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A bstract

Feature interactions in telecommunications is an active research area. Many 
approaches to solve the so-called feature interaction problem have been proposed. 
However, all these approaches consider feature interaction as a somewhat isolated 
problem, in particular it is not seen in the context of evolving legacy systems and third 
party features in a deregulated market environment. An exception is the approach 
by Marples and Magill [MM98, MarOO], which presents an interaction detection 
mechanism and an essentially manual resolution approach.

We develop an automatic resolution approach that can be integrated with Marples 
and Magill’s detection mechanism. We distinguish two key concepts, namely solutions 
and resolutions. The former are essentially possible behaviours of the system, they are 
not qualified as desirable or undesirable, the latter are the desirable solutions. Our 
approach allows for automatic removal of undesired behaviour and selection of the 
“best” desired behaviour.

The correctness, complexity and suitability of our approach are analysed. Two case 
studies support these more theoretical considerations.

Our approach is transferable to other areas, such as quality of service management, 
and is not restricted to network architectures with a single point of control.



D eclaration

The studies outlined in this thesis were undertaken in the Department of Computing 
Science, University of Glasgow, under the supervision of Professor Muffy Calder. This 
dissertation has not been submitted at any other university. All of the work was 
performed by the author, except where otherwise indicated.

Work described in some sections has been previously published, in particular: the idea 
of the hybrid approach (Chapter 4) has been published in [CROO], the specification of 
the solution space (Sections 5.1 to 5.5) is published as [ReiOO], the running example 
(Chapter 3) was developed in the context of the feature interaction contest [KMMROO] 
and initial ideas for resolution rules (Section 6.2) have been formulated in [CMRT02],

Material presented in Chapters 5, 6 and 7 is developed solely by the author.

Stephan Reiff-Marganiec 
Glasgow, April 2002



Although the telegraph, together with the ensuing telecommunications revolution, 
came in the nineteenth century, its origins can be traced all the way back to 1753. 
An anonymous letter in a Scottish magazine described how a message could be sent 
across large distances by connecting the sender and receiver with 26 cables, one for 
each letter of the alphabet. The sender could then spell out the message by sending 
pulses of electricity along each wire. For example, to spell out h e llo  the sender would 
begin by sending a signal down the h wire, then down the e wire and so on. The 
receiver would somehow sense the electrical current emerging from each wire and read 
the message. However, this ‘expeditious method of conveying intelligence’, as the 
inventor called it, was never constructed, because there were technical obstacles that 
had to be overcome.

Simon Singh, The Code Book (p. 60)
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Chapter 1

Introduction

1.1 Background to Research

Three intertwined problems motivate the research presented in this dissertation. 
The Feature Interaction Problem, Legacy Systems and Deregulation of the 
Telecommunications Market each pose interesting problems on their own, in 
telecommunications switching software the three areas combine to form a challenging 
problem.

Features provide additional functionality to a basic service. In the telecommunications 
setting this could be a call waiting facility, and in an automobile industry setting an 
engine immobiliser. Packaged software might have features such as an equation editor 
or a movie playback plug-in.

With the presence of multiple features in a single system, it is not unlikely that they 
affect each others functionality; when they do so we encounter a feature interaction. 
These interactions can provide useful behaviour, and thus be desired. However, if 
interactions lead to behaviour that is inconsistent with the user expectations or even 
to breakage of the system, then they are clearly undesired.

The feature interaction problem in telecommunication systems was recognised to be 
important by industry and academia towards the end of the 1980s and since then 
an active feature interaction community has developed. The ongoing work is best 
represented by the series of International Feature Interaction in Telecommunications 
Workshops [VGL92, BV94, C095, DBL97, KB98, CM00].

Traditionally, feature interactions were resolved at design time -  experienced designers 
were able to identify interactions using pragmatic approaches. This was made possible 
by the rather small number of features and the fact that most features were produced 
by the same company that developed the respective base product. Often features were 
integrated by simply adding to the code of the original system.

A change in user expectations and the market situation has led to the requirement 
for more features. Users expect more features, and operators want to provide more 
features as base services are becoming less profitable. Thus, the number of developed 
features is growing rapidly and a quick time-to-market is required to maximise profits, 
both of which are proving challenging to the traditional, pragmatic approach of 
integrating features.
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In addition to the growing number of features, two further complications have been 
recognised thus rendering the pragmatic approaches even less useful: fragility of legacy 
code and multi vendor environments.

The switching software in modern telecommunications switches -  also called stored 
program control switches (SPC)[RV94] -  is large, often insufficiently documented (or 
the documentation is out-dated) and generally fragile. The software may have evolved 
over a period of years, even decades. The fragility and poor documentation makes the 
current approach of simply integrating features at a source code level undesirable 
(independent of the feature interaction problem). However, the external interaction 
with the legacy system can be assumed to be well documented or understood, thus it 
is known which kind of events lead to which responses from the system.

Deregulation of the market introduces two problems. On one hand a highly 
competitive multi-vendor environment requires quick time to market of new 
developments to maximise profits. In addition, features stemming from different 
vendors must co-exist. Resolving interactions at design-time becomes impossible, as on 
one hand the source code and documentation of competitors features are unavailable 
for proprietary reasons and on the other hand an operator might encounter new 
features at runtime only.

In the telecommunications domain we encounter a combination of market deregulation 
and large, evolving legacy systems together with feature interactions. A solution to 
the feature interaction problem in this domain must take diverse factors into account: 
documentation of legacy systems cannot be trusted and implementation details of third 
party features are unknown. Neither legacy nor third party features can be changed; 
they are, however, required to work together. Quick time to market complicates 
elaborate testing in the context of an ever growing number of features, especially 
when several vendors introduce new features simultaneously.

Despite a large body of work existing in the feature interaction area, little attention has 
been given to resolution techniques. In the offline work, resolution of found interactions 
is achieved by redesign, and thus is a smaller issue. However, in the online context, 
resolution is crucial. There is currently no method that can resolve interactions at 
runtime without requiring human input at runtime or predefined tables of interaction 
scenarios with their respective resolutions. The exception is work based on feature 
negotiation which requires new architectures and hence is not practical in a legacy 
context.

As feature interaction poses a problem for the development of new services and both 
new services and legacy systems are in use in a deregulated market a resolution method 
that is suited to this context is required. We show the feasibility of such a method.
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1.2 Research Questions

The overall aim of our approach is to detect and resolve feature interactions in evolving 
telecommunications systems. It is useful to identify the particular problems tha t we 
need to overcome.

Aims

Detect and resolve feature interactions

• in the presence of large legacy systems

— no reliable documentation

— fragile code

• in a deregulated market

— no design time information about third party features

— short development periods

— the presence of other features might only be recognised at runtime

We develop an approach to resolve and detect feature interactions in the context of 
evolving legacy and third party systems addressing the above aims with a number of 
objectives.

Objectives

The approach shall

• be embeddable in legacy and new architectures

• not require changes to features or legacy code

• not require design information of features or legacy code

• automatically detect and resolve interactions at runtime

The last objective ensures that features can be developed quickly. Individual features 
can be developed separately and only the under the constraints possible testing and 
interaction avoidance techniques need to be performed. The runtime approach resolves 
any arising (and remaining) interactions with all features from the same and other 
vendors.
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To fulfil the objectives we envision a process that first quantifies potential solutions 
and second identifies the “best” such solution. The notion of quantifying potential 
solutions leads to questions such as:

• W hat is a solution?

• How many solutions are there?

• How do we find them all?

• How can solutions be found at runtime assuming only observable behaviour of 
features?

We are concerned with selecting one of the possible solutions -  preferably the best. 
Again, we need to answer a number of questions:

• When is a solution good/bad?

• W hat are acceptable solutions?

• When can we say a solution is better than another (assuming both are good)?

• Does a partial order based on quality of solutions exist?

• How can we describe bad behaviour in a general way?

• W hat information is required, and do messages contain the relevant information?

• How can good solutions be extracted from the solution space at runtime?

Finally, the analysis of the applicability raises the questions:

• When can we resolve interactions and when not; and if not, why not?

• How important is the system architecture?

• Is the complexity of the approach acceptable for a runtime environment?

• How well does the approach scale?

• W hat is the scope of applicability? Is it transferable? Will it work with new 
features?

• How effective is the approach?
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We answer all these questions, though some answers are more in depth than others. 
Clear answers are provided to the questions about solutions and good solutions. 
Though, we find that a numeric answer as to how many solutions exist is not possible 
for the general case and finding all possible solutions might not be feasible at runtime 
-  though we also show that if it is not feasible it is not required. The applicability 
questions are also answered, though scalability and complexity would benefit a further 
analysis in an operational system.

In this dissertation we show:

Thesis Statement

An automatic runtime approach to resolve feature interactions in multiple point 
of call control environments in the presence of legacy and third party features is 
desirable. We demonstrate the feasibility of such an approach using a transactional 
approach.

1.3 Outline of Report

In the next chapter we give a more detailed description of the research context. In 
particular we concentrate on the Transactional Approach presented by Marples and 
Magill [MM98, MarOO], as this forms the basis for our work. Chapter 3 introduces a 
running example -  a basic call model and a set of 14 features. We have advocated a 
hybrid approach [CMM99, CROO] which will be discussed in detail in Chapter 4.

Having provided a detailed background, we then proceed to consider the main research 
issues. We specify and implement a method of detecting interactions and computing 
all possible solutions to a detected interaction (Chapter 5). This builds on Marples 
and Magill’s work, providing several extensions. In Chapter 6 we define novel methods 
for resolving detected feature interactions. Chapter 7 explores issues of correctness 
and complexity of the presented approach. An empirical evaluation of two sets of 
features leads to a discussion on success and suitability -  a critical evaluation of the 
approach.

Finally our main conclusions are summarised in Chapter 8. We also consider the 
transferability of the presented approach to areas outwith feature interaction in 
telecommunications, and how new developments and the paradigm shift to Voice over 
IP  impacts on the whole research area.

Two appendices provide detailed description of the features from the running example 
(Appendix A) and the Haskell source code of the implementation (Appendix B).
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1.4 Basic Terminology

Throughout this document we use a number of terms, they are also used in the relevant 
literature. Here we briefly introduce them and discuss how they are used.

We use the term interaction to mean that two or more features are active at the 
same time because they either trigger each other or react to the same external trigger. 
When referring to interactions, no judgement is made as to whether they are desired 
or undesired.

In the literature the terms interaction, interworking and interference are sometimes 
used. Most authors provide their own definition and thus the terms might refer to 
the same concept or to different ones depending on the author (i.e. some authors use 
different terms to qualify between desirable and undesirable interactions, while others 
simply use all three terms interchangeable).

Service and feature are sometimes used interchangeably. The IN standard [ITU93b] 
distinguishes the two as follows: a features is additional behaviour (network capability) 
provided by the switching system and a service is a combination of features provided 
by the operator to the customer. For our purpose the difference is irrelevant and we 
will simply use the term feature to describe the components adding behaviour to the 
system.

We use the terms online and runtime interchangeably.

1.5 Delimitations of Scope and Key Assumptions

Our aim is to develop a resolution mechanism for feature interactions in the specific 
context of legacy systems and third party components. The key assumptions and 
delimitations are such that the method is realistic for this setting.

We assume that the interacting components, called features, are either third party or 
legacy software -  thus the approach does not make use of internal state or other internal 
information of these features. Rather it concentrates on the exchanged messages at 
the interface, i.e. the observable behaviour. For our purpose, a feature is simply a 
black box that receives messages and might respond with messages (it could simply 
consume input without an observable reaction).

Message passing is the communication mechanism between parts of the system. In 
telecommunications systems this is natural, but we also find that other component 
based systems communicate with event (or message) exchange. However, the approach 
does not depend this. W hat is crucial is that the communication between the 
components can be intercepted, delayed and blocked.

We must be able to introduce a new component, the feature manager, into the system 
between the features and the environment. In the standard for advanced intelligent
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networks [ITU93b] this component is already included in the architecture. However, 
in non-IN systems, which legacy systems often are, a new system component must be 
incorporated. As the feature manager must be able to intercept all messages between 
the features and the environment and block these whenever required, it only requires 
to interface the present components. Thus the components do not need to be changed, 
it is the communication path that must be routed through the feature manager.

The transactional approach we adopt requires a way of resetting a part of the system 
to an earlier state. The part concerned involves the features and all global variables 
that are affected. It is assumed that the features do not have any side effects (other 
than changing certain well known global variables, such as the status of the phone 
line). There are several ways to restore an earlier state of the system: we can start 
new instances and rollback to previous ones or we can rollback to  an initial state and 
replay messages -  the latter being very similar to techniques used for error recovery 
in database systems. These are just two possibilities, though others might be thought 
of. The system must allow for at least one such method.

We can imagine features that require further user input (in fact the Teenline feature 
that we introduce later requires the user to enter a PIN number). However, we assume 
that no feature can gain control over the system to the extend were it can block other 
features receiving messages and responding to the same.

Although we do not expect to know details of the internal working of each feature, we 
require some understanding of the ontology of messages. We can place our knowledge 
on a scale ranging from nothing to knowing all detail. However, knowing nothing 
is not very realistic, as we are aware of the structure of the message (in the case of 
the features a message contains an event and maybe a parameter). As we are able 
to interact with the feature we also know the message set, and that messages have 
a consistent meaning. For each message the semantics is also known, as otherwise 
responses from the system would be meaningless.

The success of the resolution depends on the available information. Thus, the richer 
the information in the exchanged messages, the better the resolutions will be. However, 
we show that even relatively minimal information will permit adequate resolution.

In summary, we assume a system where communication between components (such as 
features and legacy systems) can be intercepted, delayed and blocked. The internal 
behaviour of components is not of interest to us. Knowledge of the semantics of the 
exchanged messages improves the quality of the resolutions but is not strictly required.

1.6 Contributions of Dissertation

The main contribution of this dissertation is an automatic, runtime approach to 
resolve detected feature interactions in telecommunications systems. The approach 
addresses problems in conjunction with the existence of large, evolving legacy systems 
in a deregulated market environment. We show the technical details of such an
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approach and analyse the requirements and success in case studies, thus proving the 
desirability and feasibility.

Despite the work being primarily conducted in the context of telecommunications 
systems and thus concentrating on features of telecommunications switching systems, 
the approach does not depend fundamentally on domain specific assumptions. The 
approach has been transferred to interactions of quality of service management features 
in a multimedia context [BR01].

The approach allows resolution of detected interactions in telecommunications systems 
at runtime. We require only minimal information about the features in the system, 
namely an understanding of the exchanged messages. Thus the approach is applicable 
in a legacy context where details of the implementation are often not available, and 
also in a multi-vendor environment where the internal working of components is 
unavailable.

This work is novel, because it tackles the problem of reso lv ing  feature interactions 
in  th e  co n tex t o f legacy system s and  a  d ereg u la ted  m arke t. There are two 
related approaches Marples and Magill [MM98, MarOO] and Buhr et al. [BAE+98]. 
We distinguish our approach in the following way.

Marples and Magill’s work, which we build upon, is restricted to single point of call 
control settings that are realistic for PBXs, but not in public networks. Furthermore, 
they only provide a crude resolution mechanism as their work concentrated on 
detection. However, we show that it is possible to extend the approach in a form 
that allows for completely automatic resolution based on a theory of interactions. 
Our approach allows for multiple point of call control settings.

Buhr et al. [BAE+98] use a blackboard via which features can negotiate a resolution. 
However, the blackboard approach requires a new system architecture. In the context 
of large legacy systems this is not suitable. In their approach features are represented 
by agents which interact to achieve the goals of the features -  this is generally not 
applicable in legacy systems. Our method, on the other hand works in existing legacy 
architectures.

1.7 Summary

We have presented an overview of the background of the research and of the research 
questions that we need to address. In addition we have provided an outline of the 
report and discussed the basic terminology that we will use and the key assumptions 
that we make. Thus, we have provided the necessary vocabulary and setting for the 
research.

The thesis presents an automatic runtime approach for the detection and resolution 
of feature interactions in telecommunications systems. The work builds on the ideas 
of Marples and Magill, but is clearly novel and distinct. A clear advantage over
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other promising runtime approaches (e.g. using blackboards) is that we complement 
an existing architecture rather than requiring fundamental architectural changes of 
the system to be made.



Chapter 2

Background

2.1 Introduction

In Chapter 1 we briefly presented the feature interaction problem and highlighted that 
many approaches have been developed to tackle it. We now present the background 
and the problem in more detail.

We argue that most approaches are unsuitable for an evolving legacy system -  one of 
our targets is to support such systems. Our other target, multi vendor environments, 
requires interactions to be detected and resolved at runtime, thus we will concentrate 
on the proposed runtime approaches. Our work extends the transactional approach 
of Marples and Magill, hence this will be discussed in some detail.

2.2 General Literature on FI Detection and Resolution

2.2.1 Telephone Sw itching System s

The simplest telephone network has two users connected by a wire and is often called 
the “tin-cans-connected-by-wire” model. When more users are in the network, they 
could have such connections to each other. Replacing the multiple handsets (cans) at 
each terminating end would introduce the need for a switching facility (at the users 
end). This system would need N (N  — l) /2  two-way wires to connect N  users.

Reducing the amount of wiring required is achieved by concentrating the switches in 
a local exchange -  hence we obtain what is commonly called a telephone switch (or 
telephone exchange). Several of these switches can be interconnected, in the same 
fashion as telephones are connected to the local exchange. We concentrate on the 
internal workings of these exchanges, encapsulated in the term telephone switching 
systems.

The lines (wires) from the subscribers terminate in SLTU’s (subscriber line termination 
units), which form one side of the main distribution frame (MDF). The other side is 
formed by switching equipment. Jumpers physically connect SLTU’s to the switching 
equipment, thus simplifying reconfiguration. Both the users’ lines and the equipment 
are numbered (directory numbers and equipment numbers). The relation between 
these is either stored in logic circuits (electromagnetical switches) or in databases 
(stored program control switches).
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The development of stored program control switches (SPC) started in the early 1960s, 
with a coupling of telephony and electronic circuits and computers. The 1ESS (AT&T 
Bell Labs, 1965 [KKV64]) was the first public SPC switch. SPC switches have mostly 
replaced electromagnetical ones, and offer many advantages. The most important 
advantage for our work is that they allow the addition of subscriber facilities or, in 
our terms, features.

Switching itself is a challenging engineering problem; we distinguish between packet 
and line switched networks. Computer networks are usually packet switched, telephone 
networks line switched (although developments like Voice over IP  deliver standard 
telephone services over packet switched networks). Data can be split easily into smaller 
chunks and these chunks can be delivered within certain time intervals, which naturally 
fits packet switching. Speech on the other hand is continuous and problems occur as 
variations in the delivery process (e.g. delays) complicate reconstruction (of split data). 
Nevertheless, we will not consider these issues in further detail here, because current 
features in telecommunications systems are not concerned with quality of service.

Stored Program Switches

Stored program switches are described extensively in [RV94]; we only consider the 
aspects relevant to our work here.

The SLTUs are scanned in regular intervals for incoming signals (such as offhook), 
detected signals are placed in a queue and passed on to the call processing programs. 
The processing depends on the signal, e.g. an onhook requires the call to be cleared 
down, all connected equipment (memory resources or physical connections to signal 
generators) to be released and data for billing to be gathered. Offhook signals require 
a dial-tone to be generated and connected to the respective line and memory to be 
allocated for the processing.

In order to store data about the users, two kinds of record are kept in memory: the 
call record and the subscribers record. The former is used to store call specific data, 
such as start and end time, current state of the call process and the switch path. The 
latter contains subscriber specific data. It is in here that the equipment numbers and 
directory numbers are related, and the class of service record (which is a part of the 
subscriber record rather than an entity of its own) is stored.

The class of service record consists of transient and semi-permanent data. Transient 
data can be changed by the user or during a call, semi-permanent data only by the 
network operator. Typical transient information is the line status (e.g. busy, engaged) 
or the activation status of features (e.g. call forwarding is activated to forward calls to 
number 456). The line type (e.g. domestic, business, ISDN) or a barring level (e.g. no 
international calls, no outgoing calls or no incoming calls) as well as information 
regarding subscription to features (the user can subscribe to a feature, whether it is 
activated or not by the user is not an issue for the operator, i.e. the user might still 
get charged) is stored in the semi-permanent data.
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It should be noted that these records are used and accessed by the basic call software 
and features that are integrated with the basic call. These records shall not be accessed 
by third party features, and use might be restricted for new (proprietary) features in 
general.

2.2.2 Feature Interaction

Recall that features provide additional functionality to a basic service. Typical 
examples for telecommunications systems are call waiting or three way calling. The 
basic service in telecommunications is often called POTS (Plain Old Telephone 
Service). POTS provides basic connectivity between two users which is then extended 
by features. For example, the call waiting feature provides the capability that the 
subscriber can be notified of an incoming call and then toggle between two calls.

The notion of feature interaction problem was introduced for the first time at the 
seventh International Conference on Software Engineering for Telecommunications 
Systems by Bowen et al. [BDC+89]. Since then many researchers in industry and 
academia have considered the problem. The results of this research have been mainly 
reported in the series of proceedings from the International Workshop on Feature 
Interactions in Telecommunications Systems (the first of which was not formally 
published), [VGL92, BV94, C095, DBL97, KB98, CMOO].

As pointed out by Velthuijsen et al. [VGL92], feature interactions axe not a problem 
restricted to telecommunications software, but apply to all large software systems that 
require constant upgrading. Furthermore, they claimed that “the feature interaction 
problem has been a major obstacle to the rapid development of new telephone 
services” , which provided a strong motivation for research in the area by highlighting 
the importance of the problem.

2.2.3 T he Problem

The problem can be expressed in a simple way, considering features and their 
interworking: each feature on its own works as expected, but two (or more) together do 
not function as specified. Thus, when considering interactions we make the important 
assumption that individual features work correctly.

Cameron et al. [CGL+94] defined feature interactions as:

Definition 2.2.1 (Feature Interaction) All interactions that interfere with the desired 
operation of the feature and that occur between a feature and its environment, 
including other features or other instances of the same feature. Additionally, 
interference of one part of a feature with another part of that feature (e.g. in the case 
of distributed implementation of a feature) is considered to be a feature interaction.
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It is important to point out that feature interactions can be desired and undesired: 
sometimes we want a feature to change the behaviour of another one, in which case 
we have a desired interaction. The problematic interactions are the undesirable ones, 
as these might lead to anything from user annoyance to a breakdown of the network.

Originally, this problem tended to exist within a single organisation providing services. 
Hence the problem could be coped with due to a relatively small number of features 
and knowledge of coding details of each feature. Interactions were detected manually. 
Changes in the telecommunications industry complicate the problem for the following 
reasons:

• the industry is developing from a monopolised situation to a multi-vendor 
environment due to market deregulation,

• the number of features required and provided is growing rapidly,

• changes in the network architectures, e.g. IN (intelligent network), make it easier 
to provide features,

• call control is becoming more distributed, geographically (a call might be 
controlled by several switches) as well as through a stricter separation of 
hardware and software (and ever more consistent modularisation of the latter),

• legacy systems (e.g. operational code and hardware) have been so expensive in 
their development and deployment that the only option is to incorporate them.

2.2 .4  R elated  W ork

Most published work on feature interaction refers to the POTS (Plain Old Telephone 
System) or Intelligent Network (IN) ([ITU92, ITU93a, ITU97]) context. However, 
Tsang and Magill ([TMK97]) consider feature interactions in broadband networks 
and, more recently, several contributions to the last Feature Interaction Workshop 
[HalOO, LSOO, ZJOO, BPOO] discuss feature interactions in other domains such as e-mail, 
mobile services and internet telephony.

We assess some of the existing approaches. A particular interesting paper is the 
Feature Interaction Benchmark [CGL+94], which is one of the most cited papers in 
the area, although the authors believe it to be out-dated by now 1.

Taxonomy of Feature Interactions

Cameron et al. [CGL+94] developed a benchmark to support classification of 
interactions and to judge the coverage of detection and resolution approaches. They 
suggest two main categorisations: nature of interactions, and cause of interactions.

1 Personal communications with the authors
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As the benchmark is used widely, we briefly outline the main points. Note that the 
benchmark does not classify solutions, but rather attempts to provide a partitioning 
of the problem.

In the context of interactions, three dimensions have been identified:

1. Kind of feature involved in the interaction (customer features -  system features)

2. Number of users involved in the interaction (single user -  multiple user)

3. Number of network components involved in the interaction (single component -  
multiple components)

Customer features are those that a customer can use, e.g. call waiting or call 
forwarding, whereas system features are those concerned with administration and 
operation (e.g. billing). Single user interactions are those where features subscribed 
to by one user interact (e.g. call waiting and call forwarding on busy). Multiple user 
interactions are those with interactions between features subscribed to by different 
users (e.g. call forwarding on busy and terminating call screening). Single component 
interactions arise when features at one network node (or component) interact, multiple 
component interactions arise when multiple network nodes are involved.

This benchmark paper concentrates mainly on customer features, as the authors 
claim that system features cause fewer interactions. Five categories of interactions 
are explored:

SUSC (Single-User-Single-Component) interactions: These occur because one user 
subscribes to incompatible features on the same network node. They occur in 
two flavours: functional ambiguities (different features handle the same situation 
differently) and one feature hindering another in its proper execution.

SU M C  (Single-User-Multiple-Component) interactions: These occur because the 
features deployed in one node of the network are unaware of those in a different 
component, but the user’s services are provided by both nodes.

M U SC  (Multi-User-Single-Component) interactions: These occur when several 
people share a physical phone line and hence the subscribed features. Users 
might set up two contradictory features like call forwarding to a number and 
originating call screening to the same number.

M U M C  (Multi-User-Multi-Component) interactions: These occur when users
subscribe to features provided on different nodes and those features are not 
compatible with each other.

C U SY  (Customer-System) interactions: These can occur at points where
administration and user features are activated simultaneously. Probably the 
largest area in this class is interactions with billing features.
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A number of causes of interactions can be identified. These causes fall into three 
groups:

Violation of feature assumptions: The development of a feature relies on certain 
assumptions, like availability of data, call control or the signalling protocol. 
Over time these assumptions may lose their validity and hence the feature can 
no longer operate properly.

Limited network support: A network is a physical entity and as such restricted. 
The most obvious restriction is bandwidth shortage, leading to competition 
between features and hence to interaction.

General Problems of distributed systems: Many problems of distributed 
systems are well known, for example race conditions and/or resource contention.

We can see that interactions occur at different levels in the system and have multiple 
causes. However, there is no claim that the above list is exhaustive. A complete 
solution would need to address all those problems and also consider those which 
additionally might occur.

Some of the examples provided by Cameron et al. might in fact not be interactions. For 
example the dialling of an 0800 number from outside the country being not possible is 
not an interaction, it is merely a defined delimitation. Multiple users using different 
(and maybe contradicting) features on the same physical telephone is also not an 
interaction -  at least as long as telephone systems cannot distinguish user identities 
other than by equipment numbers .

The features analysed by Cameron et al. are solely concerned with call control and 
billing in an IN architecture. A current taxonomy would need to take many more 
aspects into account.

We will return to the introduced interaction categories. As for the causes of 
interactions, solutions can be achieved at a different level. For example, there is 
much active work to handle intricacies of distributed systems. The restriction imposed 
by limited network support loose importance in the context of new communications 
architectures with rich communications protocols and more flexible terminals.

A New Taxonomy

As we have shown, the taxonomy provided by Cameron et al. [CGL+94] is rather 
dated. We consider the following questions and issues crucial when attempting to 
classify features and feature interactions:

1. Shared trigger vs. sequential action: Are features triggered by the same event or 
does one feature’s response lead to the triggering of another feature?
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2. Technical interaction vs. user intention violation: Is the interaction caused by
the features dictating inconsistent reactions in a given state or simply by the 
unfulfillment of a user expectation?

3. Subscriber vs. non subscriber: e.g. forwarding affects both the subscriber and the
caller (who is not the subscriber), whereas outgoing call barring only affects the 
subscriber.

4. Single vs. multiple points of call control: In some architectures calls are controlled
centrally, in others not, which has an impact on feature interaction handling.

5. Nature of features: Features can be grouped by behaviour, e.g. call control, billing,
quality of service or management features.

6. Call control behaviour: e.g. all forwarding features are similar in some way,
conferencing features are again similar.

7. Inter vs. intra portfolio: Do features belong to the same provider or do they belong
to different providers?

Due to the fast evolution of the telecommunications area it is impossible to claim tha t 
this set of questions is or will remain complete. But, we assert that this taxonomy 
allows us to pitch our work in the area. We address technical interactions in both 
single and multi point of call control systems. Our approach works for detection and 
resolution of both shared trigger and sequential action interactions.

Technical interactions are similar to Type I interactions as defined by Hall [Hal98]. 
Type I interactions are classified to be those where two features expect the system to 
move into inconsistent states or to exhibit inconsistent observable actions. In contrast 
Type II occurs, in the absence of a Type I interaction, when one feature disrupts the 
state properties that another has assumed. Type III interactions occur in the absence 
of Type I and Type II when the system fails to meet the user requirements, and thus 
compare to user intention violations.

The features that we have investigated are either billing or call control -  currently 
quality of service and management features are only emerging. In Chapter 3 we give 
a running example and give categories of features. All features within a category 
are similar enough to be handled in the same fashion by detection and resolution 
approaches, hence the rather select set of features in the running example does indeed 
represent a much larger set of features as can be found for example on Lucent’s 
PathStar switch [Luc].

For the purpose of this thesis we assume that we deal with an inter provider portfolio 
of features, as this group is more challenging. Our method will also apply to intra 
provider portfolios, but better methods can be found there, as more information is 
available (which can be used to detect and resolve interactions during design time).



Chapter 2. Background 17

Approaches to the Feature Interaction Problem

Several authors have classified approaches according to certain criteria. We will not 
discuss these classifications (there is no additional gain in showing how the body of 
work can be ordered), but rather concentrate on the techniques developed to solve the 
feature interaction problem. For the purpose of this section we distinguish approaches 
that identify a service engineering process, those that use formal reasoning to improve 
certain phases of the development process (usually design) and those tha t attem pt to 
detect and resolve feature interactions at runtime.

Service Engineering Approaches

Service engineering uses techniques developed in the general context of software 
engineering. The techniques are mostly applicable at the requirements or specification 
phase of a general software engineering process.

Notably, studies using use case maps (or models; UCM) [NKHLOO, ACC+00, KS94] 
have been applied on industrial scale systems to obtain results about their usefulness. 
Other, more academic, techniques involve specifications in some formal notation, 
where static analysis of the composition of the specified features enables feature 
interaction detection [Tur98, Pre97, KCK+95].

Many of the approaches in this category provide automatic approaches for filtering 
[KKM94, NKHLOO, HS98, BreOO], that is identifying scenarios which might be prone 
to interactions. These cases then need to be analysed using various techniques, either 
automatically or manually. Nakamura et al. [NKHLOO] show tha t about half of all 
possible interaction scenarios can be removed using their filtering technique because 
no interaction will occur. Performing more detailed analysis upon the remaining 
scenarios, they show that about 42% lead to interactions.

Once interactions have been detected at the specification stage, the feature 
specification can be adapted to remove any occurring interactions. As the detection 
process is automatic (or at least semi-automatic) there is the potential to cope with 
a growing number of features. However, as the approaches target the specification 
and requirements level, they are only applicable to known feature sets -  i.e. those 
features where the relevant details are available when the process is applied. While 
the approaches allow for features of one vendor to interwork as expected, they are 
unsatisfactory in a multi-vendor environment where many details are not available 
and new features are often only encountered at runtime.

Some approaches [KKOO, Kim97] consider service engineering from a management 
perspective, thus taking into account that a deregulated market poses problems that 
are disjunct from the pure technical issues. These approaches are interesting in their 
own right, but are less relevant here, as we concentrate on the technical side of the 
problem.
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Formal Reasoning Approaches

Formalisms can be used for specification, as discussed above, but many approaches go 
further by using formal reasoning techniques. Formal reasoning is based on models 
of the system, so an immediate drawback is that the models might not accurately 
represent the implementations. However, interesting results have been achieved -  
mainly with respect to a better understanding of the problem. We can distinguish 
three groups of approaches: those specifying behaviour of features as formal models, 
using automata or transition systems, those specifying properties formally, using a 
logic, and those using a combination of both.

Property only approaches [BJK94, RH97, FNOO] usually apply theorem proving or 
model checking techniques to identify inconsistency or unsatisfiability of properties 
once they are combined.

Behaviour only specifications are often used with specifically developed tools, or if 
standard languages such as CSP or L o t o s  are used, the existing tools are employed. 
Analysis resulting in e.g. deadlock, non-reachability or non-determinism means that 
a feature interaction exists. Examples of such approaches are [Tho97, AA97, Y098, 
KBOO].

Combining models of behaviour with specified properties is used in several approaches 
[SL95, Gib97, Tho97, PR98, KL98, dORZ98]. All these approaches use the same 
definition of feature interaction: if feature F\ \= 0i and F2 1= 02 but F\ © F2 0i A 02, 
then an interaction exists (01 and 02 are properties). Common to the approaches is 
the use of standard tools for simulation or model checking. However, the state space 
explosion problem generally does not allow for complete analysis. Recently Calder 
and Miller [CM01] succeeded in fully model checking systems of four users with two 
features using the model checker S p i n .

Discussion: Service Engineering and Formal Reasoning Approaches

The formal reasoning based approaches have two major drawbacks, one being that 
the state space explosion problem generally disallows complete assurance of detection 
of all interactions and the other being that the approaches are applied to models of 
the features. The latter requires a good understanding of the available features and 
an awareness of which features will be available. However, as discussed earlier, this 
is often not possible. Furthermore, models are abstractions of the real system. In 
the abstraction process, new interactions could be introduced as well as existing ones 
removed. The approaches prove very useful, for testing developed features for possible 
interaction, but fail in multi-vendor environments.

The service engineering and formal reasoning approaches are not only less applicable 
in multi-vendor settings, but are unsuitable within a legacy systems context. Legacy 
systems have already been developed (thus changing specifications is not possible). 
Their evolution over time means that specification details, as well as properties
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extracted from the documentation, might be incorrect. In both classes of approaches, 
resolution occurs as redesign or changes to the requirements, which clearly is not 
possible in a legacy system.

R u n tim e  A pproaches

Runtime approaches attempt to overcome the problem posed by having multiple 
vendors by proposing ways of detecting and resolving interactions at runtime. This 
has the advantage that the real implementation of features can be used, rather 
than abstractions and models of them. Further, the features exist in their natural 
environment. Clearly this allows for quick development of features, as each feature 
can be designed separately. Interaction handling is removed from the development 
stage, the runtime approach handles possible interactions. However, it is still desirable 
to apply design time techniques whenever possible, rather than completely relying on 
runtime approaches.

A number of runtime approaches have been developed, and we can broadly distinguish 
three classes: one and two phase feature managers and negotiation based approaches. 
Note that one and two phase only reflects the number of distinct online phases, most 
of the one phase approaches require some information from an offline phase.

F ea tu re  M an ag er -  O ne P h ase  A pproaches. A basic feature manager is defined 
by the ITU-T standard for Intelligent Networks [ITU93a]. However this only prevents 
multiple instances of IN and non-IN services being active in the same call segment. 
More advanced approaches use feature managers to detect and resolve interactions. By 
using information about the features and their potential interactions multiple features 
can be allowed to be active across the call (in one or more call segments).

Homayoon and Sing [HS88] propose such an approach, whereby the feature manager is 
provided with a number of tables describing relations between two features. The status 
of one of the features is examined and then the activation or use of the second is allowed 
or disallowed according to its relation to the first feature. Similarly, Cain [Cai92] 
proposes a feature manager that only passes events to features that are known to be 
non-interacting using information contained in tables. Activation is not considered.

Fritsche [Fri95] determines at runtime which features are -  in their term -  “interested” 
in a proposed event. A specification of the features is provided to the feature manager 
in the form of roles, i.e. a feature’s impact on a device. Features effect changes to 
devices and the feature manager observes whether roles are violated (an interaction). 
Interactions thus found are resolved by a predefined resolution matrix.

All these approaches require data about interaction and resolution in the form of 
tables to be provided to the feature manager -  thus they are not useful in the context 
of legacy and third party systems. Marples and Magill [MM98] propose a feature 
manager approach that does not require a priori data, but assumes an interaction to 
have occurred when more than one feature intends to handle an event. They then use
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a rollback and commit algorithm to determine possible resolutions at runtime. Their 
resolution mechanism is a simple precedence scheme. As our work is based on this 
approach, we will explore it in more detail in the next section. The approach was 
initially presented by Marples and Magill [MM98] and was further refined by Marples 
[MarOO]. For the remainder of this document we refer only to the work of Marples 
[MarOO] as this provides the more comprehensive reference.

Feature Manager -  Two Phase Approaches. The one phase approaches 
described above require data about the features and their potential interaction 
acquired during an offline stage, the exception being [MM98]. However, some two 
phase approaches circumvent this requirement.

Aggoun and Combes [AC97] propose a “pre-deployment” phase where a passive 
observer gathers information about the feature behaviour in the network. The 
gathered information is then used by the active observer (essentially a feature manager) 
in the operation phase of the service to detect and resolve interactions. Similarly, 
Tsang and Magill [TM97] gather behaviour “signatures” of features in an isolated 
online environment (with just the feature under observation being active) and store 
these in a database. The feature manager then accesses this database during public 
network operation to detect and resolve interactions.

Both approaches require features to be executed in an isolated environment, which 
might not always be practical. Moreover, it is impossible to gather information about 
features at other network nodes that might interact when the respective users are 
involved in a call.

Negotiation Approaches. A markedly different alternative is provided by the 
negotiation approaches. Here, features and resources are represented by agents able 
to communicate with each other to negotiate on their goals. Successful negotiation 
means that an interaction has been resolved (or that none existed).

In an early paper [Vel93], Velthuijsen evaluates a number of distributed artificial 
intelligence techniques (DAI) to help resolve the feature interaction problem. Several 
approaches have since been developed using DAI techniques [BAE+98, AKGMOO]. 
Griffeth and Velthuijsen also use negotiating agents to detect and resolve interactions 
[GV94]. A resolution is a goal acceptable by all parties and is achieved by exchanging 
proposal and counter-proposals amongst the agents. Different methods for negotiation 
have been envisioned: direct (agents negotiate directly without a negotiator), indirect 
(a dedicated negotiator controls the negotiation and can propose solutions based 
on past experience) and arbitrated (an arbitrator takes the scripts of the agents 
and has sole responsibility to find a solution). Griffeth and Velthuijsen concentrate 
on indirect negotiation. The negotiation approach has been implemented in the 
“Touring Machine” platform [ABB+93], though no conclusive report about success 
(or otherwise) is provided.

Rather than using direct negotiation, Buhr et al. [BAE+98] make use of a blackboard. 
Features are represented by agents which exchange information by writing to a public
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data space (the blackboard). Other agents can change the information written to the 
blackboard and a common goal can be negotiated. The success of the technique is 
reflected in its use in Mitel’s MediaPath product. Amer et al. [AKGMOO] also use the 
blackboard technique, but extend their agents to make use of fuzzy policies. Agents 
set truth-values (0 to 100) to express the desirability of certain goals. These values 
are then adapted as the call progresses, depending on the values of other agents. In 
the case of conflict, an event with the highest truth-value is executed.

Negotiation approaches are capable of handling interactions between features provided 
by several vendors, as long as a consistent mechanism for negotiation exists. However, 
negotiation requires communication between agents or features. The impact is that 
in general significant architectural changes are required. However, in the context of 
legacy systems, architectural changes are not an option. Hence the approaches, despite 
looking promising, fail in this context.

Note that those disadvantages become less relevant when new emerging architectures 
with APIs such as JAIN (Java API’s for Advanced Networks) [JAI] or PARLAY [Par] 
are considered. Richer protocols (e.g. SIP [HSSR99] or H323 [ITU00]) facilitate for 
the required inter-agent communication.

A more complete, though slightly outdated, summary of the feature interaction 
research field is provided by Keck and Kuehn [KK98]. A more recent review by Calder 
et al. [CKMR01] includes a forecast for the field (we will return to this in Chapter 8).

Of the presented work, Marples’s [MM98] approach seems to be the most flexible, as 
it can handle legacy systems as well as third party features. Furthermore, it adapts to 
new architectures. However, the major draw-back is the weak resolution mechanism. 
Our work extends the resolution mechanism. We will now present Marples’s approach 
in more detail.

2.3 Review of the Transactional Approach

The motivation for the transactional approach [MarOO] is that interactions between 
features developed by independent parties in conjunction with legacy systems should 
be detected and resolved. The approach is required to work with more than two 
interacting features.

The requirements are that we have no prior knowledge of the features, that the features 
must remain unchanged, that the solution can be incorporated within a legacy system 
and that it can be employed in a runtime system. This last requirement implies that a 
mechanism to deal with unexpected behaviour is required. Marples allows features to 
“fail” , as long as they do safely -  i.e. they do not affect the rest of the network and do 
not confuse the user. There must be a way of recovering from unexpected behaviour 
(e.g. the user going onhook) and the network operator must be able to prevent this 
from taking place again in the future.
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Feature 1 Basic Call Feature n

Feature Manager

Fig. 2 .1 :  Software Architecture of D e sk

Marples does not provide an automatic resolution mechanism. Instead his method 
detects an interaction and then determines whether this interaction was seen 
previously (e.g. from information held in a database). If the interaction has been seen 
before, the earlier resolution is retrieved (e.g. looked up in a database) and applied; 
otherwise the possible solutions are presented to the network operator.

The experimental results are based on the D e sk  testbed. D e sk  was developed by 
Marples et al. [MMS95, MTMS95] to experiment with feature interaction techniques. 
The initial target was interaction detection, which explains the crude resolution 
techniques.

D e sk  consists of two major subcomponents, the hardware sub system (HSS) and 
the software sub system (SSS), as shown in Fig. 2.1. The HSS represents the terminal 
devices, the SSS the switch. A detailed description can be found in [CMRT02], however 
much of the detail provided therein is not relevant here. What is important is that 
D e s k  assumes a single point of call control. That is, there is a central point at which 
one can observe all messages that are received from or sent to any user in the system. 
This is where the feature manager is located.

The features and legacy software are encapsulated in a transactional cocoon. It is this 
idea that allows features to remain unchanged. The feature manager communicates 
directly with the cocoons, using essentially two types of messages: control messages 
that steer the transactional process and feature messages that represent actual 
telecommunications events.

At runtime, the feature manager passes incoming messages from the switching 
hardware to all the cocoons -  for simplicity we assume that this happens in parallel.

The cocoon passes feature messages on to the encapsulated feature. When a message 
is processed by a feature two possible behaviours can occur: the message triggers a 
response (one or more messages) or it does not. All triggered responses are sent back 
to the feature manager, concluding with a transaction finished message. The latter 
is also sent by features not responding with a proper message2. Before sending a 
feature message the feature manager sends a start-transaction message which forces

2 Any message apart from the transaction finished message is a proper message.
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the cocoon to create a copy of the feature (thus enabling it to revert to the feature’s 
previous state).

The responses are collected by the feature manager, added to a list of responses, and, 
once all responses are collected, they are evaluated.

There are three possible outcomes:

1. the feature manager did not receive any proper messages,

2. the feature manager received exactly one proper message,

3. the feature manager received multiple proper messages.

The first case occurs when no feature produced an observable response to the trigger 
event, the call will progress as if no feature manager was in the system. It is the latter 
two cases which are interesting. The possibility that more than one feature might 
reply and the consequent potential for an interaction is indeed the motivation for the 
feature manager. Rather than discuss the resolution of an interaction at this point, 
we explore the space of possible resolutions in the following way.

The feature manager stores the current state and initiates copies of the feature 
processes. The current state includes the list of events and other local information; 
it describes a snapshot of the system from the viewpoint of the feature manager. 
Assuming that at least one message has been received, the first message is fed to 
the copies of the features (again after issuing the start-transaction message). The 
responses are then gathered and processed. Part of this processing may involve further 
message exchanges with the (copies of the) features.

This process terminates when there are no further responses. At this point, we have 
a sequence of messages and responses, which we consider as a branch in a behaviour 
tree. To construct the rest of the tree, a rollback to an earlier state is initiated by the 
feature manager (a rollback message is send to the cocoons), the next event is farmed 
out (Marples’s term), a new branch is generated, and so on. Once all events have been 
processed a full behaviour tree has been constructed.

When a single trigger led to more than one response, Marples refers to a Shared 
Trigger Interaction (STI), if a fed back response triggers another feature he refers to a 
Sequential Action Interaction (SAI). Indeed, he considers a third group of interactions, 
Missed Trigger Interactions (MTI) which occur when a feature does not respond 
because another feature concealed the trigger point. His approach addresses the first 
two groups [MarOO].

It remains to select the most promising path in that tree, which constitutes the 
resolution. As described earlier, this is done manually by an operator choosing a 
branch from the behaviour tree.

When the path is selected, it is committed by sending out the appropriate messages 
to the hardware subsystem, ensuring that features are in the right states.
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The approach depends on certain assumptions about the system, namely that it is 
possible to create copies of all the associated processes. This might not always be 
possible, particularly in a legacy system. However, one might emulate process copies 
if the system provides the functionality to reset a process to a certain state. In this 
case, in order to emulate multiple copies, stacks of all messages are maintained, the 
control process is reset and messages are replayed from the stack to obtain a process in 
the desired state. This is very much like failure recovery in database systems employing 
a rollback-commit strategy. For further details of the construction of the behaviour 
trees, see [CMM99].

The major disadvantage of this approach is that there is no automatic resolution 
mechanism. Resolution involves an operator selecting branches from a tree (and maybe 
looking up previous resolutions in a database).

A further disadvantage is the restriction to single point of call control, which reflects 
PBXs (Private Branch Exchanges) accurately, but does not exist in PSTNs (Public 
Switched Telephone Networks).

Overall, Marples’s approach provides very promising technology, assuming that these 
two weaknesses can be remedied. This is the goal of this dissertation.

2.4 Summary

We have shown that the community investigating the feature interaction problem is 
very active. Many different approaches have been used to find solutions to the problem.

A special emphasis was placed on the classification of the problem in the benchmark 
paper [CGL+94], a widely accepted classification of the problem of feature interactions, 
whereby some shortcomings have been highlighted and a new taxonomy was defined. 
We have not discussed the literature that concentrates on building a classification of 
solution approaches as this seems of little benefit for the current work.

Solution approaches from three different viewpoints -  service engineering, formal 
reasoning and runtime -  have been introduced and their advantages and disadvantages 
discussed. We have then presented a particular runtime approach, namely the 
transactional approach of Marples [MarOO] -  which forms the foundation for this 
dissertation.



Chapter 3

R unning Exam ple

3.1 Introduction

In this dissertation we use a number of features as a benchmark. In this chapter we 
introduce the benchmark set of features, summarise the meaning of control messages 
and describe the scenarios which will be considered.

3.2 Features

Large numbers of features can be imagined, and indeed have been developed 
by providers and developers of telecommunications equipment. For example, the 
advertisement for Lucent’s PathStar switch announces more than 80 features [Luc]. 
However, detailed specifications are rarely publicly available. For this reason we have 
to draw on published resources containing a small number of well understood features. 
An obvious choice is provided by the feature sets from either of the two FIW feature 
interaction detection contests: the first in 1998 [GBG098] and the second in 2000 
[KMMR00].

Considering the 59 PathStar features for which names (but no details) are provided, 
we can identify the following classes of features (numbers in brackets show how many 
features are in the respective class):

• POTS basic call(l)

• Screening features, such as anonymous call rejection (6)

• Group ringing features, such as hunting and group ringing (8)

• Call waiting features (3)

• Call forwarding features (4)

• PC telephony features (4)

• Billing and call logging features, such as call record generation (3)

• Dialling features, such as hotline and direct dialling (16)

• Calling identity delivery and tracing (9)
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• Three way calling (1)

• Automatic Callback (1)

• Ringing features, such as distinctive ringing (2)

We have decided to use the features of the second contest, because they are described 
by finite state machine description techniques. In contrast, the C h ise l  [AGG+98, 
TurOO] notation used in the first contest is relatively unknown, especially outside the 
telecommunications domain.

The contest provides a set of 12 features in addition to the basic call (which we also 
treat as a feature). A further feature, Calling Number Display, is also introduced. 
Some features are composed of two parts: a subscriber part and a part located at 
every user to provide additional behaviour. An example is Terminating Call Screening 
where the subscriber screens certain incoming calls and the information tha t a caller is 
screened needs to be relayed back to the subscriber. In order for the caller to evaluate 
the response he has a general enhancement to basic call, i.e. the part located at every 
user.

The contest features cover all of the classes identified for the PathStar switch, but 
ringing, PC telephony and dialling features. As dialling and ringing form part of some 
other features they are partly covered. PC telephony features are not relevant in the 
classic telephony context. Thus, the contest features provide a reasonable coverage of 
currently available features.

Below we informally describe the features, and discuss some general issues related to 
modelling the features. The detailed formal descriptions can be found in Appendix A.

Basic Call allows for call setup, teardown and basic connectivity between two users. 
It is often referred to as POTS (Plain Old Telephone System). Note that it is 
symmetric, i.e. both sides can terminate a call (not currently the case within the 
BT network).

Call Forwarding on Busy. All calls to the subscriber’s line are redirected to a 
predetermined number when the subscriber’s line is busy. For billing, it is 
assumed that the subscriber pays the charge for the forwarded call from his 
location to the location to which the call has been forwarded.

Calling Number Display requests the caller’s number for display, assuming that the 
subscribers telephone has a facility to display the number.

Calling Number Delivery Blocking. Usually the caller’s identity is available at the 
terminating side, for evaluation by the callee if required (e.g. caller number 
display or terminating call screening). This feature blocks the provision of the 
callers number at the terminating side.
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Call Transfer allows the subscriber to transfer the current call to a third party. That 
is, while being in a call the subscriber can put the second party on hold and can 
setup a call to a third party. Once the subscriber goes onhook the second party 
of the first call and the third party are connected. This is effectively a mid-call 
call forwarding. The subscriber may transfer a call independent of being caller 
or callee in the original call.

Call Waiting. The subscriber is notified of an incoming call while he is busy in a 
conversation and can accept the new call by putting the originating call on hold. 
The subscriber is then able to toggle between the two calls.

Group Ringing allows for an incoming call to ring at three phones. The phone which 
goes offhook first is connected to the calling party. The remaining two phones 
stop ringing.

Reverse Charging is also known as freephone billing, and allows the subscriber to be 
charged for all calls in which the subscriber is the terminating party.

Ringback when Free. When a call attempt is made to a busy subscriber with this 
feature subscribed, the caller is informed that he will be called back, as soon 
as the other person becomes available. Once the subscriber terminates his/her 
current call a connection to the stored number will be established.

Split Billing allows costs to be shared between the partners in a call. A company 
might provide local call charge lines to customers as a service, in which case the 
customer (and originator of a call) pays the local charges and the company the 
rest.

Teenline. During a pre-set time of day, this feature restricts all outgoing calls from 
the subscriber’s telephone. To place an outgoing call during that time a PIN is 
required.

Terminating Call Screening. The originators of all incoming calls to the subscriber’s 
telephone are screened against a screening list. If the originator of an incoming 
call matches an entry in the list, then an announcement is played to the originator 
and the call is cancelled.

Three Way Calling allows a user already connected to bring a third partner into the 
call. Any side of the first call (as long as it subscribes to Three Way Calling) can 
set up a connection to the new party. This is established by putting the current 
partner on hold, connecting to the third side and then joining both lines. The 
three way call is terminated with any party going onhook.

Voice Mail. Voice mail works in a similar way to an answering machine, by offering 
the possibility to leave messages if the called user is not available. The stored 
messages can be played back by the subscriber.
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3.2.1 T he R ole o f S tates

In this section we discuss the problems introduced by the use of states. We show a 
number of examples and then generalise the observations.

The detailed description of features in the contest is dependent on state information. 
For example, Call Forwarding on Busy is only triggered if the Basic Call is in certain 
states. A feature is integrated into the system by adding or replacing transitions in 
the Basic Call description. However, since state information is not available due to 
the nature of legacy and proprietary systems, we need to redesign some of the features 
slightly.

Changes we make are to ensure that the features are triggered and terminated 
appropriately. The following examples should illustrate this. Note that state labels 
in the examples refer to the contest description, appendix A contains the updated 
diagrams.

Example 3.2.1 Call Forwarding on Busy is triggered by an incoming alert (Laleri) message 
in a basic call state where the user is known to be busy. However, in our setting we are 
only aware of basic call being busy when the outgoing busy message (oJ)usy) is sent by basic 
call and then fed back to the features. Hence O-busy is a more suitable trigger.

Example 3.2.2 The recording part of Voice Mail is described as starting in basic call state 
BC9 and immediately sends a response. However, in the message based description we 
require this feature will never be triggered. So we require an initial trigger event. Further, 
repetitive behaviour of the BC (due to the original replacing of states all potential transitions 
have to be included) can be removed. In this case, O-timeout, which is fed back, can be assumed 
as best trigger event.

Example 3.2.3 The Everyone module of Call Transfer exhibits a choice of initial 
behaviours, depending on whether it is located at the originating or terminating end of 
a call. In this case it is necessary to include new initial trigger events that determine at which 
side of the call the feature is located. Similar to the previous example we see that the two 
given original states are either BC7 or BC11, which can be reached by either Lconnect or the 
fed back o-connect. Hence we will introduce those events as new triggers leading to a new 
state. In this new state the feature responds to Linform or Lnotify in the expected way or 
can be reset to idle by either Lonhook or Ldisconnect (the events which trigger a transaction 
from states BC7 and BC11)

Example 3.2.4 The final form of change is illustrated by the Teenline feature. This feature 
might result in a terminating state where the action is a response being sent (here BC2). 
However, BC2 is a state from which a dialtone is sent so that the call can progress as expected 
-  i.e. the user has the chance to dial a number. We find that the dialtone should be included 
in the teenline features responses (replacing the tau message).

These four examples illustrate problems occurring when state information is not 
available. We can generalise from the examples to identify the following measures
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which have been applied to the feature descriptions from the contest to produce the 
descriptions in appendix A:

• replace the original trigger with a more suitable one (example 3.2.1),

• introduce a new trigger for those features with an initial state tha t only allows 
for responses to be send (example 3.2.2),

• introduce a new trigger that places a feature in a waiting state and allow it 
to quit this waiting state when a feature has multiple distinct initial states, 
(example 3.2.3),

• introduce a new response, when a feature would exit into a basic call state that 
produces a response (example 3.2.4),

• remove messages that only duplicate behaviour which the basic call process 
would exhibit anyway.

One could argue that our attempts to ensure that a feature is triggered by an incoming 
trigger message are superfluous. For example an alarm feature which is triggered by 
an internal clock appears to exhibit spontaneous behaviour. A closer analysis reveals 
that this is not true: the alarm feature is triggered by an incoming trigger message, 
namely when the user sets up the alarm. Clearly, this shows that the incoming trigger 
exists. As we do not consider time between events our effort is justified.

3.3 Control Messages

We can only observe the behaviour of features by analysing the messages that are 
passed around the system. Thus an informal understanding of the meaning of messages 
is required.

All messages consist of two parts: the event and an argument. A denotes a null 
argument.

There are three main groups of messages. Firstly messages exchanged between the 
terminal devices and the features (and vice versa) -  we refer to them as terminal 
messages. Secondly, messages exchanged between features associated with different 
terminal devices, referred to as feature messages. Thirdly, messages with billing 
information (billing messages). Each of these types is discussed in more detail below, 
the list is exhaustive for the given features though new features might introduce 
additional messages.
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3.3.1 Term inal M essages

A terminal is used as a device which provides the interface between the user and the 
network model. We cannot distinguish between actions from the user and the device. 
We distinguish between messages originating from the terminal and those initiated by 
the features.

User initiated messages:

(offhook, -) the terminal has gone offhook.

(dial, number) the terminal dialled the number number.

(onhook, -) the terminal has gone onhook.

(flash, -) the terminal flashes, that is goes onhook briefly and then offhook again. Usually 
this behaviour is created by pressing the flash button on a phone.

Feature initiated messages:

(diaLtone, -) a dialtone has been initiated.

(ringtone, -) a ringtone has been initiated.

(busy tone, -) a busytone has been initiated.

(timeout.-tone, -) a timeout.tone has been initiated.

(disconnect-tone, -) a disconnect_tone has been initiated.

(connect, -) a connection has been established.

(stop-alert, -) the terminal stops ringing.

(alert, -) the terminal starts ringing.

(announce, message) an announcement message is played. For instance, a notification that 
the called party is not available but a message can be left.

(display, information) some information is displayed, e.g. the callers identity. It is assumed 
that the terminal device has a suitable display facility.

(cwtone, -) a call waiting tone has been initiated signalling that the call is currently on hold 
or that another call attem pt is being made (depending on the situation of the user).

(store-msg, msg) the message (voice) from the calling party is stored in the mailbox.

(store.read, msg) the message (voice) from the mailbox is transmitted to the terminal.

(store-clear, -) the message stored in the mailbox is removed.

Note that tones are stopped when any subsequent message is sent or received.
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3.3.2 Feature M essages

Messages commencing with “o_” are sent by a feature, those starting with “L” are 
received by a feature. All of these messages come in pairs due to the fact that they are 
the same message, just with a different direction from the viewpoint of a particular 
feature. Note that the conversion from “o_”-messages into “z_”-messages is performed 
within the switch and is not of concern here. We will only describe the meaning of 
outgoing messages, i.e. those starting with “o_” . Clearly the recipient of the messages 
is the (potential) partner in the call.

(o-alert, -) notifies that a call attem pt is being made.

(ostopalert, -) notifies that a call attem pt is being dropped.

(o-disconnect, -) notifies that a call (that was connected) has been terminated.

(o-connect, -) notifies that a call has been answered, i.e. the called party has gone offhook.

(o-timeout, -) notifies that the system has timed out a connection attem pt due to the call 
not being answered, within the system internal timebounds.

(o-busy, -) informs about busy status, in this case the called party is busy.

(o-free, -) informs about busy status, in this case the called party is free.

(o^inform, information) communicates information. It is used here for features th a t expect 
an announcement or other notification to be made at the other side of the call.

(o-msg, msg) prompts the voicemail feature to transmit messages to be stored.

(ojnotify, Z) notifies that a call is being forwarded to Z.

(o-request, query) requests information, for example the caller identification.

3.3.3 B illing M essages

Billing events are sent from the features to the billing system -  we are not concerned 
with details of the billing system here. The global time is passed as a parameter so 
that the duration of some activity can be measured and a corresponding charge levied. 
Note that we have abstracted the messages slightly, so that they no longer contain 
information about the users involved. Clearly, this information would be needed to 
create correct bills, but as we are only concerned with interaction this is not required 
here.

(billingstart, time) Start charging for a call.

(billingstop, time) The counterpart to the billingstart event. Upon receipt of this event the 
duration of a call can be calculated and the user be charged with the correct amount.

(billing-forwarded, Z) The billing system is notified that a call has been forwarded to user Z. 
Hence the forwarding can be taken into account for billing.

(billing-reverse, -) The billing system is notified that for the next event (billingstart, time) 
the terminating side of the call is charged.
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(billingsplit, factor) The billing system is notified that for the next event (billingstart, time) 
both users are charged according to the factor. For instance, the subscribing user will 
pay 30% of the charge if the factor is 70. In addition the factor can be used to code 
policies like the caller only pays a local call charge and the subscriber the remainder 
etc.

(billingsnhook, time) The billing system is notified that a terminal is going onhook.

(billing-offhook, time) The billing system is notified that a terminal is going offhook.

3.4 Scenarios

Scenarios describe configurations of the telephone system to varying levels of detail. 
They are usually created in a rather pragmatic way, whereby the experience and 
intuition of the designer has a major impact on the quality. Scenarios are required 
for evaluation of features as well as for feature interaction detection and resolution 
methods. Scenarios are valuable for testing, and are indeed used in current testing 
practice.

A typical scenario describes the system configuration and the state of the users. 
Consider the following example:

Exam ple 3.4.1 Assume four users: A, B, C and D. B subscribes to both Call Forwarding 
Busy (initialised to forward calls to C) and Call Waiting. B is in conversation with D. A rings 
B.

It is very easy to invent scenarios, but it is not possible to ensure that all possibilities 
are covered. It seems possible to use combinatorial techniques to list all cases. 
However, this requires a framework that defines how many users must be considered 
in order to ensure that all interactions between two or more features are detected. 
Such a framework does not exist.

Current interaction detection approaches mostly consider 2-way interactions, that is 
where 2 features are subscribed to by the users in the system. In addition, some work 
on 3-way interaction has been done and there has been much discussion concerning 
the desirability of 3-way interaction analysis. It is basically argued that “true” 3-way 
interactions [TM00], defined to be those where no interaction exists between any pair 
of the concerned features, are extremely rare.

A runtime approach must be able to handle any number of simultaneously subscribed 
features, hence we propose analysing n-way interactions. This is motivated by the fact 
that large numbers of features are available to users.

We will revisit the idea of scenarios when evaluating our approach.
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3.5 Summary

We have identified a set of features, provided their informal specifications and discussed 
the concept of scenarios.



Chapter 4

A H ybrid Approach to FI

4.1 Introduction

As discussed earlier, feature interaction techniques can be classified as offline or online, 
each with their own strengths and weaknesses. In this thesis the aim is to combine the 
strengths of both and thus reduce the weaknesses -  the result is a hybrid approach.

This chapter gives an overview of the envisioned hybrid approach, and discusses the 
advantages of such an approach. A suitable online detection method is available from 
the work of Marples [MarOO]. However, as shown earlier, the method’s resolution 
approach is weak. Here we show how the hybrid approach allows for further 
development of the detection technique and how it supports building a stronger 
resolution method, thus resulting in a comprehensive solution for dealing with feature 
interactions.

4.2 A Hybrid Approach

We expect our feature manager not only to detect interactions between new features 
and the legacy system, but to resolve detected interactions in a satisfactory way. 
Sometimes the resolution will involve the suppression of a number of features, raising 
the question: which ones? At other times it may be possible to interleave features or 
to run them in a particular order. In any of these cases the feature manager must be 
able to make those decisions.

For detection, we follow the transactional approach proposed by Marples [MarOO] in 
which the legacy system and the new features are treated as black boxes embedded in 
transactional cocoons. The cocoons permit rollback and commit facilities. This allows 
one to experiment at runtime with different sequences of possible inputs and thereby 
to choose the best resolution.

Building on this detection mechanism, we aim to develop resolution methods. The 
information required in order to choose a “best” resolution is derived from an offline 
analysis of feature behaviour. This information is in the form of general rules (referred 
to as resolution rules) and thus is independent of the features actually deployed. The 
main contribution of this thesis is to show that this is indeed possible and to show 
how it can be achieved.
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The rules may be gathered from an analysis of the behaviour of a formal model of the 
system.

The formal model is more than just an abstraction, or specification, of intended or 
required behaviour. It is an integral part of the incremental process of the development 
and refinement of those intentions or requirements. That is, it is part of a adaptive, 
experimental process, as advocated by Calder [Cal98] and Calder and Reiff [CROO]. 
Figure 4.1 illustrates this process.

New N  (  Legacy N  f  Feature 
Features /  Switch y  Manager

Offline
Analysis Model

New
Features

Legacy
Switch

Feature
Manager

Fig. 4.1: Adaptive Development Process

The initial step in the process is to develop an (initial) formal model of the online 
system, i.e. the legacy switch, a relatively uninformed feature manager, and the 
features. Dotted lines denote this step. This model provides us with a platform from 
which to experiment and reason about observable behaviour of the legacy system and 
the new features.

The feature manager in this initial stage is concerned with identifying all possible 
solutions, i.e. constructing the solution space, as shown in Fig. 4.2.

So lu t io n  S p a c e

Fig. 4.2 : The Initial Behaviour of the Feature Manager

In the model the input to the feature manager is formed by example features. 
Implementation details of these example features are assumed to be known to allow for
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analysis. The feature manager constructs the solution space by probing the features, 
thus enabling that (in an operational system) the knowledge of the feature behaviour 
is not required.

Properties of this system enable the identification of resolution rules such as “event 
x should never be followed by event y, otherwise inconsistent behaviour is given to 
the user” or “events x and y should never be offered simultaneously” (e.g. a spoken 
announcement and a busy tone).

In the next step, the derived rules are used to guide the feature manager. T hat 
is the uninformed feature manager will be replaced with a better informed version 
incorporating algorithms to resolve interactions. This alters the system behaviour, so 
we can derive new rules, further enhance the feature manager, observe more behaviour, 
and so on.

4.3 D e te c tio n  a n d  R e so lu tio n  P ro cess

The detection and resolution process is represented by Fig. 4.3. The construction of 
the solution space is identical to th a t used by the uninformed feature manager.

R e s o lu tio n  R u le s  ii

F e a t u r e

S o lu t io n  S p a c e S o lu t io n  S p a c e R e s o lu t io n  S p a c e R e s o lu t io n
F e a t u r e

F e a t u r e

F e a t u r e

Fig. 4.3 : Detection and Resolution Process

During the offline analysis we identified rules that are applied to reduce the solution 
space to a set of valid solutions. Finally, the best (valid) solution is selected. The 
rules themselves can be refined subsequently by a better understanding gained from 
applying them , leading to the iterative nature of the adaptive development process.

We stress th a t at runtime the implementation details of the features are unknown. The 
feature m anager’s explorative m ethod allows the identification of all possible solutions.

4.4 F e a tu re  In te ra c t io n s

Feature interaction simply refers to the fact tha t there is a “point of contact” between 
two or more features, not discriminating between desired and undesired interactions.
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In general it is difficult to decide whether or not an interaction is desired, as factors like 
user expectations play a major role in this classification. Our approach for detection 
is based on these contact points, but for resolution it will be necessary to distinguish 
between desired and undesired effects.

We identify two kinds of interactions, which we define as follows:

Definition 4.4.1 (Technical Interaction) A technical interaction occurs when several 
features triggered by the same event or features triggered by an earlier response request 
that the call is continued in distinct, non-unifiable ways. That is, there is no system 
state which satisfies the behaviour of all requests.

Definition 4.4.2 (User Intention Violation) A user intention violation occurs when a 
user observes unexpected behaviour in a call that progresses (i.e. where no technical 
interaction has occurred).

Clearly both can be seen as an interaction, as there is a point of contact between 
the features. (We note that Marples does not distinguish between these two types of 
interaction.) Let us consider some examples to illustrate the difference:

Example 4.4.1 (CT-RC) Assume user B subscribes to Call Forwarding which forwards all 
incoming calls to user C. C subscribes to Do Not Disturb, which plays a polite message 
informing that C is currently unavailable. A calls B and gets forwarded to C. A now hears C ’s 
message. Clearly being connected to C is not what A expected, hence we could classify this 
as a u se r in ten tio n  v io lation . This is not a technical interaction, as both features behaved 
correctly and more importantly the system is not placed in unexpected states (thus remaining 
stable and allowing the call to progress).

Example 4.4.2 (CFB-CW) User A subscribes to both Call Forwarding Busy and Call 
Waiting. A is talking to B and receives a call from C. This causes a tech n ica l in te rac tio n : 
a forwarding attem pt and the announcement of a call waiting tone. Each of these responses is 
invalidated by the other, there is no meaningful state of the system satisfying both behaviours 
simultaneously. Namely, if the call is forwarded, the call is not in a waiting position and vice 
versa.

Clearly in the context of multiple features, both kinds of interaction might occur 
simultaneously, for example upon receiving trigger t features fa and fa produce a 
technical interaction and features fa and fa lead to a user intention violation. To 
resolve technical interactions, all but one feature involved in the technical interaction 
must be disabled, in the example fa and either fa or fa can proceed.

We will concentrate on detecting technical interactions. Note tha t in new systems it 
would be possible to express user intentions in form of policies, which however will 
shift the problem from feature to policy interactions.

In sections 2.2.4 and 2.3 we have outlined other classifications for interactions, namely 
Shared Trigger Interactions (STI), Sequential Actions Interactions (SAI) and Missed
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Trigger Interactions (MTI)[MarOO] and the more classic classes (defined in [CGL+94]): 
MUSC, SUSC, MUMC and SUMC.

Before showing how these classifications relate to our distinction of user intention 
violation and technical interactions, we need to discuss two issues: call control points 
and a notion of stable state.

Points of call control. A call can be controlled either from a single point (as in 
a PBXs) or from multiple points (as in a PSTN). The number of call control points 
impacts on the availability of data and the required messages. As an example consider 
a call attem pt to a busy user. In a single point of call control (SPCC) setting, the 
switching software simply checks the status of the called user in a table and supplies 
the caller with ether a busytone or a ringing tone. In a multiple point of call control 
(MPCC) setting the caller’s switching software generates an outgoing call attempt and 
awaits a response from the callee’s switch containing information regarding the busy 
status of the callee. D e s k  uses SPCC, our running example employs MPCC.

The impact of call control points on interaction detection and resolution is significant: 
in a SPCC setting features from both involved parties can be queried, that is all data 
available to them can be accessed and resolution mechanisms can influence features at 
both ends of the call. In MPCC settings this is not possible, the only data available 
is that belonging to the local user and that transmitted from the remote end via 
messages. Additional information might be queried, resulting in a further message 
exchange. Furthermore, a resolution involving state changes or termination of remote 
end features is in current telephone systems not possible -  only local features can be 
influenced.

Stable states. For SPCC a stable state is one where a user input can be received 
-  i.e. the last user event has been processed and all internal messages have been 
consumed. In Marples’s [MarOO] work this is described as a state with no events 
or responses pending. In MPCC a stable state is one where either a user or a 
remote switch event can be received -  again all previous events have been dealt 
with. The impact of this seemingly small change can best be shown with an example: 
consider two users with call forwarding features (for simplicity assume unconditional 
forwarding). A forwards to B and B to A. When A receives a call it is forwarded to 
B. The next event will be a forward from B to A. In a SPCC setting this occurs before 
the next stable state is reached, in MPCC after the next stable state was reached.

Our detection and resolution algorithm does not span across stable states (we cannot 
revert a decision that has been made after it is committed to the network). Thus, we 
are able to detect the forwarding loop with our approach in a SPCC setting but not in 
a MPCC setting. We will consider this in more detail when evaluating our approach 
in section 7.6.

The given classifications of interactions are orthogonal, they all divide the same space 
of possible interactions into different partitions. Cameron et al. [CGL+94] defined the 
classes for IN networks (which assume MPCC), Marples for SPCC. However, Marples 
classes can be mapped onto MPCC settings.
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Fig. 4.4: Detection and Resolution Process

Analysing the feature interactions described in Cameron et al. [CGL+94] we obtain 
overlaps as shown in Fig. 4.4. Notably no class completely encapsulates any of the 
others with the exception that all MUSC interactions are user intention violations. 
All three classifications are suitable for classifying feature interactions independent of 
the number of call control points and the specified notion of stable states.

4.4 .1  A side: T h e F eature M anager and Call C ontrol in th e  IN  
standard

We have discussed the idea of single versus multiple points of call control and also 
that of a feature manager. Features and their handling have been envisioned in the 
current standard for intelligent networks (IN) [ITU93b], where the above ideas are also 
introduced. IN supports both single point of call control and multiple points of call 
control the former is relevant for Private Branch Exchanges (PBXs), the latter for 
the Public Switched Telephone Network (PSTN). Multiple points of call control can 
be seen to be more im portant, as a PBX is usually a proprietary product and hence an 
international standard describing its working is less relevant. Further, multiple points 
of call control are technically more challenging, as one side only has a restricted or 
abstract view of the other side in the call. Calls are typically made up of segments 
from one switch to another where each switch has independent call control and no 
direct control over actions at another switch (see Fig. 4.5). Obviously some protocol 
is required for correct inter-operability of two switches on shared segments.

A close look at the SSF/C CF (service switching function/call control function) part 
reveals a complex internal structure (Fig. 4.6). The basic call manager (BCM) handles 
basic call setup and connectivity, but also recognises IN trigger events and passes these 
to the SSF. The BCM has associated resources and data and also communicates with 
the Bearer Control (which takes care of the interaction with the medium).

More interestingly, IN triggers passed to the SSF are received by a feature interaction
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Fig. 4.5 : Overview: end-to-end call in IN networks

manager (FIM). The FIM communicates via the IN service switching manager 
(IN-SSM) with the service logic (also referred to as service control function (SCF)). 
The SCF is basically what we refer to as features. Similar to the BCM, the IN-SSM 
has access to private resources and data. The IN-SSM provides the features with an 
abstract view of the call as well as access to its call control and its own resources.
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SSF

CCF
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Access

Manager

IN-FIM

and data
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Non-IN
FIM

IN-SSM

SCF

Bearer
control

BCM
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Fig. 4.6: Call Control and Service Switching Functions in IN

The feature interaction manager/call manager (FIM/CM) is “the entity that provides 
mechanisms to support multiple concurrent instances of IN service logic instances and 
non-IN service logic instances on a single call. In particular the FIM/CM can prevent 
multiple instances of IN and non-IN service logic instances from being invoked. The 
ability of the FIM/CM to arbitrate between multiple instances of IN and non-IN 
service logic instances is for further study. The FIM/CM integrates these interaction
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mechanisms with the BCM and IN-FM1 to provide the SSF2 with a unified view of 
call/service processing internal to the SSF for a single call.” [ITU93b, p6 ]

Let us analyse this description in more detail. The FIM can coordinate events 
reporting to the IN-SSM (thus influence the abstract view), impact on BCM (by 
coordinating suspension or resumption of the basic call) and provide:

• a service logic instance selection mechanism to determine which service logic to 
invoke or block (a targeting of trigger events to individual features),

• mechanisms to support simple restricted service logic interaction between 
simultaneous active features on the same call segment and

• mechanisms to prohibit simultaneous active features using static or dynamic 
mechanisms.

Static mechanisms are basically service management functions (via provisioning), 
normally based on resolution tables. The tables show potential problems between 
features. Dynamic mechanisms “may involve more complex capabilities” [ITU93b, 
p34]. Proposed dynamic methods are priorities and precedences of features or 
exclusion of features (i.e. prohibiting new ones while others are still active).

In conclusion, our approach can integrate the basic ideas of IN (the standardised 
architecture provides similar, but cruder, concepts). We extend the defined (IN) 
feature manager by providing the afore-mentioned “more complex capabilities” , thus 
giving the feature manager a stronger resolution mechanism. Further, our approach 
removes the need for the feature manager to know details about the features, which 
the approach in the IN standard [ITU93b] clearly requires. We also address the issue 
of arbitration between multiple features which was left for “further study” in the IN 
standard.

4.5 Summary

In this chapter we have described the concept of a hybrid approach. We have discussed 
a classification of interactions and call control issues. Our approach improves on 
Marples detection work, in that we consider more realistic call control based on the 
IN approach.

1 We assume a typing error in the document, the component referred to is the IN-SSM
2 We assume a typing error in the document, the component referred to is the SCF
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P otentia l R esolutions

5.1 Introduction

In this chapter we will consider several issues concerned with the question: What 
are potential resolutions when an interaction has been detected? Recall that detected 
means that more than one feature responded to a trigger or that at least one feature 
responded to a fed back response. This chapter makes the idea of detected interaction 
more precise.

The specification of a solution space, a set of all possible solutions, leads to an 
initial approach of constructing the same. This provides the precise understanding 
of detected interactions and solutions, but is somewhat restricted in comparison to 
realistic features. Thus for further analysis a better model needs to be found. Process 
algebra seems a very good candidate notation, so we discuss why have chosen Haskell 
instead. Finally, details of the Haskell implementation are discussed.

5.2 The Solution Space

Marples’s idea of exploring whether several interacting features might be allowed to 
proceed in a certain order, inspired our goal to allow as many interacting features to 
proceed as possible. To this extent a sound understanding of the possible solutions is 
required. Let us make precise the terms solution, solutions space and resolution.

For a given set of features, a solution is a trace of one or more of those features 
running concurrently. That is, it is an interleaving of messages generated by a subset 
of the features.

For a given set of features, the solution space is the set of all traces, for all subsets 
of the features.

A very simple solution space (for 3 features, each of which is executed ’’atomically” ,
i.e. there is no interleaving here) is illustrated in Fig. 5.1. It should be noted that the 
solution space might contain many traces that lead to a violation of required properties 
(i.e. there might be traces that represent incorrect behaviour).

For a given set of features, a resolution is a trace in the solution space that does not 
violate any specified properties.
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I \ I \ I \

Fig. 5.1: Simple Solution Space

The solution space depends on the granularity of the interleaving. A coarse grained 
interleaving would allow features to be run in any order but does not allow messages of 
features to be interleaved. In this case the solution tree grows exponentially with the 
number of interacting features. A fine grained interleaving would also allow individual 
messages to be interleaved thus resulting in a solution space growing exponentially in 
both the number of features and the length of their responses. We adopt the latter, 
which clearly includes the former.

5.3 Specification  of th e  S o lu tion  Space

In this section we develop a specification of the solution space: we consider messages 
as basic building blocks, then features. The solution space is the result of a feature 
manager function applied to a number of features.

5.3 .1  M essages

A message consists of an event (a type and possibly a value) and an associated I/O  
aspect. Examples of event types are dial or alert; the value depends on the type 
(e.g. dial has the dialled number as value, dial-tone does not require a value, and 
announce has an event value indicating the announced message). The I/O  aspect 
indicates whether the message is input to or output from a feature.

Convention: input messages are preceded by +, output messages are preceded by —

We write a message ra as (± , even t typ e , even t va lu e ) or, when we are only concerned 
about the I/O  aspect, as -fra or -n i .  The null value is denoted by and, by abuse 
of notation, r  is also a special null message (r  is an output message).

Example 5.3.1 The following are valid messages: (+, dial, n), (—,announce, “screened” ) and 
( —, i-alert, -).
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We require relations between messages. Two messages a and b are said to be

equal when their event types, values and their I/O  aspects are equal, written a = b.

duals when their event types and values are equal but their I/O  aspects are not 
equal, written a == b.

Example 5.3.2

• (+ ,2_a/er£,-) = (+,i_a/er£,-)

• (+,ijalert,~) = (—,i-alert,-)

5.3.2 Features

Definition 5.3.1 (Alphabet) An alphabet is a set of messages partitioned into 2  

non-empty sets: input messages and output messages.

Definition 5.3.2 (Trace) A trace over an alphabet is a non-empty finite sequence of 
elements of the alphabet starting with an input message. F irst(t) is the first element 
in a trace t.

Convention: A trace is obtained by juxtapositioning elements of the alphabet.

Example 5.3.3 Consider the alphabet:
a = {(+,z_a/ert,-), (—, announce, “screened”), (—,ojrequest, “callerid”),

(+ ,iJnform, “id”), r}.
Some of the possible traces over a  are:

(+ ,i-alert,-)(—,announce, “screened”) and
(+,i-inform , “id”)(—, announce, “screened”)(—, announce, “screened”)

The Terminating Call Screening feature is defined by the trace set:
F t c s  — {(+,i~alert,-)(—,ojrequest, “callerid”)(+ ,iJnform, “id” ) ( — ,announce, “screened”), 

(+,ijalert,-)(—,ojrequest, “callerid”)(+, i-inform, “id”)r} .

Definition 5.3.3 (Feature) A feature is a set of traces over an alphabet. We assume 
the alphabet is minimal (i.e. each element of the alphabet occurs in at least one trace).

Convention: feature F{ has alphabet a*.
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Example 5.3.4 This example shows the trace sets for some features. The label at the right 
column will be used later to reference the respective trace.

Split Billing:
Fsb = {(+, dial, number)(—, billing split, factor), t ^

(+, dial, number) r} t(2)
Reverse Charging:

F r c  — {(F, dial, number){—,billing . . r e v e r s e t(3)
(+, dial, number) t} t(4)

Calling Number Display:
F c n d  —  {(+ ,i-alert,-){—,ojrequest, “id”)(+,z_m /orm , “id”)(—,display, “id”), t(5)

(+, ijalert,-)(—, ojrequest, “id”)(+ , i j a l e r t , o J m s y ,  -)
(+,iJnform, “id”)(—,display, “id”)}. t(6)

Call Forwarding on Busy:
F c f b  = {(+,oJbusy,-)(—, 0 -alert,-)(—,billing-forwarded,D)(—,ojnotify,D)} t(7)

5.3 .3  Feature Interaction

Now we can formalise the concept of an interaction:

Definition 5.3.4 (Feature Interaction) We say that n features F\...Fn with respective 
alphabets a i...a n interact iff

j  : ((1 <  i , j  < n ) f \ ( i ^  j ) )  A (3 + a  E on A (36 E aj  : a =  6))

Features interact if they have common input messages in their respective alphabets, 
or one alphabet contains an input message that is the inverse to an output message in 
another alphabet. Note that we do not consider the case where a nd 6 are both output 
messages. This is because output messages will only occur simultaneously if they are 
triggered by the same event. Thus a corresponding pair of matching input messages 
would exist. This definition clearly reflects the previously discussed concept of feature 
interactions being caused by points of contact between features (section 4.4).

5.3 .4  T he Feature M anager

The purpose of the feature manager is to detect and resolve interactions. Hence the 
feature manager has to distinguish between features which do and do not interact in 
the sense of Definition 5.3.4.

The feature manager is defined as follows:

Let F \,...,F n be features and let e be an input message, where e E ol\ U ... U a n .
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Definition 5.3.5 (Feature Manager) The feature manager is a function, defined as:

E xtract(T , e) returns a set of traces T ' C T  such that \ / t : (t 6 T') A F irst(t) = e.

Prune{T ) returns a set of traces V  C T, where all the traces in V  represent possible 
resolutions.

Construct(Fi, ...,Fn) constructs the solution space of features F i,...,F n and will be 
considered in detail in section 5.4.

It may seem surprising that Extract can return more than one t race, after all we are 
looking for a single resolution. To motivate our definition, consider a simple single 
feature example: F  = {-\-a — 5 +  c — d, +a — 6 + e — /} . Both traces are equally good 
resolutions when the trigger is a, but when the call progresses either c or e will occur 
as trigger, forcing the other trace to be irrelevant. However, this is not an interaction 
and we expect the feature manager to return both traces. The decision as to which 
trace should finally be chosen is dependant on a later trigger event. Therefore, we 
cannot make the decision at this point and must return a set. Similar scenarios can 
arise between multiple features, thus leading to the above understanding of Extract.

5.4 Construction of the Solution Space

The role of the Construct function is to construct the solution space, i.e. the set of 
all potential solutions. The complexity of the definition reflects the complexity of the 
task: Construct returns a set containing all the individual features traces and all traces 
representing interleavings of multiple features. The latter are constructed using the 
function overlap, which in turn depends on the concept of overlapping interleavings. 
We consider the concept of overlapping interleaving and then the functions overlap 
and construct, showing examples for each.

5.4.1 O verlapping Interleaving

The following definition, illustrated with figure 5.2, makes precise the concept of 
“overlapping interleaving” .

In the following, to increase legibility we substitute a = a\...an for t\ and b =  bi...bm 
for t 2 - Let concat be a function concatenating sequences. Let i be the first occurrence 
of the longest prefix of a occurring1 in b. Let j  be the length of that prefix.

1 a message m occurs in a and b if there are messages ax and by such that ax = by.

Extract(Prune(C onstruct(F i, ..., Fn))),e)
if Fi, ...,Fn interact 

Extract((Fi U ... U Fn), e)
otherwise
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b, b n f 1 int

Fig. 5.2: Overlapping Interleavings

Definition 5.4.1 A trace t is an overlapping interleaving of t\  and ti, if and only if 

t = conca t(b i...b i-i,f(i,j,a ,b ),in t(a j+i...an,bj+i...bm))

where the function / ,  which computes the event sequence arising from the prefix, is 
defined as follows:

f t '  i j bi if fli — bi/ ( z , l , a , 6 )  =  {
bidi if ai = b{

concat(f(i, j  — 1 , a, b), aj) if a,j = bi+j-1

conca t(f(i,j — 1 , a, b), aj, bi+j-1) if aj = bi+j-1 and
aj is an output message 

concat{f(i, j  — 1 , a, b),bi+j- \ ,a j )  if aj = bi+j-\ and

bi+j- 1  is an output message

and the function int, which computes an interleaving is defined as follows:
i n t ( s \ , s n), an interleaving of sequences s \ , . . . ,s n with length | s i | , | s n |
respectively, is a new sequence S  such that

• isi = X > i,
i= l

•  Va : (a G S) (a G Si V ... V a G sn),

• the relative order of the elements is preserved in S (i.e. if an element a occurs in
a sequence before b, then they do so in S).

We are now in a position to present some examples which illustrate the above
definition. For readability we do not show the event value.

Example 5.4.1 oi2(t^e+ t^ )  =  the set of all overlapping interleavings between t(6) and t f jy
Note that the o-busy output of t (6) is input to t(7). The longest prefix of t(7) in t(6) is the
sequence (oJbusy), occurring at position 4 in £(6). There are several t 6  oi2(t^6y t ^ ) ,  as we 
shall show:
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£ =  concat(+i-alert — o-request + i-alert,
in t(+ iJnform  — display, —ojalert — billing, forwarded — o .notify))

=  concat(+i.alert — o.request +  i.alert — o.busy +  o.busy,
in t(+ i.in form  — display, —o.alert — billing .forwarded — o.notify))

As int can return ten different values, we obtain ten different traces t that are overlapping 
interleavings of the two input traces. All ten traces have the common prefix 
+i.alert — o.request +  i.alert — oJbusy +  o.busy, 
their respective endings are:

+  i-inform  — display — o.alert — billing .forwarded — o.notify  
+  i-inform  — o.alert — display — billing, forwarded — o.notify  
+  idn fo rm  — o.alert — billing, forwarded — display — o.notify  
+  i.in form  — o.alert — billing .forwarded — o.notify — display
— o-alert + i-inform  — display — billing, forwarded — o.notify
— ojalert + i.in form  — billing, forwarded — display — o.notify
— o.alert + i.in form  — billing .forwarded — o.notify — display
— ojalert — billing .forwarded + i.in form  — display — o.notify
— o.alert — billing .forwarded +  i.in form  — o.notify — display
— o.alert — billing, forwarded — o.notify + i-inform  — display

5.4.2 Overlap

The function overlap(t\, ...tn) returns the set of all “overlapping interleaving” 
sequences that can be generated from the ti in the input. This includes all those 
generated from just 2 traces, those from 3 traces, up to those from n traces. We first 
consider the function, oz2 , that computes all “overlapping interleavings” of 2  traces 
and then build up a function for n  traces.

Assume that T ( t i , t 2 ) — {t \ t is an overlapping interleaving of t\ and £2 }- 

oi2 returns either an empty set or a set of traces as follows:

oi2(t =  I  ^  if  V(*’•?)•(* ^  3 ) A G V -a  €  ttf))  - »  -Ht = F irst(tj)
lj 2 \  T (t 1 , t2 ) otherwise

Example 5.4.2 A trivial exam ple overlapping interleaving is: 
o i2 (£ (!),£(5 )) =  {}  Reason: The alphabets are distinct.

However,
o£2 (£(6 ) , £(7 )) and o£2 (£(!),£(3)) are non-empty because the output of £(6 ) is input to  £(7) and 
£(i) and £(3 ) have a common input.

Finally we consider the general overlap function, operating on n traces (n > 2). We 
distinguish two cases:
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a) if n = 2
overlap(ti, =  o i2 (ti,tn)

b) otherwise
/  n

overlap(ti,...,tn)=  ( | J  [ |J { < » 2 ( t i ,  t)\t G overlapfa , ..., f;_i, t < + i , t n)}
for all t i = l

U ( [J  overlap(ti, ...,tn)
v* = l

In words, we successively choose all subsets of the given set of traces with exactly 
one element less. We then compute all overlaps of this subset. In the case of the set 
containing two elements we have encountered the case where we simply apply oi2 to 
the two traces. If there is more than one trace, we recursively choose all subsets with 
one element less and compute their overlaps. In the recursive case each trace of the 
set of computed overlaps is overlapped again using oi2 with the trace that was not 
included in the subset. Thus we obtain the set of all overlaps as required.

5.4.3 C onstruct

Let tij be the j-th message of the i-th feature. Recalling that features are sets of traces, 
| i s  the number of traces of feature Fi by use of standard notation.

Construct(F \ ,..., Fn) = SingleFeat{F \ ,..., Fn) U M ultipleFeat(F i, ..., Fn)
n

SingleFeat{F \ ,..., Fn) = Fi
i= 1
|F i|* ...* |F n |*n!

M ultipleFeat(Fi, ...,Fn) = ( J  overlap(tgj, ...,thk)
i= 1

We assume the following conditions on the variables: g ^  h and g ,h  € {l..n} and 
j  e  { l..|F5|} and k G { l..|F h|}.

Example 5.4.3 This example constructs the solution space from the Calling Number Display 
and Call Forwarding on Busy features.
Construct{FcND, F c f b ) =  SingleFeat(FcND> F c f b ) C

MultipleFeat(FcND, Fc f b )
=  F c n d  U F c f b  U overlap^ ) , < (7)) U overlap(t{6), t (7))
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5.5 Application to Running Example

An implementation of this specification has been developed using the Python [Pyt] 
programming language.

In example 5.5.1 we show some sample output. This example shows the complete 
solution space for the Calling Number Display (CND) and Call Forwarding on Busy 
(CFB) features defined in section 3.2. Note that traces 0 to 9 are the traces belonging 
to the set M ultipleFeat and the remaining are those of the SingleFeat. In particular 
trace 10 is the original trace from the CFB feature, traces 11 and 12 are from the 
CND feature. Note that neither extraction nor pruning has been applied, hence the 
complete solution space is returned.

Example 5.5.1

+-------------------------- pretty print traces
| +--------------------the feature manager
I |---+---------------- extraction off
| | | +------------- pruning off
I I I I  +---------- trigger event, only relevant if extraction is on
I I I I I + ---- the two features CFB and CND
I I I I I I

» >  print(fm(0, 0, "a", thcfb, thcnd))
These features interact, finding resolution ...

0 : (+,i _ a l e r t o _ r e q u e s t ,id)(+,i . a l e r t o . b u s y ,-)(+,o.busy, -)
(+,i.inform,id)(-.o.alert,-)(-,billing_forwarded,D)(-,o.notify,D) 
(-.display,id)

1 : (+,i.alert,-)(-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
(+,i.inform,id)(-.o.alert,-)(-.billing.forwarded.D)(-.display,id) 
(-,o_notify,D)

2 : (+,i.alert,-)(-.o.request,id)(+,i.alert,-)(-.o.busy,-)(+,o.busy,-)
(+,i.inform,id)(-.o.alert,-)(-,display,id)(-.billing.forwarded.D) 
(-.o.notify,D)

3 : (+,i.alert,-)(-.o.request,id)(+,i.alert,-)(-.o.busy,-)(+,o.busy,-)
(+,i.inform,id)(-.display,id)(-.o.alert,-)(-.billing.forwarded.D) 
(-.o.notify,D)

4 : (+,i.alert,-)(-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
(-,o.alert,-)(+,i.inform,id)(-.billing.forwarded.D)(-,o.notify,D) 
(-.display,id)

5 : (+,i.alert,-)(-.o.request,id)(+,i.alert,-)(-.o.busy,-)(+,o.busy,-)
(-,o.alert,-)(+,i.inform,id)(-,billing.f orwarded,D)(-,display,id) 
(-.o.notify,D)

6 : (+,i.alert,-)(-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
(-,o.alert,-)(+,i.inform,id)(-,display,id)(-.billing.forwarded,D) 
(-.o.notify.D)

7 : (+,i.alert,-)(-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
(-.o.alert,-)(-.billing.forwarded.D)(+,i.inform,id)(-.o.notify,D)



C hapter 5. P otential R esolutions 51

8 :

10
11
12

(-.display,id 
(+,i_alert,-) 
(-,o_alert,-) 
(-,o_notify,D 
(+,i_alert,-) 
(-,o_alert,-) 
(-.display,id 
(+,o.busy,-)( 
(+,i_alert,-) 
(+,i_alert,-) 
(-.display,id

-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
-,billing.f orwarded,D)(+,i.inf orm,id)(-,display,id)

-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,o.busy,-)
-,billing.f orwarded,D)(-,o.notify,D)(+,i.inform,id)

.o.alert,-)(-.billing.forwarded.D)(-,o.notify.D) 
-.o.request,id)(+,i.inform,id)(-.display,id)
-,o.request,id)(+,i.alert,-)(-,o.busy,-)(+,i.inf orm,id)

5.6 Discussion

The specification of the solution space leads us to a clear understanding of the 
solution space and in particular highlights how traces from individual features can 
be interleaved. This also provides a picture of the complexity; namely that the 
solution space increases exponentially in the number of features and  the length of the 
interleaved part of the traces. The solution space provides a basis for the development 
of extraction and pruning methods.

We require two distinct methods to obtain resolutions from the solution space: pruning 
by general rules which removes traces illustrating “bad” behaviour and extraction 
which identifies “good” behaviour. The pruning rules express message patterns, like 
“two consecutive announcements are not allowed” or “an onhook followed by a number 
of messages can only be followed by another onhook if the messages contains an 
offhook” . Because these patterns do not relate messages to features, we refer to them 
as general rules.

We can identify two weaknesses with this specification.

First, the notation is precise but not expressive enough. For example, we require a 
way to express looping behaviour in some features (as is the case for three way calling 
when users can toggle several times between partners).

Second, when constructing the overlapping interleaving, we violated our key 
assumption of not knowing the internal behaviour of features. Thus it is difficult 
to see how this approach helps to fulfil our aim, namely the development of an online 
feature manager that can handle black box features.

So, rather than defining pruning methods for this specification, we will reconsider the 
specification, thus addressing the above weaknesses.
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5.7 Operational Specification

When developing the specification of the solution space we have mainly concentrated 
on what the solution space is. However, in the context of the transactional approach 
it is very important to see how we obtain the solution space, that is the operational 
aspect is very important.

From the conclusions above it is clear that the notation is not suitable. A suitable 
notation should:

• offer a natural way of expressing events (or messages) as basic concept,

• allow looping behaviour of features to be expressed,

• include (or allow definition of) tree data types (to handle the solution space)

In addition it would be preferable to have some of the following:

• a recognised notation (maybe even standardised)

• tool support for the notation (for simulation and verification)

After considering various formal notations, process algebras seem a natural choice. 
The basic terms in process algebras are actions which are combined by sequencing and 
choice operators. Sending or receiving messages can be treated as events. Parallelism 
operators seem a useful way to describe interleavings. The requirement for complex 
data types suggests L o t o s  [IS089]. L o t o s  combines process algebra with an algebraic 
data type definition language (Act One). Furthermore, L o t o s  is standardised by 
the International Organization for Standardization (ISO-8807) and well known in 
the telecommunications area. Extensive tool-sets for verification and simulation are 
available in the form of C a e s a r / A l d e b a r a n  [CAD] and T o p o / L o l a  [LOL].

An extensive case study [ReiOl] was performed, in which a L o t o s  model of a feature 
manager and the features from the second contest was developed. The solution space 
is implemented as a tree datatype and simple extraction rules are defined to reduce 
the solution space.

L o t o s  seems a good choice to perform the task at hand, but several problems were 
encountered: the model was too large to be handled effectively for verification by the 
tools. In addition our verification would require reasoning about the tree data type, 
whereas the available tools are aimed at reasoning about processes and not data types.

Customising the model to handle different numbers of features is not straightforward, 
as each feature introduces additional events in the feature manager process and several 
other aspects of the model must be adapted to cope with any given number of features. 
This was automated by a script, and thus presents only a minor drawback.
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Most significantly, reducing the solution space is intended to be implemented 
exclusively as functions on trees. Pruning adds a significant amount of data type 
definitions as a complete method for defining regular expressions and finding matches 
to the same in the solution space is required. Considering that a model containing three 
features amounted to roughly 30 pages of L o t o s  code, half of which was definition of 
messages and trees not including pruning the additional increase suggests that L o t o s  

would be unsuitable in this case.

Considering these results, an alternative notation was found in Haskell [Tho99, Has] 
together with the Hugs in te r p r e te r  [Hug] and the Glasgow Haskell Compiler [ghc]. 
Functional programming fulfils all of our requirements, apart from verification tools. 
However, functional programming naturally leads to inductive reasoning, so this is not 
a major drawback. Data type definitions are relatively straight forward in functional 
programming languages, leading to a clearer model and more efficient prototypes.

We now investigate the improved construction of the solution space using Haskell.

5.8 Haskell Implementation

The construction of the solution space follows Marples approach: The feature manager 
receives a trigger event which is issued to all features. Responses are collected and fed 
back to all the features until no further responses are received. During the feedback 
process the solution space is constructed.

5.8.1 M essages

Messages are defined in the Haskell module Message.hs. Three enumeration types 
provide values for events (type: Event), arguments (type Arg) and the IO-aspect (type 
Io). Natural equivalence and partial order relations are imposed on the three types 
(by membership in the respective Haskell classes). Messages consist of a quadruple:

type Message = (Io, Event, Arg, In t)

where the fourth argument represent the message destination. The destination field 
is used by the feature manager and the cocoons. A cocoon will ignore all messages 
where the destination value differs from 0 and its own identity value. This mechanism 
allows the feature manager to either target particular features (destination > 0 ) or 
broadcast messages to all features (destination = 0 ).

Example 5.8.1 The following are messages:
(Rev, Onhook, Nil, 0) and (Snd, Billing split, Splitfactor, 0).
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It is necessary to compare individual parts of a message with fixed values. Projection 
functions have been defined to extract the appropriate parts of the tuple. Equality 
tests on values of type Message are inherent.

Messages can be partitioned into feature messages and transaction control messages. 
The former are messages describing the intended behaviour of features and have been 
described in detail in Chapter 3. The latter, of which there are 4, are used by the 
feature manager to control the transactional cocoons. The functions is-tcmsg and 
is-fmsg tell us which class of messages a message belongs to.

5.8.2 Features and C ocoons

Features and cocoons are defined in the module F eatu res .hs. Recall that features are 
extensions to the basic behaviour of a system. We treat the basic system in the same 
manner as other features. Hence we essentially see features as a black boxes that react 
to a trigger event by providing a (possibly empty) response. Features are modelled as 
functions, and initial and final state of a transaction are passed as values. However, as 
this information will not be available in the operational system, the feature manager 
does not make use of it. Thus, the requirement of features being treated as black 
boxes is satisfied.

Definition 5.8.1 (Feature) A feature is a function:
featbehave :: Int —► Message —► Int —> (In t, Queue Message)
such that featbehave s m f  is the new state and the response of feature /  in state s to
message m.

Example 5.8.2 featbehave 1 (Rev, Dial, Nil, 0) 1 leads to a call of tl 1 (Rev, Dial Nil, 0), 
thus evaluating the behaviour from a teenline feature (which in the im plem entation is feature 

! ) •

featbehave returns pairs of the new state and the response of a feature. Note that 
features can be seen to have moved into a new state in their automata representation 
(or not), as well as produce an empty response or not. All combinations are possible:

Example 5.8.3
tl 1 (Rev, Dial, Nil, 0) (2 , enqueue emptyQueue (Snd, Announce, Wrongpin, 0))
bcs 1 (Rev, I-alert, Nil, 0) ~~+ (1, enqueue emptyQueue (Snd, O-busy, Nil, 0)) 
ct 7 (Rev, I-disconnect, Nil, 0) (0, emptyQueue)
tl 2 (Rev, Connect, Nil, 0) (2, emptyQueue)

Features are encapsulated in a transactional cocoon. The cocoon is the point of 
interaction of the feature manager with the feature. More importantly the cocoon 
controls the transactional mechanism that is used to explore possible behaviour by 
polling features reactions in order to construct the solution space. The control of the
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construction process is part of the feature manager process. Each cocoon is associated 
with a given feature throughout the runtime of the system.

Definition 5.8.2 (Cocoon) A cocoon is a function:
cocoon :: Int —► Stack Int —► Int —► Int —> Message —> RooZ

—» (Queue Message, CState) 
such that cocoon cs rb fid co m f  is the new state of a cocoon and the response of the 
associated feature obtained by featbehave cs m fid.

Definition 5.8.3 (State of a Cocoon) The state of a cocoon is a 4-tuple 
CState = (Int, Stack Int, Bool, Int)
containing the features current state, a rollback stack, a flag identifying whether the 
cocoon is in playback mode and the identity of the associated feature.

Rather than defining each of these elements more precisely we describe the behaviour of 
the cocoon. Upon receipt of a message the cocoon determines whether a transaction 
control message or a feature message has been received and whether the received 
message has indeed been targeted at this cocoon. If the message is not targeted at the 
cocoon it will simply be ignored, resulting in an empty queue and the current state of 
the cocoon being returned.

When a feature message is received, the cocoon may or may not be in playback mode. 
A cocoon in playback mode has the role of re-instantiating a certain feature state 
(usually after the feature manager has made a decision as to which features shall be 
executed and which blocked). In this mode no responses from the feature are collected 
(they will have been obtained earlier and are part of the stored resolution). Thus an 
empty queue and a new state of the cocoon are returned. If, more interestingly, the 
cocoon is not in playback mode, the return value is the response of the feature and 
the new cocoon state.

Upon receipt of a transaction control message if the cocoon is in playback mode and the 
control message is a CommiLtransaction message, then playback will have finished and 
an empty queue and a new state are returned. If we are not in playback there are four 
distinguished cases, dependent on the control message (we use the same messages as 
were advocated by Marples [MarOO]). All four cases return an empty feature response 
as the features play no role in this process. The state of the cocoons changes and the 
new state is returned.

• Start-transaction: A new transaction is started, and the current state of the 
cocoon is saved on the rollback stack.

• AborLtransaction: We are no longer interested in the whole series of 
transactions, hence the new state becomes the state of the cocoon before the 
first transaction: the bottom element of the rollback stack.
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• Rollback-transaction: We want to go back one level, i.e. undo the last 
transaction. The new state is obtained by popping the last element from the 
stack and making this the new state.

• CommiLtransaction: Committing a transaction requires the cocoon to be 
returned to its initial state. This can be achieved performing the same action 
as for AborLtransaction. Because the new state is not returned from construct 
the abort message is not actually sent. The cocoon enters playback mode, and 
the feature manager will now play back the messages so tha t features can be 
advanced to the correct states.

5.8.3 Feature Interaction

The earlier definition of feature interaction (Definition 5.3.4) must be slightly adapted 
to be useful within a Haskell setting. We do not have the same knowledge about 
features as was assumed earlier, namely we do not know the complete set of traces of 
a feature. The only information available is whether a feature reacts to a trigger event 
or not. The definition of feature interaction is equivalent to the intuitive understanding 
of Definition 5.3.4:

Definition 5.8.4 (Feature Interaction) Features interact iff
• more than one feature has responds to a trigger message, or

• a response is received upon feeding a response back to the features.

The first case simply means that more than one cocoon has returned a non-empty 
queue as response to a feature message. The second case means that a feature has 
responded with a message that acts as trigger to another feature. Note that these two 
cases can occur in any order, between any number of features and in any quantity. 
For example the original trigger might just produce one response, but the feedback 
thereof leads to several features responding. The new feedback can again produce 
more responses. This process could be potentially infinite (call forwarding loops in 
systems with single point of call control for example) so an operational system would 
require the amount of feedback allowed to be restricted. We return to this issue in 
Chapter 7.

Note that no judgement about the desirability of the interaction is made at this 
point: the responses can clash thus leading to inconsistent behaviour or they can be 
complimentary and co-exist without any problems. Pruning will handle inconsistent 
behaviour and we investigate this later.

5.8 .4  T he Feature M anager

The role of the feature manager is to detect and resolve interactions, as specified 
earlier. In addition, the feature manager has to control the transactional cocoons as 
part of the feedback process and the rollback and commit mechanism.
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Definition 5.8.5 (Feature Manager) The feature manager is a function
fm  :: [CState] —► Message —>• RegExpr Message —> Augtree Message
such that /m  fs m rules is a resolution to any potentially detected interactions
observing the rules rules in a system with features fs.

The feature manager is implemented as :

f m f s  m rules = extract (prune (extractdup (construct fs m)) rules)

The functions extract, extractdup and prune which identify a resolution in the solution 
space are to be refined in Chapter 6 . The next two sections will address the problem 
of committing a resolution and the construct function. The feature manager and all 
listed subfunctions are defined in the Haskell module Main.hs.

5.8.5 C om m itting a R esolution

Assuming that we have identified a single resolution (the solution space consists of a 
tree with a single leaf node), we need to consider how this resolution is committed to 
the system.

In the process of constructing the solution space, features are queried repeatedly about 
responses to messages and we don’t know which state they are currently in. W hat we 
do know however, is that we can return them to their former state (i.e. the state they 
had before the trigger event was received). Committing the chosen resolution involves 
sending the respective responses to the user and/or remote switch and updating some 
features to a new state.

The function commit has the purpose of doing this:

commit :: Augtree Message —> [CState] —* ([Message], [CState])

The commit process is initiated by the feature manager issuing a Commit-transaction 
message to all features and is terminated by a second such message (we could have 
used a different message, but decided to not introduce any further messages).

5.9 Construction of the Solution Space

The complex construction process has been split into several functions. 

construct :: [CState] —> Message —> Augtree Message

is the main function. The solution space is constructed from a list of current cocoon 
states and a message. Figure 5.3 provides an overview of sub-functions. We briefly 
describe the purpose of the individual functions before describing the most interesting 
one, feedback in more detail.
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construct

toallcocoons construct 1

feedbackctrl toallcocoons

feedbackctrll m ak e fla g s

. feedback.

nonemptyQs emptyQs allQsEmpty toallcocoons choosesome getMsgFromQ appendQs

getChosenMsg

remFromAUQs

Fig. 5.3: Hierarchy of Functions in the Construction Process

construct returns the solution space obtained by constructl and initiates the 
transaction management.

constructl gathers responses to the trigger event and then initialises the feedback 
process. It also inserts the trigger message as root in a new tree.

toallcocoons enables a message to be passed to all cocoons and then for the responses 
to be returned.

feedbackctrl assures that feedback is run the required number of times with the correct 
arguments. Depending on the number of features different cases have to be 
explored. In particular we must explore all branches involving 1 feature, then 
all those involving any combination of 2 features, and then all those with 3 and 
so on. This is achieved by passing the list of flags, generated by makeflags to 
feedbackctrll which controls the actual feedback process.

makeflags guarantees that all permutations of features are explored. A list of 
multibit-flags is generated. Each flag represents a feature being enabled or 
disabled. The case of all features being disabled is obviously not interesting, 
and so is not considered. For example, the set of flags for 2 features is 
[[True, False], [False, True], [True, True]].

feedback controls the rollback process, initiates the feeding back of messages to 
features and inserts responses into the tree. We will consider this process in 
more detail in Section 5.9.1.

nonemptyQs counts the number of non-empty queues in a list of queues.

emptyQs returns a list of empty queues, it basically empties all queues in the input 
list.
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allQsEmpty reports whether all queues in a list are empty.

choosesome allows one to disregard replies from some features. As we cannot 
physically disable the features, it seems easiest to simply ignore their responses.

getMsgFromQ controls the extraction of a message from a particular queue.

getChosenMsg extracts a message from the head of a particular queue.

remFromAUQs removes a particular message from all queues in which it occurs as 
front element.

appendQs appends the content of queues in one list to the queues at the same position 
in a second list to obtain a list of merged queues.

To summarise, construct initiates the whole construction process, a new tree is 
constructed with the trigger message as root node. Then all settings of different 
features are explored by feedback whereby feedbackctrl ensures that all possible settings 
have been considered. The resulting solution space contains the branches that have 
been added by the individual feedback processes. Note that this can lead to duplicate 
subtrees. For example, consider a system containing 3 features / i ,  and /b, in which 
only / i  and fo react to the trigger event. In this setting we would expect that the 
traces generated with all three features enabled are the same as those with only f \  
and / 2  present. Traces with 2 features present one of which is fs  will be equal to those 
with just the other feature present.

5.9.1 Feedback

Feedback has to ensure that all possible interleavings of the responses are explored. 
We have decided on a fine grained interleaving, that is any order of the responses must 
be explored, independent of the feature which sent them. Responses will be added to 
the message queues and it is irrelevant whether responses in the queues occurred as 
result of the first trigger or of any subsequent feedback.

Recall that all combinations of any number of features have to be explored, including 
those involving only one feature.

Feedback has been split into two parts: feedbackcontrol which controls the exploration 
of the different combinations of activated features, and feedback which ensures the 
correct construction of a tree with a certain number and combination of enabled 
features .

feedback is a function that takes a multibit flag representing the enabled status of 
the features, a list of message queues (one queue per feature), the current state of 
the features, the solution space constructed so far, an integer representing how many 
branches have been explored so far and a state stack. The feedback function returns 
the solution space with any new solutions inserted together with the new state of
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the features. The reason for the inclusion of the state stack as input may not be 
immediately obvious. It is used to store state information and contains the old message 
queues as well as how many branches have been explored starting from these queues. 
Note that the stack does not store the state of the features (this information is handled 
by the cocoons).

feedback :: [Bool] —» [Queue Message] —> [CState] —> (Augtree Message) —* Int
—► StateStack —► (Augtree Message, [CState])

such that feedback bs qs fs t c is the solution space with all traces obtainable from qs 
and the enabled fs  inserted.

feedbackctrl calls feedback several times, once for each combination of enabled features 
(as represented by the list of multibit flags). The variable c denotes the number of 
currently explored branches, and is initially set to 0 .

Let us now consider the details of feedback. We distinguish 4 cases:

1. All message queues are empty and the state stack is empty,

2 . All message queues are empty and the state stack is non-empty,

3. At least one message queue is non-empty and c is less than the number of 
non-empty message queues,

4. At least one message queue is non-empty and c is equal to the number of 
non-empty message queues.

An example will illustrate these cases. Assume a system with three features, starting 
from a point in the system where the features have received a trigger and the message 
queues containing the responses are: Q1 =  [a, b, c], Q2 = [b,d] and QS = [e]. The 
value of c is 0, i.e. no branches have been explored yet. Further assume that we are 
currently interested in the case were all three features are active. Let Cl,  C2  and CS 
represent states of the three cocoons, so the current state stack and to the solution 
space constructed so far. Feature 3 reacts to receiving a message a with the response 
/  and no other features respond to any message. For the changes to the stack and 
tree we refer to Fig 5.4 and its continuation in Fig. 5.5. The bottom half of the figures 
represents the stack, the top half the tree. The node labelled M represents the insertion 
marker.

Example 5.9.1
feedback [T, T, T] [[a, 6 , c], [b, d], [e]] [Cl, C2, C3] to 0 so

This is an instance of the third case: there is at least one non-empty message 
queue and c is less than the number of non-empty message queues.
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Fig. 5.4 : Feedback: Solution Space and Statestack 1

Fig. 5.5 : Feedback: Solution Space and Statestack 2

We are required to pick one message from a non-empty queue, insert this message 
into the tree and feed it back to the features. Before the message can be fed back, 
a new starLtransaction message needs to be sent to instruct the cocoons to save all 
respective information for a potential rollback. The new responses must be collected 
and added to the message queues. Feedback will be recursively performed after the 
current state has been stored on the stack.

Because c =  0, the message must be chosen from the first non-empty queue, giving us 
the following:

Example 5.9.2
feedback [T, T, T] [[6 , c], [b, d], [ej]] [Cl, C2, C3] tl  0 si
Note that Feature 3’s response /  has been added to the third queue.
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Clearly we can continue in the same way for some more steps:

Example 5.9.3
feedback [T, T, T] [[c], [d], [e,f]} [Cl, C2, C3] t2 0 s2
Note that b has been removed from all queues where it occurred as head, thus implementing 
the overlap as discussed in section 5.4. The feedback process continues as follows:

feedback [T, T, T] [Q, [d], [e,f]} [Cl, C2, C3] tSOsS 
feedback [T, T, T ] [0, 0, [e,/]] [Cl, C2 , C3] *4 0 s4 
feedback [T, T, T] [[], Q, \f}] [Cl, C2, C3] *5 0  s5 
/eedftacA: [T, T, T] [0, 0, []] [Cl, C2 , C3] t6 0 s6

We are now in a position where all message queues are empty and the state  
stack is non-empty (case 2). No feature has responded to the most recent event 
(either the trigger or a fed back response) and all previous responses have already 
been fed back. However we can rollback to a previously stored state by popping the 
topmost state from the stack. We then reinstantiate feedback.

To rollback, the state of the message queues and number of explored branches are as 
popped from the state stack. The cocoons are sent a rollback message so that they 
can restore previous states of the features. It only remains to shift the insertion point 
in the tree: movemarker moves the InsMarker M leaf up one level in the tree so that 
it becomes a child of its current grandparent.

The InsMarker M denotes the point at which the next node should be inserted. This 
insertion point is always the leftmost leaf of the leftmost branch (a decision made for 
efficiency reasons; accessing elements at the start of a list is fastest in Haskell). During 
rollback, if the insertion point is the root of the tree, we cannot move any further up, 
so we are done. If the insertion point is a leaf of the root node again we cannot move 
up. If the insertion point is at least two levels down in a tree we have to distinguish 
whether it is exactly two levels down or whether it is even further away. In the latter 
case we recursively call movemarker to have the marker moved. If it is exactly two 
levels down from node n (this can also be the root node), we insert the marker as a 
new child of n  and remove the marker from its previous location.

Now, we call feedback again:

Example 5.9.4
feedback [T, T, T } [0, Q, \f}] [Cl, C2 , C3] t l  1 s7

Now at least one message queue is non-empty and c is equal to the number 
of non-empty message queues (case 4). We have explored all possible behaviours 
from the current position and simply need to rollback further. This is achieved by 
recursively calling feedback with the current arguments ensuring that the queues are 
emptied first. This results in the following sequence of calls:
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Example 5.9.5
feedback [T, T, T] [[], 0, []] [Cl, C2, C3] t7 1 s7
feedback [T, T, T] [0, Q, [e,/]] [Cl, C2, C3] t8 1 s8

feedback [T, T, T] [Q, 0, []] [Cl, C2, C3] t8 1 s8

feedback [T, T, T} [0, [d], [e,f]\ [Cl, C2, C3] t9 1 s9

At this point c is again less then the number of non-empty queues, which means that 
there is a possible interleaving that has not been explored. Since c =  1 this interleaving 
is obtained by picking the message from the second non-empty queue. This results in 
the following sequence of calls:

Example 5.9.6
feedback [T, T, T] [0, [d], \f}] [Cl, C2, C3] tlO 0 slO
N ote that we entered a new level w ith no possibilities explored, hence c is again 0.
feedback [T , T, T] [[], [], [f]} [Cl, C2, C3] t i l  0 s ll
feedback [T, T, T] [0, 0, []] [Cl, C2, C3] tl2 1 s l2

feedback [T, T, T] [[], D ,  I/]] [Cl, C2 , C3] il3 1 sl3
feedback [T, T, T] [ Q ,  D ,  []] [Cl, C2 , C3] 113 1 sl3
feedback [T, T, T\ [0, [d], \f]} [Cl, C2, C3] tl4 1 sl4
feedback [T, T, T] [0, [d], 0] [Cl, C2 , C3] tl5 0 sl5
feedback [T, T, T] [0, Q, []] [Cl, C2, C3] tl6 0 sl6
feedback [T, T, T] [0, [d], Q] [Cl, C2 , C3] tl7  1 al7

This process continues until all m essage queues are  em p ty  and  th e  s ta te  s tack  
is em pty . This is the case 1 and arises when no feature has responded to the most 
recent event and all previous responses have already been fed back. The empty stack 
indicates that we cannot rollback any further. Consequently, we know that we have 
finished and hence all that remains is to return the tree and the current state of the 
features.

5.10 Application to Running Example

So far we have described the construction of the solution space in the Haskell 
implementation by showing isolated parts and explaining some of those with the help 
of small examples. In this section we will show a more complex construction to provide 
the complete picture.

Recall the implementation of the feature manager:

fm  fs m rules — extract (prune (extractdup (construct fs m)) rules).
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For the purpose of this example we assume that extract, prune and extractdup are 
identity functions (i.e. we only want the feature manager to construct the solution 
space).

main = fm  [(0, emptyStack, False, 2 ), — Call Forwarding Busy in State 0
(1, emptyStack, False, 7)] — Calling Number Display in State 1
(Rev, I-alert, Nil, 0) — Lalert as trigger message
(MkRE (Snd, Onhook, Nil, 0)) — dummy, pruning is disabled

This example call constructs the solution space for the Call Forwarding Busy and the 
Calling Number Display feature. CND is in a state where it responds to Lalert by 
producing a trigger for CFB. The expected output is a tree containing two solutions: 
one solution representing the interleaved behaviour and one for the behaviour of CND 
(i.e. when CFB is disabled). The case when CND is disabled does not lead to the 
construction of a solution, as CFB does not react to the provided trigger.

hugs > main

((Rev,I_alert,Nil,0),{0>) [((Snd,0_busy,Nil,0),{1})
[((Snd,0_alert,Nil,0),{2>)

[ ((Snd,Billing_forwarded,N i l ,0),{ 2 »  
[((Snd,0_notify,Nil,0),{2» []]]] 

((Snd,0_busy,Nil,0),{1»[]
]

The output is illustrated in Fig. 5.6.

Fig. 5.6 : Solution space constructed for CND and CFB using Feedback

Note that the output differs marginally from the result produced in section 5.5. These 
differences occur because we only have a very restricted view of the feature behaviour 
in the implementation whereas in the specification a complete knowledge was assumed.
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5.11 Summary

We introduced the notions of solution, solution space and resolution. A specification 
and implementation for the construction of the solution space was completed with 
applications to the running example.



Chapter 6

R esolution

6.1 Introduction

In the previous chapter we constructed all possible solutions. However, recall that 
solutions are not necessarily resolutions for a feature interaction. Recall that a 
resolution is a solution that does not violate any of the specified properties. Hence it 
remains to remove all those that don’t form resolutions from the solution space giving 
us a resolution space. We can then extract the best resolution.

In this chapter we discuss how we can distinguish bad and good solutions, and also 
how we find the best resolution. The term pruning is used to describe operations 
that remove bad solutions, operations identifying the best resolution are referred to 
as extraction. Each operation is based on a rule which has been derived empirically 
by analysis of examples. Application order is significant.

We consider how resolution fits into the overall runtime approach. A simple 
composition of construction and pruning is briefly considered, followed by a more 
efficient on-the-fly approach.

6.2 Identifying Resolutions

We base the operations of pruning and extraction on rules. The purpose of the rules 
is to discriminate between bad and good solutions and also to describe the quality of 
resolutions. Recall that the rules are identified by an offline analysis of the behaviour 
of the model, as described in sections 4.2 and 4.3.

Rules can take different forms and this section provides only an overview, details are 
explored in the following sections. Two classes of rule can be distinguished: message 
dependent rules and message independent rules. Examples describing concrete good 
or bad behaviour constitute a further class; however, they are of little interest, and 
hence we will not consider them further.

Message independent rules can include concepts such as priorities of features and 
the satisfaction of the maximal number of features. A feature is considered to be 
satisfied when its intended behaviour can be exhibited, and clearly it is best to choose 
a resolution that satisfies the largest number of features. Message independent rules 
are used for extraction of the best resolution.
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Fig. 6.1 : The Constructed Solution Space for Example 6.3.1

Message dependent rules can be seen to be more powerful, but they also require more 
information. In order for message dependent rules to be useful, a semantics on the 
messages is required. This allows one to develop relations on messages, such as a 
class of treatments, or a class of billing messages. This understanding enables us to 
build grammars describing good or bad behaviour, for example “a treatment following 
an onhook message is not useful unless there was an offhook in between” . Message 
dependent rules are used for pruning the solution space.

In section 6.4 we will consider extraction rules and in section 6.5 we will discuss 
pruning and its implementation.

6.3 An Example

Throughout this section we consider the following example to illustrate the application 
of the different rules.

Example 6.3.1 Assume the presence of four features in the system: Teenline, Split Billing, 
Reverse Charging and Terminating Call Screening. Teenline is initially in state 1, the others 
are in state 0. The trigger event is dial. From the feature definitions (Appendix A) we know 
that the first three features react to a dial trigger in the given states, TCS does not react to 
this trigger. The respective responses are: announce(wrongpin), billingsplit(splitfactor) and 
billing-reverse. Feedback does not lead to any further responses.

Figure 6.1 gives an indication of the complete solution space as constructed by the 
method described in Sections 5.8 and 5.9. Note that throughout this chapter we 
have labelled the branches rather than the nodes of the trees, thus the figures deviate 
slightly from the actual solution space data structure -  we assume the relation to be
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obvious. As the labels are barely visible, the tree has been colour and pattern coded: 
branches labelled by the same messages are assigned the same colour and pattern. We 
will use this colour/pattern encoding throughout the remainder of this chapter. The 
assignment of colours and patterns to messages is as follows:

announce(wrongpin) blue dotted
billingsplitfsplitfactor) green solid
billing-reverse red dashed

The implementations of fm  and extractTree have been adapted to the particular 
rule that we wish to apply. We will demonstrate these implementations 
with respect to four different rules in the subsequent sections.The function 
fm  fs m rules is initialised with the following parameters to encode the example: 
fs = [(1, emptyStack, False, 1),(0, emptyStack, False, 3), (0, emptyStack, False, 4), (0, 
emptyStack, False, 5)] and m = {Rev, Dial, Nil, 0). The rules parameter is only 

relevant when pruning is applied.

6.4 Message Independent Rules -  Extraction

Message independent rules are characterised by not requiring any information about 
the semantics of the messages. Thus, they can be applied to a solution space without 
any knowledge of the messages occurring therein. However, it is assumed that a 
comparison between messages is possible and that we are able to differentiate between 
messages from different features (i.e. we know which messages originated from the 
same feature).

6.4.1 D uplicates

In Section 5.9 we have mentioned that the solution space might contain several 
duplicate branches. Consider the example again: assume 3 features ( /i , / 2 , fs) two 
of which ( /i  and / 2 ) respond to the same trigger. It is to be expected tha t a branch
corresponding to this trigger with all three features active is identical to one with
feature fs  disabled. Furthermore any branch with two features active, one of which is 
fs , is identical to the branch with just the other feature active.

Rule 1 Duplicate subtrees sharing the same parent can be removed.

Removal of duplicates as been implemented as a function on the tree datatype: 

extractdupTree :: Ord a  => Augtree a  —> Augtree a.

The recursive implementation is rather obvious. Note, that if a tree is an InsMarker 
-  denoting the point for the next insertion -  it can be replaced with an EmptyTree
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Fig. 6 .2 : The Constructed Solution Space for Example 6.3.1 with Duplicates 
Removed

as we do not wish to perform further insertions (recall that the solution space has 
been completely constructed1). Applying extractdupTree operation to the example 
tree (Fig. 6.1), we can reduce the tree to Fig. 6.2. The respective equation of fm  is: 
fm  fs m rules = extractdup(construct fs m).

Obviously a duplicate branch will not provide a new solution, so all duplicates can 
safely be removed. Hence, Rule 1 is considered safe. It is advisable to apply this rule 
straight after the construction is completed in order to reduce the complexity of the 
tree and make the other, subsequently applied, operations more efficient.

6.4.2 Satisfying Features

A feature is satisfied by a trace when its intended behaviour is exhibited. So, if a 
feature f \  responds with messages a i, <22 and <23 in that order, every trace in the tree 
containing these messages in that order satisfies Feature f \ .

The construction of the solution space maintains the relative order of messages as 
intended by a feature. However, the messages can be arbitrarily interleaved with 
responses from other features. If feature f^ responds with 61 and 62 then some possible 
traces satisfying both f \  and / 2  are a \.<2 2 .0 3 . 61.62 and a1 .b1 .b2 .a2 .a3 , but a1 .b2 -b1 .a3 .a2 

is not acceptable.

A user subscribing to a number of features would expect all to work. We have seen 
that this is not always possible (by definition of the feature interaction problem), but 
we want to satisfy as many features simultaneously as possible.

1 The InsMarker could also be replaced at the end of the construction phase
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Rule 2  Traces containing messages from the largest possible number of features are 
better.

Again, this rule has been implemented as an operation of the tree data type. Note 
that the tree datatype carries information about the origin of each message, as we 
have indicated earlier, i.e. every node contains the message and a number identifying 
the originating feature.

The implementation requires two passes through the tree. In the first pass a list 
containing the number of different features in each trace (starting at the root and 
ending in a leaf) is constructed. The second pass removes all branches that lead to a 
leaf for which the number of features along the trace is less than the maximum value 
in the list.

Let us consider the implementation in slightly more detail. The multiple passes 
required are represented by the application of several functions. In particular 
the function exmostsat 1 :: Ord a  =>- Set Int —> AugTree a —► [Int] —> [Int] 
produces the list of features satisfied along all traces. 
exmostsat2  :: Ord a => Augtree a  —* [Int] —> Augtree a  removes the unwanted 
branches. The main function uses the two subfunctions to perform the extraction of 
the branches with the most satisfied features:

exmostsat :: Ord a => Augtree a  —> Augtree a  
exmostsat t =exmostsat2  t (exmostsat1 empty Set t [])

Applying this operation to the solution space of example 6.3.1 (Fig. 6.1), we can 
reduce the tree to that shown in Fig. 6.3. The respective definition of fm  is: 
fm  fs m rules = extract (construct fs m) where extractTree t = exmostsat t.

In contrast to removing duplicate branches, this extraction method is unsafe, as it 
removes resolutions.

Due to the unsafe nature of this operation an application to the unpruned tree is 
not advisable. Consider for example a tree which contains a trace involving messages 
from 4 different features, whereas all other traces involve less features. Clearly the 
trace satisfying 4 features will be the only one retained after applying Rule 2. Now, 
consider that this branch may contain conflicting messages, i.e. it represents unwanted 
behaviour, which means we have not been able to find a resolution. From this example 
we deduce that Rule 2 must be applied after the pruning process (see section 6.5),
i.e. to the resolution space rather than the solution space.

6 .4 .3  P r io r i t ie s

A simple, but nevertheless effective method of extraction is prioritising features. We 
do not possess information about features’ identities per se, but we do know their
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Fig. 6.3 : The Constructed Solution Space for Example 6.3.1 after Extracting Traces 
Satisfying most Features

relative position in the network. For example, we know that a message has been 
received from feature fi, but we do not know the identity of feature fi (i.e. whether 
fi is call waiting, three way calling or any other feature). We refer to i as the features 
connection number.

A simple precedence scheme is as follows: Let features with a low connection number 
have higher priority. Assume that the lowest connection number is 1. This definition 
implies that trace i has precedence over trace j  if trace i satisfies feature 1. We can 
continue this by saying that from the remaining traces those satisfying feature 2  are 
preferable to all remaining ones and so on.

Rule 3 Traces satisfying features with the highest priority are preferable.

Clearly this scheme could be extended to a system of weighted priorities in which 
each feature has an associated weight (where the features with the highest weight are 
preferable). Each trace would then have a weight equal to the sum of the weights 
of the features satisfied by that trace. The trace with the highest weight would be 
preferred.

We have implemented these two ways of prioritising features, extraction by priority 
by connection number and extraction by priority by weight. The respective function 
declarations are given below and the results of applying these versions of the rule to 
the example can be seen in Figs. 6.4 and 6.5:

expriobynumber :: Ord a => Augtree a  —> Augtree a  

expriobyweight :: Ord a  =>- Augtree a  —* [Int] —> Augtree a
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Fig. 6.4 : The Constructed Solution Space for Example 6.3.1 after Extraction by 
Priorities by Connection Number

fm  is implemented as fm  fs m rules =  extract (construct fs m) and extractTree is 
implemented as

extractTree t — expriobynumber t and 
extractTree t = expriobyweight t [0, —1,5 ,2 , 2 ] 

respectively. The list specified in the extractTree t =  expriobyweight contains the 
weight for the input trigger event (a 0  in our example, i.e. the case where the 
destination field in messages is 0 ) followed by the weights of the individual features.

This extraction method is unsafe -  once traces are removed all remaining traces may 
in fact not be resolutions. Indeed this situation arises when the weighted extraction 
method is applied to example 6.3.1. All retained traces contained two contradictory 
billing messages and hence clearly are not resolutions.

6.4.4 Choosing One R esolu tion

A “best” resolution is not necessarily unique. Suppose that after removing duplicates 
and pruning we have already extracted resolutions which satisfy most features and 
applied a priority scheme, but a tree still remains with more than one trace. At this 
point we have found more than one resolution that we would classify as the best, but 
obviously the system can only commit to one trace. However, if both traces represent 
behaviour that from a qualitative point of view is indistinguishable, we can simply 
choose one.

Rule 4 If there are a number of “best” resolutions, choose one.

Note that it would be preferable from the user’s point of view if this is a 
deterministic choice. The user is not (and shall not be required to be) aware
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Fig. 6.5 : The Constructed Solution Space for Example 6.3.1 after Extraction by 
Weighted Priorities

of the resolution process and the presented behaviour must be consistent across a 
number of separate calls. We have implemented this rule such that it simply chooses 
the leftmost branch of the tree, mainly because this is most efficient with respect 
to our implementation. The definition of the corresponding function is given by: 
expickone :: Ord a => Augtree a  —> Augree a.

Applying this rule to our example solution space, we obtain the solution space shown in 
Fig. 6 .6 . The respective definition of fm  is: fm  fs m rules = extract(construct fs m), 
where extractTree t = expickone t.

6.5 Message Dependent Rules

A semantics of messages allows us to define more sophisticated rules, we will consider 
these now. While it might seem unreasonable to have a semantics of messages, 
especially in a setting where the internal behaviour of the features is unknown, 
some knowledge about the semantics of messages is practical due to the message 
set in telephone switching systems being very restricted. New features cannot simply 
introduce new messages, they rather need to rely on the existing ones. Clearly, the 
user requires consistent meaning of the signals received.

Messages can be grouped in classes. These include the rather obvious classes 
“billing messages” , “user messages” and “system messages” -  similar to Chapter 
3. In addition, and more interesting, we can have classes like “announcements” , 
“treatments” , “tones” , “hookevents” .

Classes of messages can be overlapping, for example “announcements” is a subclass 
of “treatments” and “tones” intersects with “treatments” (ringtone is a tone, but not
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Fig. 6.6 : The Constructed Solution Space for Example 6.3.1 after Choosing one Trace

a treatment, whereas busytone is both a tone and a treatment and announce is a 
treatment but not a tone).

We wish to express rules that describe sequences of messages. These sequences are 
required to place an ordering on the occurrence of messages, but also to express the 
absence of a message. Often we wish to refer to whole classes in a simple way. We 
have seen such an example before: “a treatment following an onhook message is not 
useful unless there was an offhook in between” .

We use regular expressions to express these rules. Empirical evidence shows that 
regular expressions were sufficient to express any rule we required. Extra capabilities 
of context free grammars like counting the occurrence of certain messages was not 
required in any of the occurring cases. This was to be expected, as messages send to 
setup, manipulate and tear down calls result in events that must be interpreted by 
a human user and a telephone system does not usually require the user to count the 
occurrence of events, i.e. the third ring is equal to the first in its meaning. The used 
data type for regular expressions is:

data RegExpr a —MkRE a
| Concat (RegExpr a) (RegExpr a)
| Union (RegExpr a:) (RegExpr a)
| Kstar (RegExpr a)
| Plus (RegExpr a)

Exam ple 6.5.1 Let tre a tm e n ts  be the class of all announcements and tones (apart from 
ringtone).
Then “a treatment following an onhook message is meaningless unless there was an offhook 
in between” can be expressed as the following pruning rule (i.e. the rule describes unwanted 
behaviour) using the textual no tatiom onhook .(-o ffhook)* .trea tm ents
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Having decided to use regular expressions, a good repertoire of matching techniques 
is available. We can adapt standard algorithms for matching regular expressions on 
strings to algorithms for matching regular expressions in trees. We describe details of 
this in the following section.

6.5.1 Im plem entation

Regular expression matching is performed with the aid of a deterministic finite state 
automaton (DFA). The DFA is executed on an input string, and a match is achieved 
when the DFA reaches a final state. We will now consider the construction of the DFA 
and then show how the matching is performed.

The DFA is constructed from a regular expression in two steps, following the 
description in [ASU8 6 ]. First a non-deterministic finite state automata (NFA) is 
constructed from a regular expression. The NFA is then converted into a DFA. A 
Haskell implementation exists by Thompson [ThoOl], but this works on strings of 
characters and therefore was adapted for our purpose (the implementation is not very 
efficient, but we discuss this later).

In general, a DFA accepting the same language as an NFA is constructed using a 
subset construction algorithm and thus can be exponentially larger in the number of 
states. However, “in practice this worst case occurs rarely” [ASU8 6 , p ll7 ] . There are 
other algorithms for the construction of DFAs from regular expressions. For example, 
McNaughton and Yamada’s [MY60] technique can be used to convert a syntax tree 
into a DFA, however they are of similar runtime complexity.

It is possible to execute the NFA, i.e. determine whether the input is accepted by the 
NFA, and thus save the extra effort required to generate the DFA. However, simulation 
of the DFA only depends on the length of the input, i.e. it has complexity 0 ( n ) whereas 
simulating the NFA has complexity O(nra) as it depends on both the length of the 
input and the length of the regular expression2. An optimisation of the runtime of 
the matching could be achieved by optimising the DFA [ASU8 6 , ppl41]. However, we 
discard such considerations here to maintain a clear implementation.

As the regular expression describing the properties (i.e. unwanted behaviour) usually 
remains unchanged for longer periods, the construction of the DFA introduces a 
startup latency which is easily justified by the large number of simulations that 
is required: whenever an interaction is detected the whole solution space must be 
searched for any occurrences of matching sequences.

A matching pattern is found in a string when the automata executed on that string 
has reached an accepting state. It is required to attempt a match from every position 
of the string, thus for a string of length n, n executions of the automata are required.

Our input is a tree rather than a string, hence we must attempt to match starting 
from every position of every trace to ensure that all traces of the tree are searched for

2 Myers [Mye88] shows an O ( j ^ )  algorithm using the four Russians paradigm.
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possible matches (note we match on messages, i.e. on tuples rather than on characters).
We will now consider the implementation, showing how the general algorithm for 
searching for patterns in strings can be adapted to search for patterns in trees. Let 
onlymarkers :: Ord a  =>• [Tree a] —» Bool be a function returning true if all trees in 
the list have the value DelMarker, let compact :: Ord a  =>• [Tree a] —> [Tree a] be 
the function that removes any trees with values DelMarker or EmptyTree from the 
list (returning a potentially empty list).

prunetraverse :: Ord a => RegExpr a  —> Tree (a, In t) —* Tree (a, Int) 
prunetraverse re t =prunetraversel (re2 dfa re) t

prunetraverse1 :: Ord a  => DFA a  —► Tree (a, Int) —► Tree (a, Int)
prunetraversel dfa EmptyTree = EmptyTree
prunetraversel dfa InsMarker =InsMarker
prunetraversel dfa DelMarker =DelMarker
prunetraversel dfa (Mk n xs) \ onlymarkers pi = DelMarker

| otherwise = useDFA2prune dfa (Mk n (compact pi))
where

pi = map (prunetraversel dfa) xs

After the DFA for the given regular expression has been constructed, we traverse 
through the tree, attempting to match the regular expression from the root. Nested 
in the traversal new matching attempts are performed on the subtrees -  upon finding 
a match the tree is pruned. Pruning is represented by replacing a tree with the 
special base case DelMarker. Should the pruning result in all subtrees of a node being 
removed, we continue the pruning by replacing the node with a DelMarker. Otherwise 
the list of subtrees is compacted, meaning that all DelMarker entries are removed.

useDFA2prune v.Orda =$■ DFA a  —* Tree (a, Int) —> Tree (a, Int)
useDFA2prune (s, a, tr) input\ isMemberSet a s = DelMarker

| otherwise = useDFA2prunel a tr s input

After testing whether we have already reached an accepting state we recurse through 
the tree. Note, here we actually progress through the DFA as well as the tree, rather 
than just shifting the starting point of the matching attempt. Clearly an EmptyTree 
or a DelMarker does not match the regular expression, so we cannot prune such a 
branch. In the case that a node with subtrees is found, the subtrees are pruned. Let 
goto s a be a function returning the target state reached from the current position 
s by following the transition labelled a. After applying the function two choices are 
possible:

• An accepting state is reached, in which case the respective subtree must be 
pruned.
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• goto s a returned —99, i.e. we have found a transition leading to an error state 
-  meaning that we have not found a match.

Again (as with the traversal to shift the start of the matching attempt), if all subtrees 
have been pruned the parent is removed as well, otherwise DelMarker trees are 
removed from the list of subtrees.

useDFA2prunel : : Ord a => Set (Set Int) —> T T B L a  —► Set Int
—► Tree (a, In t) —► Tree (a, In t) 

useDFA2prunel a tr s EmptyTree =EmptyTree 
useDFA2prunel a tr s InsMarker = InsMarker 
useDFA2prunel a tr s DelMarker =DelMarker 
useDFA2prunel a tr s (Mk n xs) | isMemberSet a gto =  DelMarker

| gto == —99 =  (Mk n xs)
| onlymarkers pi = DelMarker 
| otherwise = Mk n (compact pi)

where
gto =  goto s tr (fst n)
pi = map (useDFA2prunel a tr gto) xs

In the following example we apply pruning to the example tree Fig. 6.1. Clearly 
the given billing messages are contradictory, as with one the caller should not pay 
anything, with the other the caller carries a share of the call costs. Hence, it is not 
meaningful to commit to a branch with both those messages present.

Let non-bsbr be the class of messages containing all messages apart from billingsplit 
and billing-reverse. The regular expression describing the unwanted solutions is as 
follows:
(billingsplit. (non-bsbr) *. billing-reverse)—(billing-reverse. (non-bsbr) *.billingsplit).

The tree shown in figure 6.7 is obtained from example 6.3.1 using 
f m f s m  rules = prune (construct fs m) rules and the following instantiation of 
rules:

( Union (Concat (Concat (MkRE (Snd, B illingsplit, Split)'actor, 0))
(Kstar ( Union (MkRE (Rev, Dial, Nil, 0))

(MkRE (Snd, Announce, Wrongpin, 0)))))
(MkRE (Snd, Billing-reverse, Nil, 0)))

(Concat (Concat (MkRE (Snd, Billing-reverse, Nil, 0))
(Kstar ( Union (MkRE (Rev, Dial, Nil, 0))

(MkRE (Snd, Announce, Wrongpin, 0)))))
(MkRE (Snd, Billingsplit, Splitfactor, 0))))

Note that in this example non-bsbr is represented by Dial\Announce, so only these 
messages together with B illin g S p lit and Billing-Reverse (as opposed to all possible 
messages) occur in the example. This is to simplify the example.
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Fig. 6.7: The Constructed Solution Space for Example 6.3.1 after Pruning

6.6 Application Order and Necessity of Rules

We have discussed two categories of rules, message dependent rules and message 
independent rules. The latter consist of more than one rule. An obvious question 
to ask at this point is what is an application order of rules? This only arises as 
a question when the application order of rules matters, which we consider from a 
functional and a performance aspect.

We have devised four message independent rules: removing duplicates, satisfying 
features, priorities and selecting one resolution. Further we have one message 
dependent rule, pruning using pattern matching. We have already identified that 
most of the message independent rules are unsafe, the exception being the removal of 
duplicates. Clearly, this suggests that application order is critical.

Recall that extraction rules (i.e. message independent ones) remove resolutions, 
whereas pruning removes unacceptable solutions. Removing unacceptable solutions 
is certainly desired, thus we can consider pruning safe.

The suggested application order is:

1 . extract duplicates

2 . prune

3. extract traces satisfying most features and then apply extraction by priorities 
(or vice versa)

4. select one resolution
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We can also distinguish the presented rules by their necessity. Clearly pruning is 
essential, as it removes undesired behaviour. Selecting one branch is also required, 
ensuring that indeed only one resolution remains. The remaining rules influence 
performance (removing duplicates) or the quality of solutions (priorities, satisfaction 
of most features). Having established priorities allows for a more fine tuned resolution, 
as user preferences can be reflected in the priorities.

In conclusion, application order is relevant as some rules are safe and others are unsafe. 
Moreover, different application orders of unsafe rules result in solutions of different 
quality. We also note that some rules need not be applied at all, thus changing the 
quality of the solution.

6.7 On-the-fly Pruning

So far we have presented construction and pruning independent of each other, indeed 
we have assumed that pruning is applied to a fully constructed solution space. This 
approach is referred to as “construct-prune” .

A major drawback of this approach is the complexity: a large number of branches 
must be constructed that will be discarded. For a runtime approach, complexity is a 
very important issue. We therefore propose an “on-the-fly” approach.

Basically, on-the-fly resolution works by trying to apply pruning to the current 
solution under construction. As soon as the behaviour is identified as undesired, 
the construction of the current solution is aborted. The part constructed since the 
last choice is then removed and construction of another solution is attempted. This 
will greatly reduce the complexity if many features are involved; bad solutions can be 
identified early in the construction.

Clearly, both construct-prune and on-the-fly should result in the same resolution being 
found. Note that message independent rules, i.e. extractions, can not be embedded 
in the “on-the-fly” process but still have to be applied to the resulting solution space 
-  until the complete solution space has been constructed, we do not know that two 
subtrees are equal. In the same way, before the construction is complete we do not 
know which solution satisfies the largest number of features.

The on-the-fly mechanism requires some minor changes to the implementation. 
Notably a new insertion procedure for the solution tree is required, which does not 
insert unwanted branches and reports the success of an insertion. The feature manager 
is required to react to the feedback from an attempted insertion and proceed with its 
abort-commit mechanism accordingly.

We now discuss the details of the required changes and provide an example.
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6.7.1 Im plem entation  and Exam ple

The on-the-fly algorithm uses a tree that in addition to the information in an Augtree 
stores a set of states of a DFA at each node. We refer to this data structure as 
OTFTree. Once the on-the-fly algorithm terminates the tree is converted into an 
Augtree (only messages and a set of feature numbers stored at each nodes) as used in 
the Construct-Prune approach. This conversion is trivial -  the additional information 
on DFA states in each node is removed.

Insertion of elements is handled by:

insertOTFTree :: Ord a  =>■ OTFtree a  —► (a, Set In t) —» DFA a
—> (Bool, OTFtree a)

The insertion in the Otf tree is more complex than insertion in the Augtree. Again an 
InsMarker is used to indicate the next insertion position. The element to be inserted 
is, as before, a pair consisting of a message and a set of feature numbers. Insertion 
returns a pair (Bool, Otftree a), where the first element indicates the success of the 
insertion and the second contains the new tree. If the insertion is successful, the new 
element together with a set of DFA states will have been inserted. Should the insertion 
fail, a DelMarker is inserted.

This leaves two open questions: when does insertion fail? and why do we need the 
DFA states? Recall that the DFA is the recogniser for patterns in the pruning rules. 
A match means that we have found a sequence of messages that is undesired; we 
wish to prune this branch. Clearly, this answers the first question -  insertion fails 
when we have found a sequence matching the rules. The DFA states stored represent 
all possible states the DFA can be in at this point. Initially the DFA is in its start 
state, we insert the root node after which the DFA can still be in its start state (we 
could start a new search from here onwards). It could also be in the state reached by 
following the transition labelled with the trigger event. With each inserted node the 
set of DFA states increases provided the DFA can reach a new state from any of the 
current states.

Obviously a test for failure of insertion must be incorporated in the feedback process 
of the feature manager -  if insertion fails we want to rollback immediately. Recall 
that feedback distinguishes 4 cases, but only in one case can insertions occur. That 
is when we still have messages in the response queues waiting for feedback and we 
have not explored all possibilities. Hence we are only required to adapt this case. We 
actually split this case by distinguishing success of insertion as an extra condition. 
If the insertion is successful, we proceed in the same fashion as before, otherwise we 
simply rollback. The rollback on failure of insertion is equivalent to a rollback when 
we cannot explore a branch any further.

Some minor changes have been implemented to allow as much code reuse as possible. 
The feature manager can be customised by a flag depending on whether the on-the-fly
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or the construct-prune approach is required. The construct, construct1, feedbackctrl, 
feedbackctrll and feedback functions have been duplicated and adapted to handle the 
different tree datatype. The feedback also handles the new insertion routine. Note that 
construct converts the OTFTtree into an Augtree for further processing by extraction.

The respective function declarations are:

otfconstruct :: [CState] —> Message —► RegExpr Message —> Augtree Message 
otfconstruct 1 :: [CState] —> Message —> DFA Message —► OTFtree Message 
otffeedbackctrl :: ([Queue Message], [CState]) —> OTFtree Message 

—* DFA Message —> OTFtree Message 
otffeedbackctrll :: [[R0 0 /]] —> [Queue Message] —> [C5fa£e] —> OTFtree Message 

—> DFA Message —> OTFtree Message 
otffeedback :: [RooZ] —> [Qwewe Message] —> [CS'fafe] —> (OTFtree Message)

—> Int —> StateStack —► DFA Message —> (OTFtree Message, [CState])

Example 6.7.1 Applying the on-the-fly approach to Example 6.3.1 yields the same solution 
space as shown in Fig. 6.7.

Example 6.7.1 shows that the expected result was obtained. This was obtained using 
the same time but slightly less memory (3,789,920 bytes as opposed to 3,877,672 
bytes) 3 than the construct-prune method. This does not look very promising but, we 
need to consider that in the given example most traces only match once the traces 
are completely constructed. Consequently, not much exploration work can be saved 
(and in fact because there might be duplicate branches the matching has to be done 
more often). We have seen examples where the on-the-fly method outperformed the 
construct-prune method roughly 2:35 (7 features, shown in Fig. 7.3). As we show when 
analysing the complexity in section 7.3 the worst case behaviour of the on-the-fly 
approach is indeed similar to that of the construct-prune approach, but in larger 
scenarios with deep trees a significant saving can be made by early pruning.

6.8 Summary

We have identified a number of rules which allow us to obtain resolutions by applying 
respective operations to the solution space. The rules fall into two categories: message 
dependent and message independent. The application order of rules was discussed.
A more efficient on-the-fly approach has been developed thus tightly integrating 
construction and pruning.

3 Time and memory measurements were performed using ghcprof
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Evaluation

7.1 Introduction

In this chapter we consider the correctness and complexity of our approach. We 
discuss why our approach is transactional, but does not coincide with the classical 
model. In addition we apply our method to two distinct feature sets: the features 
used by Marples [MarOO] and the running example from Chapter 3.

Having shown that the approach is correct we consider whether it is indeed appropriate 
and suitable to solve the posed problem. We clarify the role of the semantics of 
messages.

We revisit the idea of a hybrid approach as discussed in Chapter 4.

7.2 Correctness

In order to show that the construct-prune and the on-the-fly approach proposed in 
the previous chapters actually deliver the correct results we need to analyse their 
behaviour. We identify three theorems that define what we mean by correctness (of 
construction, pruning and the on-the-fly approach respectively).

Theorem 1 (Correctness of Construction) The solution space is constructed correctly 
iff

1 . all possible interleavings are inserted and

2 . every trace in the solution space can be generated by the feature automata and

3. the construction terminates

Theorem 2 (Correctness of Pruning) Pruning is correct iff

1 . no trace in the resulting resolution space violates the properties defined by the 
rules and

2 . every trace from the solution space not violating rules is part of the resolution 
space and
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3. the pruning terminates

Theorem 3 (Correctness of the on-the-fly Approach) The on-the-fly approach is 
correct iff

1 . every trace in the resolution space can be simulated by the feature automata 
and

2 . no trace in the resulting resolution space violates the properties defined by the 
rules and

3. every possible interleaving not violating rules is part of the resolution space and

4. the process terminates

7.2.1 Proving C orrectness

We have developed our implementation in Haskell, under the assumption that it is 
possible to reason about program behaviour. The Haskell implementation provides a 
basis for a formal proof, as the implementation is essentially in the form of left-right 
rewrite rules. However, a proof requires a further formalising of the approach, 
depending on the automated technique used. This formalisation is a large task and is 
not mathematically interesting.

Furthermore, as the whole system depends on the features, it would be desirable to 
reason about arbitrary features. Clearly we can only reason about the implemented 
features -  it is not possible to reason about features in general, as no coherent structure 
of the same exists. Thus, the proof would be based on case analysis, where splits are 
made dependent on the features under consideration. We believe that in the given 
context this type of reasoning is undesirable as the detail distracts from the concept.

We therefore reason on a more conceptual and less formal level. In the following we 
aim to provide insight into why the presented theorems hold without losing sight of 
the intuition behind the approach.

7.2.2 C orrectness o f C onstruction

1. Insertion of Interleavings

The construction of the solution space ensures that if there are no responses to a trigger 
only the trigger will be inserted into the solution space. If only one feature responds 
to a trigger and there is no further response triggered by the feedback process, only 
the single response is inserted. In both these cases no interleaving occurs, so there is 
only one possible trace (which is inserted); hence the insertion is trivially correct.
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Two cases remain to be considered: more than one feature responds to a trigger and 
further responses are triggered by fed back messages. We will discuss these in turn.

If more than one feature responds to the initial trigger, each feature’s responses axe 
placed in a separate queue. Crucially, having separate queues allows one to maintain 
the relative order of the responses. The feedback process has been described in detail in 
section 5.9.1. In effect, the feedback mechanism ensures that all possible permutations 
of the response messages (subject to the relative order being maintained) are tried, 
and each is inserted into the tree. This essentially is the generation of all possible 
overlapping interleavings as described in section 5.4.

The process is the same when fed back messages trigger further responses. The new 
responses are simply added to the end of the respective queues. Clearly these further 
responses are only interleaved with parts of the traces that still need to be constructed, 
as they should never occur before the respective trigger event. Adding new responses 
to the end of the queues maintains the relative order.

We can conclude that all interleavings are indeed constructed.

2. Traces and Feature Automata

Features are described by finite state automata, as shown in Appendix A. By the 
feature automata being able to simulate a trace we mean that when considering a 
trace, there is at least one automaton that can make a move for each element in the 
trace. Recall that transitions are labelled with an input/output pair.

Considering examples, we can distinguish three cases:

• The trace is of the form t.m s , where t is the trigger event and ms are the 
responses of one feature (i.e. there is a feature automaton with a transition 
t/m s.

• The trace is of the form t.m \.m 2 ...mn where t is the trigger event and the 
trigger event and m \ , m 2 -..mn is an interleaving of responses from several features 
(i.e. there are several feature automata with transition labelled by t /m  with the 
(between features possibly different) m being composed of any of m i ,m 2 ...mn 
maintaining the relative order and ensuring that all mi occur in at least one 
transition).

• The trace is of the form t.m i.m 2 ...mi(.--mTU where again t is the trigger event 
and the m; are responses from one or more features. Note that mk is a response 
of one feature that (upon feedback) triggered a further response. In this case 
there is at least one feature automaton with a transition t /m  with m  containing 
mk and one with a transition labelled by m ^/M  where M  is composed of any of

again maintaining the relative order.
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3. T erm in a tio n

Constructing the solution space is general recursive (as opposed to primitive recursive), 
as the recursion occurs over a number of arguments that might increase or decrease 
depending on the feature behaviour. As an example, the message queues can shorten 
when no features respond but might also lengthen when features respond. Rollback 
reduces the size of the state stack, but new transactions increase the size. So in 
general, construction might not terminate. However, as the construction is bounded 
by a maximum depth and the constructed tree has only finite width, construction 
indeed terminates as explained below:

L ooping beh av io u r of fea tu res  can lead to infinite traces. Recall that one of 
the drawbacks of the initial specification was the restriction to finite traces. We can 
distinguish two kinds of loops: those where one feature produces looping behaviour 
and those where loops occur because of the mutual triggering of several features.

Clearly the case that one feature produces looping behaviour as result of a single 
trigger event should not occur. Although features should be able to loop to an earlier 
state (e.g. call waiting which allows toggling between two calls) features should not 
respond with an event that re-triggers them. The latter would cause non-termination 
of a single feature and eventually break the system. Thus we can conclude tha t this 
behaviour could only arise as the result of an incorrect implementation of the given 
feature.

Assuming correct implementation of all features, looping behaviour might still occur 
between a number of features. The most obvious example being a call forwarding 
loop: Two users subscribe to call forwarding unconditional, where user A’s forwarding 
is to B and B’s forwarding is set to A. Upon User A receiving a call, the call will be 
forwarded to B to be forwarded to A, and so on. This behaviour could potentially 
prevent the termination of the construction algorithm.

To show that the algorithm terminates we need to show that the constructed tree is 
indeed of finite depth and breadth.

By allowing the constructed tree to only extend to a specified m ax im um  d ep th , 
we can ensure that the tree will have finite depth. There are three cases, shown in 
Fig. 7.1: a) All traces terminate before the maximum depth is reached, b) some traces 
terminate after the maximum depth is reached and c) all traces terminate after the 
maximum depth is reached.

Case (c) should never occur by judicious choice of the maximum depth. Recall that 
the solution space contains traces produced by the execution of a single feature, in 
addition to all the possible combinations. Thus, we have a minimum maximum: the 
maximum length of a features trace.

The maximum depth can be chosen arbitrarily large, however a sensible bound should 
take into account that the depth should be reachable in short period of time. We 
assumed that a feature can safely operate within depth 1 0  (that is a trigger produces
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Fig. 7.1: Solution Space and Maximum Depth

no more than 10 response messages from one feature). In fact for the given features 
the maximum is 8  for group ringing, mostly features respond with 1 to 3 messages. A 
maximum size of 50 was chosen in the model to provide enough margin for interleaved 
traces.

The mutual triggering leading to looping behaviour discussed previously could result 
in case (b), i.e. that some traces are deeper than the given maximum depth, and 
forms the main reason for the introduction of the boundedness in the algorithm. The 
described scenario forms an infinite loop which maps onto an infinite trace -  this case 
needs to be dealt with to prevent non-termination of the algorithm.

Some traces might be longer than the maximum depth without resulting from infinite 
looping behaviour. Here it could be argued that potentially good behaviour might be 
presented by the trace formed as interleaving of a number of features. However, 
recalling that time is at a premium in a runtime approach, it is justifiable that 
constructions continuing for too long are terminated. Should this case occur too 
frequently, the chosen maximum depth might be non-optimal and can be increased 
accordingly.

Case (a) represents the setting where no loops occurred and all the interleavings could 
be constructed within the provided depth bound.

Finite breadth is ensured as at every node in the solution space it is known how many 
children there will be. In addition the number of children is always finite, because it 
is equal to the number of non-empty response queues. As there is one queue for each 
feature the number of children is at most equal to the number of features.

New insertions only occur when we have tried to construct fewer subtrees than the 
current node can have. Each subtree starts with a message taken from the front of a 
queue. Placing an order on the response queues allows us to order the subtrees thus 
providing a means of guaranteeing that no subtree is generated twice.



C hapter 7. Evaluation 87

Note, that the construction process is similar to a bounded depth first search. We 
have shown that the depth and breadth of the tree are finite and also that no insertion 
is attempted twice. From this we can conclude that construction terminates.

7.2.3 C orrectness o f Pruning  

U nder-Pruning

The implementation of the pruning process was described in section 6.5. We must 
prove that all traces which match the pattern describing bad behaviour are removed.

The pattern, i.e. the message sequences describing bad behaviour, is provided as a 
regular expression. The expression is converted into the corresponding automaton 
which is used by the matching algorithm -  this is a standard technique.

The matching has to be performed on the solution space which has a tree structure. 
The tree is searched recursively, that is after attempting to find a match at the root 
node, we move on to the child nodes. At each child node we continue the match 
started earlier but also start a new matching process; in some sense one could say that 
a number of match processes are run concurrently.

When a match is found, the node is replaced with a special leaf node, DelMarker. 
If the node is a leaf node, then the current trace needs to be removed back to the 
last “decision point” . If we find the match in an internal node the trace since the 
last decision point needs to be removed regardless of any subsequent messages. As 
an example, consider a user going onhook and then receiving an announcement. The 
user has received an announcement after going onhook, and so regardless of the events 
occurring afterwards, this trace must be removed.

Once a DelMarker is inserted in the tree, we do not follow this path any further. 
Equally, not finding a match on a trace and reaching a leaf node means we do not 
follow the path any further. In both cases we backtrack to the parent node. At the 
parent node we consider whether all children are marked for deletion, if so the parent 
is marked. If not, all children marked for deletion are simply removed. This process 
continues up through the tree until the root node is reached and we cannot backtrack 
any further.

Figure 7.2 shows an example solution space and the resulting resolution space on 
pruning assuming the pattern describing unwanted behaviour to be abaa.

The remaining tree does not contain any traces that match the given pattern, hence 
only traces that are not violating the described property remain after pruning, hence 
under-pruning does not occur.
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Fig. 7.2: Pruning an Example

O ver-P ru n in g

In the previous section we have shown that the deletion of nodes is propagated 
backwards through the tree. One could argue that we could delete too many nodes by 
doing this. We investigate now why we do indeed delete the right number of nodes.

We consider three cases: the removed part of a trace starts with the first element in 
the pattern and then includes the complete pattern; the removed part of a trace is 
only a suffix of the pattern  and the removed trace contains events earlier than  the 
pattern  started (Cases two and three can be seen in Fig. 7.2). We will justify all three 
cases now.

If the removed trace starts with the first element of the pattern , we have removed 
obstructing behaviour. Possibly behaviour following the obstructing part was also 
removed, but this has been justified in the previous section. Hence in this case no 
over-pruning can occur.

The case that only a suffix of the pattern  is removed seems more likely to cause 
underdeletion, as we might not have removed all obstructing behaviour.

On the other hand, if all subtrees of a node have been deleted, how do we justify 
propagation of the deletion back towards the root, and potentially before the first 
message of the matching pattern  occurred? This case occurred in the right subtree of 
the example above.

Assuming tha t we have deleted all subtrees of a node, consider the meaning of the 
trace from the root to this node. The behaviour is only partial w.r.t. the expected 
behaviour of the features. A trace up to a certain node expresses messages taken from 
a number of features that have been interleaved. By this point however the behaviour 
of all features from which messages have been taken is incomplete and the trace should 
be removed. For example, we could find situations were a user is connected but billing 
is not initiated at all, because the billing message occurred later in the removed part.
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Assume a trace with 4 features, where two produce the conflicting behaviour and this 
occurs after the other two have completely exhibited their behaviour. The backward 
pruning will remove the good behaviour of the other two features as well, but there 
will also be traces in the solution space that are generated by just the non-obstructing 
features being active -  hence no possible resolution has been removed. In general, 
when some features have exhibited their complete behaviour before the point at which 
the sequence is removed, backwards pruning will only remove behaviour that exists in 
the solution space at a different place.

In the extreme, backward propagation could lead to the removal of the root node and 
hence all solutions would be deleted -  clearly this would be considered as overpruning. 
The case that all subtrees of the root node have been deleted will not occur, as some 
subtrees represent behaviour of individual features which we always deem to be correct.

In section 7.2.2 we have shown that all possible traces are inserted. In this section 
we saw that the deletion process only removes those traces that violate the given 
properties. Hence all traces not violating the properties are part of the resulting 
solution space.

Termination

Pruning consists of

1. construction of the DFA from a regular expression

2 . traversing the tree to start the matching from every position (prunetraverse 1 )

3. matching the regular expression to a path (useDFA2prune)

The construction of the DFA from the regular expression uses a standard algorithm, 
details of which were discussed in chapter 6 . The algorithm is known to terminate.

However, the traversal of the tree combined with the matching is non-standard, hence 
it should be shown that both parts do indeed terminate.

Both functions are defined by primitive recursion over trees. Trees are ordered by a 
natural well-founded ordering: any tree is larger than its subtree.

In the case of the tree data type used in our model:

• InsMarker, DelMarker, EmptyTree are trees

• (Mk n ti. . .tfc) is a tree

• nothing else is a tree
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We define the ordering > on trees according to the size of the tree.

InsM arker  =  D elM arker = Em ptyTree

(M kTree n t\...tk ) > InsM arker  

V(z|l < i < k).(M kTree n t\...tk) > U

All that remains to be shown is that the functions prunetraverse 1 and useDFA2prune 
indeed reduce the size of the argument in the recursive case and that they consider the 
base case. Both functions define return values for the base cases of the tree data type 
and the recursive case follows the general format f ( M k  n t\...tk) = f(h)---f(tk)-  Our 
ordering on trees confirms the required reduction of argument size, as per definition 
V(z11 < i < k) . (Mk n t\...tk ) > U.

7.2.4 C orrectness o f th e  O n-the-fly Approach  

Traces and Feature Automata

By similar reasoning we argue that all traces that are part of the solution space can 
indeed be simulated by feature automata. The only difference in this case is tha t the 
solution space constructed by the on-the-fly method does not contain any traces that 
violate the pruning rules. The on-the-fly construction simply inserts fewer traces into 
the tree. The resulting solution space forms a subset of the solution space generated 
by the construct-prune approach (immediately after construction). Hence the traces 
in the current solution space would also exist in the full (i.e. un-pruned) solution space 
as constructed earlier. As all traces from the full solution space can be simulated by 
feature automata, all traces constructed by the on-the-fly method can be simulated.

Traces and Rules

The data structure used to store the solution space is a slightly extended version of that 
used in the construct-prune approach: in addition to the information stored in nodes 
in the construct prune approach, we store a list of states of the matching automata. 
This state list contains all possible states of the matching automata, assuming it had 
been restarted and continued in any of the previous nodes along the current trace.

When a new insertion is performed, it is first checked whether the new element would 
cause the matching automata to reach an accepting state from any of the possible 
states. If this is the case, we insert the deletion marker and discontinue construction.

This leads to a solution space where we never insert any trace that violates the rules, 
which is exactly what we require.



Chapter 7. Evaluation 91

Completeness of Solution Space

Inserting new nodes into the tree is performed in exactly the same way as in the 
construct-prune approach, provided no rule is matched upon insertion. When a rule 
is matched no insertion of the new message occurs, we rather insert the special leaf 
DelMarker as described before.

Upon rolling back we apply the same backwards propagation of the DelMarker as 
discussed in the pruning method.

The arguments for the construction and for pruning allow us to conclude that indeed 
all traces not violating the specified properties are inserted into the solution space, 
thus it is complete, i.e. no possible resolutions are missing.

Termination

The same argument as that used for construction can be applied here. The only 
difference is that before a message is inserted into the tree a check is carried out as to 
whether this message results in a match w.r.t. a pruning rule. The check for match 
is simply a call to a function of the matching DFA to determine whether the message 
will result in the automaton reaching an accepting state.

In case a match occurs, the trace under construction is aborted and a new trace 
is attempted. Note that again the depth is finite, as limited by the given bound. 
The width does not increase, as matching a rule only leads to a non-insertion of the 
message. Again no traces are constructed twice, as the same construction mechanism 
as before is used.

We can conclude that the on-the-fly approach terminates.

7.3 Analysis of Complexity

We consider the complexity of the construction, the pruning and the on-the-fly 
approach in turn.

Construction. The complexity of construction is best measured w.r.t. the size of the 
constructed solution space. Construction consists of issuing a message, collecting the 
responses, inserting one message in the solution space and issuing the next message. 
Occasionally rollback occurs.

Sending a message to the features and collecting the responses is of complexity 0(1),
i.e. it takes constant time. Hence we can ignore this. The other two factors depend 
on the size of the solution space.

Insertion involves a search through the solution space to find the next insertion point. 
We have stated that insertions always occur in the leftmost branch of the tree. Hence,
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finding the insertion point means that, in the worst case, we need to search to the end 
of the leftmost branch.

Rollback means restoring some features to an earlier state (which can be assumed to 
be performed in constant time) and also moving the insertion marker. The latter is 
in complexity similar to insertion, the marker must be found after which moving is 
straight forward. As both insertion and moving the insertion marker depend on the 
length of the leftmost branch we should consider how long this will be. The length of 
a branch depends on the number of features involved. With just one feature, a branch 
will be as long as the sequence of responses to the trigger event. W ith a number of 
features, the length of the branch is simply the sum of the length of the responses of 
the features. Hence, if we have many interacting features the branches will be longer 
and furthermore if the responses of each feature grow, so too will the length. To give 
an upper bound, the longest branch will be at most 0 (m ax(nm ,m axdepth )), where 
n  is the number of features and m  is the length of the longest response and maxdepth 
is the maximal depth.

The number of branches inserted into the tree depends on the number of features and 
the length of their responses. In fact, the size of the solution space is exponential in 
the number of features and the length of the responses. However, this is a worst case 
bound, which in practice rarely occurs. For the solution space to reach this worst case, 
all features present would be required to be triggered and add to the responses.

Practical experiments showed that the considered solution spaces have been 
constructed relatively quickly. Figure 7.3 shows the time required for construction 
as well as the size of example solution spaces from the running example. The results 
were measured by the Haskell profiler ghcprof and all experiments were conducted on 
a P3-450 running the Linux Operating System. The smallest time-unit reported by the 
profiler is 0 .0 2  seconds, hence results of 0  mean that no more than 0 .0 2  seconds have 
elapsed. The indicated times exclude the time required to print the structure to the 
screen, as this is not part of the real construction effort. Note that the representation 
of the runtimes uses two different scales on the y-axis to show small (i.e. < 15secs) 
values more clearly.

P ru n in g  complexity is a different issue. Here we can distinguish the construction 
of the DFA (which has been discussed earlier, it only adds startup latency) and the 
actual pruning. Pruning depends on the size of the solution space. Recall tha t we 
need to attem pt to reach an accepting state of the DFA following transactions labelled 
with the same messages as occur in the tree. This has to be repeated at every node 
in the tree.

As at every point in the DFA only one transition with a given label is possible, the 
complexity arises from the number of alternative transitions possible. Starting from 
any point in the tree and traversing the child trees, a worst case is given by a nested 
traversal of the tree. However, the inner traversal has a reduced space to search; only 
the nodes in the subtree must be considered. Furthermore, once a match has been 
found the search is stopped, as the subtree is immediately removed.
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Fig. 7.3: Example Runtimes (Empirical Results)

In practice, runtime seems rather long, as the results in Fig. 7.3 (Construct-Prune) 
show. Note that the time required to construct the DFA has been extracted from the 
shown figures to enable a better comparison to be made.

Further analysis indicates that one particular function is the cause of this disappoint ing 
runtime. This function is findfinal which determines the state we can move to in the 
DFA given a starting state and a label. Figure 7.3 (CP-FF) shows the results when 
the runtime for findfinal is ignored, which seem much more reasonable. In fact, they 
are more realistic, as an implementation for a switching system would not use a linear 
list to store the transition table but rather make use of a hash table. This would 
provide constant time access, rather than  O(n)  worstcase complexity (with n  being 
the length of the list) which occurs in our implementation.
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On-the-fly. To avoid a large number of solutions being generated just to be removed 
we proposed the on-the-fly approach. Here pruning occurs during construction, thus 
one would assume that a smaller solution space is constructed and hence searches are 
performed faster.

The on-the-fly method requires fewer traversals of the tree, as the pruning occurs 
during insertion and the relevant information about the potential start points for 
matching must be stored in the tree. Clearly this increases the footprint of the tree 
structure.

We note that pruning after the construction is applied to a solution space where 
duplicates have been removed. Thus the searched space is potentially smaller. The 
on-the-fly method does not allow for the removal of duplicates before pruning (we 
only know what a duplicate is when the whole tree has been constructed). Thus, 
in the worst case, the space searched by the pruning algorithm during the on-the-fly 
approach can be larger than in the construct-prune approach. However, this worst 
case occurs only if no pruning is possible or if for every pruning attempt a match can 
only be achieved when a leaf node is reached, and duplicates do indeed exist in the 
specific solution space. In general, we are often able to prune early in the construction. 
This especially applies to long branches, and thus we can make a significant saving. 
Again, findfinal has a significant impact on the runtime, so Fig. 7.3 shows both results 
with and without the time used by findfinal (On-the-Fly and OTF-FF respectively).

Overall, the complexity of the two presented approaches has a startup latency for the 
construction of the DFA and then during runtime a theoretical worst case of a multiple 
of a exponential complexity (the solution space is bounded in depth and the width 
depends on the possible combinations of features), However, this theoretical worst 
case was never reached in the practical trials, thus making the approach tractable.

Scalability

Scalability is an issue that must be considered, especially in the context of an increasing 
number of features available to each user. There are two other aspects to scalability; 
the number of users that are served by one exchange and the number of exchanges. 
Here we consider primarily the scalability with respect to a growing number of features, 
as this is the dimension that is motivated in the context of the feature interaction 
problem. However, we also comment on the other two dimensions.

Considering additional features, we can have two possible outcomes: they do not 
interact with any of the existing ones or they interact.

A non interacting feature, i.e. one that does not respond to the given trigger or and fed 
back messages, introduces duplicate traces as explained earlier. That is, it leads to a 
larger breadth of the solution space, but it will not influence the depth of the solution 
space. If the new feature does indeed interact with existing features then, in addition 
to adding more possibilities it also adds to the length of individual solutions. In this
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situation the on-the-fly approach facilitates scalability: if the trace must be pruned 
then chances are that pruning can occur early in the construction, thus ensuring that 
the full length of the trace need not be explored.

Scalability with respect to a growing number of exchanges is of little relevance, as 
current communications are between only a few (normally two) users. As we do not 
exchange information beyond that transmitted in normal communications mechanisms 
between exchanges, this dimension is not relevant for our approach. However, 
scalability with respect to growing numbers of users on a single switch is relevant, 
as all users might be simultaneously involved in calls. In this case a large number of 
solution spaces has to be generated and as we have seen this can require a significant 
amount of resources. However, only practical trials on an operational exchange can 
provide details here. This issue is not only specific to interaction handling, as simply 
allowing more features being enabled on a switch increases the amount of resources 
required.

Overall, when we compare the results obtained for construction only with those that 
also include resolving (either by the construct-prune or the on-the-fly method) we 
can see that resolution introduces only a minimal overhead. Marples’s construction 
method is essentially identical to ours, and he accepted his runtimes as suitable (at 
least he does not argue to the contrary). We conclude that our runtimes are like 
Marples’s, and using the on-the-fly method can even undercut his.

7.4 Transactional Approach

We refer to our approach as transactional. This is partly historical, Marples used this 
term for his approach which we extended. However, the approach makes use of ideas 
from transactional consistency and error recovery approaches for distributed systems. 
We will now investigate how close the link is.

Traditionally transactional approaches in distributed systems have been developed to 
handle error recovery and maintain consistency. There is a significant body of work 
in this context. The main concerns are to provide a well defined system state after a 
failure, to delimit the loss of data and to maintain consistency of data. Whilst this is 
clearly useful in say a banking system, we are not concerned with failure here.

In the context of transactional approaches, four properties are considered: atomicity, 
consistency, isolation and durability. They are often referred to as ACID properties 
[Wei89]. The granularity of a transaction is provided by atomicity: a transaction 
is indivisible. In the case of failure, this means that a transaction has either 
been executed completely or not at all. Commit is usually used to confirm the 
complete execution, abort to return to an earlier checkpoint. Consistency means 
that each transaction, when completely executed on its own preserves the invariants 
of the system (i.e. transition does not introduce data inconsistencies). Isolation (or 
serializability) relates to a group of transitions: if they are executed in parallel they
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are indistinguishable from being executed in series in any order. Durability means 
tha t the effects of committed transactions survive future failure.

As we are not concerned with failure here, durability is not an issue. During the 
construction of the solution space, we generate checkpoints, to which we return to 
explore further possibilities. However, the concept of failure is irrelevant.

More interestingly, we have spoken about transactions and we need to decide what 
a transaction is in our system, before discussing the applicability of the atomicity, 
consistency and isolation properties. There are three candidates for a transaction:

1. a single message of a single feature

2. all messages of a single feature

3. a complete solution

All three lead to very different interpretations of the properties, and we consider them 
in turn.

1. A single message of a single feature

Assuming a transaction to be at the level of a single message, we do not obtain 
consistency: either all messages of a feature must be considered or none. Isolation is 
not possible, when messages of different features are interleaved, the order of these 
messages might matter whereas isolation would require that the order is irrelevant.

2. All messages of a single feature

Should a transaction be at this level, consistency is granted and isolation is also 
provided. However, we discard many possible solutions, as interleaving is now at a 
feature level (or coarse grained) as discussed earlier.

3. A complete solution

Having a complete solution as transaction satisfies the consistency requirement. 
However, isolation becomes meaningless, as no possible concurrent actions are 
available.

We can see that independent of the definition of a transaction one or more of the 
ACID properties is violated. Hence, one might question that we can use the term 
transactional to describe our approach. However, we believe that due to the close 
resemblance of the behaviour of the construction and error recovery this term is indeed 
justified.
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Tab. 7.1: Results from the Running Example

7.5 A nalys is  o f  Scenarios

7.5 .1  R u n n in g  E xam ple: M u ltip le  P o in t o f C all C ontrol

The number of potential combinations of features and the states they can be in is large. 
For the purpose of the analysis we have considered a small selection of scenarios. In 
particular, we consider two-way combinations of all features, but do so only in selected 
states and with selected input messages. In MPCC settings all considered features are 
located at the same user, features at the remote end can not be influenced. Thus, 
in this analysis the features are indeed all located with the same user. Interactions 
between features on different call sides cannot be detected using the given detection 
m ethod as not enough information is available (we will discuss this later at the example 
of call forwarding loops). However, this is not a drawback of the resolution mechanism, 
it merely identifies a weakness of the detection method. 105 two-way cases have been 
analysed and the results are summarised in Tab. 7.1.

We distinguish five (distinct) results, marked with symbols as follows.

1. an interaction has been detected, but all features request the same action,

2. “T ” : a technical interaction has been detected, removal of bad solutions is 
required,

3. “U ” : a user intention violation has been detected, we allow all features to 
proceed,

4. “o” : an interaction has been detected with the features requesting different 
actions, but the resulting behaviour does not constitute a user intention violation 
or technical interaction,

5. “ no interaction has been detected between these two features.

Clearly, when all features request the same action (case 1), we do not need to resolve 
an interaction. We can let all features continue, as achieved by choosing branches
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satisfying the largest number of features. Similarly, when an user intention violation 
is detected (case 3), we have made the design decision to let all features proceed. This 
is achieved in the same way as for case 1. When no interaction has been detected 
(case 5) or an interaction has been detected but the behaviour is “desired” (case 4), 
the trace satisfying the largest number of features is again the appropriate solution.

The most interesting case is that of the detection of technical interactions (case 2). 
Here a resolution using the message dependent rule (i.e. pruning) is required. As 
described in section 4.2, offline analysis of the solution space is used to identify 
undesired behaviour. Clearly, some domain knowledge is required to know what is 
considered undesired. We considered, amongst others, contradicting billing messages 
and contradicting busy treatments to be undesired. The following pruning rules have 
been identified:

1. a trace containing o.alert and store.read in any order is undesired, we either
want to initiate a call or query the voicemail feature,

2. a trace containing billingsplit and billing-reverse in any order is undesired, the 
two billing messages contradict each other,

3. a trace containing O-alert and announce(wrongpin) in any order is undesired, 
the call should not take place if the PIN was incorrect,

4. a trace containing more than one of o.inform(cwhold), o-notify, 
o-inform(ringback) or o-inform(callminder) is undesired, as they are all 
contradicting busy treatments.

The regular expression describing the above rules is rather complex as it needs to 
take into account all other messages. For simplicity let non-oalert-stread be the set of 
all messages that are not O-alert or store-read. Similarly we define the message sets 
non-billsplit-billreverse, non-oalert-announce and non-busytreatment.

The pruning expression can then be formulated as:

(o-alert.non-oalert-stread*.store-read) \
(store-read.non-oalert-stread*.O-alert) \
(billingsplit.non-oalert-announce*.billing-reverse) \
(billing-reverse. non-oalert-announce*. billing sp lit) \
(announce(wrongpin).non-oalert-announce*.store-read) \
(announce (wrongpin). non-oalert-announce* .o .alert) \
(o-inform  (cwhold) \ o .notify \ o-inform  (ringback) | o-inform  (callminder)). 

non-busytreatment*.
(o .inform  (cwhold) \ o .notify | o.inform(ringback) | o .inform  (callminder))

Having implemented these rules we were able to resolve all interactions in the two way 
scenarios, whereby in all cases the maximal number of features was allowed to proceed.
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In general this was 2, apart from technical interactions, where one feature had to be 
blocked. In order to show that the approach does indeed work for n-way interactions, 
we have performed a number experiments with more than two features. Again, using 
the same rules as for the two-way cases, all interactions have been resolved in such a 
manner that as many features as possible could proceed. Some of the cases considered 
are as follows:

• 7 Fs BCS-CT-RC-SB-TL-TWC-VMP: Basic Call Software, Call Transfer, 
Reverse Charging, Split Billing, Teen Line, Three Way Calling and Voice Mail 
(Playback). The trigger event was dial, to which all features responded in their 
initial states. The constructed solution space had 44066 nodes, construction 
was completed in 32.24 seconds. The on-the-fly method provided a resolution in 
18.96 seconds (of which 17.56 where consumed by findfinal).

• 6 Fs BCS-CFB-CND-CT-TL-VMR: Basic Call Software, Call Forwarding Busy, 
Calling Number Delivery, Call Transfer, Teen Line and Voice Mail (Recording). 
The trigger event was Lalert, to which again all features responded. The solution 
space had 866 nodes and was constructed in 0.52 seconds.

• 5 Fs BCS-CT-CW-GR-TWC: Basic Call Software, Call Transfer, Call Waiting, 
Group Ringing and Three Way Calling. The trigger event was Lalert, to which 
all features responded. The solution space had 6810 nodes and was constructed 
in 3.76 seconds.

• 4 Fs BCS-CT-CW-TWC: Basic Call Software, Call Transfer, Call Waiting and 
Three Way Calling. The trigger event was flash, to which all features responded. 
The solution space had 162 nodes and was constructed in 0.06 seconds.

Further details of the runtimes can be extracted from Fig. 7.3, which contains the 
results of the above cases. Note that again all features were located with the same 
user, and the features initial states have been chosen such that interesting behaviour 
occurs. The examples show that the solution space can become rather large, however 
the number of rules required to successfully resolve the detected interactions is very 
small. Furthermore the observed construction times are acceptable, especially if we 
take into account that pruning is efficient and the on-the-fly approach allows us to 
reduce the size of the constructed solution space significantly.

Including basic call as a feature proved to be acceptable. However, basic call often 
interacts with other features. We may not for example want the user to receive the 
response from basic call, but rather the response from the features. However, simply 
pruning traces in the same way as when interactions are detected is not desirable -  
often basic call provides the necessary trigger. Let us consider this situation in more 
detail.

Basic call may produce an oJ)usy message, which subsequently becomes redundant 
because a feature responds to this. In this case it would be desirable to remove



C hapter 7. Evaluation 100

O-busy  from the sequence of messages associated with the user. However, it cannot 
be removed from the messages used to reinstantiate the features as basic call should 
indeed be moved into the state it would have reached after sending the message (the 
respective features must also be moved to their new states).

It might be desirable to adapt the commit function slightly. Recall, once a resolution 
has been chosen, commit will reinstantiate all features in their desired states and 
issue the responses to the user. The solution is to adapt commit to scan the 
sequence to be committed for the occurrence of an O-busy message and if this is 
found, to identify whether any of 0 -inform(cwhold), o-notify, oJnform(ringback) 
or o-inform(callminder) occur subsequently. If one or more of these messages are 
detected, O-busy should not be committed to the user, but rather should be omitted 
from the sequence. Note that this mechanism has not been implemented in the 
current commit function and that interactions of this form between basic call and 
other features have not been included in Tab. 7.1.

7.5.2 DESK Features: Single Point o f Call Control

D e s k  uses a single point of call control model. In order to compare our results to 
those obtained by Marples [MarOO] achieved using D e s k  we must make some minor 
changes to our implementation.

A single point of call control (SPCC) means that features connected to the feature 
manager can belong to any user in the system. In contrast, in the multiple point of 
call control (MPCC) setting, which we used to achieve the results in section 7.5.1, 
all features connected to the feature manager are subscribed by one user (the remote 
end of the call is considered to be completely independent, as it potentially is hosted 
on a different switch over there is no control). The impact of this difference is best 
shown with an example: Assume that two users A and B subscribe to call forwarding 
unconditional A attempts to ring B, thus producing an incoming-ring message. In the 
MPCC setting the feature manager at B’s end of the call will issue this message to the 
subscribed features resulting in the expected forwarding initiated by B. However, in 
the SPCC setting both A and B’s call forwarding unconditional will receive the trigger 
and both will respond. Clearly we do not want A’s call forwarding unconditional to 
react to incoming calls to B before they have been forwarded.

To resolve this issue, our message format is extended by two fields: the source and 
destination of a message (thus including the same information as D e s k ’s messages). 
Features perform a check on incoming messages as to whether the id of the subscribing 
user is the same as the destination of the message. In the above case, A’s call 
forwarding unconditional will recognise that the recipient for the message is B and 
will not be triggered. Making this change in the model reflects the solution tha t has 
been implemented in D e s k .

In most cases two features interact because they either share a trigger event or one 
feature triggers the other -  i.e. they are either shared trigger interactions or sequential
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action interactions. However, some features only interact in the presence of a basic 
call model when the user is busy. Marples deals with this by placing the respective 
user in a busy state (e.g. by going offhook). We deal with this by including a very 
simple basic call model in parallel with the features. This basic call model consists 
of a state machine with one state, upon receipt of an incoming ring the term.busy 
message is produced. Clearly this simulates the relevant part of D e s k ’s full basic call 
model when a user is busy. All these cases result in sequential action interactions.

Consider the scenarios involving basic call individually:

C F B -C F B  Assume users A and B subscribe to CFB; user A’s CFB forwards a 
call to user B while user B is busy. B’s basic call produces the term.busy trigger 
thus triggering B’s CFB.

H L -C F B  Assume user A subscribes to HL to B, and B subscribes to CFB. If B is 
busy B’s basic call produces the term.busy trigger upon detection of A’s HL call 
attempt.

R C I-C F B  B’s RCI returns a call to A who subscribes CFB. If A is busy, the RCI 
call triggers A’s basic call to produce term.busy, thus triggering CFB.

H L -C W  is similar to HL-CFB (assume B subscribing CW instead of CFB).

T C S -C W  Assume A subscribes to both features. TCS is triggered upon an 
incoming ring message, the basic call produces term.busy upon an incoming ring 
on a busy line. Feedback of the term.busy triggers CW.

Using the adapted model, we have considered all features pairwise obtaining 
comparable results. Table 7.2 contrasts our results to those obtained by Marples 
[MarOO]. Each entry is composed of a left and a right symbol, either or both might be 
blank. A blank simply means that no interaction has been detected. In addition to 
blank, the left symbol can be + or -, reflecting whether Marples detected an interaction 
or Marples did not detect an interaction, but expected one. The right symbol is either 
blank or x, where x means that we detect an interaction.

Unsurprisingly, the detection results are nearly identical. The reason as to why they 
are not completely identical is undecided as certain D e s k  features showed erratic 
behaviour. The version of D e s k  that we used produced results slightly different 
to those reported by Marples. For example, we were able to detect an interaction 
between RCI and TCS, as one would expect. Assume that B subscribes to RCI and A 
subscribes to TCS barring calls from B. When A calls B while B is busy, B’s ringback 
will initiate a call that will then be barred.

We were able to resolve all interactions successfully, employing message dependant 
pruning. Occasionally, removing duplicates and extracting traces with most features 
satisfied left a choice between two (or more) traces; we simply extract the leftmost 
trace. Thus all interactions were resolved successfully, again allowing both features
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Tab. 7.2: Detection Results of Marples and Reiff-Marganiec

to proceed when the interaction was considered to be a User Intention Violation (e.g. 
CFU-DND or HL-CFB).

The message dependent rules require a regular expression describing bad patterns. 
We can use domain knowledge to identify a number of behaviours th a t we view as 
undesirable, at least between two stable states:

1. connecting a user to two different resources,

2. routing a call to two different locations,

3. routing a call away from A and still changing A’s local state,

4. routing a call away from A and connecting A to a resource,

5. changing A’s state and connecting A to a resource.

A more technical analysis of the above cases reveals that they involve one or more of 
the following messages:

• send-to-resource, A, res results in user A being connected to resource res, e.g. an 
announcement or a busytone

• routing, A , B  results in a call being routed from A to B

• m o veA o sta te , A  results in A’s call software being moved into a new state, used 
by call waiting

We describe two of the above cases as regular expressions, using the messages as 
defined.

Example 7.5.1 (Connecting a user to two different resources) Let str^xxx 11 be the 
regular expressions for the sendAo^resource message th a t connects user 1 to  a resource. As 
example str .n od is  11 =  M kRE (Snd, Msg s e n d .  to.resource, N odisturb,0, (1, 1)).
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tworesources =(str-nodis 11. str.ocs 11) | (str.ocs 11. str-pinl 1))
(str -pin 11. str-tcs 11) | (str-tcs 11. str-nodis 11)))
(str.ocs 11. str-nodis 11) | (str-pin 11 .str. ocs 11))
(str-tcs 11. str-pin 11) | (str-nodis 11. str _ics 11))))
(str .ocs 11. str-tcs 11) | (str .pin 11. str-nodis 11))
(str-tcs 11. str-ocs 11) | (str-nodis ll.str-pinll)))

Example 7.5.2 (Routing a call away from A and connecting A to a resource) In this 
example str 11 is the regular expression matching the single occurrence of any send_to_resource 
message from user 1, routnglx is the regular expression for the single occurrence of a routing 
message routing calls from 1 to x. Also nonrtngstrll is the regular expression describing the 
occurrence of none or many of the remaining messages.

rtngandstr = (str 11. nonrtngstr 11. (routng 111 routng 121 routng 13)) |
((routng 111 routng 121 routng 13). nonrtngstr 11. str 11)

Note tha t the regular expressions include all possible instantiations of the parameters 
of a message that occur in our examples. In this case an extension to the regular 
expressions could be considered, where the matching does not compare the whole 
message but rather the relevant parts.

Using only these five simple regular expressions and the message independent rules we 
were able to resolve all detected technical interactions automatically. The remaining 
interactions have been resolved by using only the message independent rules as 
described earlier.

7.6 Appropriateness and Suitability

The evaluation performed so far considered whether the specification was met by the 
implementation. We have also considered scalability and shown two case studies that 
provided empirical results. Now we step back from the technical details to consider 
whether the approach is suitable and appropriate to detect and resolve interactions.

In the case studies, we have been able to detect and resolve interactions in single 
and multiple point of call control settings automatically. In particular, the best 
possible resolutions (based on our understanding of the features) have been found 
for all detected interactions. The patterns describing bad behaviour as used by the 
pruning algorithm have been relatively obvious and only very few such patterns were 
required. Our understanding of the semantics of the existing messages made the 
formulation of the rules possible.

As features are distinct in such a way that they do not allow general reasoning, 
e.g. based on their structure, evaluating the approach using case studies is the most 
appropriate way of convincing oneself of the suitability.
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As user intentions are often ambiguous, we have concentrated on technical interactions. 
Recall that a technical interaction is defined to occur when several features triggered 
by the same response or features triggered by an earlier response, request for the call 
to be continued in distinct, non-unifiable ways (Definition 4.4.1). In the definition this 
was further explained as the absence of a system state which satisfies the behaviour 
of all requests (similar to type I interactions as described by Hall [Hal98]).

However, in the detection method developed by Marples and refined in this thesis, and 
the presented resolution techniques, we assume that no knowledge of the state of the 
system is available. So, how can we relate our approach to the definition of technical 
interactions? Consider the two components of the approach, the construction and the 
resolution.

Solutions. The construction method, i.e. identifying the solution space, produces 
all possible behaviours. Multiple (distinct) solutions exist precisely because several 
features have responded to a trigger event or because features have responded to a fed 
back response. However, this alone does not allow for the detected behaviour to be 
classified as technical interaction: It is possible that the requested call continuation 
behaviour is unifiable, potentially leading to an user intention violation, or, more 
interestingly, leading to behaviour that is completely acceptable (such as delivering a 
voice announcement and also displaying the same information). The potential of the 
latter is the core motivation for exploring all possible interleavings.

In SPCC settings more information is available and the control of the feature manager 
extends to the whole call, rather than just a call leg (as in MPCC). This allows one 
to detect more interactions than in the MPCC setting. In particular, the MPCC 
setting does not allow one to detect call forwarding loops using our mechanism. In 
order to detect forwarding loops some form of call history, e.g. additional information 
attached to the messages, would be required. A forwarding message would carry as an 
additional argument the history of all previous forwards, which then can be analysed 
w.r.t. whether the call has already been forwarded from this location.

Resolutions. The aim of the resolution method, in particular the pruning rule, is 
to ensure that technical interactions cannot occur. Namely, applied to the solution 
space, all those solutions that lead to requests for continuing the call in non-unifiable 
ways are removed. Thus, while our detection method does not distinguish the different 
classes of interactions, the resolution method deals with the class we are interested in, 
i.e. the technical interactions.

The quality of the resolutions depends on the knowledge of the message semantics. 
However, even a general understanding of the messages is sufficient. For any system 
under considerations, it must be assumed that this general understanding exists, as 
otherwise enhancement is questionable even in the absence of the feature interaction 
problem. In the context of telecommunications systems, the general understanding of 
a message is usually obvious, e.g. dialtone means that the user now can dial a number. 
In general, messages that lead to actions that must be consistent for a user should be 
used in a consistent fashion, i.e. their semantics is fixed.
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A rule set is considered complete if all interactions can be resolved. However, there 
is no generic method of identifying a complete rule set (due to the diverse nature of 
features). This is a drawback, as an incomplete rule set can lead to a trace being 
identified as resolution when the trace is not a resolution. However, this is only a 
minor drawback, as understanding of the messages and the in the studies encountered 
message sets are relatively small it is possible to consider sequences of messages and 
deciding whether they are acceptable.

For larger message sets, this manual approach might prove impossible. However, all 
tha t must be automated is the analysis of sequences formed from messages from the 
message set. It is not required to know details about the features. Thus formulating 
the rules is independent of the features.

In addition to the rules resolving technical interactions, we can also define rules 
that exclude message sequences that can be considered to cause user intention 
violations. However, these will be very crude in that they might not match every 
users expectations -  they merely reflect the view the rule designer has on the action 
of the involved features and whether their interaction is considered undesirable.

Complexity. Overall complexity did not initially look promising. However, 
considering the different parts of the approach that introduce high runtimes, we find 
tha t the most expensive part of the process is the generation of the deterministic finite 
state automaton (DFA) used to match the pruning pattern. Fortunately, this DFA is 
only constructed at startup of the system and when new rules are added (which should 
only happen very infrequently). Further, a significant improvement can be made on 
the matching algorithm using a hash table for the transition table of the DFA.

Solution spaces involving many features can grow large (we have seen an example with 
more than 40000 states earlier). However the construction is performed reasonably 
quickly and the pruning and extraction axe not too time consuming as shown earlier. 
The on-the-fly approach combining pruning and construction rarely performs worse 
than the construct-prune approach (it does so when a feature does not contribute 
to a solution and thus duplicate traces are introduced) and provides a significant 
improvement if traces are long and can be pruned early in their construction. Longer 
traces are normally a result of many features interacting, thus the on-the-fly approach 
becomes more viable as the number of features increases. Note that it is crucial to 
use a hash table for the transition table of the DFA used by pruning to increase 
performance.

Scalability. Details of scalability have been discussed previously. Evidence so far 
suggests that the approach is scalable, however the suitability of this approach for use 
within an operational telecommunications switch remains the subject of further work.

Summary. The rule based resolution approach is desirable as it addresses the 
problems posed in the motivation for this work. In particular it provides a solution to 
the feature interaction problem in the context of legacy and third party features which 
no other currently available technique offers. As discussed, detection and resolution are
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performed without knowledge of the internal behaviour of the features and resolution 
requires only an understanding of the semantics of the exchanged messages.

7.7 A Hybrid Approach -  Revisited

In Chapter 4 we introduced the idea of a hybrid approach for feature interaction 
detection and resolution.

The main ideas discussed involved the development of an initial model, applying offline 
analysis to the behaviour and identifying a set of resolution rules. This rather formal 
part was then seen to be integrated within the D e s k  testbed. In an iterative process 
we learn from experiments in D e s k , i.e. weak points of the resolution approach, and 
would then refine the model and resolution rules.

We have developed a detailed specification and model implementation of the 
underlying system. The model is the result of many failed attempts, mostly concerned 
with finding the right notation for modelling. However, those “dead-ends” have led 
to a sound understanding of the relevant issues:

• We can only assume knowledge of observable behaviour of the features -  the 
impact of this assumption influences the detection and resolution mechanism 
fundamentally and also impacts on correctness proofs.

• The model must be relatively close to the real system -  especially w.r.t. the 
feedback mechanism, but abstract enough to hide the implementation details.

• The call model, SPCC or MPCC, plays a major role as to what can and cannot 
be done, and influences the architecture of the model.

The specification of the solution space (Chapter 5) provides a clear understanding of 
possible solutions and hence resolutions. We can have two distinct classes of methods 
for reducing the solution space: pruning and extraction. The former being dependent 
on the semantics of the messages the latter being more general. Our model was built 
using Haskell.

We will now briefly explain how an integration with D e s k  would be performed. D e s k ’s 

feature manager needs to be extended at different stages. At startup of the system 
the DFA corresponding to the provided regular expression must be computed. The 
further changes depend on the chosen approach: construct-prune vs. on-the-fly.

To integrate the construct-prune approach, D e s k ’s current construction mechanism 
can be maintained. The change is, that rather than presenting the constructed solution 
space to the operator, it is passed to the automatic resolution method. Once a 
resolution has been chosen, the system proceeds as previously.
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The on-the-fly approach is more intrusive, as a change to the method of construction 
is required. In order for this approach to be integrated the current construction and 
resolution mechanism of the D e s k  feature manager would need to be replaced. The 
new construction algorithm would be exactly as presented in the model. Again the 
resolution would be passed back to the system at the same point than it was after the 
operator had chosen it.

We had proposed to integrate our resolution method into the D e s k  testbed in order 
to explore the success. We decided that this is not desirable at this stage for several 
reasons: the testbed itself proved to be fairly fragile, and furthermore it was restricted 
to a single point of call control setting. On the other hand, the close proximity of the 
model and the testbed, and the fact that modelling in Haskell allows us to generate 
executable prototypes, suggested performing experiments on the model.

O v e ra ll, w e c o n c lu d e  t h a t  th e  in i t ia l  id e a  o f  a  h y b r id  a p p ro a c h  p ro v e d  f ru it fu l ,  b u t  

th e  d e ta i ls  o f  th e  a p p ro a c h  t h a t  w ere  d e s c r ib e d  e a r lie r  re q u ir e d  c e r ta in  a d ju s tm e n ts .  

M a in ly , w e d id  n o t im p ro v e  th e  re so lu t io n  ru le s  b y  n ew  k n o w led g e  g a in e d  f ro m  

o b se rv in g  th e  sy s te m  w ith  a n  in i t ia l  r e s o lu t io n  s t r a te g y  a n d  w e d id  n o t  in te g r a te  

th e  d ev e lo p  r e s o lu t io n  te c h n iq u e  in to  th e  D e s k  te s tb e d .

7.8 Summary

We have discussed the correctness of the approach with respect to the specification 
and have considered the complexity. An analysis of scenarios placed the theoretical 
considerations in the context of realistic examples taken from the running example 
and the D e s k  testbed. The reliance on a semantics of the messages as well as the 
subjective decision as to what constitutes bad behaviour might be seen as weaknesses 
of the resolution method. We conclude that the approach is indeed suitable to fulfil 
the set aims. Finally, we reflected upon the hybrid approach and the integration of 
the developed approach in the D e s k  testbed.



Chapter 8

C onclusions and Im plications

8.1 Introduction

Our aim was to show the desirability and feasibility of an approach to detect and 
resolve feature interactions in evolving telecommunications systems. We have outlined 
a number of smaller aims and formulated some objectives (in section 1.2) describing 
how we intended to achieve the principal aim.

We now reflect on the presented work, considering if and how the aims were met. We 
then consider implications of this work for both the theoretical and practical aspects 
of the research area. We also discuss transferability of the approach to other areas, as 
well as its limitations.

Ideas for further work will be presented. In particular, we consider the shift in 
technology that is presently taking place and discuss its impact. We reason that the 
technology shift has and will have a significant impact on telecommunications systems. 
However, this shift neither removes the feature interaction problem nor invalidates our 
approach.

8.2 Reflection on Research Problems

The overall aim of detecting and resolving feature interactions was split into several 
subgoals. The subgoals axe part of three groups of research questions: the first 
concerned with possible solutions, the second concerned with good solutions (or 
resolutions) and the third applicability and suitability of the approach.

Solutions. We have defined a solution to be a trace of one or more features running 
concurrently. The number of potential solutions can be very large, it is bounded by the 
number of features and the length of their responses. All these solutions are found by 
a feedback process following Marples’s idea [MarOO]. However, we identify even more 
solutions than Marples, in that we allow interleaving on a message basis rather than on 
a feature basis -  we refer to these as fine and coarse grained interleaving respectively. 
When considering resolutions we need to discuss whether it is meaningful to have these 
distinct kinds of interleaving.

The feedback process is a runtime detection method and does not require any semantic 
information about the messages, it is simply based on responses of features to trigger
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events. We considered that two (or more) features might be triggered by the same 
event or that a feature might be triggered by a fed back response from another feature. 
Any combination of these two triggering possibilities is also considered.

Building on the definition for solution, we identified the solution space -  i.e. the set 
of all possible solutions and also provided a way of constructing the same at runtime. 
A quantification of possible solutions has been provided in this context, but note that 
there is no quantitative relation between the number of features and the number of 
interactions. This is due to features reacting different depending on certain events 
and often behave different in the presence of other features. In addition, the internal 
behaviour is not known, so we do not know in advance how a feature reacts in a given 
situation. The analysis allowed to place an upper bound on the number of solutions. 
This upper bound is provided by the number of features and the number of messages 
they send as response to a trigger, though the combined length of responses is limited 
by the exploration algorithm making this bound firmer.

Resolutions. Understanding solutions was the basis required to develop the 
resolution approach. The concept of resolutions was made precise as “good” solutions.

Our approach distinguishes two broad categories of resolutions rules: message
dependent and message independent. The rules are used to define pruning and 
extraction operations. Extraction simply maintains solutions that we deem better 
than others, based on notions such as satisfiability of features or priorities. For this 
to work, it is only necessary to know which messages stem from the same feature.

Pruning rules requires semantic knowledge of the messages in order to specify patterns 
describing bad behaviour. Regular expressions are the mechanism used to describe 
rules expressing bad behaviour. We discussed that regular expressions are sufficient 
to describe the behaviours that we wish to exclude. Pruning removes solutions that 
contain patterns described by the regular expressions.

By identifying several rules based on the case studies we contributed the basis of a 
description of undesirable behaviour as it occurs as part of possible solutions. This 
allows to eliminate undesired behaviour at runtime in a more general setting than 
has been possible so far. Previous work makes use of solutions for known conflicts or 
human input to resolve detected interactions.

The message independent rules alone are capable of resolving some interactions. 
However, the pruning rules add significant strength to the resolution mechanism in 
tha t they allow for very specific behaviour to be excluded. It is here that the fine 
grained interleaving gains relevance: it is hoped that sometimes it might be possible 
to have two features active together when their individual responses are interleaved, 
whereas they would not be able to cooperate if the interleaving is on a feature basis.

The major drawback of the pruning rules is their formulation requires domain 
knowledge and that we do not have a general way of showing that the rule set is 
complete. The rule set is dynamic, that is the rules are adapted when required. This 
was the motivation for the iterative process described in Section 4.2. In the absence
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of domain knowledge a reliance on the semantics of the messages is the only way to 
formulate meaningful pruning rules. However, the set of rules will almost certainly be 
weaker than one found assuming domain knowledge and is much more dependent on 
a better understanding of the message semantics.

Applicability. We have integrated pruning with the construction of the solution 
space, we referred to the result as the on-the-fly approach. Trials showed that 
the on-the-fly approach provides scalability. Considering the construction times in 
conjunction with the runtimes for pruning and the on-the-fly method, the resolution 
overhead is quite small (or non-existent). We note that the runtime of our trials are 
not too promising, but this is largely due to the usage of Haskell1. Furthermore, more 
efficient data structures will improve performance as discussed earlier. As Marples 
found the runtimes for his construction method acceptable, we can conclude that, 
since the construction method is essentially identical and the resolution overhead is 
minimal, our overall runtimes must be so as well.

Our evaluation was performed on sets of up to 12 features simultaneously present in 
the system, but we cannot limit the maximum number of features or even guarantee 
that for every feature set a minimum can be assured. This is due to the diverse nature 
of features and the absence of a generic description of features. As discussed earlier 
both the number of features and the number of messages in the system are important 
factors to be considered when discussing scalability.

The number of detected interactions depends largely on the underlying system 
architecture. When single point of call control is assumed, more interactions can 
be detected. However, even in multiple point of call control systems we were able to 
detect interactions between features subscribed by one user.

The resolution technique works in both settings but as it crucially depends on the 
earlier detection of interactions it can only be as good as the detection method.

In order to achieve better performance in multiple point of call control settings, more 
information exchange between the control points is required. New telecommunications 
architecture (as discussed later) allow for this additional exchange, thus strengthening 
the work done here.

We have shown that the developments in the telecommunications area towards open 
markets with multiple vendors as well as legacy equipment require runtime solutions 
for the feature interaction problem. Our method, which is based on a transactional 
approach, provides solutions as it allows to detect and resolve feature interactions in 
the legacy context. The evaluation and discussion concluded that it is indeed feasible 
and desirable to have such an approach.

1 [BagOl] provides a benchmark for different programming languages. On average, programs 
compiled using ghc are 6 times slower than their gcc counterparts



C hapter 8. Conclusions and Im plications 111

8.3 Transferability to Other Areas

Blair and Blair [BB01] presented a method for dynamic Quality of Service Management 
using a system integrating controllers and monitors. In their system, the monitors 
and controllers provide additional functionality to a basic service, and can as such 
be regarded as features. Furthermore, communication between these components is 
via message passing. In a system with multiple monitors and controllers, feature 
interaction can occur when controllers compete for bandwidth. Our approach has been 
applied to detect and resolve interactions in the area of Quality of Service Management. 
The results are reported in [BR01].

The Advanced Separation of Concerns Workshop (part of ECOOP 2001) included a 
discussion group concerned with Feature Interaction for ASoC models. This highlights 
the fact that the feature interaction problem has been recognised in other areas. It 
remains to be seen whether the presented approach can be adapted to this area, as 
well as other component based systems.

However, we believe that the method can be employed successfully to detect and 
resolve interactions in component based systems, provided that the inter component 
communication can be intercepted, delayed and blocked and that sufficient information 
is conveyed in the messages. This claim is supported by Blair et al. [BBPE01]. 
They propose that a runtime approach to discover problems after reconfiguration and 
those unforseen at design time is necessary to resolve interaction in component based 
middleware.

In summary, the approach may be applicable outwith the telecommunications domain 
and presents a contribution to the feature interaction problem in component based 
systems.

8.4 Limitations

In a fast advancing area it is unlikely that one approach will be able to provide 
a general solution. We have outlined the setting for which our approach has been 
developed, namely emerging legacy systems and third party components in the 
telecommunications domain. We have shown that we have successfully detected and 
resolved feature interactions in our evaluation.

Our approach does have limitations, which have been highlighted earlier. They are 
mostly concerned with the architecture of the system, especially the communications 
mechanism and the ability to integrate new components. A system where the 
communications between the components can be intercepted, blocked and delayed 
together with the possibility to insert the feature manager component into the system 
is required. Not all systems will allow for this: the communication path might guarded 
in some fashion, e.g. encryption and time stamping, such that any delay or blocking
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of messages is seen to be intrusive and the communication will be stopped as being 
insecure. The approach will not be applicable to such systems.

The feature manager must be able to temporarily block message exchanges and explore 
feature behaviour without the results being committed to the system. This might not 
be possible, and more significantly the time required might not be available in every 
system. The latter can be caused by time critical transmissions, where a response 
is required to happen within a certain time scale that prohibits anything but an 
immediate reply. If features have side effects, such as changing global data and the 
changes cannot be rolled back when the features are rolled back, the exploration 
mechanism is unusable as partial information is committed leading to inconsistent 
information in the system. Clearly the approach will not be applicable in this situation.

We have assumed that features do not have any side effects, which is necessary for the 
rollback mechanism between stable states. Once we have committed to a resolution 
we reach a new stable state. There is no reason why a feature shall not be able to 
continue to progress from a new internal state once we have reached this new stable 
state (and in fact several of the example features do this, e.g. Teen Line). However, 
rollback only works between stable states, and there is no mechanism to reset features 
once they have been committed to. From a user point of view this is not a limitation, 
in fact allowing rollback across stable states would be confusing for a user.

To ensure consistency in the case when features go across several stable states we can 
see two solutions: a history or look-ahead solution. The former requires for a history 
of which features have been committed to be kept and if the same feature reacts again 
in a consecutive resolution attempt it shall be given a guarantee to continue. This 
opens the question as to when we can consider the behaviour of a feature to have 
terminated, i.e. how many steps into the past do we need to consider. The latter 
would require the feature manager to be able to predict user inputs and explore the 
future behaviour with respect to further inputs. However, we cannot guarantee the 
prediction to be correct and thus might fail to resolve the problem. Furthermore, the 
complexity of the resolution process is increased. In the current solution neither of 
the approaches to deal with features crossing stable states was required and hence this 
has not been considered in detail.

The success of our approach depends on the understanding of the exchanged 
messages. As discussed in Chapter 7, this is not unreasonable. Most communicating 
systems operate to some protocol which provides the semantics of the messages and 
telecommunications systems form no exception. If the understanding does not (or 
only partially) exist the approach might still be applicable. However, in this case a 
reduction in the quality of the resolutions must be expected.

8.5 Further Research

We have presented a method to detect and resolve technical feature interactions in 
evolving telecommunications systems. We concentrated on technical interactions.
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Several aspects for further work can be identified. We consider possible improvements 
to the approach itself, the evaluation of the approach in an operational system, a 
transfer to other areas and the relation to new technology. This section explores these 
issues in more detail.

To improve the runtime performance even more than with the on-the-fly method, a 
heuristic is considered. The idea is: certain message sequences might always suggest 
a failure in the future without themselves being bad. Assume a sequence si which is 
not bad, and a sequence S2 which is bad. A heuristic might say that S2 always occurs 
some time after si, thus the pruning can be performed when encountering si, rather 
than awaiting the offending sequence S2 - This allows for earlier pruning and hence 
for better performance. Clearly such heuristics require a very good understanding of 
the underlying messages, especially which messages are only meaningful if they occur 
in conjunction with each other. We can conclude, that to allow for heuristics the 
semantics of the messages is crucial.

When n features interact in an undesired way, then every trace containing these 
n features in addition to others will also lead to undesired behaviour. We could 
implement a mechanism to use this to our advantage. During the on-the-fly method, 
a log is kept as to when all traces involving certain features have been pruned. It seems 
that, if a new trace is to be constructed involving all those features we can simply skip 
the construction, knowing that all traces will be pruned as well. This requires further 
investigation.

Pruning uses rules that describe certain patterns of messages to be undesired, and in 
our evaluation this was sufficient. However, one could imagine scenarios where new 
features introduce behaviour that contradicts the provided rules. An example would 
be that in general we do not desire to route a call to several locations simultaneously, 
which would contradict the basic behaviour of a group ringing or conferencing feature. 
The matching of the rules could be extended in such a way that when a pattern is 
matched by a sequence of messages stemming from one feature, this will be acceptable 
and only those where a number of features lead to the pattern are undesired. If a 
feature is composed of several sub-features then this approach is not feasible. However, 
it remains unclear whether combining distinct features to obtain a new service is 
desirable. This is because we cannot guarantee that all those sub-features are enabled 
and each interworks correctly with the remaining features in the system. It appears 
that the combination of features to obtain such a combined service should occur at a 
different level.

Our approach has been implemented in Haskell, which proved a good choice for 
the modelling and simulation, but clearly lacks in realistic performance. Thus, it 
would be desirable to re-implement the ideas using C to make use of the better 
performance attainable. We have chosen Haskell for reasons discussed earlier. Using a 
C implementation to show the functional issues discussed in this dissertation seemed to 
detailed and thus diverting from the main aspects. Also this reimplementation should 
consider more efficient data types, especially for the transition table of the DFA.
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Further, incorporation in an operational switch is desirable, to observe the runtime 
behaviour in a natural setting.

In summary, we have identified the following areas for further study:

• heuristics for earlier pruning,

• automatic learning techniques to improve pruning rules,

• “undesired behaviour” produced by a single feature,

• features crossing stable states (c.f. section 8.4),

• implementation and evaluation in an operational system.

The first four are incremental improvements ideas to deal with situations that might 
arise in the future, the last would provide a better measure of feasibility.

Our approach deals with the present, i.e. legacy systems, but also addresses the 
deregulation of the telecommunications market with some of its impacts. However, 
the telecommunications area is currently advancing at incredible speed and many new 
issues are emerging. We now consider these issues in some more detail and reflect on 
the impact of the presented approach.

8.5.1 Technology Shift

We observe a general merging of what used to be separate services: the PSTN 
(primarily a circuit switched voice network), the internet (primarily a packet switched 
data network) and mobile networks. In the new combined communications network, 
features considering billing or call routing remain, and new features for areas such as 
quality of service management arise.

We identify two dimensions in the technological advance: new network architectures 
and protocols and the addition of a service layer on top of core networks. Both 
dimensions allow for ever more complex services by assisting service creation and 
providing larger capabilities than traditional telecommunications networks. Features, 
in this new context often referred to as service logic, become more distributed. We are 
approaching an area that can be described as “anything over IP” , i.e. the core networks 
will be packet and not circuit switched, and there will only be one core network 
technology reducing investment for operators significantly. Service development is 
facilitated by richer protocols, such as SIP [HSSR99] or Bluetooth [SIG01].

Today’s telecommunications market can be described as vertically layered, that is 
each technology -  GSM (Global System for Mobile Communications), IN (Intelligent 
Network), ISDN (Integrated Services Digital Network) -  has its own layering and own 
services. However, recent developments, especially the integration of the different 
network types mark a move towards horizontal layering (similar to ISO-OSI network
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layering), where we distinguish a resource, service and application layer. The 
resource layer simply constitutes the physical network access, the service layer provides 
capabilities such as call control, security or mobility. Applications simply provide the 
user with a tool that makes use of several capabilities, e.g. a basic call service or a 
video conference call. Applications gain access to the service capabilities via predefined 
APIs, examples are Parlay [Par] or JAIN [JAI].

Kimbler [KimOO] predicts 4 areas of service interactions: between the core network 
technologies, between the core networks and the service layer, within the service 
layer and between the applications. Notably he does not mention interaction between 
the service layer and the applications, presumably as this should be avoided by the 
interface. Thus interaction detection and resolution stays prevalent in the emerging 
technologies.

As our approach facilitates the resolution of interactions at runtime, it can be included 
in the new networks and resolve interactions at the appropriate layers simply by 
observing behaviour at runtime and applying the presented detection and resolution 
mechanism. Clearly, scalability would need to be reconsidered in the context of 
probably much larger message sets. In addition, the new richer protocols allow 
for communication between feature managers at different ends of the call and thus 
facilitate the acquisition of additional information about the remote end. This allows 
to detect more interactions. Further, remote feature managers could be presented with 
resolution choices or even just be informed about locally performed resolutions, thus 
increasing the overall quality of resolutions. Note that, in this context, negotiation 
approaches gain a new importance.

As further work, it would be desirable to explore the capabilities of our feature manager 
approach in the new setting and also consider a combination of the negotiating agents 
approaches with the feature manager. This will be helpful when considering user 
intention violations, which are currently not dealt with. In order to resolve user 
intention violations it is required that individual users can express their preferences, 
which in current systems can only be expressed by prioritising features. Emerging 
systems allow for more powerful mechanism, for example call control policies.

In summary, it can be concluded that the new developments do not reduce or remove 
the feature interaction problem. Thus solutions for the problem will be required 
and our approach looks very promising because it is capable of working with minimal 
information (i.e. the semantics of messages and domain knowledge as to which message 
combinations result in undesired behaviour). Recall that no information about the 
internal behaviour of the features is required. We rely on the semantics of messages, 
thus it would be desirable to have agreed interpretations as to what a particular 
message means. The approach might prove even more useful in the emerging systems, 
where richer protocols allow for more information to be available via messages and we 
concluded earlier that more information leads to better resolutions.



Appendix A

Formal D escription o f th e Features 

A .l Introduction

The description of the features uses non-deterministic state machines. In an 
operational system this non-determinism is removed by the environment: For example 
features might react to times of the day, feature internal timers or data within the 
features initialisation. As we are primarily interested in the observable behaviour, 
i.e. input and output, the features environment is not modelled leading to said 
non-deterministic finite state machines.

When modelling the feedback process features cannot be non-deterministic, as this 
would allow a feature to react to the same trigger with different responses each time 
it is presented with the same trigger in a feedback process. In order to resolve this, 
it was chosen to select the interesting behaviour of a feature when non-determinism 
occurs and model only that. Respective notes are made with the features concerned.

State labels in the following state machines a purely to ease understanding and 
to provide a reference, they are not used in the actual detection and resolution 
mechanism. Start states are denoted by a bold circle, in addition the state number 
is 0. Transitions are often labelled with multiple messages, the used notation will be 
summarised briefly. Labels are of the following form: “input /  output” . Inputs are 
printed in blue and italics, outputs black and upright. Some transitions do not depend 
on an input, they are controlled by the feature internally. In this case the transition 
label is simple “output” . Transitions leading to a new state but not resulting in any 
output being produced are labelled “input /  -” . Finally, there might be more than one 
output message resulting from a single input, in this case is used to concatenate 
the individual messages.

A .2 Basic Call

After being alerted a terminating user (see state BC 6) has three choices guarded by 
an input. Further the system might timeout, modelled by a transition that does not 
require any input. Note that this makes the feature statemachine non-deterministic, 
and hence the transaction o-timeout.stopalert has not been included in the Haskell 
model.
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A .7 Call W a itin g
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; foiling start time)

EVERYONE

Fig. A .7: Call Waiting Model

A .8 G ro u p  R in g in g

others 
alerted 
GR 1

(i busy. ■) /

(i stopalert. ) /  
(o stopalert), 
(o stopalert) (i alert. )  /  

(o busy. -)l (i busy. )
(i alert. - ) /  
(o alert. -); 
(o alert. -)

alert. ) 
busy.

(i stopalert. ) /
(o stopalert)(i connect. -) /

(o stopalert. -); 
(stopalert. -); 

(billing forwarded, N); 
(o free, -); 

(o_notlfy. N);
(o notify. Z). 

(o_connect. -)

(i alert. -) I 
(o busy. -),

) /

(i stopalert. ) /  
(o stopalert)

Fig. A .8: Group Ringing Model
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/  (iatert, -) I 
*_ (o  b u sy  •).

/oarmed J  
G R _ E  ,

(I alert, -) I 
(o_busy , -);

tonne
ted(i notify, Z) /

(onhook, ■) I (onhook. -) I 
(o  d isco n n ec t,  -)

(o connect, -) / (i disconnect. -) /

idle
G R_E

(i timeout, -) I(onhook.(( free. -) I

(onhook ■) I j
(i connect. -) I

(i timeout, -) I
'n e w
partner
GR_E

farmed
G R_E (i notify Z) /

(i alert. -) I 
(o b u sy . -),

Fig. A .9: Group Ringing Model Everyone

A .9 R everse  C h a rg in g

RCO

(dial, number) /

(dial number) /  
(billing reverse •)

Fig. A. 10: Reverse Charging Model

A. 10 R in g b ack  w h en  Free

From the armed state (RB 1) this model lias a number of non-deterministic choices. 
In reality these are deterministic, as they represent a decision on whether the ringback 
list is empty or not. In the Haskell model the three transitions from RB 1 to RB 0 
are not implemented.
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SUBSCRIBER EVERYONE

(i inform, ringback) / 
(an n o u n ce , ringback);

Fig. A .l l :  Ringback when Free Model

A. 11 Sp lit B illing

(billing split, factor)

S B  0

Fig. A. 12: Split Billing Model

A. 12 T eenline

This feature makes two internal decisions, hence the model introduces 
non-determinism. From state TL 0 two transitions triggered by offhook exist, 
representing the exclusive choices whether it is teen-time or not (the latter is 
represented by the transition from TL 0 to TL 0). Further from state TL 1 there 
are two transitions triggered by dial, the one from TL 1 to TL 0 is reflecting the entry 
of a correct PIN. In the Haskell model the offhook transition from TL 0 to TL 0 and 
the dial transition from TL 1 to TL 0 are not implemented.

armed 
RB 1

iofmook
(o^alert, -)

(i alert. -) / 
(o jn fo rm , ringback)0 stopalert. -)/ (I stopalert. ) l 

(alert, fa s t alerting)
alert. -) /

(o busy,
remove 
caller 

number 
RB 2

(o timeout -) / 
(alert, fast a lerting)

I otfhook. i /

(onhook. -) /  
(alert. fast_alerting)(o timeout. ) /  -

(onhook. -)
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(offhook. ■} /

pin 
reques

ted 
v TL 1

(offhook. -) /  
(announce, "ask for pm")

. (onhook, -) /_

(onhook.

check 
pin 

T L  2

(o b u sy , -) (o busy. -)

(dial, pin) /  
(announce, "wrong pin')

Fig. A. 13: Teenline Model

A. 13 T e rm in a tin g  Call S creen ing

SUBSCRIBER EVERYONE 1

T C S O

f inform. “id") /
(o^request, callerjd)

(announce, "screened")

awaiting

T C S  1

(o_busy. -)

T C S  E1

(ijnform. "screened"! / 
(announce, "screened")

EVERYONE 2

(i_requesl. callerjd) 
(ojnform, barred)

F ig . A . 14: Terminating Call Screening Model
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A. 14 T h re e  W ay  C alling

busy? 
TWO 3TWC 1 TW C 2

TWC 4

TWC 7

Fig. A. 15: Three Way Calling Model

A .15 Voice M ail

The playback part contains three transitions triggered by dial from state VM_PB 0 
representing the feature internal choice whether the dialled number is the activation 
code for playback and if so whether messages are available or not. The Haskell model 
does not contain the transition for “no messages available” , neither the transition 
when the dialled number is not the activation code.

SUBSCRIBER - recording EVERYONE

VMO VM_E 0

(i inform. "call minder") I 
(announce, "call minder")(o_ timeout. ) l  

(o jn fo rm . "call_minder")
(onhook. - ) /

(i_disconnect. •) ''wait fo r. 
end of ’u 
msg /  

VM_E 1

(i_msg. msg_texl); 
(sto re_m sg . •)w aitjo r  

msg 
VM 1

(i_alert. -)l 
(o_busy, -)(i alert. -) l 

(ojxisy, •)

SUBSCRIBER - playback

Idial. number) /

VM_PB

(dial, number)/ 
(s to re_ read . msglexi); 
(announce , m sgtext): 

(sto re  _clear. •)

(onhook. A, A

(dial, number) I 
(announce, "sorry, no m sgs")

V M P B

(Laled. ■)/ 
(o_busy, -)

F ig . A . 16: Voice Mail Model



Appendix B

Haskell Code Listings

B .l  Module Dependencies

The Haskell model has been developed using modular code. The dependencies of the 
modules is as follows:

The modules Set, Stack and Queue are standard ADT’s. RegExpr provides the regular 
expression matching functionality and underlying data type for regular expressions. 
As these four modules are not of particular interest, their source has not been included 
here.

The module Tree is not a standard ADT, as it includes the pruning and extraction 
functions, as well as the on-the-fly insertion.

The modules Message and F eatures provide the definition of the messages and 
features that are available in the system. To add new features or messages changes to 
these two files are required.

The module Main contains the feature manager implementation and provides a 
function system that forms the main function.

NlessageJ-

RfigExprl

•JjFeaturesI

Fig. B . l  : Module Dependencies of Haskell Model
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B.2 Tree.hs

 1  A D T : T ree
2
3 m o d u le  T ree
4 (T ree , TVee A ug tree , O T F tre e ,
5 isE m p ty T re e , in se rtT ree , m ovem arker, trav erseT ree , traverseA ug tree ,
6 ex trac tT Y ee , p ru n eT ree , ex tra c td u p T re e ,
7 o tf tre e 2 a u g tre e  , rem in sm ark er, co m p ac ttree , in se rtO T F T ree , in se rtd e lm ark er
8 ) w h e r e
9

10 I m p o r t  Set
11 i m p o r t  Q ueue
12 i m p o r t  R egE xpr
13
1 4  an  au g m en ted  tree : s to res  m essages an d  th e  num bers of fea tu res  th a t  send  th e m
15 t y p e  A u g tree  a  =  T ree (a , S et I n t )
16
1 7  tre e  for on th e  fly : a u g tree  p lus n ex t d fa  s ta te s
18 t y p e  O T F tre e  a  =  T ree (a , Set I n t ,  S et I n t )
19
2 0  we w an t e q u a lity  a n d  a  w ay to  show tre e
21 in s t a n c e  E q  a  = >  E q  (T ree  a) w h e r e  ( = = )  =  eqT ree
22 i n s t a n c e  S h o w  a  =  >  S h o w  (Tree a) w h e r e  s h o w  =  show T ree
23
24 d a t a  T ree a  =  E m p ty T re e  | InsM arker | D elM arker | M k a  [Tree a]
25
26 isE m p ty T re e  :: T ree  a  — >  B o o l
27 isE m p ty T re e  E m p ty T re e  =  T r u e
28 isE m p ty T re e  In sM arker =  F a ls e
29 isE m p ty T re e  D elM arker =  F a ls e
30 isE m p ty T re e  (M k x ys) =  F a ls e
31
32 isIn sM arker :: T ree a  — >  B o o l
33 isIn sM arker In sM arker =  T r u e
34 isIn sM arker D elM arker =  F a ls e
35 isIn sM arker E m p ty T ree  =  F a ls e
36 isIn sM arker (M k x ys) =  F a ls e
37
38 isD elM arker :: T ree  a  — >  B o o l
39 isD elM arker D elM arker =  T r u e
40 isD elM arker In sM arker =  F a ls e
41 isD elM arker E m p ty T ree  =  F a ls e
42 isD elM arker (M k x ys) =  F a ls e
43
44 in se rtT ree  :: T ree a  — > a  — >  T ree a
45 in se rtT ree  E m p ty T re e  n =  M k n [InsM arker]
46 in se r tT ree  D elM arker n =  e r r o r  ” in se rtT ree :_ try in g _ to _ in se rt-o v e rJD elM ark e r”
47 in se rtT ree  In sM arker n =  M k n [InsM arker]
48 in se rtT ree  (M k  n (x :x s)) y  | isInsM arker x =  M k n ([M k y [InsM arker]] + +  xs)
49 | o th e r w i s e  =  M k n ([in sertT ree  x y] + +  xs)
50
5  1  m ove th e  in se rt m arker
52 m ovem arker :: T ree a  — > T ree a
53 m ovem arker E m p ty T re e  =  E m p ty T ree
54 m ovem arker D elM arker =  D elM arker
55 m ovem arker In sM ark er =  InsM arker
56 m ovem arker (M k n (x :xs)) | isInsM arker x  =  M k n (x:xs)
57 | le n g th  m m 2x >  1 =  M k n (m m 2x + +  xs)
58 | o th e r w i s e  =  M k n ([m ovem arker x] + +  xs)
59 w h e r e  m m 2x =  m m 2 x
60
61 m m 2 :: T ree a  — >  [Tree a]
62 m m 2 (M k n (x :xs)) | isInsM arker x && l e n g th  xs = =  0 =  In sM arker : [(M k n [])]
63 | isInsM arker x ScSc l e n g th  xs >  0 =  InsM arker : [(M k n xs)]
64 | o th e r w i s e  =  [(M k n xs)]
65
66 in se rtd e lm ark e r :: T ree a  — >  T ree a
67 in se rtd e lm ark e r t  =  m ovem arker ( in se r td c lm a rk e r l t )
68
69 in se r td e lm a rk e r l :: T ree  a  —>  T ree a
70 in s e r td e lm a rk e r l E m p ty T re e  =  E m p ty T ree
71 in s e r td e lm a rk e rl D elM arker =  D elM arker
72 in s e r td e lm a rk e r l In sM arker =  InsM arker
73 in s e r td e lm a rk e r l (M k n (x :x s ))  | is In sM arker x =  Mk n (x :D elM arker:xs)
74 | o th e r w i s e  =  M k n ([in se rtd e lm a rk e rl x] + +  xs)
75
7 6  rem ove th e  in se rtio n  m arker, i t ’s in th e  le ftm ost tre e
77 rem in sm ark er :: T ree a  — > T ree  a
78 rem in sm ark er In sM arker — E m p ty T ree
79 rem in sm ark er D elM arker =  D elM arker
80 rem in sm ark er E m p ty T re e  =  E m p ty T ree
81 rem in sm ark er (M k n (x :xs)) | isInsM arker x =  M k n (xs)
82 | o th e r w i s e  =  rem insm arker x
83
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84 tra v e rse T ree  :: T ree a  — >  [a]
85 tra v e rse T ree  E m p ty T re e  - []
86 tra v e rse T ree  In sM arker =  []
87 tra v e rse T ree  D elM arker =  []
88 tra v e rse T ree  (M k  n []) =  [n]
89 tra v e rse T ree  (M k  n xs) =  n: ( c o n c a t  (m a p  trav erseT ree  xs))
90
91 tra v e rse A u g tree  :: A u g tree  a  —>  [(a, S et In t) ]
92 tra v e rse A u g tree  E m p ty T re e  =  []
93 tra v e rse A u g tree  In sM arker =  []
94 tra v e rse A u g tree  D elM arker =  []
95 tra v e rse A u g tree  (M k n []) =  [n]
96 tra v e rse A u g tree  (M k n xs) =  n: ( c o n c a t  (m a p  tra v e rse A u g tree  xs))
97
98 o tf tre e 2 a u g tre e  :: O r d  a  =  >  O T F tre e  a  — >  A u g tree  a
99 o tf tre e 2 a u g tre e  t  =  o tf tree2 au g tree2  (o tfc lean u p  t )

100
101 o tf tree2 au g tree2  :: O r d  a  = >  O T F tre e  a  —>  A ug tree  a
102 o tf tree2 au g tree2  E m p ty T ree  =  E m p ty T ree
103 o tf tree2 au g tree2  In sM arker =  InsM arker
104 o tf tree2 au g tree2  D elM arker =  D elM arker
105 o tf tree2 au g tree2  (M k (m ,f,s )  []) =  Mk (m ,f) []
106 o tf tree2 au g tree2  (M k  (m ,f,s) xs) =  M k (m ,f) ( m a p  o tftree2 au g tree2  xs)
107
108 o tfc lean u p  :: O rd  a  = >  O T F tre e  a  —>  O T F tre e  a
109 o tfc lean u p  E m p ty T re e  =  E m p ty T ree
110 o tfc lean u p  In sM arker =  In sM arker
111 o tfc lean u p  D elM arker =  D elM arker
112 o tfc lean u p  (M k n xs) | o n lym arkers  te m p  =  D elM arker
113 | o th e r w i s e  =  (M k n (com pact te m p ))
114 w h e r e  te m p  =  m a p  o tfc lean u p  xs
115
11 6  p ru n e  by re , th e n  e x tra c t d u p lica tes  aga in  ... m igh t have in tro d u ced  new  ones!
117 p ru n eT re e  :: O rd  a  = >  DFA a  —>  A ug tree  a  —>  A ug tree  a
118 p ru n eT re e  re t  =  p ru n e trav e rse  re  t
119
120 e x tra c td u p T re e  :: O rd  a  = >  A ug tree  a  — >  A ug tree  a
121 e x tra c td u p T re e  E m p ty T ree  =  E m p ty T ree
122 e x tra c td u p T re e  In sM arker =  E m ptyT ree
123 e x tra c td u p T re e  D elM arker =  E m ptyT ree
124 e x tra c td u p T re e  (M k n xs) =  M k n (co m p ac t (lis trem eq  new xs))
125 w h e r e  new xs =  m a p  e x tra c td u p T re e  xs
126
127 lis trem eq  :: E q  a  = >  [a] — >  [a]
128 lis trem eq  [] =  []
129 lis trem eq  [x] =  [x]
130 lis trem eq  ( x :x s )  | e le m  x xs =  listrem eq  xs
131 | o th e r w i s e  =  x :(lis trem eq  xs)
132
133 e x tra c tT re e  :: O rd  a  = >  A ug tree  a  — >  A ug tree  a
134 e x tra c tT re e  t  =  expickone (ex m o stsa t t)
135
136 ex p rio b y n u m b er :: O r d  a  = >  A ug tree  a  —>  A ug tree  a
137 ex p rio b y n u m b er t  =  ex m o stsa t2  t l  (exbyn t l )
138 w h e r e
139 t l  =  c o m p ac ttree  t
140
141 exp riobyw eigh t :: O rd  a  = >  A u g tree  a  — > [In t] — >  A ug tree  a
142 exp riobyw eigh t t  w =  ex m o stsa t2  t l  (exbyw  t l  w)
143 w h e r e
144 t l  =  c o m p ac ttree  t
145
146 exbyn  :: O r d  a  = >  A ug tree  a  — >  [Int]
147 exbyn  t  =  m a p  m ax sm alles t (fso n trace  em p ty S e t t  [])
148
149 exbyw  :: O rd  a  = >  A ug tree  a  - >  [In t] - >  [In t]
150 exbyw  t  w =  m a p  (calcw eigh t w) (fson trace  em p ty S e t t  [])
151
152 m a x sm alles t :: S e t I n t  — >  I n t
153 m a x sm alles t s =  100 — (m in i (se t2 L is t s))
154
155 ca lcw eigh t :: [ In t]  —>  S et I n t  —>  I n t
156 ca lcw eigh t w s =  s u m  (calcw  w (se t2 L is t s))
157
158 calcw  :: [ In t]  —>  [In t] —>  [In t]
159 calcw  w [] -  []
160 calcw  w (x :xs) =  (w !!(x )):(ca lcw  w xs)
161
162 m ini :: [ In t]  — >  I n t
163 m ini [] =  0
164 m in i [x] — x
165 m in i (x :x s )  | x / =  0 =  m in  x (m ini xs)
166 | o th e r w i s e  =  m ini xs ---- in p u t m essages have 0, exclude th e m
167 -----as th e y  d o n ’t  o rig in a te  from  a  fea tu re
168
169 fso n trace  :: O rd  a  = >  S et I n t  — >  A ug tree  a  — > [Set In t]  — >  [Set In t]
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170 fso n trace  s E m p ty T re e  1 =  1 + +  [s]
171 fso n trace  s In sM arker 1 =  1 + +  [s]
172 fso n trace  s D elM arker 1 =  1 + +  [s]
173 fso n trace  s (M k (n ,f  ) []) 1 = 1  + +  [(un ionS et s f)]
174 fso n trace  s (M k  (n ,f) x s )  1 =  1 + +  m akelist (un io n S e t s f) xs
175 w h e r e
176 m akelist s [] =  [ s]
177 m akelist s [x] =  fson trace  s x []
178 m akelist s (x :x s )  =  (fso n trace  s x []) + +  m akelist s xs
179
180
181 -----rem ove del m arkers  and  em p ty  tre e  values from  tre e  (a p p a r t  from  ro o t, th a t  can  be em p ty tre e )
182 c o m p a c ttre e  :: O r d  a  = >  A ug tree  a  —>  A ug tree  a
183 c o m p a c ttre e  In sM ark er =  In sM arker
184 c o m p a c ttre e  D elM arker =  E m p ty  T ree
185 c o m p a c ttre e  E m p ty T re e  =  E m p ty T ree
186 c o m p a c ttre e  (M k n xs) =  M k n (com pac t xs)
187
188 e x m o stsa t :: O r d  a  = >  A ug tree  a  —>  A ug tree  a
189 ex m o stsa t t  =  ex m o stsa t2  t l  (e x m o s tsa tl  em p ty S e t t l  [])
190 w h e r e
191 t l  =  c o m p ac ttree  t
192
193 e x m o s ts a tl  :: O rd  a  = >  S et I n t  —>  A ug tree  a  —>  [In t] —>  [In t]
194 e x m o s ts a tl  s E m p ty T re e  1 =  1 + +  [card s]
195 e x m o s ts a tl  s In sM arker 1 =  1 + +  [card s]
196 e x m o s ts a tl  s D elM arker 1 =  1 + +  [card s]
197 e x m o s ts a tl  s (M k ( n , f ) []) 1 = 1  + +  [card (un io n S e t s f)]
198 e x m o s ts a tl  s (M k (n ,f) x s) 1 =  1 +  +  m akelist (un io n S e t s f) xs
199 w h e r e
200 m akelist s [] =  [ ca rd  s]
201 m akelist s [x] =  e x m o s tsa tl  s x 0
202 m akelist s (x :x s )  =  (e x m o stsa tl 3 x  []) + +  m ak e list s xs
203
204 m axi :: [ I n t]  — >  I n t
205 m axi [] =  0
206 m ax i [x] — x
207 m axi (x:xs) =  m a x  x (m axi xs)
208
209 s p lit lis t :: [ In t]  — >  [In t] —>  [[Int]]
210 s p lit lis t xs [] =  [[]]
211 s p lit lis t xs [y] =  [ ta k e  y xs]
212 s p lit lis t xs (y :y s )  =  ( t a k e  y x s):( s p lit lis t ( d r o p  y xs) ys)
213
214 e x m o stsa t2  :: O r d  a  = >  A u g tree  a  — >  [In t] — >  A ug tree  a
215 e x m o stsa t2  t  1 | [] = =  te m p  =  E m p ty  T ree
216 | o th e r w i s e  =  h e a d  te m p
217 w h e r e
218 te m p  =  exm s (m axi 1) [t] [1]
219
220 exm s :: O r d  a  = >  I n t  —>  [A ugtree a] —> [[Int]] —>  [A ugtree a]
221 exm s lm ax [ ] -  =  []
222 exm s lm ax  [InsM arker] [y] =  [InsM arker]
223 exm s lm ax [D elM arker] [y] =  [D elM arker]
224 exm s lm ax  [Em ptyT ree] [y] =  [Em ptyTree]
225 exm s lm ax  [Mk n xs] [y] | ( A lte r  (ism ax  lm ax) y) = =  [] =  [DelM arker]
226 | o th e r w i s e  =  [Mk n (co m p ac t (exm s lm ax xs (sp lit lis t y
227 ( m a p  leavesin t x s))))]
228 exm s lm ax (x :xs) (y:ys) =  c o m p a c t( (h e a d  (exm s lm ax [x] [y])):(exm s lm ax xs y s))
229
230 ism ax  :: I n t  — >  I n t  — >  B o o l
231 ism ax  a  b =  a  = =  b
232
233 leavesin t :: O r d  a  = >  A ug tree  a  —>  I n t
234 leavesin t E m p ty T re e  =  0
235 leavesin t In sM ark er =  0
236 leavesin t D elM arker =  0
237 leavesin t (M k  n []) =  1
238 leavesin t (M k  n xs) =  s u m  ( m a p  leavesin t xs)
239
240 -----pick le ftm ost b ranch
241 exp ickone :: O r d  a  = >  A u g tree  a  — >  A ug tree  a
242 expickone t  =  exp ick o n e l (co m p ac ttree  t)
243
244 ex p ick o n e l :: O r d  a  = >  A u g tree  a  — >  A u g tree  a
245 ex p ick o n e l E m p ty T re e  =  E m p ty T re e
246 e x p ick o n e l In sM ark er =  E m p ty  T ree
247 ex p ick o n e l D elM arker =  E m p ty T ree
248 exp ick o n e l (M k n []) =  M k n []
249 ex p ick o n e l (M k n [x]) =  M k n [expickonel x]
250 exp ick o n e l (M k n (x :xs)) =  M k n [expickonel x]
251
252 p ru n e tra v e rse  :: O r d  a = >  DFA a  — >  A ug tree  a  — >  A ug tree  a
253 p ru n e tra v e rse  d fa  E m p ty T re e  =  E m p ty T ree
254 p ru n e tra v e rse  d fa  In sM arker =  In sM arker
255 p ru n e tra v e rse  d fa  D elM arker =  D elM arker
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256 p ru n e tra v e rse  d fa  (M k n xs) | on lym arkers  pi =  D elM arker
257 | o th e r w i s e  =  useD FA 2prune d fa  (M k n (com pac t p i))
258 w h e r e  pi =  m a p  (p ru n e tra v e rse  d fa) xs
259
260 on ly m ark ers  :: O rd  a  = >  [Tree a] — >  B o o l
261 on ly m ark ers  [] =  F a ls e
262 on ly m ark ers  [x ] | isD elM arker x =  T r u e
263 | o th e r w i s e  =  F a ls e
264 on ly m ark ers  (x :x s ) | n o t  (isD elM arker x) =  F a ls e
265 | o th e r w i s e  =  on lym arkers  xs
266
267 co m p ac t :: O rd  a  = >  [Tree a] — >  [Tree a]
268 co m p ac t [] =  []
269 co m p ac t [x] | isE m ptyT ree  x =  []
270 | isD elM arker x =  []
271 | o th e r w i s e  =  [ x ]  keep p ro p er nodes and  in sertion  m arkers
272 co m p ac t (x :x s) | isE m p ty T ree  x =  com p ac t xs
273 | isD elM arker x =  com pact xs
274 | o th e r w i s e  =  x :(c o m p ac t x s ) -keep p ro p er nodes and  in se rtio n  m arkers
275
276 useD F A 2prune :: O rd  a  = >  DFA a  —>  A u g tree  a  — >  A ug tree  a
277 useD F A 2prune (s, a , t r )  in p u t | isM em berSet a  s =  D e l M a r k e r  s ta r t s t a te  is accep tin g ,
278 -----m a tches , rem ove tre e  & m ark
279 | o th e r w i s e  =  u seD F A 2prunel a  t r  s i n p u t  need to  look fu r th e r  ...
280
281 u seD F A 2 p ru n e l :: O rd  a  = >  S et I n t  —>  T T B L  I n t  a  —> I n t  —>  A ug tree  a  —>  A u g tree  a
282 u seD F A 2 p ru n e l a  t r  s E m p ty T ree  =  E m p ty T ree
283 u seD F A 2 p ru n e l a  t r  s In sM arker =  InsM arker
284 u seD F A 2 p ru n e l a  t r  s D elM arker =  D elM arker
285 u seD F A 2 p ru n e l a  t r  s (M k n xs) | isM em berSe t a  g t o  found accep ting  s ta te  rem ove node
286 =  D elM arker
287 | g to  = =  —9 9  no tra n s i tio n , hence d o esn ’t  m a tch
288 =  (M k n xs)
289 | o n lym arkers  pi
290 =  D elM arker
291 | o th e r w i s e  =  M k n (com pact pi)
292 w h e r e  g to  =  go to  s t r  ( f s t  n)
293 pi =  m a p  (u seD F A 2 p ru n e l a  t r  g to ) xs
294
295 in se r tO T F T re e  :: O r d  a  = >  O T F tre e  a  —>  (a, S et I n t )  —>  DFA a  —>  (B o o l, O T F tre e  a)
296 in se r tO T F T re e  E m p ty T ree  (m , f) (s, a, t r )  | isM em berSe t a  s || isM em berSet a  g t o  found m a tch :
297 -----s ta r t s ta te  o r g to  s m  is final
298 =  (F a ls e , D elM arker)
299 | o th e r w i s e
300 =  (T r u e ,  M k (m , f, in se rtS e t em p ty S e t g to ) [InsM arker])
301 w h e r e  g to  =  g o to  s t r  m
302 in se r tO T F T re e  D elM arker n d fa  =  e r r o r  ” in se r tO T F T ree :- try in g _ to - in se r t-o v e r_ D e lM ark e r”
303 in se r tO T F T re e  In sM arker (m , f) (s, a , t r  ) | isM em berSe t a  s || isM em berSet a  g t o  found m a tch :
304 -----s ta r t s t a te  o r g to  s m  is final
305 =  (F a ls e , D elM arker)
306 | o th e r w i s e
307 =  ( T ru e ,  M k (m , f, in se rtS e t em p ty S e t g to ) [InsM arker])
308 w h e r e  g to  =  g o to  s t r  m
309 in se r tO T F T ree  (M k (m , f, s t)  (x :x s ))  (n ,  g ) ( s ,  a ,  t r  ) | isInsM arker x && ( n o t  acc)
310--------------------------------------------------------------------------------------------------------------have found in se rtio n  p o in t an d  no m a tch
311 — ( T ru e ,  M k (m , f, s t)
312 ([M k (n , g, u n ionS e t s t g to )  [InsM arker]] + +  xs))
313 | isInsM arker x &:& acc
314--------------------------------------------------------------------------------------------------------- -----have found in se rtio n  p o in t a n d  m a tch
315 =  (F a ls e , M k (m , f, s t ) ([In sM a rk e r, D elM arker] + +  xs))
316 | o t h e r w i s e  h av en ’t  found in se rtio n  p o in t
317 =  ( f s t  in s ,  M k (m , f, s t ) ( [ s n d ( in s ) ]  + +  xs))
318 w h e r e  ins =  in se r tO T F T ree  x (n , g) (s, a, tr )
319 g to  =  allm oves ( s , a ,  t r ) n ( se t2 L is t s t )
320 acc =  accep tin g  g to  a
321
322 allm oves :: O r d  a  = >  DFA  a  —>  a  —>  [In t] —>  (S et I n t )
323 allm oves ( s ,  a ,  t r )  m  [] =  em p ty S e t
324 allm oves ( s , a ,  t r )  m  (x:xs) =  in se rtS e t ( in s e r tS e t (allm oves ( s , a ,  t r ) m xs) (go to  x t r  m )) (go to  s t r  m )
325
326 accep tin g  :: ( S et I n t )  —>  (S et I n t )  —>  B o o l
327 accep tin g  x fin =  ( s e t ln te r  fin x  / =  em p ty S e t)
328
329 eqT ree :: E q  a  = >  T ree a  —>  T ree a  —>  B o o l
330 eqT ree  (M k x xs) (M k y ys) =  x = =  y && xs = =  ys
331 eqT ree  E m p ty T re e  E m p ty T ree  =  T r u e
332 eqT ree  In sM arker In sM arker =  T r u e
333 eqT ree D elM arker D elM arker =  T r u e
334 e q T r e e  =  F a ls e
335
336 show T ree :: S h o w  a  =  >  T ree a  — >  S t r in g
337 show T ree E m p ty T re e  =  ’’em p ty ”
338 show T ree In sM ark er =  ’’in sm ark er”
339 show T ree D elM arker =  ’’d e lm ark e r”
340 show T ree (M k x xs) =  s h o w  x + +  ” [” + +  sh xs + +  ” ]”
341
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342 sh :: S h o w  a  = >  [a] —>  S t r in g
343 sh [] =
344 sh (x  :[]) =  s h o w  x
345 sh (x :x s )  =  s h o w  x + +  + +  sh xs

B.3 Message.hs

1
 2  M odule  for M essage, E ven t an d  A rgum en t defin itions
3
4
5 m o d u le  M essage
6 (M essage, E v e n t( ..) , A rg ( . .) ,  Io (■. )) ,
7 p jo a s p ,  p_even t, p_argum ent, p .d e s t ,  is_fmsg , is .tc m sg
8 w h e r e
9

1 0 ----
1 1  d a ta  ty p e  for even ts (en u m era tio n  of all po ssib le  values)
12 - -

13 d a t a  E v en t =  O nhook  | O ffhook | D ial | F lash
14 | A nnounce | D isp lay  | R in g to n e  | B u sy to n e  | D ia lto n e  | T im eo u tto n e
15 | D isco n n ec tto n e  | C on n ec t | S to p a le r t | A le rt | C w tone | S to rem sg
16 | S to re read  | S to rec lear
17 | O -n o tify  | O -in fo rm  | O .a le r t  | 0_ free | O .b u sy  | O -s to p a le rt
18 | O .co n n ec t | O -d isconnect | O -tim eo u t | O -m sg | 0 _ req u es t
19 | I_notify | I J n fo rm  | I_alert | I_free | I .b u sy  | I^ s to p a le rt
20 | I .co n n ec t | I_d isconnect | I .tim e o u t | I .m sg  | I_request
21 | B illing-offhook | B illing-onhook  | B illing-fo rw arded  | B illing-reverse
22 | B illin g -sp lit | B illin g -s ta r t | B illing_stop
23 | R o llb a c k .tra n sa c tio n  | C o m m it- tran sac tio n  | S ta r t- tra n s a c t io n  | A b o rt- tra n s a c tio n
24 d e r iv in g ( E q ,  O r d ,  S h o w )
25
26 - -
2 7  d a ta  ty p e  for a rg u m en ts  (en u m era tio n  o f all possib le  values)
28 - -
29 d a t a  A rg =  Nil | A skpin  | W rongpin  | T im e  | Screened | S p litfac to r | C allerid  | B arred
30 | N om sg | M sg tex t | C allm inder | Id | R ingback  | F a s ta le r t | C w hold  | O rig in a to r
31 d e r iv in g ( E q ,  O r d ,  S h o w )
32
33
3 4  d a ta  ty p e  for io a sp ec t (en u m era tio n  of all possib le  values)
35
36 d a t a  Io =  Rev | Snd
37 d e r iv in g ( E q ,  O r d ,  S h o w )
38
3 9 -----
4 0  d a ta  ty p e  for m essage (a  q u d ru p le , th e  p ro jec tio n  fu n c t io n s , and  som e te s ts)
41
42 t y p e  M essage =  (Io, E v en t, A rg, I n t )
43
44 p J o a s p  :: M essage — >  Io
45 p_ ioasp (i ,e ,a ,d )  =  i
46
47 p_event :: M essage — >  E ven t
48 p_even t(i ,c ,a ,d )  = e
49
50 p_argum en t :: M essage — >  A rg
51 p _ a rg u m en t( i,e ,a ,d )  =  a
52
53 p .d e s t :: M essage — >  I n t
54 p _ d es t(i , e ,a ,d )  =  d
55
56 is_fmsg :: M essage — >  B o o l  is a  fea tu re  m essage
57 is_fm sg( i , e ,a ,d )  =  n o t( is_ tc m s g ( i,e ,a ,d ) )
58
59 is_tcm sg :: M essage — >  B o o l  is a  tra n sa c tio n  con tro l m essage
60 is_ tcm sg (i , e ,a ,d )  - (e -- R o llb ac k .tra n sa c tio n )  || ( e  C o m m it- tra n sa c tio n )
61 || ( e  = =  S ta r t - t r a n s a c t io n )  || ( e  = =  A b o rt- tra n s a c tio n )

B.4 Features.hs

1 - -

 2  M odule p rov id ing  fea tu re  defin itions  and  th e  cocoon
3
4
5 m o d u l e  F ea tu res
6 ( c o c o o n ,  th e  cocoon
7 C S t a t e ------a  s ta te  o f a  cocoon
8 ) w h e r e
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9
10 i m p o r t  M essage
11 i m p o r t  Q ueue
12 i m p o r t  S tack
13
14 - -
1 5  S ta te  o f th e  cocoon
1 6 -----
17 t y p e  C S ta te  =  ( I n t ,  S tack  I n t ,  B o o l ,  I n t )  cu rre n t s ta te , ro llback  s tac k , p layback  flag and  fea tu re  id
18
19 -----
2 0  th e  cocoon
21  - -

2 2  th e  cocoon ’s p a ra m e te rs  a re  th e  fea tu res  cu rre n t s ta te ,  its  c u rren t ro llback  s tack
2 3  and  also  w hich fea tu re  it  rep resen ts  and  th e  connection  n u m b er and  th e  tr ig g e r m essage and  th e  p la y b ack s ta tu s
2 4  a  m essage queu e  is re tu rn e d  rep re sen tin g  th e  fea tu res  responses , th e  new  c u rre n t s ta te  and
2 5  th e  ro llback  s tac k , an d  th e  p la y b ack s ta tu s
2 6  th e  la t te r  th re e  a re  requ ired  for re in s ta n tia tio n  (d o n e  by recursion  in L otos)
27 cocoon :: I n t  —>  S tack  I n t  —>  I n t  —>  I n t  —>  M essage —>  B o o l —>  (Q ueue M essage, C S ta te )
28 cocoon cs rb  fid co m  f | is .tc m sg  m &c&c ( p .d e s t ( m )  co || p .d e s t(m ) = =  0) &:& f = =  F a l s e  n o t a  p layback  cocoon
29 =  tra n sc o n tro l cs rb  m fid
30 | p_event(m ) = =  C o m m it-tran sac tio n  && (p_dest(m ) = =  fid || p_dest(m ) = =  0) && f = =  T r u e
31------------------------------------------------ -----we a re  a  p layback  cocoon b u t p layback  has ju s t  finished
32 =  (em p tyQ ueue , (cs, rb , F a ls e , fid ))
33 | is_fmsg m  && (p_dest(m ) = =  co ||  p_dest(m ) —— 0) &c&z f  F a l s e  n o t a  p layback  cocoon
34 =  (sn d (fe a tb e h a v e  cs m fid), ( f s t( fe a tb e h a v e  cs m f id ) , r b ,  f ,  f id ))
35 | is_fmsg m && (p_dest(m ) = =  co || p_dest(m ) = =  0) && f = =  T r u e  p layback  cocoon
36 =  (em p tyQ ueue , ( fs t( fe a tb e h a v e  cs m  fid), rb , f , f id ))
37 | o th e r w i s e  =  (em p tyQ ueue , (cs, rb , f, fid))
38
39 tra n sc o n tro l :: I n t  — >  S tack  I n t  — >  M essage — >  I n t  — >  (Q ueue M essage, C S ta te )
40 tra n sc o n tro l cs rb  m  n | p .ev e n t(m ) = =  A b o rt- tra n s a c tio n  =  (em p ty Q u eu e , (b o tto m  rb , em p ty S tac k , F a ls e , n ))
41 | p -ev en t(m ) = =  C o m m it-tran sac tio n  =  (em p tyQ ueue , (cs, em p ty S tac k , T r u e ,  n ))
42 | p je v en t(m ) = =  R o llb ack .tran sac tio n  =  (em p tyQ ueue, ( to p  rb , po p  rb , F a ls e , n ))
43 | p_event(m ) = =  S ta r t- tra n s a c t io n  =  (em p tyQ ueue , (cs, p u sh  rb  cs, F a ls e , n ))
44
4 5  th e  fe a tu re  b ehav iou r
4 6  th e  second In t defines th e  fea tu re
4 7  th e  resonse from  th e  fea tu res  is depen d in g  on th e  S ta te  and  th e  M essage
48 fea tb eh av e  :: I n t  —>  M essage —>  I n t  —>  ( I n t ,  Q ueue M essage)
49 fea tb eh av e  s m f | f  = =  1 =  tl s m  th e  teen line  fea tu re
50 | f - 2 =  cfb s m  call fo rw arding  busy
51 | f = =  3 =  tc s  s m  te rm in a tin g  call screening
52 | f  = =  4 =  rc  s m  reverse charg ing
53 | f - 5 =  sb  s m  sp lit b illing
54 | f  = =  6 =  bcs s m  basic call
55 | f  = =  7 =  end  s m  calling  n um ber d isp lay
56 | f = =  8 =  en d b  s m ------- calling  num ber delivery  blocking
57 | f - - - 9 =  c t s m  call tra n sfe r
58 | f = =  10 - cw s m  call w aiting
59 | f -  11 = g r s m  g ro u p  ring ing
60 | f  = =  12 = r b s m  ringback
61 | f = =  13 =  tw e s m  th re e  w ay calling
62 | f = =  14 =  v m r s m  voice m ail — record ing
63 | f = =  15 - v m p b  s m  voice m ail — playback
64 | o th e r w i s e  =  e r r o r  " fea tu re -u n k n o w n ”
65
6 6  th e  te en lin e  fea tu re
67 tl :: I n t  —>  M essage —>  ( I n t ,  Q ueue M essage)
68 t l  n m  | n  = =  0 Sc&c p je v en t(m ) = =  Offhook
69 =  (1, enq u eu e  em p ty Q u eu e  (S nd , A nnounce, A skpin , 0))
70 | n -—  0 &i&c p_event(m ) / =  Offhook
71 =  (0, em p ty Q u eu e)
72 | n = =  1 &c&c p .e v e n t(m ) = =  O nhook
73 =  (0, em p ty Q u eu e)
74 | n - 1 Sc&c p .e v e n t(m ) :—  D ial
75 =  (2, enq u eu e  em p ty Q u eu e  (S nd , A nnounce, W rongpin , 0))
76 | n = =  1 &c&c p _ e v e n t(m )------I-a le rt
77 =  (1, enq u eu e  em p ty Q u eu e  (S nd , O -busy , N il, 0))
78 | n = =  1 && (p_event(m ) / =  O nhook  || p^event(m ) / =  D ial ||  p_event(m ) / =  I_alert)
79 =  (1, em p ty Q u eu e)
80 | n = =  2 &c&c p_event(m ) - O nhook
81 =  (0, em p ty Q u eu e)
82 | n  2 &c&c p .ev e n t(m ) — I .a le r t
83 =  (2, enq u eu e  em p ty Q u eu e  (S nd , O -busy , N il, 0))
84 | n = =  2 && (p .ev en t(m ) / =  O nhook  || p .ev e n t(m ) / =  I_alert)
85 =  (2, em p ty Q u eu e)
86
8 7  call fo rw ard ing  busy
88 cfb :: I n t  —>  M essage —>  ( I n t ,  Q ueue M essage)
89 cfb n m  | n = =  0 && p .ev e n t(m ) = =  O -busy
90 =  (0, enqueue (enqueue (enqueue em p ty Q u eu e  (S nd, O -a le rt, N il, 0))
91 (S nd , B illing -fo rw arded , N il ,  0))
92 (S nd , O _notify , N il, 0 ))
93 | n .....  0 p_event(m ) / =  O -busy
94 =  (0, em p ty Q u eu e)
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95
9 6  te rm in a tin g  call screen ing
97 tc s  :: I n t  — >  M essage — >  ( I n t ,  Q ueue M essage)
98 tc s  n m  | n  = =  0 && p_event(m ) = =  I_alert
99 =  (1, enqueue em p ty Q u eu e  (S nd , O -req u es t, C allerid , 0))

100 | n = =  0 &£&z p_event(m ) / =  I-a le rt
101 =  (0, em p ty Q u eu e)
102 | n = =  1 &c&£ p_event(m ) = =  I-inform
103 =  (0, enqueue em p ty Q u eu e  (S nd , A nnounce, Screened, 0))
104 | n  —— 1 &c&c p_event(m ) = =  I_alert
105 =  (1, enqueue em p ty Q u eu e  (S nd, O -busy , N il, 0))
106 | n - 1 &c&i (p_even t(m ) / =  I_alert || p .ev e n t(m ) / =  IJn fo rm )
107 =  (0, em p ty Q u eu e)
108
10 9  reverse  cha rg ing
110 rc :: I n t  — >  M essage — >  ( I n t ,  Q ueue M essage)
111 rc n m  | n  — -- 0 && p -ev en t(m ) = =  D ial
112 =  (0, enq u eu e  em p ty Q u eu e  (S nd , B illing_reverse, N il, 0))
113 | n  -  — 0 &:& p_event(m ) / =  Dial
114 =  (0, em p ty Q u eu e)
115
11 6  s p lit b illing
117 sb :: I n t  —>  M essage —>  ( I n t ,  Q ueue M essage)
118 sb  n m  | n = =  0 &i&c p_event(m ) = =  Dial
119 =  (0, enq u eu e  em p ty Q u eu e  (S nd , B illing -sp lit, S p litfac to r , 0))
120 | n = =  0 &ilU p_event(m ) / =  D ial
121 =  (0, em p ty Q u eu e)
122
12 3  basic  call
124 bcs :: I n t  —>  M essage — >  ( I n t ,  Q ueue M essage)
125 bcs n  m  | n = =  0 && p .ev e n t(m ) -  — Offhook
126 =  (1, enq u eu e  (enqueue em p ty Q u eu e  (S nd, B illing-offhook, T im e, 0 ))
127 (S nd , D ia lto n e , N il,  0))
128 | n — — 0 &t&c p_event(m ) = =  I-a le rt
129 =  (6, enqueue (enqueue em p ty Q u eu e  (Snd, O -free, N il, 0 ))
130 (S nd , A le r t ,  N il, 0))
131 | n  0 &c&c (p_event(m ) / =  O ffhook || p .ev e n t(m ) / =  I-a le r t)
132 =  (0, em p tyQ ueue)
133 | n = =  1 && p_event(m ) = =  D ial
134 =  (2, enqueue em p ty Q u eu e  (S nd, O -a le rt , N il, 0))
135 | n = =  1 &c&c p_event(m ) = =  O nhook
136 =  (0, enqueue em p ty Q u eu e  (S nd, B illing_onhook, T im e, 0))
137 | n = =  1 Sc&c p_event(m ) = =  I .a le r t
138 =  (1, enqueue em p ty Q u eu e  (S nd, O -busy , N il, 0))
139 | n -1 && (p_event(m ) / =  D ial || p je v en t(m ) / =  O nhook  || p_event(m ) / =  I_alert)
140 =  (1, em p ty Q u eu e)
141 | n = =  2 p_event(m ) = =  O nhook
142 =  (0, enqueue (enqueue em p ty Q u eu e  (S nd , B illing-onhook , T im e , 0))
143 (S nd , O -s to p a le rt ,  N il,  0))
144 | n -- 2 &c&c p -ev en t(m ) -- I.b u sy
145 =  (5, enqueue em p ty Q u eu e  (S nd, B usy tone , N il, 0 ))
146 | n = =  2 &c&t p_event(m ) = =  I_free
147 =  (3, enqueue em p ty Q u eu e  (S nd, R ing tone , N il, 0))
148 | n - 2 p_event(m ) = =  I-a le rt
149 =  (2, enqueue em p ty Q u eu e  (S nd , O -busy , N il, 0))
150 | n  2 &c&i (p_event(m ) / — I .b u sy  ||  p .ev e n t(m ) / =  O nhook  ||
151 p_event(m ) / =  I_free || p_event(m ) / =  I_alert)
152 =  (2, em p ty Q u eu e)
153 | n  3 &c&c p_event(m ) = =  O nhook
154 =  (0, enqueue (enqueue em p ty Q u eu e  (S nd, B illing-onhook , T im e, 0 ))
155 (S nd , O js to p a le r t ,  N il, 0))
156 | n = =  3 &£&z p_event(m ) = =  I .tim e o u t
157 =  (5, enqueue em p ty Q u eu e  (S nd, T im eo u tto n e , N il, 0))
158 | n = =  3 p_event(m ) = =  I .co n n ec t
159 =  (4, enqueue (enqueue em p ty Q u eu e  (S nd, B illing_sta rt, T im e, 0))
160 (S nd , C onnec t, N il, 0 ))
161 | n  = =  3 &c&c p^even t(m ) = =  I .a le r t
162 =  (3, enq u eu e  em p ty Q u eu e  (S nd, O -busy , N il, 0))
163 | n ------ 3 (p .ev en t(m ) / =  I .t im e o u t || p .ev e n t(m ) / =  O nhook  ||
164 p^even t(m ) / =  I .co n n ec t || p_event(m ) / =  I_alert)
165 =  (3, em p ty Q u eu e)
166 | n ------ 4 && p - e v e n t (m )  O nhook
167 =  (0, enqueue (enqueue (enqueue em p ty Q u eu e  (S nd , B illing_stop , T im e , 0))
168 (S nd , B illing-onhook , N il, 0 ))
169 (S nd , O .d isco n n ec t, N il, 0 ))
170 | n = =  4 p_event(m ) = =  I .d isco n n ec t
171 =  (4, enqueue em p ty Q u eu e  (S nd, D isconnec ttone , N il, 0))
172 | n = =  4 p -ev en t(m ) = =  I_alert
173 =  (4, enqueue em p ty Q u eu e  (S nd, O -busy , N il, 0))
174 | n = =  4 && (p_event(m ) / =  O nhook  || p -cven t(m ) / =  I .d isco n n e c t || p_event(m ) / =  I_alert)
175 =  (4, em p ty Q u eu e)
176 | n = =  5 p -even t(m ) - O nhook
177 =  (0, enqueue em p ty Q u eu e  (S nd, B illingam hook , T im e , 0))
178 | n  5 &c&z p -ev en t(m ) = =  I .a le r t
179 =  (5, enqueue em p ty Q u eu e  (S nd , O .b u sy , N il, 0))
180 | n = =  5 &c&i (p_event(m ) / =  O nhook  || p_event(m ) / =  I .a le r t)
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181 =  (5, em p tyQ ueue)
182 | n  - - 6 &c&c p -ev en t(m ) = =  I-s to p a le r t
183 =  (0, enqueue em p ty Q u eu e  (S nd , S to p a le r t, N il, 0))
184 | n = =  6 &c&i p_event(m ) ----- O ffhook
185 =  (7, enqueue (enqueue em p ty Q u eu e  (S nd, Billing_offhook, T im e , 0))
186 (S nd , O .co n n ec t, N il, 0))
187 | n  = =  6 p_event(m ) = =  I_alcrt
188 =  (6, enqueue em p ty Q u eu e  (S nd , O .b u sy , N il, 0))
189 | n = =  6 &c&c (p .e v e n t(m ) / =  I_ sto p a le rt | |  p_event(m ) / =  O ffhook ||  p_event(m ) / =  I_alert)
190 =  (6, em p ty Q u eu e)
191 | n  = =  7 &c&£ p_event(m ) = =  O nhook
192 =  (0, enqueue (enqueue (enqueue em p ty Q u eu e  (S nd , B illing_stop, T im e , 0))
193 (S nd , B illing -onhook , T im e , 0))
194 (S n d , O .d isco n n ec t, N il , 0))
195 | n = =  7 &t&c p^even t(m ) = =  I .d isco n n e c t
196 =  (8, enqueue em p ty Q u eu e  (S nd , D isco n n ec tto n e , N il, 0))
197 | n = =  7 &c&c p_event(m ) = =  I_alert
198 =  (7, enqueue em p ty Q u eu e  (S nd , O .b u sy , N il, 0))
199 | n = =  7 &;& (p_event(m ) / =  O nhook  || p_event(m ) / =  I .d isco n n e c t || p_event(m ) / =  I_alert)
200 =  (7, em p tyQ ueue)
201 | n = =  8 &c&c p_jevent(m) = =  O nhook
202 =  (0, enqueue em p ty Q u eu e  (S nd , B illing-onhook , T im e , 0))
203 | n = =  8 &c&c p^even t(m ) = =  I .a le r t
204 =  (8, enqueue em p ty Q u eu e  (S nd , O .b u sy , N il, 0))
205 | n = =  8 (p_event(m ) / =  O nhook  ||  p .ev e n t(m ) / =  I .a le r t)
206 =  (8, em p ty Q u eu e)
207
208 -----ca lling  n um ber d isp lay
209 end  :: In t — >  M essage — >  (In t, Q ueue M essage)
210 end  n m | n = =  0 && p .ev e n t(m ) = =  I .a le r t
211 =  (1, enqueue em p ty Q u eu e  (S nd, 0 _ req u es t, C allerid , 0))
212 | n = =  0 p_event(m ) / =  I_alert
213 =  (0, em p ty Q u eu e)
214 | n  1 &i&c p_event(m ) - I_alert
215 =  (1, enqueue em p ty Q u eu e  (S nd , O -busy , N il, 0))
216 | n = =  1 && p -ev en t(m ) = =  I.in fo rm
217 =  (0, enqueue em p ty Q u eu e  (S nd, D isplay , C allerid , 0))
218 | n = =  1 && (p .ev en t(m ) / =  I_alert || p_event(m ) / =  IJn fo rm )
219 =  (1, em p ty Q u eu e)
220
22  1  ca lling  num ber delivery  blocking
222 endb  :: In t —>  M essage —>  (In t , Q ueue M essage)
223 en d b  n m  | n — 0 &c&c p .ev e n t(m ) = =  I_request
224 =  (0, enqueue em p ty Q u eu e  (S nd , O Jn fo rm , B a rred , 0))
225 | n = =  0 p -even t(m ) / =  I .re q u e s t
226 =  (0, em p ty Q u eu e)
227
228 -----call tra n sfe r
229 c t :: In t — >  M essage — >  (In t , Q ueue M essage)
230 c t n m  | n = =  0 && p_event(m ) = =  I.co n n ec t
231 =  (1, em p tyQ ueue)
232 | n-:-----0 &c&i p .ev e n t(m ) = =  O .co n n ec t
233 =  (7, em p ty Q u eu e)
234 | n = =  0 &&: (p .ev en t(m ) / =  I .co n n ec t || p_event(m ) / =  O .co n n ec t)
235 =  (0, em p ty Q u eu e)
236 | n = =  1 p_event(m ) = =  I .d isco n n e c t
237 =  (0, em p tyQ ueue)
238 | n = =  1 &c&c p .ev e n t(m ) = =  O nhook
239 =  (0, em p tyQ ueue)
240 | n - 1 && p_event(m ) = =  I .a le r t
241 =  (1, enq u eu e  em p ty Q u eu e  (S nd , O -busy , N il, 0))
242 | n = =  1 && p_event(m ) - F lash
243 =  (2, enq u eu e  em p ty Q u eu e  (S nd , D ia ltone , N il, 0))
244 | n = =  1 && (p .ev en t(m ) / =  I .d isco n n e c t || p_event(m ) / =  O nhook  ||
245 p -ev en t(m ) / =  I_alert || p .ev e n t(m ) / =  F lash )
246 =  (1, em p ty Q u eu e)
247 | n = =  2 &:& p_event(m ) —  I .d isco n n e c t
248 =  (2, em p ty Q u eu e)
249 | n = =  2 &i&i p .ev e n t(m ) = =  F lash
250 =  (1, em p ty Q u eu e)
251 | n = =  2 &i&c p -even t(m ) = =  I-a le rt
252 =  (2, enq u eu e  em p ty Q u eu e  (S nd , O .b u sy , N il, 0))
253 | n — -  2 && p .ev e n t(m ) = =  D ial
254 =  (3, enq u eu e  em p ty Q u eu e  (S nd , 0 _ a le r t, N il, 0))
255 | n = =  2 && (p .ev en t(m ) / =  I .d isco n n e c t || p .ev e n t(m ) / =  D ial ||
256 p_even t(m ) / =  I_alert | |  p .e v e n t(m ) / =  F lash )
257 =  (2, em p ty Q u eu e)
258 | n = =  3 p_event(m ) = =  I.d isco n n e c t
259 =  (3, em p ty Q u eu e)
260 | n ----- 3 && p_event(m )------- I_alert
261 =  (3, enqueue em p ty Q u eu e  (S nd , O .b u sy , N il, 0))
262 | n = =  3 && p .ev e n t(m ) = =  F lash
263 =  (1, enq u eu e  em p ty Q u eu e  (S nd , O -S topale rt, N il, 0 ))
264 | n = =  3 && p_event(m ) = =  I .free
265 =  (5, enq u eu e  em p ty Q u eu e  (S nd , R ing tone , N il, 0))
266 | n - 3 &£&i p .ev e n t(m ) = =  I.b u sy
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267 =  (4, enq u eu e  em p ty Q u eu e  (S nd , B usy tone , N il, 0 ))
268 | n = =  3 && (p_event(m ) / =  I .d isco n n e c t || p_event(m ) / =  I .b u sy  ||
269 p -ev en t(m ) / =  I_alert. || p_event(m ) / =  F lash  || p .ev e n t(m ) / =  I_free)
270 =  (3, em p ty Q u eu e)
271 | n = =  4 &c&c p_event(m ) = =  I .d isco n n e c t
272 =  (0, em p ty Q u eu e)
273 | n = =  4 && p_event(m ) = =  F lash
274 =  (1, em p ty Q u eu e)
275 | n = =  4 && p_event(m ) = =  I-a le rt
276 =  (4, enq u eu e  em p ty Q u eu e  (S nd, O .b u sy , N il, 0))
277 | n  4 && p .ev e n t(m ) = =  O nhook
278 =  (0, em p ty Q u eu e)
279 | n = =  4 &c&c (p .ev en t(m ) / =  I .d isco n n e c t || p_event(m ) / =  O nhook  ||
280 p_event(m ) / =  I_alert | |  p .ev e n t(m ) / =  F lash )
281 =  (4, em p ty Q u eu e)
282 | n  5 &;& p_event(m ) - — I_disconnect
283 =  (5, em p ty Q u eu e)
284 | n - - 5 SiSc p .ev e n t(m ) = =  I .a le r t
285 =  (5, enq u eu e  em p ty Q u eu e  (S nd , O .b u sy , N il, 0))
286 | n = =  5 &i&c p .ev e n t(m ) - F lash
287 =  (1, enq u eu e  em p ty Q u eu e  (S nd , 0 _ s to p a le r t, N il, 0))
288 | n = =  5 &i&z p_event(m ) = =  O nhook
289 =  (0, enq u eu e  em p ty Q u eu e  (S nd , O -S topale rt, N il, 0 ))
290 | n = =  5 && p .ev e n t(m ) = =  I.co n n ec t
291 =  (6, en q u eu e( enq u eu e  em p ty Q u eu e  (S nd , B illing_sta rt, T im e, 0))
292 (S nd , C o n n ec t, N il, 0 ))
293 | n = =  5 i c i c  p_event(m ) = =  I .tim e o u t
294 =  (4, enq u eu e  em p ty Q u eu e  (S nd , T im eo u tto n e , N il, 0))
295 | n —— 5 &c&c (p_event(m ) / =  I .d isco n n e c t || p_event(m ) / =  I_alert || p_event(m ) / =  F lash  ||
296 p_event(m ) / =  O nhook  || p .ev e n t(m ) / =  I.co n n ec t || p_event(m ) / =  I .tim e o u t)
297 =  (5, em p ty Q u eu e)
298 | n = =  6 && p _ e v e n t(m )  I .d isco n n e c t
299 =  (6, em p ty Q u eu e)
300 | n  6 &c&c p_event(m ) = =  O nhook
301 =  (0, enq u eu e(en q u eu e (en q u eu e  em p ty Q u eu e  (S nd, O Jn fo rm , O rig in a to r, 0))
302 (S nd , O .n o tify , N i l , 0 ))
303 (S nd , O -n o tify , N i l , 0 ))
304 | n = =  6 && p_event(m ) = =  I .a le r t
305 =  (6, enq u eu e  em p ty Q u eu e  (S nd , O .b u sy , N il, 0))
306 | n ----- 6 (p_event(m ) / =  I_disconnect || p_event(m ) / =  O nhook  ||
307 p .ev e n t(m ) / =  I_alert)
308 =  (6, em p ty Q u eu e)
309 | n = =  7 &c&i p_event(m ) = =  I.d isco n n e c t
310 =  (0, em p ty Q u eu e)
311 | n = =  7 && p .ev e n t(m ) = =  O nhook
312 =  (0, em p ty Q u eu e)
313 | n = =  7 && p .ev e n t(m ) = =  I .a le r t
314 =  (7, enq u eu e  em p ty Q u eu e  (S nd , O -busy , N il, 0))
315 | n = =  7 &£&c p .ev e n t(m ) = =  F lash
316 =  (8, enq u eu e  em p ty Q u eu e  (S nd , D ia lto n e , N il, 0))
317 | n = =  7 && (p_event(m ) / =  I.d isco n n e c t || p .ev e n t(m ) / =  O nhook  ||
318 p_event(m ) / =  I_alert || p_event(m ) / =  F lash )
319 =  (7, em p ty Q u eu e)
320 | n = =  8 Sc&c p .ev e n t(m ) = =  I .d isco n n e c t
321 =  (2, em p ty Q u eu e)
322 | n = =  8 && p_event(m ) = =  F lash
323 =  (1, em p ty Q u eu e)
324 | n = =  8 && p .ev e n t(m ) = =  I-a le r t
325 =  (2, enq u eu e  em p ty Q u eu e  (S nd , O -busy , N il, 0))
326 | n = =  8 &£&c p .ev e n t(m ) = =  Dial
327 =  (3, enq u eu e  em p ty Q u eu e  (S nd , O -a le rt , N il, 0))
328 | n = =  8 &c&£ (p_event(m ) / =  I .d isco n n e c t || p_event(m ) / =  D ial ||
329 p^even t(m ) / =  I_alert || p_event(m ) / =  F lash )
330 =  (2, em p ty Q u eu e)
331 | n  9 && p .ev e n t(m ) = =  I .d isco n n e c t
332 =  (9, em p ty Q u eu e)
333 | n = =  9 && p_event(m ) = =  I_alert
334 =  (9, enq u eu e  em p ty Q u eu e  (S nd , O .b u sy , N il, 0))
335 | n = =  9 ScSi p_event(m ) = =  F lash
336 =  (7, enq u eu e  em p ty Q u eu e  (S nd , O _stopale rt, N il, 0))
337 | n = =  9 && p_event(m ) - -- I .free
338 =  (11, enq u eu e  em p ty Q u eu e  (Snd, R ing tone , N il, 0))
339 | n -  9 && p_event(m ) = =  I.b u sy
340 =  (10, enqueue em p ty Q u eu e  (S nd, B usy to n e , N il, 0 ))
341 | n = =  9 &c&c (p .ev en t(m ) / =  I.d isco n n e c t || p_event(m ) / =  I .b u sy  ||
342 p_event(m ) / =  I_alert || p_event(m ) / =  F lash  || p .ev e n t(m ) / =  IT ree)
343 =  (9, em p ty Q u eu e)
344 | n = =  10 Si&c p^even t(m ) = =  I .d isco n n ec t
345 =  (0, em p ty Q u eu e)
346 | n = =  10 Sc&c p_event(m ) = =  F lash
347 =  (7, em p ty Q u eu e)
348 | n = =  10 && p_event(m ) - - - I .a le r t
349 =  (10, enq u eu e  em p ty Q u eu e  (S nd, O -busy , N il, 0))
350 | n -----  10 Hc&c p ^ e v e n t(m )  O nhook
351 =  (0, em p ty Q u eu e)
352 | n = =  10 && (p .ev en t(m ) / =  I.d isco n n e c t || p_event(m ) / =  O nhook  ||
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353 p_event(m ) / =  I_alert ||  p .ev e n t(m ) / =  F lash )
354 =  (10, em p ty Q u eu e)
355 | n = =  11 && p= event(m ) = =  I .d isco n n ec t
356 =  (11, em p ty Q u eu e)
357 | n  ----  11 && p je v en t(m ) = =  I_alert
358 =  (11, enqueue em p ty Q u eu e  (S nd, O .b u sy , N il, 0))
359 | n = =  11 p_event(m ) = =  F lash
360 =  (7, enq u eu e  em p ty Q u eu e  (S nd, O -s to p a le rt , N il, 0))
361 | n - 11 p_event(m ) = =  O nhook
362 =  (0, enq u eu e  em p ty Q u eu e  (S nd , O -S topale rt, N il, 0))
363 | n = =  11 && p_event(m ) = =  I.co n n ec t
364 =  (12, enq u eu e( enqueue em p ty Q u eu e  (S nd , B illin g -s ta r t, T im e , 0))
365 (S nd , C onnec t, N il, 0))
366 | n ===== 11 && p^even t(m ) = =  I .tim e o u t
367 =  (10, enqueue em p ty Q u eu e  (S nd, T im e o u tto n e , N il, 0))
368 | n = =  11 Sc&i (p^even t(m ) / =  I_disconnect || p .ev e n t(m ) / =  I -a le r t || p_event(m ) / =  F la sh  ||
369 p_event(m ) / =  O nhook  || p_event(m ) / =  I.co n n ec t || p_event(m ) / =  I .tim e o u t)
370 =  (11, em p ty Q u eu e)
371 | n = =  12 Sc&c p_event(m ) = =  I .d isco n n ec t
372 =  (12, em p ty Q u eu e)
373 | n = =  12 p .ev e n t(m ) = =  O nhook
374 =  (0, en q u eu e(en q u eu e  em p ty Q u eu e  (S nd, 0_n o tify , N il, 0 ))
375 (S nd , O -n o tify , N i l , 0))
376 | n - 12 &i&£ p je v en t(m ) -- I_alert
377 =  (12, enqueue em p ty Q u eu e  (S nd , O -busy , N il, 0))
378 | n = =  12 &&£ (p=event(m ) / =  I_disconnect || p_event(m ) / =  O nhook  ||
379 p^even t(m ) / =  I .a le r t)
380 =  (12, em p ty Q u eu e)
381
382 - - call w aitin g
383 cw :: I n t  —>  M essage —>  ( I n t ,  Q ueue M essage)
384 cw n m | n = =  0 &z&i p .ev e n t(m ) = =  I .co n n ec t
385 =  (1, em p ty Q u eu e)
386 | n = =  0 p_event(m ) - O .co n n ec t
387 =  (1, em p ty Q u eu e)
388 | n - 0 &c&i (p_event(m ) / =  I_connect ||  p -even t(m ) / =  O .co n n ec t)
389 =  (0, em p ty Q u eu e)
390 | n = =  1 &c.&i p_event(m ) = =  I .d isco n n e c t
391 =  (0, em p ty Q u eu e)
392 | n = =  1 && p _ e v e n t(m )-----O nhook
393 =  (0, em p ty Q u eu e)
394 | n = =  1 && p .ev e n t(m ) = =  I_alert
395 =  (2, enq u eu e  em p ty Q u eu e  (S nd , O Jn fo rm , C w hold ,0 ))
396 | n = =  1 && (p_event(m ) / =  I.d isco n n e c t || p .ev e n t(m ) / =  O nhook  || p_event(m ) / =  I_alert)
397 =  (1, em p ty Q u eu e)
398 | n  = =  2 Sc&i p_event(m ) = =  I .d isco n n e c t
399 =  (0, em p ty Q u eu e)
400 | n  = =  2 ScSc p_event(m ) ===== O nhook
401 =  (0, enq u eu e  em p ty Q u eu e  (S nd , O .d isco n n ec t, N il, 0 ))
402 | n = =  2 Sc&c p .ev c n t(m ) = =  I .a le r t
403 =  (2, enq u eu e  em p ty Q u eu e  (S nd , O -busy , N il, 0))
404 | n ===== 2 S cic  p .ev e n t(m ) = =  F lash
405 =  (3, enq u eu e  (enqueue (enqueue (enqueue em p ty Q u eu e  (S nd, B illin g .s to p , T im e , 0))
406 (S nd , O Jn fo rm , C w hold ,0 ))
407 (S nd , B illing_sta rt , T im e, 0))
408 (S nd , O .co n n ec t, N il, 0))
409 | n = =  2 &z&c (p .ev en t(m ) / =  I .d isco n n e c t || p .ev e n t(m ) / =  O nhook  ||
410 p_event(m ) / =  I_alert | |  p .ev e n t(m ) / =  F lash  )
411 =  (2, em p ty Q u eu e)
412 | n - 3 &£&c p_event(m ) = =  I .d isco n n e c t
413 =  (0, em p ty Q u eu e)
414 | n = =  3 &c&£ p -ev en t(m ) = =  O nhook
415 =  (0, enq u eu e  em p ty Q u eu e  (S nd , O .d isco n n ec t, N il, 0))
416 | n  ===== 3 &c&c p .ev e n t(m ) = =  I .a le r t
417 =  (3, enq u eu e  em p ty Q u eu e  (S nd , O .b u sy , N il, 0))
418 | n = =  3 &.&£ p .ev e n t(m ) = =  F lash
419 =  (2, enq u eu e  (enqueue  (enqueue (enqueue em p ty Q u eu e  (S nd, B illing_stop , T im e, 0))
420 (S nd , O Jn fo rm , C w hold ,0 ))
421 (S nd , B illin g -s ta r t , T im e, 0))
422 (S nd , O _connect, N il, 0))
423 | n = =  3 &i&c (p_event(m ) / =  I.d isco n n e c t || p_event(m ) / =  O nhook  ||
424 p -ev en t(m ) / =  I -a le r t || p .ev e n t(m ) / =  F lash  )
425 =  (3, em p ty Q u eu e)
426
427 ---- g ro u p  ring ing
428 gr :: I n t  —>  M essage —>  ( I n t ,  Q ueue M essage)
429 gr n m  | n = =  0 &c&c p .ev e n t(m ) = =  I_alert
430 =  (1, enq u eu e  (enqueue em p ty Q u eu e  (S nd, O -a le rt , N il, 0))
431 (S n d , O -a le r t ,  N il,  0))
432 | n = =  0 &i&t p_event(m ) / =  I_alert
433 =  (0, em p ty Q u eu e)
434 | n ---- 1 &£&c p .ev e n t(m ) —  I_alert
435 =  (1, enq u eu e  em p ty Q u eu e  (S nd , O -busy , N il, 0))
436 | n = =  1 &c&c p _ e v e n t(m )-----I .s to p a le r t
437 =  (0, enqueue (enqueue em p ty Q u eu e  (S nd , O -s to p a le rt , N il, 0))
438 (S nd , O _sto p a le rt, N il,  0 ))
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439 | n = =  1 p_event(m ) = =  I.b u sy
440 =  (2, em p ty Q u eu e)
441 | n —  1 && p_event(m ) -  I.free
442 =  (3, em p ty Q u eu e)
443 | n = =  1 && (p .ev en t(m ) / =  I .b u sy  || p_event(m ) / — iJFree ||
444 p_event(m ) / =  I -s to p a le r t | | p_event(m ) / =  I_alert)
445 =  (1, em p ty Q u eu e)
446 | n = =  2 &c&c p .e v e n t ( m ) -I_alert
447 =  (2, enq u eu e  em p ty Q u eu e  (S nd, O .b u sy , N il, 0))
448 | n = =  2 p .ev e n t(m ) = =  I_ stopalert
449 =  (0, enq u eu e  em p ty Q u eu e  (S nd, O _stopale rt, N il, 0))
450 | n  2 &c&c p_event(m ) —  I.b u sy
451 =  (0, em p ty Q u eu e)
452 | n = =  2 && p_event(m ) = =  I-free
453 =  (3, em p ty Q u eu e)
454 | n  = =  2 && (p_event(m ) / =  I .b u sy  || p_event(m ) / =  I_free ||
455 p je v en t(m ) / =  I -s to p a le r t || p -ev en t(m ) / =  I .a le r t)
456 =  (2, em p ty Q u eu e)
457 | n = =  3 ic& i p .e v e n t ( m ) -I_alert
458 =  (3, enq u eu e  em p ty Q u eu e  (S nd , O -busy , N il, 0))
459 | n = =  3 &i&c p _ e v e n t(m ) -I_ stopalert
460 =  (0, enq u eu e  em p ty Q u eu e  (S nd , O -s to p a le rt , N il, 0 ))
461 | n = =  3 && p .e v e n t(m ) = =  I .free
462 =  (3, em p ty Q u eu e)
463 | n = =  3 && p _ e v e n t(m ) -I.co n n ec t
464 =  (0, enq u eu e  (enqueue (enqueue (enqueue (enqueue (enqueue (enqueue
465 em p ty Q u eu e  (S nd, O -s to p a le rt , N il, 0))
466 (S nd , S to p a le r t ,  N il ,  0 ))
467 (S nd , B illing-fo rw arded  , N il ,  0 ))
468 (S nd , O -free , N il,  0 ))
469 (S nd , 0 _ n o tify , N i l , 0 ))
470 (S nd , 0 _ n o tify , N i l , 0))
471 (S nd , O -connec t, N il, 0))
472 | n = =  3 &&: (p .ev en t(m ) / =  I .co n n ec t || p_event(m ) / =  I-free ||
473 p_event(m ) / =  I-s to p a le r t || p je v en t(m ) / =  I -a le rt)
474 =  (3, em p ty Q u eu e)
475
476  ringback
477 rb  :: I n t  — >  M essage —>  ( I n t ,  Q ueue M essage)
478 rb  n m | n = =  0 && p_event(m ) = =  Offhook
479 =  (1, em p ty Q u eu e)
480 | n = =  0 &C&. p_event(m ) = =  I_alert
481 =  (0, em p ty Q u eu e)
482 | n = =  0 (p .ev en t(m ) / =  O ffhook ||  p_event(m ) / =  I_alert)
483 =  (0, em p ty Q u eu e)
484 | n = =  1 && p_event(m ) = =  I-a le rt
485 =  (1, enq u eu e  em p ty Q u eu e  (S nd , O Jn fo rm , R ingback , 0))
486 | n = =  1 && p_event(m ) - I_stopalert
487 =  (2, enq u eu e  em p ty Q u eu e  (S nd , A lert, F a s ta le r t, 0))
488 | n = =  1 && p_event(m ) = =  O nhook
489 =  (2, enq u eu e  em p ty Q u eu e  (S nd , A le rt, F a s ta le r t, 0))
490 | n = =  1 &c&c p .ev e n t(m ) = =  O .tim e o u t
491 =  (2, en q u e u e  em p ty Q u eu e  (S nd , A le rt, F a s ta le r t, 0))
492 | n = =  1 && (p .ev en t(m ) / =  I_alert || p_event(m ) / =  I_ s topalert ||
493 p_event(m ) / =  O nhook  || p .ev e n t(m ) / =  O .tim e o u t)
494 =  (1, em p ty Q u eu e)
495 | n = =  2 && p .ev e n t(m ) = =  O ffhook
496 =  (0, enq u eu e  em p ty Q u eu e  (S nd , O -a le rt , N il, 0))
497 | n = =  2 &c&i p_event(m ) = =  I-a le rt
498 =  (2, en q u e u e  em p ty Q u eu e  (S nd , O -busy , N il, 0))
499 | n = =  2 && (p_event(m ) / =  I .a le r t  || p_event(m ) / =  O ffhook)
500 =  (2, em p ty Q u eu e)
501
502  th re e  way ca lling
503 tw c :: I n t  —>  M essage —>  ( I n t ,  Q ueue M essage)
504 tw c n m | n = =  0 && p .ev e n t(m ) = =  I.co n n ec t
505 =  (1, em p ty Q u eu e)
506 | n = =  0 && p-jevent(m ) = =  O -connect
507 =  (1, em p ty Q u eu e)
508 | n  0 SiSc (p_event(m ) / =  1-connect || p_event(m ) / =  0_co n n ec t)
509 =  (0, em p ty Q u eu e)
510 | n —  1 && p_event(m ) = =  I .d isco n n e c t
511 =  (0, em p ty Q u eu e)
512 | n = =  1 p-jevent(m )------- O nhook
513 =  (0, em p ty Q u eu e)
514 | n = =  1 &c&c p_event(m ) = =  I .a le r t
515 =  (1, enqueue em p ty Q u eu e  (S nd, O .b u sy , N il, 0))
516 | n = =  1 &c&c p_event(m ) -- - F lash
517 =  (2, enq u eu e  em p ty Q u eu e  (S nd, D ia lto n e , N il, 0))
518 | n = =  1 &c&c (p_event(m ) / =  I_disconnect || p_event(m ) / =  O nhook  ||
519 p^even t(m ) / =  I_alert || p_event(m ) / =  F lash )
520 =  (1, em p ty Q u eu e)
521 | n = =  2 && p_event(m ) = =  I .d isco n n e c t
522 =  (2, em p ty Q u eu e)
523 | n = =  2 &c&£ p^even t(m ) = =  F lash
524 =  (1, em p ty Q u eu e)
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525 | n = =  2 ScSc p_event(m ) = =  I_alert
526 =  (2, enqueue em p ty Q u eu e  (S nd, O -busy , N il, 0))
527 | n  2 ScSc p-ev en t(m ) = =  Dial
528 =  (3, enqueue em p ty Q u eu e  (S nd, O -a le rt , N il, 0))
529 | n —  2 ScSc (p_event(m ) / =  I_disconnect || p_event(m ) / =  D ial ||
530 p^even t(m ) / =  I_alert || p .ev e n t(m ) / =  F lash )
531 =  (2, em p tyQ ueue)
532 | n -  3 ScSc p_ e v e n t(m )  I .d isco n n ec t
533 =  (3, em p tyQ ueue)
534 | n = =  3 ScSc p_event(m ) = =  F lash
535 =  (1, enqueue em p ty Q u eu e  (S nd, O -s to p a le rt , N il, 0))
536 | n — 3 ScSc p_event(m ) = =  I_alert
537 =  (3, enqueue em p ty Q u eu e  (S nd, O -busy , N il, 0))
538 | n = =  3 ScSc p_event(m ) = =  I-free
539 =  (5, enqueue em p ty Q u eu e  (S nd, R ing tone , N il, 0 ))
540 | n = =  3 ScSc p -ev en t(m ) = =  I-busy
541 =  (4, enqueue em p ty Q u eu e  (S nd, B usy to n e , N il, 0))
542 | n = =  3 ScSc (p_even t(m ) / =  I-d isconnec t || p_event(m ) / =  I_busy ||
543 p .ev e n t(m ) / =  I_alert || p_event(m ) / =  F lash  ||
544 p_event(m ) / =  I_free)
545 =  (3, em p ty Q u eu e)
546 | n - - 4 ScSc p- e v e n t ( m )  I_disconnect
547 =  (4, em p ty Q u eu e)
548 | n = =  4 ScSc p je v en t(m ) -  --- F lash
549 =  (1, em p ty Q u eu e)
550 | n = =  4 ScSc p je v en t(m ) -- O nhook
551 =  (0, em p tyQ ueue)
552 | n -- 4 ScSc p̂ e v e n t(m )  I_alert
553 =  (4, enqueue em p ty Q u eu e  (S nd , O -busy , N il, 0 ))
554 | n  = =  4 ScSc (p .ev en t(m ) / =  I_disconnect || p_event(m ) / =  O nhook  ||
555 p_event(m ) / =  I_alert || p_event(m ) / =  F lash )
556 =  (4, em p ty Q u eu e)
557 | n = =  5 ScSc p -even t(m ) —  I_disconnect
558 =  (5, em p tyQ ueue)
559 | n — - - 5 ScSc p_event(m ) = =  F lash
560 =  (1, enqueue em p ty Q u eu e  (S nd , O -S topa le rt, N il, 0 ))
561 | n = =  5 ScSc p_event(m ) - — O nhook
562 =  (0, enqueue em p ty Q u eu e  (S nd , O -s to p a le rt , N il, 0 ))
563 | n = =  5 ScSc p_event(m ) = =  I-a le r t
564 =  (5, enqueue em p ty Q u eu e  (S nd, O -busy , N il, 0))
565 | n = =  5 ScSc p_event(m ) = =  I.co n n ec t
566 =  (6, enqueue (enqueue em p ty Q u eu e  (S nd, B illin g -s ta r t, T im e, 0))
567 (S nd , C onnec t, N il, 0 ))
568 | n = =  5 Si.Sc p -ev en t(m ) = =  I_ tim eou t
569 =  (4, enqueue em p ty Q u eu e  (S nd, T im eo u tto n e , N il, 0))
570 | n = =  5 ScSc (p_even t(m ) / =  I_disconnect || p_event(m ) / =  O nhook  ||
571 p_event(m ) / =  I .a le r t  || p_event(m ) / =  F lash  ||
572 p_event(m ) / =  I -tim eo u t || p_event(m ) / =  I .co n n ec t)
573 =  (5, em p ty Q u eu e)
574 | n = =  6 ScSc p -ev en t(m ) = =  I-d isconnec t
575 =  (0, em p tyQ ueue)
576 | n - 6 ScSc p_event(m ) = =  F lash
577 =  (7, em p ty Q u eu e)
578 | n = =  6 ScSc p_event(m ) = =  O nhook
579 =  (0, enqueue em p ty Q u eu e  (S nd, O .d isco n n ec t, N il, 0 ))
580 | n -- 6 ScSc p_event(m ) = =  I_alert
581 =  (6, enqueue em p ty Q u eu e  (S nd, O -busy , N il, 0))
582 | n = =  6 ScSc (p_event(m ) / =  I-d isconnec t || p_event(m ) / =  O nhook  ||
583 p_event(m ) / =  I .a le r t  || p_event(m ) / — F lash )
584 =  (6, em p ty Q u eu e)
585 | n ------7 ScSc p .e v e n t(m ) ------  I-d isconnec t
586 =  (0, em p ty Q u eu e)
587 | n —  7 ScSc p_event(m ) — O nhook
588 =  (0, enqueue em p ty Q u eu e  (S nd, O .d isco n n ec t, N il, 0))
589 | n = =  7 ScSc p_event(m ) = =  I_alert
590 =  (7, enqueue em p ty Q u eu e  (S nd, O .b u sy , N il, 0))
591 | n = =  7 ScSc (p_event(m ) / =  I-d isconnec t || p_event(m ) / =  O nhook  ||
592 p_event(m ) / =  I .a le r t)
593 =  (7, em p tyQ ueue)
594
595  voice m ail — record ing
596 vm r :: In t —>  M essage —>  (In t , Q ueue M essage)
597 vm r n m  | n = =  0 ScSc p_event(m ) - O .tim e o u t
598 =  (1, enq u eu e  em p ty Q u eu e  (S nd, O Jn fo rm , C a llm inder, 0))
599 | n = =  0 ScSc p_event(m ) / =  O .tim e o u t
600 =  (0, em p ty Q u eu e)
601 | n - 1 ScSc p_event(m ) = =  I_alert
602 =  (1, enqueue em p ty Q u eu e  (S nd, O -busy , N il, 0))
603 | n = =  1 ScSc p-ev en t(m ) = =  I.d isco n n ec t
604 =  (0, em p tyQ ueue)
605 | n = =  1 ScSc p .ev e n t(m ) = =  I_msg
606 =  (0, enqueue em p ty Q u eu e  (S nd, S to rem sg , N il, 0))
607 | n = =  1 ScSc (p_event(m ) / =  I_alert || p .ev e n t(m ) / =  I-d isconnec t || p_event(m ) / =  I_msg)
608 =  (1, em p ty Q u eu e)
609
61 0  voice m ail — playback
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611 v m p b  :: In t —>  M essage —>  (In t, Q ueue M essage)
612 v m p b  n m  | n = =  0 && p_event(m ) = =  D ial
613 =  (1, enqueue (enqueue (enqueue em p ty Q u eu e  (S nd , S to re read , M sg tex t, 0))
614 (S nd , A nnounce, M sg tex t, 0))
615 (S nd , S to rec lear , N i l ,0 ) )
616 | n = =  0 &i&£ p_event(m ) / =  D ial
617 =  (0, em p ty Q u eu e)
618 | n = =  1 p_event(m ) = =  I_alert
619 =  (1, enq u eu e  em p ty Q u eu e  (S nd , O .b u sy , N il, 0 ))
620 | n  = =  1 &c&z p .ev e n t(m ) = =  O nhook
621 =  (0, em p ty Q u eu e)
622 | n  = =  1 &i&c (p^even t(m ) / =  I_alert || p^event(m ) / =  O nhook)
623 =  (1, em p ty Q u eu e)

B.5 Main.hs

1 i m p o r t  S tack
2 i m p o r t  Q ueue
3 i m p o r t  S et
4 i m p o r t  M essage
5 i m p o r t  T ree
6 i m p o r t  F ea tu res
7 i m p o r t  R egE xpr
8
9  ty p e  for th e  S ta te  an d  th e  s tac k  to  save th e m

10 t y p e  S ta te  =  ([Q ueue M essage], I n t )
11 t y p e  S ta te S ta c k  =  S tack  S ta te
12
1 3  th e  tr ig g e r g en e ra to r
1 4  th e  p a ra m e te r  d e te rm in es  w hich m essage is re tu rn ed
15 triggergen  :: I n t  — >  M essage
16 triggergen  n | n = =  1 =  (R ev , D ial, N il, 0)
17 | n = =  2 =  (R ev, O nhook , N il, 0)
18 | n = =  3 -  (R ev , O ffhook, N il, 0)
19 | n —7 4 =  (R ev, F la sh , N il, 0)
20 | n-------5 - (R ev , I_notify , N il, 0)
21 I n = =  6 — (R ev , I J n fo rm , N il, 0)
22 | n = =  7 =  (R ev , I .a le r t ,  N i l , 0)
23 | n = =  8 =  (R ev , I_free, N i l , 0)
24 | n = =  9 =  (R ev, I .b u sy , N il, 0)
25 | n - 10 =  (R ev, I - tim eo u t, N il, 0)
26 | n  11 =  (R ev, I - s to p a le r t, N il, 0)
27 | n = =  12 =  (R ev, I_d isconnect, N il, 0)
28 | n = =  13 =  (R ev, I_connect, N il, 0)
29 j n = =  14 =  (R ev, I_msg, N il, 0)
30 | n  : 15 =  (R ev, I_request, N il, 0)
31 | n - — 16 =  (R ev, O -busy , N il, 0)
32 | n = =  17 =  (R ev, O .co n n ec t, N il, 0)
33 | n — -  18 - (R ev, O .tim e o u t, N il, 0)
34
3 5  o tf  = =  T rue: use on th e  fly m e th o d
36 s y s t e m  :: B o o l — >  [C State] — >  I n t  — >  R egE xpr M essage — >  ([M essage], [C S tate])
37 s y s t e m  o tf  fs n ru les =  fm an o tf  fs ( tr ig g e rg en  n )  (re2 d fa  ru le s)
38
39 fm an  :: B o o l — >  [C State] — >  M essage — >  DFA M essage — >  ([M essage], [C S tate])
40 fm an o tf  fs m  ru les  =  co m m it (fm  o tf  fs m ru les) fs
41
42 fm :: B o o l  — >  [C State] — >  M essage — >  DFA M essage — >  A ug tree  M essage
43 fm  o t f  fs m  ru les | n o t  o tf  =  e x tra c t(p ru n e (e x tra c td u p (c o n s tru c t fs m )) ru les)
44 | o tf  =  e x tra c t(e x tra c td u p (o tfc o n s tru c t fs m  ru les))
45
46 c o n s tru c t :: [ C S ta te] —>  M essage —>  A ug tree  M essage
47 co n s tru c t fs m =  re m in sm a rk e r(c o n s tru c tl (sn d (to a llc o c o o n s  fs (R ev , S ta r t . t r a n s a c t io n ,  N il, 0 )))  m )
48
49 o tfc o n s tru c t :: [ C S ta te] —>  M essage —>  DFA M essage —>  A ug tree  M essage
50 o tfc o n s tru c t fs m ru les =  rem in sm a rk e r(o tf tre e 2 a u g tre e (o tfc o n s tru c tl
51 (sn d (to a llc o c o o n s  fs (R ev , S ta r t . t r a n s a c t io n ,  N il , 0 ))) m  ru le s))
52
53 c o n s tru c t l  :: [ C S ta te ] —>  M essage —>  A ug tree  M essage
54 c o n s tru c t l  fs m  =  feedbackctrl (toa llcocoons fs m ) (in se rtT ree  E m p ty T ree  (m , s ingS et 0))
55
56 o tfc o n s tru c t 1 :: [ C S ta te ] — >  M essage — >  DFA M essage — >  O T F tre e  M essage
57 o tfc o n s t ru c tl  fs m  d fa  | f s t  in so tf  =  ( o tffeedbackc trl (to a llco co o n s fs m ) ( s n d  in so tf) d fa)
58 | o th e r w i s e  =  E m p ty T r e e  ro o t v io la te s  ru les, d o n e  th is  really  s h o u ld n ’t  happen!
59 w h e r e  in so tf  =  in se r tO T F T ree  E m p ty T ree  (m , singS et 0) d fa
60
61 feedbackctrl :: ([ Q ueue M essage], [C S tate]) —>  A u g tree  M essage —>  A u g tree  M essage
62 feedbackctrl (m s , f s )  t  =  feed b a ck c trll (m akeflags ( l e n g th  fs)) ms fs t
63
64 o tffeed b ack c trl :: ([ Q ueue M essage], [C S ta te]) —>  O T F tre e  M essage — >  DFA M essage — > O T F tre e  M essage
65 o tffeed b ack c trl (m s , f s ) t  d fa  =  o tffe ed b ack c tr ll (m akeflags ( l e n g th  fs)) m s fs t  d fa
66
67 feed b a ck c tr ll :: [[ B oo l]] —> [Q ueue M essage] —>  [C State] —>  A ug tree  M essage —>  A u g tree  M essage
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68 feed b a ck c tr ll [x] m s fs t  =  fs t( fe e d b a c k  x (choosesom e x m s) fs t  0 0 e m p ty S ta c k )  finish, la s t case!
69 feed b a ck c tr ll (x :x s )  ms fs t  =  ( fe e d b a ck c trll xs m s fs ( f s t  (feedback x (choosesom e x m s) fs t  0 0 em p ty S tac k )))
70 -----need to  con tinue  bu ild ing  th e  sam e tre e
71
72 o tffe ed b ack c tr ll :: [[ B oo l]] —>  [Q ueue M essage] —>  [C State] —>  O T F tre e  M essage —>  DFA M essage —>
73 O T F tre e  M essage
74 o tffe e d b a c k c tr ll [x] m s fs t  d fa  =  fs t(o tffee d b ack  x (choosesom e x m s) fs t  0 0 em p ty S tac k  d fa)
75-------------------------------------------------------------- -----fin ish , la st case!
76 o tffe ed b ack c tr ll (x :x s )  m s fs t  d fa  =  (o tffee d b a c k c tr ll xs m s fs
77 ( f s t  (o tffeedback  x (choosesom e x  m s) fs t  0 0 em p ty S tac k  d fa ))  d fa)
78 -----need to  con tinue  bu ild ing  th e  sam e tre e
79
8 0  han d le  co n s tru c t p ru n e  ...
81 feedback  :: [B o o l]  —>  [Q ueue M essage] —>  [C State] —>  (A ug tree  M essage) —>  I n t  —>  I n t  —>  S ta te S ta c k  —>
82 (A u g tree  M essage, [C S tate])
83 feedback  bs m s fs t  c d ss tk  | qe ScSc es ScSc d <  50 =  (t, f s )  fin ished , ju s t  re tu rn  tre e
84 | qe ScSc n o t  (es) ScSc d <  5 0  ro llback  ...
85 =  feedback bs ( f s t( to p  s s tk ) )  ( sn d (to a llc o c o o n s  fs (R ev , R o llb a c k .tra n s a c tio n , N il , 0)))
86 (m ovem arker t)  ( s n d ( to p  ss tk ))  (d — 1) (pop  sstk )
87 | n o t  (qe) ScSc c <  nonem ptyQ s m s ScSc d  <  5 0  m ore b ranches  a t  th is  level
88 =  feedback  bs
89 (ap p en d Q s (choosesom e bs ( s n d  g e tm ))
90 (choosesom e bs ( f s t  te m p )))
91 ( s n d  te m p )
92 (in se r tT re e  t  ( f s t  g e tm ))
93 0 (d  +  1) (push  ss tk  (m s, c +  1))
94 | n o t  (qe) ScSc c = =  nonem ptyQ s ms ScSc d <  5 0 -------- need to  ro llback  fu rth e r
95 =  feedback bs (em p tyQ s m s) fs t  0 d ss tk
96 | d > =  5 0  we have reached  th e  m axim al d e p th , m ark  b ranch  and  rollback!
97 =  feedback bs ( f s t( to p  s s tk ) )  ( s n d  (toa llcocoons fs (R ev , R o llb a c k .tra n s a c tio n , N il , 0 )))
98 (in se rtd e lm ark e r t )  ( s n d ( to p  s s tk ))  (d  — 1) (p o p  sstk )
99 w h e r e  qe =  a llQ sE m p ty  ms

100 es =  isE m p ty S tack  sstk
101 s ta r ta ll  =  s n d  (toa llcocoons fs (R ev , S ta r t . t r a n s a c t io n  , N i l , 0 ))
102 getfm sg  =  fs t(fs t(g e tM sg F ro m Q  ms c))
103 ge tm  =  getM sgF rom Q  m s c
104 tem p  =  toa llcocoons s ta r ta ll  getfm sg
105
10 6  h an d le  co n s tru c t p ru n e  ...
107 o tffeedback  :: [ B o o l]  —>  [Q ueue M essage] —>  [C State] —>  (O T F tre e  M essage) —>  In t —>  In t —>  S ta te S ta c k  —>
108 DFA M essage — >  (O T F tre e  M essage, [C S ta te])
109 o tffeedback  bs m s fs t  c d ss tk  d fa  | qe ScSc es ScSc d  <  50 =  ( t ,  f s )  fin ished , ju s t  re tu rn  tre e
110 | qe ScSc n o t  (es) ScSc d <  5 0  ro llback  ...
111 =  o tffeedback  bs ( f s t ( to p  s s tk ) )
112 (sn d (to a llc o c o o n s  fs (R ev , R o llb a c k .tra n s a c tio n , N il ,  0 )))
113 (m ovem arker t )  ( s n d ( to p  ss tk ))  (d — 1) (pop  ss tk ) dfa
114 | n o t  (qe) ScSc c <  n o nem ptyQ s ms ScSc ( f s t  in so tf) ScSc d <  50
115------------------------------------------------------------------- -----m ore  b ranches a t  th is  level and  in se rt successfu ll
116 =  o tffeedback  bs
117 (ap p en d Q s (choosesom e bs ( s n d  g e tm ))
118 (choosesom e bs ( f s t  te m p )))
119 ( s n d  tem p )
120 ( s n d  inso tf)
121 0 (d  +  1) (push  s s tk  (m s, c +  1)) dfa
122 | n o t  (qe) ScSc c <  nonem ptyQ s m s ScSc n o t  ( f s t  in so tf) ScSc d <  50
123------------------------------------------------------------------- -----m ore b ranches a t  th is  level b u t in se rt failed
124 =  o tffeedback  bs ( f s t ( to p  s s tk ) )
125 (sn d (to a llc o c o o n s  fs (R ev , R o llb a c k .tra n s a c tio n , N il ,  0 )))
126 (m ovem arker ( s n d  in so tf))  ( s n d ( to p  ss tk ))  (d — 1) (pop  s s tk ) d fa
127 | n o t  (qe) ScSc c = =  n o nem ptyQ s m s ScSc d <  5 0 -----need to  ro llback  fu rth e r
128 =  o tffeedback  bs (em p tyQ s m s) fs t  0 d ss tk  d fa
129 | d > =  5 0  we have reached  th e  m ax im al d e p th , m ark  b ranch  an d  ro llback!
130 =  o tffeedback  bs ( f s t ( to p  s s tk ))
131 (sn d (to a llc o c o o n s  fs (R ev , R o llb a c k .tra n s a c tio n , Nil , 0 )))
132 (in se rtd e lm ark e r t )  ( s n d ( to p  ss tk ))  (d  — 1) (p o p  s s tk ) d fa
133 w h e r e  qe - a llQ sE m p ty  ms
134 es =  isE m p ty  S tack  sstk
135 s ta r ta ll  =  s n d  (toa llcocoons fs (R ev , S ta r t . t r a n s a c t io n ,  N il,  0))
136 getfm sg  =  fs t( fs t(g e tM sg F ro m Q  m s c))
137 ge tm  =  getM sgF rom Q  m s c
138 te m p  =  toa llcocoons s ta r ta l l  getfm sg
139 in so tf  =  in se r tO T F T ree  t  ( f s t  ge tm ) d fa
140
141 choosesom e :: [B o o l]  —>  [Q ueue M essage] —>  [Q ueue M essage]
142 choosesom e [] [] =  []
143 choosesom e (b :b s) (x :xs ) | b = =  T r u e  =  x :(choosesom e bs xs)
144 | b = =  F a ls e  =  em p tyQ ueue:(choosesom e bs xs)
145
146 a p p e n d Q s :: O r d  a  = >  [Q ueue a] — >  [Q ueue a] — >  [Q ueue a]
147 a p p e n d Q s [] [] =  []
148 a p p e n d Q s [q] [r] =  [con ca tQ u eu e  q r]
149 a p p e n d Q s  (q :qs) (r :rs )  =  (co n ca tQ u eu e  q r ) :(ap p e n d Q s  qs rs)
150
151 getM sgF rom Q  :: [Q ueue M essage] —>  I n t  —>  ((M essage, S et I n t ) ,  [Q ueue M essage])
152 getM sgF rom Q  q c =  ge tC hosenM sg  q q c 0
153
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154 getC hosenM sg  :: [Q ueue M essage] —>  [Q ueue M essage] —>  I n t  —>  I n t  —>  ((M essage, S et I n t ) ,  [Q ueue M essage])
155 g e tC hosenM sg  (q :qs) r e t  | c +  1 = =  1 && n o t  eq =  ((firs t q, ( in se rtS e t ( f s t  te m p ) ( t  +  1 ))), s n d  te m p )
156 | c +  1 = =  1 ic&c eq  =  getC hosenM sg  qs r c ( t  +  1)
157 j c +  1 >  1 &c&c n o t  eq =  getC hosenM sg  qs r (c — 1) ( t  +  1)
158 j c +  1 >  1 && eq =  getC hosenM sg  qs r c ( t  +  1)
159 w h e r e  eq =  isE m p ty Q u eu e  q
160 te m p  =  rem From A U Q s 1 em p ty S e t (firs t q) r
161
162 rem From A U Q s :: I n t  —>  S et I n t  —>  M essage —>  [Q ueue M essage] —>  (S et I n t ,  [Q ueue M essage])
163 rem From A U Q s i s m [] =  ( s ,  [])
164 rem From A U Q s i s m [q] | n o t  (isE m p ty Q u eu e  q) && firs t q = =  m =  ( in se rtS e t s i, [dequeue q])
165 | o th e r w i s e  =  (s, [q])
166 rem From A U Q s i s m (q:qs) | n o t  ( isE m p ty Q u eu e  q) &c&c first q = =  m
167 =  (un io n S e t ( in se rtS e t s i )  ( f s t  te m p ) , [dequeue q] + +  (s n d  te m p ))
168 | o th e r w i s e  =  (un io n S e t s ( f s t  te m p ), [q] + +  ( s n d  te m p ))
169 w h e r e  te m p  — rem From A U Q s (i +  1) s m  qs
170
171 a llQ sE m p ty  :: [Q ueue a] —>  B o o l
172 a llQ sE m p ty  q | f o l d r l  ( + )  ( m a p  le n g th Q u eu e  q) = =  0 =  T r u e
173 | o th e r w i s e  =  F a ls e
174
175 n o n em p ty Q s  :: [Q ueue a] — >  I n t
176 n o n em p ty Q s  q =  f o l d r l  ( + )  ( m a p  boo l2 in t ( m a p  isE m p ty Q u eu e  q ))
177
178 boo l2 in t :: B o o l  — >  I n t
179 boo l2 in t b | b = =  T r u e  =  0
180 | o th e r w i s e  =  1
181
182 em p ty Q s  :: [Q ueue a] — >  [Q ueue a]
183 em p ty Q s  [] =  []
184 em p ty Q s  (x :xs) =  em p ty Q u eu e :(e m p ty Q s  xs)
185
18 6  g en e ra te  lis t o f lis t o f boo leans, con ta in in g  all com b ina tions  a p p a r t  from  n*false
187 m akeflags :: I n t  — >  [[Bool]]
188 m akeflags n =  m akeflagsl ( (2 "n ) — 1) (m akeF flags n)
189
190 m ak eflag sl :: I n t  — >  [B ool] — >  [[Bool]]
191 m ak eflag sl n b  | n  >  1 =  (m akeN flag  b) : (m akeflagsl (n — 1) (m akeN flag b))
192 | n —  1 =  [(m akeN flag b)]
193
194 m akeF flags :: I n t  — >  [B ool]
195 m akeF flags n | n = =  0 =  []
196 | n >  0 =  F a lse : (m akeF flags (n — 1))
197
198 m akeN flag  :: [B o o l]  —>  [B ool]
199 m akeN flag  b =  m akeN flag l b ( l e n g th  b) 0
200
201 m akeN flag l :: [B oo l] —>  I n t  —>  I n t  —>  [B ool]
202 m akeN flag l xs n m  | m = =  n =  xs
203 | m <  n && x s ! !m  F a ls e  && m >  0
204 =  ( t a k e  (m ) xs) + +  ( T r u e : ( d r o p  (m  +  1) xs))
205 | m <  n xs!!m = =  F a ls e  && m = =  0
206 =  T r u e : ( d r o p  1 xs)
207 | m  <  n &£&c xs!!m = =  T r u e  && m >  0
208 =  m akeN flag l ( ( t a k e  (m ) xs) + +  (F a I s e :(d ro p  (m  +  1) x s )))  n (m  +  1)
209 | m <  n ScSc xs!!m  = =  T r u e  &&; m  -- 0
210 =  m akeN flag l ( F a ls e : (d ro p  1 x s)) n (m  +  1)
211 
212
213 to a llcocoons :: [ C S ta te] —>  M essage —>  ([Q ueue M essage], [C S tate])
214 to a llcocoons fs m =  to a llc o co o n s l fs m ( le n g th  fs)
215
216 to a llc o co o n s l :: [ C S ta te ] —>  M essage —>  I n t  —>  ([Q ueue M essage], [C S tate])
217 to a llc o co o n s l fs m  n | n = =  0 =  ([],[])
218 | n >  0 =  ( ( f s t  to a ll )+ + [ ( f s t  to o n e )],
219 ( s n d  to a l l )+ + [ ( s n d  toone)])
220 w h e r e  to a ll =  to a llc o co o n s l fs m  (n — 1)
221 too n e  =  toonecocoon  (fs!!(n — 1)) m  n
222
223 toonecocoon  :: C S ta te  — >  M essage — >  I n t  — >  (Q ueue M essage, C S ta te )
224 toonecocoon  (cs, r b ,  p b , fid ) m  n =  cocoon cs rb  fid n m pb
225
226  o p e ra te s  p u re ly  on tre e
227 p ru n e  :: A u g tree  M essage — >  D FA  M essage — >  A ug tree  M essage
228 p ru n e  t  ru les =  p ru n eT re e  ru les t
229
230  o p e ra te s  p u re ly  on tre e
231 e x tra c td u p  :: A u g tree  M essage — >  A ug tree  M essage
232 e x tra c td u p  t  =  e x tra c td u p T re e  t
233
234  o p e ra te s  p u re ly  on tre e
235 e x t ra c t :: A u g tree  M essage — > A ug tree  M essage
236 e x t ra c t t  =  e x tra c tT re e  t
237
238 co m m it :: A ug tree  M essage —>  [C State] —>  ([M essage], [C S tate])
239 co m m it m  fs =  (com m itu se r ( tra v erse A u g tree  m ),
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240 s n d  (toa llcocoons (s e tfe a tu re s  ( tra v e rse A u g tree  m ) fs) (R ev , C o m m it.t ra n s a c t io n , N il, 0 )))
241
242 co m m itu se r :: [( M essage, S et In t) ]  — >  [Message]
243 co m m itu se r [] =  []
244 co m m itu se r (m :m s) =  fs t(m ):(c o m m itu se r  ms)
245
246 s e tfe a tu re s  :: [( M essage, S et In t) ]  — > [C State] —>  [C State]
247 se tfe a tu re s  m  fs =  s f l ( f s t  ( s p l i t  m )) (se t2 L is t ( s n d  ( s p l i t  m )))  fs
248
249 s f l  :: [ M essage] — >  [In t] — >  [C S tate] — >  [C State]
250 s f l  m s ac tiv e  fs =  sf2 m s ac tiv e  fs ( l e n g th  fs)
251
252 sf2 :: [ M essage] — >  [In t] — >  [C State] — >  I n t  — >  [CState]
253 sf2 m s a c tiv e  fs n | n = =  0 =  [ ]  we have d e a lt w ith  all fea tu res
254 | n >  0 ScSc ism em  =  setfs  + +  [se tac tive fea t m s (fs!!(n — 1)) n]
255 | n  >  0 && n o t  (ism em ) =  se tfs  + +  [se tinactivefea t (fs!!(n — 1)) n]
256 w h e r e  ism em  =  isM em berS e t (lis t2 S e t ac tiv e ) n
257 se tfs  =  (sf2 ms a c tiv e  fs (n  — 1))
258
259 -----p u t  fea tu re s  in r ig h t s t a t e ,  i . e .  s ta r t  co m m it and  rep lay  m sgs ( s e ta c tiv e l)
260 se ta c tiv e fe a t :: [ M essage] — >  C S ta te  — >  I n t  — >  C S ta te
261 se ta c tiv e fe a t m  (cs , r b ,  p b , fid ) n =  se ta c tiv e l m  (sn d (co co o n  cs rb  fid n (R ev, C o m m it.t ra n s a c t io n , N il, n) p b ))  n
262
263 s e ta c tiv e l :: [ M essage] — >  C S ta te  — >  I n t  — >  C S ta te
264 s e ta c tiv e l [] ( cs , rb ,  p b , fid ) n  =  (cs , r b ,  p b , f id )
265 s e ta c tiv e l [x ] ( c s , r b ,  p b , fid ) n =  s n d  (cocoon cs rb  fid n x pb)
266 s e ta c tiv e l (x :x s )  ( c s ,  r b ,  p b , fid ) n =  s e ta c tiv e l xs (sn d (c o c o o n  cs rb  fid n x  p b )) n
267
268 -----a b o r t  p a s t ac tio n s
269 se tin a c tiv e fe a t :: C S ta te  — >  I n t  — >  C S ta te
270 se tin a c tiv e fe a t ( c s ,  r b ,  p b , fid ) n =  s n d  (cocoon cs rb  fid n (R ev, C o m m it.tra n sa c tio n , N il, n) pb)
271
272 s p l i t  :: [( M essage, S et In t) ]  —>  ([M essage], S et I n t )
273 s p l i t  [] =  ([], em p ty S e t)
274 s p l i t  [ ( x ,  n )] =  ( [x ], n)
275 s p l i t  ( ( x ,  n ) :x s )  =  (x : f s t  ( s p l i t  x s ) ,  u n ionS e t ( s n d  ( s p l i t  x s ))  n)
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