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Abstract
A non-relativistic effective theory of QCD (NRQCD) is used in calculations of 

the upsilon spectrum. Simultaneous multi-correlation fitting routines are used to yield 
lattice channel energies and amplitudes. The lattice configurations used were both dy
namical, with two flavours of sea quarks included in the action; and quenched, with no sea 
quarks. These configurations were generated by the UKQCD collaboration. The dynam
ical configurations used were “matched” , having the same lattice spacing, but differing in 
the sea quark mass. Thus, it was possible to analyse trends of observables with sea quark 
mass, in the certainty that the trend isn’t partially due to varying lattice spacing.

The lattice spacing used for spectroscopy was derived from the lattice l 1 Pi — 
13Si splitting. On each set of configurations two lattice bare b quark masses were used, 
giving kinetic masses bracketing the physical T mass. The only quantity showing a 
strong dependence on these masses was the hyperfine splitting, so it was interpolated to 
the real T mass. The radial and orbital splittings gave good agreement with experiment. 
The hyperfine splitting results showed a clear signal for unquenching and the dynamical 
hyperfine splitting results were extrapolated to a physical sea quark mass. This result, 
combined with the quenched result yielded a value for the hyperfine splitting at r if  = 3, 
predicting an r)b mass of 9.517(4) GeV.

The NRQCD technique for obtaining a value of the strong coupling constant 
in the MS scheme was followed. Using quenched and dynamical results a value was 
extrapolated to rif =  3. Employing a three loop beta function to run the coupling, with 
suitable matching conditions at heavy quark thresholds, the final result was obtained for 
rif = 5 at a scale equal to the Z  boson mass. This result was a ^ ( M z ) =0.110(4).

Two methods for finding the mass of the b quark in the MS scheme were 
employed. The results of both methods agree within error but the errors were too large 
to see any clear signal of unquenching in ra&. The best result obtained was 4.42(33) GeV.
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Chapter 1

Introduction

1.1 Quantum Chromodynamics and the Strong Cou
pling Constant

Quantum Chromodynamics [1] (Q CD ) is a gauge theory of the strong interactions. The 
gauge group is the SU (3) colour group, i.e. the group consisting of unitary 3 x 3  matrices 
with determinant +1. Colour is the name given to the gauge degree of freedom responsible 
for the dynamics of strong interactions. This theory suggests that strongly interacting 
fundamental fermions each have three possible colours, and that they interact via eight 
bi-coloured bosons called gluons.

For this gauge group the bosons are Yang-Mills vectors which can be written 
as a linear combination of Yang-Mills fields:

A*(x) = TaA». (1.1)

The index, /x, is the usual spacetime Minkowski index running from 0 to 3. 
The index a runs over the basis of generators for the traceless 3 x 3  matrices and hence 
runs from 1 to 8. Usually, these are taken as Ta = Aa/2; where the Aa are the Gell-Mann 
matrices [2]. In that representation, they satisfy:

tr(AfcAc) — 25ba

and
A b A c
T ’ T

. , A d
— 1Jbcd~

The f abc are the structure constants of the group, satisfying:

/1 2 3  =  U

(1 .2)

(1.3)

(1.4)

f l i 7  ~  ~ f l 5 6  ~  /246  — /257  — /345  — — / W  — (1.5)

1
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/458  — /678  — ( 1 -6 )

The 4 x 4  antisymmetric field tensor for QCD  is given by:

G^ ( x )  = AflG7(a;)/2. (1.7)

In order to find the appropriate form of G ^ ( x )  for a gauge-invariant La- 
grangian, fermions must be included via the QCD  Dirac Lagrangian:

Cq =  (1.8)

where
(1.9)

The indices i , j  here are colour indices and take the values 1 , . . . ,  3. However, 
this Lagrangian is non-invariant under the gauge transformation specified by the local 
function, a(x):

^ f ( x ) — > ^  (1.10)

For the transformation on ^  simply change the sign of the second term above.
As with Q E D , gauge-invariance may be recovered by introducing gluons transforming as:

— ► G“ -  - d „ a a(x). (1.11)
9o

In order to cancel the additional instances of a , the covariant derivative is
introduced:

D„ = dM +  i g o j G ; .  (1.12)

Since 51/(3) is a non-Abelian group, the gluon field transforms with depen
dence on another gluon field:

G ^  ^  G ^  — — d^OLa — f a b c & b G £. (1-13)

In order to have a gauge-invariant kinetic term for the gluons, G ^  must have 
a more complicated form than is the case with F in non-Abelian QED.

G T  (x) = d»A: (x) -  d'A* (x) +  gvfabcAt (x) A"c (x) (1.14)

Thus the final gauge-invariant Lagrangian for QCD is:

C q c d  =  ( i ' f D ' j  -  m f S * )  # ( * )  -  \ g % G ^ .  (1 .15)
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To summarise this theory of the strong interactions: it is a system of rif = 
6 flavours of quarks, each flavour providing 3 coloured quarks, with bare masses m /, 
interacting with 8 massless gluons through a bare interaction coupling go. The non- 
Abelian nature of the theory also means that it predicts the existence of three and four 
gluon vertices, due to the extra term in 1.14. This term gives contributions such as go A 5 
and <7ô 4> which are not present in Abelian theories.

Normally, calculations of expectation values in quantum field theories proceed 
via perturbation theory. This involves a series of terms ordered in ascending powers of 
the coupling constant, a , of the theory. Here a  is defined (in natural units, h = c = 1) 
as:

* = £ .  (1.16)

In practice, a naive calculation of all terms in the perturbation series at any 
order in a  may yield infinite results. For gauge theories, one must redefine (or renor- 
malise) the couplings and masses of the field theory to achieve finite results. Calculations 
of expectation values to any order in perturbation theory, for example, involve different 
phenomena from the previous order. So renormalisation must be carried out at each order 
calculated. In using field theories which possess gauge symmetries, it is at least certain 
that renormalisation is possible. Using renormalisation group equations, the renormalisa
tion may then be carried out without affecting expectation values of physical quantities. 
In practice, several different ways of renormalising can be carried out. Thus, several 
different renormalisation schemes are available and the value of non-physical observables 
depends on the particular scheme used.

1.2 Quark bound states: Hadrons

Experimentally, objects possessing an overall colour charge have never been observed. 
This is thought to be due to the coloured quarks being confined within colourless objects 
known as hadrons, a phenomenon called confinement. The baryons are combinations 
of three quarks, each possessing one colour degree of freedom confined into an overall 
colourless “particle” . For the mesons the picture is of two quarks: one possessing an 
anti-colour and the other a colour. The hadrons are bound together by virtual gluon 
exchange.

Due to this phenomenon of confinement, quarks are not seen individually, 
so the properties of individual quarks are inferred via the properties of the hadrons in 
which they reside. Some quark properties can still be determined fairly accurately. The 
electromagnetic charges of quarks can be calculated by comparing the quark contents of 
hadrons with the hadronic electromagnetic charges. However, the masses of individual 
quarks cannot be simply observed; all that can be done is to provide a theoretical model 
of the hadronic structure and adjust the quark masses in the theory until the theoretical 
prediction agrees with the experimental data.

Another noteable feature of QCD  is asymptotic freedom. Due to the non-
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Abelian nature of Q C D , the coupling of coloured particles is stronger the larger the 
separation of the colour carriers. This effect is in strict contrast with QED,  where the 
coupling diminishes with distance, as in the familiar Coulomb potential picture. Theoret
ically, this, combined with the strength of the strong coupling mean that the traditional 
perturbative methods of solving (weakly coupled) quantum field theories break down at 
low energies. Hence, QCD  motivates the development of non-perturbative solutions to 
quantum field theories.

The subject of this thesis is the bound state (meson) of the bb system, usually 
known from the name of the lightest vector resonance, the l 3*^1 state, as the T  system.

1.3 The Bottom onium  Mesons

The subject of this thesis is the bottomonium (bb) system. It was discovered in 1977 [3] [4] 
as three resonances at 9.4GeV, lOGeV and 10.4GeV. The lightest of these states is now 
identified as the T meson. Several of the other mesonic states for this flavour singlet meson 
have been discovered. The experimentally observed states can be grouped into two types: 
T, with quantum numbers of 3Si, and Xb-,o,i,2 5 with 37o,i,2- For T, n takes the values 1,...,6, 
and nXb—1,22. The T states are also commonly called T(15) or T, Y(2S) or Y' etc... In 
this thesis nr  > 4 are ignored, since these states are very wide, thereby not offering good 
opportunities for comparison with experiment. The reason for this is that the Y(45) 
is above the B B  threshold and so it readily decays [5] [6], as illustrated in figure 1.1. 
Furthermore, the theory eventually used in this thesis doesn’t include a mechanism for 
the decay to B B ,  severely limiting the theory’s prospects for getting the mass of Y(45) 
correct. For nr  < 3 the decay of Y(nyS) proceeds via the Zweig suppressed channels of 
figures 1.2 and 1.3. There is also the electroweak annihilation channel shown in figure 1.4. 
Transitions occur between the Y (nS) states via the decay: Y(25) —> Y(15)7r+7r- . The 
l 1 So or r]b state is included as a prediction in this study. It is included despite not having 
been observed for bottomonium, as it has been observed in charmonium, the cc system 
whose dynamics show several similarities to bb..

1.3.1 Production of Currently Unobserved Bottom onium  States

Of the bottomonium states measured on the lattice in this thesis, the rjb and h ^ P i )  have 
yet to be observed experimentally. Their existence is inferred since there are rjc and hc 
states in charmonium. There is also thought to be a 3Di charmonium state, although no 
attempt was made to measure the mass of a bottomonium equivalent in this thesis.

xThe notation used here is 2S+1L j ,  where S  is the eigenvalue (expectation value) of the spin angular 
momentum operator, L the eigenvalue for the orbital angular momentum operator, and the total angular 
momentum number, J =  L +  S.  The eigenvalue, L is denoted by spectroscopic notation, such that L =  0 
is denoted by S, L =  1 by P,  and L =  2 by D.  Sometimes an additional n is included for the radial 
excitation value of the state. Thus, there are states l 35 i ,2 3S'i,__

2There is no reason to stop an analysis at nXb =  2, but higher radial excitations haven’t been observed.
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u,d,s

Figure 1.1: The decay of a bb meson to a B B  pair.

b

X , g

Figure 1.2: The Zweig suppressed decay of a bb meson to a photon and a pair of gluons.

x
Figure 1.3: The Zweig suppressed decay of a bb meson into gluons.
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b q,l'

- 1 +b /  \  q,l
Figure 1.4: The electroweak decay of a bb meson into quarks or leptons.

Godfrey and Rosner [7] suggest that a mechanism for production of the 77b(l*S') 
could be via magnetic dipole transitions:

T (nS) -> Tjb(lS)  +  7 , (1.17)
n = 2,3. (1.18)

There is another channel through the /i<,:

Y(35) —> hb +  7r -I- 7r, (1-19)
hb Vb + 7- (1.20)

Thus, with more channels from the Y(35), it is preferred to the 25 as a source.

One of the D-wave states, 3Di could be produced in direct scans of the center 
of mass in e+e_ collisions. The 13D j  states have been sought in the electromagnetic 
cascades:

T(3S) -s -7  +  X 6 ( 2 P ) - > 7  +  7 + 3 A /-  (1-21)

Tantalisingly, the number of T(35) decays available is only slightly smaller 
than the estimated number required for a definitive observation of the 1 3Dj.

1.3.2 Energy Scales in Bottom onium

Typically, the radial and orbital splittings in the bottomonium spectrum have values 
around 500 MeV (see table A.l). The mass of the lightest vector resonance, the T(15), is 
9.46 GeV. Such splittings come from dynamics of the same order as kinetic scales indicat
ing that the system had non-relativistic dynamics. Furthermore, the mass degeneracy of 
the b and b quarks implies that 1 / 2 M t ~  M&, where Mb is the rest mass of the b quarks. 
This has motivated attempts to understand bottomonium dynamics using non-relativistic
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models to cover the larger orbital and radial splittings, with relativistic corrections com
ing in for the finer spin split structure. In this thesis non-relativistic potential models are 
discussed and Non-Relativistic QCD (NRQCD) is used as the lattice heavy quark action. 
The potential models yield a value for the squared speed of the b quarks of v2 ~  0.1, 
in natural units. Typically, quark momenta (and so gluon momenta and energy) are of 
O(Mf)V) ~  1.4GeV. At such an energy scale it is not true that a s <C 1, preventing the 
use of perturbation theory. Hence, a non-perturbative approach is required. The method 
adopted here is to implement NRQCD on a lattice.

1.4 The Path Integral M ethod

Lattice gauge theory is a numerical solution to the path integral method [9] [10] [2] of 
quantum field theory. The starting point for a path integral is the theory action, defined 
from the Lagrangian of the theory by:

S = [ d 4xC. (1.22)

The inclusion of the measure dPx serves to emphasize that the action is eval
uated over all spacetime points. The partition function is defined as:

Z  =  [  V ^ T h j j V A ^ .  (1.23)

For QCD, Dip, 'D'tp and T>A represent integration over all possible quark, an
tiquark and gluon fields in the theory. Overall, the summations cover all possible paths 
and all possible fields, weighted by the action. In practice, a field propagates along the 
classical path of least action whilst experiencing fluctuations around that path, and also 
with other fields of the theory.

The expectation value of some operator, O , in the theory is given by:

( o ( $ ,  4, ,A)) = j p J  V4>Vi>VAO$, i>, A)eis . (1.24)

Unfortunately the formulation shown above possesses an integrand which os
cillates [11], so numerical techniques can’t be applied. By carrying out an analytic contin
uation [9] the oscillation can be converted to a decaying exponential. Under an analytic 
continuation (a Wick rotation here) the following Minkowski spacetime quantities rotate 
into Euclidean quantities (marked with an E ):

:r0 • 4 
=  ~ lXE, (1.25)

7o =  7 f , (1.26)

ij i =  7?, (1.27)
iA° =  Ag. (1.28)
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The action and partition function then become:

S  =  i S E, (1.29)

Z B =  f  Vi>VipVAe~sE. (1.30)

This new statistical-mechanics-like theory differs from the original version of 
quantum field theory. Nevertheless, by the analytic continuation, the Euclidean Green 
function, G(x,it) , uniquely defines the Minkowski spacetime version, G(x,t)- Thus, al
though the theories differ the solutions can be related.

1.5 Lattice QCD

Lattice QCD [11] [12] [13] [14] is a method of numerically solving Euclidean path integrals 
like equation 1.30.

In lattice gauge theory, spacetime is discretised into a grid of points with 
separation, a, the lattice spacing. Lattice spacetime coordinates then take the restricted 
set of values:

x v =  n u a, (1-31)
where nv is an integer valued “site-reference” vector in the z/th dimension, and a is the 
lattice spacing. The components of nu are limited to a maximum value, N.  For 4D Eu
clidean spacetime this gives a lattice with TV4 sites, and sides of length L = N a .3 Fermion 
fields only exist at these discrete points, 4>(nua). The discretisation also introduces a 
momentum cut-off of order a-1 . On the lattice derivatives become finite differences:

dvip(x) ->• z>) -  ip{n -  z>)), (1.32)
la

nip(x) —* +  z>) — ^ (n  — z>) — 2^(n)). (1.33)
O' v

Integrals become sums over lattice sites:

[  dAx  —y a4 5 ^ . (1-34)
J n

1.5.1 Lattice Dirac Equation

Implementing the Wick Rotation from Minkowski spacetime to Euclidean spacetime (see 
equations 1.25, 1.26, 1.27, the Dirac equation for a free fermion becomes:

S E = j  d4x'ip(x)(/y„dl/ +  m)ip(x). (1.35)

3It is possible and sometimes desirable to use lattices where the temporal lattice spacing differs from 
the spatial value, such lattices are known as anisotropic. However, for this thesis the temporal lattice 
spacing is the same as the spatial, but with Ntemporai =  2NSpatiai-
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A naive discretisation of equation 1.35 can be carried out by implementing the 
discretisations of equations 1.32, 1.33, and 1.34. This gives:

S E = (1.36)
n,m

K ( f l )  77l)  — 'y  ' &n —v ,m ) T
v ^

where the subscript L denotes lattice quantities and I  is the identity matrix. The fermion 
propagator is defined as the inverse of the matrix K , n):

Y , K ( n , l ) K - 1(l,rn) = 6n,m. (1.38)
i

The lattice delta function and Fourier transform are:

=  ( 2 (U 9 ) 

K{n,m )  =  (1.40)

Under a Fourier transform K  becomes:

K ( P l )  = ^ T ^ s i n p J  + m LI. (1.41)
V

The lattice energy-momentum dispersion relation is then:

E 2l( P l )  = m 2L +  51 a -2 sin2 pf. (1.42)
2 = 1

The explicit a dependence has been re-introduced to illustrate the effect of 
taking the continuum limit. As the coordinate 4-vector x v in physical units is arcj, the 
momentum 4-vector in physical units, qVi is equivalent to a~lpu. Taking the continuum 
limit:

E K p l ) = m 2 + q2 +  C(a2). (1.43)

Although the propagator clearly reduces to the continuum limit satisfactorily, 
it contains lattice artifacts. In any one dimension there are two points in the first Brillouin 
zone which give the same energy-momentum dispersion relation as sin(n + p )  =  — sin p. 
Thus, for example, E 2(pl) = E K pl +  (0 ,0 ,7r/a, 7r/a)). Overall the straightforward dis
cretisation of the action for one particle produces 2° (D  is the spacetime dimension) 
particles, with the additional 2D — 1 particles purely lattice artefacts.

This difficulty, known as the fermion doubling problem was circumvented by 
Wilson [15]. His suggestion was to add a term - f  to the lattice
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action. It is added to equation 1.36 to give the Wilson fermion action. It clearly vanishes 
in the continuum limit. The dispersion relation (equation 1.42) becomes (for r = 1):

e l ( P l )  = ( %  +  a_1 ( 1 — S  cos P i ) )2 + a~2 sin2 Pi • (1-44)
i i

For pl =  (0,0,0,0) this gives the desired relation, E \  =  m 2L. However, now the 
offending high-momentum modes such as pl = (0,0, ir/a , ir/a) give E \  =  m ^+2/a. Taking 
the continuum limit gives the 2D — 1 extra lattice fermions infinite masses, decoupling 
them from the theory propagators.

The modern convention is to write the Wilson fermion action in terms of the 
hopping parameter, k, defined as:

1
k —  ------ — .

2m +  8 r

1.5.2 Gauge Fields on the Lattice

The lattice gauge degrees of freedom are defined via the observation that for a charged 
particle interacting with a gauge field in the continuum the wavefunction of the particle 
picks up a phase factor from the interaction [14]:

if —> ifexp ( îg J  A vdx^j = U(P)if. (1-46)

The symbol P  refers to path ordering. A familiar example of this phenomenon 
is the familiar process whereby the wavefunction of a static electron interacts with the 
scalar potential in standard QED to gain or lose energy, qV. In which case U(P) = 
exp(igA°t), with t the time length of the path. This extra oscillation is what we would 
expect as the electron energy changes due to the voltage.

For a path of length a , a lattice gauge field “link” can be defined as a function 
of the continuum gauge field at the centre of the link:

t7„(n) =  eisaAAn). (1.47)

For QCD, the U links are SU(3) matrices. One is illustrated in figure 1.5. It 
leads from site n to site n +  ft. The opposite connection from n  +  ft to n, f/_M(n +  ft) is 
defined via the Hermitian conjugate of U^n):

Dj(») =  IC„(n +  a/i). (1.48)

The lattice gauge link action is constructed to ensure gauge invariance. The 
behaviour of lattice fermions and gauge boson links under a gauge transformation are

(1.45)
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U M

n n + aji

Figure 1.5: A lattice gauge link at site n in the /z direction.

x  +  aO x + afa + av

Uv{x +  afa)

x  +  afa

Figure 1.6: A plaquette in the fiu plane.

given by:

^L(jn) ->• G (m )fe(m ), (1-49)
f e H  i)L{m)G~l {m), (1.50)
U ^m )  —► G(m)U^L(m)G~1(m +  afa), (1-51)

where the local matrix G £ SU(3). Thus, gauge-invariant (non-local) quantities on a
lattice can be formed in two ways:

• Traced closed loops of gauge links, the simplest being the plaquette, illustrated in 
figure 1.6: TrU^v(n) =TvUll{n)Uv{n +  afa)W(n +  av)Ul{n)

• Non-local quark bilinears such as ^ L(m)UIJl(rri)'ip(m +  afa)

That is, the lattice fermion action requires the insertion of gauge links between 
sites in order to make it gauge invariant. Expanding the plaquette to O (a2), we find that 

= Qiga F̂ ^n\  so the lattice version of the Yang-Mills action, the Wilson gauge field
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action, may be written:

(1.52)

where (3 = ™ for an SU(N)  group, i.e.:

P q c d  =  2--------
# o , q c d

(1.53)

1.5.3 The Continuum Limit of the Lattice Action

Ideally, in the continuum limit, full QCD should re-emerge from the lattice action. How
ever, in practice, at non-zero lattice spacing, lattice actions contain discretisation errors. 
The correspondence between the lattice and the continuum may be improved, by adding 
lattice counter terms to the action at the appropriate order of the lattice spacing. Such 
counterterms should disappear in the continuum limit, and cancel or reduce the leading 
order discretisation errors. This procedure is known as improvement.

For the gauge field action of equation 1.52, the plaquette action reproduces 
the Euclidean continuum action, with a quadratic discretisation error [14]:

where F ^ F ^  is the continuum Euclidean space equivalent of G ^ G ^ ,  as defined in equa
tion 1.14.

For the Wilson fermion action with the counterterm for “doubler” cancellation 
the corresponding relation is [16]:

with the covariant derivative, D , as defined in equation 1.12.

The discretisation error is thus linear in the lattice spacing. In order to in
crease the rate of approach to the continuum, Symanzik introduced the improvement 
programme [17].

1.5.4 The Clover Action

Applying the Symanzik improvement programme, Sheikoleslami and Wohlert [16] added 
the Clover term to the action:

(1.54)

S'i'V'r) =  7 +  m  +  +  O l a 2) (1.55)

(1.56)
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x +  avx — aji +  av

x — ap x

x  +  ap +  av

x  +  ap

x — an — av x ap — av

Figure 1.7: The Cloverleaf arrangement of lattice gauge field links.

where a and the cloverleaf of plaquettes are defined as:

<V =  2  I7*” 7"!’ f1-57)

V  =  (1.58)

V ^ ( x )  =  Ull(x)Uu(x + aji)U^(x +  afi + av)Ul(x + av) (1.59)

+  U t W U ^ x  — av)Uu(x 4- ap — av)U^{x +  ap) 
+ Uu(x)U^(x +  av)Ul(x — ap + av)U^{x — ap) 
+ U^(x)Ul(x — ap)Un(x — ap — av)Uu(x — av).

Cloverleaf improvement works because of the continuum Euclidean relation for 
on shell Green’s functions (see Boyle [18]):

p 2 = D 2 -  =  m 2 . (1.60)

Equation 1.55 undergoes the change:
t i l  u,/

m + — D —>■ m  +  — I p ,  
& &

ar 2 
=  m  +  — m .

(1.61)
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The bare quark mass can then be redefined to 0 ( a m ) : giving the new mass 
parameter, rh = m(  1 +  y m ). The Wilson fermion action is now accurate to 0 ( a 2).

1.5.5 Non-perturbative Improvement

W ith massive quarks, the partially conserved axial current (PCAC) relation between the 
isovector axial current, A^(x), and the pseudoscalar density, P l(x): in the continuum is:

dpAfJx) =  2mPCAcPb{x), (1.62)
r

4 W  =  (i-63)2
Tb

P  (x) = Ip{x)j5— 'ip(x). (1.64)

Here r b denotes the Pauli spin matrices. Unfortunately, on the lattice the 
PCAC relation is violated by 0(a)  discretisation errors [19]. The Alpha collaboration 
studied such effects using lattice Schrodinger functionals. They found non-perturbative 
mixing of suitable dimension five operators (such as ipc^Ffja,^). They were then able to 
vary the mixing coefficients in such a way that the discretisation errors on the PCAC re
lation were minimised [20] [21] [22]. Most of the dimension five operators can be absorbed 
into others and into lattice mass and charge renormalisations, leaving only the term with 
the Csw  coefficient of equation 1.56. The improvement is then a question of finding the 
optimum value of Csw • The most recent result, from which the UKQCD collaboration 
obtained the Csw  values used for the dynamical configurations of this thesis, is [23]:

1 -  0.454gl -  0.175<7q +  0.012ffo6 +  0.0455o8 
Csw = --------------------1 -  0.720ig-------------------- ' (1'65)

1.6 M onte Carlo m ethods

Given the improved lattice actions of the previous sections, some method is required to 
solve path integral equations with these actions included. On the lattice, the infinite 
products of integration measures such as V U  and (see section 1.4) become finite 
products. For example, the continuum infinite product Vip, is fifn d^{n)  on the lattice.

Using the Euclidean partition function, of equation 1.30 (and dropping the E  
subscript), the expectation value of some operator on the lattice is:

(O) = ^  f  VUVi\)V$0<rsw ° . (1.66)

The L superscript on the action is introduced as a reminder that this is a lattice 
action, and not the ususal continuum QCD action. The lattice QCD action may be split 
into the exclusively gluonic part {Sq), and a fermionic part (Sp) (which carries gauge links
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in order to preserve gauge invariance). The fermionic part has the form Sp = il)M\U\i{j. 
The integration over the quark-antiquark fields can be done analytically [11] through the 
Grassmann integral identity:

f  V t fV l i e -W W *  = det M[U], (1.67)

This has the advantage of leaving the integral over bosonic variables only, 
avoiding obvious difficulties with trying to do Grassmann integration on a lattice:

{0{U}) = 1 1  VUO[U] det M[U}e~s°. (1.68)

The integral over V U  is evaluated using Monte Carlo methods, whereby Ncfg 
different configurations of gauge fields are generated, and the expectation value, (O), is 
approximated by a sum over these configurations:

1 Ncfg

( ° )  ~  J j -  E  0 [ t / (i)]. (1.69)
iVcfg i = 1

In practice, such an approximation might include many configurations where 
0[U^]  is relatively small and therefore unimportant. It is better to select important 
configurations only, so importance sampling techniques are utilised. In the current context 
this involves generating gauge fields with a probability, p[U\, proportional to the rest of 
the integrand in equation 1.68:

p[U] <x det M[U]e~s° . (1.70)

T h e  Q uenched  A p p ro x im a tio n

For lattice QCD the fermion matrix M[U] has spinor, site, and colour indices, giving an 
overall rank 4V N C: with V  the lattice volume and N c = 3 colours. For large volumes, the 
calculation of the determinant of M  is computationally very expensive.

In order to reduce this expense, past calculations simply set the determinant 
to a constant, in which case it simply cancels with the same value from the partition 
function, Z , of equation 1.68. This is the quenched approximation. It has been shown
that this is equivalent to neglecting sea quark vacuum polarisation [11]. This appears
to be a serious omission from the calculation, as for the T system there will clearly be 
uu, dd and ss pairs in the meson due to vacuum polarisation. However, much of the 
character of QCD remains in the calculation: it is still, for example, a non-abelian theory, 
and still possesses three colour degrees of freedom. Thus, past lattice calculations gave 
good results despite quenching. Crudely, it is the running of the coupling constant that is 
affected. If the quantity being calculated doesn’t depend on the coupling, then not much 
effect should be seen.



16 CHAPTER 1. INTRODUCTION

1.6.1 The Hybrid M onte Carlo Algorithm

Going beyond the quenched approximation, to get the configurations used to generate 
the results in this thesis, involved the use of a Hybrid Monte Carlo (HMC) algorithm. 
The fermion determinant comes from a Gaussian integral over bosonic variables, 0, called 
pseudofermions:

det M fM =  ( v t f T >^e_0t(ArtAf)_1*. (1.71)

Unfortunately, there are two main problems with this approach:

• HMC only works for an even number of dynamical fermions, not the three that are 
believed to be present in the physical mesons.

• The dynamical quark masses in current HMC calculations are too large. Unfortu
nately it is too computationally expensive to achieve a light enough dynamical quark 
mass with HMC, and such quarks will also suffer from more severe finite volume 
effects.

The second of these problems will be addressed in this thesis by extrapolations 
of results for unnaturally heavy sea quarks to a physical pseudoscalar mass. Getting 
around the first is currently the focus of work in the design of new algorithms. In this 
thesis the n j  = 3 limit is reached by extrapolation of the quenched (n f  =  0) and dynamical 
(nf = 2) configuration results.

1.6.2 Autocorrelations

The HMC algorithm works by finding configurations of “im portant” gauge fields. Once 
an important region of configuration space is reached, the next configuration is generated 
by continuing the process, reaching similar configurations in a series of “steps” from the 
initial good ones. This means that the generated configurations have some relation to each 
other, i.e. they are not statistically independent in the way that experimental results are. 
In other words, there is an extent to which such configurations are correlated with each 
other, they are said to be autocorrelated.

In working out the size of autocorrelations it is important to differentiate 
between primary and secondary quantities. Primary quantities are directly generated 
from the lattice, whilst secondary quantities are subsequently calculated as functions of 
the primary quantities. If X  is a primary quantity measured N times, then the naive way 
to calculate its variance is with the familiar result:
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w  =  i ' t x -  t 1-74)iV %=l

In the presence of autocorrelations such measurements aren’t statistically in
dependent, and the error calculated above is too low. The autocorrelation is defined
as:

(X iX i+T) -  (Xi) {Xi+T) . (1.75)

The true error, (Jtrue, is then:

2 _  ( X * ) - { X ) \
^true — jy  2Tjnt, U-'O)

=  1 (X jX i+T) -  (Xj) (Xi+T)
Tmt -  2 rh x  (X iX t) -  (Xi)  (X t) ■ ( ■ >

The parameter Tjnt is called the integrated autocorrelation time, and differs for 
different types of primary quantities. It represents the time (in algorithm updating steps) 
over which the autocorrelation persists.

In this thesis two types of primary quantities were calculated on the lattice: 
plaquettes and various heavy quark correlators (see chapter 2 for these). In order to 
measure autocorrelation times a jackknife or bootstrap [24] [25] procedure can be used. 
For the results in this thesis Jackknifing was used.

Jacknifing involves taking the data set and “cutting out” (hence jackknifing) 
or “binning” one or more of the data values. The remaining values are averaged. The 
process is then repeated by the removal of other values. Overall when binning, say, n 
values (jackknifing with a bin length of n), the new jackknifed value is:

£ x -  ( i '78>
— l) + l),...,nfc

For a secondary quantity Y ( X )  the values are:

(^ ('7)} =  77 E  (1-79)
i V  A ;= l

° \ YW) =  ( m

This calculation, by varying the bin length, n, allows a measurement of the 
autocorrelation in the primary quantity. By increasing n, in the presence of autocorrela
tions, the jackknife error, a ^  will increase. If increasing n produces no increase in 
then this indicates that the Xj  are uncorrelated. Otherwise, the largest value of n beyond
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which a ^  no longer increases is the autocorrelation length. Calling such a value fz, we
have:

n  ^  2 r int. (1 .8 1 )

In another context jackknifing actually reduces the naive errors. Given two sec
ondary quantities which depend on correlated primary quantities, the difference between 
them is overestimated by normal statistics.



Chapter 2

Effective Theories of H eavy  
Quarkonia

2.1 Introduction

Potential models were applied extensively in the development of QED, various efforts have 
been made to repeat the process for QCD. Of course, QCD differs from QED in that it 
exhibits asymptotic freedom and colour confinement. Perturbation theory can be used 
to reproduce the asymptotically free part of the potential. However, colour confinement 
is a non-perturbative effect, and requires other techniques. In this chapter some of this 
work is summarised. The actual theory used in the lattice calculations for this thesis is 
Non-Relativistic QCD (NRQCD). It is an effective theory of QCD in the heavy quark 
limit.

2.2 Potential models

The Standard Model contains 6 quarks. The three lightest (up, down, and strange) are 
lighter than the heavy three (charm, bottom, and top) by a mass gap which is much 
greater than the typical QCD scale, Aq c d - Assuming the momentum of quarks within 
hadronic bound states to be 0 ( K q c d ) 1, then the three light quarks with masses O ( A q c d ) 
are relativistic as they have vf «  c2. For the heavy three with A q c d , their
typical speeds v\  <C c2. Thus, in a system such as T with two heavy quarks, bound via 
gluons which propagate at speed, c, it seems reasonable to try potential models with their 
suggestion of static quarks interacting via instantaneous gluon propagators.

1This assumption is not necessarily true, however radial and orbital excitation energies are roughly
this size.

19
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q i(q 2 >T2 )

gsYpAk/ 2  . q n n n n n n n n n p -  g r f / 2

qi(Pi.<7i) qj(P2.<72)

Figure 2.1: The one-gluon exchange process for quark-antiquark scattering.

2.2.1 Perturbative Potential M odel

To obtain the perturbative part of the potential it is necessary to consider elastic scattering 
of the heavy quark and anti-quark via one gluon exchange. The S-matrix element for this 
interaction (at the lowest non-trivial order in perturbation theory) is [28]:

Sfi = (/, out|z,in) =  5fi +  z(27t)45(4)(P/ -  Pi)M/i.  (2.1)

The potential, V (r) is obtained through a Fourier transform of the lowest order 
scattering amplitude, A4fi(k). The scattering is:

qi (pu<7i )  +  <Ij(P2,<r2) — > Q k i q u n )  - \ -qi (q2 l T2),  (2.2)

. where i,j,k,l= 1,2,3 are colour indices. The two channels through which this process 
occurs at tree-level are shown in figures 2.1 and 2.2. From those diagrams M.fi is given 
by:

1  ttP  1  1

M f i  =  “  (2 tt) 6 EplEJ>2EqlEi29aW 5i3W 5kl X ('Mexch + M annh)’ (2'3)

where

M exch =  ---- -— ^ ^ ^ u ( q i , r 1)'y^u(pi,a1)v(p2,a 2)Yv{q2,r2), (2.4)
[Pi ~ qiY  2 2

and
1  A “ - Xa

Mannh =  - 7 ------ ;------^ , r1)yfXv{q2, T2)v(p2, , <71).. (2.5)
{pi +P 2 r  2  2
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q k ( q i ^ i ) q i ( q 2 ^ 2 >

a

q i ( P l ^ i )  q j ( P 2 ^ 2 )

Figure 2.2: Pair annihilation for quark-antiquark scattering.

The factor of 5ab9^u [18] associated with the gluon propagator is responsible 
for the contraction of the spacetime indices on the 7  matrices, and for the adjoint colour 
indices a, b(= 1 , . . . ,  8 ) on the Gell-Mann matrices [29], Aa. The S functions in the colour 
indices z, j, ft, l(= 1 , . . . ,  3) arise because mesons are colour singlets. Thus, for example:

ui{puai)vj (p2,a2) = u(pi,ai)v(p2, <J2)-y=Sij.

The Gell-Mann matrices satisfy:

Tr (Aa ) 2 =  16,

4
3 ’

so the colour factor for the one-gluon exchange graph is:

1 A 1 A ^ i ^ j l  1 T
V i'S“ T I =  1 2  1(A } J

whereas the annihilation graph gives no contribution to the amplitude:

=  -A =Tr (A“) =  0.
V3 3 2 2\/3

Defining the exchange gluon momentum as:

k = P i ~ q i =  q 2 ~  P 2 •

(2 .6 )

(2.7)

(2 .8)

(2.9)

(2 .10)

The scattering amplitude is:

M  1 A£
(27r)6 3 k2

( 2 .11)
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Now taking the Fourier transform:

( U 2 )

Using equation 1.16 this is:

V(r)  =  =  - 1 — . (2.13)
3 4 7Tr 3 r

So the short range potential is of a Coulombic form. To impose the constraint 
of asymptotic freedom on this potential, simply use the running coupling for :

lim a s(k2) ~   r- (2-14)
-*2» a 2Qcd (33 -  2 nf ) \n { - k 2/ A 2QCD)

In the context of Lattice QCD, this is a particularly important equation. It 
indicates that quenched (rif = 0) Lattice QCD should have a lower strong coupling con
stant than unquenched QCD. Thus, signals for unquenching should be sought in quantities 
which depend on a s. In particular, for the T  spectroscopy reported in this thesis, the 
hyperfine splitting (see section 2.2.4) ought to differ between quenched and unquenched 
calculations. Indeed such an effect is found in Chapter 4.

The above result may be generalised to include other forms of potential. Ignor
ing the normalisation factors and (anti-)quark spins, the tree level scattering amplitudes 
are:

u(qi)Tu{jpi)VT(k)v(p2)Tv{q2). (2.15)

The Ts are constructed from the familiar Dirac 7  matrices. Their transforma
tion properties classify the type of interaction. For example, in the case calculated above 
T =  7 ^, and thus is considered to be a vector potential, labelled V y .  Other potentials 
which may be considered are [28]:

r  scalar =  1 

Tpseudoscalar =  T5 

r  axial—vector =  T/xT)

^tensor ~  ®\xv

where o\ and 0 2  are the spins of the quark and anti-quark respectively, and a ^  is defined 
as:

&nv =  2  bVi> lA  • (2 .2 0 )

There is no pseudoscalar static contribution at leading order, as it vanishes in 
the non-relativistic limit. The axial-vector and tensor contributions depend on the spin 
of the quark and anti-quark and hence imply that that spin-dependent splittings are of
the same order as spin-independent splittings [30]. The experimental spectrum of the T

v„ (2.16)

o
'II (2.17)

Cl ■ c2Va, (2.18)
ci ■ c2Vt, (2.19)
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rules this possibility out. Ergo, at leading order the potential consists of only scalar and 
vector components:

V0(r) =  K (r) +  Vi(r). (2.21)

The 0 subscript signifies that this potential is zeroth order with respect to
relativistic corrections.

2.2.2 Inclusion of Non-Perturbative A spects of the Potential

For the long-range potential a non-perturbative approach is necessary. The Coulomb po
tential alone would suggest degeneracy between the 2S  and I P  levels [31]. Phenomeno
logical potential models are required. One such additional potential is of the form [6 ]:

V  ~  rn 2  > n > 0 . (2 .2 2 )

The harmonic oscillator r 2 type is ruled out because, whilst it gives IP  lower 
than 25, it suggests that for the J/if) system the I D  and 25 are degenerate [31].

A popular form of this model is the Cornell model [32], which includes a term 
which grows linearly with interquark separation, i.e. a confining term:

v {r ) =  +  crr, (2.23)o r

where a is called the string tension. This successfully reproduces the zeroth order spec
trum fairly well, with IP  lower than 25 and ID  higher than 25 (for the charmonium 
system only, as no T D  state has yet been observed). Another form which is also success
ful is the Richardson potential [33]:

V(r) = /  (2.24)

On substitution of a s(k2) from equation 2.14, this gives an integral of the form:

f ( n f ) /  d3k k2 +  *.2 ^ 2 ^ )  > (2-25)

where f ( n f )  simply represents the integral normalisation and running coupling coeffi
cients. For large k this behaves as a Coulomb potential, and for small k as a linear 
potential. At intermediate k the potential is logarithmic.

2.2.3 R elativistic Corrections to Potential M odels

The zeroth order potentials of the previous section give good results for the spin inde
pendent splittings, such as that between the T(15) (or l 3 5i) and Y(25) (235i). However
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they don’t account for the mass differences between states which differ in their spins such 
as the J/ip (cc meson with quantum numbers l 3*Si) and the r]c (cc with l 1 So). To distin
guish between such states it is necessary to include relativistic corrections to the zeroth 
order potential.

A popular way of including relativistic corrections is to use the method of 
Eichten and Feinberg [34]. They give the spin-dependent potential up to 0 ( l / m 2) as:

,  (2.M)
m zr \ 2 dr dr J

+
Lx-Sa —L2 -S idV2{r) 

m 2r dr

\  m 2r2 3m2 J

a. S ‘ ' S2! / r  ^+ -3^rVi{r)’
where the quark and antiquark spins are now written as Sj (for z= l,2 ), the quantum 
orbital angular momentum L is given by L =  r x p. The central potential Vo is just the 
heavy quark static potential, one of the candidates discussed in sections 2 .2 . 1  and 2 .2 .2 .

The potentials V \ , . . . ,  V 4 come from the expectation values of correlations of 
components of the chromoelectric and chromomagnetic fields. Those fields can be treated 
non-perturbatively, e.g. by calculating them from the Wilson action of Lattice QCD [35]. 
Thus, to include a spin-dependent part to a potential of the type a • B /2 mg, the heavy 
quark propagator is modified via the insertion of two (from symmetry considerations) 
lattice B fields. The addition this makes to the potential can be calculated from the ratio 
of the Wilson loop with B fields to that without.

Another useful method is to use the generalised Breit-Fermi Hamiltonian [2 8 ]:

2 4
H b f  — 2 m  +  — T ~ T  +  T o (r )  +  V s i  +  V l s  +  V5 5  +  V t , ( 2 .2 7 )m  Am6

The mass is given as 2 m because in this case there are two equal mass particles. 
Similarly, the reduced mass /i which ought to occur in the term p2/2 fj, is replaced by m / 2 . 
Once again, Vo(r) is the heavy quark static potential of sections 2.2.1 and 2.2.2. The spin- 
independent correction for this Hamiltonian is given in [28]. The potentials of interest for 
this thesis are given by:
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with S 12 given by:

(2.31)

The unsubscripted operators are the operators for the total meson, thus the 
total mesonic spin S is just a sum of the individual quark spins, S =  Si +  S2. These 
contributions are trivial to calculate, with J  =  L+S, and the eigenvalues of these operators 
written as J, L and 5, we get:

(L-S)  =  i ( J ( J  +  l ) - L ( L  +  l ) - S ( S  +  l)),  (2-32)
L i

(Si ■ S2) =  1 ( 5 ( 5 + l ) - 5 1(51 +  l ) - 5 2(52 +  l)). (2.33)

Notice from the expression for (L • S) that the spin orbit term has vanishing 
expectation values for L=0 or 5=0. For the spectral states of interest in this thesis the 
only contribution from this term is thus with L ^  0 and 5=1.

For the tensor term Vt , the value of 5 i2 in the case 5i =  5 2  =  1/2, can be 
re-written as:

S12 =  2 -  S2)  . (2.34)

The expectation value for S n  was calculated by Kwong and Rosner [36], and
is given by:

- 1 2  / _____ o 1 _______ 1

=  (2L — 1)(2L +  3) 1<S • :L) +  2 <S ' L> -  3 5 ( 5  +  1)L{L +  1}J ’ (2'35)

Thus, like the spin orbit term, the tensor term has vanishing expectation values 
for either L or 5  equal to zero. It is now easy to calculate these expectation values for 
the various energy levels of the T system. They are listed in table 2.1. The numbers 
in parentheses after the usual 2 5 + 1  L j  state labels are the J PC numbers for the various 
states, where P  is the parity quantum number and C  the charge conjugation number for 
the states. They are calculated in the usual way for quark anti-quark states:

P = ( -  1 ) L + 1  C = ( -  1)L+S. (2.36)

2.2.4 Potential M odels and the Fine Structure of Heavy Bot- 
tom onium

P-W ave Fine Structure in Bottom onium

So far it has been shown that the static potential is both scalar and vector in nature. Also 
that it has a short distance Coulombic component and a long distance potential rising as
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1So(0-+) sS i( l“ ) 3Po(0++) 3A (1 ++) 3P2(2++)
(Si ■ S2) -3/4 1/4 -3/4 1/4 1/4 1/4
(L-S) 0 0 0 -2 -1 1

<Sl2> 0 0 0 -4 2 -2/5

Table 2.1: Expectation values of the orbital and spin angular momentum operators rele
vant to the spin splittings in the T system. The expressions in the parentheses after the 
states are the J PC quantum numbers of the states.

a positive power (less than two) of the interquark spacing. Experimental results can be 
used to analyse how much of the vector type and how much the scalar contribute. One 
such is the Peskin Ratio [37]:

(o v f \
P M(*Pi) -  M (3Po)'

Table 2 . 1  indicates that the spin-spin interaction will not contribute to this 
splitting as it cannot distinguish between the states used in the calculation of p. Where 
the spin-spin term does make a difference is for the 3 Si and states, indeed it is the only 
one of the potentials considered which will give rise to this hyperfine splitting between 
them, as seen in the mass difference between the J/ij) and the rjc.

Considering the static potential as the Coulomb plus Cornell type, i.e. equa
tion 2.23, and then making the further assumption that this potential is wholly vector in 
nature (Vy = Vo and Vs = 0), gives:

_  1 8a ,  ( r - 3) +  l a  ( r " 1)
V 5 2a, (r~3) +  <r (r_1) ’

This result has the bounds 4/5 < py < 7/5, and so is inconsistent with the
experimental result 0 . 6 6  for the XbO-P) states (see table A .l). The scalar alternative 
gives ps=2. Thus, the static potential is thought to be made up of both scalar and vector 
components. Normally, the Cornell confining bit is identified as the scalar part, and the
Coulomb as the vector. With this in place we get:

_  1 8a , (r~3) -  \ a  ( r - 1)
SV 5 2as ( r -3) -  \ a  (r--1) '

In the pure vector-Coulomb limit (a = 0), psy=0.8. Hence, some appropri
ate scalar-Cornell contribution on top of the dominant vector-Coulomb part will give 
agreement between this model and the experimental result.

S-wave Hyperfine Structure in B ottom onium

As mentioned earlier the part of the interquark potential which creates the hyperfine 
(3 5i — 1 Sq) splitting has to be the spin-spin term, as both the spin-orbit and tensor parts
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don’t distinguish between either of those states. Assuming 1 -gluon exchange giving a
4 a a 
3 rvector potential V y  = — and noting from Poisson’s equation [38] that:

V 2 ( 1 )  =  —47rc53 (r), (2.40)

these two equations used in equation 2.29 give the expectation value for the spin-spin 
splitting in heavy quarkonium as:

(V s s ) =  WO)| 2 [<sx • S 2 > ] £  , (2.41)

where []* means subtract the expectation value for y from that at x. Using table 2.1,
equation 2.41 evaluates to:

QO-tt
(Vss) = ■ (2 .42)

An alternative way of looking at the S-wave hyperfine splitting is to use the
time-independent Schrodinger equation [28] for a two particle system:

- £ +v(x)
V>(x) =  £ty(x), (2.43)

" = (2'44)
. 1 d 2 d L2 . .

For (flavour singlet) bottomonium this can be simplified as /i =  m/2. The 
wavefunction can then be factorised into a radial part and the usual spherical harmonics:

V>(x) =  - y ( r ) y LM(0,4>). (2.46)
r

They have normalisations:
roo
/ dr\y(r)\2 =  1, (2.47)

Jo

J  dQ yIMy L'M' = &l u $m m ' • (2.48)

The Laplacian of equation 2.45 changes under this factorisation and the re
duced wavefunction y(r) satisfies a new radial wavefunction:

A ^(x) =  1  ( T  -  L(L +  j  y(r)yLM(e,<t>), (2.49)

y"(r) =  ( 2  l, ( V ( r ) - E }  + L { L t 1)) y ( r ) .  (2.50)
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For S-waves the spherical harmonic is 3̂ oo — 1 / \ / 4 7r, so we have:

^ (x) =  ~ 7 r V~T ~’ (2-51)\ / 4 7r r

AV’(x) =  = 4 = ^ -  (2-52)
v  47T t

Inserting equation 2.52 into the Schrodinger equation (equation 2.43), gives:

~ I  ̂  ton* = ~\L dr^ '  =  “ ^ ^ ' 2 )lo° =  - 27r(V' +  ^ ' ) 2 |o° =  2 ti- IV’C0 ) ! 2 , (2-53)

=  2y  f  d3r [ E - V ( r ) ] - ^ ^  = y  dr[E -  V{r)](y2) ' = y, drV'(r)y2, 

= H ( V ) .

Using the Cornell potential this yields:

4 a

Thus, for sufficiently light quarks (where the linear part of the potential dom
inates), equation 2.54 becomes:

= (2-55)

which, in turn, leads to the conclusion that the hyperfine splitting will vary inversely with 
quark mass, m. How good this assertion is can be tested from the results for the hyperfine 
splittings in the next chapter. Unfortunately, as the 7#, has not been seen, no experimental 
comparison is possible between the J/ip — rjc and T — rft, experimental splittings.

The Effect of Unquenching on the Hyperfine Splitting

Many phenomenological models use the running coupling constant (see equation 2.14). 
In the quenched approximation rif = 0, and so the coupling should run faster than in the 
presence of sea quarks. Thus, the expected situation is that a s is lower in the quenched 
approximation than in the full theory. Even from early attempts at unquenching on 
the lattice, such an effect was observed, for example, by the SESAM Collaboration [39]. 
Furthermore, in the absence of sea quarks, string breaking won’t occur in the theory.

The wavefunction at the origin is another useful lattice observable through 
which the effect of unquenching on the interquark potential may be measured. Such a 
measurement is discussed in El Khadra et al. [40] [41]. They found that, with a Richardson 
potential model, the value of 1^(0) |2 was 30% less than in the full theory.
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2.3 Non relativistic QCD (NRQCD)

2.3.1 The M otivation for NRQCD

The potential models which have been discussed previously in this chapter can be suc
cessful in predicting the spectra of the cc and bb systems. However, there are several 
disadvantages to potential model methods. The parameters a s and the string tension, 
a, have to be adjusted to reproduce the low-lying spectral states. Higher states are then 
estimated from the results of those fits. Thus, the process is very much one of modelling, 
rather than trying to extend first principle ideas in a rigorous fashion. Similarly, the exact 
nature of the potential (i.e. what are the relative importances of vector and scalar parts?) 
doesn’t emerge as different models yield different conclusions on this problem.

Nevertheless, potential models do give some useful input towards the estab
lishment of an effective theory from first principles. In particular, the Virial Thoerem [42], 
which relates the expectation value of the meson kinetic energy, (K ), to the expectation 
of a derivative of the potential:

Quigg et al. [42] used various potentials successfully, amongst them a logarith
mic type V(r)  ~  lnr.  Such a potential type yields a constant (K ). Thus, with:

<M7)

where /i is the meson reduced mass, which is t t i q / 2  for quarkonium. Thus, the velocity 
of an individual quark within the meson is estimated as:

2̂'58^

From the fit of Quigg and Rosner [42] the results are:

c in J/ip : v 2 ~  0.24, 
b in T : v2 ~  0.07.

(2.59)

Thus, potential models self consistently predict a non-relativistic speed for the 
quarks within the T meson, and, to a lesser extent, within the J/ip system too.

Such a result implies that a non-relativistic approximation to the QCD action 
would work [43]. The experimental status of the spectra reinforces this view. Both T and 
ip have spin-independent splittings of 0(500MeV),  whereas the spin-dependent splittings 
such as the hyperfine are of 0(100MeV)  for the ip and of O(b0MeV)  for the T. Thus a
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picture emerges of spin-independent splittings which are unaffected by quark masses (i.e. 
zeroth order in v), with a finer spin-dependent structure where the different constituent 
quark masses do have an effect on the splitting. Combining these observations with 
equation 2.59, a theory with finer structure arising out of 0 ( v 2) corrections to the zeroth 
order case may be appropriate.

One major point in favour of NRQCD is the relative ease of implementation. 
The problem becomes an initial value problem and is therefore computationally inexpen
sive to implement.

However, there is a sense in which bottomonium systems are not suited to 
lattice QCD. This is due to the dependence of NRQCD on three different scales: the 
mass (O(M)),  the 3-momentum (G ( Mv )) and the kinetic energy ( G( Mv2)). In a lattice 
computation one needs a space-time grid which is large relative to 1/M u2, but with a 
lattice spacing that is small compared to 1 /M . Unfortunately for the T M / M v 2 ~  10, 
which suggests that to achieve sensible finite volume and discretisation error sizes a lattice 
of size «  1004 should be used. Such lattice sizes are computationally expensive. Now the 
quark mass is the least important of the three scales for the dynamics of a heavy quark 
system. So, removing it from the theory coarser lattices with a ~  1 /M  can be used to 
study the dynamics of the T. The procedure followed is to introduce an ultraviolet cut-off 
A ~  M. Thus relativistic heavy quarks are excluded from the theory. The expected heavy 
quark momentum is of order M v  <C M, and so the cut-off doesn’t remove the typical 3 
momenta from the theory. Hence NRQCD actually makes it computationally cheaper to 
make lattice calculations of the T or J/'ip spectra.

2.3.2 Deriving NRQCD

As shown in section 2.3.1, the Dirac theory can be regularised by the inclusion of an 
ultraviolet cut-off, A [44]. For a non-relativistic interaction, with relativistic intermediate 
states, those intermediate states are virtual and thus do not propagate very far, i.e. they 
are local. Hence, the exclusion of such states may be compensated through the addition 
of local interaction terms in the Lagrangian. Such terms are added in powers of 1 /A. In 
general, a required accuracy of order (p/A)n will involve keeping terms in the Lagrangian 
up to and including 0(1  / A)'n. The couplings of the local interaction terms are then 
determined by requiring that the regularised theory agrees with the unregularised one to 
order (p/A)n.

This procedure becomes even more useful if combined with a Foldy- Wouthuysen- 
Tani (FWT)  transformation [45] [46] [47]. A FW T transformation makes the following 
change to the Dirac theory:

^(7 •‘Dp -  M)V  ^  ( iDt - M +  2 - j  $  (2.60)

+i/>t ( -9—a • B +  -9 —V ■ E +  T _  +  . . . )  v>. 
v \ 2 M  8M2 8M 3 ) v
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Here, 4/ is the 4-component Dirac spinor, whilst ip is a two component Pauli 
spinor, such that ip represents the quark, and ip̂  the anti-quark. In QCD, the fields B 
and E are the chromomagnetic and chromoelectric fields respectively. Combining both 
the FWT transform and the regularisation of the Dirac theory gives the cut-off, A ~  M. 
Thus, the 1/M  FW T transformation is a 1/A transformation. In order to obtain an 
accuracy of (p/A)n = un, only terms up to and including 0 ( 1 / An) have to be retained.

The modern way of deriving NRQCD is to follow the method of Lepage et 
al. [48]. Their method involves the use of power counting rules to determine the size of 
the correction terms and then to include only the terms required for a certain level of 
accuracy.

2.3.3 Power counting in NRQCD

The power counting rules may be constructed from the observation that the number
operator for a heavy quark in a quarkonium meson is very nearly unity.

J  d?xip\x)ip(x) «  1 (2.61)

From Heisenberg’s Uncertainty Principle the quark is localised in a region
A x  ~  1/p. Thus, the mesonic 3-volume has magnitude:

[  d3x ~  -1 (2.62)
J P6

So, ip̂ ip ~  p3, or ip ~  p3//2. Similarly the kinetic energy operator has an 
expectation value of M v 2 and so:

J  d3xipj ( x ) ^ i p ( x )  ~  M v 2, (2.63)

which gives D ~  Mv.  Schrodinger’s equation for the heavy quark field is:

(*A  +  Tp(x) = 0. (2.64)

Thus Dt ~  M v 2.

In NRQCD the “natural” gauge to use is the Coulomb Gauge in which V • A =  
0. One consequence of using this gauge is that the vector potential is small (as will be 
seen shortly). In this gauge, equation 2.64, becomes:

(idt -  g(p(x) +  ip «  0, (2.65)

yielding g<p(x) K.  The field, </>, is the temporal component of the field This result 
indicates that the potential energy which balances the kinetic energy for this bound system 
comes from the operator g(p.
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Operator ip X A D g<P* gA* gE* gB*
Estimate (Mu ) 3 / 2 (Mu ) 3 /2 M u2 Mv Mu2 M v 3 M 2 u3 M 2 u4

Table 2 .2 : Estimates of the orders of magnitudes of the fields and operators needed in the 
NRQCD action. *These estimates are specific to the Coulomb gauge.

From the Euler-Lagrange equations, this result can be checked, and the mag
nitude of the previously neglected spatial components, A, estimated, by calculating:

Here the Lagrangian is the lowest order NRQCD Lagrangian, C ^ r q c d > given
by:

&NRQCD ~  ^ ( x )  ( iD t + 2 A  ^{x),  (2.67)

The results are the field equations for <p and A:

V 2gcp(x) = - g 2ip\x)ip(x), (2.68)

(9 ? -V > )„ A (,)  -  ■»’y y W  (2.M)

ig2ip^(x)'Vip(x)
2M 

+dt(Vg<p(x)).

Note that equation 2.68 is calculated with no vector potential A. From equa
tion 2.68 g2 ~  v. Substituting this result in equation 2.69 gives gA(x)  ~  M v 3, confirming
that for the Coulomb gauge, the vector potential in heavy quarkonium is smaller than
the scalar potential by a factor of v. Knowledge of the relative magnitudes of cp and A, 
allows an estimate of the magnitudes of the chromoelectric and chromomagnetic fields. 
These follow from the usual definitions of the 4 vector (cp, A):

gE = — Vg(j) +  • • • ~  pK,  (2.70)
=  V x  g A  +  • • • ~  K 2.

Appropriately for a non-relativistic system the (chromo) magnetic fields are 
smaller than the (chromo) electric fields by a factor of v.

The powers of the various quantities used in NRQCD are shown in table 2.2.

2.3.4 R elativistic Corrections

Relativistic corrections to equation 2.67 must respect the symmetries of the theory, such as 
gauge invariance, parity, rotational invariance etc. For example, a term such as • crip,



2.3. NO N RELATIVISTIC  QCD (NRQCD) 33

is not allowed, as it is odd under parity, whereas the a  • B term is allowed. Charge
conjugation invariance demands that the action is symmetric under the interchange of
the quark and antiquark fields, ip -H- x- These terms must also be local, and only those 
terms of a sufficiently high magnitude need to be included in the heavy quark action. So, 
a term which satisfies the symmetries of the theory, such as 2ip/M, but which is of 
order u6, isn’t included. In order to increase the accuracy of equation 2.67 by a factor of 
0 ( v 2) (and to give accuracy to lowest order in [43]), only four terms bilinear in the 
heavy quark field are needed:

^^bilinear =  C\ ^ - 3  tjj

+ c2^ ( D  ■ E  -  E  • D)V-

+C3M ^ t<7 ' {D X E  -  E  X D )^

+C4i ? ^ t(T' B ^ '

The dimensionless coefficients c* are functions of the running coupling constant 
a s and mass, M.  The Schrodinger equation is used to redefine temporal derivatives as 
spatial, in order to simplify the time evolution of the wavefunctions.

In equation 2.71, the D 4 term comes from the expansion of the relativistic 
energy-momentum dispersion relation (E 2 = p2 +  M 2) to order M v 4. The second term is 
known as the Darwin term. The fourth term splits states with the same orbital angular 
momentum quantum number, L, but which differ in their spin number (e.g. 3Si and ^o ), 
S. The third term splits states with the same L and S  numbers, but different values of J  
(3a ,  i,2).

As well as the previous correction terms there are contact and colour terms. 
The contact terms come from four fermion interactions, and are given by:

(^ con tact — d\ ^ . 2

+  d2- ^ ^ a x  ■ X^i>

They are only suppressed by a factor of v from the terms in equation 2.67. 
However, such terms do not occur in continuum QCD and so their coefficients are of 
order a 2, making them less important than the bilinear interactions of equation 2.71. 
The colour terms again involve four fermion operators, this time coupling to coloured 
states. They are given by:

(2.72)

(2.71)

^ co lo u r  =  (̂ TH  Y1 i ATaxx'Taip
 ̂ * a

+  ^ T “a X ■ X^Tao'il).

(2.73)
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They have coefficients of order a 2. Such coupling is equivalent to virtual 
gluon emission in the meson, giving rise to the colour singlet meson becoming coloured. 
However, virtual gluon emission is suppressed by a factor of u2, so the colour terms are 
even less important than the contact terms.

The combined heavy quark action of equations 2.67 and 2.71 has spin depen
dence suppressed by order v2. Thus, it is about 10% of the size of the lower order terms. 
In order to determine the resulting spin splittings of the theory to an order of 10% one 
must then include spin dependent corrections to the level of vA relative to the leading 
terms. These new terms are:

<5£spin =  / i - ^ j D V - B } * / .  (2.74)

+ / 2J ^ { D 2 f f . ( D x E - E x D ) } ^
• 2

+ / 3 ^ t < 7  • (E X E) </,.

The operator (E x E) is non-zero since QCD is a non-Abelian theory. The 
inclusion of such terms was studied on a lattice by e.g. Manke et al. [49]. They found 
that the shifts in splittings were of the anticipated order ~  10%. With a higher value 
of v2 for the charmonium system, these corrections are more important for accurate J/ijj 
spectroscopy.

2.3.5 The Coefficients of Relativistic Corrections

With a suitable NRQCD cut-off (A ~  M)  in place, the tree-level c* may be determined. 
For ci in equation 2.71, the energy-momentum dispersion relation for a relativistic quark 
is used:

+  +  (2.75)

suggesting that the appropriate correction term is:

^ b ilin ea r ,c i =  ( 2 > 7 6 )

yielding 1/8 for C \ .  To obtain the coefficients 0 2 ,3 of equation 2.71, and the coefficient / 2

of equation 2.74, the amplitude of quark scattering off of a static electric field in QCD is
calculated:

? e (p , q) =  u(q)7°£0(q -  p)u(p). (2.77)

Matching this result to NRQCD at small v involves an expansion, in p / M  and 
q /M . The Dirac spinor with non-relativistic normalisation (u^u = 1 ) is:

$  
E p + M ip

(2.78)
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Substituting this expression in equation 2.77 yields:

(2.79)

where S  and V  stand for the vector and scalar parts of the amplitude respectively. Use 
has been made of the structure constants of S U (2 ) via the formula:

o'iO'j — Sjj Rijk&k- (2.80)

Expanding equation 2.79 to order p2, q2 (see equation 2.75) gives for Se-

Se(p, q) =  f 1 -  -  p)*l>- (2-8i)

The first term in this equation corresponds to the NRQCD term involving Dt 
of equation 2.67. Thus the Dt term has a coefficient of 1 in the NRQCD action. The 
second term in equation 2.81 corresponds to the D • E — E • D term in equation 2.71. 
Hence, c2 =  1 / 8 . A similar procedure on Ve yields C3 =  1/8 and / 2 in 2.74 is 3/64.

Following a similar procedure for quark scattering in a static vector potential
A:

7b(p, q) =  - u ( q)7 • <?A(q -  p)u(p). (2.82)

The result compared to NRQCD makes c4 =  1/2 and f i  =  1/8. For the 
a  • E x E part double scattering of a quark of a static electric field has to be considered, 
and it turns out that / 3 =  —1 / 8 .

Overall, the various constants needed in the theory have to be evaluated. The 
QCD coupling g , becomes a function of the spacing (g = g(a)) on a lattice, and is 
used to prescribe the lattice. The spacing a is determined in the region of interest by 
matching lattice splittings to experimental values. The quark mass, M, is tuned to 
give a meson mass which matches the experimental T  kinetic mass (coming from the 
energy-momentum dispersion relation). The couplings, q , are calculated by calculating 
a scattering amplitude alternately in full QCD and in NRQCD. They are then adjusted 
to give agreement between both theories. Unfortunately, beyond the previous tree-level 
discussion, the c* are of the form 1 +  a sA , with A  a function of the lattice bare quark 
mass, aM.  This makes NRQCD non-renormalizable.

Te = \
{Ep + M){Eq + M)

^EpEq

1 +
p • q +  ia • q x p

{Eq + M){EP + M )\  
=  SE( P , q ) +  UE(p ,q),

9<t>{ q -  p)V>
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2.4 NRQCD on a Lattice

On the lattice a Euclidean metric is used. With such a metric, the NRQCD Lagrangian 
developed in previous sections becomes:

£ e =  i^ (x)  ^D t -  il>(x) +  £ s i  +  £ s d , (2.83)

=  ^ ^ ( - 8 ^ D 4  +  8 f e ( D - E - E ' D )) ^ )’

CsD =  ^  ’ D  x E  -  <t • E  x D ) -  ^ < 7  • B )  ^ (* ) .

2.4.1 D iscrete NRQCD Operators

On the lattice, derivatives become difference equations, and so the following operator 
definitions become useful (dropping the E  subscript of previous sections):

a A ^ ip ( x )  = Uv(x)ip(x +  av) — ^(x),  (2.84)
a A l~ ^ (x )  = ip{x) — Ul(x — ai>)ip(x — az>), (2.85)

A l±)'ip(x) = ^ { A u +  A_„). (2.86)

These operators are known as forward, backward and centred differences re
spectively. The inclusion of lattice gauge field matrices ensures the retention of gauge 
invariance. Similarly, the continuum operator, D 2 becomes the lattice Laplacian operator 
A<2) given by:

A<2> =  £  A,(+)A|-» =  £  a H a ,<+). (2.87)
i i

Then the lattice kinetic energy operator is:

A^2)
a  =  - 2 M ' (2#8)

The lattice version of the continuum field, FM1/, involves the cloverleaf operator, 
Vfju,, introduced in section 1.5.4 (see equation 1.57). This field carries the superscript (c) 
as a reminder that it is in cloverleaf form and not a simpler type. It is defined as:

gF $ {x )  =  - - L  £  J p V ( * ) ] ,  (2.89)

M  -  M ] h  
AM ) =  -— -A—  -  -|lm (Tr(M )),

where / 3 is the 3 x 3  identity matrix. From this definition, lattice E  and B fields may 
also be defined allowing the extension of lattice NRQCD to 0 { y A).
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E ^ x )  = F<£\x) (2.90)

B \ x )  =  \ t , jkF $ { x )

The covariant derivatives of are:

a A ^ F $ ( x )  = Uu {x)F${x  +  au)Ul(x ) -  F $ ,  (2.91)

a ^ F ^ J i x )  = F $ ( x )  -  Ul(x  -  a w )F $ (x  -  aw)Uu(x -  aw).

2.4.2 The Lattice Heavy Quark Evolution Equation to 0 ( v 2)

Using only the terms up to and including 0 ( v 2) in equation 2.83 gives the heavy quark
action on a lattice to that order (dropping the Euclidean subscript E ):

gO(v2) _  a3 ^2(^(x) i f i(x)  — x +  at)Ul(x)(l — aFt0)i/j(x)). (2.92)
X

The Green’s functions of the theory satisfy the following equation:

^ K ( x , y ) G ( y , 0 )  = Sx^ ,S tih. (2.93)
y

In this equation, K (x ,y )  is the bilinear term appearing in the action. The 
heavy quark Green’s function G(y, 0) is equivalent to G(y, ty\ 0 , 0). This gives the evolu
tion equation for the heavy quark propagator (Green’s function) as:

G0 (v2)(x ,t +  a ;x 0 ,to) =  Ul{x)(l  -  aH0)G{x, t; x 0, t0) + SX)Xo5t+a,t0. (2.94)

Fourier transforming the spatial components of this equation removes the As
from H0:

aH0G (x , t\ x 0, t0) = ^  4 S m 2  M a ^ 2^  ^ P ’ Po’ 9^

Unfortunately, max(a//o) =  6 /M a fo rp  =  (ir/a, 7r/a , n/a),  leaving |1 — aHo\
1 if Ma  < 3, and the evolution matrix with eigenvalues of magnitude greater than unity. 
In order to attain a stable evolution, the following change has been made [48] to equa
tion 2.94:

G ° iv2\ x , t + a ] x 0,to) = G(x,t]Xo,to)+5x>Xo6t+afi. (2.96)

This equation is stable for M a  > 3/2n. By choosing an appropriate value of n 
stability is assured. However, as a result of this stabilisation unwanted terms are created, 
these must be accounted for.
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Spatial Derivatives

Lattice spatial derivatives were defined in equations 2.84, 2.85, and 2.86. Expanding the 
gauge field, Uj ( x )  =  eigaAj^  as an exponential and Taylor expanding ifj{x +  aj) gives:

aA<+) =  aDj + ^ -D)  + ---,  (2.97)
L i

(+) — nn. i fl_ n 2
2 
2

iE + (2.98)
Zi

oAf> =  aDj + j D 3j + ---. (2.99)

They are accurate to 0 ( a 2). The accuracy is extended to 0 ( a 4) via the re
placement of the As by new operators, the As. As an example, consider:

A<+) =  A<+) -  ^(A<+))2. (2.100)

The new operators, A ^  and A ^ ,  are similarly defined. By the same method, 
the lattice Laplacian operator, A ^ ,  is replaced by:

A(2) =  A(2) -  ^  E  K +)Ai_)]2 ■ (2.101.)
1 2  3

Temporal Derivatives

The status of temporal derivatives in NRQCD is different from that of spatial derivatives, 
as the theory is now non relativistic. This is useful as it makes the evolution of the Green’s 
functions an initial value problem, rather than a boundary value problem like full QCD. 
A naive reduction of temporal discretization errors, analogous to that for spatial errors, 
would introduce higher order temporal derivatives into the evolution, thereby ruining this 
simplicity.

As an alternative, we consider the evolution equation 2.96, neglecting the 
lattice gauge field link U}(x)2, for t > 0 this is:

(
t t  x 2n

1 — G(x,t)  (2.102)

=  e~aH°«G{x,t),

with the effective Hamiltonian, Hê  given by:

2 n , /  clH q \  . _
HeB =  - _ m ( l - _ ) ,  (2.103)

_______________________________ =  Ho+:k H ° + ' " -
2The gauge field part is automatically exponentiated anyway.
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This motivates the introduction of a new Hamiltonian:

H 0 = H0 -  ^ H i  (2.104)

2.4.3 Reduction of Discretization Errors in the Lattice Chro
moelectric and Chromomagnetic Fields

The lattice cloverleaf field, Fj$ only differs from the continuum field, F ^ ,  at the level of 
a2. Lepage et al. [48] calculated a corrected clover-leaf operator accurate to O (a4). It is:

= \ g F ^ { x ) - \ [ U , { x ) g F ^ { x  + aii)Ul(x) (2.105)

+  U f a -  a j i )gF^(x  -  a j i )U fa  -  ap)

~  (/*<-*• v)] ■

However, this correction requires further modification when tadpole improve
ment  is applied (see section 2.4.5).

2.4.4 The Heavy Quark Evolution Equation to 0 ( v 4).

Using the power counting rules of section 2.3.3, summarised in table 2.2; it can be shown 
that the last 4 terms appearing in the Lagrangian 2.71 are of G (M vA). Thus, any dis
cretization errors of magnitude > M v A must be removed from a Lagrangian seeking 
accuracy of that order. This means that the correction terms to the lattice temporal 
derivative and Laplacian must be included. Hence, for the temporal derivative correction 
of equation 2.104, we have:

- ■ j -H l  ~  a(Mv2)2 ~  M v 4. (2.106)

Similarly, from equations 2.88 and 2.101

„2  _2

E ( A ‘+)A<->)2 -  |- : ( M V ) 2 ~  M v \  (2.107)2AM , i i '  m

These terms are then included in the final evolution equation. The status of the 
corrected clover-leaf field, F f f ,  is more ambiguous. They are a factor G(a2M 2v2) ~  0 ( v 2) 
(since a ~  1 /M )  smaller. Likewise from equation 2.99 the corrected is smaller by 
the same factor, relative to A ^ .  Consequently their inclusion is not necessary to achieve 
accuracy to 0 ( M v A).

However, Davies et al. [50] found that when they used a Lagrangian without 
the 0 ( a 2M 2v2) corrections, the bottomonium hyperfine splittings had fairly severe G(a2) 
variation with lattice spacing. Bearing in mind the non-renormalisability of NRQCD it
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is hoped that lattice results will have sufficiently reduced a dependence that they will 
be essentially independent of a, and so the unreachable continuum limit is not a major 
handicap. In order to reduce (or remove) the scaling behaviour, the terms in the G (M vA) 
Lagrangian responsible for the hyperfine splitting (i.e. those involving a) ought to be 
corrected. Thus, there is a motivation for the corrections Fj$ and A ^ .  The same effects 
turned up in the related charmonium calculation of Davies et al. [51].

Overall, the O(Mv^)  accurate evolution equation is (using the shorthand 
G(x,t)  instead of G(x, t ;x 0 ,to) ) f°r a heavy quark created at a point (x0 ,to) :

\ f  a5H \  (  aHo 
G(x, t P  a) — 1 - — -  1 -

2  n

with initial condition:

J u H x )  ( l  -  § ) "  ( l  -  G (x ,t), (2.108)

G (x ,to ;x0,to) =  ^x,x0- (2.109)

The kinetic energy operator, H0, is given by equations 2.87 and 2.88. The 
correction operator 5H consists of the relativistic and discretization corrections:

=  _  i A J !  +  _ ^ ( A ( ± )  • E  -  E  ■ A W , (2.110)
8 m 3 m 2 y K 1

9 . x f+u 9a • (A(±) x E  -  E  x A (±)) -  - ? - o  • B,

+

8  M 2 ' ; 2M
a2 A<4> a(A<2>):
24M  16n M 2 ’

A <4) =  ^(A <-+)A e ))2. (2.111)

All that is required to extend this evolution equation to G (M v 6) is the inclusion 
of the terms with coefficients / i , / 2 , / 3  of equation 2.74. Additionally the term • E 
differs from the naive version of equation 2 .8 6 , in that for gauge invariance it has to be:

A<±) • E =  Ya  T  ( Ui ( x )E i (x  +  a ~i)Ui  (x ) -  UJ ( x  -  -  a j )) . (2.112)
j

2.4.5 Radiative Corrections to the NRQCD Coupling Constants

In coupling NRQCD to QCD the calculations in 1/M  expanded, full QCD were only 
carried out from the tree level amplitudes of type shown in equations 2.77 and 2.82. The 
accuracy of the coupling constants will thus break down when radiative corrections to the 
tree level amplitudes are considered. On the lattice these improved couplings should be 
calculable as the radiative corrections are dominated by momenta of 0 (n /a )  or larger. 
With 7T/a  typically several GeV, lattice perturbation theory in the weak coupling region 
ought to give a useful method of computing the improved values of ci, • • •, C4 , / 1 , • • •, fo.

Unfortunately, when Monte Carlo estimates of suitably short distance quanti
ties are compared to their lattice perturbatively calculated values, large discrepancies often
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occur. Thus, the expectation value of (1 — l/3Tr£/M) (the lattice equivalent of ( A 2̂j  [52]), 
with Up a lattice gauge link calculated in lattice perturbation theory gives:

( l - l l w „ \  =0.078, (2.113)
\  o  /  p . T .

which is almost half of the nonperturbative result:

/ l - l i w „ \  =0.139. (2.114)
\  O /  M .C .

These results were obtained on a lattice with a small coupling constant (cqat =
0.08) and at a large loop momenta scale ir/a = 6 GeV, i.e. where perturbation theory 
should have worked fairly well. The problem was that the expansion parameter, a]at, 
was a poor choice of perturbative expansion parameter, a renormalised coupling scheme 
should have been used. As an example of the problem, consider the assumed interrelation
between the continuum QCD gauge degrees of freedom and the lattice version:

Up = eisaA“ -> 1 +  igaAp. (2.115)

Explicitly letting the lattice spacing tend to zero should reproduce the con
tinuum gauge field. However, in a fixed gauge terms such as (A fy  quadratically diverge 
(leading to the expectation that it is dominated by high momenta of O ^ / a ) )  like 1 / a 2, 
so:

g2a2 ( A 2p) -+ 0 ( g 2). (2.116)

This effectively destroys the convergence between the continuum and the lat
tice in the continuum limit and necessitates a large renormalisation in order to make these 
agree. Such higher order terms (ipA2̂ )  are known as tadpole contributions. The method 
adopted here to increase the lattice-continuum convergence is to split the gauge fields into 
infra-red and ultraviolet modes, then to integrate out the offending ultraviolet modes, i.e:

Up -1 UQ V eigaA>‘B~, (2.117)

where u0 contains the integrated U.V. contribution. Following the convention in [52], the 
uo used in this thesis is defined as:

/ I  \
4 P) =  (g T W p ) . (2.118)

A common alternative to this definition is to choose u0 to be the mean value 
of the link variable:

4 L) =  • (2-H9)

It should be noted the choice between using tadpole improvement from equa
tion 2.118 or equation 2.119 does effect some results. In particular the lattice hyperfine
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splitting ( l3Si — l 1 So) shows a significant discrepancy between results using the link
and those using the plaquette versions of improvement. Both Shakespeare [53] and the
SESAM [54] lattice collaboration indicate that the hyperfine splitting is larger under the 
link scheme.

Under this improvement, lattice gauge links are changed through:

U„ -»• (2.120)
U q

with the important subsidiary consequence for cloverleaf NRQCD derived fields:

E (c) - f  4 ,  (2.121)
U q

B (c) -»• ul

Renormalising the lattice coupling g to give g, defined by g2 =  gf&t/uQ, allows 
a much more continuum like lattice perturbative series to be constructed in the tadpole 
improved expansion parameter d]at.

Morningstar [55] found that the corrections to the tree level couplings between 
QCD and NRQCD was «  10%, and so they should only become significant at the 0 ( M v 6) 
for NRQCD. Consequently they have not been included here.

2.4.6 Tadpole Improvement of Lattice Cloverleaf Fields

In the light of equations 2.120 and 2.121 it is trivial to tadpole improve the lattice NRQCD 
operators except for the case of the improved cloverleaf tensor Fj$ of equation 2.105. 
Consider the term:

U„(x)F<$(x +  aii)Ul(x). (2.122)

Substituting in the expression 1.57 gives four terms, one of which has the form: 

U^(x)Uu(x +  a f t U f a  +  afi +  av)Ul(x +  a v ) U . (2.123)

Since U^{x)U^{x) =  1, this superficially six term expression has, in fact, only 
four terms. There is a similar cancellation down to four terms (this time occuring from 
the left) on the piece of Fj$(x  +  ajl) with structure U fa )  • • •. The other two terms in 
the equation 2.122 have no cancellation. Thus, overall equation 2.122 evaluates to four 
terms, two with six gauge links and two with four gauge links.

In the code, gauge links are tadpole improved prior to this particular calcula
tion via equation 2.120, so the terms which reduce to four gauge links will be over tadpole 
improved by a factor 1 / uq. Overall, in order to correct for this problem, the following 
term needs to be added to equation 2.105 [56]:

+HHfS'w |U24)
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2.5 Lattice Correlation Functions

The knowledge of how the Green’s functions evolve has to be connected to the allowed 
channels (i.e. states with the appropriate quantum numbers) which undergo that evolu
tion. The correlation function of these Green’s functions behaves as a series of decaying 
exponentials parameterised by the energy eigenvalues of the evolution. Through the use 
of smearing functions the various eigenvalues can be extracted on smaller lattices.

The heavy quark action can be written as:

SQ = ' £ ^ ( x ) K Q( x , y M y ) .  (2.125)
x,y

The quark is created at x  by and destroyed at y by ip. Here K  is the inverse 
of the heavy quark Green’s function. The antiquark action is:

S a = Y ,  X](x )K a (x , y)x(y),  (2.126)

where x* now creates an antiquark. The heavy quark annihilation operators transform 
as ip(x) —»■ G(x)ip(x) under SU(3) colour. G(x) is an SU(3) matrix. The quark creation 
operator will then transform as ^  —> ^ G ^ . Gauge invariance requires that the inverse 
Green’s function transforms as K q —> G K qG^. The antiquark operators transform as 
the complex conjugate of the quark transform, x G*X■ This leads to the conclusion 
that the transformation property of K a is K a —> G*K^GT , suggesting that K \  — K q 3. 
This relation gives an important simplification, it is only necessary to calculate the quark 
Green’s function, the antiquark function is then simply the complex conjugate.

Combining the heavy quark and antiquark creation operators creates a heavy 
meson. Projecting these operators to create a heavy meson with definite momentum, 
(carrying out the evolution is computationally faster in momentum space), we have:

M H p , t ) =  £  4 a ( x i.*)r M(x i -X 2 )x ];a(x2,«)e^'<xi+X!)- (2.127)
X I , X 2

The subscripts i , j  are colour indices and a  the spin index for the quarks. The 
role of the T matrix is to increase the overlap of the meson with channels of appropriate 
quantum numbers. For example T differs for the 3Si channel and for the 1So- For 35i 
there are 3 spin states (corresponding to the spin eigenvalues, in the 2: direction, say, of 
Sz = 0, ±1) and consequently part of its T is a Pauli spin matrix cr̂ . The three such 
matrices give the three components of 3Si. The corresponding part of r i 5o is simply the 
identity which reproduces the single spin component of

A meson propagating with momentum p from time t0 to time t in the is 
represented by the correlation:

___________________________ {o|Ar(p,t)Mt(p,to)|o). (2.128)
3Unlike the full QCD case there are no 7 5  matrices involved in this relation. This is because 7 5  relates 

upper and lower components of Dirac spinors. The FWT [45] transformation which decouples upper and 
lower Dirac components also removes 7 5  matrices from the theory.
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The correlation evaluates to:

ID / \  m » i . 2D
0( °  x ( y 2 , * ) x f ( 0 ^ o ) r { sk)( y i - y 2) e  f - ( y i+ y2 ) y i , t ) ' 0 t ( x , t o) r (sc) ( x )

\ yi,y2 x
iE .xe 2

(2.129)

There is only one spatial point summed over x at the source time, to, as the 
second spatial point suggested in equation 2.127 has been eliminated thanks to transla
tional invariance. There is no change of sign in the rearrangement of the Grassmann quark 
creation/annihilation operators as they only move across even numbers of like operators.

The quark and antiquark propagators are:

Gjj>j9(y,t;x,t0) = (o,t\^i-a(y,t)i>j.0(-K,to)\O,to) , (2.130)

G t r , a A  y-*;x,to) =  (o ,< |x ,;a (y ,t)xb (:M o)|0 ,lo ). (2.131)

As Ga = G*, equation 2.129 becomes:

Y  G*(y2,*;0,*o)r!sk)(yi - y 2)e_^ '(yi+y2)^ G ( y i , t ; x , t o ) r sc(x )e^ 'x. (2.132)
yi,y2 x

The sum over x propagates source terms r(sc)(x)e^'x to yi at time t. Using
this to rewrite T)x • • • as G(yi, £;x, to), and explicitly writing the colour and spin indices,
the correlation function becomes:

Y G'itjAa(y2 . i ; 0 ,< o )r^ ),( y i - y 2)e ^ '(yi+y!)G!jA o( y i , t ;x , l0). (2.133)
yi,y2

to:
Inspection of the colour and spin indices shows that this expression is equal 

Tr [ G f ( y 2 , t; 0, * o ) r [ 8k)( y i  -  y 2)G{yu t; x, t0)] e_^ ,(yi+y2). (2.134)
yi,y2

For the calculation the correlator shown above is evaluated for each different 
gauge configuration and then averaged over to give the average meson correlation. Source 
terms are propagated from 4 maximally spaced points on the initial timeslice i. e. t0 = 0, 
with another 4 from the middle timeslice to = T/2. T  is the temporal dimension of the 
lattice. In practice it took too long to propagate through the entire temporal extent of 
the lattice. Starting from T /2  increases the statistics..

2.5.1 M easurements from Correlation Functions

The calculation of the correlation function of the last section allows the measurement 
of the energies of lattice states in the large time limit. Consider the expression (in the 
Heisenberg representation [57]):

(2.135)
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The time evolution of the system occurs through the Heisenberg operators, and
not through the state vectors, as in equation 2.128. Now this expression is transformed
into the Schrodinger representation. In the Schrodinger representation the state vectors 
carry time dependence (c./. the Schrodinger equation) as |k , t ) s = U(t,to) |/c,£o)sj with 
the lattice (Euclidean space) evolution operator generically:

U(t,t0) =  e -alr(t- t!>). (2.136)

The following transformation properties are defined for going between the two
pictures:

| k)„ = U'\k, t)s =  \k,t0)s , (2-137)
M H(t) =  W M SU. (2.138)

Thus equation 2.135 becomes:

->■ s (0 , t0 \u 'M s U M l \0 , to) s , (2.139)

= s ( 0 , t  MsUMg 0 , t^j .

Inserting a complete set of energy eigenstates, with:

Y  |m) (m\ — 1. (2.140)
states

Equation 2.139 becomes:

Y  s (0, t \M SU |m)  (m| M* |0, t0)s , (2.141)
states

= Y  s (0, t\ Ms e~aEmt \m) (m\ M ]s |0, t0)s ,
states

=  Y ,  1(0 \Mg \ m ) \2
states

where Em is the energy of the state |m). Thus, the overlap of the meson annihilation 
operator in the Schrodinger equation, with the ground state and the m th state, gives the 
coefficient of the exponential decay of the mth state with time. In effect, there is a series 
of decaying exponentials, and so, in the limit, t -» oo, all states decay with the last to 
do so being the lowest energy (ground) state, |0). this motivates the definition of the 
effective mass:

ameB{t + 1/2) =  -  In • (2.142)

If this expression is plotted against time for large time values it should give a 
plateau at the mass of the ground state. In practice, lattices with large temporal extents 
are computationally very expensive. The extraction of energies can be made easier via 
the use of smearing functions, intended to increase the overlap of states and operators 
in equation 2.141 for the desired state. Smearing functions are dealt with in the next 
section.
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2i'+1Z ,j(JFL') Lattice Representation n
15o(0-+) 1

3S i( l“ ) Tl(i) Oi

Tl« Az
3Po(0++) A t + A j dj
3F l( l++) 7',+ +

I m A {(Jj AjCjj
3P2( 2++) e u A i<Ti AjCTjf

T ++
2 (ij&j) A {(Jj

Table 2.3: The states analysed in this thesis for the bb system.

2.5.2 Lattice M eson Operators

In this section the structure of the operators r^sk,sĉ  is considered. These consist of two 
parts:

T(x) =  f20(|x|). (2.143)

The operator plays the role of differentiating between the allowed J PC quan
tum numbers of lattice bottomonium states. States of the same J PC (or 2S+1Lj)  have 
the same Q and so there will be mixing between the states l 1JS'o, 21S'o and ^ S q. The role 
of the smearing function <j> is to differentiate such states, i.e. it extracts the principal 
quantum number n.

Choice of 0

The operator 0  selects lattice states with the appropriate J pc  quantum numbers. These 
matrices are non-relativistic, 2 x 2  matrices, chosen so that mesonic operators (such as 
that shown in equation 2.127, exhibit the correct J p c ). For example, for the 15o(0_+) 
correlator, f2 =  I 2 , the 2 x 2  identity matrix, for the 35 i( l  ) correlator, the three values
of S  (or J) correspond to the three Pauli spin matrices cq. It has been shown [30] that 
these values of 0  do indeed reproduce the hoped for J PC numbers. All the values of Q 
for the states used in this thesis are shown in table 2.3.

The lattice representation entries of table 2.3 are shown. They arise as a 
consequence of the discretisation. The orbital angular momentum quantum numbers in 
the continuum arise through the identification of the appropriate operators as proportional 
to the generators of the continuous group 50(3). On the lattice, rotations must be discrete 
and so the angular momentum representations differ from the physical case. For most of 
the states shown in table 2.3 there is a 1-1 correspondence between the continuum and 
lattice angular momentum states, the major difference is that the continuum 3P2 state 
splits into two lattice channels: 3P2# and 3P2T-
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Smearing Functions

The 0  operators of the previous section maximise overlap with correlators possessing 
the desired J pc  quantum numbers. However, each such channel consists of a series of 
radially different states, which vary in the principal quantum number. Thus, the use of 
Q = (Ti makes the correlation function overlap with not just the l 35i channel, but with 
235 i ,3 3Si • • •. To do this, it is necessary to vary the function 0(|x |) in equation 2.143, 
in such a way that |(0  \Ms{(j>m)\m)\ of equation 2.141 is maximised, whilst terms such 
as |(0 \M s ( ( f>m ) \  ^ ( /  m ))\ are minimised. This process is known as smearing, and the 
functions, </>, are called smearing functions.

The smearing function for S  states could be an operator with zero separation 
between the quark and antiquark operators, however, all radial S  state excitations have 
a non-zero wavefunction at the origin, and so such an operator would overlap with all 
the states 15,25, • • •. Instead, the operator is chosen to have a non-zero quark-antiquark 
separation, i.e. it is “smeared” across the lattice 3-space.

The form of the final correlation function of equation 2.134 isn’t gauge invari
ant. Such a quantity will vanish when the ensemble average is taken. There are two 
possible ways around this problem. One is to connect the (spatially separated) quark and 
antiquark operators in the correlation function by a series of gauge field links, thereby 
making the correlation function gauge invariant. Such a method has been successfully 
applied by Manke et al. [49], and Lacock et al. [58]. The latter found that by varying 
the shape of the gauge link path between the quark and antiquark they could change the 
overlap with the desired channel, for example a “U” shaped chain of links overlapped 
well with lattice hybrid mesons, and a straighter chain overlapped with the P  and D 
waves. The overlap with particular radial states could then be improved by varying the 
quark antiquark separation [18]. The second way to solve this difficulty, (and the method 
adopted here) is to use gauge fixing4. By fixing an overall lattice gauge the non gauge- 
invariant correlation function doesn’t vanish when the ensemble average is taken. The 
chosen gauge was the Coulomb Gauge, defined as the gauge in which:

V -A  =  0. (2.144)

This gauge was used as it is the natural gauge for non-relativistic systems. As 
an example, consider the power counting arguments of section 2.3.3. Calculating the field 
equations in the Coulomb gauge led to a form of the covariant spatial derivative with a 
suppressed A field, and a lowest order “Schrodinger type” evolution equation, 2.65.

Choice o f Smearing Functions

The smearing function <j>{|x |(^  0)) are chosen purely to have different overlaps with 
appropriate orbital excitations. The exact form of the (f) is not important, what matters 
is that they possess the qualitative properties of the appropriate wavefunction. Thus, it

4 Gauge fixing was implemented using a Fourier accelerated steepest descents mehtod
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is only important for S  state 0s that they are symmetric and non-zero at the origin, in 
mimicry of physical S  states. The 0s could then be, for example, Gaussian functions. 
Other methods involved using wavefunctions obtained from potential models [59]. The 
method adopted here was to use radial hydrogenic wavefunctions.

Hydrogenic wavefunctions for the wavefunction of the hydrogen state n2S+1L L+s 
are obtained via separating the wavefunction 0 n)z,,s into a radial function and a spherical 
harmonic:

0n,L,s =  Rn,L(r)YL,s{Q, 0), (2.145)

where r, 0 and 0 are spherical coordinates. For this thesis, the S  smearing functions are 
taken as # 1,0 5 ^ 2,0 and ^ 3 ,0 > (without the usual atomic number dependence) [60]:

4>Sg(r,ri )  =  exp (—r /r f ) ,  (2.146)

<t>e(r , ro) = (2ro ~ r ) e x p (-r /2 rf ) , (2.147)
^ ( r , r 0s ) =  (27(r0s )2 -18ro9r  +  27-2) e x p ( - r /3 r0s ), (2.148)

where the labels g , e, d (ground, excited, doubly excited) refer to the radial
hydrogenic functions -Ri,o,#2 ,o and i?3)0 respectively.

P  Waves differ from S  waves in that they have vanishing wavefunction at the 
origin. They were constructed from the S  state smearing functions by:

(<t>g,e(r ))x =  \x\<t>g,e(r<ro), (2.149)
( # » ) , -  =  W l e i r r f ) ,  (2.150)

(C «(r ))< =  l2#£,e(r -r o>)> (2.151)

where ()x,y,z pick out the x , y and z direction P  state smearing functions. The “Bohr 
radius” , r 0, has separate values for P  and S  smearing since the value =  (l/2)ro gives 
better results than straightforward equality. Thus, Tq and r f  are varied independently, 
neither should be confused with a lattice version of the Bohr radius; they are simply 
adjusted to give the best results5. The d subscript is dropped for the P  state smearing 
since the only radial states considered are the I P  and 2P  states.

These smearing functions enter the T matrices of equation 2.143, and from 
there into equation 2.134. Inspection of equation 2.134 shows that T is applied at both 
the source (sc) and the sink (sk). Whilst all sources are smeared, some of the sinks are 
only multiplied by delta functions, a process known as local smearing.

5 “Best” results were achieved by optimising the smearing. This involves varying ro until the effective
mass plots for radially different correlators have as little overlap as possible.
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2.6 Fitting

2.6.1 Expected Functional Form of the Lattice Smeared Corre
lation Functions

Analysis of smeared meson correlation functions should allow for the calculation of lattice 
state energies via equation 2.141. The simplest way to do this is to calculate the effective 
mass as shown in equation 2.142. In practice, however, the smeared correlators decay 
quickly to the ground state, and the effective mass is only really reliable for the lattice 
ground state (see section 3.4).

The method used to extract the ground state and radial excitations is to fit 
several correlators simultaneously to the expected functional form for a correlator [61] [62]. 
There are two possible forms considered here. A matrix fit fits the complete set of corre
lators, with the source and sink smearing taking all possible values. It has the form:

■̂ exp
Cfit (nsc,n sk;£) =  ^  a(nsc,m)a*{nsk,m)e~aEm{t~to). (2.152)

m=1

Here, the number of different lattice states under consideration is given by 
Nexp. For S  states this is 3, whereas for P  states, only 2. Thus, for S  states the smearing 
combinations (nsc,n sk) have the values (g,g), (g,e), (g,d), (e,g), (e,e), (e,d), (d,g), (d,e) 
and (d,d). For the P  states, only those combinations involving e and g were used. The 
second functional form is a vector (or row) fit. For this thesis vector fits were carried out 
on those correlators with local (delta function) smearing at the sink. The functional form 
is:

■ V exp

Cfit(nsc,loc;t) =  ^2  b(nsc,m)e~aErn{t~to). (2.153)
771=1

Thus, for S  states the combinations utilised are (g,loc), (e,loc) and (d,loc)6, 
and the P  states again only those for g and e.

Comparing equation 2.152 with equation 2.141 gives the identities:

a(nsc, m)  =  (m\ M ]sc |0 ) , (2.154)
a(nsk, m) =  (m\ Msk |0 ) . (2.155)

Making the substitution nsk =  loc in equation 2.152, gives the further identity: 

5(nsc, m) =  a(nsc, ra)a*(loc, m). (2.156)

The fitting parameters may also be used to give information about the wave
function at the origin (see section 3.7).

6The sink smearing doesn’t have to be loc in order to do a vector fit, a vector fit could be carried out 
on (g,g), (e,g) and (d,g), for instance. In that case, however, the functional form of equation 2.153 would 
have to be different. Such fits were not necessary in this thesis.
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2.6.2 Analysing Fit Quality

The quality of the fit can be improved by seeking to minimise the x 2 value of the 
fit [61], [11]. To do this, the correlation functions were first averaged over all runs (Nruns). 
This is equal to the product of the number of configurations and the number of origins 
per configuration (results of tests for autocorrelations between configurations and origins 
on the same configuration are shown in the next chapter). The average correlator is given 
by:

_____________ -V ru n s

Ca(t) =  £  {Ca(t))i. (2.157)
i= l

where Greek indices label the different types of correlators. The covariance 
matrix is then defined as:

1 -V ru n s  __________ ___________

=  j j —  £  (C«(t) -  Ca(t))(Cp(t') -  Ce (t')). (2.158)
-‘ ’'runs j = i

Thus, craa(t, t) simply gives the usual variance in any one correlator (i.e. the 
variance in the absence of correlations between different correlators). In the case with 
a ^  P simultaneity enters into the results as different correlators (fitting to the same 
energies by equations 2.152 and 2.153) are analysed together.

Calling the theoretical formula to be fitted to Cm, the x 2 function is given by:

X = £
1 <  ( q ,/3 ) <  V COr r  ^ m in  m a x

E  AO -  C“(t)) (a2)-1̂ , f) (cgt(f; \) -  &(*)) .
(2.159)

Here, the parameters A * represent the fit parameters: the amplitudes and 
energies appearing in equations 2.153 and 2.152. The best fit of the form Cm to the 
data will occur for the minimum value of x 2, i-e. where A* =  A*. Knowing these best fit 
parameters it only remains to work out the error on such parameters, or what range of A* 
give good fits. To do this x 2 is shifted by 1 from its minimum. Defining the values of A * 
at the minimium of x 2 as Af*, then Taylor expanding around a minima yields [59]:

SX1 = X2(Af) +  5A
0A , dXjdXk - X 2 ( A f ) ,

A?4
d2X

dXjdXk
(2.160)

A?4

Thus, a parameter can be changed infinitesimally by 6Xi (i ^  j , k) and Sx2 
remains 1. Whereas changing A j shifts 5x2 from 1. From these values the error on A j is 
taken as being Uj =  5Xj .

Knowing x 2 it is possible to assess the quality of the fit. Defining the number 
of degrees of freedom as v =  Wuns- -Â paramsj with Âparams the total number of parameters,
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i.e. for Xi: i — 1 • • • NpaTamB, a measure of the quality of the fit is given by [61]:

Here, r() is the familiar Gamma function, defined as:

roo
Via) =  /  f - ' e - ' d t .  (2.162)

Jo

It is easy to see that Q possesses the limiting values:

Q ( ^ ’0 ^ = 1  and Q ^ , o o ^ = 0 .  (2.163)

Thus, the smaller the x 2 of the fit the closer Q comes to unity. The function 
Q ( | ,  is the probability that the observed value of the chi-square will exceed x2 by 
chance even for a correct model. Thus, the higher the value of Q the higher the quality 
of the fit. Generally Q > 0.1 is considered sufficient for an acceptable fit. Poor fits tend 
to be characterised by extremely small values of Q , although occasionally models with 
small Qs such as Q ~  10-3 may be acceptable, Conversely Q = 1 should be treated with 
suspicion as being perhaps too good [61].
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Chapter 3 

Upsilon Spectroscopy on the Lattice

3.1 Introduction

The calculation was carried out on four sets of configurations. Three of these were 
“matched” dynamical configurations, i.e. they had the same lattice volume and spacing 
but different sea quark masses. This was achieved by varying k (and hence by equa
tion 1.45 m sea) and adjusting ft and Csw  accordingly. The remaining set was a quenched 
set on the same lattice volume. However, when this calculation was done no quenched 
configurations were available with the same lattice spacing as the dynamical. Thus the 
calculation used the quenched configurations with lattice spacing nearest to the dynamical 
ensembles.

The dynamical configurations suffer from autocorrelations. To combat this the 
configurations chosen for the calculation were thought to have had a greater separation in 
Monte Carlo step space than the measured length of the autocorrelations [26]. Checks were 
then carried out to see if the maximally spaced configurations were indeed decorrelated. 
No evidence for the existence of autocorrelations was found. In figure 3.1 plots are shown 
for the jackknife error on a secondary quantity, the effective mass (see equation 3.10). 
The presence of autocorrelations amongst such an ordered (in terms of Monte carlo step 
number) ensemble would manifest itself as an increase in the jackknife error with an 
increase in the length of bins used (see section 1.6.2). The bin length beyond which no 
clear increase in error can be found would be the length of the autocorrelated region in 
Monte Carlo space. It is clear from those results that there is no consistent autocorrelation 
amongst the data. No evidence of residual autocorrelations was found for the effective 
masses in this thesis. For the quenched case more configurations were used as they were 
decorrelated anyway.

For each configuration 8 origins were chosen, 4 with maximum spatial separa
tion on the first timeslice and the same at the middle timeslice. With time constraints the 
heavy quark evolution equation was only carried out for 16 timeslices from each origin, 
hence starting from the middle timeslice ensured that the entire temporal extent of the 
lattice was utilised. The parameters for these configurations are listed in table 3.1.

53
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Figure 3.1: Plots of the jackknife errors on the effective masses for the 35i propagator, 
with nsc=nsk=g. The argument of Mef f  is the timeslice. Data from the dynamical run 
with (3=3.29, /c=0.134, Csw = 1-92, and aMb= 1.8.

VoIume(L3T) P K, Csw u0 #  of cfgs. aM j
16332 5.2 0.135 2.02 0.855 99,103 1.8,2.1
16332 5.26 0.1345 1.95 0.857 106,112 1.8,2.1
16332 5.29 0.134 1.92 0.858 100,100 1.8,2.1
16348 6.0 * * 0.878 162,163 1.55,1.8

Table 3.1: Parameters for the lattice calculations used in this thesis. *Quenched. For the 
dynamical configurations the definition of /? is equation 1.53, k is equation 1.45 and for 
Csw equation 1.65.
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There are several different numbers of configurations listed for each different 
lattice, as the calculations were carried out for different quark masses in order to yield 
two values of the T kinetic mass.

3.2 Calculating the Lattice Spacing

A lattice used for Upsilon spectroscopy must have suitable dimensions relative to some 
of the scales associated with the Upsilon. It should have a lattice spacing small enough 
to resolve the length scale of a typical b quark momentum inside the T. It should also 
have enough lattice sites to make the overall lattice length big enough to cover the length
scale for the quark kinetic energy. Following section 2.3.3, these scales are, G (l /M v) ,  or
~  0.2/m , for the quark momentum, and G ( l / M v 2), or ~  0 .5/m  for the quark kinetic 
energy. Beyond these criteria it is desirable to make the lattice spacing as small as possible. 
A small a gives smaller discretisation errors, and prevents the perturbative expansion of 
the lattice coupling constant from diverging. However, the smaller a is made the more 
computationally expensive is the Monte Carlo. Indeed, for the dynamical configurations 
used in this thesis, the relationship is [27]:

Tfiflo?hr;  =  is  ( A ) 5 f 2 ^ ) 825 ( i ^ ) 3-25, (3.i)
configuration \3 fm / \  a J \ m d yn/

where L  is the number of sites on a side of the lattice, m s the strange quark mass and 
mdyn the dynamical quark mass. Thus, there is a trade-off between the accuracy of the 
calculation, and its feasibility.

The actual method used to calculate the lattice spacing was to measure the 
lattice splitting a (E ( l lPi) — E ( l 3Si)) and then comparing this to the experimental value 
of the xF — T splitting. Xb is defined (dropping the flavour subscript and replacing it with 
the notation x j, where J  is the angular momentum quantum no.) as:

_  _  Xo +  3xi +  5x2
x 9

The lattice lP\ state is used rather than 3P  as it is directly calculated in the 
code, it is expected to have the same mass1. The truth of this assertion was tested for 
my data. The results indicate that there was no significant difference in mass between 
the lP\ and 3P  states (see tables 3.21 and 3.22).

Using this method, the lattice spacings for the various ensembles were mea
sured and found to have values around 0.07fm (quenched) and 0.09fm (dynamical). 
All had spatial extents of 16 lattice sites, making the overall lattice dimensions l.lfm  
(quenched) and 1.4fm (dynamical). So they satisfy the momentum-energy scale criteria 
mentioned previously. The individual results are shown in tables 3.23, and 3.24.

*Any splitting between these states would come from Vss (equation 2.29). However, Vss doesn’t 
affect P  states.

3.2
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3.3 Interpolating to the Meson Kinetic Mass

For NRQCD theory to match experiment, the bare quark mass used in the NRQCD 
evolution equation has to be chosen to reproduce an experimental result. Whilst spin 
independent splittings don’t have much dependence, spin dependent splittings do. 
Indeed, the hyperfine splitting (35i —1 So) is thought to vary inversely with (see 
section 2.2.4).

For a wholly non-relativistic T particle the energy at a non-zero momentum, 
^ ( p  /  0) should differ from the T energy at zero momentum according to the formula:

£ t (p) -  E r ( o) =  (3.3)

This ansatz was used previously [59] to test the suitability of the choice of aM&. 
The parameter M^n  is known as the kinetic mass. This should match the experimental 
T mass of 9.46GeV. This formula comes from the Lorentz invariant energy-momentum 
dispersion relation:

# 2(P) =  P 2 +  M 2. (3.4)

where M  is the rest mass of the particle. However, for NRQCD, the momentum of the T 
is small relative to the mass and so F'(p) may be expanded as:

+ 4  -  s i + --  (w>

Here the parameter, M0, looks like the rest mass for the meson. However, just 
as with full QCD, NRQCD uses the bare quark mass as an arbitrary input parameter. This 
lattice “rest mass” , M0, is adjusted to reproduce experimental results, it is not something 
that should be regarded as a lattice observable. The quantity that was initially measured 
for this thesis was the kinetic mass of eqn. 3.3, or Mi in eqn. 3.5. Similarly, Mi  differs 
from M 2 because there are other terms (higher order in p) in the expansion. All of these 
additional terms would need to be included before the condition Mi = M 2 is met.

An alternative way of accounting for these higher order corrections is to use 
the “more correct” version of equation 3.3. This involves no expansion in p, and is given 
by:

E r  (p) -  E r  (0) =  (p 2 +  M 2 n) 1/2 -  M kin. (3.6)

Thus, the kinetic mass is:

P 2 -  ( A £ ( p ))2
2 A E ( p )  ’ '  ' *

where A E  is defined as:
A £ ( p )  = E ( p ) - E ( 0 ) . ( 3 .8 )
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Figure 3.2: The energy difference of small momenta upsilon correlators from zero momenta 
correlators plotted against the squared lattice momenta. Data from the dynamical run 
with p = 5.2, k=0.135, Cs w =2.02 and aM®=1.8

So, in order to set the bare quark mass accurately, the difference between the 
meson energies at small momenta, and this arbitrary lattice “rest mass” was calculated,
and an estimate of the meson kinetic mass could be made from the ansatz forms of
equations 3.3 and 3.7. The inputted bare quark mass, aM® was varied until the measured 
meson kinetic mass nearly reproduced the experimental value.

The method adopted to find this point was to use two different values of M 3. 
They were chosen to yield one Mkin above, and one below the experimental value for 
the T. Then the results could be interpolated to the experimental result giving a tighter 
constraint on the final answer, and providing information on the variation of lattice masses 
and splittings with the bare mass.

For the calculation, 3S'i propagators with a smeared source and a local sink 
were used. There were propagators for small p up to (px,Py,Pz) of (±2, ±2, ±2), in units 
of 2ir/La, where L is the size of the spatial dimensions of the lattice (16 in all cases), 
and a is the lattice spacing. Thus, overall, there were propagators with squared lattice 
momenta taking values throughout the set of Miller indices up to and including 12, i.e. 
p2 =  1, 2,3,4,5,6,8,9,12.  There were no values for p2 =  7,10,11. This is because there 
are no integers nx, ny, nz with, nXtytZ < 2, such that:

nl  +  nl  +  =  10> 11- (3-9)

Figure 3.2 shows a plot of A E ( p 2) against p 2.

Values of M^n  were generated using both eqn. 3.3 and eqn. 3.7. The results 
are shown in table 3.2.

Clearly more statistics are required to make these methods distinguishable. 
Nevertheless the results from eqn. 3.7 indicate that the relativistic method gives a more
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Table 3.2: Relativistic and non-relativistic calculations of aMkin for the dynamical run at 
0=5.2, «=0.135, CW =2.02 and aAf6°=1.8.

P2 Pi Relativistic Non-relativistic
1 1 4.188(48) 4.197(48)
2 2 4.187(51) 4.205(51)
3 3 4.186(55) 4.214(55)
4 16 4.199(59) 4.236(59)
5 17 4.190(63) 4.235(63)
6 18 4.182(66) 4.237(66)
8 32 4.173(76) 4.245(76)
9 33 4.165(86) 4.247(86)
12 48 4.141(113) 4.250(113)

stable value of M ^ n for low momenta. This is as expected since the value of Mkin cal
culated from equation 3.3 has to increase with p in order to compensate for the missing 
relativistic p 4 correction.

3.4 Fitting results

The procedure for extracting lattice state masses was to use the multi-correlation fitting 
procedures (outlined in section 2.6) to the data. For S  states three different smearing 
functions were used; with nsc =  g , e, d, and for the P  states, only g and e.

Initially, simple effective mass plots were used on only one file (one (source,sink) 
combination) to give initial guesses about energies which could then be input into the 
multi-correlation fitting routines. The procedure was to jackknife the individual correla
tors (Ct) of different configurations together to get the appropriate average value, Ctyj. 
Then the effective mass could be taken using:

Me//,m /2  =  - l o g % ^ .  (3.10)
^ t , J

Figure 3.3 shows effective mass plots for (nsc,nsk) combinations (g,loc), (e,loc) 
and (d,loc).

The difficulty with effective mass plots is that, for channels with the same J pc 
quantum numbers, the only way to differentiate between different radial excitations in 
one channel is through the smearing functions, and these are dominated by the lowest 
radial level (the lattice equivalent of the physical radial ground state).

The (g,loc) plot gives a good plateau (region of constant Me//) ,  indicating that 
the ground state radial smearing function gives a good overlap with the l 35i channel. The
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Figure 3.3: Effective mass plots for the 3Si channel, taken from the dynamical run with 
>0=5.2, ftsea=0.135, Csw=2-02 and aM^=1.8. Mef f  was set to 0 when the ratio of Ct+ 1  

to Ct became less than 0.

(e,loc) and (d,loc) effective masses rise sharply before reappearing at M ef f = 0 and then 
rising to reach the ground state plateau.

Following [18] this behaviour can be explained. The correlator Ct contains the 
lowest energy (Ei) part of the channel, but also contains a higher energy (E2) contami
nation. For simplicity higher energies may be ignored. Thus Ct has the form:

Ct = A ie~Elt +  A 2e~E2t. (3.11)

The effective mass of this correlator approximates as:

d E x + ^ E 2e - ^ - E^
Mefft  »  — rlogCt = -4r— (3-12)dt 1 +  4ae-(£2-£i)t v 'A1

Thus, as t grows there are two qualitatively different ways to approach the 
plateau. If A 2/A\  > 0 for Ct, the approach is from above. If A 2jA \  < 0 then the 
approach is from below with a vertical asymptote at a time, t, when:

log
t =

E 2 — Ei
(3.13)

Either way, the essential point is that as t —> 0 0  the lowest energy level with the 
particular J PC of Ct comes to dominate. To recover the different Ei in a channel, taking 
effective masses is not enough. Instead, multi-correlation fitting routines are required.

Effective mass plots for correlators with nsc, nsk taking values other than loc 
are shown in fig. 3.4.

In the cases where the same smearing function was used at both the source and 
the sink ((g,g), (e,e), (d,d) here), the correlator is positive definite and A 2/A \  is always 
positive. Hence the approach to the plateau is non-asymptotic and from above.



aM
60 CHAPTER 3. UPSILON SPECTROSCOPY ON THE LATTICE

1.0

(g.d)

0.5

- 0.5

- 1.0
0 5 10 15

1.0

(g.g)

0.5

d

- 0.5

- 1.0
0 5 10 15

1.0

(g.e)

0.5

- 0.5

- 1.0
0 5 10 15

tut tut tut

1.0

e,d)

0.5

d

- 0.5

- 1.0
5 10 150

1.0

0.5

- 0.5

- 1.0
50 10 15

1.0

e,e

0.5

- 0.5

- 1.0
0 5 10 15

tut tut tut

1.0

0.5

ad

- 0.5

- 1.0
5 150 10

1.0

(d.e’

0.5

- 0.5

- 1.0
0 5 10 15

1.0

0.5

11 0.0

- 0.5

- 1.0
0 5 10 15

tut tut tut

Figure 3.4: Effective mass plots for the 35i channel, taken from the dynamical run with 
/?=5.2, /csea=0.135, Csw=2-02 and aM®=1.8. M ef f  was set to 0 when the ratio of Ct+ 1  

to Ct became less than 0.
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Type Tlsc flsk #  of corrs. #  of amps. Energies
2 e2 s g,e loc 2 4 E i ,E2

2e2s(Kinetic Ratio) g,e loc 4 4 Ei, E 2

3e3s g,e,d loc 3 9 Ei, E 2 , E$
2 e2 s g,e g,e 4 4 Ei, E 2

3e3s g,e,d g,e,d 9 9 Ei, E 2 , Es

Table 3.3: Parameters for the multi-correlation fits used in this thesis.

Despite the failure of this “naive” effective mass method it is still a useful 
exercise, in that it gives an indication of where the excited sub-channels in a channel 
should be. For example, one can visually extrapolate the curves for the (e,loc) and 
(d,loc) plots of Figure 3.3, as if their asymptote didn’t occur, and those curves remained 
parallel to the (g,loc) curve. This provides a rough guess at the energies of the excited 
sub-channels. These rough guesses can then be used as input to “tell” multi-correlation 
fitting routines where to “look” for excited energies.

In this thesis three smearing functions were used for the S  channels, and two 
for the P  channels. Fits were carried out to the level of fits to three exponentials with 
three smearings for S  states (henceforth 3e3s fits), and two for P  states, giving 2 e2 s fits. 
The 2 e2 s fits can also be done for the S  states, but the evidence from the results (see e.g. 
table 3.4 is that a 3e3s fit is better than a 2e2s, if more difficult. Following the convention 
introduced in section 2.5.2, the fits have the properties listed in table 3.3. Thus, for a 
3e3s fit with nsc, nsk =  g, e, d, i.e. a matrix fit, there are 9 correlators used for the same 
J PC numbers. These are all the combinations (nsc,n sk). These are simultaneously fitted 
to the functional form of equation 2.152. Thus, there are nine amplitudes (a(nsc, k ), or 
a*(nsk, k) with nSCjSk=g,e,d, and A;=l,2,3) in the fit, and three energies, E\^,3 . Whereas 
for the vector 3e3s fit, nSk—loc. So only three correlators are utilised ((g, loc), (e,loc), 
and (d,loc)), but the number of amplitudes are still nine (b(nsc, k ), with nsc=g,e,d and 
k= 0 ,1 ,2 ). Similarly, the fit also has three energies.

Notice from table 3.3 that there were a different number of correlators utilised 
in the 2 e2 s vector fits for the “normal” correlators, compared to those for the calculations 
of the kinetic mass. This is because the kinetic fits actually fit to jackknifed ratios of 
correlators, such as E(p) /E(0) ,  for the kinetic mass at momentum p. Thus they utilise 
4 correlators ((g,loc) and (e,loc) for p=0, and two again for p / 0 ) .

The fitting procedure was a multi-step process. Initially, the effective mass 
plots were used to provide rough guesses at state energies. Then individual correlators 
were fitted to le ls  fit forms. Like the M ef f  plots these gave energies around the ground 
state. The best fit was chosen and used as a guess for input to the next stage in the fitting 
process. For a 2e2s fit the next stage is a le2s fit, again giving a ground state energy, 
followed by a 2e2s fit with the parameters shown in table 3.3.

Alternative routes were available for the 3e3s fit. These were:

le ls  —> le3s -> 2e3s -* 3e3s, (3.14)
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Type tmin fomax aEi aE2 aEs Q
3e3s 2/13 0.4007(9) 0.6809(77) 0.8047(195) 2 . 2  x 1 0 “ 2

3/13 0.3996(10) 0.6817(88) 0.8465(354) 0.14
4/13 0.3995(10) 0.6691(153) 0.7828(504) 0.18
5/13 0.3991(11) 0.6733(151) 0.8507(1073) 0.17
6/13 0.3990(11) 0.6848(223) 0.7548(1204) 0.16
7/13 0.3987(12) 0.6824(252) 0.8473(2016) 0.30
8/13 0.3994(13) 0.7334(322) 1.633(755) 0.50
9/13 0.3990(14) 0.6914(638) 2.760(4406) 0.48
10/13 0.3941(299) 0.4908(3505) 1.455(1878) 0.53

11/13*
2 e2 s 2/13 0.4004(11) 0.6828(67) 0.18

3/13 0.3995(12) 0.6804(89) 0.47
4/13 0.3993(12) 0.6736(117) 0.35
5/13 0.3992(12) 0.6726(160) 0 . 2 2

6/13 0.3996(13) 0.7009(231) 0.23
7/13 0.3989(14) 0.6967(323) 0.30
8/13 0.3995(14) 0.7457(484) 0.56
9/13 0.3997(15) 0.7504(734) 0.29
10/13 0.4006(18) 0.7107(1108) 0.46
11/13 0.3997(20) 0.8721(2073) 0.63

Table 3.4: Matrix fits to the 3 5i channel. From the dynamical ensemble with /3=5.2, 
k;=0.135, Csty= 2 . 0 2  and aM\,=1.8. *Mass becoming negative in the fit.

and:
le ls  —y le2s —y 2e2s —y 2e3s —y 3e3s. (3.15)

Table 3.4 shows the results for a 3e3s matrix fit to the 3Si channel. The 
parameters tmin and tmax are the minimum and maximum lattice times used in the fit. 
For the matrix fits, the results were obtained up to lattice timeslice tmax-2. However, for 
the vector fits more timeslices have to be dropped to ensure that results are selected after 
the plateau is reached. A 2 e2 s vector fit gives results up to and including tmax-3, whilst 
for the 3e3s case, only until tmax-4. The quality of fit, Q, should ideally be greater than 
0.1 [61]. However, a caveat should be borne in mind regarding the use of Q. It grows as 
the error on the result grows because it is easier to find a fit to data with large error bars. 
Thus, earlier results with worse Q values are preferred to later results with better Qs.

Including the extra states in the 3e3s fit clearly reduces the measured mass of 
the lowest two radial states relative to the 2e2s fit. This is because the inclusion of nSCjSk=d 
smeared correlators into the fit removes some of the lattice 33 5i channel contamination of 
the 1, 235i lattice states. However, the difference made by the use of the third smearing 
is typically only a fraction of a standard deviation, which isn’t statistically significant. 
Thus, a 2e2s fit is also acceptable. The increase in the number of correlators used from
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4 to 9 also reduces the errors in the fit results. This explains why the 3e3s fit exhibits 
worse Q values than the 2 e2 s.

One time slice has to be chosen as giving the best fit to the data, and its 
energies chosen as the measurement result. The value chosen should be one within one 
sigma of any plateau in the fit results. It should ideally have a central value very close 
to the plateau central value too. Similarly, the fit should have a good Q value (>0.1) at 
that particular timeslice. However, as the noise grows in the correlators over time, they 
become “easier” to fit and the value of Q will increase, even if the central value for the 
fit is clearly wrong. Thus, there is a premium in choosing fit results at earlier timeslices. 
The different sorts of correlators and fits behave differently as the smearing constraints 
and statistics differ. However, they should all be deriving the same lattice energy levels. 
It is thus important that the different fits give results which overlap well with each other. 
There is an algorithm which satisfies these criteria and helps to impose some regularity 
on the choice of fit time. Counting from the first time slice with Q >0.1, a number of 
time slices were dropped. The number dropped was given by the ratio of the number of 
parameters used in the fit ansatz, to the number of different correlators used in the fit. 
Thus, for a 3e3s matrix fit, there are 9 fit amplitudes, and 3 fit energies, which give 1 2  

fit parameters. There are 9 correlators. So, 12/9, with 1 as the nearest integer, gives a 
drop of 1 more timeslice. Thus for table 3.4 the first time slice with Q >0.1 is at tmin=3. 
Dropping 1 extra time slice rules out tmin=4, so the fit may be chosen from 5 onwards. 
Inspection of table 3.4 shows that the times which have been ruled out gave higher energies 
than all the following and a bit higher than the central value of the plateau. Thus, the 
algorithm “picked” a good time. For the 2e2s case, inspection of table 3.3, gives the 
number of fit parameters as 6  and the number of correlators as 4, so 2 (i.e. more than 
for the higher statistics 3e3s case) time slices should be dropped. In this case they are 
tmin=2,3, anything from then onwards is a good choice.

The results of vector fits to the 3Si channel are shown in table 3.5. It is clear 
that the fit is noisier than the matrix fit and has a higher error also. The increased noise is 
because the (n SC: loc) correlators are less constrained than the matrix fit correlators, with 
smearing implemented at the origin only. The error increases because there are fewer less 
constrained correlators used in the vector fit. The algorithm for dropping initial timeslices 
says drop 4 timeslices from the first good Q in this case. This procedure compensates for 
the reduced number of correlators (relative to matrix fits), by forcing the timeslice chosen 
to be later, and so noisier.

Once again, the lattice ground state has a higher energy for the 2e2s vector fit 
than for the 3e3s. Implementing the algorithm for dropping time slices suggests dropping 
4 time slices. It doesn’t work for the 3e3s fit as it only has 2  “good” Q values. In this 
case, time slice 8  would be chosen as the final good Q. However, due to the poor Qs, 
the 3e3s fit here is not regarded as a good enough measurement. For the 2e2s case, the 
algorithm says drop 3 time slices, i.e. 3,4,5 and 6  are ruled out. This takes the choice 
to the lowest energy value for the ground state before increasing noise drives the result 
upwards again.

The main purpose of the dropping algorithm is to ensure agreement between
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Type tmm/t’max aEi aE2 ctEz Q
3e3s 2/13 0.4007(17) 0.7686(1920) 0.7849(1920) 2 . 0  x 1 0 ~ 10

3/13 0.3988(20) 0.7399(2443) 0.7558(2462) 5.1 x 10- 3

4/13 0.3985(24) 0.7417(2409) 0.7633(2504) 1.5 x 10“ 2

5/13 0.3957(26) 0.7596(2365) 0.7932(2708) 6.4 x 10“ 2

6/13 0.3963(25) 0.7906(1643) 0.8938(2843) 0.13
7/13 0.3976(27) 0.8361(5439) 0.9208(8860) 7.8 x 10~ 2

8/13 0.3989(23) 0.8260(881) 1.702(1123) 0 . 1 0

9/13 0.3954(79) 0.8159(23622) 0.8416(29811) 5 . 2  x 1 0 ~ 2

2 e2 s 2/13 0.3980(13) 0.7368(56) 1.7 x 10“ 9

3/13 0.3985(14) 0.7080(65) 0 . 1 1

4/13 0.3985(15) 0.6973(78) 0 . 2 2

5/13 0.3990(16) 0.6889(97) 0.28
6/13 0.3981(18) 0.6810(120) 0.30
7/13 0.3971(20) 0.6887(167) 0.26
8/13 0.3976(22) 0.7081(237) 0 . 2 1

9/13 0.3992(22) 0.7630(355) 0.82
10/13 0.3981(28) 0.7433(551) 0.63

Table 3.5: Vector fits to the 3 Si channel using (nsc, loc) correlators. From the dynamical 
ensemble with >0=5.2, k=0.135, C s w — 2 . 0 2  and aM*,=1 .8 .

Type Vector Matrix
2 e2 s
3e3s

0.3971(20)
0.3989(23)

0.3993(12)
0.3991(11)

Table 3.6: Comparison of vector and matrix fits to the 3 5i channel. From the dynamical 
ensemble with /5=5.2, ac=0. 135, Csw—2 - 0 2  and aM^=1 .8 .

results obtained from the vector and matrix fits. A choice of lattice ground state from 
each type is shown in table 3.6. Notice that despite poor Q values the 3e3s vector fit 
agrees better with both matrix fits. Similarly the agreement between the types of matrix 
fit is better than between the vector types.

The conclusion drawn was that the best fits were the 3e3s matrix fits, as a 
3e3s fit is better than a 2e2s, and a matrix fit is better than a vector fit, because the 
matrix fit is more constrained. However, fits with suitably good Q values were not always 
obtainable. Inspection of table 3.6 reveals that taking results from worse types of fit is still 
acceptable and gives results which are not significantly different, although the accuracy 
of the result is, of course, reduced.

For P  states there was no third smearing function and so the choice was be
tween 2e2s vector and matrix fits; with the matrix fits preferred. Table 3.7 shows the 
matrix and vector fit to the lattice lPi channel. Owing to a coding error no valid (nsc, nsk)
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Type tmin /tmax aEi aEi Q
Matrix 2/13 0.6098(45) 0.8427(100) 0 . 6 8

3/13 0.6075(52) 0.8373(140) 0.74
4/13 0.6049(62) 0.8249(193) 0.75
5/13 0.6068(70) 0.8442(312) 0.62
6/13 0.6087(74) 0.8757(504) 0.71
7/13 0.6075(103) 0.8264(747) 0.59
8/13 0.6191(94) 0.9833(1391) 0.74
9/13 0.6186(117) 1.001(258) 0.47
10/13 0.6189(246) 0.8616(3996) 0.28
11/13 0.6136(215) 2.007(1565) 0.95

Vector 2/13 0.6049(55) 0.9247(116) 6 . 0  x 1 0 - 2

3/13 0.6072(72) 0.8746(157) 0.90
4/13 0.6058(89) 0.8722(222) 0.81
5/13 0.6051(110) 0.8690(337) 0 . 6 8

6/13 0.6148(136) 0.8959(587) 0.70
7/13 0.6343(208) 0.8861(1058) 0.87
8/13 0.6268(179) 1.078(203) 0.92
9/13 0.6271(170) 1.539(687) 0.89
10/13 0.6152(2535) 0.6904(9510) 0 . 8 6

Table 3.7: Comparison of vector and matrix fits to the lP\ channel. From the dynamical 
ensemble with /?=5.2, /c=0.135, Csw—2 - 0 2  and aM^=1 .8 .

3Pi,2T states were available.

In the event of the fits having poor Q values, the time, tmax, can be reduced. 
This procedure was followed with the data shown in table 3.8. Clearly the Q values are 
dramatically improved. This is understandable because with less data to fit to there is 
more flexibility in fitting. However, this should also mean that the fit is less accurate. 
Indeed, the fitted values are noticeably higher for the smaller tmax with more dominance 
of higher energies at low tmin in the reduced data set.

The biggest problem encountered in the fitting process, was with the dynamical 
run with /3=5.29, k=0.134 and C sw =1-92 for both masses. Results for the (usually easy) 
2e2s matrix fit to the 3 5i channel are shown in table 3.9.

Whilst the vector fits to the (nsc, loc) correlators worked well for this ensemble, 
the matrix fits gave values of Q <0.1. Various procedures were attempted. Initially 
reduction of the data used in the fit was tried. Both tmin and tmax were varied, but the 
results were disappointing. The data sets were then split into two parts in order to check if 
there was a problem with a subset of the data which could then be ignored. Similarly, this 
yielded no success. Nevertheless the matrix fits gave better spin splitting (see section 3.5) 
and radial-orbital ratio results (see section 3.6). Furthermore, although the Q values were 
low, Q values which are >0.0001 are acceptable (see reference [61]), provided they are
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tmin/tmax aE\ o,E2 aEz Q
2/13 0.3937(21) 0.6068(131) 0.8389(146) 1 . 6  x 1 0 ” 2

3/13 0.3920(23) 0.6341(239) 0.7893(265) 8.7 x 10~ 2

4/13 0.3913(26) 0.6538(366) 0.7820(451) 4.8 x 10“ 2

5/13 0.3893(28) 0.6874(667) 0.7813(911) 5.9 x 10- 2

6/13 0.3884(29) 0.7137(782) 0.8517(1587) 6.3 x 10~ 2

7/13 0.3917(54) 0.6587(2372) 0.7144(2577) 2 . 0  x 1 0 ~ 2

8/13 0.3956(84) 0.6577(4554) 0.7040(4480) 7.3 x 10“ 3

9/13 0.3245(25) 0.4298(1553) 0.6533(1391) 7 . 2  x 1 0 “ 3

to ►—
11 

to 0.3956(25) 0.5970(130) 0.8464(142) 0.24
3/12 0.3936(27) 0.6203(210) 0.8109(243) 0.46
4/12 0.3927(32) 0.6253(261) 0.8300(371) 0.33
5/12 0.3904(34) 0.6525(351) 0.8525(659) 0.36
6 / 1 2 0.3894(37) 0.7209(1067) 0.8382(1891) 0.43
7/12 0.3923(49) 0.6992(1326) 0.8346(2793) 0.23
8 / 1 2 0.3945(37) 0.7496(662) 1.580(796) 0 . 8 8

Table 3.8: Comparison of (nsc,loc) vector fits to the 3 5i channel for different tmax. From 
the dynamical ensemble with /?=5.2, k=0.135, C s w — 2 - 0 2  and aM&=2.4.

tmin j  tmax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.3888(11)
0.3881(11)
0.3878(11)
0.3875(12)
0.3867(12)
0.3870(13)
0.3869(14)
0.3854(16)
0.3862(16)
0.3833(48)

0.6704(62)
0.6650(83)
0.6656(108)
0.6471(143)
0.6351(184)
0.6531(254)
0.6682(375)
0.6457(538)
0.6807(830)

0.5719(1309)

9.5 x 10~ 4

4.7 x 10“ 3

6 . 6  x 1 0 “ 3

8 . 2  x 1 0 “ 3

1 . 2  x 1 0 “ 2

2.3 x 10- 2 

6.9 x 10- 2

0.17
6 . 8  x 1 0 - 2 

0.52

Table 3.9: Matrix fit to the 3 Si channel for the dynamical run with (3=5.29, k,=0.134, 
(7 ^ = 1 .9 2  and clM ^^  1.8.
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the exception overall. To accept the vector fits instead would make comparisons with 
different k s  less meaningful.

3.5 Fitting Results for Spin Splittings

The terms in the NRQCD Lagrangian (equation 2.71) which give rise to spin splittings 
are, unsurprisingly, those which include the Pauli spin matrices, cr, viz.

- C38 ' ( A X E  “  E  X A )’ (3'16)

and

- 2® T B - ( M ? )

From examination of table 2.1, it is apparent that the first term gives rise to 
the P  state fine-structure whilst the second gives the hyperfine S  state splitting. Using 
the power counting arguments of section 2.3.3 the order of magnitude for these terms can 
be predicted. With tree-level values for the couplings, C3 and C4 both set to 1, and with
cr=I, we get

- C38 - ( A x E - E x A ) ~ i ' r  ( M v ) ( M 2v 3) ~  0(M v*),  (3.18)

and
-C 4 T^TnO- ■ B ~  - j -  d  ■ (M V )  ~  0 ( M v 4). (3.19)

2 Mt° 2Jlf 2 '  ' 1 1  v ’

Thus both sets of splittings should be of the same order.

In order to get sufficiently accurate spin-splittings the fitting results have to be 
jackknifed (see section: 1.6.2). The process greatly reduces the error on the splittings via 
the jacknifing but also because the data is correlated, even between correlators of different 
J p c . For instance, some of the error in the 3Si and xSo fits is due to fluctuations of fit 
values around the plateau across different time slices. However, due to the correlations 
between different types of correlator on the same lattice, when the 3Si state has a fit 
value above its plateau, then the 1So has a high value too. Thus, provided the jackknife 
averaging is done between correlated data sets at the same time slice much of the error in 
the individual fits is greatly reduced in the final splitting results. Table 3.10 shows fitting 
results used in the S state hyperfine calculation. Calculations of the hyperfine splitting 
(n3Si — n 1 So) would carry too large an error if the best fit value were taken from each 
and simply subtracted.

Results using the jackknifed difference method are shown for matrix results 
for the S  state hyperfine splitting in table 3.11. The corresponding splittings for vector 
fits are shown in table 3.12.
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Channel ^min/tmax aE\ aE2 aE3 Q
2/13 0.3769(10) 0.6673(63) 0.8159(207) 4.4 x 10“ 3

3/13 0.3758(10) 0.6661(79) 0.8332(358) 2.4 x 10“ 2

4/13 0.3760(10) 0.6528(140) 0.7574(511) 4.2 x 10~ 2

5/13 0.3758(11) 0.6529(162) 0.7683(851) 2.7 x 10- 2

6/13 0.3762(11) 0.6728(219) 0.7525(1059) 0.15
7/13 0.3749(14) 0.6527(282) 0.9051(1739) 0.26
8/13 0.3757(12) 0.7104(284) 1.421(571) 0.52
9/13

10/13*
0.3755(13) 0.6833(581) 1.819(1849) 0.38

11/13 0.3635(1236) 0.4239(4343) 3.305(21226) 0.30
3Si 2/13 0.4007(9) 0.6809(77) 0.8047(195) 2 . 2  x 1 0 - 2

3/13 0.3996(10) 0.6817(88) 0.8465(354) 0.14
4/13 0.3995(10) 0.6691(153) 0.7828(504) 0.18
5/13 0.3991(11) 0.6733(151) 0.8507(1073) 0.17
6/13 0.3990(11) 0.6848(223) 0.7548(1204) 0.16
7/13 0.3987(12) 0.6824(252) 0.8473(2016) 0.30
8/13 0.3994(13) 0.7334(322) 1.633(755) 0.50
9/13 0.3990(14) 0.6914(638) 2.760(4406) 0.48
10/13

11/13*
0.3941(299) 0.4908(3505) 1.455(1878) 0.53

Table 3.10: 2 e2 s matrix fits to the x5o and 3Si channels. From the dynamical run with 
£=5.2, «=0.135, Csw = 2 . 0 2  and aMb= 1 .8 .
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Type tmin /tmax a E ^ S i  -  l'So) a£i(235i -  21S0) aE(33S 1 -  3‘So)
Matrix 2/13 0.02396(35) 0.0179(19) 0.0133(55)

3e3s 3/13 0.02373(37) 0.0164(26) 0 .0 1 0 (1 0 )
4/13 0.02360(39) 0.0155(41) 0.023(14)
5/13 0.02362(40) 0.0154(46) 0.024(22)
6/13 0.02355(50) 0.010(36) 0.012(34)
7/13 0.02355(52) 0.0132(78) 0.054(65)
8/13 0.02367(44) 0.0223(92) 0.23(31)
9/13 0.02371(49) 0.004(26) -0 .2 (1 2 )

Matrix 2/13 0.02381(30) 0.0178(14)
2 e2 s 3/13 0.02365(32) 0.0170(19)

4/13 0.02349(34) 0.0185(24)
5/13 0.02341(35) 0.0178(32)
6/13 0.02337(38) 0.0197(50)
7/13 0.02324(40) 0.0182(66)
8/13 0.02354(42) 0.024(11)
9/13 0.02366(45) 0.32(17)
10/13 0.02374(55) 0.019(26)
11/13 0.02388(61) 0.061(74)

Table 3.11: Hyperfine splitting results for matrix fits. Results from the dynamical run 
with {3=5.2, ^=0.135, Csw= 2 . 0 2  and aM^=1 .8 .

Type tmin j  tmax a £ ( l 3 S! -  l'So) a £ ( 2 3 S! -  21 S0) al?(33Si -  31S 0)
Vector 2 / 1 2 0.02247(85) 0.0179(50) 0.0424(57)
3e3s 3/12 0.02233(97) 0.0169(78) 0.0193(92)

4/12 0 .0 2 2 2 (1 0 ) 0.014(12) 0.021(16)
5/12 0.0224(11) 0.031(16) -0.008(33)
6 / 1 2 0.0229(11) 0.062(45) -0.08(16)
7/12 0.023(10) 0.031(470) 0 .0 2 (6 6 )
8 / 1 2 0.0234(10) 0.058(32) -0.2(44)

Vector 2 / 1 2 0.02331(44) 0.0398(19)
2 e2 s 3/12 0.02304(45) 0.0300(19)

4/12 0.02286(50) 0.0281(24)
5/12 0.0226(55) 0.0222(30)
6 / 1 2

7/12 0.0225(76) 0.0260(57)
8 / 1 2 0.02266(87) 0.0217(84)

Table 3.12: Hyperfine splitting results for vector fits. Results from the dynamical run 
with {3=5.2, k=0.135, C s w = 2 . 0 2  and aMb=1.8.
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Splitting
lPi ~ 6 Po
'P i  - 3 Pi

3P2E - 1 Pi 
3̂ r  - 1 Pi
3p _ 1  p i

Table 3.13: P state splittings analysed in this thesis.

The hyperfine splittings calculated from the fits shown in table 3.10, are shown 
in table 3.11. By comparing the two we can see how much better the jackknifed difference 
technique is. For example, when tmin= 2, simply subtracting the results in table 3.10, gives 
a value for the lattice (1350 —l 3 *Si) splitting as 0.0238(21). From table 3.11, the jackknifed 
difference is 0.02381(30). Thus, jackknifing correlated fit results together reduces the 
uncertainty in the result by an order of magnitude.

Tables 3.12 and 3.11 indicate once again that the matrix fits give better results 
than vectors. A comparison of the lattice ground and first excited state splittings indicates 
that the matrix version is more stable. Curiously, however, the 2 e2 s matrix fit to the first 
excited state splitting is more stable than the 3e3s version. This effect does not show up 
in the vector splittings, though, and may just be a peculiarity of these particular fits.

The same procedure was applied to the P  state splittings. These presented 
more problems, since by equations 3.18 and 3.19 they are smaller than the S  state hyper- 
fines. The fits to individual lattice P  states also carry a greater uncertainty than is the 
case with the S  states.

The P  state splittings which were analysed are shown in table 3.13. The 3P  
state is defined in eqn. 3.20.

3p  = 3p° +  33jPl +  23jF>2£ +  33jP2r (3.20)

In eqn. 3.20 the lattice representation of the physical 3 P 2 state is split into 
two parts: 3 P 2 e  and 3 P 2 t - This splitting is a discretisation error which results from the 
discretisation of rotation on the lattice. In the continuum there are no separate 2E  and 
2 T states.

Results for the lP\ — 3 Po splitting for both vector and scalar fits are shown in 
table 3.14. It is clear that the results aren’t as good as with the S  state hyperfines, for 
the reasons mentioned above. Once again the matrix fit is better than the vector fit.

Unfortunately, at this stage in the analysis, it became apparent that there 
was a problem. The lattice 3Pi and 3 P2̂  matrix correlators couldn’t be fitted in the 
conventional manner. Further investigation revealed the source of the problem to be a 
bug in the code. Thus, for the dynamical 3Pi and 3 P2t  lattice states there are only vector 
fits.
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Type tmin/tmax a P fP P i -  13P0) a P ^ 'P i  -  23P0)
Matrix 2/13 0.0141(16) 0.0171(29)

3/13 0.0139(19) 0.0154(46)
4/13 0.0134(23) 0.0125(62)
5/13 0.0145(27) 0.019(11)
6/13 0.0153(31) 0.006(17)
7/13 0.0151(42) -0.002(24)
8/13 0.0209(49) 0.041(48)
9/13 0.0252(63) 0.053(87)
10/13 0.032(16) 0.12(11)
11/13 0.027(13) 0.5(12)

Vector 2/13 0.0137(30) 0.0366(60)
3/13 0.0138(41) 0.0386(91)
4/13 0.0157(51) 0.034(14)
5/13 0.0176(65) 0.041(20)
6/13 0.0257(82) 0.036(35)
7/13 0.037(13) -0.042(58)
8/13 0.028(12) 0.005(120)
9/13 0.0279(96) -1.25(99)

Table 3.14: lPi —3 P0 splittings. Taken from the dynamical results with (3=5.2, ^=0.135, 
Csw—2.02, with aM{,=1.8.
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Type t m i n / t m a x
2 3 S i - l 3 S ,
l ' P . - l 3 ®.

Matrix 2/13 1.348(28)
3/13 1.350(35)
4/13 1.334(43)
5/13 1.316(58)
6/13 1.439(95)
7/13 1.42(12)
8/13 1.57(20)
9/13 1.60(31)
10/13 1.42(41)
11/13 2.2(11)

Vector 2/13 1.638(48)
3/13 1.483(55)
4/13 1.442(64)
5/13 1.406(76)
6/13 1.304(88)
7/13 1.23(12)
8/13 1.36(13)
9/13 1.60(17)
10/13 1.6(70)

Table 3.15: Rradorb for both matrix and vector fits. Results taken from the dynamical run 
with p=5.2, k;=0.135, C sw —2-02 and aMb=1.8.

3.6 The Ratio of Radial to Orbital Splittings

The splitting 23Si — l 3Si is a radial splitting because the only difference in the split states 
is with the radial quantum number, n, in the notation n2S+1Lj.  The splitting l 1 Pi — l 3Si 
is an orbital splitting because the two states differ in their orbital quantum number, L. 
The ratio of these splittings, Rradorb, is defined in eqn. 3.21. R radorb is dimensionless, both 
physically, and on the lattice. So it is a number with no a dependence and the lattice 
result may be compared to the experimental result without worrying about a.

x ™  =  1* p | -  l S  ( 3 ' 2 1 )

The usual jackknife procedure for obtaining splittings was followed and then 
the results were jackknifed together again for the ratio calculation. Some results for this 
calculation are shown in table 3.15. The experimental result is 1.28(3) [29].

One possible source of error is any difference between the lattice xPi and 3P  
state masses. This is because the experimental I P  states used are the Xbo,i,2 - These are 
combined to give Xb as in eqn. 3.2. The experimental Xb is the equivalent of the lattice 
state 3P. Hence, any difference in the masses of the lattice lPi and 3P  states will cause
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a corresponding error in the lattice Rradorb result.

A second ratio of splittings was analysed in the same way. This ratio involves 
P  states and is given by:

13 P  — 11 P

^  =  (3-22)

Had the 3Pi,2t  matrix fits worked properly, the lattice calculation should have
been for the ratio: ___

13P2 -  l 3Pi
R  ~  M W 3 P 0 -  (3-23)

This is the lattice version of the Peskin ratio [37] of equation 2.37. Due to the 
discretisation error which splits the continuum 3P2 state into the 3P2e  and 3P2t  states on 
the lattice, the latter ought to be combined to give the lattice state 3P2 . It is defined as:

  23P?f +  33P9t3 p2 =  r iE ; i)r z r , (3.24)
5

In that case the physical state, Xbo, could be identified as the equivalent of the 
lattice state 3P0, and similarly for the other J  values. However, given the failure with the 
lattice 3Pi,2t  states a direct comparison with experiment is not possible. Using 3P2e in 
eqn. 3.22 instead of 3P2 adds an additional error to any possible comparison.

3.7 W avefunctions at the Origin

The amplitudes in the fit ansatzes (equations 2.152 and 2.153) may be used to calculate the 
mesonic wavefunction at the origin. Here, “at the origin” means there is zero separation 
between the quark and the antiquark. Prom equation 2.127, the operator, X)x V^(x 
operating on the vacuum state, |0), creates a meson with zero quark-antiquark separation 
and zero momentum in the state, |/oc).

|l°c) = Y ,  V;t(x )x t (x ) |0) (3.25)
X

Next, consider |m) as the state vector for an rjb meson with radial excitation, 
m. Then the wavefunction at the origin for the rjt, with excitation, m, is given by ^ m(0), 
a quantity which is simply the overlap of the |m) and |0) state vectors.

^m(O) =  (m|/oc) (3.26)

Consider an operator M ^(t), in the Heisenberg picture [57]. This creates a 1So 
meson at time, t. Then the correlator,

# (0, t = t|Mfl-(t)M^-(t0)|0, to)n , (3.27)
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Type tmin j tmax (0) Type 1/ 2 (0 ) Type 1/ 3 (0 )
(g-1) 2/12 0.1550(50) (8.2) 0.030(35) (8.3) 0.478(79)

3/12 0.1514(55) 0.078(51) 0.34(13)
4/12 0.1505(63) 0.112(83) 0.21(19)
5/12 0.1443(62) 0.29(15) -0.36(42)
6/12 0.1464(62) 0.61(60) -0.70(87)
7/12 0.153(28) 2(19) -2(24)
8/12 0.1553(58) 0.17(18) 4(190) x 1010

(e,l) 2/12 0.1666(84) (e,2) 0.0793(32) (e>3) -0.9(11)
3/12 0.1600(83) 0.0814(70) -0.34(29)
4/12 0.1574(89) 0.092(14) 0.8(97)
5/12 0.1486(82) 0.110(26) 1(440)
6/12 0.1480(82) 0.22(12) -0.7(28)
7/12 0.152(46) 3(29) 17(370)
8/12 0.1564(78) 0.174(83) 5(240) x 109

(d,l) 2/12 0.1650(76) (d,2) 0.0924(76) (d>3) 0.1432(86)
3/12 0.1580(76) 0.082(10) 0.153(14)
4/12 0.1562(83) 0.101(26) 0.140(31)
5/12 0.1486(78) 0.119(41) 0.143(72)
6/12 0.1484(78) 0.26(17) -0.12(20)
7/12 0.154(36) 3(31) -5(54)
8/12 0.1577(73) 0.195(91) -5(230) x 109

Table 3.16: Wavefunction at the orgin results for the 3Si channel. The “Type” column is 
labelled by the (nsc, m) fit amplitudes. Results come from the dynamical run with /?=5.2, 
k;=0.135, Csw—2.02, and a M j= 1.8.

represents the meson propagating from time to to t. By the argument of equations 2.135 
to 2.141, in the Schrodinger picture this becomes:

y :  (/oc|m)(m|/oc)e_aEm^_t°̂ . (3.28)
states

If we put (nsc,n sk) = (loc, loc) in equation 2.152, and consider a limit of an 
infinite number of exponentials, (m\loc) equals a(loc,m). Using eqn. 3.26 this is also 
equal to \I/m(0). From equation 2.156 the dimensionless lattice wavefunction at the origin 
is given by:

a3/ ^ ra(0) =  a^ bJ ^ l  =  . (3.29)
a(nsc, m) a6/za(nsc, m)

For this thesis, amplitudes from both row (a3b(nsc, m)) and matrix (a3/2a(nsc, m)) 
fits were analysed for both the 1So and 3Si states. Typical results for ^ m(0) for the 3S\ 
channel are shown in Table 3.16.

Inspection of Table 3.16 indicates that the lattice ground state wavefunction
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is more stable across lattice timeslices. Generally, this ground state dominance 
held across all results. The results are generally better for ^(O ) than for ^(O ). As 
expected the results for (nsc, m) with m = nsc give better results too. This is as expected 
given that the imposition of the same smearing function at both the sink and the source 
ought to give a better overlap with the particular lattice state being studied. The results 
also sound a cautionary warning about the choice of the best timeslice in a fit. At tmin—8, 
the anomalously high results for (g,3), (e,3) and (d,3) all clearly indicate that the fits 
become unstable at those noisier timeslices.

These results also indicate the usefulness of the smearing functions. The smal- 
lesst errors are for the wavefunctions at the origin of type (g,l), (e,2) and (d,3). This 
is because the amplitudes calculated from a(g, 1), 5(g, 1), • • • were larger numbers. From 
equations 2.154 and 2.156 being larger is the same as having a higher weight in the fit, or, 
alternatively, more overlap with the desired lattice energy level. Thus, the most “smeared” 
correlators most closely resemble the desired lattice state.

36
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3.8 Lattice Results
Tables 3.17 and 3.18 contain the values of the lattice state energies. Tables 3.19 and 3.20 
contain the lattice kinetic state energies. Tables 3.21 and 3.22 contain the values of 
lattice splittings and lattice wavefunctions at the origin. They were selected using the 
dropping algorithm outlined in section 3.4. It ought to be pointed out that, although 
unused in this thesis, there was clearly a problem with the 1Pi(x, y , z) states. The results 
are shown in tables 3.17 and 3.18. These states were included as a test to ensure that no 
particular spatial direction was different from any other. They were analysed late on in 
the analysis when it became clear that they had, in fact, been averaged in the past and 
not subsequently “un-averaged” .___________________________________________

Quenched k=0.135
aM/j

1.55 1.8 1.8 2.1
Lattice State aE

l 3Si 0.3348(8) 0.3573(8) 0.3990(11) 0.3835(12)
23Si 0.5683(101) 0.5838(95) 0.6848(223) 0.6671(206)
33S i 0.7098(247) 0.7086(235) 0.7548(1204) 0.7606(1016)
l'So 0.3176(7) 0.3419(7) 0.3762(11) 0.3616(11)
21S0 0.5582(88) 0.5750(85) 0.6728(219) 0.6518(165)
3*50 0.7031(268) 0.7018(252) 0.7525(1059) 0.7439(1022)
l 'P i 0.5048(40) 0.5253(39) 0.6049(62) 0.5877(59)
2 lPl 0.7233(114) 0.7396(113) 0.8249(193) 0.7920(192)

P P ifz ) 0.5048(40) 0.5253(39) 0.6050(62) *
21Pi(:r) 0.7233(114) 0.7296(113) 0.8249(193) *
VPiiv) 0.5048(40) 0.5253(39) 0.6049(62) *
21Pi(y) 0.7233(114) 0.7296(113) 0.8249(193) *
l 'P d z ) 0.5048(40) 0.5253(39) 0.6049(62) *
21Pi(<0 0.7233(114) 0.7296(113) 0.8249(193) *

13P0 0.4911(41) 0.5132(41) 0.5915(57) 0.5766(55)
23P0 0.7041(123) 0.7131(123) 0.8124(197) 0.7835(196)

13P2£ 0.5059(46) 0.5261(46) 0.6105(65) 0.5930(62)
2 3P2E 0.7330(131) 0.7377(128) 0.8325(197) 0.7980(195)

l 3P2E(xy) 0.5067(50) 0.5273(49) 0.6152(74) 0.5956(70)
23P2E(xy) 0.7309(138) 0.7372(135) 0.8446(235) 0.8105(230)
l 3P2E{xz) 0.5062(52) 0.5261(52) 0.6074(71) 0.5933(75)
2 3P2E{xz) 0.7326(141) 0.7357(136) 0.8215(203) 0.8248(330)
l 3P2E(yz) 0.5047(52) 0.5244(51) 0.6106(73) 0.5939(71)
2:iP2E(yz) 0.7332(141) 0.7367(138) 0.8263(203) 0.7941(201)

Table 3.17: Final lattice state energies for the quenched run and the dynamical run with 
«=0.135. * Fits were unsuccessful.
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k=0.1345 k=0.134
aMj

1.8 2.1 1.8 2.1
Lattice State aE

P S i 0.3896(12) 0.4043(14) 0.3860(15) 0.4021(15)
2 3 S i 0.6203(403) 0.6816(215) 0.6700(369) 0.6746(377)
3 3 S l 0.8434(1091) 0.9498(1562) 0.9476(454) 0.9315(4177)
l 1 So 0.3672(10) 0.3843(12) 0.3649(13) 0.3831(13)
21S’0 0.6205(333) 0.6732(177) 0.6478(327) 0.6555(344)
3'5o 0.8592(1377) 0.9459(1691) 0.8919(4018) 0.8881(4039)
l 'P i 0.5924(55) 0.6095(43) 0.5817(192) 0.6077(55)
21P1 0.8561(211) 0.8706(205) 0.8085(3066) 0.8184(201)

l 'P iix ) 0.5924(55) 0.6090(53) 0.5598(3381) *
21P1(x) 0.8561(211) 0.8664(218) 0.6024(4229) *
VPiiv) 0.5924(55) 0.6090(53) 0.5622(3436) *
VPAy) 0.8561(211) 0.8664(218) 0.6036(4419) *
PPi{z) 0.5924(55) 0.6090(53) 0.5622(3436) *
21P1(z) 0.8561(211) 0.8664(218) 0.6036(4419) *

l 3Po 0.5783(49) 0.5968(48) 0.5566(172) 0.5416(589)
2 3 P o 0.8418(210) 0.8538(215) 0.7349(404) 0.6544(699)

l 3 P2B 0.5985(58) 0.6142(56) 0.5815(128) 0.5991(128)
23 Pie 0.8645(215) 0.8738(221) 2.262(1995) 2.438(2233)

l 3P2E{xy) 0.6072(63) 0.6226(60) 0.6004(100) 0.6123(66)
2  3P2E(xy) 0.8718(235) 0.8806(240) 1.047(178) 0.8211(211)
1 3 P 2 E ( x z ) 0.5964(63) 0.6130(60) 0.5722(157) 0.5899(156)
2 3 P 2 E ( x z ) 0.8732(240) 0.8843(247) 0.7580(2605) 0.8359(2797)
l 3P2E(yz) 0.5912(67) 0.6065(63) 0.5336(2975) 0.6028(160)
23P2E{yz) 0.8485(217) 0.8574(222) 0.7483(7594) 2.878(3344)

Table 3.18: Final lattice state energies for the dynamical runs with k= 0.1345 and 0.134. 
* Fits were unsuccessful.
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Quenched k=0.135
aMk

1.55 1.8 1.8 2.1
Lattice State aE
Kinetic States

(ap)2 aE : i3Si)
1 0.02155(17) 0.01901(15) 0.01829(24) 0.01620(19)
2 0.04295(37) 0.03793(32) 0.03652(51) 0.03238(40)
3 0.06421(62) 0.05675(53) 0.05470(83) 0.04854(64)
4 0.08555(84) 0.07564(73) 0.07240(123) 0.06436(92)
5 0.1066(12) 0.09433(99) 0.09063(160) *
6 0.1275(15) 0.1130(13) 0.1088(21) 0.09681(155)
8 0.1694(24) 0.1503(20) 0.1452(31) 0.1293(24)
9 0.1907(28) 0.1692(24) 0.1635(38) 0.1456(29)
12 0.2545(41) 0.2257(39) 0.2195(66) 0.1948(48)

Table 3.19: Final lattice kinetic masses for the quenched run and the dynamical run with 
tt=0.135. * Fit was unsuccessful.

k=0.1345 k=0.134
aMb

1.8 2.1 1.8 2.1
(ap)2 a £ ( l3Si)

1 0.01908(32) 0.01659(23) 0.01811(25) 0.01586(22)
2 0.03814(65) 0.03319(48) 0.03639(38) 0.03158(48)
3 0.05718(100) 0.04978(77) 0.05443(61) 0.04716(79)
4 0.07594(151) 0.06595(110) 0.07210(87) 0.06259(114)
5 0.09495(191) 0.08254(146) 0.09002(115) 0.07785(156)
6 0.1139(23) 0.09910(185) 0.1079(15) 0.09295(208)
8 0.1515(35) 0.1318(28) 0.1433(22) 0.1225(34)
9 0.1700(40) 0.1482(34) 0.1609(27) 0.1369(43)
12 0.2242(60) 0.1963(56) 0.2126(47) 0.1774(88)

Table 3.20: Final lattice kinetic masses for the dynamical runs with k= 0.1345 and 0.134.
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Quenched re=0.135
aMii

1.55 1.8 1.8 2.1
S  States a3̂ (  0)

l'So
P p

0.1407(40)
0.1157(38)

0.1539(48)
0.1314(46)

0.1772(59)
0.1445(51)

0.1961(71)
0.1646(62)

Lattice Splitting aP(Sp itting)
l 3Si -  CSo 
23Si -  21S0 
335i -  3 %  
l 1-Pi -  l 3Po 
21P 1 -  23P0 

13P2E -  11P1 
23P2E -  2XP X 
13P -  P P j
23p  _  2 i p t

(23S 1 -  l 3S1) / ( l 1Pi -  P P )  
(13P2E -  l 1Pl ) / ( l 1P1 -  13P0)

0.01721(22)
0.0102(24)
0.0068(70)
0.0105(15)
0.0186(43)
0.0043(10)
0.0102(29)

0.00064(67)
0.0023(20)
1.374(50)
0.41(10)

0.01540(19)
0.0089(20)
0.0068(59)
0.0091(13)
0.0158(36)
0.00378(87)
0.0088(24)

0.00054(56)
0.0020(16)
1.349(46)
0.42(10)

0.02355(50)
0.0132(78)
0.012(34)

0.0134(23)
0.0125(62)
0.0058(16)
0.0052(43)
0.0013(22)
-0.0055(53)
1.439(95)
0.44(13)

0.02187(39)
0.0152(85)
0.016(21)

0.0111(20)
0.0086(55)
0.0053(14)
0.0060(35)
0.0013(19)
-0.0039(47)

1.443(93)
0.48(14)

Table 3.21: Final lattice wavefunction at the origin and splitting results for the quenched 
runs and the dynamical runs at «=0.135.

k=0.1345 k=0.134
aMb

1.8 2.1 1.8 2.1
3  States a3Pij){ 0)

l 1 So 
13P

0.203(12)
0.175(14)

0.237(28)
0.231(52)

0.211(61)
0.178(54)

0.229(58)
0.207(76)

Lattice Splitting aE( Sp itting)
P S i -  1 %
235i -  2‘50 
S3^  -  3 ^ 0  
P P i -  13P0 
2‘Pi -  23P0 

13P2E -  p p  
23P2E -  2lPl 
13P  -  P P i 
23P  -  2:P!

(23S'1 -  l 35 i) / (P P i  -  P P )  
(13P2E -  P p ) / ( P p  -  13P0)

0.02243(42)
0.0003(200)
-0.015(78)
0.0141(22)
0.0144(72)
0.0061(15)
0.0084(48)
0.0032(18)
-0.0040(51)
1.311(78)
0.43(11)

0.01998(40)
0.0084(69)
0.004(45)
0.0127(36)
0.017(16)
0.0048(40)
0.003(16)

0.0027(16)
-0.0022(42)
1.318(93)
0.38(41)

0.02112(49)
0.022(10)
0.06(16)
0.20(50)
0.2(14)

0.0004(630)
2.0(16)

-0.0025(96)
0.20(19)
1.38(23)

0.005(300)

0.01898(43)
0.0175(95)

0.03(14)
0.15(64)
2.0(12)

-0.0110(48)
0.5(10)

-0.007(13)
0.13(12)
1.38(23)

-0.07(29)

Table 3.22: Final lattice wavefunction at the origin and splittings for the dynamical results 
with /c=0.1345 and 0.134.
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Quenched k=0.135
aMf,

1.55 1.8 1.8 2.1 2.4
a -1 (GeV) 2.59(6) 2.62(6) 2.14(7) 2.15(6) 2.15(6)

a(fm) 0.076(2) 0.075(2) 0.092(3) 0.092(3) 0.092(3)

Table 3.23: Inverse lattice spacing calculated from the l 1 Pi — l 3Si splitting.

k=0.1345 k=0.134
aMii

1.8 2.1 1.8 2.1
a-^G eV ) 2.17(6) 2.14(5) 2.14(6) 2.14(6)

a(fm) 0.091(3) 0.092(2) 0.092(3) 0.092(3)

Table 3.24: Inverse lattice spacing calculated from the l 1 Pi — l 3Si splitting.



Chapter 4 

Physical R esults

4.1 Introduction

In this chapter the results at different lattice bare heavy quark masses are combined, and 
(if required) interpolated to yield values at the physical T mass of 9.460 GeV. Most quan
tities of interest have sufficiently slight bare mass dependence that there is no significant 
difference between the results at either bare quark mass. However, the potential model 
expectation (see equation 2.42) that the hyperfine splitting has a strong dependence on 
the bare mass is confirmed. It also displays sea quark mass dependence, so the results 
were interpolated to a physical light pseudoscalar meson mass1. A significant signal for 
unquenching was also seen for the hyperfine splitting. This difference allowed an extrap
olation to be made to the expected “real world” case where there are three flavours of sea 
quark in the bottomonium system. This gives a prediction of a mass of 9.517(4) GeV for 
the rji, particle.

4.2 Interpolation to the Upsilon Mass

The calculations of the previous chapter were carried out at two different lattice bare 
quark masses, chosen to give physical kinetic mass values either side of the actual upsilon 
mass. The results then have to be interpolated to the upsilon scale.

The results for the upsilon mass at small non-zero momenta for any one bare 
mass showed no significant discrepancy from each other (for example see table 3.2). Thus 
the fitted results chosen were those for the smallest momentum, since they had the smallest 
errors.

Calculations with different bare masses gave slight (non-significant) discrepan
cies in the values of the lattice spacing (see tables 3.23 and 3.24). In order to reduce this

1 Chiral perturbation theory suggests that the square of the pseudoscalar mass varies with the sea 
quark mass, so this quantity is chosen for the extrapolation.

8 1
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a 1
Quenched re=0.135 k=0.1345

C
O

oII

In GeV 
In fin

2.61(6)
0.076(2)

2.15(6)
0.092(3)

2.16(6)
0.091(3)

2.14(6)
0.092(3)

Table 4.1: The inverse lattice spacing values used for the calculations in this chapter.

M m (GeV)
Quenched k=0.135

aMb
1.55 1.8 1.8 2.1 2.4

9.31(23) 10.56(26) 9.04(28) 10.22(31) 11.43(34)

Table 4.2: Upsilon kinetic masses (in GeV) for the quenched data and the dynamical data 
with the lightest dynamical quarks.

slight uncertainty an “average” for both bare masses was taken, with the errors remain
ing the same. The inverse lattice spacing values adopted via this procedure are shown in 
table 4.1. The resulting kinetic mass results are shown in tables 4.2 and 4.3.

In the absence of further information on the variation of the physical kinetic 
mass with the lattice bare mass linear regression was used to obtain the line between 
kinetic masses at the different values of the bare mass. From this line the lattice bare 
mass which would have resulted in a physical kinetic mass equal to the upsilon rest mass 
was calculated. The results from this calculation are shown in table 4.4.

4.3 Dependence of Results on Dynamical Quark Masses

In order to measure the variations of lattice observables with dynamical quark mass, it 
was necessary to use a measurement of the lattice dynamical quark mass in terms of 
some physically observable quantity. Chiral perturbation theory suggests that for most 
quantities the dependence on dynamical quark mass is linear. The quantity chosen was

Mem (GeV)
k=0.1345 k=0.134

aMb
1.8 2.1 1.8 2.1

8.71(28) 10.02(31) 9.09(28) 10.39(33)

Table 4.3: Upsilon kinetic masses (in GeV) for the two dynamical data sets with the 
heavier dynamical quarks.
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aMb interpolated to M ^n = M (T)
Quenched /c=0.135 «=0.1345 «=0.134

1.58(3) 1.91(4) 1.97(4) 1.89(4)

Table 4.4: Lattice bare b quark mass interpolated to give M ^n = M(Y).

Pseudoscalar masses
Quenched /c=0.135 re=0.1345 re=0.134

amps oo 0.408 0.512 +* 0.578 + 2

m PS (GeV) oo 0.8772(260) 1.1059(319) 1.2369(353)
m 2PS (GeV2) oo 0.7695(456) 1.2230(706) 1.5299(873)

Table 4.5: Pseudoscalar masses used in this thesis. It should be noted that although 
taken from [63], the physical results differ from those shown there as different values of 
the lattice spacing were used in this case.

the pseudoscalar mass squared. Accordingly, lattice pseudoscalar mass measurements 
from light hadron spectroscopy on these configurations were chosen [63]. These pseu
doscalar meson masses were calculated by other members of the UKQCD collaboration 
using the clover and non-perturbatively improved Wilson fermion action outlined in sec
tions 1.5.1, 1.5.4 and 1.5.5. They were measured on the lattice using the light quark 
action of those sections instead of the NRQCD action used here for heavy bottomonium 
spectroscopy. Of course, light quark actions are also included through the Hybrid Monte 
Carlo algorithm, generated with a fixed, unique n value (called the sea k) .  For the light 
spectroscopy carried out on those dynamical configurations the value of k (called this 
time the valence k) was varied in the spectroscopic action. This allowed measurements 
of light quark results on configurations with one /csea and various values of KVaience- For 
the T  system such light quarks are regarded as sea quarks, hence the value chosen for the 
light pseudoscalar mass was the one calculated with Acvaience =  ŝea-

The lattice spacing values used to convert these results to dimensionful units 
were taken from table 4.1, and not from the lattice spacing values calculated from the 
light spectroscopy results in [63]. Otherwise the extrapolation of the hyperfine splitting 
(calculated using a ^ &vy) would then be interpolated to a point calculated using a ^ ht. The 
pseudoscalar masses used are shown in table 4.5.

In choosing which lattice state measurements to use in the interpolation, care 
was taken to avoid introducing systematic errors from fitting. As an example, for the 
configurations with «=0.135 and 0.1345 the S states were adjudged to have their best 
value at tmin/ t mSiX =  6/13, whereas, for k=0.134, it was considered safer to take the best 
results (owing to the poor Q values at early timeslices) from tm\n/ t m&x =  9/13. Thus, 
to choose on the grounds of the best results for an individual state could introduce a 
systematic error owing to the different timeslices chosen. Furthermore, the final results 
for splittings etc. didn’t appear to be qualitatively any worse at earlier timeslices for
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Figure 4.1: l lP\ — l 3Po splitting versus pseudoscalar mass. Note that the quenched result 
should have m p seudoscaiar =  oo. The dashed line is the experimental result for Xb ~ Xbo- 
For a definition of Xb> see equation 3.2.

^=0.134, than in the other configurations. Therefore the quantities used in this part of 
the analysis were chosen at the same timeslice in all cases, for the S  states the value 
chosen was tmjn=6, and for P  states, tmin=4.

Given the knowledge of the lattice bare quark masses at the physical Upsilon 
rest mass shown in table 4.4, lattice results at the differing bare quark masses could be 
interpolated to this “physical” lattice bare mass. However, in many cases the errors on 
quantities of interest were too large to show a significant difference in the results for 
different lattice bare masses. This was the case for the results for the l 1 Pi — l 3Po and 
13T2£ — l 1 Pi splittings, shown in figures 4.1 and 4.2 respectively. It should be noted that 
for these graphs (and the others to follow), the quenched value is plotted at MpS=0.1 
M eV 2 for visibility, there is no physical significance to its position. Of course, it is also 
possible to plot the results against l /M p S, but chiral perturbation theory suggests that 
M pS has a linear dependence on the dynamical quark mass, making Mj>s the natural 
choice for the linear extrapolations which were carried out.

Unsurprisingly, the ratio of the previous splittings (i.e. (13P2e ~
13P0)) suffers from the same problem. That result is shown in figure 4.3. The ratio of the 
radial to the orbital splitting, taken from the lattice results as (235i — l 3*S'i)/(l1Pi — l 3Si) 
is shown in figure 4.4. Its behaviour was as expected, indicating that at the physical 
value of MpS the dynamical radial-orbital splitting would be higher then the quenched

- o -

x quenched o dynamical

J  I I I  I I I I  I I I I  I I I L
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o dynamical

x quenched

m ps2 GeV2

Figure 4.2: 13P2e ~  I 1 Pi splitting versus pseudoscalar mass. Note that the quenched 
result should have mps  =  oo. The dashed line is the experimental result for Xb2 ~Xb- For 
a definition of see equation 3.2.
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Figure 4.3: (13P2e — l 1 P i ) / ( l1 Pi — l 3-Po) ratio versus pseudoscalar mass. The dashed 
line is the experimental result for (Xb2 — Xb)/(Xb ~  Xbo)- For the definition of x7, see 
equation 3.2.

value, although the trend is not very statistically significant. This was as expected, since 
a larger rif should give a larger a s by equation 2.14, and indeed does in figure 5.3. A 
larger value of a s in turn should decrease the value of the 3 Si channel mass relative to 
the masses of the lP\. However, it is clear that the trend would give a dynamical value 
which has less agreement with experiment than the quenched.

The results for the wavefunction at the origin, for both l 1 So and l 3Si, don’t 
show any significant difference either. They are shown in figures 4.5 and 4.6 respectively. 
It is clear from both figures that the results on the dynamical configurations with «=0.1345 
have large errors. Unfortunately, there is no discernible trend. The potential model ex
pectation of equation 2.54 suggests that an increase in a s (as expected from unquenching, 
by equation 2.14), should increase the wavefunction at the origin. Equation 2.54 also 
indicates that the wavefunction at the origin should have heavy quark mass dependence, 
an effect which was only really seen for the results with lower errors. Thus, overall, there 
is little which can be said with certainty regarding the results for the wavefunction at the 
origin.

In the case of the hyperfine splitting, l 35i — l 1*S'o, there was a significant 
difference between the results on different bare quark masses. The results are shown 
in figure 4.7. Such relatively strong bare quark mass dependence is as expected from 
potential model predictions, such as 2.54. There is a clear trend in figure 4.7: the hyperfine
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Figure 4.4: (235i — l 35 i ) / ( l 1Pi — l 3Si) ratio versus pseudoscalar mass. The dashed line 
is the experimental result for (T; — T)/(x& — T). For the definition of x&, see equation 3.2.

Results at Myj„ = M {T)
Quenched k=0.135 k=0.1345 k=0.134

a £ ( l 3Si -  eSo) 
135! -  eSo (MeV)

0.01699(26)
44.3(12)

0.02293(51)
49.3(18)

0.02104(42)
45.5(16)

0.02080(41)
44.5(15)

Table 4.6: Values for the hyperfine splitting interpolated to the point where the lattice 
kinetic mass, M ^  = My, the experimental mass.

splitting is larger at rif  = 2 than at rif  = 0 (at a physical value of M p S ). Essentially 
the same argument used previously in this section with the results for the wavefunction 
at the origin applies in reverse. A larger value of a  from the effect of unquenching on 
the running coupling (equation 2.14) should increase the hyperfine splitting for rif  =  2 
(equation 2.41).

In order to obtain the result at the physical T kinetic mass, linear interpolation 
between the hyperfines was used and the results obtained at the “physical” bare quark 
masses of table 4.4. The final interpolated values are given in table 4.6, and displayed in 
figure 4.8.

I t
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Figure 4.5: Results for the wavefunction at the origin, -0(0), for the l 1 So lattice state, 
versus pseudoscalar mass. The method used to calculate the wavefunction at the origin 
is described in section 3.7.
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Figure 4.6: Results for the wavefunction at the origin, ?/;(0), for the l 35i lattice state, 
versus pseudoscalar mass. The method used to calculate the wavefunction at the origin 
is described in section 3.7.
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Figure 4.7: Results for the hyperfine splitting, l 3Si — l 1̂ ,  versus pseudoscalar mass.
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Figure 4.8: Results for the hyperfine splitting at the physical scale where M ^n = Mr , 
versus pseudoscalar mass.

4.4 Extrapolation to Experimental Light Quark Masses

The pseudoscalar masses of the previous section have been derived from the lattice mea
surements of light pseudoscalar meson masses in [63], It is important to extrapolate from 
those masses to some sort of physical value for M pS.

The typical momentum inside bottomonium is ~1 GeV(^> m u^,s)- Thus, the 
dynamical quarks of importance in the sea for the bb system are the three lightest quarks, 
u, d, and s. This suggests that an appropriate value for the dynamical quark mass, yn 
(for degenerate lattice sea quarks), with all three physical sea quarks active is:

m u + m d + m s 
m dyn =   g • (4 .1 )

Equation 4.1 is the simplest expression for the dynamical quark mass in the 
absence of more information. Translating into observable meson masses, using chiral 
perturbation theory, the pseudoscalar meson mass should be taken as [65]:

9 2m 2K +  m l , d .
" V u d o sc a la r  =  --------- 5----------■ ( 4 -2 )

The mass taken for the K  and it was the average of both the neutral and
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Figure 4.9: Results for the hyperfine splitting at the physical scale where M Ps is as defined 
in equations 4.2 and 4.3, versus pseudoscalar mass. The solid line is the best linear fit to 
the three dynamical hyperfines with the dashed lines due to the uncertainties in lattice 
pseudoscalar masses.

charged particles in either case:

T .
m v =  ------   , (4.3)

m Ko +  m K±
m K = -------   •

This averaging is required as we take the u and d quark masses to be degener
ate. From table A.2, m pseudoscaiar =  412.4 MeV, slightly lighter than the K°.  The results 
for the extrapolation are shown in figure 4.9. The solid line in figure 4.9 is the best linear 
fit to the data. The dashed lines were obtained via the errors on the pseudoscalar masses. 
They were calculated by refitting, taking the outermost values of the lightest (mlPS) and 
heaviest (m PS) pseudoscalars. Thus, the first fit came from the masses m lPS — A ( m lPS) 
and m PS +  A (mPS), and vice versa for the second. The value obtained for the hyperfine 
splitting was 52.8(22) MeV2.

2 The first (symmetric) error comes from the extrapolation and the original errors on the hyperfine 
splitting. The second (unsymmetric) errors come from the uncertainties in the pseudoscalar masses and 
are simply the difference between the best and worst fit lines at the physical pseudoscalar mass.
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Figure 4.10: Extrapolation of the hyperfine splitting to rif=3.

4.5 Extrapolation to n/ = 3

Following the extrapolation to the physical pseudoscalar mass of the preceding section, it 
was necessary to extrapolate again from this result for two flavours of dynamical quarks 
to the real world case where three flavours would be reasonable. The quenched result has 
rif  = 0 and so provides the other point. The extrapolation result is shown in figure 4.10.

The error on the dynamical (rif=2) hyperfine was calculated by adding its 
symmetric and unsymmetric errors in quadrature. The final value obtained for the hy
perfine splittings was 57.1(35) MeV, leading to a prediction for the mass of 9.517(4) 
GeV.

4.6 Comparison of Lattice Spacings from Different 
Scales

In lattice calculations the lattice spacing, a, is determined by comparing a lattice mea
surement of some quantity to its physical value. For the spectroscopy presented thus far in 
this thesis, the quantity chosen was the physical Xb ~  Y splitting; with lattice equivalent, 
the splitting a E ( l lPi — l 3Si). The spacing is then determined by equating both results.

Another way of determining a is via lattice potential models, by comparing the
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Lattice Spacing (fm)
Quenched, 0=6.0 k=0.135 k=0.1345 k=0.134

0.0913(9) (+J) 0.1030(10)(+“ ) 0.1038(11) (^ |J ) 0.1018(10) (+20)

Table 4.7: Values of the lattice spacing from [67] determined at the Sommer scale.

lattice potential model fit with the dimensionful “real world” case. One such method is to 
evaluate the interquark force at the Sommer Scale [66]. For the dynamical configurations 
used in this calculation such an analysis has been carried out [67]. The results are shown 
in table 4.7. The two types of error quoted were combined in quadrature, taking the 
largest of the unsymmetric errors in that case. Thus there may be a slight overestimate 
of errors in the subsequent results. The quenched result was taken from the formula [68]:

ln (a /r0) =  -1.6805 -  1.7139(0 -  6) +  0.8155(0 -  6)2 -  0.6667(0 -  6)3. (4.4)

For the quenched results used here the value of rQ used was «0.49fm. In order 
to derive an error on this value it was compared to the result for r 0=0.495fm and 0.485fm.

The ratios of the values of a  calculated in this thesis to those from [67] are 
shown in figure 4.11. As the lattice spacing shouldn’t vary with the calculation being 
performed on the same lattice, the ratios ought to equal one in all cases. Unfortunately 
this wasn’t the case. However, the dynamical results were certainly significantly closer to 
unity than the quenched.

4.7 Hyperfine Splitting results obtained by other Col
laborations

Other collaborations have completed calculations similar to that done in this thesis. This 
section compares my results for the hyperfine splitting with those of the SESAM [54] and 
CP-PACS [64] collaborations. The hyperfine splitting is used as it is the most precisely 
determined quantity in the calculation. The hyperfine splitting should be larger for rif  =  
2 than for rif  =  0. Unquenching should increase the value of the running coupling 
by equation 2.14, and potential models suggest that the larger running coupling should 
increase the hyperfine splitting (see equation 2.41). Overall, it is a quantity which is 
expected to give a good signal for unquenching effects if there are any.

The SESAM collaboration used dynamical configurations with a fixed value 
of 0  and varied the sea quark mass (/c). Thus, the lattice spacing varies across their 
dynamical configurations. It was thus difficult for them to differentiate physical effects 
from finite lattice spacing effects. They kept the lattice bare quark mass (oAfJ) constant. 
Overall, their calculation had an accuracy of 0(MijV6,a2).

SESAM kept the lattice bare quark mass (aM j) constant. From figure 4.7 of 
this thesis, however, there is an indication that the hyperfine splitting is quite sensitive to
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Figure 4.11: Ratio of the lattice spacing from mesonic and gluonic fits.

the bare heavy quark mass. Equation 2.42 makes the same prediction from the standpoint 
of potential models. Subsequently, in their interpolation of the sea quark mass to m s/ 3, 
they find that the hyperfine splitting falls linearly with dynamical quark mass. This 
contrasts with the extrapolation shown in figure 4.9 of this thesis, where the hyperfine 
grows as the sea quark mass falls.

The final SESAM result for the hyperfine splitting is also lower than my re
sult, it is ~30 MeV. However, they included the extra terms of 0(MbV6), shown in equa
tion 2.74, and compared this with the 0(Mt,v4) action used in this thesis. They found that 
the inclusion of their additional terms suppressed the hyperfine, by an amount (~10%) 
consistent with the potential model predictions that v2 ^  0.1 for bottomonium. Such 
an effect was also observed by Manke et al. [49]. They also found that the hyperfine 
splitting is sensitive to the tadpole improvement scheme used, an effect they did not see 
for spin-independent splittings. They used a “link” tadpole improvement scheme (see 
equation 2.119), as opposed to the plaquette scheme (equation 2.118) which I used. The 
effect seen by SESAM was that the “plaquette” scheme suppressed the hyperfine split
ting relative to the “link” scheme. Such suppression was also found by Shakespeare and 
Trottier [53]. If their conclusions are correct, then the inclusion of the Q(MbV6) terms of 
equation 2.74 and the use of the link tadpole improvement, UqL\  should reduce my value 
for the hyperfine splitting. Unfortunately SESAM over-corrected when tadpole improving 
by failing to implement the equation 2.124 so their correction of 0 ( a 2) in the NRQCD 
action was incorrect.
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The CP-PACS Collaboration calculation used the same 0(MbV6) heavy quark 
action as the SESAM group, and the standard (clover improved) light quark action fol
lowing the Symanzik improvement program. Similarly to the SESAM group they didn’t 
implement the important correction of equation 2.124. As they were working on coarser 
lattices they used a non-standard gluon action selected by a RG-analysis of the pure 
gauge theory as an alternative to the gluonic action used in this thesis. Like the SESAM 
group they fixed ft and varied k ,  s o  their lattice spacing wasn’t matched across different 
dynamical quark masses. Their accuracy was G ( M b V 6, a 2).

Unlike the SESAM group, CP-PACS varied the bare heavy quark mass. As 
with this thesis (see figure 4.7) they found strong heavy quark mass-dependence for the 
hyperfine. Again, unlike SESAM and like the results shown here (see figure 4.9), they 
discovered that the hyperfine increased with decreasing sea quark mass. However, they 
found a linear plus quadratic interpolation yielded a closer fit to their data. Similarly 
to this thesis (see figure 4.10) they found that the dynamical hyperfine splitting was 
significantly larger than their quenched value. Their ratio for the splitting at rif  = 2 
to that at rif  = 0 was 1.3(1), which compares reasonably well with my value of 1.2(1). 
However, their individual values were ~24 Mev (rif = 0) and ~30 MeV (rif  =  2), lower 
than the corresponding values of 44.3(12) MeV (see table 4.6) and 52.8(22) (see 
section 4.4).

CP-PACS also discovered scaling violations for the hyperfine splitting. It is 
thus difficult to tell whether or not their trends for the hyperfine were scaling artefacts or 
unquenching effects. As their calculation had the same size of discretisation errors (O(a2)) 
as mine, scaling could also hold true for my results. However, they used coarser lattices, 
and their differing gluon action could also have had an effect. They noticed a signal 
for unquenching amongst the scaling results as well, finding that results for (rif  = 0) 
and (ri f  = 2) lay on different scaling lines. Like the SESAM group their values for 
the hyperfine were smaller than mine, as discussed above. However, CP-PACS’ scaling 
analysis revealed that the hyperfine increased with declining lattice spacing, and so my 
results, on finer lattices, were closer to theirs than is the case at first sight.

Overall, given the presence of the scaling errors found by the CP-PACS collab
oration, the strategy followed by UKQCD of using “matched” dynamical configurations 
with the same lattice spacings, was a successful policy. The trend seen in figure 4.9 of 
an increasing hyperfine splitting with decreasing sea quark mass, can be distinguished as 
an actual trend and not an effect of lattice spacing. Neither the CP-PACS nor SESAM 
groups included the corrections (equation 2.124) which avoid doing too much tadpole im
provement on the E  and B fields. This makes their 0 ( a 2) corrections slightly incorrect. 
As Shakespeare and Trottier have shown [53] this does make a difference to the hyperfine 
results.
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Chapter 5 

D eterm ination of as and m^

5.1 Introduction

Lattice QCD can also be used to determine parameters of the standard model. In this 
chapter two are determined, the strong coupling constant, a s and the b quark mass, m^.

In measuring a s there are various steps. Initially the plaquette expectation 
value and its scale are determined. Then 0 ( a 2) errors in the lattice l 35i channel are 
accounted for, yielding new values for the channel mass and ultimately a slightly different 
value for the lattice spacing. With these results a perturbative expansion of the plaquette 
expectation value is used to measure the plaquette scheme strong coupling constant, ap. 
The scale at which the values of ap  are measured is a function of the lattice spacing, so 
the results are then evolved to a common scale using a three loop beta function. From 
this result, the dynamical values of a ^ 1 are evolved to a physical pseudoscalar mass in 
the same way as in chapter 4. From there, an extrapolation using the quenched and 
dynamical measures of ap  gives a value of a p \  This value is then converted into the 
common MS renormalisation scheme. By employing suitable matching conditions at the 
c and b quark thresholds the result is run to a ^ ( M z ) ,  a conventional scale at which to 
express a s.

The measurement of is carried out in two ways, the so-called E$ and Zm 
methods. The E0 method applies a meson “binding energy” correction to the trivial 
ansatz that yielding a pole mass, Mp0\e for the b quark. This result is then
renormalised to give a value for the MS b quark mass. The Zm method has the same 
renormalisation into the MS scheme, but differs from the E0 method in taking a different 
measure of Mpo\e. The value of Mp0\e is instead derived directly from the lattice bare 
quark mass. Both methods yield comparable results.

xThe conventional notation used in this chapter is where r i f  is the number of sea quarks included 
in the calculation.
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Results used in calculating aAM g.
Quenched k=0.135

aMb 1.55 1.8 1.8 2.1
a P(5Ge V) 0.19 0.19 0.194 0.194
aV2iP 0(0) 0.1164(42) 0.1312(52) 0.1445(51) 0.1646(62)
a ^ 2(0) 0.01355(98) 0.01721(136) 0.02088(147) 0.02709(204)
aA M g 0.0022 0.0027 0.0034 0.0044

K=0 .1345 K,=[ .134
aMb 1.8 2.1 1.8 2.1

a P (5GeV) 0.194 0.194 0.194 0.194
a3/Vo(0) 0.175(14) 0.231(52) 0.1427(97) 0.164(10)
a V  o2(0) 0.0306(49) 0.0534(240) 0.02036(277) 0.0269(33)
a A M g 0.0050 0.0087(39) 0.0033 0.0044

Table 5.1: Lattice results used to calculate the gluonic mass shift, aAM g.

5.2 Lattice Spacing and the Gluonic Mass Shift

The (inverse) lattice spacings used in this thesis were derived from the formula:

0 {GeV) =  a E ^ - l W  (5-1}

where Xb is defined in equation 3.2, and m() signifies the experimentally mea
sured masses. This led to the values chosen in table 4.1. However the gluon action of 
the theory (see equations 1.52 and 1.54) is only accurate to G(a2). These discretisation 
errors are short distance quantities and so may be estimated using perturbation theory. 
Perturbation theory [69] gives a gluonic mass shift of:

aAMg =  MO)? ■ (5-2)

Here, the momentum scale q$ «  5GeV  is the typical momentum transferred 
through the interaction. The dependence on the mesonic wavefunction at the origin, i p ( 0 ) ,  

means that A Mg =  0 for P-wave mesons.

The value of ap(5GeV)=0.19 used for the quenched results at ft = 6.0 was 
taken from [59]. As the dynamical results don’t vary much over «, one value was taken 
for them, it was ap(5GeV)=0.194 [70]. The values used for the wavefunction at the 
origin were interpolated to the “physical” lattice bare mass values where M ^ n = My (see 
section 4.2, and in particular table 4.4). The resulting values of the lattice wavefunction 
at the origin and ultimately aAM g are shown in table 5.1.

Examination of table 5.1 reveals that the dynamical values of a A M g are about 
double the standard value for k=0.1345. Further examination of figure 4.5 reveals that
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Quenched k=0.135
aMf,

a E { l l P\ — l 35i) Uncorrected 
a E ( l lP\ — l 3Si) Corrected 

Corrected a -1 (GeV)

1.55
0.1700(41)
0.1678(41)

2.62(6)

1.8
0.1680(40)
0.1653(40)

2.66(6)

1.8
0.2060(63)
0.2026(63)

2.17(7)

2.1
0.2042(60)
0.1998(60)

2.20(7)
New mean a~l (GeV) 2.6Z1(6) 2.1£1(7)

k=0.1345 k=0.134
aMb

a P ( l1Pi — l 3Si) Uncorrected 
a E ( l lPi — l 3Si) Corrected 

Corrected a -1 (GeV)

1.8
0.2028(56)
0.1994(56)

2.21(6)

2.1
0.2052(45)
0.2008(45)

2.19(5)

1.8
0.2058(57)
0.2025(57)

2.17(6)

2.1
0.2056(57)
0.2012(57)

2.19(6)
New mean a -1 (GeV) 2.2C1(6) 2.18(6)

Table 5.2: Gluonic mass shift corrections and the subsequent corrected lattice spacing 
values.

^ 0 (0 ) f°r ^=0.1345 has much larger errors. Comparison of the data from tables B.171 
and B.207 with the other dynamical results indicates that the fit results for k=0.1345 
become noisy sooner than the others. It was thus decided to use an average of the values 
from the other two k s  and use those instead at «=0.1345. For example, for a lattice 
bare mass of 1.8, «=0.135 gave nAM5=0.0034, and 0.0033 for ac=0.134, s o  the (rounded) 
average of 0.0034 was used.

Given these results for the gluonic mass shift, the values of the inverse lattice 
spacing shown in table 4.1 were shifted. In order to make these corrections the lattice 
IP  —15 splittings were calculated as previously, yielding uncorrected splitting values then 
re-averaged to give a corrected version of table 4.1. The formula used for the correction 
is:

( a E V K )  -  aE( l 3S 0 ) corrected =  ( a S ( l ‘A ) -  a E ( ^ S l ) ) _ ted -  aA M , (5.3)

The resulting values are shown in table 5.2.

As with the uncorrected results shown in table 4.1 a mean value was taken for 
the corrected inverse lattice spacing, with the errors not averaged. The corrected values 
of a~l are slightly larger than the uncorrected versions (see equation 5.3), but the shift is 
only 2% and well within the statistical errors.

5.3 The Plaquette Coupling, ap

The plaquette, introduced in section 1.5.2 and illustrated in figure 1.6, is a small (hence 
perturbative) gauge invariant quantity in lattice QCD. As it has no explicit fermionic 
dependence it can be easily computed non-perturbatively. Hence, it is an ideal object
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Figure 5.1: ^ R eT rU p ^  versus Hybrid Monte Carlo step number for the dynamical con
figurations with /£=0.134.

to use in order to make a comparison of its non-perturbative value with a perturbative 
expansion. The comparison yields values of the plaquette coupling, ap.

5.3.1 M easuring the Average Plaquette

The UKQCD configuration have an archive of values of the average plaquette, or more 
precisely of ^ R e T rU p ^ , with nc the number of colour degrees of freedom and Up is the 
plaquette of section 1.5.2. This quantity is plotted against the (Hybrid) Monte Carlo step 
number in figure 5.1. Notice that the initial few values (below ~25000 Monte Carlo steps) 
differ from the latter plateau, and hence ought to be dropped in any averaging.

Using the data shown in figure 5.1 an average for the whole run was obtained. 
The average was a jackknife average as there are correlations along the HMC steps. In 
order to remove the non-thermalised initial data, some of this was skipped. Results for 
k= 0.134 are shown in table 5.3. From this table it is clear that the value which should 
be taken is 0.5424. By increasing the size of the bins in which the jackknifing was carried 
out, the size of the true errors was measured (see section 1.6.2). The value of the error is 
taken as the error at the point when increasing the bin length produced no corresponding 
increase in the error. A typical result is shown in figure 5.2, the autocorrelation length 
of between 100 and 1000 Monte Carlo steps is also fairly typical. It ought to be noted 
however, that in these calculations there is an ambiguity as to whether the effect of the
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Initial HMC Steps Skipped ( ( l/3ReTrU P ))
0 0.54242

50 0.54240
100 0.54240
500 0.54245
1000 0.54241

Table 5.3: Average values of (l/3ReTrUp) for various different numbers of initial Monte 
Carlo steps skipped.

Quenched «=0.135 k=0.1345 k=0.134
( ( l/3ReTrUP )) 

—In ( ( l/3ReTrUP ))
0.5937(0)
0.5214(0)

0.53366(2) (4)
0.62800(+j9o)

0.53978(2) (5)
o .e ie so f t1, )

0.54242(2) (5) 
0.61172(+190)

Table 5.4: Results for plaquette expectation values over the whole (Hybrid) Monte Carlo 
run. The quenched result is taken from [69].

error reaching a plateau is due to the bin length having reached the same size as the 
autocorrelation length or simply that the bin length is so long that the total number of 
bins becomes small. With large bins relative to the total number of results it is also 
possible that many of the later results are discarded as they aren’t sufficient to fill a bin. 
The larger the bin size the greater the number of results missed from the calculation in 
this way. Nevertheless, the results shown in table 5.4 do indicate that the jackknife error 
was fairly constant for the different matched dynamical runs, in spite of their differing 
total statistics. This hints that autocorrelations due to the algorithm are being measured, 
as opposed to meaningless effects from overly large bin sizes.

The final results obtained for ( ( l/3R eT rU p)) are shown in table 5.4. The 
quenched result was taken from [69]. The first error on the dynamical results arises from 
the statistical scatter of the results (as in table 5.3), and the second from the jackknife 
error, owing to autocorrelations. The perturbative expansion of these results is made with 
reference to —In ( ( l/3ReTrUp )), hence the second row of results in table 5.3. For those 
results the two different types of error on the previous row were combined in quadrature.

5.3.2 Plaquette Coupling Results

The perturbative expansion of the negative logarithm of the plaquette is given by the 
formula [71]:

47r
—In {(l/3ReTrUP )) =  —  a P(l -  baP), (5.4)

o
a P =  ap(3.40/a), 

b = binc -\-b2rif, 
bi =  0.39687,
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Figure 5.2: Jackknife errors versus the bin length, for the configurations with «=0.135.

Quenched re=0.135 k=0.1345

COT“H0II

3 .40/a (GeV) 
ap(3.40/a) 

ctp(8.2 GeV)

8.98(20)
0.1520(0)

0.1563(H)(0)

7.45(24)
0.17164(3)

0 .1 6 6 9 1 0 ( 3 )

7.48(20)
0.16801(3)

0 .1 6 3 6 7 (0 ( 3 )

7.41(20)
0.16646(3)

0.16178(+J“ )(3)

Table 5.5: Results for the scale at which ap  was measured and its value at a scale of 8.2 
GeV.

121n3.40 -  10
62 =   36tt ’

— i n P i  +  327TX2i

P4 =  0.006696001 — 0.0050467Csiy,
+  0.029843(7!^,

X2 = 0.00069292 -  0.0000202CW,
+  0.000596246*!^.

This definition of ap is chosen to coincide to O(otp)2 with the coupling ay,  
as defined in [52]. The arbitrary momentum scale at which ap  is obtained, 3.40/a, comes 
from [52] too. Note that this scale comes out in the range 7-9 GeV, confirming that the 
plaquette is quite ultraviolet. It is important to note that the lattice perturbation theory 
performed in the derivation of equation 5.4 assumed massless quarks.
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Figure 5.3: Extrapolation of a P\ s .2  GeV) to the physical dynamical pseudoscalar mass 
defined in equations 4.2 and 4.3. The error bar on the extrapolated point comes from the 
fit (assuming no uncertainty on simulation pseudoscalar masses). The error lines come 
from the errors on the non-physical pseudoscalar masses.

The couplings were then evolved to a common scale (8.2 GeV) using the three 
loop beta function for the plaquette coupling scheme. For this purpose, the scale error 
(from the lattice spacing in 3.40/a) was transferred into an error on the plaquette coupling 
itself. In table 5.5 the scale error in aP(S.2 GeV) is the (larger) unsymmetric error, whilst 
the second comes from the the error in a P(3.40/a). Clearly the scale error is the only one 
which need be taken into account.

5.3.3 Evolution of a p ( 8.2 GeV) to a Physical Pseudoscalar Mass

The results shown in table 5.5 were surprising as they showed an unexpected dependence 
of a p  on the sea quark mass. This calls into question the usefulness of equation 5.4 
for these results. It was derived for massless quarks, i.e assuming no sea quark mass 
dependence for a P\

Given these results for ap(8.2 GeV), it was clearly necessary to extrapolate the 
result to the physical dynamical quark mass as in section 4.4. The dynamical mass chosen 
was again that defined in equations 4.2 and 4.3. For simplicity a linear extrapolation was 
carried out. The extrapolation is illustrated in figure 5.3.
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The error bar on the extrapolated point in figure 5.3 comes from the fit and 
errors on the individual values of ap(8.2 GeV). The fit assumed no errors on the unphysical 
pseudoscalar masses. The errors on these unphysical masses were accounted for by adding 
the mass error to one outlying point and subtracting the error on the other outlying point, 
and vice versa. This gives the two dotted lines around the fit line of figure 5.3.

An attem pt was made to account for the discrepancy between the massless 
quark value of from equation 5.4, and the clear dependence on sea quark masses seen 
in table 5.5, and shown in figure 5.3. In order to do this the gap between the extrapolated 
value of ap  at a physical pseudoscalar mass, and its value at the lightest of the unphysical 
pseudoscalar masses was added as an error.

The value obtained for for a B\ s . 2  GeV) at the physical pseudoscalar mass 
was 0.1709(20) The symmetric error came from the fit (assuming no dynamical
mass errors), and the unsymmetric errors from the dynamical mass error. With this value 
the additional error discussed in the preceding paragraph (concerning the unexpected sea 
quark mass dependence of the a ^ )  values was evaluated. It was 0.1709-0.16691 (from 
table 5.5)=0.0040.

5.3.4 Extrapolation of a p ( 8.2 GeV) to rif  = 3.

After the extrapolation to the physical pseudoscalar mass for the dynamical results for 
a p (8.2 GeV), the results had to be extrapolated to rif = 3, as with the hyperfine splitting 
in section 4.5. For this purpose the symmetric, unsymmetric and unexpected mass depen
dence errors on â p (8.2 GeV) were combined, the first two in quadrature. The error from 
the unexpected mass dependence was not added in quadrature with the others as it wasn’t 
independent of them. The largest of the unsymmetric limits were taken as representative 
of both unsymmetric errors. Hence, it is possible that a slight overestimation of the errors 
occurs at this stage. The extrapolation to rif = 3 is shown in figure 5.4. It should be 
noted that it was 1 / a p  which was extrapolated. This is because perturbation theory 
suggests that 1 /otpf  ̂ is more linear against rif than afr^  itself. The result obtained for 
a ® (8.2 GeV) was 0.1793(79).

5.4 Investigation of ap results

Generally, values of a s are quoted in the MS scheme. The results shown previously are in 
the plaquette scheme, and may be translated into the MS scheme, using the formula [72]:

° & \ Q )  =  < £ 'V /8« ) { l +  l ^ !) +  0 { ( a ^ f ) }  , (5.5)

where the e5/6 factor is chosen to remove the rif dependence of the (â p ^ ) 2 coefficient [69]. 
The coefficient of the 0((a^pf ^)3) term is not known at the time of writing [73]. Previous
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Figure 5.4: Extrapolation of l/a:p(8.2 GeV) to rif  = 3.

lattice calculations [59] [69] did take a (quenched) value of «  0.95, however a mistake 
has since been found in the calculation which derived that result [73]. The error on 
a:^r(e-5/6 x 8.2GeV) was obtained by taking the error on ap^(8.2 GeV) combined in
quadrature with the value of ( a ^ ) 3, which assumes the coefficient of the leading truncated 
term to be 1. The result obtained was:

o£|(3.56GeV) =  0.1998(119). (5.6)

The third order perturbative beta function for o S  was then numerically 
integrated. Matching conditions [74] were applied at quark thresholds with a view to 
obtaining a result for a ^ ( M z ) .  Here M z  is the mass of the Z  boson, a conventional scale 
at which to express a  results. The value chosen for the MS c quark mass was 1.3 GeV, 
following [59]2. The value chosen for was 4.3 GeV following the determination of this 
value in section 5.5.1. The values obtained are:

a^(1 .3G eV ) =  0.301(30), (5.7)

aj^(1.3GeV) =  0.301(30), (5.8)

o£|(4.3GeV) =  0.195(11), (5.9)

2 In [59] the dependence of the results on the particular values chosen for m c and was investigated 
thoroughly. The conclusion was that the results for and are very insensitive to changes in m c 
and mt, around these values.
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a ||(4 .3G eV ) =  0.195(11), (5.10)

a£|(91.2GeV) =  0.110(4). (5.11)

The current world average for this value is [29] 0.118(2). Compared to previous
UKQCD lattice determinations [59] [69] the value is also lower. The discrepancy with the
older lattice results partially comes from the more truncated form of equation 5.5.

However, the most challenging aspect of this result is the unexpected sea quark 
mass dependence shown by a p \ 8 .2 GeV), shown in figure 5.3. Such dependence was a new 
feature and wasn’t accounted for in the derivation of eqaution 5.4. Further investigation 
is clearly required on this issue.

5.5 Determ ination of the b quark mass

The value of the MS bottom quark mass (ra&) can be determined by combining results from 
the T  spectroscopy part of this thesis with the measurements of the plaquette coupling, 
ap. There are two ways of doing this calculation, the so-called E q and Zm methods. Both 
are outlined in [75].

5.5.1 The Eo m ethod

The E o  method involves implementing the formulae3:

-M pole =  2 ( M r  — Esim +  2 E o )  , (5.12)

TTlbijft'b) = -̂ cont-̂ fpolej (5.13)
^cont =  1 -  0.4244ap(0.63Mpoie) +  0(a£(O.63M pole)). (5.14)

Here, Mpoie is the b quark pole mass, a sort of infra-red quark mass required 
here purely for calculational purposes. The value of M y  is 9.460 GeV, the mass of the 
physical T particle (see table A .l). The variable Esjm is simply the lattice mass of the l 35i 
channel converted to physical units using the lattice spacing values shown in table 4.1 (i.e. 
derived from the lattice measurement of the splitting l lP\ — l 35i). The variables Eq and 
^cont are the heavy quark self-energy constant and the continuum renormalisation between 
Mp0ie and m^fi)  respectively. Morningstar [76] has calculated some of these variables and 
his results are used to calculate E 0 and Zcont [77]. The value of E 0 is calculated from the 
equation:

aE0 =  aP(q-)A +  0 (4 (g * ) ) .  (5.15)

3The calculation is carried out to 0(a ) .  To this order 7715(771;,) =  mb(Mp0]e). For a higher order 
calculation the result would be rfTb( )̂ and would then require to be run to (i =  mj.
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a Mi aA aq*
2.00
1.70
1.60
1.50

0.7312(12)
0.6442(13)
0.6056(13)
0.5641(14)

0.4837(16)
0.7950(59)
0.8460(65)
0.9020(73)

Table 5.6: Values used in calculation of Eo, taken from [76]. It should be noted that these 
results are tadpole improved.

Quenched re=0.135 k=0.1345 k=0.134
aA 
aq* 

a P(q*) 
aE0 

a E •
T 2aEo 

—Esim +  2.Eo (GeV)
■Vpole

ap(0.63Mpoie)
^cont

0.5973
0.8572
0.2691

0.161(72)
0.3376(33)
-0.016(144)
-0.042(378)

4.71(19)
0.2313

0.902(26)

0.7051
0.5771
0.3909

0.276(153)
0.3933(41)
0.159(306)
0.342(658)

4.90(33)
0.2338

0.901(26)

0.7225
0.5148
0.4039

0.292(163)
0.3979(39)
0.186(362)
0.402(782)

4.93(39)
0.2266

0.904(25)

0.6993
0.5978
0.3522

0.246(124)
0.3920(43)
0.100(248)
0.214(531)
4.84(27)
0.2245

0.905(24)
mb(mb) (GeV) 4.25(21) 4.42(33) 4.46(37) 4.38(27)

Table 5.7: Results for A  and aq* of table 5.6 interpolated to the aMi values shown in 
table 4.4. The lattice measurement of the l 3Si channel mass was similarly interpolated.

Here A  is a function of aM&. Both A  and the plaquette coupling, a p 4 are taken 
at the scale q*. These results were taken from [76] and are shown in table 5.6. Notice that 
the values of the lattice bare quark masses in this table differ from the values obtained 
for the real bare b quark masses on my lattice (see table 4.4). Thus, the data of table 5.6 
was interpolated to the aMi values of table 4.4, and those interpolated values chosen for 
A  and q*. These values are shown in table 5.7. The values of a p (8.2 GeV) in table 5.5 
were run to this q* and this value used in the calculation.

Table 5.7 contains no error values excepting those shown for E 0. The error 
for E 0 was calculated by considering the 0 ( a 2) errors of equation 5.15. In the absence of 
other information the coefficient was taken as unity. This truncation error is the dominant 
error so the others were ignored in the calculation.

The values of Es\m used for the results in table 5.7, were selected from a tmjn 
value of 6 for the l 3Si channel fit. The same timeslice was used for all results to avoid 
introducing systematic errors when comparing the results. The errors in Zcont came only 
from the 0 ( a 2P) round up errors. The inverse lattice spacings used in converting to

4The value chosen for the plaquette coupling was otp) for the quenched data and for the dynamical 
data.
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Figure 5.5: Results from the E0 method of calculating m&(mf,).

physical units come from the familiar IP  — 15 derived spacings of table 4.1. With errors 
at this order in the Eo calculation (see equation 5.15), the coefficient was chosen as unity. 
However, in the case of Zcont there is a perturbative determination of the coefficient 
of the a 2 piece [77], the value being -0.4771. Thus, the error on Zcont was taken as 
0.4771a£(0.63Mpole).

Finally, there are two sources of errors on the value of nib. The first comes 
from the pole mass errors and the second from the Zcont errors. These two sources of 
errors were combined in quadrature to give the final values of ra^m*,) shown in table 5.7 
and in figure 5.5.

The value of nib from the quenched results is smaller than the dynamical 
results, but not significantly. No such difference had been anticipated, in fact it was 
expected that the dynamical results would be smaller, given the larger a  in the Zcont 
calculation. Part of the difference was caused by the quenched Mp0\e result being slightly 
smaller. It had been anticipated that Mpoie would be the same across both quenched 
and dynamical results, since My  is an order of magnitude larger than either E0 or ES[m. 
The major reason for expecting the quenched result to be larger was that Z cont (quenched) 
might have been larger as a qUenched would be smaller, and indeed was at 8.2 GeV. However, 
the scale at which Zcont is calculated, 0.63Mpoie is 3 GeV, where cyquenched &nd o:dynamjcai 
are very similar. Thus, the Zcont results are practically the same.
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a Mb aB aq*
2.50 
2.00 
1.70 
1.60
1.50

0.3180(23)
0.4183(22)
0.4899(24)
0.5131(24)
0.5376(22)

0.5988(74)
0.5783(57)

0.57(12)
0.723(23)
0.835(17)

2.10
1.80
1.55

0.3982(22)
0.4660(20)
0.5254(21)

0.5824(64)
0.5728(62)
0.779(21)

Table 5.8: Values used in calculation of Zm, taken from [76]. It should be noted that 
these results are tadpole improved.

5.5.2 The Z m m ethod

The Zm method involves the use of equation 5.13 again, except that there is a new 
definition of Mp0ie, called Mpoie for clarity:

Mpole =  ZmM°b, (5.16)

where M® is the bare heavy quark mass and Zm is the lattice NRQCD renormalisation
calculated to 0 ( a s) by Morningstar [76] as:

Zm = 1 + a p ( f ) B  + 0 ( a l ( ? ) ) .  (5.17)

It is important to note that the values taken for aM® were not those shown in 
table 4.4. Here, instead of interpolating to the real bare b quark mass, the actual bare b 
quark masses used in the simulations were chosen. Any difference in the real bare b quark 
mass is then corrected for by using an a~l defined by:

a -1 (GeV) =  M t =̂  ^ 460GeV) , (5.18)

where the values used for aM ^n were taken from tables 3.19 and 3.20. Thus, the interpo
lated values for aM& are replaced by non-interpolated values at two separate lattice bare 
quark masses. The values of B  and aq* from [76] shown in table 5.8 then have to be 
interpolated to give the points at which oM(, was used as an input in the calculation i.e. 
1.55, 1.8 and 2.1. The interpolated values are shown in the lower part of table 5.8.

The new lattice spacing results are shown in tables 5.9 and 5.10. Also shown 
are the calculations of Zm. From equation 5.17 the error in Zm was taken by assuming 
a coefficient of unity for the 0((ap(q*))2) unknown term. The new values of Zcont were 
calculated using equation 5.14 with the Mpoie values of tables 5.9 and 5.10. As with the 
Eo method the errors on the Zcont values were taken as 0.4771ap(0.63Mpoie). The final 
result for ra*, was then derived using equation 5.14. As with the E q method, the scale
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Quenched k=0.135
aMb 1.55 1.8 1.8 2.1

a”1 (GeV) 2.65(3) 2.34(3) 2.25(4) 1.99(3)
a p(.<F ) 0.2637 0.3534 0.3874 0.3825

Z rn 1.139(70) 1.165(125) 1.181(150) 1.152(146)
1.77(11) 2.10(23) 2.13(27) 2.42(31)

Mpole (GeV) 4.69(30) 4.91(54) 4.79(61) 4.82(62)
ap(0.63MpOie) 0.2321 0.2143 0.2388 0.2262

^cont 0.902(26) 0.909(22) 0.899(27) 0.904(24)
mj,(TO(,) (GeV) 4.23(30) 4.46(50) 4.31(56) 4.36(57)

Table 5.9: Results for the calculation of ra^m*,) for the quenched run and the dynamical 
run with /c=0.135.

«=0.1345 k=0.134
a M(, 1.8 2.1 1.8 2.1

a ” 1 (GeV) 2.35(6) 2.04(4) 2.23(4) 1.95(4)
a p(Q*) 0.3667 0.3623 0.3583 0.3542

Z m 1.171(135) 1.144(131) 1.167(128) 1.141(126)
uMpole 2.11(24) 2.40(28) 2.10(23) 2.40(27)

Mpoie (GeV) 4.96(58) 4.90(58) 4.68(52) 4.68(54)
«p(0.63Mpole) 0.2323 0.2204 0.2298 0.2175

Zcont 0.901(26) 0.907(23) 0.903(25) 0.908(23)
m b(mb) (GeV) 4.47(54) 4.44(54) 4.23(48) 4.25(50)

Table 5.10: Results for the calculation of ra^ra*,) for the dynamical results with k= 0.1345 
and 0.134.



5.5. DETERMINATION OF THE B  QUARK MASS  111

Zm m eth o d

6 —

><Do

2 — x quenched o dynamical

Q   I I I l_ _ l  L _ l  I I I I I I I I I I I I

0.0 0.5 1.0 1.5 2.0
r 2  A ,  t t \ 2M ps (MeV)‘

Figure 5.6: Results from the Zm method of calculating m^ra*,).

at which mb is determined is arbitrary to the level of accuracy (in a) available in the 
perturbative renormalisations used here.

From the final results for ra& of tables 5.9 and 5.10 it is clear that, whilst there 
is slightly less spread in the results, there is a larger error then with the Eo method due 
entirely to the Mpoie values. The result is illustrated in figure 5.6. Indeed, the dynamical 
result for «=0.134 is lower than the quenched result.

5.5.3 Conclusion for the ra&(ra&) Results

To conclude, there was no significant difference between the quenched and dynamical 
results for m^m^). Taking the most precise result (from the E 0 method), on the lightest 
dynamical quark mass configurations, the value obtained is:

rribijrib) — 4.42(33)GeV. (5.19)

In terms of other results the central value compares fairly well with another 
UKQCD determination from lattice B B  studies [78]:

rnb{mb) = 4.32(8)GeV. (5.20)

The B B  studies have better perturbation theory results using infinite mass
quarks, which gives them a smaller error for nib. The best way of improving m*, results
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from the finite mass T calculation would be through improved perturbative results for 
finite mass quarks.



Chapter 6 

Conclusions

The upsilon system has been considered for a while to be an ideal place to study the effect 
of introducing dynamical quarks into lattice QCD. Several mass splittings are sensitive to 
such short distance physics, even if at present the sea quarks are relatively heavy (msea 
varies from ~  m s to ~  2m s).

The results were generated using an G(v^,a2) NRQCD heavy quark action 
on gauge configurations with two flavours of dynamical quarks. These configurations 
were generated by the UKQCD collaboration using a Hybrid Monte Carlo algorithm. An 
important feature of the dynamical configurations used was that they were generated 
with matched lattice spacings by allowing /3 to vary to compensate for the sea quark 
mass variation. This allowed systematic effects due to different dynamical quark masses 
to be isolated from lattice spacing effects. In order to try and study unquenching effects 
the calculation was repeated on a quenched configuration at /?=6.0. Unfortunately, this 
lattice was slightly finer than the dynamical lattices as there were no matched, quenched 
configurations available when the calculation was carried out.

Another new feature in this calculation was the inclusion of discretisation 
corrections to the lattice F^  cloverleaf fields. Two bare b quark masses were used on each 
configuration to give one kinetic mass larger and one smaller than the physical upsilon 
mass. Where required, results were then interpolated to the physical upsilon mass.

Multicorrelation fitting routines were used to extract lattice state energies and 
amplitudes. Two types of fit were tried: matrix and vector. The matrix fits gave more 
accurate results and stabler plateaux. For the S  waves three different radial smearing 
functions were used, for the P  waves only two. For the former, there was thus a choice 
between fits with two smearing functions and those with three. The fits with three 
smearings gave more stable ground and first excited state results, although, the 2P  and 
35 results were still very noisy. Most of the fits were of good quality, unfortunately, for 
the dynamical run with ^=0.134 the fits had quite poor Q values. Some results from the 
dynamical run with ac=0.1345 also seemed suspect giving large errors on the wavefunction 
at the origin (via fit amplitudes) and for lattice P  channel splittings. An error in the code 
prevented matrix fits being carried out on the lattice 3 Pi and 3P2T channels, vector fits

113
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were fine though.

The lattice spacing values used for the upsilon spectroscopy were calculated 
by comparing the lattice l 1/ 3! — l 35i splittings with the physical — T splitting. The 
lattice l 1 P\ channel was used rather than the 13P  channel due to the difficulties with 
the matrix 3P i)2t  channel fits. Vector fits to the 11P 1 and 13P  channels could resolve no 
difference in their masses. The results confirmed that the three dynamical ensembles had 
the same spacing within error. These lattice spacing values were compared with those 
determined using the gluonic Sommer scale. There was better agreement between the 
dynamical results, indicating that physics at different scales is more consistent on the 
dynamical lattices.

The splitting between the zero-momentum lattice l 35i channel, and several 
small, non-zero momenta versions was used in evaluating the lattice kinetic masses. Two 
types of ansatz for the kinetic mass were applied, one non-relativistic and one with a small 
relativistic correction. The relativistic version gave a more stable kinetic mass value, but 
the errors were too large to make a definitive choice between them.

In making comparisons between results on dynamical configurations with dif
ferent sea quark masses, the same initial time slice was chosen for the best fit values, 
even where a better choice could be made on individual fits. This was done in order to 
avoid introducing additional sources of systematic error. For all quantities except the 
hyperfine splitting the results on the different bare quark masses overlapped. The signif
icant differences between the hyperfines were as expected from potential model studies. 
Unfortunately, the related effect for the wavefunction at the origin of the S  waves wasn’t 
observed due to the larger errors on the values for «;=(). 1345. The trend of the wavefunc
tion at the origin also seemed to be in an unexpected direction, growing as the sea quark 
mass fell, like the hyperfine, when it should have gone the opposite way to the hyper
fine. The ratio of radial to orbital splittings gave evidence of unquenching and sea quark 
mass dependence, but, once again, in the opposite direction from the expected change. 
The trend wasn’t very significant though. The hyperfine splitting results showed a clear 
unquenching signal.

The hyperfines were interpolated to the physical upsilon kinetic mass and then 
extrapolated to a physical light pseudoscalar meson mass (by chiral perturbation theory 
the same thing as a physical sea quark mass). The dynamical hyperfine was larger than 
that obtained in the quenched approximation. The quenched and dynamical hyperfine 
results were extrapolated to the physically appropriate rif  = 3 case. This procedure 
gave a prediction for the rft, mass of 9.517(4) GeV. Comparison of this result with that 
obtained by other collaborations indicated that it was larger than other measurements. 
However, the other groups didn’t use matched lattice spacings, so there is an ambiguity 
as to whether their trends in sea quark mass were spacing effects or sea quark effects. 
They also used incorrect 0 ( a 2) corrections to the NRQCD action.

Plaquette expectation values for the various configurations used were mea
sured. These gave clear unquenching signals with the running coupling larger for dynam
ical results, as expected. One unexpected feature was the dependence of the dynamical
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coupling results on the sea quark mass. This effect introduced addititonal errors, since 
the perturbation theory used to calculate the lattice couplings had assumed no such de
pendence. The same extrapolation to a physical sea quark mass as used for the hyperfine 
splittings was repeated for the couplings. The dynamical and quenched coupling results 
were used to give a value at ri f  = 3. This value was converted into the MS scheme. Using 
a three loop beta function and matching conditions at the c and b quark thresholds the 
result was run to rif  =  5 and a scale equal to the Z  boson mass. The eventual best result 
obtained for the strong coupling constant was a ^ ( M z )=0.110(4). This was slightly lower 
than the current world average of 0.118(2). The discrepancy and, in particular, the sea 
quark mass dependence of the coupling clearly require further study.

Two methods were used to calculate the MS bar b quark mass. Neither set of 
results showed significant unquenching effects. One method gave results for both lattice 
bare masses on one set of configurations. These results indicated insensitivity to the 
lattice bare quark mass, although it should be noted that the perturbation theory used 
was only accurate to first order in the lattice coupling. The best result obtained from the 
dynamical configurations was mb(rab)=4.42(33) GeV. More accurate perturbation theory 
is required before the upsilon result has the same degree of accuracy as those from lattice 
B  meson studies.
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A .l Experimental M eson Masses 

A. 1.1 Experimental M asses of Bottom ium  M esons

State Rest Mass (GeV)
l 1 S0, or r]b *

l 3Si, or T, T(1S) 9.460
23Si, or r ,  T(2S) 10.023
33S i , or T", T(3S) 10.355

43Si, or T(4S) 10.580(4)+
53Si , or T(5S) 10.865(8)+
63Si, or T(6S) 11.019(8)+

l 1 Pi, or hb *

13P0, or Xbo(IP) 9.860(1)
23P0, or X6o(2P) 10.232
13P1} or X6i(lP) 9.893
23Pi, or Xbi(2P) 10.255
13P2, or Xb2 (lP) 9.913
23P2, or X62(2P) 10.269

Table A.l: Experimental bottomium spectrum. * State not found. * Masses above the 
B B  threshold. Data taken from [29].

A. 1.2 Experim ental M asses of Light M esons

Meson Rest Mass (MeV)
7 T ° 134.98
TT̂ 1 139.57
K° 497.67(3)
K± 493.68(2)

Table A.2: Experimental Masses of the light mesons needed for this thesis. Data taken 
from [29].
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B .l  Lattice Results for the Quenched Calculations

B . l . l  Lattice State Fits for aM&=1.55

t ra in /tm ax aE\ O.E‘2 aE3 Q

2/13 0.3371(7) 0.5848(48) 0.7217(66) 1.1 x 10-7
3/13 0.3362(7) 0.5774(65) 0.7136(99) 1.3 x 10“2
4/13 0.3356(8) 0.5769(80) 0.7158(163) 0.13
5/13 0.3348(8) 0.5683(101) 0.7098(247) 0.50
6/13 0.3349(8) 0.5653(163) 0.6790(333) 0.51
7/13 0.3350(9) 0.5740(201) 0.6704(497) 0.50
8/13 0.3351(9) 0.5698(342) 0.6664(685) 0.27
9/13 0.3350(10) 0.5643(507) 0.6327(920) 0.29
10/13 0.3340(11) 0.5831(231) 1.004(293) 0.89
11/13 0.3341(24) 0.3850(3319) 0.6004(374) 0.82

Table B.l: Matrix fit to the 3.S\ channel.

train /  tmax (iEi aE2 aE3 Q

2/13 0.3192(6) 0.5705(45) 0.7027(72) 1.2 x 10"5
3/13 0.3185(7) 0.5644(60) 0.6955(106) 4.2 x 10"2
4/13 0.3181(7) 0.5654(72) 0.7044(178) 0.21
5/13 0.3176(7) 0.5582(88) 0.7031(268) 0.46
6/13 0.3176(7) 0.5547(142) 0.6632(354) 0.46
7/13 0.3177(8) 0.5627(170) 0.6515(516) 0.44
8/13 0.3177(8) 0.5593(288) 0.6457(713) 0.21
9/13 0.3176(9) 0.5480(461) 0.6070(909) 0.31
10/13 0.3166(9) 0.5596(203) 0.9204(2588) 0.88
11/13 0.3168(11) 0.4424(3152) 0.5786(382) 0.77

Table B.2: Matrix fit to the 1Sq channel.



tm in / tm a x aEi aE2 Q

2/13 0.5188(25) 0.7659(46) 1.6 x 10“4
3/13 0.5131(29) 0.7480(63) 7.5 x 10-2
4/13 0.5114(33) 0.7439(86) 0.11
5/13 0.5048(40) 0.7233(114) 0.38
6/13 0.5041(46) 0.7092(157) 0.64
7/13 0.5070(51) 0.7227(227) 0.56
8/13 0.5062(61) 0.6976(324) 0.67
9/13 0.5049(75) 0.6861(475) 0.60
10/13 0.5028(72) 0.7634(820) 0.81
11/13 0.5021(168) 0.6326(1171) 0.75

Table B.3: Matrix fit to the 1P\ channel.

tm in  I  tm a x aEi aE2 Q

2/13 0.5188(25) 0.7659(46) 1.6 x 10“4
3/13 0.5131(29) 0.7480(63) 7.5 x 10-2
4/13 0.5114(33) 0.7439(86) 0.11
5/13 0.5048(40) 0.7233(114) 0.38
6/13 0.5041(46) 0.7092(157) 0.64
7/13 0.5070(51) 0.7227(227) 0.56
8/13 0.5062(61) 0.6976(324) 0.67
9/13 0.5049(75) 0.6861(475) 0.60
10/13 0.5028(72) 0.7634(820) 0.81
11/13 0.5021(168) 0.6326(1171) 0.75

Table B.4: Matrix fit to the channel in the x  direction

t m in / tm a x aEi aE2 Q

2/13 0.5188(25) 0.7659(46) 1.6 x 10"4
3/13 0.5131(29) 0.7480(63) 7.5 x 10"2
4/13 0.5114(33) 0.7439(86) 0.11
5/13 0.5048(40) 0.7233(114) 0.38
6/13 0.5041(46) 0.7092(157) 0.64
7/13 0.5070(51) 0.7227(227) 0.56
8/13 0.5062(61) 0.6976(324) 0.67
9/13 0.5049(75) 0.6861(475) 0.60
10/13 0.5028(72) 0.7634(820) 0.81
11/13 0.5021(168) 0.6326(1171) 0.75

Table B.5: Matrix fit to the lP\ channel in the y direction
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tra in /tm ax aEi aE2 Q

2/13 0.5188(25) 0.7659(46) 1.6 x 10“4
3/13 0.5131(29) 0.7480(63) 7.5 x 10“2
4/13 0.5114(33) 0.7439(86) 0.11
5/13 0.5048(40) 0.7233(114) 0.38
6/13 0.5041(46) 0.7092(157) 0.64
7/13 0.5070(51) 0.7227(227) 0.56
8/13 0.5062(61) 0.6976(324) 0.67
9/13 0.5049(75) 0.6861(475) 0.60
10/13 0.5028(72) 0.7634(820) 0.81
11/13 0.5021(168) 0.6326(1171) 0.75

Table B.6: Matrix fit to the 1P i channel in the z  direction.
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tm in / tm a x aEi aEi Q

2/13 0.5048(27) 0.7462(53) 5.8 x 10~3
3/13 0.5002(30) 0.7312(70) 0.18
4/13 0.4982(34) 0.7240(93) 0.13
5/13 0.4911(41) 0.7041(123) 0.48
6/13 0.4897(48) 0.6987(172) 0.67
7/13 0.4937(53) 0.7157(246) 0.61
8/13 0.4932(65) 0.6840(354) 0.70
9/13 0.4974(74) 0.6955(532) 0.57
10/13 0.4936(74) 0.7526(908) 0.81
11/13 0.4982(97) 0.7517(1462) 0.53

Table B.7: Matrix fit to the 3Pq channel.

tm in/^m ax aE\ aE2 Q

2/13 0.5150(28) 0.7627(52) 2.3 x 10-3
3/13 0.5096(32) 0.7465(71) 0.12
4/13 0.5071(36) 0.7392(94) 9.2 x lO '2
5/13 0.4994(44) 0.7187(124) 0.42
6/13 0.4979(51) 0.7138(175) 0.69
7/13 0.5011(55) 0.7323(257) 0.62
8/13 0.5001(68) 0.6948(371) 0.71
9/13 0.5029(75) 0.7041(563) 0.56
10/13 0.4991(74) 0.7560(931) 0.85
11/13 0.5045(95) 0.7656(1530) 0.60

Table B.8: Matrix fit to the 3 Pi channel.

tm in / tm a x aE\ aE2 Q

2/13 0.5163(31) 0.7634(56) 5.5 x 10-2
3/13 0.5119(35) 0.7510(77) 0.31
4/13 0.5097(40) 0.7489(105) 0.23
5/13 0.5012(49) 0.7243(142) 0.68
6/13 0.4994(58) 0.7152(203) 0.82
7/13 0.5014(64) 0.7304(294) 0.73
8/13 0.5031(76) 0.7112(431) 0.62
9/13 0.5057(79) 0.7279(669) 0.56
10/13 0.4977(83) 0.7542(1102) 0.87
11/13 0.5021(109) 0.8466(1989) 0.61

Table B.9: Matrix fit to the 3Pi channel in the x  direction.
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tm in / tm a x aE\ aE2 Q

2/13 0.5156(31) 0.7630(56) 1.8 x 10~3
3/13 0.5095(35) 0.7428(76) 0.14
4/13 0.5054(40) 0.7318(98) 0.14
5/13 0.4981(49) 0.7139(131) 0.29
6/13 0.4950(57) 0.6994(178) 0.60
7/13 0.4995(64) 0.7274(267) 0.54
8/13 0.4978(75) 0.6901(378) 0.80
9/13 0.5036(87) 0.7179(594) 0.81
10/13 0.5041(92) 0.8065(1043) 0.76
11/13 0.5091(120) 0.8534(1846) 0.41

Table B.10: Matrix fit to the 3Pi channel in the y direction.

tm in / tm a x aE\ C1E 2 Q

2/13 0.5144(31) 0.7607(54) 1.2 x 10-2
3/13 0.5091(35) 0.7477(73) 0.11
4/13 0.5069(39) 0.7374(99) 0.12
5/13 0.4975(48) 0.7122(127) 0.55
6/13 0.4963(55) 0.7110(181) 0.75
7/13 0.4978(63) 0.7131(262) 0.71
8/13 0.4959(81) 0.6685(374) 0.82
9/13 0.4973(97) 0.6544(535) 0.69
10/13 0.4945(90) 0.6974(868) 0.93
11/13 0.5019(127) 0.6409(1309) 0.88

Table B .ll: Matrix fit to the 3Pi channel in the z direction.



train 1 trnax o,E\ aE2 Q

2/13 0.5230(30) 0.7770(53) 2.5 x 10“3
3/13 0.5170(34) 0.7600(73) 9.3 x 10~2
4/13 0.5145(38) 0.7551(99) 6.9 x 10“2
5/13 0.5059(46) 0.7330(131) 0.52
6/13 0.5029(55) 0.7152(183) 0.90
7/13 0.5049(61) 0.7246(265) 0.86
8/13 0.5045(77) 0.6979(386) 0.82
9/13 0.5082(84) 0.7055(585) 0.67
10/13 0.5060(80) 0.7981(1034) 0.90
11/13 0.5104(104) 0.8172(1745) 0.62

Table B.12: Matrix fit to the 3P2e  channel.

tmin I  trnax o,E\ a E 2 Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.5224(32)
0.5168(36)
0.5164(41)
0.5067(50)
0.5031(60)
0.5027(74)
0.5028(100)
0.5074(122)
0.5086(101)
0.5125(144)

0.7750(54)
0.7613(76)
0.7591(106)
0.7309(138)
0.7118(192)
0.7035(266)
0.6882(387)
0.6874(572)
0.7539(1010)
0.7584(1614)

1.1 x 10“2 
0.13 

7.0 x 10"2 
0.49 
0.92 
0.88 
0.84 
0.69 
0.90 
0.61

Table B.13: Matrix fit to the 3P2£ channel, xy  component

tra in /tm ax aEi aE2 Q

2/13 0.5243(32) 0.7777(57) 1.1 x 10"2
3/13 0.5181(37) 0.7582(78) 0.24
4/13 0.5137(43) 0.7482(104) 0.24
5/13 0.5062(52) 0.7326(141) 0.45
6/13 0.5020(63) 0.7112(188) 0.75
7/13 0.5050(67) 0.7203(278) 0.75
8/13 0.5026(83) 0.6968(405) 0.66
9/13 0.5064(92) 0.6989(621) 0.52
10/13 0.5056(92) 0.8094(1097) 0.58
11/13 0.5128(123) 0.8030(1850) 0.28

Table B.14: Matrix fit to the 3P2e channel, xz  component
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t m i n  1 t j n a x aE\ aE2 Q

2/13 0.5248(33) 0.7789(58) 8.3 x 10“4
3/13 0.5189(38) 0.7632(80) 1.1 x 10~2
4/13 0.5151(43) 0.7586(107) 1.1 x 10“2
5/13 0.5047(52) 0.7332(141) 0.24
6/13 0.5023(63) 0.7148(205) 0.43
7/13 0.5046(67) 0.7370(306) 0.37
8/13 0.5057(79) 0.7028(443) 0.57
9/13 0.5095(81) 0.7277(683) 0.45
10/13 0.5034(90) 0.8262(1243) 0.61
11/13 0.5030(115) 0.8836(2260) 0.31

Table B.15: Matrix fit to the 3P2e  channel, yz  component.



aEi aEi Q

2/13 0.5233(30) 0.7772(53) 1.9 x 10“3
3/13 0.5175(34) 0.7603(73) 0.10
4/13 0.5150(38) 0.7548(98) 7.6 x 10~2
5/13 0.5065(46) 0.7333(131) 0.58
6/13 0.5034(54) 0.7185(182) 0.94
7/13 0.5058(60) 0.7295(268) 0.91
8/13 0.5063(74) 0.7075(395) 0.87
9/13 0.5095(83) 0.7032(588) 0.80
10/13 0.5082(81) 0.7861(1024) 0.90
11/13 0.5121(105) 0.7788(1686) 0.63

Table B.16: Matrix fit to the 3P2t channel.

tmin/tmax aE\ aEi Q

2/13 0.5234(32) 0.7763(55) 5.3 x 10~3
3/13 0.5181(36) 0.7631(77) 8.8 x 10“2
4/13 0.5180(41) 0.7609(107) 4.8 x 10-2
5/13 0.5082(50) 0.7315(139) 0.45
6/13 0.5048(59) 0.7135(195) 0.86
7/13 0.5063(71) 0.7145(276) 0.80
8/13 0.5081(96) 0.7040(408) 0.79
9/13 0.5117(123) 0.6817(584) 0.71
10/13 0.5137(103) 0.7478(1028) 0.82
11/13 0.5176(161) 0.7324(1617) 0.53

Table B.17: Matrix fit to the 3P2r  channel, xy  component

tm in / tm a x aEi aEi Q

2/13 0.5245(32) 0.7774(56) 9.9 x 10“3
3/13 0.5188(37) 0.7580(78) 0.21
4/13 0.5141(43) 0.7471(104) 0.22
5/13 0.5066(52) 0.7305(140) 0.42
6/13 0.5031(62) 0.7089(188) 0.75
7/13 0.5065(66) 0.7230(280) 0.70
8/13 0.5048(82) 0.6972(404) 0.62
9/13 0.5086(87) 0.7010(619) 0.57
10/13 0.5078(92) 0.7857(1061) 0.57
11/13 0.5147(117) 0.7869(1756) 0.35

Table B.18: Matrix fit to the 3P 2t  channel, xz  component
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^mzra /  tmax aE\ (1E 2 Q

2/13 0.5243(33) 0.7779(57) 7.7 x 10“4
3/13 0.5181(37) 0.7617(78) 2.0 x 10-2
4/13 0.5144(42) 0.7561(105) 2.1 x 10“2
5/13 0.5043(51) 0.7337(140) 0.33
6/13 0.5013(62) 0.7141(203) 0.59
7/13 0.5027(67) 0.7351(303) 0.51
8/13 0.5042(77) 0.7110(447) 0.74
9/13 0.5079(83) 0.7232(677) 0.60
10/13 0.5034(92) 0.8220(1239) 0.67
11/13 0.5021(119) 0.8330(2183) 0.32

Table B.19: Matrix fit to the 3P2t  channel, yz  component.
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tmin/tmax aE\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.02319(5)
0.02231(6)
0.02202(7)
0.02181(9)

0.02166(11)
0.02161(14)
0.02155(17)
0.02121(31)
0.02134(25)

3.090(52)
1.077(17)

0.9619(109)
0.7451(196)
0.6372(324)
0.4975(503)
0.4779(802)

0.3567(1186)
0.6272(2371)

0.00 
7.7 x 10” 158 
2.6 x lO-21
1.2 x 10"3
5.3 x 10-2 

0.24 
0.13 
0.37 
0.88

Table B.20: Vector fit to the kinetic 3 Si mass, with (ap)2= l.

^min/^max aE\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.04646(11)
0.04453(13)
0.04399(15)
0.04353(19)
0.04321(23)
0.04308(30)
0.04295(37)
0.04218(71)
0.04242(60)

3.095(51)
1.077(17)

0.9764(106)
0.7558(187)
0.6421(307)
0.4975(465)
0.4802(739)

0.3581(1068)
0.5744(2001)

0.00 
1.9 x lO"159
1.1 x lO '23
4.2 x lO"4
3.3 x 10-2 

0.29 
0.15 
0.41 
0.83

Table B.21: Vector fit to the kinetic 3 Si mass, with (ap)2=2.

tmin !  tmax aEi aE2 Q
2/13
3/13
4/13

5/13*
6/13
7/13
8/13
9/13

10/13

0.06983(16)
0.06670(21)
0.06592(24)

0.06465(37)
0.06441(49)
0.06421(62)

0.06288(123)
0.06312(113)

3.105(50)
1.081(17)

0.9913(104)

0.6495(297)
0.5034(445)
0.4886(716)

0.3604(1010)
0.5278(1813)

0.00 
1.6 x lO '160 
1.2 x 10“25

2.8 x 10-2 
0.35 
0.20 
0.49 
0.81

Table B.22: Vector fit to the kinetic 3Si mass, with (ap)2=3. *Mass becoming negative.
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tm i n f  trnax aE\ aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.08870(29)
0.08765(34)
0.08666(43)
0.08586(53)
0.08570(69)
0.08555(84)

0.08275(233)
0.08387(169)

1.086(17)
1.005(10)

0.7846(177)
0.6503(285)
0.5432(455)
0.5390(764)

0.3377(1033)
0.5344(1845)

1.0 x 10-161 
3.6 x 10“26
6.8 x lO '5
5.0 x 10“2 

0.18
7.9 x 10"2 

0.49 
0.81

Table B.23: Vector fit to the kinetic 35i mass, with (ap)2=4. *Mass becoming negative.

tm in / tm a x aE\ aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1108(4)
0.1096(4)
0.1083(6)
0.1072(7)
0.1068(9)

0.1066(12)
0.1029(31)
0.1040(26)

1.090(16)
1.022(10)

0.7995(169)
0.6652(273)
0.5437(422)
0.5448(711)
0.3530(951)

0.5196(1671)

8.3 x 10“164 
1.8 x 10-29 
1.5 x 10“5
2.0 x lO”2 

0.20
9.0 x lO-2 

0.44 
0.82

Table B.24: Vector fit to the kinetic 3 5 1 mass, with (ap)2=5. *Mass becoming negative.

tm in / tm a x aEi aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1329(5)
0.1316(6)
0.1298(7)
0.1284(9)

0.1277(13)
0.1275(15)
0.1225(45)
0.1230(45)

1.103(16)
1.040(10)

0.8151(166)
0.6811(277)
0.5531(424)
0.5624(738)
0.3589(953)

0.4720(1657)

4.4 x lO '164
1.8 x lO-30
2.8 x 10~5 
2.1 x 10-2

0.28
0.14
0.55
0.81

Table B.25: Vector fit to the kinetic 3Si mass, with (ap)2=6. *Mass becoming negative.
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tm in / tm a x aE\ 0,E2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1770(7)
0.1754(8)

0.1726(10)
0.1706(14)
0.1693(20)
0.1694(24)

0.1596(100)
0.1628(71)

1.145(16)
1.082(10)

0.8593(170)
0.7212(296)
0.5833(466)
0.6154(870)
0.3575(1048)
0.5405(2048)

2.8 x lO-164
1.9 x 10“29
3.0 x 10"5 
1.2 x lO”2

0.17
8.1 x 10-2 

0.31 
0.76

Table B.26: Vector fit to the kinetic 35i mass, with (ap)2=8. *Mass becoming negative.

tm in / tm a x aEi aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1992(8)
0.1974(9)
0.1938(12)
0.1915(16)
0.1900(24)
0.1907(28)

0.1756(170)
0.1706(276)

1.170(16)
1.102(10)

0.8755(177)
0.7392(324)
0.6025(511)
0.6767(1047)
0.3442(1103)
0.3736(1903)

9.9 x lO"162
4.5 x 10-27
3.5 x lO"4 
2.9 x 10“2

0.25
0.15
0.44
0.55

Table B.27: Vector fit to the kinetic 3 Si mass, with (ap)2=9. *Mass becoming negative.

tmin / tm a x aEi aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13

10/13*

0.2666(12)
0.2620(14)
0.2560(20)
0.2530(29)
0.2517(45)
0.2545(41)

0.1322(1485)

1.306(18)
1.164(11)

0.9321(224)
0.7905(452)
0.6633(766)

0.9331(2126)
0.2856(316)

2.0 x 10~151 
3.2 x 10"17 
8.4 x 10“3 
5.9 x 10-2 

0.12 
0.10 
0.14

Table B.28: Vector fit to the kinetic 3Si mass, with (ap)2=12. *Mass becoming negative.
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B.1.2 W avefunction at the Origin for 1.55

^min f^max V>o(0)
2/13 0.1426(24)
3/13 0.1411(28)
4/13 0.1420(35)
5/13 0.1407(40)
6/13 0.1412(47)
7/13 0.1393(56)
8/13 0.1330(62)
9/13 0.133(11)

Table B.29: Wavefunction at the origin for the lattice l 1 So channel.
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tm in  / t m a x i> o(o)

2/13 0.1153(21)
3/13 0.1153(24)
4/13 0.1161(31)
5/13 0.1157(38)
6/13 0.1164(42)
7/13 0.1144(51)
8/13 0.1099(53)
9/13 0.1165(82)

Table B.30: Wavefunction at the origin for the lattice 13 Si channel.

B.1.3 Lattice Splittings for aM^—1.55

tra in  /  trnax a E (l3S x -  l'So) aE(23S 1 -  21S0) aE(33S 1 -  3 ^ 0)
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.01789(20)
0.01767(20)
0.01750(20)
0.01721(22)
0.01724(23)
0.01729(25)
0.01738(28)
0.01741(30)
0.01741(33)
0.0167(36)

0.0144(12)
0.0130(15)
0.0115(19)
0.0102(24)
0.0106(42)
0.0113(57)
0.0105(98)
0.016(19)

0.0235(69)
-0.08(31)

0.0190(19)
0.0182(26)
0.0114(43)
0.0068(70)
0.016(10)
0.019(14)
0.021(20)
0.026(26)
0.08(14)

0.021(21)

Table B.31: Results from the 3e3s matrix fit.

t m in / tm a x a E ( l1P1 -  13P0) aE(21P1 -  23P0)
2/13 0.01314(96) 0.0217(18)
3/13 0.0122(11) 0.0205(23)
4/13 0.0117(13) 0.0217(32)
5/13 0.0105(15) 0.0186(43)
6/13 0.0094(17) 0.0095(59)
7/13 0.0081(20) 0.0050(90)
8/13 0.0086(24) 0.009(12)
9/13 0.0076(29) 0.001(17)
10/13 0.0075(34) 0.005(33)
11/13 0.0090(48) -0.013(55)

Table B.32: Results from the matrix fit.
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tmin /tmax a E (l3P2E -  l 1 Pi) aE(23P2E -  2l Pi)
2/13 0.00506(65) 0.0091(11)
3/13 0.00464(74) 0.0083(15)
4/13 0.00466(87) 0.0094(21)
5/13 0.0043(10) 0.0102(29)
6/13 0.0039(12) 0.0071(42)
7/13 0.0031(14) 0.0039(66)
8/13 0.0027(18) 0.0049(84)
9/13 0.0032(21) 0.009(12)
10/13 0.0050(24) 0.041(26)
11/13 0.0032(34) 0.078(61)

Table B.33: Results from the matrix fit.

t m i n / t m a x a E {l3P -  l 1 Pi) aE{23P  -  2 'P i)
2/13 0.00045(43) 0.00096(75)
3/13 0.00046(49) 0.0007(11)
4/13 0.00054(56) 0.0005(14)
5/13 0.00064(67) 0.0023(20)
6/13 0.00090(76) 0.0047(28)
7/13 0.00088(90) 0.0072(45)
8/13 0.0005(11) 0.0055(60)
9/13 0.0007(13) 0.0063(90)
10/13 0.0020(14) 0.018(17)
11/13 0.0004(20) 0.041(36)

Table B.34: Results from the matrix fit.

t m i n / t m a x
2 i S \  - l 3 S i  
l ' P i - l 3 S i

2/13 1.364(27)
3/13 1.365(34)
4/13 1.374(40)
5/13 1.374(50)
6/13 1.363(86)
7/13 1.39(11)
8/13 1.37(19)
9/13 1.34(25)
10/13 1.48(13)
11/13 0.26(47)

Table B.35: Results from the matrix fit.



tmin  /  trnax l 'P l- lS P o
2/13 0.386(52)
3/13 0.383(65)
4/13 0.400(79)
5/13 0.41(10)
6/13 0.42(14)
7/13 0.38(18)
8/13 0.31(21)
9/13 0.43(29)
10/13 0.67(38)
11/13 0.35(38)

Table B.36: Results from the matrix fit. 

B.1.4 Lattice State Fits for 1.8

tmin 1 trnax aEi aE2 aE$ Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.3594(7)
0.3586(7)
0.3581(8)
0.3573(8)
0.3574(8)
0.3575(9)
0.3577(9)
0.3576(10)
0.3566(11)
0.3569(13)

0.6003(45)
0.5943(61)
0.5926(75)
0.5838(95)

0.5837(148)
0.5919(183)
0.5942(265)
0.5872(367)
0.5978(231)

0.4565(3402)

0.7207(68)
0.7144(100)
0.7148(160)
0.7086(235)
0.6826(316)
0.6765(468)
0.6853(712)

0.6598(1018)
0.9424(2532)
0.6147(405)

5.0 x 10“6 
3.8 x 10-2 

0.20 
0.55 
0.65 
0.62 
0.44 
0.45 
0.95 
0.82

Table B.37: Matrix fit to the 3Si channel.

tm in / tm a x aEi aE-i aEz Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.3434(6)
0.3428(7)
0.3424(7)
0.3419(7)
0.3420(7)
0.3421(8)
0.3421(8)
0.3421(9)
0.3412(9)

0.3413(11)

0.5881(42)
0.5833(57)
0.5828(68)
0.5750(85)

0.5745(132)
0.5827(154)
0.5848(216)
0.5743(309)
0.5810(205)

0.4938(3228)

0.7064(73)
0.7006(107)
0.7059(173)
0.7018(252)
0.6698(335)
0.6637(495)
0.6735(757)

0.6440(1055)
0.9321(2460)
0.5968(456)

1.4 x 10~4 
9.0 x 10“2 

0.28 
0.51 
0.60 
0.57 
0.37 
0.44 
0.94 
0.76

Table B.38: Matrix fit to the 1S q channel.
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tm in / tm a  x aE\ aE2 Q

2/13 0.5378(25) 0.7662(48) 2.8 x 10“3
3/13 0.5330(29) 0.7512(64) 0.15
4/13 0.5316(33) 0.7480(86) 0.15
5/13 0.5253(39) 0.7396(113) 0.42
6/13 0.5252(45) 0.7190(156) 0.73
7/13 0.5281(50) 0.7321(222) 0.66
8/13 0.5275(59) 0.7128(316) 0.72
9/13 0.5265(73) 0.6994(462) 0.68
10/13 0.5238(73) 0.7621(772) 0.87
11/13 0.5240(137) 0.6744(1161) 0.71

Table B.39: Matrix fit to the 1Pi channel.

tmin  /  trnax aE\ aEi Q

2/13 0.5378(25) 0.7662(48) 2.8 x 10"3
3/13 0.5330(29) 0.7512(64) 0.15
4/13 0.5316(33) 0.7480(86) 0.15
5/13 0.5253(39) 0.7296(113) 0.42
6/13 0.5252(45) 0.7190(156) 0.73
7/13 0.5281(50) 0.7321(222) 0.66
8/13 0.5275(59) 0.7128(316) 0.72
9/13 0.5265(73) 0.6994(462) 0.68
10/13 0.5238(73) 0.7621(772) 0.87
11/13 0.5240(137) 0.6744(1161) 0.71

Table B.40: Matrix fit to the xPi channel in the x  direction.

tm in / tm a x aE\ aE2 Q

2/13 0.5378(25) 0.7662(48) 2.8 x 10"3
3/13 0.5330(29) 0.7512(64) 0.15
4/13 0.5316(33) 0.7480(86) 0.15
5/13 0.5253(39) 0.7296(113) 0.42
6/13 0.5252(45) 0.7190(156) 0.73
7/13 0.5281(50) 0.7321(222) 0.66
8/13 0.5275(59) 0.7128(316) 0.72
9/13 0.5265(73) 0.6994(462) 0.68
10/13 0.5238(73) 0.7621(772) 0.87
11/13 0.5240(137) 0.6744(1161) 0.71

Table B.41: Matrix fit to the lP\ channel in the y direction.



137

tm in  /  tmax aEi C1E 2 0
2/13 0.5378(25) 0.7662(48) 2.8 x 10“3
3/13 0.5330(29) 0.7512(64) 0.15
4/13 0.5316(33) 0.7480(86) 0.15
5/13 0.5253(39) 0.7296(113) 0.42
6/13 0.5252(45) 0.7190(156) 0.73
7/13 0.5281(50) 0.7321(222) 0.66
8/13 0.5275(59) 0.7128(316) 0.72
9/13 0.5265(73) 0.6994(462) 0.68
10/13 0.5238(73) 0.7621(772) 0.87
11/13 0.5240(137) 0.6744(1161) 0.71

Table B.42: Matrix fit to the lP\ channel in the z direction.

tmin/tmax aE\ aE2 Q
2/13 0.5259(27) 0.7503(54) 2.5 x 10-2
3/13 0.5218(30) 0.7377(72) 0.21
4/13 0.5201(34) 0.7315(94) 0.14
5/13 0.5132(41) 0.7131(123) 0.48
6/13 0.5124(48) 0.7098(169) 0.69
7/13 0.5163(53) 0.7259(240) 0.64
8/13 0.5161(64) 0.7003(344) 0.67
9/13 0.5203(73) 0.7080(513) 0.55
10/13 0.5158(73) 0.7647(870) 0.86
11/13 0.5196(94) 0.8141(1449) 0.60

Table B.43: Matrix fit to the 3Pq channel.

tm in / tm a x aE\ aE2 Q

2/13 0.5345(28) 0.7635(54) 1.5 x 10"2
3/13 0.5299(32) 0.7504(72) 0.17
4/13 0.5277(36) 0.7439(95) 0.11
5/13 0.5203(44) 0.7252(124) 0.46
6/13 0.5192(50) 0.7221(173) 0.76
7/13 0.5223(55) 0.7382(248) 0.69
8/13 0.5218(67) 0.7085(357) 0.74
9/13 0.5249(74) 0.7165(538) 0.60
10/13 0.5207(74) 0.7671(887) 0.91
11/13 0.5249(93) 0.8215(1496) 0.66

Table B.44: Matrix fit to the 3 Pi channel.
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tmin / tm a x aE\ G.E2 Q

2/13 0.5355(31) 0.7643(58) 0.13
3/13 0.5317(35) 0.7547(78) 0.34
4/13 0.5296(40) 0.7521(104) 0.25
5/13 0.5211(49) 0.7291(138) 0.72
6/13 0.5199(57) 0.7216(196) 0.87
7/13 0.5220(63) 0.7360(278) 0.79
8/13 0.5240(75) 0.7195(402) 0.70
9/13 0.5269(78) 0.7346(622) 0.63
10/13 0.5190(84) 0.7599(1018) 0.91
11/13 0.5208(106) 0.8800(1851) 0.74

Table B.45: Matrix fit to the 3 Pi channel in the x  direction.

tm in / tm a x aE\ aE2 Q

2/13 0.5351(31) 0.7641(58) 8.3 x 10~3
3/13 0.5298(35) 0.7469(77) 0.16
4/13 0.5261(40) 0.7368(99) 0.14
5/13 0.5191(49) 0.7199(130) 0.28
6/13 0.5166(56) 0.7091(174) 0.57
7/13 0.5210(63) 0.7335(256) 0.48
8/13 0.5194(73) 0.7055(363) 0.69
9/13 0.5253(85) 0.7307(565) 0.72
10/13 0.5248(90) 0.8119(981) 0.69
11/13 0.5300(117) 0.9069(1805) 0.35

Table B.46: Matrix fit to the 3Pi channel in the y direction.

tm in  I  trnax aE\ o,E2 Q

2/13 0.5342(30) 0.7618(55) 4.1 x 10"2
3/13 0.5297(34) 0.7511(74) 0.15
4/13 0.5280(39) 0.7432(100) 0.13
5/13 0.5190(48) 0.7203(127) 0.56
6/13 0.5184(54) 0.7211(180) 0.82
7/13 0.5197(62) 0.7219(255) 0.78
8/13 0.5186(79) 0.6866(366) 0.83
9/13 0.5209(93) 0.6732(520) 0.73
10/13 0.5176(87) 0.7204(848) 0.98
11/13 0.5240(116) 0.7107(1315) 0.89

Table B.47: Matrix fit to the 3Pi channel in the z direction.
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tm in / tm a x aEi aE2 Q

2/13 0.5413(30) 0.7752(54) 1.6 x 10"2
3/13 0.5364(33) 0.7616(73) 0.15
4/13 0.5342(38) 0.7568(98) 9.4 x 10~2
5/13 0.5261(46) 0.7377(128) 0.53
6/13 0.5239(53) 0.7245(178) 0.92
7/13 0.5259(60) 0.7333(255) 0.88
8/13 0.5261(73) 0.7111(368) 0.84
9/13 0.5299(81) 0.7193(558) 0.71
10/13 0.5273(79) 0.7946(958) 0.92
11/13 0.5308(99) 0.8577(1657) 0.66

Table B.48: Matrix fit to the 3P2e  channel.

tm in / tm a x aE\ aE2 Q

2/13 0.5413(32) 0.7739(55) 2.6 x 10“2
3/13 0.5366(36) 0.7630(76) 0.12
4/13 0.5363(40) 0.7614(104) 6.0 x 10“2
5/13 0.5273(49) 0.7372(135) 0.38
6/13 0.5248(58) 0.7243(189) 0.88
7/13 0.5244(71) 0.7149(259) 0.83
8/13 0.5254(95) 0.7005(374) 0.79
9/13 0.5304(116) 0.6990(546) 0.65
10/13 0.5309(98) 0.7612(951) 0.87
11/13 0.5346(131) 0.8039(1552) 0.55

Table B.49: Matrix fit to the 3P2£ channel, xy  component.

tm in / tm a x aEi aE2 Q

2/13 0.5424(32) 0.7757(58) 3.9 x 10-2
3/13 0.5371(36) 0.7595(78) 0.30
4/13 0.5331(43) 0.7501(103) 0.27
5/13 0.5261(52) 0.7357(136) 0.45
6/13 0.5226(61) 0.7180(180) 0.78
7/13 0.5255(66) 0.7279(264) 0.74
8/13 0.5236(80) 0.7096(381) 0.65
9/13 0.5277(89) 0.7136(581) 0.53
10/13 0.5267(90) 0.8057(1002) 0.57
11/13 0.5343(118) 0.8653(1797) 0.26

Table B.50: Matrix fit to the 3P2£ channel, xz  component.
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tm in /trnax aEi a E 2 Q

2/13 0.5428(32) 0.7772(59) 6.0 x 10 '3
3/13 0.5379(37) 0.7649(80) 2.9 x 10“2
4/13 0.5344(42) 0.7598(106) 2.3 x 10“2
5/13 0.5244(51) 0.7367(138) 0.34
6/13 0.5230(60) 0.7236(198) 0.59
7/13 0.5252(65) 0.7436(290) 0.50
8/13 0.5264(76) 0.7164(417) 0.68
9/13 0.5301(79) 0.7426(645) 0.57
10/13 0.5234(89) 0.8120(1127) 0.74
11/13 0.5217(110) 0.9030(2052) 0.50

Table B.51: Matrix fit to the 3P2£ channel, yz  component.

tm in / tm a x aEi aEi <3
2/13 0.5415(30) 0.7754(54) 1.2 x 10-2
3/13 0.5368(33) 0.7620(73) 0.14
4/13 0.5345(38) 0.7568(98) 8.7 x 10“2
5/13 0.5265(45) 0.7380(129) 0.55
6/13 0.5242(53) 0.7244(179) 0.94
7/13 0.5264(58) 0.7371(257) 0.90
8/13 0.5273(71) 0.7189(377) 0.86
9/13 0.5306(79) 0.7186(563) 0.78
10/13 0.5284(79) 0.7847(954) 0.92
11/13 0.5316(99) 0.8262(1615) 0.65

Table B.52: Matrix fit to the 3P2t channel.

tm in / tm a x aEi aE2 <3

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.5420(32)
0.5376(36)
0.5376(40)
0.5283(49)
0.5259(57)
0.5270(69)
0.5293(92)

0.5337(114)
0.5340(98)

0.5384(137)

0.7751(56)
0.7646(77)
0.7632(106)
0.7374(137)
0.7253(192)
0.7230(267)
0.7120(390)
0.6950(559)
0.7536(965)

0.7803(1559)

1.5 x  10-2 
8.1 x  10-2 
4.0 x  10“2 

0.35 
0.80 
0.74 
0.72 
0.64 
0.80 
0.49

Table B.53: Matrix fit to the 3P2̂  channel, xy  component.
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Q E\ 0,E'2 Q

2/13 0.5424(32) 0.7754(58) 2.7 x 10~2
3/13 0.5375(36) 0.7595(78) 0.23
4/13 0.5333(42) 0.7494(103) 0.21
5/13 0.5263(52) 0.7344(136) 0.37
6/13 0.5232(59) 0.7167(181) 0.73
7/13 0.5264(65) 0.7299(266) 0.66
8/13 0.5252(78) 0.7109(383) 0.57
9/13 0.5293(84) 0.7165(584) 0.52
10/13 0.5279(89) 0.7895(984) 0.54
11/13 0.5345(114) 0.8492(1719) 0.27

Table B.54: Matrix fit to the 3P2t  channel, xz  component.

tm in / tm a x (iE\ aE2 Q

2/13 0.5423(32) 0.7763(58) 7.0 x 10~3
3/13 0.5372(36) 0.7635(78) 5.0 x 10“2
4/13 0.5337(42) 0.7579(105) 4.1 x lO’ 2
5/13 0.5240(50) 0.7371(136) 0.45
6/13 0.5220(60) 0.7232(196) 0.72
7/13 0.5235(65) 0.7422(286) 0.64
8/13 0.5249(74) 0.7229(420) 0.82
9/13 0.5286(81) 0.7386(640) 0.69
10/13 0.5231(91) 0.8064(1122) 0.78
11/13 0.5207(113) 0.8579(1988) 0.49

Table B.55: Matrix fit to the 3P2t  channel, yz  component.

tm in / tm a x aEi aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.01977(6)
0.01955(6)
0.01932(8)
0.01914(9)

0.01907(12)
0.01901(15)
0.01870(23)
0.01871(24)

1.112(7)
1.051(12)

0.7848(124)
0.6221(185)
0.4865(278)
0.4488(425)
0.3582(613)

0.4861(1062)

2.4 x lO"115
2.0 x 10“94
2.0 x lO"17 
8.7 x 10“5

0.11 
6.6 x 10~2 

0.40 
0.90

Table B.56: Vector fit to the kinetic 3Si mass, with (ap)2= l. *Mass becoming negative.
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tm in / tm a x aEi 0.E2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.04479(9)
0.03955(11)
0.03908(13)
0.03862(16)
0.03822(20)
0.03805(26)
0.03793(32)
0.03725(50)
0.03722(55)

4.369(3469)
1.129(7)

1.057(13)
0.7969(120)
0.6330(179)
0.4951(266)
0.4589(407)
0.3674(579)
0.4735(977)

0.00
2.2 x 10~121
3.2 x 1 0 -"
9.2 x 10“19
2.9 x 10~5 

0.13
7.9 x 10~2 

0.42 
0.88

Table B.57: Vector fit to the kinetic 35i mass, with (ap)2=2. *Bad fit.
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tm in / tm a x aE\ aE2 Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.06807(15)
0.05935(18)
0.05864(21)
0.05792(26)
0.05726(32)
0.05695(42)
0.05675(53)
0.05563(85)
0.05541(99)

4.387(3120)
1.146(7)

1.064(13)
0.8100(117)
0.6451(176)
0.5061(259)
0.4712(401)
0.3756(562)
0.4573(930)

0.00
3.7 x lO"126
4.8 x lO"103 
2.2 x 10“ 19
1.7 x 10“5 

0.16
9.8 x 10“2 

0.48 
0.87

Table B.58: Vector fit to the kinetic 35i mass, with (ap)2=3.

tmin  / trnax aE\ aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.07904(24)
0.07807(29)
0.07715(36)
0.07616(45)
0.07582(58)
0.07564(73)
0.07356(136)
0.07369(145)

1.163(7)
1.077(13)

0.8277(116)
0.6535(170)
0.5338(261)
0.5033(416)
0.3717(581)
0.4724(968)

2.5 x 10"126
6.1 x lO"104
2.1 x 10"21
7.4 x lO '5
7.6 x 10-2
3.5 x 10~2 

0.48 
0.86

Table B.59: Vector fit to the kinetic 35i mass, with (ap)2=4. *Mass becoming negative.

tm in / tm a x aEi aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.09900(32)
0.09773(38)
0.09656(47)
0.09521(59)
0.09460(78)
0.09433(99)
0.09164(183)
0.09140(211)

1.180(7)
1.081(13)

0.8419(112)
0.6695(165)
0.5424(249)
0.5148(397)
0.3868(547)
0.4681(902)

3.3 x lO"135 
1.1 x lO” 109
6.8 x lO"23
1.0 x 10-5
8.8 x lO-2
4.1 x 10“2 

0.44 
0.86

Table B.60: Vector fit to the kinetic 3 Si mass, with (ap)2=5. *Mass becoming negative.
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tm in / tm a x aEi aEi Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1429(4)
0.1190(4)
0.1175(5)
0.1160(6)
0.1142(8)

0.1133(10)
0.1130(13)
0.1095(25)
0.1083(33)

4.574(2725)
1.199(7)

1.093(13)
0.8578(110)
0.6864(167)
0.5554(250)
0.5307(410)
0.3964(552)
0.4445(898)

0.00
3.0 x 10~138 
6.3 x lO"112
4.0 x lO-22
8.1 x 10"6 

0.13
5.9 x 10-2 

0.49 
0.86

Table B.61: Vector fit to the kinetic 35i mass, with (ap)2=6. *Bad fit.

tm in / tm a x aEi aEi Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1979(6)
0.1591(6)
0.1570(7)
0.1548(9)
0.1522(11)
0.1507(15)
0.1503(20)
0.1444(44)
0.1428(56)

4.664(2428)
1.240(7)

1.132(13)
0.8987(110)
0.7254(175)
0.5903(270)
0.5758(466)
0.4119(613)

0.4782(1046)

0.00 
1.9 x 10"135 
9.3 x lO"112
5.8 x 10“21
9.8 x lO-6 

0.10
3.9 x 10-2 

0.32 
0.81

Table B.62: Vector fit to the kinetic 35i mass, with (ap)2=8. *Bad fit.

tm in / tm a x aEi aEi Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.2276(7)
0.1793(7)
0.1771(8)
0.1742(10)
0.1712(13)
0.1693(19)
0.1692(24)
0.1615(60)

0.1541(118)

4.661(2163)
1.259(7)
1.155(13)

0.9163(112)
0.7435(188)
0.6078(290)
0.6055(528)
0.4142(670)

0.3999(1054)

0.00
1.3 x lO” 129
1.7 x lO-108
7.3 x 10“ 18
4.8 x 10“5 

0.16
6.4 x 10~2 

0.37 
0.67

Table B.63: Vector fit to the kinetic 3Si mass, with (ap)2=9. *Bad fit.



train /  tmax aEi (1E 2 Q
2/13*
3/13

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.3254(11)
0.2392(10)

0.2311(16)
0.2271(22)
0.2248(33)
0.2257(39)

0.2095(163)
0.09627(12714)

4.646(1639)
1.320(8)

0.9753(130)
0.7971(245)
0.6638(402)
0.7139(850)
0.4071(943)
0.2782(414)

0.00 
2.8 x 10“96

7.6 x 10~u  
2.3 x 10"3 

0.13 
6.0 x 10-2 

0.11 
0.45

Table B.64: Vector fit to the kinetic 3Si mass, with (ap)2=12. *Bad fit, **mass becoming 
negative.

B.1.5 W avefunction at the Origin for a M ^ = 1.8

t m in / tm a x V’o(O)
2/13 0.1567(30)
3/13 0.1546(34)
4/13 0.1555(41)
5/13 0.1539(48)
6/13 0.1537(56)
7/13 0.1512(67)
8/13 0.1434(71)
9/13 0.145(11)

Table B.65: Wavefunction at the origin for the lattice l 1 So channel.

tm in / tm a x M 0 )

2/13 0.1315(27)
3/13 0.1309(31)
4/13 0.1319(39)
5/13 0.1314(46)
6/13 0.1312(52)
7/13 0.1289(63)
8/13 0.1225(60)
9/13 0.132(11)

Table B.66: Wavefunction at the origin for the lattice l 3Si channel.
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B.1.6 Lattice Splittings for a M i = 1.8

tm in  I tr n a x a E (l3Si -  PSo) aE(23S l -  21S0) aE(Z3Si -  3 % )
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.01599(17)
0.01580(17)
0.01566(18)
0.01540(19)
0.01543(20)
0.01546(22)
0.01553(24)
0.01552(27)
0.01550(29)
0.01559(44)

0.0123(10)
0.0110(13)
0.0098(16)
0.0089(20)
0.0092(33)
0.0093(48)
0.0094(74)
0.012(12)

0.0178(52)
-0.06(20)

0.0144(18)
0.0138(23)
0.0089(37)
0.0068(59)
0.0128(81)
0.013(11)
0.012(18)
0.015(29)
0.037(71)
0.017(17)

Table B.67: Results from the 3e3s matrix fit.

tm in / tm a x a E (P P l -  13P0) aE{21P1 -  23P0)
2/13 0.01106(83) 0.0173(15)
3/13 0.01051(95) 0.0170(20)
4/13 0.0100(11) 0.0177(27)
5/13 0.0091(13) 0.0158(36)
6/13 0.0080(15) 0.0080(49)
7/13 0.0067(17) 0.0028(73)
8/13 0.0073(21) 0.0056(95)
9/13 0.0064(26) 0.002(14)
10/13 0.0067(31) -0.001(25)
11/13 0.0077(42) -0.025(46)

Table B.68: Results from the matrix fit.

tm in / tm a x a E (l3P2E -  l 'P O aE{23P2E -  21Pi)
2/13 0.00439(54) 0.00754(94)
3/13 0.00409(62) 0.0070(13)
4/13 0.00408(73) 0.0076(18)
5/13 0.00378(87) 0.0088(24)
6/13 0.0035(10) 0.0067(34)
7/13 0.0029(12) 0.0045(53)
8/13 0.0028(15) 0.0052(67)
9/13 0.0033(18) 0.0093(95)
10/13 0.0048(20) 0.031(19)
11/13 0.0036(29) 0.069(48)

Table B.69: Results from the matrix fit.
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tmin/tmax aE (3P  -  lU U aE(23P  -  21P1)
2/13 0.00043(35) 0.00095(62)
3/13 0.00040(40) 0.00064(88)
4/13 0.00047(46) 0.0005(12)
5/13 0.00054(56) 0.0020(16)
6/13 0.00076(63) 0.0043(23)
7/13 0.00078(75) 0.0066(36)
8/13 0.00058(93) 0.0057(48)
9/13 0.0008(11) 0.0068(71)
10/13 0.0018(12) 0.015(13)
11/13 0.0006(17) 0.041(30)

Table B.70: Results from the matrix fit.

tm in  I  tm a x
2aS , - l 3S,
l 1P i - l 3Si

2/13 1.351(25)
3/13 1.353(32)
4/13 1.353(37)
5/13 1.349(46)
6/13 1.350(77)
7/13 1.376(99)
8/13 1.39(14)
9/13 1.36(18)
10/13 1.45(12)
11/13 0.6(21)

Table B.71: Results from the matrix fit. S  states taken from 3e3s matrix fits.

tmi n / t ma x
13P, k - 1 ‘ Pi
l 'F i - m

2/13 0.398(51)
3/13 0.391(62)
4/13 0.410(76)
5/13 0.42(10)
6/13 0.45(13)
7/13 0.44(19)
8/13 0.38(21)
9/13 0.52(30)
10/13 0.73(38)
11/13 0.47(38)

Table B.72: Results from the matrix fit.
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B.2 Lattice Results for the Dynamical Calculations 
with k;=0.135

B.2.1 Lattice State Fits for a M b = 1 .8

tmin [ tm a x aEi aE'i aE3 Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

11/13*

0.4007(9)
0.3996(10)
0.3995(10)
0.3991(11)
0.3990(11)
0.3987(12)
0.3994(13)
0.3990(14)

0.3941(299)

0.6809(77)
0.6817(88)

0.6691(153)
0.6733(151)
0.6848(223)
0.6824(252)
0.7334(322)
0.6914(638)

0.4908(3505)

0.8047(195)
0.8465(354)
0.7828(504)

0.8507(1073)
0.7548(1204)
0.8473(2016)

1.633(755)
2.760(4406)
1.455(1878)

2.2 x 10~2 
0.14 
0.18 
0.17 
0.16 
0.30 
0.50 
0.48 
0.53

Table B.73: Matrix fit to the 3Si channel. *Fitted lattice state energy becoming negative.

tm in / tm a x aEi aEi aE3 Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13

10/13*
11/13

0.3769(10)
0.3758(10)
0.3760(10)
0.3758(11)
0.3762(11)
0.3749(14)
0.3757(12)
0.3755(13)

0.3635(1236)

0.6673(63)
0.6661(79)

0.6528(140)
0.6529(162)
0.6728(219)
0.6527(282)
0.7104(284)
0.6833(581)

0.4239(4343)

0.8159(207)
0.8332(358)
0.7574(511)
0.7683(851)

0.7525(1059)
0.9051(1739)

1.421(571)
1.819(1849)

3.305(21226)

4.4 x 10~3
2.4 x 10“2 
4.2 x 10“2 
2.7 x 10~2

0.15
0.26
0.52
0.38

0.30

Table B.74: Matrix fit to the x5q channel. *Fitted lattice state energy becoi ng negative.
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^ m i n  11 m a x aE\ a Ei Q
2/13 0.6098(45) 0.8427(100) 0.68
3/13 0.6075(52) 0.8373(140) 0.74
4/13 0.6049(62) 0.8249(193) 0.75
5/13 0.6068(70) 0.8442(312) 0.62
6/13 0.6087(74) 0.8757(504) 0.71
7/13 0.6075(103) 0.8264(747) 0.59
8/13 0.6191(94) 0.9833(1391) 0.74
9/13 0.6186(117) 1.001(258) 0.47
10/13 0.6189(246) 0.8616(3996) 0.28
11/13 0.6136(215) 2.007(1565) 0.95

Table B.75: Matrix fit to the lP\ channel.
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tm in  l^ m ax aEi aE2 Q
2/13 0.6098(45) 0.8427(100) 0.68
3/13 0.6075(52) 0.8373(140) 0.74
4/13 0.6050(62) 0.8249(193) 0.75
5/13 0.6068(70) 0.8441(312) 0.62
6/13 0.6087(74) 0.8757(504) 0.71
7/13 0.6075(103) 0.8262(747) 0.59
8/13 0.6191(94) 0.9833(1390) 0.74
9/13 0.6186(117) 1.000(257) 0.47
10/13 0.6189(245) 0.8627(4002) 0.28
11/13 0.6136(215) 2.007(1565) 0.95

B.76: Matrix fit to the 1F channel in the x  dir

tm in / tm a x aE\ aE2 Q
2/13 0.6100(45) 0.8427(100) 0.68
3/13 0.6075(52) 0.8373(140) 0.74
4/13 0.6049(62) 0.8249(193) 0.75
5/13 0.6068(70) 0.8442(312) 0.62
6/13 0.6087(74) 0.8757(504) 0.71
7/13 0.6075(103) 0.8264(747) 0.59
8/13 0.6191(94) 0.9833(1391) 0.74
9/13 0.6186(117) 1.001(258) 0.47
10/13 0.6189(246) 0.8616(3996) 0.28
11/13 0.6136(215) 2.007(1565) 0.95

Table B.77: Matrix fit to the lP\ channel in the y direction.

f min / fmcix aEi clE2 Q
2/13 0.6098(45) 0.8427(100) 0.68
3/13 0.6075(52) 0.8373(140) 0.74
4/13 0.6049(62) 0.8249(193) 0.75
5/13 0.6068(70) 0.8442(312) 0.62
6/13 0.6087(74) 0.8757(504) 0.71
7/13 0.6075(103) 0.8264(747) 0.59
8/13 0.6191(94) 0.9833(1391) 0.74
9/13 0.6186(117) 1.001(258) 0.47
10/13 0.6189(246) 0.8616(3996) 0.28
11/13 0.6136(215) 2.007(1565) 0.95

Table B.78: Matrix fit to the lP\ channel in the z direction.
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tmin/tmax aE\ aE2 Q
2/13 0.5956(41) 0.8257(100) 0.87
3/13 0.5937(47) 0.8218(141) 0.86
4/13 0.5915(57) 0.8124(197) 0.90
5/13 0.5922(64) 0.8256(306) 0.81
6/13 0.5934(69) 0.8701(491) 0.79
7/13 0.5924(92) 0.8279(731) 0.66
8/13 0.5982(88) 0.9423(1352) 0.58
9/13 0.5934(110) 0.9475(2335) 0.36
10/13 0.5875(295) 0.7454(3296) 0.16
11/13 0.5866(204) 1.705(1062) 0.76

Table B.79: Matrix fit to the 3Pq channel.

tmin/tmax (xE\ o,E2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.6013(57)
0.6050(75)
0.6025(90)
0.6016(117)
0.6105(144)
0.6321(236)
0.6205(182)
0.6202(139)

0.6067(2213)

0.9171(118)
0.8574(160)
0.8587(221)
0.8425(335)
0.8644(582)

0.8596(1031)
1.065(190)

2.150(1149)
0.7160(14517)

3.7 x 10~3 
0.63 
0.50 
0.38 
0.35 
0.45 
0.53 
0.88 
0.70

Table B.80: Vector fit to the 3Pi channel.
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tm in / tm a x aEi o,E2 Q

2/13 0.6033(68) 0.9062(132) 1.1 x 10"3
3/13 0.6114(94) 0.8409(188) 0.24
4/13 0.6017(108) 0.8509(258) 0.24
5/13 0.5995(134) 0.8591(395) 0.14
6/13 0.6198(218) 0.8347(702) 0.14
7/13 0.6536(361) 0.8708(1360) 0.46
8/13 0.6275(230) 1.070(233) 0.46
9/13 0.6221(184) 1.997(1156) 0.52
10/13 0.6500(1856) 1.105(3168) 0.26

Table B.81: Vector fit to the 3Pi channel, x component

tmin I tmax aE\ aE-i Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5988(62)
0.6020(86)

0.6006(110)
0.6051(161)
0.6104(178)
0.6665(693)
0.6389(306)
0.6360(252)

0.6691(3713)

0.9285(132)
0.8604(188)
0.8526(269)
0.8083(407)
0.8605(669)

0.7903(1570)
0.9936(2092)

1.477(638)
0.8252(16154)

7.6 x 10"3 
0.51 
0.38 
0.38 
0.38 
0.83 
0.90 
0.93 
0.81

Table B.82: Vector fit to the 3 Pi channel, y component.
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tmin/tmax aEi o,E2 Q
2/13 0.6014(69) 0.9156(138) 0.38
3/13 0.5998(88) 0.8800(189) 0.73
4/13 0.5997(104) 0.8855(275) 0.60
5/13 0.5949(124) 0.8852(426) 0.48
6/13 0.6008(152) 0.9086(760) 0.35
7/13 0.5944(182) 0.9550(1343) 0.22
8/13 0.6021(183) 1.209(310) 0.20
9/13 0.6109(161) 3.082(4120) 0.32
10/13 0.5201(4908) 1.004(2387) 0.34

Table B.83: Vector fit to the 3 Pi channel, z component.

tmin/tmax aE\ aE2 Q
2/13 0.6163(47) 0.8513(100) 0.85
3/13 0.6138(54) 0.8472(143) 0.83
4/13 0.6105(65) 0.8325(197) 0.83
5/13 0.6125(74) 0.8502(319) 0.71
6/13 0.6122(79) 0.8801(529) 0.75
7/13 0.6117(108) 0.8303(784) 0.63
8/13 0.6245(108) 1.009(145) 0.80
9/13 0.6267(135) 1.039(281) 0.55

10/13 0.6225(265) 0.9233(4564) 0.38
11/13 0.6305(266) 2.525(2726) 0.89

Table B.84: Matrix fit to the 3P2£ channel.

^min/^max aE\ aE2 Q
2/13 0.6194(54) 0.8578(114) 0.53
3/13 0.6169(62) 0.8550(164) 0.53
4/13 0.6152(74) 0.8446(235) 0.52
5/13 0.6167(91) 0.8424(358) 0.36
6/13 0.6152(97) 0.8496(549) 0.38
7/13 0.6153(148) 0.7811(775) 0.38
8/13 0.6249(126) 1.004(157) 0.60
9/13 0.6211(176) 1.004(269) 0.41
10/13 0.6183(353) 0.9176(4723) 0.18
11/13 0.6148(332) 1.783(1381) 0.58

Table B.85: Matrix fit to the 3P2# channel, xy  component.
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aEi aE2 Q
2/13 0.6161(50) 0.8518(104) 0.40
3/13 0.6118(59) 0.8386(147) 0.55
4/13 0.6074(71) 0.8215(203) 0.60
5/13 0.6108(81) 0.8495(328) 0.49
6/13 0.6143(87) 0.8827(550) 0.56
7/13 0.6146(117) 0.8310(818) 0.41
8/13 0.6276(125) 0.9418(1461) 0.36
9/13 0.6370(149) 0.9793(2616) 0.21
10/13 0.6380(301) 0.9317(4135) 0.12
11/13 0.6591(304) 3.065(4262) 0.43

Table B.86: Matrix fit to the 3P2£ channel, x z  component.

tmin  /  t  max aEi aE2 Q
2/13 0.6158(52) 0.8515(105) 0.46
3/13 0.6141(60) 0.8481(153) 0.47
4/13 0.6106(73) 0.8263(203) 0.49
5/13 0.6125(84) 0.8423(329) 0.34
6/13 0.6114(91) 0.8838(546) 0.40
7/13 0.6082(132) 0.8267(800) 0.25
8/13 0.6258(128) 1.022(156) 0.69
9/13 0.6358(163) 1.050(308) 0.51
10/13 0.6235(481) 0.9391(5097) 0.61
11/13 0.6276(285) 2.126(2202) 0.72

Table B.87: Matrix fit to the 3P2e channel, yz  component.

^min l^max aEi aE2 Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.6094(60)
0.6156(78)
0.6160(98)

0.6133(117)
0.6243(145)
0.6685(557)
0.6503(290)
0.6532(406)
0.6377(570)

0.9427(121)
0.8871(170)
0.8735(256)
0.8839(392)
0.9145(763)

0.8002(1503)
1.000(233)
1.052(500)
1.029(1080)

2.2 x 10~2 
0.72 
0.62 
0.48 
0.55 
0.97 
1.00 
0.96 
0.79

Table B.88: Vector fit to the 3P2t channel.
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^min f t  max a Ei aE2 Q
2/13 0.6109(70) 0.9329(134) 0.20
3/13 0.6149(97) 0.8820(194) 0.81
4/13 0.6199(123) 0.8788(298) 0.73
5/13 0.6106(135) 0.9275(468) 0.82
6/13 0.6202(180) 0.9217(845) 0.74
7/13 0.6244(310) 0.8354(1374) 0.64
8/13 0.6166(254) 1.035(256) 0.61
9/13 0.6240(242) 1.489(785) 0.48
10/13 0.5988(426) 2.737(6255) 0.50

Table B.89: Vector fit to the 3 P 2t  channel, xy  component.

tmin/tmax aEi a,E2 Q
2/13 0.6050(65) 0.9577(137) 0.18
3/13 0.6063(85) 0.9047(199) 0.73
4/13 0.6064(117) 0.8693(288) 0.79
5/13 0.6058(146) 0.8734(434) 0.65
6/13 0.6164(166) 0.9379(823) 0.75
7/13 0.6393(304) 0.8930(1491) 0.77
8/13 0.6547(405) 1.017(297) 0.85
9/13

10/13*
0.7197(5018) 0.8234(10359) 0.76

Table B.90: Vector fit to the 3P2t  channel, xz  component.

tmin/tmax aE\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.6112(72)
0.6186(95)
0.6101(115)
0.6074(146)
0.6224(193)

0.7002(1267)
0.6599(395)
0.6593(730)
0.6270(574)

0.9354(136)
0.8734(201)
0.8782(286)
0.8714(444)
0.9078(814)
0.7978(2416)
0.9922(2643)
0.9183(5011)
1.157(1014)

3.0 x 10“3 
0.14 
0.11

5.9 x 10“2
6.0 x 10-2 

0.94 
0.98 
0.88 
0.70

Table B.91: Vector fit to the 3P2̂  channel, yz  component.
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tm in / tm a x aEi aE2 Q

2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.01873(12)
0.01877(13)
0.01868(16)
0.01837(21)
0.01829(24)
0.01819(27)
0.01808(34)

0.7917(191)
0.8137(250)
0.6322(228)
0.4927(340)
0.4703(534)
0.5568(937)

0.5614(1722)

4.6 x 10~17 
9.3 x 10“ 18
1.6 x 10~3 

0.55 
0.39 
0.64 
0.33

Table B.92: Vector fit to the kinetic 3 Si mass, with (ap)2= l .  *Mass becoming negative.

tm in / im a x aEi aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.04035(18)
0.03744(25)
0.03754(28)
0.03734(33)
0.03667(44)
0.03652(51)
0.03631(57)
0.03604(75)

3.319(977)
0.8128(189)
0.8312(250)
0.6498(226)
0.5117(338)
0.4946(530)
0.5796(948)

0.5661(1713)

0.00
2.2 x 10-17
4.2 x 10“18 

2 .2 x -3
0.61
0.43
0.68
0.38

Table B.93: Vector fit to the kinetic 3Si mass, with (ap)2=2. *Mass becoming negative.

tm in / tm a x aEi aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.06090(28)
0.05615(39)
0.05634(44)
0.05601(53)
0.05490(71)
0.05470(83)
0.05437(93)

0.05389(127)

3.342(977)
0.8354(188)
0.8507(251)
0.6669(226)
0.5281(338)
0.5149(528)
0.5954(963)

0.5612(1700)

0.00
1.2 x 10-17
2.3 x 10~18 
3.2 x lO”3

0.70
0.51
0.74
0.45

Table B.94: Vector fit to the kinetic 3Si mass, with (ap)2=3. *Mass becoming negative.
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tmin/tmax aE\ aE2 Q
2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.08129(39)
0.07449(54)
0.07480(62)
0.07445(74)

0.07282(101)
0.07240(123)
0.07157(151)
0.07082(204)

3.369(1000)
0.8387(185)
0.8526(247)
0.6810(221)
0.5373(338)
0.5012(508)
0.5277(830)
0.5257(1445)

0.00 
1.4 x 10"17 
2.8 x 10~18 
2.0 x 10“3 

0.65 
0.54 
0.59 
0.30

Table B.95: Vector fit to the kinetic 35i mass, with (ap)2=4. *Mass becoming negative.
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tm in / tm a x aEi aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13

10/13*

0.1026(5)
0.09324(71)
0.09375(81)
0.09321(98)

0.09103(135)
0.09063(160)
0.08969(195)

3.394(997)
0.8645(182)
0.8741(247)
0.7017(220)
0.5613(330)
0.5381(511)
0.5740(883)

0.00 
6.8 x 10-18 
1.6 x 10"18 
4.4 x 10~3 

0.78 
0.62 
0.70

Table B.96: Vector fit to the kinetic 35i mass, with (ap)2=5. *Mass becoming negative.

tm in / tm a x aEi aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13

10/13*

0.1244(6)
0.1121(9)

0.1129(10)
0.1120(13)
0.1092(17)
0.1088(21)

0.1077(253)

3.420(1003)
0.8920(184)
0.9012(249)
0.7208(224)
0.5785(339)
0.5637(523)
0.6008(949)

0.00 
4.9 x 10“18 
1.4 x 10“ 18 
8.8 x lO-3 

0.88 
0.73 
0.81

Table B.97: Vector fit to the kinetic 3 Si mass, with (ap)2=6. *Mass becoming negative.

^min /  tjnax aEi aE2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1691(9)
0.1494(13)
0.1509(15)
0.1495(19)
0.1453(26)
0.1452(31)
0.1438(39)
0.1413(61)

3.478(1037)
0.9363(186)
0.9558(244)
0.7657(232)
0.6253(368)
0.6214(586)

0.6632(1153)
0.6101(2046)

0.00 
5.3 x lO"17
3.6 x lO"17
3.7 x lO '2 

0.93 
0.80 
0.84 
0.60

Table B.98: Vector fit to the kinetic 3Si mass, with (ap)2=8. *Mass becoming negative.
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tm in  /  ̂ max aE\ (1E 2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13

10/13*

0.1926(11)
0.1685(15)
0.1706(18)
0.1686(22)
0.1634(33)
0.1635(38)
0.1616(50)

3.508(1057)
0.9668(193)
0.9933(247)
0.7832(245)
0.6343(390)
0.6360(620)

0.6632(1255)

0.00 
6.7 x 10-17 
8.1 x 10~17 
5.9 x 10“2 

0.97 
0.90 
0.91

Table B.99: Vector fit to the kinetic 3Si mass, with (ap)2=9. *Mass becoming negative.

*min 1 tmax aE\ (1E 2 Q

2/13*
3/13
4/13
5/13
6/13
7/13
8/13
9/13

10/13*

0.2655(16)
0.2252(24)
0.2298(28)
0.2260(37)
0.2177(58)
0.2195(66)
0.2155(99)

3.601(1176)
1.051(23)
1.112(25)

0.8464(307)
0.6793(514)
0.7014(885)
0.6822(1881)

0.00 
1.8 x lO” 14 
7.5 x lO"13 

0.26 
0.98 
0.94 
0.89

Table B.100: Vector fit to the kinetic 3Si mass, with (ap)2=12. *Mass becoming negative.

B.2.2 W avefunction at the Origin for a M b = 1.8

^mini tvwx l*o(0)
2/13 0.1869(48)
3/13 0.1840(53)
4/13 0.1829(61)
5/13 0.1758(60)
6/13 0.1772(59)
7/13 0.204(62)
8/13 0.210(73)

Table B.101: Wavefunction at the origin for the lattice l 1 So channel.
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V'o(O)
2/13 0.1513(42)
3/13 0.1487(58)
4/13 0.1477(68)
5/13 0.1428(67)
6/13 0.1445(51)
7/13 0.1491(53)
8/13 0.1509(43)

Table B.102: Wavefunction at the origin for the lattice l 3Si channel.

B.2.3 Lattice Splittings for aM ^—1.8

tm in / tm a x a £ ( l 3Si -  l'So) aE(23S 1 -  21S0) aE(33S ! -  33S0)
2/13 0.02396(35) 0.0179(19) 0.0133(55)
3/13 0.02373(37) 0.0164(26) 0.010(10)
4/13 0.02360(39) 0.0155(41) 0.023(14)
5/13 0.02362(40) 0.0154(46) 0.024(22)
6/13 0.02355(50) 0.010(36) 0.012(34)
7/13 0.02355(52) 0.0132(78) 0.054(65)
8/13 0.02367(44) 0.0223(92) 0.23(31)
9/13 0.02371(49) 0.004(26) -0.2(12)

Table B.103: Results from the 3e3s matrix fit.

^min /  tmax 0 ^ ( 1 ^ !  -  13P0) 0 ^ ( 2 ^ !  -  23P0)
2/13 0.0141(16) 0.0171(29)
3/13 0.0139(19) 0.0154(46)
4/13 0.0134(23) 0.0125(62)
5/13 0.0145(27) 0.019(11)
6/13 0.0153(31) 0.006(17)
7/13 0.0151(42) -0.002(24)
8/13 0.0209(49) 0.041(48)
9/13 0.0252(63) 0.053(87)
10/13 0.032(16) 0.12(11)
11/13 0.027(13) 0.5(12)

Table B.104: Results from the matrix fit.
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tmin/tmax a E (l3P2E -  l 1̂ ) aE(23P2E -  21Pi)
2/13 0.0068(12) 0.0104(21)
3/13 0.0063(14) 0.0077(31)
4/13 0.0058(16) 0.0052(43)
5/13 0.0062(21) 0.0015(78)
6/13 0.0049(23) -0.005(13)
7/13 0.0050(33) -0.015(16)
8/13 0.0071(39) -0.001(34)
9/13 0.0135(50) 0.008(61)
10/13 0.006(16) 0.029(97)
11/13 0.0240(96) 1.1(46)

Table B.105: Results from the matrix fit.

t m i n / t m a x a E (\3P  —  1‘Pj) aE(23P  -  21Pl)
2/13 0.0016(13) 0.0019(24)
3/13 0.0019(17) -0.0026(35)
4/13 0.0013(22) -0.0055(53)
5/13 -0.0006(27) -0.0019(87)
6/13 0.0005(36) -0.005(16)
7/13 0.011(11) -0.044(35)
8/13 0.0054(66) -0.032(57)
9/13 0.0057(91) 0.11(54)

Table B.106: Results from the vector fit.

t m i n / t m a x
2 3 S i - l 3 S i
I ' P i - I S S i

2/13 1.348(28)
3/13 1.350(35)
4/13 1.334(43)
5/13 1.316(58)
6/13 1.439(95)
7/13 1.42(12)
8/13 1.57(20)
9/13 1.60(31)
10/13 1.42(41)
11/13 2.2(11)

Table B.107: Results from the matrix fit.
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train /  traax l3P2K-l*Pi
o p i - m

2/13 0.481(92)
3/13 0.46(11)
4/13 0.44(13)
5/13 0.43(15)
6/13 0.31(15)
7/13 0.33(21)
8/13 0.34(18)
9/13 0.54(21)
10/13 0.18(53)
11/13 0.88(46)

Table B.108: Results from the matrix fit.

B.2.4 Lattice State Fits for aM ^—2.1

train/traax aE\ aE2 aE3 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13*

0.3843(10)
0.3832(11)
0.3834(11)
0.3831(12)
0.3835(12)
0.3824(15)
0.3831(13)
0.3831(14)

0.3818(124)

0.6598(64)
0.6554(83)
0.6435(148)
0.6462(157)
0.6671(206)
0.6481(302)
0.7020(301)
0.6816(552)

0.6699(1506)

0.7973(193)
0.7968(313)
0.7403(417)
0.7800(765)

0.7606(1016)
0.9302(1737)

1.389(604)
2.254(2525)

0.8063(23606)

1.5 x 10-2 
6.8 x 10"2
7.5 x 10“2
5.5 x 10"2 

0.17 
0.43 
0.64 
0.54 
0.54

Table B.109: Matrix fit to the 35i channel. *Fitted lattice state energy becoming negative.

train /  trnax aE\ aE2 aE3 Q
2/13 0.3621(9) 0.6448(60) 0.7882(206) 1.5 x lO”2
3/13 0.3612(10) 0.6418(77) 0.7875(332) 4.7 x 10“2
4/13 0.3615(10) 0.6301(138) 0.7177(442) 5.7 x 10-2
5/13 0.3612(10) 0.6321(145) 0.7559(764) 3.5 x 10"2
6/13 0.3616(11) 0.6518(165) 0.7439(1022) 0.18
7/13 0.3610(12) 0.6458(209) 0.8620(1734) 0.39
8/13 0.3611(12) 0.6835(274) 1.257(484) 0.62
9/13 0.3611(12) 0.6699(464) 2.478(3059) 0.50

Table B.110: Matrix fit to the 1Sq channel.
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tmin l^max aE\ a Ei Q
2/13 0.5929(44) 0.8106(102) 0.66
3/13 0.5901(50) 0.8046(141) 0.69
4/13 0.5877(59) 0.7920(192) 0.64
5/13 0.5891(66) 0.8170(309) 0.54
6/13 0.5902(69) 0.8585(503) 0.69
7/13 0.5892(93) 0.8145(748) 0.53
8/13 0.5987(91) 0.9491(1351) 0.67
9/13 0.5979(114) 0.9151(2277) 0.39
10/13 0.6043(205) 0.8561(3592) 0.29

Table B .l l l :  Matrix fit to the l P\ channel.

^minl^max aEi aEi Q
2/13 0.5810(40) 0.7973(104) 0.90
3/13 0.5787(46) 0.7924(143) 0.87
4/13 0.5766(55) 0.7835(196) 0.87
5/13 0.5771(61) 0.8053(309) 0.80
6/13 0.5776(66) 0.8575(502) 0.83
7/13 0.5767(85) 0.8265(755) 0.67
8/13 0.5811(87) 0.9244(1363) 0.59
9/13 0.5765(112) 0.8808(2185) 0.35
10/13 0.5771(224) 0.7583(3250) 0.15
11/13 0.5794(202) 1.941(1349) 0.84

Table B.112: Matrix fit to the 3Pq channel.

l^max aEi aE% Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5845(57)
0.5875(75)
0.5833(90)
0.5822(113)
0.5914(142)
0.6154(255)
0.6032(185)
0.6066(158)

0.5938(1664)

0.8749(115)
0.8302(156)
0.8341(214)
0.8242(321)
0.8434(544)
0.8175(974)
1.025(173)
1.706(701)

0.7059(10339)

4.0 x 10~2 
0.63 
0.54 
0.40 
0.36 
0.46 
0.60 
0.83 
0.63

Table B.113: Vector fit to the 3 Pi channel.
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train/tmax a Ei aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5795(60)
0.5876(78)
0.5860(91)

0.5867(115)
0.5984(151)
0.6256(320)
0.6070(190)
0.6066(152)

0.5967(1403)

0.8828(108)
0.8283(151)
0.8307(221)
0.8205(339)
0.8282(572)

0.8026(1100)
1.020(186)
1.751(781)

0.7184(11645)

3.2 x 10"3 
0.61 
0.47 
0.33 
0.33 
0.49 
0.62 
0.86 
0.64

Table B. 114: Vector fit to the 3Pi channel, x  component.

train jtraax aE\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5845(57)
0.5875(75)
0.5833(90)

0.5822(113)
0.5914(142)
0.6154(255)
0.6032(185)
0.6066(158)

0.5938(1664)

0.8749(115)
0.8302(156)
0.8341(214)
0.8242(321)
0.8434(544)
0.8175(974)
1.025(173)
1.706(701)

0.7059(10339)

4.0 x 10“2 
0.63 
0.54 
0.40 
0.36 
0.46 
0.60 
0.83 
0.63

Table B.115: Vector fit to the 3Pi channel, y component.

train/traax dE\ aE2 Q
2/13 0.5831(67) 0.8781(135) 0.51
3/13 0.5815(86) 0.8493(183) 0.75
4/13 0.5808(103) 0.8540(263) 0.61
5/13 0.5750(124) 0.8547(392) 0.51
6/13 0.5828(149) 0.8866(702) 0.43
7/13 0.5770(192) 0.8974(1201) 0.27
8/13 0.5854(192) 1.119(262) 0.26
9/13 0.5950(164) 2.641(2574) 0.38

Table B.116: Vector fit to the 3Pi channel, z component.
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tm in  /  tm a x aEi aE2 Q
2/13 0.5988(46) 0.8197(103) 0.56
3/13 0.5956(53) 0.8116(144) 0.62
4/13 0.5930(62) 0.7980(195) 0.54
5/13 0.5948(70) 0.8213(316) 0.42
6/13 0.5946(74) 0.8586(516) 0.59
7/13 0.5941(103) 0.8084(755) 0.43
8/13 0.6053(104) 0.9541(1377) 0.61
9/13 0.6088(129) 0.9362(2368) 0.35
10/13 0.6108(259) 0.9167(3904) 0.37
11/13 0.6224(233) 2.591(2828) 0.92

Table B.117: Matrix fit to the 3P2e  channel.

tmin/tmax aEi aE2 Q
2/13 0.6007(52) 0.8239(116) 0.71
3/13 0.5974(59) 0.8196(163) 0.72
4/13 0.5956(70) 0.8105(230) 0.67
5/13 0.5969(83) 0.8159(353) 0.48
6/13 0.5946(88) 0.8359(552) 0.59
7/13 0.5952(123) 0.7745(790) 0.56
8/13 0.6011(117) 0.9695(1539) 0.68
9/13 0.5977(162) 0.9176(2466) 0.43
10/13 0.6033(288) 0.9108(4272) 0.26
11/13 0.6039(284) 2.331(2281) 0.91

Table B.118: Matrix fit to the 3P2£; channel, xy  component.

tm in / tm a x aEi aE2 Q
2/13 0.5987(48) 0.8195(107) 0.36
3/13 0.5942(56) 0.8058(149) 0.51
4/13 0.5904(67) 0.7904(205) 0.49
5/13 0.5933(75) 0.8248(330) 0.42
6/13 0.5957(80) 0.8732(559) 0.55
7/13 0.5972(101) 0.8491(874) 0.35
8/13 0.6075(115) 0.9297(1500) 0.31
9/13 0.6124(139) 0.9345(2601) 0.17
10/13 0.6192(240) 0.9428(4283) 0.11

11/13* 0.6422(289) 3.125(4412) 0.68

Table B.119: Matrix fit to the 3P2e  channel, xz  component.
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tmin I  tmax aE\ o,E2 Q
2/13 0.5987(50) 0.8170(108) 0.38
3/13 0.5965(58) 0.8150(154) 0.36
4/13 0.5939(71) 0.7941(201) 0.35
5/13 0.5953(79) 0.8169(329) 0.28
6/13 0.5932(85) 0.8662(548) 0.39
7/13 0.5894(123) 0.8109(791) 0.23
8/13 0.6057(125) 0.9665(1467) 0.71
9/13 0.6136(158) 0.9528(2641) 0.50
10/13 0.6145(299) 0.9737(4769) 0.68
11/13 0.6149(278) 2.136(2242) 0.80

Table B.120: Matrix fit to the 3P2# channel, yz  component.

tm in / tm a x aEi a,E2 Q
2/13 0.5906(59) 0.8982(118) 0.12
3/13 0.5943(76) 0.8562(162) 0.72
4/13 0.5918(96) 0.8533(234) 0.60
5/13 0.5890(116) 0.8594(347) 0.45
6/13 0.6003(141) 0.8985(641) 0.52
7/13 0.6390(417) 0.7850(1227) 0.93
8/13 0.6248(248) 0.9814(1940) 0.99
9/13 0.6365(398) 1.027(424) 0.98
10/13 0.6146(357) 1.301(1137) 0.96

Table B.121: Vector fit to the 3 P 2 t  channel.

tmin / tm a x aEi aE2 Q

2/13 0.5893(68) 0.8936(131) 0.35
3/13 0.5931(93) 0.8533(188) 0.80
4/13 0.5973(117) 0.8539(285) 0.70
5/13 0.5875(130) 0.8978(439) 0.80
6/13 0.5959(169) 0.8981(785) 0.72
7/13 0.5995(283) 0.8176(1252) 0.62
8/13 0.5971(236) 1.018(238) 0.63
9/13 0.6083(228) 1.489(749) 0.59
10/13 0.5788(428) 2.208(3402) 0.82

Table B.122: Vector fit to the 3P 2t  channel, xy  component.
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tmin I tmax aEi aE2 Q
2/13 0.5857(65) 0.9129(131) 0.42
3/13 0.5890(84) 0.8728(191) 0.80
4/13 0.5887(114) 0.8498(279) 0.77
5/13 0.5890(146) 0.8435(420) 0.63
6/13 0.6010(162) 0.9125(795) 0.81
7/13 0.6234(321) 0.8507(1407) 0.80
8/13 0.6345(384) 0.9766(2675) 0.87
9/13

10/13*
0.6925(2901) 0.8462(7913) 0.89

Table B.123: Vector fit to the 3P2T channel, x z  component.

tmin j  tmax aEi aE2 Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13

10/13

0.5926(71)
0.6004(96)

0.5899(112)
0.5879(148)
0.6024(197)

0.6828(1406)
0.6391(382)
0.6298(662)
0.6124(426)

0.8868(133)
0.8403(191)
0.8510(271)
0.8373(405)
0.8664(716)

0.7625(2407)
0.9426(2226)
0.8675(4092)

1.363(989)

5.3 x 10-3 
7.1 x 10“2 
6.7 x 10"2 
3.5 x 10~2 
2.9 x 10“2 

0.81 
0.91 
0.69 
0.68

Table B.124: Vector fit to the 3P2t channel, yz  component.

tmin  /  tmax aEi aE2 Q

2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.01762(8)
0.01651(11)
0.01651(13)
0.01631(16)
0.01620(19)
0.01613(22)
0.01605(29)

3.346(1451)
0.7781(193)
0.6789(360)
0.6145(242)
0.5246(344)
0.5393(564)
0.5204(975)

0.00 
2.3 x H T11 
1.2 x 10_1° 
7.0 x 10“2 

0.72 
0.54 
0.24

Table B.125: Vector fit to the kinetic 3S\ mass, with (ap)2= l.  *Mass becoming negative.
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tm in / tm a x aEi aEi Q

2/13*
3/13*
4/13*
5/13
6/13
7/13
8/13
9/13
10/13

0.03300(24)
0.03302(28)
0.03260(33)
0.03238(40)
0.03225(47)
0.03207(62)

0.7939(192)
0.6938(359)
0.6309(241)
0.5436(341)
0.5564(564)
0.5280(965)

2.9 x 10“n  
1.7 x lO"10 
9.1 x 10“2 

0.77 
0.58 
0.28

Table B.126: Vector fit to the kinetic 35i mass, with (ap)2=2. *Mass becoming negative.

tm in / tm a x aEi aE2 Q

2/13*
3/13*
4/13*
5/13 0.04951(38) 0.8098(191) 3.9 x 10“u
6/13 0.04954(44) 0.7093(359) 2.5 x 10“ 10
7/13 0.04888(53) 0.6466(240) 0.12
8/13 0.04854(64) 0.5613(339) 0.81
9/13 0.04834(75) 0.5705(567) 0.62
10/13 0.04806(102) 0.5317(956) 0.33

Table B.127: Vector fit to the kinetic 3 Si mass, with (ap)2=3. *Mass becoming negative.

tm in / tm a x aEi aEi Q

2/13*
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.07139(37)
0.06575(53)
0.06584(62)
0.06489(75)
0.06436(92)

0.06397(111)
0.06352(151)

3.420(1509)
0.8243(188)
0.7133(356)
0.6573(237)
0.5606(331)
0.5531(527)
0.5308(892)

0.00
3.4 x 10~12
6.4 x 10“ u  
4.3 x lO”2

0.70
0.49
0.21

Table B.128: Vector fit to the kinetic 3Si mass, with (ap)2=4. *Mass becoming negative,
**bad fit.



169

tm in / tm a x aE\ aE2 Q

2/13
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.09898(50)

0.09001(49)
0.08231(69)
0.08244(82)

0.08122(100)
0.08059(122)
0.08016(147)
0.07957(202)

1.198(103)

3.483(1662)
0.8413(187)
0.7332(354)
0.6760(236)
0.5856(328)
0.5807(538)
0.5483(906)

0.00

0.00 
8.3 x 10~12 
1.5 x 10“10 
8.1 x 10-2 

0.80 
0.60 
0.29

Table B.129: Vector fit to the kinetic 35i mass, with (ap)2=5. *Mass becoming negative, 
**bad fit.

tmin  /  tmax aE\ aE2 Q

2/13
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.1203(7)

0.1090(6)
0.09891(87)

0.09909(104)
0.09757(127)
0.09681(155)
0.09632(189)
0.09562(265)

1.165(95)

3.511(1689)
0.8583(187)
0.7537(356)
0.6928(238)
0.6066(330)
0.5996(556)
0.5569(929)

0.00

0.00
2.3 x 10“u
3.3 x 10-10 

0.13 
0.87 
0.68 
0.39

Table B.130: Vector fit to the kinetic 3Si mass, with (ap)2=6. *Mass becoming negative, 
**bad fit.

tmin  / tmax aE\ aE2 Q

2/13*
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.1480(9)
0.1320(13)
0.1326(15)
0.1303(19)
0.1293(24)
0.1288(29)
0.1276(41)

3.570(1765)
0.8959(190)
0.8030(356)
0.7309(243)
0.6477(344)
0.6433(605)

0.5979(1040)

0.00 
9.7 x 10“n  
1.1 x 10”9 

0.24 
0.92 
0.75 
0.45

Table B.131: Vector fit to the kinetic 35i mass, with (ap)2=8. *Mass becoming negative,
**bad fit.
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tmin/tmax aEi o.E2 Q
2/13

3/13*
4/13**

5/13
6/13
7/13
8/13
9/13
10/13

0.1887(13)

0.1683(11)
0.1488(15)
0.1495(18)
0.1467(23)
0.1456(29)
0.1450(36)
0.1439(52)

1.049(73)

3.595(1786)
0.9132(194)
0.8282(362)
0.7459(251)
0.6650(356)
0.6518(643)

0.6003(1105)

0.00

0.00 
3.3 x 10“10 
2.2 x 10~9 

0.33 
0.94 
0.81 
0.52

Table B.132: Vector fit to the kinetic 3Si mass, with (ap)2=9. *Mass becoming negative, 
**bad fit.
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tmin / tm a x aEi 0.E2 Q

2/13*
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.2321(16)
0.1988(24)
0.2012(29)
0.1961(38)
0.1948(48)
0.1940(63)
0.1935(94)

3.663(1848)
0.9719(218)
0.9385(368)
0.7997(290)
0.7220(440)
0.6870(858)

0.6422(1597)

0.00 
2.7 x 10“8 
4.1 x 10“8 

0.61 
0.94 
0.81 
0.48

Table B.133: Vector fit to the kinetic 3Si mass, with (ap)2=12. *Mass becoming negative, 
**bad fit.

B.2.5 W avefunction at the Origin for a M b = 2.1

tmin / tm a x V-o(O)
2/13 0.2088(57)
3/13 0.2047(61)
4/13 0.2037(69)
5/13 0.1967(70)
6/13 0.1961(71)
7/13 0.233(96)
8/13 0.30(25)

ction at the origin for th

tmin / tm a x V’o(O)
2/13 0.1747(51)
3/13 0.1713(56)
4/13 0.1698(65)
5/13 0.1649(65)
6/13 0.1646(62)
7/13 0.216(92)
8/13 0.5(60)

Table B.135: Wavefunction at the origin for the lattice l 35i channel.
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B .2.6 Lattice Splittings for aM^—2.1

aB 'fl3̂ ! -  l lS0) a E (ii S 1 -  21S0) a£ (3 3Si -  31S0)
2/13 0.02223(31) 0.0149(16) 0.0091(52)
3/13 0.02203(33) 0.0136(22) 0.0093(90)
4/13 0.02194(35) 0.0134(32) 0.023(11)
5/13 0.02192(36) 0.0141(31) 0.024(18)
6/13 0.02187(39) 0.0152(85) 0.016(21)
7/13 0.0215(40) 0.0056(1300) 0.07(17)
8/13 0.02196(41) 0.0185(72) 0.13(17)
9/13 0.02199(49) 0.014(18) -2(17)

Table B.136: Results from the 3e3s matrix fit.

tmin/tmax

0
?

 
CO 
T—H1

5
*

1“H53 aE(21Pl -  23P0)
2/13 0.0119(14) 0.0132(27)
3/13 0.0114(16) 0.0122(41)
4/13 0.0111(20) 0.0086(55)
5/13 0.0120(23) 0.0117(92)
6/13 0.0126(27) 0.001(15)
7/13 0.0125(36) -0.012(23)
8/13 0.0176(44) 0.025(45)
9/13 0.0215(57) 0.034(72)
10/13 0.027(10) 0.095(94)

Table B.137: Results from the matrix fit.

tm in / tm a x a E (l3P2E -  1 'P i) aE(23P2B -  21P1)
2/13 0.00590(98) 0.0091(19)
3/13 0.0055(11) 0.0070(27)
4/13 0.0053(14) 0.0060(35)
5/13 0.0057(17) 0.0042(64)
6/13 0.0044(19) 0.0001(110)
7/13 0.0049(26) -0.006(14)
8/13 0.0066(33) 0.005(30)
9/13 0.0109(42) 0.022(49)
10/13 0.0064(86) 0.059(80)

Table B.138: Results from the matrix fit.
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tmin/tmax a E (l3P  -  l 'P O aE(23P  -  21P1)
2/13 0.0015(12) 0.0016(21)
3/13 0.0020(15) -0.0020(31)
4/13 0.0013(19) -0.0039(47)
5/13 -0.0003(24) -0.0032(75)
6/13 0.0009(31) -0.006(14)
7/13 0.0100(96) -0.036(29)
8/13 0.0050(58) -0.034(48)
9/13 0.0055(83) 0.08(22)

Table B.139: Results from the vector fit.

tmin  /  tmax
23S, —l aSi 
l ' P i - l 3Si

2/13 1.307(27)
3/13 1.309(34)
4/13 1.299(42)
5/13 1.298(57)
6/13 1.443(93)
7/13 1.43(12)
8/13 1.55(19)
9/13 1.61(28)
10/13 1.57(40)

Table B.140: Results from the matrix fit.

tm in / tm a x
V P i n - l ' P ,
l 1P . - l 3Pn

2/13 0.497(95)
3/13 0.48(11)
4/13 0.48(14)
5/13 0.48(15)
6/13 0.35(16)
7/13 0.39(21)
8/13 0.37(18)
9/13 0.51(21)
10/13 0.24(33)

Table B.141: Results from the matrix fit.
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B.3 Lattice Results for the Dynamical Calculations
with k=0.1345

B.3.1 Lattice State Fits for a M b = 1.8

tmin/tmax aEi 0.E2 aEs Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

11/13*

0.3911(10)
0.3898(11)
0.3901(11)
0.3896(12)
0.3896(12)
0.3891(14)
0.3887(51)
0.3893(17)
0.3906(18)

0.6727(69)
0.6630(98)

0.6755(115)
0.6140(352)
0.6203(403)

0.4597(1125)
0.4065(1745)
0.4405(2199)
0.5327(1720)

0.8293(173)
0.8103(278)
0.8704(564)
0.7803(529)
0.8434(1091)
0.7162(543)
0.6802(714)
0.6970(1157)
0.9684(5781)

3.9 x 10“4 
1.5 x 10~2
2.9 x 10“2 

0.18 
0.23 
0.17

9.3 x 10~2 
5.2 x 10“2 

0.20

Table B.142: Matrix fit to the 3Si channel. *Fitted lattice state energy becoming negative.

tmin/tmax aEi aEi aEi Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.3683(9)
0.3674(9)
0.3675(9)

0.3673(10)
0.3672(10)
0.3668(11)

0.3465(2183)
0.3664(44)
0.3675(40)
0.3680(18)

0.6543(62)
0.6461(84)
0.6589(97)

0.6251(284)
0.6205(333)

0.4587(1275)
0.3664(12)

0.3894(2690)
0.4508(3236)
0.4393(4654)

0.8186(192)
0.8004(311)
0.8857(631)
0.7730(679)

0.8592(1377)
0.6802(490)
0.6356(489)
0.6564(887)

0.7501(3314)
1.251(2174)

9.7 x 10"3 
7.1 x 10"2 

0.11 
0.28 
0.33 
0.26 
0.20 
0.12 
0.36 
0.39

Table B.143: Matrix fit to the 1Sq channel.
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t m i n / t m a x aEi aE2 Q

2/13 0.5943(43) 0.8382(94) 0.26
3/13 0.5875(51) 0.8333(133) 0.52
4/13 0.5924(55) 0.8561(211) 0.75
5/13 0.5934(64) 0.8540(323) 0.62
6/13 0.5916(77) 0.8225(454) 0.55
7/13 0.5835(109) 0.7995(654) 0.47
8/13 0.5807(107) 0.8653(1190) 0.53
9/13

10/13*
0.5883(109) 1.070(273) 0.34

Table B.144: Matrix fit to the 1Pi channel. *Fitted lattice state energy becoming negative.

train /trnax aEi aE2 Q
2/13 0.5943(43) 0.8382(94) 0.26
3/13 0.5875(51) 0.8333(133) 0.52
4/13 0.5924(55) 0.8561(211) 0.75
5/13 0.5934(64) 0.8540(323) 0.62
6/13 0.5916(77) 0.8225(454) 0.55
7/13 0.5835(109) 0.7995(654) 0.47
8/13 0.5807(107) 0.8653(1190) 0.53
9/13 0.5883(109) 1.070(273) 0.34

10/13*
11/13 0.5731(1292) 0.6597(2429) 0.47

Table B.145: Matrix fit to the lP\ channel in the x  direction. *Fitted lattice state energy 
becoming negative.

t m i n  / t m a x aEi aE2 Q
2/13 0.5943(43) 0.8382(94) 0.26
3/13 0.5875(51) 0.8333(133) 0.52
4/13 0.5924(55) 0.8561(211) 0.75
5/13 0.5934(64) 0.8540(323) 0.62
6/13 0.5916(77) 0.8225(454) 0.55
7/13 0.5835(109) 0.7995(654) 0.47
8/13 0.5807(107) 0.8653(1190) 0.53
9/13 0.5883(109) 1.070(273) 0.34

10/13*
11/13 0.5731(1292) 0.6597(2429) 0.47

Table B.146: Matrix fit to the lP\ channel in the y direction. *Fitted lattice state energy
becoming negative.
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tm in / tm a x aEi aEi Q
2/13 0.5943(43) 0.8382(94) 0.26
3/13 0.5875(51) 0.8333(133) 0.52
4/13 0.5924(55) 0.8561(211) 0.75
5/13 0.5934(64) 0.8540(323) 0.62
6/13 0.5916(77) 0.8225(454) 0.55
7/13 0.5835(109) 0.7995(654) 0.47
8/13 0.5807(107) 0.8653(1190) 0.53
9/13 0.5883(109) 1.070(273) 0.34

10/13*
11/13 0.5731(1292) 0.6597(2429) 0.47

Table B.147: Matrix fit to the 1P\ channel in the z direction. *Fitted lattice state energy 
becoming negative.

tmin f t  max aEi aE2 Q

2/13 0.5796(39) 0.8194(95) 0.25
3/13 0.5744(46) 0.8194(134) 0.47
4/13 0.5783(49) 0.8418(210) 0.80
5/13 0.5793(57) 0.8332(310) 0.70
6/13 0.5782(69) 0.8156(448) 0.54
7/13 0.5721(92) 0.8076(653) 0.51
8/13 0.5729(94) 0.9151(1244) 0.40
9/13 0.5746(96) 1.964(759) 0.41
10/13 0.3320(2497) 0.5723(117) 0.72
11/13 0.5676(814) 0.5898(3112) 0.29

Table B.148: Matrix fit to the 3Pq channel.

tmin j  tmax aEi aEi Q
2/13 0.5776(50) 0.9143(103) 0.51
3/13 0.5808(61) 0.8945(147) 0.73
4/13 0.5851(76) 0.8824(229) 0.70
5/13 0.5842(92) 0.8864(354) 0.55
6/13 0.5736(122) 0.8613(529) 0.57
7/13 0.5724(149) 0.8827(832) 0.40
8/13 0.5787(235) 0.8412(1466) 0.23
9/13 0.5866(166) 1.320(388) 0.57
10/13 0.5846(306) 1.171(966) 0.24

Table B.149: Vector fit to the 3 Pi channel.
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tm in / tm a x aEi aE2 Q
2/13 0.5755(58) 0.9163(121) 0.13
3/13 0.5788(73) 0.8847(174) 0.36
4/13 0.5813(89) 0.8812(278) 0.25
5/13 0.5830(108) 0.8955(432) 0.16
6/13 0.5657(143) 0.8696(632) 0.24
7/13 0.5615(161) 0.9578(1092) 0.21
8/13 0.5718(204) 0.9754(2086) 0.12
9/13

10/13*
0.5767(153) 1.929(891) 0.47

Table B.150: Vector fit to the 3Pi channel, x  component. *mass bnecoming negative.

tm in / tm a x aE\ aE2 Q
2/13 0.5740(58) 0.9117(112) 0.92
3/13 0.5742(72) 0.8966(162) 0.93
4/13 0.5804(89) 0.8887(263) 0.93
5/13 0.5789(104) 0.9168(427) 0.90
6/13 0.5806(136) 0.8949(711) 0.81
7/13 0.5854(202) 0.8473(1127) 0.68
8/13 0.5966(379) 0.8006(2039) 0.49
9/13 0.5931(205) 1.373(509) 0.86
10/13 0.5794(348) 1.430(1466) 0.62

Table B.151: Vector fit to the 3Pi channel, y component.

tmin I tmax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5809(58)
0.5889(73)
0.5943(95)

0.5905(127)
0.5739(174)
0.5770(222)
0.5758(477)
0.5861(360)
0.5515(690)

0.9144(119)
0.8997(185)
0.8752(287)
0.8444(428)
0.8170(591)
0.8248(931)

0.7322(1472)
0.9200(2780)
0.9707(5511)

0.41 
0.64 
0.64 
0.56 
0.61 
0.42 
0.29 
0.19 

6.4 x 10-2

Table B.152: Vector fit to the 3Pi channel, z  component.
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tm in/tm ax aEi aEi Q
2/13 0.6004(45) 0.8486(95) 0.34
3/13 0.5925(55) 0.8403(135) 0.64
4/13 0.5985(58) 0.8645(215) 0.80
5/13 0.5998(69) 0.8649(335) 0.69
6/13 0.5980(84) 0.8279(466) 0.64
7/13 0.5901(127) 0.7876(645) 0.55
8/13 0.5893(117) 0.8554(1193) 0.58
9/13 0.6004(115) 1.093(266) 0.46
10/13 0.3706(2422) 0.6198(166) 0.87
11/13 0.5944(1175) 0.6965(2658) 0.64

Table B.153: Matrix fit to the 3P2e  channel.

tmin j tmax aE\ aEi Q
2/13 0.6055(49) 0.8539(102) 0.67
3/13 0.5994(59) 0.8417(145) 0.72
4/13 0.6072(63) 0.8718(235) 0.87
5/13 0.6101(76) 0.8649(368) 0.82
6/13 0.6113(88) 0.8463(534) 0.78
7/13 0.6070(141) 0.7968(739) 0.70
8/13 0.6066(131) 0.8901(1449) 0.66
9/13 0.6247(137) 1.434(493) 0.65
10/13 0.6336(1087) 0.6518(2371) 0.90
11/13 0.2860(3421) 0.6430(282) 0.81

Table B.154: Matrix fit to the 3P2e  channel, xy  component.

tmin/tmax aEi aEi Q
2/13 0.6001(48) 0.8504(104) 0.25
3/13 0.5905(58) 0.8406(147) 0.61
4/13 0.5964(63) 0.8732(240) 0.81
5/13 0.5971(74) 0.8794(394) 0.65
6/13 0.5926(93) 0.8159(537) 0.67
7/13 0.5821(147) 0.7710(717) 0.57
8/13 0.5808(144) 0.8451(1287) 0.55
9/13 0.5927(143) 1.032(262) 0.50
10/13 0.5154(2323) 0.6341(672) 0.67
11/13 0.6212(260) 2.251(2236) 0.76

Table B.155: Matrix fit to the 3P2e  channel, xz  component.
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tmin/tmax aEi aE2 Q
2/13 0.5967(49) 0.8439(99) 0.27
3/13 0.5867(61) 0.8340(138) 0.70
4/13 0.5912(67) 0.8485(217) 0.77
5/13 0.5934(79) 0.8583(333) 0.80
6/13 0.5923(95) 0.8406(479) 0.67
7/13 0.5844(131) 0.8148(708) 0.56
8/13 0.5802(129) 0.8412(1223) 0.67
9/13 0.5896(123) 1.557(546) 0.49

10/13*
11/13*

Table B.156: Matrix fit to the 3P2e  channel, yz  component. *Mass becoming negative.

tmin/tmax aE\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5862(52)
0.5880(65)
0.5907(78)
0.5953(90)

0.5948(122)
0.5908(151)
0.6293(491)
0.6217(236)
0.6170(449)

0.9398(108)
0.9092(155)
0.9086(239)
0.9564(421)
0.9225(716)

0.9381(1182)
0.8205(2275)

1.346(556)
1.107(1303)

0.16 
0.44 
0.33 
0.39 
0.26 
0.14 
0.17 
0.25 

7.4 x 10-2

Table B.157: Vector fit to the 3P2t  channel.

tmin /  tmax aEi aE2 Q
2/13 0.5928(62) 0.9377(129) 0.38
3/13 0.6008(78) 0.9087(193) 0.80
4/13 0.6040(93) 0.9225(312) 0.75
5/13 0.6061(118) 0.9364(523) 0.62
6/13 0.6182(178) 0.8869(922) 0.60
7/13 0.6174(189) 0.9769(1635) 0.47
8/13 0.6674(752) 0.8983(3341) 0.76
9/13 0.6468(293) 1.718(1208) 0.80
10/13 0.6357(476) 1.238(2508) 0.52

Table B.158: Vector fit to the 3P 2t  channel, xy  component.
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tmin j  tmax aE\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5828(59)
0.5836(74)
0.5861(91)

0.5940(101)
0.5967(145)
0.5931(218)
0.6276(657)
0.6155(284)
0.6099(697)

0.9474(120)
0.9149(181)
0.9136(281)
0.9861(546)
0.9241(928)

0.8632(1478)
0.8037(2919)

1.279(609)
0.9684(13661)

0.23 
0.41 
0.29 
0.48 
0.37 
0.24 
0.18 
0.14 

3.6 x 10"2

Table B.159: Vector fit to the 3 P 2 t  channel, xz  component.

tmin/tmax aEi aE2 Q
2/13 0.5793(60) 0.9331(121) 0.26
3/13 0.5799(76) 0.9015(176) 0.47
4/13 0.5818(93) 0.8942(269) 0.34
5/13 0.5849(106) 0.9579(467) 0.46
6/13 0.5737(138) 0.9396(786) 0.43
7/13 0.5652(179) 0.9598(1314) 0.31
8/13 0.5886(351) 0.8233(2314) 0.27
9/13

10/13*
0.6016(276) 1.301(570) 0.54

Table B.160: Vector fit to the 3 P 2 t  channel, yz  component. *Mass becoming negative.

tmin/tmax aE\ aE2 Q
2/13*

3/13**
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.02006(8)
0.01868(11)
0.01857(12)
0.01833(14)
0.01848(17)
0.01871(24)
0.01908(32)
0.01905(38)

3.057(411)
0.7896(207)
0.8839(211)
0.6863(239)
0.5765(395)
0.4135(559)
0.3666(794)

0.3964(1278)

0.00
5.7 x 10~23
4.8 x lO"18 
2.0 x 10“3 
2.5 x lO”2

0.23
0.70
0.35

Table B.161: Vector fit to the kinetic 3 Si mass, with (ap)2= l.  *Mass becoming negative,
**bad fit.
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tmin I tmax aEi aE2 Q

2/13*
3/13**
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.04033(18)
0.03730(23)
0.03710(25)
0.03656(30)
0.03690(37)
0.03738(50)
0.03814(65)
0.03810(79)

3.079(410)
0.8077(205)
0.8971(211)
0.7003(232)
0.5906(383)
0.4432(561)
0.4030(819)

0.4301(1327)

0.00
4.7 x 10"23 
1.1 x 10“18 
1.9 x 10“3
3.8 x 10"2 

0.25 
0.72 
0.37

Table B.162: Vector fit to the kinetic 3Si mass, with (ap)2=2. *Mass becoming negative, 
**bad fit.

train /  tmax aEi aE2 Q

2/13*
3/13**

4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.06084(27)
0.05586(37)
0.05558(39)
0.05469(48)
0.05527(60)
0.05600(80)

0.05718(100)
0.05716(123)

3.102(412)
0.8273(204)
0.9125(210)
0.7156(228)
0.6085(378)
0.4760(574)
0.4428(872)
0.4667(1427)

0 .0 0  

6.1 x 10-23 
4.8 x 10“ 19 
2.0 x 10“3 
5.7 x 10"2 

0.26 
0.71 
0.36

Table B.163: Vector fit to the kinetic 3Si mass, with (ap)2=3. *Mass becoming negative, 
**bad fit.

tmin I tmax aEi aE2 Q

2/13*
3/13**
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.08146(37)
0.07425(51)
0.07388(54)
0.07257(67)
0.07322(85)
0.07431(120)
0.07594(151)
0.07563(177)

3.124(415)
0.8377(199)
0.9240(209)
0.7287(226)
0.6244(378)
0.4476(534)
0.4160(777)

0.4673(1317)

0.00 
4.2 x lO”23
3.1 x 10“19
8.2 x 10"4 
1.4 x HT2

0.34
0.73
0.43

Table B.164: Vector fit to the kinetic 35i mass, with (ap)2=4. *Mass becoming negative,
**bad fit.
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tmin/tmax aE\ (lE'2 Q
2/13*

3/13**
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1026(5)
0.09274(67)
0.09236(71)
0.09055(89)

0.09151(113)
0.09285(155)
0.09495(191)
0.09465(225)

3.148(414)
0.8571(197)
0.9356(209)
0.7418(217)
0.6378(363)
0.4888(540)
0.4631(822)
0.5158(1417)

0.00
2.1 x u r 23
2.2 x lO"20 
8.8 x 10“4 
3.1 x 10~2

0.35
0.76
0.46

Table B.165: Vector fit to the kinetic 3Si mass, with (ap)2=5. *Mass becoming negative, 
**bad fit.
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tm in / tm a x aE1 (1E 2 Q

2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1117(9)
0.1109(9)

0.1084(11)
0.1098(15)
0.1113(20)
0.1139(23)
0.1136(28)

0.8793(199)
0.9539(209)
0.7582(215)
0.6603(366)
0.5320(573)
0.5147(935)

0.5683(1645)

4.2 x 10~23 
1.9 x lO"20 
1.6 x lO"3 
6.8 x 10“2 

0.35 
0.76 
0.44

Table B.166: Vector fit to the kinetic 3 Si mass, with (ap)2=6. *Mass becoming negative.

tm in / tm a x &E\ aE2 Q

2/13*
3/13**

4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1681(9)
0.1480(12)
0.1479(13)
0.1439(17)
0.1458(22)
0.1478(30)
0.1515(35)
0.1509(39)

3.227(430)
0.9161(201)
0.9877(211)
0.7858(215)
0.6885(373)
0.5637(594)

0.5588(1023)
0.6679(2022)

0.00 
2.7 x 10-23 
4.3 x 10-21 
9.9 x 10"4 
7.5 x lO”2 

0.38 
0.72 
0.47

Table B.167: Vector fit to the kinetic 3 Si mass, with (ap)2=8. *Mass becoming negative, 
**bad fit.

tmin/tmax aE\ aE2 Q
2/13*

3/13**
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1903(10)
0.1662(15)
0.1664(16)
0.1612(21)
0.1638(26)
0.1670(32)
0.1700(40)
0.1695(45)

3.254(440)
0.9430(209)

1.017(21)
0.8059(222)
0.7246(401)
0.7072(877)

0.6271(1308)
0.7529(2768)

0.00 
4.3 x lO"22 
1.7 x 10“19 
4.2 x 10“3 

0.17 
0.14 
0.76 
0.48

Table B.168: Vector fit to the kinetic 35i mass, with (ap)2=9. *Mass becoming negative,
**bad fit.
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tmin/tmax aEi aEi Q
2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.2198(22)
0.2214(24)
0.2115(33)
0.2166(42)
0.2179(61)
0.2242(60)
0.2234(68)

1.015(24)
1.101(22)

0.8564(266)
0.8158(539)
0.6906(1028)
0.7968(2450)

1.045(670)

1.9 x 10~19 
1.7 x 10“ 14 
3.6 x 10 '2 

0.41 
0.51 
0.77 
0.49

Table B.169: Vector fit to the kinetic 3Si mass, with (ap)2=12. *Mass becoming negative.



B.3.2 W avefunction at the Origin for a M b = 1.8

t m i n / t m a x M O )

3/13 0.1840(52)
4/13 0.1859(61)
5/13 0.1930(72)
6/13 0.203(12)
7/13 0.212(20)
8/13 16(3500)

ction at the origin for th

t m i n / t m a x ^o(0)
2/13 0.1483(45)
3/13 0.1544(50)
4/13 0.1553(57)
5/13 0.1606(66)
6/13 0.175(14)
7/13 0.176(20)
8/13 0.19(10)
9/13 0.165(11)

Table B. 171: Wavefunction at the origin for the lattice l 35i channel.

B.3.3 Lattice Splittings for a M b = 1.8

tmin j  tmax a E (l3Si -  CSo) aE(23S 1 -  21S0) a£ (3 3Si -  3‘5 0)
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.02283(36)
0.02247(38)
0.02254(41)
0.02238(40)
0.02243(42)
0.02234(66)

0.04(26)
0.025(23)

0.0235(38)

0.0185(23)
0.0170(37)
0.0167(57)
-0.011(17)

0.0003(200)
0.0009(460)
0.030(44)
0.06(21)
0.12(19)

0.0107(54)
0.0099(81)
-0.015(19)
0.007(38)
-0.015(78)
0.036(22)
0.042(39)
0.045(69)
0.25(42)

Table B.172: Results from the 3e3s matrix fit.
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tm in / tm a x aE(\}Pi -  13P0) aE(21Pi -  23P0)
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13

0.0147(15)
0.0131(18)
0.0141(22)
0.0140(27)
0.0134(33)
0.0113(46)
0.0078(51)
0.016(11)

0.0188(29)
0.0139(42)
0.0144(72)
0.021(12)
0.007(16)
-0.008(24)
-0.050(53)
-1.0(18)

Table B.173: Results from the matrix fit.

tm in / tm a x a E (l3P2E -  P A ) aE(23P2B -  21P1)
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13

0.0062(10)
0.0051(13)
0.0061(15)
0.0065(19)
0.0064(24)
0.0066(39)
0.0086(37)
0.0098(78)

0.0104(19)
0.0070(28)
0.0084(48)
0.0110(84)
0.005(12)
-0.012(18)
-0.010(38)

-0.3(14)

Table B.174: Results from the matrix fit.

tmin /  tmax a E (l3P  -  l 'P j) aE(23P  — 2‘Pi)
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.00068(97)
0.0021(13)
0.0032(18)
0.0039(22)
0.0065(30)
0.0066(39)
0.0089(92)
0.0076(52)
0.009(12)

0.0005(20)
-0.0010(31)
-0.0040(51)
-0.0025(90)
-0.018(16)
-0.027(28)
-0.003(44)
-0.04(14)
0.04(31)

Table B.175: Results from the vector fit.
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t m i n / t m a x
2 3 S , - l 3 S i
1 > P . - 1 3 S i

2/13 1.403(29)
3/13 1.405(34)
4/13 1.478(51)
5/13 1.374(63)
6/13 1.311(78)
7/13 1.26(10)
8/13 1.38(17)
9/13 1.32(27)

Table B.176: Results from the matrix fit.

t m i n / t m a x l ' P .  —l 3 Pn

2/13 0.418(77)
3/13 0.39(10)
4/13 0.43(11)
5/13 0.46(15)
6/13 0.48(20)
7/13 0.58(36)
8/13 1.13(80)
9/13 0.61(70)

Table B.177: Results from the matrix fit.
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B.3.4 Lattice State Fits for a M b = 2.1

tmin/tmax aEi (lE‘2 aE3 Q
2/11 0.4063(12) 0.6793(64) 0.8293(181) 1.2 x 10~2
3/11 0.4048(12) 0.6712(87) 0.8167(288) 9.1 x 10"2
4/11 0.4050(13) 0.6830(101) 0.8873(577) 0.10
5/11 0.4048(13) 0.6645(230) 0.7856(735) 0.26
6/11 0.4043(14) 0.6816(215) 0.9498(1562) 0.48
7/11 0.4037(16) 0.6774(370) 0.6923(2381) 0.22
8/11 0.4040(17) 0.6527(364) 0.9134(5001) 0.13
9/11 0.3979(832) 0.4489(6190) 0.6699(1500) 3.6 x 10-2

Table B.178: Matrix fit to the 3Si channel.
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tm in  I  tmax aE\ clE'i aEi Q

2/11
3/11
4/11
5/11
6/11
7/11
8/11

9/11*

0.3859(10)
0.3848(11)
0.3849(11)
0.3841(14)
0.3843(12)
0.3837(14)
0.3839(14)

0.6644(60)
0.6572(80)
0.6690(93)

0.6642(144)
0.6732(177)

0.5928(2413)
0.6435(299)

0.8231(197)
0.8100(313)
0.8970(623)
0.8715(999)

0.9459(1691)
0.6633(195)
1.115(671)

4.8 x 10-2 
0.15 
0.18 
0.16 
0.49 
0.25 
0.14

Table B.179: Matrix fit to the x5o channel. *Fitted lattice state energy becomi ng nega
tive.



APPENDIX B. BEST LATTICE FITS

tm in / tm a x aE\ aE2 Q

2/13 0.6120(34) 0.8391(88) 0.21
3/13 0.6057(40) 0.8374(127) 0.67
4/13 0.6095(43) 0.8706(205) 0.93
5/13 0.6070(51) 0.8482(301) 0.86
6/13 0.6036(63) 0.8203(446) 0.80
7/13 0.5978(91) 0.7773(618) 0.71
8/13 0.5971(94) 0.8415(1072) 0.59
9/13 0.6110(104) 1.161(253) 0.60
10/13 0.5760(1689) 0.6275(973) 0.77

Table B.180: Matrix fit to the lP\ channel.

tmin  / tmax aEi aE2 Q

2/13 0.6106(42) 0.8382(97) 0.45
3/13 0.6039(50) 0.8333(136) 0.76
4/13 0.6090(53) 0.8664(218) 0.95
5/13 0.6088(63) 0.8571(329) 0.90
6/13 0.6061(76) 0.8304(461) 0.85
7/13 0.6004(108) 0.7986(652) 0.76
8/13 0.5989(113) 0.8432(1106) 0.68
9/13 0.6087(112) 1.082(248) 0.58
10/13 0.5988(988) 0.6561(1933) 0.79
11/13 0.5954(475) 0.7604(3767) 0.55

Table B.181: Matrix fit to the lP\ channel in the x  direction.

tmin  /  tmax aEi aE2 Q

2/13 0.6106(42) 0.8382(97) 0.45
3/13 0.6039(50) 0.8333(136) 0.76
4/13 0.6090(53) 0.8664(218) 0.95
5/13 0.6088(63) 0.8571(329) 0.90
6/13 0.6061(76) 0.8304(461) 0.85
7/13 0.6004(108) 0.7986(652) 0.76
8/13 0.5989(113) 0.8432(1106) 0.68
9/13 0.6087(112) 1.082(248) 0.58
10/13 0.5988(988) 0.6561(1933) 0.79
11/13 0.5954(475) 0.7604(3767) 0.55

Table B.182: Matrix fit to the xPi channel in the y direction.
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tm in / tm a x aEi aEi Q
2/13 0.6106(42) 0.8382(97) 0.45
3/13 0.6039(50) 0.8333(136) 0.76
4/13 0.6090(53) 0.8664(218) 0.95
5/13 0.6088(63) 0.8571(329) 0.90
6/13 0.6061(76) 0.8304(461) 0.85
7/13 0.6004(108) 0.7986(652) 0.76
8/13 0.5989(113) 0.8432(1106) 0.68
9/13 0.6087(112) 1.082(248) 0.58
10/13 0.5988(988) 0.6561(1933) 0.79
11/13 0.5954(475) 0.7604(3767) 0.55

Table B.183: Matrix fit to the lP\ channel in the 2  direction.

tm in / tm a x aEi al?2 Q

2/13 0.5979(39) 0.8228(98) 0.42
3/13 0.5924(46) 0.8209(136) 0.70
4/13 0.5968(48) 0.8538(215) 0.93
5/13 0.5966(58) 0.8387(314) 0.88
6/13 0.5949(69) 0.8240(448) 0.76
7/13 0.5906(95) 0.8017(634) 0.68
8/13 0.5925(100) 0.8761(1132) 0.50
9/13 0.5964(102) 1.435(412) 0.45

10/13*
11/13 0.4613(3490) 0.5898(254) 0.37

Table B.184: Matrix fit to the 3P0 channel.

tmin j  tmax aEi aEi Q

2/13 0.5938(51) 0.9047(100) 0.49
3/13 0.5966(63) 0.8844(140) 0.72
4/13 0.6012(79) 0.8782(216) 0.66
5/13 0.6004(95) 0.8832(329) 0.51
6/13 0.5949(125) 0.8605(496) 0.40
7/13 0.5972(151) 0.8830(786) 0.25
8/13 0.6010(249) 0.8443(1369) 0.12
9/13 0.6015(164) 1.341(354) 0.36
10/13 0.5782(415) 1.207(811) 0.20

Table B.185: Vector fit to the 3Pi channel.
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tmin  /  tmax aEi aE2 Q

2/13 0.5909(59) 0.9053(115) 0.20
3/13 0.5938(75) 0.8734(164) 0.53
4/13 0.5970(92) 0.8741(258) 0.41
5/13 0.5983(111) 0.8848(390) 0.28
6/13 0.5860(149) 0.8521(568) 0.28
7/13 0.5810(165) 0.9340(932) 0.26
8/13 0.5943(225) 0.9392(1739) 0.16
9/13

10/13*
0.5946(158) 1.785(674) 0.60

Table B.186: Vector fit to the 3 Pi channel, x component. *Mass becoming negative.

tm in  /  tmax aEi aE2 Q

2/13 0.5899(58) 0.9053(110) 0.65
3/13 0.5893(73) 0.8866(156) 0.70
4/13 0.5950(90) 0.8846(247) 0.66
5/13 0.5948(106) 0.9104(396) 0.57
6/13 0.5989(136) 0.9020(654) 0.42
7/13 0.6077(205) 0.8614(1075) 0.30
8/13 0.6050(300) 0.8561(1878) 0.15
9/13

10/13*
0.6000(191) 1.458(482) 0.49

Table B.187: Vector fit to the 3Pi channel, y component. *Mass becoming negative.

tm in / tm a x aEi aE2 Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5987(61)
0.6072(77)

0.6127(100)
0.6089(131)
0.6003(183)
0.6105(230)
0.6177(731)
0.6106(436)

0.5397(1043)

0.9024(117)
0.8881(178)
0.8706(271)
0.8466(402)
0.8197(575)
0.8380(938)
0.7171(1714)
0.8755(2514)
0.9231(4121)

0.39 
0.61 
0.57 
0.48 
0.39 
0.26 
0.18 

9.3 x 10~2 
4.7 x 10-2

Table B.188: Vector fit to the 3 Pi channel, z component.
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tm in / tm a x aEi aE 2 Q

2/13 0.6159(44) 0.8471(98) 0.55
3/13 0.6083(53) 0.8403(138) 0.84
4/13 0.6142(56) 0.8738(221) 0.97
5/13 0.6142(67) 0.8655(337) 0.93
6/13 0.6112(82) 0.8335(468) 0.92
7/13 0.6048(125) 0.7867(635) 0.86
8/13 0.6040(129) 0.8237(1076) 0.79
9/13 0.6146(132) 0.9542(1980) 0.74
10/13 0.4969(2301) 0.6440(230) 0.91
11/13 0.6118(492) 0.7924(3704) 0.67

Table B.189: Matrix fit to the 3P2£ channel.

tm in / tm a x a,Ei aE2 Q

2/13 0.6206(47) 0.8524(105) 0.80
3/13 0.6149(57) 0.8428(148) 0.84
4/13 0.6226(60) 0.8806(240) 0.96
5/13 0.6246(73) 0.8667(369) 0.94
6/13 0.6249(86) 0.8572(540) 0.90
7/13 0.6221(133) 0.8015(737) 0.83
8/13 0.6224(137) 0.8526(1302) 0.69
9/13 0.6370(164) 0.9611(2277) 0.73
10/13 0.6374(1473) 0.6838(1716) 0.88
11/13 0.4359(3535) 0.6597(326) 0.65

Table B.190: Matrix fit to the 3P2# channel, xy  component.

tm in / tm a x aEi a,E2 Q

2/13 0.6164(47) 0.8498(108) 0.36
3/13 0.6072(57) 0.8418(152) 0.75
4/13 0.6130(60) 0.8843(247) 0.95
5/13 0.6120(73) 0.8798(395) 0.88
6/13 0.6074(90) 0.8251(543) 0.89
7/13 0.6003(137) 0.7749(725) 0.80
8/13 0.5977(157) 0.8065(1156) 0.74
9/13 0.6097(155) 0.9389(2093) 0.73
10/13 0.5923(1056) 0.6889(1844) 0.84
11/13 0.6227(251) 1.864(1355) 0.91

Table B.191: Matrix fit to the 3P2£ channel, xz  component.
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tmin/tmax aEi (1 E2 Q
2/13 0.6120(47) 0.8430(102) 0.37
3/13 0.6022(59) 0.8335(140) 0.82
4/13 0.6065(63) 0.8574(222) 0.92
5/13 0.6069(77) 0.8594(333) 0.94
6/13 0.6030(94) 0.8365(471) 0.91
7/13 0.5944(139) 0.8041(665) 0.88
8/13 0.5921(141) 0.8235(1108) 0.88
9/13

10/13*
0.6005(133) 1.056(256) 0.73

B.192: Matrix fit to the 3P2£ channel, yz  component.
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tmin / tm a x aEi o,E2 Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.6003(53)
0.6018(66)
0.6053(80)
0.6085(94)
0.6132(131)
0.6138(166)
0.6531(605)
0.6373(259)
0.6060(442)

0.9272(103)
0.8989(146)
0.8987(222)
0.9285(371)
0.8937(617)
0.8932(989)

0.8058(2085)
1.161(384)
1.170(851)

0.21 
0.53 
0.43 
0.39 
0.29 
0.16 
0.16 
0.16 

6.7 x 10~2

Table B.193: Vector fit to the 3.P2t channel.

tm in/tm ax aE\ aE2 Q

2/13 0.6075(63) 0.9231(123) 0.24
3/13 0.6165(80) 0.8960(182) 0.68
4/13 0.6193(97) 0.9070(284) 0.59
5/13 0.6206(126) 0.9066(456) 0.43
6/13 0.6371(193) 0.8716(797) 0.45
7/13 0.6438(223) 0.9303(1386) 0.36
8/13 0.6923(860) 0.8851(3045) 0.50
9/13 0.6660(319) 1.449(796) 0.39
10/13 0.6330(519) 1.431(1841) 0.25

Table B.194: Vector fit to the 3P2r  channel, xy  component.

tm in / tm a x aE\ o,E2 Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5971(59)
0.5966(74)
0.6002(92)

0.6081(106)
0.6163(155)
0.6219(271)

0.6580(1056)
0.6348(328)
0.5857(996)

0.9358(116)
0.9066(171)
0.9066(261)
0.9533(477)
0.9020(810)

0.8274(1312)
0.7738(2909)

1.117(430)
0.9772(8037)

0.32 
0.50 
0.39 
0.51 
0.45 
0.31 
0.22 
0.15 

6.2 x 10-2

Table B.195: Vector fit to the 3P2r  channel, xz  component.
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tm in / tm a x aEi aE2 Q
2/13 0.5917(64) 0.9255(113) 0.38
3/13 0.5932(77) 0.8956(165) 0.64
4/13 0.5976(94) 0.8839(256) 0.57
5/13 0.5966(105) 0.9326(422) 0.60
6/13 0.5905(149) 0.8842(664) 0.52
7/13 0.5836(187) 0.8936(1060) 0.37
8/13 0.6180(548) 0.7733(2090) 0.37
9/13 0.6111(258) 1.216(423) 0.59
10/13 0.5997(367) 1.265(1079) 0.26

B.196: Vector fit to the 3P 2t  channel, yz  component.
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tm in / tm a x aEi aEi Q

2/13*
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.01753(8) 
0.01632(10) 
0.01611(12) 
0.01620(14) 
0 01636(18) 
0.01659(23) 
0.01658(29)

3.329(1209)
0.7875(184)
0.7527(340)
0.6449(254)
0.5002(342)
0.4396(491)
0.4387(794)

0.00
9.3 x 10“15
1.3 x lO"12 
5.8 x 10"4

0.18
0.62
0.27

Table B.197: Vector fit to the kinetic 3 Si mass, with (ap)2=T. *Mass becoming negative, 
**bad fit.

tmin I tmax aEi aEi Q
2/13*
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.03525(17)
0.03259(21)
0.03214(25)
0.03237(30)
0.03270(39)
0.03319(48)
0.03316(61)

3.360(1235)
0.8019(181)
0.7609(338)
0.6588(249)
0.5198(336)
0.4621(492)
0.4644(801)

0.00 
5.4 x 10“ 15
7.9 x 10“ 13
6.9 x lO"4 

0.18 
0.62 
0.27

Table B.198: Vector fit to the kinetic 3 Si mass, with (ap)2=2. *Mass becoming negative, 
**bad fit.

tm in / tm a x aEi aEi Q

2/13*
3/13*

4/13**
5/13
6/13*
7/13
8/13
9/13
10/13

0.05319(26)
0.04883(34)

0.04851(48)
0.04901(62)
0.04978(77)
0.04974(96)

3.390(1261)
0.8173(180)

0.6746(245)
0.5405(335)
0.4855(501)
0.4903(820)

0.00 
4.7 x 10“ 15

9.1 x 10“4 
0.19 
0.61 
0.26

Table B.199: Vector fit to the kinetic 3Si mass, with (ap)2=3. *Mass becoming negative,
**bad fit.
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tmin  /  tmax aEi a,E2 Q
2 / 1 3 *

3/13*
4/13**

5/13
6/13
7/13
8/13
9/13
10/13

0.07136(36)
0.06491(47)
0.06385(56)
0.06433(67)
0.06502(88)

0.06595(110)
0.06580(140)

3.437(1347)
0.8339(179)
0.7821(338)
0.6901(249)
0.5386(331)
0.4782(475)
0.4851(791)

0.00 
6.3 x 10"15 
6.1 x lO” 13 
1.8 x lO”4 

0.21 
0.65 
0.29

Table B.200: Vector fit to the kinetic 3 Si mass, with (ap)2=4. *Mass becoming negative, 
**bad fit.

tmin/tmax aE\ a,E2 Q
2/13**
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.09298(40)

0.08994(47)
0.08108(62)
0.07965(74)
0.08042(89)

0.08129(117)
0.08254(146)
0.08237(183)

1.611(192)

3.476(1391)
0.8472(175)
0.7877(334)
0.7033(241)
0.5627(325)
0.5057(479)
0.5190(807)

0.00

0.00 
2.6 x 10"15 
3.2 x 10“ 13 
2.9 x 10“4 

0.21 
0.65 
0.30

Table B.201: Vector fit to the kinetic 3Si mass, with (ap)2=5. *Mass becoming negative, 
**bad fit.

tmin /  tmax aEi o,E2 Q
2/13**
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.1126(5)

0.1088(6)
0.09725(78)
0.09542(94)

0.09653(114)
0.09750(149)
0.09910(185)
0.09894(231)

1.561(174)

3.501(1393)
0.8632(174)
0.8029(331)
0.7208(238)
0.5874(327)
0.5334(503)
0.5516(856)

0.00

0.00 
3.5 x 10"15 
3.4 x lO’ 13 
5.8 x 10~4 

0.22 
0.64 
0.29

Table B.202: Vector fit to the kinetic 3Si mass, with (ap)2=6. *Mass becoming negative,
**bad fit.
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tmin /  tmax aE\ C1E 2 Q
2/13**
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.1535(8)

0.1479(9)
0.1294(11)
0.1266(14)
0.1285(17)
0.1297(23)
0.1318(28)
0.1315(35)

1.447(140)

3.511(1277)
0.8941(173)
0.8236(333)
0.7505(237)
0.6186(329)
0.5640(520)
0.6036(939)

0.00

0.00 
3.6 x 10~15 
2.2 x lO"13 
4.9 x lO '4 

0.22 
0.64 
0.33

Table B.203: Vector fit to the kinetic 35i mass, with (ap)2=8. *Mass becoming negative, 
**bad fit.

tmin / tmax aE\ c1E 2 Q
2/13**
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.1748(10)

0.1677(10)
0.1456(14)
0.1424(17)
0.1446(20)
0.1456(27)
0.1482(34)
0.1480(42)

1.384(125)

3.616(1550)
0.9138(176)
0.8549(331)
0.7754(240)
0.6452(348)
0.5949(586)
0.6405(1080)

0 . 0 0

0.00 
3.3 x 10"14 
7.2 x 10-13 
1.5 x 10“3 

0.27 
0.65 
0.35

Table B.204: Vector fit to the kinetic 3 Si mass, with (ap)2=9. *Mass becoming negative, 
**bad fit.

tmin /  tmax aE\ aE2 Q
2/13*
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.2295(15)
0.1936(21)
0.1897(26)
0.1925(32)
0.1924(46)
0.1963(56)
0.1963(67)

3.642(1479)
0.9723(195)
0.9573(330)
0.8475(271)
0.7038(442)
0.6693(852)

0.7651(1811)

0.00
2.4 x 10~n  
6.0 x lO"11
1.5 x 10-2 

0.45 
0.69 
0.43

Table B.205: Vector fit to the kinetic 3Si mass, with (ap)2=12. *Mass becoming negative,
**bad fit.
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B.3.5 W avefunction at the Origin for a M b = 2.1

^min/^max V’o(O)
2/11 0.1894(63)
3/11 0.1940(69)
4/11 0.1951(82)
5/11 0.206(11)
6/11 0.237(28)
7/11 0.42(29)

Table B.206: Wavefunction at the origin for the lattice l 1 So channel.

^min /^max V>o(0)
2/11 0.1628(60)
3/11 0.1692(71)
4/11 0.1691(82)
5/11 0.178(10)
6/11 0.231(52)
7/11 0.6(21)

Table B.207: Wavefunction at the origin for the lattice l 3Si channel.

B.3.6 Lattice Splittings for 2.1

tmin/tmax a E (l3S l -  1‘So) aE(23S\ -  21S0) aE(33Si -  3 ^0 )
2/11 0.02042(32) 0.0149(15) 0.0062(42)
3/11 0.02000(34) 0.0140(20) 0.0067(61)
4/11 0.02006(36) 0.0140(25) -0.010(13)
5/11 0.0200(18) 0.007(19) -0.002(220)
6/11 0.01998(40) 0.0084(69) 0.004(45)
7/11 0.02008(50) -0.003(92) 0.021(42)
8/11 0.02014(78) 0.009(17) -0.2(11)

Table B.208: Results from the 3e3s matrix fit.
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tmin/tmax a E i^ P i  -  13P0) aE(21P1 -  23P0)
2/13 0.0141(29) 0.0163(71)
3/13 0.0132(34) 0.0165(97)
4/13 0.0127(36) 0.017(16)
5/13 0.0104(42) 0.010(23)
6/13 0.0087(51) -0.004(31)
7/13 0.0072(72) -0.024(37)
8/13 0.0046(73) -0.035(72)
9/13 0.0139(86) -0.50(66)
10/13 0.024(16) -0.20(34)

Table B.209: Results from the matrix fit.

a E (l3P2E -  l 'P J aE(23P2E -  21Pi)
2/13 0.0039(31) 0.0080(68)
3/13 0.0027(38) 0.0028(94)
4/13 0.0048(40) 0.003(16)
5/13 0.0072(48) 0.017(23)
6/13 0.0076(59) 0.013(30)
7/13 0.0070(87) 0.009(36)
8/13 0.0068(88) -0.018(66)
9/13 0.004(10) -0.21(36)
10/13 0.09(14) 0.033(27)

Table B.210: Results from the matrix fit.

^min/tmax a E (l3P  -  l 1̂ ) aE(23P  -  21S0)
2/13 0.00064(85) 0.0007(17)
3/13 0.0018(11) -0.0004(26)
4/13 0.0027(16) -0.0022(42)
5/13 0.0034(20) -0.0006(71)
6/13 0.0060(28) -0.012(12)
7/13 0.0065(39) -0.022(21)
8/13 0.010(12) -0.010(51)
9/13 0.0067(50) -0.06(11)
10/13 0.0057(77) 0.03(19)

Table B.211: Results from the vector fit.
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t m i n /  t m a x
2 3 S , - l 3 ,Si 
l 3P i  - l 3 S i

2/13 1.353(34)
3/13 1.349(43)
4/13 1.438(62)
5/13 1.348(75)
6/13 1.318(93)
7/13 1.24(11)
8/13 1.32(18)
9/13 1.22(25)
10/13 -56(2.9 x 104)

Table B.212: Results from the matrix fit.

t m i n  J  t m a x
l 3 P , B - l ‘ P l
l ' P i - m

2/13 0.28(27)
3/13 0.20(34)
4/13 0.38(41)
5/13 0.70(71)
6/13 0.9(12)
7/13 1.0(21)
8/13 1.6(45)
9/13 0.29(83)

Table B.213: Results from the matrix fit.

B.4 Lattice Results for the Dynamical Calculations
with k;=0.134

B.4.1 Lattice State Fits for 1.8

tmin l̂ max aEi (1E 2 0.E3 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.3878(11)
0.3876(11)
0.3879(11)
0.3878(12)
0.3872(12)
0.3872(13)
0.3867(15)
0.3860(15)
0.3873(15)
0.3829(45)

0.6651(72)
0.6646(92)
0.6743(118)
0.6483(247)
0.6367(511)
0.6537(649)
0.6627(341)
0.6700(369)
0.7512(704)
0.5409(774)

0.8028(167)
0.8222(290)
0.8357(494)
0.7663(627)
0.7015(525)
0.6819(980)
3.009(2941)
0.9476(454)
0.9608(5707)
1.919(2324)

4.0 x 10“5 
2.9 x 10-4
4.8 x 10-4
2.0 x 10“3 
1.5 x 10"3
3.0 x 10~3
4.9 x 10“3 
1.8 x 10“2 
1.2 x 10-2
6.0 x IQ"2

Table B.214: Matrix fit to the 3 Si channel.
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tmin f̂ max aE\ aE2 aE3 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.3662(9)
0.3660(10)
0.3662(10)
0.3661(10)
0.3656(11)
0.3657(11)
0.3653(13)
0.3649(13)
0.3655(13)
0.3618(36)

0.6493(64)
0.6490(82)
0.6566(109)
0.6293(251)
0.6185(475)
0.6283(484)
0.6362(303)
0.6478(327)
0.6995(557)
0.5111(663)

0.7897(185)
0.8065(307)
0.7996(499)
0.7303(571)
0.6789(498)

0.6680(1037)
2.959(2606)

0.8919(4018)
0.9277(5268)
1.977(2557)

8.3 x 10“5
2.6 x 10-4
3.5 x 10“4
1.7 x 10~3
8.7 x 10“4
2.7 x 10~3
6.5 x 10-3
1.7 x 10“2 
1.0 x 10~2

0.10

Table B.215: Matrix fit to the 1S q channel.

tmin/tjnax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.5921(41)
0.5921(47)
0.5918(55)
0.5889(72)
0.5843(86)

0.5840(102)
0.5912(82)

0.5734(142)
0.5817(192)

0.5157(1992)

0.8310(94)
0.8307(138)
0.8144(194)
0.7841(270)
0.7695(372)
0.7937(584)
0.9066(1168)

1.021(231)
0.8085(3066)
0.7361(4318)

1.1 x 10-2
7.1 x 10“3
1.8 x 10“2
1.8 x 10“2 
9.7 x 10-3 
8.5 x 10“3
2.2 x 10“2 

0.22 
0.17 
0.44

Table B.216: Matrix fit to the lP\ channel.

tmin j  tmax o,E\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5843(49)
0.5839(60)
0.5831(76)
0.5746(96)

0.5638(143)
0.5513(163)
0.5233(402)
0.5757(270)

0.5598(3381)

0.9167(100)
0.8918(145)
0.8571(217)
0.8383(303)
0.7948(402)
0.8692(642)
0.7199(747)

0.9083(1936)
0.6024(4229)

1.4 x 10“2
2.4 x 10-2
3.2 x 10-2 
2.9 x 10“2 
2.8 x 10“2 
6.1 x 10“2
9.3 x 10“2 

0.16 
0.18

Table B.217: Vector fit to the channel in the x  direction.
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im in  I Enax aEi aE2 Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5843(49)
0.5839(60)
0.5831(76)
0.5746(96)
0.5638(143)
0.5513(163)
0.5233(402)
0.5757(270)

0.5622(3436)

0.9167(100)
0.8918(145)
0.8570(217)
0.8383(303)
0.7948(402)
0.8691(642)
0.7199(747)

0.9073(1933)
0.6036(4419)

1.4 x 10-2
2.4 x 10-2
3.2 x 10-2 
2.9 x 10-2 
2.8 x 10~2 
6.1 x 10“2
9.3 x 10-2 

0.16 
0.18

Table B.218: Vector fit to the channel in the y direction.

tm in /tm a x aEi (iE'i Q

2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5843(49)
0.5839(60)
0.5831(76)
0.5746(96)

0.5638(143)
0.5513(163)
0.5233(402)
0.5757(270)
0.5622(3436)

0.9167(100)
0.8918(145)
0.8570(217)
0.8383(303)
0.7948(402)
0.8691(642)
0.7199(747)

0.9073(1933)
0.6036(4419)

1.4 x 10-'2
2.4 x 10-2
3.2 x 10-2 
2.9 x 10“2 
2.8 x 10-2 
6.1 x 10-2
9.3 x 10-2 

0.16 
0.18

Table B.219: Vector fit to the lP\ channel in the z direction.
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aEi aEi Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5722(51)
0.5722(62)
0.5704(80)

0.5664(105)
0.5566(172)
0.5544(202)
0.5213(534)
0.5610(422)

0.5358(2656)

0.8803(104)
0.8620(149)
0.8147(217)
0.7980(305)
0.7349(404)
0.7639(620)
0.6478(695)

0.7580(1595)
0.5993(2855)

5.9 x 10"2 
5.7 x 10"2 

0.16 
0.10 
0.19 
0.10 
0.16 
0.10 

8 x 10"2

Table B.220: Vector fit to the 3Pq channel.

tmin /  ̂ max aEi aEi Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5830(50)
0.5821(62)
0.5803(78)
0.5747(98)

0.5651(150)
0.5524(168)
0.5205(363)
0.5663(270)

0.2190(3241)

0.9064(101)
0.8804(145)
0.8455(217)
0.8316(306)
0.7817(408)
0.8464(634)
0.7459(787)
0.9092(1908)
0.6050(515)

4.5 x 10~2 
8.8 x 10“2 

0.12
8.3 x 10~2
9.4 x 10“2 

0.14 
0.16 
0.20 
0.45

Table B.221: Vector fit to the 3Pi channel.



206 APPENDIX B. BEST LATTICE FITS

tm in/tm ax aE\ aEi Q
2/13 0.5851(60) 0.9028(120) 0.10
3/13 0.5846(76) 0.8707(172) 0.20
4/13 0.5889(101) 0.8446(265) 0.19
5/13 0.5902(140) 0.8134(383) 0.14
6/13 0.5762(196) 0.7825(523) 0.12
7/13 0.5712(196) 0.8697(852) 0.10
8/13 0.5123(559) 0.7204(886) 0.24
9/13 0.5738(289) 1.004(272) 0.40
10/13 0.4751(12300) 0.5143(8194) 0.68

Table B.222: Vector fit to the 3 Pi channel, x  component.

t m i n / t m a x aEi aEi <3
2/13 0.5831(60) 0.9068(117) 0.14
3/13 0.5807(75) 0.8819(169) 0.19
4/13 0.5786(95) 0.8425(250) 0.25
5/13 0.5727(116) 0.8494(371) 0.17
6/13 0.5679(185) 0.7740(505) 0.22
7/13 0.5339(252) 0.7954(678) 0.36
8/13 0.5255(432) 0.7391(975) 0.22
9/13 0.5702(359) 0.9114(2349) 0.19
10/13 0.4545(1888) 0.7327(2602) 0.13

Table B.223: Vector fit to the 3 Pi channel, y component.

t m i n / t m a x aEx aEi Q
2/13 0.5791(57) 0.9058(116) 0.49
3/13 0.5794(69) 0.8824(173) 0.56
4/13 0.5767(88) 0.8512(261) 0.60
5/13 0.5676(111) 0.8435(375) 0.59
6/13 0.5601(168) 0.8013(546) 0.53
7/13 0.5568(173) 0.9004(912) 0.58
8/13 0.5320(341) 0.8200(1331) 0.52
9/13 0.5578(301) 0.9656(2964) 0.35
10/13 0.0806(5249) 0.6019(551) 0.54

Table B.224: Vector fit to the 3 Pi channel, z component.
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tmin l^max aEi aEi Q
2/13 0.5963(44) 0.8388(96) 4.3 x 10-3
3/13 0.5960(51) 0.8358(139) 2.3 x 10“3
4/13 0.5960(59) 0.8191(194) 7.1 x 10~3
5/13 0.5934(76) 0.7973(277) 4.2 x 10-3
6/13 0.5889(86) 0.7885(398) 2.7 x 10“3
7/13 0.5895(97) 0.8193(652) 1.9 x 10"3
8/13 0.5914(82) 0.9348(1280) 2.5 x 10-2
9/13 0.5754(110) 1.442(458) 0.22
10/13 0.5815(128) 2.262(1995) 0.45

Table B.225: Matrix lit to the 3P2e channel.

Ijnin /  tmax aEi aEi Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

11/13*

0.5959(48)
0.5965(56)
0.5966(67)
0.5953(86)
0.5907(96)

0.5970(102)
0.6004(100)
0.5872(130)
0.5795(166)

0.8343(99)
0.8335(146)
0.8170(204)
0.8081(305)
0.8284(473)
0.9145(829)
1.047(178)
1.893(903)

2.449(3494)

0.15
8.8 x 10-2 

0.10
6.4 x 10"2 
8.0 x 10“2
7.4 x 10-2 

0.12 
0.27 
0.33

Table B.226: Matrix fit to the 3P2e  channel, xy  component. *Mass becoming negative.

tmin/tmax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

11/13*

0.5943(49)
0.5929(57)
0.5912(65)
0.5852(86)
0.5794(97)

0.5792(107)
0.5745(97)

0.5618(139)
0.5722(157)

0.8341(102)
0.8301(144)
0.8108(202)
0.7847(274)
0.7527(372)
0.7630(581)

0.8894(1115)
1.098(282)

0.7580(2605)

5.5 x 10"3
2.5 x 10“3
2.1 x 10-2 
1.4 x 10-2
2.2 x 10-2 
1.9 x 10-2

0.14
0.34
0.43

Table B.227: Matrix fit to the 3P2e  channel, xz  component. *Mass becoming negative.
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tmin j  t'max aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13

10/13*
11/13

0.5988(47)
0.6005(54)
0.6028(62)
0.6035(79)
0.5998(96)

0.5976(115)
0.6029(98)

0.5760(142)
0.5860(163)

0.5336(2975)

0.8476(105)
0.8494(156)
0.8387(228)
0.8032(329)
0.7873(459)
0.8117(755)
0.9762(1605)

1.278(407)
2.876(3641)
0.7483(7594)

4.5 x 10"4
3.3 x 10“4
1.3 x 10"3
1.4 x 10“3
3.5 x lO '4 
3.7 x lO’ 4 
5.0 x 10~3

0.15
0.35
0.63

Table B.228: Matrix fit to the 3P2# channel, yz  component. *Mass becoming negative.

tmin / tmax o,E\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5891(52)
0.5884(63)
0.5870(79)

0.5740(100)
0.5679(144)
0.5544(150)
0.5416(260)
0.5790(194)

0.5864(3355)

0.9317(105)
0.9064(156)
0.8729(236)
0.8604(333)
0.8270(473)
0.9741(831)

0.8862(1341)
1.218(377)

0.6436(8619)

6.7 x lO”3 
9.9 x lO-3 
1.0 x 10-2
1.8 x 10“2
9.8 x 10“3 

0.17 
0.10 
0.33 
0.22

Table B.229: Vector fit to the 3P2r  channel.

aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5933(62)
0.5943(79)

0.5920(100)
0.5749(130)
0.5781(197)
0.5602(196)
0.5487(261)
0.5727(194)

0.5821(3872)

0.9176(125)
0.8892(181)
0.8487(266)
0.8258(365)
0.7965(549)
0.9204(852)

0.9696(1602)
1.581(655)

0.6430(12180)

6.2 x 10“2 
9.0 x lO"2 

0.12 
0.22 
0.14 
0.61 
0.49 
0.61 
0.42

Table B.230: Vector fit to the 3P2t  channel, xy  component.
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tmin/tmax aEi aEi Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5815(60)
0.5773(72)
0.5765(92)
0.5654(109)
0.5556(159)
0.5352(184)
0.5471(255)
0.5708(196)

0.5691(3970)

0.9382(121)
0.9211(179)
0.8854(284)
0.9023(434)
0.8589(627)

0.9939(1082)
0.9078(1886)

1.511(629)
0.6230(11099)

4.8 x 10"2 
4.6 x 10~2 
4.3 x 10“2
5.0 x 10~2
3.1 x 10“2 

0.19 
0.13 
0.22

9.2 x 10~2

Table B.231: Vector fit to the 3 P 2 t  channel, xz  component.

tmin/tmax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5932(61)
0.5953(75)

0.5980(100)
0.5855(132)
0.5761(175)
0.5721(155)
0.5199(586)
0.6148(761)
0.6592(5871)

0.9383(124)
0.9066(191)
0.8791(296)
0.8475(411)
0.8346(596)
1.093(135)

0.7822(1475)
0.8592(3938)

0.7739(13548)

2.0 x lO”2
3.2 x 10“2
2.3 x 10-2 
2.5 x 10“2 
1.2 x lO-2 
6.7 x 10“2

0.15
0.81
0.61

Table B.232: Vector fit to the 3 P 2 t  channel, yz  component.

tmin/tfnax aEi aE2 Q
2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.01886(11)
0.01869(12)
0.01847(15)
0.01825(18)
0.01817(21)
0.01811(25)
0.01808(38)

0.8061(225)
0.9015(219)
0.6770(248)
0.5746(414)
0.5495(720)

0.5342(1197)
0.4505(1987)

4.9 x lO '21 
3.4 x 10“16 

0.16 
0.71 
0.61 
0.37 
0.13

Table B.233: Vector fit to the kinetic 3*S'i mass, with (ap)2= l.  *Mass becoming negative.
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train/^max a,El aEi Q
2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.03767(23)
0.03737(26)
0.03686(31)
0.03639(38)
0.03620(44)
0.03601(57)
0.03594(93)

0.8222(221)
0.9151(218)
0.6935(244)
0.5874(405)
0.5596(695)
0.5148(1104)
0.4092(1756)

3.9 x 10~21 
9.7 x 10"17

0.12
0.61
0.50
0.30

9.9 x 10“2

Table B.234: Vector fit to the kinetic 35i mass, with (ap)2=2. *Mass becoming negative.
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tmin / tmax aE\ (1E 2 Q
2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.05645(36)
0.05606(41)
0.05519(48)
0.05443(61)
0.05412(72)
0.05370(97)
0.05360(168)

0.8400(219)
0.9310(217)
0.7107(242)
0.6009(401)
0.5696(680)

0.5004(1042)
0.3859(1627)

4.8 x 10"21
5.6 x lO-17
8.6 x 10"2 

0.52 
0.40 
0.25

8.0 x 10"2

Table B.235: Vector fit to the kinetic 35i mass, with (ap)2=3. *Mass becoming negative.

tmin/tmax aE\ (1 E 2 Q
2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.07504(50)
0.07461(57)
0.07327(68)
0.07210(87)

0.07163(106)
0.07123(140)
0.07118(216)

0.8441(212)
0.9305(215)
0.7169(234)
0.6013(385)
0.5514(646)

0.5188(1033)
0.4527(1656)

5.8 x lO”21 
1.3 x 10"17 
9.0 x 10“2 

0.68 
0.61 
0.38 
0.13

Table B.236: Vector fit to the kinetic 3 Si mass, with (ap)2=4. *Mass becoming negative.

tmin/tmax aEi (1 E 2 Q
2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.09379(66)
0.09339(75)
0.09153(90)

0.09002(115)
0.08939(141)
0.08840(205)
0.08830(351)

0.8622(208)
0.9461(215)
0.7365(230)
0.6205(379)
0.5718(629)
0.4910(941)

0.3975(1463)

4.0 x 10-21
3.7 x 10“ 18 
5.6 x 10“2

0.47
0.37
0.24

7.8 x 10“2

Table B.237: Vector fit to the kinetic 35i mass, with (ap)2=5. *Mass becoming negative.
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tmin/tmax aEi aEi Q
2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1126(8)
0.1123(9)

0.1098(11)
0.1079(15)
0.1071(18)
0.1053(29)
0.1052(52)

0.8836(209)
0.9679(214)
0.7570(233)
0.6394(384)
0.5889(635)
0.4733(911)

0.3778(1432)

8.9 x 10~21 
8.0 x 10~18 
4.2 x 10~2 

0.34 
0.24 
0.18 

5.6 x 10~2

Table B.238: Vector fit to the kinetic 3 Si mass, with (ap)2=6. *Mass becoming negative.

tmin/tmax aE\ aE2 Q
2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1498(12)
0.1501(14)
0.1458(17)
0.1433(22)
0.1420(29)
0.1379(54)

0.1372(125)

0.9169(210)
1.002(22)

0.7913(263)
0.6773(400)
0.6238(675)
0.4541(931)
0.3240(1412)

5.6 x 10"2°
3.7 x lO"17
3.2 x 10~2 

0.17
9.2 x 10-2 
8.5 x 10-2
2.7 x 10“2

Table B.239: Vector fit to the kinetic 3Si mass, with (ap)2=8. *Mass becoming negative.

tmin/tmax aEi aE2 Q
2/13*
3/13*
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.1686(14)
0.1693(16)
0.1639(20)
0.1609(27)
0.1594(36)
0.1531(77)

0.1532(155)

0.9429(217)
1.033(21)

0.8149(248)
0.6983(424)
0.6370(719)
0.4389(963)

0.3468(1530)

7.0 x lO-19
2.1 x 10"15 
4.4 x lO’ 2

0.18 
0.10 
0.12 

3.6 x 10-2

Table B.240: Vector fit to the kinetic 3 Si mass, with (ap)2=9. *Mass becoming negative.
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tmin/tmax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.3164(19)
0.2636(15)
0.2243(22)
0.2264(25)
0.2173(34)
0.2126(47)
0.2095(67)

0.1900(260)
0.1949(398)

3.841(1039)
3.332(481)
1.015(25)
1.118(22)

0.8811(302)
0.7573(551)
0.6771(992)

0.3937(1164)
0.3615(1937)

0.00
0.00

1.4 x 10"15 
1.2 x 10“9

0.15
0.27
0.16
0.21

6.5 x 10~2

Table B.241: Vector fit to the kinetic 3Si mass, with (ap)2=12. **Bad fit.

B.4.2 W avefunction at the Origin for a M ^ = 1.8

tmin/tmax V’o(O)
2/13 0.1820(49)
3/13 0.1803(54)
4/13 0.1770(61)
5/13 0.1775(77)
6/13 0.174(12)
7/13 0.168(13)
8/13 0.200(39)
9/13 0.211(61)

ction at the origin for th

tmin/tmax ^o(0)
2/13 0.1485(42)
3/13 0.1476(48)
4/13 0.1434(55)
5/13 0.1442(67)
6/13 0.1427(97)
7/13 0.142(12)
8/13 0.172(50)
9/13 0.178(54)

Table B.243: Wavefunction at the origin for the lattice l 3Si channel.
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B.4.3 Lattice Splittings for aM^—1.8

tm in  /  tm ax a £ ( l 3Si -  PSo) aE(23Si -  21S 0) a£ (3 3Si -  3^0 )
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.02160(35)
0.02160(35)
0.02177(36)
0.02169(38)
0.02158(39)
0.02153(41)
0.02135(51)
0.02112(49)
0.02178(50)

0.06(16)

0.0158(21)
0.0157(26)
0.0178(33)
0.0190(85)
0.013(24)
0.012(64)

0.0249(97)
0.022(10)
0.052(28)
0.15(18)

0.0130(56)
0.0157(91)
0.036(15)
0.036(30)
0.018(18)
0.013(33)
-0.3(41)
0.06(16)
0.04(19)
-5(28)

Table B.244: Results from the 3e3s matrix fit.

tmin I tmax a E iP P i -  13P0) aE(21Pl -  23P0)
2/13 0.0111(16) 0.0142(33)
3/13 0.0110(19) 0.0119(45)
4/13 0.0113(23) 0.0101(65)
5/13 0.0109(30) 0.0040(95)
6/13 0.0104(35) 0.002(13)
7/13 0.0104(44) -0.012(23)
8/13 0.0108(46) -0.017(60)
9/13 0.0050(81) -0.01(19)
10/13 0.20(50) 0.2(14)

Table B.245: Results from the matrix fit.

tmin/tmax a E (l3P2E -  PPO aE(23P2E -  23P!)
2/13 0.0042(12) 0.0077(24)
3/13 0.0039(14) 0.0051(35)
4/13 0.0043(17) 0.0048(48)
5/13 0.0045(21) 0.0132(66)
6/13 0.0046(25) 0.019(10)
7/13 0.0055(33) 0.026(18)
8/13 0.0001(37) 0.028(37)
9/13 0.002(11) 0.44(40)
10/13 0.0004(630) 2.0(16)

Table B.246: Results from the matrix fit.
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tmin/tmax a E {l3P  -  l 'P j ) aE(23P  -  21Pi)
2/13 0.0006(11) 0.0014(22)
3/13 0.0005(15) 0.0024(34)
4/13 -0.0003(20) 0.0011(50)
5/13 -0.0011(25) 0.0069(74)
6/13 0.0018(36) 0.011(10)
7/13 0.0027(44) 0.041(23)
8/13 0.007(12) 0.069(36)
9/13 -0.0025(96) 0.20(19)

Table B.247: Results from the vector fit.

tmin j  tmax 23S,-l3Sil'P.-lSS,
2/13 1.385(29)
3/13 1.357(36)
4/13 1.361(45)
5/13 1.289(54)
6/13 1.257(67)
7/13 1.352(96)
8/13 1.38(17)
9/13 1.38(23)
10/13 1.50(34)

Table B.248: Results from the matrix fit.

tmin/tmax i»p2E-i*Pil'Pi-lSPn
2/13 0.38(11)
3/13 0.35(13)
4/13 0.38(15)
5/13 0.42(21)
6/13 0.44(29)
7/13 0.54(42)
8/13 0.01(35)
9/13 0.5(22)
10/13 0.005(300)

Table B.249: Results from the matrix fit.
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B .4.4 Lattice State Fits for a M ^ = 2 .1

tmin/tmax aEi aE2 a Ei Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.4038(11)
0.4037(11)
0.4040(11)
0.4039(12)
0.4033(12)
0.4035(13)
0.4029(15)
0.4021(15)
0.4034(15)
0.4011(32)

0.6728(65)
0.6727(84)

0.6830(102)
0.6575(236)
0.6460(533)
0.6686(393)
0.6710(347)
0.6746(377)
0.7593(724)
0.5840(821)

0.8020(172)
0.8163(287)
0.8316(488)
0.7530(566)
0.6978(447)

0.6877(1181)
2.597(1767)

0.9315(4177)
1.028(595)

1.762(2501)

9.0 x 10"5
3.1 x lO”4
3.7 x 10“4
1.7 x lO-3
1.1 x 10~3
2.5 x 10“3 
4.0 x 10~3
1.6 x 10“2
1.2 x 10-2 
3.4 x 10-2

Table B.250: Matrix fit to the 35i channel.

tmin/tmax aE\ aE2 aEi Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.3844(9)
0.3842(10)
0.3844(10)
0.3843(10)
0.3838(11)
0.3841(11)
0.3837(12)
0.3831(13)
0.3838(13)
0.3811(30)

0.6595(59)
0.6594(77)
0.6677(96)

0.6424(241)
0.6347(476)
0.6470(366)
0.6515(314)
0.6555(344)
0.7183(583)
0.5369(678)

0.7936(187)
0.8045(304)
0.8019(496)
0.7257(533)
0.6826(481)
0.6758(1137)
2.736(1957)

0.8881(4039)
0.9970(5483)
1.913(2581)

2.6 x 10~4 
4.2 x 10“4
4.8 x 10“4
2.0 x 10~3
9.5 x lO"4
2.9 x 10"3
5.9 x 10"3
1.5 x 10“2
1.0 x 10-2 
5.4 x 10"2

Table B.251: Matrix fit to the lS$ channel.

tmin [ tmax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.6077(41)
0.6078(48)
0.6077(55)
0.6057(71)
0.6016(84)
0.6022(97)
0.6082(80)

0.5902(139)
0.6100(121)
0.5303(2284)

0.8301(99)
0.8310(144)
0.8184(201)
0.7903(277)
0.7762(377)
0.8028(595)

0.9531(1244)
1.030(239)

2.362(2119)
0.7406(4102)

1.3 x 10"2
7.4 x 10“3 
1.7 x 10"2
1.5 x 10“2 
7.3 x 10“3
5.9 x 10"3
1.9 x 10“2 

0.16 
0.16 
0.37

Table B.252: Matrix fit to the lP\ channel.
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tmin / tmax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5886(54)
0.5892(65)
0.5899(84)

0.5864(108)
0.5786(180)
0.5725(205)
0.5416(589)
0.5872(540)

0.1178(2889)

0.8766(104)
0.8606(148)
0.8202(217)
0.8116(306)
0.7470(414)
0.7816(619)
0.6544(699)

0.7422(1632)
0.5965(319)

7.9 x 10~2
6.9 x 10-2 

0.13
7.7 x 10-2 

0.13 
7.0 x 10“2 

0.12 
7.3 x 10~2 

0.26

Table B.253: Vector fit to the 3P0 channel.

tmin I tmax aE\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5976(53)
0.5974(65)
0.5976(81)

0.5925(100)
0.5839(153)
0.5688(171)
0.5381(390)
0.5881(313)

0.1757(3217)

0.8984(102)
0.8766(145)
0.8465(216)
0.8436(307)
0.7932(412)
0.8590(630)
0.7428(752)

0.8782(1807)
0.6099(390)

6.1 x 10“2 
8.5 x 10“2 
9.7 x lO’ 2 
5.9 x 10“2
6.2 x lO"2 

0.10 
0.13 
0.15 
0.43

Table B.254: Vector fit to the 3 Pi channel.

tmin/tmax aE\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5995(62)
0.5996(78)

0.6045(103)
0.6064(139)
0.5923(197)
0.5862(195)
0.5304(594)
0.5971(359)

0.4826(15495)

0.8951(120)
0.8703(170)
0.8499(261)
0.8307(382)
0.7949(516)
0.8870(848)
0.7168(847)

0.9260(2500)
0.5132(11719)

0.15 
0.20 
0.17 
0.10 

9.4 x 10“2 
8.9 x lO '2 

0.20 
0.30 
0.58

Table B.255: Vector fit to the 3 Pi channel, x  component.
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tmin/tmax aEi aEi Q
2/13 0.5972(63) 0.9000(117) 0.14
3/13 0.5955(77) 0.8793(167) 0.16
4/13 0.5958(99) 0.8450(248) 0.18
5/13 0.5891(117) 0.8622(366) 0.13
6/13 0.5863(185) 0.7885(507) 0.16
7/13 0.5473(254) 0.8079(659) 0.35
8/13 0.5444(430) 0.7486(969) 0.21
9/13 0.5889(346) 0.9451(2306) 0.22
10/13 0.4705(1949) 0.7311(2420) 0.17

Table B.256: Vector fit to the 3 Pi channel, y component.

tm in /tm a x aEi aE2 Q
2/13 0.5948(60) 0.8973(117) 0.49
3/13 0.5960(73) 0.8776(173) 0.50
4/13 0.5957(95) 0.8478(258) 0.52
5/13 0.5866(117) 0.8463(367) 0.48
6/13 0.5805(178) 0.8042(531) 0.41
7/13 0.5753(179) 0.9034(863) 0.47
8/13 0.5471(386) 0.7959(1170) 0.43
9/13

10/13*
0.5767(378) 0.8791(2488) 0.27

Table B.257: Vector fit to the 3 Pi channel, z component.
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tmin j  tmax aE\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

11/13*

0.6114(44)
0.6112(51)
0.6116(58)
0.6098(74)
0.6055(84)
0.6064(93)
0.6075(81)

0.5898(116)
0.5991(128)

0.8363(100)
0.8346(144)
0.8225(201)
0.8021(284)
0.7921(298)
0.8242(652)

0.9722(1326)
1.241(367)

2.438(2233)

5.7 x lO’ 3
2.8 x lO”3
7.4 x 10“3 
4.2 x lO-3
2.5 x 10~3
1.9 x 10"3
2.5 x 10“2 

0.17 
0.40

Table B.258: Matrix fit to the 3P2e  channel. *Mass becoming negative

tmin / tmax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

11/13*

0.6111(47)
0.6116(56)
0.6123(66)
0.6119(83)
0.6071(94)

0.6131(100)
0.6159(99)

0.6025(131)
0.5978(162)

0.8323(104)
0.8328(152)
0.8211(211)
0.8152(313)
0.8310(472)
0.9158(815)
1.076(180)
1.752(769)

2.721(4341)

0.20 
0.12 
0.12 

7.6 x lO '2 
8.2 x 10-2 
8.1 x 10“2 

0.14 
0.27 
0.32

Table B.259: Matrix fit to the 3P2e  channel, xy  component. *Mass becoming negative
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tmin 1tmax aE\ o,E2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.6095(48)
0.6083(57)
0.6069(64)
0.6019(85)
0.5961(95)

0.5960(103)
0.5910(96)

0.5779(142)
0.5899(156)

0.5591(2737)

0.8315(106)
0.8292(150)
0.8144(210)
0.7876(279)
0.7582(375)
0.7732(588)

0.9159(1141)
1.119(283)

0.8359(2797)
0.6075(2229)

5.3 x 10~3 
2.2 x 10“3
1.6 x lO '2 
9.9 x 10“3
1.6 x 10~2
1.6 x lO”2 

0.11 
0.32 
0.41 
0.40

Table B.260: Matrix fit to the 3P2£ channel, xz  component.

tmin/tmax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

11/13*

0.6137(46)
0.6154(54)
0.6176(60)
0.6186(77)
0.6154(93)

0.6138(110)
0.6176(97)

0.5903(146)
0.6028(160)

0.8453(110)
0.8479(161)
0.8410(233)
0.8055(331)
0.7869(450)
0.8122(737)
1.014(163)
1.126(337)

2.878(3344)

5.9 x 10"4
3.8 x 10~4
1.2 x lO '3
1.4 x 10“3
3.5 x lO’ 4
3.8 x lO’ 4
5.3 x lO”3 

0.10 
0.29

Table B.261: Matrix fit to the 3P2# channel, yz  component.

tmin / tmax aE\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.6027(54)
0.6030(66)
0.6034(83)

0.5916(101)
0.5855(145)
0.5694(155)
0.5548(286)
0.5981(222)

0.6004(3431)

0.9209(105)
0.8998(154)
0.8715(232)
0.8679(329)
0.8363(464)
0.9699(792)
0.8610(1192)

1.125(311)
0.6517(7414)

1.2 x 10"2
1.4 x 10~2
1.2 x 10“2
1.5 x 10-2 
8.0 x 10“3

0.13
8.5 x 10“2 

0.28 
0.20

Table B.262: Vector fit to the 3P2t channel.
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tmin/tmax aE\ aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.6073(66)
0.6095(83)

0.6089(107)
0.5926(133)
0.5963(203)
0.5776(194)
0.5639(283)
0.5904(215)

0.6071(4223)

0.9072(124)
0.8839(179)
0.8478(262)
0.8327(359)
0.8030(539)
0.9325(844)

0.9350(1459)
1.380(492)

0.6678(11197)

9.9 x 10~2 
0.11 
0.14 
0.21 
0.14 
0.60 
0.46 
0.53 
0.39

Table B.263: Vector fit to the 3P 2t  channel, xy  component.

tmin/tmax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.5939(63)
0.5916(75)
0.5932(95)

0.5818(109)
0.5718(160)
0.5465(197)
0.5632(286)
0.5880(212)

0.5808(4677)

0.9279(120)
0.9151(176)
0.8808(279)
0.9017(422)
0.8531(594)
0.9512(962)

0.8649(1603)
1.372(497)

0.6240(9354)

5.2 x 10"2 
3.6 x 10~2 
3.4 x 10-2
4.3 x 10-2 
2.8 x 10~2

0.15
0.12
0.23
0.12

Table B.264: Vector fit to the 3P 2t  channel, xz  component.

tmin/tmax aEi aE2 Q
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13

0.6065(63)
0.6091(78)

0.6134(102)
0.6031(131)
0.5923(172)
0.5861(158)
0.5341(591)

0.6399(1071)
0.6408(2258)

0.9251(123)
0.8991(186)
0.8787(287)
0.8589(408)
0.8493(582)
1.082(126)

0.7800(1331)
0.8226(3924)
0.8171(8941)

3.7 x 10-2 
4.5 x 10“2 
3.1 x 10~2
2.4 x 10-2 
1.3 x 10-2
6.5 x 10“2 

0.14 
0.78 
0.47

Table B.265: Vector fit to the 3P2t  channel, yz  component.



2 2 2 APPENDIX B. BE ST LATTICE FITS

tmin/tmax aE\ aEi Q
2/13**
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.01843(7)

0.01744(8)
0.01630(11)
0.01628(12)
0.01606(14)
0.01596(17)
0.01586(22)
0.01585(34)

1.469(179)

3.264(940)
0.7706(197)
0.7531(333)
0.6510(266)
0.5517(401)
0.4817(606)
0.4152(961)

0.00

0.00
7.1 x 10-9 
1.4 x 10-9 
3.8 x lO’ 2

0.25
0.21

7.2 x 10~2

Table B.266: Vector fit to the kinetic 3 Si mass, with (ap)2= l.  *Mass becoming negative, 
**bad fit.

tmin / tmax aEi aEi Q
2/13**
3/13*
4/13**

5/13
6/13
7/13
8/13
9/13
10/13

0.03714(14)

0.03502(17)
0.03256(23)
0.03251(26)
0.03206(30)
0.03184(37)
0.03158(48)
0.03155(75)

1.456(167)

3.287(949)
0.7860(194)
0.7624(334)
0.6640(263)
0.5635(392)
0.4840(582)
0.4130(917)

0.00

0.00
3.3 x 10-9 
6.6 x 10“10
2.3 x 10-2 

0.17 
0.18

6.0 x 10~2

Table B.267: Vector fit to the kinetic 3Si mass, with (ap)2=2. *Mass becoming negative,
**bad fit.
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tmin/tmax aEi a,E2 Q
2/13**
3/13*
4/13**

5/13
6/13
7/13
8/13
9/13
10/13

0.05618(23)

0.05277(26)
0.04879(37)
0.04870(41)
0.04803(48)
0.04767(59)
0.04716(79)

0.04711(124)

1.438(156)

3.305(949)
0.8018(193)
0.7740(335)
0.6777(261)
0.5757(385)
0.4880(565)
0.4158(891)

0.00

0.00 
1.8 x 10-9 
3.6 x lO” 10 
1.5 x 10"2 

0.13 
0.16 

5.3 x 10“2

Table B.268: Vector fit to the kinetic 3Si mass, with (ap)2=3. *Mass becoming negative, 
**bad fit.

tmin j  tmax aE\ aE2 Q
2/13**
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.07540(32)

0.07066(35)
0.06484(51)
0.06475(57)
0.06376(67)
0.06324(84)

0.06259(114)
0.06256(174)

1.413(145)

3.320(940)
0.8155(190)
0.7844(332)
0.6896(258)
0.5797(383)
0.4979(566)
0.4405(881)

0.00

0.00 
2.2 x 10~9
4.7 x 10“ 10
1.8 x 10-2 

0.20 
0.22

7.4 x 10“2

Table B.269: Vector fit to the kinetic 35i mass, with (ap)2=4. *Mass becoming negative, 
**bad fit.

tm in/tm ax aEi aE2 Q
2/13**
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.09538(43)

0.08890(46)
0.08102(67)
0.08089(75)
0.07969(88)

0.07898(111)
0.07785(156)
0.07778(247)

1.386(133)

3.351(965)
0.8314(187)
0.7939(332)
0.7041(254)
0.5944(372)
0.4968(536)
0.4305(835)

0.00

0.00
7.8 x 10"10
1.9 x lO '10
7.3 x 10“3
9.3 x 10-2 

0.15
5.0 x 10"2

Table B.270: Vector fit to the kinetic 35i mass, with (ap)2=5. *Mass becoming negative,
**bad fit.
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tmin /tmax aE\ aE2 Q
2/13**
3/13*
4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.1159(6)

0.1074(6)
0.09721(84)
0.09705(95)

0.09563(112)
0.09468(143)
0.09295(208)
0.09287(333)

1.363(123)

3.372(971)
0.8482(188)
0.8093(333)
0.7199(255)
0.6091(370)
0.4996(526)
0.4322(830)

0.00

0.00 
4.7 x 10“ 10
1.2 x 10~10
4.3 x 10“3 
5.6 x lO”2

0.13 
4.1 x 10~2

Table B.271: Vector fit to the kinetic 35i mass, with (ap)2=6. *Mass becoming negative, 
**bad fit.

tmin j tmax o,E\ o.E2 Q
2/13**
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.1587(9)

0.1453(8)
0.1294(12)
0.1293(14)
0.1274(17)
0.1259(22)
0.1225(34)
0.1224(58)

1.286(102)

3.428(1019)
0.8820(188)
0.8472(330)
0.7548(257)
0.6386(376)
0.5053(531)
0.4260(839)

0.00

0.00 
5.6 x 1 0 '10
1.3 x 10“10 
1.8 x 10“3 
2.1 x 10“2
7.3 x 10“2
2.4 x 10~2

Table B.272: Vector fit to the kinetic 3Si mass, with (ap)2=8. *Mass becoming negative,
**bad fit.
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r̂nin /tmax aEi dE2 Q
2/13*
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.1646(10)
0.1457(15)
0.1456(17)
0.1435(20)
0.1415(27)
0.1369(43)
0.1370(72)

3.448(1038)
0.9008(193)
0.8720(332)
0.7735(263)
0.6542(387)
0.5088(545)
0.4397(887)

0.00
7.7 x 10“10 
1.5 x 10“10
2.1 x 1 0 '3
2.2 x 10-2
9.7 x 10“2 
3.0 x IQ '2

Table B.273: Vector fit to the kinetic 3 Si mass, with (ap)2=9. *Mass becoming negative, 
**bad fit.

train I tmax o,E\ aE2 Q
2/13*
3/13*

4/13**
5/13
6/13
7/13
8/13
9/13
10/13

0.2255(15)
0.1943(23)
0.1951(26)
0.1909(33)
0.1874(46)
0.1774(88)

0.1782(144)

3.532(1176)
0.9619(219)
0.9757(331)
0.8346(298)
0.7044(471)
0.5121(670)

0.4560(1131)

0.00 
1.9 x 10“9 
3.4 x 10“9
9.8 x 10“3
3.8 x 10-2 

0.16
4.7 x 10“2

Table B.274: Vector fit to the kinetic 3Si mass, with (ap)2=12. *Mass becoming negative, 
**bad fit.

B.4.5 W avefunction at the Origin for a M ^ = 2.1

train/tmax V'o(O)
2/13 0.1998(57)
3/13 0.1970(60)
4/13 0.1936(68)
5/13 0.1945(84)
6/13 0.193(12)
7/13 0.185(14)
8/13 0.229(58)

Table B.275: Wavefunction at the origin for the lattice l 1 So channel.
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^min/^Tnax V>o(0)
2/13 0.1693(51)
3/13 0.1673(54)
4/13 0.1630(64)
5/13 0.1643(76)
6/13 0.164(10)
7/13 0.162(14)
8/13 0.207(76)

Table B.276: Wavefunction at the origin for the lattice l 3Si channel.

B.4.6 Lattice Splittings for aM&=2.1

tmin/tmax a £ ( l 3Si -  l^ o ) a £ ,(235i -  21S0) aE(33S 1 -  3 ^ 0 )
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
11/13

0.01947(31)
0.01950(31)
0.01963(32)
0.01957(34)
0.01946(35)
0.01943(37)
0.01923(44)
0.01898(43)
0.01960(43)
0.0192(14)

0.0133(16)
0.0133(21)
0.0153(26)
0.0154(69)
0.008(28)
0.009(72)

0.0183(82)
0.0175(95)
0.040(28)
0.023(28)

0.0085(48)
0.0118(79)
0.030(14)
0.028(23)
0.015(13)
0.011(30)
-0.3(21)
0.03(14)
0.02(16)
-0.10(91)

Table B.277: Results from the 3e3s matrix fit.

t m i n / t m a x a E ^ P i  -  13P0) -  23P0)
2/13 0.0096(15) 0.0108(30)
3/13 0.0095(17) 0.0091(39)
4/13 0.0098(21) 0.0063(57)
5/13 0.0096(26) 0.0032(82)
6/13 0.0091(30) 0.004(11)
7/13 0.0092(38) -0.008(19)
8/13 0.0087(42) -0.021(55)
9/13 0.0026(66) -0.03(18)
10/13 0.15(64) 2.0(12)

Table B.278: Results from the matrix fit.



227

train f^max a E (l3P2E -  l 'P i) aE(23P2E -  2 'P i)
2/13 0.0037(10) 0.0063(21)
3/13 0.0034(12) 0.0037(31)
4/13 0.0039(14) 0.0041(43)
5/13 0.0040(18) 0.0118(58)
6/13 0.0039(21) 0.0159(87)
7/13 0.0041(28) 0.021(15)
8/13 -0.0008(31) 0.018(35)
9/13 0.0005(93) 0.33(34)
10/13 -0.0110(48) 0.5(10)

Table B.279: Results from the matrix fit.

tmin/tmax a E (l3P  -  P P j) aE(23P  -  2 ^ 0
2/13 0.0005(10) 0.0016(19)
3/13 0.0005(13) 0.0024(29)
4/13 -0.00009(180) 0.0020(43)
5/13 -0.0009(23) 0.0064(64)
6/13 0.0014(33) 0.0090(92)
7/13 0.0019(38) 0.031(20)
8/13 0.002(11) 0.056(29)
9/13 -0.007(13) 0.13(12)

Table B.280: Results from the vector fit.

tmin/tmax 2 3 S , - l 3 S i
l ' P . - l ’ S ,

2/13 1.339(29)
3/13 1.318(36)
4/13 1.330(46)
5/13 1.257(54)
6/13 1.218(67)
7/13 1.318(98)
8/13 1.39(18)
9/13 1.38(23)
10/13 1.49(47)

Table B.281: Results from the matrix fit.
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tmin I tmax l a P n ? - l ‘ P l
l ' P . - l ^ P o

2/13 0.39(11)
3/13 0.36(12)
4/13 0.40(15)
5/13 0.43(20)
6/13 0.43(27)
7/13 0.46(37)
8/13 -0.08(37)
9/13 0.3(37)
10/13 -0.07(29)

Table B.282: Results from the matrix fit.
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