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Nomenclature

o ' x0y 0zQ Space fixed coordinate system

o- xyz  Steady translating coordinate system

o'-x' y' z' Ship fixed coordinate system

(xG, y G> z J  Centre of gravity

A Wave amplitude

AJk Added mass coefficients

a Jk Sectional added mass coefficients

a, Lift coefficient

b(x) Distance between the catamaran centre line and one demi-hull centre
line at section x

B Catamaran breadth

Bjk Damping coefficients

#  Viscous damping coefficients

bjk Sectional damping coefficients

Bm Breadth of one single hull

CD Cross-flow drag coefficient

Cjk Hydrostatic coefficients

q  ̂  Viscous restoring coefficients

CB Block coefficient

Cp Prismatic coefficient

CM Midship section coefficient

D Distance between hulls centre lines

d(x) Hull maximum draught at section x

Fj Exciting force and moment

Hydrostatic forcesHS

Fhd Hydrodynamic forces
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Fex Exciting forces

Fr Radiation forces

F! Incident wave forces in the yth directionj

F d Diffracted wave forces in they'th direction

F j  Exciting viscous forces in they'th direction

Fn Froude number

g  Gravitational constant

GMl Longitudinal metacentric height

GMt Transverse metacentric height

h Water depth

H  Inner space between hulls

i Imaginary unit

Ijk Moments of inertia

m2 Wave number
lr  -  0
A .Q

g

L Ship length at water line

LCG Longitudinal centre of gravity

Lw Wave length

Mjk Generalised mass matrix

n Unit normal vector

Nj Unit normal vector in a cross section plane

p  Pressure

r' Position vector of a point on the body surface relative to the o'-x' y 'z'
reference system

R Cylinder radius

c Wetted body surface in unsteady flow
vv

S  Mean wetted body surface in steady flow

t Time variable

T Ship draught
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Te Encounter wave period

U Mean forward velocity of the body

Vj (jc) Relative velocities at section x (J=2,3)

V Fluid velocity vector

VCG Vertical centre of gravity

Vs Body velocity vector

V40 Catamaran model with 40 cm between demi-hull centre lines

V60 Catamaran model with 60 cm between demi-hull centre lines

V80 Catamaran model with 80 cm between demi-hull centre lines

xA x coordinate of the aftermost section of the ship

Greek symbols

a  Displacement relative to the steady moving coordinate system

f3 Incident wave angle with respect to the x-axis (180° is head waves)

S.. Kronecker delta
j k

A Model displacement [Kg]

s Perturbation parameter
Phase angle

<& Velocity potential

O Steady velocity potential

Unsteady velocity potential 

^  Steady perturbation potential

(jfj Incident wave potential

(j)D Diffracted wave potential

(j)k Radiation potential in the Idh mode of motion

(f'k Two dimensional sectional potential

gj Displacements (y=l,2 ...6  , refer to surge, sway, heave, roll, pitch and
yaw respectively)



Gradient operator and 
Ship volume displacement

Laplace operator

Wave frequency

Encounter wave frequency

Natural frequency

Heave, pitch and roll natural frequencies

Symmetric resonance frequency 

Sloshing resonance frequency 

Water density

Free water surface elevation

Vertical and horizontal velocities of the fluid induced by the incident 
wave
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Summary

The aim of this thesis is to develop a practical approach for calculating the catamaran 

motions in waves and to analyse the influence of hull separation and other main 

characteristics on the motions. An experimental program with two different catamaran 

models is used to help validate the theory. The theoretical work developed in this 

thesis is mainly based on strip theory extended to twin-hull configurations in which 

viscous force components are introduced. The two-dimensional theoretical model is 

developed with a cross flow drag term and its predictions are compared with the ones 

of a three-dimensional theoretical model. Both theoretical results are compared with 

the experimental results.

The thesis is divided in six chapters. The first one is introductory and presents the 

importance of the study of the seakeeping behaviour of catamarans in waves. It also 

introduces the history of ship motions in waves and the latest work done concerning 

catamaran motions in waves.

The second chapter formulates the problem of motions of a vessel in waves. The basic 

fluid properties and assumptions used in the theory are explained in this chapter. Both 

two and three-dimensional theories used in this work are based in the potential flow 

theory. The coordinate systems most suited to each different kind of situation are 

defined and explained. The boundary conditions necessary to solve this particular 

problem of ship motions in waves are also defined. Since the exact boundary 

conditions lead to a very complex non-linear problem, the theoretical formulation is 

simplified through a linearisation process.

Chapter 3 develops the hydrodynamic forces associated with the catamaran motions in 

regular waves. All the usual forces in conventional mono-hull ships are developed as 

well as the viscous forces, which are particularly important in the motion responses of 

twin-hull ships. The viscous effects are modelled by a cross-flow drag approach 

developed from aerodynamic theories and are then added to the basic two-dimensional 

potential flow theory. The numerical implementation of the method is described.



Comparisons with published results are made for simple hull forms, like twin- 

cylinders and Wigley forms, as well as with a realistic catamaran model.

In chapter 4 the experimental investigation performed with two catamaran models at 

the Hydrodynamic Laboratory of the University of Glasgow is presented. This chapter 

presents the statistical data analysis performed to choose the experimented model 

characteristics. The instrumentation set-up used for the experiments is described. The 

heave and pitch experimental results are presented and compared with the two- 

dimensional calculations. This study shows how well both heave and pitch results are 

improved when the viscous forces are added to the theory. At the end of the chapter an 

error analysis is performed to analyse the confidence of the heave and pitch 

experimental results as well as to analyse the quality of the incoming wave.

In chapter 5 the catamaran hull interaction and resonance frequencies are studied and 

analysed in order to understand what kind of interactions occur and what is the 

influence of the distance between the hulls in the ship motion responses. In order to 

better understand the hull interactions, the resonance frequencies and the influence of 

the hull distance in the body responses, the twin cylinder results calculated in chapter 

3 are reanalysed to explain the results near the resonance frequencies at zero and 

forward speeds.

The results from the experimental work are analysed and compared with two and 

three-dimensional theoretical calculations. The three-dimensional results do not give 

better results than the two-dimensional results especially near the resonance 

frequencies where the viscous effects are important and are not modelled by the three- 

dimensional theory. The experimental results from the two tested models are 

compared and the influence of the distance between the hulls is investigated. The 

experimental model results are also compared with mono-hull motion responses and 

the results analysed.

Two parametric studies with two different hull forms are made. One uses a hard chine 

hull type like the one used in the experimental work while the other uses a round 

displacement hull. The effect of speed, hull separation, displacement and ship main 

dimensions are analysed.

Finally, in the last chapter the main conclusions are drawn and some 

recommendations and suggestions for future work are made.
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Chapter 1

Introduction

For some kinds of operations such as fast passenger transportation, special military 

missions or oceanographic research, the twin-hull vessel has several advantages over 

the mono-hull vessel. Over the last few years catamarans have been widely used as 

fast passenger ferries where the comfort is one of the most important issues for the 

final user.

The main advantages of catamarans are their large deck area, very high transverse 

stability, small draft, low wave resistance at high speed and in general they can 

maintain a higher speed in a seaway than a conventional planing craft.

It is important to study and develop appropriate tools to predict catamaran behaviour 

at sea, because of increasing use of catamarans all over the world. Since catamarans 

have been used mainly for passenger transportation, from the passenger’s point of 

view, the most important characteristics in the vessel are good seaworthiness and 

voyage time, which is related to the ship speed. From the naval architect’s point of 

view there are two important points to be considered, the seakeeping behaviour of the 

ship and the global structural loading. The seakeeping behaviour is related to 

operational limits and economic viability, especially for passenger transportation 

operations. While in the past, most existing catamarans were small ships where the 

global hydrodynamic forces were not structurally important, nowadays with the 

advancement of new hull forms with higher speeds and larger dimensions the global 

hydrodynamic forces play a crucial role in the catamaran structural design.

The study of the seakeeping behaviour of mono hull vessels started in the 1950s by 

St.Denis and Pierson (1953) and Korvin-Kroukovsky and Jacobs (1955,1957). The 

first theory suitable for numerical computations based on a two-dimensional 

approach, was presented by Korvin-Kroukovsky and Jacobs, and is commonly 

referred to as the strip-theory. Since then much work has been developed and 

improved by many other authors, such as Gerritsma and Beukelman (1967), Salvesen 

et al. (1970). The first mathematical justification of strip theory was presented by 

Ogilvie and Tuck (1969). Later Newman (1978) presented a complete formulation of
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the theory of ship motions. These theories are based on the assumption of potential 

flow, slender ships and small amplitude motions. Conventional strip theories do not 

consider forward speed effects on the free surface and the speed effects on the hull 

boundary condition are approximated in a simplistic way. The main problem of strip 

theory is in fact the treatment of forward speed effects.

The application of strip theory to multi-hulls started in the 1970s with the work of 

Ohkusu and Takaki (1971), Lee, Jones and Bedel (1971) and Lee et al. (1973).

Three-dimensional theoretical models were developed, first to predict the response of 

large offshore structures and then these models were extended to ships and multi-hulls 

with forward speed (Inglis and Price (1982a,b), Chan (1993), Hudson et al (1995)). 

These three-dimensional models are theoretically more correct but they are difficult to 

implement and the calculations are very complicated and time consuming.

Ohkusu (1970) proposed an approximate method to calculate hydrodynamic forces 

and moments on multiple cylinders with arbitrary cross section and with forced heave, 

sway and roll motion. Ohkusu and Takaki (1971) calculated the seakeeping qualities 

using the strip theory method and using the hydrodynamic forces previously 

developed by Ohkusu (1970). The theoretical results were compared with 

experimental results and were found to be satisfactory.

Lee, Jones and Bedel (1971) presented a theoretical method to calculate the two 

dimensional hydrodynamic coefficients associated with the motion of catamarans. 

This method was applied to twin cylinders. The mathematical tool adopted to solve 

the problem is the method of source distribution on the cross sectional contour of both 

cylinders. This is the same method adopted by Frank (1967) to one cylinder. Some 

experimental work was done with different shapes of twin cylinders and where the 

results from the theory and experiment were compared they showed good agreement.

Later, Lee, Jones and Curphey (1973) also used the strip theory method and the two 

dimensional hydrodynamic coefficients to calculate motions and hydrodynamic loads 

on catamarans. The theoretical results were also compared with experimental work 

and they were found to be satisfactory, except for some discrepancies resulting from 

inadequate account for viscous effects and three dimensional effects. The 

discrepancies on the theoretical results can be seen, specially near the resonant 

encounter frequencies, where the motion amplitudes are overestimated and increase
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with the forward speed. For SWATH vessels the discrepancies are particularly more 

pronounced.

Following the same line of development, Lee (1976) presented a theoretical method to 

predict SWATH motions in waves, considering the viscous effects through an 

adequate representation of the viscous damping in the hydrodynamic forces. With this 

work he concluded that the effects of viscous damping on SWATH motions can be 

predicted by combining the cross flow approach with strip theory. Even if 

theoretically it cannot be fully justified, for practical purposes this approach is 

acceptable.

Ohkusu and Faltinsen (1990) presented a practical approach to predict three 

dimensional hydrodynamic interaction between two hulls of a catamaran oscillating 

and with forward speed. Chapman's (1976) approach is used with a full linear free 

surface condition including the forward speed effects. The predicted hydrodynamic 

forces agree generally well at high speed with the model test results and they 

concluded that hydrodynamic interaction between hulls is weak at high speeds.

Faltinsen and Zhao (1991a, 1991b) presented a generalisation of Chapman's method 

based on strip theory and a full linearised free surface boundary condition with the 

forward speed effect term, to calculate ship motion at high forward speed. Faltinsen et 

al. (1992) extended the above theory further to calculate motions and loads of 

catamarans in waves. At high speeds if the hulls are not too close to each other and the 

waves generated on one hull do not influence the pressure distribution on the other, it 

can be assumed that the hulls are hydrodynamically independent of each other.

Van't Veer and Siregar (1995) also studied the interaction effects on a catamaran 

travelling with forward speed in waves. They used a strip theory but they considered 

three different kind of interference between hulls, depending on the ship speed. For 

very small speeds the hull interaction can be considered two-dimensional and can be 

well predicted with strip-theory. At very high speed the authors say that there is no 

wave interaction between the hulls and it is only at medium speed that there is a 

longitudinal wave interaction. At high speed the waves generated by one hull do not 

reach the other hull and as a result there is no interaction between the hulls. A 

correction scheme was included in order to take into consideration the 3D effects in
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the medium speed range. The results obtained by this method are an improved version 

of previously developed conventional strip theory results.

Chan (1993) proposed a three dimensional linearised potential theory associated with 

a cross flow approach for taking viscous effects into account for the prediction of 

motions and loads of twin-hull ships. The cross-flow approach is similar to the 

approach made by Lee (1976). The theoretical and experimental results show good 

agreement for a catamaran and a SWATH ship, except for some discrepancies that 

are believed to be caused by neglecting forward speed effects on the free surface 

boundary condition.

Hudson, Price and Temarel (1995) compared experimental model tests with 

catamarans at different speeds with a two dimensional and a three dimensional 

theoretical model. They concluded that both 2D and 3D theoretical models are 

suitable for catamarans with small hull separation and low speed. But as speed 

increases the results are not so good as they over predict the experimental results.

Fang, Chan and Incecik (1996) presented a two dimensional method based on the strip 

theory with a cross flow approach for taking viscous effects into account to study the 

motion response of catamaran in waves. Some experimental work was done and 

compared with numerical results. They concluded that the two dimensional method 

correlates well with the measurements of small amplitude motions except near the 

resonance frequencies. However it is shown that the theoretical results can be 

improved if the effects of viscous damping are added to the theory.

The objective of this work is to develop a practical approach to predict catamaran 

motions in regular waves and to study the influence of the distance between the two 

hulls in the catamaran motions.

Some theoretical calculations are based on a strip-theory model. The strip-theory is a 

very fast prediction tool, is widely used and is suitable to predict catamaran motions 

in regular waves, but some results show discrepancies near the resonant frequencies. 

To correct these discrepancies, the viscous flow effects modelled with a cross flow 

approach will be incorporated into the basic strip-theory formulation.

The resonance frequencies are analysed both theoretically and experimentally. Besides 

the response peak, of the first natural frequency, there is also in the theoretical results
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a second peak that has to be properly studied because it is not evident in the 

experimental results.

To validate the theoretical method some experimental work on a Vosper International 

catamaran was carried out at the Hydrodynamic Laboratory of the University of 

Glasgow. The experimental work was carried out for two different hull separations, at 

four different forward speeds, head waves, one wave height and for several wave 

frequencies. The strip-theory results are compared with experimental results and 

Chan’s (1990) three-dimensional theory.

At high speed the interaction effects between the hulls are weak. For a certain hull 

separation and after a certain speed, the waves generated by one hull do not have 

sufficient time to reach the other hull. The main objective of the experimental test 

program was to validate the theoretical results and to observe the relation between 

forward speed and hull separation distance.
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Chapter 2

Formulation of the problem

2.1 Introduction

To calculate ship motions in regular waves it is necessary to determine the fluid 

motion around the travelling ship. The ship is considered as an unrestrained rigid body 

with six degrees of freedom. The interaction between the moving body and the fluid 

flow is very complex but can be considered as a system that involves only a limited 

number of hydrodynamic forces.

One of the most common mathematical formulations used to solve this problem is 

based on potential flow theory. As shown in chapter 1, two and three-dimensional 

solutions have already been developed based on this theory. The potential flow theory 

is based on the assumption of the ideal fluid. This allows several simplifications and 

makes the solution of the problem more feasible. Nevertheless other simplifications 

will have to be made. The problem has to be formulated setting some appropriate 

boundary conditions. The full development of the boundary conditions under this 

potential flow theory will lead to non-linear terms, which are once again very difficult 

to solve. In order to simplify the solution, the formulation will go through a 

linearisation process by using the perturbation expansion technique.

In this chapter all these aspects are developed and the formulation that is used to 

calculate the hydrodynamic forces and the solution of the motion problem is described 

later in chapter 3.

The formulation and assumptions made in this chapter are similar to the theories 

presented by Newman (1978) and Chan (1990).

2.2 Fluid Properties

The motion of a fluid is governed by the well known Navier-Stokes equations but in 

the formulation of this problem some simplifications have to be made in order to
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make the solution feasible. The fluid is considered incompressible and homogenous. 

For the main problem of ship motions in waves the first simplification is that the 

viscous stress tensor, in the full Navier-Stokes equation, is not considered and so the 

fluid can be analysed as an inviscid, incompressible and homogeneous fluid. Under 

these assumptions and assuming an irrotational flow, the problem will be formulated 

using a potential flow analysis as described below.

The fundamental equations in this problem formulation are the continuity equation 

and Euler’s equations. Consider the fluid velocity vector v(jc0, y 0 ,z0, t) = (m, v, w) in

a Cartesian coordinate system (x0,y0,z0). The velocity vector must satisfy the 

continuity equation for an incompressible fluid:

V-V = 0 or
0X„ 0 y o 0 zOJ 

and the Euler equations for an ideal fluid:

•V = 0 (2.1)

t \ 1 1—  + (V-V)V =  Vp + - F  2.2)
dt p  p

where p  is the pressure and F is the vector of body forces. In this case the only body 

force is the gravitational force which acts vertically downward. On the coordinate 

system the vertical axis is the z0-axis which is positive upward and z0 = 0 is set as the

mean ffee-surface level. So the vertical gravitational force is F = (o ,0 ,-pg ) .

It can be shown (Newman 1977) that, if the fluid is inviscid and incompressible the 

fluid motion may be considered irrotational or:

rot V = V x V = 0 ^2 3)

If the velocity vector V is irrotational then it can be represented simply as the gradient 

of a scalar function O (x0,y 0,z0,i) :

V = V<D or V = (w,v,w) = <2'4)\ d x Q d yQ azQ)

The scalar function o (x 0,y0,z0,f) is the velocity potential.
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If the velocity V, or the gradient of the velocity potential V O , is substituted into the 

continuity equation, then the Laplace equation is obtained:

£?2Q ^ 2o  <?2q  

+ 0y\ + ẑo

So if the fluid is inviscid, incompressible and irrotational, and satisfies the continuity 

equation, then it also satisfies the Laplace equation.

The fluid motion irrotational property can be confirmed by recalling from vector 

analysis that the curl of a gradient is zero.

Through Euler’s equations a relation can be seen between the fluid velocity, the 

pressure and body forces. By integrating the Euler’s equations, an explicit equation 

for the pressure can be obtained, which is the well known Bernoulli equation. The 

Euler’s equation takes the form:

^  + (V-V)V = - ^ v ( p  + / 7gz0) 

Using the vectorial identity

(2 .6)

( V - V ) V s v ( jV 2J - V x ( V x V )  (2.7)

and substituting in Euler’s equation

^  + v ( |  V 2J -  v  X (v  x v )  = - - X p g z *  +p) (2.8)

using the velocity potential V = VO the previous equation becomes,

^  VO + v ( j V 2J -  V X (V X V) = - - v { p g z a + p) (2.9)

Because of the irrotational fluid property, rot V = V x V = 0, so equation (2.9) can be 

written in the form:

( ^O 1
T * + 2 V +~p + ̂ J

= 0 (2.10)

Integrating with respect to the space variables, results in the explicit equation of the 

pressure:



(2 .11)

The “constant” C(t) is independent of the space variables and can be set equal to zero 

or it can be set equal to some other desired value such as the atmospheric pressure. 

C(t) can be absorbed into the velocity potential by defining a function f(t) such that,

vector, since the gradient is not time dependent.

2.3 Coordinate Systems

To describe the fluid motion and the ship motion, three Cartesian coordinate systems 

will be adopted, one fixed and two moving ones. Define o -  x 0y 0z0 as fixed in space, 

o'-x' y 'z ' fixed with respect to the ship, and o - x y z  moving in steady translation 

with the mean forward speed of the ship.

The space fixed system o - x 0y 0z0 is the simplest one to express the free-surface 

boundary condition. The ship fixed system o '-x 'y 'z 'is  the best one to derive the 

boundary condition on the ship’s wetted surface. The steady-translating system 

o -  x y z  is an inertial reference frame with the x-axis translating on the undisturbed 

free-surface with the same mean forward velocity as the ship.

In the space fixed system, the plane o - x 0y 0 coincides with the undisturbed free 

surface, hence z0 = 0 is the plane of the undisturbed free surface. The z0-axis is 

positive upward. The x0-axis is positive in the direction of the ship’s forward velocity. 

The y0-axis is positive in the port direction. The steady-translating coordinate system 

o -  x y z  is related to the space-fixed system o -  x0y 0z0 by the linear transformation

(2 .12)

and then a new potential:

The value of C(t) is related to the velocity potential but has no effect on the velocity

(2.13)
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with U as the mean forward velocity of the ship. From the previous relation it can be 

seen that the steady-translating system coincides with the fixed coordinate system 

when the forward velocity of the ship is zero.

X .

Figure 2.1 - Coordinate Systems

The steady-translating system o - x y z  is used to describe the body motion in six 

degrees of freedom. The origin is at the intersection of the undisturbed free-surface 

and the vertical plane which contains the centre of gravity. The translational 

displacements in the x, y, and z directions with respect to the origin are 4>4 and 4  > 

respectively. The angular displacement of the rotational motion about the x, y, and z 

axis are 4>4 ^6> respectively. Here 6 refer to surSe> sway,

heave, roll, pitch and yaw motions respectively and as shown in figure 2.1.

The o'-x' y  z' reference system is the oscillatory translating system, fixed with the

ship. The difference a  between the coordinates of a point in the steady translating 

reference system o - x y z  and the ship fixed system o '-x 'y 'z ' gives the local 

oscillatory displacement (these two reference systems are equal in a steady state 

equilibrium).
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a  = x - x ’ (2.14)

or

« =(£>6’4 ) + (£>4’& )x r' (2-15)

a  = ^ + Q x r '

where r ' is the position vector of a point on the body surface, relative to the o'-x' y 'z ' 

reference system.

2.4 Boundary Conditions

For the analysis of fluid motions of any physical systems it is necessary to impose 

appropriate physical conditions on the boundaries of the system domain. In fact, it is 

precisely these boundary conditions that distinguish different flow problems.

Based on the fluid assumptions made on section 2.2, the velocity potential of the flow 

must satisfy the Laplace equation:

V2O = 0 (2.16)

and the boundary conditions that will allow the exact solution of the problem to be 

found. Under the assumptions of this problem, there are two types of boundary 

conditions: a kinematic and a dynamic condition. The kinematic condition is related to 

the velocity of the fluid on the boundary while the dynamic condition is related to the 

forces on the boundary.

The boundary conditions for the problem of the motion of surface ships in regular 

waves are the body boundary condition, the free surface boundary conditions, the 

bottom or sea bed boundary condition and a wave radiation condition.

2.4.1 Body Boundary Condition

The body boundary condition is a kinematic condition imposed on the wetted ship 

surface. This condition expresses impermeability, i.e. that no fluid enters or leaves the
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body surface. The normal component V • n of the fluid velocity must be equal to the 

normal velocity Vs • n of the boundary body surface.

where n is the unit normal vector to the body surface. The vector n is defined to point 

out of the fluid domain. The body velocity Vs is the local velocity of the wetted body 

surface Sw relative to the body-fixed reference system o'-x' y' z ' .

where the subscript t, means differentiation in respect to time.

2.4.2 Free Surface Boundary Condition

On the surface boundary two conditions will be imposed: the kinematic and the 

dynamic boundary conditions.

Kinematic boundary condition.

The free water surface is defined by its elevation ^(x0,y 0,r). Define a function 

F(x0,y 0,z0,r), such that

Assuming that a fluid particle on the free surface stays on the free surface, this means 

that it satisfies the previous equation and the substantial derivative is zero, i.e. 

DF
— 0. This substantial derivative expresses the rate of change with time of the 

function F  if one follows a fluid particle in space. Mathematically it is expressed as

V • n = Vs • n on the wetted body surface Sw . (2.17)

Vs =ct, onSw (2.18)

on the free surface

(2.19)

Applying that expression to the function F:



and remembering that V = V O , the free surface kinematic condition is obtained

— [zQ- g (x 0,yQ,t)\ + V(£>-'v[z0-4 { x 0,y 0,t)\ = 0 on z0 = C  (2.20)

Dynamic boundary condition.

The dynamic free surface condition requires that the pressure on the free surface is 

equal to the constant atmospheric pressure p a. If the term C(t) in the Bernoulli 

equation (2.11) is set equal to the atmospheric pressure then the Bernoulli equation 

becomes

1 |V7 Î2—  + -V<D + g z„= °
at 2

on z0 = f

The free surface conditions (kinematic and dynamic) are non linear. The position of 

the free surface is not known before the problem is solved. However, by linearizing 

the free surface conditions it is possible to simplify the problem and still get useful 

information for many practical cases. The linearization will be done in the following 

section 2.5. This boundary condition can be used to determine the free surface 

elevation from the implicit equation

g
■T- + 7 N  d t  2

(2 .21)

Substituting equation (2.21) into (2.20) leads to 

( a® l£_
dt gz 0 + . + — VO 

dt 2

y f
+ VO-V gz o +

)_ dt 2 1
=  0

then

<D„+2VO-VO,+^Va>V(VO-V(D)+g<D2ii = 0  on z0 = ^  (2.22)

where the subscript t and z mean differentiation in respect to time and to the z 

coordinate respectively.
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2.4.3 Bottom Boundary Condition

The bottom or the sea bed boundary condition implies that there cannot be flow 

through the bottom boundary. It is a kinematic boundary condition where the 

boundary is stationary, so the fluid particle on the bottom has zero velocity normal to 

the boundary. It is assumed that the sea bed is flat and the normal is in the vertical 

direction.

dO
——  = 0 on z = -h
dz

where h is the water depth. Since a deep water condition, with infinite depth, is 

assumed, the bottom boundary condition is:

d®
—— = 0 as z —̂ -go
dz

2.4.4 Far Field Radiation Condition

The three previous boundary conditions, i.e., body surface, free surface and bottom 

boundary conditions, are not enough to guarantee a unique solution to the motion 

problem. Physically, the radiation condition is necessary to ensure that the waves 

generated by the body propagate away from the body and decay to the infinite.

2.5 The Linearised Problem

As mentioned in previous sections, the determination of the velocity potential gives 

the velocity of a fluid particle in the problem domain. The velocity potential must 

satisfy the Laplace equation and the boundary conditions. In the previous sections, the 

exact boundary conditions used in this problem were formulated. The exact body 

boundary condition on the unsteady body surface Sw and the exact free surface 

condition are non-linear formulations. The solution of the problem using the exact 

non-linear boundary conditions is mathematically complicated. This is a difficult 

problem because the non-linearities associated with the free-surface and the unsteady 

body surface interact. In order to simplify the solution, the problem has to be
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linearised. The linearisation method, is one in which all the second-order terms are 

neglected because they are considered sufficiently small.

The velocity potential O is assumed to be represented by a convergent power series

®(x0,f;.?) = O (<>) + f O (1) +£-2 O u)+...

as well as the free surface elevation £

= + 2 ^  + £l £ ^ + ...

The power series in the perturbation expansion are convergent if and only if the 

perturbation parameter sexists and is less than unity.

The velocity potential will be defined first and then the boundary conditions will be 

linearised. The flow field consists of a steady flow due to the presence of the ship 

advancing with forward motion through the calm water surface and an unsteady flow 

due to the incident wave and due to the diffraction and radiation wave caused by the 

presence and motion of the body.

According to the following transformation x0 = x + U t, the velocity potential ®(x0,r) 

can be represented in the steady moving reference frame by 0(x, y, z, t)

®(x0, t) = ®(* + Ut, y, z, /) = #(x, y, z, t)

thus the time differentiation (Newman 1978) is given by

2.5.1 Linearised Free Surface Condition

The perturbation expansion is used to linearise the free surface condition to the first 

order, and a Taylor series expansion is used to transform the exact free surface £  to 

some known surface such as the undisturbed free surface.

The total velocity potential in the steady moving reference is separated into steady and 

unsteady potentials
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</>(x, y ,  z, t) = 0 (x ) + ®(x, t) (2.23)

where O is the steady and O is the unsteady contributions to the velocity potential. 

Steady flow problem

For a steady flow problem, the velocity potential ® due to the steady forward motion 

of the body (Chan 1990) is given by

steady perturbation potential. The velocity field of the steady flow relative to the 

steady translating coordinate system o -  x y z  is

W(x) = VO(x) = V (- Ux + 0(x))

Using the dynamic free surface condition on the steady free surface elevation g  and 

the steady potential,

®(x) = -U x  + ^(x) (2.24)

where the first term is due to the mean forward speed of the body and ^(x) is the

(2.25)

since (/, = 0 and (/> — ® + Ux

then the steady free surface elevation is given by

^ = _ ^ ( i v o r - c / 2) (2.26)

The non linear free surface condition for the steady flow problem is

(2.27)
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which is similar to the total non-linear free surface condition (2.22) without the time 

dependent terms.

Substituting the steady potential <D(x) = -U x  + ^(x) into (2.27) and retaining the first 

order terms

1 ^
-  v ( -  Ux + (?)■ v (v (-  Ux + j? )v(- Ux + jz>))+ g — (- Ux + jz*)= 0
2 <̂ z

and developing the expression,

C/V„ - t / v ^  + v ^ v (v ^ ) 2 - I ^ a o M v # ) 2 = 0

and retaining the first order terms, the linear free surface condition for the steady flow 

problem is

U 20xx +g 0 z= ® onz = 0

Unsteady flow problem

For the unsteady flow problem the free surface condition is derived by introducing the 

velocity potential (2.23) in

\S
—  + V-V 
.S t

(o ,+ | (V < D )2 +gzcJ = 0 on z = £

which comes from the combination of the non linear kinematic and dynamic free 

surface boundary conditions, then

— + (v 3 > + v d )-v ](d , + - ( v o + v d ) ( v o + v o ) + g z ]  = o on z = (
St ) \  2 J

After some manipulation and neglecting the quadratic terms of O , i.e. coefficients of 

in ® , the free surface of the unsteady flow is obtained.

®„ + 2 V o v o , + -  v® v(vovo)+V <D v(v® V <5)+  +
  2 (2.28)

-  VOv(vOV<d)+ = 0 onz = £
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The free surface elevation of the unsteady flow is obtained by superposing O over (j) 

in equation (2.25) as follows

Substituting (j> = O + Ux into (2.29) and neglecting the quadratic terms of O in £ , 

leads to,

To transform the free surface ^  to a Taylor series expansion is used for the 

previous equation. The two first terms of the expansion are

Substituting £  £  and O in the perturbation series expansion and neglecting the

|( |V O |2- [ / 2) + VOVOj o n z  = f

_~(®' +^(lV° |2 - V ' j  + VOVo)

+ i H 2 _ t / 2 ) +

as seen before £  = ( |v o |2 -  U 2 j on z = ^

VO = v o v o

terms 0[£2) then

<-=?-i(o, + vov6)i=?_(^ )i(vovo)i=_ 

g(£-{)  + ( £ - =  -(o, + V0V0);=_

and

(o , + VOVO)

(g + v o v o )
o n z  = f
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A similar expansion using Taylor series and perturbation series expansion of £  £  and

O is used to develop the free surface condition of the unsteady flow (2.28) from the 

unsteady position £To the steady position £  .

+ 2VOV0, + v o v (v 0 v 5 > ) + ̂ V 0V (V 0V 0) + gO z 

1 ^
-  (®, + v®v®,) 2 ^ ( v ® ' v!v®r) + /(s+ )  = 0

on z = £  (2.30)

The general solution of this equation is at the present time difficult. One 

simplification is to reduce the effects of steady flow by the assumption of small steady 

perturbation flow due to forward motion (Chan 1990). All terms associated with the 

perturbation steady potential are neglected in the first order free surface condition for 

the unsteady flow. Hence

w = v® = (- fy,o,o)

is assumed and the first order free surface condition (2.30) takes the form 

-2 U O xt + C/20 ^  + £ 0 Z = 0 on z = 0

or

„  U + 4 * i = 0 on z = 0 (2.31)

2.5.2 Linearised Body Boundary Condition

The body boundary condition (2.17) is defined on the wetted body surface Sw relative 

to the body fixed reference system o'-x' y' z ' . The linearised body boundary condition

is defined on the mean wetted body surface S  . The boundary on its steady state 

position takes the form

W -n = 0 on S  (2.32)

where

19



\y(x) = V®(x) = v(- Ux + 0(x))  (2.33)

From equation (2.17) and (2.18) we get

V n  = a , n  (2.34)

The velocity V is the gradient of the velocity potential, hence equations (2.23) and 

(2.24) lead to

v  = v<t = v (-a« : + ^(x) + ®(x,?)) (2.35)

and with equations (2.34) and (2.35)

(v (-  Ux + (f) + VC>) • n = a ,  • n 

and using (2.33)

On = a , • n -  W • n on Sw (2.36)

The normal vector n is expanded through perturbation series as 

n = n (0) + ^n (l) + o ( s 2)

where

n(0) = n

n (1) = n x n  = ( 5 , ^ , 5 ) x n  

Similarly W can be expanded in a similar way 

W = W (0) + f-w 10 +o(<?2)

where

w(0) = W = (u,v,w)

W (l) =^W  = (a,-V )W

The dot product of W and n using the previous expansions and remembering that 

W x Q = -Q  x W is

(w • n) J  = ([w- £2 X W + (a  • V)w])s o n SW, S  (2.37)

Substituting equation (2.37) into equation (2.36) and using the condition W -n = 0 on

sw.
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0 , = ( o , + Q x W - ( a - V ) w ) - n  on,?*,, S' (2.38)

The last equation is presented in a different way using a  = % + Q x r ' and the 

following vector identity

(w  ■ v)a = (w  • v)5 + [(w ■ V)q ]x r ’ + Q x [(w - V)r'] (2.39)

The vectors \  and Q have zero divergence because they are independent of the spatial 

coordinate, so the first two terms on the right hand side of the equation (2.39) are zero 

and the equation reduces to

( W V ) a  = Q x W  

Substituting into equation (2.38)

= ( a ,  + ( W V ) a - ( a V ) w ) n  on SW, S  (2.40)

The first two terms in brackets give the rate of change of a  in a frame of reference 

moving with the stationary flow.

o„ = f < 0  ^ —  + W -V
\ \ d t

a  -  (a  • V)wj • n onSw, S  (2.41)

Using the following vector identity

V x (a  x W) = (W-V)a -  (a • V)W + a(V-W) -  W(V-a)

Since a  and W have zero divergence, the last two terms on the right hand side of the 

foregoing equation are zero, hence equation (2.38) becomes

= (a t + V x (a xW ) )  n o n Sw, S

If the perturbation of the steady flow field due to the ship is neglected, then 

W = VO = ( -  U,0,0) is assumed and equation (2.41) becomes

O = —  + W-V a  -n= fa ,  + O x ( - t/,0,0)l• nJ J 1 1 o n S . , S

=  -  U(Q x 1)] *n
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The term proportional to U can be interpreted as the product of the ship’s forward 

speed and the angle of attack due to pitch and yaw.

2.6 Linear Decomposition of the Unsteady Potential

In the linearisation process, the velocity potential O is separated into steady and 

unsteady potential (2.23). Assuming the wave amplitude and the unsteady motions are 

small, the unsteady velocity potential O is decomposed linearly into separate 

components due to the incident waves, diffraction waves and radiation waves. The 

decomposition of the potential into separate components allows the solution of the 

several hydrodynamic problems separately. The incident waves have small amplitude 

and are sinusoidal and harmonic in time. Hence the unsteady motions, the diffraction 

and radiated waves are also sinusoidal and harmonic with the frequency of 

encounter c d  . Under these assumptions, the translational and rotational displacements 

of the rigid body are denoted:

with this notation, the unsteady component of the velocity potential is expressed as:

3>(v)=
j =i

- ic o te

where pj is the incident wave potential of unit amplitude, (pD is the diffraction wave 

potential, (p. is the radiation wave potential in the yth mode of motion, A is the wave

amplitude and co is the encounter frequency.

The diffraction wave problem considers the waves produced by the diffraction of the 

incident waves when the body is restrained from oscillating. The radiation wave 

problem considers the waves generated by the oscillating body motion in calm water.

The encounter frequency is

co = coQ -  UkQ cos P
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where U is the mean body forward speed, coQ is the incident wave frequency, (3 is the 

angle of incidence of the wave with the x-axis (180° is head sea) and k0 is the wave 

number.

The wave number for finite water depth h , is given by the dispersion relation

and for infinite water depth, the wave number is

where g  is the gravitational acceleration.

The incident wave potential of unit amplitude given by linear wave theory is

which satisfies the Laplace equation (2.16) and the linearised free surface boundary 

condition (2.31).

The unknown wave potentials must satisfy the Laplace equation, the free surface 

boundary condition and the body boundary condition.

In the diffraction problem, the body is assumed to be restrained from oscillating with 

respect to the body fixed reference system o'—x' y' z' so that a  = 0 and the linearised 

body boundary condition (2.41) becomes

  i £ 0 ( j c c o s / ? - y s i n  ft) 

——{0i +0D)-O on S (2.42)

or

on S
dn dn

The linearised free surface condition for the diffraction problem is

on z = 0
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and for the radiation problem it is:

v d x j
ico + U —— * 1 - 70 j+ g —  = 0 ,y = 1,2...6 on z = 0

In the radiation problem the radiated waves are generated as if the body is forced to 

oscillate with the wave excitation frequency in any rigid body motion mode. In the 

radiation problem, there are no incident waves. Under these assumptions the linearised 

body boundary condition (2.40) for the radiation potential takes the form

6 d<b —
a , + ( \ V V ) a - ( a V ) w ) i i  o n Sw, S

From the foregoing equation and the vector displacement a  = £ + Q x r ' and 

following Ogilvie and Tuck (1969), the body boundary condition becomes

a t
dn

= -icorij + UtHj j=  1,2,..6 on Sw , S

where

(nlsn2,n3) = n 

(n4,n5,n6)= rx n  

and the forward speed coefficients rrij are 

(wj,m2,m3) = m = -(n • V)W

(m4 ,m5,m6) = -(n  • V)(r x w )

If the ship hull geometry is thin, slender or the mean forward speed is low, (j) is small 

enough to be negligible in the unsteady flow and keeping the assumption 

W = (-£/,0 ,0), then

mj= 0 j=l,2,3,4

m5 = n3

m6=-n2

Under these assumptions, the body boundary condition becomes
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3#,-— -  = -icon. 
dn J

j=l,2,3,4

dn
-icvn5 +Un3

<¥* +Un2

2.7 Concluding Remarks

The formulation of the problem based on potential flow theory is described. The basic 

fluid properties and assumptions are presented. The coordinate systems used to solve 

the problem in the more suitable way are set and the initial boundary conditions that 

define the ship motion problem are presented. Since at the moment the non-linear 

solution of this problem is not feasible a linearisation process is presented.
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Chapter 3 

Hydrodynamic Forces and Motions in Regular Waves

3.1 Introduction

A ship advancing at a steady forward speed with arbitrary heading in regular waves 

moves in six degrees of freedom. The ship motion is decomposed into three 

translation components, surge, sway and heave and three rotation components, roll, 

pitch and yaw. In order to solve the six degrees of freedom problem, linear ship 

motion theories are used successfully with reasonable accurate results over a wide 

range of parameters (Guedes Soares et al., 1997). The most used linear theory based 

on a two-dimensional approach and commonly referred to as the strip-theory is the 

basis of the following theoretical development. The theory is based on the assumption 

of potential flow, slender ships and small amplitude motions.

The strip theory was first developed to predict mono-hull seakeeping characteristics, 

but it has also been used for twin-hull ships by Ohkusu and Takaki (1971), by Lee, 

Jones and Bedel (1971), by Lee et al. (1973) and several other authors since then.

Strip theory applied to twin-hull ships gives results that are in good agreement with 

experimental results except for some discrepancies near the resonance frequencies, 

where the theoretical amplitudes are overestimated and increase with the forward 

speed. These overestimated results are a consequence of an inadequate account for 

viscous effects in the strip theory model. While in a mono-hull the wave making 

damping plays a dominant role, in the twin-hull configuration this role is no longer so 

important, because of the relatively smaller water plane area, and the viscous damping 

starts to become important, (Lee 1976, Rathje and Schellin 1997).

To consider this viscous damping component, a method is proposed and numerically 

implemented in this thesis. The viscous effects are introduced in a strip theory 

mathematical model through a method based on a cross flow approach developed 

from aerodynamics theory, (Thwaites 1960).
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In this chapter a general description of the strip theory program used in this work will 

be made and a more detailed description of the new implementation of the viscous 

forces is presented. A flowchart with the changes and the new routines added to the 

code of the original strip theory program is presented.

Calculations are made for a twin-cylinder and two catamarans with different hull 

forms and the results from these calculations are compared with other authors results 

(Ohkusu and Takaki 1971 and van’t Veer 1995).

3.2 Hydrodynamic and Hydrostatic Forces

Three force components (F„ F2, FJ and three moments (F4, F5, FJ are obtained by 

integrating the fluid pressure distribution over the mean wetted hull surface.

FHj = \ \ p ■ ni dS j= l,2 ,...6  (3.1)

where S is the mean wetted hull surface, p  is the fluid pressure and rij is the 

generalised unit normal vector to the hull surface as defined in section 2.6. The 

normal vector n is defined to point out of the fluid domain. Since the whole theory is 

based on potential flow the fluid pressure is given by Bernoulli’s equation in terms of 

total velocity potential. The fluid pressure is separated into hydrostatic and 

hydrodynamic components and the forces are also separated as follows

FHj = FHSj- + FHDj j —1,2,... 6

To calculate the hydrodynamic forces the flow potential is decomposed linearly into 

separate components due to incident waves, diffraction waves and radiation waves as 

shown in chapter 2. The hydrodynamic forces are separated into two distinct sets of 

forces, as follows

^ H D j =  F 'E X ] +  F Rj  j —l,2,...6

where F ^  are the exciting forces in the yth direction and are equal to the exciting

force component due to incident waves (usually called the Froude-Krylov force) and 

the exciting force component due to diffracted waves, and is expressed as

= \f ;  + F f}e -M j= l,2 ,...6
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Frj is the radiation forces in the y'th direction due to forced oscillatory motion in the 

Ath direction.

The pressure equation is used to calculate the forces after expanding in a Taylor series 

and then linearizing up to the first order terms.

3.2.1 Hydrostatic Forces

In linear theory the hydrostatic integral need only to be carried out on the body wetted 

surface up to the calm water level. Taking the hydrostatic term -pgz of the pressure 

equation (2 .11) and integrating in the mean wetted surface S , one obtains the 

hydrostatic force FHSj,

f h s j  = ~PS JJZ ' rijdS j= l,2 ,...6
S

Developing the integral according to the hydrostatic theory (Newman 1977) leads to 

FHSi= - ± C jt^ '  j= l,2 ,...6
k=\

where Cjk are the hydrostatic restoring coefficients and ^  is the body displacement. 

The hydrostatic restoring coefficients give the force acting on the body in the y'th 

direction due to unit displacement in the Ath mode of motion.

Cjk are given by the following expressions where the integrals are taken over the 

length of the ship.

C33 = 2PS \ B„ (x)dx =pgAv

C35 = C„ = -2  p g  fxBm (x)dx = - p g A y (3.2)

Qs = PACjM l 

CM = pgVG M T 

All other terms are equal to zero, Cjk = 0

Bm(x) is the demi-hull breadth at section x  ; GMT is the transverse metacentric height; 

GMl is the longitudinal metacentric height, Aw is the waterplane area at z=0 ; Ay is the
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first moment of the waterplane area at z=0 and V is the displaced volume of the 

catamaran.

3.2.2 Exciting Forces

The exciting forces are the ones that excite the motions of the body. As mentioned in 

previous sections, exciting forces are separated into two components, the incident and 

the diffraction component.

The exciting force F j due to incident waves is calculated by integration over the

mean wetted body surface of the pressure, which would exist in the wave system if the 

body was not present. Assuming that the motion of the body is small and the pressure 

at a point on the hull is expanded in a Taylor series and the high order terms on the 

Bernoulli equation are dropped, the unsteady pressure equation becomes.

The exciting force due to incident waves is easily calculated because the incident 

wave potential fa and its associated pressure are known and it only needs to be 

integrated over the mean wetted body surface in order to obtain the force.

The incident exciting force accuracy increases as the wavelength of the incident waves 

increases relative to the body dimensions, (Lewis 1989). For short wave lengths the 

diffraction potential cannot be neglected and in the limit of very short waves the total 

exciting force is approximately doubled over the incident wave force. The diffraction 

force becomes important when the dimension of the body increases relative to the 

waves.

(3.3)
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The diffraction wave force F f  is caused by the diffraction of the incident waves due

to the presence of the hull and is associated with the diffracted potential <j)D and is 

given by

F f = p \ j n 1La> + U ^ \ , DdS (3.4)

3.2.3 Radiation forces

The radiation forces result from the radiation of waves from a hull forced to oscillate 

in calm water. The radiation forces in they'th direction resulting from the motion in the 

Ath direction are given by

\ k =1
dS

= z
Jt=l

p \ \ n i i<v + U A d S

(3.5)

For convenience the above quantity in brackets can be designated so that

T* = p \\n U c o  + U - ? X kdS j= l,2 ,...6

and

= Z TJ ^ e~“
k=\

Tjk is effectively a transfer function from the unit motion in the Mi mode to 

hydrodynamic force in theyth mode.

The hydrodynamic radiation forces are expressed in phase with the body acceleration 

and in phase with the velocity and takes the form

Tjk =(o2Ajk +icoBjk

FR i= Y ,W Ajk
k =1

30



where Ajk are the added mass coefficients and Bjk are the damping coefficients. The 

term added mass comes from the apparent increase in inertia of the body which moves 

in a fluid and spends some kinetic energy to accelerate the surrounding fluid. The term 

damping coefficient is related to the velocity of the motion and represents a measure 

of energy dissipation through the radiated waves in the potential flow theory. The 

added mass and damping coefficients are given by

damping, in the twin-hull configuration, this role is no longer so important and the 

viscous damping starts having a larger relative value because of the smaller water 

plane area of this type of hull. To consider this important damping component, the 

viscous effects are added to the mathematical model through a cross flow approach, 

developed from simplified aerodynamics theory, (Thwaites 1960). The application of 

this cross flow approach to twin-hull ships was made before by several authors, Lee 

(1976), Chan (1993) and Schellin and Rathje (1995).

The force acting on an incremental length of a body with projected area dAp include 

two components: the lift force L and the drag force D resolved normal to and along 

the relative fluid velocity as shown in Figure 3.1.

(3.6)

3.3 Viscous Forces

While in a mono-hull the wave making damping plays a dominant role in the overall

D

V.cosa

Figure 3.1 -  Viscous forces on incremental length of hull
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The total force due to viscous lift and cross flow drag on an incremental body length 

dAp is expressed as

F = ^ p V d A p sincjr^lFcos^l + C^lFsinflrl) (3.7)

where a  is the angle of attack, V is the relative fluid velocity, Ap is the projected area, 

at and CD are the lift and drag coefficients respectively.

The first term of equation (3.7) represents the hydrodynamic lift force and is due to 

vortex shedding around a slender body in steady-state translation. The second term is 

the drag force term and it arises from the boundary layer growth and flow separation. 

Viscous drag and lift coefficients depend on body geometry, mode of motion and 

frequency of oscillation but for simplicity these coefficients are assumed constant in 

all conditions. Commonly, these coefficients have to be obtained experimentally.

The viscous forces given by the general equation (3.7) is developed and separated into 

viscous damping forces, viscous restoring forces and viscous excitation forces in the 

form

J - 1.2-6 (3-8)
k=l

vr A A ^
where F. is the exciting viscous force and Bjk and Cjk are the viscous damping and 

restoring coefficients respectively.

For a harmonically oscillating hull with constant forward speed and small motion 

amplitudes, the viscous force equation takes the following form:

^ = ± / ^ , V « (̂ + C Dv; |v; |) J=1,2,3 (3.9)

where a } is the angle of attack of the flow, U is the ship forward speed, v . is the 

relative fluid velocity with respect to the body in the y'th mode of motion, Aj is the 

projected area of the body in the y'th direction, al and CD are the lift and drag 

coefficients respectively.

A pseudo steady-state condition is assumed and the particle velocities are calculated 

from the potential of the incident wave . The relative velocities are determined from
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the fluid velocity and the ship velocity components at the centre of action of the 

incremental hull length. The vertical and horizontal gh displacements at any point 

(x,y,z) in the hull are given by

#, = #3-^#S + > ,#4

The vertical relative velocity of the fluid at a section x, with respect to the port and 

starboard hull, is given by

"ifW  = £  + *(*)& - i , {x ,+ H x ) , -d 3(x)) = U(a3P( x ) - ^ 5)

(3-10>
v3S(*) = £ - x £ 5 ~ b ( x ) £ 4 - f v ( x - b ( * ) - d 3 ( x ) )  = U ( a 3S ( x ) - g 5 )

and the horizontal relative velocity is

v2/>(*) = i 2 + XL  + d2( x ) l , - £h(x,+b(x),-d2(x)) = U(a2P(x) + £ )

(311>
V2s (x) = £  + x£t + d2 (x) -  £h (x,-b(x),-d2 (*)) = U(a 2S (x) + &)

£v and £ h are respectively the vertical and horizontal velocity of the fluid induced by

the incident wave. The ship velocity in the Mi mode of motion is gk. The distance d2

and dj specify respectively the local vertical distance of the lateral and plane centres of 

action of the hull section, measured from the still water line. b(x) is the distance 

between the catamaran centre line and one demi-hull centre line.

From the foregoing equations, the angle of attack at a section of the body in the two 

modes of motion can be written as

a 3i W  =  ^  +  ^ i > i=S,P

a2 = .>=s'p

In the vertical relative velocity, the term b{x)^A will not contribute to the vertical 

force F3 because of the symmetry of the catamaran geometry with respect to the 

centre line.
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Using the strip concept, together with the assumption of small angles of attack and no 

viscous interaction between the hulls, the viscous force in all incremental hull sections 

can be integrated over the two demi-hulls and the vertical force becomes

Pi M  = 7T P  X  ffi» (X){u2aia x (*) + CDV3i(x)v3,(*)|)fc
1  i=S ,PL

and developing leads to

P  (x ) = \  P  jP ,  (x ){2 U 2a,gs + Ua, (v3S (x) + v3P{x))+
2  L

CD ( V3S W | V3S ( * ) |  +  V3P ( * ) | V3P 0 ) | )  )dx

where Bm(x) is the maximum demi-hull breadth at section x.

Doing the same kind of development for the horizontal force

P  (x ) = \  P  j d (*)(- 2 'U2a,^6 + Ua, (v2J (x) + v2P (x))+
^  L

Cc(V2sW |V2sW| + v2P M | V2p (*)| )]dx 

where d(x) is the hull maximum draught at section x.

The viscous moments are obtained by multiplying the previous vertical and horizontal 

viscous forces by their respective moment arms. The expressions obtained for the 

viscous moments are given by the following expressions.

After some simplifications because of the catamaran symmetry, the roll moment 

becomes

^ 4M  = \ p \ d 2{x)d{x)[- 2 U 2a ^ 6 + Ual(v25(x) + v2P(x)) +
2 L

CD{V2S(X)\V2S(X)\ + v2P M | V2p (x)\))dx 

+ U  IX (x)b(x)(Ua,(v3p(x) -  v3s(x)) +
2 L

CD\y3P(,x)\v3P(x)\ -  v3S(x)|v3S(x)|))fr

The pitch moment

Fs{x ) = - \ ; p \ x Bm M (2 U 2a ^ 5 + Uax (v35 (x) + v3P (xj) +
2  L

Cd ( U s  M | U s  Ml +  U p  M I U p  M |))^
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The yaw moment

^6 ix ) = \ p \ x d  0 ) ( -  2 ^ 2a ^ 6 + Ua, (v2S (.x) + v2P (x)) +
^  L

Cd (V2sW |V2sW| + v2P (*)l V2P(x)| ))dx

The vertical and horizontal fluid velocities are obtained respectively from the vertical 

and horizontal differentiation of the incident potential velocity (j) , .

ddr
f v(x>y,z) = —oz

dy

The cross flow drag terms in the viscous force equations are non-linear, hence they 

cannot be directly introduced into the linear equations of motions. To linearise the 

problem Lee (1976) applied the Fourier series to the even function as shown below

cos#|cos#| = A0+A] cos0 + A2 cos20+ A 3 cos3# + ...

where the Fourier coefficients are defined as

A0 = 0

A„ = 0 for n even

f o r " o d d

so

A,= Y i n

A‘ = % 5 x

If the body harmonic motion is given by x = x0 cos cot, then an approximation of x|x|



This approximation is often called the equilinearization method, Lee (1976), and it is 

used frequently for dynamic systems with weakly non-linear behaviour.

This equilinearization method requires the previous knowledge of the motion 

amplitude x0 as in the case shown in equation (3.12). The motion solution is an 

iterative process that uses the previous calculated motion amplitude until a reasonable 

convergence of the solution is found.

As said before, the equations of the viscous forces and moments (3.8) are separated 

into viscous damping, restoring and excitation.

pj = i f e *  J = l , 2,..6
k=1

These viscous forces are then added to the equations of motion, as shown in the next 

section. The full developed viscous coefficients and viscous forces are given in 

Appendix I.

3.4 Equations of Motion

The solution of the equations of motion gives the response of the oscillating rigid 

body in regular waves. Newton’s second law provides the equations, which relates the 

external forces and the inertial forces.

' Z M j t =Fj J  = 1,2, ..6 (3.13)
k=1

where F} are the external forces and gk are the six degree of freedom body

acceleration, Mjk are the components of the generalized mass matrix for the yth force 

induced by the Ath mode of motion:

M ik =

M 0 0 0 M z 0 - M y-
0 M 0 - M z a 0 M xg

0 0 M 0 - M xg 0
0 - M zg 0

M zg 0 - M xg h . / 55 Iso
- M y G M xg 0 hs

(3.14)
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where M  is the body mass, the coordinates of the centre of gravity are given by 

(xG ,yG ,zG) and Ijk are the moments of the inertia of the body,

I j t  =  f f f A rj  5 i t  -  0 -  S ,k  k ' - 3  • X k-3 W ’ j ’k  = 4>5>6

To , k = j
where 8 it = , is the Kronecker delta function, r, is the distance of the

1 ,
jk

mass element to the corresponding axis of rotation about the origin, and (jCj,x2,jc3) 

are the coordinates (x, y, z) in the body reference system.

It can be demonstrated (Abkowitz 1969) that for a body with a longitudinal plane of 

symmetry and with the origin of the coordinate system in the longitudinal and 

transversal centre of gravity, xG=0 , yG=0 then I45=I54=I56=I65=0 and the MJk matrix can 

be simplified and written as

M 0 0 0 M z g 0

0 M 0 - M z g 0 0

0 0 M 0 0 0

0 - M z c 0 *44 0 - h e
M z g 0 0 0 Iss 0

0 0 0 “ *46 0 h e

The full equations of the six rigid body motion are obtained substituting in Newton’s 

equation all the hydrodynamics forces developed in the previous sections.

1 1> Jt + AJt &  + {BJk + BJt k  + {Cjk + CJk k  }=
k=1

= { F '+FjD+ F j}e
J=U 2,...6 (3.15)

For a regular harmonic wave excitation of frequency co, the equation of motion is 

written as

+Ajk)-ia,{Bjk + BJk)+{cjk+Cj l )}fk = F j  + F f + F J  j=  1,2,...6
k=1

where AJk are the components of the added mass coefficients, BJk are the damping 

coefficients, CJk are the restoring coefficients and £  is the body displacement. F j  is

the exciting viscous force and Bjk and Cjk are the viscous damping and restoring
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coefficients respectively. The indexes j  and k  indicate the fluid force direction and the 

mode of motion respectively.

The longitudinal symmetry of the hull leads to decoupling the vertical modes of 

motion from the horizontal plane modes. The six equations of motion are reduced to 

two sets of equations, one of three coupled equations for surge, heave and pitch, and 

the other for sway, roll and yaw. If one assumes that the ship has a long slender hull 

form in addition to lateral symmetry, then it can be shown (Salvesen et al. 1970) that 

the hydrodynamic forces associated with the surge motion are much smaller than the 

forces associated with the other modes of motion. Hence the three surge-heave-pitch 

equations reduce to two coupled equations heave-pitch.

3.5 Numerical Implementation

The numerical implementation of the present method used as starting point the strip 

theory code that was the building block of the non-linear theory of Fonseca (1994) 

and Fonseca and Guedes Soares (1994). This code is based on the theory of Salvesen 

et al. (1970) and calculates the hydrodynamic coefficients using the Frank close-fit 

method (Frank 1967).

To evaluate numerically the hydrodynamic forces from the potential flow theory some 

simplifications are assumed. It is necessary to remove the main three dimensional 

characteristics of the fluid flow in such a way that the general three dimensional 

boundary value problem presented in chapter 2 is reduced to a set of two dimensional 

boundary value problems.

The ship is represented by a finite number of cylinders with the shape of the cross 

sections along the body length (21 sections are used in this work). Each section is 

represented by a finite number of straigth line segments (14 segments are used, see 

appendix II). The hydrodynamic forces for each cylinder are calculated independently 

and integrated along the ship length to obtain the forces acting on the ship. If the ship 

is slender (beam and draught much smaller than the length), the forward speed 

relatively small, and the frequency of the oscillation relatively high, then it is assumed 

that the flow at any ship cross section does not affect the flow at the adjacent sections, 

thus the flow is considered two-dimensional. For low frequency oscillations (long 

waves) the flow tend to be three-dimensional due to convective effects associated to
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the ship forward speed. The hypothesis of high frequency of the oscillation is 

necessary to reduce the tree-dimensional free surface boundary condition to a two- 

dimensional one. However, practice has proven that strip theory works fine also at the 

low frequency range, and the reason is that in this case the hydrostatic forces become 

predominant, thus a poor prediction of the radiation and diffraction forces will not 

affect significantly the final result (Salvesen et al. 1970).

Using the former assumptions, the expressions derived for the hydrodynamic forces 

are simplified to a form suitable to numerical calculations as shown in Appendix II.

The original code was applicable to mono-hulls and did not account for viscous 

effects. The contribution of this thesis is to adopt the above approach to catamarans 

and to take into account the viscous effects. The viscous effects were introduced 

through a cross flow approach, as explained in section 3.3.

The DATAD subroutine was changed in order to receive the information for a full 

demi-hull section away from the ship centre line. The flowchart of the initial program 

and the added routines are shown below. The new routines added to the existing 

program are shown in the flow chart as shadow boxes while the original routines are 

in normal boxes.

Read input data: ship geometry, regular 
waves characteristics, heading angles, 
Froude numbers, inertial characteristics

FRANK

START

SHIPEXCT

SHIPHYD

DATAD

ADEXC
Calculation o f the sectional hydrodynamic 
coefficients and exciting forces. Solution of 
boundary value problems o f twin hulls 
oscillating on the free surface

Calculation of ship hydrodynamic coefficient 
Eq. (3.6)

Calc, of ship exciting forces Eq. (3.3) (3.4)
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MASSMATR

1r

RESTOR

Calculation o f ship mass matrix 
coefficients, Eq. (3.14)

Calculation o f ship restoring 
coefficients, Eq. (3.2)

Xj initial =  0

MOTION
Calculation o f motion amplitudes and 
phase angles (X j), Eq. (3.15)

VELREL

VELWAVE
Calculation o f relative velocities at 
cross sections, Eqs (3.11), (3.10)

Xjinitial=Xj

NO

VISFORCES

VISDAMP

VISREST

VISEXCI

Calculation o f viscous damping forces 
Eqs. Appendix I

Calculation o f viscous restoring forces 
Eqs. Appendix I

Calculation o f viscous excitation forces 
Eqs. Appendix I

IXj-Xjimtial^o
Stop criteria, verification of motion 
response convergence

Figure 3.2 -  Program flowchart
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3.6 Comparisons with Existing Results

The results from the implemented strip theory are compared with other strip theories 

and with some published experimental results in order to validate the numerical 

implementation. Calculations were performed with twin-cylinders and also with two 

catamarans already analysed and published by other authors (Ohkusu 1971 and van’t 

Veer 1995).

3.6.1 Twin Cylinders Added Mass and Damping Coefficients

Twin-cylinders are an easy and good way to validate theoretical results because they 

have been widely studied by many authors (Frank 1967, Wang and Wahab 1971, 

Ohkusu 1970, Varyani 1988).

D/2

Figure 3.3 -  Twin-cyUnder configuration

Number o f panels = 98

Figure 3.4 -  Three-dimensional discretization.
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The twin-cylinder configuration is shown in Figure 3.3, where D  is the distance 

between the two cylinders and R is the cylinder radius. In Figure 3.4 the model with 

98 panels used in the three-dimensional calculations is presented. In this three- 

dimensional theory the velocity potential is obtained by means o f a three-dimensional 

distribution o f unknown strength sources in each panel.

The heave added mass is calculated for two different twin-cylinder configurations 

where the D/R ratio takes the following values: D /2= /.5  R and D/2=3 R.

4.0

3.0

D/2 = 1.5 R2.0

 2D (present theory)

 3D - Chan
-o—  Ohkusu

□ Exp - Wang and Wahab

CP
-4.0 -

- 6.0
0.0 0.5 1.0 1.5 2.0 2.5

k . R

Figure 3.5 -  Twin-cylinder heave added mass, D/2 =1.5 R at Fn=0.0

9.0

D/2 = 1.5 R8.0

7.0

2D (present theory)

3D - Chan

□ Exp - Wang and Wahab

2.0

1.0

0.0
0.0 0.5 1.0 1.5 2.0 2.5k . R

Figure 3.6 -  Twin-cylinder dam ping coefficient, D/2 = 1.5 R at Fn=0.0
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The added mass and damping coefficient for the configuration D/2 = 1.5 R are 

presented in Figure 3.5 and Figure 3.6 respectively. In Figure 3.5 and Figure 3.6 the 

experimental results presented by Wang and Wahab (1971) are compared with 

theoretical results calculated by the present strip theory method, by the three- 

dimensional method (Chan 1990) and by the theoretical work performed by Ohkusu 

(1970).

The theoretical and experimental results shown in Figure 3.5 agree very well. The 

two-dimensional damping coefficients also agree well with the Wang experimental 

results but it looks like the three-dimensional results have a small shift to the right 

when compared with the experimental results.

The same calculations are performed for a wider twin-cylinder configuration where 

D/2 = 3R and the results are presented in Figure 3.7 and Figure 3.8. In this case the 

three-dimensional results do not agree at low frequencies, but on the other hand the 

three-dimensional results agree better than the two-dimensional and Ohkusu results at 

high frequencies near the second trough in the added mass figure.

3.0

D / 2 - 3 R
2.0

1.0

0.0

co -1.0
 2D (present theory)

 3D - Chan

-«—  Ohkusu

□  Exp - Wang and Wahab

- 2.0

-3.0

-4.0
0.0 0.5 1.0 f r ' R  1.5 2.0 2.5

Figure 3 .7 - Twin-cylinder heave added mass, D/2 = 3 R at Fn=0.0

The second trough in the added mass curve (Figure 3.7) only occurs in the wider 

configuration because it is due to the standing wave generated between the two 

cylinders. This wave is a function of the distance between the cylinders and the wider 

the distance the smaller the frequency at which this phenomenon occurs. This wave
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frequency is called symmetric resonance frequency and it will be analysed in more 

detail in section 5.2.2.

In Figure 3.8 the two-dimensional results give again better predictionns than the three- 

dimensional results. At very low frequencies the 2D and 3D theoretical methods 

exhibit distinct behaviours, i.e., while 2D results are increasing the 3D results are 

decreasing. Also in Figure 3.8 at that symmetric resonance frequency (near K.R&1.6) 

the damping coefficient shows a small hump. This hump increases in relative 

magnitude with the increase of the distance between the cylinders as in Wang and 

Wahab (1971).

4.0

3.0

§
CM

 ̂ 2.0

&0000
CQ

 2D (present theory)

 3D - Chan

□  Exp - Wang and Wahab

0.0
2.50.0 0.5 1.0 1.5 2.0k.R

Figure 3.8 -  Twin-cylinder damping coefficient, D/2 = 3 R at Fn=0.0

3.6.2 Wigley Results

Figure 3.10 and Figure 3.11 compare the theoretical results obtained with a Wigley 

catamaran with the results obtained by van’t Veer (1995). The Wigley hull is a 

mathematical hull that is described by the following formula:

^=(i-<'2)(i-#2̂ i+i#2j+^2(i-^ 8)(1-^ )4
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where f  represents the ^-coordinate with % e [ - u ]  and where £  represents the z- 

coordinate with £  e [—1,0].

The main characteristics of this Wigley catamaran are given in Table 3.1, where in 

this particularly case B is the demi-hull breadth, T  is the draught and H  is the inner 

space between the hulls. The body plan of the Wigley catamaran is given in Figure 

3.9.

Main Characteristics Wigley Cat

Length 2.5 m

Breadth B 1.1 m

Draught T 0.139 m

Displacement 0.138 m3

H/B 2.1

Table 3.1 - Wigley Model

Figure 3.9 - Wigley body plan

In Figure 3.10 and Figure 3.11 two different results calculated with the present theory 

are shown: for with and without viscous effects. As is seen from the figures there is a 

considerable decrease in the amplitude response at the resonance peak when the 

viscous effects are included. As should be expected, van’t Veer results, which do not 

include any of the viscous effects, are similar to the results obtained by the present 

theory without the viscous effects. The lift and the cross flow drag coefficients used in 

the present calculations are at =0.07 and CD = 0.01 respectively. These values were 

obtained from literature as mention in section 4.5.1.

45



3 5
 2D
“ " ’ 2D + vise 

van't Veer3

2.5

2

1 5

1

0 5

0
2 50 0 5 1 1.5 2

Figure 3.10 -  Heave motion at Fn=0.3  and head waves, Wigley model.
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Figure 3.11 -  Pitch motion at Fn=0.3  and head waves, Wigley model.

3.6.3 Ohkusu Results

Figure 3.13 to Figure 3.16 show theoretical and experimental results o f the TW1 and 

TW2 catamaran models studied by Ohkusu (1971). The TW1 model is characterised 

by 2P/T=3 where 2P is the distance between the centre lines o f the two hulls and T  is 

the draught. The TW2 model is characterised by 2P/T=5. The main characteristics of 

these two models and the hull form are given in Table 3.2 and Figure 3.12 

respectively.
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Main Characteristics TW1 TW2

Length between perpendiculars 4.0 m 4.0 m

Breadth B 0.9 m 1.26 m

Draught T 0.18 m 0.18 m

Displacement .414 m3 .414 m3

2P/T 3.0 5.0

Table 3.2 - Ohkusu M odels

V

Figure 3.12 -  O hkusu’s model body plan

1 25

 2P /T-3 - 2D

’ " " 2P/T=3 - 2D + vise

 2P/T=3 - Ohkusu

Q 2P/T=3 - Exp
1

0 75

0.5

0 25

0
0 0 5 1.5 2 25

Lw/L

Figure 3.13 -  Heave m otion at Fn=0.1 and head waves, TW1 Ohkusu model.
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As in the Wigley results, there is a decrease in the amplitude o f the motion response 

when the present theory includes the viscous forces. In this case, since the forward 

speed is not as high as in the Wigley case, the viscous effects are smaller, and this is 

reflected in the amplitude at the peak frequency.

1

 2P/T=3 - 2D

" " " 2P/T=3 - 2D + vise

 2PfT-3  - Ohkusu

□ 2P /T-3  - Exp

Fn-0.10 \

o 75

0 5

0 25

0
0 5 2.50 1.5 21

Figure 3 .1 4 -  Pitch m otion at Fn=0.1 and head waves, TW1 Ohkusu model.

As regards the pitch response (Figure 3.14) both theoretical results agree very well. 

Both heave theoretical results presented in Figure 3.13 agree well except at the high 

frequency peak where the theoretical amplitude responses are slightly different. 

Nevertheless, at that high frequency peak the amplitude o f the experimental results 

obtained by Ohkusu is almost in the middle o f the two theoretical peaks.

Analysing the results o f the TW2 catamaran, which is wider than TW1, it can be seen 

that both heave and pitch results (Figure 3.15 and Figure 3.16) also agree well. In this 

case, as in the TW1 case some differences are also observed in the heave amplitude 

response between theoretical and experimental results at the resonance peak 

frequency.

48



1 25

 2P/T=5 - 2D

• ‘ 2P/T=5 - 2D + vise 

2P/T=5 - Ohkusu  

P 2P/T=5 - Exp
1

F n -0 .10

0 75

0.5

0 25

0
0 0 5 1 1.5 2 2 5

Figure 3.15 -  Heave motion at F n= 0.I and head waves, TW2 Ohkusu model.
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Figure 3 .1 6 -  Pitch motion at Fn=0.1 and head waves, TW2 Ohkusu model.

3 .7 C o n c l u d i n g  R e m a r k s

In this chapter the mathematical formulation and the forces that act in the motions o f 

catamarans in waves are presented. All forces including the viscous ones, which are 

important in the catamaran dynamics, are developed. A flowchart o f the numerical 

algorithm used to solve this problem and some assumptions concerning the numerical 

implementation is presented.

The present theory is validated with available published results on twin-cylinders and 

catamarans. In the case of twin-cylinder the study is performed at zero forward speed 

and in the case o f catamaran, finite forward speed is taken into account. The
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theoretical cylinder study beside the two-dimensional results from the present theory 

also included theoretical results from a three-dimensional theory Chan (1990). The 

theoretical results obtained agree well with published experiments. The twin-cylinder 

calculations show some interesting features at certain resonance frequencies due to 

two-dimensional interaction between the hulls. These features will be analysed in 

more detail in section 5.2.

The theoretical results obtained from the analysed catamarans also show good 

agreement with the published works. The results show that the viscous effects are 

more important at the resonance peak and that their effects increase as speed 

increases.

However, since available published results are not extensive, an experimental program 

was conducted in order to introduce additional results, and is reported in the next 

chapter.
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Chapter 4

Experimental investigation of two catamaran models in 

regular waves

4.1 Introduction

The comparisons with existing results reported in section 3.7 are encouraging as 

regards adequacy of the present approach. However, since the published experimental 

results are very limited, it was decided to conduct an experimental study in order to 

have more data available to validate the developed method. The experimental work 

was carried out at the Towing Tank of the Hydrodynamics Laboratory at the 

University of Glasgow.

The experiments were conducted using the hull form developed by Vosper 

International, Incecik et al. (1991). This high-speed catamaran was developed to 

provide a platform for the transport of passengers and vehicles over short sea routes 

for a basic 43.5m catamaran design. The form of each demi-hull is of the hard-chine 

type with low deadrise sections in the after body and high deadrise concave sections 

in the forward body. The experiments were performed using two different hull 

separations, four different speeds, head waves, one wave height and a range of wave 

frequencies.

This chapter presents the data analysis performed to choose the main model 

characteristics, especially the draught and the distance between the catamaran hulls. 

The other main characteristics, the length and the demi-hull breadth cannot be 

changed. Also presented in this chapter is the experimental set-up and the tests carried 

out. The experimental results of calm water resistance, trim and rise of the centre of 

gravity are presented. The heave and pitch experimental results in regular waves are 

compared with theoretical predictions. Just as an example some experimental time 

series results of the wave, heave and pitch amplitudes are shown.
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4.2 Model Characteristics

Two catamaran models (V40 and V60) with the same demi-hull form but with 

different spacing between the two hulls were tested. The V40 model has 40 cm 

between the centre lines of each demi-hull (L/B=3.66) and the V60 model has 60 cm 

between the two demi-hulls (L/B=2.10). Both models have the same displacement and 

the same position of the centre of gravity.

From the results of the review of the main dimensions of existing catamarans (Table 

4.1), a limited statistical analysis of typical main characteristics and ratios of 

catamaran ships and models is performed.

L B D T UB UBm D/(Bm/2) D/B B JT B/Bm D /7

Ship or Model [m] [m] [m] [m] [m]

V1 2 0.175 0.6 0.425 0.067 3.33 11.43 4.86 0.71 2.604 3.429 6.3

Lewis 1.5 0.25 0.125 6.00 2.00

TW1 4 0.36 0.9 0.54 0.18 4.44 11.11 3.00 0.60 2.00 2.50 3

TW2 4 0.36 1.26 0.9 0.18 3.17 11.11 5.00 0.71 2.00 3.50 5

ASR 64 7.32 24.95 17.63 5.49 2.57 8.74 4.82 0.71 1.33 3.41 3.2

HS900 88 30 3.7 2.93

45M 40 12.7 1.75 3.15

100M 90 6 36.2 30.2 3.5 2.49 15.00 10.07 0.83 1.71 6.03

Marintek 3.778 0.267 0.918 0.651 0.24 4.12 14.15 4.88 0.71 1.14 3.44 2.8

Adamant 30.8 7.8 1.1 3.95

Lindsay 16 2.33 6.7 4.37 0.67 2.39 6.87 3.75 0.65 3.48 2.88 6.5

Discovery 13.1 5.5 2.38

AIN DAR 36 11.8 1.85 3.05

TT 44.25 2.68 11.8 9.12 1.35 3.75 16.51 6.81 0.77 1.99 4.40 6.76

V40 2.05 0.158 0.558 0.4 0.085 3.66 12.81 5.00 0.71 1.88 3.50 4.71

V60 2.05 0.158 0.758 0.6 0.085 2.70 12.81 7.50 0.79 1.88 4.75 7.06

Average 3.2 11.2 5.4 0.7 2.0 3.7 4.8

Std. Deviation 0.7 3.6 2.2 0.1 0.7 1.1 1.8

Table 4.1 -  Catamarans statistical data
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The analysis made with the available data has allowed the choice of the draught and 

hull spacing to be used in the experimental work, in order to be within realistic 

dimensional values. The data was collected from the available literature and include 

models and full scale ship information.

In Table 4.1, L is the length at z=0, Bm is the demi-hull breadth, B is the breadth over 

all, D is the distance between hulls center lines and T  is the ship draught.

18.0 T
V40-V60

16.0 -

14.0 - - -♦

12.0 -

6.0 - • *

4.0 -

2.0 -

0.0
40 100

L [m]

Figure 4 .1 -  Plot o f the relations L vs L/Bm in different hulls

The first figure shows the relation between the demi-hull breadth and the catamaran 

length. These two main characteristics are unaltered because the hull is a designed 

Vosper International hull. Since the two models have the same demi-hulls, the L/Bm 

ratio is the same for both models.

V40
4.0 -

3.5 -

3.0 -

2.5 - ♦ ♦
2.0 -

V60

0.5 -

0.0
40 100

L [m]

Figure 4.2 -  Plot of the relation L vs L/B in different hulls
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Figure 4.2 shows the relation between the catamaran length and breadth overall. The 

breadth overall is related to the distance between hulls and this is varied. The V60 

model breadth was chosen near the lowest L/B ratio while the V40 model breadth was 

chosen near the largest L/B ratio.

3.5

3.0

2.5

2.0

V40-Y60

0.5

0.0

Bm [m]

Figure 4.3 -  Plot o f the relation Bm vs B J T  in different hulls

The same draught was set for both models. The choise was made considering a value 

near the statistical average of the B J T  ratio, Figure 4.3.

7.0
V60

6.0

5.0 V4(J

4.0

3.0

2.0

0.0

Bm [m]

Figure 4.4 -  Plot o f the relation Bm vs B/Bm in different hulls

The last figure shows that the chosen breadths for both models are within typical B/Bm 

ratios according to available data.
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The main characteristics of the two models are shown in the next table

Main Characteristics V40 V60

Length at waterline 2.050 m 2.050 m

Beam at waterline midship 0.558 m 0.758 m

Draught 0.085 m 0.085 m

Breadth of demi-hull 0.158 m 0.158 m

Distance between centre of hulls 0.400 m 0.600 m

Displacement 0.0385 m3 0.0385 m3

LCG aft midship 0.207 m 0.207 m

VCG from waterline -0.030 m -0.030 m

Block Coefficient 0.695 0.695

Trim 0 degree 0 degree

Table 4.2 -  V40 and V60 Main characteristics

The hull form shown in Figure 4.5 is of the hard-chine type, low deadrise sections in 

the after body with a cut-off transom stem and high deadrise concave sections in the 

forward body.

Figure 4.5 -  Vosper Body Plan
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The model was made of glass-reinforced plastic (GRP) in a 1:20 scale. The scale is 

dependent of the dimensions of the towing tank. A pair of aluminium bars was used to 

provide a rigid coupling between the hulls. Studs of 3 mm diameter and 3 mm height 

at a spacing of 25 mm were fit near the bow in order to make turbulence simulation. 

No other underwater appendages were attached to the models.

4.3 The Instrumentation Set-up and the Towing Tank

The instrumentation set-up installed for these experiments is similar to a previous 

system, designed, tested and used before in this Laboratory. The heave and pitch 

motion were measured as well as the accelerations at the bow and stem, the total 

resistance and the wave height at different points.

The models were towed by a vertical post that allowed freedom in pitch and heave 

motion but restrained the roll and yaw motions. The towing point was positioned at 

the centre of gravity and a hinge pin allowed the free pitch. The yaw motion was 

restrained by two vertical rods mounted in the stem and the bow of the models and 

passing between two pairs of horizontal rollers mounted longitudinally on the 

carriage. The set-up of the equipment used is represented in Figure 4.6.

The devices used to make all measurements are described in the next sub-sections. All 

devices were properly calibrated before they were used.

4.3.1 The Towing Tank

The Towing Tank of the Hydrodynamics Laboratory at the University of Glasgow is 

77 m long, 4.6 m wide and 2.7 m deep. The tank is equipped with a wave maker fitted 

across the width at one top end of the tank and at the other top end the tank has a 

beach to absorb the generated waves. The generated wave frequencies range from 0.4 

to 1.4 Hz. The electronically controlled towing carriage enables any towed model to 

mn with a maximum speed of 6.4 m/s
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Figure 4.6 - Instrumentation set-up

4.3.2 Wave Probes

To measure the wave height, four resistance type wave probes were used in these 

experiments.

The resistance type wave probe induces electrical signals whose strength varies with 

the varying wave height. The electrical signal is then amplified and recorded in a chart 

recorder. The calibration process was carried out by lifting the wave probes by 5 cm 

and recording the corresponding analogue signal in the chart recorder.

One wave probe was located on the carriage and parallel to the bow line. This wave 

probe was used to measure the phase difference between the wave and the model 

motion response. The three other wave probes were placed across the tank width and 

approximately at 5 m from the wave maker. These wave probes were placed there to 

accurately measure the incident wave amplitude because the carriage wave probe 

suffers a significant deformation at high forward speeds and the results may be 

affected (Fang 1996).

The incident wave amplitude was calculated through the average value of the three 

wave probe measurements. Every run was analysed even when the wave maker input 

was repeated. At the end of this chapter in the error analysis sub section 4.6, a small 

analysis of the wave amplitude results is performed.
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4.3.3 Selspot System

The heave and pitch motions of the models were measured using a Selspot system 

with two light-emitting diodes (LED) positioned on the deck, one at the bow and the 

other at the stem. The Selspot system is designed to measure the coordinates of 

multiple points. A versatile optoelectronic camera detects the position of small light- 

emitting diodes (LED) for registration and analysis of static as well as dynamic 

processes in real time as described by the Selspot System (1997). The device is a 

specially developed photodetector with four electrodes, and when the infrared light 

from a LED is focused on the detector surface, a phtotocurrent will occur. The current 

can be used to obtain two signals linearly related to the vertical and horizontal 

coordinates of the LED without any contact with the model.

4.3.4 Force Gauge Transducer and Accelerometer

To measure the total resistance, a designed force gauge transducer was installed at the 

middle of the towing post frame.

Two gravity type accelerometers were used to measure the vertical bow and stem 

accelerations.

4.3.5 Data Acquisition and Data Analysis

The electronic signals from the instmmentation were collected through an amplifier 

data collecting system and an analogue to digital converter. The digital signals were 

recorded by a Macintosh-IIci computer in real time and displayed graphically to 

ensure that the acquisition and measuring system was working properly during the 

tests. The data collected during each test was automatically converted into the 

corresponding unit of any measured mode.

On the carriage seven acquisition channels were set to record the wave height, the 

resistance, the bow and stem motions, the bow and stem accelerations and the model 

speed. Outside the carriage a chart recorder was used to record the incident wave 

height from the three wave probes set in front of the wave maker.
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The data was collected at a rate of fifty samples per second on every channel and the 

length of each run was approximately between 6 and 15 seconds depending on the 

running forward speed.

The data from the bow and stem motions had to be processed in order to find the 

heave and pitch motion. These motions were calculated using the following 

expressions:

heave = Zb°w+Z‘,en'
2

pitch = tan '1 Z,“"  ~ Zbow

where I is the longitudinal distance between the bow and stem measurement points.

The model speed and the total resistance were calculated by determining the 

corresponding mean series values. The phase angle between the motion and the 

incident wave measured with the wave probe installed in the carriage had to be 

calculated. The shift between the wave probe position and the model centre of gravity 

had to be considered. The phase angle is positive when the ship motion reaches his 

positive peak before the peak of the incoming wave crosses the origin of the 

coordinate system.

4.4 Performed Experiments

The experimental work was performed using two models (model V40 and V60). The 

experiments were performed at four different speeds corresponding to the following 

Froude numbers (Fn=0, Fn=0.25, Fn=0.625, Fn=0.75). At the real ship scale (43.5 m 

long) these Froude numbers correspond to 0, 10, 25 and 30 knots. Head waves were 

tested with approximately 1 cm of amplitude and a wave frequency range from 0.3 Hz 

up to 1.4 Hz. These wave frequencies correspond to wave lengths approximately 

between half of the model length and four times the model length.
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Fn 0.0 0.25 0 .625 0.75

Model speed  [m/s] 0.0 1.12 2.80 3.36

Ship sp eed  [knots] 0.0 10 25 30

Table 4.3 - Test speeds

After the set of tests were finished, some tests were repeated in order to have more 

data to perform an error analysis.

Calm water tests were performed at the three forward speeds. The total resistance, 

trim and the rise of the centre of gravity were measured and analysed. Some video 

recordings were also made, particularly for the runs near the expected resonance 

frequencies, where the ship motions are higher.

As explained in section 5.2, after a certain speed and frequency, theoretically the hull 

interference is expected to be small. Table 4.4 shows for both models the speed and 

frequency where theoretically the interference between the hulls starts to be small.

V40 V60

U [m/s] Fn coe [rad/s] U [m/s] Fn coe [rad/s]

0.0 0.0 - 0.0 0.0 -

1.12 0.25 73.9 1.12 0.25 41.0

2.80 0.625 29.6 2.80 0.625 16.4

3.36 0.75 24.6 3.36 0.75 13.7

Table 4.4 - Theoretical hull interference

Table 4.5 and Table 4.6 show the planned experiments and in bold and underlined are 

the expected conditions (model-speed-frequency) where the interference between the 

hulls are expected to be small.
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M odel V40 Fn 0.00 0.25 0.625 0.75

fo [Hz] wo [rad/s] Lw/L wo.sqrt(L/g) coe [rad/s] coe [rad/s] coe [rad/s] o)e [rad/s]

0.4 2.51 4.76 1.15 2.51 3.24 4.32 4.68

0.5 3.14 3.05 1.44 3.14 4.27 5.96 6.53

0.6 3.77 2.12 1.72 3.77 5.39 7.83 8.64

0.7 4.40 1.55 2.01 4.40 6.61 9.93 11.03

0.8 5.03 1.19 2.30 5.03 7.91 12.25 13.69

0.9 5.65 0.94 2.59 5.65 9.31 14.79 16.62

1 6.28 0.76 2.87 6.28 10.79 17.56 19.82

1.1 6.91 0.63 3.16 6.91 12.37 20.56 23.29

1.2 7.54 0.53 3.45 7.54 14.04 23.78 27.03

1.3 8.17 0.45 3.73 8.17 15.79 27.23 31.04

1.4 8.80 0.39 4.02 8.80 17.64 30.90 35.33
Table 4.5 -  Set o f tests o f the V40 model

M odel V60 Fn 0.00 0.25 0.625 0.75

fo [Hz] wo [rad/s] Lw/L wo.sqrt(L/g) o)e [rad/s] coe [rad/s] ©e [rad/s] (oe [rad/s]

0.4 2.51 4.76 1.15 2.51 3.24 4.32 4.68

0.5 3.14 3.05 1.44 3.14 4.27 5.96 6.53

0.6 3.77 2.12 1.72 3.77 5.39 7.83 8.64

0.7 4.40 1.55 2.01 4.40 6.61 9.93 11.03

0.8 5.03 1.19 2.30 5.03 7.91 12.25 13.69

0.9 5.65 0.94 2.59 5.65 9.31 14.79 16.62

1 6.28 0.76 2.87 6.28 10.79 17.56 19.82

1.1 6.91 0.63 3.16 6.91 12.37 20.56 23.29

1.2 7.54 0.53 3.45 7.54 14.04 23.78 27.03

1.3 8.17 0.45 3.73 8.17 15.79 27.23 31.04

1.4 8.80 0.39 4.02 8.80 17.64 30.90 35.33
Table 4.6 -  Set o f tests o f the V60 model
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4.5 Experimen tal Results

This section presents the experimental results. First the calm water tests for resistance, 

trim and rise of the centre of gravity are presented. The heave and pitch results are 

then compared with theoretical results. To conclude some time series results for 

heave, pitch and wave amplitude are shown.

As can be seen in Figure 4.7 the calm water resistance of the V40 and V60 models are 

very similar.
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V60
|  0.06

0.04
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0 0.2 0.4 0.6 0.8

Figure 4.7 - Model Resistance

The main difference is around Fn = 0.625 where the V40 model resistance is 4.4% 

higher than the V60 resistance. The difference is not unexpected since the rise of the 

centre of gravity (Figure 4.8) is bigger in the V60 model.
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Figure 4.8 - Rise of the centre of gravity

62



The non-dimensional resistance is obtained using the model displacement in Kg and 

the rise of the centre of gravity using the still water draught.

Figure 4.9 shows the trim angle versus non-dimensional Froude number for both 

models in calm water.
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Figure 4.9 - Trim angle

4.5.1 Heave and Pitch Experimental Results

Figure 4.10 to Figure 4.41 compare the experimental and the theoretical results. The 

experimental response amplitude operator (RAO) for heave and pitch as well as the 

phase angles are compared with 2-dimensional theoretical results for cases with and 

without the viscous force terms. The heave response is normalised against the wave 

amplitude A and the pitch response against the product wave amplitude and wave 

number k.

The lift and the cross flow drag coefficients used in the present calculations are 

at =0.07 and CD = 0.01 respectively. The lift coefficient according to Thwaites (1960) 

and Lee (1976) does not vary much and is considered almost constant for these 

applications. The cross flow drag coefficient does vary more than the lift coefficient 

and for the present application it is set as 0.01, following a previous study performed *■ 

by Fang et al (1996). For the moment these coefficients in most cases have to be set 

empirically. Rathje and Schellin (1997) performed a comparison study of the 

influence of these coefficients in the ship motion responses using a viscous approach 

similar to the one presented in this work. From the study they concluded that at low 

speeds the variation of lift coefficient has almost no effect on motion responses, but
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on the other hand the drag coefficient influences the responses near the resonance 

frequencies. At high speeds the choice of drag coefficients hardly influences the ship 

motion and the lift coefficient for stabilising fins becomes more important.
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Figure 4 .10- Heave motion at Fn=0.0 in head waves, V40 model
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Figure 4.11 -  Phase angle o f the heave motion at Fn=0.0 in head waves, V40 model
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Figure 4.12- Pitch motion at Fn= 0.0 in head waves, V40 model
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Figure 4.13 -  Phase angle of the pitch motion at Fn=0.0 in head waves, V40 model
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Figure 4.14 - Heave motion at Fn=0.25 in head waves, V40 model
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Figure 4.15 -  Phase angle o f the heave motion at Fn=0.25 in head waves, V40 model
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Figure 4.16 - Pitch motion at Fn=0.25 in head waves, V40 model
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Figure 4.17 -  Phase angle of the pitch motion at Fn=0.25 in head waves, V40 model
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Figure 4.18 - Heave motion at Fn=0.625 in head waves, V40 model
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Figure 4.19 -  Phase angle of the heave motion at Fn=0.625 in head waves, V40 model
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Figure 4.20 - Pitch motion at Fn=0.625 in head waves, V40 model
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Figure 4.21 -  Phase angle of the pitch motion at F>z=0.625 in head waves, V40 model

67



3.5

2D
3.0

2D + vise

2.5 □ V40 - Exp

2.0 Fn=0.75

1.5

1.0

0.5

0.0
0.0 1.0 2.0 4.03.0

a>0.sqrt(L/g)

Figure 4.22 - Heave motion at FVz=0.75 in head waves, V40 model
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Figure 4.23 -  Phase angle of the heave motion at Fn=0.15 in head waves, V40 model
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Figure 4.24 - Pitch motion at Fn=0.75 in head waves, V40 model
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Figure 4.25 -  Phase angle of the pitch motion at F«=0.75 in head waves, V40 model
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Figure 4.26 - Heave motion at Fn=0.0 in head waves, V60 model
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Figure 4.27 -  Phase angle of the heave motion at F«=0.00 in head waves, V60 model
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Figure 4.28 - Pitch motion at Fn=0.0 in head waves, V60 model
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Figure 4.29 -  Phase angle of the pitch motion at Fn=0.00 in head waves, V60 model
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Figure 4.30 - Heave motion at Fn=0.25 in head waves, V60 model
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Figure 4.31 -  Phase angle of the heave motion at Fn=0.25 in head waves, V60 model
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Figure 4.32 - Pitch motion at Fn=0.25 in head waves, V60 model
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Figure 4.33 -  Phase angle of the pitch motion at Fn=Q.25 in head waves, V60 model
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Figure 4.34 - Heave motion at Fn=0.625 in head waves, V60 model
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Figure 4.35 -  Phase angle of the heave motion at Fn=0.625 in head waves, V60 model
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Figure 4.36 - Pitch motion at F«=0.625 in head waves, V60 model
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Figure 4.37 -  Phase angle o f the pitch motion at Fn=0.625 in head waves, V60 model
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Figure 4.38 - Heave motion at Fn=0.75 in head waves, V60 model
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Figure 4.39 -  Phase angle o f the heave motion at Fn=0.75 in head waves, V60 model
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Figure 4.40 - Pitch motion at Fn=Q.15 in head waves, V60 model
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Figure 4.41 -  Phase angle o f the pitch motion at Fn=0.75 in head waves, V60 model

As is seen in the foregoing figures, the two-dimensional heave and pitch RAOs 

calculated with the viscous forces are in good agreement with the experimental 

results, in most cases. At zero speed (Figure 4.10 to Figure 4.13 and Figure 4.26 to 

Figure 4.29) both heave and pitch experimental results are very well predicted by the 

theory at the full wave frequency range. This good agreement between the results 

show that the two dimensional effects are very well modelled by the theory when 

there is no forward speed effects. Since the viscous formulation depends on the ship 

forward speed, the figures at Fn=0.0 only present one theoretical curve.

With forward speed the experimental heave responses at the resonance frequencies are 

generally over-predicted by the theoretical results when the viscous forces are not
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considered. The agreement between theoretical and experimental results is much 

better when the viscous terms are added to the theory. The amplitude of the peaks in 

the theoretical results when the viscous terms are not included increases with the 

forward speed increase. Generally at forward speed there is a better agreement 

between the heave results than the pitch results. In Figure 4.14 (V40 model, Fn=0.25)

the theoretical heave amplitude at the resonance peak (a?0^ L /g  =2.6) is very good. In

Figure 4.18 (V40 model, Fn=0.625) the difference between the theoretical and the 

experimental results at peak resonance frequency is 15%. In Figure 4.22 (V40 model, 

Fn=0.75) the agreement between the results is very good again. Most of the V60 

model results at forward speed present a second peak at high wave frequencies. These 

second peaks are due to the symmetric interaction explained in chapter 5.2.2 but this 

phenomenon is analysed in the next chapter, where a more detailed analysis of the 

results are performed. These peaks make the comparisons difficult as in for example 

Figure 4.30 where the symmetric resonance frequency is near co ^L fg  =3.1. In

Figure 4.34 (V60 model, Fn=0.625) the peak differences is 18% and again the 

symmetric resonance frequency is very evident.

Pitch theoretical results of the V40 model generally show a pronounced peak near the 

first natural frequency but in the experimental results that peak is not so pronounced. 

As shown in Figure 4.16 near the resonance peak {coQ̂ L /g  =2.4) the difference

between theoretical and experimental results is 20% and in Figure 4.24 at the 

resonance peak the difference is even bigger, 40%. The pitch responses are better 

predicted for the V60 model where in the worst case the difference between theoretical 

and experimental results is less than 16% (Figure 4.32).

The phase angle between the incident wave and the ship motion at zero speed is very 

well predicted by theory for both heave and pitch motions. When the speed increases 

the phase angle results do not match very well and there are some discrepancies 

between theoretical and experimental results. At high speed and high wave frequency, 

where the encounter frequencies are very high the motion amplitude responses are 

typically very small, the phase angle results are not so important as in the low and 

medium range frequencies where in fact the theoretical predictions agree better.
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Time series results

The following Figures show an example of typical experimental data (wave, heave 

and pitch amplitudes) and compare them with a sinusoidal function of the type 

A cos{coet + s ) . In the figures, the line is the cosine function and the small circles are 

the experimental data.
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Figure 4.42 -  Wave time series, coe = 0.893 Hz, Fn= 0.25
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Figure 4.43 -  Heave time series, coe = 0.893 Hz, Fn= 0.25
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Figure 4.44 -  Pitch time series, coe = 0.893 Hz, F«=0.25

4.6 Error Analysis

Every experimental work has an associated error. The errors come from very different 

sources and are due to a wide range of reasons. Error sources can be classified 

according to ITTC 1978 as model tests errors (resulting from instrumentation errors, 

procedures and experiment conditions), prediction method errors (resulting from 

approximate assumptions) and sea trial errors (including instrumentation errors and 

errors such as influence of sea water temperature, propeller cavitation and others).

In the present work an error analysis was made in order to assess the confidence of the 

experimental data and to be conscious of the quality of the results. The main 

experimental errors are attributed to the asymmetric wave sent by the wave maker and 

the model restrictions in some degree of freedom.

The heave and pitch motion responses are the most important results in this study and 

this analysis is focused on these results. Nevertheless a wave amplitude analysis is 

also made.

To perform the motion responses error analysis several runs were repeated three times 

and a few runs were repeated twice using both models (V40 and V60). The heave and 

pitch errors (dispersion from the mean value) were calculated as follows. Consider X  

the test variable and the mean value of the test E[X] given by
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H x >
e [x } = ^ ------

n

then the error is

4 x ] - x ,Error; = ——f—*—
E[X]

and the mean error is

n

^  Error.
E^Error ] = —----------  (4.16)

n

The coefficient of variation was also calculated and the results are not much different 

from the mean error Eq.(4.16) as can be seen in the following tables.

H eave A m plitude -  V40 m o d el

Fn o)o[H z] x , x 2 x 3 Epq E[Error] St.Dev[X]

0.0 0.4 0.822 0.852 - 0 .837 1.8% 1.8%

0.0 0.5 0.779 0.795 - 0.787 1.1% 1.1%

0.0 0.9 0.175 0.204 0.205 0.195 6.8% 7.3%

0.0 1.1 0.106 0.114 0.115 0.112 3.2% 3.4%

0.25 0.4 0.902 0.874 - 0.888 1.6% 1.6%

0.25 0.6 0.708 0.719 0.734 0.721 1.3% 1.5%

0.625 1.0 0.612 0.641 0.604 0.619 2.3% 2.5%

0.625 0.5 0.911 0.742 0.846 0.833 7.3% 8.4%

0.625 0.7 1.550 1.500 1.553 1.534 1.5% 1.6%

0.625 0.8 0.565 0.547 - 0.556 1.6% 1.6%

Table 4.7 -  Error Analysis for Heave Amplitude -  V40
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Heave Amplitude -  V60 model

Fn cd0[Hz] x, x2 Epq EfError] St. Dev[X]

0.0 0.7 0.429 0.488 0.514 0.477 6.7% 7.5%

0.0 0.9 0.168 0.178 0.150 0.165 6.2% 7.0%

0.0 1.2 0.135 0.135 0.190 0.153 16.1% 17.1%

0.25 0.6 0.788 0.801 0.713 0.768 4.7% 5.0%

0.25 1.0 0.411 0.408 - 0.410 0.4% 0.4%

0.25 1.1 0.253 0.233 - 0.243 4.0% 4.0%

Table 4.8 -  Error Analysis for Heave Amplitude -  V60

The maximum error for heave amplitude using the V40 model is 6.8%, while the 

minimum error is 1.1%. For the V60 model the maximum error is 16.1% and the 

minimum is 0.4%. The mean of the mean errors for heave amplitude is 4.2% ( using 

both models results) which is a small error.

Pitch A m plitude -  V40 m odel

Fn co0[Hz] x , x 2 *3 E[X] E[Error] St.Dev[X]

0.0 0.4 0.808 0.863 - 0.835 3.2% 3.2%

0.0 0.5 0.764 0.757 - 0.760 0.4% 0.4%

0.0 0.9 0.239 0.282 0.283 0.268 7.1% 7.6%

0.0 1.1 0.052 0.056 0.054 0.054 2.3% 2.8%

0.25 0.4 0.916 0.880 - 0.898 2.0% 2.0%

0.25 0.6 0.754 0.771 0.791 0.772 1.6% 1.9%

0.625 1 0.227 0.237 0.221 0.228 2.6% 3.0%

0.625 0.5 1.318 0.983 1.153 1.151 9.7% 11.9%

0.625 0.7 1.047 1.019 1.031 1.032 1.0% 1.1%

0.625 0.8 0.439 0.410 - 0.424 3.4% 3.4%

Table 4.9 -  Error Analysis for Pitch Amplitude -V 4 0
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Pitch Amplitude -  V60 model

Fn co0[Hz] x , x 2 *3 E[X] E[Error] St.Dev[X]

0.0 0.7 0.531 0.594 0.598 0.574 5.0% 5.3%

0.0 0.9 0.253 0.245 0.260 0.253 2.0% 2.5%

0.0 1.2 0.031 0.026 0.040 0.032 16.5% 18.7%

0.25 0.6 0.817 0.846 0.824 0.829 1.4% 1.5%

0.25 1.0 0.192 0.186 - 0.189 1.6% 1.6%

0.25 1.1 0.060 0.051 - 0.056 8.7% 8.7%

Table 4.10 -  Error Analysis for Pitch Amplitude -  V60

The maximum error for pitch amplitude using the V40 model is 9.7%, while the 

minimum error is 0.4%. For the V60 model the maximum error is 16.5% and the 

minimum is 1.4%. The mean of the mean errors for pitch amplitude is 4.3% (using 

both model results) which is a small error.

Both heave and pitch maximum errors occurred in the same trial and since all the 

other errors are quite below that maximum, it can be said that the experimental results 

have about 4% of confidence, for the heave and pitch amplitudes.

Incident wave error analysis

All waves were analysed even when the input to the wave maker was repeated. Table 

4.11 shows the wave amplitudes recorded.

In Table 4.11, is the mean of the three wave probes measurements for each different 

i run. From the table it can be seen that the deviations of the wave amplitudes from the 

mean value are very small (less than 3%), with the exception of frequency 1.0 Hz and 

1.2 Hz where the variations are higher.

Another important aspect is the mean value of the standard deviation of each three 

wave probe measurements. The mean value is 10% and this shows a small asymmetry 

in the wave form which means the wave crest is not a perfect line from one tank wall 

to the other wall.
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W ave
frequency

wo[Hz] X2 X3 X4 x 5 x 6 x 7 x 8

Average
w ave

amplitude
[cm]

Std.Dev.

0.30 0.97 0.98 0.91 0.95 0.97 0.96 - - 0.96 3%

0.40 1.33 1.37 1.35 1.35 1.34 1.59 1.40 1.38 1.39 6%

0.50 1.54 1.54 1.42 1.49 1.42 1.49 1.49 1.49 1.49 3%

0.60 1.34 1.33 1.29 1.32 1.30 1.33 1.31 1.31 1.32 1%

0.70 1.42 1.44 1.35 1.40 1.35 1.38 1.41 1.40 1.39 2%

0.75 1.54 1.53 1.43 1.53 1.48 1.53 - - 1.51 3%

0.80 1.65 1.65 1.57 1.65 1.52 1.57 1.55 1.58 1.59 3%

0.85 1.63 1.77 1.60 1.56 1.59 1.62 - - 1.63 5%

0.90 1.34 1.25 1.27 1.30 1.24 1.27 1.29 1.28 1.28 2%

1.00 1.43 1.33 1.33 1.36 1.32 1.78 1.37 1.36 1.41 11%

1.10 1.77 1.68 1.69 1.70 1.67 1.66 1.68 1.68 1.69 2%

1.20 1.93 1.87 1.88 1.90 1.45 1.45 1.47 - 1.71 14%

1.30 1.85 1.79 1.79 1.83 1.77 1.77 - - 1.80 2%

Table 4 .1 1 -  Wave amplitude error analysis

4.7 Conclusions

A statistical analysis of the main dimensions and ratios of catamarans was performed. 

This analysis provided a basis to choose the dimensions of the tested models. This 

analysis was important because the main dimensions of catamarans change a lot and 

there are no typical dimensions. In a catamaran beside the demi-hull main dimensions, 

there are also other very important dimension to be considered like the distance 

between the hulls. After the statistical analysis, two models configuration were 

decided, i.e. one with 40 cm between the two hulls centre lines (V40) and the other 

with a distance of 60 cm between hulls (V60).

An experimental set-up was designed and installed at the Hydrodynamic Laboratory 

of the University of Glasgow to investigate the motions of the models in waves.

The resistance tests in calm water show that the two models at certain speeds have 

different resistance. The V40 model has higher resistance than the V60 model (about
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4.4% at Fn=0.6). This difference is because their behaviour in terms of trim and rise 

of the centre of gravity is different. The V60 model rises more from the water than the 

V40 model.

The heave and pitch experimental results were compared with 2D theoretical results. 

Two different theoretical calculations were performed, one including viscous forces 

and another without viscous forces. At forward speed, the experimental heave 

responses near the resonance peaks are generally over predicted by the theoretical 

calculations when the viscous force terms are not considered. The first natural 

resonance peak increases its magnitude when the speed increases. The results when 

the viscous forces are included agree better than the results of the cases without 

viscous forces.

At forward speed the theoretical heave and pitch response amplitude operators present 

a second small resonance peak due to theoretical symmetric resonance frequency. This 

peak is not present in the experimental results. The reason for its appearance in the 

theoretical results is because of the simplified way the forward speed effects are added 

to the theory. Both heave and pitch theoretical results with the viscous effects agree 

well with the experimental results but the agreement is more precise for the heave 

calculations.

An error analysis of the heave and pitch results, as well as the incident wave 

amplitude was performed. This analysis shows that the mean motion response errors 

are around 4%, which is a perfectly acceptable error. Two points are concluded from 

the incident wave analysis. The first conclusion is that there is 10% of asymmetry in 

the waveform, which means the wave crest is not a straight line from one tank wall to 

the other. The second is that the mean wave error is about 4%, which is also an 

acceptable value.

82



Chapter 5

Features of Catamaran Motions

5.1 Introduction

In this chapter several calculations and comparisons between theoretical and 

experimental results are performed. Some special features such as hull interference 

and resonance frequencies, strictly related to twin hulls, are presented and discussed. 

A parametric study is also performed comparing different hull configurations in which 

the hull main characteristics are varied.

Some calculations made in this chapter use results from two different theories: the 

two-dimensional theory with viscous effects developed in the present work, and the 

three-dimensional theory developed by Chan (1990), whose software is available at 

the University of Glasgow. The theoretical results from the two theories are compared 

between each other and also with the experimental results. These comparisons use 

calculations of the V40 and V60 models running at the same forward speeds as those 

tested in the experimental work (Chapter 4).

Beside the comparison made between experimental and theoretical results, other 

comparisons are made between experimental results of the two models tested and also 

between experimental and theoretical mono-hull results. In addition the following 

comparisons are also performed in order to assess the validity of the suggested hull 

interference.

A parametric study is performed by changing the distance between the Vosper 

catamaran hulls and the catamaran draught. In this parametric study three different 

hull spacings and two different draughts are used. The calculations made in this study 

are based on the two-dimensional theory with viscous effects. The results are analysed 

and compared with the experimental results performed with the models tested at the 

laboratory.

Another parametric study is performed using a different type of catamaran, a round 

hull displacement catamaran instead of the hard-chine Vosper hull. In this study the
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catamaran displacement is kept constant and the variations are in terms of the ship 

length, breadth and draught. The speed and the distance between the hulls are also 

varied parameters.

5.2 Catamaran Hull Interaction and Resonance Frequencies

5.2.1 Introduction

The twin-hull interaction is an interesting and difficult problem that has been 

discussed before by other authors Wang and Wahab (1971), Ohkusu and Faltinsen 

(1990), Faltinsen et al (1992), Van't Veer and Siregar (1995) and Hudson et al (1995).

Ohkusu and Faltinsen (1990) presented a method to predict three-dimensional 

hydrodynamic forces between two hulls of a catamaran oscillating and with forward 

speed. The predicted hydrodynamic forces agree generally well at high speed with the 

model test results and they concluded that hydrodynamic interaction between hulls is 

weak at high speeds. Faltinsen et al (1992) extended a strip theory model with a full 

linearised free surface boundary condition with the forward speed effect terms to 

calculate motions and loads of catamarans in waves. They also stated that at high 

speeds if the hulls are not too close to each other and the waves generated on one hull 

do not influence the pressure distribution on the other hull, it could be assumed that 

the hulls are hydrodynamically independent of each other.

Van't Veer and Siregar (1995) also studied the interaction effects on a catamaran 

travelling with forward speed in waves. They used a strip theory and considered three 

different kinds of interference between hulls depending on the ship speed and hull 

spacing. For very low speeds the hull interaction is considered two-dimensional and is 

well predicted by strip-theory as proved by the twin-cylinder results and also by 

experimental results. At very high speed the authors say that there is no wave 

interaction between the hulls because at high speed the waves generated by one hull 

do not reach the other hull and as a result there is no interaction between the hulls. It 

is only at medium speed that there is a longitudinal wave interaction.
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As can be seen in Figure 5.1, by simple kinematic analysis it is possible to determine 

when the waves generated by one hull reach the other just considering the ship length 

L, the distance between the inner sides of the two hulls H, the ship speed U and the 

wave frequency co 0. The relation is given by

= ^  = = ^  = ^  (5.17)
v , ®. g

where Vp is the propagated wave velocity, Lwe and Te are the propagated wave length 

and period and ke is the encounter wave number.

When cris greater than L/H  there is no interaction between the waves generated at the 

bow section of one hull and the stem section of the other hull. Alternatively, 

expressing the same in a more appropriate way, when

©,) —  •— (5.18)
H  U

there should be no wave interaction.

Figure 5.1 -  Hull interference

Another study made by Hudson, Price and Temarel (1995) compared catamaran 

motion responses predicted by different mathematical theories. They concluded that 

near the resonance frequencies the theories have different responses and that the 

distance between the hulls has influence on the calculations of the hydrodynamic 

coefficients and the ship motion responses. On that study they used two and three- 

dimensional theories and two different catamaran configurations (with D/L ratios of
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0.2 and 0.4, where D is the centre line to centre line separation and L is the ship 

length).

5.2.2 Resonance Frequencies

Several ways of estimating the resonance frequencies were studied in order to analyse 

and understand some of the peaks in the calculated response operators.

The first natural frequencies a>nh, conp, conr for the heave, pitch and roll motions

respectively, are easily estimated as the natural frequencies of a spring-damping-mass 

system and given by the following equations

where M  is the mass of the catamaran, A0 are the added mass coefficients, C„ are the 

restoring coefficients and I jk are the mass moment of inertia. These approximations

can only predict one natural frequency assuming a constant added mass. In order to 

predict other resonance frequencies, Hudson et al (1995) rewrote equations (5.19) and 

presented a frequency dependent function

where My and the restoring coefficients are constants with the frequency. My is the 

mass or the inertia depending upon j  and k.

The added mass curve calculated from the radiation forces is also a frequency 

dependent function. Hence, each time the curve generated by equation (5.20) 

intersects the added mass curve calculated from the radiation forces, there is a 

resonance frequency. The curve generated by Equation (5.20) may intersect the added 

mass curve more than once because the calculated added mass curve for catamarans

(5.19)

(5.20)
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have pronounced troughs that can even result in negative values, as seen in the twin- 

cylinders added mass results presented in section 3.6.1 (Figure 3.5 and Figure 3.7).

Another approximate way to determine theoretical resonance frequencies is given by 

Wang and Wahab (1971) and was found through the study of the heaving oscillations 

of twin cylinders in a free surface. The troughs in the twin cylinders added mass 

curves (Figure 3.5 and Figure 3.7) are due to the fluid interaction between the hulls 

which is essentially of two forms, symmetric and anti-symmetric. The symmetric 

waves generated inside the two hulls usually take the form indicated in Figure 5.2.

Figure 5.2 -  Interaction wave inside the hulls

The first wave form in Figure 5.2 is simply a vertical motion of the fluid. The second 

wave form is like a standing wave with a wavelength equal to the distance between 

the hulls. This symmetric frequency is the same phenomenon studied by Wang and 

Wahab (1971) and is given by

co , =n 3
12 • 7T' g  • n

H
n = 1,2,. (5.21)

where H  is the inner distance between the hulls.

Faltinsen (1990) points out another resonance frequency when he says that the natural 

frequencies of oscillation due to the sloshing effect between the two hulls of the 

catamaran, is estimated by assuming that resonance occurs when there is a half 

wavelength between the inner sides of the two hulls.

1/2

CO.
B J 2 Y/2 71

g D
B . / 2

CO. —
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where D is the distance between the two hulls, Bm is the breadth of one single hull, 

and g  is the gravitational constant. This resonance frequency expresses the anti­

symmetric fluid interaction between the hulls, which affects mainly the horizontal 

plane motions. In a general form this frequency is given by

The symmetric resonance frequency at zero forward speed is well identified 

experimentally and well predicted theoretically as shown by the twin-cylinder results 

in section 3.6.1. At zero forward speed and at this frequency a trough and a hump in 

the added mass and damping coefficients is observed. At zero speed the experimental 

results match with the theoretical results, but at forward speed the resonance 

frequency is not experimentally observed which suggest that because of the two- 

dimensional approach the added mass and damping coefficients are not properly 

calculated in the forward speed case. Theoretically the three-dimensional approach 

should be more appropriate but as seen in the next sections, this approach also 

presents small peaks in the catamaran motion responses near that frequency.

The purpose of the twin-cylinder calculations (section 3.6.1) is to validate the two- 

dimensional results and also to show that the symmetric resonance frequency is well 

predicted in the zero speed case. This frequency is dependent on the inverse of the 

distance between the hulls, eq (5.21), which implies that wider the distance between 

the hulls, the lower the resonance frequency (as shown before by the twin-cylinder 

results).

5.3 Analysis of the Motion Responses of Two Catamarans

In section 4.5 the experimental results were compared with results calculated by the 

two-dimensional theoretical model with and without the viscous forces terms. From 

these comparisons it is concluded that the theory is appropriate to simulate the 

physical reality when the viscous forces are added to the formulation. In this chapter 

the two-dimensional results with the viscous effects and the experimental results are 

compared with the three-dimensional theory developed by Chan (1990). The 

calculations and comparisons are made for both V40 and V60 models. The



comparisons focus on the quality of the results and the influence of the hull distance 

on the motion responses.

5.3.1 V40 and V60 Catamaran Motion Responses

Number of panels = 634

Figure 5.3 -  Discretisation o f the V60 model

The discretisation of the catamaran hulls to enter as an input in the three-dimensional 

software is presented in Figure 5.3.

The number of panels of the twin hulls is 634. Both models (V40 and V60) use the 

same number of panels and the only difference between them is the separation of the 

hulls.

2D. 3D Results vs Experimental Results

The following figures compare two and three-dimensional results with experimental 

results. The V40 results are presented in Figure 5.4 to Figure 5.11 while the V60 

results are presented from Figure 5.12 to Figure 5.19.
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Figure 5.4 -  2D, 3D and Experimental Heave motion at Fn= 0.0, V40 model
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Figure 5.5 -  2D, 3D and Experimental Pitch motion at F«=0.0, V40 model
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Figure 5.6 -  2D, 3D and Experimental Heave motion at F«=0.25, V40 model
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Figure 5.7 -  2D, 3D and Experimental Pitch motion at Fn=0.25, V40 model
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Figure 5.8 -  2D, 3D and Experimental Heave motion at Fn=0.625, V40 model
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Figure 5.9 -  2D, 3D and Experimental Pitch motion at Fn =0.625, V40 model
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Figure 5.10 -  2D, 3D and Experimental Heave motion at Fn=0.15, V40 model
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Figure 5.11 -  2D, 3D and Experimental Pitch motion at Fn=0.75, V40 model
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Figure 5.12 -  2D, 3D and Experimental Heave motion at Fn=0.0, V60 model
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Figure 5.13 -  2D, 3D and Experimental Pitch motion at Fn=0.0, V60 model
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Figure 5.14 -  2D, 3D and Experimental Heave motion at Fn= 0.25, V60 model
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Figure 5.15 -  2D, 3D and Experimental Pitch motion at Fn= 0.25, V60 model
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Figure 5.16 -  2D, 3D and Experimental Heave motion at Fn =0.625, V60 model
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Figure 5.17 -  2D, 3D and Experimental Pitch motion at Fn=0.625, V60 model
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Figure 5.18 -  2D, 3D and Experimental Heave motion at Fn=0.75, V60 model
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Figure 5.19 -  2D, 3D and Experimental Pitch motion at Fn=0.15, V60 model

The three-dimensional results at zero speed agree very well with the experimental 

results. In the V40 model the 3D results agree even better than the two-dimensional 

results.

At forward speed the 3D heave responses near the first resonance frequency always 

over-predict the experimental results. The over-prediction of the 3D heave motion 

calculations near the first natural frequency happens because that theory is also based 

on potential flow and as explained in section 3.3 the viscous effects are not properly 

considered in potential flow theory. The over-predicted peaks increase drastically at 

higher speeds. Curiously, on the other hand the 3D pitch amplitude responses are 

quite well predicted and in many cases they are very similar to the 2D calculations.

At forward speed, almost every theoretical heave and pitch response amplitude 

operators show two resonance peaks. The lower frequency peak is due to the first 

natural frequency and is easily determined by equation (5.19) or by a more precise 

way through equation (5.20). The second peak is due to the theoretical symmetric 

interaction as explained in section 5.2.2.

Table 5.1 presents the theoretical non-dimensional symmetric resonance frequencies 

for both V40 and V60 models.
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V40 V60

Fn o)e [rad/s] o)0.sqrt(Ug) o)e [rad/s co0.sqrt(Ug)

0.00 15.95 7.3 11.80 5.4

0.25 15.95 3.8 11.80 3.1

0.625 15.95 2.7 11.80 2.3

0.75 15.95 2.5 11.80 2.1

Table 5.1 -  First symmetric resonance frequencies

Both 2D and 3D theoretical predictions show a peak near the symmetric resonance 

frequency. In the V60 model at high speeds (Figure 5.16 to Figure 5.19) the 

symmetric resonance frequency is close to the first natural frequency and the two 

peaks in the theoretical curves are sometimes difficult to compare with the 

experimental results. Nevertheless in the V40 model where the symmetric resonance 

frequency is higher, the two peaks are apart and easily identifiable and it is evident 

that in the experimental results there is no second peak. This is even more obvious in 

the figures presented in section 4.5 where the theoretical curve without viscous effects 

is plotted and the theoretical peaks are more pronounced.

As Hudson et al (1995) suggested, the most likely reason for this discrepancy between 

the symmetric resonance frequency and the experimental results is that the treatment 

of forward speed effects in the theoretical methods is inadequate.

V40 vs V60 experimental results

A comparative analysis of the motion responses of both experimental models is 

performed. The next figures (Figure 5.20 to Figure 5.27) compare the heave and pitch 

experimental responses of the V40 and V60 models at different speeds.
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Figure 5.20 -Experimental Heave motion at Fn=0.0, V40 and V60 models
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Figure 5.21 -Experimental Pitch motion at F«=0.0, V40 and V60 models
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Figure 5.22 -Experimental Heave motion at Fn=Q25, V40 and V60 models
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Figure 5.23 -Experimental Pitch motion at Fn= 0.25, V40 and V60 models
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Figure 5.24 -Experimental Heave motion at Fn=0.625, V40 and V60 models
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Figure 5.25 -Experimental Pitch motion at Fn=0.625, V40 and V60 models
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Figure 5.26 -Experimental Heave motion at Fn=0.15, V40 and V60 models
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Figure 5.27 -Experimental Pitch motion at Fn=0.75, V40 and V60 models

The comparison of the experimental results of the two models show that the heave and 

pitch transfer functions of both models have a similar shape, and that there are no 

special peaks resulting from the different hull spacing and symmetric resonance 

frequencies. What the comparison shows is that at the first natural peak and at high 

speeds (Fn=0.625 and Fn=0.75), there is a slight tendency to get larger response 

amplitudes in the V60 experimental results than in the V40 results. At Fn=0.25 the 

V60 heave response amplitude at the resonance peak is smaller than the V40 response.

At Fn=0.625 and at the resonance peak the V60 model heave amplitude is 9% higher 

than the response amplitude of the V40 model. At the same speed, the pitch response 

amplitude is 15% higher than the V40 response. At Fn=0.75 the differences are even
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larger, the V60 heave amplitude is 11% higher than the V40 and the pitch amplitude is 

20% higher.

At high speeds and high frequencies the response amplitudes are small and almost 

equal for both models. This result agrees with the no interference assumption made in 

section 5.2. The next section analyses this point in more detail through the comparison 

made between the experimental results from the catamaran models and some 

theoretical calculations made with a mono-hull equal to one of the catamaran demi- 

hull.

At zero speed both models have very similar responses. Since the range of wave 

frequencies tested (l < o)0^ L /g  < 4 ) do not reach the theoretical symmetric

resonance frequency (a>0^ L /g  « 5.4 in the V40 model and c o ^ L /g  » 7.3 in the V60

model) it is difficult to assess and compare with the phenomenon studied and 

observed in the twin-cylinders configuration (section 3.6). The only conclusion is that 

at zero speed and for usual catamaran dimensions the so-called symmetric resonance 

interference is not important because of the extremely high frequency at which the 

phenomenon occurs.

V40. V60 experimental results vs mono-hull theoretical results

Figure 5.28 to Figure 5.31 present the comparison between the experimental results of 

both models and the calculated response of a mono-hull with the same body plan of a 

demi-hull of the catamaran models. The purpose of this comparison is to check the 

validity of the assumption of no hull interference at high speeds and high frequencies 

as explained before in section 5.2.

Table 5.2 presents for both models at Fn=0.625 and Fn=0.15 the theoretical 

encounter frequency where the hull interference starts to vanish according to 

section 5.2, eq(5.18). The frequencies in Table 5.2 are presented in the dimensional 

form and also in the non-dimensional form usually used in the figures.
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V40 model V60 model

Fn coe [rad/s] co0.sqrt(L/g) o)e [rad/s] a)0.sqrt(L/g)

0.625 - - 16.4 2.8

0.75 24.6 3.3 13.7 2.3

Table 5.2 -  Hull interference frequency limit.
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Figure 5.28 -Heave motion at Fn=0.625, Mono-hull versus V40 and V60 models
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Figure 5.29 -P itch motion at Fn =0.625, Mono-hull versus V40 and V60 models
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Figure 5.30 -H eave motion at Fn=0.75, Mono-hull versus V40 and V60 models
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Figure 5.31 -P itch motion at Fn= 0.75, Mono-hull versus V40 and V60 models

From the foregoing figures at high speeds (Fn=0.625 and Fn=0.15) it is observed that 

after a certain frequency (Table 5.2) the heave and pitch response operators are similar 

to the mono-hull theoretical response. As expected, the frequency at which that occurs 

decreases with the increase of forward speed. These results give confidence to say that 

in head waves the interference between the hulls is small after a certain speed, wave 

frequency and hull spacing and we can also say that under these conditions the 

catamaran response is similar to a mono-hull.
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5.4 Parametric Study of Vosper Catamaran Motions in Regular Waves

In this section a parametric study of catamaran motions in regular waves is done. This 

study is performed after having shown in section 4.5.1 the good agreement between 

the experimental results and the theoretical results obtained with the two-dimensional 

theory with the viscous effects incorporated.

The study is performed by changing the distance between the hulls and the ship 

draught. In this comparison three different hull spacing are used: the already studied 

V40 and V60 models plus a new wider configuration (V80 model) with 80 cm between 

the two hulls centre lines. The V80 model has a L/B ratio of 2.14, which is a very 

small ratio when compared with the other configurations (see Table 4.1).

Besides the different hull spacing, two different draughts were also compared, the 

experimental draught (T=0.085 m) and a smaller one equal to T=0.075 m.

5.4.1 Heave and Pitch Theoretical Results of the V40, V60 and V80 Models 

at 7=0.085 m

Figure 5.32 up to Figure 5.39 show the two dimensional theoretical results with the 

viscous effects included of the V40, V60 and V80 models at draught T=0.085m.
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Figure 5.32 -H eave motion at Fn=0.0, V40 V60 and V80 models (T=0.085m)
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Figure 5.33 -P itch motion atF«=0.0 , V40 V60 and V80 models (T=0.085m)
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Figure 5.34 -Heave motion at Fn=0.25, V40 V60 and V80 models (T=0.085m)

1.2
V40

1.0 V60

V80
0.8

0.6

0.4

0.2

0.0
0.0 1.0 2.0 3.0 4.0

o 0.sqrt(L/g)

Figure 5.35 -Pitch motion at Fn=0.25, V40 V60 and V80 models (T=0.085m)
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Figure 5.36 -H eave motion at Fn =0.625, V40 V60 and V80 models (T=0.085m)
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Figure 5.37 -P itch  motion at F h= 0.625, V40 V60 and V80 models (T=0.085m)
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Figure 5.38 -Heave motion at Fh=0.75, V40 V60 and V80 models (T=0.085m)
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Figure 5.39 -P itch motion at Fn=0.75, V40, V60 and V80 models (T=0.085m)

The comparison of the theoretical heave responses between the models shows higher 

responses on the V60 model, especially at high Froude numbers (Fn=0.625 and 

Fn=0.75) as in the experimental results. The quantitative differences between the peak 

amplitudes of the calculated responses of the two models (V40 and V60) are not so 

high as in the experimental results but the difference still exists. At Fn=0.625 the 

heave motion difference is 4% and at Fn=0.75 the difference is 6%. This similar 

tendency between the experimental and theoretical results also shows the good 

agreement between the theoretical results and the physical reality.

The pitch theoretical results of the V60 model at high Froude numbers agree very well 

with the experiments but the V40 calculations do not agree so well.

At zero speed the differences between the theoretical results are minimum and all 

responses agree very well with the experimental results (Figure 5.20 and Figure 5.21).

The comparisons between the heave experimental results show that the V40 model, at 

Fn=0.25 (Figure 5.22) has higher peak amplitude at the first resonance frequency than 

the V60 model. This response is also predicted by the theoretical calculations (Figure 

5.34).

The comparison of the theoretical results of all three configurations show that at high 

speeds the peak amplitudes of the heave motion are higher on the V60 configuration 

while the V40 and V80 have almost the same peak amplitudes but at slightly different 

wave frequencies. On the other hand the pitch responses show higher peak amplitudes
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on the V40 configuration and these peaks decrease with the increase of the hull 

distance.

5.4.2 Heave and Pitch Theoretical Results of the V40, V60 and V80 Models 

at 7=0.075 m

Figure 5.40 up to Figure 5.47 show the two-dimensional theoretical results of the V40, 

V60 and V80 models with the viscous effects at a lighter condition where T=0.075m.
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Figure 5.40 -H eave motion at Fn=0.0, V40 V60 and V80 models (T=0.075m)
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Figure 5.41 -P itch motion at Fn= 0.0, V40 V60 and V80 models (T=0.075m)
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Figure 5.42 -H eave motion atF«=0.25, V40 V60 and V80 models (T=0.075m)
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Figure 5.43 -P itch motion at Fn=0.25, V40 V60 and V80 models (T=0.075m)
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Figure 5.44 -Heave motion at Fn=0.625, V40 V60 and V80 models (T=0.075m)
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Figure 5.45 -P itch motion at Fn=0.625, V40 V60 and V80 models (T=0.075m)
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Figure 5.46 -Heave motion at Fn=0.75, V40 V60 and V80 models (T=0.075m)
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Figure 5.47 -Pitch motion at Fw=0.75, V40 V60 and V80 models (T=0.075m)
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Figure 5.40 to Figure 5.47 show that at the lower draught (T=0.075m) the ship motion 

response operators have smaller peak amplitudes than the responses at T=0.085m 

(Figure 5.32 to Figure 5.39). These differences in the peak motion amplitudes are 

small, and despite the peak differences it is seen that V40, V60 and V80 configurations 

have similar relative results at both draughts.

5.5 Parametric Study of the TransCat Catamaran Motions in Regular 

Waves

Another parametric study with a different hull was performed. This hull is not a hard- 

chine type hull like the Vosper catamaran but a round displacement hull. This 

catamaran is a 45 meters long passenger catamaran operating at Tejo River. The hull 

form is presented in the figure below.

Figure 5. 48 -  TransCat body plan

The seakeeping parametric study was performed considering the parent hull at the 

following condition:

Main Characteristics

Length overall 45.0 m

Waterline Length 44.25 m

Displacement 175 t

Inter-axis separation 9.0 m

Demi-hull breadth 2.8 m

Draught 1.33 m

Trim 0 deg

Table 5.3 -  TransCat main characteristics
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The following main design parameters were selected for the parametric study on the 

seakeeping characteristics:

• main proportion parameters L, Bm and T  of the demi-hulls;

• inter-axis separation between the demi-hulls (D);

• ship speed, given by the Froude number

It was further decided to keep the displacement constant at 175 t through this analysis.

In order to efficiently generate in an automatic way the model for each parametric 

variation the ship dimension were changed in affinity relation, that is the co-ordinates 

x, y, z of the offset of the Parent Hull were uniformly stretched by a proper scale 

factor along the three directions:

x'= a x

y'=P-y
z'= Y'Z

This means that global form parameters such as Cg, Cp, and are not changed by 

these variations. The requirement of constant displacement implies that: 

a - f t y  = 1

It was thus decided to consider a  and p as independent parameters and let y vary 

consequently as y  = l/[a-jB).

The parametric variations were considered according to Table 5.4 shown below.

Parameter Value

a 0.8 1.0 1.2

P 0.8 1.0 1.2

D 7m 9m 11m

Fn 0.0 0.25 0.62
Table 5.4 -  TransCat Parametric variations

The results of the seakeeping calculations are presented in terms of XY graphs of the 

non-dimensional heave response operator X/WaveAmpl and non-dimensional pitch
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response operator X5/WaveAmpl/K versus the non-dimensional wave frequency 

a 0sqrt(L /g ) .

The legends on the figures indicate the ship variant. The following table presents all 

the ships variants with the distance between the hulls and their a  and p values:

D=9m

Ship a P
11 0.8 0.8

12 0.8 1.0

13 0.8 1.2

14 1.0 0.8

15-Parent hull 1.0 1.0

16 1.0 1.2

17 1.2 0.8

18 1.2 1.0

19 1.2 1.2

D=7m

Ship a P
21 0.8 0.8

22 0.8 1.0

23 0.8 1.2

24 1.0 0.8

25 1.0 1.0

26 1.0 1.2

27 1.2 0.8

28 1.2 1.0

29 1.2 1.2

D=11m

Ship a P
31 0.8 0.8

32 0.8 1.0

33 0.8 1.2

34 1.0 0.8

35 1.0 1.0

36 1.0 1.2

37 1.2 0.8

38 1.2 1.0

39 1.2 1.2
Table 5.5 -  TransCat ship variant legend

Only the results that are important to make some conclusions are presented in this 

section in the following figures.

The way L, Bm and T parameters influence the ship responses do not change with the 

distance between the hulls i.e. the same effect is observed even if is magnitude is 

different. So to study the influence of those parameters only the original hull 

separation results will be analysed, which means D = 9.0m (Ship 15).
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Figure 5.49 - Heave motion; <2=0.8 at Fn=0.62 in head waves
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Figure 5.50 - Heave motion; #=1.0 at Fn=0.62 in head waves

0.8
o.
E<
|  0.6 
£
® 0.4

0.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
oo0.sqrt(L/g)

Figure 5.51 - Heave motion; #=1.2 at Fn=0.62 in head waves
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From Figure 5.49 to Figure 5.51 the ship length was kept constant in each figure but 

changed from figure to figure (oc=0.8 in Figure 5.49, a=1.0 in Figure 5.50 and a=1.2 

in Figure 5.51). Analysing these figures, it is seen that when the demi-hull breadth 

increases and as the draught decreases at constant length, the heave response 

amplitude at the first resonance peak decreases. This effect is also observed at the 

other speeds and hull separations but with different strengths.

Comparing Figure 5.49 up to Figure 5.51 it is seen that an increase of ship length, 

decreases the heave responses at the resonance peaks. This effect is also observed 

independently of the speed and hull separation.
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Figure 5.52 - Heave motion; {a=  0.8; 1.2) (a=  1.0; /M .0 )  (a=  1.2; /?=0.8) atF«=0.62 in head waves

The previous Figure 5.52 compares two different aspects: ship length and demi-hull 

breadth. It shows as before that as ship length increases the heave motion response 

amplitudes decrease but at the same time the higher the demi-hull breadth the higher 

the ship response at the first resonance frequency. This means that in these conditions 

the length is more important than the hull breadth in what concerns heave amplitude 

responses.

As in the heave motion response case, the following Figure 5.53 to Figure 5.55 show 

the same kind of relations between the main dimensions and the ship motion 

amplitudes in pitch motion responses.
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Figure 5.53 - Pitch motion; <2=0.8 at Fn=0.62 in head waves
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Figure 5.54 - Pitch motion; a=1.0 at Fn=0.62 in head waves
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Figure 5.55 - Pitch motion; <2=1.2 at Fn=0.62 in head waves
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As in the heave case, from Figure 5.53 to Figure 5.55 the length was kept constant in 

each figure (a=0.8 in Figure 5.53, a=1.0 in Figure 5.54 and a=1.2 in Figure 5.55). 

Analysing those figures, it can be seen that when the demi-hull breadth increases and 

the draught decreases, the pitch response amplitude at the first resonance peak 

decreases. Again, this effect is observed independently of the speed and hull 

separation.

Comparing Figure 5.53 to Figure 5.55 it can be seen that the increase of the ship 

length decreases the pitch responses. This effect is also observed independently of the 

speed and hull separation.
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Figure 5.56 - Pitch motion; (<2=0.8; fi=\.T) (<2=1.0; 1.0) (<2=1.2; /M ).8) at Fn=0.62 in head waves

As in the heave analysis, Figure 5.56 shows that the influence of the length is higher 

than the influence of the demi-hull breath in the pitch response at the resonance 

frequency.

At zero speed the changes in the responses are small when the main dimensions are 

changed and the displacement is kept constant. Figure 5.57 shows the heave results at 

Fn=0.0, keeping the same breadth and changing the ship length.
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Figure 5.57 - Heave motion; (<2=0.8; >#=1.0) (a=  1.0; >#=1.0) (<a=1.2; >#=1.0) at F«=0.0 in head waves

Regarding the hull separation effects, three different hull configurations are 

considered where the L/B ratio ranges from 3.2 to 4.5 which is well above the range of 

ratios considered in Vosper catamaran study (between 2.14 and 3.66). As seen in 

Figure 5.58 and Figure 5.59, at the TransCat range of ratio, the results have the same 

nature of the Vosper results at the same range, which in this case includes the V40 and 

the V60 models, because the V80 model is completely out of the range.
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Figure 5.58 - Heave motion; D=7m; D=9m; D = llm  (<2=1.0; >#=1.0) atF«=0.25 in head waves

Analysing the results it is seen that the wider configuration has slightly higher peak 

responses at high speed (Fn^O.62) while at an intermediate speed (Fn=0.25) this is 

not true. At Fn=0.25 the ship 35, which is the wider one, and ship 15, the intermediate 

one, they both have pronounced peaks at the symmetric resonance frequencies but as
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explained before these peaks do not happen in the experimental model results so they 

should not be taken into consideration.
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Figure 5.59 - Heave motion; D=7m ; D=9m; D = llm  (aF=1.0; jff= 1.0) at-F«=0.62 in head waves

5.6 Conclusions

The results from the two-dimensional theoretical model with viscous effects and the 

three-dimensional mathematical model based on Chan (1990) work were compared 

with the experimental results. The two-dimensional results agree well with the 

experimental results as shown and analysed in the previous chapter. At zero speed 

both theories give good and similar results to the experimental. At high Froude 

numbers the three-dimensional results have an over-predicted peak at the first natural 

frequency. As explained in section 3.3 the potential flow theory used in the three- 

dimensional approach does not consider the important viscous effects present in the 

motion of twin-hull ships. This explains the over-prediction of the results in the three 

dimensional theory.

The experimental and theoretical work performed and analysed in this chapter agrees 

with the theoretical assumptions presented in section 5.2 concerning the type of 

interactions that exist between the catamaran hulls. First at zero and very low speeds 

the interaction between the two hulls is mainly two-dimensional. As speed increases 

the interference between the hulls becomes three-dimensional because there is a
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translation of the waves generated in the forward sections to the aft sections. At high 

forward speeds the interference vanishes because the waves no longer have time to 

reach the other hull. This last kind of interaction was confirmed when the two models 

experimental results were compared with the theoretical calculations of a mono-hull 

with the same hull form. At the intermediate speed where the three-dimensional 

effects are bigger, both 2D and 3D theoretical results present a second resonance peak 

near the first symmetric resonance frequency, but this peak is not present in the 

experimental results. This leads to the conclusion that the speed effects are not 

properly modelled by the two-dimensional theory neither by Chan’s three- 

dimensional theory.

The V40 and the V60 experimental motion responses were compared this time to show 

which configuration has lower response amplitudes. At zero speed the experimental 

heave and pitch response amplitude operators for both models are very similar so in 

this case the response is independent of the hull distance. At high Froude numbers the 

V60 response amplitudes at the natural frequency peaks are slightly higher than the 

V40 response amplitudes for both heave and pitch motions. At the intermediate speed 

(Fn=0.25) there are an opposite response and the wider model has lower peak 

responses than the narrow one. So in this two last cases the response operators are 

dependent on the hull distance and ship speed.

The parametric study with the Vosper Catamaran was done considering three different 

hull configurations (V40, V60 and V80) at two different draughts and four different 

speeds. The theoretical calculations were performed using the two-dimensional 

mathematical model with the viscous effects. The study showed that the theoretical 

predictions follow the experimental results. Both experimental and theoretical results 

show similar relative responses when comparing the V40 and V60 models at all 

speeds. At high forward speeds the peak amplitude of the heave response increase 

from the V40 to the V60 models but at the wider configuration (V80) there are a slight 

decrease of the peak response. On the other hand the pitch theoretical results do not 

follow this tendency and the responses decrease with the increase of the hull distance. 

The symmetric resonance peak has a considerable effect on the V80 pitch result but 

under the previous considerations made from the experimental results this symmetric 

peak at forward speed should be ignored.
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The comparison between the two draughts showed that the smaller draught 

(T=0.075m) has lower amplitude responses than the higher draught (T=0.085m) but 

the response amplitude functions have the same shape and the same behaviour.

The TransCat parametric study analysed the effect of the main ship dimensions (L, Bm 

and T) in the motion response operators when the ship displacement was kept 

constant. It was shown that the ship length is the dominant parameter and the higher 

the length, the lower is the response peak amplitude. On the other hand at constant 

length the higher the breadth (lower draught) the lower is the response peak. 

Comparing at the same range of L/B ratio, the TransCat hull separation results agree 

with the Vosper catamaran results. It is observed a certain tendency to have at high 

speeds slightly higher responses at the wider configurations while at lower speeds the 

opposite is observed.

The TransCat results are qualitative because while in the Vosper catamaran the 

theoretical results were confirmed by the experiments and so the viscous coefficients 

were in that case properly set, in the TransCat case there are no experimental results 

so there is no certainty about the amplitude of the theoretical results obtained.
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Chapter 6

Conclusions and Recommendations

The aim of this study was to investigate the hull separation effects and other main 

characteristics on the catamaran motions through an experimental investigation and 

also through theoretical calculations. The importance of this study is more and more 

relevant since the use of catamaran vessels for passenger transportation is increasing 

every day. The seakeeping characteristics of passenger ships are very important 

because people nowadays demand for fast, comfortable and safe travels.

The theoretical formulations used in this study are based in a two and three- 

dimensional potential flow theories.

In the twin-hull vessel configurations the viscous effects are more important than in 

mono-hull vessels (Lee 1976 and Schellin 1995). In the mono-hull vessels the wave 

making damping plays a dominant role while in the twin-hull configuration the wave 

making damping is no longer so dominant and the viscous damping increases its 

relative importance. When the viscous damping is not considered in the catamaran 

motion theory the result is an over-prediction of the motion amplitude at the natural 

frequency peak. To take this into account, the viscous effects were added to the two- 

dimensional theory through a cross-flow drag approach from aerodynamics theories 

(Thwaites 1960) and further developed by Lee (1976). After the introduction of these 

effects the results are much better predicted as shown in chapter 4 where the 

experimental results were compared with theoretical calculations.

The three-dimensional potential flow theory is based on the work developed by Chan 

(1990) where the viscous effects were not included in the theory. The three- 

dimensional calculations were made to analyse how a better three-dimensional model 

would influence the ship motion results, but in fact the 3D results were not improved 

the way it was expected especially concerning the forward speed effects.

Two models with different distances between the hulls were tested at the 

Hydrodynamic Laboratory at the University of Glasgow. The experimental work was
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performed to validate the two-dimensional theory with the viscous effects included 

and also to analyse the influence of the distance between the catamaran hulls in the 

catamaran motion responses.

Calculations were performed for twin-cylinders and compared with experimental 

results to show the good quality of the theories used in this work and also to show the 

symmetric resonance frequencies that exists at zero speed. It is shown that this 

frequency depends on the inner distance between the hulls. Both two and three- 

dimensional theoretical results, at forward speed, presented a second resonance peak 

at the so-called symmetric resonance frequency but the experimental results made in 

this work did not show any of these peaks. It is believed that this difference between 

the experimental and the theoretical results is due to an incorrect theoretical 

characterisation of the forward speed effects. As said before, it was expected that the 

three-dimensional theory could model these effects but in fact, the 3D results also 

showed the resonance peak at the symmetric frequency as in the two-dimensional 

calculations.

The performed experimental and theoretical work agrees with the theoretical 

assumptions made about the kind of interactions that exist between the catamaran 

hulls. First at zero and very low speeds the interaction between the two hulls is mainly 

two-dimensional and is very well predicted by both theories. As speed increases the 

interference between the hulls becomes three-dimensional because there is a 

translation of the waves generated in the forward sections to the aft sections. At high 

forward speeds and high wave frequencies the interference vanishes because the 

waves no longer have time to reach the other hull. This last kind of interaction was 

confirmed by comparing the two models experimental results with the theoretical 

responses of a mono-hull with the same hull form.

The comparison between the experimental results of the two models showed that at 

high speed there is a slightly higher amplitude of response in the wider catamaran 

(V60 model). The differences between the responses of the two models increases as 

speed increases. On the other hand, at low or intermediate speed (Fn=0.25), the 

opposite was observed, the higher peak occurs with the narrow model (V40). At zero 

speed both models showed very similar responses.
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The symmetric resonance peaks in the theoretical results are not very big and the 

general behaviour of the calculated heave and pitch RAO match the experimental 

results, so it can be said that the two-dimensional theory with viscous effects is a good 

tool to predict catamaran motion responses in waves.

The first parametric study was performed with the Vosper catamaran and the distance 

between the hulls, the models draught and speed were the changing parameters. Three 

different hull spacings were considered (V40, V60 and V80) at two different draughts 

(T=0.075m and T=0.085m) and four different speeds. From the parametric study some 

comments regarding the dependence on speed can be formulated. The results showed 

that at zero speed the responses are similar independently of the hull distance. At 

moderate speeds the narrow model has higher peak responses at the resonance 

frequency. At high speeds, it is the intermediate model (V60) that has higher 

responses near the resonance frequency. The decrease of the response amplitude at the 

wider model can indicate that this model is almost responding as a mono-hull (in fact 

the V80 model with the ratio L/B=2.14 is really a very wide catamaran). From these 

results it can be said that maybe there is a hull separation that maximise the motion 

responses at high speeds. However this should be further investigated.

The comparison between the two draughts showed that the smaller one has lower 

amplitude responses at the resonance peaks than the higher draught but the shape of 

the response amplitude functions does not change much from one draught to the other.

The second parametric study was performed with a different hull, the TransCat hull. 

In this study the displacement was kept constant and the variants were the ship main 

dimensions, such as length, breadth and draught. It was shown that the dominant 

parameter was the ship length. It was observed that the larger the length, the lower the 

ship response amplitude at the resonance frequencies. At constant length it was 

observed that the higher the breadth (which implies lower draught), the lower was the 

motion response amplitude.

Regarding the hull separation the results agree with the Vosper catamaran results 

when the comparison is made inside the same range of L/B ratio. It was observed 

under these conditions a certain tendency to have at high speeds slightly higher 

responses at the wider configurations while at intermediate speeds the opposite was 

observed.
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Recommendations for future work

The viscous effect coefficients (viscous lift and cross-flow drag coefficients) should 

be studied in more detail in order to find an accurate way to determine these 

coefficients. In this work the coefficients are assumed constant through all the ship 

length, but in fact they are a function of ship section, mode of motion, frequency and 

Reynolds number.

Another aspect that could be improved is the calculation of the relative velocity used 

in the determination of the viscous forces. The relative velocity is calculated using the 

incident wave potential but it could be calculated with greater accuracy using other 

components of the velocity potential.

Some further investigation should be made to clarify the suggestion made concerning 

the possibility of an intermediate hull distance that would maximise the catamaran 

motion amplitudes at the resonance frequencies.
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Appendix I

In the expressions of the viscous coefficients and viscous forces it is considered: 

i(*) = |i/,(*)| + |zs(*)|

zP O) = £  -CAxMx),-d3 O))

zs(x) = £ -£Ax -Kx),-d3 (x))

>,W = |>,/»W| + |>,sW|

y P O) = £2 + x ie + d2 (x) & -  (h (*> b {x )-d 2 W )

ys M = £2 + XL + d 2 (x) & -  Ch (x,-b(x)-d2 (*))

zr(x) = \zAx)\-\zrs(x)\

zrP(x) = b(x)i4 -  gv(x>b(x),-d3(x))

zrS(x) = -b(x)i4 ~ c (x -b{x)r^jW)

Viscous coefficients and viscous forces

B„ = pa,U \B m(x)dx + j i ( x )B jx )d x

B35 = - p a f j  jxBm( x ) d x - p j - C D jxz(x)B„(x)dx

B„ = —p a f j  | xBm(x)dx -  p ~ p D  \x  z(x)Bm(x)dx

B55 = p a f j  fx 2Bm(x)dx -  p -^-C D fx 1 z{x)Bm(x)dx 
J 3ft J

130



B22 = p a f j  Jj(x)dx + p ^ —CD Jjf{x)d(x)dx
3ft

B24 = p a f j ^ d 2(x)d(x)dx + p -^-C D j".y(X) d2(x)d(x)dx

B26 = p a f j  ^xd(x)dx + p ^ - C D Jj>(x) d(x)dx

B42 = p a f j ^ d 2(x)d(x)dx + p -^-C D |j>(x) d2(x)d(x)dx
L  L

K  = pa,U  jb 2(x)Bm(x)dx + p f c o j z r(x)b2(x)B jx)dx
L  L

p a f j  ^dA(x)d(x)dx + p-^-C D |j)(x )d22 (x)d(x)dx

B46 = p a f j  ^xd2(x)d(x)dx + p -^-C D Jx j>(x)d2(x)d(x)dx
3ft

B62 = p a f j  ^xd(x)dx + p -^-C D j*j>(x) d(x)dx
3ft

B64 = p a f j ^ x d 2(x)d(x)dx + p-A—CD j*x>>(x)d2(x)d(x)dx
L L

B66 = p a f j  Jx2 d(x)dx + p ——CD Jj)(x)x2d(x)dx
L ^ f t  L

C35 = pa ,U 2 \B m(x)dx
L

C46 = - p a f j 2 Jd(x)d2(x)dx
L

C55 = - p a f j 2 JxB m(x)dx
L

C66 = - p a f j 2 Jxd(x)dx
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F l  = -pe>„a,U \d (x )e K̂ d‘(x)+lxmsm cos(K0b(x) sin fd)dx
L

-  p — a>0CD \d{x)eK̂ d̂ msm{ex^ “l>\ys {x)\ + e - '^ Wsin/,|j>,,(*)|)&
3a" l

F'[ = -p a ^ a fJ  Jb„ cosiKvKx) sin P)dx
L

- p ^ L COtsCD fB (x)e*°<~rf|W+“'“ W e*^l'<>sin/,|z£(;i:)| + e_lK°i'Wsi”/,|z/,(x)|}a!x 
3a" I

F vt = - p a 0a,U jb(x)Bm( x )e ^ - d'ixhlxaafl sin(K0f>(*)sinP)dx
L

+ ip — a>aCD {6(A:)SmU )e sr”<-' '<x)+“c“ ^)(e*",’Wsi’/' | i s (^)|- (*)|)fc

-  p c o ^ U  \d (x )d 2 {x)eK* i-* * w » n  COS(K0b(x) sin /J)dx
L

_ p  j - fi,oc o fd (x )d 2(x )e*'<-<V*>**co.s, W | +
3 7t L

F5v = ipco^U  \xB m cos(K0b(x) sin J3)dx
L

+ ip — (o0CD fBm (eW W | i s (x)| + e ^ ^ ' ^ z ^ x i f y x
3a- I

F l  = - p c o ^ U  [ x d ^ ^ ^ ^  cos(K0b(x) sin P)dx
L

- p - L ^ C ; ,  jxd (x )eK°{-dl<x)*t‘c°s/’) (e*«!'(' )sin/' | i s (*)] + e 'K M *‘f \zp (x)|)&
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Appendix II

Added mass and damping coefficients 

A33 = Ja33dx -&33
L

f U n0 u u2 a
35  — \xa33dx B 33 +  xAb33 2 a 33

I  CO CO CO

A53 =  - \x c i3 3dx-\ —B 33 h y xa^ 33
i  CO CO

< 2 J u 2 a0 U 2, a U 2 a
A55 — Ix a33dx + y433  XA 33 2 XAa 33

I  CO CO CO

B33 = jb33dx + Ua33
L

B» = -  U , 3<fc + £ /<  -  U xX>  ~ K K
L 03

B 53 =  - ^xb33dx - UA33 -  UxAa33

L

B 55 =  \x 2 b33dx +  — ~  B 33 +  U x\a 33 +  —2 xa^33  
I co co

A22 ~ \ ^ 2 2  dx Z~ b22

L

^ 2 4  =  ^ 4 2  =  [ ^ 2 4 ^  2" ^ 24

L  &

f j  u n 0 U jA U2 A
A 26  ~  \XCl2 2d x  +  2  B 22  2 XA 22 2 ^ 2 2

'  CO CO CO
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A44 = \a44d x - ^ r b 44
L

f j  u no u , A A
4 6  — \XCl24dx+ B24 XAb24 + 2 fl24

I  co co co

f  £ /■̂62 — \XCl22dx — B22 + UxAd 22

, f  , t /  —o t .4
64 = |X6Z24<ix — 24 24

^66 = f* a22̂ X  ̂ r  ̂ 2  TXA&22 "* T XAa22[ CO CO CO

B22 = jb22dx + Ua22
L

B2 4 = 5 42 = f^24i/x 2*̂ 24
I

i?26 -  jxb22dx-U A 22
L

B44 = + Ua£
L

Bi6 = + C & X  + ̂ 4
1 ®

Z?62 = jxb22dx + C/ ^ 2 + UxAa22
L

B64 = jxb24dx + UA%4 +UxAa24
L

Z?66 — f-X b22dx H — i ?22 ~^UxACl22 H — xa&22
I  to <D

where the terms ^  and 5°* refer to the speed independent part of ^  and Bjk; 

is the x-coordinate of the aftermost section of the ship; and ajk and bjk are the 

sectional added mass and damping coefficients of the aftermost section of the ship.
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The sectional two dimensional added mass and damping coefficients are given by

aM= Re

1 
1 

§ i 
i

MII

i 
i

'—
*3

1 
1

J=2,3,4

a2 4 — Re
1 

1 
$ 

1̂
 

P*
-^

»
to &

i 
i

; b24 = Im

r~
...

...
.-|

to

1 
1

where <f’. is the sectional radiation potential of the two dimensional problem

calculated by the Frank close fit method (Frank 1967). The integration is performed 

along the cross section contour Cx. In the sectional potential expressions Nj (j=2,3) 

are the two-dimensional unit normals to the hull surface in the y-z plane and 

N 4 = yN 3 -  zN2. To apply Frank close-fit method and calculate the sectional

potentials the cross sections have to be defined by a finite number of straight-line 

segments as represented in the Figure below (in this work 14 segments are used).

Figure AppendixII.l - Definition of a hull section

The exciting forces, which include incident and diffracted forces, are given by:

Fj = p A \ i f i +f ? ) dx+P A j ^ f ! >[A ’J=2-3-4

^ = - / ^ f | ( / / + / 3D)* -  —  /ar ico
d x -p A — xAf \D 

10) XA

F6 = p A j  ( f l  + f ? ) x - ¥ - f ?  
i ico

dx+ pA— xAf 2D
10)
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f f ( x ) = - I L e*o*
^0 I

f f  (x) = - ^ - e ikoXCOsfi f [ * 0 ( -  iN2 sinp + N 3 U
°>o d

where f f  refers to f f { x )  calculated at the aftermost section of the ship xA .
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