaction has been detected, removal of bad solutions is
required,

3. “U ” : a user intention violation has been detected, we allow all features to
proceed,

4. “o” : an interaction has been detected with the features requesting different
actions, but the resulting behaviour does not constitute a user intention violation
or technical interaction,

5. “ no interaction has been detected between these two features.

Clearly, when all features request the same action (case 1), we do not need to resolve
an interaction. We can let all features continue, as achieved by choosing branches

C hapter 7. Evaluation 98

satisfying the largest number of features. Similarly, when an user intention violation
is detected (case 3), we have made the design decision to let all features proceed. This
is achieved in the same way as for case 1. When no interaction has been detected
(case 5) or an interaction has been detected but the behaviour is “desired” (case 4),
the trace satisfying the largest number of features is again the appropriate solution.

The most interesting case is that of the detection of technical interactions (case 2).
Here a resolution using the message dependent rule (i.e. pruning) is required. As
described in section 4.2, offline analysis of the solution space is used to identify
undesired behaviour. Clearly, some domain knowledge is required to know what is
considered undesired. We considered, amongst others, contradicting billing messages
and contradicting busy treatments to be undesired. The following pruning rules have
been identified:

1. a trace containing o.alert and store.read in any order is undesired, we either
want to initiate a call or query the voicemail feature,

2. a trace containing billingsplit and billing-reverse in any order is undesired, the
two billing messages contradict each other,

3. a trace containing O-alert and announce(wrongpin) in any order is undesired,
the call should not take place if the PIN was incorrect,

4. a trace containing more than one of o.inform(cwhold), o-notify,
o-inform(ringback) or o-inform(callminder) is undesired, as they are all
contradicting busy treatments.

The regular expression describing the above rules is rather complex as it needs to
take into account all other messages. For simplicity let non-oalert-stread be the set of
all messages that are not O-alert or store-read. Similarly we define the message sets
non-billsplit-billreverse, non-oalert-announce and non-busytreatment.

The pruning expression can then be formulated as:

(o-alert.non-oalert-stread*.store-read) \
(store-read.non-oalert-stread*.O-alert) \
(billingsplit.non-oalert-announce*.billing-reverse) \
(billing-reverse. non-oalert-announce*. billing sp lit) \
(announce(wrongpin).non-oalert-announce*.store-read) \
(announce (wrongpin). non-oalert-announce* .o .alert) \
(o-inform (cwhold) \ o .notify \ o-inform (ringback) | o-inform (callminder)).

non-busytreatment*.
(o .inform (cwhold) \ o .notify | o.inform(ringback) | o .inform (callminder))

Having implemented these rules we were able to resolve all interactions in the two way
scenarios, whereby in all cases the maximal number of features was allowed to proceed.

C hapter 7. Evaluation 99

In general this was 2, apart from technical interactions, where one feature had to be
blocked. In order to show that the approach does indeed work for n-way interactions,
we have performed a number experiments with more than two features. Again, using
the same rules as for the two-way cases, all interactions have been resolved in such a
manner that as many features as possible could proceed. Some of the cases considered
are as follows:

• 7 Fs BCS-CT-RC-SB-TL-TWC-VMP: Basic Call Software, Call Transfer,
Reverse Charging, Split Billing, Teen Line, Three Way Calling and Voice Mail
(Playback). The trigger event was dial, to which all features responded in their
initial states. The constructed solution space had 44066 nodes, construction
was completed in 32.24 seconds. The on-the-fly method provided a resolution in
18.96 seconds (of which 17.56 where consumed by findfinal).

• 6 Fs BCS-CFB-CND-CT-TL-VMR: Basic Call Software, Call Forwarding Busy,
Calling Number Delivery, Call Transfer, Teen Line and Voice Mail (Recording).
The trigger event was Lalert, to which again all features responded. The solution
space had 866 nodes and was constructed in 0.52 seconds.

• 5 Fs BCS-CT-CW-GR-TWC: Basic Call Software, Call Transfer, Call Waiting,
Group Ringing and Three Way Calling. The trigger event was Lalert, to which
all features responded. The solution space had 6810 nodes and was constructed
in 3.76 seconds.

• 4 Fs BCS-CT-CW-TWC: Basic Call Software, Call Transfer, Call Waiting and
Three Way Calling. The trigger event was flash, to which all features responded.
The solution space had 162 nodes and was constructed in 0.06 seconds.

Further details of the runtimes can be extracted from Fig. 7.3, which contains the
results of the above cases. Note that again all features were located with the same
user, and the features initial states have been chosen such that interesting behaviour
occurs. The examples show that the solution space can become rather large, however
the number of rules required to successfully resolve the detected interactions is very
small. Furthermore the observed construction times are acceptable, especially if we
take into account that pruning is efficient and the on-the-fly approach allows us to
reduce the size of the constructed solution space significantly.

Including basic call as a feature proved to be acceptable. However, basic call often
interacts with other features. We may not for example want the user to receive the
response from basic call, but rather the response from the features. However, simply
pruning traces in the same way as when interactions are detected is not desirable -
often basic call provides the necessary trigger. Let us consider this situation in more
detail.

Basic call may produce an oJ)usy message, which subsequently becomes redundant
because a feature responds to this. In this case it would be desirable to remove

C hapter 7. Evaluation 100

O-busy from the sequence of messages associated with the user. However, it cannot
be removed from the messages used to reinstantiate the features as basic call should
indeed be moved into the state it would have reached after sending the message (the
respective features must also be moved to their new states).

It might be desirable to adapt the commit function slightly. Recall, once a resolution
has been chosen, commit will reinstantiate all features in their desired states and
issue the responses to the user. The solution is to adapt commit to scan the
sequence to be committed for the occurrence of an O-busy message and if this is
found, to identify whether any of 0 -inform(cwhold), o-notify, oJnform(ringback)
or o-inform(callminder) occur subsequently. If one or more of these messages are
detected, O-busy should not be committed to the user, but rather should be omitted
from the sequence. Note that this mechanism has not been implemented in the
current commit function and that interactions of this form between basic call and
other features have not been included in Tab. 7.1.

7.5.2 DESK Features: Single Point o f Call Control

D e s k uses a single point of call control model. In order to compare our results to
those obtained by Marples [MarOO] achieved using D e s k we must make some minor
changes to our implementation.

A single point of call control (SPCC) means that features connected to the feature
manager can belong to any user in the system. In contrast, in the multiple point of
call control (MPCC) setting, which we used to achieve the results in section 7.5.1,
all features connected to the feature manager are subscribed by one user (the remote
end of the call is considered to be completely independent, as it potentially is hosted
on a different switch over there is no control). The impact of this difference is best
shown with an example: Assume that two users A and B subscribe to call forwarding
unconditional A attempts to ring B, thus producing an incoming-ring message. In the
MPCC setting the feature manager at B’s end of the call will issue this message to the
subscribed features resulting in the expected forwarding initiated by B. However, in
the SPCC setting both A and B’s call forwarding unconditional will receive the trigger
and both will respond. Clearly we do not want A’s call forwarding unconditional to
react to incoming calls to B before they have been forwarded.

To resolve this issue, our message format is extended by two fields: the source and
destination of a message (thus including the same information as D e s k ’s messages).
Features perform a check on incoming messages as to whether the id of the subscribing
user is the same as the destination of the message. In the above case, A’s call
forwarding unconditional will recognise that the recipient for the message is B and
will not be triggered. Making this change in the model reflects the solution tha t has
been implemented in D e s k .

In most cases two features interact because they either share a trigger event or one
feature triggers the other - i.e. they are either shared trigger interactions or sequential

C hapter 7. Evaluation 101

action interactions. However, some features only interact in the presence of a basic
call model when the user is busy. Marples deals with this by placing the respective
user in a busy state (e.g. by going offhook). We deal with this by including a very
simple basic call model in parallel with the features. This basic call model consists
of a state machine with one state, upon receipt of an incoming ring the term.busy
message is produced. Clearly this simulates the relevant part of D e s k ’s full basic call
model when a user is busy. All these cases result in sequential action interactions.

Consider the scenarios involving basic call individually:

C F B -C F B Assume users A and B subscribe to CFB; user A’s CFB forwards a
call to user B while user B is busy. B’s basic call produces the term.busy trigger
thus triggering B’s CFB.

H L -C F B Assume user A subscribes to HL to B, and B subscribes to CFB. If B is
busy B’s basic call produces the term.busy trigger upon detection of A’s HL call
attempt.

R C I-C F B B’s RCI returns a call to A who subscribes CFB. If A is busy, the RCI
call triggers A’s basic call to produce term.busy, thus triggering CFB.

H L -C W is similar to HL-CFB (assume B subscribing CW instead of CFB).

T C S -C W Assume A subscribes to both features. TCS is triggered upon an
incoming ring message, the basic call produces term.busy upon an incoming ring
on a busy line. Feedback of the term.busy triggers CW.

Using the adapted model, we have considered all features pairwise obtaining
comparable results. Table 7.2 contrasts our results to those obtained by Marples
[MarOO]. Each entry is composed of a left and a right symbol, either or both might be
blank. A blank simply means that no interaction has been detected. In addition to
blank, the left symbol can be + or -, reflecting whether Marples detected an interaction
or Marples did not detect an interaction, but expected one. The right symbol is either
blank or x, where x means that we detect an interaction.

Unsurprisingly, the detection results are nearly identical. The reason as to why they
are not completely identical is undecided as certain D e s k features showed erratic
behaviour. The version of D e s k that we used produced results slightly different
to those reported by Marples. For example, we were able to detect an interaction
between RCI and TCS, as one would expect. Assume that B subscribes to RCI and A
subscribes to TCS barring calls from B. When A calls B while B is busy, B’s ringback
will initiate a call that will then be barred.

We were able to resolve all interactions successfully, employing message dependant
pruning. Occasionally, removing duplicates and extracting traces with most features
satisfied left a choice between two (or more) traces; we simply extract the leftmost
trace. Thus all interactions were resolved successfully, again allowing both features

C h ap ter 7. E valuation 102

CFU DND OCS TL CFB HL TCS CW RCI
CFU + x + x + x + x + x + x + x + X

DND
OCS
TL

CFB
HL

TCS
CW
RCI

+ X + X + X

+ X - X

+ X
. ...

i ; ' + X + X + X + X

. T ■ . . . + X + X

................... 1 \ *
........... I.. ' T V - V i

....— ...— ...

+ X

- X

- X

+ X

+ X

X

+ X

Tab. 7.2: Detection Results of Marples and Reiff-Marganiec

to proceed when the interaction was considered to be a User Intention Violation (e.g.
CFU-DND or HL-CFB).

The message dependent rules require a regular expression describing bad patterns.
We can use domain knowledge to identify a number of behaviours th a t we view as
undesirable, at least between two stable states:

1. connecting a user to two different resources,

2. routing a call to two different locations,

3. routing a call away from A and still changing A’s local state,

4. routing a call away from A and connecting A to a resource,

5. changing A’s state and connecting A to a resource.

A more technical analysis of the above cases reveals that they involve one or more of
the following messages:

• send-to-resource, A, res results in user A being connected to resource res, e.g. an
announcement or a busytone

• routing, A , B results in a call being routed from A to B

• m o veA o sta te , A results in A’s call software being moved into a new state, used
by call waiting

We describe two of the above cases as regular expressions, using the messages as
defined.

Example 7.5.1 (Connecting a user to two different resources) Let str^xxx 11 be the
regular expressions for the sendAo^resource message th a t connects user 1 to a resource. As
example str .n od is 11 = M kRE (Snd, Msg s e n d . to.resource, N odisturb,0, (1, 1)).

Chapter 7. Evaluation 103

tworesources =(str-nodis 11. str.ocs 11) | (str.ocs 11. str-pinl 1))
(str -pin 11. str-tcs 11) | (str-tcs 11. str-nodis 11)))
(str.ocs 11. str-nodis 11) | (str-pin 11 .str. ocs 11))
(str-tcs 11. str-pin 11) | (str-nodis 11. str _ics 11))))
(str .ocs 11. str-tcs 11) | (str .pin 11. str-nodis 11))
(str-tcs 11. str-ocs 11) | (str-nodis ll.str-pinll)))

Example 7.5.2 (Routing a call away from A and connecting A to a resource) In this
example str 11 is the regular expression matching the single occurrence of any send_to_resource
message from user 1, routnglx is the regular expression for the single occurrence of a routing
message routing calls from 1 to x. Also nonrtngstrll is the regular expression describing the
occurrence of none or many of the remaining messages.

rtngandstr = (str 11. nonrtngstr 11. (routng 111 routng 121 routng 13)) |
((routng 111 routng 121 routng 13). nonrtngstr 11. str 11)

Note tha t the regular expressions include all possible instantiations of the parameters
of a message that occur in our examples. In this case an extension to the regular
expressions could be considered, where the matching does not compare the whole
message but rather the relevant parts.

Using only these five simple regular expressions and the message independent rules we
were able to resolve all detected technical interactions automatically. The remaining
interactions have been resolved by using only the message independent rules as
described earlier.

7.6 Appropriateness and Suitability

The evaluation performed so far considered whether the specification was met by the
implementation. We have also considered scalability and shown two case studies that
provided empirical results. Now we step back from the technical details to consider
whether the approach is suitable and appropriate to detect and resolve interactions.

In the case studies, we have been able to detect and resolve interactions in single
and multiple point of call control settings automatically. In particular, the best
possible resolutions (based on our understanding of the features) have been found
for all detected interactions. The patterns describing bad behaviour as used by the
pruning algorithm have been relatively obvious and only very few such patterns were
required. Our understanding of the semantics of the existing messages made the
formulation of the rules possible.

As features are distinct in such a way that they do not allow general reasoning,
e.g. based on their structure, evaluating the approach using case studies is the most
appropriate way of convincing oneself of the suitability.

Chapter 7. Evaluation 104

As user intentions are often ambiguous, we have concentrated on technical interactions.
Recall that a technical interaction is defined to occur when several features triggered
by the same response or features triggered by an earlier response, request for the call
to be continued in distinct, non-unifiable ways (Definition 4.4.1). In the definition this
was further explained as the absence of a system state which satisfies the behaviour
of all requests (similar to type I interactions as described by Hall [Hal98]).

However, in the detection method developed by Marples and refined in this thesis, and
the presented resolution techniques, we assume that no knowledge of the state of the
system is available. So, how can we relate our approach to the definition of technical
interactions? Consider the two components of the approach, the construction and the
resolution.

Solutions. The construction method, i.e. identifying the solution space, produces
all possible behaviours. Multiple (distinct) solutions exist precisely because several
features have responded to a trigger event or because features have responded to a fed
back response. However, this alone does not allow for the detected behaviour to be
classified as technical interaction: It is possible that the requested call continuation
behaviour is unifiable, potentially leading to an user intention violation, or, more
interestingly, leading to behaviour that is completely acceptable (such as delivering a
voice announcement and also displaying the same information). The potential of the
latter is the core motivation for exploring all possible interleavings.

In SPCC settings more information is available and the control of the feature manager
extends to the whole call, rather than just a call leg (as in MPCC). This allows one
to detect more interactions than in the MPCC setting. In particular, the MPCC
setting does not allow one to detect call forwarding loops using our mechanism. In
order to detect forwarding loops some form of call history, e.g. additional information
attached to the messages, would be required. A forwarding message would carry as an
additional argument the history of all previous forwards, which then can be analysed
w.r.t. whether the call has already been forwarded from this location.

Resolutions. The aim of the resolution method, in particular the pruning rule, is
to ensure that technical interactions cannot occur. Namely, applied to the solution
space, all those solutions that lead to requests for continuing the call in non-unifiable
ways are removed. Thus, while our detection method does not distinguish the different
classes of interactions, the resolution method deals with the class we are interested in,
i.e. the technical interactions.

The quality of the resolutions depends on the knowledge of the message semantics.
However, even a general understanding of the messages is sufficient. For any system
under considerations, it must be assumed that this general understanding exists, as
otherwise enhancement is questionable even in the absence of the feature interaction
problem. In the context of telecommunications systems, the general understanding of
a message is usually obvious, e.g. dialtone means that the user now can dial a number.
In general, messages that lead to actions that must be consistent for a user should be
used in a consistent fashion, i.e. their semantics is fixed.

C hapter 7. Evaluation 105

A rule set is considered complete if all interactions can be resolved. However, there
is no generic method of identifying a complete rule set (due to the diverse nature of
features). This is a drawback, as an incomplete rule set can lead to a trace being
identified as resolution when the trace is not a resolution. However, this is only a
minor drawback, as understanding of the messages and the in the studies encountered
message sets are relatively small it is possible to consider sequences of messages and
deciding whether they are acceptable.

For larger message sets, this manual approach might prove impossible. However, all
tha t must be automated is the analysis of sequences formed from messages from the
message set. It is not required to know details about the features. Thus formulating
the rules is independent of the features.

In addition to the rules resolving technical interactions, we can also define rules
that exclude message sequences that can be considered to cause user intention
violations. However, these will be very crude in that they might not match every
users expectations - they merely reflect the view the rule designer has on the action
of the involved features and whether their interaction is considered undesirable.

Complexity. Overall complexity did not initially look promising. However,
considering the different parts of the approach that introduce high runtimes, we find
tha t the most expensive part of the process is the generation of the deterministic finite
state automaton (DFA) used to match the pruning pattern. Fortunately, this DFA is
only constructed at startup of the system and when new rules are added (which should
only happen very infrequently). Further, a significant improvement can be made on
the matching algorithm using a hash table for the transition table of the DFA.

Solution spaces involving many features can grow large (we have seen an example with
more than 40000 states earlier). However the construction is performed reasonably
quickly and the pruning and extraction axe not too time consuming as shown earlier.
The on-the-fly approach combining pruning and construction rarely performs worse
than the construct-prune approach (it does so when a feature does not contribute
to a solution and thus duplicate traces are introduced) and provides a significant
improvement if traces are long and can be pruned early in their construction. Longer
traces are normally a result of many features interacting, thus the on-the-fly approach
becomes more viable as the number of features increases. Note that it is crucial to
use a hash table for the transition table of the DFA used by pruning to increase
performance.

Scalability. Details of scalability have been discussed previously. Evidence so far
suggests that the approach is scalable, however the suitability of this approach for use
within an operational telecommunications switch remains the subject of further work.

Summary. The rule based resolution approach is desirable as it addresses the
problems posed in the motivation for this work. In particular it provides a solution to
the feature interaction problem in the context of legacy and third party features which
no other currently available technique offers. As discussed, detection and resolution are

C hapter 7. Evaluation 106

performed without knowledge of the internal behaviour of the features and resolution
requires only an understanding of the semantics of the exchanged messages.

7.7 A Hybrid Approach - Revisited

In Chapter 4 we introduced the idea of a hybrid approach for feature interaction
detection and resolution.

The main ideas discussed involved the development of an initial model, applying offline
analysis to the behaviour and identifying a set of resolution rules. This rather formal
part was then seen to be integrated within the D e s k testbed. In an iterative process
we learn from experiments in D e s k , i.e. weak points of the resolution approach, and
would then refine the model and resolution rules.

We have developed a detailed specification and model implementation of the
underlying system. The model is the result of many failed attempts, mostly concerned
with finding the right notation for modelling. However, those “dead-ends” have led
to a sound understanding of the relevant issues:

• We can only assume knowledge of observable behaviour of the features - the
impact of this assumption influences the detection and resolution mechanism
fundamentally and also impacts on correctness proofs.

• The model must be relatively close to the real system - especially w.r.t. the
feedback mechanism, but abstract enough to hide the implementation details.

• The call model, SPCC or MPCC, plays a major role as to what can and cannot
be done, and influences the architecture of the model.

The specification of the solution space (Chapter 5) provides a clear understanding of
possible solutions and hence resolutions. We can have two distinct classes of methods
for reducing the solution space: pruning and extraction. The former being dependent
on the semantics of the messages the latter being more general. Our model was built
using Haskell.

We will now briefly explain how an integration with D e s k would be performed. D e s k ’s

feature manager needs to be extended at different stages. At startup of the system
the DFA corresponding to the provided regular expression must be computed. The
further changes depend on the chosen approach: construct-prune vs. on-the-fly.

To integrate the construct-prune approach, D e s k ’s current construction mechanism
can be maintained. The change is, that rather than presenting the constructed solution
space to the operator, it is passed to the automatic resolution method. Once a
resolution has been chosen, the system proceeds as previously.

C hapter 7. Evaluation 107

The on-the-fly approach is more intrusive, as a change to the method of construction
is required. In order for this approach to be integrated the current construction and
resolution mechanism of the D e s k feature manager would need to be replaced. The
new construction algorithm would be exactly as presented in the model. Again the
resolution would be passed back to the system at the same point than it was after the
operator had chosen it.

We had proposed to integrate our resolution method into the D e s k testbed in order
to explore the success. We decided that this is not desirable at this stage for several
reasons: the testbed itself proved to be fairly fragile, and furthermore it was restricted
to a single point of call control setting. On the other hand, the close proximity of the
model and the testbed, and the fact that modelling in Haskell allows us to generate
executable prototypes, suggested performing experiments on the model.

O v e ra ll, w e c o n c lu d e t h a t th e in i t ia l id e a o f a h y b r id a p p ro a c h p ro v e d f ru it fu l , b u t

th e d e ta i ls o f th e a p p ro a c h t h a t w ere d e s c r ib e d e a r lie r re q u ir e d c e r ta in a d ju s tm e n ts .

M a in ly , w e d id n o t im p ro v e th e re so lu t io n ru le s b y n ew k n o w led g e g a in e d f ro m

o b se rv in g th e sy s te m w ith a n in i t ia l r e s o lu t io n s t r a te g y a n d w e d id n o t in te g r a te

th e d ev e lo p r e s o lu t io n te c h n iq u e in to th e D e s k te s tb e d .

7.8 Summary

We have discussed the correctness of the approach with respect to the specification
and have considered the complexity. An analysis of scenarios placed the theoretical
considerations in the context of realistic examples taken from the running example
and the D e s k testbed. The reliance on a semantics of the messages as well as the
subjective decision as to what constitutes bad behaviour might be seen as weaknesses
of the resolution method. We conclude that the approach is indeed suitable to fulfil
the set aims. Finally, we reflected upon the hybrid approach and the integration of
the developed approach in the D e s k testbed.

Chapter 8

C onclusions and Im plications

8.1 Introduction

Our aim was to show the desirability and feasibility of an approach to detect and
resolve feature interactions in evolving telecommunications systems. We have outlined
a number of smaller aims and formulated some objectives (in section 1.2) describing
how we intended to achieve the principal aim.

We now reflect on the presented work, considering if and how the aims were met. We
then consider implications of this work for both the theoretical and practical aspects
of the research area. We also discuss transferability of the approach to other areas, as
well as its limitations.

Ideas for further work will be presented. In particular, we consider the shift in
technology that is presently taking place and discuss its impact. We reason that the
technology shift has and will have a significant impact on telecommunications systems.
However, this shift neither removes the feature interaction problem nor invalidates our
approach.

8.2 Reflection on Research Problems

The overall aim of detecting and resolving feature interactions was split into several
subgoals. The subgoals axe part of three groups of research questions: the first
concerned with possible solutions, the second concerned with good solutions (or
resolutions) and the third applicability and suitability of the approach.

Solutions. We have defined a solution to be a trace of one or more features running
concurrently. The number of potential solutions can be very large, it is bounded by the
number of features and the length of their responses. All these solutions are found by
a feedback process following Marples’s idea [MarOO]. However, we identify even more
solutions than Marples, in that we allow interleaving on a message basis rather than on
a feature basis - we refer to these as fine and coarse grained interleaving respectively.
When considering resolutions we need to discuss whether it is meaningful to have these
distinct kinds of interleaving.

The feedback process is a runtime detection method and does not require any semantic
information about the messages, it is simply based on responses of features to trigger

C hapter 8. Conclusions and Im plications 109

events. We considered that two (or more) features might be triggered by the same
event or that a feature might be triggered by a fed back response from another feature.
Any combination of these two triggering possibilities is also considered.

Building on the definition for solution, we identified the solution space - i.e. the set
of all possible solutions and also provided a way of constructing the same at runtime.
A quantification of possible solutions has been provided in this context, but note that
there is no quantitative relation between the number of features and the number of
interactions. This is due to features reacting different depending on certain events
and often behave different in the presence of other features. In addition, the internal
behaviour is not known, so we do not know in advance how a feature reacts in a given
situation. The analysis allowed to place an upper bound on the number of solutions.
This upper bound is provided by the number of features and the number of messages
they send as response to a trigger, though the combined length of responses is limited
by the exploration algorithm making this bound firmer.

Resolutions. Understanding solutions was the basis required to develop the
resolution approach. The concept of resolutions was made precise as “good” solutions.

Our approach distinguishes two broad categories of resolutions rules: message
dependent and message independent. The rules are used to define pruning and
extraction operations. Extraction simply maintains solutions that we deem better
than others, based on notions such as satisfiability of features or priorities. For this
to work, it is only necessary to know which messages stem from the same feature.

Pruning rules requires semantic knowledge of the messages in order to specify patterns
describing bad behaviour. Regular expressions are the mechanism used to describe
rules expressing bad behaviour. We discussed that regular expressions are sufficient
to describe the behaviours that we wish to exclude. Pruning removes solutions that
contain patterns described by the regular expressions.

By identifying several rules based on the case studies we contributed the basis of a
description of undesirable behaviour as it occurs as part of possible solutions. This
allows to eliminate undesired behaviour at runtime in a more general setting than
has been possible so far. Previous work makes use of solutions for known conflicts or
human input to resolve detected interactions.

The message independent rules alone are capable of resolving some interactions.
However, the pruning rules add significant strength to the resolution mechanism in
tha t they allow for very specific behaviour to be excluded. It is here that the fine
grained interleaving gains relevance: it is hoped that sometimes it might be possible
to have two features active together when their individual responses are interleaved,
whereas they would not be able to cooperate if the interleaving is on a feature basis.

The major drawback of the pruning rules is their formulation requires domain
knowledge and that we do not have a general way of showing that the rule set is
complete. The rule set is dynamic, that is the rules are adapted when required. This
was the motivation for the iterative process described in Section 4.2. In the absence

C hapter 8. Conclusions and Im plications 110

of domain knowledge a reliance on the semantics of the messages is the only way to
formulate meaningful pruning rules. However, the set of rules will almost certainly be
weaker than one found assuming domain knowledge and is much more dependent on
a better understanding of the message semantics.

Applicability. We have integrated pruning with the construction of the solution
space, we referred to the result as the on-the-fly approach. Trials showed that
the on-the-fly approach provides scalability. Considering the construction times in
conjunction with the runtimes for pruning and the on-the-fly method, the resolution
overhead is quite small (or non-existent). We note that the runtime of our trials are
not too promising, but this is largely due to the usage of Haskell1. Furthermore, more
efficient data structures will improve performance as discussed earlier. As Marples
found the runtimes for his construction method acceptable, we can conclude that,
since the construction method is essentially identical and the resolution overhead is
minimal, our overall runtimes must be so as well.

Our evaluation was performed on sets of up to 12 features simultaneously present in
the system, but we cannot limit the maximum number of features or even guarantee
that for every feature set a minimum can be assured. This is due to the diverse nature
of features and the absence of a generic description of features. As discussed earlier
both the number of features and the number of messages in the system are important
factors to be considered when discussing scalability.

The number of detected interactions depends largely on the underlying system
architecture. When single point of call control is assumed, more interactions can
be detected. However, even in multiple point of call control systems we were able to
detect interactions between features subscribed by one user.

The resolution technique works in both settings but as it crucially depends on the
earlier detection of interactions it can only be as good as the detection method.

In order to achieve better performance in multiple point of call control settings, more
information exchange between the control points is required. New telecommunications
architecture (as discussed later) allow for this additional exchange, thus strengthening
the work done here.

We have shown that the developments in the telecommunications area towards open
markets with multiple vendors as well as legacy equipment require runtime solutions
for the feature interaction problem. Our method, which is based on a transactional
approach, provides solutions as it allows to detect and resolve feature interactions in
the legacy context. The evaluation and discussion concluded that it is indeed feasible
and desirable to have such an approach.

1 [BagOl] provides a benchmark for different programming languages. On average, programs
compiled using ghc are 6 times slower than their gcc counterparts

C hapter 8. Conclusions and Im plications 111

8.3 Transferability to Other Areas

Blair and Blair [BB01] presented a method for dynamic Quality of Service Management
using a system integrating controllers and monitors. In their system, the monitors
and controllers provide additional functionality to a basic service, and can as such
be regarded as features. Furthermore, communication between these components is
via message passing. In a system with multiple monitors and controllers, feature
interaction can occur when controllers compete for bandwidth. Our approach has been
applied to detect and resolve interactions in the area of Quality of Service Management.
The results are reported in [BR01].

The Advanced Separation of Concerns Workshop (part of ECOOP 2001) included a
discussion group concerned with Feature Interaction for ASoC models. This highlights
the fact that the feature interaction problem has been recognised in other areas. It
remains to be seen whether the presented approach can be adapted to this area, as
well as other component based systems.

However, we believe that the method can be employed successfully to detect and
resolve interactions in component based systems, provided that the inter component
communication can be intercepted, delayed and blocked and that sufficient information
is conveyed in the messages. This claim is supported by Blair et al. [BBPE01].
They propose that a runtime approach to discover problems after reconfiguration and
those unforseen at design time is necessary to resolve interaction in component based
middleware.

In summary, the approach may be applicable outwith the telecommunications domain
and presents a contribution to the feature interaction problem in component based
systems.

8.4 Limitations

In a fast advancing area it is unlikely that one approach will be able to provide
a general solution. We have outlined the setting for which our approach has been
developed, namely emerging legacy systems and third party components in the
telecommunications domain. We have shown that we have successfully detected and
resolved feature interactions in our evaluation.

Our approach does have limitations, which have been highlighted earlier. They are
mostly concerned with the architecture of the system, especially the communications
mechanism and the ability to integrate new components. A system where the
communications between the components can be intercepted, blocked and delayed
together with the possibility to insert the feature manager component into the system
is required. Not all systems will allow for this: the communication path might guarded
in some fashion, e.g. encryption and time stamping, such that any delay or blocking

Chapter 8. Conclusions and Im plications 112

of messages is seen to be intrusive and the communication will be stopped as being
insecure. The approach will not be applicable to such systems.

The feature manager must be able to temporarily block message exchanges and explore
feature behaviour without the results being committed to the system. This might not
be possible, and more significantly the time required might not be available in every
system. The latter can be caused by time critical transmissions, where a response
is required to happen within a certain time scale that prohibits anything but an
immediate reply. If features have side effects, such as changing global data and the
changes cannot be rolled back when the features are rolled back, the exploration
mechanism is unusable as partial information is committed leading to inconsistent
information in the system. Clearly the approach will not be applicable in this situation.

We have assumed that features do not have any side effects, which is necessary for the
rollback mechanism between stable states. Once we have committed to a resolution
we reach a new stable state. There is no reason why a feature shall not be able to
continue to progress from a new internal state once we have reached this new stable
state (and in fact several of the example features do this, e.g. Teen Line). However,
rollback only works between stable states, and there is no mechanism to reset features
once they have been committed to. From a user point of view this is not a limitation,
in fact allowing rollback across stable states would be confusing for a user.

To ensure consistency in the case when features go across several stable states we can
see two solutions: a history or look-ahead solution. The former requires for a history
of which features have been committed to be kept and if the same feature reacts again
in a consecutive resolution attempt it shall be given a guarantee to continue. This
opens the question as to when we can consider the behaviour of a feature to have
terminated, i.e. how many steps into the past do we need to consider. The latter
would require the feature manager to be able to predict user inputs and explore the
future behaviour with respect to further inputs. However, we cannot guarantee the
prediction to be correct and thus might fail to resolve the problem. Furthermore, the
complexity of the resolution process is increased. In the current solution neither of
the approaches to deal with features crossing stable states was required and hence this
has not been considered in detail.

The success of our approach depends on the understanding of the exchanged
messages. As discussed in Chapter 7, this is not unreasonable. Most communicating
systems operate to some protocol which provides the semantics of the messages and
telecommunications systems form no exception. If the understanding does not (or
only partially) exist the approach might still be applicable. However, in this case a
reduction in the quality of the resolutions must be expected.

8.5 Further Research

We have presented a method to detect and resolve technical feature interactions in
evolving telecommunications systems. We concentrated on technical interactions.

C hapter 8. Conclusions and Im plications 113

Several aspects for further work can be identified. We consider possible improvements
to the approach itself, the evaluation of the approach in an operational system, a
transfer to other areas and the relation to new technology. This section explores these
issues in more detail.

To improve the runtime performance even more than with the on-the-fly method, a
heuristic is considered. The idea is: certain message sequences might always suggest
a failure in the future without themselves being bad. Assume a sequence si which is
not bad, and a sequence S2 which is bad. A heuristic might say that S2 always occurs
some time after si, thus the pruning can be performed when encountering si, rather
than awaiting the offending sequence S2 - This allows for earlier pruning and hence
for better performance. Clearly such heuristics require a very good understanding of
the underlying messages, especially which messages are only meaningful if they occur
in conjunction with each other. We can conclude, that to allow for heuristics the
semantics of the messages is crucial.

When n features interact in an undesired way, then every trace containing these
n features in addition to others will also lead to undesired behaviour. We could
implement a mechanism to use this to our advantage. During the on-the-fly method,
a log is kept as to when all traces involving certain features have been pruned. It seems
that, if a new trace is to be constructed involving all those features we can simply skip
the construction, knowing that all traces will be pruned as well. This requires further
investigation.

Pruning uses rules that describe certain patterns of messages to be undesired, and in
our evaluation this was sufficient. However, one could imagine scenarios where new
features introduce behaviour that contradicts the provided rules. An example would
be that in general we do not desire to route a call to several locations simultaneously,
which would contradict the basic behaviour of a group ringing or conferencing feature.
The matching of the rules could be extended in such a way that when a pattern is
matched by a sequence of messages stemming from one feature, this will be acceptable
and only those where a number of features lead to the pattern are undesired. If a
feature is composed of several sub-features then this approach is not feasible. However,
it remains unclear whether combining distinct features to obtain a new service is
desirable. This is because we cannot guarantee that all those sub-features are enabled
and each interworks correctly with the remaining features in the system. It appears
that the combination of features to obtain such a combined service should occur at a
different level.

Our approach has been implemented in Haskell, which proved a good choice for
the modelling and simulation, but clearly lacks in realistic performance. Thus, it
would be desirable to re-implement the ideas using C to make use of the better
performance attainable. We have chosen Haskell for reasons discussed earlier. Using a
C implementation to show the functional issues discussed in this dissertation seemed to
detailed and thus diverting from the main aspects. Also this reimplementation should
consider more efficient data types, especially for the transition table of the DFA.

C hapter 8. Conclusions and Im plications 114

Further, incorporation in an operational switch is desirable, to observe the runtime
behaviour in a natural setting.

In summary, we have identified the following areas for further study:

• heuristics for earlier pruning,

• automatic learning techniques to improve pruning rules,

• “undesired behaviour” produced by a single feature,

• features crossing stable states (c.f. section 8.4),

• implementation and evaluation in an operational system.

The first four are incremental improvements ideas to deal with situations that might
arise in the future, the last would provide a better measure of feasibility.

Our approach deals with the present, i.e. legacy systems, but also addresses the
deregulation of the telecommunications market with some of its impacts. However,
the telecommunications area is currently advancing at incredible speed and many new
issues are emerging. We now consider these issues in some more detail and reflect on
the impact of the presented approach.

8.5.1 Technology Shift

We observe a general merging of what used to be separate services: the PSTN
(primarily a circuit switched voice network), the internet (primarily a packet switched
data network) and mobile networks. In the new combined communications network,
features considering billing or call routing remain, and new features for areas such as
quality of service management arise.

We identify two dimensions in the technological advance: new network architectures
and protocols and the addition of a service layer on top of core networks. Both
dimensions allow for ever more complex services by assisting service creation and
providing larger capabilities than traditional telecommunications networks. Features,
in this new context often referred to as service logic, become more distributed. We are
approaching an area that can be described as “anything over IP” , i.e. the core networks
will be packet and not circuit switched, and there will only be one core network
technology reducing investment for operators significantly. Service development is
facilitated by richer protocols, such as SIP [HSSR99] or Bluetooth [SIG01].

Today’s telecommunications market can be described as vertically layered, that is
each technology - GSM (Global System for Mobile Communications), IN (Intelligent
Network), ISDN (Integrated Services Digital Network) - has its own layering and own
services. However, recent developments, especially the integration of the different
network types mark a move towards horizontal layering (similar to ISO-OSI network

Chapter 8. Conclusions and Im plications 115

layering), where we distinguish a resource, service and application layer. The
resource layer simply constitutes the physical network access, the service layer provides
capabilities such as call control, security or mobility. Applications simply provide the
user with a tool that makes use of several capabilities, e.g. a basic call service or a
video conference call. Applications gain access to the service capabilities via predefined
APIs, examples are Parlay [Par] or JAIN [JAI].

Kimbler [KimOO] predicts 4 areas of service interactions: between the core network
technologies, between the core networks and the service layer, within the service
layer and between the applications. Notably he does not mention interaction between
the service layer and the applications, presumably as this should be avoided by the
interface. Thus interaction detection and resolution stays prevalent in the emerging
technologies.

As our approach facilitates the resolution of interactions at runtime, it can be included
in the new networks and resolve interactions at the appropriate layers simply by
observing behaviour at runtime and applying the presented detection and resolution
mechanism. Clearly, scalability would need to be reconsidered in the context of
probably much larger message sets. In addition, the new richer protocols allow
for communication between feature managers at different ends of the call and thus
facilitate the acquisition of additional information about the remote end. This allows
to detect more interactions. Further, remote feature managers could be presented with
resolution choices or even just be informed about locally performed resolutions, thus
increasing the overall quality of resolutions. Note that, in this context, negotiation
approaches gain a new importance.

As further work, it would be desirable to explore the capabilities of our feature manager
approach in the new setting and also consider a combination of the negotiating agents
approaches with the feature manager. This will be helpful when considering user
intention violations, which are currently not dealt with. In order to resolve user
intention violations it is required that individual users can express their preferences,
which in current systems can only be expressed by prioritising features. Emerging
systems allow for more powerful mechanism, for example call control policies.

In summary, it can be concluded that the new developments do not reduce or remove
the feature interaction problem. Thus solutions for the problem will be required
and our approach looks very promising because it is capable of working with minimal
information (i.e. the semantics of messages and domain knowledge as to which message
combinations result in undesired behaviour). Recall that no information about the
internal behaviour of the features is required. We rely on the semantics of messages,
thus it would be desirable to have agreed interpretations as to what a particular
message means. The approach might prove even more useful in the emerging systems,
where richer protocols allow for more information to be available via messages and we
concluded earlier that more information leads to better resolutions.

Appendix A

Formal D escription o f th e Features

A .l Introduction

The description of the features uses non-deterministic state machines. In an
operational system this non-determinism is removed by the environment: For example
features might react to times of the day, feature internal timers or data within the
features initialisation. As we are primarily interested in the observable behaviour,
i.e. input and output, the features environment is not modelled leading to said
non-deterministic finite state machines.

When modelling the feedback process features cannot be non-deterministic, as this
would allow a feature to react to the same trigger with different responses each time
it is presented with the same trigger in a feedback process. In order to resolve this,
it was chosen to select the interesting behaviour of a feature when non-determinism
occurs and model only that. Respective notes are made with the features concerned.

State labels in the following state machines a purely to ease understanding and
to provide a reference, they are not used in the actual detection and resolution
mechanism. Start states are denoted by a bold circle, in addition the state number
is 0. Transitions are often labelled with multiple messages, the used notation will be
summarised briefly. Labels are of the following form: “input / output” . Inputs are
printed in blue and italics, outputs black and upright. Some transitions do not depend
on an input, they are controlled by the feature internally. In this case the transition
label is simple “output” . Transitions leading to a new state but not resulting in any
output being produced are labelled “input / -” . Finally, there might be more than one
output message resulting from a single input, in this case is used to concatenate
the individual messages.

A .2 Basic Call

After being alerted a terminating user (see state BC 6) has three choices guarded by
an input. Further the system might timeout, modelled by a transition that does not
require any input. Note that this makes the feature statemachine non-deterministic,
and hence the transaction o-timeout.stopalert has not been included in the Haskell
model.

A p p en d ix A. Form al D escrip tion o f th e Features 117

t_wail
tor

onhook
B C 8

L con
nected
BC 7

/ (otfhook, -) t
(billing otfhook. lime).

(o_connect, -)

t_aterted
BC 6

(i disconnect. -) .
(disconnect J o n e , -)

(o jim eout. -):
(stopalert. -)(i_alert. •)

(o jre e , -);
(alert. -)

stopalert. •) /
(stopalert. -)

(onhook. -) /
(billingstop. time);

(billing onhook. time);
(o_disconnect. -)

(onhook. -) t
(billing onhook. time)

(onhook. -) /
 (billing_stop. time);

(billing onhook. time);
(o_disconnect, -); o_con-

nected
BC 4(onhook. -) I

(billing onhook, time)
o wait

for
onhook

BC 5

(t disconnect. •) /
(disconnectjone. ■)

(i connect. •) /
(billing_start. time);

(connect. -)
(otfhook. ■) /

(billing otfhook. time);
(dial J o n e . -)

(i timeout.) /
(timeout tone, -)

(onhook. ■) /
(billing onhook. time)

(i alen. -) /
(o_busy. -)

(dial. number)
(o_alert, -)

((tree. -) 1
(ringtone. -) answer

BC 3(onhook. ■) /
(billing onhook. time);

(o_stop_alert. -)

Fig. A .l: B asic C all M odel

A .3 C all F o rw ard in g on B usy

Subscriber

(o busy. -) /
(o_alert, -):

(billing fonwarded, D);
(o_notify, D)

Everyone

CFB E

(i busy. ')

(i notify D)

forward
call

C F B E

(o__busy, -)

F ig . A .2 : Call Forwarding on Busy Model

A p p en d ix A . Form al D escrip tion o f th e F eatures 118

A .4 C alling N u m b e r D isp lay

Subscriber Everyone

CNDO

C N D E (i request, caller tdl /
(o jn to rm , id)

(i_ inform, td) / ____
(display, id) (o request, caller id)(o_ caller..request,

await id
CND 1

(i alert. -) /
(o_busy, -)

Fig. A .3: Calling Number Display Model

A .5 C alling N u m b e r D elivery B locking

CNDBO

(i request. caller id) /
(ojnform. barred)

F ig . A .4: Calling Number Delivery Blocking Model

A p p en d ix A . Form al D escrip tion o f th e Features 119

A .6 Call T ransfe r

o busy?'
CT 3

oarmed
CT 1 dialtone x CT 2 CT 5

llash
CT 4

(tMlling_siart. lime);

(o_stopaleri,)

(o_stopalert)
ced

CT 6

CTO

ed
CT 12

(o_bus
' lawail \ J

llash
CT 10

I b u sy?dialtone
CT 8CT 7 CT 11

Fig. A .5: Call Transfer Model

Everyone

C T_E n ongmator > / ̂ CT_E
(i disconnect -)!

(i_aleri. ■)!
(o_busy. •)

(onhook, -)/
(o_busy. -)

(i notify. -)/

C T_E C T_E

(i_disconnect •)/■

(i_alert. -)/
(o_busy. -)i'(notify) /(o connect.)!

C T_E
(i disconnect. -) /

(onhook,) t (i alert. -)l
(o_busy, -)

Fig. A .6: Call Transfer Model - Everyone

A p p en d ix A . Form al D escrip tion o f th e F eatures 120

A .7 Call W a itin g

SUBSCRIBER

; foiling start time)

EVERYONE

Fig. A .7: Call Waiting Model

A .8 G ro u p R in g in g

others
alerted
GR 1

(i busy. ■) /

(i stopalert.) /
(o stopalert),
(o stopalert) (i alert.) /

(o busy. -)l (i busy.)
(i alert. -) /
(o alert. -);
(o alert. -)

alert.)
busy.

(i stopalert.) /
(o stopalert)(i connect. -) /

(o stopalert. -);
(stopalert. -);

(billing forwarded, N);
(o free, -);

(o_notlfy. N);
(o notify. Z).

(o_connect. -)

(i alert. -) I
(o busy. -),

) /

(i stopalert.) /
(o stopalert)

Fig. A .8: Group Ringing Model

A p p en d ix A. Form al D escrip tion o f th e F eatures 121

/ (iatert, -) I
*_ (o b u sy •).

/oarmed J
G R _ E ,

(I alert, -) I
(o_busy , -);

tonne
ted(i notify, Z) /

(onhook, ■) I (onhook. -) I
(o d isco n n ec t, -)

(o connect, -) / (i disconnect. -) /

idle
G R_E

(i timeout, -) I(onhook.((free. -) I

(onhook ■) I j
(i connect. -) I

(i timeout, -) I
'n e w
partner
GR_E

farmed
G R_E (i notify Z) /

(i alert. -) I
(o b u sy . -),

Fig. A .9: Group Ringing Model Everyone

A .9 R everse C h a rg in g

RCO

(dial, number) /

(dial number) /
(billing reverse •)

Fig. A. 10: Reverse Charging Model

A. 10 R in g b ack w h en Free

From the armed state (RB 1) this model lias a number of non-deterministic choices.
In reality these are deterministic, as they represent a decision on whether the ringback
list is empty or not. In the Haskell model the three transitions from RB 1 to RB 0
are not implemented.

A p p en d ix A . Form al D escrip tion o f th e Features 122

SUBSCRIBER EVERYONE

(i inform, ringback) /
(an n o u n ce , ringback);

Fig. A .l l : Ringback when Free Model

A. 11 Sp lit B illing

(billing split, factor)

S B 0

Fig. A. 12: Split Billing Model

A. 12 T eenline

This feature makes two internal decisions, hence the model introduces
non-determinism. From state TL 0 two transitions triggered by offhook exist,
representing the exclusive choices whether it is teen-time or not (the latter is
represented by the transition from TL 0 to TL 0). Further from state TL 1 there
are two transitions triggered by dial, the one from TL 1 to TL 0 is reflecting the entry
of a correct PIN. In the Haskell model the offhook transition from TL 0 to TL 0 and
the dial transition from TL 1 to TL 0 are not implemented.

armed
RB 1

iofmook
(o^alert, -)

(i alert. -) /
(o jn fo rm , ringback)0 stopalert. -)/ (I stopalert.) l

(alert, fa s t alerting)
alert. -) /

(o busy,
remove
caller

number
RB 2

(o timeout -) /
(alert, fast a lerting)

I otfhook. i /

(onhook. -) /
(alert. fast_alerting)(o timeout.) / -

(onhook. -)

A p p en d ix A. Form al D escrip tion o f th e Features 123

(offhook. ■} /

pin
reques

ted
v TL 1

(offhook. -) /
(announce, "ask for pm")

. (onhook, -) /_

(onhook.

check
pin

T L 2

(o b u sy , -) (o busy. -)

(dial, pin) /
(announce, "wrong pin')

Fig. A. 13: Teenline Model

A. 13 T e rm in a tin g Call S creen ing

SUBSCRIBER EVERYONE 1

T C S O

f inform. “id") /
(o^request, callerjd)

(announce, "screened")

awaiting

T C S 1

(o_busy. -)

T C S E1

(ijnform. "screened"! /
(announce, "screened")

EVERYONE 2

(i_requesl. callerjd)
(ojnform, barred)

F ig . A . 14: Terminating Call Screening Model

A p p en d ix A . Form al D escrip tion o f th e Features 124

A. 14 T h re e W ay C alling

busy?
TWO 3TWC 1 TW C 2

TWC 4

TWC 7

Fig. A. 15: Three Way Calling Model

A .15 Voice M ail

The playback part contains three transitions triggered by dial from state VM_PB 0
representing the feature internal choice whether the dialled number is the activation
code for playback and if so whether messages are available or not. The Haskell model
does not contain the transition for “no messages available” , neither the transition
when the dialled number is not the activation code.

SUBSCRIBER - recording EVERYONE

VMO VM_E 0

(i inform. "call minder") I
(announce, "call minder")(o_ timeout.) l

(o jn fo rm . "call_minder")
(onhook. -) /

(i_disconnect. •) ''wait fo r.
end of ’u
msg /

VM_E 1

(i_msg. msg_texl);
(sto re_m sg . •)w aitjo r

msg
VM 1

(i_alert. -)l
(o_busy, -)(i alert. -) l

(ojxisy, •)

SUBSCRIBER - playback

Idial. number) /

VM_PB

(dial, number)/
(s to re_ read . msglexi);
(announce , m sgtext):

(sto re _clear. •)

(onhook. A, A

(dial, number) I
(announce, "sorry, no m sgs")

V M P B

(Laled. ■)/
(o_busy, -)

F ig . A . 16: Voice Mail Model

Appendix B

Haskell Code Listings

B .l Module Dependencies

The Haskell model has been developed using modular code. The dependencies of the
modules is as follows:

The modules Set, Stack and Queue are standard ADT’s. RegExpr provides the regular
expression matching functionality and underlying data type for regular expressions.
As these four modules are not of particular interest, their source has not been included
here.

The module Tree is not a standard ADT, as it includes the pruning and extraction
functions, as well as the on-the-fly insertion.

The modules Message and F eatures provide the definition of the messages and
features that are available in the system. To add new features or messages changes to
these two files are required.

The module Main contains the feature manager implementation and provides a
function system that forms the main function.

NlessageJ-

RfigExprl

•JjFeaturesI

Fig. B . l : Module Dependencies of Haskell Model

A ppendix B . Haskell Code Listings 126

B.2 Tree.hs

 1 A D T : T ree
2
3 m o d u le T ree
4 (T ree , TVee A ug tree , O T F tre e ,
5 isE m p ty T re e , in se rtT ree , m ovem arker, trav erseT ree , traverseA ug tree ,
6 ex trac tT Y ee , p ru n eT ree , ex tra c td u p T re e ,
7 o tf tre e 2 a u g tre e , rem in sm ark er, co m p ac ttree , in se rtO T F T ree , in se rtd e lm ark er
8) w h e r e
9

10 I m p o r t Set
11 i m p o r t Q ueue
12 i m p o r t R egE xpr
13
1 4 an au g m en ted tree : s to res m essages an d th e num bers of fea tu res th a t send th e m
15 t y p e A u g tree a = T ree (a , S et I n t)
16
1 7 tre e for on th e fly : a u g tree p lus n ex t d fa s ta te s
18 t y p e O T F tre e a = T ree (a , Set I n t , S et I n t)
19
2 0 we w an t e q u a lity a n d a w ay to show tre e
21 in s t a n c e E q a = > E q (T ree a) w h e r e (= =) = eqT ree
22 i n s t a n c e S h o w a = > S h o w (Tree a) w h e r e s h o w = show T ree
23
24 d a t a T ree a = E m p ty T re e | InsM arker | D elM arker | M k a [Tree a]
25
26 isE m p ty T re e :: T ree a — > B o o l
27 isE m p ty T re e E m p ty T re e = T r u e
28 isE m p ty T re e In sM arker = F a ls e
29 isE m p ty T re e D elM arker = F a ls e
30 isE m p ty T re e (M k x ys) = F a ls e
31
32 isIn sM arker :: T ree a — > B o o l
33 isIn sM arker In sM arker = T r u e
34 isIn sM arker D elM arker = F a ls e
35 isIn sM arker E m p ty T ree = F a ls e
36 isIn sM arker (M k x ys) = F a ls e
37
38 isD elM arker :: T ree a — > B o o l
39 isD elM arker D elM arker = T r u e
40 isD elM arker In sM arker = F a ls e
41 isD elM arker E m p ty T ree = F a ls e
42 isD elM arker (M k x ys) = F a ls e
43
44 in se rtT ree :: T ree a — > a — > T ree a
45 in se rtT ree E m p ty T re e n = M k n [InsM arker]
46 in se r tT ree D elM arker n = e r r o r ” in se rtT ree :_ try in g _ to _ in se rt-o v e rJD elM ark e r”
47 in se rtT ree In sM arker n = M k n [InsM arker]
48 in se rtT ree (M k n (x :x s)) y | isInsM arker x = M k n ([M k y [InsM arker]] + + xs)
49 | o th e r w i s e = M k n ([in sertT ree x y] + + xs)
50
5 1 m ove th e in se rt m arker
52 m ovem arker :: T ree a — > T ree a
53 m ovem arker E m p ty T re e = E m p ty T ree
54 m ovem arker D elM arker = D elM arker
55 m ovem arker In sM ark er = InsM arker
56 m ovem arker (M k n (x :xs)) | isInsM arker x = M k n (x:xs)
57 | le n g th m m 2x > 1 = M k n (m m 2x + + xs)
58 | o th e r w i s e = M k n ([m ovem arker x] + + xs)
59 w h e r e m m 2x = m m 2 x
60
61 m m 2 :: T ree a — > [Tree a]
62 m m 2 (M k n (x :xs)) | isInsM arker x && l e n g th xs = = 0 = In sM arker : [(M k n [])]
63 | isInsM arker x ScSc l e n g th xs > 0 = InsM arker : [(M k n xs)]
64 | o th e r w i s e = [(M k n xs)]
65
66 in se rtd e lm ark e r :: T ree a — > T ree a
67 in se rtd e lm ark e r t = m ovem arker (in se r td c lm a rk e r l t)
68
69 in se r td e lm a rk e r l :: T ree a —> T ree a
70 in s e r td e lm a rk e r l E m p ty T re e = E m p ty T ree
71 in s e r td e lm a rk e rl D elM arker = D elM arker
72 in s e r td e lm a rk e r l In sM arker = InsM arker
73 in s e r td e lm a rk e r l (M k n (x :x s)) | is In sM arker x = Mk n (x :D elM arker:xs)
74 | o th e r w i s e = M k n ([in se rtd e lm a rk e rl x] + + xs)
75
7 6 rem ove th e in se rtio n m arker, i t ’s in th e le ftm ost tre e
77 rem in sm ark er :: T ree a — > T ree a
78 rem in sm ark er In sM arker — E m p ty T ree
79 rem in sm ark er D elM arker = D elM arker
80 rem in sm ark er E m p ty T re e = E m p ty T ree
81 rem in sm ark er (M k n (x :xs)) | isInsM arker x = M k n (xs)
82 | o th e r w i s e = rem insm arker x
83

A ppendix B . H askell Code Listings 127

84 tra v e rse T ree :: T ree a — > [a]
85 tra v e rse T ree E m p ty T re e - []
86 tra v e rse T ree In sM arker = []
87 tra v e rse T ree D elM arker = []
88 tra v e rse T ree (M k n []) = [n]
89 tra v e rse T ree (M k n xs) = n: (c o n c a t (m a p trav erseT ree xs))
90
91 tra v e rse A u g tree :: A u g tree a —> [(a, S et In t)]
92 tra v e rse A u g tree E m p ty T re e = []
93 tra v e rse A u g tree In sM arker = []
94 tra v e rse A u g tree D elM arker = []
95 tra v e rse A u g tree (M k n []) = [n]
96 tra v e rse A u g tree (M k n xs) = n: (c o n c a t (m a p tra v e rse A u g tree xs))
97
98 o tf tre e 2 a u g tre e :: O r d a = > O T F tre e a — > A u g tree a
99 o tf tre e 2 a u g tre e t = o tf tree2 au g tree2 (o tfc lean u p t)

100
101 o tf tree2 au g tree2 :: O r d a = > O T F tre e a —> A ug tree a
102 o tf tree2 au g tree2 E m p ty T ree = E m p ty T ree
103 o tf tree2 au g tree2 In sM arker = InsM arker
104 o tf tree2 au g tree2 D elM arker = D elM arker
105 o tf tree2 au g tree2 (M k (m ,f,s) []) = Mk (m ,f) []
106 o tf tree2 au g tree2 (M k (m ,f,s) xs) = M k (m ,f) (m a p o tftree2 au g tree2 xs)
107
108 o tfc lean u p :: O rd a = > O T F tre e a —> O T F tre e a
109 o tfc lean u p E m p ty T re e = E m p ty T ree
110 o tfc lean u p In sM arker = In sM arker
111 o tfc lean u p D elM arker = D elM arker
112 o tfc lean u p (M k n xs) | o n lym arkers te m p = D elM arker
113 | o th e r w i s e = (M k n (com pact te m p))
114 w h e r e te m p = m a p o tfc lean u p xs
115
11 6 p ru n e by re , th e n e x tra c t d u p lica tes aga in ... m igh t have in tro d u ced new ones!
117 p ru n eT re e :: O rd a = > DFA a —> A ug tree a —> A ug tree a
118 p ru n eT re e re t = p ru n e trav e rse re t
119
120 e x tra c td u p T re e :: O rd a = > A ug tree a — > A ug tree a
121 e x tra c td u p T re e E m p ty T ree = E m p ty T ree
122 e x tra c td u p T re e In sM arker = E m ptyT ree
123 e x tra c td u p T re e D elM arker = E m ptyT ree
124 e x tra c td u p T re e (M k n xs) = M k n (co m p ac t (lis trem eq new xs))
125 w h e r e new xs = m a p e x tra c td u p T re e xs
126
127 lis trem eq :: E q a = > [a] — > [a]
128 lis trem eq [] = []
129 lis trem eq [x] = [x]
130 lis trem eq (x :x s) | e le m x xs = listrem eq xs
131 | o th e r w i s e = x :(lis trem eq xs)
132
133 e x tra c tT re e :: O rd a = > A ug tree a — > A ug tree a
134 e x tra c tT re e t = expickone (ex m o stsa t t)
135
136 ex p rio b y n u m b er :: O r d a = > A ug tree a —> A ug tree a
137 ex p rio b y n u m b er t = ex m o stsa t2 t l (exbyn t l)
138 w h e r e
139 t l = c o m p ac ttree t
140
141 exp riobyw eigh t :: O rd a = > A u g tree a — > [In t] — > A ug tree a
142 exp riobyw eigh t t w = ex m o stsa t2 t l (exbyw t l w)
143 w h e r e
144 t l = c o m p ac ttree t
145
146 exbyn :: O r d a = > A ug tree a — > [Int]
147 exbyn t = m a p m ax sm alles t (fso n trace em p ty S e t t [])
148
149 exbyw :: O rd a = > A ug tree a - > [In t] - > [In t]
150 exbyw t w = m a p (calcw eigh t w) (fson trace em p ty S e t t [])
151
152 m a x sm alles t :: S e t I n t — > I n t
153 m a x sm alles t s = 100 — (m in i (se t2 L is t s))
154
155 ca lcw eigh t :: [In t] —> S et I n t —> I n t
156 ca lcw eigh t w s = s u m (calcw w (se t2 L is t s))
157
158 calcw :: [In t] —> [In t] —> [In t]
159 calcw w [] - []
160 calcw w (x :xs) = (w !!(x)):(ca lcw w xs)
161
162 m ini :: [In t] — > I n t
163 m ini [] = 0
164 m in i [x] — x
165 m in i (x :x s) | x / = 0 = m in x (m ini xs)
166 | o th e r w i s e = m ini xs ---- in p u t m essages have 0, exclude th e m
167 -----as th e y d o n ’t o rig in a te from a fea tu re
168
169 fso n trace :: O rd a = > S et I n t — > A ug tree a — > [Set In t] — > [Set In t]

A ppendix B . Haskell Code Listings 128

170 fso n trace s E m p ty T re e 1 = 1 + + [s]
171 fso n trace s In sM arker 1 = 1 + + [s]
172 fso n trace s D elM arker 1 = 1 + + [s]
173 fso n trace s (M k (n ,f) []) 1 = 1 + + [(un ionS et s f)]
174 fso n trace s (M k (n ,f) x s) 1 = 1 + + m akelist (un io n S e t s f) xs
175 w h e r e
176 m akelist s [] = [s]
177 m akelist s [x] = fson trace s x []
178 m akelist s (x :x s) = (fso n trace s x []) + + m akelist s xs
179
180
181 -----rem ove del m arkers and em p ty tre e values from tre e (a p p a r t from ro o t, th a t can be em p ty tre e)
182 c o m p a c ttre e :: O r d a = > A ug tree a —> A ug tree a
183 c o m p a c ttre e In sM ark er = In sM arker
184 c o m p a c ttre e D elM arker = E m p ty T ree
185 c o m p a c ttre e E m p ty T re e = E m p ty T ree
186 c o m p a c ttre e (M k n xs) = M k n (com pac t xs)
187
188 e x m o stsa t :: O r d a = > A ug tree a —> A ug tree a
189 ex m o stsa t t = ex m o stsa t2 t l (e x m o s tsa tl em p ty S e t t l [])
190 w h e r e
191 t l = c o m p ac ttree t
192
193 e x m o s ts a tl :: O rd a = > S et I n t —> A ug tree a —> [In t] —> [In t]
194 e x m o s ts a tl s E m p ty T re e 1 = 1 + + [card s]
195 e x m o s ts a tl s In sM arker 1 = 1 + + [card s]
196 e x m o s ts a tl s D elM arker 1 = 1 + + [card s]
197 e x m o s ts a tl s (M k (n , f) []) 1 = 1 + + [card (un io n S e t s f)]
198 e x m o s ts a tl s (M k (n ,f) x s) 1 = 1 + + m akelist (un io n S e t s f) xs
199 w h e r e
200 m akelist s [] = [ca rd s]
201 m akelist s [x] = e x m o s tsa tl s x 0
202 m akelist s (x :x s) = (e x m o stsa tl 3 x []) + + m ak e list s xs
203
204 m axi :: [I n t] — > I n t
205 m axi [] = 0
206 m ax i [x] — x
207 m axi (x:xs) = m a x x (m axi xs)
208
209 s p lit lis t :: [In t] — > [In t] —> [[Int]]
210 s p lit lis t xs [] = [[]]
211 s p lit lis t xs [y] = [ta k e y xs]
212 s p lit lis t xs (y :y s) = (t a k e y x s):(s p lit lis t (d r o p y xs) ys)
213
214 e x m o stsa t2 :: O r d a = > A u g tree a — > [In t] — > A ug tree a
215 e x m o stsa t2 t 1 | [] = = te m p = E m p ty T ree
216 | o th e r w i s e = h e a d te m p
217 w h e r e
218 te m p = exm s (m axi 1) [t] [1]
219
220 exm s :: O r d a = > I n t —> [A ugtree a] —> [[Int]] —> [A ugtree a]
221 exm s lm ax [] - = []
222 exm s lm ax [InsM arker] [y] = [InsM arker]
223 exm s lm ax [D elM arker] [y] = [D elM arker]
224 exm s lm ax [Em ptyT ree] [y] = [Em ptyTree]
225 exm s lm ax [Mk n xs] [y] | (A lte r (ism ax lm ax) y) = = [] = [DelM arker]
226 | o th e r w i s e = [Mk n (co m p ac t (exm s lm ax xs (sp lit lis t y
227 (m a p leavesin t x s))))]
228 exm s lm ax (x :xs) (y:ys) = c o m p a c t((h e a d (exm s lm ax [x] [y])):(exm s lm ax xs y s))
229
230 ism ax :: I n t — > I n t — > B o o l
231 ism ax a b = a = = b
232
233 leavesin t :: O r d a = > A ug tree a —> I n t
234 leavesin t E m p ty T re e = 0
235 leavesin t In sM ark er = 0
236 leavesin t D elM arker = 0
237 leavesin t (M k n []) = 1
238 leavesin t (M k n xs) = s u m (m a p leavesin t xs)
239
240 -----pick le ftm ost b ranch
241 exp ickone :: O r d a = > A u g tree a — > A ug tree a
242 expickone t = exp ick o n e l (co m p ac ttree t)
243
244 ex p ick o n e l :: O r d a = > A u g tree a — > A u g tree a
245 ex p ick o n e l E m p ty T re e = E m p ty T re e
246 e x p ick o n e l In sM ark er = E m p ty T ree
247 ex p ick o n e l D elM arker = E m p ty T ree
248 exp ick o n e l (M k n []) = M k n []
249 ex p ick o n e l (M k n [x]) = M k n [expickonel x]
250 exp ick o n e l (M k n (x :xs)) = M k n [expickonel x]
251
252 p ru n e tra v e rse :: O r d a = > DFA a — > A ug tree a — > A ug tree a
253 p ru n e tra v e rse d fa E m p ty T re e = E m p ty T ree
254 p ru n e tra v e rse d fa In sM arker = In sM arker
255 p ru n e tra v e rse d fa D elM arker = D elM arker

A ppendix B . Haskell Code Listings 129

256 p ru n e tra v e rse d fa (M k n xs) | on lym arkers pi = D elM arker
257 | o th e r w i s e = useD FA 2prune d fa (M k n (com pac t p i))
258 w h e r e pi = m a p (p ru n e tra v e rse d fa) xs
259
260 on ly m ark ers :: O rd a = > [Tree a] — > B o o l
261 on ly m ark ers [] = F a ls e
262 on ly m ark ers [x] | isD elM arker x = T r u e
263 | o th e r w i s e = F a ls e
264 on ly m ark ers (x :x s) | n o t (isD elM arker x) = F a ls e
265 | o th e r w i s e = on lym arkers xs
266
267 co m p ac t :: O rd a = > [Tree a] — > [Tree a]
268 co m p ac t [] = []
269 co m p ac t [x] | isE m ptyT ree x = []
270 | isD elM arker x = []
271 | o th e r w i s e = [x] keep p ro p er nodes and in sertion m arkers
272 co m p ac t (x :x s) | isE m p ty T ree x = com p ac t xs
273 | isD elM arker x = com pact xs
274 | o th e r w i s e = x :(c o m p ac t x s) -keep p ro p er nodes and in se rtio n m arkers
275
276 useD F A 2prune :: O rd a = > DFA a —> A u g tree a — > A ug tree a
277 useD F A 2prune (s, a , t r) in p u t | isM em berSet a s = D e l M a r k e r s ta r t s t a te is accep tin g ,
278 -----m a tches , rem ove tre e & m ark
279 | o th e r w i s e = u seD F A 2prunel a t r s i n p u t need to look fu r th e r ...
280
281 u seD F A 2 p ru n e l :: O rd a = > S et I n t —> T T B L I n t a —> I n t —> A ug tree a —> A u g tree a
282 u seD F A 2 p ru n e l a t r s E m p ty T ree = E m p ty T ree
283 u seD F A 2 p ru n e l a t r s In sM arker = InsM arker
284 u seD F A 2 p ru n e l a t r s D elM arker = D elM arker
285 u seD F A 2 p ru n e l a t r s (M k n xs) | isM em berSe t a g t o found accep ting s ta te rem ove node
286 = D elM arker
287 | g to = = —9 9 no tra n s i tio n , hence d o esn ’t m a tch
288 = (M k n xs)
289 | o n lym arkers pi
290 = D elM arker
291 | o th e r w i s e = M k n (com pact pi)
292 w h e r e g to = go to s t r (f s t n)
293 pi = m a p (u seD F A 2 p ru n e l a t r g to) xs
294
295 in se r tO T F T re e :: O r d a = > O T F tre e a —> (a, S et I n t) —> DFA a —> (B o o l, O T F tre e a)
296 in se r tO T F T re e E m p ty T ree (m , f) (s, a, t r) | isM em berSe t a s || isM em berSet a g t o found m a tch :
297 -----s ta r t s ta te o r g to s m is final
298 = (F a ls e , D elM arker)
299 | o th e r w i s e
300 = (T r u e , M k (m , f, in se rtS e t em p ty S e t g to) [InsM arker])
301 w h e r e g to = g o to s t r m
302 in se r tO T F T re e D elM arker n d fa = e r r o r ” in se r tO T F T ree :- try in g _ to - in se r t-o v e r_ D e lM ark e r”
303 in se r tO T F T re e In sM arker (m , f) (s, a , t r) | isM em berSe t a s || isM em berSet a g t o found m a tch :
304 -----s ta r t s t a te o r g to s m is final
305 = (F a ls e , D elM arker)
306 | o th e r w i s e
307 = (T ru e , M k (m , f, in se rtS e t em p ty S e t g to) [InsM arker])
308 w h e r e g to = g o to s t r m
309 in se r tO T F T ree (M k (m , f, s t) (x :x s)) (n , g) (s , a , t r) | isInsM arker x && (n o t acc)
310--have found in se rtio n p o in t an d no m a tch
311 — (T ru e , M k (m , f, s t)
312 ([M k (n , g, u n ionS e t s t g to) [InsM arker]] + + xs))
313 | isInsM arker x &:& acc
314--- -----have found in se rtio n p o in t a n d m a tch
315 = (F a ls e , M k (m , f, s t) ([In sM a rk e r, D elM arker] + + xs))
316 | o t h e r w i s e h av en ’t found in se rtio n p o in t
317 = (f s t in s , M k (m , f, s t) ([s n d (in s)] + + xs))
318 w h e r e ins = in se r tO T F T ree x (n , g) (s, a, tr)
319 g to = allm oves (s , a , t r) n (se t2 L is t s t)
320 acc = accep tin g g to a
321
322 allm oves :: O r d a = > DFA a —> a —> [In t] —> (S et I n t)
323 allm oves (s , a , t r) m [] = em p ty S e t
324 allm oves (s , a , t r) m (x:xs) = in se rtS e t (in s e r tS e t (allm oves (s , a , t r) m xs) (go to x t r m)) (go to s t r m)
325
326 accep tin g :: (S et I n t) —> (S et I n t) —> B o o l
327 accep tin g x fin = (s e t ln te r fin x / = em p ty S e t)
328
329 eqT ree :: E q a = > T ree a —> T ree a —> B o o l
330 eqT ree (M k x xs) (M k y ys) = x = = y && xs = = ys
331 eqT ree E m p ty T re e E m p ty T ree = T r u e
332 eqT ree In sM arker In sM arker = T r u e
333 eqT ree D elM arker D elM arker = T r u e
334 e q T r e e = F a ls e
335
336 show T ree :: S h o w a = > T ree a — > S t r in g
337 show T ree E m p ty T re e = ’’em p ty ”
338 show T ree In sM ark er = ’’in sm ark er”
339 show T ree D elM arker = ’’d e lm ark e r”
340 show T ree (M k x xs) = s h o w x + + ” [” + + sh xs + + ”]”
341

A ppendix B . Haskell Code Listings 130

342 sh :: S h o w a = > [a] —> S t r in g
343 sh [] =
344 sh (x :[]) = s h o w x
345 sh (x :x s) = s h o w x + + + + sh xs

B.3 Message.hs

1
 2 M odule for M essage, E ven t an d A rgum en t defin itions
3
4
5 m o d u le M essage
6 (M essage, E v e n t(..) , A rg (. .) , Io (■.)) ,
7 p jo a s p , p_even t, p_argum ent, p .d e s t , is_fmsg , is .tc m sg
8 w h e r e
9

1 0 ----
1 1 d a ta ty p e for even ts (en u m era tio n of all po ssib le values)
12 - -

13 d a t a E v en t = O nhook | O ffhook | D ial | F lash
14 | A nnounce | D isp lay | R in g to n e | B u sy to n e | D ia lto n e | T im eo u tto n e
15 | D isco n n ec tto n e | C on n ec t | S to p a le r t | A le rt | C w tone | S to rem sg
16 | S to re read | S to rec lear
17 | O -n o tify | O -in fo rm | O .a le r t | 0_ free | O .b u sy | O -s to p a le rt
18 | O .co n n ec t | O -d isconnect | O -tim eo u t | O -m sg | 0 _ req u es t
19 | I_notify | I J n fo rm | I_alert | I_free | I .b u sy | I^ s to p a le rt
20 | I .co n n ec t | I_d isconnect | I .tim e o u t | I .m sg | I_request
21 | B illing-offhook | B illing-onhook | B illing-fo rw arded | B illing-reverse
22 | B illin g -sp lit | B illin g -s ta r t | B illing_stop
23 | R o llb a c k .tra n sa c tio n | C o m m it- tran sac tio n | S ta r t- tra n s a c t io n | A b o rt- tra n s a c tio n
24 d e r iv in g (E q , O r d , S h o w)
25
26 - -
2 7 d a ta ty p e for a rg u m en ts (en u m era tio n o f all possib le values)
28 - -
29 d a t a A rg = Nil | A skpin | W rongpin | T im e | Screened | S p litfac to r | C allerid | B arred
30 | N om sg | M sg tex t | C allm inder | Id | R ingback | F a s ta le r t | C w hold | O rig in a to r
31 d e r iv in g (E q , O r d , S h o w)
32
33
3 4 d a ta ty p e for io a sp ec t (en u m era tio n of all possib le values)
35
36 d a t a Io = Rev | Snd
37 d e r iv in g (E q , O r d , S h o w)
38
3 9 -----
4 0 d a ta ty p e for m essage (a q u d ru p le , th e p ro jec tio n fu n c t io n s , and som e te s ts)
41
42 t y p e M essage = (Io, E v en t, A rg, I n t)
43
44 p J o a s p :: M essage — > Io
45 p_ ioasp (i ,e ,a ,d) = i
46
47 p_event :: M essage — > E ven t
48 p_even t(i ,c ,a ,d) = e
49
50 p_argum en t :: M essage — > A rg
51 p _ a rg u m en t(i,e ,a ,d) = a
52
53 p .d e s t :: M essage — > I n t
54 p _ d es t(i , e ,a ,d) = d
55
56 is_fmsg :: M essage — > B o o l is a fea tu re m essage
57 is_fm sg(i , e ,a ,d) = n o t(is_ tc m s g (i,e ,a ,d))
58
59 is_tcm sg :: M essage — > B o o l is a tra n sa c tio n con tro l m essage
60 is_ tcm sg (i , e ,a ,d) - (e -- R o llb ac k .tra n sa c tio n) || (e C o m m it- tra n sa c tio n)
61 || (e = = S ta r t - t r a n s a c t io n) || (e = = A b o rt- tra n s a c tio n)

B.4 Features.hs

1 - -

 2 M odule p rov id ing fea tu re defin itions and th e cocoon
3
4
5 m o d u l e F ea tu res
6 (c o c o o n , th e cocoon
7 C S t a t e ------a s ta te o f a cocoon
8) w h e r e

A ppendix B . H askell Code Listings 131

9
10 i m p o r t M essage
11 i m p o r t Q ueue
12 i m p o r t S tack
13
14 - -
1 5 S ta te o f th e cocoon
1 6 -----
17 t y p e C S ta te = (I n t , S tack I n t , B o o l , I n t) cu rre n t s ta te , ro llback s tac k , p layback flag and fea tu re id
18
19 -----
2 0 th e cocoon
21 - -

2 2 th e cocoon ’s p a ra m e te rs a re th e fea tu res cu rre n t s ta te , its c u rren t ro llback s tack
2 3 and also w hich fea tu re it rep resen ts and th e connection n u m b er and th e tr ig g e r m essage and th e p la y b ack s ta tu s
2 4 a m essage queu e is re tu rn e d rep re sen tin g th e fea tu res responses , th e new c u rre n t s ta te and
2 5 th e ro llback s tac k , an d th e p la y b ack s ta tu s
2 6 th e la t te r th re e a re requ ired for re in s ta n tia tio n (d o n e by recursion in L otos)
27 cocoon :: I n t —> S tack I n t —> I n t —> I n t —> M essage —> B o o l —> (Q ueue M essage, C S ta te)
28 cocoon cs rb fid co m f | is .tc m sg m &c&c (p .d e s t (m) co || p .d e s t(m) = = 0) &:& f = = F a l s e n o t a p layback cocoon
29 = tra n sc o n tro l cs rb m fid
30 | p_event(m) = = C o m m it-tran sac tio n && (p_dest(m) = = fid || p_dest(m) = = 0) && f = = T r u e
31-- -----we a re a p layback cocoon b u t p layback has ju s t finished
32 = (em p tyQ ueue , (cs, rb , F a ls e , fid))
33 | is_fmsg m && (p_dest(m) = = co || p_dest(m) —— 0) &c&z f F a l s e n o t a p layback cocoon
34 = (sn d (fe a tb e h a v e cs m fid), (f s t(fe a tb e h a v e cs m f id) , r b , f , f id))
35 | is_fmsg m && (p_dest(m) = = co || p_dest(m) = = 0) && f = = T r u e p layback cocoon
36 = (em p tyQ ueue , (fs t(fe a tb e h a v e cs m fid), rb , f , f id))
37 | o th e r w i s e = (em p tyQ ueue , (cs, rb , f, fid))
38
39 tra n sc o n tro l :: I n t — > S tack I n t — > M essage — > I n t — > (Q ueue M essage, C S ta te)
40 tra n sc o n tro l cs rb m n | p .ev e n t(m) = = A b o rt- tra n s a c tio n = (em p ty Q u eu e , (b o tto m rb , em p ty S tac k , F a ls e , n))
41 | p -ev en t(m) = = C o m m it-tran sac tio n = (em p tyQ ueue , (cs, em p ty S tac k , T r u e , n))
42 | p je v en t(m) = = R o llb ack .tran sac tio n = (em p tyQ ueue, (to p rb , po p rb , F a ls e , n))
43 | p_event(m) = = S ta r t- tra n s a c t io n = (em p tyQ ueue , (cs, p u sh rb cs, F a ls e , n))
44
4 5 th e fe a tu re b ehav iou r
4 6 th e second In t defines th e fea tu re
4 7 th e resonse from th e fea tu res is depen d in g on th e S ta te and th e M essage
48 fea tb eh av e :: I n t —> M essage —> I n t —> (I n t , Q ueue M essage)
49 fea tb eh av e s m f | f = = 1 = tl s m th e teen line fea tu re
50 | f - 2 = cfb s m call fo rw arding busy
51 | f = = 3 = tc s s m te rm in a tin g call screening
52 | f = = 4 = rc s m reverse charg ing
53 | f - 5 = sb s m sp lit b illing
54 | f = = 6 = bcs s m basic call
55 | f = = 7 = end s m calling n um ber d isp lay
56 | f = = 8 = en d b s m ------- calling num ber delivery blocking
57 | f - - - 9 = c t s m call tra n sfe r
58 | f = = 10 - cw s m call w aiting
59 | f - 11 = g r s m g ro u p ring ing
60 | f = = 12 = r b s m ringback
61 | f = = 13 = tw e s m th re e w ay calling
62 | f = = 14 = v m r s m voice m ail — record ing
63 | f = = 15 - v m p b s m voice m ail — playback
64 | o th e r w i s e = e r r o r " fea tu re -u n k n o w n ”
65
6 6 th e te en lin e fea tu re
67 tl :: I n t —> M essage —> (I n t , Q ueue M essage)
68 t l n m | n = = 0 Sc&c p je v en t(m) = = Offhook
69 = (1, enq u eu e em p ty Q u eu e (S nd , A nnounce, A skpin , 0))
70 | n -— 0 &i&c p_event(m) / = Offhook
71 = (0, em p ty Q u eu e)
72 | n = = 1 &c&c p .e v e n t(m) = = O nhook
73 = (0, em p ty Q u eu e)
74 | n - 1 Sc&c p .e v e n t(m) :— D ial
75 = (2, enq u eu e em p ty Q u eu e (S nd , A nnounce, W rongpin , 0))
76 | n = = 1 &c&c p _ e v e n t(m)------I-a le rt
77 = (1, enq u eu e em p ty Q u eu e (S nd , O -busy , N il, 0))
78 | n = = 1 && (p_event(m) / = O nhook || p^event(m) / = D ial || p_event(m) / = I_alert)
79 = (1, em p ty Q u eu e)
80 | n = = 2 &c&c p_event(m) - O nhook
81 = (0, em p ty Q u eu e)
82 | n 2 &c&c p .ev e n t(m) — I .a le r t
83 = (2, enq u eu e em p ty Q u eu e (S nd , O -busy , N il, 0))
84 | n = = 2 && (p .ev en t(m) / = O nhook || p .ev e n t(m) / = I_alert)
85 = (2, em p ty Q u eu e)
86
8 7 call fo rw ard ing busy
88 cfb :: I n t —> M essage —> (I n t , Q ueue M essage)
89 cfb n m | n = = 0 && p .ev e n t(m) = = O -busy
90 = (0, enqueue (enqueue (enqueue em p ty Q u eu e (S nd, O -a le rt, N il, 0))
91 (S nd , B illing -fo rw arded , N il , 0))
92 (S nd , O _notify , N il, 0))
93 | n 0 p_event(m) / = O -busy
94 = (0, em p ty Q u eu e)

A ppendix B . Haskell Code Listings 132

95
9 6 te rm in a tin g call screen ing
97 tc s :: I n t — > M essage — > (I n t , Q ueue M essage)
98 tc s n m | n = = 0 && p_event(m) = = I_alert
99 = (1, enqueue em p ty Q u eu e (S nd , O -req u es t, C allerid , 0))

100 | n = = 0 &£&z p_event(m) / = I-a le rt
101 = (0, em p ty Q u eu e)
102 | n = = 1 &c&£ p_event(m) = = I-inform
103 = (0, enqueue em p ty Q u eu e (S nd , A nnounce, Screened, 0))
104 | n —— 1 &c&c p_event(m) = = I_alert
105 = (1, enqueue em p ty Q u eu e (S nd, O -busy , N il, 0))
106 | n - 1 &c&i (p_even t(m) / = I_alert || p .ev e n t(m) / = IJn fo rm)
107 = (0, em p ty Q u eu e)
108
10 9 reverse cha rg ing
110 rc :: I n t — > M essage — > (I n t , Q ueue M essage)
111 rc n m | n — -- 0 && p -ev en t(m) = = D ial
112 = (0, enq u eu e em p ty Q u eu e (S nd , B illing_reverse, N il, 0))
113 | n - — 0 &:& p_event(m) / = Dial
114 = (0, em p ty Q u eu e)
115
11 6 s p lit b illing
117 sb :: I n t —> M essage —> (I n t , Q ueue M essage)
118 sb n m | n = = 0 &i&c p_event(m) = = Dial
119 = (0, enq u eu e em p ty Q u eu e (S nd , B illing -sp lit, S p litfac to r , 0))
120 | n = = 0 &ilU p_event(m) / = D ial
121 = (0, em p ty Q u eu e)
122
12 3 basic call
124 bcs :: I n t —> M essage — > (I n t , Q ueue M essage)
125 bcs n m | n = = 0 && p .ev e n t(m) - — Offhook
126 = (1, enq u eu e (enqueue em p ty Q u eu e (S nd, B illing-offhook, T im e, 0))
127 (S nd , D ia lto n e , N il, 0))
128 | n — — 0 &t&c p_event(m) = = I-a le rt
129 = (6, enqueue (enqueue em p ty Q u eu e (Snd, O -free, N il, 0))
130 (S nd , A le r t , N il, 0))
131 | n 0 &c&c (p_event(m) / = O ffhook || p .ev e n t(m) / = I-a le r t)
132 = (0, em p tyQ ueue)
133 | n = = 1 && p_event(m) = = D ial
134 = (2, enqueue em p ty Q u eu e (S nd, O -a le rt , N il, 0))
135 | n = = 1 &c&c p_event(m) = = O nhook
136 = (0, enqueue em p ty Q u eu e (S nd, B illing_onhook, T im e, 0))
137 | n = = 1 Sc&c p_event(m) = = I .a le r t
138 = (1, enqueue em p ty Q u eu e (S nd, O -busy , N il, 0))
139 | n -1 && (p_event(m) / = D ial || p je v en t(m) / = O nhook || p_event(m) / = I_alert)
140 = (1, em p ty Q u eu e)
141 | n = = 2 p_event(m) = = O nhook
142 = (0, enqueue (enqueue em p ty Q u eu e (S nd , B illing-onhook , T im e , 0))
143 (S nd , O -s to p a le rt , N il, 0))
144 | n -- 2 &c&c p -ev en t(m) -- I.b u sy
145 = (5, enqueue em p ty Q u eu e (S nd, B usy tone , N il, 0))
146 | n = = 2 &c&t p_event(m) = = I_free
147 = (3, enqueue em p ty Q u eu e (S nd, R ing tone , N il, 0))
148 | n - 2 p_event(m) = = I-a le rt
149 = (2, enqueue em p ty Q u eu e (S nd , O -busy , N il, 0))
150 | n 2 &c&i (p_event(m) / — I .b u sy || p .ev e n t(m) / = O nhook ||
151 p_event(m) / = I_free || p_event(m) / = I_alert)
152 = (2, em p ty Q u eu e)
153 | n 3 &c&c p_event(m) = = O nhook
154 = (0, enqueue (enqueue em p ty Q u eu e (S nd, B illing-onhook , T im e, 0))
155 (S nd , O js to p a le r t , N il, 0))
156 | n = = 3 &£&z p_event(m) = = I .tim e o u t
157 = (5, enqueue em p ty Q u eu e (S nd, T im eo u tto n e , N il, 0))
158 | n = = 3 p_event(m) = = I .co n n ec t
159 = (4, enqueue (enqueue em p ty Q u eu e (S nd, B illing_sta rt, T im e, 0))
160 (S nd , C onnec t, N il, 0))
161 | n = = 3 &c&c p^even t(m) = = I .a le r t
162 = (3, enq u eu e em p ty Q u eu e (S nd, O -busy , N il, 0))
163 | n ------ 3 (p .ev en t(m) / = I .t im e o u t || p .ev e n t(m) / = O nhook ||
164 p^even t(m) / = I .co n n ec t || p_event(m) / = I_alert)
165 = (3, em p ty Q u eu e)
166 | n ------ 4 && p - e v e n t (m) O nhook
167 = (0, enqueue (enqueue (enqueue em p ty Q u eu e (S nd , B illing_stop , T im e , 0))
168 (S nd , B illing-onhook , N il, 0))
169 (S nd , O .d isco n n ec t, N il, 0))
170 | n = = 4 p_event(m) = = I .d isco n n ec t
171 = (4, enqueue em p ty Q u eu e (S nd, D isconnec ttone , N il, 0))
172 | n = = 4 p -ev en t(m) = = I_alert
173 = (4, enqueue em p ty Q u eu e (S nd, O -busy , N il, 0))
174 | n = = 4 && (p_event(m) / = O nhook || p -cven t(m) / = I .d isco n n e c t || p_event(m) / = I_alert)
175 = (4, em p ty Q u eu e)
176 | n = = 5 p -even t(m) - O nhook
177 = (0, enqueue em p ty Q u eu e (S nd, B illingam hook , T im e , 0))
178 | n 5 &c&z p -ev en t(m) = = I .a le r t
179 = (5, enqueue em p ty Q u eu e (S nd , O .b u sy , N il, 0))
180 | n = = 5 &c&i (p_event(m) / = O nhook || p_event(m) / = I .a le r t)

A ppendix B . Haskell Code Listings 133

181 = (5, em p tyQ ueue)
182 | n - - 6 &c&c p -ev en t(m) = = I-s to p a le r t
183 = (0, enqueue em p ty Q u eu e (S nd , S to p a le r t, N il, 0))
184 | n = = 6 &c&i p_event(m) ----- O ffhook
185 = (7, enqueue (enqueue em p ty Q u eu e (S nd, Billing_offhook, T im e , 0))
186 (S nd , O .co n n ec t, N il, 0))
187 | n = = 6 p_event(m) = = I_alcrt
188 = (6, enqueue em p ty Q u eu e (S nd , O .b u sy , N il, 0))
189 | n = = 6 &c&c (p .e v e n t(m) / = I_ sto p a le rt | | p_event(m) / = O ffhook || p_event(m) / = I_alert)
190 = (6, em p ty Q u eu e)
191 | n = = 7 &c&£ p_event(m) = = O nhook
192 = (0, enqueue (enqueue (enqueue em p ty Q u eu e (S nd , B illing_stop, T im e , 0))
193 (S nd , B illing -onhook , T im e , 0))
194 (S n d , O .d isco n n ec t, N il , 0))
195 | n = = 7 &t&c p^even t(m) = = I .d isco n n e c t
196 = (8, enqueue em p ty Q u eu e (S nd , D isco n n ec tto n e , N il, 0))
197 | n = = 7 &c&c p_event(m) = = I_alert
198 = (7, enqueue em p ty Q u eu e (S nd , O .b u sy , N il, 0))
199 | n = = 7 &;& (p_event(m) / = O nhook || p_event(m) / = I .d isco n n e c t || p_event(m) / = I_alert)
200 = (7, em p tyQ ueue)
201 | n = = 8 &c&c p_jevent(m) = = O nhook
202 = (0, enqueue em p ty Q u eu e (S nd , B illing-onhook , T im e , 0))
203 | n = = 8 &c&c p^even t(m) = = I .a le r t
204 = (8, enqueue em p ty Q u eu e (S nd , O .b u sy , N il, 0))
205 | n = = 8 (p_event(m) / = O nhook || p .ev e n t(m) / = I .a le r t)
206 = (8, em p ty Q u eu e)
207
208 -----ca lling n um ber d isp lay
209 end :: In t — > M essage — > (In t, Q ueue M essage)
210 end n m | n = = 0 && p .ev e n t(m) = = I .a le r t
211 = (1, enqueue em p ty Q u eu e (S nd, 0 _ req u es t, C allerid , 0))
212 | n = = 0 p_event(m) / = I_alert
213 = (0, em p ty Q u eu e)
214 | n 1 &i&c p_event(m) - I_alert
215 = (1, enqueue em p ty Q u eu e (S nd , O -busy , N il, 0))
216 | n = = 1 && p -ev en t(m) = = I.in fo rm
217 = (0, enqueue em p ty Q u eu e (S nd, D isplay , C allerid , 0))
218 | n = = 1 && (p .ev en t(m) / = I_alert || p_event(m) / = IJn fo rm)
219 = (1, em p ty Q u eu e)
220
22 1 ca lling num ber delivery blocking
222 endb :: In t —> M essage —> (In t , Q ueue M essage)
223 en d b n m | n — 0 &c&c p .ev e n t(m) = = I_request
224 = (0, enqueue em p ty Q u eu e (S nd , O Jn fo rm , B a rred , 0))
225 | n = = 0 p -even t(m) / = I .re q u e s t
226 = (0, em p ty Q u eu e)
227
228 -----call tra n sfe r
229 c t :: In t — > M essage — > (In t , Q ueue M essage)
230 c t n m | n = = 0 && p_event(m) = = I.co n n ec t
231 = (1, em p tyQ ueue)
232 | n-:-----0 &c&i p .ev e n t(m) = = O .co n n ec t
233 = (7, em p ty Q u eu e)
234 | n = = 0 &&: (p .ev en t(m) / = I .co n n ec t || p_event(m) / = O .co n n ec t)
235 = (0, em p ty Q u eu e)
236 | n = = 1 p_event(m) = = I .d isco n n e c t
237 = (0, em p tyQ ueue)
238 | n = = 1 &c&c p .ev e n t(m) = = O nhook
239 = (0, em p tyQ ueue)
240 | n - 1 && p_event(m) = = I .a le r t
241 = (1, enq u eu e em p ty Q u eu e (S nd , O -busy , N il, 0))
242 | n = = 1 && p_event(m) - F lash
243 = (2, enq u eu e em p ty Q u eu e (S nd , D ia ltone , N il, 0))
244 | n = = 1 && (p .ev en t(m) / = I .d isco n n e c t || p_event(m) / = O nhook ||
245 p -ev en t(m) / = I_alert || p .ev e n t(m) / = F lash)
246 = (1, em p ty Q u eu e)
247 | n = = 2 &:& p_event(m) — I .d isco n n e c t
248 = (2, em p ty Q u eu e)
249 | n = = 2 &i&i p .ev e n t(m) = = F lash
250 = (1, em p ty Q u eu e)
251 | n = = 2 &i&c p -even t(m) = = I-a le rt
252 = (2, enq u eu e em p ty Q u eu e (S nd , O .b u sy , N il, 0))
253 | n — - 2 && p .ev e n t(m) = = D ial
254 = (3, enq u eu e em p ty Q u eu e (S nd , 0 _ a le r t, N il, 0))
255 | n = = 2 && (p .ev en t(m) / = I .d isco n n e c t || p .ev e n t(m) / = D ial ||
256 p_even t(m) / = I_alert | | p .e v e n t(m) / = F lash)
257 = (2, em p ty Q u eu e)
258 | n = = 3 p_event(m) = = I.d isco n n e c t
259 = (3, em p ty Q u eu e)
260 | n ----- 3 && p_event(m)------- I_alert
261 = (3, enqueue em p ty Q u eu e (S nd , O .b u sy , N il, 0))
262 | n = = 3 && p .ev e n t(m) = = F lash
263 = (1, enq u eu e em p ty Q u eu e (S nd , O -S topale rt, N il, 0))
264 | n = = 3 && p_event(m) = = I .free
265 = (5, enq u eu e em p ty Q u eu e (S nd , R ing tone , N il, 0))
266 | n - 3 &£&i p .ev e n t(m) = = I.b u sy

A ppendix B . Haskell Code Listings 134

267 = (4, enq u eu e em p ty Q u eu e (S nd , B usy tone , N il, 0))
268 | n = = 3 && (p_event(m) / = I .d isco n n e c t || p_event(m) / = I .b u sy ||
269 p -ev en t(m) / = I_alert. || p_event(m) / = F lash || p .ev e n t(m) / = I_free)
270 = (3, em p ty Q u eu e)
271 | n = = 4 &c&c p_event(m) = = I .d isco n n e c t
272 = (0, em p ty Q u eu e)
273 | n = = 4 && p_event(m) = = F lash
274 = (1, em p ty Q u eu e)
275 | n = = 4 && p_event(m) = = I-a le rt
276 = (4, enq u eu e em p ty Q u eu e (S nd, O .b u sy , N il, 0))
277 | n 4 && p .ev e n t(m) = = O nhook
278 = (0, em p ty Q u eu e)
279 | n = = 4 &c&c (p .ev en t(m) / = I .d isco n n e c t || p_event(m) / = O nhook ||
280 p_event(m) / = I_alert | | p .ev e n t(m) / = F lash)
281 = (4, em p ty Q u eu e)
282 | n 5 &;& p_event(m) - — I_disconnect
283 = (5, em p ty Q u eu e)
284 | n - - 5 SiSc p .ev e n t(m) = = I .a le r t
285 = (5, enq u eu e em p ty Q u eu e (S nd , O .b u sy , N il, 0))
286 | n = = 5 &i&c p .ev e n t(m) - F lash
287 = (1, enq u eu e em p ty Q u eu e (S nd , 0 _ s to p a le r t, N il, 0))
288 | n = = 5 &i&z p_event(m) = = O nhook
289 = (0, enq u eu e em p ty Q u eu e (S nd , O -S topale rt, N il, 0))
290 | n = = 5 && p .ev e n t(m) = = I.co n n ec t
291 = (6, en q u eu e(enq u eu e em p ty Q u eu e (S nd , B illing_sta rt, T im e, 0))
292 (S nd , C o n n ec t, N il, 0))
293 | n = = 5 i c i c p_event(m) = = I .tim e o u t
294 = (4, enq u eu e em p ty Q u eu e (S nd , T im eo u tto n e , N il, 0))
295 | n —— 5 &c&c (p_event(m) / = I .d isco n n e c t || p_event(m) / = I_alert || p_event(m) / = F lash ||
296 p_event(m) / = O nhook || p .ev e n t(m) / = I.co n n ec t || p_event(m) / = I .tim e o u t)
297 = (5, em p ty Q u eu e)
298 | n = = 6 && p _ e v e n t(m) I .d isco n n e c t
299 = (6, em p ty Q u eu e)
300 | n 6 &c&c p_event(m) = = O nhook
301 = (0, enq u eu e(en q u eu e (en q u eu e em p ty Q u eu e (S nd, O Jn fo rm , O rig in a to r, 0))
302 (S nd , O .n o tify , N i l , 0))
303 (S nd , O -n o tify , N i l , 0))
304 | n = = 6 && p_event(m) = = I .a le r t
305 = (6, enq u eu e em p ty Q u eu e (S nd , O .b u sy , N il, 0))
306 | n ----- 6 (p_event(m) / = I_disconnect || p_event(m) / = O nhook ||
307 p .ev e n t(m) / = I_alert)
308 = (6, em p ty Q u eu e)
309 | n = = 7 &c&i p_event(m) = = I.d isco n n e c t
310 = (0, em p ty Q u eu e)
311 | n = = 7 && p .ev e n t(m) = = O nhook
312 = (0, em p ty Q u eu e)
313 | n = = 7 && p .ev e n t(m) = = I .a le r t
314 = (7, enq u eu e em p ty Q u eu e (S nd , O -busy , N il, 0))
315 | n = = 7 &£&c p .ev e n t(m) = = F lash
316 = (8, enq u eu e em p ty Q u eu e (S nd , D ia lto n e , N il, 0))
317 | n = = 7 && (p_event(m) / = I.d isco n n e c t || p .ev e n t(m) / = O nhook ||
318 p_event(m) / = I_alert || p_event(m) / = F lash)
319 = (7, em p ty Q u eu e)
320 | n = = 8 Sc&c p .ev e n t(m) = = I .d isco n n e c t
321 = (2, em p ty Q u eu e)
322 | n = = 8 && p_event(m) = = F lash
323 = (1, em p ty Q u eu e)
324 | n = = 8 && p .ev e n t(m) = = I-a le r t
325 = (2, enq u eu e em p ty Q u eu e (S nd , O -busy , N il, 0))
326 | n = = 8 &£&c p .ev e n t(m) = = Dial
327 = (3, enq u eu e em p ty Q u eu e (S nd , O -a le rt , N il, 0))
328 | n = = 8 &c&£ (p_event(m) / = I .d isco n n e c t || p_event(m) / = D ial ||
329 p^even t(m) / = I_alert || p_event(m) / = F lash)
330 = (2, em p ty Q u eu e)
331 | n 9 && p .ev e n t(m) = = I .d isco n n e c t
332 = (9, em p ty Q u eu e)
333 | n = = 9 && p_event(m) = = I_alert
334 = (9, enq u eu e em p ty Q u eu e (S nd , O .b u sy , N il, 0))
335 | n = = 9 ScSi p_event(m) = = F lash
336 = (7, enq u eu e em p ty Q u eu e (S nd , O _stopale rt, N il, 0))
337 | n = = 9 && p_event(m) - -- I .free
338 = (11, enq u eu e em p ty Q u eu e (Snd, R ing tone , N il, 0))
339 | n - 9 && p_event(m) = = I.b u sy
340 = (10, enqueue em p ty Q u eu e (S nd, B usy to n e , N il, 0))
341 | n = = 9 &c&c (p .ev en t(m) / = I.d isco n n e c t || p_event(m) / = I .b u sy ||
342 p_event(m) / = I_alert || p_event(m) / = F lash || p .ev e n t(m) / = IT ree)
343 = (9, em p ty Q u eu e)
344 | n = = 10 Si&c p^even t(m) = = I .d isco n n ec t
345 = (0, em p ty Q u eu e)
346 | n = = 10 Sc&c p_event(m) = = F lash
347 = (7, em p ty Q u eu e)
348 | n = = 10 && p_event(m) - - - I .a le r t
349 = (10, enq u eu e em p ty Q u eu e (S nd, O -busy , N il, 0))
350 | n ----- 10 Hc&c p ^ e v e n t(m) O nhook
351 = (0, em p ty Q u eu e)
352 | n = = 10 && (p .ev en t(m) / = I.d isco n n e c t || p_event(m) / = O nhook ||

A ppendix B . H askell Code Listings 135

353 p_event(m) / = I_alert || p .ev e n t(m) / = F lash)
354 = (10, em p ty Q u eu e)
355 | n = = 11 && p= event(m) = = I .d isco n n ec t
356 = (11, em p ty Q u eu e)
357 | n ---- 11 && p je v en t(m) = = I_alert
358 = (11, enqueue em p ty Q u eu e (S nd, O .b u sy , N il, 0))
359 | n = = 11 p_event(m) = = F lash
360 = (7, enq u eu e em p ty Q u eu e (S nd, O -s to p a le rt , N il, 0))
361 | n - 11 p_event(m) = = O nhook
362 = (0, enq u eu e em p ty Q u eu e (S nd , O -S topale rt, N il, 0))
363 | n = = 11 && p_event(m) = = I.co n n ec t
364 = (12, enq u eu e(enqueue em p ty Q u eu e (S nd , B illin g -s ta r t, T im e , 0))
365 (S nd , C onnec t, N il, 0))
366 | n ===== 11 && p^even t(m) = = I .tim e o u t
367 = (10, enqueue em p ty Q u eu e (S nd, T im e o u tto n e , N il, 0))
368 | n = = 11 Sc&i (p^even t(m) / = I_disconnect || p .ev e n t(m) / = I -a le r t || p_event(m) / = F la sh ||
369 p_event(m) / = O nhook || p_event(m) / = I.co n n ec t || p_event(m) / = I .tim e o u t)
370 = (11, em p ty Q u eu e)
371 | n = = 12 Sc&c p_event(m) = = I .d isco n n ec t
372 = (12, em p ty Q u eu e)
373 | n = = 12 p .ev e n t(m) = = O nhook
374 = (0, en q u eu e(en q u eu e em p ty Q u eu e (S nd, 0_n o tify , N il, 0))
375 (S nd , O -n o tify , N i l , 0))
376 | n - 12 &i&£ p je v en t(m) -- I_alert
377 = (12, enqueue em p ty Q u eu e (S nd , O -busy , N il, 0))
378 | n = = 12 &&£ (p=event(m) / = I_disconnect || p_event(m) / = O nhook ||
379 p^even t(m) / = I .a le r t)
380 = (12, em p ty Q u eu e)
381
382 - - call w aitin g
383 cw :: I n t —> M essage —> (I n t , Q ueue M essage)
384 cw n m | n = = 0 &z&i p .ev e n t(m) = = I .co n n ec t
385 = (1, em p ty Q u eu e)
386 | n = = 0 p_event(m) - O .co n n ec t
387 = (1, em p ty Q u eu e)
388 | n - 0 &c&i (p_event(m) / = I_connect || p -even t(m) / = O .co n n ec t)
389 = (0, em p ty Q u eu e)
390 | n = = 1 &c.&i p_event(m) = = I .d isco n n e c t
391 = (0, em p ty Q u eu e)
392 | n = = 1 && p _ e v e n t(m)-----O nhook
393 = (0, em p ty Q u eu e)
394 | n = = 1 && p .ev e n t(m) = = I_alert
395 = (2, enq u eu e em p ty Q u eu e (S nd , O Jn fo rm , C w hold ,0))
396 | n = = 1 && (p_event(m) / = I.d isco n n e c t || p .ev e n t(m) / = O nhook || p_event(m) / = I_alert)
397 = (1, em p ty Q u eu e)
398 | n = = 2 Sc&i p_event(m) = = I .d isco n n e c t
399 = (0, em p ty Q u eu e)
400 | n = = 2 ScSc p_event(m) ===== O nhook
401 = (0, enq u eu e em p ty Q u eu e (S nd , O .d isco n n ec t, N il, 0))
402 | n = = 2 Sc&c p .ev c n t(m) = = I .a le r t
403 = (2, enq u eu e em p ty Q u eu e (S nd , O -busy , N il, 0))
404 | n ===== 2 S cic p .ev e n t(m) = = F lash
405 = (3, enq u eu e (enqueue (enqueue (enqueue em p ty Q u eu e (S nd, B illin g .s to p , T im e , 0))
406 (S nd , O Jn fo rm , C w hold ,0))
407 (S nd , B illing_sta rt , T im e, 0))
408 (S nd , O .co n n ec t, N il, 0))
409 | n = = 2 &z&c (p .ev en t(m) / = I .d isco n n e c t || p .ev e n t(m) / = O nhook ||
410 p_event(m) / = I_alert | | p .ev e n t(m) / = F lash)
411 = (2, em p ty Q u eu e)
412 | n - 3 &£&c p_event(m) = = I .d isco n n e c t
413 = (0, em p ty Q u eu e)
414 | n = = 3 &c&£ p -ev en t(m) = = O nhook
415 = (0, enq u eu e em p ty Q u eu e (S nd , O .d isco n n ec t, N il, 0))
416 | n ===== 3 &c&c p .ev e n t(m) = = I .a le r t
417 = (3, enq u eu e em p ty Q u eu e (S nd , O .b u sy , N il, 0))
418 | n = = 3 &.&£ p .ev e n t(m) = = F lash
419 = (2, enq u eu e (enqueue (enqueue (enqueue em p ty Q u eu e (S nd, B illing_stop , T im e, 0))
420 (S nd , O Jn fo rm , C w hold ,0))
421 (S nd , B illin g -s ta r t , T im e, 0))
422 (S nd , O _connect, N il, 0))
423 | n = = 3 &i&c (p_event(m) / = I.d isco n n e c t || p_event(m) / = O nhook ||
424 p -ev en t(m) / = I -a le r t || p .ev e n t(m) / = F lash)
425 = (3, em p ty Q u eu e)
426
427 ---- g ro u p ring ing
428 gr :: I n t —> M essage —> (I n t , Q ueue M essage)
429 gr n m | n = = 0 &c&c p .ev e n t(m) = = I_alert
430 = (1, enq u eu e (enqueue em p ty Q u eu e (S nd, O -a le rt , N il, 0))
431 (S n d , O -a le r t , N il, 0))
432 | n = = 0 &i&t p_event(m) / = I_alert
433 = (0, em p ty Q u eu e)
434 | n ---- 1 &£&c p .ev e n t(m) — I_alert
435 = (1, enq u eu e em p ty Q u eu e (S nd , O -busy , N il, 0))
436 | n = = 1 &c&c p _ e v e n t(m)-----I .s to p a le r t
437 = (0, enqueue (enqueue em p ty Q u eu e (S nd , O -s to p a le rt , N il, 0))
438 (S nd , O _sto p a le rt, N il, 0))

A ppendix B . Haskell Code Listings 136

439 | n = = 1 p_event(m) = = I.b u sy
440 = (2, em p ty Q u eu e)
441 | n — 1 && p_event(m) - I.free
442 = (3, em p ty Q u eu e)
443 | n = = 1 && (p .ev en t(m) / = I .b u sy || p_event(m) / — iJFree ||
444 p_event(m) / = I -s to p a le r t | | p_event(m) / = I_alert)
445 = (1, em p ty Q u eu e)
446 | n = = 2 &c&c p .e v e n t (m) -I_alert
447 = (2, enq u eu e em p ty Q u eu e (S nd, O .b u sy , N il, 0))
448 | n = = 2 p .ev e n t(m) = = I_ stopalert
449 = (0, enq u eu e em p ty Q u eu e (S nd, O _stopale rt, N il, 0))
450 | n 2 &c&c p_event(m) — I.b u sy
451 = (0, em p ty Q u eu e)
452 | n = = 2 && p_event(m) = = I-free
453 = (3, em p ty Q u eu e)
454 | n = = 2 && (p_event(m) / = I .b u sy || p_event(m) / = I_free ||
455 p je v en t(m) / = I -s to p a le r t || p -ev en t(m) / = I .a le r t)
456 = (2, em p ty Q u eu e)
457 | n = = 3 ic& i p .e v e n t (m) -I_alert
458 = (3, enq u eu e em p ty Q u eu e (S nd , O -busy , N il, 0))
459 | n = = 3 &i&c p _ e v e n t(m) -I_ stopalert
460 = (0, enq u eu e em p ty Q u eu e (S nd , O -s to p a le rt , N il, 0))
461 | n = = 3 && p .e v e n t(m) = = I .free
462 = (3, em p ty Q u eu e)
463 | n = = 3 && p _ e v e n t(m) -I.co n n ec t
464 = (0, enq u eu e (enqueue (enqueue (enqueue (enqueue (enqueue (enqueue
465 em p ty Q u eu e (S nd, O -s to p a le rt , N il, 0))
466 (S nd , S to p a le r t , N il , 0))
467 (S nd , B illing-fo rw arded , N il , 0))
468 (S nd , O -free , N il, 0))
469 (S nd , 0 _ n o tify , N i l , 0))
470 (S nd , 0 _ n o tify , N i l , 0))
471 (S nd , O -connec t, N il, 0))
472 | n = = 3 &&: (p .ev en t(m) / = I .co n n ec t || p_event(m) / = I-free ||
473 p_event(m) / = I-s to p a le r t || p je v en t(m) / = I -a le rt)
474 = (3, em p ty Q u eu e)
475
476 ringback
477 rb :: I n t — > M essage —> (I n t , Q ueue M essage)
478 rb n m | n = = 0 && p_event(m) = = Offhook
479 = (1, em p ty Q u eu e)
480 | n = = 0 &C&. p_event(m) = = I_alert
481 = (0, em p ty Q u eu e)
482 | n = = 0 (p .ev en t(m) / = O ffhook || p_event(m) / = I_alert)
483 = (0, em p ty Q u eu e)
484 | n = = 1 && p_event(m) = = I-a le rt
485 = (1, enq u eu e em p ty Q u eu e (S nd , O Jn fo rm , R ingback , 0))
486 | n = = 1 && p_event(m) - I_stopalert
487 = (2, enq u eu e em p ty Q u eu e (S nd , A lert, F a s ta le r t, 0))
488 | n = = 1 && p_event(m) = = O nhook
489 = (2, enq u eu e em p ty Q u eu e (S nd , A le rt, F a s ta le r t, 0))
490 | n = = 1 &c&c p .ev e n t(m) = = O .tim e o u t
491 = (2, en q u e u e em p ty Q u eu e (S nd , A le rt, F a s ta le r t, 0))
492 | n = = 1 && (p .ev en t(m) / = I_alert || p_event(m) / = I_ s topalert ||
493 p_event(m) / = O nhook || p .ev e n t(m) / = O .tim e o u t)
494 = (1, em p ty Q u eu e)
495 | n = = 2 && p .ev e n t(m) = = O ffhook
496 = (0, enq u eu e em p ty Q u eu e (S nd , O -a le rt , N il, 0))
497 | n = = 2 &c&i p_event(m) = = I-a le rt
498 = (2, en q u e u e em p ty Q u eu e (S nd , O -busy , N il, 0))
499 | n = = 2 && (p_event(m) / = I .a le r t || p_event(m) / = O ffhook)
500 = (2, em p ty Q u eu e)
501
502 th re e way ca lling
503 tw c :: I n t —> M essage —> (I n t , Q ueue M essage)
504 tw c n m | n = = 0 && p .ev e n t(m) = = I.co n n ec t
505 = (1, em p ty Q u eu e)
506 | n = = 0 && p-jevent(m) = = O -connect
507 = (1, em p ty Q u eu e)
508 | n 0 SiSc (p_event(m) / = 1-connect || p_event(m) / = 0_co n n ec t)
509 = (0, em p ty Q u eu e)
510 | n — 1 && p_event(m) = = I .d isco n n e c t
511 = (0, em p ty Q u eu e)
512 | n = = 1 p-jevent(m)------- O nhook
513 = (0, em p ty Q u eu e)
514 | n = = 1 &c&c p_event(m) = = I .a le r t
515 = (1, enqueue em p ty Q u eu e (S nd, O .b u sy , N il, 0))
516 | n = = 1 &c&c p_event(m) -- - F lash
517 = (2, enq u eu e em p ty Q u eu e (S nd, D ia lto n e , N il, 0))
518 | n = = 1 &c&c (p_event(m) / = I_disconnect || p_event(m) / = O nhook ||
519 p^even t(m) / = I_alert || p_event(m) / = F lash)
520 = (1, em p ty Q u eu e)
521 | n = = 2 && p_event(m) = = I .d isco n n e c t
522 = (2, em p ty Q u eu e)
523 | n = = 2 &c&£ p^even t(m) = = F lash
524 = (1, em p ty Q u eu e)

A ppendix B . Haskell Code Listings 137

525 | n = = 2 ScSc p_event(m) = = I_alert
526 = (2, enqueue em p ty Q u eu e (S nd, O -busy , N il, 0))
527 | n 2 ScSc p-ev en t(m) = = Dial
528 = (3, enqueue em p ty Q u eu e (S nd, O -a le rt , N il, 0))
529 | n — 2 ScSc (p_event(m) / = I_disconnect || p_event(m) / = D ial ||
530 p^even t(m) / = I_alert || p .ev e n t(m) / = F lash)
531 = (2, em p tyQ ueue)
532 | n - 3 ScSc p_ e v e n t(m) I .d isco n n ec t
533 = (3, em p tyQ ueue)
534 | n = = 3 ScSc p_event(m) = = F lash
535 = (1, enqueue em p ty Q u eu e (S nd, O -s to p a le rt , N il, 0))
536 | n — 3 ScSc p_event(m) = = I_alert
537 = (3, enqueue em p ty Q u eu e (S nd, O -busy , N il, 0))
538 | n = = 3 ScSc p_event(m) = = I-free
539 = (5, enqueue em p ty Q u eu e (S nd, R ing tone , N il, 0))
540 | n = = 3 ScSc p -ev en t(m) = = I-busy
541 = (4, enqueue em p ty Q u eu e (S nd, B usy to n e , N il, 0))
542 | n = = 3 ScSc (p_even t(m) / = I-d isconnec t || p_event(m) / = I_busy ||
543 p .ev e n t(m) / = I_alert || p_event(m) / = F lash ||
544 p_event(m) / = I_free)
545 = (3, em p ty Q u eu e)
546 | n - - 4 ScSc p- e v e n t (m) I_disconnect
547 = (4, em p ty Q u eu e)
548 | n = = 4 ScSc p je v en t(m) - --- F lash
549 = (1, em p ty Q u eu e)
550 | n = = 4 ScSc p je v en t(m) -- O nhook
551 = (0, em p tyQ ueue)
552 | n -- 4 ScSc p̂ e v e n t(m) I_alert
553 = (4, enqueue em p ty Q u eu e (S nd , O -busy , N il, 0))
554 | n = = 4 ScSc (p .ev en t(m) / = I_disconnect || p_event(m) / = O nhook ||
555 p_event(m) / = I_alert || p_event(m) / = F lash)
556 = (4, em p ty Q u eu e)
557 | n = = 5 ScSc p -even t(m) — I_disconnect
558 = (5, em p tyQ ueue)
559 | n — - - 5 ScSc p_event(m) = = F lash
560 = (1, enqueue em p ty Q u eu e (S nd , O -S topa le rt, N il, 0))
561 | n = = 5 ScSc p_event(m) - — O nhook
562 = (0, enqueue em p ty Q u eu e (S nd , O -s to p a le rt , N il, 0))
563 | n = = 5 ScSc p_event(m) = = I-a le r t
564 = (5, enqueue em p ty Q u eu e (S nd, O -busy , N il, 0))
565 | n = = 5 ScSc p_event(m) = = I.co n n ec t
566 = (6, enqueue (enqueue em p ty Q u eu e (S nd, B illin g -s ta r t, T im e, 0))
567 (S nd , C onnec t, N il, 0))
568 | n = = 5 Si.Sc p -ev en t(m) = = I_ tim eou t
569 = (4, enqueue em p ty Q u eu e (S nd, T im eo u tto n e , N il, 0))
570 | n = = 5 ScSc (p_even t(m) / = I_disconnect || p_event(m) / = O nhook ||
571 p_event(m) / = I .a le r t || p_event(m) / = F lash ||
572 p_event(m) / = I -tim eo u t || p_event(m) / = I .co n n ec t)
573 = (5, em p ty Q u eu e)
574 | n = = 6 ScSc p -ev en t(m) = = I-d isconnec t
575 = (0, em p tyQ ueue)
576 | n - 6 ScSc p_event(m) = = F lash
577 = (7, em p ty Q u eu e)
578 | n = = 6 ScSc p_event(m) = = O nhook
579 = (0, enqueue em p ty Q u eu e (S nd, O .d isco n n ec t, N il, 0))
580 | n -- 6 ScSc p_event(m) = = I_alert
581 = (6, enqueue em p ty Q u eu e (S nd, O -busy , N il, 0))
582 | n = = 6 ScSc (p_event(m) / = I-d isconnec t || p_event(m) / = O nhook ||
583 p_event(m) / = I .a le r t || p_event(m) / — F lash)
584 = (6, em p ty Q u eu e)
585 | n ------7 ScSc p .e v e n t(m) ------ I-d isconnec t
586 = (0, em p ty Q u eu e)
587 | n — 7 ScSc p_event(m) — O nhook
588 = (0, enqueue em p ty Q u eu e (S nd, O .d isco n n ec t, N il, 0))
589 | n = = 7 ScSc p_event(m) = = I_alert
590 = (7, enqueue em p ty Q u eu e (S nd, O .b u sy , N il, 0))
591 | n = = 7 ScSc (p_event(m) / = I-d isconnec t || p_event(m) / = O nhook ||
592 p_event(m) / = I .a le r t)
593 = (7, em p tyQ ueue)
594
595 voice m ail — record ing
596 vm r :: In t —> M essage —> (In t , Q ueue M essage)
597 vm r n m | n = = 0 ScSc p_event(m) - O .tim e o u t
598 = (1, enq u eu e em p ty Q u eu e (S nd, O Jn fo rm , C a llm inder, 0))
599 | n = = 0 ScSc p_event(m) / = O .tim e o u t
600 = (0, em p ty Q u eu e)
601 | n - 1 ScSc p_event(m) = = I_alert
602 = (1, enqueue em p ty Q u eu e (S nd, O -busy , N il, 0))
603 | n = = 1 ScSc p-ev en t(m) = = I.d isco n n ec t
604 = (0, em p tyQ ueue)
605 | n = = 1 ScSc p .ev e n t(m) = = I_msg
606 = (0, enqueue em p ty Q u eu e (S nd, S to rem sg , N il, 0))
607 | n = = 1 ScSc (p_event(m) / = I_alert || p .ev e n t(m) / = I-d isconnec t || p_event(m) / = I_msg)
608 = (1, em p ty Q u eu e)
609
61 0 voice m ail — playback

A ppendix B . H askell Code Listings 138

611 v m p b :: In t —> M essage —> (In t, Q ueue M essage)
612 v m p b n m | n = = 0 && p_event(m) = = D ial
613 = (1, enqueue (enqueue (enqueue em p ty Q u eu e (S nd , S to re read , M sg tex t, 0))
614 (S nd , A nnounce, M sg tex t, 0))
615 (S nd , S to rec lear , N i l ,0))
616 | n = = 0 &i&£ p_event(m) / = D ial
617 = (0, em p ty Q u eu e)
618 | n = = 1 p_event(m) = = I_alert
619 = (1, enq u eu e em p ty Q u eu e (S nd , O .b u sy , N il, 0))
620 | n = = 1 &c&z p .ev e n t(m) = = O nhook
621 = (0, em p ty Q u eu e)
622 | n = = 1 &i&c (p^even t(m) / = I_alert || p^event(m) / = O nhook)
623 = (1, em p ty Q u eu e)

B.5 Main.hs

1 i m p o r t S tack
2 i m p o r t Q ueue
3 i m p o r t S et
4 i m p o r t M essage
5 i m p o r t T ree
6 i m p o r t F ea tu res
7 i m p o r t R egE xpr
8
9 ty p e for th e S ta te an d th e s tac k to save th e m

10 t y p e S ta te = ([Q ueue M essage], I n t)
11 t y p e S ta te S ta c k = S tack S ta te
12
1 3 th e tr ig g e r g en e ra to r
1 4 th e p a ra m e te r d e te rm in es w hich m essage is re tu rn ed
15 triggergen :: I n t — > M essage
16 triggergen n | n = = 1 = (R ev , D ial, N il, 0)
17 | n = = 2 = (R ev, O nhook , N il, 0)
18 | n = = 3 - (R ev , O ffhook, N il, 0)
19 | n —7 4 = (R ev, F la sh , N il, 0)
20 | n-------5 - (R ev , I_notify , N il, 0)
21 I n = = 6 — (R ev , I J n fo rm , N il, 0)
22 | n = = 7 = (R ev , I .a le r t , N i l , 0)
23 | n = = 8 = (R ev , I_free, N i l , 0)
24 | n = = 9 = (R ev, I .b u sy , N il, 0)
25 | n - 10 = (R ev, I - tim eo u t, N il, 0)
26 | n 11 = (R ev, I - s to p a le r t, N il, 0)
27 | n = = 12 = (R ev, I_d isconnect, N il, 0)
28 | n = = 13 = (R ev, I_connect, N il, 0)
29 j n = = 14 = (R ev, I_msg, N il, 0)
30 | n : 15 = (R ev, I_request, N il, 0)
31 | n - — 16 = (R ev, O -busy , N il, 0)
32 | n = = 17 = (R ev, O .co n n ec t, N il, 0)
33 | n — - 18 - (R ev, O .tim e o u t, N il, 0)
34
3 5 o tf = = T rue: use on th e fly m e th o d
36 s y s t e m :: B o o l — > [C State] — > I n t — > R egE xpr M essage — > ([M essage], [C S tate])
37 s y s t e m o tf fs n ru les = fm an o tf fs (tr ig g e rg en n) (re2 d fa ru le s)
38
39 fm an :: B o o l — > [C State] — > M essage — > DFA M essage — > ([M essage], [C S tate])
40 fm an o tf fs m ru les = co m m it (fm o tf fs m ru les) fs
41
42 fm :: B o o l — > [C State] — > M essage — > DFA M essage — > A ug tree M essage
43 fm o t f fs m ru les | n o t o tf = e x tra c t(p ru n e (e x tra c td u p (c o n s tru c t fs m)) ru les)
44 | o tf = e x tra c t(e x tra c td u p (o tfc o n s tru c t fs m ru les))
45
46 c o n s tru c t :: [C S ta te] —> M essage —> A ug tree M essage
47 co n s tru c t fs m = re m in sm a rk e r(c o n s tru c tl (sn d (to a llc o c o o n s fs (R ev , S ta r t . t r a n s a c t io n , N il, 0))) m)
48
49 o tfc o n s tru c t :: [C S ta te] —> M essage —> DFA M essage —> A ug tree M essage
50 o tfc o n s tru c t fs m ru les = rem in sm a rk e r(o tf tre e 2 a u g tre e (o tfc o n s tru c tl
51 (sn d (to a llc o c o o n s fs (R ev , S ta r t . t r a n s a c t io n , N il , 0))) m ru le s))
52
53 c o n s tru c t l :: [C S ta te] —> M essage —> A ug tree M essage
54 c o n s tru c t l fs m = feedbackctrl (toa llcocoons fs m) (in se rtT ree E m p ty T ree (m , s ingS et 0))
55
56 o tfc o n s tru c t 1 :: [C S ta te] — > M essage — > DFA M essage — > O T F tre e M essage
57 o tfc o n s t ru c tl fs m d fa | f s t in so tf = (o tffeedbackc trl (to a llco co o n s fs m) (s n d in so tf) d fa)
58 | o th e r w i s e = E m p ty T r e e ro o t v io la te s ru les, d o n e th is really s h o u ld n ’t happen!
59 w h e r e in so tf = in se r tO T F T ree E m p ty T ree (m , singS et 0) d fa
60
61 feedbackctrl :: ([Q ueue M essage], [C S tate]) —> A u g tree M essage —> A u g tree M essage
62 feedbackctrl (m s , f s) t = feed b a ck c trll (m akeflags (l e n g th fs)) ms fs t
63
64 o tffeed b ack c trl :: ([Q ueue M essage], [C S ta te]) —> O T F tre e M essage — > DFA M essage — > O T F tre e M essage
65 o tffeed b ack c trl (m s , f s) t d fa = o tffe ed b ack c tr ll (m akeflags (l e n g th fs)) m s fs t d fa
66
67 feed b a ck c tr ll :: [[B oo l]] —> [Q ueue M essage] —> [C State] —> A ug tree M essage —> A u g tree M essage

A ppendix B . Haskell Code Listings 139

68 feed b a ck c tr ll [x] m s fs t = fs t(fe e d b a c k x (choosesom e x m s) fs t 0 0 e m p ty S ta c k) finish, la s t case!
69 feed b a ck c tr ll (x :x s) ms fs t = (fe e d b a ck c trll xs m s fs (f s t (feedback x (choosesom e x m s) fs t 0 0 em p ty S tac k)))
70 -----need to con tinue bu ild ing th e sam e tre e
71
72 o tffe ed b ack c tr ll :: [[B oo l]] —> [Q ueue M essage] —> [C State] —> O T F tre e M essage —> DFA M essage —>
73 O T F tre e M essage
74 o tffe e d b a c k c tr ll [x] m s fs t d fa = fs t(o tffee d b ack x (choosesom e x m s) fs t 0 0 em p ty S tac k d fa)
75-- -----fin ish , la st case!
76 o tffe ed b ack c tr ll (x :x s) m s fs t d fa = (o tffee d b a c k c tr ll xs m s fs
77 (f s t (o tffeedback x (choosesom e x m s) fs t 0 0 em p ty S tac k d fa)) d fa)
78 -----need to con tinue bu ild ing th e sam e tre e
79
8 0 han d le co n s tru c t p ru n e ...
81 feedback :: [B o o l] —> [Q ueue M essage] —> [C State] —> (A ug tree M essage) —> I n t —> I n t —> S ta te S ta c k —>
82 (A u g tree M essage, [C S tate])
83 feedback bs m s fs t c d ss tk | qe ScSc es ScSc d < 50 = (t, f s) fin ished , ju s t re tu rn tre e
84 | qe ScSc n o t (es) ScSc d < 5 0 ro llback ...
85 = feedback bs (f s t(to p s s tk)) (sn d (to a llc o c o o n s fs (R ev , R o llb a c k .tra n s a c tio n , N il , 0)))
86 (m ovem arker t) (s n d (to p ss tk)) (d — 1) (pop sstk)
87 | n o t (qe) ScSc c < nonem ptyQ s m s ScSc d < 5 0 m ore b ranches a t th is level
88 = feedback bs
89 (ap p en d Q s (choosesom e bs (s n d g e tm))
90 (choosesom e bs (f s t te m p)))
91 (s n d te m p)
92 (in se r tT re e t (f s t g e tm))
93 0 (d + 1) (push ss tk (m s, c + 1))
94 | n o t (qe) ScSc c = = nonem ptyQ s ms ScSc d < 5 0 -------- need to ro llback fu rth e r
95 = feedback bs (em p tyQ s m s) fs t 0 d ss tk
96 | d > = 5 0 we have reached th e m axim al d e p th , m ark b ranch and rollback!
97 = feedback bs (f s t(to p s s tk)) (s n d (toa llcocoons fs (R ev , R o llb a c k .tra n s a c tio n , N il , 0)))
98 (in se rtd e lm ark e r t) (s n d (to p s s tk)) (d — 1) (p o p sstk)
99 w h e r e qe = a llQ sE m p ty ms

100 es = isE m p ty S tack sstk
101 s ta r ta ll = s n d (toa llcocoons fs (R ev , S ta r t . t r a n s a c t io n , N i l , 0))
102 getfm sg = fs t(fs t(g e tM sg F ro m Q ms c))
103 ge tm = getM sgF rom Q m s c
104 tem p = toa llcocoons s ta r ta ll getfm sg
105
10 6 h an d le co n s tru c t p ru n e ...
107 o tffeedback :: [B o o l] —> [Q ueue M essage] —> [C State] —> (O T F tre e M essage) —> In t —> In t —> S ta te S ta c k —>
108 DFA M essage — > (O T F tre e M essage, [C S ta te])
109 o tffeedback bs m s fs t c d ss tk d fa | qe ScSc es ScSc d < 50 = (t , f s) fin ished , ju s t re tu rn tre e
110 | qe ScSc n o t (es) ScSc d < 5 0 ro llback ...
111 = o tffeedback bs (f s t (to p s s tk))
112 (sn d (to a llc o c o o n s fs (R ev , R o llb a c k .tra n s a c tio n , N il , 0)))
113 (m ovem arker t) (s n d (to p ss tk)) (d — 1) (pop ss tk) dfa
114 | n o t (qe) ScSc c < n o nem ptyQ s ms ScSc (f s t in so tf) ScSc d < 50
115--- -----m ore b ranches a t th is level and in se rt successfu ll
116 = o tffeedback bs
117 (ap p en d Q s (choosesom e bs (s n d g e tm))
118 (choosesom e bs (f s t te m p)))
119 (s n d tem p)
120 (s n d inso tf)
121 0 (d + 1) (push s s tk (m s, c + 1)) dfa
122 | n o t (qe) ScSc c < nonem ptyQ s m s ScSc n o t (f s t in so tf) ScSc d < 50
123--- -----m ore b ranches a t th is level b u t in se rt failed
124 = o tffeedback bs (f s t (to p s s tk))
125 (sn d (to a llc o c o o n s fs (R ev , R o llb a c k .tra n s a c tio n , N il , 0)))
126 (m ovem arker (s n d in so tf)) (s n d (to p ss tk)) (d — 1) (pop s s tk) d fa
127 | n o t (qe) ScSc c = = n o nem ptyQ s m s ScSc d < 5 0 -----need to ro llback fu rth e r
128 = o tffeedback bs (em p tyQ s m s) fs t 0 d ss tk d fa
129 | d > = 5 0 we have reached th e m ax im al d e p th , m ark b ranch an d ro llback!
130 = o tffeedback bs (f s t (to p s s tk))
131 (sn d (to a llc o c o o n s fs (R ev , R o llb a c k .tra n s a c tio n , Nil , 0)))
132 (in se rtd e lm ark e r t) (s n d (to p ss tk)) (d — 1) (p o p s s tk) d fa
133 w h e r e qe - a llQ sE m p ty ms
134 es = isE m p ty S tack sstk
135 s ta r ta ll = s n d (toa llcocoons fs (R ev , S ta r t . t r a n s a c t io n , N il, 0))
136 getfm sg = fs t(fs t(g e tM sg F ro m Q m s c))
137 ge tm = getM sgF rom Q m s c
138 te m p = toa llcocoons s ta r ta l l getfm sg
139 in so tf = in se r tO T F T ree t (f s t ge tm) d fa
140
141 choosesom e :: [B o o l] —> [Q ueue M essage] —> [Q ueue M essage]
142 choosesom e [] [] = []
143 choosesom e (b :b s) (x :xs) | b = = T r u e = x :(choosesom e bs xs)
144 | b = = F a ls e = em p tyQ ueue:(choosesom e bs xs)
145
146 a p p e n d Q s :: O r d a = > [Q ueue a] — > [Q ueue a] — > [Q ueue a]
147 a p p e n d Q s [] [] = []
148 a p p e n d Q s [q] [r] = [con ca tQ u eu e q r]
149 a p p e n d Q s (q :qs) (r :rs) = (co n ca tQ u eu e q r) :(ap p e n d Q s qs rs)
150
151 getM sgF rom Q :: [Q ueue M essage] —> I n t —> ((M essage, S et I n t) , [Q ueue M essage])
152 getM sgF rom Q q c = ge tC hosenM sg q q c 0
153

A ppendix B . H askell C ode Listings 140

154 getC hosenM sg :: [Q ueue M essage] —> [Q ueue M essage] —> I n t —> I n t —> ((M essage, S et I n t) , [Q ueue M essage])
155 g e tC hosenM sg (q :qs) r e t | c + 1 = = 1 && n o t eq = ((firs t q, (in se rtS e t (f s t te m p) (t + 1))), s n d te m p)
156 | c + 1 = = 1 ic&c eq = getC hosenM sg qs r c (t + 1)
157 j c + 1 > 1 &c&c n o t eq = getC hosenM sg qs r (c — 1) (t + 1)
158 j c + 1 > 1 && eq = getC hosenM sg qs r c (t + 1)
159 w h e r e eq = isE m p ty Q u eu e q
160 te m p = rem From A U Q s 1 em p ty S e t (firs t q) r
161
162 rem From A U Q s :: I n t —> S et I n t —> M essage —> [Q ueue M essage] —> (S et I n t , [Q ueue M essage])
163 rem From A U Q s i s m [] = (s , [])
164 rem From A U Q s i s m [q] | n o t (isE m p ty Q u eu e q) && firs t q = = m = (in se rtS e t s i, [dequeue q])
165 | o th e r w i s e = (s, [q])
166 rem From A U Q s i s m (q:qs) | n o t (isE m p ty Q u eu e q) &c&c first q = = m
167 = (un io n S e t (in se rtS e t s i) (f s t te m p) , [dequeue q] + + (s n d te m p))
168 | o th e r w i s e = (un io n S e t s (f s t te m p), [q] + + (s n d te m p))
169 w h e r e te m p — rem From A U Q s (i + 1) s m qs
170
171 a llQ sE m p ty :: [Q ueue a] —> B o o l
172 a llQ sE m p ty q | f o l d r l (+) (m a p le n g th Q u eu e q) = = 0 = T r u e
173 | o th e r w i s e = F a ls e
174
175 n o n em p ty Q s :: [Q ueue a] — > I n t
176 n o n em p ty Q s q = f o l d r l (+) (m a p boo l2 in t (m a p isE m p ty Q u eu e q))
177
178 boo l2 in t :: B o o l — > I n t
179 boo l2 in t b | b = = T r u e = 0
180 | o th e r w i s e = 1
181
182 em p ty Q s :: [Q ueue a] — > [Q ueue a]
183 em p ty Q s [] = []
184 em p ty Q s (x :xs) = em p ty Q u eu e :(e m p ty Q s xs)
185
18 6 g en e ra te lis t o f lis t o f boo leans, con ta in in g all com b ina tions a p p a r t from n*false
187 m akeflags :: I n t — > [[Bool]]
188 m akeflags n = m akeflagsl ((2 "n) — 1) (m akeF flags n)
189
190 m ak eflag sl :: I n t — > [B ool] — > [[Bool]]
191 m ak eflag sl n b | n > 1 = (m akeN flag b) : (m akeflagsl (n — 1) (m akeN flag b))
192 | n — 1 = [(m akeN flag b)]
193
194 m akeF flags :: I n t — > [B ool]
195 m akeF flags n | n = = 0 = []
196 | n > 0 = F a lse : (m akeF flags (n — 1))
197
198 m akeN flag :: [B o o l] —> [B ool]
199 m akeN flag b = m akeN flag l b (l e n g th b) 0
200
201 m akeN flag l :: [B oo l] —> I n t —> I n t —> [B ool]
202 m akeN flag l xs n m | m = = n = xs
203 | m < n && x s ! !m F a ls e && m > 0
204 = (t a k e (m) xs) + + (T r u e : (d r o p (m + 1) xs))
205 | m < n xs!!m = = F a ls e && m = = 0
206 = T r u e : (d r o p 1 xs)
207 | m < n &£&c xs!!m = = T r u e && m > 0
208 = m akeN flag l ((t a k e (m) xs) + + (F a I s e :(d ro p (m + 1) x s))) n (m + 1)
209 | m < n ScSc xs!!m = = T r u e &&; m -- 0
210 = m akeN flag l (F a ls e : (d ro p 1 x s)) n (m + 1)
211
212
213 to a llcocoons :: [C S ta te] —> M essage —> ([Q ueue M essage], [C S tate])
214 to a llcocoons fs m = to a llc o co o n s l fs m (le n g th fs)
215
216 to a llc o co o n s l :: [C S ta te] —> M essage —> I n t —> ([Q ueue M essage], [C S tate])
217 to a llc o co o n s l fs m n | n = = 0 = ([],[])
218 | n > 0 = ((f s t to a ll)+ + [(f s t to o n e)],
219 (s n d to a l l)+ + [(s n d toone)])
220 w h e r e to a ll = to a llc o co o n s l fs m (n — 1)
221 too n e = toonecocoon (fs!!(n — 1)) m n
222
223 toonecocoon :: C S ta te — > M essage — > I n t — > (Q ueue M essage, C S ta te)
224 toonecocoon (cs, r b , p b , fid) m n = cocoon cs rb fid n m pb
225
226 o p e ra te s p u re ly on tre e
227 p ru n e :: A u g tree M essage — > D FA M essage — > A ug tree M essage
228 p ru n e t ru les = p ru n eT re e ru les t
229
230 o p e ra te s p u re ly on tre e
231 e x tra c td u p :: A u g tree M essage — > A ug tree M essage
232 e x tra c td u p t = e x tra c td u p T re e t
233
234 o p e ra te s p u re ly on tre e
235 e x t ra c t :: A u g tree M essage — > A ug tree M essage
236 e x t ra c t t = e x tra c tT re e t
237
238 co m m it :: A ug tree M essage —> [C State] —> ([M essage], [C S tate])
239 co m m it m fs = (com m itu se r (tra v erse A u g tree m),

A ppendix B . Haskell Code Listings 141

240 s n d (toa llcocoons (s e tfe a tu re s (tra v e rse A u g tree m) fs) (R ev , C o m m it.t ra n s a c t io n , N il, 0)))
241
242 co m m itu se r :: [(M essage, S et In t)] — > [Message]
243 co m m itu se r [] = []
244 co m m itu se r (m :m s) = fs t(m):(c o m m itu se r ms)
245
246 s e tfe a tu re s :: [(M essage, S et In t)] — > [C State] —> [C State]
247 se tfe a tu re s m fs = s f l (f s t (s p l i t m)) (se t2 L is t (s n d (s p l i t m))) fs
248
249 s f l :: [M essage] — > [In t] — > [C S tate] — > [C State]
250 s f l m s ac tiv e fs = sf2 m s ac tiv e fs (l e n g th fs)
251
252 sf2 :: [M essage] — > [In t] — > [C State] — > I n t — > [CState]
253 sf2 m s a c tiv e fs n | n = = 0 = [] we have d e a lt w ith all fea tu res
254 | n > 0 ScSc ism em = setfs + + [se tac tive fea t m s (fs!!(n — 1)) n]
255 | n > 0 && n o t (ism em) = se tfs + + [se tinactivefea t (fs!!(n — 1)) n]
256 w h e r e ism em = isM em berS e t (lis t2 S e t ac tiv e) n
257 se tfs = (sf2 ms a c tiv e fs (n — 1))
258
259 -----p u t fea tu re s in r ig h t s t a t e , i . e . s ta r t co m m it and rep lay m sgs (s e ta c tiv e l)
260 se ta c tiv e fe a t :: [M essage] — > C S ta te — > I n t — > C S ta te
261 se ta c tiv e fe a t m (cs , r b , p b , fid) n = se ta c tiv e l m (sn d (co co o n cs rb fid n (R ev, C o m m it.t ra n s a c t io n , N il, n) p b)) n
262
263 s e ta c tiv e l :: [M essage] — > C S ta te — > I n t — > C S ta te
264 s e ta c tiv e l [] (cs , rb , p b , fid) n = (cs , r b , p b , f id)
265 s e ta c tiv e l [x] (c s , r b , p b , fid) n = s n d (cocoon cs rb fid n x pb)
266 s e ta c tiv e l (x :x s) (c s , r b , p b , fid) n = s e ta c tiv e l xs (sn d (c o c o o n cs rb fid n x p b)) n
267
268 -----a b o r t p a s t ac tio n s
269 se tin a c tiv e fe a t :: C S ta te — > I n t — > C S ta te
270 se tin a c tiv e fe a t (c s , r b , p b , fid) n = s n d (cocoon cs rb fid n (R ev, C o m m it.tra n sa c tio n , N il, n) pb)
271
272 s p l i t :: [(M essage, S et In t)] —> ([M essage], S et I n t)
273 s p l i t [] = ([], em p ty S e t)
274 s p l i t [(x , n)] = ([x], n)
275 s p l i t ((x , n) :x s) = (x : f s t (s p l i t x s) , u n ionS e t (s n d (s p l i t x s)) n)

Bibliography

[AA97] P. K. Au and J. M. Atlee. Evaluation of a state-based model of feature
interactions. In [DBL97], pages 153-167, June 1997.

[ABB+93] M. Arango, L. Bahler, P. Bates, M. Cochinwala, D. Cohrs, R. Fish,
G. Gopal, N. Griffeth, G. E. Herman, T. Hickey, K. C. Lee, W. E. Leland,
C. Lowery, V. Mak, J. Patterson, L. Ruston, M. Segal, R. C. Sekar,
M. P. Vecchi, A. Weinrib, and S. Y. Wuu. The Touring Machine System.
Communications of the ACM , 36(l):68-77, January 1993.

[AC97] I. Aggoun and P. Combes. Observers in the SCE and SEE to detect and
resolve feature interactions. In (DBL91/, pages 198-212, June 1997.

[ACC+00] D. Amyot, L. Charfi, N. Corse, T. Gray, L. Logrippo, J. Sincennes,
B. Stepien, and T. Ware. Feature description and feature interaction
analysis with use case maps and lotos. In [CMOO], pages 274-289, May
2000.

[AGG+98] A. Aho, S. Gallagher, N. Griffeth, C. Schell, and D. Swayne.
SCF3™ /Sculptor with Chisel: Requirements engineering for
communications services. In /KB98], pages 45-63, September 1998.

[AKGM00] M. Amer, A. Karmouch, T. Gray, and S. Mankovskii. Feature interaction
resolution using fuzzy policies. In [CMOO], pages 94-112, May 2000.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers - Principles, Techniques
and Tools. Addison-Wesley, Reading (Massachussets), 1986.

[BAE+98] R. J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray, and
S. Mankovski. Feature-interaction visualization and resolution in an agent
environment. In /KB98/, pages 135-149, September 1998.

[BagOl] D. Bagley. The Great Computer Language Shootout,
h ttp ://w w w .bag ley .o rg / dough/shootout, 2001.

[BB01] L. Blair and G. Blair. Specifying and analysing multimedia systems.
In H. Bowman and J. Derrick, editors, Formal Methods for Distributed
Processing. Cambridge University Press, Cambridge, 2001. ISBN:
0521771846.

[BBPE01] L. Blair, G. Blair, J. Pang, and C. Efstratiou. ’feature’ interactions outside
a telecom domain. Workshop on Feature Interactions in Composed Systems
- held at ECOOP2001, 2001.

http://www.bagley.org/

Bibliography 143

[BDC+89] T. F. Bowen, F. S. Dworack, C. H. Chow, N. Griffeth, G. E. Herman, and
Y-J. Lin. The feature interaction problem in telecommnucation systems. 7th
International Conference on Software Engineering for Telecommunications
Systems, pages 59-62, July 1989.

[BJK94] J. Blom, B. Jonsson, and L. Kempe. Using temporal logic for modular
specification of telephone services. In L. G. Bouma and H. Velthuijsen,
editors, [BV94], pages 197-216, May 1994.

[BPOO] L. Blair and J. Pang. Feature interaction - life beyond traditional telephony.
In [CMOO], pages 83-93, May 2000.

[BR01] L. Blair and S. Reiff-Marganiec. Runtime resolution of interaction of
multimedia features. September 2001. Submitted for Publication.

[BreOO] J. Bredereke. Families of formal requirements in telephone switching. In
[CMOO], pages 257-273, May 2000.

[BV94] L. G. Bouma and H. Velthuijsen, editors. Feature Interactions in
Telecommunications Systems. IOS Press (Amsterdam), May 1994.

[CAD] CADP. Homepage for the CADP (Caesar/Aldebaran Development Package)
toolkit ,
h ttp ://w w w .in ria lp e s .f r /v a sy /c a d p .h tin l. Valid on 10-12-2001.

[Cai92] M. Cain. Managing run-time interactions between call processing features.
In IEEE Communications Magazine, pages 44-50, February 1992.

[Cal98] M. Calder. W hat use are formal design and analysis methods to
telecommunications services? In [KB98], pages 23-31, September 1998.

[CGL+94] E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, and W. K. Schnure. A
feature interaction benchmark for IN and beyond. In [BV94/, pages 1-23,
May 1994.

[CKMR01] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature
interaction: A critical review and considered forecast. Computer Networks,
October 2001. Submitted for Publication.

[CMOO] M. Calder and E. Magill, editors. Feature Interactions in
Telecommunications and Software Systems VI. IOS Press (Amsterdam),
May 2000.

[CM01] M Calder and A Miller. Using SPIN for feature interaction analysis - a case
study. In [DwyOl], pages 143-162, 2001.

[CMM99] M. Calder, E. Magill, and D. Marples. A hybrid approach to software
interworking problems: Managing interactions between legacy and evolving
telecommunications software. IEE Proceedings - Software, 146(3):167—180,
June 1999.

http://www.inrialpes.fr/vasy/cadp.htinl

B ibliography 144

[CMRT02] M. Calder, E. Magill, S. Reiff-Marganiec, and V. Thayananthan. Theory
and practice of enhancing a legacy software system. In Peter Henderson,
editor, Systems Engineering Business For Process Change - New Directions,
pages 120-137. Springer Verlag, London, 2002.

[C095] K. E. Cheng and T. Ohta, editors. Feature Interactions in
Telecommunications Systems III. IOS Press (Amsterdam), October 1995.

[CR00] M. Calder and S. Reiff. Modelling legacy telecommunications switching
systems for interaction analysis. In Peter Henderson, editor, Systems
Engineering Business Process Change, pages 182-195. Springer Verlag,
London, May 2000.

[DBL97] P. Dini, R. Boutaba, and L. Logrippo, editors. Feature Interactions in
Telecommunication Networks IV. IOS Press (Amsterdam), June 1997.

[dORZ98] L. de Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon.
Incremental feature validation: a synchronous point of view. In (KB98],
pages 262-275, September 1998.

[DwyOl] M.B. Dwyer, editor. Proceedings of the 8th International SPIN Workshop
(SPIN 2001), volume 2057 of LNCS, Toronto, Canada, May 2001. Springer
Verlag.

[FN00] A. Felty and K. Namjoshi. Feature specification and automatic conflict
detection. In [CMOO], pages 179-192, May 2000.

[Fri95] N. Fritsche. Runtime resolution of feature interactions in architectures with
seperated call and feature control. In [C095], pages 43-63, October 1995.

[GBG098] N. Griffeth, R. Blumenthal, J.-C. Gregoire, and T. Ohta. Feature
interaction detection contest. In [KB98], pages 327-359, September 1998.

[ghc] ghc. The Glasgow Haskell Compiler homepage,
h ttp ://w w w .h ask e ll.o rg /g h c . Valid on 10-12-2001.

[Gib97] J. P. Gibson. Feature requirements models: Understanding interactions. In
[DBL97], pages 46-60, June 1997.

[GV94] N. D. Griffeth and H. Velthuijsen. The negotiating agents approach to
runtime feature interaction resolution. In [BV94], pages 217-236, May 1994.

[Hal98] R. J. Hall. Feature combination and interaction detection via foreground/
background models. In [KB98], pages 232-246, September 1998.

[HalOO] R. Hall. Feature interactions in electronic mail. In [CMOO], pages 67-82,
May 2000.

[Has] Haskell. Homepage for the Haskell functional programming language
h ttp ://w w w .h ask e ll.o rg . Valid on 10-12-2001.

http://www.haskell.org/ghc
http://www.haskell.org

Bibliography 145

[HS88] S. Homayoon and H. Singh. Methods of addressing the interactions
of intelligent network services with embedded switch services. IEEE
Communications Magazine, pages 42-46,70, December 1988.

[HS98] M. Heisel and J. Souquieres. A heuristic approach to detect feature
interactions in requirements. In /KB98/, pages 165-171, September 1998.

[HSSR99] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session
initiation protocol. Request for Comments (Proposed Standard) 2543, 1999.

[Hug] Hugs. Haskell Users Gofer System homepage.
h ttp ://w w w .h ask e ll.o rg /h u g s . Valid on 10-12-2001.

[IS089] ISO. ISO standard 8807: L o t o s - A formal description technique based on
the temporal ordering of observational behaviour. ISO/IEC, 1989.

[ITU92] International Telecommunications Union ITU. ITU -T Recommendation
Q.1201: Principle of Intelligent Network Architecture. ITU-T, October
1992.

[ITU93a] International Telecommunications Union ITU. ITU -T Recommendation
Q.1204: Intelligent Network Distributed Functional Plane Architecture.
ITU-T, 1993.

[ITU93b] International Telecommunications Union ITU. ITU -T Recommendation
Q.1214'- Distributed Functional Plane for Intelligent Network CS-1. ITU-T,
March 1993.

[ITU97] International Telecommunications Union ITU. ITU -T Recommendation
Q.1221: Introduction to Intelligent Network Capability Set 2. ITU-T,
September 1997.

[ITU00] International Telecommunications Union ITU. ITU -T Recommendation
H.323: Packet Based Multimedia Communications Systems (Version 4)-
ITU-T, November 2000.

[JAI] JAIN. Java API’s for Integrated Networks homepage
h ttp : / / ja v a .s u n .c o m /p ro d u c ts / ja in . Valid on 10-12-2001.

[KB98] K. Kimbler and L. G. Bouma, editors. Feature Interactions in
Telecommunications and Software Systems V. IOS Press (Amsterdam),
September 1998.

[KB00] A. Khoumsi and R. Bevelo. A detection method developed after a thorough
study of the contest held in 1998. In [CM00], pages 226-240, May 2000.

[KCK+95] B. Kelly, M. Crowther, J. King, R. Masson, and J. DeLapeyre. Service
validation and testing. In [C095/, pages 173-184, October 1995.

[Kim97] K. Kimbler. Addressing the interaction problem at the enterprise level. In
[DBL97], pages 13-22, June 1997.

http://www.haskell.org/hugs
http://java.sun.com/products/jain

Bibliography 146

[KimOO] K. Kimbler. Service interaction in next generation networks: Challanges
and opportunities. In [CMOO], pages 14-20, May 2000.

[KK98] D. O. Keck and P. J. Kuehn. The feature and service interaction problem
in telecommunications systems: A survey. IEEE Transactions on Software
Engineering, 24(10):779-796, October 1998.

[KK00] M. Kolberg and K. Kimbler. Service interaction management for distributed
services in a deregulated market environment. In [CMOO], pages 23-37, May
2000 .

[KKM94] K. Kimbler, E. Kuisch, and J. Muller. Feature interactions among
pan-european services. In /BV 9f], pages 73-85, May 1994.

[KKV64] W. Keister, R. W. Ketchledge, and H. E. Vaughan. No. 1 ESS:
System organisation and objectives. Bell Systems Technical Journal,
43(5):1831-1844, 1964.

[KL98] J. Kamoun and L. Logrippo. Goal-oriented feature interaction detection in
the intelligent network model. In [KB98], pages 172-186, September 1998.

[KMMR00] M. Kolberg, E. H. Magill, D. Marples, and S. Reiff. Second feature
interaction contest. In [CMOO], pages 293-310, May 2000.

K. Kimbler and D. Sobirk. Use case driven analysis of feature interactions.
In [BV94], Pages 167-177, May 1994.

LOLA. (LOtos LAboratory),
h t t p : / / y e t i .d i t .u p m .e s / lo to s / to o ls / lo la .h tm l. Valid on
10- 12- 2001 .

J. Lennox and H. Schulzrinne. Feature interaction in internet telephony. In
[CMOO], pages 38-50, May 2000.

Lucent Technologies - Bell Labs Innovations. Pathstar access server.
h ttp ://w w w .lu cen t.co m /in s /p ro d u c ts /p as . Valid on 30-09-2001.

D. Marples. Detection and Resolution of Feature Interactions in
Telecommunications Systems at Runtime. PhD Thesis, Communications
Division, Department of Electrical and Electronic Engineering, University
of Strathclyde, 2000.

D. Marples and E. H. Magill. The use of rollback to prevent incorrect
operation of features in intelligent network based systems. In [KB98], pages
115-134, September 1998.

[MMS95] D. Marples, E. H. Magill, and D. G. Smith. An infrastructure for feature
interaction resolution in a multiple service environment - the application
of transaction processing techniques to the feature interaction problem. In
Proceedings of TINA 95 conference, 1995.

[KS94]

[LOL]

[LS00]

[Luc]

[MarOO]

[MM98]

http://yeti.dit.upm.es/
http://www.lucent.com/ins/products/pas

Bibliography 147

[MTMS95] D. Marples, S. Tsang, E. H. Magill, and D. G. Smith. A platform
for modelling feature interaction detection and resolution techniques. In
[C095], pages 185-199, October 1995.

[MY60] R. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. IRE Transactions on Electronic Computers, 9(1):39—49, 1960.

[Mye88] E. W. Myers. A four-russians algorithm for regular expression pattern
matching. University of Arizona Technical Report, TR 88-34, 1988.

[NKHL00] M. Nakamura, T. Kikuno, J. Hassine, and L. Logrippo. Feature interaction
filtering with use case maps at requirements stage. In [CMOO], pages
163-178, May 2000.

[Par] Parlay. The Parlay API,
h ttp ://w w w .p arlay .o rg . Valid on 10-12-2001.

[PR98] M. Plath and M. Ryan. Plug-and-play features. In [K B98], pages 150-164,
September 1998.

[Pre97] C. Prehofer. An object-oriented approach to feature interaction. In [DBL97],
pages 313-325, June 1997.

[Pyt] Python. Python programming language homepage.
h ttp ://w w w .python .org . Valid on 10-12-2001.

[ReiOO] S. Reiff. Identifying resolution choices for an online feature manager. In
[CMOO], pages 113-128, May 2000.

[ReiOl] S. Reiff-Marganiec. Using L o t o s for modelling and analysing an online
feature manager: A study. June 2001. Department of Computer Science,
University of Glasgow, Glasgow(UK), TR-2001-92.

[RH97] S. M. Rochefort and H. J. Hoover. An exercise in using constructive proof
systems to address feature interactions in telephony. In [DBL97], pages
329-341, June 1997.

[RV94] F. J. Redmill and A. R. Valdar. SPC: Digital Telephone Exchanges. Peter
Peregrinus Ltd. (Stevenage), 1994.

[SIG01] Bluetooth SIG. Specification of the bluetooth system: Version 1.1. February
2001 .

[SL95] B. Stepien and L. Logrippo. Representing and verifying intentions in
telephony features using abstract data types. In [C095], pages 141-155,
October 1995.

[Tho97] M. Thomas. Modelling and analysing user views of telecommunications
services. In [DBL97], pages 168-182, June 1997.

[Tho99] S. Thompson. Haskell - The Craft of Functional Programming. Addison
Wesley, 2nd edition, 1999.

http://www.parlay.org
http://www.python.org

Bibliography 148

[ThoOl]

[TM97]

[TMOO]

[TMK97]

[Tur98]

[TurOO]

[Vel93]

[VGL92]

[Wei89]

[Y098]

[ZJOO]

S. Thompson. Regular expressions and automata using Haskell. University
of Kent Technical Report, TR 5-00, 2001.

S. Tsang and E. H. Magill. Behaviour based run-time feature interaction
detection and resolution approaches for intelligent networks. In [DBL97],
pages 254-270, June 1997.

V. Thayananthan and E. Magill. A practical filtering technique for triple
feature interactions. 2000.

S. Tsang, E. H. Magill, and B. Kelly. The feature interaction problem in
networked multimedia services - present and future. B T Technology Journal,
15(1):235—246, January 1997.

K . J. Turner. Validating architectural feature descriptions using L o t o s . In
[KB98], pages 247-261, September 1998.

K. Turner. Formalising the Chisel notation. In [CM00% pages 241-256, May
2000.

H. Velthuijsen. Distributed artificial intelligence for runtime feature
interaction resolution. Computer, 26(8):48-55, August 1993.

H. Velthuijsen, N. Griffeth, and Y.-J. Lin, editors. International Workshop
on Feature Interactions in Telecommunications Software Systems, December
1992. Not in Print.

W. E. Weil. Transaction processing techniques. In S. Mullender, editor,
Distributed Systems, pages 329-352. ACM Press, New York, 1989.

T. Yoneda and T. Ohta. A formal approach for definition and detection of
feature interactions. In [KB98], pages 202-216, September 1998.

P. Zave and M. Jackson. New feature interactions in mobile and multimedia
telecommunication services. In [CMOO], pages 51-66, May 2000.

