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1.1 Synopsis of thesis

The purpose of this thesis was to investigate the enzymatic sources of, and stimuli for, 

reactive oxygen species (ROS) production in human vascular cells and blood vessels. 

In particular, the possibility that vasoactive hormones, such as angiotensin II (Ang II), 

might stimulate vascular ROS production was also explored.

Internal mammary arteries (IMA) and saphenous veins (SV) were collected at the 

time of coronary artery bypass surgery. Initial validation studies demonstrated that 

lucigenin-enhanced chemiluminescence was a sensitive and specific method for 

quantification of superoxide (O 2 ) concentrations in these blood vessels. The 

enzymatic sources of ROS generation were NAD(P)H oxidase, xanthine oxidase and 

in some, but not all, patients, nitric oxide synthase. Superoxide production was greater 

in IMA than in SV, whereas the amount of superoxide dismutase protein was 

quantitatively similar in these blood vessels.

In subsequent studies, treatment of IMA with pharmacological concentrations of Ang 

II (1 micromolar, 1 nanomolar) for 1 and 4 hours was associated with an increase in 

O2’ production. Treatment of IMA with picomolar, or physiological, concentrations of 

Ang II tended to increase O2' production. Further studies demonstrated that this was 

an Ang type 1 (ATi) receptor-dependent, NAD(P)H oxidase-mediated pathway. 

Furthermore, inhibition of the AT2 receptor did not prevent Ang II-stimulated increase 

in O2' production in IMA, suggesting that this receptor does not contribute to O2' 

generation in human arteries.

Immunodetection studies for the NAD(P)H oxidase phox subunits were performed in 

IMA. Using monoclonal antibodies and antisera, p22phox, gp91 phox (or a 

homologue), p67phox and p47 phox protein subunits were identified within the 

endothelium, vascular smooth muscle cell layer and adventitia. Xanthine oxidase was 

identified in the endothelium and adventitial layers of IMA. In this chapter, studies of 

the effects of Ang II on the abundance of cDNA transcripts of the subunits of 

NAD(P)H oxidase are reported. In subsequent molecular studies, it was demonstrated 

that treatment of human vascular cells arid intact IMA with 1 micromole of Ang II for 

4 hours led to an increase in the abundance of cDNA transcripts of p22phox, which



was attenuated by co-treatment with either actinomycin D, an inhibitor of gene 

transcription, or losartan, an ATi receptor antagonist.

In other studies, the possiblity that Ang II-stimulated O2' production might contribute 

to vascular tone in human subcutaneous resistance arteries (SRA) was investigated. 

Isometric tension studies failed to demonstrate any positive effect of Ang II on the 

contractile response of SRA to norepinephrine. One reason for this may be the 

relatively minor contribution of nitric oxide to the vasorelaxant response of these 

arteries.

An investigation of the effect, if any, of demographic characteristics, risk factors for 

atherosclerosis, and individual drug therapies, on vascular O2' production in the IMA 

of 79 patients was also performed. Multivariate analyses demonstrated that increasing 

age was weakly associated with increased vascular O2' production whereas treatment 

with an angiotensin converting enzyme inhibitor or ATi receptor antagonist was 

independently associated with reduced vascular O2' concentrations.

In summary, O2’ production is greater in IMA than in SV. Several enzymes capable 

of generating ROS are distributed throughout the wall of these arteries. NAD(P)H 

oxidase is a major source of O2' generation. The activity of this enzyme is enhanced 

by Ang II, through a mechanism which involves and increase in gene transcription 

and protein synthesis. This may be clinically important as inhibitors of the renin- 

aldosterone-angiotensin system may reduce vascular O2 ' production.
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1 Introduction

Reactive oxygen species (ROS) are being increasingly recognised as pleiotropic 

chemicals which participate in multiple metabolic reactions. Cell growth and behaviour 

can be modulated by ROS, which have a variety of differing biological effects. 

Increased vascular ROS production can result in reduced bioavailable nitric oxide with 

pathophysiological effects such as impaired endothelium-dependent relaxation, which 

are features of disease states such as hypertension and coronary heart disease.

The purpose of this thesis is to investigate the enzymatic sources of and stimuli for ROS 

production in human vascular cells and blood vessels. In particular, the possibility that 

vasoactive hormones, such as angiotensin II (Ang II), might stimulate vascular ROS 

production will also be explored.

1.1 Reactive oxygen species: basic biochemistry

ROS are oxygen-containing chemicals, which may have a single unpaired electron. A 

free radical is defined as any chemical species capable of independent existence that 

contains one or more unpaired electrons (Halliwell and Gutteridge 1988). However, not 

all ROS are free radicals. For example, hydrogen peroxide and singlet oxygen are ROS, 

however neither of these chemicals have single unpaired electrons, and are therefore not 

free radicals.

Free radicals are formed by the loss or gain of a single electron. The characteristic 

properties of free radicals include:

A chemical species with a single unpaired electron

Chemically unstable and usually highly reactive

Low chemical specificity

Autocatalytic: diverse reaction products produced 

Generated in vitro and in vivo

In the ground state, molecular oxygen contains two unpaired electrons in parallel states
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of spin, which contrasts with other stable organic molecules which typically have paired 

electrons in anti-parallel spin states. Oxygen (O2) is therefore an electron acceptor. 

Together with its high midpoint redox potential (which leads to maximal energy 

conservation in redox reactions) and its solubility in aqueous solutions, oxygen is an 

ideal candidate for the transfer of electrons during oxidative phosphorylation (Figure 

1.1) (Bunn and Poyton 1996; Fridovich 2001).

Figure 1.1 Steps in the 4 electron reduction of molecular oxygen to water by 

mitochondrial oxidase enzymes.

The reduction of oxygen to water in the mitochondria is, however, frequently 

incomplete, resulting in the generation of reactive oxygen intermediates, such as '(V  

and the hydroxyl radical ( OH). ROS are, therefore, a heterogeneous group of reactive, 

intermediate chemical species. Other examples of chemicals which have similar in vivo 

activity include the reactive nitrogen species, such as nitric oxide ( NO) and the sulphur- 

derived thiyl radicals. Interestingly, NO is a very stable radical, and may exist as a free 

entity in vivo.

In vivo, ROS have important physiological effects. The reaction of NO with O2’ in vivo 

is a function of both the kinetics of this reaction and the relative tissue concentrations of 

these ROS. Ordinarily, endogenous SOD activity modulates O2" availability (Gupte et 

al 1999), such that concentrations of 02* are within the picomolar range, and reaction 

with NO is minimised (Figure 1.2).

Catalase/peroxidase

e + 2 H +  e - + H + H 20  e + H +



ONOO- 
(peroxy nitrite) 

SOD 

h2o 2 
(hydrogen peroxide)

Figure 1.2 Schematic diagram representing the inactivation of superoxide (O 2 ) by 

either nitric oxide ( NO) or superoxide dismutase (SOD).

If either NO or O2’ concentrations become elevated to within the nanomolar range then 

these two radicals may react to form peroxynitrite (Table 1.1) (Fridovich 2001; Wolin

2000).

Table 1.1 Oxidative reactions

Oxidative Reaction Enzyme Rate constant (M 'V 1)

O2 + electron —» O2" oxidase 00 X 0

O2 + O2 —> H2O2 + O2 SOD 2 x l 0 9

0 2'+  N O -^O N O O ' 7 x 10^

Superoxide may also be metabolised to secondary ROS. Superoxide is dismutated to 

hydrogen peroxide (H2O2), which in turn, forms the hydroxyl radical (OH) and 

hydrogen peroxide anion (OH‘) via the Fenton reaction:

NO
• 0 2‘ +
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H2O2 + Fe2+ -» Fe3+ + OH + OH

The Fenton reaction may occur at biologically important rates. In the liver, micromolar 

concentrations of hydrogen peroxide and divalent iron may lead to the generation of 

4.58 x 1013 hydroxyl radical per second, roughly equivalent to 500 radicals per 

hepatocyte per second (Halliwell and Gutteridge 1988). Superoxide is readily converted 

into the hydroperoxyl radical ( HO2 ), which is a much more reactive oxidant (Fridovich

2001).

1.2 Methods of measurement of vascular superoxide 

concentrations

Given the pleiotropic biological effects of ROS, there has been considerable interest in 

the development of methods for their measurement. These include in vitro methods 

based on chemiluminescence, cytochrome C reduction, electron spin resonance and 

fluorescence. These methods differ widely in their specificity and sensitivity for 

individual ROS, their utility for laboratory and clinical research, including ease of use 

and cost.

1.2.1 Chemiluminescence

Chemiluminescence may be defined as the light emission which accompanies the 

generation of reaction products, such as ROS. There is therefore a background light 

emission by cells, and in particular by activated phagocytes, which is most likely due to 

the conversion of chemical energy present in ROS to photons of light, occurring on the 

metabolism of ROS to less active forms (Halliwell and Gutteridge 1988). This light 

emission may be enhanced by the addition of a luminophore, a compound which emits 

light under certain conditions of chemical excitation, thereby releasing energy resulting 

a return to ground state.

Luminophores, such as firefly luciferin, are naturally occurring compounds. Lucigenin, 

or bis-A-methylacridinum nitrate, and luminol, 5-amino-2,3-dihydro-1,4- 

phtalazinedione, are luminophores which have been used to measure as O2' and OH, 

respectively. Lucigenin was first described as a tool to measure as O2 ' by 

Gyllenhammar (1987), previously, as O2' was measured by the cytochrome C reduction 

method. Luminol is a non-specific luminophore as it reacts with a variety of different 

ROS (Halliwell and Gutteridge 1988). Alternatively, lucigenin, has been found to
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luminesce under conditions attributed to O2’ generation (Gyllenhammar 1987). For 

example, Gyllenhammar (1987) reported that in cell-free conditions, the lucigenin- 

enhanced chemiluminescence signal associated with the xanthine (20 pmol/L) -xanthine 

oxidase (0.03 U) reaction was completely inhibited by the addition of treatments to 

specifically remove O2'. This was done both by the addition of superoxide dismutase 

(SOD) which catalyses the dismutation of O2' to hydrogen peroxide (H2O2) and 

molecular oxygen (O2), and by the addition of 4,5-dihydroxy-l,3-benzene-disulphonic 

acid salt (Tiron) which scavenges O2’. Furthermore, the addition of catalase, an enzyme 

which converts H2O2 to H20  and O2 , had no effect on this signal, suggesting that neither 

H2O2 nor OH, an intermediate by-product of this reaction, do not contribute to 

xanthine/xanthine oxidase -  induced lucigenin-enhanced chemiluminescence.

Lucigenin reacts with superoxide to form a dioxetane intermediate which decays by a 

light emitting process (Spasojevic et al 1999; Spasojevic et al 2000; VasquezVivar et al 

1997). This can be represented by the following steps:

1) LC2+ + e' -> LC+ Formation of lucigenin radical by univalent reduction

2) LC+ + O2’ -» dioxetane Formation of dioxetane intermediate

3) Dioxetane decomposition into two molecules of TV-methylacridone, one of which is 

electrically excited.

4) Emission of a photon from the excited acridone state with return to ground state.

Lucigenin itself has been reported to generate O2' because of redox cycling at higher 

concentrations (Liochev and Fridovich 1997; Liochev and Fridovich 1998; Vasquez

Vivar et al 2000; Skatchkov et al 1999; VasquezVivar et al 1997). The reason for this is 

the propensity for the LC+ radical to undergo auto-oxidation. Lucigenin may therefore 

be responsible for O2’ generation and this has been confirmed by in vitro cyclic 

voltametry studies in aqueous solutions (Spasojevic et al 2000).

As a result of these observations, other workers have undertaken studies to confirm
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whether or not lucigenin-enhanced chemiluminescence is a valid method for 

quantification of O2’ generation in biological systems (Li et al 1998a; Skatchkov et al

1999). In studies by Li et al (1998a) three methods were used to investigate the 

specificity of lucigenin-enhanced chemiluminescence for the detection of O2" 

generation and its relationship with lucigenin concentration. Their studies of O2" 

generation in cultured monocytes included sensitive measurement of lucigenin- 

enhanced chemiluminescence using a Berthold LB9505 luminometer, SOD-inhibitable 

ferricytochrome C reduction at 550 nm, O2 consumption by O2 polarography, and O2" 

production by 5-(diethoxyphosphoryl)-5-methyl-l-pyrroline-/V-oxide (DEPMPO) spin 

trapping. They demonstrated that low concentrations of lucigenin (i.e. <50 pmol/L) 

were associated with constant, reproducible measurements of O2" concentrations, 

however, lucigenin concentrations at, or above 50 pmol/L, were associated with 

incremental increases in signal, or O2' concentrations. This was also reflected by 

increments in O2 consumption and DEPMPO spin trapping. These data suggest that in 

an aqueous environment, lucigenin is itself reduced when present in higher 

concentrations, leading to an enhanced chemiluminescence signal. These effects can be 

explained by the ability of lucigenin to undergo redox cycling when present in 

sufficiently high concentrations. When the effect of addition of either xanthine/xanthine 

oxidase, at concentrations of 4pg/ml and 0.5 mmol/L, respectively, or lipoamide 

dehydrogenase NADH, at concentrations of 10 pg/ml and 0.5 mmol/L, respectively, to 

these cells was assessed, a lucigenin concentration-effect was observed only with the 

NADH system. The authors concluded that the availability of the lucigenin cation 

radical, and therefore the potential for redox cycling, was dependent on both the 

concentration of lucigenin and the experimental condition. Furthermore, the lucigenin 

concentration at which redox cycling does not occur should therefore be determined for 

any particular experimental condition.

1.2.2 Electron spin resonance spectroscopy

Electron spin resonance (ESR) spectroscopy is an electromagnetic technique which can 

be used to detect and quantify free radical activity (Halliwell and Gutteridge 1988). An 

unpaired electron has a spin of either +1/2 or -1/2, and therefore behaves as a small 

magnet. If it is exposed to an external magnetic field, the electron will align itself in 

opposition to that field, in either a parallel or anti-parallel alignment. If an appropriate 

electromagnetic field is applied, this energy will be absorbed by the free radical, causing 

a shift in the single electron’s energy state. This absorbance can be measured by an ESR
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spectrometer. In fact, the spectrometer actually measures the derivative of absorbance, 

that is the rate of change of absorbance:

AE = gp H

where A E is the difference in energy between the two energy levels of the electron, 7/is 

the applied magnetic field, p  a constant known as the Bohr magneton, and g is the 

‘splitting factor’ which for a free electron is a constant of 2.00232. Absorption spectra 

have typical patterns according to the chemical species that is being detected. These 

spectra are known as ‘hyperfine structures’.

ESR spectroscopy is a highly sensitive technique for the measurement of free radicals. 

It may be used to detect free radicals at concentrations as low as 1 x 10'10 mol/L. One 

limiting factor for the use of this method is that many free radicals are highly labile, and 

may not exist for long enough to be reliably measured by this technique. A variety of 

methods have been developed in order to overcome this problem, including flow 

systems, low-temperature solid matrix systems, and spin trapping. This latter approach 

causes the labile radical to react with a spin-trap compound to form a radical which has 

a longer half-life. An ideal ‘spin-trap’ is a compound which will react specifically with 

the radical of interest, to form another radical which is more stable, and has a 

characteristic ESR spectrum. DEMPO is a spin trap which reacts with both OH and O2 ' 

to form products with different ESR spectra. In this case, ethanol can be used to 

specifically quench OH radicals, therefore" eliminating this radical’s ESR spectra to 

leave that of O2". ESR spectroscopy may be used to measure 0 2 ’ concentrations in 

biological systems in a highly specific manner (Li et al 1998a).

The use of this technique, however, is limited by a number of factors (Halliwell and 

Gutteridge 1988). Cellular reducing agents, such as vitamin C, may reduce the spin-trap 

compound to give an ‘ESR-silent’ species. ESR spectroscopy is also very expensive 

because of the type of equipment and reagents that are required. Furthermore, this 

equipment may occupy a considerable area of laboratory space. Additionally, such 

experiments are also very time-consuming to perform.

1.2.3 Cytochrome C reduction

Superoxide production can also be assessed by the cytochrome C reduction method. In 

this case, the generation of O2' is measured indirectly by the reduction of
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ferricytochrome C at 550 nm. Non - O2’ dependent reduction of cytochrome C can be 

corrected for by deducting all activity not inhibited by the addition of SOD. However, 

the integrative nature of this method makes the study of dynamic response patterns 

difficult. In order to overcome this problem, chemiluminescence techniques, which have 

wider applicability and higher sensitivity, have received greater attention.

1.2.4 Oxidative fluorescent microtopography

Superoxide concentrations may also be measured in biological systems by fluorescent 

techniques. Fluorescent dyes, which are membrane permeable, can be used in 

conjunction with image analysis technology to measure both intra and extracellular 

ROS concentrations. Oxidative fluorescent microtopography is a technique which 

allows the in situ localisation of 02* in intact blood vessels (Carter et al 1994; Miller et 

al 1998). Hydroethidine (HEt) is a dye, which is oxidised in the presence of O2 ' to 

ethidium bromide (Et). The dye is topically applied to sections (approximately 50mm 

width) of blood vessels and the fluorescence can then be assessed microscopically after 

exciting at 585nm wavelength. The intensity and localisation of the oxidised HEt, which 

reflects 0 {  production, can then be observed. This method of analysis is affected by 

fluctuations in both temperature and pH, and the fluorescent signal decays with time. 

Quantification of ROS concentrations using fluorescent techniques is, therefore, only 

semi-quantative, however, these techniques can yield useful qualitative information on, 

for example, the location and distribution of ROS production in a blood vessel wall.

1.3 Sources of vascular superoxide production

Superoxide may be produced by a variety of enzyme reactions in vivo. In experimental 

animals, the main enzymatic sources of O2* production within the vascular wall are 

nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase (Bouloumie et al 

1997; Mohazzabh et al 1994; Pagano et al 1995) xanthine oxidase (Mugge et al 1994 ; 

Ohara et al 1993), and nitric oxide synthase (NOS) enzyme (Holland et al 1990; Kerr et 

al 1999; McIntyre et al 1997). The cellular sources of vascular 0 2 ’ production in 

animals are the endothelium (Brandes et al 1997; Kerr et al 1999) (Mohazzabh et al 

1994), vascular smooth muscle cells (VSMC) (Miller et al 1998; Mohazzab and Wolin

1994) and fibroblasts within the adventitia (Wang et al 1999). The cellular and 

enzymatic sources of ROS production in human blood vessels have not been fully 

explored.
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1.3.1 NADP(H) Oxidase

NAD(P)H oxidase is ubiquitous throughout eukaryotic cells, but a plasma membrane- 

bound form has been demonstrated to be responsible for transmembrane electron 

transport (Morre and Brightman 1991). This enzyme catalyses the transfer of electrons 

from reduced pyridine nucleotides (NADH and NADPH) to molecular oxygen (O2), 

which results in the formation of O2". Other characteristic features of this enzyme 

include resistance to cyanide, which distinguishes it from mitochondrial oxidases, and 

activation by ligands, such as hormones (Morre and Brightman 1991). In teleological 

terms, phagocyte NAD(P)H oxidase is host-protective. The importance of vascular 

NAD(P)H oxidase in relation to cardiovascular physiology is not yet clear.

1.3.1.1 Physical chemistry of NAD(P)H oxidase

The enzyme was initially isolated from and studied in neutrophils. The enzyme is 

formed by the aggregation of a minimum of 5 proteins (Figure 1.3): a plasma membrane 

cytochrome b558 which is composed of a glycoprotein 91 kilodalton (Kd) phosphate 

oxidase (gp91phox) and a 22 Kd (p22) phox, two cytosolic proteins, p47phox and 

p67phox and a cytosolic G protein (either racl or rac2).

These four cytosolic proteins physically associate with the cytochrome to form the 

membrane-bound NAD(P)H oxidase (Babior 1999; Cross and Jones 1991). The protein- 

protein interactions are made possible by the presence of Src homology 3 (SH3) 

domains and polyproline motifs. These are small protein loci known to mediate 

interactions between proline-rich proteins (Fuchs et al 1996; Ren et al 1993) The 

mechanisms involved in the activation of NAD(P)H oxidase by metabolites of 

arachidonic acid were investigated by Sumimoto et al (1994). Both p47phox and 

p67phox contain SH3 domains (Leto et al 1990). In these studies, the mechanisms of 

assembly of the phox subunits were investigated by treating phagocytes with 

arachidonic acid (AA), in the presence and absence of a p47phox - SH3 domain fusion 

protein (anti-p47-SH3 antibody). Binding studies of p47 phox to either a monoclonal 

antibody directed to this protein or to p67phox, were also performed. These 

investigations demonstrated that p47phox SH3 fusion protein only bound to native 

p47phox in the presence of AA. In the absence of AA, p47phox SH3 fusion protein only 

bound to native phox if the phagocytes had been pre-treated with a p47phox binding 

protein tagged with SH3. Taken together, these observations suggest that treatment with 

AA induces a change in conformation of the p47phox protein, therefore exposing its
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SH3 domain (i.e. p47phox-SH3). Further studies demonstrated that p47phox only bound 

to p67phox in the presence of arachidonic acid. This suggests that arachidonic acid may 

have similar effects on p67phox.

Membrane
gp91 p22

p47NAD(P)H NADP
SH3

Cytoplasm

Figure 1.3 Vascular NAD(P)H oxidase, which is constituted by the aggregation of the 

cytoplasmic and membrane subunits. P47phox (phosphate oxidase) and p67phox, along 

with the small GTPase, rac-1, are cytoplasmic subunits. P40phox, another cytoplasmic 

subunit, facilitates the assembly of these proteins. Gp91phox and p22phox, which 

together form cytochrome b.^g, constitute the locus of electron transfer.

In other studies, p47-SH3 was demonstrated to bind to the cytoplasmic domain of 

p22phox (expressed as a fusion protein), this being prevented by a single amino acid 

substitution (Gin for P ro -156) in p22phox. This amino acid substitution occurs in some 

patients with chronic granulomatous disease who have an inactive membrane 

cytochrome b558 (Dinauer et al 1991), illustrating the importance of this interaction for 

phox assembly and NAD(P)H oxidase activation. By contrast, gp91phox does not have 

a binding site for p47-phox (Dinauer et al 1987).

In addition, a sixth protein, p40phox, may also physically associate with NAD(P)H 

oxidase (Wientjes et al 1993). P40phox is a cytosolic protein which is bound to 

p67phox and p47phox (Rinckel et al 1999). Phosphorylation of p40phox, which is
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subject to regulation by GTPases (Rinckel et al 1999), facilitates translocation of this 

protein, along with p47phox and p67phox, to the cell membrane, thus resulting in the 

formation of NAD(P)H oxidase. The formation of this enzyme occurs as a result of 

tyrosine kinase-mediated phosphorylation of its cytosolic protein subunits (Fuchs et al 

1997). Interestingly, topological studies by (Fuchs et al 1996) led to the hypothesis that 

p40phox may also serve to prevent spontaneous interaction of these subunits.

More recently, it has been established that approximately 90% structural homology 

exists between the cytochrome b558 subunits (gp91phox and p22phox) of rat neutrophil 

and endothelial cell NAD(P)H oxidases (Fukui et al 1995; Bayraktutan et al 2000). In 

rat endothelial cells, however, these subunits have a predominatly subcellular location 

being within the endoplasmic reticulum rather than in the plasma membrane, as is the 

case in neutrophils (Bayraktutan et al 2000). At a tissue level, however, differences in 

the distribution of gp91phox within the vascular wall have been demonstrated. This 

protein can be detected at the mRNA and protein level in endothelial and adventitial 

cells, but gp91phox is undetectable using these techniques in rat VSMC (Gorlach et al 

2000; Suh et al 1999). Alternatively, VSMC express a protein, noxl (for NAD(P)H 

oxidase - I ;  or non-phagocvtic oxidase) which has 56% homology with gp91phox. This 

homologous protein may also be coupled with p22phox to form the membrane 

cytochrome b558 subunit, and support electron transport, in these cells (Lassegue et al 

1999; Suh et al 1999). There are now several homologues (noxl, nox4 and gp91phox) 

described in the nox family (Lambeth et al 2000). These data pertain to studies 

undertaken in rat VSMC and the existence, and abundance, of nox family members in 

human vascular cell types is not known.

The activated form of plasma membrane NAD(P)H oxidase is responsible for the 

univalent reduction of O2 to 0 2’ (Cross and Jones 1991; Morre and Brightman 1991). 

Electron transport by NAD(P)H oxidase occurs on the membrane-bound cytochrome 

b558 complex, which transfers a single electron from NADH or NADPH to molecular 

02:

NAD(P)H + 2 0 2 NAD(P)+ + H+ + 2 0 2'

As the cytochrome b558 is a transmembrane protein, it may accept electrons from both 

intracellular and extracellular reducing equivalents. Superoxide production is maximal 

in conditions of both high oxygen tension and NAD(P)H concentration, such that 

oxygen consumption by this pathway will increase. The redox potential of this reaction



is low (Em = -245mV), such that this cytochrome has a greater propensity than any other 

cytochrome to reduce molecular oxygen to O2’ (Cross and Jones 1991). NAD(P)H 

reducing equivalents are generated by the pentose phosphate pathway. The extracellular 

release of electrons depolarises the cell membrane, which is counterbalanced by the 

concomitant release of H+ ions. This enzyme therefore generates superoxide in a low- 

output constitutive manner, in contrast to the high-output bursts of phagocytes.

1.3.1.2 Biochemistry of NAD(P)H oxidase

What is the role of membrane-bound NAD(P)H oxidase in the generation of O2" ? 

Studies of NAD(P)H oxidase activity have used a number of pharmacological 

antagonists to characterise the biological effects of this enzyme. For example, O2’ 

generation by endothelial cell NAD(P)H oxidase is inhibited by quinone analogs, such 

as Coenzyme Q, flavoprotein inhibitors, such as quinacrine and diphenyleneiodonium 

(DPI), and cytosolic subunit assembly inhibitors, such as apocynin (Holland et al 2000).

In neutrophils, 'O2" is released into the phagocytic vacuole where it has a bactericidal 

effect. In non-phagocytic cells, NAD(P)H oxidase serves as a disposal mechanism for 

intracellular electrons. Vascular NAD(P)H oxidase-dependent O2’ production may also 

have a protective role. This enzyme may also serve as an oxygen-sensor in the 

vasculature (Bunn and Poyton 1996; Goligorsky 2000). In this case, vascular tone and 

blood flow may be modulated by alteration in NAD(P)H oxidase-dependent 'O2’ 

production (and NO removal), according to variation in oxygen tension in both blood 

and the vessel wall. The concept of NAD(P)H oxidase as an oxygen sensor has attracted 

some controversy (Bunn and Poyton 1996). For example, the neuronal stimulus to 

ventilation during hypoxia occurs through an inhibition of (V-sensitive K+ channels in 

the cells of the carotid body where NAD(P)H oxidase is present in abundance (Bunn 

and Poyton 1996). During in vitro studies, inhibition of NAD(P)H oxidase by treatment 

of these cells with the flavin-dependent enzyme inhibitor, DPI, reduced the hypoxia- 

induced discharge of these cells, implicating this enzyme as an oxygen sensor (Cross 

and Jones 1991). One argument against this hypothesis include the fact that mice 

lacking the gp91phox subunit of NAD(P)H oxidase have both appropriate K+ channel 

inhibition and pulmonary artery vasoconstriction to hypoxia (Archer et al 2000). 

Furthermore, that patients with chronic granulomatous disease, an inherited disorder 

which results in the deletion of one of the protein subunits of NAD(P)H oxidase, are 

normoxaemic and have normal respiration (Bunn and Poyton 1996) also mitigates 

against NAD(P)H oxidase acting as an oxygen sensor.
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The phox subunits seem to play different roles in NAD(P)H oxidase activation. Cross et 

al (1999; 2000) studied the potential roles of the cytosolic proteins for NAD(P)H 

oxidase activity. They used the SOD-inhibitable cytochrome c reduction assay in order 

to measure O2" production by purified neutrophil membranes (i.e. containing 

cytochrome b558 (p22phox and gp91phox) and neutrophil cytosol in a cell-free system. 

The relative contribution of individual cytosolic protein subunits of NAD(P)H oxidase 

was assessed by the addition of recombinant phox proteins to the neutrophil 

membranes. Addition of either p47phox or p67phox proteins to the reaction mixture 

resulted in an increase in O2’ production, whereas this was not observed when p40phox 

recombinant protein was added. In this case, the addition of p40phox was associated 

with a very small rise in O2' production, but only in the presence of p47phox. Further 

experiments confirmed that p40phox promoted O2" production by p47phox. The 

phosphorylation and binding of p40phox may facilitate the conformational changes 

necessary for p47phox binding and activation of NAD(P)H oxidase. This thesis is 

supported by in vitro observations by Fuchs et al (1997) who demonstrated that in 

promyelocytes, p40phox was phosphorylated even in a resting state, and that on 

activation, additional phosphorylation of this protein occurred, which correlated with 

0 {  production by these cells. Furthermore, after O2" production by NAD(P)H oxidase 

had declined, p40phox was observed to be dephosphorylated.

The importance of membrane and cytosolic proteins for '(>2’ production by NAD(P)H 

oxidase has been investigated in a number of physiological studies of vascular 

phenotypes such as cell hypertrophy or NO-regulated myogenic tone in resistance 

arteries. Genetic manipulation, by either transfection of antisense p22phox DNA in rats 

(UshioFukai et al 1996), immunodepletion of p67phox in rabbits (Pagano et al 1997a), 

or knockout of gp91phox in mice (Gorlach et al 2000), have all demonstrated these 

subunits to be functionally important for both NAD(P)H oxidase and Ang II-dependent 

O2' production (UshioFukai et al 1996), (Pagano et al 1997a). It would appear, 

therefore, that these subunits are crucial elements for NAD(P)H oxidase-dependent 

ROS generation. The functional importance of these and other components of this 

enzyme, such as p47phox, rac 1 and noxl, in human blood vessels remain to be 

explored.

NAD(P)H oxidase is ligand-sensitive, such that O2" production by this enzyme may be 

affected by a variety of hormones, cytokines and lipid metabolites (Cross and Jones 

1991; DeKeulenaer et al 1998a). This enzyme is therefore activated by physiological 

and pathophysiological stimuli and, as such, O2* production may serve as a second

13



messenger response. Furthermore, vascular NAD(P)H oxidase activity can be inhibited 

by treatment with glucocorticoids, the mechanism for this effect being a steroid-induced 

down-regulation of p22phox transcription (Marumo et al 1998). Disease states, such as 

endotoxaemia, have been associated with pro-oxidant induced vascular damage 

(Brandes et al 1999). This suggests that the therapeutic effect of treatments such as 

glucocorticoids may be in part mediated through inhibition of pro-oxidant enzymes.

1.3.2 Xanthine oxidase

1.3.2.1 Physical chemistry

Xanthine oxidoreductase (XOR) is a molybdenum-containing enzyme which may exist 

in one of two interconvertible forms, xanthine dehydrogenase (XDH) or xanthine 

oxidase (XO). XOR is primarily involved in purine catabolism, whereas XDH, which is 

the predominant form, preferentially reduces NAD+ and does not generate ROS 

(Harrison 2000). By contrast, XDH may be converted to XO by Ca2+ - calmodulin 

dependent proteolysis. This reaction also occurs in vivo in the context of ischaemia- 

reperfusion. In this case, XO catalyses the conversion of hypoxanthine to xanthine, 

resulting in the reduction of molecular oxygen to O2'. Moreover, Sanders et al. (Sanders 

et al 1997) recently demonstrated that XOR has NADH oxidase activity as it may 

oxidise NADH, leading to increased production of O2' (Figure 1.4).

Xanthine, and other purines

8

Mo
NADH

FAD Fe/S
8

NAD+ NADH

Mo - molybdenum; Fe/S - Iron/sulphur; FAD - Flavin adenine dinucleotide; NADH - 
Reduced nicotinamide adenine dinucleotide;02- oxygen; 0 2 - Superoxide;
H20 2- Hydrogen peroxide.

Figure 1.4 Schematic representation of electron transfer catalysed by XOR. This
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enzyme may use both NADH, xanthine and other purines as reducing substrates. 

Allopurinol, an inhibitor of XOR and uric acid production, inhibits O2’ generation at 

the molybdenum site, but does not prevent flavin-dependent O2" generation.

1.3.2.2 Biochemistry of xanthine oxidase

XOR protein is widely distributed in a variety of cell types. In humans, it is recognised 

to be abundant in mammary, hepatic, and intestinal epithelial cells. XOR protein is also 

present in cardiovascular tissues and has been identified in the heart (Abadeh et al 

1992) and in cultured vascular endothelial cells (Rouquette et al 1998). Using 

immunofluorescent techniques with confocal microscopy imaging, Adachi et al (1993) 

identified this protein both within the cytosol and on the external aspect of these cells. 

This suggests that these cells can synthesise XOR protein (Rouquette et al 1998). It is 

postulated that the XOR protein present on the external aspect of the cell surface may 

arise either as a result of secretion from the cytosol or by binding of circulating protein 

in the blood (Harrison 2000).

XOR enzyme activity in human plasma has been measured in healthy subjects 

(Yamamoto et al 1996), in hepatic (Ramboer and Piessins 1972) and rheumatic disease 

(Miesel and Zuber 1993), and in ischaemia-reperfusion (Friedl et al 1991; Tan et al

1995). This activity may be relevant to the pathophysiology of these diseases, given the 

potential of XOR for ROS generation. Interestingly, antibodies to XOR, rather than the 

protein itself, have also been measured in the blood of healthy human subjects 

(Benboubetra et al 1997). Benboubetra et al. (Benboubetra et al 1997) used an enzyme- 

linked immunosorbent assay (ELISA) to measure anti-human XOR antibodies in the 

sera of 258 subjects. They found that anti-human XOR IgM was 36.7±25.1 pg/mL and 

anti-human XOR IgG was 4.2±2.6 pg/mL representing 3% and 0.04% of total serum 

IgM and IgG respectively. Anti-human XOR antibody concentrations were significantly 

lower in women under the age of 50 years, however the reasons for this were not clear. 

Further studies demonstrated that XOR activity could be inhibited by treatment with 

anti-XOR antibody and that XOR in these sera samples was predominatly present in the 

form of immune complexes formed by association with these antibodies. The 

teleological function of circulating anti-XOR may be, therefore, to bind and neutralise 

XOR in the blood. This thesis is supported by the fact that the majority of blood XOR is 

bound to anti-XOR antibody, forming immune complexes, and that plasma activity of 

this enzyme is low (Yamamoto et al 1996).
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In other studies, plasma concentrations of anti-human XOR were found to be increased 

in patients with an acute myocardial infarction (Benboubetra et al 1990; Harrison et al 

1990). This may represent an adaptive response, however, the blood concentrations of 

XOR protein in cardiovascular and other disease states are not known. Moreover, it has 

been hypothesised, that the plasma activity of XOR may become biologically important 

in disease states where the plasma concentrations of this protein exceed those of the 

antibody binding proteins (Benboubetra et al 1990; Harrison et al 1990).

The XOR protein has been shown to bind to cell surface heparin-like 

glycosoaminoglycans. Studies by Adachi et al (1993) using cultured porcine aortic 

endothelial cells, column chromatography and antisera to human XOR, demonstrated 

that heparin may also bind XOR within a physiological pH range. The association 

between XOR protein and heparin could be inhibited by co-treatment with protamine, a 

heparin binding protein (Adachi et al 1993). In other studies by the same group, 

injection of intravenous heparin into healthy human subject was associated with a rapid 

increase in plasma concentrations of XOR.

That XOR is present within, and on the surface of, vascular cells suggests that ROS 

generated by this protein may be involved in cell signalling (Harrison 2000). XOR may 

also have an important role in the tissue damage which arises after ischaemia- 

reperfusion (McCord 1985). Adenosine triphosphate, which accumulates in ischaemia, 

undergoes anaerobic catabolism, which leads to the accumulation of hypoxanthine. In 

the hyperoxic conditions of reperfusion, XOR may then convert hypoxanthine to uric 

acid and O2'. This then may be one important pathway for excessive ROS production in 

ischaemic vasculature (McCord 1985).

By contrast, urate is an anti-oxidant. Urate suppresses ROS-induced vascular damage 

by, for example, reaction with peroxynitrite (a product of the reaction of NO with 0 2 ')- 

This generates a variety of metabolites, some of which are nitrovasodilators, and 

therefore prevents protein nitration by peroxynitrite (Reiter et al 2000). Urate is also an 

anti-oxidant in human plasma (Ames et al 1981)

The production of XOR is quantitatively most abundant in the liver and intestine 

(Harrison 2000). XOR is, however, implicated in ROS-induced injury within the 

cardiovascular system (de Jong et al 2000; Dowell et al 1993; Gimpel et al 1995; 

Harrison et al 1990; Hori et al 1991; Nielsen et al 1994; Weinbroum et al 1995; 

Yokoyama et al 1990). This then raises the question as to the origin of XOR in the
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cardiovascular system. Is XOR synthesised within cardiac and vascular tissues, where it 

may then be responsible for ROS generation, or alternatively, is XOR generated within 

hepatic and intestinal tissues, from which it may then be released into the circulation 

and bind to cardiovascular cells? Neilson et al (1996) investigated this question in a 

rabbit model of hepatic ischaemia and intestinal reperfusion. In this model, hepatic 

ischaemia was induced by occlusion of the supra-hepatic descending aorta for 40 

minutes by use of a balloon catheter, followed by a 2-hour period of reperfusion. 

Venous blood samples were obtained at baseline and during reperfusion in the 

intervention group. Plasma XOR activity increased during reperfusion compared with 

baseline (729 +/- 140 mu U/ml, mean +/- standard error of the mean vs. 132 +/- 18 mu 

U/mL; p < 0.001). This was associated with increased plasma concentrations of hepatic 

enzymes such as aspartate aminotransferase, alanine transferase, and lactate 

dehydrogenase. In further studies undertaken to control for any possible effect of the 

surgical procedure (but without causing hepatic ischaemia), suprarenal-inffahepatic 

occlusion had no effect on plasma concentrations of alanine transferase.

In further studies, these investigators explored the possibility that increased release of 

hepatic and intestinal XOR could be associated with distant lung injury (Nielsen et al 

1994). Pretreatment with tungstate, an inhibitor of XOR, reduced XOR activity and 

ameliorated liver and intestinal injury. Lung injury, manifested by increased 

bronchoalveolar lavage (BAL) protein concentration, BAL lactate dehydrogenase 

(LDH) activity and increased lung oedema, was associated with liver injury and 

circulating XOR activity. XOR inactivation significantly decreased BAL protein 

concentration, BAL LDH activity, and lung oedema. This suggests that remote lung 

injury may be modulated by hepatic injury leading to an increased production of 

circulating XOR.

Recently, XOR gene expression was compared between mice and humans (Xu et al

2000), in order to determine the basis for the low XOR activity in humans relative to 

non-primate mammalian species. The expression of XOR in human hepatocytes and 

vascular cells was found to be markedly lower than those of mice. Studies of both 

transcription rates and core promoter activity of this gene in the human cells 

demonstrated that the human XOR gene contains both repressor and activator binding 

regions which regulate core promoter activity, which may explain the low expression of 

this protein in human cells.

The pathways leading to XOR protein synthesis within human vascular cells and tissues
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are poorly understood. Data on the presence or absence, and possible functional 

importance of XOR protein in human blood vessels, are lacking. As yet, the 

concentrations of XOR in the blood of healthy humans and patients with cardiovascular 

disease are unknown. The putative role of XOR in the pathophysiology of 

cardiovascular disease makes investigation of these questions important.

1.3.3 Nitric oxide synthase

Nitric oxide exists as three distinct redox forms, nitroxyl anion (NO'), the nitrosonium 

cation (NO+), and the nitric oxide free radical ( NO) (Nelli et al 2000). Although, NO' is 

a potent relaxant of vascular and non vascular smooth muscle, it appears to do so 

indirectly, through conversion by copper-containing enzymes to NO (Nelli et al 2000). 

Although nitric oxide synthase (NOS) is a major source of NO, paradoxically, this 

enzyme may also generate the NO -  scavenger, O2'. Neuronal (Xia et al 1996), 

inducible and endothelial NOS (Xia et al 1998) are all capable of O2 ' production. NOS 

will switch to generate 0 2 ' rather than NO in conditions where L-arginine and/or 

tetrahydrobiopterin, both of which are essential for NO synthesis, are deficient (Heinzel 

et al 1992; Pou et al 1992). As is the case for NO synthesis, O2' production by NOS is 

a function of intracellular free Ca2+-dependent regulation of calmodulin kinase (Xia et 

al 1998). The versatility of ROS production by NOS is implicated in a number of 

vascular disease states, such as hypercholesterolaemia and heart failure, whereby a 

functional deficiency of L-arginine has been reported (Hirooka et al 1994; Stroes et al 

1997). This suggests, therefore, that NOS may itself be dysfunctional and contribute to 

the pathophysiology of vascular damage.

1.4 Endogenous systems for superoxide removal

Superoxide may also be removed by endogenous scavenging enzymes, such as SOD 

(McCord and Fridovich 1969), catalase, peroxidase and by low molecular weight anti

oxidants such as vitamins C & E.

1.4.1 Endogenous enzymatic scavenging systems

SOD catalyses the dismutation of two 0 {  radicals to one molecule of H2O2 and one 

molecule of molecular O2 :

2 ’O2 + 2H+ —> H2O2 + O2
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Three mammalian SOD proteins exist (Figure 1.5); copper/zinc SOD (Cu/Zn SOD) 

(McCord and Fridovich 1969), manganese SOD (Mn SOD), these being the intracellular 

isoenzymes, and extracellular SOD (EC-SOD) (Marklund 1982). These proteins are 

coded by three different genes.

Sod2 (11 kb)

Sod1 (11 kb)

Chrom 6q25

Chrom 21q22.1

NF-kB

Chrom 4
I II

Sod3 (5.9kb)

NF-kB - Nuclear factor kappa B; SOD - superoxide dismutase; kb - kilobase 
Chrom - chromosome; SOD1- Cu/Zn SOD; SOD2 - MnSOD; SOD3 - EC-SOD

Figure 1.5 The chromosomes which contain the genes for the three isoforms of 

superoxide dismutase (SOD) protein: copper/zinc SOD (Cu/Zn SOD), manganese SOD 

(Mn SOD), these being the intracellular isoenzymes, and extracellular SOD (EC-SOD) 

proteins.

Mn-SOD and Cu/Zn SOD are located within the mitochondria and cytosol respectively, 

and are major vascular isoenzymes which are important for both scavenging vascular 

O2" and enhancing the bioavailability of endothelial NO (Li et al 1995). EC-SOD has a 

high molecular weight (135,000), is composed of four non-covalently bound subunits 

each containing a copper atom. It is hydrophobic, and binds readily with proteoglycans, 

such as heparin (Sandstrom et al 1992), which suggests an. affinity of this isoenzyme 

for cell membranes (Marklund 1982). The rate constant of the EC-SOD / O2’ 

dismutation reaction was originally determined to be 1 x 10'9 Mol/s (Marklund 1982). 

EC-SOD and cytosolic, or Cu-Zn, SOD are inhibited by diethyldithiocarbamate 

(DETCA), a copper chelating agent (Heikkila et al 1976; Mian and Martin 1995), which 

may be used in pharmacological studies to inhibit SOD activity.

Catalases are haem-containing enzymes which convert H2O2 to O2 and water.
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Peroxidases are again mostly haem-containing enzymes which utilise a variety of 

reducing substrates, such as NADH, to convert H202to water (Fridovich 2001).

1.4.2 Endogenous non-enzymatic scavenging systems

Glutathione, or GSH, has a sulphydryl group, which enables it to scavenge hydroxyl 

and singlet oxygen radicals (Halliwell and Gutteridge 1988). Glutathione is abundant 

within cells, and is therefore an important intracellular anti-oxidant

2 GSH + oxidant <-» GSSG + reduced oxidant

An excess of GSSG, and consequently an imbalance in the GSH/GSSG ratio, occurs in 

situations of excess ROS activity. This is associated with abnormal cell metabolism, 

such as impaired protein synthesis (Halliwell and Gutteridge 1988). Excess activity of 

enzymes which metabolise glutathione, such as glutathione peroxidase (which oxidises 

glutathione), are therefore important in determining intra-cellular anti-oxidant activities 

(Mugge et al 1991a). In addition, thiyl radicals are formed when glutathione scavenges 

hydroxyl radicals, or when glutathione is oxidised by peroxidases. Thiyl radicals are, 

however, less reactive than hydroxyl radicals.

Uric acid is one other endogenously produced anti-oxidant. Uric acid is the end-product 

of purine metabolism and is present in human extracellular fluids, such as plasma, at 

concentrations of 0.25 -  0.4 mmol/L. Humans, unlike some other species, do not have 

urate oxidase, which appears to have been ‘lost’ during our evolutionary development. 

Consequently, urate is excreted in the urine. The abundance of uric acid in the human 

body may be advantageous, as it is a powerful scavenger of hydroxyl and peroxyl 

radicals, and singlet oxygen. Like GSH, however, the by-products of these reactions are 

themselves, weak radicals. Uric acid has important extracellular anti-oxidant activity, 

and in particular, inhibits lipid peroxidation by binding iron and copper ions into forms 

incapable of generating free radicals.

In vivo, ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) have ROS 

scavenging activities (Halliwell and Gutteridge 1988). Ascorbic acid is a water-soluble, 

reducing agent. It is present in human plasma at concentrations of 50 -  200 pmol/L and 

has a second order reaction rate with O2" of 2.7 x 105 M'V1 at a physiological pH of 

7.4. Dehydroascorbate is produced as a result of this reaction, which ultimately breaks 

down to form oxalic and threonic acids. Vitamin C is an important scavenger of ROS,
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such as O2" and OH, in vivo. This activity is concentration dependent. Furthermore, 

vitamin C is oxidised in the presence of transition metals, such as Fe3+ and Cu2+, 

forming H2O2 and OH as by-products of these reactions. Vitamin C is ubiquitous 

throughout the human body and, for example, this vitamin has important anti-oxidant 

activity in the eye. It is present in high concentrations in the lens, cornea and aqueous 

humour of day-living mammals ( 1 - 2  mmol/L), whereas in nocturnal animals, such as 

cats and rodents, vitamin C is much less abundant. Vitamin C is also an important anti

oxidant in cardiovascular tissues. Low plasma concentrations of vitamin C, and 

therefore inadequate endogenous anti-oxidant activity, have been reported to predict an 

increased risk of cardiovascular morbidity (Vita et al 1998).

By contrast, vitamin E is lipid soluble and reacts very slowly with O2 ' in aqupous 

solutions. Nevertheless, vitamin E, which is present in various blood lipoproteins, does 

have important in vivo anti-oxidant activity by preventing lipid peroxidation. Other 

important endogenous anti-oxidants include certain extracellular proteins (Halliwell and 

Gutteridge 1988). These include albumin, and the acute phase proteins, such as 

caeruloplasmin and haptoglobin. By contrast, although haemoglobin has high affinity 

for NO and 0 2\  this protein may also be a source of ROS in vivo. The haem product of 

this oxidation reaction, methaemoglobin, is unable to bind O2'. Methaemoglobin 

represents approximately 3% of total haemoglobin in red blood cells. The O2' produced 

during this reaction must be removed by endogenous scavenging systems in these cells, 

such as Cu/Zn SOD, catalase and glutathione.

Haem -  Fe2+ - O2 -> O2' + haem -  Fe3+

SOD ^
H2O2 O2* H2O

Catalase
or

Glutathione

1.5 Physiological effects of ROS activity

1.5.1 Regulation of vascular tone and blood flow: the regulation o f 

bioavailable nitric oxide by superoxide and other ROS

Blood vessel tone is regulated by a variety of humoral and endothelium-derived relaxant

21



factors [Figure 1.6] (Mombouli and Vanhoutte 1995), the most important of which is ' 

NO (Moncada and Higgs 1993). NO is generated by three isoforms of the NOS. NO 

rapidly decomposes in vivo, having a half life of approximately 1-6 seconds 

(Brovkovych et al 1999). NO is metabolised by either interaction with other ROS, such 

as 0 {  (Gryglewski et al 1986), or through catalysis by transition metals to nitrite and 

nitrate (Vallance and Collier 1994). A major physiological effect of NO is its 

interaction with the haem moiety of soluble guanylate cyclase leading to the activation 

of this enzyme, an increase in cyclic GMP, and a reduction in intracellular calcium 

concentrations. This in turn leads to relaxation of vascular smooth muscle cells (VSMC) 

(Waldman and Murad 1988).
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Vallance et al (1989) investigated the role of NO in the regulation of blood flow in 

healthy humans in vivo., using strain-gauge plethysmography. This is a technique which 

can be used to measure forearm blood flow using a mercury-filled, silastic strain-gauge 

placed on the widest part of the forearm, and connected to a plethysmograph calibrated 

to measure percent change in volume (Greenfield et al 1963; Hokanson et al 1975). For 

each measurement, a cuff is placed on the upper forearm and inflated to a supravenous 

pressure (e.g. 40 mmHg) to occlude venous outflow, and a wrist cuff is inflated to 

supra-systolic pressures to exclude hand circulation. Serial measurements of arterial 

flow can be taken and averaged during any one measurement period, and expressed as 

mL per minute per 100 ml of forearm volume. The brachial artery (non-dominant arm) 

can be cannulated for the purposes of pharmacological studies. One advantage of local 

infusion of vasoactive compounds is that they do not attain concentrations within the 

systemic circulation to cause any important effect.

Studies by Vallance et al (1989) of forearm blood flow in healthy subjects demonstrated 

that intrabrachial artery infusion of an inhibitor of NOS, N° monomethyl-L-arginine (L- 

NMMA), was associated with a reduction in basal and agonist (ACh)-augmented blood 

flow. This inhibition could be reversed by co-infusion of L-arginine. These observations 

demonstrated that NO is continuously synthesised from arginine in human blood 

vessels in vivo, where it has an important role in the regulation of basal and agonist- 

stimulated blood flow (Vallance et al 1989).

The inactivation of endothelium-derived relaxant factor (EDRF), subsequently 

determined to be NO (Palmer et al 1987), by ROS is a key factor in the regulation of 

vascular tone (Vallance and Collier 1994). Gryglewski et al (1986) developed an in 

vitro model which allowed for the differentiation between the effects of different 

substances on the release, action and stability of EDRF. In these studies, a 

chromatographic column of microbeads coated in 7-14 day-old cultured porcine aortic 

endothelial cells was perfused with physiological buffer solution maintained at 37°C. 

This buffer contained indomethacin to inhibit the production of prostaglandins in these 

cells. The column effluent was then used to superfuse three strips of dendothelialised, 

rabbit thoracic aorta. There was a predetermined temporal delay of 1 -  3s between 

perfusion of the column and the vascular strips. In this study, superfusion of 

nitroglycerin (20 -  200 nM), an endothelium-independent nitrovasodilator, and 

bradykinin (20 nM), was shown to relax all of the aortic strips (Gryglewski et al 1986), 

whereas co-infusion haemoglobin (a scavenger of EDRF/NO) attenuated these 

relaxations. Reduction in effluent O2 ' concentrations, by superfusion of the column with
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SOD (5 -  30 U/ml), induced vasorelaxation. Furthermore, co-infusion of bradykinin 

with SOD markedly enhanced the vasorelaxant response previously observed with 

bradykinin, whereas, by contrast, co-infusion of bradykinin with catalase had no 

additional vasorelaxant effect. These data were the first to support the concept that O2’ 

destroys EDRF/NO in intact blood vessels.

1.5.1.1 Endogenous regulation of vascular superoxide concentrations 

and NO bioavailability: role of superoxide dismutase

Omar et al (1991) subsequently investigated the possibility that vasodilator responses 

might be regulated by the activity of endogenous SOD. Isometric tension studies of 

endothelium-dependent and -independent nitrovasodilator responses were performed in 

calf coronary arteries preconstricted to potassium. They found that both ACh- and 

nitroglycerin-dependent, but not endothelium-derived prostaglandin-mediated, 

vasorelaxation was abolished by inhibition of SOD through pretreatment of these 

arteries with 10 mmol/L of DETCA. This effect was abolished when the arteries in bath 

were exposed to severe hypoxia (p02 =10 mmHg) or co-treatment with 300 nmol/L of 

SOD. In other studies, endothelial and smooth muscle cells were cultured from these 

blood vessels and O2' concentrations in these cells were determined using lucigenin- 

enhanced chemiluminescence. Treatment of both cell types with DETCA resulted in 

increased O2' concentrations in both cell types, this being inhibited by co-treatment 

with SOD. Taken together, these observations indicate that agonist-dependent 

regulation of vascular tone may be influenced by the activity of endogenous SOD, 

which modulates bioavailable concentrations of O2’ and NO. In addition, Omar et a l

(1991) demonstrated that nitrovasodilator responses were inhibited by DETCA, which 

suggests that guanylate cyclase may be directly inhibited by O2*. These investigators 

also demonstrated that vascular smooth muscle cell guanylate cyclase activity is 

regulated by O2".

The role of endogenous SOD in the regulation of bioavailable NO was also investigated 

by Mian and Martin (Mian and Martin 1995). In isometric tension studies in rat aortae, 

pre-treatment of aortic rings with SOD (1 -  300 u/ml) induced a concentration- 

dependent relaxation of phenylephrine (PE)-induced increase in vascular tone, which 

was inhibited by co-treatment with NG-nitro-L-arginine (l-NOARG, 30pM), an inhibitor 

of NOS. By contrast, SOD had no such effect in dendothelialised rings. In subsequent 

studies, pre-treatment of aortic rings with 0.1 mmol/L of DETCA (a lower 

concentration than in those other studies described above (Omar et al 1991)) augmented
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PE-induced, but inhibited L-NMMA-induced, tone. By contrast, this concentration of 

DETCA only slightly attenuated ACh-induced vasorelaxation. These effects were 

reversed by treatment with exogenous SOD (10 -  300 U/ml). These observations 

suggest that tonic production of endothelium-derived NO is protected from destruction 

by O2’ as a result of the activity of endogenous Cu/Zn SOD. Alternatively, the lack of 

effect of DETCA on agonist-induced vasorelaxation suggests that endogenous Cu/Zn 

SOD has a bimodal O2' scavenging action, predominately limited to protecting basal 

NO synthesis.

1.5.2 Studies o f SOD activity in human blood vessels

SOD protein content and activity has been quantified in human blood vessels obtained 

at autopsy, and compared with those of various other mammals. Using 

spectrophotometric and chromatographic techniques, Stralin et al (1995) demonstrated 

that EC-SOD was most abundant in human aortae and left anterior descending coronary 

artery (LAD) and less so saphenous veins (SV). By contrast, although CuZnSOD was 

most abundant in aortae, this isoform was more abundant in SV than in LAD. 

Furthermore, the amount and activity of these SODs was greater in human aortae than 

in cow, pig, dog, cat, rabbit, rat or mouse aortae. Immunostaining studies of EC-SOD in 

human blood vessels and vascular cells demonstrated this enzyme to be present 

throughout the blood vessel walls and evident in cultured VSMC and fibroblasts. This 

study my be criticised on the basis that human tissue was obtained up to 48 hours after 

the individuals died, and the causes of death were not detailed. Furthermore, Western 

blotting, which is the most accurate method of protein quantification, was not used. 

Nevertheless, these observations do suggest that SOD is abundant and functional within 

human blood vessels, and more so compared with lower mammals.

Isometric tension studies in human conduit blood vessels performed in our laboratory, 

using the response to treatment with SOD as an indirect assessment of O2’ production, 

demonstrated that increased O2' production may contribute to impaired endothelium 

dependent vasorelaxation (Hamilton et al 1997).

1.5.2.1 NO metabolism: bioactivity of peroxynitrite

On the other hand, diffusible NO may be inactivated by O2' (Rubanyi and Vanhoutte 

1986a) to form peroxynitrite (Beckman 1993), which occurs readily and has a rate 

constant of 1010 mmol/L/s_1(Fridovich 2001; Reiter et al 2000). This reaction is the
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major path for NO metabolism at physiological pH (Reiter et al 2000), and it therefore 

out-competes that of SOD for O2’, which has a rate constant of 2 xlO9 M“V  

(Koppenol 1998). Dismutation of O2’ will therefore occur in situations where O2', 

achieves micromolar concentrations, such as in ischaemia reperfusion (Vinten-Johansen

2000). Rate limiting steps for the formation of peroxynitrite include the diffusion rates 

of NO and O2', and the availability of molecular oxygen. Cw-peroxynitrite is 

preferentially formed from NO and 0 2 ', which is most likely due to the greater stability 

of the N -0 bond in the cis conformation of this molecule (Reiter et al 2000).

Peroxynitrite is a highly reactive, and damaging intermediate. It has an important 

regulatory effect on vascular smooth muscle cell contractility and blood vessel tone 

(Rubanyi and Vanhoutte 1986b). It also has mild oxidative properties (Radi et al 1991), 

and is both negatively inotropic and a vasodilator (Ku et al 1992). Peroxynitrite may 

also oxidise lipoproteins, and oxidised lipoproteins can in turn inhibit endothelial Gj- 

protein and function (Liao 1994). Peroxyntrite readily oxidises tyrosine, to form 

nitrotyrosine (Reiter et al 2000), which can be measured in blood and tissues (Vinten- 

Johansen 2000). Spectrophotometric studies undertaken by Beckman’s group using a 

stop-flow closed gas tonometer system, which allows for injection of reagents with 

consecutive spectrophotometric measurements, determined that peroxynitrite formed at 

a physiological pH causes tyrosine, and therefore protein, nitration (Reiter et al 2000). 

Chronic production of peroxynitrite can lead to the subsequent nitration of vascular 

proteins, such as Mn-SOD (MacMillanCrow et al 1996), which may contribute to the 

development of atherosclerosis (White et al 1994).

Peroxynitrite may have other harmful effects. Recent studies in isolated, working rat 

hearts treated with interleukin-1 p, interferon-y, and tumour necrosis factor-a, or vehicle, 

demonstrated that these cytokines caused marked impairment of myocardial contractile 

function, compared with controls (Ferdinandy et al 2000). This was associated with 

enhanced myocardial activity of XOR and NAD(P)H oxidase, and increased myocardial 

concentrations of O2'. Furthermore, the perfusate obtained from these hearts had higher 

concentrations of nitrotyrosine and dinitrotyrosine, which are metabolites of 

peroxynitrite. The production of these metabolites was associated with the development 

of myocardial dysfunction. All of these effects were attenuated by treatment with the 

NOS inhibitor, N° -nitro-L-arginine, the O2’. scavenger, Tiron, or a catalyst of 

peroxynitrite decomposition, 5,10,15,20-tetrakis-[4-sulfonatophenyl]-porphyrinato- 

iron[III]. These observations suggest peroxynitrite has myodepressant properties, 

possibly arising through protein nitration. This may be of pathophysiological relevance
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in situations of cytokine activation, such as heart failure.

Peroxynitrite may also be metabolised to other reactive oxidative intermediates, such as 

the hydroxyl radical ( OH), which may also affect vascular tone. This radical has, for 

example, been demonstrated to induce activation of soluble guanylate cyclase in VSMC 

(Mittal and Murad 1977).

1.5.3 ROS-mediated regulation o f vascular cell growth and 

hypertrophy

In vitro studies have demonstrated that both 0 {  and hydrogen peroxide affect VSMC 

growth. Rao and Berk (1992) showed that in VSMC exposed to ROS generated by the 

xanthine/xanthine oxidase reaction there was an increase in DNA synthesis, which 

could be attenuated by the addition of either catalase, which removes hydrogen 

peroxide, or SOD, which scavenges O2". These effects were mediated through an 

increase in protein kinase C-dependent proto-oncogene expression. Similar studies have 

also demonstrated that this effect is concentration dependent, such that hydroxyl 

radicals may also induce apoptosis (Li et al 1997a). These in vitro data suggest that 

these growth-regulating activities may operate in vivo.

1.5.4 ROS activity in host defence mechanisms

ROS are generated by and participate in a variety of biological reactions in vivo. 

Phagocytes generate 0 2 ’, as part of the ‘respiratory burst’ reaction, originally described 

by Balridge and Gerrard (1933). The bactericidal activity of quiescent neutrophils and 

macrophages is activated on exposure to pathogens. This results in the rapid 

consumption of NAD(P)H reducing equivalents, by non-mitochondrial NAD(P)H 

oxidase, and a burst of O2’ production. Abnormalities in the structure and composition 

of the NAD(P)H oxidase protein complex result in deficiencies of cell killing, a feature 

of chronic granulomatous disease (Segal and Jones 1978). This raises the possibility 

that, in teleological terms, constitutive ROS production by vascular cells may have a 

cell-protective effect.

ROS activity is also implicated in a variety of other pathophysiological processes, such 

as neurodegenerative diseases, and aging (Warner 1994).
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1.6 Pathophysiological effects of increased vascular ROS 

activity

Excess ROS activity, also known as ‘oxidative stress’, is associated with a variety of 

pathophysiological processes. Vascular smooth muscle cell proliferation and 

hypertrophy, processes known to be important in atherosclerosis, may be promoted by 

increased O2’ activity (Miller et al 1998). Other processes which are redox-sensitive 

and are believed to be important for the development of atherosclerotic plaques include 

activation of matrix metalloproteinases (Rajagopalan et al 1996a), mitogen-activated 

kinases (Baas and Berk 1995; Clerk et al 1998), and vascular cell adhesion molecules 

(VCAM) (Marui et al 1993). Excess ROS activity may also promote increased rates of 

vascular cell apoptosis, which may have deleterious effects in vascular remodelling 

(McMurray et al 1990).

1.6.1 ROS as intracellular signalling messengers

ROS are involved in modulating a variety of intracellular signalling pathways for 

vascular cell growth regulation (Irani 2000). For example, Frank et al. (Frank et al 

2000a) recently demonstrated in VSMC that the activity of PYK2, an intracellular 

tyrosine kinase, is redox sensitive, suggesting that ROS regulate tyrosine kinase- 

induced trophic effects.

ROS may also serve as second-messengers for ATi receptor activation. Activation of 

these pathways is an integral link between ATi receptor activation and nuclear 

transcriptional changes leading to cell growth (Marrero et al 1997). However, the 

mechanism whereby activation of the G-protein coupled ATi receptor might lead to 

activation of tyrosine kinases, such as JAK2, is not clear. Although JAK2 may bind 

with the ATi receptor, this physical association does not directly lead to JAK2 

activation (Ali et al 1998). Alternatively, Simon et al (1998) demonstrated that JAK2 

activation is dependent on the activity of ROS. These observations raise the possibility 

that ROS may act as intermediates between distinct signalling pathways. The janus 

kinase (JAK) and signal transducers and activators of transcription (STAT) signalling 

pathway activates early growth response genes, and may be a mechanism whereby Ang 

II influences vascular and cardiac growth, remodelling and repair (Berk and Corson 

1997; Hefti et al 1997).

For this reason, Schieffer et al (2000) recently investigated the possibility that ROS
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may act as signalling messengers for ATi receptor activation of JAK and STAT factors 

in rat aortic VSMC. Treatment of these cells with 10 pmol/L of Ang II stimulated an 

increase in the concentrations of both O2’ and the cytokine, interleukin 6 (IL-6). Both of 

these effects were abolished by co-treatment with either 10 pmol/L of the ATi receptor 

antagonist, losartan, or DPI (maximal inhibition attained at a concentration of 100 

pmol/L), or by inhibition of p47phox by electroporation of p47phox antibodies into 

these cells. Similarly, treatment of these cells with Ang II led to JAK2, STAT 1 a/p  and 

STAT3 tyrosine phosphorylation, which could also be inhibited by treatment with 

losartan, DPI or electroporation of p47phox antibodies. In other studies, these 

investigators demonstrated that treatment of rat VSMC with either 10 pmol/L of 

AG940, a selective antagonist of JAK2, or STAT 1 a/p  antisera, prevented Ang II- 

induced synthesis of IL-6. These studies demonstrated that in rat VSMC, Ang II- 

induced, NADP(H) oxidase dependent O2" production may be important for activation 

of the JAK/STAT cascade. This may, in turn, lead to an increase in production of the 

cytokine IL-6.

In other studies in rat VSMC, Viedt et al (2000) reported that ATi receptor-induced 

ROS production stimulated JNK and p38 MAP kinase, but not ERK1/2, leading to an 

increase in AP-1 binding DNA. Inhibition of p22phox activity by treatment with either 

a specific antibody or antisense DNA abolished ATi receptor-induced JNK and p38 

MAP kinase activation, and reduced AP-1 DNA binding. In this study, treatment with 

Ang II -  induced ERK1/2 activation by a tyrosine kinase, PKC- and MEK-dependent 

pathway. Taken together, these findings demonstrate that ROS are critical signalling 

factors for apparently uncoupled signalling cascades, such as the G-protein coupled ATi 

receptor and soluble tyrosine kinases, such as JAK2 or MAPK. Interestingly, the 

involvement of ROS in non-receptor kinase activation (Rao 1996), raised the possibility 

that ROS may mediate ATi receptor-induced epidermal growth factor receptor (EGFR) 

activation (Eguchi and Inagami 2000a).

This possibility has recently been explored by Ushio-Fukai et a l (Ushio-Fukai et al

2001). In these studies, pretreatment of VSMC with anti-oxidants prevented Ang II- 

induced tyrosine phosphorylation of the EGFR, but not EGF-induced phosphorylation 

of its own receptor. Alternatively, direct treatment of these cells with hydrogen 

peroxide, and the superoxide generating compound LY83583, in the absence of any 

other ligand, was associated with a concentration-dependent increase in EGFR 

phosphorylation. These observations suggest that ROS may induce EGFR
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phosphorylation through activation of an upstream intermediary, rather than activation 

of EGFR-kinase. In this case, redox-sensitive candidates include Ca2+ (Suzuki and Ford 

1999), PYK2 (Frank et al 2000b) and c-Src (Eguchi and Inagami 2000b; Griendling et 

al 2000). Further studies by Ushio-Fukai et al. (2001) in VSMC demonstrated that 

EGFR transactivation could be prevented by inhibition of either tyrosine kinases, or c- 

Src kinases, or by Ca chelation, but not by Jak2 kinase or PI3K inhibtion. In addition, 

transfection of these cells with an adenovirus containing DNA for a kinase-inactive 

form of c-Src lead to inhibition of the activity of c-Src compared to inactive (Ad.LacZ) 

control transfected cells. These data suggest that c-Src is an upstream effector for Ang 

II-induced EGFR transactivation by tyrosine phosphorylation.

The activity of nuclear factor kappa B (NFkB) is also regulated by ROS (Barnes and 

Karin 1997), suggesting the possibility that ATi receptor-induced ROS production 

(Rajagopalan et al 1996b) may lead to activation of NFkB. This thesis has been recently 

investigated by Pueyo et al (2000), who demonstrated that ATi receptor-induced 

activation of NFkB, which was associated with enhanced VCAM-1 expression, is a 

redox sensitive pathway. In these studies, NFkB activation was associated with the 

breakdown of cytoplasmic IkB proteins, this being inhibited by treatment with either the 

non-specific anti-oxidant, pyrrolidinedithiocarbamate, or rotenone, which is an inhibitor 

of mitochondrial respiration. By contrast, treatment with SOD failed to attenuate Ang 

II-induced IkB degradation. The mechanism of ROS-induced IkB degradation is not 

known. Taken together these findings suggest that ATi receptor activation stimulates 

mitochondrial ROS production, which in turn may trigger IkB degradation, NFkB 

activation and endothelial cell recruitment of monocytes. This is one process whereby 

ATi receptor activation could contribute to vascular inflammation and atherosclerosis.

1.7 ROS in vascular disease states: mechanisms of production 

and functional importance

ROS have been implicated in the pathogenesis of a variety of disease states, and may be 

particularly important in the pathophysiology of cardiovascular disease. Increased 

vascular O2' production can lead to reduced bioavailable nitric oxide and impaired 

endothelium-dependent relaxation (Grunfeld et al 1995; Nakazono et al 1991; Rubanyi 

and Vanhoutte 1986b) which can be evident in disease states such as hypertension 

(Nakazono et al 1991), hypercholesterolaemia (Creager et al 1990), atherosclerosis 

(Cox et al 1989), diabetes (Calver et al 1992a), and heart failure (Kubo et al 1991). In
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this section, the role of ROS in a variety of vascular disease states will be discussed.

1.7.1 Renin angiotensin aldosterone system activation and vascular 

superoxide production

Some of the vasoactive effects of hormones, such as Ang II, are similar to those of 

ROS. For example, treatment of vascular smooth muscle cells with Ang II will result in 

hypertrophy and hyperplasia of these cells (Berk et al 1989; Haller et al 1996). 

Furthermore, chronic treatment of experimental animals with Ang II results in not only 

hypertension, but also vascular hypertrophy and endothelial dysfunction in these 

animals (Griendling et al 1997). These overlapping physiological effects raise the 

possibility of a functional interaction between Ang II and ROS production.

This hypothesis was initially explored by Wilson (1990), who observed that chronic 

treatment of rats with Ang II resulted in hypertension and vascular hypertrophy, which 

was associated with increased vascular ROS production. The possibility that Ang II 

might directly stimulate ROS production was explored by Griendling et a l (1994). In 

these studies, treatment of cultured rat VSMC resulted in increased O2' production, 

which could, in turn, be prevented by co-treatment with an inhibitor of NAD(P)H 

oxidase. Further studies identified this enzyme to be bound to the plasma membrane of 

these cells (Griendling et al 1994).

In rats chronically infused with pressor and non-pressor doses of Ang II, increased 

vascular NAD(P)H oxidase 0 2 ’ production contributed to both the impaired 

endothelium-dependent vasorelaxation and hypertension evident in these animals 

(Rajagopalan et al 1996b). Importantly, these effects were abolished by co-treatment 

with an Ang type 1 receptor antagonist (ARA), implicating this receptor in Ang II- 

stimulated superoxide production. In a similar study, the hypertensive effects of Ang II 

were attenuated by co-infusion with liposomal SOD (Laursen et al 1997).

Further studies by Zafari et al (2000) from Griendling’s group demonstrated that the 

Ang II-stimulated activation of NAD(P)H oxidase occurred through release of 

arachidonic acid metabolites, which triggered protein kinase C activation. This in turn 

led to phosphorylation of the phox subunits and activation of NAD(P)H oxidase. 

Further work by Ushio-Fukai et al (1996) in the same group demonstrated that 

transfection of anti-sense p22phox cDNA into rat cultured VSMC abrogated the Ang II- 

stimulated increases in O2' concentrations, hypertrophy of these cells or subsequent
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H2O2 production. These observations implicated p22phox subunit as a key element in 

NAD(P)H oxidase-dependent O2' production and H2O2 as a mediator of the trophic 

effects of Ang II. Furthermore, work in cultured rat VSMC treated with the SOD 

inhibitor, DETCA, demonstrated that O2' conversion to H2O2 was also important for 

Ang II-stimulated VSMC hypertrophy (Zafari et al 1998). Similar observations were 

made in studies of VSMC which stably over-expressed catalase, an enzyme which 

catalyses the breakdown of H2O2 to water (Zafari et al 1998). These studies clearly 

demonstrated a novel, functionally important relationship between vasoactive hormones 

and ROS generation, and raise the possibility that renin-aldosterone-angiotensin system 

(RAAS) activation evident in human vascular disease states may result in enhanced 

ROS activities.

Interestingly, Ang II-stimulated ROS generation may not be endothelium dependent. In 

studies performed by Rajagopalan et al (1996b), denudation of the endothelium from 

the aortic rings of Ang Il-infused rats failed to prevent the rise in O2’ production 

stimulated by treatment with this hormone. That is to say, Ang II-stimulated O2’ 

production may occur within the smooth muscle and/or adventitial layers. This thesis is 

supported by comparable findings from studies by Miller et al. (1998) in a rabbit model 

of atherosclerosis.

Recently, Lang et a l (2000) demonstrated an association between increased circulating 

plasma Ang II concentrations and enhanced NAD(H) oxidase activity in a guinea pig 

model of left ventricular hypertrophy. These findings suggest that in disease states 

where chronic activation of the renin angiotensin aldosterone system (RAAS) is 

evident, increased plasma and tissue concentrations of Ang II may contribute to the 

increased ROS activity that has been observed in chronic heart failure and coronary 

heart disease (McMurray et al 1990).

Pagano et a l (1997a; 1998) explored the potential importance of adventitial O2’ 

production in the modulation of vascular tone (Pagano et al 1997b; Wang et al 1999; 

Wang et al 1998). This group identified adventitial fibroblast NAD(P)H oxidase to be 

an important source of O2" in both rabbit and rat aortae. Studies of particulate fractions 

of rabbit aortae demonstrated that immunodepletion of p67phox markedly reduced 

NAD(P)H oxidase activity, this being restored by the addition of recombinant p67phox 

(Pagano et al 1997a). These studies demonstrated that p67phox has an obligate role for 

electron transport in this enzyme. Furthermore, incubation of Ang II-treated aortae with 

actinomycin D, an inhibitor of transcription, and cycloheximide, an inhibitor of protein 

synthesis, both attenuated Ang II-stimulated O2' production (Wang et al 1999). These 

data suggest that Ang II augments NAD(P)H oxidase-mediated O2* production by
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enhancing the abundance of messenger ribonucleic acid (mRNA), through an increased 

rate of transcription. This in turn may lead to increased amounts of the protein and 

enhanced capacity of the enzyme for O2* production (Pagano et al 1998).

These investigators also demonstrated using rat aortae under isometric tension that 

adventitial O2" production, by inactivating NO and therefore modulating vascular tone, 

is functionally important source of ROS generation (Wang et al 1998). Furthermore, the 

angiotensin type 1 receptor antagonist (ARA), losartan, inhibited Ang II-stimulated 

superoxide production in rat thoracic aortae, however, losartan had no such effect in 

rabbits (Pagano et al 1997a; Wang et al 1999). That Ang II-stimulated 0 2 ' production in 

rabbits could be inhibited by the non-specific (non-ATi non AT2 receptor) receptor 

antagonist, [sar1,Thr8]-Ang II suggests that important species differences may exist in 

this pathway. These observations raise the question as to whether or not Ang II might 

stimulate O2 ' production in human blood vessels. This question remains to be answered 

and is therefore the subject of the present investigation.

7.7.2 ROS activation in hypertension

1.7.2.1 Studies in experimental animals

In a model of genetic hypertension, the stroke prone spontaneously hypertensive rat 

(SHRSP), investigations in our laboratory, demonstrated that markedly decreased NO 

bioavailability is due to an excess production of O2 ' within the endothelium, compared 

with normotensive control animals (Grunfeld et al 1995; McIntyre et al 1997; Kerr et al 

1999).

Zalba et al (2000) recently demonstrated in the SHR, that increased O2 ' production in 

homogenates of aorta is associated with an increased abundance of p22phox mRNA, as 

determined by reverse transcription polymerase chain reaction (RTPCR) techniques. 

Furthermore, the observed activation of NAD(P)H oxidase and impaired endothelium- 

dependent responses in the aortae of these animals were normalised by treatment with 

the ARA, irbesartan. As discussed above, Rajagopalan et al (1996b) demonstrated the 

functional importance of increased vascular O2’ production in an Ang II-induced model 

of hypertension.

These observations were recently supported in studies by Brovkovych et al. (1999) in 

which a porphyrinic microsensor was used to quantify NO production in endothelium 

obtained from spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) control
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rats. This electrochemical method was originally developed by Malinski and Taha

(1992) for the direct electrochemical detection of NO either in vitro or in vivo. The 

microsensor is 2-3 pm in diameter and 5-7 pm in length and selectively detects NO on 

the basis of current generated by the oxidation of NO. The sensor can be positioned up 

to 10 pm from a single cell and the specificity of the signal can be confirmed by 

inhibition of NOS on treatment with L-Af-monomethyl-L-arginine (L-NMMA). Using 

these techniques, Brovkovych et al (1999) found that after treatment with calcium 

ionophore to stimulate NOS, NO concentrations were higher for WKY than SHR (910 

± 40 and 580 ± 35 nmol/L, respectively; n=6, p<0.005). In the presence of 100 U/mL of 

polyethylene glycol-SOD (PEG-SOD), NO concentrations in the endothelium of WKY 

rats increased by 8% however, an increase of 83% was observed for NO concentrations 

in the endothelium of SHR rats. This observation supports the concept that vascular, or 

endothelial, cell 0 2 ' production is greater in hypertensive rats, compared with 

normotensive controls, leading to a reduction in bioavailable NO in the SHR/SHRSP.

1.7.2.2 Studies in humans

In humans, in vivo strain gauge plethysmography studies demonstrated that the NO - 

dependent forearm vasodilator response to intrabrachial arterial infusion of 

acetylcholine (ACh) was impaired in 18 hypertensive patients compared to controls 

(Panza et al 1990). In this particular study, the maximal forearm blood flow response to 

infusion of ACh was 9.1 ±5 ml/min in hypertensive patients compared to 20.0±8 ml/min 

in the controls (P<0.0002). This difference was not due to decreased sensitivity of 

guanylate cyclase to NO, because the vasodilator response to the exogenous NO donor, 

sodium nitroprusside, was preserved. These observations suggest that in hypertensive 

subjects there is an abnormality in endothelium-dependent vasorelaxation. These 

findings were supported by observations in other studies by Calver et al (1992b), who 

demonstrated that the forearm vasoconstrictor response to L-NMMA infusion was 

reduced in untreated hypertensive patients compared to controls, suggesting a reduction 

in basal NO bioavailability in hypertension. These observations raise the possibility that 

reduced NO bioavailability in the blood vessels of hypertensive patients may be due to 

increased removal of NO, as a result of enhanced ROS generation in essential 

hypertension.

The reasons for enhanced vascular ROS activity in human hypertension may be due to 

genetic abnormalities causing altered expression of the enzymes responsible for ROS 

production or removal (see section 1.7). This possibility is supported by recent



observations which suggested a heritable basis for the impaired endothelium-dependent 

vasodilation which may be present in the offspring of hypertensive parents (Zizek et al

2001). These authors studied flow-mediated brachial artery dilatation in both 

hypertensive and normotensive individuals (normotensive offspring of hypertensives 

and normotensive controls), and found it to be impaired in both the patients and in their 

normotensive offspring, compared to controls. The reasons for this are not entirely 

clear. Although the blood pressure of the hypertensive offspring was within the normal 

range, it was significantly higher than that of controls. These observations suggest a 

close relationship between blood pressure and endothelial dysfunction, and raise the 

question as to whether there may be a genetic basis, or heritable risk, for endothelial 

dysfunction in hypertension.

The possibility that the presence of hypertension per se, might directly result in 

abnormal endothelial function was investigated in studies by Paniagua et al (2000). 

They isolated human subcutaneous resistance arteries (SRA) from gluteal fat biopsies, 

and then cannulated and perfused these arteries at 37°C in a pressure-flow organ bath. 

SRA diameter was measured directly from amplified digital images. Endothelium -  

dependent and -independent vasodilator responses were assessed by treatment of SRA 

with ACh (10‘9 to 10-4 mol/L) and sodium nitroprusside (10'9 to 10"4 mol/L) after 

exposure of SRA to incremental vascular pressures of 50, 80, and 120 mmHg for 1 

hour. The dilator response of SRA to ACh was attenuated by exposure to higher 

intravascular pressures (mean vasodilation, 62%, 49%, and 26% at 50, 80, and 120 

mmHg, respectively), whereas the responses to SNP were not affected. These 

observations suggest that exposure to increased intravascular pressures, such as occurs 

in hypertension, may directly lead to endothelial dysfunction.

One mechanism underlying hypertension-induced endothelial dysfunction may relate to 

pulsatile stretch of vascular cells. Studies by Howard et al (1997) in porcine aortic 

endothelial cells (PAEC) and VSMC demonstrated that cyclic, or pulsatile, stretch of 

cells grown on elastic membranes resulted in an increased production of lipid peroxides, 

which could be further enhanced by treatment with NADH/NADPH. These 

observations suggest that the activity of NAD(P)H oxidase is upregulated by 

mechanical stimuli, such as pulsatile stretch. This may be one further pathway 

underlying enhanced vascular ROS production in hypertension.
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1.7.3 Diabetes

Diabetes is one other vascular disease in which oxidative stress is recognised (Maxwell 

et al 1997; Opara et al 1999). Hattori et al (1991) observed that ACh -dependent 

vasorelaxation was impaired in aortic segments obtained from streptozotocin-induced 

diabetic rats, compared to normal controls. This impairment was improved by pre

treatment of these blood vessels with SOD (60 U/ml), but not catalase (600 U/ml) or 

allopurinol (10 mmol/L). By contrast, vasorelaxation responses to the endothelium -  

independent vasodilator, sodium nitroprusside, were similar in the two groups. These 

observations suggest that impaired endothelium-dependent vasorelaxation in these 

diabetic animals may be due to increased vascular O2' concentrations, as a result of 

either increased ROS generation or reduced removal, leading to in turn, a reduction in 

bioavailable NO. The lack of effect of either catalase or allopurinol suggests that 

neither H2O2 or xanthine oxidase contribute to the impaired endothelium-dependent 

responses in these animals.

Impaired endothelium-dependent vasorelaxation may also be present in diabetic patients 

(Calver et al 1992a). In fact, hyperglycaemia directly induces ROS production in 

vascular cells and anti-oxidant treatment of these cells prevents the protein glycation 

that occurs on their exposure to high glucose concentrations (Giardino et al 1996; 

Nishikawa et al 2000). Nishikawa et al (2000) recently demonstrated in bovine aortic 

endothelial cells that the deleterious effects of hyperglycaemia, namely protein kinase C 

activation, protein glycation and increased glucose flux, were attenuated by normalising 

mitochondrial ROS concentrations through inhibition of mitochondrial electron 

transport. Experimental studies in human cultured aortic endothelial cells have also 

demonstrated that exposure to high glucose concentrations stimulates increased vascular 

O2’ production by eNOS (Cosentino et al 1997). Furthermore, in experimental rats, 

hyperinsulinaemia has been demonstrated to directly increase vascular O2’ production 

(Kashiwagi et al 1999).

1.7.4 Hypercholesterolaemia

Increased vascular O2 ' production also contributes to endothelial dysfunction in 

hypercholesterolaemic rabbits (Mugge et al 1994; Ohara et al 1993). This appears to be 

due, in part, to increased removal of NO by O2' (Mugge et al 1994). Furthermore, 

treatment of these rabbits with PEG-SOD for 1 week, therefore reducing vascular O2' 

concentrations, was associated with an improvement in endothelium-dependent
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vasodilator responses in these animals (Mugge et al 1991b). Hypercholesterolaemia in 

humans is associated with abnormal vascular function, even in the absence of end-organ 

damage, such as, for example, atherosclerosis. Creager et al (1990) used strain-gauge 

plethysmography techniques to study forearm blood flow in 13 young, 

hypercholesterolaemic patients (age range 24 -  45) and 11 healthy controls (age range 

22 -  43). Basal forearm blood flow was comparable between the two groups. They also 

found, however, that the vasodilator responses to infusion of either methacholine, an 

endothelium-dependent vasodilator, or sodium nitroprusside, an endothelium- 

independent vasodilator, were impaired, compared to controls. These observations 

suggest that abnormalities in both endothelial and vascular smooth muscle cell function 

may be present in hypercholesterolaemia, predating the development of atherosclerosis. 

One possible reason for this may be due to increased vascular ROS production in 

hypercholesterolaemia (Mugge et al 1994; Ohara et al 1993).

Stokes et al (2001) recently characterised the importance of NAD(P)H oxidase- 

dependent ROS production as a pro-inflammatory pathway in an animal model of 

hypercholesterolaemia. In these studies, mice transgenic for either p47phox 

(heterozygous p47phox +/- or homozygous p47phox -/-) or CuZn-SOD (SOD TgN) 

were placed on either a normal diet (ND) or high cholesterol diet (HCD) for 2 weeks. 

The microvascular damage associated with hypercholesterolaemia involves leucocyte- 

endothelial cell adhesion (Scalia et al 1998), which are processes known to be redox 

sensitive (Marui et al 1993). Stokes et a l (2001) studied the effects of 

hypercholesterolaemia in these transgenic mice using intravital microscopy of 

cremasteric muscle postcapillary venules. Venular leucocyte adherence and emigration 

were quantified by videoimaging. They demonstrated that wild-type, SOD non-TgN and 

SOD TgN HCD mice had 2-3-fold higher serum cholesterol concentrations than ND 

mice. This was associated with more than doubling of the number of adherent 

leucocytes in the postcapillary venules of both WT and SOD non-TgN HCD groups, 

compared with the ND mice. By contrast, TgN mice that overexpressed CuZn-SOD 

exhibited a significantly reduced number of adherent and emigrated leukocytes when 

placed on the HCD diet, compared to the wild type and non-TgN mice. In order to 

investigate the role of NAD(P)H oxidase in hypercholesterolaemia-induced leucocyte 

adherence and emigration, mice heterozygous and homozygous for p47phox were 

placed on HCD or ND. The HCD-induced increases in leucocyte adherence and 

emigration in WT and heterozygous TgN p47phox mice did not occur in p47phox -/- 

mice. Interestingly, mean cholesterol concentrations were higher in the p47phox TgN 

mice than in WT. The observations that enhanced 0 {  scavenging, as occurred in the
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SOD TgN mice, and inhibition of NAD(P)H oxidase-dependent O2 ' generation, as 

occurred in the p47phox homozygous TgN mice, prevented the microvascular 

inflammatory changes associated with hypercholesterolaemia, suggests that NAD(P)H 

oxidase-dependent O2’ generation is involved in mediating hypercholesterolaemic 

vasculopathy and atherosclerosis.

1.7.5 Atherosclerosis

Individuals with hypertension and high plasma concentrations of cholesterol and 

glucose are at risk of developing atherosclerosis. In pathological terms, atherosclerosis 

is a focal abnormality which occurs at a site of high shear stress in a large conduit or 

elastic artery. An atherosclerotic plaque is characterised by an accumulation of 

macrophages and T lymphocytes and extracellular matrix tissue, hyperplasia of intimal 

smooth muscle cells and neovascularisation (Alexander 1995). The pathogenesis of 

atherosclerosis involves accumulation and modification of lipids within the blood vessel 

wall (Steinberg et al 1989), induction of pro-inflammatory genes such as vascular cell 

adhesion molecule (VCAM) (Marui et al 1993), increased cellular proliferation (Gong 

et al 1996), alteration in VSMC phenotype (Rao and Berk 1992) and impaired 

endothelial function (Mugge et al 1991b; Ohara et al 1995; White et al 1994). All of 

these processes may be promoted by an increase in ROS activity (Alexander 1995). For 

example, low-density lipoprotein (LDL) is not readily sequestered by macrophages. 

After exposure to endothelial cells, however, LDL becomes oxidised (oLDL), and in 

this form, is recognised by the macrophage scavenger LDL receptor. Macrophages can, 

therefore, readily sequester oLDL, which results in their transformation into lipid-laden 

‘foam cells’, which are a pathological feature in atherosclerosis (Alexander 1995). Lipid 

peroxidation by-products, such as lisophosphatidylcholine, are amphipahthic 

compounds that directly impair G-protein dependent signal transduction, leading to 

impaired endothelium-dependent vasorelaxation (Flavahan 1992).

1.7.5.1 Studies of atherosclerosis and ROS activity in animal models

Studies in animal models of atherosclerosis demonstrated that activation of the RAAS 

may be one important mechanism leading to increased ROS activity, atherosclerosis and 

vascular damage (Wamholtz et al 1999). These investigators used an animal model of 

atherosclerosis, in which healthy rabbits were fed either a high cholesterol diet or 

normal diet in the presence or absence of concomitant treatment with either an ARA or 

a calcium channel blocker. The latter treatment served as a positive anti-hypertensive
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control. Vascular O2" production, as measured by lucigenin-enhanced 

chemiluminescence, was greater in hypercholesterolaemic rabbits compared to controls. 

This difference was abolished by either de-endothelialisation of the aortic segments 

from hypercholesterolaemic rabbits, or treatment of these segments with an inhibitor of 

NAD(P)H oxidase, DPI. In isometric tension studies, ACh-induced relaxation in 

vascular rings pre-constricted to PE was attenuated in hypercholesterolaemic animals, 

compared to controls. This difference was not evident in high cholesterol animals 

treated with the ARA. Endothelium-dependent vasodilation was not modified by 

calcium channel blockade in cholesterol-fed animals. Receptor binding studies 

demonstrated that aortic membrane ATi receptor density was greater in high cholesterol 

animals compared to controls. In addition, histological analysis of atherosclerotic 

plaques in arteries from cholesterol fed animals demonstrated a reduction in lipid 

content and macrophage infiltration in animals treated with an ARA, compared to those 

that were not. These findings suggest that hypercholesterolaemia is associated with 

increased vascular O2" production, endothelium-dependent dysfunction and 

atherosclerosis. The mechanism underlying this appears to be cholesterol-induced ATi 

receptor-dependent, NAD(P)H oxidase activation, principally occurring within the 

vascular endothelium.

One other mechanism which may also contribute to enhanced vascular O2' production 

in atherosclerotic arteries is the presence of shear stresses, which are known to be potent 

stimuli for vascular O2’ production (DeKeulenaer et al 1998b; Howard et al 1997). In 

vitro studies in cultured HAEC and VSMC plated in a closed loop flow system 

demonstrated that alteration in physiological levels of laminar shear stress (0.6 to 15 

dyne/cm2) increased rates of gene transcription and protein synthesis of CuZn SOD in 

HAEC, compared to control cells (Inoue et al 1996). This was not the case, however, in 

VSMC, which suggests that in some circumstances, certain vascular cells may have 

inadequate anti-oxidant scavenging properties.

The effect of SOD deficiency on lipid peroxidation has been investigated using a rat 

model of dietary copper restriction (Lynch et al 1997). Male weanling Sprague-Dawley 

rats were fed a diet deficient in copper and zinc and received either copper replacement 

in their drinking water, or copper-deficient drinking water. They were then sacrificed 

after 5 weeks. Isometric tension studies in aortic segments obtained from these animals 

demonstrated comparable contractile responses to potassium and PE, but deficient 

relaxation responses to ACh. This was associated with a 68% reduction in vascular 

CuZnSOD activity and a 58% increase in vascular O2' concentrations in the copper
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deficient animals compared to controls. In addition, the plasma concentrations of 

esterified F2-isoprostanes, which are stable products of arachidonic acid autoxidation 

(Morrow et al 1990), were also measured. Plasma F2-isoprostane concentrations in 

control animals and copper-deficient animals were 263 ± 40 pg/mL and 665 ± 1 56  

pg/mL (p<0.05 vs control), respectively. This study may have benefited from additional 

investigations to assess whether or not treatment with exogenous SOD might have 

prevented these abnormalities in copper-deficient rats. Nevertheless, it does provide 

information on how a functional deficiency in SOD, leading to an excess activity of 

ROS, may lead to lipid peroxidation, which is a critical process in atherosclerosis.

Studies by Fukai et al (1998) have suggested, paradoxically, that vascular SOD protein 

content and activity may be increased in atherosclerosis. In this study, vascular tissues 

obtained from either apo E-deficient mice, a model of atherosclerosis, or controls, were 

homogenised. EC-SOD protein quantification studies were undertaken by western 

analysis and SOD activity was determined by monitoring the inhibition of the rate of 

XOR-mediated reduction of cytochrome c. These investigators found that although total 

aortic SOD activity was similar between apo E-deficient mice and controls, specific 

assays of EC-SOD activity revealed greater activity of this enzyme in the aortae of apo 

E-deficient mice. Western analysis demonstrated a three-fold increase in the amount of 

this isoenzyme in the aortae of apo E-deficient mice, compared to controls. 

Immunodetection studies demonstrated EC-SOD to be most abundant in intimal 

macrophages in the aortae of apo E-deficient mice, which was in contrast to control 

aortae, in which macrophage EC-SOD staining was absent. The observation that 

vascular EC-SOD may be increased in atherosclerosis suggests a compensatory, 

adaptive process. In this case, the principal oxidants generated from these macrophages 

would be H2O2 and OH. These products are more stable than 0 2\  and as H20 2 is 

uncharged, may penetrate more readily into cells. Importantly, however, total vascular 

SOD activity was similar between the apo E-deficient mouse and controls, suggesting 

that a deficiency in ROS scavenging is not a primary phenomenon, at least in this model 

of atherosclerosis.

1.7.5.2 Studies of atherosclerosis and ROS activity in human blood 

vessels

Atherosclerosis results in impaired endothelium-dependent vasodilator responses in 

human arteries. In vivo studies of coronary artery vasomotor responses by Ludmer et al 

(1986) demonstrated that in segments narrowed by the presence of atherosclerosis,
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intra-coronary infusion of ACh resulted in vasconstriction, whereas normal segments 

dilated in response to ACh. In other studies by this group, coronary artery flow- 

mediated dilatation in response to intra-coronary infusion of adenosine, a direct smooth 

muscle vasodilator, was less in segments affected by atherosclerosis, compared to non

affected segments (Cox et al 1989). By contrast, the dilator response to infusion of 

nitroglycerin was comparable between the diseased and normal segments. This suggests 

that rather than a generalised impairment of dilator function, a selective abnormality in 

endothelial function was present in atherosclerotic arteries. Further studies by this group 

demonstrated that selective endothelial dysfunction may also be evident at bifurcation 

points, compared to straight sections, in atherosclerosis-free coronary arteries 

(McLenachan et al 1990). This observation raised the question of whether endothelial 

dysfunction may pre-date the development of atherosclerosis, which is prone to occur at 

the branch points of these arteries.

Huraux et al (1999) first quantified O2' concentrations in human IMA and investigated 

the relationships between IMA O2' concentrations, endothelial function and risk factors 

for atherosclerosis. Superoxide concentrations were quantified by lucigenin-enhanced 

chemiluminescence and endothelial function was assessed by isometric tension studies 

in IMA preconstricted with the thromboxane A2 analogue, U46619, followed by
o  c

cumulative concentration response curves (CRCs) with ACh (10' to 10' mol/L). In 

parallel studies, endothelial-independent relaxation was assessed using CRCs with 

nitroglycerin (10'10 to 10'6 mol/L). Immunohistochemical analyses of IMA from 26 

patients demonstrated that that the endothelium of these blood vessels was uniformly 

intact and free of atherosclerosis. Huraux et al (1999) found that vascular O2 ' 

concentrations ranged from 669 to 12,309 counts per minute per mg tissue (mean 4589 

± 554 Counts/min/mg) and endothelium-dependent relaxation to ACh were highly 

variable, with values ranging from 0% to 89%. Step-wise multivariate analysis was 

reported to reveal that O2’ concentrations were related to hypercholesterolaemia, 

although the numeric data were not actually reported in the paper. Overall, however, the 

variability observed in vascular O2’ concentrations and vasorelaxation responses could 

not be explained qualitatively or quantitatively by either risk factors or drug therapy 

(Huraux et al 1999).

Activation of the RAAS may also be important for the development of atherosclerosis 

in human arteries. Immunohistochemical studies in normal and atherosclerotic human 

coronary arteries have demonstrated increased immunoreactivity of angiotensin 

converting enzyme (ACE) in diseased arteries (Diet et al 1996). In normal arteries, ACE



was only evident in luminal and adventitial vasa vasorum endothelium, whereas in 

arteries affected by atherosclerosis, ACE immunoreactivity was also evident in 

macrophages (foam cells) and T-lymphocytes. In arteries in which the atherosclerosis 

was more diffuse, ACE immunoreactivity was also more abundant and immunoreactive 

Ang II was also evident. This raises the question as to whether ACE inhibition might be 

associated with anti-atherosclerotic effects. This question was recently investigated in a 

randomised, placebo-controlled clinical trial of the angiotensin convertin enzyme 

inhibitor (ACE-I), quinapril (Mancini et al 1996). In TREND (Trial on Reversing 

ENdothelial Dysfunction) 105 patients with atherosclerotic coronary artery disease were 

randomised to 40mg of quinapril per day (n=51), or placebo (n=54), for 6 months. 

Coronary endothelial function was assessed by measurement of the change in coronary 

artery diameter consequent to infusion of ACh using quantitative coronary angiography, 

both at baseline and after 6 months. The constrictive responses to ACh were comparable 

in both groups at baseline. After 6 months, only the quinapril group showed any 

improvement in response to incremental concentrations of acetylcholine (4.5+/-3.0% 

[mean+/-SEM] versus -0.1+/-2.8% at 10'6 mol/L and 12.1+/-3.0% versus -0.8+/-2.9% at 

10*4 mol/L, quinapril versus placebo, respectively; overall P=0.002). These observations 

suggest that inhibition of the RAAS can improve endothelium-dependent vasomotor 

responses in the coronary arteries of patients with coronary atherosclerosis. The 

mechanisms for this effect may include enhanced bioavailable NO through, for 

example, anti-oxidant effects, and potentiation of bradykinin (Wamholtz et al 1999).

SOD activity may also be abnormal in the coronary arteries of patients with coronary 

atherosclerotic disease. Landmesser et al (2000) studied endothelium-derived EC-SOD 

isoenzyme activity, stimulated by bolus injection of heparin, both in ex vivo 

atherosclerotic coronary arteries obtained from 10 deceased patients and 10 control 

subjects, and in vivo in cubital venous blood from 35 other patients with CHD and 15 

age-matched controls. Flow-mediated, or endothelium-dependent, radial artery dilator 

responses were also measured in these, patients by high-resolution ultrasound. In vivo 

studies were performed after intravenous, systemic infusion of either vehicle, L-NMMA 

(7 pmol/min), vitamin C (25 mg/min), or both.

In the ex vivo studies of vascular EC-SOD activity, infusion of a single bolus of heparin 

(5000 U or 1000 U) resulted in enhanced EC-SOD activity in the coronary arteries in 

non-atherosclerotic rings, compared to diseased rings (control subjects: 126 ± 14; CHD: 

63 ±11 U/mg of protein; p<0.01). Cubital venous blood EC-SOD activity was reduced
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in patients with atherosclerotic CAD compared to healthy controls (control subjects: 

14.5 ± 1.1; CHD: 3.8 ± 1.1 U/mL/min; p<0.01). Furthermore, the activity of EC-SOD 

in cubital venous blood correlated positively with flow-dependent vasodilation (r=0.5; 

p<0.01) and negatively (r=0.6; p<0.01) with the effect of vitamin C on flow-dependent 

vasodilation in radial arteries in these patients. In other words, enhanced endothelium- 

dependent flow-responses were associated with greater EC-SOD activity. Furthermore, 

the ROS-scavenging effect of vitamin C was greater in patients with less EC-SOD 

activity. Limitations of this study include the fact that a bolus injection of heparin will 

only stimulate the release of a fraction of total vascular EC-SOD. Nevertheless, these 

observations suggest that vascular EC-SOD activity may be reduced in patients with 

CHD and this may be related to enhanced ROS activity and abnormal endothelium- 

dependent blood flow responses in these patients.

1.7.6 ROS and coronary artery vein graft stenosis

Coronary artery bypass graft surgery is performed on symptomatic and prognostic 

grounds in patients with flow-limiting coronary atherosclerosis (Fisher 1983). At 

present, optimal long-term graft patency is attained with left internal mammary artery 

bypass grafting. However, only one such artery may be used, and usually three grafts 

are required, so the saphenous vein in the leg is the alternative vessel for grafting other 

stenosed coronary arteries. Unfortunately, long-term outcomes are related to vessel type 

as graft patency is approximately 90% at 10 years in IMA grafts compared to less than 

50% for saphenous veins (Fisher 1983). The reasons for premature vein graft failure are 

thought to be due to remodelling within the vein wall with the development of 

neointimal hyperplasia and focal stenoses. Reasons for this include the limited potential 

of veins for neovascularisation, thus rendering the graft prone to ischaemia, and the 

arterialised blood pressure within these venous grafts. Vein graft stenosis in CABG 

patients therefore presents a major clinical problem.

Channon’s group developed their interest in the pathobiology of vein conduits, by 

utilising a rabbit model of venous bypass grafts in normocholesterolaemic normotensive 

rabbits (West et al 2001). Their aim was to study the mechanisms of vascular O2 ' 

production in these vessels in relation to the development of vein graft stenosis. These 

experimental venous grafts are characterised by smooth muscle cell proliferation.

Male New Zealand rabbits underwent surgical interposition bypass grafting of the 

jugular vein onto the ipsilateral carotid artery. In other words, this jugular vein was 

inserted as a conduit between proximal and distal ends of the carotid artery. In control
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studies, other animals underwent surgical isolation and mobilisation of the jugular vein, 

including ligation and diathermy of side branches, however these veins were replaced, 

and were not used as venous conduits for arterial blood. The graft and control veins 

were harvested 28 days after surgery. Vascular O2" concentrations were measured by 

lucigenin-enhanced chemiluminescence, using lucigenin concentrations of either 5 or 

250 pm. In situ generation of O2* production was qualitatively evaluated by use of the 

oxidative fluorescent dye, dihydroethidium, on 30 pm tissue sections. Quantification of 

NADP(H) oxidase subunits in vascular homogenates was also undertaken by western 

immunoblotting techniques with monoclonal antibodies to p22phox and p67phox. In 

this case, portions of vascular homogenates, equalised for protein content, were boiled 

in loading buffer containing 100 mM dithiothreitol, separated by SDS-PAGE, and 

transferred to nitrocellulose membranes. Immunohistochemical studies were also 

performed using these antibodies.

Forty blood vessels from 28 animals were studied. Superoxide concentrations were 

unchanged in control jugular veins which had undergone surgical manipulation, but not 

bypass grafting. Alternatively, the native vein grafts were found to have substantially 

increased vascular O2* concentrations (19.9 ± 3.3 vs. 8.4 ± 2.3 relative light units per 

second per milligram of tissue [RLU/s/pg]; p<0.01; n=l 1), compared to control jugular 

veins. This difference in O2’ concentrations between graft and control veins was 

attenuated by treatment with 350 U/mL of SOD for 30 minutes. These observations 

support the assertion that this difference was a function of increased vascular O2* 

production. Interestingly, removal of the endothelium had no effect on vascular 

superoxide concentrations, suggesting that either the media or adventitia, (or both) of 

the vein grafts were the site of enhanced ROS production.

Further investigations in these tissues demonstrated that inhibition of NAD(P)H oxidase 

in these vein grafts with 100 pmol/L of DPI was associated with a substantial reduction 

in '02* concentrations. Studies of substrate-enhanced venous O2’ production were also 

undertaken. In this case, treatment of vascular homogenates with both NADH and 

NADPH were associated with increases in vein O2 ' production, which could be 

inhibited by co-treatment with DPI. In additional studies to identify the subcellular 

location of NAD(P)H oxidase, almost all of the NAD(P)H oxidase activity was 

localised to the particulate fraction of the cell (1.27 ± 0.73 [basal cytosolic] vs. 89.0 ± 

25.4 [membrane] RLU/s/pg and 3.85 ± 0.58 [cytosolic + NADH] vs. 466 ± 108 

[membrane + NADH] RLU/s/pg, p<0.05 in each case). Taken together, these data 

demonstrate that NAD(P)H oxidase is an important source of ROS generation in venous
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bypass grafts. This enzyme is predominately located within cell membranes, rather than 

the cytosol.

Concentrations of p22 and p67phox proteins were three fold greater in vein grafts 

compared to control jugular veins. Furthermore, correlations were demonstrated 

between protein p22 and p67phox protein concentrations and vein graft superoxide 

concentrations (n=9 vessels; for p22phox, r^=0.50, P<0.05; for p67phox, ^=0.78, 

P<0.005), suggesting that the increase in O2' concentrations in vein grafts may be 

related to the increase in the NAD(P)H oxidase enzyme protein subunits.

Subsequently, immunohistochemistry studies were undertaken to investigate the 

number, location and type of cells expressing p22phox subunit in jugular veins and vein 

grafts. Alpha actin is a marker for VSMC, and smoothelin is a marker of smooth muscle 

cell differentiation. Vein grafts showed marked intimal hyperplasia, with a more modest 

increase in medial thickness. Staining for smoothelin demonstrated an increase in 

VSMC differentiation. Cells staining positive for p22phox were present in greatly 

increased numbers in vein grafts. Dihydroethidine staining was reported to demonstrate 

greatest superoxide production in the intimal layer. Immunostaining for macrophages 

and neutrophils with RAM 11 and CD 18 revealed similar staining patterns between 

veins or vein grafts. It was concluded that the predominate cell type responsible for 

enhanced vascular O2 ' production in vein grafts is intimal or de-differentiated VSMC. 

These observations should be interpreted with some caution as hydroethidine 

fluorescence is a qualitative technique which does not give reproducible measurements 

of O2’ concentrations.

These studies demonstrate that vein grafts are subject to intimal hyperplasia, which may 

contribute to loss of graft patency. These pathological changes are associated with 

increased vascular ROS production, predominately due to NAD(P)H oxidase activation 

in these blood vessels. The reasons for this, although not explored in this study, may be 

due to an increase in transmural pressure in vein grafts carrying arterialised blood, and 

the lack of new vessel formation in these blood vessels. This thesis is supported by in 

vitro studies which demonstrated that enhanced cyclic strain can promote enhanced- 

vascular ROS generation (Howard et al 1997). Taken together, these observations raise 

the question as to whether or not strategies to reduce NAD(P)H oxidase-dependent O2' 

generation in vein grafts may have therapeutic potential. The clinical importance of vein 

graft stenosis mandates further human investigations.
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1.8 Oxidative stress in chronic cardiac failure

1.8.1 Studies in experimental animals

Enhanced myocardial ROS activity is one of several abnormalities which are implicated 

in the pathogenesis of left ventricular dysfunction and heart failure (Dhalla et al 1996 ; 

Li et al 1995). One such study was undertaken in experimental mutant mice which 

lacked the gene for Mn-SOD (Li et al 1995). Mn-SOD is important for scavenging ROS 

generated as by-products of oxidative phosphorylation. Homozygous mice fatigued 

rapidly, and died within 10 days of birth. Pathological abnormalities in these animals 

included a dilated cardiomyopathy, muscle wasting, hepatic steatosis and metabolic 

acidosis. Cytochemical analyses demonstrated a reduction in mitochondrial enzymes 

involved in oxidative phosphorylation, such as succinate dehydrogenase and aconitase. 

These enzymes are highly sensitive to oxidative damage (Zhang et al 1990). Taken 

together, these observations demonstrate that enhanced mitochondrial ROS production 

may result in direct damage to mitochondrial enzymes involved in cell respiration. This 

in turn may lead to metabolic acidosis, abnormal fatty acid metabolism, cardiomyopathy 

and cardiac failure.

Ide et al (1999a) demonstrated that myocardial O2 ' production was enhanced in a 

murine model of heart failure, and that one possible source of myocardial ROS 

production was the mitochondrial electron transport enzyme system. Developing their 

studies in this model, this group subsequently investigated the role and consequences of 

myocardial-ROS generation on mitochondria structure and function (Ide et al 2001). 

Mice underwent either left anterior descending coronary artery ligation or sham- 

operation. The presence of impaired or normal left ventricular function was confirmed 4 

weeks later using echocardiography. Myocardial oxidant status was characterised by 

ESR spectroscopy and quantification of lipid peroxide concentrations. Mitochondrial 

enzyme activities and DNA were also quantified. Features consistent with oxidant stress 

were identified in animals with left ventricular dysfunction, compared to controls. Copy 

number, or DNA template availability, of mitochondrial DNA and mitochondrial RNA 

expression was also found to be reduced compared to controls. Furthermore, 

mitochondrial enzyme activities (complexes I, III and IV) encoded by mitochondrial 

DNA were downregulated, compared to those other mitochondrial enzymes (complex 

II/Mn-SOD and citrate synthase) encoded by nuclear DNA. Mitochondrial size, shape 

and number were also abnormal in mice with ventricular dysfunction, compared to
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controls. These data demonstrate that in this murine heart failure model, there is 

evidence of myocardial oxidative stress and mitochondrial lipid peroxidation, in 

association with abnormalities in mitochondrial morphology and function. Although 

this study could not establish a causal relationship between ROS activity and 

mitochondrial damage, other studies have demonstrated that mitochondria lack proteins 

such as histones (Clayton 2001), which are protective against ROS. Mitochondria are 

therefore prone to the accumulation of DNA oxidation products under conditions of 

oxidative stress (Giulivi et al 1995). In addition, mitochondria in other cell types, such 

as cultured vascular endothelial and smooth muscle cells, have also been shown to be 

sensitive to ROS-mediated damage (Ballinger et al 2000; Hill and Singal 1996; Hill and 

Singal 1997).

Other studies by Dhalla et al (1996) in a guinea pig model of left ventricular 

dysfunction induced by aortic banding, demonstrated that even the early features of 

compensatory left ventricular hypertrophy were accompanied by a reduction in 

myocardial content of anti-oxidant enzymes, such as SOD and catalase. These animals 

were also randomised to receive either vitamin E or placebo. Treatment of these animals 

with vitamin E improved both myocardial and blood anti-oxidant enzyme 

concentrations and histological features of cardiomyocyte damage. Although anti

oxidant supplementation did not prevent left ventricular dysfunction in these animals, 

these data do suggest that oxidative stress may be an early process in the transition from 

cardiac hypertrophy to cardiac failure.

More recently, Bauersachs et al (1999) investigated the pathophysiology of vascular 

dysfunction in heart failure using a rat model of left ventricular dysfunction secondary 

to myocardial infarction. They found that there was increased NADH-dependent 

vascular 0 {  production and impaired endothelium-dependent vasodilation, which could 

be improved by pre-treatment with exogenous SOD. Taken together, these findings 

suggest that endothelial dysfunction in ischaemic heart failure may be in part 

attributable to enhanced NADH-oxidase dependent ROS production which, in turn, may 

result in a reduction in bioavailable NO.

1.8.2 Studies in humans which demonstrate evidence of oxidative 

stress in CHF

In vivo studies of endothelium -dependent and -independent coronary vasodilation in 

patients with dilated cardiomyopathy, have demonstrated a selective impairment of
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ACh-induced increase in coronary blood flow, compared to that obtained after infusion 

of adenosine (Treasure et al 1990). This original observations suggested that endothelial 

dysfunction may be evident in CHF patients, possibly due to enhanced ROS activity.

Studies by McMurray et al (1993) confirmed that ROS activity was increased in the 

blood of patients with heart failure secondary to coronary artery disease, compared to 

controls. Plasma malondialdehyde, a marker of lipid peroxidation, is elevated in chronic 

heart failure (DiazVelez et al 1996), and is related to exercise-intolerance (Nishiyama et 

al 1998). In other studies, increased plasma concentrations of malondialdehyde, and 

decreased concentrations of glutathione, vitamin C and E, were correlated with both 

NYHA functional class (Chamey et al 1997; Keith et al 1998) and plasma 

concentrations of the cytokine, tumour necrosis factor alpha (Keith et al 1998).

CHF is a state characterised by a number of processes that may promote ROS 

generation in vivo. These pro-oxidant pathways include cytokine activation (Berry and 

Clark 2000; Cross and Jones 1991; DeKeulenaer et al 1998a), mitochondrial 

dysfunction (Ide et al 1999b), recurrent hypoxia-reperfusion (Ferrari et al 1998), 

possibly genetic abnormalities (Guzik et al 2000a) and activation of the RAAS (Berry 

and Clark 2000). There are a number of potential cellular sources implicated in 

enhanced ROS generation in CHF. For example, it has recently been demonstrated that 

CHF patients may have increased leucocyte O2' production (Ellis et al 2000), which is, 

in turn, related to severity of disease, as measured by NYHA functional class (Ellis et al 

1998). Other sources of enhanced ROS generation in human CHF are both the 

myocardium (Dieterich et al 2000) and peripheral blood vessels (DiazVelez et al 1996).

1.9 Genetic variation, NAD(P)H oxidase and cardiovascular 
pathophysiology

A number of polymorphisms have now been identified in the genes which code for the 

individual proteins which collectively constitute the NAD(P)H oxidase enzyme (Babior 

1999; Kenney et al 1993; Kuribayashi et al 1996; Leusen et al 2000). Many of the 

genetic studies of NAD(P)H oxidase have been in relation to the role of this enzyme in 

chronic granulomatous disease (Babior 1999).

There are now several reports, which suggest a relationship between variation in the 

NAD(P)H oxidase gene and cardiovascular risk. Inoue et al (1998) performed a case- 

control study, in which an association was found between the C242T polymorphism of
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the p22phox gene and a reduced susceptibility to coronary artery disease (Inoue et al

1998). These findings should be considered with some caution because of both the 

relatively small number of patients included in this study and the low frequency of this 

polymorphism in the Japanese population. Other studies have also failed to find any 

association between this polymorphism and the presence of atherosclerotic vascular 

disease (Gardemann et al 1999; Renner et al 2000; Saha et al 1999).

By contrast, genotyping of the patients from the Lipoprotein and Coronary Artery Study 

(LCAS) found an association between the C242T allele and the progression of coronary 

atherosclerosis (Cahilly et al 2000). In this prospective study, the sample size totalled 

368 subjects, the extent of coronary atherosclerosis was documented using quantitative 

coronary angiography and the period of follow up was 2.5 years. The presence of this 

polymorphism has also been associated with an increased risk of stroke in a Japanese 

population (Ito et al 2000).

More recently, other studies have provided evidence a functional effect of the C242T 

p22phox gene polymorphism in the blood vessels of patients with coronary heart 

disease. In studies in IMA and SV obtained from patients at the time of coronary artery 

bypass surgery, Guzik et al (2000a) demonstrated that O2' production was reduced in 

the blood vessels of patients with the CT/TT genotype compared to those with the CC 

genotype. Most recently, Schachinger et al (2001) investigated the vasodilator function 

of epicardial coronary arteries in patients with coronary heart disease in relation to 

genotype for the C242T polymorphism of the p22phox gene. They found that patients 

with the C242T allele had enhanced coronary endothelium-dependent vasodilation 

compared to those with the CC. genotype. These data suggest that the C242T mutation 

may lead to a functional inactivation of this protein, resulting in reduced vascular O2’ 

production.

1.10 Rationale for studies of ROS-generation and activity in 

human blood vessels

At the inception of this thesis, the body of data pertaining to the sources and 

mechanisms of vascular ROS generation existed primarily as a result of studies 

undertaken in experimental animal models (Griendling et al 1994; Li et al 1995; Li et al 

1995; McIntyre et al 1997; Mohazzab and Wolin 1994; Mohazzabh et al 1994; Mugge 

et al 1991c; Mugge et al 1994; Ohara et al 1993; Pagano et al 1995; Rajagopalan et al 

1996b; Wilson 1990; Li et al 1995; Li et al 1995). Human studies had previously 

demonstrated both the functional importance of endothelium-dependent vasodilation in
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the regulation of normal blood flow in vivo (Vallance and Collier 1994), and how this 

may be abnormal in a variety of cardiovascular disease states (Calver et al 1992b; 

Calver et al 1992a; Cox et al 1989; Creager et al 1990; Panza et al 1990).

As discussed above, the sources of O2 ' generation in the vasculature of a number of 

animal models of vascular disease, have been documented. The sources and 

mechanisms of ROS production in human blood vessels, and whether this may be 

altered in vascular disease, remain incompletely understood.

1.11 Strategies for reducing vascular oxidative stress

1.11.1 Oestrogen

Oestrogen has both rapid and longer-term effects on the blood vessel wall. Current data 

suggest that oestrogen treatment may enhance bioavailable, endothelial-derived NO 

(Mendelsohn and Karas 1999). Huang et al (2000) reported that oestrogen, via a 

receptor -  mediated pathway, upregulated eNOS gene expression and restored vascular 

responses in male SHR. Garcia-Duran et al (1999) examined neuronal (nNOS) 

expression in neutrophils from male and female human subjects. In premenopausal 

women nNOS expression and plasma oestrogen levels were higher in the ovulatory than 

the follicular stage of their menstrual cycle, whereas, in postmenopausal women nNOS 

expression was lower. Transdermal oestradiol therapy in these women increased 

neutrophil nNOS expression towards those observed in the follicular stage of the cycle 

in premenopausal women. Neutrophils from male subjects incubated with 17p 

oestradiol showed enhanced nNOS protein expression which was inhibited by 

tamoxifen, indicative of a receptor mediated mechanism. It has recently been suggested 

that oestrogen may also enhance eNOS activity by modulating O2 ' concentrations 

(Barbacanne et al 1999). Simoncini et al (2000) demonstrated that the oestrogen 

receptor isoform ERa binds to the P85a regulatory subunit of phospatidylinositol -3- 

hydroxyl-kinase (PI3K). Oestrogen enhanced the ERcc-associated PI3K activity, 

leading to activation of eNOS, independent of gene transcription.

1.11.2 Vitamins

The possibility that vitamin C therapy might enhance bioavailable NO and therefore 

improve abnormal endothelium-dependent vasodilator responses in vascular disease has
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investigated in a number of experimental animal and human studies. In a pig coronary 

balloon injury model, Nunes et al (1997) investigated whether or not dietary 

supplementation of these animals with vitamin C, vitamin E, both, or neither, could 

enhance attenuate vascular O2’ concentrations, as measured by lucigenin-enhanced 

chemiluminescence. Vitamin C & E plasma concentrations were increased in those 

groups receiving dietary supplements with these vitamins. After 7 days of supplements, 

animals sustained balloon injury to the left anterior descending (LAD) coronary artery 

balloon injury and were sacrificed 14 days later. Superoxide concentrations in LAD 

coronary segments were 2.5 times greater than in segments from either an uninjured 

part of the LAD, or from the right coronary artery (RCA) of the same animal. 

Furthermore, vascular O2 ' concentrations were reduced in both LAD and RCA 

segments in all vitamin-treated animals, compared with controls. In further studies, this 

group demonstrated that therapy with vitamins C & E in combination, but not alone, 

reduced plasma concentrations of lipid peroxides and attenuated intimal hypertrophy 

(intimal area : vessel area), compared to controls.

Taddei et al (1998) investigated whether treatment with vitamin C might improve 

attenuated in brachial artery endothelial-dependent dilator responses, as measured by 

forearm strain-gauge plethysmography, in a group of hypertensive patients. This study 

included 47 patients with essential hypertension (systolic blood pressure 155 ± 7 

mmHg; diastolic blood pressure 102 ± 4 mmHg) and 35 age-matched control subjects 

(systolic blood pressure 121 ± 4 mmHg; diastolic blood pressure 81 ± 3 mmHg). NO, 

or endothelium-dependent vasodilator responses were assessed by infusion of 

incremental concentrations of ACh. These studies demonstrated a blunted response to 

ACh infusion in hypertensive patients. Forearm blood flow (FBF) increased less, from 

3.6 ± 0.5 to a maximum of 16.5 ± 2.7 mL/lOOml forearm tissue per minute compared to 

normotensive subjects (3.6 ± 0.6 to a maximum of 22.8 ± 3.3 mL/100mL forearm tissue 

per minute). Endothelium-independent vasodilator function was assessed by infusion of 

sodium nitroprusside, with comparable responses obtained in both groups. In additional 

studies, co-infusion of vitamin C with ACh increased the maximum vasodilator 

response in hypertensive subjects (FBF increased from 3.5 ± 0.6 (mean ± SEM) to a 

maximum of 20.8 ± 2.6 mL/lOOml forearm tissue per minute; p<0.05), whereas vitamin 

C was without effect in normal subjects.

In further studies (Taddei et al 1998), the response to inhibition of NOS, by infusion of 

L-NMMA, was assessed both in the presence and absence of vitamin C. In healthy
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subjects, L-NMMA infusion caused a reduction in basal FBF (from 3.6 ± 0.4 to 2.2 ± 

0.2 mL/lOOml forearm tissue per minute; p<0.05), and also blunted the vasodilating 

response to ACh (saline, from 3.6 ± 0.5 to 22.7 ± 3.7 mL/lOOml forearm tissue per 

minute; L-NMMA, from 2.2 ± 0.2 to 9.9 ±1.8  mL/lOOml forearm tissue per minute; 

p<0.01 vs ACh alone). Co-infusion of vitamin C had no effect on either of these 

responses. By contrast, in hypertensive subjects, L-NMMA infusion caused a smaller 

decrease in FBF (from 3.5 ± 0.5 to 2.6 ± 0.2 mL/lOOml forearm tissue per minute; 

p<0.001), compared with normotensive subjects (39% vs 25%, respectively; p<0.01). 

Furthermore, L-NMMA infusion did not change the response to ACh (saline, from 3.6 ± 

0.5 to 16.7 ± 2.3 mL/lOOml forearm tissue per minute; L-NMMA, from 2.6 ± 0.2 to 9.9 

±1.9  mL/lOOml forearm tissue per minute; p<0.01 vs ACh during saline). When the 

effect of L-NMMA was retested in the presence of vitamin C, the NOS inhibitor 

attenuated the vasodilating response to ACh (from 2.6 ± 0.2 to 11.4 ± 1.8 mL/lOOml 

forearm tissue per minute; p<0.01 vs ACh during vitamin C co-infusion). Taken 

together, these data suggest that in hypertensive subjects, a reduction in bioavailable 

vascular NO is present due to increased activity of ROS. This could be improved by 

treatment with vitamin C. That vitamin C had no effect on basal FBF in either 

hypertensive or control subjects suggests that ROS are not tonically produced. In other 

studies of brachial artery FBF responses, vitamin C also improved impaired 

endothelium-dependent vasodilation in patients with diabetes (Timimi et al 1998), 

hypercholesterolaemia (Ting et al 1997) and coronary heart disease (Levine et al 1996).

The question as to whether anti-oxidant interventions are beneficial in the primary or 

secondary prevention of human vascular disease has been investigated in a number of 

large, randomised, placebo-controlled clinical trials, namely the Cambridge Heart Anti- 

Oxidant Study (CHAOS) Trial (Stephens et al 1996), and the Heart Outcomes 

PrevEntion (HOPE) study (Yusuf et al 2000). However, the potential of vitamin 

therapies has not translated into actual clinical benefits. By contrast, a recent 

randomised, placebo-controlled trial of vitamins C & E in 283 patients at risk of pre

eclampsia (PET), reported a reduced incidence of PET in patients treated with vitamin 

C & E, compared to those given placebo (8% v 17%; p=0.002) (Chappell et al 1999)

1.11.3 Superoxide dismutase

Initial studies undertaken to investigate the effect of SOD infusion on the impaired 

endothelium-dependent ACh vasodilator response in hypertensive patients failed to

53



demonstrate any improvement in this response (Garcia et al 1995). Possible 

explanations for this include a lack of bioavailable NO due to decreased production 

rather than increased breakdown of by O2" scavenging, a thesis recently supported by 

the findings of Forte et al (1997). Alternatively, exogenous SOD may have been 

inactive due to either its relatively short half-life or its poor intracellular penetrance. 

This is due to SOD being electrostaticically repelled from cell membranes as a result of 

its negative charge (Omar et al 1992).

For this reason, other studies were undertaken with SOD combined with polyethylene 

glycol (PEG-SOD). Initial investigations with this compound demonstrated that PEG- 

SOD can increase cultured porcine endothelial cell SOD activity therefore preventing 

oxidative damage by activation of XOR (Beckman et al 1988). Mugge et al (1991b) 

investigated whether or not treatment with PEG-SOD might improve impaired 

endothelium-dependent vasorexlaxation in atherosclerotic aortae obtained from 

cholesterol fed New Zealand White rabbits. The presence or absence of atherosclerosis 

was confirmed by histological analyses using Verhoeff and van Gieson stains. Isometric 

tension studies were undertaken and endothelium-dependent responses in aortae pre

constricted to phenylephrine. In addition, total vascular SOD activity was also assessed 

using spectrophotometric techniques. PEG-SOD treatment increased total vascular SOD 

activity in both cholesterol fed and normal rabbits. Endothelium-dependent relaxations 

in response to ACh and the calcium ionophore A23187 were markedly impaired in 

atherosclerotic arteries (43 ± 7% and 54 ± 6%, respectively), compared with normal 

controls (80 ± 2% and 89 ± 2%, respectively). Treatment of cholesterol-fed rabbits with 

PEG-SOD improved the maximal relaxation in response to ACh and A23187 (65 ± 2 %  

and 73 ± 3%; p<0.05), respectively, whereas PEG-SOD had no vasorelaxant effect in 

normal rabbits.

Lipid permeable SOD analogues, however, have been shown to have acute vasodilator 

properties in rabbits, rats and most recently mice (Nakamura et al 1998). In one other 

study, treatment of SHR with tempol (4- hydroxy -2, 2, 6, 6- tetra methyl piperidinoxyl) 

resulted in reductions in blood pressure, glomerular filtration rate and renal excretion of 

8-iso- prostaglandin F2a - a marker of oxidative stress (Schnackenberg and Wilcox

1999).

A number of studies have been undertaken to investigate the possible cardioprotective 

effects of EC-SOD therapy in ischaemia/reperfusion injury. For example, Marklund et
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al (Wahlund 1992) demonstrated that EC-SOD reduced creatine kinase release in rats 

subjected to 10 minutes of coronary occlusion and 24 hours of reperfusion. Hatori et al 

(Hatori 1992) demonstrated that infusion of purified, recombinant EC-SOD into the 

great cardiac vein of pigs was associated with a reduction in infarct size.

1.11.4 Gene transfer

Several groups have now used vascular gene transfer in an effort to reduce ROS 

activities in the cardiovascular system, however, only some of these studies have 

demonstrated beneficial effects. One early study by Fang et al (Fang 1998) investigated 

the possibility that transfer of CuZn-SOD and Mn-SOD cDNA into bovine aortic 

endothelial cells (BAEC) could protect these cells from lipid peroxidation. Incubation 

of BAEC with 200 pg/mL of LDL for 18 hours resulted in a four-fold increase in the 

concentration of lipid peroxides, such as malondialdehyde, compared to controls (22.5 ± 

1.1 vs 6.3 ± 0.2 nmol malondialdehyde/mg LDL protein, respectively; p<0.05). In 

further studies, treatment of these cells with media containing a concentration of 100 

pg/mL of Cu/Zn-SOD reduced concentrations of oxidised LDL by 79%. In order to 

determine whether enhanced activity of intracellular SOD could prevent lipid 

peroxidation, these cells were transfected with either adenoviral vectors containing 

cDNA for CuZn-SOD and Mn-SOD, or no foreign DNA. In this case, incubation of 

CuZn-SOD and Mn-SOD-transfected cells with LDL resulted in a reduction in 

malondialdehyde concentrations by 77% and 32% respectively. These studies suggest 

that lipid peroxidation in cultured vascular cells is a O2' -mediated effect, which can be 

prevented by manipulations to increase exogenous or endogenous SOD activity through 

gene transfer.

These observations raised the question of whether SOD gene transfer might improve 

abnormal endothelium-dependent responses in intact blood vessels obtained from 

animal models of vascular disease. However, ex vivo gene transfer of either CuZn-SOD 

(Adenovirus cytomegalovirus (AdCMV) Cu Zn-SOD) or extracellular SOD (Ad CMV 

EC-SOD) to aorta from Watanabe heritable hyperlipidaemic rabbits failed to improve 

the impaired relaxation to ACh or calcium ionophore, despite successful transfer of the 

virus (Miller et al 1998). Similarly when segments of thoracic aorta obtained from 

rabbits made hypertensive by Ang II infusion were incubated with adenoviral vectors 

containing CuZn- or EC-SOD cDNA, no improvement in endothelium-dependent 

vasorelaxation was observed, compared to control arteries incubated with adnovirus
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containing cDNA beta-galactosidase (Nakane et al 2000). Furthermore, in studies 

performed in our laboratory, in vivo adenoviral gene transfer of CuZn-SOD to carotid 

arteries of SHRSP also showed no beneficial effect (Alexander et al 2000).

By contrast, gene therapy with EC-SOD has protective effects in rabbit models of 

reperfusion injury (Li et al 1998b) and myocardial infarction (MI) (Li et al 1998c). In 

this latter study, healthy rabbits were randomised into four groups. Animals in the first 

group (I) underwent instrumentation and coronary occlusion only. Ischaemic 

preconditioning has a cardioprotective effect (Bolli et al 1991), and therefore a second 

group (II) was included to serve as positive control. The animals in this group were 

exposed to a period of ischaemic preconditioning prior to coronary occlusion, which 

involved a sequence of six 4-minute coronary occlusions interspersed with 4 minutes of 

reperfusion performed 24 hours before the 30 minute coronary inclusion. Animals in the 

third group (III) served as controls, receiving replication-deficient adenovirus with LacZ 

reporter gene, prior to coronary inclusion. Intravenous heparin was infused 2 hours 

before coronary occlusion in order to release hepatic EC-SOD into the systemic 

circulation, with intravenous protamine being subsequently infused immediately prior to 

the occlusion to reverse the effects of heparin. The fourth group (IV) of animals 

received human EC-SOD cDNA incorporated into adenovirus and the 

herparin/protamine infusion prior to coronary occlusion. In this study, the liver was the 

principal target for gene transfer in order to both exploit the efficiency of adenoviral 

transfection of hepatocytes and to avoid the possibility of an inflammatory response 

within the heart. Myocardial infarction was defined on the basis of new ST-segment 

elevation and QRS changes on the electrocardiogram, and systolic wall thinning as 

detected by cardiac ultrasound. Northern blot analyses demonstrated that hepatocyte 

EC-SOD gene expression was substantially increased by this treatment. Myocardial 

infarct size was comparable between control groups I and III (57 ± 6% and 58 ± 5%, 

respectively), whereas infarct size was reduced in the EC-SOD gene therapy-treated 

animals by 25 ± 4% compared to the control virus-treated animals (p<0.01). This 

reduction was comparable to that which occurred in preconditioned animals, compared 

to instrumented controls [29 ± 3%, p<0.01]. This study was the first to demonstrate a 

beneficial effect of EC-SOD gene therapy in a model of either reperfusion or MI. The 

discrepancy between this and other studies which have investigated the same question 

may be due to the use of EC-SOD, rather than CuZn or MnSOD, as the former is 

excreted by cells and binds more readily to intra and extracellular membranes.
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An alternative approach involves vascular gene transfer of NOS. Nakane et al (Nakane

2000) showed that transfer of eNOS gene into aortic segments from rabbits that had 

been chronically infused with Ang II improved endothelium-dependent vasorelaxation. 

Similarly, studies in our laboratory have demonstrated that in vivo transfer of the eNOS 

gene improved vasomotor responses in the SHRSP (Alexander et al 2000). It seems that 

strategies aimed at modification of vascular function could also be targeted to the 

adventitia, as demonstrated by Tsutsui et al (Tsutsui 1998). In the future, use of vectors 

devoided of any immune or inflammatory responses, might facilitate these mechanistic 

studies.

1.11.5 Pharmacolgical agents with antioxidant effects

Some therapies which improve prognosis in hypertension and coronary heart disease, 

such as beta-blockers and angiotensin converting enzyme (ACE) (Lechat et al 1999; 

Yusuf et al 2000) may exert beneficial effects, in part, through anti-oxidant mechanisms 

(Chopra et al 1992; Lysko et al 2000). For example, these treatments are associated 

with improvements in endothelium-dependent vasodilation (Anderson et al 2000; 

Homig et al 1997). In the following section, the current and potential therapeutic anti

oxidant interventions will be reviewed.

1.11.5.1 Inhibition of the RAAS

ACE-I have anti-oxidant properties in vitro (Benzie and Tomlinson 1998; Chopra et al 

1992; McMurray et al 1989; McMurray et al 1990; McMurray et al 1990). The 

mechanism for this effect is related to a sulphydryl (-SH) group present in some, but not 

all, of these drugs (Figure 1.7).
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Figure 1.7 Chemical structure of the angiotensin converting enzyme inhibitors, 

captopril and enalaprilat. Captopril has a sulphydryl (-SH) group whereas enalaprilat 

does not.

For example, in photo-oxidation studies undertaken by Chopra et al (1992) captopril, an 

SH-containing ACE-I, did not exhibit any significant scavenging of 0 2\  but effectively 

removed H2O2, singlet oxygen and HOC1. In this case, the SH group was oxidised on 

interaction with certain ROS. Blockade of the -SH group in captopril attenuated its 

ability to scavenge ROS. By contrast, both SH-containing and non-SH containing 

ACE-I (e.g. enalaprilat) inhibited ascorbate-induced lipid peroxidation in rat liver 

microsomes. This may be due to the ability of these compounds to chelate metal ions.

In addition, controlled clinical trials have recently shown that ACE-I therapy may 

improve endothelium-dependent vasodilation in patients with CHD (Anderson et al 

2000; Mancini et al 1996). Although these data support an anti-oxidant effect of ACE- 

Is, there are several other mechanisms, such as potentiation of bradykinin, which may 

explain this effect. In addition, ACE-Is reduce the production of Ang II. Results from 

experimental animal studies have demonstrated that Ang II is pro-oxidant (Rajagopalan 

et al 1996b). Consequently, this may be one additional mechanism whereby ACE-Is, 

and ARAs, may exert anti-oxidant effects. However, as yet, there are no data on the 

potential anti-oxidant effects, if any, of these drugs, in humans.
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1.11.5.2 Beta-blockers

Carvedilol is a non-specific, beta adrenergic receptor antagonist with alpha-blocking 

properties, whereas metoprolol is a betai-specific receptor antagonist. The anti-oxidant 

properties of carvedilol, and its metabolites, are attributed to the ROS scavenging 

properties of the carbazole moiety in this drug (Christopher et al 1998; Intengan and 

Schiffrin 2000). Carvedilol, by nature of its chemical structure rather than any receptor- 

mediated property, can scavenge free radicals and inhibit lipid peroxidation. In vitro, 

carvedilol is a more potent anti-oxidant than other beta-blockers which do not contain a 

cabazole moiety, such as metoprolol (Lysko et al 2000).

Certain studies in animal models of hypertension have demonstrated that carvedilol, but 

not metoprolol, results in reduced ROS activity and improved endothelium-dependent 

vasorelaxation (Intengan and Schiffrin 2000). These in vitro differences in experimental 

animal models have not been consistently reproduced in vivo. For example, one recent 

randomised, controlled trial of the effects of carvedilol, compared to metoprolol, on left 

ventricular ejection fraction (LVEF), exercise capacity and plasma concentrations of 

thiobarbituric acid-reactive substances (TBARS) (indirect markers of plasma anti

oxidant capacity) in patients with CHF (Kukin et al 1999). In this study, LVEF and 

exercise capacity improved, and plasma TBARS concentrations decreased, to a similar 

extent in both groups. These observations confirm that beta-blockers have anti-oxidant 

properties in vivo, however, this may not be specific to one particular drug. The 

mechanisms for this anti-oxidant effect may include direct ROS scavenging, inhibition 

of the sympathetic nervous system, improvement in cardiac function, and/or anti

cytokine effects (Berry and Clark 2000).

Nebivolol is one other beta-blocker which, in addition to beta-adrenergic receptor 

blockade, is reported to enhanced endothelium-dependent vasorelaxation through 

stimulation of eNOS activity (Bowman et al 1994; Broeders et al 2000; Dawes et al 

1999; Parenti et al 2000). Beta-blockers are sympathetic nervous system antagonists 

and consequently, inhibit the production of renin, leading in turn to a reduction in 

plasma Ang II concentrations. Consequently, this may, also lead to a reduction in Ang 

II-stimulated O2 ' production, which could be one putative, additional anti-oxidant effect 

of this class of drug.
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1.11.5.3 Aspirin

Aspirin has, in addition to its known anti-platelet effects, anti-oxidant properties 

(Podhaisky et al 1997). In vitro studies with aspirin have shown that treatment of 

cultured bovine pulmonary artery endothelial cells with this drug leads to protection of 

these cells from the toxic effects of H2O2 . This mechanism is thought to occur through 

removal of iron by an aspirin-induced increase in ferritin synthesis (Oberle et al 1998). 

Ferritin sequesters free cytosolic iron, preventing its participation in ROS-generating 

reactions.

1.11.5.4 HMG-CoA reductase inhibitors

Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) enzyme inhibitors, or statins, have 

effects beyond inhibition of hepatic cholesterol synthesis (Maron et al 2000). Statins 

enhance vascular production of NO, through up-regulation of eNOS gene expression 

(Amin-Hanjani et al 2001; Hemandez-Perera et al 1998). The mechanisms involved in 

this effect may be mediated through both direct effects of the drug, independent of any 

reduction in plasma cholesterol concentration (Amin-Hanjani et al 2001), and indirect 

effects, mediated for example, through a reduction in plasma concentrations of oxidised 

LDL. This latter effect may be explained by results from in vitro studies, which have 

demonstrated that oxidised LDL, but not LDL, exerts an inhibitory effect on eNOS 

mRNA expression (Hemandez-Perera et al 1998). In this case, enhanced vascular 

production of NO, may lead to increased removal of ROS.

Statins may also have a direct inhibitory effect on ROS generation in vascular cells. 

Recently, in vitro studies in cultured human VSMC demonstrated that simvastatin, 

pravastatin, fluvastatin, and its metabolites, attenuated lysophosphatidylcholine- 

stimulated ROS production through inhibition of a phospholipase D/protein kinase Ca- 

mediated pathway (Yasunari et al 2001). Furthermore, this inhibition of ROS generation 

was associated with a reduction in VSMC migration. Finally, some statins, such as 

fluvastatin, may also have direct ROS-scavenging properties (Suzumura et al 1999).

1.12 Aims

The purpose of this investigation was to characterise the cellular and enzymatic sources 

of vascular ROS generation in humans. Specifically, I sought to determine the 

contribution of NAD(P)H oxidase, XOR and NOS to the basal production of O2' in
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IMA and SV obtained at the time of coronary artery revascularisation surgery. 

Secondly, I sought to determine which clinical and demographic parameters might be 

associated with basal ROS-generation in these blood vessels. The third aim was to 

investigate whether or not Ang II might stimulate O2" generation in human blood 

vessels, and if so by what mechanism. Finally, I sought to characterise the functional 

effects of ROS generation which may be stimulated by Ang II.
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2 Methods

2.1 Summary

This chapter provides a detailed description of how and from whom blood vessels were 

obtained, and secondly the laboratory and clinical techniques used in the studies 

described in this thesis. Laboratory studies were undertaken within the British Heart 

Foundation Blood Pressure Group, Department of Medicine and Therapeutics, and the 

Autonomic Physiology Unit, University of Glasgow.

2.2 Patients and healthy volunteers

The University of Glasgow is located adjacent to the Western Infirmary which is a 

tertiary healthcare centre. Healthy human blood vessels are extremely difficult to obtain. 

For this reason, we sought an alternative source of human vascular tissue. Coronary 

artery bypass surgery is a common procedure performed in the Western Infirmary, with 

approximately 1000 operations being performed per annum. Usually, distal segments of 

left internal mammary artery (IMA) and saphenous vein (SV) are surplus to requirement 

and are consequently discarded. In certain cases, the radial artery (RA) from the non

dominant arm were used. This situation therefore presents an opportunity to obtain 

human blood vessels for the purposes of scientific research. Although these conduit 

blood vessels are obtained from patients with atherosclerotic vascular disease, these 

blood vessels are, in general, not affected by this process. All studies were fully 

approved by the West Ethics Committee of the Western Infirmary, on behalf of the 

North Glasgow Hospitals University NHS Trust. Healthy volunteers were identified 

from those patients who were undergoing elective inguinal hemiae repair. These 

patients were invited to consent to an abdominal skin biopsy at the time of their 

operation. All studies were fully approved by the West Ethics Committee of the North 

Glasgow Hospitals University NHS Trust.

Clinical details were recorded from case note examination. A history of current cigarette 

smoking, hypertension (defined as either current anti-hypertensive treatment or a blood 

pressure > 140/90 mmHg), diabetes mellitus (insulin treated or non-insulin treated) and 

hypercholesterolaemia (plasma cholesterol > 5 . 4  mmol/L) were considered as risk 

factors for CHD. Information on current medication was also documented at this point.
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2.3 Handling of human tissue sam ples

2.3.1 Conduit arteries and veins

IMA, RA or SV were collected on a tw ice-daily basis from the Cardiac Surgical Theatre 

Suites within the W estern Infirm ary. Distal segm ents o f  these blood vessels were 

im m ediately taken to the laboratory in Krebs buffer on ice. A t this point, and in these 

conditions, the blood vessels were then carefully dissected free o f  loose connective 

tissue, divided into 4-5m m  segm ents and weighed. The vessels w ere then incubated in 

Krebs buffer at pH 7.4 ± 0.22 and m aintained in atm ospheric conditions ( p 0 2 19 ± 4 

kPa; p C 0 2 3 ± 4 kPa) at 37 °C. In the case w here it was planned to isolate RNA, then 

the blood vessels were collected in RN A later (AM S Biotechnology [Europe] Ltd) on ice 

and stored at 4°C for 24 -  48 hours prior to isolation o f  RNA.

In some studies, the IM A were denuded o f  endothelium  by gentle rubbing w ithin the 

lumen with forceps. In the case where IMA were collected w ith a view  to being used in 

m olecular studies, biopsies o f  arteries w ithin connective tissue w ere placed in a sterile 

universal container containing hum an culture m edia m aintained at 37°C in a 

therm oflask. The connective tissue was rem oved by careful dissection. Endothelial cells 

were obtained from  these arteries by careful dissection and rem oval o f  the endothelial 

cell m onolayer under high-pow ered m icroscopic view. The studies in which IM A and 

SV were used are sum m arised in Figure 2.1.

.. . Semi - quantitative RNAtheatre , . ..detection using reverse
transcription polymerase 

Dissect blood vessel \  chain reaction techniques
Culture vascular cells

Enzyme localisation by 
immunohistochemical techniques

Laboratory

Superoxide measurement by use of 
lucigenin chemiluminescence

Figure 2.1 Schem atic diagram  o f handling and experim ental use o f  conduit arteries and 

veins obtained at the time o f  coronary revascularisation surgery
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2.3.2 Skin biopsies

Small resistance arteries (SRA) from healthy subjects were obtained from skin biopsies. 

These biopsies were taken by from the abdominal wall of healthy male volunteers by 

the operating surgeon at the time of inguinal hernia repair. The biopsies were taken at 

the point of skin incision and prior to the use of electrocautery. Once made available, 

the biopsies were collected from the operating theatre and taken to the laboratory (less 

than 5 minutes by foot) in normal saline on ice.

At this point, the skin biopsy was transferred from cold 0.9% NaCl solution to ice cold, 

Krebs buffer solution (composition in mmol/L: NaCl 118.4, KC1 4.7, MgS0 4  H2O 1.2, 

KH2PO4 1.2, NaHC03 24.9, CaCl2 2.5, glucose 11.1, and EDTA 0.023, which gives a 

pH of 7.4 when aerated with a 5% CC>2/95% O2 mixture). Fresh Krebs buffer was 

prepared each day.

SRA can be identified by their helical shape and opaque wall, in contrast to veins which 

are rather more elongated, flaccid and transparent. On arrival in the laboratory, SRA 

were isolated from the skin biopsy by careful dissection using surgical grade 

instruments with the aid of a high power microscope. This was done with the biopsy 

placed in a Petri dish filled with ice cold Krebs buffer, which was regularly changed 

during the dissection process. A thorough inspection of the skin biopsy, and dissection 

of any SRA that were identified, could take anything up to two or three hours to 

complete. Thereafter, the SRA were placed in a universal container and stored in a 

fridge at 4°C overnight. Storage of resistance arteries in this way has been previously 

demonstrated to have no effect on the vasoactive properties of these blood vessels 

(McIntyre et al 1998).

2.4 Cell culture

Human aortic endothelial cells (HAEC; Clonetics), human coronary artery smooth 

muscle cells (HCASMC; Biowhittaker) were grown to subconfluence (80-90%) at 37°C 

under 5% CO2, 95% air. The HAEC and HCASMC were obtained from primary 

cultures in appropriate culture media containing bovine serum in 25 ml culture flasks 

and used between passages four and six in serum free conditions.
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2.4.1 Isolation of total cellular RNA from blood vessels or cultured 

cells

RNA was extracted from fresh, intact blood vessels and cultured cells. This was done 

according to a standard protocol, which involved four basic steps. The first involved 

homogenisation of blood vessels using RNAzol™ B (2 ml/100 mg tissue). The second 

step involved RNA extraction using 1 volume of homogenate: 0.1 volume of 

choloroform, which was then followed by RNA precipitation with 1 volume of 

isopropanol. The fourth step involved washing the RNA with 75% ethanol.

All glass and plasticware had been sterilised by treating with Diethylamine 

Pyrocabonate (DEPC) as 0.1% v/v solution to minimise degradation of RNA due to 

endogenous or contaminating RNAses, then autoclaved for approximately 15 minutes to 

remove traces of DEPC. All materials were handled using disposable rubber gloves.

The biopsies containing internal mammary arteries (and adherent tissue) were obtained 

immediately at the conclusion of revascularisation during CABG surgery. The tissue 

was placed on ice-cold saline, transferred to the laboratory and carefully cleaned of 

surrounding connective tissue under high-powered microscopic view. The blood vessel 

was then inserted into 1ml of RNAzol™ B (Biogenesis, UK) and placed on dry-ice.

RNAzol™ B is an RNA extraction agent that contains guanidinium thiocyanate and 

phenol. RNA molecules form complexes with the guanidinium thiocyanate and water 

molecules, preventing hydrophilic interactions with any DNA and protein present. The 

frozen blood vessel was then placed into a disposable cell culture dish (Nunclon™) on 

dry ice and manually macerated using a scalpel blade, and the frozen homogenate was 

then scraped into a microfuge tube (Townsend et al 1999). This mass of tissue was then 

further homogenised with a Kinematica polytron® homogeniser (Philip Harris 

Scientific, Aberdeen, UK). The polytron head was washed in 3% hydrogen peroxide 

then DEPC-treated distilled water (CIH2O) between samples. Choloroform was then 

added to the homogenate in a ratio of 1:10.

In order to extract RNA from the homogenate, the samples were vortexed for 10 

seconds and then left to stand on ice for 15 minutes. After this, the samples were 

centrifuged for 15 minutes at 12,000 g (4°C). This resulted in separation of the sample 

into an upper, colourless aqueous phase containing RNA, an intermediate DNA phase
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and a lower, blue organic phase, containing phenol-chloroform and protein. The upper 

aqueous phase was removed by careful pipetting and added to an equal volume of 

isopropanol (Fisher Scientific, UK). The sample was then vortexed and left to stand on 

ice for a minimum of 15 minutes, which was followed by centrifugation for 15 minutes 

at 12,000-g (4°C). The RNA precipitate forms a yellow-white pellet at the bottom of the 

tube. The RNA was then washed in 75% ethanol -  0.8 ml of ethanol per 50 -  100 pg 

RNA (Fisher Scientific, UK), vortexed, and subsequently centrifuged for 5 minutes at 

7500 g (4°C). The supernatant was then removed by careful pipetting, and the RNA 

pellet was air dried (1 minute at 37°C) and mixed with 15-20 pL of nuclease-free H2O 

(Promega, UK).

Similar steps were followed in the case of extraction of RNA from cultured cells. 

RNAzol™ B was added to cells in culture flasks in a ratio of 0.2 ml of RNAzol™ B: 1 x 

106 cells. It is estimated that once grown to confluence, there will be 1 x 107 cells in a 

250-300 ml flask (growth area = 75 cm2) and 2 x 107 cells in a 650-750 ml (growth area 

= 162-175 cm2). It is recognised that these values are approximations as animal cells 

can vary in length from 10-100 pm. After the addition of RNAzol™ B, the flasks were 

agitated and the cell suspension scraped off and aspirated into a 1.5ml Eppendorf tube. 

Total cellular RNA was then obtained by the phenol: choloroform extraction technique 

described above.

Each of the RNA samples was quantified by use of the RiboGreen™ RNA 

quantification assay (Molecular Probes, Europe). This is a fluorescent assay based on 

the Ribogreen™ reagent used in conjunction with a fluorescence microplate reader 

(Wallac 1420 Multilabel Counter). This assay has high sensitivity, compared to other 

techniques such as ethidium bromide or absorbance-based spectrophotometry assays. 

The RiboGreen™ assay affords detection of RNA concentrations as low as lng/ml, with 

a linear range extending to lpg/ml. This linearity is maintained in the presence of 

several compounds known to contaminate nucleic acid preparations, including 

nucleotides, salts and urea. The RiboGreen™ reagent is a dye solution dissolved in 

anhydrous dimethylsulfoxide (DMSO). A ribosomal RNA standard curve was prepared 

using a working solution of 2 pg/ml solution of RNA in 20X TE (200 mM Tris-HCL, 

20 mM EDTA, pH 7.5 in DEPC-treated dH20). The ribosomal RNA standard was 16S 

and 23 S rRNA from E. coli at a concentrated stock solution (100 pg/ml). Most single

stranded RNA molecules yield approximately equivalent signals. The assay was 

performed at room temperature in disposable dark-adapted, plastic microplates.
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Qualitative assessment of RNA obtained from cell and tissue homogenates was also 

undertaken by electrophoresis on a 1.5% agarose gel (Life Technologies, UK).

2.4.2 Removal o f contaminating DNA

Genomic DNA contamination of the RNA would interfere with both the RNA 

quantification and rt-PCR quantification reaction. For example, the PCR reaction will 

amplify templates of genomic DNA as well as reverse-transcribed complementary DNA 

(cDNA). In order to remove contaminating genomic DNA, each RNA sample 

underwent treatment with RQ1 deoxyribonuclease (DNase). This endonuclease enzyme 

digests both double- and single-stranded DNA, but has no RNase activity, and therefore 

leaves the RNA intact. In the presence of Mg2+, DNase I cleaves each strand of DNA 

independently, and the sites of cleavage are random. Alternatively, in the presence of 

Mn2+, DNase I cleaves both strands of DNA at approximately the same site to yield 

fragments that are blunt ended, or have protruding termini only one or two nucleotides 

in length. The experiments in the present investigation were performed with RQ1 

RNase-Free DNase (Promega, UK) in the presenceof Mg .The DNase digestion 

reaction was as follows:-

RNA in dlUO or TE buffer 1-8 pL

RQ1 RNase-Free DNase 1 OX reaction buffer 1 pL

RQ1 RNAse-FreeDNase lpL/pgRNA

Nuclease-free dFLO to a final volume of 10 pL

The reaction mixture was incubated at 37°C for 45 minutes at which point lpL of RQ1 

DNase Stop Solution was added to terminate the reaction. The reaction mixture was 

then incubated at 65°C for 10 minutes to inactivate the DNase.
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2.5 Reverse Transcription Polymerase Chain Reaction - semi- 
quantitative measurement of RNA

2.5.1 Principles o f Reverse Transcription Polymerase Chain 

Reaction

Reverse transcription of messenger RNA, coupled with polymerase chain reaction of 

cDNA, is a technique which affords information on gene expression. The reverse 

transcription polymerase chain reaction (RT-PCR) technique may be used to determine 

whether or not a particular gene is expressed in a cell type or tissue. Furthermore, RT- 

PCR may also yield quantitative information (Ferre et al 1994), and is sensitive to very 

low levels of mRNA abundance (e.g. femtomolar concentrations) (Chelly and Kahn 

1994). RT-PCR, therefore, may usefully detect very low levels of gene expression.

RT-PCR is based on the activity of a retroviral reverse transcriptase enzyme e.g Avian 

Myoblastosis Virus (AMV) (Goodman and MacDonald 1979). This enzyme utilises 

oligo deoxythymidine [oligo (dT)is] as a primer which hybridises to the poly (A) tail of 

total or poly (A)+ isolated mRNA to produce cDNA transcripts. The concentration of 

the reverse transcription reaction reagents should be adjusted to the type of reaction 

being performed. AMV Reverse Transcriptase can only hybridise to mRNA in its 

elongated secondary form, therefore the mRNA in its native coiled tertiary structure 

must be heated to temperatures of 45 - 50°C, which causes a conformational change to 

the secondary form. RT-PCR is sensitive to the concentration of magnesium sulfate. A 

magnesiun sulfate concentration in the range 1.0 - 2.5 mM is suitable for most 

applications, although this may require to be optimised for any particular experiment. 

The activity of the reverse transcriptase enzyme is optimal at 42°C. The hybridisation 

reaction should take place for 15 - 45 minutes. Subsequently, the sample should be 

heated to 99°C for 5 minutes to inactivate the AMV Reverse Transcriptase and prevent 

it binding to the cDNA (Chelly and Kahn 1994; Ferre et al 1994).

PCR is an efficient and rapid in vitro method for the amplification of specific DNA 

sequences (Mullis et al 1986). The principle of PCR is based on the properties of 

thermostable Taq polymerase, which may amplify DNA by adding nucleotides (dNTPs) 

according to specific forward and reverse primer sequences which flank the target DNA 

sequence. In RT-PCR, second strand synthesis takes place using first strand cDNA, 

generated from mRNA, as a template. These sequences should be designed to amplify
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the specific region of genomic DNA of interest. The primer sequences are 

complementary to that of the template cDNA.

PCR involves a repetitive series of cycles which, because the strand synthesised in one 

cycle serves as the template for the next, can result in a million-fold increase in the 

DNA amount from a series of 20 cycles. PCR involves initially a template denaturation 

step, typically by heating to 94°C for 2 minutes, prior to the initiation of the PCR cycle 

(Mullis et al 1986). This is then followed by second cDNA strand synthesis and 

amplification. This process consists of a cycle of denaturation at 94°C, a 

template/primer annealing step (range - 42° - 60°C) and an extension step (68°C). The 

annealing temperature (Tm) of a primer is determined by its nucleotide content. For 

primers with a high Tm it may be advantageous to increase the suggested annealing 

temperatures. Higher temperatures minimise non-specific primer-template, thereby 

increasing the amount of specific product produced. The PCR cycle is repeated, up to a 

maximum of 40-50 cycles, which results in amplification of the two-stranded cDNA 

product. The increase in cDNA product is initially linear, reaching a plateau. A 

minimum of 1 minute is usually required for every lkb of amplimer. A final period of 

extension at 68°C improves the quality of the final product by extending the truncated 

product to full length (Mullis et al 1986).

Accurate determination of absolute abundance of a specific transcript by RT-PCR 

necessitates the use of competitive RT-PCR (Chelly and Kahn 1994). This technique 

makes use of exogenous RNA transcript added during the RT reaction. This technique 

requires equal efficiency of the PCR conditions for both the competitor and target RNA. 

It is a more rigorous technique and is costly in terms of both time and consumables. 

Semi-quantitative PCR may be undertaken whereby the RT-PCR cDNA of the target 

mRNA product resolved on an agarose gel may be expressed as a ratio of an RT-PCR 

product of an internal control, such as p-Actin or glyceraldehyde -  3 -  phosphate 

dehydrogenase.

2.5.2 Reverse transcription experimental protocols

The RT reaction was performed using total cellular RNA according to a standard 

protocol (Promega 2001a). A 20 pi reaction mixture was prepared, consisting of 4 pi of 

MgCb (25 mmol/L), 2 pi of Reverse Transcription 10X Buffer, 2 pi of dNTP mixture 

(10 mmol/L), 0.5 pi of Recombinant RNasin® Ribonuclease Inhibitor, 15U of AMV
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Reverse Transcriptase, 0.5pg of Oligo (dT)i5 primer, < lpg of total RNA. The reaction 

was made up to a final volume of 20 pi by the addition of nuclease-free dH20 . First 

strand cDNA synthesis was typically performed using lOOng of total RNA. The reaction 

was set up with parallel negative controls, where the AMV RT was replaced with an 

equal volume of nuclease-free dH20 . Samples were incubated at 42°C for 30 minutes, 

then heated at 99°C for 5 minutes and finally kept at 4°C.

The final concentration of the reaction components was therefore: 5mM MgCl2, IX 

Reverse Transcription Buffer (10 mM Tris-HCL [pH 9.0 at 25°C], 50 mM KC1, 0.1% 

Triton® X-100, 1 mM dNTP, 1 p/pl Recombinant Rnasin® Ribonuclease Inhibitor, 

15p/pg AMV Reverse Transcriptase (High Concentration), 0.5pg 01igo(dT)i5 Primer 

per microgram of RNA. Pipetting steps were minimised by making up a master mix of 

these reagents using sterilised RNase-free and DNAse-free pipette tips (Gilson, U.K.).

2.5.3 PCR experimental protocols

PCR was performed, using cDNA products generated by the RT reaction, according to 

standard protocols (Promega 2001b). The first strand cDNA obtained from the RT 

reaction was diluted to IOOjliL with nuclease-free dH20 . A 50pL PCR amplification 

reaction mix was prepared. This was made up with lOpL of first strand cDNA, 2pL of 

MgCl2 (25 mmol/L), 4 \xL of Reverse Transcription 10X Buffer, 50 pmol upstream 

primer, 50 pmol of downstream primer, 2.5 units of Taq DNA polymerase and made up 

to a final volume of 50 pL by the addition of nuclease-free dH20 . Individual PCR 

preparations were aliquoted into DEPC-treated, autoclaved PCR tubes and covered with 

molecular biology-grade mineral oil (Sigma, U.K.) prior to thermal cycling. This took 

place in a Hybaid Omnigene thermal cycler according to programmes specific for each 

primer sequence.

The final concentration of the reaction components was therefore: <10ng/pL first-strand 

cDNA reaction, 200pM cDNA reaction dNTPs (carry-over from the first-strand RT 

reaction), 2mM MgCl2 (with contribution from the first-strand cDNA reaction), IX 

Reverse Transcription Buffer (lOmM Tris-HCL [pH 9.0 at 25°C], 50mM KC1, 0.1% 

Triton® X-100).

Specific primer sequences were selected for vascular cell p22 phox, p67 phox, p47phox 

and gp 91 phox. Human neutrophil and vascular cell phox DNA sequences have been
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cloned and have a high degree (>90%) of homology (Bayraktutan et al 2000). The 

forward and reverse phox primer sequences were therefore selected according to 

published DNA sequences for human neutrophil phox proteins (Jones et al 1995), and 

synthesised by Oswel DNA service, University of Southampton.

PCR primer sequences were designed for amplification of p22 phox, p67 phox, 

p47phox and gp 91 phox, based on the published human sequences. The primer 

sequences used in the present investigation were as follows:

p22 phox forward - 5'-GTTTGTGTGCCTGCTGCAGT-3'
reverse- 5' -TGGGCGGCTGCTTG ATGGT-3'

p47 phox forward - 5' -ACCCAGCCAGCACTATGTGT-3'
reverse- 5' - AGT AGCCTGTG ACGTCGTCT-3'

p67 phox forward- 5' -T ACTTCC AACG AGGG ATGCTC-3'
reverse - 5'-AGCTTTCCTCCTGGGGCT-3'

gp91 phox forward - 5'-GGTGCGGTTTTGGCGATCTCA
reverse - 5'-GGCATGTGGTCCCGGCACAG-3'

Control studies with the house-keeping genes glyceraldehyde -  3 -  phosphate 

dehydrogenase (GAPDH) and p-Actin were undertaken by simultaneously using a PCR 

reaction with specific forward and reverse primer sequences for either one or the other 

control. In this case, the primers sequences for GAPDH and P-Actin were:

GAPDH forward - 5'-ACCACAGTCCCATGCCATC-3'
reverse - 5'-TCCACCACCCTGTTGCTG-3'

p-Actin forward - 5'-TCATGAAFTGTGACGTTGACATCCGT-3'
reverse - 5'-CCTAGAAGCATTTGCGGTGCACGATG-3'

The annealing temperature (Tm) was calculated according to the following formula:

Tm= 81.5 + [16.6 x (logio [Na+]) + 0.41 x (%G+C) -  675/n

Where [Na+] is the molar salt concentration; [K+] = [Na+] and n = number of bases in 

the oligonucleotide.

PCR conditions were denaturation at 94°C for 5 minutes, annealing at 55 - 58°C for 1 

minute, and extension at 72°C for 2 minutes. This cycle was repeated 30 times, and was
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then followed by an extension at 72°C for 10 minutes. Initial RT-PCR studies were 

undertaken using cycles (n=10 - 30) in order to establish the conditions for a linear 

range. In all cases, PCR products were electrophoresed on a 1.5% agarose gel (Life 

Technologies, UK). Semi-quantative analysis was undertaken using phosphoimaging 

analysis (Biorad), with expression of the amplicon products as a ratio of either GAPDH 

or actin products.

2.6 Oxidative Fluorescent Microtopography

This technique allows the in situ localisation of O2 ' in intact blood vessels (Carter et al 

1994; Miller et al 1998). Hydroethidine (HEt) is a dye which in the presence of O2' is 

oxidised to ethidium bromide (Et). Fluorescence can then be assessed microscopically 

after exciting at 585nm wavelength. HEt is made up in dimethylsulphoxide (DMSO) as 

a 2X10-4 mol/L solution and diluted to 2x1 O'6 mol/L in PBS before use. IMA and SV 

segments (5pm) were placed on coverslips and the dye topically applied. The sections 

were then incubated at 37°C for 30 min before visualising the fluorescence under a 

microscope. The localisation of the oxidised Het, which reflects O2’ production, was 

then observed.

2.7 Immunohistochemistry

2.7.7 Background

Immunohistochemistry (IHC) is an in vitro technique which affords the detection of 

proteins within isolated tissues, by treatment with specific anti-bodies (Harlow and 

Lane 1988). Monoclonal antibodies are generated from unique hybridoma cell lines, 

which are immortal somatic cells, typically generated by the fusion of an antibody 

secreting cell and a myeloma cell (Kohler and Milstein 1975). Monoclonal antibodies 

are characterised by specific binding properties, homogeneity and their ability to be 

synthesised in unlimited amounts. IHC is, therefore, a powerful technique for the 

identification of a specific epitope within different tissues and cell types. Monoclonal 

antobodies may be expensive, difficult to use and have a low antigen affinity. As such 

certain monoclonal antibodies may not be sensitive for epitope detection in certain 

tissue preparations. In such instances, polyclonal antibodies may be a more suitable 

alternative (Harlow and Lane 1988). Antibody-antigen binding should take place in a 

solid phase matrix, unless the primary antibody is biotinylated, in which case it may
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bind to the antigen in solution. In this case, the primary antibody can be detected by 

labelled reagents, such as avidin or streptavidin, which are biotin-binding proteins. 

Immunodetection studies may be direct, in which a primary antibody is labelled, or 

indirect, in which case the primary antibody must be bound by a secondary, labelled, 

anti-immunoglobulin. The direct technique may be less sensitive, but easier to use, 

whereas the indirect technique utilises primary antibodies which have not been modified 

(and therefore have optimal activities) and secondary, labelled antibodies with a wide 

range of applications. In terms of chromogenic labels, enzymes such as horse-radish 

peroxidase (HRP), have a high degree of sensitivity, a reasonably long shelf life and 

direct visualisation is possible, although may not yield sufficient resolution for 

cytochemical analyses. In this case, HRP-labelled antibodies can be revealed by 

treatment with substrates such as diaminobenzidine (DAB), which readily reacts with 

HRP, yielding a brown reaction product. Biotin labels have high sensitivity, a long 

shelf-life and have universal application in different tissues and cells (Kohler and 

Milstein 1975). Avidin and streptavidin have tetravalent binding sites which means the 

additional binding sites can be used to increase the strength of the detection complex.

2.7.2 Immunodetection methods

Immunodetection studies were performed in frozen and paraffin-embedded 5 pm 

sections of intact IMA. P22phox and gp91phox were identified using specific mouse 

monoclonal antibodies (kindly provided by Dr MT Quinn, Montana State University, 

MT) whereas, p47phox and p67phox proteins were identified by use of rabbit anti-sera 

(Upstate Biotechnology, N.Y.). Slides were placed in acetone for 15 minutes then 

washed in phosphate buffered saline (PBS; Sigma, UK). Sections were demarcated on 

the glass slide by a ring made with a wax pen. Endogenous peroxidase activity in the 

sections was quenched by incubation with 3% hydrogen peroxide:methanol (1:1) for 30 

minutes. Non-specific antibody binding was blocked by incubation of the tissue sections 

with antigen unmasking solution. This blocking buffer was made with 10% serum of the 

species in which the secondary antibody was raised. Secondary antibodies (biotinylated 

anti-mouse and biotinylated anti-rabbit) were applied for 30 minutes. The sections were 

then treated with streptavidin-horseradish peroxidase (Sigma), diluted to 1:400 in PBS 

and treated with 3,3'-diaminobenzidine (Sigma, UK) in 0.01% hydrogen peroxide in 

PBS (pH 7.6) for 1 hour in the dark. Finally, slides were treated with haematoxylin and 

eosin and fixed with dibutylpthalate xylene (DPX) (BDH Laboratory Supplies, UK). 

Experiments were performed between 3 and 5 times with each vessel providing its own,
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untreated control.

In addition, immunohistochemical studies were undertaken in order to determine the 

presence or absence of macrophages and granulocytes within sections of IMA. 

Immunocytochemical detection of CD68, (1:100) Mac 387 (1:500) and Kpl (1:100) was 

performed on formalin fixed paraffin embedded sections of IMA along with light 

microscopic evaluation of haematoxylin and eosin stained sections (Townsend et al 

1999).

2.8 Isometric tension studies in small resistance arteries

Resistance arteries are those blood vessels which contribute the greatest resistance to 

blood flow, and are therefore most involved in regulating blood flow and capillary 

pressure (Mulvany and Aalkjaer 1990). SRA wire myography is an in vitro technique 

which allows resistance arteries with a diameter of 100 -  500pm to be studied under 

precise and standardised conditions. Use of this technique yields information on the 

contractile or relaxant properties, and morphology, of SRA under isometric tension 

(Mulvany and Aalkjaer 1990; Mulvany and Halpem 1977). In the present investigation, 

functional studies were undertaken with SRA because of the physiological importance 

of these blood vessels. Wire myography was employed for these studies because this is 

an established technique in our laboratory (Hillier et al 1999; Padmanabhan et al 1999), 

in which several arteries may be studied at any one time, using one or more protocols.

Human SRA were isolated from within the subcutaneous fat obtained at the time of 

inguinal hernia repair. A single biopsy may yield several blood vessels (average 2 -  4). 

Isolated SRA were divided into segments approximately 2mm long. When possible, 

four resistance arteries, were carefully mounted on two 40 pm-diameter stainless steel 

wires and mounted in the bath of a 4-channel myograph (Halpem & Mulvany, Aarhus), 

in which the wires are attached to a force transducer and micrometer, respectively. The 

bath contained Krebs buffer which had been gassed and pre-heated at 37°C, and these 

conditions were maintained for the duration of the experiment. In addition the Krebs 

buffer was regularly changed throughout the experiment.

2.8.1 Set-up and normalisation procedures

After a rest period of 30 minutes, a normalisation procedure was followed for each 

artery to determine the normalised internal diameter (ID), L0, at which contraction is
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thought to be optimal, and the vessel was set to that diameter (Mulvany and Halpem 

1977). In the present study, arteries with a normalised ID of 200 -  400pm were used. 

After a rest period of 30 minute each artery was stretched at 1 minute intervals to 

determine the passive exponential, wall tension-internal circumference (L) relationship. 

From the Laplace equation, where P=T/r (P is the effective pressure, T is the wall 

tension and r is the internal radius), the equivalent circumference (Lioo) for a transmural 

pressure of lOOmmHg, was calculated for each artery by an iterative computer method. 

Each artery was then set to the normalised internal diameter, Li=0.9 xL ioo/tt, at which 

contraction is thought to be optimal (Mulvany and Aalkjaer 1990; Mulvany and Halpem 

1977).

Following normalisation, the vessels were left for a further hour. They were then 

exposed to a high (123 mM) concentration of potassium (KPSS, solution identical to 

PSS except that sodium was replaced by potassium on an equimolar basis) for a series 

of 5 minute periods until repeatable maximal contractions were achieved, and then once 

to 10 pmol/L of norepinephrine (NE). After a plateau contraction had been attained with 

NE, 3 pmol/L of acetylcholine (ACh) was added to stimulate endothelium-dependent 

vasodilatation. Arteries that were unable to contract to either KPSS or NE or showed no 

relaxation to ACh (and were therefore considered to have no functionally intact 

endothelium) were discarded. The arteries were then incubated for a further 30 minutes 

in Krebs solution prior to the commencement of the concentration-response curves 

(CRC) incorporated in the study protocol.

2.9 Measurement of free radical concentrations in human 

blood vessels

Of the variety of free radicals which are generated within vascular tissue, the O2’ and 

OH anion radicals are reported to be present in physiologically important 

concentrations (Wolin 2000). Superoxide, in particular, is reported to be an important 

determinant of bioavailable NO.

This chapter describes studies undertaken to characterise the nature of lucigenin- 

enhanced chemiluminescence. Lucigenin-enhanced chemiluminescence has recently 

been criticised due to the potential for redox cycling by lucigenin. In this case, in vitro 

studies have suggested that in certain conditions, lucigenin may act as a reducing agent, 

by serving as a potential source of electrons for the reduction of molecular oxygen to

75



O2' (Liochev and Fridovich 1997; Liochev and Fridovich 1998). At the inception of this 

study, the author was not aware of any data on the direct measurement of O2’ 

concentrations in human blood vessels using lucigenin-enhanced chemiluminescence. 

For these reasons, a series of systematic validation studies were undertaken in order to 

characterise lucigenin enhanced chemiluminescence as a measure of O2' production in 

intact human blood vessels.

2.9.1 Chemiluminescence

Lucigenin-enhanced chemiluminescence is a widely-used technique for the 

measurement of 0 {  concentrations in vitro. Previous studies used lucigenin-enhanced 

chemiluminescence to measure O2’ concentrations in vitro using either cultured cells, or 

in vascular tissues obtained from experimental animals.

The amount of lucigenin-enhanced chemiluminescence in vascular tissue is a function 

of both the rate of O2 ' production by endogenous enzymes, and the rate of O2' removal, 

by for example, dismuation by SOD. Brandes et al (1997) attempted to characterise O2’ 

production in intact pig coronary artery segments, using lucigenin-enhanced 

chemiluminescence. In these studies, artery segments were approximately 3 mm long, 

were placed in 600 pL of aerated Krebs buffer at pH 7.4 and the light reaction between 

O2'  and lucigenin (250 pM) was detected in a scintillation counter during a 5 minute 

period. The counts for this period were corrected by background subtraction. Counts per 

minute were plotted against a xanthine- xanthine oxidase calibration curve and 

expressed as production of O2' (pmol) per minute per milligram of dry-blotted tissue.

The experimental conditions in this system were characterised and validated (Brandes et 

al 1997). A cell-free xanthine-XOR assay for O2’ generation was investigated and 

found to generate O2' with linear increments in association with increasing 

concentrations of xanthine, provided the concentration of XOR was low (< ImU/ml). 

This signal could be completely inhibited by co-treatment with the XOR inhibitor, 

oxypurinol, or the specific O2' scavenger (4-5 dihydroxy-1, 3-benzene disulphonic acid 

salt [Tiron], 10 mmol/L). In addition the protocols also included measurement of the 

effect of pH, and stimulation or inhibition of vascular O2" production. Acid-base status 

of the phosphate buffer was adjusted by the addition of either NaOH or HC1 to various 

pH values in a range from 7.0 to 8.0. An increase in pH was associated with an increase 

in chemiluminescence signal with a change of 200% across this range. In studies in 

intact pig coronary arteries, these investigators also observed that treatment with
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substrates for enzymes believed to be involved in O2’ production, namely NAD(P)H 

oxidase and XOR, were associated with increases in the chemiluminescence signal, 

these being inhibited by co-treatment with Tiron. There are few data on the direct 

measurement of ROS concentrations in human blood vessels. Given the findings of 

Brandes et al (1997), the experimental conditions in relation to the measurement of O2" 

concentrations in human blood vessels using lucigenin-enhanced chemiluminescence 

were also characterised and validated.

2.9.2 Characterisation o f lucigenin-enhanced chemiluminescence

An initial subset of twenty conduit blood vessels underwent analysis by an experienced 

vascular pathologist, who confirmed the presence of an intact endothelium and the 

absence of atherosclerotic disease.

In order to investigate the effects of temperature, pH, lucigenin concentration and 

incubation time on O2’ concentrations in vascular tissues, a number of exploratory 

studies were also performed. Given the limited availability of human vascular tissue, 

fresh aortic segments obtained from Sprague Dawley rat were studied. As a first step, 

the effects of environmental factors, such as pH and temperature, on 0 2 ' concentrations, 

as measured by lucigenin-enhanced chemiluminescence, were determined in both a 

cell/tissue-free system, and in other studies using rat aortic segments. Lucigenin (Sigma, 

UK) was added to Krebs buffer, which had been maintained at either room temperature 

(18°C) or body temperature (37°C), in liquid scintillation vials (Packard, U.K.) in order 

to make a final lucigenin concentration of either 5 pM or 250 pM. The vials were then 

maintained at either room temperature or were placed in an incubator at 37°C prior to 

being placed in a scintillation counter.

2.9.3 Effects of pH, temperature and lucigenin concentration on 

superoxide concentrations in a cell-free system

I first sought to determine the effect of pH, temperature and lucigenin concentration on 

the chemiluminescence signal measured in the absence of cells or tissues. This 

‘background signal’ is represented by ROS generation within the aqueous buffer. The 

data in Table 1. represent results of chemiluminescence studies undertaken using Krebs 

buffer alone. Liquid scintillation vials were filled with 2 ml of Krebs buffer and placed 

in an incubator and maintained at 37°C for either 1 hour or 4 hours prior to the addition
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of lucigenin and quantification of counts in a liquid scintillation counter (Hewlet 

Packard Tricarb 2100TR).

In these studies (Table 2.1), buffer pH was comparable between vials maintained at 

either 18°C or 37°C. By contrast, there was a tendency for the pH of the buffer to rise 

with increasing concentrations of lucigenin. At 37°C, counts tended to fall, be it in the 

absence or presence of either 5 pmol/L or 250 pmol/L lucigenin, with duration of 

incubation. Furthermore, when studies were performed after incubation of the vials for 

1 hour, counts in vials allowed to stand on the bench till the buffer temperature fell 

18°C tended to be lower than those measured in vials maintained at 37°C. These data 

suggest that chemiluminescence counts may be affected by duration of incubation and 

buffer temperature.

2.9.4 Effect o f pH , temperature and lucigenin concentration on 

superoxide concentrations in vascular tissues

In order to determine whether or not pH, temperature and lucigenin concentration 

affected chemiluminescence counts from vascular tissues, experiments were undertaken 

using rat aortae. In this case, rat tissues were used given the limited availability of 

human blood vessels. Fresh aortae, which had been harvested from sacrificed, Sprague 

Dawley rats, were divided into segments approximately 5 mm length, weighed and 

placed into scintillation vials containing 2 ml of Krebs buffer. The vials were then 

incubated at 37°C for either 1 hour or 4 hours which was then followed by the addition 

of lucigenin and quantification of counts in the scintillation counter. Data are presented 

as either the results of single measurements or in summary form (mean +/- standard 

error of the mean).

The results of these studies are presented in Table 2.2. In every case, the pH was higher 

in vials maintained at 18°C compared to those at 37°C, which was in contrast to earlier 

studies undertaken with buffer alone. As before, buffer pH tended to rise with duration 

of incubation. Although absolute counts increased with duration of incubation, no 

differences were observed when these values were corrected for tissue weight.
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Table 2.1 Effect of lucigenin concentration, pH of the incubation buffer, and 

temperature on chemiluminescence counts in the absence of vascular tissue.

Time

(hours)

Lucigenin

concentrations

(pmol/L)

pH at 37°C pH at 18°C CL count 

at 37°C

CL count 

at 18°C

0 0 7.55 7.65 83312

5 7.68 7.68 110018

250 7.72 7.72 108612

1 0 7.56 7.57 81304 78325

5 7.45 7.45 90056 84172

250 7.76 7.76 80240 76596

4 0 7.55 7.55 52248

5 7.82 7.82 51348

250 7.55 7.55 51892 56700

CL - chemiluminescence

2.9.5 Selective augmentation and depletion o f superoxide 

concentrations in human blood vessels

It has been previously reported that lucigenin-enhanced chemiluminescence is both a 

sensitive and specific measure of O2’ production from neutrophils (Gyllenhammar 

1987). I sought to determine, therefore, whether this might also be the case in human 

blood vessels.

Simple pharmacological studies were undertaken in order to determine whether
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selective augmentation and depletion of vascular O2’ concentrations in human blood 

vessels could be predictably measured using lucigenin-enhanced chemiluminescence 

techniques. Lucigenin itself has been reported to generate O2’ at higher concentrations 

(Liochev and Fridovich 1997; Liochev and Fridovich 1998). Therefore, a range of 

lucigenin concentrations was also used to assay O2" in a series of samples from single 

vessels using xanthine/xanthine oxidase (Sigma, UK) calibration curves, with the 

appropriate concentration of lucigenin in each sample.

Fresh IMA and SV were divided into 5 mm segments and weighed. Initially, studies 

were undertaken to determine whether or not lucigenin-enhanced chemiluminescence 

might increase when O2* concentrations are enhanced. Paired segments from the same 

blood vessel were placed in scintillation vials in either the absence (2 ml of Krebs 

buffer) or presence 100 pmol/L of the SOD inhibitor, DETCA (Sigma, UK). 

Superoxide concentrations were then quantified by lucigenin-enhanced 

chemiluminescence. In both IMA and SV, counts were increased by this treatment 

(Figure 2.2). Treatment with lOOpmol/L of DETCA increased O2 ' steady state 

concentrations in IMA (control 853 ± 208, DETCA 100 pmol/L 1492 ± 347; n=8, 

p=0.021, 95% Cl 186, 1149 and SV (control 551 ± 145, DETCA 100 pmol/L 945 ± 

245; n=14, p=0.002, 95% Cl 67, 694).

These data demonstrate that pharmacological inhibition of SOD in IMA and SV results 

in an increase in lucigenin-enhanced chemiluminescence, in keeping with the rise in 

vascular O2" concentrations that will have occurred with this treatment. Furthermore, 

these data also demonstrate that O2 ' production is greater in conduit arteries, than in 

veins. One reason for this may be because these arteries have a proportionately greater 

content of VSMC, than do veins.
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There is considerable inter- and intra-individual variation in O2’ production by both 

arteries, and veins. This is reflected by the considerable variability in O2’ concentrations 

that was observed in these vascular tissues. This intra- and inter-subject variation in 

vascular O2 ' concentrations may arise for a number of reasons. These tissues are ex vivo. 

In addition, there are several ‘handling’ steps, including surgical manipulation, variation 

in time to harvest, transfer to the laboratory, and subsequent handling, including, for 

example, debridement of surrounding connective tissue and variation in time to 

measurement. For these reasons, every effort was made to standardise the handling steps 

for these blood vessels in the laboratory.

In other studies, undertaken to determine whether or not lucigenin-enhanced 

chemiluminescence might detect a reduction in vascular 0 {  concentrations, paired blood 

vessels were incubated in the absence (2 ml of Krebs buffer) or presence of the free 

radical scavenger (4-5 dihydroxy-1, 3-benzene disulphonic acid salt [Tiron], 10 mmol/L; 

Sigma, UK) and incubated at 37°C for 1 hour. In this case, the counts were reduced by 

this treatment (Figure 2.3). Tiron 10 mmol/L, reduced basal O2 ' concentrations in both 

IMA (control 1937 ±412, Tiron lOmmol/L 901 ± 94; n=9, p=0.018, 95% Cl -1919, - 

238) and SV (350 ± 85, Tiron lOmmol/L 149 ± 39; n=13, p=0.002, 95% Cl -311, -95). 

In this case, treatment of these blood vessels with a scavenger of O2’, was associated 

with a reduction in concentrations in both IMA and SV.

82



□  IMA C ontro l

Oo' (pmol/min/mg)
 ̂ 03 IMA D E T C A  1 0 0
2000  1 m icrom ol/L  

□  S V  C ontro l

1 5 0 0  - S S V  D E T C A  1 0 0  

m icrom ol/L

1000  -

5 0 0  -

IMA SV

DETCA - diethylenethiocarbamate, an inhibitor of superoxide dismutase;
IMA - internal mammary artery; SV - saphenous vein;

Figure 2.2 The effect o f inhibition o f SOD in IM A (n=8) and SV (n=14) by treatm ent 

w ith 100 pm ol/L  o f  DETCA. Each colum n represents m ean O 2 generation in 

pm ol/m in/m g tissue. Error bars represent standard error o f  the m ean (SEM ).

2.9.6 Effect of different concentrations of lucigenin on superoxide 

concentrations in human blood vessels

In other studies, O 2 ' concentrations were com pared in sam ples obtained from  a single 

blood vessel. Superoxide production in IM A w as sim ilar w ith  either a lucigenin 

concentration o f  5 pm ol/L  (1715 ± 343 pm ol/m in/m g) or 250 pm ol/L  (1410 ±  93 

pm ol/m in/m g; n=6, p=0.59). In SV, sufficient tissue was available to assess the effect o f 

lucigenin on O 2 ' production at a range o f  lucigenin concentrations (5, 15, 50, and 250 

pm ol/L). In this case, in each experim ent all SV segm ents were obtained from  a single 

length o f  blood vessel such that variation in 0 {  concentrations betw een sam ples was 

m inim ised given. Superoxide production* was 311 ±  67 pm ol/m in/m g w ith 5pm ol/L  

lucigenin, 208 ± 27 pm ol/m in/m g with 15 pm ol/L  lucigenin, 300 ±  33 pm ol/m in/m g with 

50 pm ol/L  lucigenin and 241 ± 50 pm ol/m in/m g w ith 250 pm ol/L  (n=10 for each
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lucigenin concentration; NS between all groups).

0 2" (pmol/min/mg)

2 5 0 0  i

2 0 0 0  -

1 5 0 0  -

1 0 0 0  -

5 0 0

P=0.018

i

P=0.002

i

□  IMA C on tro l 

H  T iron 1 mmol/L

□  SV C on tro l

^  T iron 1 mmol/L

0

IMA SV
Figure 2.3 The effect o f  superoxide scavenging by treatm ent o f  IM A (n=9) and SV 

(n=13) w ith 1 m m ol/L  o f  Tiron. Each colum n represents m ean O 2 ' generation in 

pm ol/m in /m g tissue. E rror bars represent standard error o f  the m ean (SEM ).

2.9.7 Summary of validation studies of lucigenin-enhanced 

chemiluminescence in human blood vessels.

T he data obtained from the studies o f lucigenin-enhanced chem ilum inescence in a cell 

and  tissue free system , suggested that the lucigenin-enhanced chem ilum inescence counts 

fell w ith duration o f  incubation. H igher concentrations o f  lucigenin tended to be 

associated  w ith higher values o f  pH, although this was not consistently  the case with 250 

p M  o f  lucigenin after 4 hours incubation. Interestingly, in these studies, the counts were 

n o t greater w ith higher concentrations o f lucigenin. This latter observation contrasts with 

o ther reports w hich observed that counts increased with increasing concentration o f  

lucigenin , which could be attributed to redox cycling by lucigenin itse lf (Liochev and
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Fridovich 1997; Liochev and Fridovich 1998).

In the present study, the data obtained from using different concentrations of lucigenin in 

human IMA and SV demonstrate that O2’ production in these blood vessels was not 

affected by the concentration of lucigenin under these conditions. Lucigenin-enhanced 

chemiluminescence has been previously used in our laboratory in order to measure 

vascular (V  concentrations in other experimental animal studies (Grunfeld et al 1995; 

Kerr et al 1999). The data obtained from measurements using this technique have 

generated reproducible results which have been utilised in a variety of pharmacological 

studies of vascular ROS in the SHRSP and WKY rats.

In other studies, pharmacological manipulation of vascular O2’ concentrations resulted in 

predictable increases and reductions in chemiluminescence counts. These conclusions are 

based on the fact that treatment with DETCA causes specific inhibiton of SOD, and 

therefore a selective increase in O2' concentrations, whereas treatment with Tiron results 

in selective scavenging of O2'. DETCA is a copper-chelating compound which augments 

vascular O2* concentrations through inhibiton of both intra -  and extracellular Cu/Zn 

SOD. In vitro studies in rabbit aortae by Mackenzie and Martin (1998) confirmed that 

low concentrations (300 pmol/L) of DETCA selectively inhibit extracellular Cu/Zn 

SOD, as impaired ACh-induced, NO-dependent vasorelaxation could be restored by 

treatment with SOD (250 U/ml). At higher concentrations of DETCA (e.g. 3 mmol/L), 

the predominant effect of this treatment was inhibition of intracellular Cu/Zn SOD, as 

impaired vasorelaxation could only be reversed by treatment with a membrane permeant 

SOD mimetic (MacKenzie and Martin 1998). Only a very minor component of the pro

oxidant effect of DETCA is due to non-selective effects, such as depletion of glutathione 

and generation of lipid peroxides (Kelner et al 1989). On the other hand, Tiron is a 

selective, membrane permeant scavenger of O2’ (Ledenev et al 1986). Lucigenin- 

enhanced chemiluminescence, has therefore, resulted in observations in keeping with the 

expected pharmacological effects of these treatments. Taken together, these data indicate 

that lucigenin-enhanced chemiluminescence is both a sensitive and specific tool for the 

detection and measurement of O2' concentrations in human IMA and SV.
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3 Sources of superoxide production in hum an blood 

vesse ls

3.1 Summary

The enzymatic sources, and distribution, of ROS generation, in human blood vessels are 

not known. In this chapter, experiments undertaken to characterise the enzymes involved 

in O2’ production, and their location in human conduit blood vessels, will be described. 

In addition, studies were undertaken to characterise endogenous ROS scavenging 

systems in these blood vessels.

3.2 Methods

IMA, RA and SV samples were prepared for measurement of O2" production by 

lucigenin-enhanced chemiluminescence according to methods described in section 2.1,

2.2.1 and 2.5.3. Firstly, O2' concentrations were measured in a consecutive series of 

IMA, RA and SV. Secondly, a series of basic pharmacological studies were undertaken 

using IMA and SV, in which inhibitors of NAD(P)H oxidase, XOR and eNOS were used 

to determine whether or not these enzymes contributed to basal O2 ' production. Thirdly, 

oxidative microtopography studies were undertaken in IMA and SV in order to 

characterise the location and distribution of O2’ production within the wall of these blood 

vessels. Finally, an additional aim was to quantify the amount of SOD protein present in 

arteries and veins using western blotting techniques in order to assess whether SOD 

expression might account for any differences in O2 ' measured.

3.2.1 Pharmacological studies

In order to investigate the enzymatic sources of O2’ generation in human blood vessels, 

IMA and SV were incubated for 1 hour at 37°C in the absence (control) or presence of an 

inhibitor of NAD(P)H oxidase, diphenyleneiodonium ([DPI; Sigma, UK], 10 pmol/L, 

100 pmol/L and 200 pmol/L), an inhibitor of eNOS (N®-Nitro-L-arginine methyl ester,
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[L-NAME; Sigma, UK] 100 pmol/L), or an inhibitor of XOR (allopurinol [ALP; Sigma, 

UK] lmmol/L). DPI and ALP were dissolved in dimethylsuphoxide (DMSO), whereas 

all other drugs were dissolved in Krebs buffer. For studies with DPI and ALP, the 

appropriate concentration of DMSO was added to control samples. In addition, some 

vessels were denuded of endothelium by careful rubbing of the vessel lumen with fine 

forceps. The absence of the endothelium and integrity of the vessel wall was confirmed 

by histological analysis in a subset of 20 vessels.

3.2.2 Protein quantification studies

Five millimeter segments of vessels were homogenised in 200 pi of a boiling vanadate 

buffer (1% SDS, 1 mmol Na3V0 4 , 10 mM Tris, pH 7.4). Following centrifugation at 

14,000 g for 60 seconds the supernatant was withdrawn and the protein concentration 

measured. Ten micrograms of protein and pre-stained molecular weight standards were 

separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis using a 12% 

gel (Life Technologies, UK). The proteins were transferred overnight onto a 

polyvinylidene difluride (PVDF) membrane and sequentially probed with sheep 

monoclonal anti-CuZn SOD, or rabbit polyclonal anti -MnSOD or anti-actin antibodies. 

Protein bands were visualised using enhanced chemiluminescence (GS-525 Biorad- 

Laboratories Ltd). Anti-human MnSOD was a gift-from Professor Taniguchi (University 

of Osaka, Japan) and anti- human CuZn SOD was purchased from Calbiochem (UK).

3.2.3 Oxidative microtopography

IMA and SV segments (5 pm) were placed on coverslips and the hydroethidine dye 

topically applied. The sections are then incubated at 37°C for 30 mins before visualising 

the fluorescence under a microscope. The localisation of the oxidised Het, which reflects 

O2' production, was then observed.
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3.2.4 Statistical analyses

Data are described as mean +/- S.E.M or as % change from controls to facilitate 

comparison between groups. Statistical analyses of vascular O2' concentrations were 

undertaken using the Wilcoxon Signed-Rank Test. The relationships between risk factors 

and basal vascular O2' concentrations were determined by use of the Pearson’s 

correlation coefficient (r). Results of statistical analyses are presented with both a 

probability (P) value and 95% confidence intervals (95% Cl). A P value of < 0.05 was 

considered statistically significant.

3.3 Results

3.3.1 Patient characteristics

The study population consisted of two hundred and forty four patients with CAD who 

consecutively underwent CABG in our hospital over a 14 month period. Data on age, 

sex, risk, factors for atherosclerotic vascular disease, and drug therapy are given in Table 

3.1. Patient age ranged from 33 to 80 years. Seventy five percent of patients had one or 

more risk factor for CHD and 92% of patients were on one or more type of anti-anginal 

therapy.
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Table 3.1 Patient characteristics, including risk factors and therapy.

Males, n (%) 179 (73)

Females, n (%) 66 (27)

Mean age, y 62±8

Risk factors, n (%)

Smoking 43 (18)

Hypertension 82 (34)

Diabetes mellitus 26(11)

Hypercholesterolemia 180 (74)

Plasma cholesterol, mmol/L (mean±SD) 5.4 ±1.4

Medication, n (%)

Aspirin 203 (83)

p-Blockers 136 (56)

Calcium channel blockers 145 (60)

HMGCoA Reductase Inhibitors 127 (52)

Nitroglycerin 148 (61)

Renin angiotensin system inhibitors 54 (22)

3.3.2 Measurement o f superoxide anion concentrations in IMA, RA 

and SV

Mean O2’ production was greater in arteries than in veins: IMA 1922±235 pmol/min/mg 

(n=55), SV 662±179 pmol/min/mg (n=58); pO.OOOl (Figure 3.1).
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V e s s e  I

Figure 3.1 M ean O 2 ' production in internal m am m ary arteries (IM A), radial arteries 

(RA) and saphenous veins (SV). Error bars represent standard error o f  the m ean (SEM ).

3.3.3 Characterisation of the sources o f superoxide anion production

The N A D (P)H  oxidase inhibitor, DPI (concentration range 10-200 pm ol/L ), attenuated 

0 2' generation in both arteries (Figure 3.2; Table 3.2) and veins (Table 3.3). The effects 

o f endothelial denudation by rubbing, and inhibition o f  eNO S by incubation with L- 

NA M E, on O 2" concentrations in IM A and SV were m ore variable (Table 3.2 & 3.3). 

NOS inhibition (Figure 3.4) was associated with a sm all reduction in basal O 2 ' 

concentrations in both IM A and SV, which approached statistical significance. 

Incubation o f  IM A with 100 pm ol/L  o f  L-N A M E and endothelial denudation reduced 

O 2" concentrations in 7/10 and 6/10 patients respectively. In SV, these treatm ents

in IMA and SV
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corresponded with a reduction in O2’ concentrations in 12/16 and 10/14 patients. 

Sufficient tissue was available in veins to study the effects of L-NAME treatment and 

endothelium removal by rubbing in vessel segments from the same patients. In these 

studies, both manipulations had similar effects on O2’ concentrations in individual 

patients (r = 0.85; n=12 p<0.001). Furthermore, the difference in O2' concentrations 

between IMA and SV was maintained after both endothelial denudation and eNOS 

inhibition.

Table 3.2 Effect of inhibition of NAD(P)H oxidase, xanthine oxidase and nitric 

oxide synthase and of endothelial denudation on O2' production in IMA.

O2- generation 
(pmol/min/mg)

Treatment n Control Treated % Change p value and 95% Cl

DPI lOpM 8 965±150 616±212 -36±17 0.14; -808, 239

DPI lOOpM 8 2723±696 1568±430 -39±13 0.03;-2515,-137

ALP 1 mmol/L 9 2120±629 1024±290 -42±10 0.013;-2020, -330

L-NAME lOOpM 10 1990±508 1420±304 -29 ±16 0.1;-1421, 67

ED 10 643±134 647±145 -3±10 0.55;-183, 153

Data are shown as mean ± SEM. Saphenous vein (SV). Diphenyleneiodonium (DPI), 

allopurinol (ALP) and N^-Nitro-L-arginine methyl ester, (L-NAME) are inhibitors of 

NAD(P)H oxidase, xanthine oxidase and endothelial nitric oxide synthase enzymes, 

respectively. ED -  endothelial denudation
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Table 3.3 Effect of inhibition of NAD(P)H oxidase, xanthine oxidase and nitric 

oxide synthase and of endothelial denudation on O2’ production in SV.

O2- generation 
(pmol/min/mg)

Treatment n Control Treated % Change p value and 95% Cl

DPI lOpM 10 184±25 116±28 -34±16 0.037; -124, -7

DPI lOOpM 14 759±140 469±94 -37±6 0.001;-519,-103

DPI 200pM 8 452±126 228±73 -47±7 0.014; -394, -59

ALP ImM 13 759±173 426±107 -32±8 0.003; -673, -57

L-NAME lOOpM 16 284±44 214±36 -20 ±13 0.06; -148, 5

ED 14 324±48 250±40 -15 ±9 0 0 1 1 OO
ED + DPI lOOpM 9 787±259 477±136 -29±9 0.018; -671,-3
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F igure  3.2 Effect of NAD(P)H oxidase inhibition on mean 0 2 concentrations in IMA 

and SV.

0 2- (pmol/min/mg) 

3500

□  Control
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0.0133000
2500
2000
1500
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1000
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500
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0.003"

IM A 
n = 9 n=13

F igure  3.3 Effect of XOR inhibition on 0 2 concentrations in IMA and SV. Treatment 

allopurinol (ALP, 1 mmol/L), attenuated 0 2 production in both IMA and SV.
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Figure 3,4 Effect of NOS inhibition on superoxide concentrations in IMA and SV.
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Figure 3.5 Effect of endothelial denudation on O 2 concentrations in IMA and SV. 

Endothelial denudation had no effect on O 2 'concentrations in either IMA or SV
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3.3.4 Oxidative microtopography

Superoxide production was demonstrated throughout the wall of both IMA and SV. 

These images suggest that ROS generation occurs throughout the vascular wall, 

including the adventitia and endothelial layers (Figure 3.6).

Lum en

Lum en

Internal Mammary Artery Saphenous Vein

Figure 3.6 Identification of O 2 production in a section IMA and SV with 

hydroethidine fluorescence.

3.3.5 Quantification of SOD proteins

Immunoblotting showed that single bands were detected for both M nSOD and CuZn 

SOD (Figure 3.7). The intensity of CuZn SOD bands relative to an actin control was 4.04 

± 0.31 in arteries vs. 3.59 ± 0.23 in veins (p=0.055). Mn SOD expression was found to 

have relative intensities of 3.14 ± 0.25 vs. 3.87 ± 0.42 (p=0.056) in arteries and veins 

respectively.
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MnSOD m

Figure 3.7 Quantification o f  intracellular SOD proteins in hum an IM A and SV. (A) 

Scanned images o f  representative western blots o f  CuZn SOD, M nSO D  and actin 

proteins. (B) D ensitom etric quantification o f  CuZn SOD and M nSO D  w estern blots 

expressed as a ratio o f  actin.

3.4 D iscussion

W e have shown that basal 'O 2* concentrations are greater in hum an IM A  than SV and 

have dem onstrated that both N A D (P)H  oxidase and X O R  enzym es contribute to basal 

O 2" production in these vessels. Furtherm ore, we report that SOD proteins are 

quantitatively sim ilar in hum an IM A  and SV.

W e sought to characterise the m echanism s o f  O 2’ production in hum an IM A and SV. 

Endothelial NOS activity was inhibited by rem oval o f  the endothelium  by rubbing and 

by incubating vessels w ith L-NA M E, however, these treatm ents failed to reduce O 2’ 

steady state concentrations in all patients. The lack o f  effect o f  these treatm ents on 02* 

production in the blood vessels o f  some patients suggests that V SM C and adventitial 

fibroblasts were alternative sources o f  O 2’ generation. Conduit arteries have a
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proportionately greater content of VSMC than conduit veins, which may explain the fact 

that O2 ' generation is greater in arteries, compared to veins. Inhibition of NAD(P)H 

oxidase and XOR, by incubation of arteries and veins with DPI and ALP respectively, 

resulted in similar reductions in basal O2' steady state concentrations in both of these 

tissues. This suggests that both NAD(P)H and XOR are sources of O2’ generation in 

human arteries and veins.

The balance between O2’ generation and degradation determines O2 ' steady state 

concentrations. In this study, the levels of MnSOD and CuZn SOD proteins were 

qualitatively different in arteries and veins, but overall, total SOD protein was 

quantitatively similar. Taken together with our results this would suggest that the 

elevated concentrations of O2" observed in arteries compared with veins were not a 

consequence of a reduced capacity for enzymatic removal, but occurred through 

increased O2" production.

Observations from in vitro studies suggest that the activity of XOR may be increased in 

endothelial cells subject to ischemia-reperfusion injury (Harrison 2000; Phan et al 1989). 

Findings from in vivo human studies suggest that patients with risk factors for CAD also 

have increased vascular XOR-mediated O2" production, which may contribute to 

impaired endothelium dependent vasodilation in these patients (Cardillo et al 1997). 

When considered with our findings, this suggests that XOR may be an important source 

of vascular O2 production in patients who have CAD.
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4 Effect of angiotensin II on superoxide anion 

concentrations in human blood v esse ls

4.1 Summary

Given that the enzymatic sources of O2’ production in human blood vessels had been 

described, I subsequently sought to determine whether or not vascular O2' concentrations 

might be augmented by vasoactive hormones, such as angiotensin II (Ang II). This 

chapter provides a detailed description of the experiments performed using lucigenin- 

enhanced chemiluminescence to characterise the effect of Ang II on O2’ concentrations 

in human IMA and S V.

4.2 Methods

4.2.1 Lucigenin-enhanced chemiluminescence

IMA and SV samples were prepared for measurement of O2" production by lucigenin- 

enhanced chemiluminescence according to methods described in Chapter 2 (sections

2.5.1 and 2.5.6). Blood vessels were incubated in the absence (control) or presence of 1 

pmol/L, 1 nmol/L and 1 pmol/L of Ang II for 1 and 4 hours. Functional integrity of the 

vessels was not compromised by this incubation. IMA were also incubated with 1 

pmol/L of Ang II for 15 minutes. In order to assess the effects of a positive control, IMA 

were incubated in the absence or presence of 1 pmol/L of norepinephrine (NE), for 4 

hours.

Additional studies were undertaken in order to determine whether or not any effect of 

Ang II on O2' production could be receptor specific. IMA were co-incubated with 1 

pmol/L of Ang II and either an ATi specific and competitive receptor antagonist
1 ft(losartan 1 pmol/L) or a non-specific receptor antagonist (sar thre Ang II 1 pmol/L) 

(Criscione et al 1990). NE and [sar1, thre8]-Ang II and were purchased from Sigma
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(Poole, UK), whereas, losartan was obtained as a gift from Merck, Sharpe and Dome 

(UK). In subsequent studies, the role of the AT2 receptor in relation to vascular ROS 

generation was also explored. In this case, IMA were treated with 1 pmol/L of Ang II, in 

the presence or absence of PD 123319, an AT2 selective antagonist (Garcha et al 1999).

Finally, in studies designed to investigate intracellular pathways, the effect of inhibition 

of NAD(P)H oxidase was investigated by co-treatment of IMA with Ang II and DPI. In 

other studies, the effect of inhibition of protein synthesis was also investigated by 

treatment of IMA with cyclohexamide (Sigma, UK), a protein synthesis inhibitor. Due to 

the limitation in availability of IMA biopsies, and their relatively small length, IMA were 

divided into two and treated with either an ARA, an inhibitior of NADP(H) oxidase, or 

an inhibitor of protein synthesis, in the presence or absence of Ang II.

4.2.2 Statistical analyses

All data are presented as mean +/- S.E.M or as % change from controls to facilitate 

comparison between groups. Statistical analyses of vascular O2" concentrations were 

undertaken using the Wilcoxon Signed-Rank Test.

4.3 Results

4.3.1 Effect o f Ang II on superoxide anion concentrations in human 

arteries and veins

In IMA, Ang II stimulated an increase in O2" production in both a concentration (Table 

4.1, Figure 4.1) and time (Table 4.1, Figure 4.2) dependent manner. Ang II had no effect 

on O2' production after 15 minutes incubation (control 1173±239 pmol/min/mg tissue, 1 

pmol/L of Ang II 918±170 pmol/min/mg; n = ll p=0.12; 95% Cl -680, 155), but 

increased O2’ production after 1 and 4 hours, respectively (Figure 4.2). Ang II stimulated 

an increase O2’ production in IMA but not SV (Figure 4.3, Table 4.1). NE (1 pmol/L), 

which was used as a vasoconstrictor control, had no significant effect on O2 ' generation
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in  IM A  (control 1581±899 pm ol/m in/m g, N E 738±241; n = l l ,  p=0.45, 95%  C l -3590 , 

164) or SV (control 360±218 pm ol/m in/m g, NE 249±118 pm ol/m in/m g; n=7 p=0.18 

95%  C l -3 9 1 ,4 5 ) .

% increase 
in 0 2 * production

150 i

100

50 -

0

p = 0.11
n = 14

p = 0.004 
n = 11

p = 0.0001
n =27

picomolar nanomolar micromolar 

Concentration of Ang II

Figure 4.1 Effect o f  treatm ent o f  IM A with different concentrations o f  Ang II for 4 

hours on vascular O 2" production, com pared to artery rings from  the blood vessel treated 

w ith  vehicle. D ata are expressed as a percent change from  control. The effect o f  Ang II 

o n  O 2 ' production in IM A occurred at pharm acological concentrations (1 pm ol/L , 1 

nm ol/L ), whereas a trend approaching statistical significance was observed with 

physiological concentrations (1 pm ol/L) o f  Ang II.
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% increase in O2' 
production

150 -1

100 _

50 -

0

p = 0.6
n = 8

J L

p = 0.01
n = 12

p = 0.0001
n = 27

15 mins 1 hour 4 hours 

Micromolar concentration of Ang II

Figure 4.2 Effect o f  duration o f  exposure with 1 pm ol/L  o f  A ng II on O 2’ production 

in  IMA. D ata are expressed as percent change from untreated controls ± SEM .
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Figure 4.3 Effect o f  4 hrs treatm ent with 1 pm ol/L  o f  either A ng II or norepinephrine 

(NE) on O 2 ' concentrations in internal m am m ary arteries and saphenous veins. A lthough 

Ang II stim ulated an increase in O 2 ' production in IM A, it had no effect on O 2 ' 

production in veins.

4.3.2 Mechanisms of Ang II -  stimulated superoxide anion production 

in human arteries and veins

Losartan, a com petitive AT 1 specific receptor antagonist, at a concentration o f  1 pm ol/L, 

had no effect on basal O 2’ production but blocked the Ang II -  m ediated increase o f  O 2’ 

production (Figure 4.4). [Sar1, th re8]-Ang II 1 pm ol/L , a non-specific A ng II receptor 

antagonist, also blocked Ang II -  m ediated increase o f  O 2’ production (1 pm ol/L  o f  

[sar1, th re8]-Ang II 1252±276 pm ol/m in/m g, 1 pm ol/L  o f  [sar1, th re8]-A ng II + 1 pm ol/L  

o f  Ang II 1281±204; n=15, p=0.63, 95%  C l -2 0 0 , 305). Incubation o f  IM A  for 4 hours 

w ith DPI 100 pm ol/L , but not DPI 10 pm ol/L , blocked A ng II -  m ediated increase o f  

O 2’ production (Figure 4.5). Treatm ent with an A T 2 receptor antagonist had no effect on 

Ang II-stim ulated O 2’ production in IM A (PD 552±127 counts/m in/m g; PD + Ang II
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665=138 counts/min/mg; n=16, P = 0.1).

Finally, in order to determ ine whether or not A ng II -  stim ulated N A D (P)H  oxidase 

activation m ight involve an increase in the synthesis o f  this m ultim eric protein, IM A 

were treated with the protein synthesis inhibitor, cyclohexam ide. T reatm ent o f  IM A  with 

cyclohexam ide had no effect on basal O 2 '. IM A were therefore treated  w ith 1 pm ol/L  o f 

Ang II, in the presence or absence o f  100 pm ol/L  o f  cyclohexam ide. Inhibition o f  protein 

synthesis by treatm ent w ith 100 pm ol/L  o f  cyclohexam ide com pletely abrogated A ng II 

-  stim ulated O 2* production (cyclohexam ide 460 ± 100 pm ol/m in/m g and cyclohexam ide 

plus Ang II 430 ± 130 pm ol/m in/m g o f  tissue; n=8; Figure 4.6).

0 2'(pmol/min/mg)

2000

1 500

1000

5 0 0

0

0.0001

m

i—  0 . 2

Control Ang II losartan Ang II + losartan

F igu re  4.4 Effect o f  the AT 1 specific receptor antagonist, losartan, on Ang II - 

stim ulated O 2* production. Paired segm ents o f  IM A were treated for 4 hours in the 

presence or absence o f  1 pm ol/L  o f Ang II. In parallel studies, IM A  w ere treated with 1 

pm cl/L  o f  the angiotensin type 1 receptor antagonist, losartan, in the presence or absence 

o f  Ang II.
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Figure 4.5 Effect o f  N A D (P)H  oxidase inhibition on A ng II-stim ulated ( V  

production in IMA. Paired arteries were treated with either 10 pm ol/L  or 100 pm ol/L  o f 

diphenyleneiodonium , in the presence or absence o f  1 pm ol/L  o f  A ng II. Data are 

expressed as percent change from untreated controls ± SEM.
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Figure 4.6 Effect o f  protein synthesis inhibition on Ang II-stim ulated CV production 

in IMA. Paired segments (n=8) o f IMA .were treated w ith  a 100 m icrom olar 

concentration o f  cyclohexim ide, in the presence or absence o f  100 m icrom olar 

concentration o f  Ang II, for 1 hour.

4.4 D iscussion

This is the first dem onstration that Ang II can increase O 2" production in hum an arteries. 

This effect is ATi receptor-dependent as it was com pletely blocked by an ATi receptor 

antagonist. W e have also dem onstrated that this Ang II -  m ediated increase o f  O 2’ is 

m ediated by NA D(P)H oxidase as it was inhibited by DPI. This is a clinically im portant 

observation as physiological concentrations (pm ol) o f  A ng II tendend to increase O 2 ' 

production in hum an arteries, and this effect was blocked by losartan.

Ang II increased O 2 ' production in arteries, but not in veins. These effects are unlikely to 

be due to a reduction in AT 1 receptor expression in veins as the constrictor effect o f  Ang 

II in hum an saphenous veins, which is known to be ATi dependent (Li et al 1997b), m ay
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be greater in SV than IMA (Borland et al 1996). Ang II exerts different effects in distinct 

vascular beds. For example, in experimental animal models of hypertension, Ang II has 

renal vasodilator effects mediated through AT2 receptor activation (Siragy et al 1999; 

Siragy and Carey 1998). One explanation for our observations may be that the 

intracellular mechanisms by which Ang II activates NAD(P)H oxidase may differ in 

human arteries and veins. The mechanism of Ang II -  mediated increase of O2' 

production may also differ between species. ATi dependent Ang II -  mediated increase 

of O2’ production has been reported in the aortae (Rajagopalan et al 1996b), and 

mesangium (Jaimes et al 1998) of Sprague Dawley rats and aorta of 

hypercholesterolemic rabbits (Pagano et al 1997a). However, Ang II -  induced increase 

in O2 ' production in normocholesterolemic rabbit aortic adventitial fibroblasts is 

mediated by a non ATi-non AT2 receptor mechanism (Pagano et al 1998). The species 

differences in the mechanism of Ang II -  mediated increase in (V  production make 

human investigations important.

Experimental studies have demonstrated that Ang II -  mediated increase in O2' 

production is of functional importance. Ang II -  stimulated increase in O2" production 

contributes to its trophic effect of on rat VSMC (Griendling et al 1994) and mesangial 

cells (Jaimes et al 1998) and also contributes to the pressor effect of this hormone in a 

hypertensive rat model (Rajagopalan et al 1996b). The observations in the present study 

may also be substantiated by a report that the pressor effect of intra-brachial artery 

infusion of Ang II in humans is attenuated by the co-infusion of vitamin C (Dijkhorst- 

Oei et al 1999). This study however failed to identify a specific Ang II receptor or to 

evaluate a positive control (i.e. another vasoconstrictor such as norepinephrine).

Treatment of IMA with the protein synthesis inhibitor, cyclohexamide, prevented Ang II 

stimulated increase in O2' concentration in these arteries. This observation supports the 

conclusion that Ang II mediates NAD(P)H oxidase activation through an increase in 

synthesis of one, or more, of the subunits of this enzyme. In other studies, inhibition of 

the AT2 receptor had no effect on vascular O2 ' concentrations, suggesting that this 

receptor does not contribute to O2' generation in IMA. Alternatively, the trend to an
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increase in O2' concentrations in IMA co-treated with PD 123319 and Ang II suggests 

that the AT2 receptor may have a tonic inhibitory effect on ATi receptor-dependent O2’ 

generation in human arteries.

In conclusion, we have characterised cellular and enzyme sources of O2' production in 

human arteries and veins. We have demonstrated that Ang II increases O2 ' production at 

pharmacological concentrations in human arteries. Furthermore, physiological 

concentrations of Ang II tended to increase O2’ production in IMA. This effect, which is 

NAD(P)H oxidase mediated, is completely inhibited by the ATi receptor antagonist 

losartan. These observations suggest a putative therapeutic role for ATj receptor 

antagonists in reducing oxidative stress in cardiovascular disease.
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5 Immunodetection stud ies for NAD(P)H oxidase and 

xanthine oxidoreductase proteins in hum an blood 

vesse ls

5.1 Summary

This chapter provides a description of the immunohistochemical studies undertaken to 

identify the presence and distribution of the subunits of NAD(P)H oxidase in human 

IMA. Using monoclonal antibodies and antisera, p22phox, gp91 phox (or a homologue), 

p67phox and p47 phox are identified within the endothelium, vascular smooth muscle 

cell layer and adventitia. Xanthine oxidoreductase was identified in the endothelium and 

adventitial layers of IMA. These observations suggest that enzymes capable of 

generating ROS are distributed throughout the wall of human conduit arteries.

5.2 Methods

5.2.1 Blood vessel preparation and cell culture

Left IMA was obtained at the time of coronary artery revascularisation surgery and taken 

to the laboratory in Krebs buffer on ice. Segments of IMA were carefully dissected free 

of loose connective tissue and cut into 4 - 5  mm lengths, and incubated for 4 hours at 

37°C in Krebs buffer, in the presence or absence of 1 pmol/L of Ang II. After this, the 

blood vessels were either immediately embedded in frozen in Tissue Tek® (O.C.T. 

compound, Miles Scientific, IL), or embedded in paraffin, whilst taking care to ensure 

that the blood vessel was not deformed in any way. Sections, approximately 5 pm thick, 

were then cut using a microtome.

Human coronary artery smooth muscle cells (HCASMC; Biowhittaker) were grown in 

25 ml culture flasks and used between passages 4 -  6 in serum free conditions.
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5.2.2 Immunohistochemistry

Immunohistochemical studies were performed in both frozen and paraffin-embedded 

5pM sections of intact IMA, according to the methods described in chapter 2 (Section 

2.7.1). P22phox and gp91phox were identified using specific mouse monoclonal 

antibodies (kindly provided by Dr MT Quinn, Montana State University, MT) at a 

dilution of 1:100. P47phox and p67phox proteins were identified by use of rabbit anti

sera (Upstate Biotechnology, N.Y.), at a dilution of 1:500. In each experiment, negative 

controls treated with non-immune antibody or antisera were included to assess for non

specific staining. Biotinylated secondary anti-mouse antibody, in the case of p22phox 

and gp91phox, and anti-rabbit antibody, in the case of p47phox and p67phox, were used. 

Ten percent horse or goat block was used according to the species that the antibodies 

were raised in. XOR was identified using a specific mouse monoclonal antibody (kindly 

provided by Professor R. Harrison, University of Bath) at a dilution of 1:100. In each 

experiment, negative controls treated with non-immune mouse IgG antibody were 

included to assess for non-specific staining. Secondary antibodies were biotinylated anti

mouse (1:50) with 10% horse block. Experiments were performed between 3 and 5 times 

with each vessel providing its own, untreated control. In addition, immunocytochemical 

studies were undertaken in order to determine the presence or absence of macrophages 

and granulocytes within sections of IMA (Section 2.7.1).

5.2.3 Western Blotting

Western blotting was performed by extracting samples in lysis buffers containing 

protease inhibitors. Homogenates were centrigufed at 14,000 g at 4°C. The supernatant 

fraction (20 jig of protein) was loaded onto 12% of SDS polyacrylamide gel and 

transformed to PVDF membrane (Boerhinger Mannheim). Membranes wer blocked in 

5% non-fat milk and incubated with mase monoclonal antibody diluted 1:1000 for 1 hour 

at room temperature. They were then washed and incubated with an anti-mase 

horseradish peroxidase -  conjugated antibody, diluted 1:5000 for 1 hour at room 

temperature and washed extensively. The membranes were then exposed to ECL
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(Enhanced chemiluminescence, [Amersham,UK]), exposed to film and developped.

5.3 Results

5.3.1 Patient characteristics

Table 5.1 Clinical characteristics. The clinical information presented in this table 

represent data describing patients who provided blood vessels that were used in Chapters 

5 and 6.

Number (%)

Mean age, yrs 62±12

Males, n (%) 8(57)

Females, n (%) 6(43)

Risk factors, n (%)

Diabetes mellitus 2(14)

Hypertension 6(43)

Hypercholesterolaemia 7(50)

Smoking 4(29)

Medication, n (%)

Aspirin 13 (93)

P-Blocker 11 (79)

Calcium channel blocker 6 (57)

HMGCoA Reductase Inhibitor 7(57)

Nitroglycerin 11 (86)

Angiotensin converting enzyme inhibitor 5(36)

P-Blockers -  beta-blocker; HMGCoA Reductase Inhibitor - 3-Hydroxy-3 -

methylglutaryl coenzyme A reductase inhibitor.
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5.3.2 Immunohistochemical identification of NAD(P)H oxidase

subunits in IMA

Figure 5.1 shows typical im m unohistochem ical features o f a frozen section o f IMA. 

In this case, the IM A was treated with non-im m une m ouse antibody (control), or a 

m onoclonal antibody specific for gp91 phox (treated).

Mouse lgG1: negative control
Immunostaining with 

anti-human gp91phox antibody

Figure 5.1 Im m unohistochem istry o f IMA treated with specific monoclonal 

antibodies to gp91phox. The sections are shown at a m agnification o f x20 and m  

represents the media. The inset image shows staining for gp91phox, at a 

m agnification of x40. The image on the left is a negative control where the primary 

antibody has been replaced with non-im m une m ouse IgG l. Brown staining represents 

the chrom ogenic reaction product arising from the interaction betw een HRP-labelled 

secondary antibodies (bound to to the prim ary anti-gp91phox anti-bodies) and 

diam inobenzidine (DAB). This brown staining therefore represents im m unodetection 

o f gp91phox. Results shown are typical o f those seen in 4 experim ents.

It is apparent that there is dense staining throughout the vessel wall, including the 

media, in contrast to the control section from the same vessel. In the case of 

gp91phox, staining appeared m ost abundant within the vascular sm ooth m uscle layer,
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but was also evident within the adventitia and endothelium . W ax sections o f IMA 

failed to dem onstrate any staining with this antibody. One explanation for this is that 

im m unohistochem ical studies undertaken on wax sections are much less sensitive for 

the detection of candidate proteins than is the case with frozen sections, this being due 

to the effect of parraffin on the tissue sections.

Additional im m unohistochem istry studies using w ax-em bedded sections of IMA, 

treated with anti-sera for either p47phox (Figure 5.2) or p67phox (Figure 5.3) proteins 

revealed staining throughout the blood vessel wall, which was particularly m arked 

within the adventitial and endothelial layers. Control studies, in which studies were 

perform ed with the appropriate prim ary non-im m une antibody or anti-sera were 

perform ed in every case (not shown).

p47phox
(a)

, r t v . *
r - . v  -

T  "
if/ - '  «.» •

Figure 5.2 Coronal, paraffin-em bedded sections o f IM A treated with anti-sera for 

p47phox protein, (a) x4 m agnification (b) xlO  m agnification (c & d) x40 

m agnification. In this case, the sections were also stained with haem atoxylin and 

eosin.
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Figure 5.3 Coronal, paraffin-em bedded sections o f IMA treated with anti-sera for 

p67phox protein, (a) x4 m agnification (b) xlO  m agnification (c) and x40 

magnification.

Im m unodetection studies for p22phox protein dem onstrated staining within the 

sm ooth muscle layer and endothelium  (Figure 5.4 [a & b]).

p22phox

(a) (b) (c)

*

Figure 5.4 Coronal paraffin-em bedded sections o f IMA treated with anti-p22phox 

m onoclonal antibody, (a) - x4 m agnification (b) xlO  m agnification (c) and (d) x40 

m agnification.

Segm ents of IMA were also treated with 1 pm ol/L  o f Ang II for 4 hours. These
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experim ents were perform ed on paired sam ples from betw een 3 - 5  vessels with 

representative data shown. Control experim ents w ith either non-im m une m ouse IgG 

or rabbit sera show ed no staining. Q ualitative assem ent o f  the effect o f  this treatm ent 

on the abundance o f  p22phox protein (Figure 5.4) in IM A  sections was perform ed by 

scoring the density o f  im m unostaining by an independent observer w ho was unaw are 

o f  the nature o f  each slide. Representative im ages for p22phox (Figure 5.4) 

im m unostaing are shown below. In this case, the intensity o f  this staining appeared to 

be greater after treatm ent with Ang II.

In separate studies, no light m icroscopic or im m unocytochem ical positivity  for 

m acrophages (anti-CD 68, anti-m ac387 or an ti-K p l), or granulocytes w ere identified 

in any o f  the vessels investigated (data not shown).

5.3.3 Immunodetection of gp91phox (or a homologue) by western 

blotting techniques

Figure 5.7 shows typical results o f  western blotting o f  cultured HCA SM C. A m ajor 

band was detected at approxim ately 90 kD, w hich was absent w hen the prim ary 

antibody was om itted.

Figure 5.5 W estern blotting o f  gp91phox in hum an coronary V SM C using a 

m onoclonal antibody against gp91phox. M represents m olecular w eight m arkers.
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5.3.4 Immunodetection of xanthine oxidase in IMA

Figure 5.4 shows a representative, wax-em bedded section o f an IMA. In this case the 

IMA was treated with non-im m une mouse IgG antibody (control), or a m onoclonal 

antibody specific for XOR (treated). There is staining evident within the endothelium  

and adventitia, but by contrast, the smooth m uscle layer is spared. These features 

contrast those o f the control section from the same vessel, in which staining is absent.

Anti XOR : DAB

■ *

h i ? #  /  V *
;*£•% '% ?  r - v - i  ,

* a  >■. vt. • , J K T v i■ ̂  j •- - I 'i
-V . a 1 /'-A-'V '’■> ■ ■ - * . ;• <r A. •••; . <•-, Jl• ~ V t •* , „
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Figure 5.6 (a) Im m unohistochem istry o f IMA treated with specific m onoclonal

antibodies to xanthine oxidase. The sections are shown at a m agnification o f x20 and 

m represents the media. The inset image dem onstrates staining for xanthine oxidase, 

at a m agnification o f x40. (b) Staining was absent in negative control section, where 

the primary antibody has been replaced with non-im m une mouse Ig G l. Results shown 

are typical of those seen in 4 experim ents.

5.4 D iscussion

In these studies, p47phox, p22phox and p67phox proteins were identified in the 

endothelium , m edia and adventitial layers o f IMA. Furtherm ore, gp91phox, or a 

protein hom ologue, was detected using a m onoclonal antibody directed against 

gp91phox. This protein was evident throughout the artery wall including the medial 

layer.

The data in the present study suggest that gp91phox is abundant within human 

VSM C. This conclusion is dependent on the specificity o f this antibody for gp91phox, 

rather than one o f its hom ologues. In order to verify this result, western blotting was 

perform ed, using the same m onoclonal antibody, in cultured HCASM C. In these
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studies, protein bands of the anticipated molecular weight for gp91phox protein were 

identified. This observation supports the assertion that gp91phox is present in human 

VSMC. Although it might be argued that the expression of this protein in IMA could 

be ascribed to the disease status of these patients, the cultured VSMC were obtained 

from individuals with no history of cardiovascular disease. This is in agreement with 

observations by Suh et al. (Suh et al 1999) who reported that the noxl protein 

(formerly mox-1), a homologue of gp91phox, was present in rat VSMC.

More recently, Lassegue et a l (Lassegue et al 2001) characterised the expression of 

three nox family members, noxl, nox4 and gp91phox in rat VSMC. Using 

quantitative PCR, they found that the number of RNA molecules of noxl and nox4 

were approximately 3000 times greater than gp91phox, which was just above the limit 

of detection in this assay. This result contrasts the earlier findings by this group (Suh 

et al 1999). In these studies, northern blotting techniques failed to identify any 

gp91phox mRNA, however, this technique is much less sensitive than PCR. The nox 

family of proteins are functionally important, not only for O2' production, but also for 

the regulation of vascular growth and hypertrophy, and belong to a growing number 

of Nox family members (Lambeth 2000). Taken together, these data suggest that noxl 

and nox4, rather than gp91phox, are functionally active homolgues in NAD(P)H 

oxidase in this cell type. Studies of the relative expression of the nox family members 

in human vascular cells have not yet been reported.

Initial studies with wax-embedded sections of IMA failed to demonstrate any staining 

using the anti-gp 91phox monoclonal antibody, in contrast to subsequent studies 

undertaken in frozen sections. This may be due an effect of processing. Wax, or 

paraffin-embedded, sections typically reveal greater definition of tissue architecture 

than is the case with frozen tissue sections. By contrast, this latter type of processing 

affords greater sensitivity for immunohistochemical identification of target molecules 

and cells (Harlow and Lane 1988).

A striking difference was observed between the distribution of gp91phox and 

p22phox proteins, which were evident throughout the artery wall, and the distribution 

of p47phox and p67phox, which appeared to be concentrated within the endothelium 

and adventitial layers. There are several possible explanations for this observation. 

Firstly, it may be that p47phox and p67phox proteins are much less abundant within
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vascular smooth muscle cells, than is the case with gp91phox and p22phox. Secondly, 

these latter proteins together constitute the cytochrome b558 membrane complex, 

whereas, by contrast, p47phox and p67phox are both cytosolic proteins. Thus, the 

difference in cellular location of these proteins may give rise to the observed 

difference in staining arising with this technique. Finally, one additional explanation 

for these appearances may also be that, in the case of gp91phox and p22phox, a 

monoclonal antibody was used for immunodetection of these proteins, whereas in the 

case of p47phox and p67phox proteins, anti-sera were used. It may be, for example, 

that these anti-sera are less sensitive to binding phox proteins within the media, than 

is the case with monoclonal antibodies.

In other immunohistochemical studies, XOR protein was identified within sections of 

IMA, with staining most pronounced within the endothelium and adventitia. 

Interestingly, the distribution of this protein is comparable with that of p47phox and 

p67phox. In this case, immunodetection studies for XOR were undertaken with a 

monoclonal antibody for this protein. Taken together, these observations suggest that 

the observed distribution of p47phox and p67phox proteins in human IMA is valid, 

rather than being a function of the methods (and antisera) employed.

That XOR protein could be readily demonstrated in IMA by immunodetection 

techniques supports the earlier findings of a functional enzyme, capable of generating 

ROS in these arteries. This raises the question as to the source of XOR in these 

arteries. One possibility is that XOR, synthesised within the liver, is released into the 

systemic circulation whereupon this protein may bind with the endothelium, and may 

also penetrate into the adventia by passing from adventitial vasa vasorum. One 

alternative possiblity is that vascular cells, and endothelial and adventitial cells in 

particular, can synthesise this protein. This latter possibility could be addressed in 

further studies using RT-PCR techniques to detect XOR mRNA in these cells.
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6 Effect of Ang II on the abundance of m essenger 

RNA for NAD(P)H oxidase phox subun its  in human 

vascular cells and blood vesse ls

6.1 Summary

In this chapter, studies of the effects of Ang II on the abundance of cDNA transcripts 

o f the subunits of NAD(P)H oxidase are reported. Here we demonstrate that treatment 

with Ang II is associated with an increase in the abundance of cDNA transcripts of 

p22phox, which was attenuated by co-treatment with either actinomycin D, an 

inhibitor of gene transcription, or losartan, an ATi receptor antagonist. These data 

support the possibility that Ang II stimulates an increase in the synthesis of the 

subunits of NAD(P)H oxidase in human vascular cells by an ATi receptor -dependent 

increase in gene transcription.

6.2 Methods

6.2.1 Blood vessel preparation and cell culture

IMA were obtained from patients at the time of coronary artery revascularisation 

surgery. In this case, however, the arteries were collected from the cardiac theatre in 

sterile universal containers containing serum-free cell culture medium (Clonetics), 

maintained at 37°C inside a thermos flask. The flasks were taken directly to the 

laboratory where the arteries were dissected free of surrounding connective tissue and 

cut into 4 - 5  mm lengths whilst bathed in pre-warmed culture media. The arteries 

were then immediately placed in an incubator.

Human aortic endothelial cells (HAEC; Clonetics) and coronary artery smooth muscle 

cells (HCASMC; Biowhittaker) were grown in 25 ml culture flasks and used between 

passages 4 -  6 in serum free conditions.

6.2.2 Pharmacological studies

IMA were divided into pairs of segments 4 - 5  mm lengths and were incubated for 4
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hours at 37 °C in serum-free culture media in the presence or absence of 1 pmol/L of 

Ang II. In other studies, cultured HCASMC and HAEC were incubated in 25 ml 

flasks in a similar fashion, but in this case, these cells were also pre-treated and co

incubated with 1 pmol/L of the ATi receptor antagonist, losartan, or actinomycin D, 

an inhibitor of transcription. The studies with cultured cells were performed in 

triplicate on each occasion.

6.2.3 Reverse transcription polymerase chain reaction

In order to generate first strand cDNA, total RNA underwent reverse transcription 

which resulted according to methods described in Chapter 2 (section 2.4). This 

product was used as a template for the polymerase chain reaction using primers for 

p22phox and GAPDH. Qualitative assessment of RNA obtained from cell and tissue 

homogenates was undertaken by electrophoresis of the cDNA products on a 1.5% 

agarose gel (Life Technologies, UK). Semi-quantitative analysis was undertaken 

using phospho-imaging analysis (Biorad), by expression of the ratio of p22phox 

amplicons to GAPDH or actin cDNA products.

6.2.4 Statistical analyses

All data are presented as mean +/- S.E.M or as % change from controls to facilitate 

comparison between groups. Statistical analyses of vascular O2’ concentrations were 

undertaken using a paired Student’s t-test. A probability value of P<0.05 was taken as 

significant.

6.3 Results

RT-PCR studies undertaken in HAEC (Figure 6.1), in HCASMC (Figure 6.2), and 

IMA (Figure 6.3) demonstrated the abundance of p22phox cDNA transcripts to be 

increased by treatment with 1 pmol/L of Ang II for 4 hours.
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p22phox

actin

F ig u re  6.1 Effects o f  treating hum an aortic endothelial cells for 4 hours with 

either 1 pm ol/L  o f  Ang II, or vehicle, on the abundance o f  p22phox m RNA. (C, 

control; '+ ' represents cDN A which was form ed through treatm ent o f  m RN A  with 

reverse transcriptase, whereas represents controls, w hich were treated w ith vehicle, 

instead o f  reverse transcriptase; lkB  represents the m olecular w eight DNA m arker).

Control Ang

C C Ang II
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p 2 2 p h o x

Actin

Figure 6.2 Effects o f  treating HCSM C for 4 hours w ith either a 1 pm ol/L  o f  Ang 

II, or vehicle, on the abundance o f  p22phox cD N A  transcripts in these cells (C, 

control; represents cDN A form ed through treatm ent o f  m RN A  w ith reverse 

transcriptase, w hereas represents controls, treated w ith vehicle, instead o f  reverse 

transcriptase; M represents the m olecular w eight DN A m arker).

B

p22phox

p-actin

C All CAM C All C All
Absorbance
Units

800  

600  

400  

200 

0

-P<0.05— i

Control Ang II 
n=4 n=4

Figure 6.3 Effects o f  treatm ent with either 1 pm ol/L  o f  A ng II, or vehicle, for 4 

hours, on the abundance o f  p22phox m RN A  in the IM A  from 4 different patients. (A) 

A scanned image o f  R T-PC R cDNA transcript products for p22phox and p-actin after 

agarose gel (1.5% ) electrophoresis. (B) This data was quantified using the 

phosphorim ager, as described in the text (C, control).
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The different baseline levels o f  p22phox are striking, despite the relatively even 

am plification o f  the house-keeping gene. In the case o f  IM A, each treated segm ent 

was com pared w ith an untreated segm ent derived from  the sam e vessel. In 

unstim ulated IM A, p22phox expression relative to actin, in arbitary densitom etric 

units, was 527 ± 31 w hereas in Ang II -  stim ulated arteries this was 680 ± 33 

(p=0.048, 95%  confidence interval 2.7 to 302, n=5). In sim ilar studies in HAEC, the 

increase in abundance o f  p22phox transcripts by treatm ent w ith 1 pm ol/L  o f  either 

losartan or actinom ycin D, com pletely prevented the previously  observed Ang II -  

induced increase in abundance o f  p22phox transcripts (Figure 6.4).

np22phox

g
GAPDH

j
C Ang II Ang II + Ang II + 

act D losartan

C - control; Ang II - angiotensin II; act D - actinomycin D;
GAPDH glyceraldehyde-3 phosphate dehydrogenase

Figure 6.4 Effects o f  treatm ent o f HAEC with either 1 pm ol/L  o f  A ng II, or 

vehicle, for 4 hours, in the presence or absence o f  either 1 pm ol/L  o f  actinom ycin or 

losartan, on the abundance o f  p22phox m RNA in hum an aortic endothelial cells. A 

scanned im age o f  R T-PC R  cDN A transcript products for p22phox and G A PD H  after 

agarose gel (1.5% ) electrophoresis (C, control; A ct D, actinom ycin D).

6.4 D iscussion

W e investigated the m olecular m echanism s that m ay be involved in Ang II - 

stim ulated activation o f  N A D (P)H  oxidase in hum an arteries and cells. In previous
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studies, we demonstrated that Ang II stimulates increased O2" production by an AT 1 

receptor and NAD(P)H oxidase -  dependent mechanism.

In the present in vitro study, the effect of treatment with Ang II on the abundance of 

p22phox cDNA transcripts in human vascular cells and tissues was investigated. 

These transcripts are representative of the amount of p22phox mRNA present in these 

cells. Messenger RNA is the transcribed molecular product formed as a result of gene 

expression. The abundance of mRNA is determined by the rate of gene transcription, 

and the rate of mRNA degradation (or half-life). Messenger RNA provides the 

template for translation and synthesis of the protein product, and consequently, 

increased abundance of mRNA will lead to an enhanced amount of the protein 

product. In the present case, NAD(P)H oxidase is a multimeric protein, which when 

activated, is composed of p22phox, gp91phox, p47phox, p67phox and, p40phox 

proteins. An increase in the abundance of these subunits, and in particular those 

involved in electron transport (such as p22phox), is associated with enhanced 

abundance of the ‘activated’ NAD(P)H oxidase multimer. This, in turn, will augment 

electron transport and O2’ production.

Treatment of both HAEC and HCASMC with 1 pmol/L of Ang II for 4 hours, was 

associated with an increase in the abundance of p22phox cDNA transcripts in these 

cells. The mechanism for this Ang II effect may be due to either an increase in the rate 

of gene transcription, leading to enhanced production of p22phox mRNA, or 

prolongation of the half life of this molecule. In further studies, using IMA obtained 

from 4 different patients, treatment of vascular tissue with 1 pmol/L of Ang II, or 

vehicle, for 4 hours, was also associated with a significant increase in the abundance 

of p22phox cDNA transcripts. This suggests that the effect of Ang II on p22phox 

mRNA is operative in intact human arteries.

Further molecular studies sought to determine the mechanisms that may be involved 

in the effect of Ang II on p22phox mRNA. HAEC were again treated with 1 pmol/L 

of Ang II, or vehicle, for 4 hours in the presence or absence of either the AT 1 receptor 

antagonist, losartan, or an inhibitor of transcription, actinomycin D. In this case, co

treatment with losartan, prevented the observed increase in abundance of p22phox 

cDNA transcripts associated with Ang II treatment. This observation is in keeping 

with the earlier observations, by this laboratory and elsewhere (Griendling et al 1994;
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Rajagopalan et al 1996b), that ATi receptor blockade prevents Ang II -  stimulated 

O2' production. In addition, inhibition of gene transcription by treatment of these cells 

with actinomycin also prevented the previously observed increase in abundance of 

p22phox cDNA transcripts arising from treatment with Ang II.

Recently, studies by Lassegue et al. (2001) investigated the effects of treatment of rat 

VSMC with Ang II on the abundance of nox (i.e. gp91phox and homologues) mRNA 

abundance. Treatment of these cells with different concentrations of Ang II lead to a 

dose- and time-dependent increase in the abundance of noxl (gp91phox), but not 

nox4, mRNA (EC50 3nmol/L and a maximal response at lpmol/L). The increase in 

noxl mRNA was detectable within the first hour and increased to a maximum at 4 

hours. These observations are in keeping with those of the present study.

Taken together, these findings suggest that exposure of human vascular cells to Ang II 

leads to an increase in the abundance of p22phox cDNA. Consequently, this may lead 

to enhanced synthesis of p22phox protein in human vascular cells and blood vessels. 

These observations also support the thesis that Ang II may augment O2" production in 

human blood vessels through an ATi receptor -  dependent activation of NAD(P)H 

oxidase.
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7 Functional significance of Ang II -  stim ulated 

superoxide anion production in hum an resistance 

arteries

7.1 Summary

Ang II-stimulated O2' production contributes to the vasopressor effect of this 

hormone in rats made hypertensive by infusion of Ang II (Rajagopalan et al 1996b). 

In this study, we tested the hypothesis that enhanced ROS production might 

contribute to the vasoconstrictor effect of Ang II in human subcutaneous resistance 

arteries (SRA). The results did not support this hypothesis.

7.2 Methods

Resistance arteries are, in functional terms, the most important type of blood vessel 

for the regulation of peripheral vascular resistance, and therefore, blood flow 

(Mulvany and Aalkjaer 1990). For this reason, I sought to explore whether or not Ang 

II -  stimulated O2' production might contribute to the vasopressor effect of this 

hormone in human SRA.

Subcutaneous resistance arteries (SRA) were isolated from abdominal wall skin 

biopsies, according to the methods described in Chapter 2 (section 2.2.2). Isometric 

tension studies were undertaken in these arteries according to the methods described 

in Chapter 2 (section 2.8) (Mulvany and Aalkjaer 1990; Mulvany and Halpem 1977). 

The SRA underwent a standard normalisation process and ‘wake-up protocol’. As part 

of this protocol, the SRA were initially exposed to a 123 mM of KPSS for a series of 

5 minute periods until repeatable maximal contractions were achieved, and then once 

to 10 pmol/L of norepinephrine (NE). After a plateau contraction had been attained 

with NE, 3 pmol/L of acetylcholine (ACh) was added to stimulate endothelium- 

dependent vasodilatation. Arteries that were unable to contract to either KPSS or NE 

or showed no relaxation to ACh (and were therefore considered to have no 

functionally intact endothelium) were discarded. The arteries were then incubated for 

a further 30 minutes in Krebs solution prior to the commencement of the 

concentration-response curves (CRC) incorporated in the study protocol. SRA were
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treated with lmmol/L of the ROS scavenger, Tiron, or vehicle, and a cumulative 

concentration response curve (CRC) for NE was performed, followed by a further 

treatment with 3 pmol/L of ACh. SRA were then co-treated with 1 pmol/L of Ang II 

for 1 hour to stimulate O2 ' production, and a second CRC for NE was performed (for 

summary of protocol see Figure 7.1).

1 mmol/L of Tiron

PROTOCOL I NE
(single
dose)

NE
CRC

1 mmol/L of Tiron 
1 nmol/L of Ang II

followed by 
3 (imol/L o f ACh

NE
CRC

PROTOCOL 2 NE
(single
dose)

Vehicle
NE

CRC

1 nmol/L of Ang II

followed by 
3 jimol/L o f ACh

NE
CRC

Figure 7.1 Schematic representation of the protocol undertaken in human small 

resistance arteries.

These studies were undertaken with paired vessels from the same patient in every 

case. Statistical analyses were undertaken using a paired t test with log-transformed 

data.

7.3 Results

After initial preconstriction with 10 pmol/L of NE, mean relaxation of all SRA to 3 

pmol/L of ACh was 86±3% (n=20). SRA which did not relax fully, and therefore did 

not have functional endothelium, were not included in this study. Contractile 

responses obtained after each NE CRC are expressed as a percentage of the maximum 

response obtained after initial treatment with a single dose of 10 pmol/L of NE. After 

treatment with vehicle, or Tiron, the maximum contraction (Emax) to NE, compared to
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the initial response obtained after treatment NE, was 94 +/- 7 % and 98 +/- 1.7%, 

respectively (Figure 7.2).

- o - N E  crc  + T iron  1 
m m o l/L

N E  + v e h ic le1 2 0  -i

P< 0.04100  -

d)
</> 8 0  - c

I  6 0  -0)
X 4 0  - 
(0
E

^  20  -  0s*

- 8.00 - 7.00 - 6.00- 9.00 - 5.00-20 J

Log [NE], M

Figure 7.2 This figure shows concentration response curves for NE in SRA 

incubated in the presence or absence of 1 mmol/1 of Tiron.

PD2 (-log EC50) values for the CRCs for NE undertaken in the presence and absence 

of 1 mmol/L of Tiron were (6.5 +/- 0.03 vs. 6.1 +/- 0.03, Tiron vs. vehicle, 

respectively; P=0.036). After incubation with either vehicle or 1 pmol/L of Ang II for 

1 hour, the maximum contraction (Emax) to NE was 98.4 +/- 6 % and 84.6 +/- 6.6%, 

respectively (P=0.1) [Figures 7.3].
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Figure 7.3 Concentration response curves to NE after treatment with vehicle or 1 

micromole of Ang II for 1 hour (n=8)

In this case, the pD2 values for the NE CRCs in the absence and presence of Ang II 

were 6.5 +/- 0.06 and 6.3 +/- 0.08, respectively (P=0.5). After incubation of SRA with 

1 mmol/L of Tiron, in the absence or presence of 1 pmol/L of Ang II for 1 hour, the 

Emax of CRC for NE was 94.9 +/- 2.3% and & 97.5 +/- 7.4%, respectively (Figure

7.4).

- 9.00 - 8.00 - 7.00 - 6.00 - 5.00
Log [NE], M

Figure 7.4 Concentration response curves to NE after treatment with vehicle or 1 

pmol/L of Ang II for 1 hour in the presence of 1 mmol/L of Tiron (n=10).
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7.4 Discussion

In this study, treatment of SRA with the 1 mmol/L of the ROS scavenger, Tiron, 

resulted in a shift to the right of the CRC for NE. The maximum contractile responses 

for these two groups were comparable. Alternatively, treatment with 1 pmol/L of Ang 

II for 1 hour failed to augment either the sensitivity of SRA, or their maximum 

contractile response, to NE, compared with responses to vehicle treated SRA. In fact, 

if anything, there appeared to be a trend in favour of an attenuated NE CRC response 

by SRA after treatment with Ang II, compared to those treated with vehicle. Finally, 

incubation of Tiron-treated SRA with 1 pmol/L of Ang II for 1 hour had no effect on 

the CRC for NE.

These observations do not support the hypothesis that Ang II -  stimulated O2" 

production might contribute to the constrictor effect of this hormone in human SRA. 

This hypothesis was based on the supposition that NO is an important vasodilator in 

these arteries, and that bioavailable NO would be modulated by ROS activity. The 

complex protocol in this study (Figure 7.1) was designed to test this hypothesis using 

SRA obtained from a single skin biopsy. The protocol included an initial CRC for NE 

to be undertaken in the presence or absence of Tiron, followed by an incubation 

period of 1 hour in which SRA were exposed to a pharmacological concentration of 

Ang II in order to stimulate vascular NAD(P)H oxidase activation and ROS 

production.

Only SRA which relaxed fully to ACh, therefore indicating the presence of functional 

endothelium, were included in this study. Treatment of SRA with the ROS scavenger, 

Tiron, resulted in a shift to the right of the NE CRC, compared to that of vessels 

treated with vehicle. This observation suggests that a reduction in ROS activity, and 

therefore less NO scavenging, led to an increase in bioavailable NO. In this case, 

higher concentrations of NE were required to achieve a given increment in tension, 

compared to SRA treated with vehicle. These findings suggest that ROS activity may 

contribute to resting vascular tone in human SRA, possibly through removal of 

bioavailable NO.

The lack of potentiation of NE -  induced vasoconstriction by treatment with Ang II in
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these studies is in contrast to observations in some, but not all (Creager et al 1984; 

Nicholls et al 1981), studies in both experimental animals and humans. For example, 

in vivo studies by Qiu et al. (1994) demonstrated that superfusion of exteriorised rat 

mesenteric arteries with PE was associated with a reduction in both vessel diameter 

and blood flow within these arteries. This effect was attenuated by co-treatment (by 

topical superfusion) of these arteries with an ACE-I, or ARA, or both.

Evidence for adrenergic facilitation by Ang II has been provided from studies in both 

normotensive and hypertensive subject, whereas evidence against this effect has also 

been provided. Studies by (Seidlin et al 1991) provided some information which 

helped to clarify the possible effect of Ang II on adrenergic tone. In these studies 

healthy human subjects were exposed to lower-body negative pressure (15 mmHg) 

which resulted in a rise in blood pressure, without any change in heart rate. In this 

case, forearm vasoconstriction, measured by strain-gauge plethysmography, occurred 

due to an increase in sympathetic activity. Intra-brachial artery infusion of 

norepinephrine (NE; 37.5 -  150 pmol/min) was also undertaken, which induced 

comparable reductions in forearm blood-flow. In subsequent studies, infusion of a 

non-pressor concentration of Ang II (320 fmol/min) was associated with an enhanced 

reduction in forearm blood flow to lower-body negative pressure (i.e. sympathetic 

nervous system activation), whereas Ang II had no effect on NE-induced 

vasoconstriction. These observations suggest that in human blood vessels, Ang II -  

induced adrenergic facilitation is a pre-synaptic phenomenon. This effect may be 

mediated through augmentation of NE release, or perhaps through an inhibition of NE 

re-uptake. These data, taken together with observations from the present study, 

suggest species differences may exist in the regulation of adrenergic control of 

vascular tone.

Given this lack of potentiation, subsequent manipulation of ROS activity in these 

arteries was unlikely to have yielded any data which might have been informative as 

regards the question of whether Ang II -  stimulated 0 {  production might contribute 

to vasomotor tone in human blood vessels. Given the microscopic size of these 

arteries, it was not possible to quantify ROS concentrations either within the wall of 

these SRA, or in the bath. The lack of information on whether or not ROS activity 

was actually enhanced in these SRA by treatment with Ang II makes interpretation of 

these findings difficult. Nevertheless, there are several possible explanations for our
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findings. Firstly, the oxidant-generating properties of human SRA are poorly 

characterised. It is possible, for example, that NAD(P)H oxidase may not be 

quantitatively or functionally important in these blood vessels. The effect of ROS 

scavenging in these SRA by treatment with Tiron does suggest that basal ROS 

generation has a tonic constrictor effect in these SRA, possibly through removal of 

NO.

The importance of NO in the regulation of vascular tone in human SRA is a subject of 

current debate (Buus et al 1998). In these studies, human SRA were threaded with 

stainless steel wires and mounted in a wire myography. NO concentrations in the 

lumen of the artery were measured by use of a electrochemical microelectrode which 

had a high selectivity for NO and a sensitivity of approximately 1 nmol/L of NO. The 

diameter of this microelectrode was approximately 30 -50 pm. The SRA were pre

constricted with 5 pmol/L of NE, and then treated with incremental, cumulative 

concentrations of ACh. Stimulation of these arteries with ACh resulted in a mean 

relaxation of 64 ± 7% (n=4), however, no detectable increases in NO concentration 

were observed. By contrast, treatment of these SRA with the NO donor, S-nitroso-vV -  

acetylpenicillamine (SNAP,) resulted in a comparable relaxation, and an increase in 

NO concentration by 32 ± 8 nM. These effects were attenuated by co-treatment with 

the NO scavenger, oxyhaemoglobin. Further studies of intracellular electrical 

potentials in these arteries demonstrated that ACh-induced vasorelaxation resulted in 

hyperpolarisation of the VSMC in these arteries, which was not inhibited by co

treatment with the NO synthesis inhibitor, L-NOARG. These observations confirm 

the presence of an L-arginine/NO pathway in human SRA, but demonstrate that ACh 

-  induced relaxation in these arteries is predominately mediated by hyperpolarisation, 

which is NO-independent, suggesting the involvement of an endothelium-dependent 

hyperpolarising factor (EDHF).

These findings are supported by observations in our own laboratory. Kelly et a l 

(Kelly et al 2000) undertook studies in human SRA obtained by gluteal fat biopsy 

from healthy subjects and patients with polycystic ovarian syndrome. These 

investigators studied the mechanisms of insulin-mediated vasodilation in NE- 

preconstricted SRA. Concentration response curves for NE were undertaken in the 

presence and absence of the NO synthesis inhibitor, L-NMMA. They found that the 

contractile responses to NE in SRA treated with L-NMMA were no different to those
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of SRA treated with vehicle. This suggests that NO-mediated vasodilation is not 

important in human SRA. This conclusion has also been supported by observations in 

Hillier’s laboratory in which EDHF has been demonstrated to be the dominant 

vasodilator in human SRA (Coats et al 2001). That NO-mediated vasodilatation may 

not be important in human SRA suggests that Ang II-stimulated 0 {  production does 

not modulate at least short-term changes in vasomotor tone, which is in keeping with 

the findings of the present study.

Future studies of the functional effect of Ang II-stimulated O2’ production in human 

blood vessels should focus, therefore, on studies using alternative blood vessel types 

and methods of investigation. One alternative blood vessel to study might have been a 

conduit artery, such as the IMA. Endothelium-dependent vasorelaxant responses in 

these arteries are recognised to be poorly reproducible. Other explanations for our 

findings may be related to the experimental procedures involved in the present study. 

It may be, for example, that this in vitro technique is insufficiently sensitive to elicit 

any functional component of Ang-II stimulated O2’ generation. In addition, the period 

of incubation with Ang II may have been too short to result in any important 

activation of NAD(P)H oxidase in these SRA. Alternatively, the use of a 

pharmacological concentration of Ang II may have had adverse effects on the 

contractile properties of these arteries. The concentration of Ang II used in this study 

was selected on the basis of our earlier findings in IMA, in which it was demonstrated 

that for a treatment period of 1 hour, only micromolar, but neither nanomolar or 

picomolar, concentrations of Ang II were associated with a statistically significant 

increase in vascular O2’ concentrations.

In vitro contractile responses of human arteries to Ang II are associated with 

tachyphylaxis (Thomson and Johnson 1987). This is an attenuation of the contractile 

response with increasing concentrations and duration of exposure to Ang II. The 

mechanisms giving rise to tachyphylaxis are poorly understood, but may involve 

desensitisation of the ATi receptor as a result of agonist-induced phosphorylation, and 

receptor internalisation (Hunyady 2001). The pharmacological concentration of Ang 

II used in this study may therefore have resulted in desensitisation of these blood 

vessels to additional agonist-induced contraction. The fact that the cumulative 

concentration response curves were undertaken with NE, rather than Ang II, mitigates 

against this being an important factor in the present investigation. The effect of Ang
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II-stimulated O2 ' production in human blood vessels could also be investigated using 

different functional techniques. One such technique that is thought to represent a more 

physiological method of vascular assessment is perfusion myography (Falloon et al 

1995). This technique differs from wire myography in a number of ways. In perfusion 

myography, the resistance artery is cannulated and pressurised. In this case, vascular 

responses to pharmacological agents are enhanced, compared to those observed from 

arteries under isometric tension (Falloon et al 1995). One disadvantage of pressure 

myography studies is that only one resistance artery may be studied at any one time. 

Clearly, in vivo techniques such as studies of blood flow in either the forearm, or 

dorsal hand veins, using forearm strain-gauge venous occlusion plethysmography.

In conclusion, therefore, this study fails to support the hypothesis that Ang II- 

sitimulated 0 {  production contributes to the constrictor effect of this hormone in 

human SRA. The reasons for this are not clear. Further studies are warranted, ideally 

using in vivo techniques.
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8 Relationship between IMA superoxide anion 

concentrations and clinical risk factors and 

treatm ent type

8.1 Summary

Angiotensin converting enzyme (ACE) inhibitors have recently been demonstrated to 

reduce major atherosclerotic events in patients at risk of coronary heart disease 

(CHD). In this prospective study of consecutive patients undergoing coronary artery 

bypass grafting (CABG) we found vascular free radical concentrations were lower in 

those patients who were treated with a renin-angiotensin-aldosterone system (RAAS) 

inhibitor compared to those who were not. This may be one additional mechanism 

which contributes to the beneficial effects of these drugs in patients with CHD.

8.2 Methods

The aim of the present study was to determine, which, if any, risk factors and drug 

therapies, were associated with altered free radical concentrations in the arteries of 

CHD patients undergoing CABG. Seventy-nine consecutive patients who were 

undergoing CABG were prospectively included in this study. Patient clinical 

characteristics and risk factors for cardiovascular disease (defined in Chapter 2, 

section 2.1) were determined by review of case records.

Superoxide concentrations in distal segments of IMA obtained at the time of CABG 

were measured by lucigenin-enhanced chemiluminescence in a liquid scintillation 

counter, as described in section 2.5.6. Statistical analyses of vascular O2' 

concentrations after log-transformation were undertaken using the non-parametric 

Mann-Whitney Test. Step-wise multiple regression analysis was also performed. A 

probability value of P< 0.05 was considered statistically significant.

8.3 Results

Data On age, sex, risk factors and drug therapy are given in Table 1.
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Table 8.1 Patient characteristics, including risk factors and therapies.*

RAAS Inhibitor No RAAS Inhibitor

N 19 60

Mean age, y 61±9 62±8

Males, n (%) 13 (68) 45 (75)

Females, n (%) 6(33) 15 (25)

Risk factors, n (%)

Smoking 3(16) 10(17)

Hypertension 9(47) 21(35)

Diabetes mellitus 2(10) 4(7)

Hypercholesterolaemia 14 (73) 41(68)

Plasma chol, mmol/L (mean±SEM) 5.9±1.2 5.2±0.9

Medication, n (%)

Aspirin 14(74) 48 (80)

P-Blockers 13 (68) 33 (55)

Calcium channel blockers 11 (58) 34 (57)

HMG-CoA* reductase inhibitors 7(37) 31 (52)

Nitroglycerin 12(63) 34 (57)

Data on different classes of drug therapies in relation to the presence or absence of an 

ACE-I or ARA are presented in Table 2.

* Renin-angiotensin system inhibitor (includes 16 patients taking an ACEI and 3 patients taking an 
ARA); * Hydroxymethyl-glutaryl-CoA (HMGCoA) reductase
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Basal O 2’ production in hum an IMA was w eakly associated w ith patient age (r = 

0.19, p<0.1). N o other relationships existed betw een basal O 2" production in either 

IM A or SV, and any other patient risk factor. The profiles o f  risk factors and different 

classes o f drug therapies w ere sim ilar betw een patients w ho were taking an A C E-Ior 

ARA, com pared to those w ho were not taking these therapies. An A CEI or ARA was 

prescribed in 16 and 3 patients, respectively. The m edian rate o f  production o f  O 2 ' in 

IM A was 1137 (interquartile range, IQR 1290) pm ol/m in/m g. Superoxide 

concentrations were low er in those patients taking either an ACE-I or an A R A  (857, 

IQR 670 pm ol/m in/m g; n=  19) com pared to those w ho w ere not (1600, IQ R  1511 

pm ol/m in/m g; n= 60; p=0.002; 95%  confidence interval for m edian difference 487, 

1228 pm ol/m in/m g [Figure 8.1]).

Superoxide
pmol/min/mg |--------- P = 0.002

6000  -

5000

4000  -

3000  -

2000  -

1000

ACEI + ARA Other therapies

Figure 8.1 Box-plot graphical representation o f  superoxide concentrations 

(pm ol/m in/m g) in IM A from patients undergoing coronary artery bypass surgery who 

were taking either an ACE-I or an ARA, com pared to those patients not taking these 

therapies. M eans are indicated by solid circles, rectangles represent the lower and 

upper lim its o f the interquartile range and m edian values are dem arcated inside the
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rectangles. The vertical lines (or “whiskers”) represent the spread of the data. The 

upper line represents the upper, or 3rd quartile, plus 1.5 (interquartile range) and the 

lower line represents the lower, or 1st quartile, minus 1.5 (interquartile range). The 

asterisks (*) represent outlying values which lie between 1.5 and 3 times away from 

the middle 50% of the data.

No other associations between age, sex, risk factors, or individual drug therapies, and 

O2’ concentrations were identified.

8.4 Discussion

In this analysis, we demonstrated that O2" concentrations were lower in patients 

treated with either an ACE-I or an ARA, compared to those who were not. The 

clinical characteristics of both of these groups were similar such that the observed 

differences in vascular O2' concentrations were unlikely to be explained by any other 

patient characteristic or therapy. It is of interest that despite the fact that a large 

proportion of these patients were taking drugs with putative anti-oxidant properties, 

such as aspirin, beta-blockers and HMGCoA reductase inhibitors, vascular free 

radical concentrations were detected at physiologically important concentrations. The 

absence of any important anti-oxidant effect of these other therapies suggests that the 

sample size may not be sufficiently large to detect what may be a lesser anti-oxidant 

effect of these drugs.

In the current study, basal O2’ concentrations in IMA were weakly related to patient 

age. The variation in basal vascular O2’ concentrations observed in this and other 

human studies (Guzik et al 2000b; Huraux et al 1999), and the lack of correlation of 

O2 ' production with some atherosclerotic risk factors, treatment with nitrates and 

other therapies, may be due to the heterogeneous clinical characteristics of patients 

with CAD. Such patients have differences in their genetic background, their 

atherosclerotic risk factors, their disease duration and severity, and their drug therapy.

Our observations raise two questions. The first is how does such treatment exert this 

effect? Though some ACE-Is may have direct free radical scavenging properties this 

effect has been difficult to show at therapeutic concentrations in humans (Chopra et al 

1992). A more plausible explanation is that the anti-oxidant effect of this therapy is
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due to inhibition of the effects of Ang II. The second question is what, if any, might 

be the therapeutic significance of this effect of RAAS inhibitors? A reduction in 

vascular free radical production associated with RAAS inhibition, as is the case in the 

current study, may lead to enhanced bioavailable nitric oxide.

Taken together, these observations suggest that RAAS inhibition leads to a reduction 

in oxidative stress in patients with CHD. Given the damaging effects of increased free 

radical activity in the vasculature, the anti-oxidative effects of these therapies may be 

one further mechanism which may contribute to their beneficial effects in patients 

with CHD.
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9 General d iscussion

The objectives of this thesis were to characterise the sources of O2’ production in 

human blood vessels, and the mechanisms involved in ROS generation. The 

preliminary findings of this investigation demonstrated that O2* concentrations could 

be measured in human conduit blood vessels ex vivo in a reproducible fashion. The 

principal findings of this thesis include evidence of higher basal O2" concentrations in 

human arteries compared to those in veins, and that both NAD(P)H oxidase and XOR 

enzymes contribute to basal O2* production in these vessels. By contrast, NOS 

appeared to contribute to vascular '02* production only in some individuals. In 

addition, it was demonstrated that SOD protein levels are quantitatively similar in 

human IMA and SV. In subsequent studies, it was shown that Ang II augments 

vascular O2’ production by ATi receptor-dependent, NAD(P)H oxidase-mediated 

pathway. Immunodetection studies demonstrated this enzyme to be present 

throughout the vascular wall. Additional observations from other molecular 

investigations support the thesis that this pathway involves an enhanced abundance of 

mRNA of the subunits of NAD(P)H oxidase, and an increase in protein synthesis. 

Furthermore, inhibition of the AT2 receptor did not prevent Ang II-stimulated increase 

in 02* production in IMA, suggesting that this receptor does not contribute to O2* 

generation in human arteries. In vitro studies failed to demonstrate any contractile 

effect of Ang II-stimulated O2* production in human subcutaneous resistance arteries. 

By contrast, multivariate analyses of the relationship between risk factors and 

treatments for CHD demonstrated that treatment with an ACE-I or ARA was 

associated with reduced vascular O2' concentrations.

Superoxide production may be greater in IMA, compared to SV, because of the 

proportionally greater content of vascular smooth muscle in these arteries. One reason 

for this difference between conduit arteries and veins may be due to the presence of a 

thicker, muscular tunica media in arteries, where NAD(P)H oxidase was demonstrated 

to be abundant. Furthermore, that endothelial denudation had no effect on basal O2’ 

concentrations suggests that the endothelium is not an important source of O2 ' 

generation overall. Alternatively, the observation that inhibition of eNOS, by 

treatment of blood vessels with L-NAME, and endothelial denudation, tended to
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reduce O2* concentrations in the same patients (r = 0.85; n=12, p<0.001. [see Section 

3.3.3), suggests that the endothelium, and eNOS in particular, may be an important 

source of O2' generation in some, but not all, individuals.

This possibility is supported by studies of endothelial function in both experimental 

animals and humans. In studies of the SHRSP compared with normotensive control 

animals, Kerr et al (1999) demonstrated that the vascular endothelium was a source of 

enhanced O2' generation in aortic segments from the SHRSP, in which there was an 

enhanced abundance of NOS mRNA. Treatment with tetrahydrobiopterin, a co-factor 

for L-arginine biosynthesis, attenuated the difference in O2' generation. Earlier 

investigations by our group (Grunfeld et al 1995; McIntyre et al 1999) demonstrated 

impaired endothelium (NO)-dependent vasorelaxation in the SHRSP, compared to 

normotensive control animals. Taken together, these observations suggest that in this 

model of genetic hypertension, abnormalities in vascular function may be due to 

enhanced O2’ generation within the endothelium. In humans, endothelial dysfunction, 

or impaired NO-mediated vasodilatation, has been demonstrated a variety of disease 

states such as hypertension (Nakazono et al 1991), hypercholesterolaemia (Creager et 

al 1990), atherosclerosis (Cox et al 1989), diabetes (Calver et al 1992a), and heart 

failure (Kubo et al 1991). A reduction in bioavailable NO may be due to impaired 

production, increased removal, or an attenuation in its activity. Our observations 

suggest that, in this case, endothelium-dependent O2' generation in human conduit 

blood vessels may be less important for NO breakdown than in other species.

By contrast, O2' generation by VSMC and adventitial cells may be more important in 

terms of NO degradation in human blood vessels. This is supported by observations 

from our immunohistochemical studies which demonstrated that NAD(P)H oxidase 

and XOR appeared are most abundant within the vascular smooth muscle and 

adventitial layers in IMA and SV. The pro-oxidative activity of VSMC (Griendling et 

al 1994; Mohazzab and Wolin 1994), and the consequent effect on vascular tone 

(Nowicki et al 2000; Rajagopalan et al 1996b), is well recognised, however, the role 

of the adventitia as a source of ROS production has only recently emerged.

Pagano et al (1997a; 1998) explored the potential importance of adventitial O2’ 

production in the modulation of vascular tone. In one of these studies (Wang et al
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1998), rat thoracic aortic rings were mounted in an organ bath such that either the 

adventitial or endothelial surfaces of the artery were orientated outwards. This was 

achieved by carefully inverting the artery over a rubber tube. In this study, therefore, 

there were three groups, including a control group of arteries which had been inverted 

twice to control for any cellular injury induced by this manipulation. The presence of 

an intact endothelium was determined by treatment with ACh (10'6mol/L). Arteries 

were stretched to attain a resting tension of 5g, and after equilibration for 1 hour, they 

were pre-contracted with PE(10'6mol/L). In order to assess NO-dependent and 

independent vasorelaxation in conditions of normal or reduced vascular ROS activity, 

cumulative concentration response curves were performed with either exogenous NO 

(10'loto 10'6mol/L) or sodium nitroprusside (10'10to 10'6mol/L), in the presence and 

absence of SOD (150 U/mL). Studies in control vessels demonstrated comparable 

vasorelaxant responses were no different before or after inversion. NO-dependent 

vasorelaxation was less in rings with the adventitia facing outward, compared with 

those in which it faced inward, whereas the responses to sodium nitroprusside were 

not affected by the orientation of artery. This suggests that NO is inactivated to a 

greater extent when the adventitia is exposed externally, than when it is inverted 

internally. Furthermore, in the presence of SOD, this difference was attenuated. 

Further studies using DPI demonstrated that NAD(P)H oxidase was an important 

source of adventitial 02* generation. This study suggests that the adventitia regulates 

bioavailable NO through generation of ROS. Other studies by this group in different 

animal species demonstrated NAD(P)H oxidase within adventitial fibroblasts to be a 

source of O2* generation (Pagano et al 1997b; Pagano et al 1998; Wang et al 1999).

These observations are consistent with our own findings. We failed to detect 

cytochemical markers for leucocytes within the adventitia of IMA. This suggests that 

fibroblasts are the cellular source of ROS generation in the adventitia of human 

conduit blood vessels. The adventitia has also been the focus of interventional studies, 

designed to modulate vascular tone. For example, Tsutsui et al (1998) demonstrated 

that in vivo infusion of an adenoviral vector encoding recombinant eNOS 

(AdCMVeNOS) results in high levels of transgenic expression in adventitial 

fibroblasts of infused arteries. This was associated with preserved vasorelaxation 

responses to bradykinin in endothelium-denuded arteries and increases in cGMP 

production.
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The enzymatic sources of O2' generation were also investigated in this study. 

Inhibition of either NAD(P)H oxidase or XOR, was associated with a reduction in O2’ 

concentrations in both arteries and veins. DPI is, however, an inhibitor of flavin- 

dependent enzymes, which include both NOS, and XOR (Sanders et al 1997). It is 

plausible, therefore that DPI may also have inhibited O2" generation by these 

enzymes. This possiblity is unlikely, given that, for example, selective inhibition of 

eNOS by treatment with L-NAME, had no effect on 0 2 ' concentrations in either IMA 

or SV. Our observations are also supported by those of Guzik et al (2000b) who 

demonstrated that treatment of IMA with similar concentrations of DPI resulted in 

comparable reductions in basal O2’ concentrations in both IMA and SV. The lack of 

specificity of this agent may be one limitation of this study, however, DPI remains the 

standard pharmacological tool used to investigate vascular O2’ generation by 

NAD(P)H oxidase. Current investigations in our laboratory to test the effects of 

apocynin, an antagonist which may cause more specific inhibition of NAD(P)H 

oxidase, in both rat and human blood vessels, confirm the central role of this enzyme 

for vascular O2’ production (Hamilton et al 2001).

Studies in animal models of vascular disease have provided evidence of the central 

role of NAD(P)H oxidase-mediated ROS generation in relation to vascular 

dysfunction animals (Rajagopalan et al 1996b; Zalba et al 2000). For example, in 

studies undertaken in genetically hypertensive rats, Zalba et al (2000) demonstrated 

that the enhanced O2’ generation measured in the aortae of these animals, compared 

with that of age-matched, normotensive controls, was NAD(P)H oxidase-dependent. 

Furthermore, this was also associated with increases in the abundance of p22phox 

mRNA, media thickness and cross-sectional area. Studies by Hamilton et al (2001) 

recently demonstrated that NAD(P)H oxidase -  dependent O2’ generation was greater 

in old rats, compared to young rats. This in turn was associated with enhanced 

immunostaining for p22phox protein and reduced bioavailable NO in the old rats, 

compared to the young rats.

One of the principal findings of the present investigation was that treatment of human 

arteries with Ang II leads to enhanced O2' production, by an ATi receptor-dependent 

mechanism. This effect was dependent on both the concentration of Ang II and the 

duration of exposure. Furthermore, we observed that treatment with even
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physiological, or picomolar, concentrations of Ang II tended to increase O2’ 

production in IMA, suggesting that this mechanism may occur in vivo. These 

observations are consistent with other investigations of Ang II-stimulated O2' 

production in cultured rat VSMC (Griendling et al 1994), and in vivo studies in rat 

models of hypertension (Rajagopalan et al 1996b; Zalba et al 2000) and a rabbit 

model of atherosclerosis (Wamholtz et al 1999). In studies of rat models of 

hypertension, co-treatment with an ARA improved elevated blood pressure and 

endothelium-dependent vasorelaxation (Rajagopalan et al 1996b; Zalba et al 2000), 

whereas in the rabbit atherosclerosis model, co-treatment with an ARA improved 

endothelial dysfunction, normalised vascular O2’ concentrations and NAD(P)H- 

oxidase activity, decreased macrophage infiltration, and reduced early plaque 

formation (Wamholtz et al 1999).

ATi receptor activation triggers a variety of intracellular signaling cascades with 

differing temporal courses, which result in the vasoactive effects of this hormone 

(Berry et al 2001a). Acute effects, for example vasoconstriction, are due to altered 

protein kinase C and phospholipase enzyme activity and increases in intracellular 

Ca2+ ion concentrations, whereas slower, more sustained effects, such as promotion of 

gene transcription, are due to the effects of tyrosine kinase activation and intracellular 

protein phosphorylation (Berry et al 2001a). In the case of of ATi receptor-induced 

NAD(P)H oxidase activation, both in cultured rat VSMC (Griendling et al 1994) and 

in intact human blood vessels (Berry et al 2000a), increased O2' concentrations were 

detectable within one hour, and were sustained for over 4 hours.

The present study also included an investigation of the biochemical and molecular 

mechanisms that may be involved in Ang II -  stimulated O2’ production in human 

blood vessels. Inhibition of NAD(P)H oxidase by treatment with DPI attenuated Ang 

II-stimulated O2' production in human IMA, implicating this enzyme as the source of 

O2' generation. This finding was consistent with those of other investigations in 

experimental animals (Rajagopalan et al 1996b; Wamholtz et al 1999). Subsequent 

molecular investigations in this study demonstrated that treatment of either cultured 

vascular cells or intact arteries with Ang II was associated with an increase in the 

abundance of mRNA of p22phox. Furthermore, in HAEC, this was prevented by co

treatment with either losartan, or actinomycin, and inhibitor of gene transcirption.
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This latter finding suggests that Ang II may augment the rate of transcription of the 

p22phox gene in these cells.

Studies in Griendling’s laboratory have investigated the intracellular siginaling 

pathways that may be involved in ATi receptor-mediated NAD(P)H oxidase 

activation. Griendling originally described a temporal relationship between the 

duration of exposure to Ang II and altered VSMC O2' production (Griendling et al 

1994). The latter increased within the first few minutes of treatment with 100 nmol/L 

of Ang II. VSMC O2’ production also increased, following a similar timecourse, after 

treatment with fatty acids, such as arachidonic and linoleic acids (Griendling et al

1994). Ang II stimulates prostaglandin metabolism, which results in hypertrophy of 

VSMC (Natarajan et al 1994). Given that ROS activation also results in trophic 

cellular changes (Rao and Berk 1992), it is plausible that the trophic properties of Ang 

II (Berk et al 1989), may be mediated, in part, by an ATi receptor -  induced activation 

of prostaglandin metabolism and ROS production.

This thesis was explored by Zafari et al (200Q). In these studies, cultured rat VSMC 

were treated with 100 nmol/L of Ang II, which was associated with increases in [3H] 

AA and O2' concentrations, and hypertrophy of these cells. These effects were 

attenuated by co-treatment of these cells with either 5,8,11,14-eicosatetraynoic acid, a 

general inhibitor of AA metabolism, or nordihydroguaiaretic acid, an inhibitor of 

lipoxygenase metabolism, but not indomethacin, which is a cyclooxygenase inhibitor. 

Further experiments demonstrated that these effects were phospholipase A2 

dependent (Zafari et al 2000). In addition, some VSMC were transfected with 

antisense p22phox, in order to prevent Ang Il-induced NAD(P)H oxidase activation 

(UshioFukai et al 1996). In this case, treatment with Ang II had no effect on AA 

metabolite or O2' concentrations, and prevented hypertrophy of these cells. Taken 

together, these data indicate that AT 1 receptor-stimulated vascular cell O2 ' production 

occurs by a phospholipase A2-mediated increase in lipoxygenase (and possibly 

CYP450 monoxygenase) metabolites, which in turn, mediate NAD(P)H oxidase 

activation. These metabolites induce NAD(P)H oxidase activation, by causing 

exposure of the phox SH3 binding domains, which is required for the assembly of 

these subunits (Sumimoto et al 1994).
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More recently, studies by Lassegue et al (2001) in the same laboratory investigated 

the effects of Ang II on the differential expression of nox family members (i.e. 

gp91phox homologues) in rat VSMC. Treatment of these cells with different 

concentrations of Ang II lead to a dose- and time-dependent increase in the abundance 

of noxl, but not nox4, mRNA (EC50 3nmol/L and a maximal response at lpmol/L). 

The increase in noxl mRNA was detectable within the first hour and increased to a 

maximum at 4 hours. This was sustained for up to 12 hours after exposure to 100 

nmol/L of Ang II. Co-treatment with 12,13-phorbol myristate acetate, an inhibitor of 

protein kinase C, and transfection of antisense noxl, prevented these effects.

These investigations, taken together with observations from the present study, confirm 

that Ang II increases the abundance of mRNA transcripts for the phox subunits of 

NAD(P)H oxidase. It is not entirely clear, however, whether this effect is mediated by 

an increase in gene transcription, or a reduction in mRNA degradation as a result of 

enhanced stability of these molecules. In the present study, treatment of HAEC with 

actinomycin D prevented the Ang II-stimulated increase in abundance of p22phox 

mRNA, which suggests that Ang II may promote an increase in the rate of p22phox 

gene transcription. This possiblity is supported by observations in other studies of 

how Ang II promotes enhanced SOD activity (Fukai et al 1999). In these 

investigations, Ang II enhanced SOD protein expression in rat VSMC, through an 

increase in the rate of EC-SOD mRNA transcription and a prolongation of the half life 

of these molecules.

The data presented in this thesis are also supported by observations by Zhang et al 

(1999). In these studies, cultured human umbilical artery endothelial cells (HUVECs) 

were treated with micromolar and nanomolar concentrations of Ang II for up to 3 

hours. In this case, O2' production peaked at 60 minutes. Furthermore, treatment of 

these cells with NADH was associated with a greater rise in 0 {  generation, than was 

observed by treatment with NADPH. This suggests that human vascular NAD(P)H 

oxidase has greater affinity for NADH, than NADPH. In summary, therefore, there 

are now compelling data which collectively underline the importance of vascular 

NAD(P)H oxidase-mediated ROS generation in vascular damage, both in animal 

models and in humans.
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In the present study, it was also demonstrated that AT2 receptor activation does not 

contribute to O2" production in human arteries. Investigations in animal models 

previously demonstrated that stimulation of the AT2 receptor is associated with 

increased generation of bradykinin (Siragy et al 1998), NO (Siragy et al 1998), and 

cGMP (Siragy and Carey 1996), all of which have vasodilatory properties. In the 

present study, the trend toward an increase in O2" production in IMA treated with 

PD123319 suggests that this receptor may have a tonic, inhibitory effect on ATi 

receptor-dependent O2 production. It is possible that, in humans, AT2 receptor 

stimulation will lead to vasodilation through a signalling pathway that involves 

bradykinin and an increased production of NO. This, therefore, could be one 

mechanism whereby activation of the AT2 receptor may lead to scavenging of ROS as 

result of NO generation. At present, however, data on the presence, distribution and 

functional activity of AT2 receptors in human blood vessels are lacking. Recently, 

Ytterberg and Edvinsson (2001) failed to identify any AT2 receptor mRNA in human 

subcutaneous resistance arteries obtained from healthy subjects. Furthermore, AT2 

receptor antagonism, by co-treatment of arteries (which had been denuded of 

endothelium) with PD 123319 (1,10 nmol/L), had no effect on ANG II concentration- 

response curves (Ytterberg and Edvinsson 2001). Taken together, these in vitro 

observations suggest that in human resistance arteries, at least in healthy subjects, the 

AT2 receptor may have little functional importance in these blood vessels. Other 

studies of this receptor elsewhere in the human cardiovascular system nevertheless 

remain important.

One other purpose of this investigation was to investigate the functional significance, 

if any, of Ang II-stimulated O2’ generation in human blood vessels. As discussed 

earlier (Chapter 7), data obtained from in vitro studies in subcutaneous resistance 

arteries did not support this thesis. The reasons for this are not entirely clear. As 

discussed in Chapter 7, the lack of any demonstrable effect of Ang II-stimulated to 

O2’ production in these protocols may be due to the vessel type, experimental 

conditions, or the fact that this pathway does not contribute to vasomotor tone in these 

arteries. Forearm blood flow studies in healthy subjects demonstrated that the 

reduction in forearm blood flow with infusion of Ang II was attenuated by co-infusion 

of vitamin C (Dijkhorst-Oei et al 1999). Although these observations suggest that the 

vasoconstrictor effect of Ang II may be partly due to enhanced ROS production, this
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study did not quantify ROS concentrations in the blood of these patients. Further 

studies are therefore required to confirm this hypothesis.

Ang II has well documented trophic effects (Berk et al 1989), which are 

predominately mediated through tyrosine kinase activation, which in turn, promote 

enhanced gene transcription and protein synthesis (Berk and Corson 1997; Berry et al 

2001a). Recently, however, a number of investigations have demonstrated that many 

of the intracellular trophic signalling pathways which are activated by Ang II, are in 

fact, regulated by oxidant activity (Berry et al 2001a). For example, ATi receptor- 

induced receptor transactivation, is effected by cSrc-mediated tyrosine 

phosphorylation, a process which is dependent on oxidant activity (Ushio-Fukai et al 

2001). ROS are pleiotropic intracellular signals, which modulate a variety of 

pathways involved in vascular cell growth regulation (Irani 2000; Frank et al 2000a), 

and ROS may also be second-messengers for ATi receptor activation (Viedt et al 

2000; Rao 1996; Eguchi and Inagami 2000a) (see Chapter 1, section 1.4.1). The 

activity of NFkB is also regulated by ROS (Barnes and Karin 1997). Recent studies 

have demonstrated that ATi receptor-induced ROS production can result in activation 

of NFkB which lead, in turn, to enhanced VCAM-1 expression and monocyte 

activation (Pueyo et al 2000). These observations arising from in vitro and 

experimental animal studies suggest that Ang II-stimulated O2" generation in human 

blood vessels may well have non-pressor effects which could contribute to vascular 

inflammation and atherosclerosis.

Other observations in this study confirm that xanthine oxidase is important source of 

O2" generation in human blood vessels. The chemical structure of xanthine oxidase 

incorporates both molybdenum and iron/sulphur and FAD redox centres, such that 

this enzyme may utilise both xanthine and NAD(P)H as reducing substrates for O2’ 

generation (Harrison 2000; Sanders et al 1997). Electron donation from reducing 

substrates occurs at the molybdenum site (see Chapter 1, section' 1.1.2.1, Figure 1.4). 

The observation that XOR may contribute to basal O2* generation in human blood 

vessels is perhaps surprising, given previous reports that XOR was present only under 

conditions of ischaemia-reperfusion (Gimpel et al 1995; Harrison 2000; Tan et al

1995). Under these conditions, circulating XDH is converted to XO, which has a 

greater potential for generation. It is possible that the blood vessels used in this
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study may have been subject to ischaemia during surgical handling and laboratory 

manipulation, and under such conditions, XO would be activated. Nevertheless, our 

demonstration of XOR within the wall of IMA supports the concept that this protein is 

ubiquitously distributed throughout the cardiovascular system, and that under certain 

conditions, XOR can be an important source of O2’ generation. This thesis is 

supported by evidence of a functional activity of XOR both from studies in animal 

models (de Jong et al 2000; Ishimoto et al 1997; Nielsen et al 1994) and from in vitro 

(Patetsios et al 2001) and in vivo human studies (Cardillo et al 1997; Hellsten et al 

1997).

Most recently, studies undertaken by Patetsios et al (2001) demonstrated uric acid and 

XOR protein to be present in carotid arteries obtained from human cadavers during 

organ harvesting. Furthermore, studies undertaken in excised carotid endarterectomy 

specimens demonstrated uric acid and XOR protein to be more abundant in carotid 

arteries affected by atherosclerosis, than in unaffected arteries obtained from 

cadavers. Only a limited amount of immunohistochemical data was presented in this 

paper, however, these authors did demonstrate staining with their polyclonal anti- 

XOR antibody within the medial layer of these arteries. These investigations should 

be interpreted with some caution as the specificity of this polyclonal antibody for 

XOR was not reported. By contrast, a monoclonal antibody to XOR was used in the 

present study. Nevertheless, taken together with our own observations, these findings 

do support a role for XOR in the pathogenesis of atherosclerotic vascular disease. 

This raises the question as to whether or not therapeutic inhibition of XOR, for 

example with allopurinol, might be might be cardioprotective in humans.

Given that XOR has NAD(P)H reducing properties, it is plausible that Ang II may 

augment vascular ROS production by activation of this enzyme. This possibility was 

explored by Zhang et al (1999). In these in vitro studies, however, the addition of 

xanthine to human vascular endothelial cells pre-treated with Ang II had no effect on 

0 2 ' generation, suggesting that the activity of XOR may not affected by Ang II.

I also sought to characterise the endogenous ROS scavenging systems in human IMA 

and SV. In these studies, it was demonstrated that the total amount of EC and MnSOD 

proteins were quantitatively similar in human IMA and SV. This suggests that the
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observed differences in O2’ concentrations between arteries and veins are due to 

enhanced O2 ' production in arteries, rather than reduced scavenging in veins. One 

limitation of this study is the lack of information on SOD activity in these blood 

vessels. By contrast, other studies have demonstrated that the activity and amount of 

EC-SOD protein are significantly higher in human arteries than veins (Oury et al

1996). The differences between this and the present study could be explained by the 

use of different blood vessels and methods of protein quantification.

The fact that Ang II augments vascular ROS production raises the question as to 

whether or not this property might be shared by other vasoactive peptides. One 

candidate is endothelin, which is a pleiotropic hormone with potent trophic and 

pressor effects. Deuerrschmidt et al (2000) recently investigated whether or not 

endothelin (ET) might also have pro-oxidative effects. In this study, HUVECs were 

treated with 10 nmol/L of endothelin-1 (ET-1) for a up to 24 hours. ROS production 

by these cells was quantified using chemiluminescence techniques using both 

lucigenin (10 pmol/L), and the novel luminophore, coelenterazine. Treatment with 

ET-1 was associated with enhanced ROS production, which peaked at approximately 

3 hours. This effect was attenuated by co-treatment with both SOD and DPI, 

suggesting that ET-1 stimulated O2" production by an NAD(P)H oxidase-dependent 

mechanism. In addition, RNA expression studies were also performed, using 

competitive RT-PCR techniques. Treatment of these cells with ET-1 resulted in a 

dose-dependent increase in the abundance of gp91phox, which was attenuated by co

treatment with the ETb receptor antagonist BQ-788. These in vitro studies provide 

mechanistic information which suggests that ET may also promote ROS activity in 

human blood vessels.

The possibility that ET might stimulate CVproduction in human blood vessels was 

also investigated in other studies in our laboratory (Brett et al 2001). IMA and SV 

were incubated at 37°C with 100 nmol/L of ET-1 for 4 hours. The vasopressor effects 

of ET used in this study were confirmed in isometric tension studies undertaken in 

these blood vessels.. Superoxide production was quantified by both lucigenin and 

coelenterazine - enhanced chemiluminescence. Using two different methods, O2" 

concentrations in both arteries and veins treated with ET were found to be similar to 

vehicle-treated controls from the same blood vessels. The lack of effect of ET may be
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due to a number of reasons. Firstly, it may be that although ET has been shown to 

stimulate ROS production in cultured HUVECs, this effect does not occur in intact 

human blood vessels. One other reason may be due to the possible ET-stimulated 

increase in vascular NO production (Hirata and Emori 1993; Ikeda et al 1996), 

leading to scavenging of O2’. Vascular NO concentrations were not quantified in this 

study. Other alternative explanations for the lack of effect of ET on vascular O2" 

concentrations include the concentration of ET used, or the duration of treatment. 

These observations do raise the possibility that the ability to stimulate vascular FR 

production may be a property specific to some (e.g. Ang II) but not all, vasoactive 

hormones.

Other findings in this study included the observation that patients who were treated 

with either an ACE-I or ARA had lower vascular O2’ concentrations compared with 

other patients who were not treated with these therapies (Berry et al 2000b). This 

finding supports our in vitro observations of ATi receptor-dependent 0 2 " generation 

in IMA. These observations are clinically relevant as physiological concentrations 

(pmol) of Ang II tended to increase production in human arteries and this effect 

was blocked by losartan. Inhibition of the RAAS has been proven to have beneficial 

therapeutic effects in a variety of cardiovascular disease states. However, ACE-I are 

used in the treatment of hypertension (Gohlke and Unger 1994), attenuate the 

progression of nephropathy in diabetic renal disease (Tripathi 1997), and reduce 

morbidity and mortality in chronic heart failure (Swedberg 1987; Yusuf 1991). ACE-I 

are now recognised to have therapeutic effects beyond simple blood pressure 

reduction. Evidence of this possibility was provided in data from the Studies of Left 

Ventricular Dysfunction Treatment Trial (SOLVD-T) (Yusuf 1991). In this trial, 2569 

patients with mild to moderate CHF were randomised to either enalapril (n=1285) at 

doses of 2.5 to 20mg per day, or placebo (n=1284). During the follow-up period of 41 

months, there were 510 deaths in the placebo group (39.7 %), as compared with 452 

in the enalapril group (35.2 %) (relative risk reduction, 16 %; 95% Cl, 5 to 26 %; p = 

0.0036). Although reductions in mortality were observed in several categories of 

cardiac deaths, the largest reduction occurred among the deaths attributed to 

progressive heart failure (251 in the placebo group vs. 209 in the enalapril group; 

relative risk reduction, 22 percent; 95 % Cl, 6 to 35 %). The addition of enalapril to 

conventional therapy reduced both mortality and hospitalisations for heart failure in 

patients with CHF. Surprisingly, however, there was a trend to a reduction in death
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from myocardial infarction. In the placebo group, 53 deaths occurred, whereas in the 

enalapril-treated group deaths 40 deaths occurred (relative risk reduction 28% ; 95% 

Cl, -8 to 52%, p<0.07). This unexpected observation suggested that ACE-I may have 

anti-atherogenic properties.

The cardiovascular protective properties of ACE-I were formally addressed in the 

Heart Outcomes Prevention and Evaluation (HOPE) study. The HOPE study (Yusuf 

et al 2000), was a randomised, controlled study of the effects of the ACE-I, ramipril, 

with or without vitamin E, compared to placebo, in patients at high risk of future 

cardiovascular events. In this trial, ramipril alone was associated with a 22% 

reduction (95% Cl, 0.7 to 0.86; p<0.001) in all-cause mortality. There were 

significantly fewer patients who had a myocardial infarction in the ramipril-treated 

group (460), compared to the placebo group (567; relative risk 0.8; 95% Cl 0.71 to 

0.91 p<0.001). These results support the assertion that ACE-I have an anti- 

atherosclerotic effect. The mechanisms for this may include atherosclerotic plaque 

stabilisation, a reduction in vascular cell apoptosis, or an increase in bioavailable NO. 

All of these effects may also be promoted by a reduction in ROS activity, as may 

occur through treatment of patients with RAAS inhibitors, thereby attenuating the 

pro-oxidant vascular effects of Ang II (Berry et al 2001b).

The conclusions of the HOPE study have been challenged by others who have argued 

against the investigators’ conclusion that the beneficial effects of ramipril were 

largely due to the non-pressor effect of this treatment (Gavras 2000; O'Rourke and 

Nichols 2000). However, a reduction of 3/2 mmHg in the ramipril-treated group, 

compared to the placebo group, could at most account for 25% of the difference in the 

primary endpoint between the two groups (Yusuf et a/ 2000). This suggests that the 

non-pressor, or anti-atherogenic, effects of this ACE-I may account for some of its 

beneficial effects in this study.

Ang II-stimulated O2' generation may contribute to a variety of trophic and pro- 

atherogenic processes, which in turn, are involved in the pathogenesis of 

cardiovascular disease. The observations in the present study support the thesis that 

Ang II-stimulated O2 ' generation may occur in human blood vessels. This suggests an 

additional pathophysiological effect of this hormone. Importantly, the observation that
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ARAs may attenuate Ang II-stimulated O2’ generation in human blood vessels 

suggests a putative therapeutic role for ARAs in reducing oxidative stress in patients 

with cardiovascular disease.

9.1 Future studies

At present, the only study which has investigated the putative vasopressor effects of 

Ang II - stimulated O2’ generation in humans in vivo, was that undertaken by 

(Dijkhorst-Oei et al 1999). These investigators used forearm strain gauge 

plethysmography to study the vasoactive effects of Ang II in the forearm circulation 

of healthy volunteers. They found that the vasoconstrictor effect of Ang II was 

attenuated by co-infusion of vitamin C. Further studies might attempt to reproduce 

these findings, both in health and disease. In addition, other studies might also be 

undertaken in order to investigate the importance, if any, of this pathway in the 

regulation of normal blood flow in other vascular beds, such as in the heart and skin.

Future studies may also investigate further the exact mechanism of how Ang II 

induces an increase in the abundance of phox mRNA in vascular cells. In order to 

address this question, other techniques which may be informative include, nuclear 

run-on analyses and RNA protection assays. Nuclear run-on analysis is a technique 

which yields specific information on gene transcription, whereas RNA protection 

assays yield information on RNA stability. Other studies may also investigate the 

effects, if any, of Ang II on translational, or post-translational pathways, which may 

also contribute to Ang II -  induced NAD(P)H oxidase activation.

Finally, recent reports suggest that HMGCoA reductase inhibitors, in addition to 

inhibiting cholesterol synthesis, also have anti-oxidant properties. One mechanism for 

this effect, in addition to other established anti-oxidant properties (see Section

1.11.5.4) may be through direct inhibition of phox gene expression (Wassmann et al 

2001). These preliminary findings in animal models merit further investigation in 

humans.
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