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ABSTRACT

The central theme of this thesis is the further development of 
boundary element methods for the analysis of three-dimensional 
machine foundations, pertaining to various (translational and 
rotational) modes of vibration and, in particular, to high
frequency response. Surface and embedded rectangular
foundations are considered. The soil is assumed to behave 
approximately as a linear elastic material for small amplitudes 
of strain. The problem is formulated and solved in the 
frequency domain. This work includes rigorous theoretical 
studies, effective numerical techniques for the solution of the 
boundary integral equations, and efficient computer
implementation of the algorithm.

The derivation of the boundary integral formulation is reviewed 
and the dynamic fundamental solutions are examined in detail. 
The particular fundamental solutions for incompressible media 
has been derived in order to deal more effectively with these 
materials. Advanced integration schemes for non-singular and 
singular integrals have been developed in order to improve the 
computational accuracy and efficiency of the boundary element 
analysis. A novel infinite boundary element for dynamic 
analyses has been developed, which provides an efficient means 
for including far-field effects, without the necessity of 
explicit discrete representation outside the near field. The 
implementation and vectorization of the computer program using 
the IBM 3090-150 Vector Facility is described. Various 
numerical results for rectangular foundations are presented in 
order to illustrate the potential of the infinite boundary 
element formulation. Included among these are new results 
pertaining to the high frequency response of machine 
foundations.
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Notation

[A] the system matrix
Aq the area of the foundation
A,A' two distinct elastodynamic states
Aj.-.A,, are n "weights" of Gauss-Legendre integration
B the radius of the circular foundation or one half the width of

rectangular foundations 
{b } constant array
C the imaginary part of the impedance function
Ce the equivalent dashpot
Cy is a 3x3 matrix arising from the treatment of the improper surface

integral involving Ty
Cy =(6y - Cy)
Cj the propagation velocity of dilatational waves
C2 the propagation velocity of shear waves
CR the propagation velocity of Rayleigh waves
D the maximum distance between the element being integrated and the

error contour 
Dd dynamic decay function
Dmin the minimum distance between the boundary element being integrated

and the source point 
Ds static decay function
E modulus of elasticity
En truncation errors incurred in Gauss-Legendre quadrature
Fijk the third order tensor
G the shear modulus of elasticity
Gy/Ty dynamic fundamental solutions
Gyst,T^st Static fundamental solutions
Gy* / Ty Stokes's solutions
Ia the analytical integral value of an element
Iâ Iai real part and imaginary part of an integral value, respectively
Ibx> Iby the second moments of area about the X and Y axes of the base mat
Ij the absolute integral value of jth patch
Tm, Ini real part and imaginary part of an oscillatory integral,

respectively 
J the jacobian
J, the jacobian for infinite elements
J, the jacobian relating the transformation from (£,»]) system to (p,q)

system
Jm the jacobian relating the transformation from (s,t) system to (£,r))

system
Jn the jacobian relating the transformation from (x,y) system to (s,t)

system
K the real part of the impedance function
Kg the stiffness of the equivalent spring
Kast the static stiffness of the foundation
Ka the impedance of the foundation
L the length of the interface between finite and infinite boundary

elements
Le the dimension of the element being integrated
M the number of boundary elements
1̂  the mesh-foundation ratio
Ma quadratic shape function
N the aspect ratio
Na the dimension of matrix [A]
Nf the number of elements for the discretization of soil-foundation

interface
Nmax specified maximum allowable integration order
Nmin specified minimum allowable integration order
Nreq the required integration order
N„ the shape functions
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Pn the Legendre polynomial
Q (t) the time-dependent exciting force
[Q] the contribution of infinite region SB
S=Sj+S2 the surface of the problem domain
Sc soil-foundation interface
SF the core region
SH the hemispherical surface with radius approaching infinity
Sj the far-field
SA the circular area which can be drawn around the source point such

that it contains the core region 
SB the surface of the halfspace with SA deleted
[ST] the transformation matrix
Uk(x,t) the displacement vector at a point x and time t
Ui0 initial displacement
Uja/ Tja nodal values
Uj*, Tj* the prescribed boundary quantities
[U], [T] coefficient matrices containing the contributions of integrals of 

Gy and Ty, respectively.
[UF] displacement array at the foundation centre
Vu Lysmer1s analog velocity
Vi0 initial velocity
V the problem domain
Vge the compression-extension wave velocity

the nodal coordinates 
unknown nodal quantities 
known nodal quantities 

Z(t) the vertical displacement.

•“•la

l?I

a,b integral interval
aj..an are n abscissae of Gauss-Legendre integration
a0 the dimensionless frequency
{b} sub-matrix of constant array {b }
ca the damping coefficient
fi the body force vector
f2n the (2n)th derivative of f
g ( ) the Dirac delta function
i the unit imaginary number
ka the stiffness coefficient
m total foundation mass
mg the equivalent mass
mf fictitious mass
n the outward normal vector on a differential element of the surface
nj the outward pointing unit normal vector
nrl/nr2 integration order used in X! and x2 directions, respectively,
p an arbitrary point on a boundary element
pv uniformly distributed vertical load
qv the amplitude of time-dependent exciting force,
q the number of nodes of an element
r distance between the source point and field point
re equivalent radius
rc the radius of the circular foundation
r0 the distance between the decay centre and the reference point
t time
{t},{u} nodal traction and displacement vectors
uz the far-field vertical displacement
u^ the vertical displacement at the reference point
uia the far-field displacement
Uia0 the displacements at the reference point
{up} displacement at point p
w(x) weight function
wz vertical displacement
X;,^ the global nodal coordinates
y a point on the surface of the domain
z the amplitude of the vertical displacement

VIII



the singular vertex angle
6 the radius of finite region SA
5 ij the Kronecker delta
6 relative error

allowable error
K the wave number
p the mass density.
XR the Rayleigh wavelength
V Poisson's ratio.
Vl = 1 /  [7T (1-V) ]
* an interior point
Cl) the frequency of the exciting force.
T ij the stress tensor

i-th translational components of the foundation
©i (small) rotational components with respect to the i-axis
n, 5 the intrinsic coordinate system of the element
dot denotes differentiation with respect to time* the Riemann convolution product

the subscripts

ijk Cartesian coordinate system
a the vibration mode of the foundation.
comma denotes differentiation with respect to a space variable

the superscripts

prime non-singular quantities
asterisk singular quantities
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CHAPTER 1 Introduction

CHAPTER 1 

INTRODUCTION

1.1 Introduction

The need for effective and economical designs for foundations 
subjected to dynamic loads has become more important in recent 
years. This has been stimulated by the trend towards more 
sophisticated machines and the higher standard of in-service 
performance expected of such installations. General
considerations and practical procedures for the design of 
machine foundations have been summarized by several authors, 
Richart et al(1970); Gazetas(1983) ; Davies(1991) . However, the 
pioneering work of Richart et al(1970), which supersedes the 
simplified methods of Barkan(1962) and that school, is becoming 
increasingly outdated in view of the research work of the last 
two decades. For most machine foundations, the serviceability 
criterion is expressed in terms of the limiting amplitude of 
vibration at a particular frequency or a limiting value of peak 
velocity or peak acceleration. Serviceability is usually 
related to human sensitivity to vibration and/or the 
operational requirements of the installation itself(Figure 
1.1). Often, the former condition is critical.

An important part of successful machine foundation design is 
the engineering analysis of the foundation response to the 
dynamic loads from the anticipated operation of the machine. 
Of particular interest is the evaluation of the steady-state 
response due to a harmonic excitation. Since the magnitudes

1



CHAPTER 1 Introduction

of vibration satisfying the design criteria usually involve 
displacement amplitudes of a few tens of micrometres, soils may 
be considered to behave approximately as linear elastic 
materials for small amplitudes of strain. In addition, 
analyses of experimental results(Dobry et al, 1986) suggest 
that in reasonably homogeneous soil deposits, a representative 
"equivalent" value of the shear modulus of the soil can be used 
to predict small-amplitude response of machine foundations. 
Consequently, in many cases, the soil properties can be defined 
by the mass density, p, Poisson's ratio, v, and the shear 
modulus of elasticity, G. The effect of material damping in 
the soil can be incorporated by using the correspondence 
principle of viscoelasticity(Lysmer, 1980).

Practical analyses usually assume that massive machine 
foundations are rigid(Gazetas, 1983) . Vertical and horizontal 
translations and rotations about horizontal and vertical axes 
are then sufficient to describe the motion of the foundation 
(Figure 1.2). It should be noted that vertical and torsional 
vibration can occur independently of any other motion, while 
horizontal translation and rocking are usually coupled. 
Theoretical studies(Achenbach, 1976; and Eringen and Suhubi, 
1975) of wave propagation through an elastic halfspace form the 
mathematical basis of most numerical methods used to perform 
the analyses of these problems. A brief review of methods used 
for the analysis and design of machine foundations is presented 
below. More detailed reviews can be found in the relevant 
chapters. This chapter concludes with an outline of the scope 
and objectives of this study.

1.2 Analytical Methods

Reissner's pioneering work in 1936(Sung, 1953) indicated that, 
based on the assumption of uniform contact pressure 
distribution, the vertical response of a disc resting on an

2



CHAPTER 1 Introduction

elastic halfspace can be evaluated by integrating Lamb's 
solution(1904) over the contact area. However, more accurate 
solutions necessitate knowledge of the distribution of the 
dynamic contact stresses beneath foundations. Several 
researchers(Sung, 1953; Thomson and Kobori, 1963; Arnold, et 
al, 1955; among others) extended Reissner's idea to obtain
approximate solutions in the low frequency range by assuming 
various stress distributions in the elastic medium immediately 
underneath the footing. While these assumed stress
distributions significantly simplify the analysis, it should 
be noted that this approach fails to satisfy the rigid body 
displacement condition, in general. To circumvent this 
difficulty, Sung(1953) and Thomson and Kobori(1963) computed 
the compliance of the foundation by assuming that the 
settlement was equal to the magnitude of the displacement at 
the centre of the footing. Arnold et al(1955) obtained close 
agreement with experimental results by taking a weighted 
average displacement; at any radius the weighting factor was 
taken to be proportional to the assumed static stress at that 
radius.

In order to carry out a rigorous analysis, it is necessary to 
model the vibrating soil-foundation system as a mixed boundary- 
value problem, in which the displacements are prescribed at the 
contact area between the soil and the foundation while the rest 
of the surface of the halfspace is traction-free. Approximate 
solutions to the mixed boundary-value problem has been obtained 
by a number of authors(Luco and Westmann, 1971; Karasudhi et 
al, 1968; Veletsos and Wei, 1971; and Pak and Gobert, 1991; 
among others) by assuming relaxed boundary conditions. These 
approximations entail the assumption that for vertical and 
rocking vibrations, the contact is assumed to be smooth while 
for torsional and horizontal vibrations, the normal contact 
traction is zero. Essentially, the problem may be formulated 
in terms of a set of dual integral equations; one equation 
specifies the displacements given by the foundation and the

3



CHAPTER 1 Introduction

second represents the traction-free condition exterior to the 
contact region(See Awojobi and Grootenhuis, 1965, for more 
details). The dual integral equations can be transformed into 
Fredholm integral equations of the second kind which may be 
solved numerically(Delves and Walsh, 1974).

Most analytical solutions for the dynamic response of 
foundations have been restricted to strip or circular 
foundations resting on elastic halfspaces, except for the 
results of rectangular foundations given by Thomson and Kobori 
(1963) . Analytical methods necessarily involve many
assumptions and simplifications that must be recognized, but
they can often provide valuable insights less easily discerned 
from numerical analyses.

1.3 Numerical Methods

Fundamental to current methods of analysis of machine 
foundations is the evaluation of the dynamic stiffnesses 
("impedances") of rigid massless foundations(the geometry of 
the massless foundation is taken equal to those of the real 
massive foundation). As shown by Gazetas (1983) , the dynamic 
impedance is simply a generalisation of the spring and dashpot 
constants in Lysmer's analog(Lysmer and Richart, 1966). For 
each mode of excitation with harmonic frequency oj, the
impedance may be cast in the complex (arithmetic) form:

Ka=K+i(jiC (1.1)

where K and C are the real and imaginary parts of the 
impedance, respectively; the subscript a is used in a
generalized sense to denote the vibration mode of the 
foundation, and i is the unit imaginary number.

The determination of the impedances of machine foundations has
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CHAPTER 1 Introduction

received considerable attention in recent years; extensive 
reviews were presented by Gazetas(1983) and Novak(1987). 
Because machine foundations can take complicated geometrical 
forms and may be buried beneath the ground surface, it is 
usually necessary to resort to numerical methods to calculate 
their impedances.

The Boundary Element Method

During the past two decades the boundary element method has 
emerged as a strong candidate for the analysis of dynamic 
problems(Banerjee and Butterfield, 1981; Beskos, 1987; Manolis 
and Beskos, 1988; and Manolis and Davies, 1993) . Because the 
boundary element method takes into account the radiation 
conditions to infinity, it requires no special transmitting 
boundaries, unlike the finite element method. Furthermore, for 
linear problems only the surface of the problem domain needs 
to be discretized; i.e., the use of the boundary element method 
can reduce the spatial dimensions of the problem by one. 
Consequently, boundary element methods are ideally suited for 
analyses of three-dimensional machine foundations since almost 
all of their advantages are exploited.

Dominguez and Roesset(1978) were the first to use the boundary 
element method to compute the impedance function of rectangular 
foundations at the surface, or’ embedded in an elastic 
halfspace. Since then, many researchers have obtained 
solutions to foundation vibration problems using the boundary 
element method for low and moderate frequency of excitation (in 
general, a0 s 2) . They include: Ahmad and Bharadwaj (1991) and 
Antes and von Estorff(1989) for strip foundations; Alarcon et 
al(1989) ; Wang and Banerjee(1990); and Emperador and Dominguez 
(1989) for circular foundations; Tohdo et al(1986); Israil and 
Banerjee (1990); and Gazetas and Tassoulas(1987a and 1987b) for 
rectangular foundations; among many others. Clearly, the
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CHAPTER 1 Introduction

exploitation of boundary element methods in the recent past 
represents one of the most important advances in the 
development of efficient procedures for the analysis of machine 
foundations. For the purposes of this thesis, this method of 
analysis has been employed to obtain numerical results for 
machine foundations subjected to high frequency loading. 
However, for completeness, a very brief review of the 
attributes of one possible alternative method(namely, the 
finite element method) follows.

The Finite Element Method

The finite element method is easily the most popular numerical 
technique for the solution of engineering problems(Zienkiewicz 
and Taylor, 1989). But the use of finite element methods for 
analyzing dynamic halfspace problems inevitably involves the 
truncation of the semi-infinite domain to a mesh of finite 
size; the difficulty then arises that outwardly propagating 
waves must be transmitted through(or absorbed) by the 
boundaries without reflection.

Special transmitting boundaries(Lysmer and Kuhlemeyer, 1969; 
Lysmer and Waas, 1972; and Kausel and Roesset, 1975; among many 
others) have been developed to prevent such spurious wave 
reflections. Two dimensional and axisymmetric transmitting 
boundaries can be accommodated without too much difficulty but 
truly three dimensional and fully general transmitting 
boundaries are very difficult to construct. Impedance 
functions for strip and circular foundations, obtained by 
finite element methods incorporating transmitting boundaries, 
have been presented by Kausel and Roesset(1975) ; Tassoulas and 
Kausel(1983); and Valliappan et al(1977). Because no 
satisfactory methods have been developed for allowing elastic 
waves to pass through the lower boundary of finite element 
models, it is necessary to assume that (rigid) rock occurs at
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relative shallow depth. The high cost of three-dimensional 
analyses and these unresolved problems associated with the 
transmitting boundaries limit the use of the finite element 
method to analyze machine foundation problems.

Dynamic infinite elements have also been developed to represent 
the unbounded domain, see Bettess and Bettess (1991) and Bettess 
(1992) for more details. But, because there are three distinct 
waves in an elastic halfspace, the infinite element formulation 
for elastodynamics becomes extremely complicated.

Hybrid methods coupling the finite element method and the 
boundary element method have been shown in recently years to 
be an efficient means of eliminating the difficulty of 
artificial boundaries in the finite element mesh(Spyrakos et 
al, 1989; von Estorff and Prabucki, 1988; and Touhei and 
Yoshida, 1988) . The basic idea is a combination of the 
boundary element method, which is used to deal with the 
unbounded exterior domain, and the finite element method, by 
which the core region is analyzed. By enforcing compatibility 
and equilibrium conditions at the common interface, Luco and 
Wong(1987) and Mita and Luco(1989a and 1989b) obtain impedance 
functions of three-dimensional embedded foundations.

1.4 Design Methods 

Lysmer1s Analog

Motivated by the similarity of response curves between the 
single-degree-of-freedom(SDOF) system and elastodynamic 
halfspace solutions, numerous attempts have been made to 
describe the response of foundations on the halfspace in terms 
of equivalent mass-spring-dashpot systems (Richart, 1960; Hsieh, 
1962; Whitman, 1966; and Wolf, 1991). The procedure involves 
adjusting the frequency-dependent parameters of the equivalent

7
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system such that the resulting response matches that predicted 
by the half space theory. In some cases, in addition to the 
mass of the foundation and the machine, a frequency-dependent 
"participating mass" of soil has to be invoked to obtain 
satisfactory results(Crockett and Hammond, 1948; Barkan, 1962; 
and Awojobi, 1971).

Lysmer and Richart(1966) developed a simplified analog for 
determining the vertical displacement Z(t) of a rigid disc 
(radius rc, mass me) resting on the elastic halfspace and 
subjected to a vertical load Q(t), where t is time. The 
equation of motion for this analog is

d^Z(^)_+ (t) (t) (1.2)
dt2 dt e

where the static stiffness Ke = 4Grc/(l-r), the high-frequency 
asymptotic damping value Ce = pAqV^, in which Aq is the contact 
area(7rrc2) and Vce is the compression-extension wave velocity. 
Note that Equation(1.2) has a form similar to that of a SDOF 
system. A notable feature of the analog is that the lumped 
parameters, the equivalent mass me, dashpot Ce and spring Ke are 
independent of the frequency of the exciting force. It can be 
shown that(without invoking a participating soil mass) the 
analog yields response curves that only slightly differ from 
the 'exact' solution at low to moderate excitation frequencies 
(Figure 1.3). The success of Lysmer's analog in establishing 
the bridge between the halfspace-theory and the lumped 
parameter system has had a significant influence on the 
analysis of machine foundations.

The lumped-parameter approximations described by Whitman and 
Richart(1967) and Richart et al(1970) are extensions of 
Lysmer's analog to all vibration modes and to non-circular 
foundations. The usual practice for non-circular foundations 
is to take an equivalent circle of the same area (translational
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modes) or equal moment of inertia(rotational modes). Lumped- 
parameter models with more than three components have been 
proposed by Wolf and Somaini (1986) ; de Barros and Luco (1990) ; 
Jean et al(1990); and Wolf(1991).

Impedance Methods

In recent years there has been a considerable increase in the 
number of simple engineering formulas and charts developed for 
the calculation of the foundation impedances. It continues the 
practice of approximating numerical or analytical results by 
algebraic expressions(Hsieh, 1962; Ratay, 1971; and Beredugo 
and Novak, 1972) . The validity of this approach has been 
explored by Dobry et al(1986) and Gazetas and Stokoe(1991).

These engineering approximations are derived from results 
obtained from various researchers using different soil- 
foundation contact conditions; using a variety of analytical 
or numerical approaches; and using calculations performed with 
various degrees of precision. Usually, analytical and 
numerical results are plotted as raw data points in 
dimensionless charts, and approximations are developed to fit 
curves to these data points(Figure 1.4) . A large number of 
simple algebraic formulas and dimensionless parametric charts 
have been developed in the literature(Dobry and Gazetas, 1985 
and 1986; Pais and Kausel, 1988; Gazetas, 1991; Davies, 1991; 
among others) . However, the approximations advanced -fo r  

rectangular foundations (for example, Dobry and Gazetas, 1986; 
and Pais and Kausel, 1988) are based on scant data, especially 
for incompressible soils and particularly for high operating 
frequencies. These engineering approximations are generally 
limited to dimensionless frequencies (a0) of less than two and 
Poisson's ratios between 0.25 to 0.4. The dimensionless 
frequency a0 is given by the equation:
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(jiB
C,ao = —  (1-3)

in which B is the radius of circular foundations or one-half 
the width of rectangular foundations and

is the propagation velocity of shear waves in the halfspace.

The use of simple engineering methods may involve some loss of 
precision. Nevertheless, well-conceived, simple equations, 
with adequate explanations of their basis and limitations, are 
extremely useful to practising engineers. They can provide 
practical design solutions and, more importantly, a simple 
guide to understand the role and significance of the main 
parameters controlling machine foundation dynamics. In 
practice, engineering approximations can be used for 
preliminary estimates, to understand behaviourial aspects or 
when more rigorous analyses are not warranted.

Superstructure Response

Several substructure methods for the dynamic analysis of
foundations have been presented in the literature(Kausel and
Roesset, 1974; Kausel et al, 1978; and Roesset, 1980a). The
basic approach in all these methods is to partition the
complete soil-foundation system into two parts, the structure 
and the soil. The semi-infinite soil domain is analyzed first 
and the impedance, at the soil-foundation interface, is 
established. In the second step, these foundation stiffness 
are incorporated with the equations of motion of the structural 
system, and the overall response is computed. This approach
offers considerable flexibility in the way each step is
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handled.

Practical procedures for the evaluation of the steady-state 
response of rigid machine foundations have been described by 
Gazetas(1983). For example, the amplitude of the vertical 
displacement at the centre of gravity is given by equation:

Kv(m) -mm2

in which, the subscript v is used to identify the (vertical) 
vibration mode, m is total foundation mass and qv is the 
amplitude of the exciting force. Clearly, the evaluation of 
impedance functions for massless foundations plays a key role 
in the analysis of machine foundations. Once this has been 
done, the dynamic response of the actual system can be 
estimated by a straightforward operation.

1.5 Discussion

The analysis of machine foundations is concerned with attempts 
to develop rational methods to predict the response of 
foundations subjected to dynamic loads. Its history embraces 
that of developments in the mathematical and physical 
principles necessary to simulate this complicated problem, and 
of the advent of fast digital computers. Naturally, there has 
been continuous progress since the pioneering work of Reissner 
in 1936. Some of these works have of course been superseded 
because they are based on inadequate assumptions(for example, 
uniform contact stress distribution) or involve considerable 
simplifications of the physical model(eg, relaxed boundary 
conditions).

Because analytical methods can be used in very few highly 
idealized situations, there has been a great emphasis placed
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on the development of numerical techniques. In particular, the 
boundary element method has been successfully used in recent 
years for the analysis of machine foundations. However, 
rigorous boundary element analyses of high frequency foundation 
response has remained unsolved because of the difficulties of 
representing and integrating the highly oscillatory spatial 
functions. In addition, solutions for the special case of 
incompressible media, since the effect of Poisson's ratio on

lythe impedance function is part icularA'significant (Awoj obi, 1971; 
and Veletsos and Wei, 1971) , has not been rigorously studied 
by boundary element methods. These difficulties are overcome 
in the present study and a number of new results which should 
prove useful in practice are obtained.

1.6 Outline Of Thesis Contents

The object of the present study is the further extension and 
refinement of boundary element techniques for the analyses of 
machine foundations. Chapter II presents the derivation of the 
boundary integral formulation and a close study of the 
characteristics of the dynamic kernel functions. With respect 
to the improvement of computational accuracy and efficiency of 
the boundary element analysis, advanced integration schemes for 
non-singular and singular elements are developed in chapter III 
and chapter IV, respectively. A novel infinite boundary 
element for dynamic analyses is developed in chapter V, which 
provides an efficient means for including far-field effects, 
without the necessity of explicit discrete representation 
outside the near field. The implementation and vectorization 
of the boundary element method program are described in chapter 
VI. Chapter VII presents various results for rectangular 
foundations to illustrate the potential of the infinite 
boundary element formulation. In Chapter VIII, the conclusions 
of the study are drawn together and some suggestions made for 
further work in this area.
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CHAPTER 2

BOUNDARY ELEMENT FORMULATIONS FOR
ELASTODYNAMICS

2.1 Introduction

During recent years, the boundary element method has found 
considerable applications in the solution of engineering 
problems, such as elastoplasticity, elastodynamics, diffusion 
problems and fracture mechanics. The periodical Boundary 
Elements Abstracts and Newsletter, besides the many scientific 
and technical journal articles and the proceedings of a number 
of international conferences, summarizes current research 
activities.

Cruse and Rizzo (1968) and Cruse (1968) were the first to use the 
boundary element method to solve general transient problems. 
In their studies, the direct boundary integral equations are 
derived to represent a system of constraint equations between 
the displacements and tractions on the boundary of the problem 
domain. Given the prescribed boundary conditions, numerical 
solutions of the boundary unknowns were obtained by employing 
a systematic discretization scheme. The interior displacement 
and traction fields can then be calculated without special 
difficulty. Since then, many researchers(reviewed by Beskos, 
1987; and Manolis et al, 1993) have obtained solutions to 
elastodynamic problems using the boundary element method.

This chapter reviews the theoretical development of boundary
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integral equations for linear elastodynamics and describes the 
implementation of the boundary element method; in particular 
for the solution of three-dimensional problems. The next 
section presents the derivation of the integral equations, 
which may be considered as a general formulation for the 
solution of elastodynamic problems. Section three presents the 
reduced elastodynamic equations and the corresponding full- 
space fundamental solutions, which are appropriate for steady- 
state problems. Following that, characteristics of the 
fundamental solutions and special formulae for incompressible 
medium are given in section four, with a view to preparing the 
ground for the implementation of the boundary element 
formulation. The derivation of direct boundary integral 
formulations for steady-state elastodynamics and the 
corresponding numerical solution procedures are described 
briefly in section five.

2.2 Integral Equation Formulation

2.2.1 Introduction

Many continuum problems in physics and the applied sciences are 
described by partial differential equations, allied with 
appropriate initial and boundary conditions. It is not 
surprising that the solution of such partial differential 
equations has been a major concern of analysts for over two 
centuries. Of course, solutions of specific initial-boundary 
value problems can be obtained in any one of many ways 
(Muskhelishvili, 1953; and Gladwell and Wait, 1979), but in 
this thesis, we concentrate on integral equation methods, 
dating from Fredholm(in 1905) and his contemporaries(see, for 
example, the historical review in Banerjee and Butterfield,
1981) . With the aid of Green's functions(Roach, 1982), this 
analytical method recasts initial-boundary value problems from 
differential forms to integral forms. It should be noted that
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the latter are often much more amenable to numerical solutions 
than the former. In addition, for certain classes of problems, 
only the boundary of the domain being investigated needs to be 
considered. As a consequence, integral equation methods afford 
a powerful means of attacking a wide range of physical and 
engineering problems, especially for problems characterized by 
infinite or semi-infinite domains(Mikhlin, 1965; and Jaswon and 
Symm, 1977).

In linear elastodynamics, the "direct" integral equation method 
starts with the dynamic reciprocal identity(Love, 1944, section 
1 2 1) and, invoking the fundamental solutions of the governing 
equations, arrives at a formulation in terms of displacements 
and tractions on the boundary of the domain under 
consideration. This section briefly describes the derivation 
of integral equations for linear elastodynamics, which has been 
presented in considerable detail elsewhere. For more details, 
reference is made to Love(1944); Wheeler and Sternberg(1968); 
Eringen and Suhubi(1975); Achenbach(1976); and Hudson(1980).

2.2.2 Theory Of Elastodynamics

With the usual assumptions of small displacement theory and 
homogeneous, isotropic linear elastic material behaviour, the 
governing differential equation of dynamic equilibrium for a 
solid can be expressed as

where the dilatational and shear wave velocities are given, 
respectively, as

(2 .1)

^ _ (2-2v) ^
1 \ (l-2v) 2

(2.2)
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C2=>J
G
P

(1.4, repeated)

In the above equations, Uk = Uk(x,t) is the displacement vector 
at a point x and time t; the comma and dot denote 
differentiation with respect to a space variable and time, 
respectively; is the body force vector; summation over 
repeated indices is implied and rectangular cartesian 
coordinates is employed.

To complete the problem statement, the displacements and 
stresses must satisfy the initial conditions in the problem 
domain V :

Uj (x, 0) = Ui0(x)
Uj (x, 0) = Vi0 (x) (2.3)

and boundary conditions on the surface S, =S1+S2, of V:

Uj(x,t) = Ui*(x,t) on Si
Tj (x, t) = Tjj nj = Tj* (x, t) on S2 (2.4)

where Ui0 and Vi0 are given initial displacements and velocities; 
Tj and nj are the traction components and the outward pointing 
unit normal vector, respectively, jy is the stress tensor; Uj* 
and T* are the prescribed boundary quantities. In addition, 
the Sommerfeld radiation condition(see, for example, Eringen 
and Suhubi, 1975) must be satisfied if V is of infinite extent.

One of the requirements for a well-posed problem is that the 
governing equation has a unique solution. Proofs of the 
existence and uniqueness of the solution of the properly 
formulated boundary-initial value problem in elastodynamics
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were given by Neumann(Love, 1944, section 124), which have been 
extended to unbounded domains by Wheeler and Sternberg(1968). 
In general, properly prescribed boundary conditions over the 
whole surface S of domain V will lead to a unique solution.

2.2.3 Fundamental Solutions

The fundamental solutions of the governing equation are of 
basic importance in the formulation of integral equations for 
elastodynamics. In an infinite medium, the wave field 
generated by a concentrated force of arbitrary time function 
is called Stokes' solution(See Love, 1944, section 212). The 
displacement component in the i-direction at point x(x1,x2,x3), 
due to a concentrated force acting at £ (£t, £2, £ 3) in the j-
direction is given by:

in which 6y denotes the Kronecker1 s delta, g(.) is the Dirac 
delta function, and

The corresponding stress tensor can be obtained by substituting 
Gij*(x,t;£) into Hooke's law. Explicit expressions can be found 
in Eringen and Suhubi(1975):

_i
c2

) J X*g{ t-Xr) dX
_i
Ci

r=s] (xi-^i) •(xi-^i) (2 .6)
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r y  (x, t ;5 )  =p [ (c f-2C f) G ^ .A j+ C f  (GiVj+GjVj) ]

■■Fljk(x, t, £) -Uj (2.7)

where the third order tensor Fijk is

c2
^  1 f 2 r $rir irk ^iirk + ̂iIrC-i+^Hcr i-, C* / , V «Flik(x, t, J) =—i-{-6Cf [ 2-JE i*±2--/ \-g(t-\l)d\

1JK 4ti r5 r3 •»

+2 [ff< t - r  )--%•&(
2 cr ci

r4C, [^(t— i-)— i)]
cr

(2 .8)

ts r(t—1-) £ ) ]
Cl Ci

2.2.4 The Dynamic Reciprocal Identity

The dynamic reciprocal identity(Love, 1944, section 121), which 
is an extension of Betti's reciprocal theorem to dynamic 
conditions, relates two distinct elastodynamic states of the 
same body. The identity presents a relation between two sets 
of displacements and stresses both satisfying the equation of 
dynamic equilibrium and Hooke's Law for homogeneous, isotropic, 
linearly elastic bodies, but with different distributions of
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body forces, different initial conditions and different 
boundary conditions. Wheeler and Sternberg(1968) have extended 
this identity to unbounded bodies. The dynamic reciprocal 
identity is fundamental to the derivation of the integral 
representation for elastodynamics.

Let V be a regular region with boundary S and consider two 
distinct elastodynamic states

A=[Ui,Ti,fi]

and

(2.9)

defined in that region and with initial conditions

U±(xf 0) =Ui0(x)

U± (x, 0) = Vi0(x)

ui(x,0 ) ̂ uioix) (2 .10)

u<(x, o) = v ^ U )

Then, for tsO

s V

(2 .11)
s V

in which, the asterisk represents the Riemann convolution
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product, i.e.,

t
fix, t) *h ix, t) = f fix, t-z) h ix, t) dz

o (2.12)
t

=j  fix, t) h ix, t-z) dz
0

where f and h are functions of xeV and tsO.

2.2.5 Integral Equation Formulation

By utilizing the dynamic reciprocal identity, where one of the 
two elastodynamics states is [ ], and the other one is
the actual state, the direct integral formulation of 
elastodynamics for an interior point £ is given by

U± (£, t) =J [G*ij*Ti ix, t) -T\j* ix, t) ] dSix) +p jG*iĵ fi ix, t) dVix) 
s v

+pj [GijVi0 (x) +GljU10 (x) ] dV(x) (2.13)
V

The integral equations provide a complete representation of the 
solution to transient elastodynamic problems. In particular 
it should be noted that the first integral involves both the 
surface displacements and the surface tractions on the boundary 
of the problem domain. The last two integrals are related to 
the body forces. Since in certain problems body forces are 
absent(Achenbach et al, 1982), the integral identity is useful 
in the solution of many elastodynamic problems(for example, 
time-harmonic wave motions) in an unbounded medium.

The application of the integral equations to linear 
elastodynamic problems can be accomplished in the real time
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domain directly through a time marching scheme(Ahmad and 
Banerjee, 1988b; and Dominguez and Gallego, 1992) or in the 
transformed domain with the aid of the Laplace transformation 
with respect to time(Cruse and Rizzo, 1968; and Doyle, 1966). 
Numerical inverse transformations are required in the*latter 
approach to bring the Laplace transformed solution back to the 
original time domain. The integral equations for steady-state 
solutions can be obtained either from the equations of reduced 
elastodynamics or through the Fourier transformation with 
respect to time(the frequency domain formulations; see, for 
example, Kobayashi, 1987). Comparisons between these three 
different approaches(Manolis, 1983) indicated that the 
computational cost of the time domain analyses is greater than 
Laplace and Fourier transformed domain analyses.

2.3 Reduced Elastodynamic Problems

The importance of dynamic effects depends on the relative 
magnitudes of two characteristic times: the time characterizing 
the external application of the disturbance and the 
characteristic time of transmission of disturbances across the 
body. If the external disturbances vary in a simple harmonic 
manner with time and the motion is observed long after the 
initiation of the source, the physical components of the 
problem are also harmonic in time and are called steady-state. 
For practical purposes, it is usually assumed that the initial 
values for displacements and velocities are transient in nature 
and will disappear after a sufficient lapse of time. In this 
special case, consequently, the elastodynamic problem is 
simplified to a great extent since the time dependency is 
eliminated and the initial-boundary value problem is then 
reduced to a boundary value problem only.

Substituting the steady-state displacement vector and stress 
tensor
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U(x, t) =u (x, o) e io>t (2.14)

T(x, t) =t(x,(o) e~iu>t

into equation(2 .1 ), the governing equation of steady-state 
elastodynamics is:

(Cl-Cl) uJ. J.i+c|ui#J.J.+fi+a)2ui=0 (2 .15)

As is evident, the exponential term e'lwt has been omitted for 
reasons of simplicity. This time-independent equation is 
called the reduced field equation of elastodynamics (Eringen and 
Suhubi, 1975) , which is the same as that derived from the 
Fourier transformation. It should be noted that the originally 
hyperbolic governing equation has become elliptic in the 
frequency domain where it can be solved as a static-like 
problem with respect to frequency.

The integral equation formulation for the reduced 
elastodynamics becomes much simpler and can be written as

=J [G±j (x, £,<»>) tiiX'to) -T^ (xf £,(»)) ui{x, co) ] dS(x)

pjGij{x,l,to)fi(x, <o)dWx) (2.16)+
v

The corresponding fundamental solutions(Eringen and Suhubi, 
1975) are given by

(x'1 'u) = i h  [,p5« - rr^ r-j] (2 •17)

and
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dY r dr 2r dr(x, £,<*>) = ,11,) --Si- (r ±nr 2i ±r
ij 4^ dr r 1J dn ,J 1 r ,2 J ,2 ,J dn

-2^-r tr 7~ + [ ( ^ ) 2-2] ( ^ - ^ - 2T)r dr il ,J dn C2 dr dr r ,2 J (2.18

where

(2.19)

1 C 2 i C  1(or¥ = - [ ( - — 5- + — 2+1) e c* r co2r2 (or

L +i£i ~
Ci co2r2 <»>r

-(-S)2(_ ,Ci ■+-££*) e Cl ] (2 .2 0)

_ 1 r / 3C*2 3iC2 .r=— [(----— -+---   +1 ) e 2r co2r2 wr

7 ^20/ 3C£ 3iC . ,0"(-^)2(-— -±r +--- -+1) e 1 ] (2 .2 1)Ci (o r wr

and

i - A  (2 -2 2 )

in which n is the outward normal vector on a differential 
element of the surface S. These fundamental solutions are also 
called the full-space Green's functions. Their simple forms 
in the frequency domain have made them very popular among 
researchers in the field.
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The static problem is a special case of the dynamic problem, 
for which o>=0. For reasons of completeness, the static 
fundamental solutions G^1 and TSjSt are given, respectively, as

G%(x,l)= 1 ---r [(3-4v)8i,+r ,] (2.23)
J 167iGr(l-v) 1J ,J

Tfj (x,l)------1 ([ (l-2v) dr ,]871 (1 -v) r2 3 ' ,J dn

+ (l-2v) (2.24)

2.4 Fundamental Solution Characteristics

The mathematical properties and physical significance of 
fundamental solutions are of considerable importance in the 
solution of integral equations. For example, the singularities 
of fundamental solutions have a significant influence on the 
procedures used for both theoretical and numerical analysis. 
This section attempts to highlight some of the major features 
of the fundamental solutions, which will be cited whenever 
necessary.

2.4.1 Order Of Singularity

The singularities existing in the fundamental solutions are 
significant features of the boundary integral equations. By 
inspecting the fundamental solutions, it is evident that all 
these solutions have a singularity when r approaches to zero. 
As will be shown later, when aj->0(ro)/C2 < 10'3) the dynamic
fundamental solution converges to the static fundamental 
solution. Consequently, the asymptotic singular behaviour of
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dynamic fundamental solutions, for any frequency, is identical 
to the static fundamental solutions. The order of
singularities of both dynamic and static fundamental solutions 
are proportional to the following singular functions:

G±j (x , £, co) ~ =-r-D r(x,l)

It. (x, £,(*>) ~-------r2(x,£)
(2.25)

2.4.2 Symmetry, Anti-symmetry and Simplification

The symmetry of the displacement fundamental solution, which 
is well known in the literature, implies that Gy(x,£,a)) =
Gjj(x,̂ ,co) = Gjj(£,x,o)). On the other hand, the static traction 
fundamental solution are anti-symmetric, namely, Tyst(x,£) = - 
TjiSt(x,£) = -Tyst(£,x). As shown in Figure 2.1a and 2.1b,
respectively, Gy(x,£) = Gy(x',£) andTy(x,£) = -Ty(x',£), where 
x' is the symmetric point (with respect to £) of x. In these 
figures a> equals 3 00 rad/s,  ̂= 0.25, and £ is at (0,0,0) while 
x is located at (d*cos(0) , d*sin(0) ,0) , in which 0=3 0° and d* is 
the distance between x and £.

It is noted that if point x and point £ are on the same plane 
(for example, the surface of the half space where y3=0 ) then 
r)3=n1=n2=0. Thus, the nine terms in Gy reduce to five because 
Gi3=G23=G3i=G32=0. In addition, because in this special case 
dr/dn=0 , it is easy to show that only the off-diagonal terms 
of Ty, namely, T13/ T23, T31 and T32, are different from zero. The 
forms of Ty and Gy for this particular case suggest a weak 
coupling between the horizontal and vertical motions. Notable 
simplifications in the boundary element analysis have been made
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by neglecting the relatively small influence of the off- 
diagonal terms of the traction fundamental solution, eg, 
Karabalis and Beskos(1986) and Mohammadi and Karabalis(1990).

2.4.3 Frequency Response

It is of interest to examine the convergent behaviour of the 
dynamic fundamental solution to the static one as the frequency 
tends to zero. Attention is primarily focused here to small 
arguments. Expanding the exponential terms by the Taylor's 
series

with n=3, after some manipulations, ty and r can be approximated 
to

(2.26)

(2.27)

Furthermore, it is easy to show that

(2.29)

(2.30)
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Substitution of Equations (2.27)~ (2.30) into Equations (2.17) 
and (2.18) leads, after lengthy manipulations, to

and

G„ =— ^ { [ < l - (  —  ) 2+i  — ) + ( - ^ ) 2 ( l + i  — )]  8, ,  8tiGr q q q q 1J

-[(-l-(-^)2-i-^) + (-^)2(l+(-^)2+i-^)]r ,r J (2.31)q C2 q q q -1

q,  M [ i i ^  + ( S ) 2(-2-(i5£)2-ii^)] +r n,)8itr2 q q q q -J

[(-6-2(-^£)2- 4 i ^ ) + ( ^ ) 2( 6 + 2 ( ^ ) 2+ 4 i ^ ) ] r  ,r ,|^C, Co C, C, C, dn

+{-2(“£)2-3(“£) 2-2i-^-2i-^ (2.32)c2 q c2 q

+ ̂ 2 [(2(^i)2+2i—  ) +(2+4( —  )2+2i —  )]}r ,11,n L ' /nr r1 I* C* ' J^2 2 ^2 1 1

Cancelling terms in the limit as the frequency tends to zero, 
it is easy to show that Gy and Ty (Equations 2.31 and 2.32) 
become identically equal to Gy* and Tyst, respectively.

Clearly, the convergent behaviour of these approximations 
depend on the magnitudes of cor/q and cor/q. The latter is 
crucial because q  is greater than C2. Considering only 
relatively low values of cor/C2, a series of numerical 
experiments were performed to study the discrepancy between the 
static fundamental solutions and the dynamic fundamental 
solutions. As shown in Figure 2.2, numerical results reveal
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that for o>r/C2 «slO'3, the imaginary parts of the dynamic 
fundamental solutions approach zero and, essentially, are 
negligible. It is also observed that for a>r/C2<;10'2, the real 
parts of the dynamic fundamental solutions and the static 
fundamental solutions are practically identical. However, the 
computation of dynamic fundamental solutions becomes unreliable 
(using single precision arithmetic) when o)r/C2̂ 10'6~10'7. As a 
consequence, in this work the static fundamental solution is 
used in the dynamic analysis when o>r/C2 <s 10'3.

2.4.4 Fundamental Solutions For Incompressible Medium

An important difficulty arises in numerical solutions to 
elastodynamic problems when Poisson's ratio equals 0.5, for 
which the dilatational wave velocity Cj is infinity. This is 
an important problem in geotechnical engineering since it 
relates to saturated clays under undrained loading. A simple 
way of avoiding this difficulty is to use values of Poisson's 
ratio close to 0.5 but not equal to it. On the other hand, 
several researchers (for example, Gazetas and Dobry, 1984; Pais 
and Kausel, 1988; and Meek and Wolf, 1993) have attempted to 
use the Lysmer's analog wave velocity

Vca Tt\ C2 (2.33)L a  TZ ( 1 - V  ) 2

or an approximate velocity

9 1/2 /V=(-±-) C2 (2.34)1 -v
to replace Cj as Poisson's ratio approaches 0.5.

It should be noted that infinite wave velocities are not 
observed in the laboratory(Gazetas, 1983; and Nii, 1987), and
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some analytical solutions for v=0.5 have been presented in the 
published literature(Veletsos and Wei, 1971; Awojobi, 1971; and 
Karasudhi et al, 1968) . It is therefore necessary to 
investigate whether the solution of integral equations for 
incompressible media depends on the velocity of dilatational 
wave. It follows from equations (2.20) and (2.21) that >fr and 
r can be written as

r2 7 r —  r2 i r2Y  = l[(- Cz + i S + i ) e c* + ( C2 - ) e ^ ] (2.35)
i a)2r2 ur u 2r2 qtor

and

__ 1 r / 3 C*2 31C2 -*§*■r=— [(----— + -+1 ) e 2r co2r 2 (or

(2*36)o)2r 2 qcor q

Noticing that, as p approaching 0.5, 1/C^O and exp (icor/q) =1, 
it is clear that >fr and r are independent of q, namely,

r2 7 r —  r2limY=-i[<— S2_+if2+i)e (2.37)
v=0.5 r o)2.r2 c*>̂t <o2r2

limr=-[(- L +liStti)e c* +---2_] (2.38)
v=0.5 r  o)2r 2 w r  co2r 2

Consequently, the displacement fundamental solution for v=l/2 
is
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fiZ • s~t i(oi _2
G± i = — — ( [ ( - — — + — -  +1) e C2 + — — ] 6 i7- 

4tiGz  co2r 2 cor co2r 2

o /~»2 « < i(QT _ _2
- [ ( - ^ - +li£vi)e c* +̂ L]z ,r ,} (2.39)

(o2r2 cor m 2r2 '

Similarly, the traction fundamental solution Ty for 
incompressible medium becomes

2 7 , ------ M [ ( 6 ( - ^ ) 2- 6 ^ 1 + ^ - 3 ) e  c* - 6 ( A )  2] (8  | £ + r  n  )
J 4 r c r 2 w i  cor C2 cor 13 dn 1

+ [ ( - 3 0 ( - ^ - ) 2+3 0 ^ ^ - 2 - ^ ^ + 1 2 ) e  °2 + 3 0 ( - ^ - ) 2] r  , r
cor cor C2 cor  ,2 on

ft if 1(01 ft
+ [ ( 6 (  —  ) 2- 6 -----  - 2 )  e °2 - 6 (  — ) 2- l ] r  ( 2 . 4 0 )

cor cor cor 3

Using the same procedure described in the previous sub-section, 
after mathematical manipulations, it is easy to demonstrate 
that, as oh>0 , these results converge to the static fundamental 
solutions for incompressible material, i.e.,

G r

and

G*i = — —  [ 6 i7- + r  ±r 7-] ( 2 . 4 1 )1J Q'tr n-r 1-3 >1 ‘J

[3r- r- S ] (2-42)

This approach provides important insights into the influence
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of Cj on the fundamental solutions. It has been demonstrated 
that, when Poisson's ratio equals 1/2, the fundamental

Consequently, the special fundamental solutions developed in 
this section are capable of dealing rigorously with

solutions will be illustrated in Chapter 7.

2.5 Direct Boundary Element Formulation

2.5.1 Boundary Constraint Equation

The strategy of the boundary integral equations is to move the 
interior point £ in equation(2.16) to the boundary and, 
consequently, the resulting boundary constraint equations 
relate all boundary displacements to all boundary tractions. 
Let y be a point on the surface of the domain, the following 
results have been given by Cruse and Rizzo(1968):

solutions are independent of the dilatational wave velocity.

incompressible soils. The potential of these fundamental

limizj (5, o) =ui (y, (*>) (2.43)

Jti(x/(i)) (x,y, <o) dS(x) (2.44)
s

and

C±j (y) Uj (y, (o) +Jui (xf co) T±j (x,y, co) dS(x) (2 .45)
s
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where Cjj (y) is a 3x3 matrix arising from the treatment of the 
improper surface integral involving Ty.  It should be noted 
that Cy (y) are independent of the frequency. Hartmann (1981 and
1982) showed that Cy( y )  is a function of the boundary geometry 
in the vicinity of y and the Poisson's ratio:

y on a smooth boundary

|l 0 0 |
^ < y ) = - | | 0  1 0| ( 2 .46)

|o 0 1 1

y at an edge

|l 0 0 |
1° 1 vi
1° vi 1

<Vy)=-|l° 1 Vll (2'47)

in which

v i  = — 7T— r  ( 2 . 4 8 )1 Tl(l-V)

y at a corner

I1 vi v J
<?y(y)=-1 lvi 1 vJ (2.49)

K  Vj. l|

Introducing equations (2 .43) ~ (2 .45) into equation (2 .16) yields, 
on the assumption of zero body forces(Muskhelishvili, 1951,
section 28; and Lamb, 1904), the well known boundary integral 
equations(for example, Banerjee et al, 1985; Manolis, 1983; 
Ahmad and Banerjee, 1988a):
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(y) iz^y, co) =j[Gij(xfy f cd) ̂ (x, g>)
s

-Tlj(x,y,tt)u1{xt<»>)]dS(x) (2.50)

or

C^iy) ui(y/ cd) =J [G±j (x,y, co) ̂ (x, (d)
s

-Tij{x,ylto)ui{x,&)]dS{x) (2.51)

It is significant to note that all steps leading to the 
boundary integral equations are entirely analytical and 
classical. However, the analytical solution of the boundary 
integral equations is only possible for relative simple 
problems and it is therefore necessary to implement these 
equations using a numerical method; this is usually referred 
to as the boundary element method.

2.5.2 Numerical Implementation

The advancement of computers has made it possible to implement 
discretization processes arithmetically; as a result, numerical 
solutions of tolerable accuracy can be achieved. Some 
implementation aspects of the boundary integral equations have 
been presented by Banerjee and Butterfield(1981); Manolis and 
Beskos(1988); Becker(1992); and Davies(1993). This sub-section 
describes briefly the basic numerical techniques employed in 
the boundary element method. Detailed study of the 
computational procedure will be presented in subsequent 
chapters.
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Discretization And Parametric Representations

Usually, the boundary under consideration can be discretized 
into constant, linear, or higher-order boundary elements, as 
shown in Figure 2.3. In the past, constant boundary elements 
have been popular because of their simplicity(Cruse, 1968;
Dominguez and Roesset, 1978; Fukuzawa et al, 1985; Karabalis 
and Beskos, 1987a and 1987b; among others). However, the 
quality of the numerical results depends strongly on the 
closeness of the approximation used for describing field 
variables. The use of large size elements(in comparison with 
the wavelength) is not recommended because the accuracy of the 
representation of field variables over an element is 
significantly less than the accuracy of the numerical 
technique. In practice, as indicated by Davies and Bu(1993), 
quadratic elements with dimensions smaller than 1/4 Rayleigh 
wavelengths are essential for modelling wave fields accurately. 
Isoparametric shape functions, borrowed from finite element 
methods, are used in the present study to approximate the 
geometry and the field variables over rectangular boundary 
elements in terms of their nodal values.

The Cartesian coordinates of an arbitrary point p on a boundary 
element for three-dimensional problems are given in terms of 
the nodal coordinates Xia as

Xi(p) (2.52)
a=l

where i = 1,2,3 and a = 1, . . . g, with q the number of nodal 
points necessary to describe the element. On the other hand, 
displacements and tractions at an arbitrary point p on a 
boundary element can be described in terms of nodal values Uia 
and Tia using the equations:
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ui ( p>
a=l

ti (p) Tia (2.53)
a= 1

The shape functions Na (Zienkiewicz and Taylor, 1989) are
defined in the intrinsic coordinate system 77 and £, which vary 
from -1 to +1 .

The jacobian operator relating the transformation from the 
Cartesian coordinate system to the element's intrinsic 
coordinate system (17, £) is

Discretized Boundary Element Formulation

If the boundary is discretized into M  elements, which are 
transformed onto the intrinsic coordinate system, the boundary 
integral equations for a given node y can be written as

dx dy

(2.54)

M  +1+1
C±j{y) ui (y, (0) =5^ J J G±j (x,y, co) ti{xf «) \j\dr\d£

M  +1+1
^  f f Tij (x,yt a)) ui{x, co) \j\dr\dt (2.55)
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Substituting equation(2.53) into equation(2.55), the integrals 
over a boundary element can be written as, for example,

+ 1 + 1

J J T±j (x,y, g>) u± (x , <o) |c7|dTid£
- i-i

+ 1 + 1

- i - i

= f [Tij{x,y,(xi)lYiNaUiJ\j\dt\d£
a=l

+1+1g
E

a = l

=E  yi«/j’riJ(x,y,«)wa|j|dnd5 (2.56)

Consequently, the discretized form of the boundary integral 
equations for a given node y is

M  q +1+1
cij ( y )  u i  ( y * w ) k|drid^

jb-1 a=l

AT g
+1+1

E E ^ / /  T±j (x,y, 0))iVa|c7|dTid$ (2.57)
jn=l a =1 -1-1

Numerical Integration

An essential aspect of the implementation of the boundary 
element method is the accurate evaluation of surface integrals 
appearing in the discretized boundary element formulation. 
This is the most time-consuming aspect of the boundary element 
analysis. The integral is singular if the source point y lies 
on the boundary element being integrated; otherwise, the 
integral is non-singular. Special attention is required in the
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integration of integrals, due to their inherent singularities 
and oscillatory behaviour.

Methods for the evaluation of integrals in the boundary element 
method are reviewed by Hall(1988) and Guiggiani(1991). It 
becomes apparent that only integrals over constant element are 
amenable to analytical solutions. In general, all integrals 
are calculated numerically by means of Gauss quadrature.

System Matrix Equations

The boundary integral equations may be approximated by a system 
of simultaneous equations in terms of displacements and 
tractions at nodes of boundary elements by using nodal 
collocation(Delves and Walsh, 1974). By allowing the source 
point to coincide sequentially with all nodal points on the 
boundary, the matrix form of the global system of boundary 
integral equations can be expressed as

[U]it}=[T]{d (2.58)

where {t} and {u} are the traction and displacement vectors for 
all the nodes, respectively, and [U] and [T] are coefficient 
matrices containing the appropriate contributions of the 
surface integrals of Gy and Ty. It should be noted that the Cy 
matrix has been absorbed in the matrix [T].

After introducing the boundary conditions, the final system of 
equations is obtained by interchanging columns in the matrices 
[U] and [T] to accumulate all unknowns into the vector {x} on 
the left hand side as follows,

[A] {J6={B\ (2.59)
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For elastodynamic problems, the matrix [A] contains complex 
numbers and is non-symmetric and fully populated. Solutions 
of the matrix equation and corresponding error bounds have been 
presented by Fox(1964) and Delves and Walsh(1974), and others. 
In practice, the system matrix equations can be easily solved 
by using presently available computer software, for example, 
NAG subroutines(1983).

Solution Of Boundary Value Problems

Once the boundary values are unknown, they can be subsequently 
used to compute the displacements and tractions at any interior 
point of the domain with the aid of the integral equations 
formulation, i.e., equation(2.16). However, for the analyses 
of machine foundations, the displacements and the tractions at 
the soil-foundation interface are of interest only. The 
dynamic stiffness of the foundation is generally evaluated by 
integrating the traction over the contact area.

2.5.3 Discussion

In boundary element analyses, especially for three-dimensional 
problems, the computation of the integrals over boundary 
elements is an important aspect since it governs the accuracy 
of the numerical results and also because it usually requires 
the major part of the numerical effort. A number of methods 
have been developed to evaluate surface integrals involving 
"static" integrands(Lachat and Watson, 1976; Jun et al, 1985; 
Mustoe, 1984; and Hayami and Brebbia, 1988; among others). 
However, methods for evaluating surface integrals with 
oscillatory integrands are seldom discussed. Consequently, 
additional work is needed to develop accurate and effective 
methods for the evaluation of integrals arising in dynamic 
boundary element analyses. This will be presented in the next

41



CHAPTER 2 BOUNDARY ELEMENT FORMULATIONS FOR ELASTODYNAMICS

two chapters.

The analysis of machine foundations involves the free surface 
of the halfspace; this boundary condition must be incorporated 
in the analysis. However, the limitation of computer capacity 
and computational cost have caused practical difficulties in 
incorporating the semi-infinite boundary into the numerical 
procedure. Traditional remedies to these difficulties are 
either to use the complicated halfspace Green's functions or 
large(but truncated) boundary element meshes.

Halfspace Green's Functions

A variety of special Green's functions corresponding to the 
homogeneous halfspace have been developed by Johnson(1974); 
Kobayashi and Nishimura(1980) ; Rizzo et al(1985); and Banerjee 
and Mamoon(1990). Because the use of these Green's functions 
leads to automatic satisfaction of the free boundary 
conditions, evaluations of integrals over the free surface of 
the halfspace are not necessary. However, the use of halfspace 
Green's functions in the frequency domain to solve halfspace 
problems may lead to fictitious eigenfrequency difficulties 
(Dominguez and Meise, 1991; Rizzo et al, 1985). The evaluation 
of these halfspace Green's functions is computationally 
expensive and the alternative full space fundamental solutions 
are preferred in most applications. However, Mita and 
Luco(1989a and 1989b) use halfspace Green's functions in their 
hybrid FE-BE analysis to compute impedance functions of 
embedded square foundations.

Truncated Mesh

Although the radiation condition is automatically satisfied by 
the full-space fundamental solutions used in the elastodynamic
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boundary integral formulation, to obtain results of acceptable 
accuracy the boundary element analysis of machine foundations 
requires the discretization of the semi-infinite surface of the 
halfspace. The semi-infinite region is usually truncated at 
some "reasonable" distance(Alarcon et al, 1989; Israil and 
Banerjee, 1990; and many others). Because fundamental 
solutions contain exponential terms, they become increasingly 
oscillatory with increasing frequency. As a result, a finer 
discretization is required for analyses of high frequencies. 
On the other hand, unlike static analyses, the usual practice 
of extending the truncated mesh by using coarser elements at 
distant locations may mask the true physical behaviour, since 
these elongated elements are not capable of modelling the wavy 
nature of the field variables in the radial direction. 
Clearly, this method of analysis requires considerable 
computational resources, especially for three-dimensional 
problems.

Recently, the treatment of the semi-infinite halfspace by using 
elastodynamic infinite boundary elements has been proposed by 
Davies and Bu(1993). The infinite element methodology used in 
this approach is discussed in Chapter 5.

2.6 Summary and Conclusions

The derivation of the direct boundary integral formulation for 
steady state elastodynamics was presented in this chapter. It 
is evident that the derivation is entirely analytical and no 
approximations are introduced at this stage.

If series expansions of the fundamental solutions are 
developed, it can be shown that the static fundamental 
solutions are recovered as the frequency co diminishes to a 
negligibly small value. Numerical results reveal that values 
of ojr/C2 — 10'3 can be classed as the borderline between the
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dynamic and static fundamental solutions, where the discrepancy 
between the two solutions is negligible.

The limiting forms of the fundamental solutions have been 
developed for v=0.5. These have applications for the analysis 
of dynamic problems of undrained saturated clays by the
boundary element method. It is recognized that dynamic
problems of this kind can not be solved otherwise by the
boundary element method since the dilatational wave
velocity(Cj) is theoretically infinite when Poisson's ratio 
equals to 0.5. With the limit forms derived here, problems 
involving incompressible material now present no particular 
difficulties.

Because analytical solutions are difficult to obtain, boundary 
integral formulations become of practical interest only when 
numerical techniques are employed for their solution. A brief 
description of the basic numerical procedures used in the 
boundary element method is given. It is noted that use of
quadratic boundary elements with dimensions smaller than 1/4 
Rayleigh wavelength is essential for the boundary element 
method. The accuracy and efficiency of the boundary element 
analysis of machine foundations depend mainly on the 
integration scheme adopted for the evaluation of surface 
integrals and the sophistication of the modelling of the semi­
infinite boundary of the half space. The former will be 
discussed in the next two chapters, while the latter will be 
presented in Chapter 5.
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(a) (b)

(c)

Figure 2.3 Three-Dimensional Body Discretized into
(a) Constant Boundary Elements,

(b) Linear Boundary Elements, and
(c) Quadratic Boundary Elements
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CHAPTER 3 

INTEGRATION SCHEMES (I) 
NON-SINGULAR INTEGRALS

3.1 Introduction

The evaluation of non-singular integrals is the most time 
consuming part of the boundary element analysis. In the 1960's 
and the early 1970's, most non-singular integrals over constant 
elements and linear elements were computed numerically using 
the Simpson's rule, e.g., Rizzo(1967) and Symm(1963). Lachat 
and Watson(1976) were the first to use Gauss integration for 
the three-dimensional boundary element analysis. In that 
landmark paper, they demonstrated that results of sufficient 
accuracy could be systematically obtained by judicious use of 
Gauss-Legendre quadrature and isoparametric representation of 
geometrical and field quantities. This important work 
initiated major improvements in the computational versatility 
and efficiency of the boundary element analysis. Since then, 
advanced numerical integration schemes have been implemented 
by many authors.

The adaptive integration schemes used by Lachat and Watson 
(1976) have been used widely in the application of Gauss- 
Legendre quadrature to the boundary element method. Based on 
the approximate error bounds of Gauss-Legendre quadrature, 
simple formulae were developed to determine the required number
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of Gauss points for each element in order to assure 
approximately uniform precision of integration. They suggested 
that the order of integration should be chosen depending on the 
allowable error, the strength of the singularity, and the ratio 
of the minimum distance between the boundary element and the 
source point to a characteristic dimension of the element. 
Accordingly, Lachat and Watson(1976) increased the number of 
integration points as the minimum distance decreased and 
subdivided the element into sub-elements if the number of the 
required Gauss points was greater than the prescribed maximum 
integration rule. This adaptive scheme is typical of methods 
for improving the efficiency and accuracy of numerical 
integration. Because the use of invariant integration order 
in the boundary element analysis would result in either a 
significant amount of unnecessary computational effort or a 
noticeable loss of accuracy, Lachat and Watson's method has 
been subsequently adopted by Luchi and Rizzuti(1987) in 
fracture mechanics, Manolis et al(1986) in elastodynamics, and 
Mustoe(1984) in non-linear analysis, among many others.

The effectiveness of the adaptive integration scheme is clearly 
dependent on the use of efficient and accurate error estimates 
for the quadrature formulae. However, theoretical methods for 
estimating errors(See Davis and Rabinowitz, 1984, and Engels, 
1980, for more details) are often too cumbersome for use in 
practical applications. Consequently, a critical part of the 
development of effective integration scheme is to establish an 
accurate estimate of the integration error. A series of 
numerical tests has been performed in this chapter to gain more 
insight into the error bounds of Gauss-Legendre quadrature. 
Based on these test results, reliable and efficient criteria 
are proposed for adaptive integration routines in the boundary 
element method.
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3.2 Numerical Integration

3.2.1 Introduction

In recent years, there has been enormous productivity in the 
field of numerical integration(Davis and Rabinowitz, 1984; 
Engels, 198 0; and Mori and Piessens, 1987). Methods which 
offer advantage in accuracy but were not popular in the past, 
because of irrational (maths) coefficients and/or lengthy, 
tedious calculations, present no special difficulty to 
computers and have come back into favour. Nowadays, most 
boundary element programs employ Gauss-Legendre quadrature, 
which gives excellent precision in comparison with other types 
of quadrature formulae used in the so-called first generation 
of BEM programs, for example, Jaswon and Symm(1977); Jaswon and 
Ponter(1963); Rizzo(1967); and Symm(1963).

3.2.2 Gauss-Legendre Formula

In the derivation of most quadrature formulae(Krylov, 1962; 
Davis and Rabinowitz, 1984), an integral is approximated by a 
linear combination of the values of the integrand at a set of 
discrete points:

n _
fw(x) f(x) dx*Y. Ajfiaj) (3.1)

i= l

- a <.b <,+<*>

in which, w(x) is called a weight function, a1# a2, . . . an are n 
abscissae usually chosen so as to lie in the interval of 
integration, and the numbers Au A2, .... A^ are n "weights" 
accompanying these abscissae. Equidistant abscissae are 
assumed in the Newton-Cotes family of integration formulae; for
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example, the trapezoidal rule and Simpson's rule.

Gauss(Goldstine, 1977) showed that if the weight function w(x) 
= 1 and the abscissae are taken as the n roots of the Legendre 
polynomial Pn on the interval [-1,+1] then the integration rule

is exact for polynomials of order less than 2n. It is worthy 
of note that the Newton-Cotes integration rules are exact for 
all polynomials of order less than n. Krylov (1962) has 
tabulated values of the weights Aj and the abscissae aj to 20 
decimal places for n = 2 to 48.

It should be noted that the weights and abscissae of the Gauss- 
Legendre quadrature are generally irrational numbers. In this 
study, in order to avoid rounding errors and typographical 
errors it was decided to develop a subroutine (GAUSS) to 
generate the abscissae and weights of Gauss-Legendre formula 
to any order. This subroutine is a refinement of the program 
GRULE given by Davis and Rabinowitz(1984).

3.2.3 Integration Over General Regions

Based on the "product rule", Gauss-Legendre formula can be 
extended to deal with multiple integrals. The integration 
formula in two dimensions can be obtained by repeated use of 
equation (3.2), namely,

+i n
(3.2)

j j f(x1,x2) dx1dx2“ £ £ W <ai,aj.)
i= l  j= l

(3.3)
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Different integration orders, nrl and n^, can be used in the 
and x2 directions, respectively. This is desirable if, in a 
certain direction, the integrand varies strongly or the 
integration interval is large.

The product technique is the most obvious procedure of 
evaluating multiple integrals if not the most efficient, 
especially for irregularly-shaped integration domains. In 
general, results of sufficient accuracy for two-dimensional 
integrals can be obtained with reasonable efficiency by this 
means. Consequently, it has been widely used in practical 
applications(Zienkiewicz and Taylor; 1989, Banerjee and 
Butterfield, 1981; and Becker,1992).

3.3 Numerical Experiments On Error Bounds

3.3.1 Introduction

An appreciation of how errors are engendered during numerical 
integration is an essential preliminary to confidence in the 
computed values. There are two sorts of error in Gauss- 
Legendre quadrature: round-off error and truncation error. In 
theory, Gauss-Legendre quadrature enables us to calculate an 
integral as accurately as we wish. However, practical 
computations can deal with only a finite number of terms of the 
infinite series. The truncation error is the residue of the 
truncated part of the infinite sum in equation (3.2) . The 
round-off error arises from the fact that arithmetic 
calculations are limited in precision by the bit length of the 
particular computer used to perform the calculations. Davis 
and Rabinowitz(1984) have shown that the effect of round-off 
error is usually negligible, except for cases of numerical 
integration involving integration rules of very high order or, 
weights of mixed sign. For this reason, attention in this 
section is primarily focused on the truncation error of Gauss-
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Legendre quadrature.

3.3.2 Error Bounds Of Gauss Integration

The truncation errors incurred in Gauss-Legendre quadrature are 
expressed theoretically in terms of the (2n)th derivative of 
the integrand evaluated at some points £ in the integration 
interval [-1,+1], namely,

+1
En(f) = | jw(x) f(x) dx-J2 AifiXi)

-l 1=1

92n+l / n  I \ 4£ -- 2-- ( J b j--  £21,(S) (3>4)
1 (2n+l) [ (2n) !]3 1

Error estimates for product rules have been given by Stroud and 
Secrest(1966). These have been obtained by expressing the 
error as the sum of the errors predicted by equation (3 .4) . The 
error bound for two dimensional Gauss-Legendre quadrature can 
be written as

£D(f)s2-[|erlvf2n«(5> | +1el2-f2nz!(J) |] (3.5)

where

i ~ 2n (3.6)2 ri*(2nxi) !

The apparent disadvantage of these error estimates is that it 
is not always possible to differentiate the integrand to obtain 
an estimate for the error.
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Several upper error bounds, which do not involve partial 
derivatives of the integrands, have been presented by 
McNamee(1964), Lether(1981), and Smith(1979). Error bound 
estimates for the product Gauss rule have been given by 
Stenger(1966), Barnhill(1968a and 1968b), and Lether(1970a, 
1970b, and 1971). However, these error estimates usually 
exaggerate the true error by several orders of magnitude(Davis 
and Rabinowitz, 1984) . In addition, most methods tend to have 
an obvious mathematical bias, and even the simplest method is 
tedious. Consequently, it is most desirable that the errors 
of numerical integration in boundary element analyses can be 
effectively estimated without recourse to complicated 
mathematical operations.

Based on certain simplifying assumptions, Lachat and Watson 
(1976) give approximate upper bounds for numerical integration 
of integrals over a segment and a rectangular region. Similar 
formulae have been presented by Watson (1979) , Mustoe (1984) , and 
Jun et al(1985). However, these estimates have been shown to 
be inaccurate(Hsiao and Kleinman, 1992) . The present study 
uses numerical tests to investigate the error bounds of surface 
integrals.

3.3.3 Empirical Method 

Test Procedure

Integrals in the boundary element method can be characterized 
by the strength of singularity, the size of the element being 
integrated, and the proximity of the source point. The last 
factor is normally defined by the minimum distance, Dmin, 
between the source point and the element and, in particular, 
as a ratio of some characteristic element dimension. Without 
loss of generality, in the present study the following 
analogous integrals:
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are integrated over a 2x2 square. The superscript n takes the 
values 1 or 2, corresponding to the singularity of the 
displacement fundamental solutions and traction fundamental 
solutions, respectively.

The centre of the square is located at the origin of the X-Y 
coordinate system. Because of the symmetry conditions, we need 
consider only the first quadrant. The source point is assumed 
to lie within a region twice the size of the square, and the 
region is discretized into a 200x200 square grid. At each node 
of the grid the integrals have been computed by both Gauss- 
Legendre quadrature and analytical integration(where possible) 
using polar coordinates. For the numerical integration, a 
sequence of Gauss-Legendre formula with order n(n=2~ll) is 
used. Utilization of high integration orders is not 
recommended, because the accuracy of the results may 
deteriorate due to round-off; numerical evidence has been given 
by Davis and Rabinowitz(1984). The analytical solutions are 
then used to compute the (absolute) relative error of the 
numerical results predicted by Gauss-Legendre quadrature. It 
should be noted that integrals of the integrand(l/r2) cannot be 
evaluated easily by analytical means over two-dimensional 
regions, in general. In these cases, the computation of 
relative error is based on the value obtained by subdividing 
the square into four equal parts and using the 11x11 
integration rule for each sub-element.

Test Results

Once the relative errors have been evaluated for the whole 
region of interest, the contours of relative error for various 
Gauss-Legendre rules can be obtained(using the GHOST-80
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graphical output system), as depicted in Figures 3.1 and 3.2. 
These contours reflect quite well the essential features of the 
error bounds of Gauss-Legendre integration.

It is significant to note that the error contours are not 
smooth. However, for the same integration order, contours of 
different accuracy have almost the same shape. Each contour 
has, for nxn integration rule, (2n-2) lobes in the quadrant. 
The reason for this phenomenon will be discussed at greater 
length later.

These figures clearly show that, for a constant minimum 
distance from the square, the accuracy of Gauss-Legendre 
integration depends on the position of source point. In 
general, the greatest error occurs when the source point is 
close to the middles of the sides of the square; while the 
least error occurs when the source point is close to the 
corners. From these data, the error for any arbitrary source 
point can be predicted. It should be noted that Jun et al 
(1985) investigated the error bounds for Gauss-Legendre 
quadrature by considering only source points being on the 
extension of the diagonal of the square. Clearly, their 
results would underestimate the error of numerical integration 
in most practical cases.

Comparisons of the contours obtained by the same integration 
order for the integral l/r and integral 1/r2 indicate that the 
strength of the singularity can significantly affect the 
accuracy of Gauss-Legendre quadrature. Stronger singularities 
usually require larger "minimum distances" from the integration 
region to achieve equivalent accuracy. The conclusion is drawn 
that, for a specified precision, the minimum order of 
integration rule depends on minimum distance, the strength of 
singularity, and the relative position of the source point to 
the element being integrated. These observations provide 
significant insights into the problem of how integrals in the
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boundary element analysis may be computed expeditiously.

Discussion

As noted above the error contours are by no means smooth; the

over a segment(x=-l~+l, y=0) . In the present study this
integral is computed by both Gauss-Legendre quadrature and 
analytical integration.

For the purpose of clarity, typical contours of the integral 
value are depicted in Figure 3.3, in the first quadrant. It 
is of interest to note that the analytical contours are simple 
smooth curves while the approximate contours are wavy. By 
inspection, it can be seen that the number of intersections in 
each quadrant corresponds to the order of integration. 
Clearly, these intersections represent the points where Gauss- 
Legendre quadrature yields exact results. Migeot(1985) 
connected these intersection points, as exemplified by the 
normal curves to the contours in Figure 3.3, to trace the line 
of null errors. Evidently, as shown in Figure 3.3, the higher 
integration rules deviate less from the exact solution 
(contour).

3.3.4 Criteria For Selecting The Order Of Gauss Integration

Based on the extensive numerical tests described above, 
criteria for selecting the order of Gauss-Legendre integration

reasons for this are discussed below. Without loss of 
generality, we consider the integral:

+i
(3.8)

-l
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for non-singular integrals in the boundary element method have 
been developed in this thesis. As depicted in Figure 3.4, for 
each type (order) of singularity and allowable error, we can 
define a "maximum distance", D, between the element being 
integrated and the error contour measured.

Further numerical studies reveal that the characteristic ratio 
D/Le for elements of different size are identical, where Le is 
the dimension of the element. Values of D/Le for specified 
tolerance levels have been tabulated in Tables 3.1 and 3.2. 
Comparisons of the required integration order for specific 
accuracies with the corresponding predictions by other authors 
are given in Figures 3.5 and 3.6. It is evident that the 
required integration order becomes very sensitive to the 
variation of D as the source point approaches the element 
(especially for D/Le<0.15). Considerable computational
resources are needed to achieve sufficient accuracy for these 
"nearly singular" integrals. However, Lachat and Watson's 
method is not applicable to the evaluation of "nearly singular" 
integrals. Figures 3.5 and 3.6 also emphasize that the error 
estimate used by Lachat and Watson(1976) is grossly 
conservative. For example, for cases of the integrand=l/r, 
D/Le=0.5, and allowable error=0.1%, the required integration 
order is four by the present study and eight by Lachat and 
Watson's method. This observation leads immediately to 
questions of the efficiency of their integration scheme. 
Several numerical examples will be presented in the subsequent 
sub-section to illustrate the deficiency of Lachat and Watson's 
method.

Based on the computed values of D/Le, effective and reliable 
criteria for selecting the order of Gauss-Legendre integration 
are proposed as follows:

5 9
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(I) integrand = l/r

4 L -
Nrag=integer H — f) 5] +1 (39)

ea=lO"3

8 L —
Nreq=integer [ (— 5) 4 ] +1 (310)

ea=10'

(II) integrand = l/r2

2 L —

Nleq=integer l (-^) 6] +1 (3.11)
®a=10'3

4L -
Nleq=integer [ ( )  <■ ] +1 (3.12)

ea=10-“

In practical application, parameter D in these equations should 
be replaced by Dmin, the minimum distance between the source 
point and the integration region.

Example: As depicted in Figure 3.7, the integral

over a 2x2 square is computed, with source point at (3,1) . The 
allowable error is 0.1%. The minimum distance between the
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source point and the integration region is 1. Based on 
Equation(3.9) , the required integration order is three. The 
analytical solution of this integral is 2.07609 9164, while 
numerical integration gives 2.07661 6864. The computed error 
is 0 . 025%.

3.4 Adaptive Integration Strategies

Based on equations(3.9-3.12) , two fundamentally different 
adaptive strategies can be developed for the application of 
Gauss-Legendre quadrature to three-dimensional boundary element 
analyses. The "order adaptive" method involves choosing the 
number of Gauss points needed in each direction over a boundary 
element. On the other hand, the sub-division adaptive method 
involves subdivision of boundary elements into subelements. 
In this study, integrations are performed by combining these 
two strategies as follows:

(1) Calculate how many Gauss points, Nreq, are needed 
to perform the integration with the required 
precision.

(2) If Nreq is less than some specified maximum 
allowable order of Gauss integration, N^, compute 
the integral. Otherwise,

(3) subdivide the region into sufficient 
subelements, and

(4) determine the number of Gauss points required to 
integrate each sub-element and then compute the 
integral over each sub-element.

To illustrate the merits of the proposed integration scheme, 
several test integrals have been evaluated. The maximum and

6 1
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the minimum allowable order of integration are 5 and 2, 
respectively. The allowable relative error is 10'3. A graded 
element sub-division is employed to improve efficiency while 
still retaining accuracy. Subdivision schemes and numerical 
results are shown in Figures 3.8 and 3.9. Clearly, the 
adaptive strategy benefits from the fact that it increases the 
concentration of integration points near to the minimum 
distance location over the element. Results predicted by the 
method of Lachat and Watson (1976) are also given. For the same 
integration accuracy, the present study requires considerably 
less(perhaps a 60% reduction) computational effort than Lachat 
and Watson's method. It is evident that the proposed method 
is more efficient than that of Lachat and Watson(1976).

3.5 Integrals With Oscillatory Integrands

3.5.1 Introduction

The numerical evaluation of integrals with oscillatory 
integrands, for example, in the Fourier form:

b
jf {x) sin(mx) dx (3.13)
a

b
jf (x) cos (mx) dx (3.14)
a

and, in complex form,

b
Jf(x) ei(oxdx (3.15)
a

has wide applications in applied mathematics, physics, and
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engineering. Often, the use of conventional numerical
integration, for example, Gauss-Legendre quadrature, to compute 
oscillatory integrals will result in the calculation of many 
positive and negative values which are nearly equal in absolute 
magnitude. The cancellation of the positive values and the 
negative values can result in slow convergence and numerical 
instability.

Approaches for evaluating rapidly oscillatory integrals(more 
than ten local maxima and minima over the range of integration) 
have been summarized by Davis and Rabinowitz(1984). However, 
these studies are restricted to one-dimensional integrals, and 
extension of these methods to higher dimensional integrals is 
not straightforward. This section develops the "order 
adaptive" scheme for the application of Gauss-Legendre 
quadrature to oscillatory integrals in three-dimensional 
boundary element analyses.

3.5.2 Gauss Integration Over Square Region

In a manner similar to the procedure described in section 3.3, 
an extensive series of numerical tests has been performed to 
investigate the error relating to the numerical integration of 
the following oscillatory integrals

(3.16)
s

and

(3.17)

over a square. In the above equations,
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COk =7t (3.18)
2

is the wave number, where C2 is the shear wave velocity.

For small wave numbers, numerical integration can be used for 
computing these integrals without considering their wavy 
nature. However, for larger wave numbers(i.e ., high frequency) 
cases, the integrands oscillate rapidly, with respect to 
spatial distance from the source point. When the wavelength 
is less than the dimension of the element being integrated, 
numerical integration requires an increasingly large number of 
integration points to achieve the required accuracy. Perhaps 
more importantly, it becomes necessary to specify a large 
number of nodal points in order to capture the spatial 
variation in the field variables. Otherwise, high frequency 
waves are lost and the boundary element acts as a low-pass 
filter. As a consequence, the boundary elements must be 
limited in size in proportion to the lowest wavelength. In the 
present study, the maximum dimension of the largest element 
employed in the discretization scheme is limited to 1/4 
Rayleigh wavelengths. Preliminary numerical studies for a wide 
range of frequencies reveal that this rule also eliminates the 
need to modify the integration rule(Gauss order) for different 
frequencies.

Analytical solutions of integrals(3.16) and (3.17) are
extremely difficult. The evaluation of errors is based on
numerically computed values of the integrals, Ia, obtained by
subdividing the element into four parts and using 11x11 
integration rule for each sub-element. Because the integrals 
are complex numbers, the relative error is determined as
follows:
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e=max[| J*r Jnr|, | Jai Jjli|] (3.19)
ar Iai

in which, 1^ and 1̂  are the real parts and imaginary parts of 
Ia/ respectively; and 1^ and 1̂  are the real parts and imaginary 
parts of the corresponding numerical solution. However, if the 
absolute value of the real(imaginary) part is less than 1% of 
the imaginary (real) part, then the error is assumed to be equal 
to the error of the imaginary(real) part.

Typical plots of the relative error contours from the numerical 
integration for various values of frequency are given in 
Figures 3.10 and 3.11. In a manner similar to the static 
integrals, for a specified precision, the order of integration 
needed depends on the minimum distance, the strength of 
singularity of the non-oscillatory part and the relative 
position of the source point to the element being integrated. 
However, it is significant that allowable errors ea < 10^ are 
difficult to obtain. The integration orders required to attain 
specified accuracies are given in Table 3.3 and 3.4.

Comparisons may be made with the results for (static) non- 
oscillatory integrals(Figures 3.12 and 3.13). It is observed 
that the differences between these two approaches are small. 
This observation confirms that the limitation on element size 
largely eliminates the need to consider the frequency parameter 
in numerical integration.

3.5.3 Adaptive Integration Strategy

Using the same procedures and definitions described in the 
previous section, practical criteria for selecting the order 
of integration, for ea=10'3, can be derived as follows:
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(I) integrand = e^/r

Nr = integer (-^^) °-85+i (3.20)
zeq 2D

(II) integrand = e^/r2

Nr = integer (-^^) °-75+l (3.21)req ^ p

3.6 Conclusions

Numerical integration is a crucial element in the 
implementation of boundary element methods. Because the 
evaluation of non-singular integrals consumes a significant 
amount of the computational time, sophisticated integration 
schemes to achieve results of high accuracy with the minimum 
cost have been developed in this study.

The estimation of quadrature error bounds has received 
considerable attention in the literature because of its 
importance in relation to adaptive integration schemes. 
However, these theoretical results are not readily applicable 
to the Green's functions employed here. By using numerical 
tests, an investigation into Gauss-Legendre quadrature errors 
for non-singular integrals has been carried out. In addition, 
exploitation of dimensionless quantities largely eliminates the 
influence of frequency. Systematic computation of integrals 
in both static and dynamic boundary element analyses can now 
be performed without special difficulty.
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Numerical results reveal that the error bounds depend on the 
order of integration, the strength of singularity, and the 
relative position of the source point to the element being 
integrated. Based on the results of numerical tests, effective 
and simple criteria have been developed to determine how many 
Gauss points are required to yield specified integration 
accuracy. By combining these criteria with strategies for 
order and subdivision adaptations, effective integration 
schemes have been achieved. Test integrals have been presented 
to demonstrate the efficiency and accuracy of the proposed 
integration scheme. These criteria and methods could be 
implemented within other boundary element method codes without 
much difficulty.
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TABLE 3.1 VALUES OF D/Le FOR THE SPECIFIED ACCURACY

f i t s
S

Gauss
order

e = l O'2 e=10'3 e=10’4 6=1 O'5

2x2 0 .44 1.16 2 .45 4 . 75

3x3 0 .16 0.39 0 . 71 1.16

4x4 0 .12 0 .27 0 .46 0.70

5x5 0.09 0.20 0 .33 0 .47

6x6 0 . 07 0 .16 0 .26 0.37

7x7 0.06 0.13 0.21 0.30

8x8 0.05 0 .11 0.18 0 .26

9x9 0 . 04 0 .10 0 .16 0 .22

10x10 0 . 03 0.09 0 .14 0 .20

11x11 0.03 0.08 0.12 0 .18
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TABLE 3.2 VALUES OF D/Le FOR THE SPECIFIED ACCURACY

Gauss
order

e = l O'2 e=10"3 e = 10'4 6=1 O'5

2x2 0 . 84 1.89 3 . 76 7.08

3x3 0 .33 0 . 65 1.10 1.86

4x4 0 .23 0.41 0 . 65 0.98

5x5 0 .17 0.29 0 .43 0 . 61

6x6 0 .14 0.24 0.35 0 .48

7x7 0.12 0.20 0.29 0.38

8x8 0 .10 0 .17 0.25 0.33

9x9 0.09 0 .15 0.22 0.29

10x10 0 . 08 0 .13 0 .19 0 .25

11x11 0 . 08 0 .12 0 .17 0 .23
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TABLE 3.3 VALUES OF D/Le FOR THE SPECIFIED ACCURACY

s

Gauss
order

e = 10'3 e = 10^

2x2 - -

3x3 - -

4x4 0.41 0 . 67

5x5 0 .26 0.57

6x6 0.20 0.33

7x7 0.15 0.26

8x8 0 .13 0.21

9x9 0 .12 0.19

10x10 0 .11 0 .16

11x11 0.10 0 .15
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TABLE 3.4 VALUES OF D/Le FOR THE SPECIFIED ACCURACY

Gauss
order

e=10‘3 e = 10'4

2x2 - -

3x3 - -

4x4 0.69 0 . 82

5x5 0.36 0.66

6x6 0.29 0 .43

7x7 0.23 0.33

8x8 0 .20 0.29

9x9 0 .18 0.26

10x10 0.15 0 .21

11x11 0.15 0.20
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Figure 3.la Error Contour Of Numerical Integration 
Integrand = l/r, Integration Order = 2
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Figure 3.lb Error Contour Of Numerical Integration 
Integrand = l/r. Integration Order = 3 

Contour 1 : €=10'2 
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Contour 3 : e=10^
Contour 4 : e=10'5
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Figure 3.lc Error Contour Of Numerical Integration 
Integrand = l/r, Integration Order * 4
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Figure 3.Id Error Contour Of Numerical Integration 
Integrand = l/r, Integration Order = 5 

Contour 1 : e=10‘2 
Contour 2 : e=10'3 
Contour 3 : €=10̂ *
Contour 4 : €=10'5
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Figure 3.le Error Contour Of Numerical Integration 
Integrand = l/r, Integration Order = 6
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Figure 3.If Error Contour Of Numerical Integration 
Integrand = l/r, Integration Order = 7 

Contour 1 : e=10'2 
Contour 2 : €=10'3 
Contour 3 : e=10^
Contour 4 : e=10‘5
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Figure 3.lg Error Contour Of Numerical Integration 
Integrand = l/r, Integration Order = 8
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Figure 3.lh Error Contour Of Numerical Integration 
Integrand = l/r, Integration Order = 9 

Contour 1 : e=10'2 
Contour 2 : e=10‘3 
Contour 3 : eslO"4 
Contour 4 : e = 10'5

75



CHAPTER 3 NUMERICAL INTEGRATION (I) : NON-SINGULAR INTEGRALS

0 .0 as 1.0 1.5

Figure 3.1i Error Contour Of Numerical Integration 
Integrand = l/r. Integration Order = 10
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Figure 3.1j Error Contour Of Numerical Integration 
Integrand = l/r, Integration Order = 11 
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Contour 3 : e=10^
Contour 4 : e=10‘5
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Figure 3.2a Error Contour Of Numerical Integration 
Integrand = l/r2# Integration Order = 2
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Figure 3.2b Error Contour Of Numerical Integration 
Integrand = l/r2, Integration Order = 3 
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Figure 3.2c Error Contour Of Numerical Integration 
Integrand = l/r2. Integration Order = 4

0 2 I

Figure 3.2d Error Contour Of Numerical Integration 
Integrand = l/r2, Integration Order = 5 

Contour 1 : €=10'2 
Contour 2 : €=10'3 
Contour 3 : e=10^
Contour 4 : € = 10‘5
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Figure 3.2e Error Contour Of Numerical Integration 
Integrand = l/r2. Integration Order = 6
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Figure 3.2f Error Contour Of Numerical Integration 
Integrand = l/r2, Integration Order = 7 

Contour 1 : e=10'2 
Contour 2 : e=10'3 
Contour 3 : e=10^
Contour 4 : e = 10‘5
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Figure 3.2g Error Contour Of Numerical Integration 
Integrand = l/r2, Integration Order = 8

o
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Figure 3.2h Error Contour Of Numerical Integration 
Integrand = l/r2, Integration Order = 9 

Contour 1 : e=10'2 
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Figure 3.2i Error Contour Of Numerical Integration 
Integrand = l/r2. Integration Order = 10
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Figure 3.2j Error Contour Of Numerical Integration 
Integrand = l/r2, Integration Order = 11 

Contour 1 : €=10‘2 
Contour 2 : e=10'3 
Contour 3 : cslO-4 
Contour 4 : €=10'5
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The First Quadrant, value of integral(3.8)=2.5.
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Y
Equi-distant Envelope of Error Contour 6=1%

Region of integration
l-h

Figure 3.4: Equi-distant Envelope Of Error Contour 
Note: D is the minimum distance between source point and 
integration region for which the maximum error is always 

less than the error contour value.
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Figure 3.5: Choice of Required Integration Order 
Integrand=l/r, Allowable error=0.1%.
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Figure 3.6: Choice of Required Integration Order 
Integrand=l/r2, Allowable error=0.1%.
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Figure 3.7: Numerical Example
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2.0

3X3

0.0 -U

Source point ® 2.01.0

x

Present study: Computed Value = 1.98307 1516, e = 0.36xl0'3

3X3 2X2

5X5 3X3

0.0 1.0 2.0Source point

Lachat's Method: Computed Value = 1.98235 6533, 47 Gauss
points, e = 0.2xl0'5

Figure 3.8a Adaptive Integration Scheme
Integrand = 1/r, Source Point x at (-0.5,-0.5) 
Analytical Solution = 1.98235 2629; ea = 10'3
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2.0

4X4

0.0
IQ 2.0 Sourc© point

Present study: Computed Value = 2.38410 9896, e = 0.2xl0'3

5X3 3X5

4X3 5X5

0.0 1.0 2.0 Source point

Lachat's Method: Computed Value = 2.38456 8890, 61 Gauss
points, 6 = 0.7x1c6

Figure 3.8b Adaptive Integration Scheme
Integrand = 1/r, Source Point x at (2.5,0.0) 
Analytical Solution = 2.38456 7146; ea = 10‘3
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0.0
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* Source point

Present study: Computed Value = 2.19299 3365, 36 Gauss
points, e=0.13xl0'3

5X5 5X5 4X5

5X5
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5X5 5X4

0.0 l.o 2.0

x Source point

Lachat1s Method: Computed Value = 2.19327 2092, 120 Gauss
points, esO^xlO"6

Figure 3.9a Adaptive Integration Scheme
Integrand = 1/r2, Source Point x at (0.5,-0.5) 
Analytical Solution = 2.19327 2957; €a = 10‘3
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Present study: Computed Value = 1.67259 5468, 28 Gauss
points, e = 0.11xl0'3
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Lachat's Method: Computed Value = 1.67278 1491, 85 Gauss
points, gsO.SxlO"6

Figure 3.9b Adaptive Integration Scheme
Integrand = 1/r2, Source Point x at (2.5,0.0) 
Analytical Solution = 1.67278 0609; ea = 10'3
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1.0

Figure 3.10a Error Contour Of Numerical Integration
Integrand = e^/r, k=l, Integration Order =7.

2
1

Figure 3.10b Error Contour Of Numerical Integration
Integrand = e^/r, k=l, Integration Order =8.

Contour 1: e=10*3 
Contour 2 : €=10^
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Figure 3.11a Error Contour Of Numerical Integration
Integrand = e^/r2, k=l, Integration Order =7.
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Figure 3.lib Error Contour Of Numerical Integration
Integrand = e^/r2, k=l, Integration Order =8.

Contour Is e=10'3 
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Figure 3.12 Comparisons of the results for static integrals 
and dynamic integrals, integrand=l/r# ea=0.1%.
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Figure 3.13 Comparisons of the results for static integrals 
and dynamic integrals, integrand=l/r2, ea=0.1%.
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CHAPTER 4

INTEGRATION SCHEMES ( I I ) 
SINGULAR INTEGRALS

4.1 Introduction

Accurate evaluation of singular integrals is an essential, but 
difficult problem which must be overcome in any implementation 
of the boundary element method. Although these singularities 
are difficult to deal with, it is necessary to evaluate them 
accurately since the contributions from these integrals are 
generally of greatest numerical size in the coefficient 
matrices. A general approach for the interpretation and 
integration of singular integrals in the boundary element 
method has been presented by Rosen and Cormark(1993).

In the boundary element analysis, the singularity arises when 
the source point is on the element being integrated. As will 
be elaborated later, singular integrals can be classified as 
weakly singular (integrable) integrals and strongly singular 
integrals. For example, if the source point is at node 1 of 
an eight noded element(Figure 4.1), then the following singular 
integrals

( 4 . 1 )

s

and

9 5
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fr^N'/dS (4.2)
s

are weakly singular, while the integrals

f TijN*'ds (4.3)

are strongly singular; in which Na are the shape functions, 
o?=l~8; the prime and asterisk denote non-singular (a1 =2-7) and 
singular (of*=l) quantities, respectively.

The objective of this chapter is to describe the effective 
numerical methods used in the present study for evaluating 
singular integrals in the boundary element analysis. Weakly 
singular integrals are computed by means of a sub-division and 
transformation method, which is based on the analytical 
technique used for the computation of singular integrals over 
a triangular region in polar coordinates. The jump term Cy and 
the strongly singular integrals of elastostatic problems have 
been calculated in an indirect manner using the procedure based 
on rigid body motion(e.g., Lachat and Watson, 1976) and, in 
this thesis, this method is extended to dynamic problems. An 
efficient method for dealing with halfspace problems by semi- 
analytical means has also been developed in the present study. 
The numerical results have been verified, whenever possible, 
by analytical methods.

4.2 Weakly Singular Integrals

4.2.1 Introduction

Analytical methods have been used to evaluate weakly singular 
integrals over constant elements(e.g ., Jaswon and Ponter, 1963; 
Cruse, 1969; Jaswon and Symm, 1977; Sofianos, 1987; and Kim and

9 6
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Papageorgiou, 1993) and linear elements(Cruse, 1974). However, 
extension of analytical integration to quadratic elements, 
especially for three-dimensional analyses, is difficult, if not 
impossible. The use of numerical integration is therefore 
essential.

Theoretical studies of numerical integration of singular 
integrals have been summarized by Davis and Rabinowitz(1984) 
and Mori and Piessens (1987) , but only few of these lead to 
worthwhile practical applications. During the past two 
decades, enormous effort has been made by researchers to 
develop effective integration techniques suitable for the 
boundary element method. Three methods for the evaluation of 
integrable singular integrals have been intensively studied in 
the literature: the subtraction method(Jeng and Wexler, 1977; 
Berger and Bernard, 1983; and Aliabadi et al, 1985), the 
weighted Gauss quadrature method (Aliabadi and Hall, 1987a) , and 
the sub-division and transformation method(Lachat and Watson, 
1976) . For detailed discussion of these methods, reference is 
made to Aliabadi and Rooke(1991).

The present study adopts the sub-division and transformation 
technique because, as has been shown by Lean and Wexler(1985) , 
Mustoe(1984), and Watson(1979) , it is capable of producing 
accurate numerical solutions for weakly singular integrals. 
Furthermore, the sub-division and transformation schemes are 
equally applicable to weakly singular integrals with 
oscillatory integrands. Based on the results of extensive 
numerical studies carried out during the course of this study, 
optimal integration rules for each sub-element have been 
obtained in order to provide the best combination of accuracy 
and efficiency.
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4.2.2 Sub-element Mapping

The sub-division and transformation method is based on the 
well-known analytical technique used for the computation of 
singular integrals over the triangular region in polar 
coordinates. After dividing singular elements into triangular 
sub-elements, Lachat and Watson(1976) and Li and Han(1985) 
transform the triangular sub-elements into unit squares. The 
Jacobian of this transformation is of order r and consequently 
reduces the strength of the singularity. Gauss-Legendre 
quadrature can then be applied without special difficulty. 
Alternatively, Rizzo and Shippy(1977) , Banerjee et al(1992), 
Manolis et al(1986), and Hayami and Brebbia(1988) integrate 
numerically each triangular sub-element in polar coordinates. 
This is essentially the same process.

Following the work of Lachat and Watson(1976), the general 
process of sub-division and transformation is schematically 
given as follows:

(A) The eight-node element(Figure 4.2a) in the 
global Cartesian system (x,y) is mapped onto a 
(-1,+1) square in the intrinsic coordinate system 
(s,t), as in Figure 4.2b. The Jacobian relating the 
transformation from the (x,y) system to the (s,t) 
system is Jn.

(B) The singular element is divided into two or four 
triangular sub-elements. The common apex of all 
sub-elements is the singular node ot*, as in Figure 
4 .2c.

(C) Each sub-element is mapped onto a flat right 
triangle with sides of unit length, Figure 4.2d.
The singularity must be centred on node 3 in order 
to obtain a consistent mapping scheme. The Jacobian

9 8
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matrix relating the transformation from the (s,t) 
system to the (*},%) system is Jm .

(D) A further mapping is then performed by 
transforming the singularity(node 3) into one side 
of a square and the three sides of the triangle into 
the remaining three sides of the square, as in 
Figure 4.2e. The Jacobian Ji relating the
transformation from the (^j) system to the (p,q) 
system is

J^il-p) (4.4)

and

l=p (4.5)

rj =g{l-p) (4.6)

It should be noted that the integration points are clustered 
around the singularity as a result of the sub-division and 
transformation procedure(Figure 4.3). Consequently, the 
accuracy of numerical integration is improved. It will be 
shown in the following that the Jacobian Ji and the shape

itfunctions N* (except for <*■=<< ) provide factors which cancel
_ -|singularities of order r

4.2.3 Weakly Singular Functions

Aliabadi et al(1987) show that exact cancelling of the weak 
singularity occurs for triangular elements with linear, 
quadratic, or cubic shape function representations. The 
analytical removal of weak singularities has also been shown 
by Aliabadi and Hall(1987b) and Guiggiani(1992) using the 
subtraction method. The approach of Aliabadi et al(1987) is 
reviewed here for completeness.
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To show the Jacobian J]_=(l-p)can cancel the 1/r singularity in 
the (p,q) system, a rectangular element is considered(Figure 
4.1) . In this case, the Jacobian Jn and Jm are constants and 
the Cartesian coordinates of an arbitrary point on this element 
are

x=0.5 [ (l-s)x1+(l+s)x5] (4.7)

y=0.5 [ (l-t)y1+(l + t)y5] (4.8)

where xj_ and y± are the coordinates of node i in the global 
Cartesian system.

Assuming that the source point is at node 1, it is easy to 
demonstrate, after some manipulations, that s and t can be 
expressed as

s=2r\-l (4.9)

t=l-2$ (4.10)

in the (*},$) system, and

s=2q-2pq-l (4.11)

t=l-2p (4.12)

in the (p,q) system.

Introducing equation (4.11) and (4.12) into equation (4.7) and 
(4.8) yields

x= (1-q+pq) x± + (q-pq) x5 (4.13)

y=pyi+d-p)y5 (4.14)
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Consequently, the distance r between an arbitrary point and the 
source point(node 1) in the (p,q) system is

r=]/ (x-x±) 2 + (y-y±)2 
= (l-p)sjq2 ( x 5 - x 1 ) 2 +  (y5-y±)2

It should be noted that the term (1-p) represents the 
singularity of function l/r, because the second square root in 
the above equation is non-zero. Written in this way, the exact 
cancelling of the l/r singularity in the (p-q) coordinate 
system by the (1-p) term arising from the Jacobian of 
transformation, Equation (4.4), is apparent.

If s and t are also introduced into the shape functions, the 
resulting equations are of the form:

N1=p(2pq-1) (1-2q+pq)

N2=2 (1-p) (q-q2+q2p)

N2= (1-p) (2p+2q-2pq-2) pq

N ^ &pqd-p)2 (4.16)

N5=q(l-p) (2q-2pq-2p-l)

N6=Ap(l~p) 2 

N1=(l-p) (1+pq-q) (l+2pq-2p-2q)

NQ=Ap(l-p) (1+pq-q)

It is evident in this case that the shape functions provide an
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additional factor (1-p) to cancel the l/r singularity, except 
for the singular quantity Na*=N1.

As has been shown in Chapter 2, the asymptotic behaviour of the 
singularities of the fundamental solutions are

Gy-O(i)

Based on the above discussions it is apparent that, if the 
source point is at node a* of the singular element, the 
following integrals

falNadS (4.1, repeated)

and

f TijN^dS (4.2, repeated)

are weakly singular(integrable), while

j T1:jNa.dS (4.3, repeated)

are strongly singular. This classification of singular 
integrals can be further clarified by the fundamental property 
of the shape functions: the value of Na* is unity at node ol* and 
is zero at all other nodes while the values of Na. are zero at 
node a*.

4.2.4 Numerical Study

To verify the accuracy of the sub-division and transformation

102



CHAPTER 4 INTEGRATION SCHEMES (II) : SINGULAR INTEGRALS

method, a comprehensive numerical study has been carried out. 
Without loss of generality, the following analogous integrals

r N (4.17)
s

and

rK' ,f - 7 ^  (4.18)
i r

are considered in the present study. The integration regions 
are assumed to be squares of dimension two units. The 
behaviour of these analogous integrals are illustrated in 
Figures 4.4 and 4.5, and these display various degrees of 
smoothness. As elaborated in the previous sub-section, the 
singularities of most weakly singular integrands have been 
eliminated by the shape functions. On the other hand, the 
behaviour of integrands Na*/r and Na*/r2, e.g., figure 4.4a,
shows the unbounded function value at the singularity. It is 
significant to note that the degree of smoothness of these 
integrands has considerable influence on the accuracy of the 
integration method. Consequently, a complete study of the 
various integrands is required to reach a useful conclusion.

Singular integrals(Equations 4.17 and 4.18) have been evaluated 
by analytical techniques and by the sub-division and 
transformation method. The former are performed by sub­
dividing the region into triangles and integrating each 
triangle in the polar coordinate system; see Appendix 4.1 for 
more details. On the other hand, each sub-element is computed 
numerically by the sub-division and transformation method using 
a sequence of Gauss-Legendre formula of order n in each 
direction, where n=2~8.

Analytical solutions and numerical results for a wide range of
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singular integrals are summarized in Tables 4.1 and 4.2. These 
analytical solutions can be used for checking quadrature 
programs and subroutines. The numerical results illustrate the 
very fast rate of convergence of the sub-division and 
transformation method. It is observed that the quality of the 
numerical integration depends on the type (smoothness) of 
integrands. Based on the computed relative errors, however, 
the use of 5x5 integration rule for each sub-element provides 
sufficient precision for engineering purpose (the results agree 
to five digits and relative errorslO'3) .

4.2.5 Effects of singular vertex angle

In the boundary element analysis, the magnitude of the vertex 
angles of triangular sub-elements depend on the discretization 
scheme. It is useful, both theoretically and practically, to 
study the effect of singular vertex angle on the accuracy of 
the subdivision and transformation method. In this thesis, 
the singular integral

over a triangular region is considered. As shown in Figure 
4.6, the range of the singular vertex angle as is 10°~80°.

Analytical solutions and numerical solutions are obtained, 
respectively, by integrating this integral in polar coordinates 
and by using a sequence of numerical integrations of order n 
for each direction, where n=2~20. The analytical solutions and 
computed numerical results(which agree to five digits) are 
given in Table 4.3. It is observed that sub-elements with 
larger vertex angles as require higher integration orders to 
maintain acceptable accuracy. However, the influence of the 
singular vertex angle on the numerical results obtained by the

1 0 4
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sub-division and transformation method is moderate, in 
comparison with those obtained by weighted Gauss quadrature 
method(Aliabadi and Hall, 1987a) or the Taylor series

The maximum possible vertex angles ots of sub-elements of 
rectangular elements are depicted in Figure 4.7. Singular 
vertex angles of up to 76° are found in rectangular elements of 
aspect ratio equal to four. As a consequence, for analyses 
using elements of aspect ratio not greater than two, the use 
of 5x5 integration rule for each sub-element is sufficient for 
practical purposes. Otherwise, further sub-division of 
triangular sub-elements into sectors are required.

4.2.6 Integrals With Oscillatory Integrands

Because of the wavy nature of the oscillatory integrands, the 
evaluation of weakly singular integrals in dynamic problems is 
much more complicated. However, by imposing appropriate 
constraints on element size, the sub-division and 
transformation method is equally applicable to oscillatory 
singular integrals. In the present study, the following 
analogous singular integrals

expansions(Aliabadi et al, 1985).

(4.19)
s

and

(4.20)

are considered. The characteristics of these integrals depend 
on the wave number k , defined as
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K=-pr (3.18; repeated)
2

where C2 is the velocity of the shear wave. As mentioned in 
Chapter 2, in the present study the maximum dimension of the 
largest element employed in the discretization scheme is 
limited to 1/4 Rayleigh wavelengths.

In order to obtain benchmark solutions, the integrals (equations 
4.19 and 4.20) over a triangular region have been evaluated 
analytically in the radial direction (Appendix 4.2) and high 
order numerical integration(n=ll) has been used in the 
circumferential direction. On the other hand, these integrals 
are computed numerically by the sub-division and transformation 
method using a sequence of integration order n for each 
direction, where n=2~7. A wide range of integrands has been 
studied in order to obtain sufficient information on this 
problem. Preliminary numerical studies for a wide range of 
frequencies revealed that the constraint on element size 
eliminates the need to modify the integration order for 
different frequencies. Numerical results and relative errors 
in relation to these semi-analytical benchmark solutions are 
given in Table 4.4 and 4.5.

These results illustrate the rapid rate of convergence of the 
sub-division and transformation method. It should be noted 
that, beyond the integration order=6x6, the accuracy of the 
numerical results for some integrals deteriorates, due to 
round-off. Clearly, the performance of the sub-division and 
transformation method depends on the type of integrand. The 
use of 5x5 integration rules for each sub-element is 
recommended for practical purpose.
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4.3 STRONGLY SINGULAR INTEGRALS

4.3.1 Introduction

The importance of accurate evaluation of strongly singular 
integrals has been recognized since the very beginning of the 
development of boundary element methods(Rizzo, 1967). These 
integrals are Cauchy integrals and their principal values exist 
only if the adjacent elements are taken together. Analytical 
integration can be used for constant boundary elements, while 
special numerical techniques are required for higher order 
elements. Methods of dealing with Cauchy principal value 
integrals in boundary element methods have been summarized by 
Guiggiani(1991).

Explicit evaluation of the free terms and the Cauchy principal 
values of the integrals is tedious (Manolis et al, 1986; 
Guiggiani and Casalini, 1987; and Guiggiani, 1992) . In most 
elastostatic boundary element analyses, the strongly singular 
integrals have been determined by considering rigid body 
translation of the problem region, eg, Brebbia(1980) . In this 
way, the jump terms Cy and the sum of all the strongly singular 
integrals, which constitute the diagonal block of the [T] 
matrix, can be computed indirectly. However, this indirect 
scheme is not immediately applicable to dynamic boundary 
element analyses(Rizzo et al, 1985; Manolis, et al, 1986; and 
Guiggiani, 1992). Accordingly, this section describes a 
rigorous method which exploits the constraint equation of rigid 
body translation(for static problems) to evaluate the 
singularities of strongly singular integrals arising in dynamic 
analyses.

4.3.2 Evaluation Of The Diagonal Block For Static Problems

It has been shown(Cruse, 1969) that the traction-free problem:
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c1:f(y) u± (y ) =-JTfj(x,y) ui(x)dS (4 .21)
s

admits non-trivial rigid body displacement solutions. If unit 
rigid body translations of the body, Uj = 1, are imposed, then:

C±j = ~f Tfj (x,y)dS (4.22)
s

The discretized form of Equation(4.22) can be written as:

cij=- £  f T!jd6'-E / ^ J ds (4.23)
M* M*

in which, M refers to elements and the prime and the asterisk 
superscripts refer to non-singular and singular quantities, 
respectively. The integrals over a singular element can of 
course be classified as weakly singular integrals and a 
strongly singular integral. Consequently, after the
introduction of the shape functions, equation(4.23) becomes:

Cii = - E  / £  / TtjK'dS-T, (TiJdS (4.24)
M* M* a' m!

or

[C"ij+£  f TijNa'dS] = - £  £  f  rfX'dS-E J TfjdS (4 . 25)
M* M* a' M1

in which a refers to nodes.

It should be noted that, on the left hand side of Equation
(4.25), the summation of singular elements represents the set 
of all adjacent elements connected to the source point y(the 
singularity). This equation shows that the diagonal block can 
be obtained by the sum of the off-diagonal blocks, which can 
be computed numerically. In addition, this approach avoids the
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explicit computation of the jump term Cy. This indirect scheme 
have been successfully used in the past to compute the diagonal 
block of elastostatic problems(Lachat and Watson, 1976; Watson, 
1979; Mustoe, 1984) and potential problems(Brebbia, 1980).

4.3.3 Evaluation Of The Diagonal Block For Dynamic Problems

The diagonal block of the [T] matrix in the elastodynamic 
boundary element formulation is

It should be noted that the rigid-body translation is not an 
elementary solution of the dynamic boundary integral equation. 
Consequently, the application of the indirect scheme described 
in the previous sub-section is not straightforward.

Because Cy is the same for both static and harmonic loading 
cases, it is possible to remove the strongly singular integrals 
from dynamic boundary integral equations. The central idea 
behind the process is that the diagonal block of dynamic 
problems can be expressed in terms of its static counterpart 
and a non-singular integral. Substitution of Equation(4.25) 
into Equation(4.26), after some manipulations, the diagonal 
block is of the form:

(4.26)

= ° i / ( T i r T f $ ) N ' . d S
M* M*

=£  {(TirTij)N̂ ds-T,'ETiJN̂ ds-'£{TiJds (4.27)
M* M* a' m!

in which, all the integrals can be readily evaluated by
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numerical integration.

This method is the simplest scheme to implement, in comparison 
with directly computing the jump term and the strongly singular 
integrals, and a significant factor in the success of the 
boundary element analysis. Similar approaches have been 
presented by Rizzo et al(1985); Manolis et al(1986); and 
Guiggiani(1992).

4.3.4 Halfspace problems

Many geotechnical engineering problems are idealized by the 
halfspace model(Figure 4.8), which presents no particular 
difficulties for boundary element methods. In general, the 
(infinite) hemispherical surface of the region can be neglected 
since the displacements and tractions on this infinite boundary 
are zero(regular conditions). However, the azimuthal integral 
in equation(4.22) over the unbounded hemispherical boundary 
must be considered in order to evaluate the diagonal block 
properly.

Recently, several researchers(Ahmad and Banerjee, 1988b; Wang 
and Banerjee, 1990; Hirose, 1991; Israil and Banerjee, 1992) 
use "enclosing" elements (Figure 4.9) to deal with the azimuthal 
integral over the infinite hemisphere of halfspace models. The 
displacements and tractions on the enclosing elements are 
finite but small. In two dimensional analyses, the use of 
enclosing elements is evidently feasible, although at some 
computational cost. However, in three dimensional problems, 
this approach increases the computational effort considerably.

In the present study, the azimuthal integral over the unbounded 
hemisphere is computed analytically. As illustrated in 
Appendix 4.3, the azimuthal integral is independent of the 
radius of the hemisphere and can be written as
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(4-28)

For halfspace problems, the azimuthal integral Sy is therefore 
significant and must be incorporated into the boundary element 
formulation.

4.4 CONCLUSIONS

The results of boundary element analyses are very sensitive to 
the computed values of singular elements since they represent 
contributions generally of greatest numerical size to the 
coefficient matrices. For this reason, particular attention 
must be paid to the implementation of accurate integration 
techniques. This chapter describes methods used in the present 
study for the evaluation of weakly singular integrals and 
strongly singular integrals; the "strictly diagonal block".

The sub-division and transformation scheme for integrable 
singular integrals is straightforward, in principle, because 
it requires only the implementation of basic concepts involving 
geometrical transformations and Gauss-Legendre quadrature. In 
addition, perhaps more importantly, this method is capable of 
producing satisfactory results for singular integrals with 
oscillatory integrands. The results of a rigorous numerical 
study demonstrate the accuracy and efficiency of the method. 
It is concluded that the use of the 5x5 integration rule for 
each sub-element provides sufficient precision(relative errors 
less than 10‘3) . The analytical solutions of some typical 
integrals (given in Appendices 4.1 and 4.2 and Tables 4.1, 4.2,
4.3 and 4.4) can be used for checking quadrature programs and 
subroutines.

Explicit evaluations of strongly singular integrals is
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extremely difficult. The strictly diagonal block of
elastostatic problems can be calculated in an indirect manner 
using the procedure based on rigid body motion and this method 
can be extended to elastodynamic problems as shown here. An 
efficient method for dealing with halfspace problems by semi- 
analytical means has also been presented in this chapter. 
Using these methods, the singular integrals in the discretized 
boundary element formulation can now be evaluated numerically 
without special difficulty.
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APPENDIX 4.1: ANALYTICAL INTEGRATION OF

rN± ̂1=1— dA 
J

over a 2x2 square.

The value rl is the distance between an arbitrary point at the 
square and the source point, node 1. As shown in Figure A4-1, 
the square is transformed into s-t system and subdivided into 
sub-elements. It should be noted that, in this particular 
case, Jn = 1, rl (x,y) =r2 (s, t) , and the integral can be written 
as

+ 1 +1
Nt (s, t) 

t)
I  = f f  1 ' dsdt

J J r«(s, '
- i - i  1

(A4-1)

1

(1,-1 )

Figure A4-1: The transformation from x-y system to s-t system

1 1 3
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Sub-element 1:

As shown in Figure(A4-2), the triangle is mapped into polar 
coordinates. +■

(1 /-1 ) S
Figure A4-2: The transformation of triangular sub-element5

After some manipulations, the variables s and t can be 
expressed in terms of the polar coordinates:

s=rcosd-1
t=rsinQ-1 (A4-2)

dsdt=r1drdQ

and the integral can be written as

4 r (0)
i V i ( r f 0) 

0) r̂ dicUd (A4-3

Substituting Equation(A4-2) into the shape function Nl7 leads 
to

1 1 4
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N± = ~ . 25 (l~s) (1-t) (1+s+t)
=-.25(2-rcos0)(2-rsinQ) (rcosQ+rsinQ-1) 
= -. 25 (4+2r2-6rcos0-6rsi.n0+5r2cos0sin0 

-r3cos20sin0-r3cos0sin20)

Consequently, the inner integral becomes

2sec0
J N±dr

—  [4r+ —  r 3- 3 r 2c o s 0 -3 r2sin0+ — r 3cos0sin0  4 3 3
r 4 ^4 2sec0

-  —  cos20 s in 0 - —  cos0sin20 ]4 4 o

= -s e c 0 - — sec20sin0 + — sec30 -se c30 s in 20 (A4-5)3 3

and

4
[-sec0--|-sec20sin0+-|-sec30-sec30sin20] d0 (A4-6)

= [-In|sec0+tan0|- —  sec0+—  (tan0sec0+ln|sec0+tan0|)
jt

_ ( _s in0___ l l n |gec0+tan0i) j1
2cos20 2 1 17 J0

=0.106455474

In an analogous manner, it can be shown that the integral over 
sub-element II is 0.10645 5474.

The same process can be used to compute other weakly singular 
integrals.

1 1 5
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APPENDIX 4.2: Analytical Integration Of
N-eiKr

over a triangle in the radial direction.

In a similar manner(to Appendix 4.1), this integral over a 
triangular region can be written as

_u
4 2seed

J = f f W„(r,6) eiKrdrd6
0 0

and, for illustrative purpose, N^r,#) is

^  = - . 2 5  (1 -s ) (1-t) (1+s+t)
=-.25(2-rcos0)(2-rsind) (rcosd+rsinQ-1) 
= -. 25(4+2r2-6rcos0-6rsin0+5r2cos0sin0 

-r3cos20sin0-r3cos0sin20)

(A4-7)

Consequently, the integral relating to the radial direction can 
be expressed as

2sec0
I r = f Na (r, 0) eiKZdr

0

=a J eiKrdr+BjreiKrdr+cJ r2eiKIdr (A4-8)

in which, coefficients A,B, and C are functions of 6 or 
constant.

Analytical solutions for these integrals are given as follows:

1 1 6
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feiKTdr=— —  (A4-9)
J iK

freiKTdr= rel*x -JL f eiKrdr (A4-10)
J iK iKJ

fr2eiKrdr= z2elKr. -JLfreiKIdz (A4-11!
J 2K 2KJ

1 1 7
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Appendix 4.3 Analytical Integration Of The Azimuthal Integral 
Over An Infinite Hemisphere

Spherical coordinates(Figure A4.3) are used to study this 
particular case. The relationship between the Cartesian 
coordinates and the spherical coordinates are given as follows:

x1=rsin<|)cos0

x2=rsin<i>sin0 (A4.12)

x-, =rcos(J)

and the Jacobian Js

J (r, <!>, 0) =r2sin<t> (A4-13)

Consequently, the following quantities arising in the 
fundamental solutions can be obtained:

r 1=231=sin(|)cos0

r 2=n2=sin<|)sin0 (A4-14)

r 3=n3=rc os<J>

and

dr 3-=-=y^ ti,r f=sin20cos2<|)+sin20sin2(|)+cos20=l (A4-15)
dn fa 1 -1

Without loss of generality, in the following the source point 
is placed at the origin(Figure A4.4). By introducing equations

1 1 8
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(A4.12)-(A4.15) into the static traction fundamental solution, 
after some mathematical manipulations, the integral of 
equation(4.22) over the hemisphere can then be written as

2tc 2
-1h r f f  [ (l-2v) b±j+3rtir j] sin0d<|>d08tt (1-v) 0 0

This equation may now be integrated analytically. It is easy 
to show that, for example,

27t~ 2

0 0
J J sin0d<t>d0=27c

and, for i=j =1,

- —  - —  27C 2 271 2
3 J J rtlr/J-sin0d<|>d0=3 J J sin30cos2(|)d(|)d0=27T:

0 0 0 0

Consequently,

-1 r/. 1

(A4-17)

(A4-18)

S“ =W < ^ [(1-2V)'2X+2,C] 2 <A4'19:

In brief, it can be concluded that

—  -|#y (A4-20)

and Sj: is independent of the radius of the hemisphere.
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Figure A4.3: Spherical Coordinate System
X3

Figure A4.4; Integration Over The Unbounded Hemisphere
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TABLE 4.1 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1 + 1  AT 

- 1-1

Gauss point 
per subelement

Singularity at node 1 i = 1 
^analytical = 0.21291 0948

Computed value relative error(%)
2x2 0.21454 4391 7.67 E-l
3x3 0.21289 2072 8.87 E-3
4x4 0.21290 9502 6.79 E-4
5x5 0.21291 1081 6.25 E-5
6x6 0.21291 0963 7.05 E-6
7x7 0.21291 0967 8.92 E-6
8x8 0.21291 0967 8.92 E-6

Gauss point 
per subelement

Singularity at node 1 t = 2 
^analytica l = 1-27369 3832

Computed value relative error(%)
2x2 1.27369 6387 2.01 E-4
3x3 1.27361 6002 6.11 E-3
4x4 1.27369 7942 3.23 E-4
5x5 1.27369 3741 7.15 E-6
6x6 1.27369 3830 1.57 E-7
7x7 1.27369 3833 7.85 E-8
8x8 1.27369 3833 7.85 E-8

121



CHAPTER 4 INTEGRATION SCHEMES (II) : SINGULAR INTEGRALS

TABLE 4.1 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1 + 1  AT 

- 1-1

Gauss point 
per subelement

Singularity at node 1 t = 3 
VanaMea! = -0.31748 0464

Computed value relative error(%)
2x2 -0.31503 1608 7.71 E-l
3x3 -0.31746 9894 3.33 E-3
4x4 -0.31748 4718 1.34 E-3
5x5 -0.31748 0249 6.77 E-5
6x6 -0.31748 0470 1.89 E-6
7x7 -0.31748 0466 6.30 E-7
8x8 -0.31748 0466 6.30 E-7

Gauss point 
per subelement

Singularity at node 1 i = 4 
^analytical = 0.84787 1898

Computed value relative error(%)
2x2 0.84460 7606 3.85 E-l
3x3 0.84783 1859 4.72 E-3
4x4 0.84787 8938 8.30 E-4
5x5 0.84787 1579 3.76 E-5
6x6 0.84787 1905 8.26 E-7
7x7 0.84787 1900 2.36 E-7
8x8 0.84787 1899 2.36 E-7
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TABLE 4.1 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1 + 1  AT

f f T * *
- 1-1

Gauss point 
per subelement

Singularity at node 1 t = 5 
^analytical = "0.29558 7149

Computed value relative error(%)
2x2 -0.29392 9936 5.61 E-l
3x3 -0.29552 3199 2.16 E-2
4x4 -0.29559 2935 1.96 E-3
5x5 -0.29558 6939 7.11 E-5
6x6 -0.29558 7151 6.77 E-7
7x7 -0.29558 7150 3.38 E-7
8x8 -0.29558 7149 0

Gauss point 
per subelement

Singularity at node 2 t = 2 
^ analytical = 2.52638 3842

Computed value relative error(%)
2x2 2.54404 4362 6.99 E-l
3x3 2.52619 3549 7.53 E-3
4x4 2.52620 2185 7.19 E-3
5x5 2.52639 5620 4.66 E-4
6x6 2.52638 5397 6.16 E-5
7x7 2.52638 3615 8.99 E-6
8x8 2.52638 3836 2.38 E-7

123



CHAPTER 4 INTEGRATION SCHEMES (II) : SINGULAR INTEGRALS

TABLE 4.1 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1 + 1  AT

/ / * * . «
- 1-1

Gauss point 
per subelement

Singularity at node 2 t = 3 
^ analytical = ~0.33382 8436

Computed value relative error(%)
2x2 -0.33103 5092 8.37 E-l
3x3 -0.33298 4305 2.53 E-l
4x4 -0.33390 0038 2.15 E-2
5x5 -0.33383 3957 1.65 E-3
6x6 -0.33382 7324 3.33 E-4
7x7 -0.33382 8441 1.50 E-6
8x8 -0.33382 8462 7.79 E-6

Gauss point 
per subelement

Singularity at node 2 i = 4 
^analytical = 1-37293 3664

Computed value relative error(%)
2x2 1.37655 2585 2.64 E-l
3x3 1.37132 1303 1.17 E-l
4x4 1.37297 5321 3.03 E-3
5x5 1.37294 9191 1.13 E-3
6x6 1.37293 2388 9.29 E-5
7x7 1.37293 3543 8.81 E-6
8x8 1.37293 3686 1.60 E-6
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TABLE 4.1 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1 + 1  AT

/ / * * , «
- 1-1

Gauss point 
per subelement

Singularity at node 2 t = 5 
^analytical = “0.45415 3166

Computed value relative error(%)
2x2 -0.45615 9461 4.42 E-l
3x3 -0.45351 8252 1.40 E-l
4x4 -0.45416 3318 2.24 E-3
5x5 -0.45415 9548 1.41 E-3
6x6 -0.45415 2723 9.75 E-5
7x7 -0.45415 3112 1.19 E-5
8x8 -0.45415 3174 1.76 E-6

Gauss point 
per subelement

Singularity at node 2 t = 6 
^analytical = 1-H583 0306

Computed value relative error(%)
2x2 1.11507 9559 6'.73 E-2
3x3 1.11548 8160 3.07 E-2
4x4 1.11585 1697 1.92 E-3
5x5 1.11583 3068 2.48 E-4
6x6 1.11582 9916 3.50 E-5
7x7 1.11583 0293 1.17 E-6
8x8 1.11583 0311 4.48 E-7
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TABLE 4.2 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

- 1-1

Gauss point 
per subelement

Singularity at node 1 t = 2 
Vanaivtica, = 1.88982 6556

Computed value relative error(%)
2x2 1.89071 0383 4.68 E-2
3x3 1.88950 2762 1.71 E-2
4x4 1.88984 4862 9.69 E-4
5x5 1.88982 6147 2.16 E-5
6x6 1.88982 6540 8.47 E-7
7x7 1.88982 6558 1.06 E-7
8x8 1.88982 6556 0

Gauss point 
per subelement

Singularity at node 1 t = 3 
^analytical = "0.47854 5343

Computed value relative error(%)
2x2 -0.47540 9836 6.55 E-l
3x3 -0.47845 3039 1.93 E-2
4x4 -0.47855 8363 2.72 E-3
5x5 -0.47854 4740 1.26 E-4
6x6 -0.47854 5352 1.88 E-6
7x7 -0.47854 5345 4.18 E-7
8x8 -0.47854 5344 2.09 E-7
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TABLE 4.2 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+1+1 *7
/ / ^
- 1-1

Gauss point 
per subelement

Singularity at node 1 i = 4 
^analytical =  0 . 6 3 8 0 6  0 4 5 9

Computed value relative error(%)
2x2 0.63387 9781 6.55 E-l
3x3 0.63793 7385 1.93 E-2
4x4 0.63807 7818 2.72 E-3
5x5 0.63805 9654 1.26 E-4
6x6 0.63806 0470 1.72 E-6
7x7 0.63806 0460 1.57 E-7
8x8 0.63806 0459 0

Gauss point 
per subelement

Singularity at node 1 i = 5 
^analytical = -0.29148 6868

Computed value relative error(%)
2x2 -0.28961 7486 6.41 E-l
3x3 -0.29134 4383 4.89 E-2
4x4 -0.29150 0124 4.55 E-3
5x5 -0.29148 6364 1.73 E-4
6x6 -0.29148 6870 6.86 E-7
7x7 -0.29148 6869 3.43 E-7
8x8 -0.29148 6868 0
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TABLE 4.2 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

-1-1

Gauss point 
per subelement

Singularity at node 2 l = 3 
V a n a l v t i c a l  = -0.60146 4285

Computed value relative error(%)
2x2 -0.60148 8561 4.04 E-3
3x3 -0.59741 4382 6.73 E-l
4x4 -0.60170 0796 3.93 E-2
5x5 -0.60151 0050 7.61 E-3
6x6 -0.60145 8216 1.01 E-3
7x7 -0.60146 3968 5.27 E-5
8x8 -0.60146 4390 1.75 E-5

Gauss point 
per subelement

Singularity at node 2 i = 4 
^ a n a l y t i c a l  = 2.09030 7488

Computed value relative error(%)
2x2 2.11638 0868 1.25 E0
3x3 2.08325 8115 3.37 E-l
4x4 2.09033 3384 1.24 E-3
5x5 2.09040 9420 4.48 E-3
6x6 2.09030 1266 2.98 E-4
7x7 2.09030 6367 5.36 E-5
8x8 2.09030 7643 7.42 E-6
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TABLE 4.2 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

4-1+1
/ / $ * ■ «
- 1-1

Gauss point 
per subelement

Singularity at node 2 i = 5 
^ a n a l y t i c a l  = -0.86256 4064

Computed value relative error(%)
2x2 -0.87451 6418 1.39 E0
3x3 -0.85962 1725 3.41 E-l
4x4 -0.86255 7847 7.21 E-4
5x5 -0.86260 7588 5.05 E-3
6x6 -0.86256 1659 2.79 E-4
7x7 -0.86256 3571 5.72 E-5
8x8 -0.86256 4127 7.30 E-6

Gauss point 
per subelement

Singularity at node 2 t = 6 
^analytical = 1-36683 4813

Computed value relative error(%)
2x2 1.37065 4458 2.80 E-l
3x3 1.36450 3388 1.71 E-l
4x4 1.36691 1632 5.62 E-3
5x5 1.36686 4575 2.18 E-3
6x6 1.36683 1988 2.07 E-4
7x7 1.36683 4543 1.98 E-5
8x8 1.36683 4869 4.10 E-6
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TABLE 4.3 EFFECT OF THE SINGULAR VERTEX ANGLE
(For results accurate to five digits)

a0 Analytical
solutions

Required
Gauss
order

Numerical
Values

10 0.17542 59 2x2 0.17542 55
20 0.35637 85 3x3 0.35637 86
30 0.54930 62 3x3 0.54930 59
40 0.76290 98 4x4 0.76291 03
50 1.01068 33 5x5 1.01068 35
60 1.31695 81 5x5 1.31696 38
70 1.73541 55 7x7 1.73541 64
80 2.43624 69 10x10 2.43624 76
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TABLE 4.4 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+1+1 N,eiKr
- 1-1

Gauss point 
per subelement

Singularity at node 1, i = 1
K =  1.
^sem i-analytical
=(0.30631 0343, -0.13899 0273)
Computed value relative error(%)

2x2 ( 0.32031 2799, 
-0.07266 7596)

4.57

3x3 ( 0.30696 9582, 
-0.14083 3567)

2.15 E-l

4x4 ( 0.30629 5990, 
-0.13897 1237)

4.69 E-3

5x5 ( 0.30631 0526, 
-0.13899 0369)

5.96 E-5

6x6 ( 0.30631 0333, 
-0.13899 0266)

3.34 E-6

7x7 ( 0.30631 0336, 
-0.13899 0266)

2.19 E-6
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TABLE 4.4 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1+1

-i-i

Gauss point 
per subelement

Singularity at node 1, i = 2
K  =  1 .

^sem i-analytical
=(0.63139 1437, 0.67694 8836)
Computed value relative error(%)

2x2 ( 0.63551 7187, 
0.60999 6826)

6.53 E-l

3x3 ( 0.63039 2743, 
0.67869 1667)

1.58 E-l

4x4 ( 0.63140 9780, 
0.67693 0990)

2.91 E-3

5x5 ( 0.63139 1239, 
0.67694 8910)

3.13 E-5

6x6 ( 0.63139 1417, 
0.67694 8813)

3.16 E-6

7x7 ( 0.63139 1419, 
0.67694 8814)

2.90 E-6
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TABLE 4.4 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1+1i t N e 1Krff^-a„dc
- 1-1

Gauss point 
per subelement

Singularity at node 1, i = 3
K =  1.
^sem i-analytical
=(-0.15561 5611, -0.16512 1654)
Computed value relative error(%)

2x2 (-0.14096 1784, 
-0.14712 2817)

9 .42

3x3 (-0.15583 3511, 
-0.16542 8900)

1.40 E-l

4x4 (-0.15561 7661, 
-0.16511 9335)

1.32 E-3

5x5 (-0.15561 5419, 
-0.16512 1651)

1.23 E-4

6x6 (-0.15561 5608, 
-0.16512 1641)

1.36 E-6

7x7 (-0.15561 5604, 
-0.16512 1641)

4.00 E-6
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TABLE 4.4 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1+1

- 1-1

Gauss point 
per subelement

Singularity at node 1, i = 4
K =  1.
^ sem i-analytical
=(0.20084 7584, 0.58227 8758)
Computed value relative error(%)

2x2 ( 0.14891 1821, 
0.59520 2300)

2.59 E+l

3x3 ( 0.20252 5964, 
0.58154 6900)

8.36 E-l

4x4 ( 0.20083 3229, 
0.58228 8506)

7.15 E-3

5x5 ( 0.20084 7415, 
0.58227 8668)

8.43 E-5

6x6 ( 0.20084 7582, 
0.58227 8729)

1.10 E-6

7x7 ( 0.20084 7577, 
0.58227 8729)

3.28 E-6
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TABLE 4.4 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+1+1 N,eiKr
- 1-1

Gauss point 
per subelement

Singularity at node 1, i = 5
K  =  1.
^sem i-analytical
=(-0.14361 3290, -0.18521 8569)
Computed value relative error(%)

2x2 (-0.09408 4170, 
-0.18500 4901)

3.45 E+l

3x3 (-0.14530 9974, 
-0.18474 0700)

1.18 E+0

4x4 (-0.14359 7383, 
-0.18522 6296)

1.11 E-2

5x5 (-0.14361 3215, 
-0.18521 8518)

5.22 E-5

6x6 (-0.14361 3281, 
-0.18521 8570)

6.11 E-6

7x7 (-0.14361 3280, 
-0.18521 8570)

6.75 E-6
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TABLE 4.4 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

- 1-1

Gauss point 
per subelement

Singularity at node 2, t = 1
K  =  1.
^ sem i-analytical
=(-0.17043 8433, -0.17024 6303)
Computed value relative error(%)

2x2 (-0.16097 7542, 
-0.15558 4219)

5.55

3x3 (-0.16978 6843, 
-0.17047 4383)

3.82 E-l

4x4 (-0.17049 8602, 
-0.17024 4876)

3.53 E-2

5x5 (-0.17044 2767, 
-0.17024 6337)

2.54 E-3

6x6 (-0.17043 7561, 
-0.17024 6332)

5.12 E-4

7x7 (-0.17043 8464, 
-0.17024 6332)

1.78 E-5
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TABLE 4.4 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+1+1 H e iKT
- i - i

Gauss point 
per subelement

Singularity at node 2, t = 2
K  =  1.
^sem i-analytical
=(1.73354 9433, 0.75276 7741)
Computed value relative error(%)

2x2 ( 1.76056 6879, 
0.73798 8718)

1.56

3x3 ( 1.73312 9957, 
0.75298 6414)

2.42 E-2

4x4 ( 1.73340 7128, 
0.75276 6255)

8.21 E-3

5x5 ( 1.73355 8850, 
0.75276 7762)

5.43 E-4

6x6 ( 1.73355 0668, 
0.75276 7756)

7.12 E-5

7x7 ( 1.73354 9262, 
0.75276 7756)

9.85 E-6
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TABLE 4.4 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+1+1 N,eiKr
- 1-1

Gauss point 
per subelement

Singularity at node 2, i = 4
K  =  1 .
^sem i-analytical
=(0.73516 8170, 0.70106 5735)
Computed value relative error(%)

2x2 ( 0.71622 3731, 
0.67977 3108)

2 .58

3x3 ( 0.73410 7269, 
0.70135 4687)

1.44 E-l

4x4 ( 0.73520 4387, 
0.70106 4143)

4.93 E-3

5x5 ( 0.73518 0582, 
0.70106 5755)

1.69 E-3

6x6 ( 0.73516 7148, 
0.70106 5750)

1.39 E-4

7x7 ( 0.73516 8093, 
0.70106 5750)

1.04 E-5
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TABLE 4.5 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1+1

- l - i

Gauss point 
per subelement

Singularity at node 1, t = 2
K  =  1.
^sem i-analytical
=(1.51597 5022, 0.87138 6032)
Computed value relative error(%)

2x2 ( 1.54543 6331, 
0.87100 3473)

1. 94

3x3 ( 1.51520 4053, 
0.87113 9976)

5.09 E-2

4x4 ( 1.51599 6473, 
0.87139 1482)

1.43 E-3

5x5 ( 1.51597 4554, 
0.87138 5919)

3.09 E-5

6x6 ( 1.51597 4961, 
0.87138 6003)

4.03 E-6

7x7 ( 1.51597 4979, 
0.87138 6005)

2.87 E-6
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TABLE 4.5 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1+1

- 1-1

Gauss point 
per subelement

Singularity at node 1, t = 3
K  =  1.
^semi-analytical
=(-0.38623 1404, -0.21622 2096)
Computed value relative error(%)

2x2 (-0.38787 5544, 
-0.20880 5922)

4.26 E-l

3x3 (-0.38608 5410, 
-0.21626 9350)

3.78 E-2

4x4 (-0.38624 4708, 
-0.21622 5260)

3.45 E-3

5x5 (-0.38623 0785, 
-0.21622 1907)

1.60 E-4

6x6 (-0.38623 1398, 
-0.21622 2087)

1.52 E-6

7x7 (-0.38623 1390, 
-0.21622 2084)

3.46 E-6
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TABLE 4.5 NUMERICAL EVALUATION OP SINGULAR INTEGRALS

+1+1 N,eiKr
- 1-1

Gauss point 
per subelement

Singularity at node 1, i = 4
K =  1.
^semi-analytical
=(0.28932 5593, 0.49875 9941)
Computed value relative error(%)

2x2 ( 0.27070 4900, 
0.47817 3725)

6 .44

3x3 ( 0.28947 3675, 
0.49909 7173)

5.12 E-2

4x4 ( 0.28934 0794, 
0.49876 2566)

5.25 E-3

5x5 ( 0.28932 4786, 
0.49875 9669)

2.79 E-4

6x6 ( 0.28932 5593, 
0.49875 9922)

1.14 E-7

7x7 ( 0.28932 5583, 
0.49875 9918)

3.55 E-6
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TABLE 4.5 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

- 1-1

Gauss point 
per subelement

Singularity at node 1, i = 5
K  =  1.
^semi-analytical=(-0.19351 2907, -0.20273 4553)
Computed value relative error(%)

2x2 (-0.18110 9879, 
-0.18214 6574)

6 .41

3x3 (-0.19359 4933, 
-0.20307 0287)

4.24 E-2

4x4 (-0.19352 4281, 
-0.20273 6089)

5.88 E-3

5x5 (-0.19351 2401, 
-0.20273 4390)

2.62 E-4

6x6 (-0.19351 2899, 
-0.20273 4550)

4.34 E-6

7x7 (-0.19351 2898, 
-0.20273 4549)

4.64 E-6
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TABLE 4.5 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1+1

I ! * £ - * «
- i - i

Gauss point 
per subelement

Singularity at node 2, t = 1
K  =  1.
^semi-analytical
=(-0.50771 7330, -0.23020 9938)
Computed value relative error(%)

2x2 (-0.51292 7808, 
-0.22508 0052)

1.03

3x3 (-0.50361 7454, 
-0.22954 8717)

8.08 E-l

4x4 (-0.50795 4150, 
-0.23026 7467)

4.66 E-2

5x5 (-0.50776 3174, 
-0.23021 4300)

9.03 E-3

6x6 (-0.50771 1341, 
-0.23020 9090)

1.18 E-3

7x7 (-0.50771 7092, 
-0.23020 9976)

4.68 E-5
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TABLE 4.5 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

+ 1+1

- l - i

Gauss point 
per subelement

Singularity at node 2, i = 4
K  =  1.
^semi-analytical
=(1.71009 8888, 0.95942 4431)
Computed value relative error(%)

2x2 ( 1.74170 0991, 
0.95383 5700)

1.85

3x3 ( 1.70299 9810, 
0.95819 7033)

4.15 E-l

4x4 ( 1.71012 5039, 
0.95945 8556)

1.53 E-3

5x5 ( 1.71020 0868, 
0.95943 6715)

5.96 E-3

6x6 ( 1.71009 2715, 
0.95942 3440)

3.61 E-4

7x7 ( 1.71009 7816, 
0.95942 4360)

6.27 E-5
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Figure 4.1: Eight-noded rectangular element
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Figure 4.
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S i n g u l a r i t y

Figure 4.3: The distribution of integration points
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Figure 4.4a: The behaviour of integrand Ni/rj

A •
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Figure 4.4b: The behaviour of integrand N2/rj
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Figure 4.4c: The behaviour of integrand N3/rx
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Figure 4.4d: The behaviour of integrand N4/rj
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Figure 4.4e: The behaviour of integrand N2/r2

Figure 4.4f: The behaviour of integrand N3/r2
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Figure 4.4g: The behaviour of integrand N4/r2

Figure 4.4h: The behaviour of integrand N5/r2
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Figure 4.5a: The behaviour of integrand Ni/r*

•U9 -i.f

Figure 4.5b: The behaviour of integrand N2/r12
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A l.

Figure 4.5c: The behaviour of integrand
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Figure 4.5d: The behaviour of integrand N4/rj2
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Figure 4.5e: The behaviour of integrand N2/r22

Figure 4.5f: The behaviour of integrand N3/r22
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Figure 4.5g: The behaviour of integrand N4/r22

Figure 4.5h: The behaviour of integrand N5/r22
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Figure 4.6 : Study of singular vertex angle
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Figure 4.7: Maximum possible vertex angles
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x 3

Figure 4.8: Halfspace model 
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Boundary element discretization of a half-space problem

Fiqure 4.9: Enclosing elements(from Ahmad and Banerjee,
1988)
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CHAPTER 5 INFINITE BOUNDARY ET.EMENTG

CHAPTER 5 

INFINITE BOUNDARY ELEMENTS

5.1 INTRODUCTION

Many geotechnical problems can be idealized by assuming that 
the regions remote from the area of interest extend to 
infinity; the problem of soil-structure interaction is a 
typical example of this. Most boundary element analyses of 
machine foundations use the full-space fundamental solution 
(e.g., Emperador and Dominguez, 1989; Gazetas and Tassoulas, 
1987a and b) and, consequently, require the discretization of 
the free surface of the half space. As the capacity of 
computers is finite, the semi - infinite surface must then be 
truncated to a bounded region of manageable size. For example, 
the truncated discretization scheme used by Israil and Banerjee 
(1990) was confined to a region within 5B and 18B(B is the 
half-width of the rectangular foundation) around surface and 
embedded foundations, respectively. However, higher-order 
elements with dimensions smaller than 1/4 Rayleigh wavelengths 
are essential for modelling wave fields accurately. 
Consequently, in order to obtain results of acceptable 
accuracy, this method of analysis requires considerable 
computational resources, particularly for high frequency (small 
wavelength) problems. In the literature, very few results have 
been obtained for dimensionless frequencies (a0) greater than 
two.

A more effective method is to incorporate "infinite elements",
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based on finite element ideas, into the boundary element 
analysis. The idea of infinite boundary elements was first 
proposed by Watson(1979) in connection with static halfspace 
problems. However, as noted by Watson himself, rules for the 
use of infinite elements in boundary element analyses required 
further research. Watson's formulation contained an error 
which was only corrected in a much later paper (Beer and Watson,
1989) . Recently, the use of infinite boundary elements to 
analyze unbounded geotechnical problems has received 
considerable attention. Beer et al(1987) employ infinite 
boundary elements to model a tunnel which is assumed to extend 
to infinity. Later, Beer and Watson(1989) discussed the 
application of special types of boundary elements for the 
modelling of surfaces which extend to infinity. Chuhan et 
al(1991) developed shape functions for describing far-field 
behaviour associated with multiple wave propagation. Davies 
and Bu(1993) describe infinite boundary element solutions for 
high frequency response of machine foundations, based on the 
work described in this thesis.

This chapter presents details of the infinite boundary elements 
for static and dynamic halfspace problems. The basis of the 
method, for static problems, is that the far-field 
displacements can be reasonably described by a (real) function, 
called the decay function. A mapping technique is then 
developed to transform the infinite element onto a unit square. 
Because integrands of static problems decrease monotonously 
with the distance and approach zero as the distance becomes 
infinite, Gauss-Legendre quadrature can be used for evaluating 
integrals over infinite boundary elements. Based on the 
results of numerical tests, an order-adaptive integration 
criterion was developed in order to obtain accurate numerical 
results with minimum cost. A series of static foundation 
problems were then analyzed to demonstrate the applicability 
and accuracy of the formulation and excellent agreement with 
analytical solutions was obtained.
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The development of infinite element techniques for dynamic 
problems is very much more complicated. The dynamic (complex 
valued) decay function assumed in the development of infinite 
boundary elements for elastodynamic analyses is based on 
Rayleigh wave attenuation away from a source located at the 
centroid of the loaded area. The integrals over the infinite 
elements are then computed between successive zeros of the 
integrands. Numerical studies reveal that the slowly 
convergent infinite series sum of these integrals can be 
calculated very efficiently by means of the Euler 
transformation. Illustrative results for foundations subjected 
to harmonic loads are presented in order to illustrate the 
potential of the formulation.

5.2 ASYMPTOTIC BEHAVIOUR OF THE FAR-FIELD

5.2.1 Introduction

The displacements and tractions at an arbitrary point in a 
finite boundary element can be described in terms of element 
nodal values and the shape functions. Evidently, conventional 
shape functions are not capable of describing the behaviour of 
field variables over an infinite region. Special shape 
functions can however be developed for this purpose, based on 
analytical solutions for halfspace problems.

In the analysis of halfspace problems, the boundary element 
method involves integrations, in the far-field, over only the 
surface of the semi-infinite domain. In general, these 
unbounded surfaces are traction-free in most geotechnical 
problems. This observation makes it possible to eliminate the 
displacement kernel integrals
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fa^t.ds
s

over free surfaces outside the loaded area. Consequently, in 
addition to the significant reduction of computational effort 
that this implies, the traction behaviour of the far-field need 
not be considered further.

5.2.2 Static Displacement Behaviour

Analytical solutions for smooth circular foundations resting 
on an elastic halfspace subjected to various types of loadings 
have been collected by Poulos and Davis(1974). For example, 
the displacements at an arbitrary point y on the surface of an 
elastic halfspace due to a uniformly distributed vertical load 
pv acting on a circular area (radius=rc) can be obtained from the 
following equations:

Vertical displacement at y(r>rc)

u,=pv-ra- ± f - j  (5.1)

Radial horizontal displacement at y(r>rc)

„ . (1+v) ( l - 2 v )  . 1  , c ^
*~Pv c----- E----- 27 <5'2)

in which E is the modulus of elasticity, r is the distance 
between the point y and the centre of the circular foundation, 
and H is a function of some constants and r'2(see Poulos and 
Davis, 1974; integrals I200, p. 349) .

Careful examination of the above solutions indicates that,
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neglecting terms associated with higher order reciprocal powers 
of r, the asymptotic far-field displacements on the halfspace 
surface are as follows:

ut~0{±) 
ur~0( — )

5.3

Asymptotic displacements corresponding to various types of 
loadings are summarized in Table 5.1.

It should be further noted that the displacement field outside 
the immediate loaded area is practically identical for both 
welded and smooth contact conditions between soil and 
foundation(Schiffman, 1969). Accordingly, appropriate decay 
functions Ds can be established to describe the displacement 
field in the (infinite) radial direction. For example, for 
uniform vertical stresses or displacements on a finite area, 
the far-field vertical displacement uz can be evaluated from 
the equation:

where r0 and r are the distances from the centre of the loaded 
area to some convenient reference point and an arbitrary 
colinear point in the far-field, respectively; u0z is the 
vertical displacement at the reference point(Figure 5.2a).

The analytical and predicted vertical displacements outside a 
circular foundation, subjected to uniformly distributed loads, 
are illustrated in Figure 5.2b, respectively, in which all the 
displacements have been normalized by the factor pvrc (1 -v1) /E. 
It is observed that excellent agreement with analytical 
solutions can be achieved by using a reference point in the
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near vicinity of the f oundation (r;/rc=l. 5) . This example 
clearly shows the effectiveness of the proposed decay function.

5.2.3 Dynamic Displacement Behaviour

Some knowledge of elastic wave propagation in halfspaces is 
necessary in order to replicate the asymptotic displacement 
behaviour of the far-field. The three characteristic waves on 
the surface of a homogeneous isotropic elastic halfspace, 
namely the dilatation, shear, and Rayleigh waves, all 
contribute to the displacement field, which makes closed-form 
analytical solutions impractical. However, a number of studies 
(e.g., Miller and Pursey, 1954; Gazetas and Yegian, 1979) have 
shown that Rayleigh waves are predominant in the propagation 
of energy on the surface of elastic halfspaces. For practical 
purposes, it seems reasonable to assume that the displacement 
behaviour of the far-field is the same as the Rayleigh wave 
field. A detailed description of the Rayleigh wave field has 
been given by, for example, Eringen and Suhubi(1975).

Based on the geometrical ray theory, Hudson(1980) and Achenbach 
et al(1982) show that the orthogonal trajectories of the family 
of wavefronts in a homogeneous material are straight lines. 
Consequently, a one-dimensional decay function Dd is developed 
in this thesis by using an exponential term to describe 
approximately the oscillatory behaviour of the Rayleigh wave, 
namely,

u=u0'Dd (5.5)

iti>r
Dd= ( ) 1/2 -exp Cr (5.6)

in which, CR is the Rayleigh wave velocity. This equation 
implies that the amplitude of the displacement waves decays at
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the same spatial rate as the Rayleigh waves, namely, r1/2. In 
this thesis, the velocity of Rayleigh wave is calculated from 
the (approximate) expression given by Achenbach(1976):

„  _ 0 . 8 6 2 + 1 . 14v  ^
1+v  2

in which, C2 is the velocity of the shear waves.

Because the displacements in dynamic analyses are usually 
complex-valued numbers, it is necessary to ensure the 
continuity and compatibility of displacement phase at the 
interface between the near-field and far-field, and its 
continuance into the far-field. An explicit boundary condition 
is that the decay function should be unity at r=r0. However, 
the use of equation(5.6 ) leads to

Dd=exp Cr

Accordingly, a factor
-iur0

(5 -8>Dd=exp r

is introduced into Equation (5.6 ) in order to eliminate the 
undesirable term, ie.,

jo) (r-r0)
Dd= ( - ^ ) 1/2-exp c'  ( 5 ' 9)

Two types of bonding between soil and foundation, i.e. welded 
and smooth contact, have been investigated in the analysis of 
machine foundations as well as various simplified "relaxed" 
boundary conditions. It seems reasonable to suppose that the
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decay function described above is valid, outside the immediate 
loaded area, for all these cases. As mentioned earlier, under 
static loading conditions, the analogous result has been 
demonstrated.

5.3 DISCRETIZATION AND MAPPING THEORY

5.3.1 Discretization Of The Far Field

In this thesis, the boundary of the half space model is 
subdivided into a core region SF, the far-field Sj and the 
hemispherical surface SH with radius approaching infinity, 
shown schematically in Figure 5.3. The core region is 
discretized with finite-sized boundary elements, in which 
tractions and displacements are described by quadratic shape 
functions Na over eight-noded boundary elements.

The discretization of the semi-infinite surface of the 
halfspace by infinite boundary elements can be variously 
accomplished. It is worth noting that the infinite boundary 
elements proposed by Beer et al(1987) and Beer and Watson (1989) 
do not lie radially from the decay centre. This results in 
many difficulties in geometrical definition of the infinite 
element and the interpolation of far-field variables. The 
former requires additional nodes in the infinite direction to 
define the infinite element. In practice, the latter problem 
has been resolved, approximately, by moving the decay centre 
to a "fictitious" decay centre(Figure 5.4) . In the present 
study, the far-field is modelled by means of infinite elements 
whose edges, in the radial direction, are defined by straight 
lines radiating from the centre of the loaded area(Figure 5.5). 
Because a novel mapping technique has been developed in the 
present study, no additional degrees-of-freedom are needed to 
model the infinite region of the halfspace problem. 
Consequently, as described later, the far-field displacements
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can then be easily calculated. A similar discretization has 
been presented by Chuhan et al(1991) . However, they use extra 
nodes in the infinite direction to define the geometry of the 
infinite boundary element.

The hemispherical surface need not be discretized since the 
azimuthal integral over this infinite boundary due to local 
loading can be shown to be zero. However, as described in 
Chapter 4, the azimuthal integral over SH is significant if the 
traction singularities in the near-field are to be evaluated 
by means of the indirect procedure based on rigid-body 
displacement.

5.3.2 Interpolation Of Displacements

Over each infinite element, the variation of displacements with 
respect to the radial direction are described by the decay 
functions, while the variation in the circumferential direction 
is described by quadratic shape functions. As shown in Figure 
(5.6) , the displacement at an arbitrary reference point, uia0 on 
the boundary between the core region and the far-field, can be 
expressed, in terms of nodal displacements Uia, as

3 (5.10)

in which,

S(g-1 )
2

m 2= i -\2 (5.11)
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The far-field displacements uia can then be obtained from the 
equation:

3
u1* = Ul*oVs/d= ' E K U 1a'DB/'l (5-12)

a=l

5.3.3 Geometric Representation 

Static Analyses

The integrands in static analyses are well-behaved in the far- 
field and, consequently, Gauss-Legendre quadrature is capable 
of producing satisfactory results without special difficulty. 
To facilitate numerical integration, it is necessary to 
transform the infinite element onto a unit square. Owing to 
the use of additional nodes in the infinite direction to define 
infinite elements, mapping methods developed by Beer et al 
(1987), Beer and Watson(1989) , and Chuhan et al(1991) are 
inefficient. A novel mapping technique for elastostatic 
problems is developed in this thesis.

As shown in Figure 5.7a, the type of infinite element used in 
this thesis is a three-node element defined by using rays 
originating from the decay origin(the centre of the foundation) 
to infinity. Without loss of generality, the decay centre is 
chosen as the origin. An infinite shape function, (l + r/)/2, is 
used to describe the one-dimensional variation in the infinite 
direction(Figure 5.7b). The infinite sector is then mapped 
onto a rectangle with the 77-direction extending to infinity 
(Figure 5.7c). The geometry is defined by
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* i = 1

*  i=  l

(5.13)

where Xj and y-t are the global nodal coordinates.

Clearly, rj = -1 represents the decay origin while rj = +1
represents the interface between the near-field and the far- 
field. A further mapping of the infinite area (17 > +1) is then 
performed from the (17, £) system to the (a,b) system, as shown 
in Figure 5.7d. The corresponding transformation, after some 
manipulations, can be written as

By substituting Equation (5.14) into Equation (5.13), the 
appropriate coordinate transformation, from the (x,y) system 
to the (a,b) system, for the infinite boundary element is given 
by

(5.14)

(5.15)

The Jacobian matrix Jj for the transformation from the (x,y)
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coordinate system to the (a,b) coordinate system can be 
computed without special difficulty. This mapping means that 
the integration points lie radially from the origin and are 
concentrated near to the origin (Figure 5.8) . As a consequence, 
the accuracy of numerical integration is improved because most 
integration points are distributed in the region where the 
contribution to the integrals is the largest.

The distances r0 and r in Equation (5.4) can be found from the 
equations:

Mi (b) xi) 2 + (]£ Mi (b) yi) 5 .16)
1=1 1=1

r_ (3+a)
(1-a) \ C £ M 1(b)x1)2+('£/M1(b)yi) (5.17)

1=1 1 =  1

In terms of local coordinates, the decay function can be 
expressed as:

D = jo= (5 .18)s r (3+a)

Thus, when evaluating integrals over static infinite elements 
the value of the decay function at any arbitrary integration 
point can be readily calculated in the local coordinate system.

Dynamic Analyses

In dynamic analyses, integrals over infinite boundary elements 
are oscillatory integrals:
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/ TijM 'D jd S
I

The direct use of conventional numerical integration method is 
impractical in these cases and special integration schemes 
become necessary. In this thesis, numerical integration of 
oscillating functions was carried out between the zeros of the 
integrand. As a consequence, each infinite element has been 
sub-divided into six-noded curvilinear patches by determining 
the zeros of the integrand along the rays, shown schematically 
in Figure 5.9. The present study considers only the first few 
(less than six) sub-elements because an extrapolation 
technique, as described later, is used to compute the infinite 
integral.

The Cartesian coordinates of an arbitrary point on a patch can 
be obtained in terms of the nodal coordinates. The shape 
functions for six-noded elements have been presented by, for 
example, Bathe(1982). However, the displacement at an 
arbitrary point on a patch is described by the decay function
Dd-

It should be further noted that, to each source point, the 
locations of zeros depend on the individual component of the 
complex-valued function TjjDd, which has nine components. In 
addition, for each component of T;jDd, the zeros of the real part 
and the imaginary part are at different positions. However, 
careful examination of the function TjjDd indicates that, for 
each pair of the following integrands, the zeros for the real 
(or imaginary) part are the same:

i'n̂ d an<3 T23Dd,
T31Dd and T32Dd, and 
^21̂ d an<3 T12Dd.
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Clearly, the search for the zeros requires considerable 
computational resources. There are many numerical methods to 
find zeros of a function; see, for example, Chapra and Canale 
(1989) . In the present study the zeros along a ray were 
determined by the "regula falsi" method exploiting the fact 
that functions change sign in the vicinity of a root. As shown 
in Figure 5.10, a straight line is used to join the two initial 
(guess) points x, and xr. The intersection of this line with 
the x-axis is X;:

f(xz) (xj-xr)
X i= X r~ \ it \ (5.19)f (Xj) ~f (xz)

which represents an improved estimate of the root. The value 
X; then replaces whichever of the two guesses, x, or xr, yields 
a function value with the same sign as f (xj) . The process is 
repeated until the absolute value of f (x;) falls below 10'5(in 
the present study, less than six iterations are needed). The 
search then continues to find the next zero along that 
particular ray. Once sufficient zeros have been found on all 
rays, the subelement patches are then constructed through these 
zeros.

5.3.4 Boundary Element Formulation For Halfspace Problems

In the numerical solution of the boundary integral equation, 
it is necessary to categorize the boundary elements and 
integrals needed in the computer program. In the previous two 
chapters these integrals are classified as non-singular 
integrals, integrable singular integrals, and the strictly 
diagonal block. In this chapter, the boundary elements are 
classified as finite size elements and infinite elements. 
These distinctions are introduced into the boundary integral 
equations in order to make the discretized terms more clear in 
programming practice. This systematic strategy makes the 
numerical implementation of boundary element formulation
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relatively straightforward.

Based on this philosophy, the complete discretized boundary 
element formulation for dynamic halfspace problems can be 
developed(see Appendix 5.0 for detail):

-E  f  Tijds-'E E  /  r fX ^ + E  f (Ti r Ti i ) N«-ds
M' F M* a' F M* F

-E  / ^ S - E  E  / 2lX/dS+E  / (W V (5.20)
M7 J M* a' I M* T

=E E  ci a / e  c j a ^ d s - ^  E  ^ J ^ K d s
M1 a=l F M* a=1 F W7 a=1 F

AT* a 7

-E  E  ui.'/rij-w.'ds-E  E  ui « / ^ a ^ - E  E  ui.'/ TuK>Djis
F M1 a_l J M* a' I

The discretized formulation for static analyses can be obtained 
by replacing the dynamic fundamental solutions and decay 
function with their static counterparts:

{-# -E  fayds-E E  /
JlV r-7 JL/* 7-1

- E / d i l ^ - E E E / r ? X - ds}>ui (5.21)
m ' I M’ a' I M* I

=E E  ti.X X d s + E E  ci«/Gf X ds-E  E  ui«f
M! a~ 1 F M* ct-1 ^ <*-1 f

3
-E  E  ui.'/r fX .^ -E  E  uia[TfjMaDsdS-Y: E  ^iJTfX'DsdS
M* a; F m ' a=l I M* a1 j
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in which, all the integrals are integrable and can be evaluated 
by means of numerical integration.

Similar equation for unbounded static problems has been 
presented by Beer and Watson(1989). However, the formulation 
proposed by Watson(1979) did not include the integral

This omission has, as expected, significant consequence for the 
accuracy of the analysis, since the contributions of this 
integral are of greatest numerical size to the strictly 
diagonal block.

5.4 INTEGRATION OVER INFINITE BOUNDARY ELEMENTS

5.4.1 Non-singular Static Integrals

To develop an order adaptive integration rule for the numerical 
integration of non-singular static integrals over infinite 
elements, an extensive series of numerical tests has been 
performed by considering the analogous integral

For an arbitrary source, the integral is computed numerically 
using a sequence of Gauss-Legendre formula of order n, where 
n=2~ll. This integral can also be evaluated analytically in 
the radial direction although numerical integration has to be 
used in the circumferential direction(see Appendix 5.1). Once 
these computations have been done for the whole core region SF,

fT%Mt.(Ds-l)dS
I
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the relative error contours can be drawn, as shown in Figure
5.11. These test results indicate that the criterion for 
selecting the optimal number of integration point with respect 
to the infinite(radial) direction is as follows:

allowable error < 10'2

Nr = INTEGER [ 4-(— — ) 1/2 + l] >4 (5.22)zeq
m m

allowable error < 10'3

Nr =INTEGER[6'{— — ) 1/2+ 1] >5 (5.23)
■̂ min

where Dmin is the minimum distance between the infinite boundary 
element being integrated and the source point; L is the length 
of the interface between finite and infinite boundary elements. 
However, an integration order equal to three is sufficient in 
the circumferential direction. As an example, with a uniform 
discretization scheme of the core region, the smallest value 
of Dmin is L/2. Consequently, the maximum required integration 
point in the infinite direction are six and nine, respectively, 
for maximum allowable errors of 10'2 and 10'3.

5.4.2 Non-singular Oscillatory Integrals

Evaluations of integrals with oscillatory integrands over 
unbounded domains are beset with difficulties. Since the 
fundamental solutions and decay function used in the dynamic 
analysis contain complex exponential terms, the integrand 
consists of positive and negative quantities. Gauss-Legendre 
quadrature is clearly inadequate for such problems because of 
the large number of sampling points required and, consequently, 
excessive computational time. In the present study, integrals 
over infinite boundary elements were computed in a piecewise
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manner between successive zeros of the integrand, as described 
earlier. For this purpose, the spatial integration was carried 
out over six-noded curvilinear patches, as shown in Figure
5.12. Consequently, the value of oscillatory integral over an 
infinite element can be expressed as a series:

in which, Ij represents the absolute value of jth patch. The 
characteristic of this series is that all the terms are 
positive and slowly decrease in numerical value as j increases.

For illustration purpose, the analogous integral

over an infinite element is considered. It should be noted 
that the integrands are complex-valued numbers. As mentioned 
earlier, for each component of TjjDd, the zeros of the real part 
and the imaginary part are at different positions. For the 
sake of brevity, the example presented here is limited to the 
real part of T13Dd. The integrals over an individual sub­
element are alternating positive and negative, as illustrated 
in Table 5.2. Numerical studies revealed that by normal means 
the sum of more than 1000 terms is needed to obtain a 
convergent result, accurate to within 0.1%(Figure 5.13). The 
upper and the lower bounds are the envelopes of the sum of the 
infinite series. Clearly, this approach is impractical.

An efficient and accurate integration scheme based on the Euler 
transformation(Bromwich, 1908) has been used in the present 
study to accelerate this process. According to this

J=X0-Xi + X2-J3

E (5.24)

(5.25)
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transformation, the infinite series, Equation (5.24), can be 
written formally

I=I0-I1 + I2.

= - J0- - A J 0 + - A 2J0. . . . + ( 1)P̂ -Ap~1J0 (5.26)2 0 4 0 8 0 2P

where

(5.27)

A L+1 Jj-=A LIj+1 ~ A LIj (5.28)

In order to illustrate the merit of the Euler transformation, 
the integral, Equation(5.25), is reconsidered. It should be 
noted that, in order to improve the accuracy of this method, 
it is not necessary to begin the Euler transformation with the 
first term. When the transformation starts from the third 
term, the sums obtained are given in Table 5.2. This example 
emphasizes that highly accurate results can be achieved, with 
dramatically reduced computational effort, by integration over 
only five patches, using this method. The difference between 
the result of the Euler transformation and a thousand terms of 
the original series, Equation(5.24), is approximately 0.1%.

5.4.3 Singular Integrals

Singular integrals over infinite elements can be computed by 
subdividing the integration domain into a singular finite 
region and an infinite non-singular region. The former can be 
carried out by means of the sub-division and transformation 
method, while the latter can be computed by the method 
described above.
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An important feature to point out in the discretized boundary 
element formulation is that, as shown by Beer and Watson (1989) , 
the integral

J TfjdS
i

over an infinite boundary element is unbounded. This 
difficulty has been solved semi-analytically in this thesis by 
exploiting the anti-symmetry of the traction kernel over the 
complete semi-infinite surface, rather than considering 
individual infinite elements. As shown in Figure 5.14, the 
principal idea is to zone the far-field into two regions, SA 
and SB, defined by a circle of radius 5 centred at the current 
source point. It is essential that SA contains SF. Each 
infinite element is then divided into a finite subelement and 
an infinite region; the union of the latter is SB. Integrals 
over each finite subelement can then be computed without 
special difficulty, while the geometrical symmetry of SB 
enables us to carry out the integration analytically with 
respect to polar coordinates(See Appendix 5.2) . After some 
rather lengthy manipulations, it is found that only the 
diagonal terms of the solutions, a 3x3 matrix, are different 
from zero. The non-zero elements of this matrix (Qy) are as 
follows:

Q11=Q22 = -
(y3-x3) • (4v-5) 

8 6 (1—v)

Q33 = -
-l*(y3-x3) 3-362 (y3-x3) *(l-2v) 

12-63 (1-v)
(5.29)

Clearly these values are bounded and for surface foundations 
they are identically zero.

178



CHAPTER 5 INFINITE BOUNDARY ELEMENTS

5.5 ILLUSTRATIVE NUMERICAL EXAMPLES

5.5.1 Displacements Due To Uniformly Distributed Load

The applicability of the infinite static boundary element is 
verified by calculating the vertical displacements at the 
smooth surface of an elastic halfspace due to a uniformly 
distributed vertical load p acting on a square area(2ax2a). 
Analytical solutions for points beneath the foundation have 
been given by Giroud(1968).

Three approaches have been used to analyze this problem:
1) Analysis based on the assumption of "relaxed" boundary (for 
example, Mohammadi and Karabalis, 1990), which neglects the 
contributions of the free surface and the horizontal 
displacements at the soil-foundation interface;
2) The conventional boundary element analysis, using a 
truncated mesh of size 12axl2a; and
3) The infinite boundary element analysis, using single rings 
of finite boundary elements and infinite boundary elements, 
respectively, to model the free surface of the halfspace.

Preliminary numerical studies of this particular problem reveal 
that the computed values are practically insensitive to the 
number of elements for the discretization of the foundation. 
In the present study the foundation is discretized by 2x2 
finite boundary elements. Results of these three sets of 
studies are given in Table 5.3.

Excellent agreement with analytical solutions are achieved by 
using infinite boundary elements at very low computational 
cost. Smaller displacements(by comparison with analytical 
solutions) are predicted by analyses using a truncated mesh and 
the relaxed boundary. The reason is that, in these two 
approaches, additional constraints have been imposed on the 
boundary of the mesh and the interface between the soil and
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foundation, respectively.

Of particular interest is that the three sets of numerical 
results for incompressible medium are identical with the 
analytical solution. This is because, for this particular 
case, integrals over the free surface are zero and no shear 
stresses exist on the soil-foundation interface. Thus the 
truncation of the mesh introduces no error to the results. 
Consequently, for surface foundation problems, the contribution 
of the free surface of the elastic halfspace can be neglected 
for incompressible material. However, as the material becomes 
more compressible the error of numerical results increases, for 
both studies of the relaxed boundary and the truncated mesh. 
This observation suggests that analyses based on mesh 
truncation or relaxed boundary should be used only for problems 
when the material is incompressible or nearly so.

5.5.2 Vertical Static Stiffnesses Of Square Foundations

The calculation of static stiffnesses of rigid foundations 
forms an essential step in the analysis of machine foundations. 
However, analytical solutions to three dimensional problems are 
limited to the circular foundation resting on a smooth 
halfspace, Poulos and Davis(1974). Approximate solutions for 
smooth rectangular foundations have been presented in the 
literature. Gorbunov-Possadov and Serebrjanyi(1961) compute 
static stiffnesses of rectangular foundations by using a double 
power series to approximate the distribution of traction along 
the soil-foundation interface. Goodier and Hodge(1958) present 
upper and lower bounds for the vertical stiffness of rigid 
square foundations. The lower bound is equivalent to the well- 
known "equivalent circle approximation". Analytical solutions 
for perfectly welded foundations are not available in the 
literature.
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In the present study, the truncated discretization scheme and 
the infinite boundary element, respectively, are used for 
evaluating the vertical stiffness of a 2Bx2B square foundation. 
The Poisson's ratio of the soil is 0.25. Smooth soil- 
foundation contact is assumed.

The effect of the size of finite boundary element mesh in both 
approaches was considered by using the same discretization 
scheme for the foundation and increasing the mesh-foundation 
ratio Mr:

(The dimension of the mesh)
(The dimension of the foundation)

As shown in Figure 5.15, it is apparent that the mesh- 
foundation ratio has negligible influence on the infinite 
element analysis. However, this study reveals the very slow 
rate of convergence of the truncated mesh approach. In the 
truncated meshes studied, the increase of mesh size does not 
reduce the significant difference between results of these two 
approaches. This observation suggests that special care must 
be exercised in interpreting the results of convergence 
studies.

Figure 5.16 shows the variation of the computed stiffnesses 
with the number of elements, NfxNf, used for the discretization 
of soil-foundation interface. For smaller values of Nf, the 
interface discretization has significant effects on both 
approaches using finite boundary elements and infinite 
elements. The main reason is that rigid foundation problems 
have a solution with singularities in the traction field and, 
consequently, the usual shape functions are not able to 
describe the sharp variation of traction in the solution. 
However, Figure 5.16 reveals that numerical values computed 
with at least 6x6 elements are reasonably accurate.
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The values computed by the infinite element analysis using Nf 
= 8 are presented in Figure 5.17. Excellent agreement with the 
above mentioned solutions are obtained. This example clearly 
demonstrates the merit of infinite elements since finer 
interface discretization is possible(few elements are needed 
to model the free surface).

5.5.3 Vertical Dynamic Stiffnesses Of Square Foundations

The vertical stiffnesses of rigid square surface foundations 
(of dimensions 2B) resting on an elastic halfspace were 
determined to illustrate the applicability of the infinite 
element formulation. Perfect bond between the foundation and 
the soil is assumed. The contact area was uniformly 
discretized with square elements with dimensions less than 1/4 
Rayleigh wavelengths(a minimum of 8x8 elements). Single rings 
of finite boundary elements and infinite elements were used to 
model the near field and far field, respectively. The minimum 
number of degrees of freedom in these analyses is 1443. 
Symmetry conditions were taken into account to save 
computational time, and a Poisson's ratio of 1/3 was used 
throughout.

The computed impedance functions are referred to the centre of 
the foundation and can be written as:

KV=GB (kv+ia0cv) (5.30)

in which, kv and cv are the dimensionless stiffness and damping 
coefficients, respectively, of the impedance functions. Figure 
5.18 and 5.19, respectively, depict the variation of stiffness 
coefficients and damping coefficients with respect to a0. The 
numerical results obtained by Dominguez and Roesset(1978) and 
by Mita and Luco (1989b) are also indicated. The former is 
based on the full-space fundamental solutions and a truncated
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model. Because halfspace Green's functions were used in the 
latter study, no free surface discretization was needed but 
considerable calculation was necessary to compute the Green's 
functions since they are not in closed form. Both studies 
employed a simple discretization scheme based on assumed 
constant field variables over each element. For these 
frequency problems the agreement between their results and 
those obtained here is good. In general, the stiffness 
coefficient of the present study are closer to those obtained 
by Mita and Luco(less than 5%) than to those obtained by 
Dominguez and Roesset. For a0>l, larger discrepancies exist 
between the damping coefficient of Dominguez and Roesset and 
those of Mita and Luco, which are close to the results of the 
present study.

An illustrative example of the spatial variation of the 
vertical displacements outside the immediate vicinity of the 
foundation for a dimensionless frequency of 3.0 is given in 
Figure 5.20. The continuity of the magnitudes and phase of the 
displacement between the finite and infinite domains is 
evident.

5.6 CONCLUSIONS

This chapter describes a novel boundary element solution of the 
response of machine foundations using infinite boundary 
elements to describe the far-field displacement behaviour 
outside the immediate vicinity of the loaded area, coupled with 
the full-space fundamental solution for harmonic point loading. 
Based on analytical solutions for halfspace problems, the 
static decay functions have been presented in this chapter. 
A novel mapping technique is then developed to transform the 
infinite element onto a unit square. An order adaptive 
integration criterion was also developed in order to obtain 
accurate numerical results with minimum cost. The dynamic
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decay function assumed in the analysis is based on Rayleigh 
wave attenuation away from the centre of the foundation. 
Integrals over the infinite boundary elements are computed 
between successive zeros of the integrand and an Euler 
transformation has been used to accelerate this slowly 
convergent procedure.

Because of its simplicity, the infinite element has great 
potential advantages in analyzing unbounded problems by the 
boundary element method. In particular, two-dimensional 
infinite elements are capable of modelling the unbounded 
surface of three dimensional problems. In this study, the near 
field can be modelled by finite boundary elements surrounding 
by a single ring of infinite elements. Because the 
displacement behaviour of far field was described by the nodal 
values of finite boundary elements, no additional degrees-of- 
freedom are introduced to model the infinite region of the 
halfspace problem. Consequently, the use of infinite elements 
makes it more feasible to analyze high frequency problems since 
small size quadratic elements are needed to discretize the core 
region only.

Illustrative results for square foundations have been presented 
to demonstrate that the infinite element described here is 
capable of producing accurate and efficient boundary element 
solutions for the response of machine foundations.
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Appendix 5.0: Derivation of The Discretized Boundary Element 
Formulation

The discretized boundary element formulation involving infinite 
boundary elements is given as follows:

8 8 8 
cuui=Y, E  ci . /GiA ds+E  E  ci«/GiA d5-E  E  ui J TuN«ds

M* a-l F M* a-l F Mf a= -̂ F

3
- E E v f T^dS-Y, U.jT^.dS-Y E  uiafTijMaDddS
M* a1 F M* F M! a_1 J

-E  E  Ui«- f Ti}Ma-DddS (AS . 0 -1
M' a' I M* I

in which, F and I refer to finite and infinite regions, 
respectively; the superscripted prime and asterisk denote non­
singular and singular quantities. It should be noted that 
integrals involving the displacement fundamental solution over 
the infinite boundary elements have been discarded since, as 
described earlier, these are identically zero.

Because node a* of each strongly singular element corresponds 
to the source point, i.e., uiQ* = Uj, the discretized boundary 
integral equations can be written as

{cv E  / rijw«-ds+E  / riA -^ ds}ui
M* F M* I

8 8 8 
=E E  t i J E  tiafGijNadS-Y E  Ui J TijNadS
M1 a=l p m* a=l p a=1 p

3
-E  E  ui«'f TuNa'd3-Y  E  ui.f  t w s
M* a' F M1 a-l j

-E  E  ui J TijM«>D<ids
M* a' I

185



CHAPTER 5 INFINITE BOUNDARY ELEMENTS

The strictly diagonal block, the left hand side of Equation 
(A5.0-2), can be indirectly determined by considering the rigid 
body motion. Under static conditions, the rigid body 
translation leads to the result:

c«=-/TtjdS

= -|rfjdS-|TfjdS-|TfjdS (A5 . 0-3 )

in which, refer to Figure 5.3, SF represents the core region, 
Sj the far-field, and SH the hemispherical surface with radius 
approaching infinity. It should be noted that decay functions 
are not incorporated into equation(A5.0-3) because they are 
incompatible with the rigid body translation technique.

The discretized form of Equation(A5.0-3) can be written as: 

C« = -E  £  / TuNc'dS-Y: / TljK-dS-'E f  TljdS
M* a' F M* F M1 F

~E /  TfjdS-EE  /  ̂ jK'dS-E  / (A5. 0-4)
m ' I M* a' I M* I

or, by moving strongly singular integrals to the left hand 
side,

cii+£  f ^ a - d S + E  / Tifa'dS
M* F M* I

= -£ E  /TtiK'dS-E f TfjdS
M* a' F M< F

-EflljdS-EEf^fa'dS+jZij (A5.0-5)
M/ I Mm a/ I

in which, 1/26^ is the analytical value of the azimuthal 
integral over SH.

Because Cy is the same for both static and harmonic loading 
cases, Equation(A5.0-5) can be introduced into Equation(A5.0-
2) . After some manipulations the boundary element formulation
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is of the form:

m! F M* a7 F M* F

~E f^ jdS -E E  flllK'dS+E f  (TijDj-TfpM'.dSbu,
t /»/ t M* -rM I M* a1 I M l

8 8 8 

E  E  ci J GijN*ds+E  E  tijG ij^ds-E  E  ui J TijN*ds
M/ a= 1 F M* a= 1 F M/ a=1 F

3
- E  E  “ia'J TUNa'dS-E E  ui« /TiJM^ S - E  E  Ui*jTijM*'DddS
M* a7 f M1 a=1 I M* a7 J

(A5.0-6)

The discretized formulation for static analyses can be obtained 
by replacing dynamic fundamental solutions and decay function 
with their static counterparts:

(•a2
M' F M* a' F
E  fTijds-E E  f  ̂ X 'ds
vrf r? IA* «/

- E  MjdS-E E  f T ĵK'dS+E f TvK- <De-l) dshu,
»/ *V M-* TM' I AT a' I M I

E  E  fci 'tefadS+E E  ciafGljNadS-E E  ul.M !jN,dS
Mf o-l f M* a~ 1 F M1 a-l f

E  E  ui« '/Tifo'ds-E E  E  ui< f ds
M* a7 F m ' a-l J M* a7 j

(A5.0-7)
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Appendix 5.1: Semi-Analytical Integration of / Ds/r2 dS Over
Infinite Elements

Infinite Element

Source point
S

Angle AOX = (3lr Angle BOX = (32l Angle SOX = 0, Angle EOX = 6, 

SO = a, OE = r, OP = r0.

Figure A5.1-1 Semi-Analytical Integration Over Infinite 
Element

As shown in Figure A5.1-1, a, 0 and h are known for each source 

point S and
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D s= —  s r 5 . 1

r ° sin0
:A5.1-1

According to the Law of cosines, the following relationship can 
be obtained:

R2=a2+r2-2racos (<l>-0) (A5.1-2)

The integral can be written as

f dS= f —  ̂rdrdQ = f -  drdQ (A5 .1 - 3)
J R2 J R2 J R2sin0

Substituting Equation (A5.1-2) into Equation (A5.1-3) will give

-------- 1-------- drd0 (A5.1-4)
J smdJ  r 2-2 raco s  (<t>-0) +a2Pi r0

It should be noted that the integral

f —  ------   dr
Jz r2-2racos (<|)-0) +a2

can be analytically evaluated. Based on the analytical 
solution of Integral 109 (page 246), provided by Beyer(1987), 
this integral becomes

r 1 tan-1 2r~2acos (<t>~Q) T 
asin(<J>-0) 2asin<J)-0) r0

^ acos (<J)-0)= |-j: _ta n -i_s in0____________j I (A5.1-5)
2 a s in  ((j>-0) £ S'»n(t-&)

Consequently, integral (A5.1-4) can be written as
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p2 — ;— - -acos (<J)-0)f • ft w a  ai Sln9 . .. m ----]d0 (AS.1.6)J asin0sin(4>-0) 2 asin(<J>-0)

which can be computed numerically by Gauss-Legendre quadrature.

Reference:
Beyer, W.H. (1987) , CRC Standard Mathematical Tables, CRC Press, 
Inc., Florida.
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Appendix 5.2: Integration of /TjjSt dS over SB

source 
point j

Figure A5.2-1 : The Polar Coordinate System

The traction fundamental solution can be simplified if polar 
coordinates is used. As shown in Figure A5.2-1, the origin of 
the coordinate system is the source point. It should be noted 
that n!=n2=0 and n3=l for points on the far-field and

r,i= Ui-yi) =C°S0 (A5.2-1)

r 2 = (x2-y2) =sin0 (A5.2-2)

I . = ̂ 1  (A5.2-3)
' r

where
Ax 3 =x3-y3 (A5.2-4)
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Substituting Equations (A5.2-1)~(A5.2-4) into 
will give the following expressions for 
fundamental solution:

where

CA y
T1X =----- ^ { 3 c o s 20+ ( l - 2 v ) }

I-

CA y
T22 =----------{3 s in 20+ ( l - 2 v )}

r3

CAx, , (A xJ 2 .
T33 = ------1{--------| _  + ( i - 2 v ) }r3 r2

3CAx,cos0sin0rji _ rp   o12— 2i ;

r* (Ax)2r i3 = — (3cos0-------2—  + ( i - 2 v )  cos0)
r2 r2

(Ax)2
r 31 = —-{3cos0------ 1—  -  (1 -2 v ) cos0l

C' (Ax)2
T23 = —  (3s in0--- -—  + (l-2v) sin0}r2 r2

/-t  ̂a x  ) 2r32 = — -{3sin0-1— - (l-2v) sin0}
r‘

C=- 187t (1-v)

For this particular case, the integrals over SB 
by analytical integration:

Equation (2.24) 
the traction

(A5.2-5)

(A5.2-6)

(A5.2-7)

(A5.2-8)

(A5.2-9)

(A5.2-10)

(A5.2-11)

(A5.2-12)

(A5.2-13)

can be computed
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jT1±dS=CAx3 J [ 3 c o s 20 +  ( l - 2 v )  ] J — idrdQ

jt 2nCAx
6 0

/»
1J [ 3 c o s 20 +  ( l - 2 v ) ] dQ

A x 3 (4v-5) 
8 6  ( 1 - v )

2n
J T22dS=CAx3 J [ 3 s i n 20 + ( l - 2 v )  ] f-^rdrdQ

CAx3 2n
6 0

J [ 3 s i n 20 +  ( l - 2 v ) ] d 0

Ax3 (4v-5) 
8 6  ( 1 - v )

r r r . C( Ax,)3 CAx3(l~2v) 7_/ T33dS= / I [---- -— +   ] rdrdd
I i r5 r3

27t
f r C ( Ax3)3 (l-2v) CAx3= [--- +--------- *-----]c?0J 635

-1*(Ax 3) 3-362A x 3‘(l-2v) 
1 2 - 6 3 ( 1 - v )

(A5.2-14)

(A5.2-15)

(A5.2-16)

It is easy to show that the off-diagonal terms are zero, for 
example,
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2n ~
3cos0sin0JTlzdS=CAx3j'J 3cos0 s in 0 rdrd6

s ,  0  8  ^

3CAx32n
5 0

Jcos0sin0c?0=O (A5. *
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TABLE 5.1 : Asymptotic Static Far-Field Behaviour At The 
Surface Of A Homogeneous Halfspace

Z

X

LOAD/DIS PLACEMENT 

TYPES 

(Figure 5.1)

DISPLACEMENTS 

(in cylindrical coordinates)

RADIAL

ur

TANGENTIAL VERTICAL

uz

UNIFORM VERTICAL 

PRESSURE/DIS PLACEMENT l/r - l/r

UNIFORM 

UNIDIRECTIONAL SHEAR 

STRESS/DISPLACEMENT

cos0/r sin0/r cos0/r

LINEAR TORSIONAL SHEAR 

STRESS/DISPLACEMENT - l/r2 -

LINEAR VERTICAL 

PRESSURE/DISPLACEMENT cos0/r2 sin0/r2 cos0/r2
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TABLE 5.2 EULER INTEGRATION OF OSCILLATORY FUNCTION

/ T ^D jdS
CO

1000
Y  lj=0 .708220-10"3
j=i

j-th
patch

C->Oi—1Xi-T Sum xlO'3
Sum by Euler 

Transformation 
xlO"3

1 0.939790 0 . 939790

2 -0.440216 0.499574

3 0.391252 0 . 890826 0.695199

4 -0.344214 0.546612 0.7069585

5 0.299656 0.846268 0.7072685

Euler Transformation:

I=I0-I1+I2

where

= —  J0- —  AJ0 + —  A 2J0. . . . + ( 1)P+1-Ap~1J0 2 0 4 0 8 0 2P

1'1!

A i+1j.=ALT- ,-ALI ■“ j j+i j

1 9 6



TABLE 5.3
__________________________ CHAPTER 5 INFINITE BOUNDARY KT.KMF.NTS

Values of Dimensionless Displacement, Gu/pa

[ CORNER ]

V
Relaxed

Boundary
Finite

Boundary
Element

Infinite
Boundary
Element

Analytical
solution

0.0 0.4208 0.5147 0.5609 0.5611
0.1 0 .4052 0 .4729 0.5047 0.5050
0.2 0 .3857 0 .4292 0.4486 0 .4489
0.3 0 .3607 0 .3831 0.3926 0 .3928
0.4 0.3273 0 .3340 0.3366 0 .3367
0.5 0.2806 0 .2806 0.2806 0.2806

[ CENTRE ]

V
Relaxed

Boundary
Finite

Boundary
Element

Infinite
Boundary
Element

Analytical
solution

0 . 0 0.8415 1.0298 1.1265 1.1222
0 .1 0.8105 0.9471 1. 0131 1.0100
0.2 0.7714 0.8598 0.8998 0 .8978
0.3 0.7213 0.7672 0.7866 0.7855
0.4 0.6545 0.6684 0 . 6736 0.6733
0 . 5 0.5611 0.5611 0.5611 0.5611
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UNIFORM VERTICAL PRESSURE UNIFORM VERTICAL DISPLACEMENT

UNIFORM UNIDIRECTIONAL SHEAR STRESS

p2 MAX.

LINEAR TORSIONAL SHEAR STRESS

UNIFORM UNIDIRECTIONAL SHEAR DISPLACEMENT

LINEAR TORSIONAL SHEAR DISPLACEMENT

LINEAR VERTICAL DISPLACEMENT

+P? MAX.

LINEAR VERTICAL PRESSURE

Figure 5.1 Load/Displacement Types(from Poulos and Davis,
1974)
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loaded area

Figure 5.2a: The static decay function

Analytic al 
Approx im ate  
Reference point

-4—'
c
CD

£0
( JO
Cl
COQ
OO

0.40>

0.0
1 53 9 1 35 7

D is ta n c e ( r /rG )

Figure 5.2b: The Far Field Displacement Behaviour
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SIoo SF

SH

Figure 5.3 The Boundary of The Halfspace Model

arbitrary point

decay centre
reference point

fictitious decay centre

Figure 5.4 Fictitious Decay Centre
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oo

00

Infinite Element
~ “I “
__i ------ ! _ _ r

Figure 5.5 The Infinite Boundary Element
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oo

Infinite Elementnode

arbitrary point

reference point
00

decay centre

Figure 5.6: Interpolation of displacement over an infinite
element
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oo

node
Infinite Element

decay centre (a)

00

L
(~f 1 , 4- 1 ) CO

 ̂ n inf in ite
e lement

- 1  ,-1 )
(c)

( - 1 , - 1 )

b

+  1 , +  1

a

(d)

Figure 5.7: Transformation of the infinite element into an
unit square
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u  -

x • G n —  Point 
• i F. B.E. hooh nod#

12 - /
,'x

10 -
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✓ 'x
X  /  * /
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x**

^  X
*  S

* X,
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<• A '  *
<r

H------- H
8 10 12 14

Figure 5.8 Distribution of Gauss Points, 3x3 Integration 
Rule, The third row of Gauss points are located at 140.
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oo

six-noded patch

zeros of the integrand

Figure 5.9: Sub-division of infinite elements 
Y

X:

Figure 5.10: Regula Falsi Method
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"H

8

Figure 5.11 Error Contours Of Numerical Integration Over 
Infinite Elements^ 3 and 10 Integration Orders In The 
Circumferential and Radial Directions, respectively.
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Figure 5.12 Zeros Of Integrands T31Dd and T32'Dd, Vs = 141 m/s, 
Frequency= 70 rad/s, Field Point at (-1,-1), Full Lines: 

Real Part, Broken Lines: Imaginary Part.
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Upper bound

0.7

0.6
UJ

Lower boundviS 0.5a>
15 0 .4>

0.3

0.2

0.0 2 3 5 6 7 8 9 1 04

NO. o f subelem ents

sum of 1 000 subelem ents=Q .7D822E—3

.0

0.9

0.8
Upper bound

0.7
Lower bound

0.6

0.5

0 20 40 60 1 00 1 20 1 40 1 6080

NO. o f subelem ents

Figure 5.13: Bounds Of Integration Values, a0 = 0.5, 
Integrand=Real Part of

208



CHAPTER 5 INFINITE BOUNDARY ELEMENTS

oo

Figure 5.14: Zoning Of The Far Field
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  T runca ted  F.B.ESize of Mesh .........  I.B.E. analysis
2x2 foundation-----------  .-------------------

7.1

7.0

6.9

6.8

6.7

6.6 87652 3 4

M esh-founda tion  Ratio 

Figure 5.15: Effect of the size of mesh
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Figure 5.16: Effect of the discretization of foundation
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Figure 5.17: Static stiffness of square foundation
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Vertical Vibration 
v=1 / 3

  The present study
■ •  —  Mita and Luc©
- •  —  Dominguez and Roesset
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Figure 5.18: The Variation Of Kv With Respect To a0
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Figure 5.19: The Variation Of Cv With Respect To a0
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DISPLACEMENT (Gu,

0.5

- 0.5

-1
0 2 4 6 8 10

RADIAL DISTANCE (M)
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p red icted  real part " pred icted  im a g ,p a rt

Figure 5.20: Vertical Displacement Fields, a0=3, 12x12 Finite 
Size Mesh, 8x8 Elements For The Foundation.
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CHAPTER 6 NUMERICAL IMPLEMENTATION

CHAPTER 6 

NUMERICAL IMPLEMENTATION

6.1 Introduction

The general theory and discretized formulation of the boundary 
element method for elastodynamics has been presented in 
previous chapters. The numerical integration techniques and 
infinite boundary elements proposed are shown to be capable of 
providing reliable results but, in practice, the merit of 
boundary element methods can only be fully recognized when they 
are implemented efficiently. This chapter describes the 
special purpose FORTRAN program for the steady-state dynamic 
analysis of three-dimensional rigid rectangular foundations, 
which was developed for the purposes of this study. This 
program can analyze problems of flexible foundations as well 
by prescribing appropriate (traction) boundary conditions at 
the soil-foundation interface; however, the work in this thesis 
concentrates on the more difficult rigid foundation case.

Rather than giving explicit programming details of the program 
(which now contains over 6000 lines of FORTRAN code), some 
important aspects pertaining to efficient programming 
techniques in boundary element methods are discussed further. 
Attention here is focused on the generation of the system 
matrices, which consumes the major part of the computational 
effort. In the present study, the prescribed boundary 
conditions are incorporated during the assembly of the system 
equations. The advantage of this approach is that the cost of 
analyses and the required computer storage can be significantly
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reduced, which enables the program to analyze larger problems, 
that is, more degrees of freedom. Furthermore, this scheme 
provides an effective method to deal with a well-known 
difficulty in the boundary element analysis, namely, problems 
with traction discontinuities at corners and edges. The 
program takes advantage of symmetry conditions, if any, in 
order to reduce the size of the system equations.

Computational efficiency of computers has been significantly 
improved by recent developments in computer technology- 
vectorization and parallelization. Vectorization can greatly 
increase the speed of program execution (by pipelining 
instructions), without requiring multiple independent(i .e ., 
parallel) processors(Polychronopoulos, 1988) . Since it is more 
convenient to convert a scalar-series FORTRAN program into 
vectorized form, attention in this study was given to 
vectorization. Experience of vectorizing the boundary element 
program using the IBM 3090-150 Vector Facility is described. 
In general, speed-up due to vectorization reduces computational 
times by a factor of about three.

6.2 Structure Of The Program

The numerical implementation of various boundary element 
analyses has been presented by Banerjee and Butterfield(1981), 
Brebbia (1980) , Manolis (1989) , and Becker (1992) . The main steps 
are, in general:

(a) Initialization
This is essentially an input operation.

(b) Discretization
Representation of the geometry and field variables by a finite 
number of (nodal) values, together with an assumption of 
spatial interpolation between nodes.
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(c) Numerical evaluation of integrals
This leads to the generation of the system equations:

[U]{t\=[T]iu} (6.1)

where [U] and [T] contain the coefficients obtained by 
calculating the integrals involving the fundamental solutions 
Gjj and Ty, respectively. Arrays {t} and {u} represent the nodal 
tractions and displacements.

(d) Solution of the system matrices
This can be performed by transferring all the unknown nodal 
values in Equation(6.1) on the left and the known ones to the 
right, namely,

[A] lx}= [B] {Y}={b} (6.2)

where matrix [A] is composed of the columns of [U] and [T] 
which multiply the unknowns; and, {x} and {y } represent the 
unknown and known nodal quantities, respectively. The solution 
of these sets of simultaneous linear algebraic equations can 
usually be obtained without special difficulty in boundary 
element analyses.

(e) Post-processing
This step includes computations of displacements and tractions 
at each boundary node and, for example, internal results at 
selected points.

The program developed in the present study does not follow 
these steps in precisely this way. The major difference occurs 
in the procedure used to establish the system equations. In 
practice, the matrix [A] has been formed without the need to 
generate the system matrix in its entirety. The elements of 
matrix [B] are also immediately multiplied by the known 
quantities as they are generated and stored in array {b}. A
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simplified flow chart depicting the program structure is given 
in Figure 6.1. The primary subroutines used in the program, 
together with their functions are listed in Table 6.1. The 
general algorithm of the program is directed by a MAIN program 
and several independent modules and MAIN links these modules 
during the execution of the program. The character of this 
modular program makes it possible to facilitate further 
expansion and development. Many common subroutines have also 
been developed to perform specialized tasks, such as standard 
matrix operations and computations of the shape functions, 
fundamental solutions, and the calculations necessary to 
compute the minimum distance between a node and an element. 
In order to obtain highly accurate results, the calculations 
in this program are carried out in double precision arithmetic.

6.3 Pre-Processing

The relatively simplicity of the input data files(by comparison 
for example with FEM files) is one of the significant 
advantages of boundary element methods. The program has been 
consciously implemented to minimize the size of input data 
file. As elaborated in Appendix 6.1, the input data of this 
boundary element program can be divided into the following 
categories:

(1) Title
The title describes the subject of the analysis and appears on 
the start of the output.

(2) Dimensionless frequency a0

(3) Geometrical information related to discretization
The geometrical data which the user must supply the program are 
as follows(see Appendix 6.1 for full details):
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i) the dimensions of the foundation, i.e., XL, YL, and EMB;
ii) the discretization of the foundation, i.e., NFX, NFY, 
and NLAYER; and
iii) the discretization of the free surface, i.e., NLX, NLY, 
NEW, SRAT, and JINF.

The program uses quadratic rectangular elements. It should be 
noted that major changes in the size of two adjacent elements 
or the use of high aspect ratio elements (greater than four) may 
result in numerical instability. In general, best results are 
obtained when element dimensions are gradually increased with 
distance away from singularities(Yokoyama and Zaita, 1992; and 
Karamanoglu and Beswick, 1991) .

(4) Material properties
The properties of homogeneous soil deposits can be defined by 
the shear modulus of elasticity, the Poisson's ratio, and the 
mass density.

(5) Boundary conditions
One of the important steps in the boundary element analysis is 
the description of the boundary conditions. The prescribed 
displacements at the centre of the rigid foundation are given 
by the array DISP. Two types of contact between soil and 
foundation, namely, the welded contact and the smooth contact, 
can be considered in the present study and will be discussed 
further in the next section. Furthermore, the parameter NPART 
can be used to simulate two extreme cases relating to embedded 
foundations, i.e., full height sidewall contact foundations and 
trench foundations(no wall contact).

A subroutine DATGEN has been developed in order to read the 
input file and detect certain types of data error in the input 
file. This subroutine automatically establishes the boundary 
element mesh with non-equal size rectangular elements and, if 
required, infinite boundary elements(Figure 6.2) . Further
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more, it generates additional data(see Appendix 6.2) for the 
three-dimensional analysis of rectangular machine foundations.

It is worth noting that a large amount of data is generated 
during the execution of a boundary element program. In 
particular, the system matrix [A], which occupies significant 
memory, needs to be accessed many times during program 
execution. In order to save execution time, all data are 
stored in high-speed in-core memory. This is the simplest and 
most effective method to manage data, although it is limited 
by the capacity of the computer being used. For the purposes 
of this study, this limits the maximum dimensions of the 
program to 2 56 boundary elements(or 2500 degrees of freedom). 
It is of course possible to employ auxiliary memory but this 
will incur computational cost.

6.4 Boundary Conditions

6.4.1 Contact Condition At Soil-Foundation Interfaces

The boundary conditions needed for the machine foundation 
problem are zero tractions on the free surface of the halfspace 
and the contact condition between the soil-foundation interface 
Sc. Two different(rigorous) contact conditions are considered, 
namely, perfectly smooth contact and perfectly welded contact. 
The former condition implies zero shear stresses over the 
contact area, while the latter restricts the lateral 
displacements along the interface. In addition, in the 
literature, so-called "relaxed" boundary are often invoked in 
which certain degrees of freedom are simply ignored(e.g ., 
Karabalis and Beskos, 1986; and Mohammadi and Karabalis, 1990). 
These (approximate) analyses result in substantial reductions 
in complexity and computational costs but at the expense of 
sacrificing rigour; they do not conform to any real (physical) 
boundary conditions and are not, in general, considered further
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here. Without loss of generality, in the following a rigid 
embedded foundation subjected to vertical displacement, wz, is 
assumed in order to show the nature of contact conditions 
(Figure 6.3a).

Welded contact

In general, assuming there is no separation and sliding, the 
displacements {up} of a point at the welded contact area Sc must 
satisfy the compatibility requirement:

{u^}=[5T]{C7f} (6-3)

where

{up}={ux, uy, u)T (6.4)

Ay/ Az, Qx,Qy, e z}T (6 .5)

in which are the translational components i at the centre of 
the foundation and Gj are the (small) rotational components 
with respect to the i-axis. The transformation matrix [ST] is:

\l 0 0 0 d3 -d21
[s T] =|0 1 0 -d2 0 cfj (6.6)

Lo 0 1 d2 -d± OJ

where

di=xni-xci <6-V)

in which, xni and xci are the coordinates of the node and the 
centre of the foundation, respectively.

As shown in Figure 6.3b, if {UF} ={0,0,wz,0,0,0}, the boundary
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conditions of any point at the soil-foundation interface can 
be prescribed as:

Boundary conditions at the soil-foundation interface resulting 
from the assumption of welded contact can be rigorously 
modelled by boundary element methods. However, because it is 
difficult to deal with these boundary conditions, the 
application of analytical methods to machine foundations 
problems with welded contact conditions has received little 
attention in the literature.

Smooth contact

As shown in Figure 6.3c, since no friction exists in the smooth 
soil-foundation interface, the boundary conditions at the base 
mat are

(6 .8)

tx=0
ty=o
u=w,

(6.9)

and, for the sidewalls with outward normal \nl |=1,

(6 .10)

while for the sidewalls with outward normal |n2 |=1,
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Uy= 0 (6.H)

Analytical solutions for the response of surface foundations 
on smooth halfspaces have been reported in the literature(eg., 
Arnold, et al, 1955/ Pak and Gobert, 1991). Boundary element 
methods can of course analyze machine foundations problems with 
smooth soil-foundation interfaces without difficulty.

6.4.2 Difficulties In Modelling The Traction Discontinuity

In general, traction discontinuities occur where the shape of 
the boundary changes abruptly, or when the boundary conditions 
change suddenly, or when both of these factors apply. The 
boundary condition for a smooth embedded foundation(Figure 6.4) 
is a typical example of such traction discontinuities. It is 
worth noting that the use of higher order elements in boundary 
element methods implies continuous function values between two 
adjacent elements. Consequently, as shown in Figure 6.4b and 
6.4c, the tractions at nodes j and k produce anomalous 
tractions over the traction free element b and the smooth 
sidewall element g. The difficulty arises in the definition 
of boundary conditions at nodes j and k, because obviously it 
is impossible to impose two contradictory boundary conditions 
at one node. Many practical problems involve corners and edges 
so this is a common difficulty. Special procedures are needed 
to deal with the traction discontinuity; otherwise numerical 
techniques will produce inaccurate results.

Similar difficulties are encountered in a large class of 
boundary element analyses, for example, potential problems, as 
described by Banerjee and Butterfield(1981) ; Becker(1992) ; 
Davies(1993); and many others. Often, this problem is treated
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by using double nodes(Ayala and Gomez, 1979; Crotty and Wardle, 
1985; and Mitra and Ingber, 1993) . Using this concept of 
double nodes, it is then possible to assign different traction 
values at nodes 3 and 3' (see Figure 6.5); while these two 
boundary nodes have the same coordinates. In two dimensional 
problems, the use of double nodes is evidently feasible, 
although at some computational cost. However, it is more 
cumbersome to use this technique(multiple nodes) to describe 
the traction discontinuities in three dimensional analyses.

Several alternative methods have also been reported in the 
literature to treat this problem. Jaswon and Symm(1977) "round 
off" corners to obtain a smooth boundary in the analysis of 
potential problems. Watson(1979) used small elements to model 
the region in the vicinity around the corner in order to 
localize the error. Rego Silva, et al(1993) , like many others, 
use discontinuous elements(non-conforming elements) to solve 
this difficulty. Some techniques (e. g . , the use of small 
elements in the vicinity of corners) must be used with great 
care since they may be a potential source of numerical 
instability. For more details, reference is made to Davies 
(1993) .

6.4.3 The Elimination Method

In the present study, the problem of traction discontinuity is 
circumvented by the apparently novel method of directly 
imposing the boundary conditions on each boundary element 
during the assembly of the system equations. This numerical 
technique is in essence a refinement of the multiple node 
method but without increasing the number of degrees of freedom. 
Without loss of generality, a simple example is given to 
demonstrate the basis of the technique. As shown in Figure 
6.6a, linear elements A and B are utilized to model a welded 
contact area and the free surface, respectively. Since the
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nature of boundary conditions changes at the interface between 
two elements, a double node 2' is introduced to circumvent the 
problem of traction discontinuity(Figure 6.6b). However, nodes 
2 and 2 1 have the same displacement because the displacement 
field is continuous across the elements. This implies that the 
traction discontinuity does not raise any problem in the 
assembly of [T] matrix. As a consequence, the resulting system 
equations for this simple case are

[U] 6 x 8 ^ 8 x l - [ I7] 6x6^6xl ( 6 . 1 2 )

in which,

I Oil U12 u13 u14 u15 u16 u17 U181
I ̂21  ...............028 I
I u3 1 .................. u38\

[C7]*= 31|o4 1 ................. U,81
|o5 1 ................. U581
l̂ 61 U62 u63 u6i u65 u66 u61 u68\

ni ni rri 7̂ ^
•̂ 11 12 13 14 15 16

[ r] =

21

31

•26
. r.36

•41

•51

T,46
. Tt56 I

L T T T T T T \^ e i  6 2 63 64 65 -166J

(6.14)

(t) {tix, tiy, t2x, t2y, t3x, t3y, t2/x, t2/y) (6 • 15)

and

{uMulx, ul y , u2x, u2y, u3x, u3y}3 6 .16)
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The extra two columns in [U] * matrix, i.e., columns 7 and 8, 
arise from the tractions defined at the double node 2'.

It should be noted that if the tractions at the fictitious 
double node 2' are known, then after some mathematical 
manipulation, the system equations can be written as follows:

[U] [U]it)+{^= [T]{u) (6 .17)

where

foil u12
a21

[U] =

1̂ 51
Ltfei ui

'13

62

'14

u62 u<A ut64

'16
u.26
U:36
U,46

65
5̂6 I

(6.18)

{t} itlx, tly, t2x, t2y, t3x, t2i)T (6.19)

and the constant array is

{M={^?1,i7?2,i7?3,i7?4,i775 ,i7?6}T (6.20)

in which

lk 2̂'x ' °2'y (6.21)

In this simple example, {m } can be eliminated since quantities 
t2’X and t2’y are zero. Furthermore, in most analyses with 
double nodes, the array {m } can be computed without special 
difficulty. On the other hand, it is significant to note that 
elements of the 3rd and 4th columns in [U] are associated with
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node 2 and element A only, i.e., they are independent of 
element B. In addition, the contributions of node 1 to matrix 
[U] , i.e., Uu and Û , are of no importance because Uuxtlx and
Ui2xtly are zero (traction free element) . This implies that zeros 
can be imposed in the columns in [U] matrix, which corresponds 
to the zero traction components. Consequently, the resulting 
system matrices [U] and {t} will be:

0 0 U13 U,A U,K U,14 '15 '16

[U ] =

0 0 
0 0 
0 0 
0 0

63 64

a26
U,36
a46
Ut56

Lo o a, ueA a'6 5 66 '

(6 .22)

and

{tl {0 ■ , 0 ■ , t'2x/ ̂ 2y' 3̂3̂ (6.23)

In view of the above discussion, these characteristics
suggest that the principal ideas of the double node method can 
be achieved simply by omitting the integrals involving the 
displacement fundamental solution

jGi:jtkdS (6.24)

over particular boundary elements, over which tractions in the 
k-direction are zero. Clearly, incorporation of prescribed 
boundary conditions into the assembly of the system equations 
simulates the traction discontinuities in a rigorous manner. 
The application of the method to three-dimensional boundary 
element analyses is a relatively straightforward operation. 
Although in the case described above, one set of tractions at
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the double node is zero, this is by no means a limitation of 
the method, which is quite general. In addition, where one 
traction set is zero, the omission of some integrals during the 
collocation procedure can save significant CPU time.

6.4.4 Treatment of Corners and Edges

The method described above is applicable to problems of corners 
and edges. For reasons of simplicity, as shown in Figure 6.7, 
a two-dimensional rigid embedded foundation subjected to 
vertical displacement wz is considered. Linear elements are 
used in this example. Smooth contact is assumed at the soil- 
foundation interface. The boundary conditions at the basemat, 
i.e., element C, are:

while at the sidewalls:

f =n (6.25)

<6-26)

It should be noted that the boundary conditions of boundary 
element analyses are prescribed at boundary nodes. The 
treatment of nodes 2 and 5 has been described in the previous 
sub-section. However, the proper prescription of boundary 
conditions at the corners, i.e., nodes 3 and 4, creates 
difficulties in the analysis. Clearly, any attempt to impose 
single-valued traction boundary conditions at the corners will 
result in erroneous solutions, although the displacement 
boundary conditions are, of course, unique. Consequently, the 
appropriate boundary conditions at nodes 3 and 4 are:
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(6.27)

The number of degrees of freedom for this particular problem 
is twelve. It should be noted that the (ix2-l) and (ix2)-th 
columns of the system matrices represent the contribution of 
node i in the X and Z directions, respectively. For example, 
the contribution of element B, which contains nodes 2 and 3, 
will be assembled into the 3~6-th columns of the system 
matrices. However, zeros can be imposed on the 4 and 6-th 
columns in [U] matrix, since tz=0 over element B. 
Consequently, contributions of element B to the [U] matrix can 
be written as:

Similarly, the contributions of element C and D, respectively, 
are :

[ U] 12x12 ~

fO 0 U12 0 U15 0 0 0 0 0 0 Ol
10 0 . 0 . 0 0 0 0 0 0 o|
10  0  . 0  . 0  0  0  0 0  0  o|

10 0 . 0 . 0 0 0 0 0 0  o|
(6.28)

Lo 0 t/., 0 U-. 0 0 0 0 0 o oJ

12x12“

Lo 0 0 0 0 U16 0 U1Q 0 0 0 ol
|0 0 0 0 0 . 0 . 0 0 0 o|
|o 0 0 0 0 . 0 . 0 0 0 o|
l o o o o o  . 0 . 0 0 0  ol (6.29)

Lo 0 0 0 0 £7,., 0 U,a 0 0 0 oJ

and
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[ U] 1 2 x 1 2  -

0 0 0 0 0 0 uin 0 u19 0 0 ol
O O O O O .  0 . 0 0 0 o|
0 0 0 0 0 .  0 . 0 0 0  o|
0 0 0 0 0 .  0 . 0 0 0 0| (6.30)

Lo 0 0 0 0 0 uj7 0 Ujg 0 0 oJ

As described in the previous sub-section, contributions of 
element A and E to [U] matrix can be neglected. Eventually, 
the system matrix [U] can be obtained as follows:

It is significant that all the steps leading to Equation (6 .31) 
are rigorous and satisfy all the specified boundary conditions.

The performance of the method is demonstrated by analyzing a 
three-dimensional embedded square foundation(of dimensions 2B) 
subjected to vertical static loads. The base mat was uniformly 
discretized with 8x8 square elements. Two layers of same size 
elements were used to discretize the sidewalls. Single rings 
of finite boundary elements and infinite elements were used to 
model the free surface of the halfspace. Several embedment 
depths were considered, and a Poisson's ratio =0.25 was used 
in the analysis. The effect of embedment on the static 
stiffness is given in Figure 6.8. It is observed that 
embedment increases the vertical static stiffness of the 
foundation. Corresponding results obtained by Mita and Luco 
(1989b) and Gazetas(1991) are also indicated. The former 
solved this problem by using a coupled BE-FE method while the 
latter presented engineering approximations. The numerical 
results plotted in Figure 6.8 compare favourably with those 
predicted by Mita and Luco(1989b) and Gazetas (1991) .

1 2 x 1 2 ”  f ^  1 2 x l 2 +  1 2 x 1 2  +  t 1 2 x 1 2
(6.31)
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6.5 Matrix Assembly

6.5.1 Numerical Integration Modules

In order to form the system matrices, it is necessary to 
evaluate the integrals in the discretized boundary integral 
equations(Equation 5.20). The structure of the numerical 
integration module is given in Figure 6.9.

6.5.2 Assembly of System Matrices

The system matrices are constructed sequentially for each 
source point/nodal point on the boundary. It should be noted 
that the 3xj-2, 3xj-l, and 3xj-th rows of the system matrices 
are formed by collocation with respect to node j . Without loss 
of generality, given a source point j, the contribution of an 
eight noded element k to the system matrix [U] may be stored 
in matrix [u.jk] 3x24- In general, it consists of eight 3x3 
submatrices, namely,

[u*k] 4[a]lf [a]  ---- [a]8] (6.32)

where submatrix [a] n contains the coefficients relating to the 
node with local nodal number n. Based on the source 
identification number j and the index between local node 
numbers and global node numbers, these submatrices can be 
summed and assembled into the appropriate location within the 
system matrices.

It should be noted that the coefficients of the system matrices 
[U] and [T] may differ by several orders of magnitude, for 
practical problems. In order to avoid excessive round-off 
error, it is important to ensure proper conditioning of the 
matrices by means of appropriate scaling. In the present study 
all the elements of the matrix [U] and the vector {u} have been 
scaled by the shear modulus of the soil, G.
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Since boundary element analyses generate non-symmetric fully 
populated matrices(for single zone problems), limitations on 
computer memory may constrain the use of a large numbers of 
elements. The frontal solvers(Zienkiewicz and Taylor, 1989) 
common to many major finite element codes cannot be used to 
overcome this problem(because they assume symmetry) and in 
consequence it has been necessary to develop special purpose 
codes. For each source point j, there are two submatrices, 
[U-i] 3x3n and [Tj] 3x3n, where n is the number of nodes, obtained by 
summing the integrals derived from the fundamental solutions 
Gy and Ty, respectively. Because half of the boundary 
conditions at each nodal point is known, it is necessary to 
move the coefficients relating to the unknown values to the 
left and the known ones to the right, namely,

3*3jMn*l = 3x3nH Bxl={i,J}3xl (S . 33)

The elements of matrix [Bj] can be immediately multiplied by 
the known boundary quantities {y} as they are generated and, 
subsequently, stored in the array {b1} . This technique 
obviates the need to store the entire system matrix [B], see 
Equation(6.2) . This procedure permits rapid assembly of the 
system matrix [A] . In addition, as described in the previous 
section, problems relating to the traction discontinuities can 
be dealt with sequentially. This procedure provides an 
important improvement in computational efficiency.

6.5.3 Symmetry

The order of the system matrices can be greatly reduced if 
there is symmetry of the problem with respect to one or more 
axes. For homogeneous, isotropic materials, geometric and 
loading symmetries can be easily incorporated, with significant 
computational gains.
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In general, it is best to take account of symmetry during 
assembly of the system matrices. This can be accomplished by 
a condensation process which integrates the contributions of 
reflected elements and performs the assembly of the matrix [A] 
of reduced size. For simplicity, the general procedure is 
illustrated by considering the following matrix equation:

[A] tA fl=ld4>1 (S. 34)

where

'a ll h* to a i3 a i4

1 a 21 a 22 a 23 a 24 1

la 31 a 32 a 33 a 34 1

L<34 i a 42 a 43 <344J

te)={jb1, b2, b3, bj7 (6.36)

and the constant array

(d={c1, c2, c3, c4)t (6.37)

If b3 is the corresponding symmetrical quantity of bt, namely, 
b!=b3, then the following reduced-sized matrices are sufficient 
for the solution of {B }:

lai l + a i3 a i2 a i4

[A] R= | <^21 + a 23 a 22 a 24 1 (6..38
la31+a33 a 32 a 34^

{B}R=tblf b2,b4}:r (6..39

and
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{d R={c1, c2, c2)t (6.40)

The integrations over boundary elements are still carried out 
over the entire surface with respect to a source point. 
However, collocation is only required on the "object" nodes 
since the field values at the image nodes are known through 
symmetry. It should be noted that sign changes in some columns 
of the system matrices may be needed before condensation. This 
procedure can reduce significantly the CPU time required to 
compute and solve the system matrices. For machine foundation 
problems with several hundred degrees of freedom, the "speed­
up" due to quadrantal symmetry is approximately four.

6.6 Solution of System Matrix

It is well known that the system matrix [A] is a non- 
symmetrical fully populated matrix for single-zone problems. 
In general, the CPU time taken for the solution of this type 
of matrix is approximately proportional to NA3(Fox, 1964) , where 
Na is the dimension of [A] . The overall efficiency of boundary 
element analyses depends to a far lesser degree than FE 
analyses on the numerical procedure used for the solution of 
the system matrix. The solver's share of the total CPU-time, 
especially for problems with many degrees of freedom, has been 
discussed by many researchers, for example, Brebbia(1989) and 
Rezayat(1992), among others. In the present study, the system 
matrices are solved by NAG library subroutines, ie. F04ATF and 
F04ADF for static analyses and dynamic analyses, respectively. 
It is worth noting that these subroutines have been written 
utilising Assembler for maximum speed(Ellersick, 1987). For 
the analyses described in this thesis, accurate solutions can 
be achieved with relatively little computational effort(less 
than 3% of the total CPU time), with respect to the time taken
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to assemble the system equations.

6.7 Calculation Of Foundation Stiffnesses

The computation of the dynamic stiffnesses(impedances) of rigid 
foundations has been described by various researchers, for 
example, Karabalis and Rizos(1993) . In general, once the 
system matrix has been solved, the foundation stiffnesses can 
be calculated by straightforward operations.

Let the soil-foundation contact area Sc be discretized into Msc 
elements. The dynamic stiffnesses are obtained by integrating 
the tractions developed over the contact area, namely,

in which, [ST]T is the transpose of the transformation matrix 
(see Equation 6.6) . The traction array at any point on an 
element, {t}p= {tx, ty, tz}Tp, can be expressed in terms of the 
corresponding nodal values, {t }a= {tx, ty, tz}Ta, as

6.8 Vectorization of Program

6.8.1 Introduction

The increasing demand for computational power in many areas of 
science and engineering has led to major advances in vector

(6.41)

8
(6.42)
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computer architectures, vectorization techniques and compilers, 
and parallel processing. It is conceivable that these 
developments will become an essential part of the computing 
environment for boundary element analyses.

The generation of system matrices in the boundary element 
method is not "data dependent" and, consequently, is 
particularly suitable for parallel machines(Kumar et al, 1989; 
and Ciskowski et al, 1989) . However, program restructuring is 
needed to run most existing scalar programs on parallel 
machines. At the time this research was started, parallel 
processing was not readily available at Glasgow University and 
hence this thesis focuses on the vectorization of the boundary 
element program.

During program vectorization, a compiler identifies the parts 
of a program that can take advantage of the architectural 
characteristics of the vector machine. Consequently, without 
major modification, existing scalar programs can be converted 
into vectorized mode for vector machines(Kobayashi et al 1989; 
Min and Gupta, 1991; Zucchini and Mukherjee, 1991). The vector 
facility on the IBM 3090 150-E has been utilized in the present 
study to give substantial efficiency gains as described below.

6.8.2 Vectorization Technique

General vectorization techniques has been discussed in detail 
by Polychronopoulos (1988) and Ellersick(1987) . A key to 
achieve effective vectorization is to properly implement DO 
loops in FORTRAN programs. In practice, re-writing of some of 
the code is needed to remove possible obstacles that can hamper 
vectorization, eg. , by replacing divisions with multiplications 
wherever possible within DO loops. It should be noted, 
possibly because of the overhead involved in calling library 
routines, that in many cases the use of codes developed by
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users may be more efficient than using certain simple NAG 
subroutines, e.g., matrix operations. The NAG matrix solver 
(F04ATF and F04ADF) are currently used in the present study. 
Details of vectorization status for each DO loop can be 
obtained from the compile-time report.

In order to improve the performance of the vectorized program, 
a study of program performance was carried out at execution 
time. This analysis gave the percentage of the total CPU time 
spent in each subroutine during a complete run in order to 
identify the program "hot spots". The results of these 
execution analyses for a problem with 675 degrees of freedom 
are given in Figure 6.10, in which the item "Others" refers 
mainly to the subroutines for pre-processing, post-processing, 
matrix operations, etc. As expected, the most time-consuming 
subroutine is that for the evaluation of the fundamental 
solutions. Based on these results, considerable effort was 
expended to implement efficient vectorized code in these 
routines.

6.8.3 Results

In order to evaluate the efficiency gains due to vectorization, 
the static stiffness of a square surface foundation was 
analyzed by scalar and vector version algorithms, respectively. 
Various boundary element meshes were used to model the near 
field. All runs were carried out in a multiple user 
environment. In order to assess the influence of multiple 
users, the program was run three times for each case and the 
average CPU times were recorded. The performance of the scalar 
and the vector programs in various modules is given in Table 
6.2. It should be noted that the CPU time spent in the matrix 
solver is the same for both scalar and vectorized programs. 
As would be expected, the computation of system matrices takes 
up the most computational effort in the boundary element
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analysis. For the problem analyzed, the assembly of the system 
matrices consumed 92-97 per cent and 96-99 percent of the total 
CPU time, using vectorized and scalar programs, respectively. 
In general, the scalar/vector "speed-up" is about three. As 
shown in Figure 6.11, the significance of vectorization depends 
upon the number of degrees of freedom of the problem being 
solved. Boundary element programs, coupled with vectorization, 
enable large complex three-dimensional problems to be solved 
at relatively low cost.

6.9 Summary

This chapter describes some features of the boundary element 
program for the steady-state dynamic analysis of three- 
dimensional rigid rectangular foundations. Some important 
aspects pertaining to efficient programming techniques of 
boundary element methods are discussed in detail. A novel 
method is described for incorporating boundary conditions 
during the assembly of the system equations. It can deal with 
problems of traction discontinuities at corners and edges 
without increasing the number of degrees of freedom. 
Consequently, the cost of analyses and memory demands can be 
significantly reduced, which enables the program to analyze 
larger problems. This technique alone brings worthwhile 
improvements to the computational efficiency of the boundary 
element analyses.

This program has been vectorized by using the IBM 3090-150 
Vector Facility. Problems of various size(degrees of freedom) 
have been analyzed using both the scalar and the vectorized 
programs. In general, the assembly of the system matrices 
takes between 92% to 99% of the total CPU time. Consequently, 
subroutines relevant to these calculations require careful 
coding. The improvement of efficiency due to vectorization is 
(typically) three.
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Appendix 6.1 Input Specification

The data for this program is free format. Individual data 
items are separated from each other by a comma.

Record 1:
TITLE

TITLE : The title of the problem.

Record 2:
GS XUN RW a0

GS - Shear Modulus of soil, kN/m2 
XUN - Poisson's ratio of soil 
RW - bulk unit weight of soil, kN/m3 
a0 - Dimensionless frequency

Record 3:
XL YL

XL - The width of the foundation, m
YL - The length of the foundation, m

Record 4:
NLX NLY NFX NFY

NLX - Number of elements in the mesh(X-direction)
NLY - Number of elements in the mesh(Y-direction)
NFX - Number of equal-size elements for the foundation(X- 
direction)
NFY - Number of equal-size elements for the foundation(Y- 
direction)

Record 5:
NEW

The number of rings of finite boundary elements around the

2 3 8
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foundation.

Record 6:
SRAT

SRAT is an array used to set up the ring dimensions, eg., 
SRAT(i) is the dimension of the ith ring of elements (Figure 
6 .2 ) .

Record 7:

KS

KS - type of contact between soil and foundation and 
consideration of symmetrical conditions:

1 - Smooth contact.
2 - Smooth contact, consider symmetry conditions.
3 - Welded contact.
4 - Welded contact, consider symmetry conditions.

Record 8:
DISP

array DISP - The prescribed translations and rotation of the 
foundation.

Record 9:
NLAYER

NLAYER - number of layers of elements used to discretize the 
sidewall

0 - surface foundations

Record 10: omit if NLAYER = 0
EMB NPART

EMB - depth of the embedment, m 
NPART - sidewall contact parameter 

0 - full height contact
2 - no sidewall contact

2 3 9
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Record 11:
JINF

JINF - Use of Infinite Boundary Elements:
1 - With Infinite Elements
2 - Without Infinite Elements

2 4 0
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Appendix 6.2 DATA GENERATED BY SUBROUTINE DATGEN

1) The general variables used by the program are given below:

NELEM = Number of elements 
NODE = Number of nodes
NCK = number of soil-foundation contact nodes
NEF = number of soil-foundation contact elements
Cl = Velocity of compression wave
C2 = Velocity of shear wave
CR = Velocity of Rayleigh wave

2) Matrices for Nodes and Elements:

CORDS = nodal coordinates
NCON = node numbers for each elements(element connectivity)
VJACOB = Jacobian of elements
TN = outward normal vectors of elements
LIST = soil-foundation contact nodes
LEED = soil-foundation contact elements
LET = Element types array, soil-foundation contact element, 

traction free element, etc.
KEXY = nodes in the analyzed area and their corresponding

symmetrical nodes

3) Gauss Integration:

GSX = Gauss Points. 
GSW = Gauss Weights.

2 4 1
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TABLE 6.1 SUBROUTINE FUNCTIONS

MODULE SUBROUTINE TASK
DATGEN reads input data file and 

generates geometrical information 
related to discretization

SIDE generates elements for the 
sidewalls

Pre­
processing BSYM generates the "object" nodes and 

the "image" nodes with respect to 
symmetry

INFA generates geometrical information 
related to infinite elements

NON controls the evaluation of non­
singular integrals over finite 
boundary elements

SING controls the evaluation of 
singular integrals over finite 
boundary elements

Set-up
System INFC controls the evaluation of

Matrices integrals over infinite boundary 
elements

BMATA controls the assembly of sub­
matrices of [A] and {b }

BMAT controls the assembly of the 
system matrices [A] and {b }

RIGID imposes the appropriate boundary 
conditions

2 4 2
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TABLE 6.1(continued) SUBROUTINE FUNCTIONS

MODULE SUBROUTINE TASK
GAUSS generates Gauss points and 

weights of Gauss-Legendre 
quadrature

KERN computes values of Gy and Ty

DIST computes the distance between a 
point and an element

FGPR finds the required integration 
points

SUBDIV sub-divides elements

Computation
of

integrals

CALK

RS

performs Gauss-Legendre 
quadrature

performs the sub-division and 
transformation method

ZERO finds the zeros along a ray

INFB1 evaluates static integrals over 
infinite elements

INFB2 evaluates non-singular dynamic 
integrals over infinite elements

INFB3 evaluates singular dynamic 
integrals over infinite elements

FNODE performs the Regula Falsi method

Solution 
of [A]

F04ATF

F04ADF

solves real-value [A] 

solves complex-value [A]
Post­

processing
STIF computes foundation stiffnesses 

and prints both input information 
and results given by the program
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TABLE 6.2 CPU-TIME FOR VECTORIZED AND SCALAR PROGRAMS

(Vectorized) 
(Scalar)

Unit: sec.
Degree

of
Freedom

Pre-

Process

Set
Up

Equations
Solution

of
Matrix

Post-

Process

Total

24 0. 004 
0 . 006

0 .297 
0.918 0 .012

0.010 
0.023

0.323
0.959

63 0 . 004 
0 . 006

1.373 
4 . 007

0 .037 0 . 014 
0 . 027

1.428 
4 . 077

120 0 . 005 
0 . 007

4 .475 
13.064

0 . 099 0 . 020 
0 . 036

4 .598 
13.207

195 0 . 005 
0.008

11.518
34.009

0 .277 0.029
0.052

11.829 
34 .347

288 0 . 005 
0 . 010

25.320 
74.996

0 . 700 0 . 041 
0 . 080

26.066
75.786

399 0 . 006 
0 . 012

49.228
147.560

1.549 0.058 
0 .124

50 . 841 
149.245

528 0 .006 
0 . 014

87.832 
264.660

3 .195 0.082 
0 .189

91.115
268.058

675 0 . 007 
0 . 017

146.538 
443.905

5 . 944 0 .112 
0.284

152.601 
450.150
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MAIN

POST-PROCESSING

PRE-PROCESSING

SET-UP SYSTEM 
EQUATIONS

SOLUTION OF 
SYSTEM MATRIX 

[A]

FOR EACH SOURCE 
POINT

IMPOSING BOUNDARY 
CONDITIONS

ASSEMBLY OF SUB- 
MATRICES OF [A] 

AND {b}

COMPUTATION OF 
ELEMENT 

CONTRIBUTIONS

FIGURE 6.1:ORGANIZATION OF THE PROGRAM
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Figure 6.2: Boundary Element Mesh(Quadrantal Symmetry)



CHAPTER 6 NUMERICAL IMPLEMENTATION

Figure 6.
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(c) Smooth boundary conditions

3: Contact Conditions At Soil-Foundation Interface
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X

(a) Smooth embedded foundation
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m

(b) The distribution of traction tv over element b

tz

(c) The distribution of traction tz over element g 
Figure 6.4: Traction Discontinuities Of Embedded Foundations
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Figure 6.5: Double nodes at a corner
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Figure 6.6: Traction boundary condition changes at the 
interface between two elements
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Figure 6.8: The effect of embedment on static vertical
foundation stiffness
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SINGULAR ELEMENT

SUB-DIVISION OF 
ELEMENT

COMPUTING 
CONTRIBUTION OF 

ELEMENT

NEXT ELEMENT

NEXT SOURCE POINT

FIND REQUIRED 
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SUBDIVISION OF 
ELEMENT

COMPUTING 
CONTRIBUTIONS OF 
SUB-ELEMENTS

SUBDIVISION AND 
TRANSFORMATION 

METHOD

COMPUTING 
STRICTLY DIAGONAL 

BLOCKS

Figure 6.9: Organization of integration module
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CHAPTER  7 DYNAMIC RESPONSE OF MACHINE FOUNDATIONS

CHAPTER 7 

DYNAMIC RESPONSE OF MACHINE 
FOUNDATIONS

7.1 Introduction

The purpose of this chapter is to demonstrate the versatility 
of the boundary-element technique developed in this thesis for 
the three-dimensional analysis of embedded rectangular machine 
foundations. Vertical and coupled horizontal-rocking
vibrations are considered. Referring to Figure 7.1, the plane 
of horizontal translation and rocking is defined by the X- and 
Y-axes, and the aspect ratio N is defined as follows:

N=- (7.1)
B

The impedance functions are referred to the centre of the base 
mat and can be written as follows:

vertical vibration:

Kv=GL(kv+ia0Cv) (7.2)

horizontal vibration, along longitudinal (x) direction:

1■<bx=GL(khx*ia.0chx) (7.3)
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horizontal vibration, along lateral (y) direction:

Khy=GL(khy+ia0chy) (7.4)

rocking vibration, about the longitudinal (x) axis:

KIX=GI& 5 (klx+ia0crx) (V • 5)

rocking vibration, about the lateral (y) axis:

iCry=Gj£;75 (kry+ia0cly) (7.6)

and the cross-coupling term:

KC=GBL (kc+ia0cc) (7.7)

in which, ka and ca (or=v, hx, hy, rx, ry, or c) are the dimensionless 
stiffness and damping coefficients, respectively, of the 
impedance functions; I5x and Iby are the second moments of area 
about the x and y axes of the base mat.

In the numerical model, the base mat is uniformly discretized 
by square elements, and the size of the elements is limited to 
1/4 Rayleigh wavelengths. For embedded foundations, two layers 
of boundary elements are used to discretize the sidewalls 
(Preliminary calculations revealed that one layer of elements 
was not sufficient to obtain accurate results) . A single ring 
of finite boundary elements is used to model the near field, 
and infinite elements are used to model the remainder of the 
free surface of the halfspace. Perfect bond between the 
foundation and the soil is assumed. A Poisson's ratio of 0.25 
is used, except where indicated otherwise.
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Typical results are given for very high frequencies (a0>>2) and 
for foundations on incompressible soil(p = l/2) . These should 
be of considerable interest in practical applications but have 
received scant attention in the published literature. In 
addition, some important questions in machine foundation 
analyses are addressed for the first time: i.e., effect of the 
foundation shape(aspect ratio) and the characteristics of 
embedment(surface, trench, or fully embedded foundations) on 
the impedance functions, in the high frequency range. It 
should be noted that these problems have been addressed by 
Dominguez and Roesset(1978), Mita and Luco(1989b), Israil and 
Banerjee (1990) , and many others, only for low to moderate 
frequencies (a0<3) . Some of the results obtained in this study 
are also compared with published experimental measurements.

7.2 Dynamic Stiffnesses At Very High Frequencies

The published literature is rich in results for the response 
of machine foundations for low frequencies, usually for a0 
values less than two(Gazetas, 1983; Roesset, 1980a,b; and 
Novak, 1987). The paucity of results for high-frequency 
vibrations is largely due to the practical limitations of 
rigorous numerical techniques and the costs of computation. 
However, foundation designers require knowledge of the response 
of foundations to high frequency excitations, since the 
serviceability criterion for high frequency vibration becomes 
increasingly stringent. From an academic point of view, it is 
of interest to know to what extent the dispersion of waves in 
elastic media generates damping, and thus limits the amplitude 
response of foundations, at high frequencies. The need for 
such studies of machine foundation response at high frequencies 
has been identified by, for example, Awojobi(1971); Luco and 
Westmann(1972); Crouse et al(1990); Roesset(1980b).
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The development of the infinite element methodology in this 
thesis provides the means to obtain rigorous results at high 
frequencies. The impedance functions(non-dimensional stiffness 
and damping coefficients) for rigid square foundations, for 
dimensionless frequencies up to ten, are given in Figures 
7.2-7.5. The numerical results given by Mita and Luco(1989b) 
for a0<3 are also indicated. These are retrieved from their 
viscoelastic results by using the correspondence principle of 
viscoelasticity(Lysmer, 1980). The discrepancies between the 
two sets of results at these low frequencies, less than 5% in 
general, may arise from the intrinsic difference between the 
quadratic elements used in this thesis and the simple constant 
elements used by Mita and Luco (1989b) . Although the high 
frequency results can not be verified against the work of other 
authors(since the results described in this thesis are new), 
it is believed, by extension, that they are accurate.

The impedance functions for horizontal translation(Figure 7.3) 
are practically independent of frequency and require no further 
comment.

For vertical vibration(Figure 7.2), there is a general trend 
of decreasing stiffness with frequency although this is 
obscured by an oscillatory component. The reason for this 
complicated pattern is unclear, although this pattern can also 
be just discerned in the results obtained by Mita and Luco 
(1989b). This coefficient is strongly dependent on Poisson's 
ratio, here taken to be equal to 0.25. The damping coefficient 
reaches a maximum at a0 = 3 and is practically constant 
thereafter, a result perhaps suggested by the data obtained by 
Mita and Luco(1989b).

The results for rocking vibration (Figure 7.4) are more 
interesting. Here, the results obtained by Mita and Luco 
(1989b) fail to indicate the form of the impedance functions
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at high frequencies, which at a0 = 3 and beyond are essentially 
constant.

The cross-coupling coefficients(Figure 7.5) are relatively 
small and are rather complicated functions of frequency. It 
appears that their high frequency asymptotic values are zero. 
The physical source of these complex functions of frequency is 
unclear. The relatively small values for (intrinsic) cross­
coupling terms is supported by the numerical studies(Gazetas, 
1983) and experimental measurements(Crouse et al, 1990). 
However, cross-coupling is of course important in the design 
of real foundations because of the additional terms arising 
from real foundation geometry.

The general observation that the impedance functions are 
sensibly constant at high frequencies(a0>4) verifies the 
analytical radiation damping model proposed by Gazetas and 
Dobry(1984). This important phenomenon can not be discerned 
in general from the results of Mita and Luco(1989b).

7.3 Effects Of Foundation Shape

Machine foundations are generally not square in shape. Several 
researchers(e.g ., Gazetas, et al, 1985; Dobry and Gazetas,
1986 y have shown that foundation shape has significant 
influence on the impedance functions, and that the "equivalent 
circle" approximation may produce inaccurate results for 
rectangular foundations with aspect ratios greater than three. 
In the present study, surface foundations with aspect ratios 
of N=2 and 4 are used to illustrate the effect of foundation 
shape. The responses of rectangular foundations for
dimensionless frequencies up to five are given in Figures 
7.6-7.10.
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For rectangular foundations, Figure 7.6 shows that the vertical 
impedance decreases faster with frequency as the aspect ratio 
increases. The results shown in Figures 7.7 and 7.8 reveal 
that the horizontal static stiffness in the lateral direction 
is greater than the stiffness in the longitudinal direction. 
The horizontal impedances are relatively insensitive to changes 
in frequency. Consequently, the adoption of constant stiffness 
coefficients for horizontal vibration may be a reasonable 
approximation for a wide range of frequencies. The rocking 
static stiffness about the lateral axis is greater than the 
stiffness about the longitudinal axis(Figures 7.9 and 7.10). 
These impedances are strongly dependent on frequency but 
exhibit broadly similar trends for all values of aspect ratio 
up to (at least) four.

For each vibration mode, the general trend is that although the 
variation of damping coefficient is sensitive to frequency, it 
is insensitive to aspect ratio. At high frequencies, and for 
all foundation shapes, constant damping is a good 
approximation. However, the foundations with the higher values 
of aspect ratio produce the largest damping per unit contact 
area or area moment of inertia, at all frequencies. 
Experimental studies(Dobry et al, 1986; Gazetas and Stokoe, 
1991) and analytical studies(Gazetas, 1983) provide strong
support for this predicted influence of aspect ratio on 
radiation damping.

It is significant to note that, although damping usually varies 
with frequency, the damping coefficients cv, chx, and chy 
asymptotically approach constant values, at high frequencies 
irrespective of foundation shape. As illustrated in Figure 
7.11, similar asymptotic behaviour can be observed in rocking 
vibration, if the imaginary parts of Krx and Kry are normalized 
with respect to GIbx and GIby rather than the normalisation of 
Equations 7.5 and 7.6. The results (Figure 7.11) of this

260



CHAPTER 7 DYNAMIC RESPONSE OF MACHINE FOUNDATIONS

normalisation imply that, at high frequencies, foundations 
produce approximately the same amount of damping per unit 
second moment of area. This observation supports the simple 
analytical radiation damping model proposed by Gazetas and 
Dobry(1984) .

The numerical results obtained in Figures 7.6-7.10 are compared 
with those predicted by the engineering models proposed by 
Gazetas (1991). It should be noted that his models for dynamic 
stiffness and radiation damping are compiled from published 
numerical results for perfectly welded contact foundations. 
However, his algebraic formulas for static stiffnesses of
surface foundations are appropriate only for smooth contact 
condition. Based on the assumption that the effects of aspect 
ratio on the static stiffnesses are independent of the contact 
conditions, approximate impedance functions for a0 <2 can be 
obtained and have been indicated in figures 7.6-7.10. In
general, the agreement between the two sets of results is
reasonable and the important trends observed at low frequencies 
can be predicted by these engineering models. The
discrepancies observed in Figures 7.6-7.10, are generally less 
than 10%.

7.4 Effects Of Embedment

In practice, machine foundations are usually partially or fully 
embedded into the soil. Theoretical predictions and 
experimental measurements(eg, Novak, 1970; Anandakrishnan and 
Krishnaswamy, 1972) indicate that foundation embedment reduces 
the amplitude of vibration and increases the resonant 
frequency. In addition, the effect of embedment is generally 
dependent upon the soil-sidewall contact area. However, 
separation and slippage may occur near the ground surface, 
where the confining pressures are small. Field experiments,
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Stokoe and Richart (1974) and Richart (1975) , indicate that, for 
certain types of soil and vibration modes, soil-foundation 
contact may be reduced or eliminated completely from the 
vertical sidewalls of embedded foundations. Consequently, 
before counting on the effect of embedment, the engineer must 
estimate the quality of the sidewall-soil contact.

«
As schematically illustrated by Figure 7.12, the numerical 
studies refer to cast-in-place foundations(complete sidewall 
contact) and trench foundations (no sidewall contact at all). 
In other words, the two limiting conditions for embedment are 
studied. Numerical results relating to effect of deep 
embedment(embedment equal to the half-width of the foundation) 
for dimensionless frequencies up to five on square foundations 
are given in Figures 7.13-7.16. The results for perfect 
sidewall-soil contact (only) given by Mita and Luco(1989b), for 
lower frequencies are also indicated. Inspection of Figures 
7.13-7.15 reveals good agreement between the two sets of 
results at these low frequencies. However, significant 
differences can be observed for the stiffness coefficient of 
the cross-coupling term(Figure 7.16). The new high-frequency 
results obtained here and the results obtained for the 
intermediate cases should prove useful for design purposes.

It is evident that, if the sidewalls are in perfect contact 
with the surrounding soil, part of the applied load is 
equilibrated by tractions along the sidewalls. As a 
consequence, the impedance functions for embedded foundations 
are generally larger than those of surface foundations and 
trench foundations(This is not true in cases of nearly 
incompressible soils). In general, the stiffness coefficients 
for horizontal and rocking vibrations of embedded foundations, 
with perfect sidewall contact, monotonously decreases with 
increasing frequency. The stiffness coefficient for vertical 
vibration is a more complicated function of frequency. The
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influence of embedment on the stiffness coefficients for 
horizontal vibration (and the cross-coupling mode) tend to be 
reduced at higher frequencies. Regardless of frequency and 
vibration mode, the damping coefficients increase significantly 
with increasing contact area or second moment of area. Similar 
conclusions(Gazetas and Stokoe, 1991) have been drawn from 
experimental data. It is worth noting that the damping 
coefficient for rocking vibration does not tend to zero at low 
frequencies for embedded foundations(i .e ., unlike surface 
foundations). All the damping coefficients for embedded 
foundations are practically constant at high frequencies(a0>4) .

When the sidewall of the foundation is not in contact with the 
surrounding soil deposit then, throughout the frequency range, 
the stiffness coefficients are only slightly higher than those 
for surface foundations. In addition, the trench effect is 
insignificant for radiation damping, especially for higher 
frequencies (a0>2) , and may be neglected. Experimental
evidence, eg, Novak(1970); Beredugo and Novak(1972); Stokoe and 
Richart(1974) ; Richart(1975) , tends to support these 
predictions: embedment with no sidewall contact has little
effect on the dynamic response of foundations.

The interpretation of the difference between the predicted 
damping coefficients of the two limiting cases is that waves 
emanating from the base mat-soil interface propagate 
predominantly downwards and are unaffected by the presence of 
over-burden soil, unlike waves propagating in the horizontal 
direction. This argument, which has also been verified by 
Chen(1984), provides strong support for the engineering 
approximations developed by Gazetas et al(1985) and Fotopoulou 
et a l (1989).
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7.5 Incompressible Media

Incompressible soils are frequently encountered in engineering 
practice but their analysis can be fraught with difficulties, 
particularly for dynamic problems. Veletsos and Wei(1971) and 
Veletsos and Verbic(1974) indicated that, for values of 
Poisson's ratio close to 1/2, vertical and rocking stiffness 
coefficients of circular surface foundations decrease with 
increasing frequency and may be negative in the high frequency 
range. Such negative values imply a phase difference between 
load and displacement response of more than $0 degrees. On 
the other hand, it is well known that as Poisson's ratio 
approaches 1/2 , the dilatational wave velocity tends to 
infinity. This has caused serious difficulty in the analysis 
of machine foundations by numerical methods for many years and 
no rigorous numerical results for foundations embedded in 
incompressible soil are currently available in the literature. 
The present study is unique in that it is capable of analyzing 
this problem by using the special fundamental solutions for 
incompressible soil developed in Chapter 2.

7.5.1 Surface Foundations On Incompressible Halfspace

Results for the vertical response of a square foundations 
resting on an incompressible halfspace are presented in Figure 
7.17, along with the experimental data measured by Nii(1987). 
In general, the predicted stiffness coefficient is in excellent 
agreement with the experimental measurements. The discrepancy 
between the predicted damping coefficient and experimental data 
is only about 10%, and this small discrepancy may well be due 
to the assumption of perfect soil-foundation contact in the 
experiment study(or a number of other factors).

A simple approximation can be developed to describe the
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decrease of the vertical stiffness coefficient as a quadratic 
function of frequency:

K=Kst(l-aal) (7.8)

in which, Kst is the static stiffness of the foundation. The 
function (l-aa02) is plotted in Figure 7.18 and suggests that 
the value of the coefficient a. is 0.25. The performance of 
this approximation is excellent in the range of frequency 
examined (a0<6 ) . The maximum error (at a0=6 ) is less than 10%.

It should be noted that, for v=l/2, the parabolic variation in 
the stiffnesses of circular foundations has been explained by 
adding a fictitious("participating") mass mf to the actual 
foundation mass(Barkan, 1962; Crockett and Hammond, 1948; Pauw, 
1953; Hsieh, 1962) . The fictitious mass is assumed to 
oscillate(as a rigid body) in phase with the machine and 
foundation. Consequently, the effect of this fictitious mass 
on the frequency-independent spring stiffness of the mass- 
spring-dashpot analog(Gazetas, 1983) can be expressed as

K=Kst-mf G)2
m 4
K.

G>2)
st

(7.9)

Several values for this fictitious mass have been reported in 
the literature; for example, mf=2pr3 ( = 0 .64pAor0) and mf=0 .4/oAoro, 
respectively, are suggested by Hsieh (1962) and Meek and Wolf 
(1993) for the vertical vibration of circular foundations with 
area and radius r0.

Evidently, equations(7,8) and (7.9) imply that
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(7.10)

Now, for a rectangular foundation the dimensionless frequency 
is

where B is the half-width. Based on the equivalent circle 
approximation the equivalent radius re is then 1.13B. The 
static stiffness Kst for a square foundation resting on an 
incompressible halfspace can be written as

By substituting Equations(7.11) and (7.12) into (7.10), it is 
easy to show that

Consequently, the fictitious mass for a square foundation is

K

9 GB (7.12)

0.25pa)2S2 o----  =--- G)z (7.13)
G 9 GB

mf=0 . 56 pAB

=0.5pAle (7.14)
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This value is intermediate between those values obtained by 
Hsieh(1962) and Meek and Wolf(1993), cited earlier. It should 
be noted that the "participating mass" concept is applicable 
only to incompressible soils.

7.5.2 Embedded Foundations In Incompressible Halfspace

The analysis of rectangular foundations embedded in nearly 
incompressible soils(0 .5>^>0.4) has generated considerable 
interest throughout the past decade, eg, Gazetas and Tassoulas 
(1987a,b); Tohdo et al(1986); Mita and Luco(1989b), among 
others. However, results for Poisson's ratio equal to 1/2 are 
not available in the published literature. In the present 
study, rigorous results for square foundations deeply embedded 
in incompressible soils are presented in order to provide 
further insight into this problem.

It is significant, as shown in Figures 7.19-7.22, that the 
stiffness coefficients of embedded foundations(embedment equal 
to the half width of the foundation) in incompressible soils (in 
all modes) are highly frequency dependent. The effect of 
Poisson's ratio on the horizontal and cross-coupling stiffness 
coefficients for embedded foundations is substantially 
different from those for surface foundations. The horizontal 
stiffness coefficient of surface foundations is practically 
constant while the horizontal stiffness coefficient of embedded 
foundations decreases significantly with frequency. Some 
earlier workers(Elsabee and Moray, 1977) recommend use of the 
same frequency variation of kh for both surface foundations and 
embedded foundations. This approach may be satisfactory for 
low values of Poisson's ratio but will cause serious errors for 
nearly incompressible soils.

The stiffness coefficients in the moderate to high frequency
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range indicate lower values for embedded foundation than for 
surface foundations. These results contradict the general rule 
that embedment increases the impedance functions. Comparisons 
between the results for p=l/4 with those for v=l/2 indicate 
that the decrease in the stiffness coefficients as a function 
of frequency for embedded foundations is more pronounced in the 
later case. Poisson's ratio has little effect on the damping 
coefficients.

7.6 Conclusions

This chapter presents results for several practical problems 
in machine foundations to illustrate the potential of the 
boundary element technique developed in this thesis. In 
particular, the results obtained by means of the high-frequency 
analysis, which have been unattainable by numerical methods 
hitherto, should be of value in practice. Also, reported on 
here are results pertaining to the dynamic behaviour of 
foundations resting on, or embedded in, the incompressible 
half space; a problem which has not been solved in the 
literature, but has been rigorously investigated in the present 
study. The computer program developed in this study can be 
used for further investigation of this and other related 
problems. Some of these possibilities are outlined in the 
following chapter.
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Figure 7.1: The rectangular foundation
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Figure 7.2: Vertical impedance at high frequencies
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Figure 7.4: Rocking impedance at high frequencies
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Figure 7.5: Cross-coupled impedance at high frequencies
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274



CHAPTER 7 DYNAMIC RESPONSE OF MACHINE FOUNDATIONS

H orizonta l V ib ra t ion  
Longitudinal D irection

  n =  1
 n = 2
  n = 4

Gazetas, 1 991

6

5

4

3

2

00 2 3 4 5

aO

H orizon ta l V ib ra t ion  
Longitudinal D irection

5

4

3

2

00 2 3 4 5

aO

Figure 7.7: Effect of aspect ratio on horizontal impedance
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Figure 7.9: Effect of aspect ratio on rocking impedance
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Figure 7.12: The embedded foundation
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CHAPTER 8 

CONCLUSIONS

8.1 Summary And Conclusions

The central theme of this thesis has been the further extension 
and refinement of boundary element methods for the analysis of 
machine foundations, pertaining to various(translational and 
rotational) modes of vibration, particularly at high 
frequencies. This work involves both rigorous theoretical 
studies and effective numerical techniques for the solution of 
the boundary integral equations.

This thesis includes an exploration of the following topics, 
relating to the implementation of the boundary element method:

(1) The mathematical properties and physical significance of 
the fundamental solutions dictate the strategy for the solution 
of the integral equations. Consequently, the characteristics 
of the fundamental solutions are studied in Chapter II. The 
special fundamental solutions developed in this thesis for 
Poisson's ratio =1/2 facilitates application of the boundary 
element method to problems of incompressible soil(in which the 
dilatational-wave velocities are, theoretically, infinite).

(2) The evaluation of the integrals over the boundary elements 
is the most time-consuming part of the boundary element 
analyses, and the accuracy of these computations largely 
determines the accuracy of numerical results. Significant 
effort has been devoted to the problem of how these integrals
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may be computed expeditiously. The advanced integration 
schemes developed in chapter III and IV are based on an 
improved understanding of the integrals in the boundary element 
method and are substantiated by the results of extensive, 
rigorous numerical studies. These effective integration 
methods could be implemented within other boundary element 
method codes without much difficulty.

(3) The geometry of machine foundation problems normally 
suggests use of halfspace models. As the capacity of computers 
is finite, however, the treatment of semi-infinite surfaces 
creates serious numerical difficulties. The novel infinite 
boundary element proposed in chapter V is capable of providing 
an efficient means for including far-field effects, without the 
necessity of explicit discrete representation outside the near 
field.

(4) An effective and rigorous method of dealing with 
singularities at the boundaries is proposed which involves 
incorporating the boundary conditions during the assembly of 
the system equations. This approach can deal with problems of 
traction discontinuities at corners and edges without 
increasing the number of degrees of freedom. Consequently, 
computational costs can be reduced significantly which enables 
the program to analyze larger problems. Use of this technique 
could provide significant improvement in computational 
efficiency for boundary element analyses in general.

(5) The special purpose program(extending to c. 6000 FORTRAN 
statements) for the analysis of three-dimensional rectangular 
machine foundations is described in Chapter VI. The 
application of advanced computer technology (vectorization) in 
this research accelerates the calculations and, consequently, 
reduces the computational cost. In general, the "speed-up" due 
to vectorization reduces computational times by a factor of
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about three.

(6 ) Various results for surface and embedded rectangular 
machine foundations are presented in chapter VII to illustrate 
the potential of the infinite boundary element formulation. 
Several of these results are new and will be published in due 
course.

In conclusion, significant improvements in the current boundary 
element techniques, which are by no means limited to the 
machine foundation problems, have been achieved in the present
study. Highly accurate results for three-dimensional machine
foundation problems can be obtained by using this advanced 
boundary element methodology.

8.2 Recommendations For Future Work

The work described in this thesis includes a number of 
significant advances in dynamic boundary element techniques, 
in the context of the analysis of machine foundation problems. 
Further work in this area might include the following:

(1 ) parametric studies to explore the effects of the following 
parameters in more detail on the high-frequency response of 
machine foundations:

a) the Poisson's ratio of the soil,
b) the material damping of the soil, and
c) the depth of embedment.

Note: Some of this work is being undertaken at the time of
writing.

(2) Investigation of the intermediate case of frictional 
slippage at the soil-foundation interface.

293



CHAPTER 8 CONCLUSIONS

(3) Development of simple engineering formulae which can be 
used for preliminary design purposes and to enhance 
understanding of the interplay between the key parameters.

(4) The analysis of flexible foundations subjected to dynamic 
loads.

(5) Analysis of deep rigid (pier) foundations under dynamic 
loads.

(6 ) Experimental verification of the design procedures and the 
predicted dynamic response of machine foundations.

(7) Implementation of "parallel" algorithms.

Some of these issues(1,4,5) can be carried out using the 
current computer program or with some minor modifications and 
the results of the parametric studies (1 ) can be used to develop 
engineering formulae(3).

The application of boundary element analyses to practical 
problems requires significant in-core memory capacity and a 
powerful processor. Because the boundary element method has 
inherent parallelism and super-computing facilities are 
becoming more widely available, development of parallel 
programs should offer substantial benefits in the future.

The extension of the present study to three-dimensional 
transient problems is currently under way. The focus in this 
work is the transient response of layered soils and pavements 
to nondestructive impact loading(Davies et al, 1993).
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