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Abstract
This thesis proposes an object-oriented query language th a t is more powerful than 

many existing query languages. The language is formally specified and its expressive 
power is dem onstrated by giving four translation schemes from other prom inent object- 
oriented query languages. Further, this query language can be supported by a query 
algebra and both the query language and query algebra can be optimised using meaning 
preserving transform ation rules.

Object-Oriented Query Languages. The functional requirem ents of high-level object- 
oriented query languages are identified and they combine as well as supplem ent features 
found in existing object-oriented query languages. Effectively they form ulate a  query 
model against which existing query languages can be evaluated and compared. An evalua­
tion of four representative query languages chosen from research prototypes and commer­
cial products shows th a t none satisfies all the requirements. On the basis of the require­
m ents a new query language, object comprehensions, is developed to  provide a concise, 
clear, powerful, and optimisable query language for object-oriented databases. Some op­
tim isation opportunities for the novel features are identified. A set of translation schemes 
from the query languages studied to  object comprehensions is presented. Such translations 
dem onstrate th a t object comprehensions are a t least as powerful as these query languages 
and a system supporting object comprehensions can potentially support multiple query 
languages by providing translations to object comprehensions.

Algebraic Support. The canonical algebra provides an abstract execution engine with 
which object comprehension queries can be expressed using algebraic operations. The 
translation scheme from object comprehensions to  the canonical algebra is very simple 
and is no' for supporting queries involving mixe 1̂ collection classes The canonical 
algebra shares many operations with other query algebras and is formally specified. A set 
of transform ation rules th a t can be used for optim isation is presented whose validity can 
be verified given the formal specification.

Formal Data Model. The d a ta  model which forms the basis of investigation is formally 
defined using the specification language Z. This reference data model captures all the 
essential features of existing object-oriented d a ta  models including multiple inheritance. 
However, unlike existing d a ta  models, it also supports a  generalised form of m ethod over­
loading. S tatic type checking of such overloaded m ethods is studied in this thesis.
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C h ap ter  1

Introduction

Novel applications, such as computer-aided design, require d a ta  models th a t support com­
plex relationships and rich constructs. Object-oriented d a ta  models supporting complex 
objects and operations have been developed to  cope with the requirements of these novel 
applications. To m anipulate the rich structures found in these d a ta  models a  query lan­
guage will require more constructs. Often this is resolved by merely extending a rela­
tional query language with ad hoc constructs. More understanding of the requirem ents of 
object-oriented query languages is required before a  general and consistent notation can 
be designed.

Equally im portant is the provision of algebraic support of such a language and its 
optim isation. Until now, the study of object-oriented query languages has been ham pered 
by the lack of a  formal d a ta  model. A ttem pts have been made to  resolve this bu t the 
resultant d a ta  models are both simplistic and restrictive. W hat is required is a formal and 
realistic d a ta  model which includes the essential features of existing d a ta  models.

The aim of the research reported in this thesis is to  address the above-mentioned 
shortcom ings through the development of a  new query language and a query algebra as 
well as the use of formal specification technique. This thesis proposes a set of functional 
requirem ents for object-oriented query languages. A new object-oriented query language 
which satisfies the requirements identified is presented. Further, this query language 
can be supported by a query algebra and both the query language and query algebra 
can be logically optimised. A reference d a ta  model which is formally defined using the 
specification language Z forms the basis of the investigation.

1.1 Scope of Thesis

Experience with relational database system s has dem onstrated th a t efficient and effective 
query processing is a determining factor for system performance [JK84], Relational query 
languages allow the user to  access the  d a ta  in a  declarative m anner. T h a t is, the  user 
only specifies w hat should be retrieved from the database. It is the responsibility of the

1
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Figure 1.1: Query Language Processing Framework.

database system to determine how such a request should be evaluated against the database. 
Therefore the database system has to generate a procedural query evaluation program , 
also called an execution plan, from the declarative user query without changing the user’s 
intention. This thesis examines how object-oriented query languages can be processed in 
a framework similar to  th a t of relational systems (Figure 1.1). Here, a query language 
m eans a retrieval-based language not dealing with the m anipulation of instances such as 
updates.

The parts of the query processing framework this thesis investigates include: (1) design 
of declarative user query language; (2) optim isation of user query language; (3) procedural 
query algebra to  support declarative query language; (4) optim isation of query algebra; 
and (5) type checking of overloaded methods. They are contained in the  rectangle with a 
do tted  boundary in Figure 1.1. These parts will be further explained in a later section.

This thesis differs from previous works primarily in the scope th a t is covered: (1) 
a richer reference d a ta  model supporting multiple collection classes is introduced; (2) 
the problem of statically type checking overloaded m ethods in the presence of multiple 
inheritance is studied; (3) the  interaction of different collection classes and other functional 
requirem ents of object-oriented query languages are examined; and (4) a comparison of 
the expressive power of object comprehensions with four well-known object-oriented query 
languages is made.

A number of issues related to  query processing are not studied in this thesis. The 
study of optim isation generates a  set of logical and semantic transform ation rules. Search 
strategies used for transform ation are not covered but preliminary results for non-recursive 
queries can be found in [Mit93]. Execution plan generation is studied in [SO90] bu t the 
choice between generation plans is only very briefly discussed. The research reported in 
this thesis is carried out in the context of a formal d a ta  model and has not been integrated
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into a running system. However given a suitable implem entation platform , it is believed 
th a t  the query language and query algebra can be implemented since a similar language 
and its optim isation was prototyped before [TCH90].

1.2 Contributions

ONTOSSQL

ORION

Object Comprehensions

02SQ L

Object SQL

optimisation

Canonical Algebra \ optimisation

Figure 1.2: Query Language Processing.

The specific contributions documented in this thesis are listed below and the inter-relationship 
between the parts of the work is depicted in Figure 1.2.

•  An object-oriented query model manifested as functional requirem ents th a t  can be 
used to  evaluate, compare, improve, and design query languages, is proposed.

•  A new high-level object-oriented query language, object comprehensions, is shown to 
satisfy the object-oriented query model, and new optim isation rules are developed 
to  improve queries involving class testing and quantifiers.

•  The expressive power of object comprehensions is dem onstrated by showing th a t 

any query expressed in four prominent query languages can be expressed in object 
comprehensions; hence the la tte r notation is a t least as powerful as the four query 
languages.

•  A new object-oriented query algebra, the canonical algebra, which supports three 
collection classes, set, bag, and list, is proposed together with a  set of transform ation 
rules th a t can be used for optim isation.
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•  An object-oriented d a ta  model called the reference data model, which features mul­
tiple inheritance, a generalised form of method overloading, dynamic binding and 
sta tic  type checking, is specified using the specification language Z and several useful 
properties of the d a ta  model have been proved.

•  Challenges involved in proposing a satisfactory solution for view support using query 
language are identified.

1.3 O rganisation

C hapter 2 covers the reference d a ta  model. A formal specification of the reference d a ta  
model is given in the specification language Z. Some properties of the reference d a ta  model 
are proved using the specification. A running example database is described and defined 
in term s of the reference d a ta  model. A comparison of four prominent object-oriented 
d a ta  models and the reference d a ta  model is summarised.

C hapter 3 studies the requirements for object-oriented query languages. A list of 
functional requirements is presented. A sum m ary evaluation of four prominent object- 
oriented query languages is reported. The query languages are chosen as representative 
languages mainly because they are well-reported and the most referenced in the literature. 
Non-functional requirements are briefly discussed.

C hapter 4 introduces object comprehensions beginning with a history of their develop­
m ent. It is followed by a set of example queries th a t illustrate object comprehensions and 
dem onstrate th a t they satisfy the requirements identified in C hapter 3. Query optim isa­
tions are presented as meaning-preserving transform ation rules together with conditions 
for their application.

C hapter 5 addresses the expressive power of object comprehensions. A suite of transla­
tion schemes from four prominent query languages to  object comprehensions is developed. 
The four translation schemes dem onstrate th a t object comprehensions are a t least as pow­
erful as the four query languages with respect to the reference d a ta  model and can provide 
support for these query languages.

C hapter 6 introduces the canonical algebra and its support for object comprehensions. 
The canonical algebra is introduced, illustrated, and formally defined using Z. A transla­
tion between object comprehensions and the canonical algebra is given. The translation 
scheme dem onstrates th a t the algebra is canonical in the sense th a t  it can express and 
hence support queries expressed in object comprehensions and hence in the other four 

query languages.
C hapter 7 summarises the results presented in the thesis and concludes th a t  object 

comprehensions are a good query language for object-oriented databases and can be sup­
ported using the canonical algebra. Limitations of the approach taken in this thesis are 
discussed. Directions for future work are described.
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C hapter 8 investigates one possible avenue of further research in detail. The difficulties 
of supporting views in object-oriented databases are revealed. Existing proposals are 
examined and their advantages and disadvantages are discussed. The problems to  be 
overcome by a satisfactory solution are identified.
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T he R eference D ata M odel

M any object-oriented d a ta  models have been introduced in various systems and pro­
posals. Despite their apparent diversity, these models share many common features. 
These features have been acknowledged as the essence of any object-oriented d a ta  model 
[ABD+89, Ban89, Dit91]. The reference d a ta  model presented in this chapter includes the 
significant features found in most object-oriented d a ta  models, for example, IRIS [LK86], 
Gem Stone [Ser87], ORION [Kim90], ONTOS [Ont91a], and O2 [BDK92], to  name but 
a few. A num ber of object-oriented d a ta  models have been given a formal specification 
[MH87, Wol87, SO90, DD91, BDK92, Nor92]; however, the various features of object- 
orientation are studied separately. The reference d a ta  model provides a uniform fram e­
work for the  study of their interaction. In particular, it supports a  generalised form of 
m ethod overloading and addresses the problem of statically type checking such overloaded 
m ethods.

The organisation of the chapter is as follows. Section 2.1 provides an informal descrip­
tion of the reference d a ta  model. Section 2.2 discusses the challenges of statically type 
checking overloaded m ethods in an environment supporting multiple inheritance. Section
2.3 to  2.11 specify the reference d a ta  model formally using the specification language Z. 
Section 2.12 touches on reasoning about the specification. Section 2.13 presents an ex­
ample database th a t will be used throughout the thesis. Section 2.14 concludes with a 
discussion of related works including a comparison of the reference d a ta  model with the 
d a ta  models of IRIS, ORION, ONTOS, and O2.

2.1 Informal D escription

The reference d a ta  model supports both objects and base values. O bjects are identified by 
object identifiers. Base values, like integers and strings, do not carry an object identifier. 
O bject identifiers and base values are collectively called values. Every base value belongs 
to  a  system-defined base type which defines the operations th a t can be performed on

6
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it. Similarly, an object belongs to  a class 1, which can be either system-defined or user- 
defined. A class uses a ttribu tes and methods to  model a  concept or a phenomenon in 
the  application world. A ttribu tes can be accessed only via m ethods defined in the class. 
A m ethod is called when an object receives a message. This dispatching mechanism is 
generally referred to as message passing.

Classes can be related to  one another using the ISA relationship. If a  class is related 
to  another class by the ISA relationship, the former class is called a subclass of the la tte r 
class while the la tte r class is referred to  as the superclass of the  former one. A class can 
have more than  one superclass and should inherit and support all m ethods defined in its 
superclasses. As a consequence of inheritance, an object can be used wherever an object 
of its superclass is expected. There is a root class in the model which is a subclass of no 
class and a direct or indirect superclass of all other classes. In contrast to the root class, a 
bottom  class is defined as being a subclass of all classes. The unique instance of th is class 
is denoted as nil. The bottom  class is only used for the purpose of query processing and is 
therefore an internal object not accessible to  the user. The structu re  formed by the ISA 
relationship among classes is called a class graph, sometimes mis-called a class hierarchy.

In some models [LK86, Kim90], every class is associated with a set containing all ob­
jects of th a t class, usually called a class extent. The reference d a ta  model does not support 
class extents. In brief, the reference d a ta  model supports the following features

•  base values •  complex objects •  object identity
•  encapsulation •  message passing •  m ethod overloading
•  m ulti-methods •  classes •  class hierarchy
•  multiple inheritance •  sta tic  type checking •  dynamic binding

2.2 Challenges

Inheritance requires a subclass to support all m ethods defined in its superclasses in addi­
tion to  its own methods. If every method is given a unique name, statically type checking 
messages will be straightforw ard regardless of the kind of inheritance supported. How­
ever, such uniqueness hinders extensibility - one prim ary streng th  of the  object-oriented 
paradigm . Hence, many d a ta  models, including the reference d a ta  model, support m ethod 
overloading where the same m ethod name can be given to  different m ethods defined in the 
same class or in different classes. This complicates static  type checking as a  m ethod name 
can now represent many different methods. M any d a ta  models, but not the  reference d a ta  
model, resolve this problem by using only the type of the receiving object to  determ ine 
the m ethod corresponding to  a message a t both compile-time and run-tim e. However this 
simple selection scheme has lim itations (one lim itation is illustrated in Subsection 2.7.1).

*In this thesis, types include both base types and classes as defined in the specification. Types and 
classes are therefore synonyms in most cases.
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To enable s ta tic  type checking some restrictions m ust be imposed on overloaded m ethods 
th a t  can be applied to  the same set of argum ents (hereafter called confusable methods). 
A well known proposal [Car84] suggested the contravariance rule requiring an overloaded 
m ethod defined in a subclass to  take on more general argum ents and returning more spe­
cific result. The use of more general argum ents in an overloaded m ethod could be argued 
as “unnatural” [DT88, Mey88, MHH91, Cha92j. In a multiple inheritance environm ent, a 
more general rule allowing the ordering of overloaded m ethods from different superclasses 
is required.

The selection scheme of the reference d a ta  model uses the type of the  receiving object 
together with the types of the argum ents for the m atching a t compile-time and run-tim e. 
Following [BDG+ 88], such overloaded m ethods are called multi-methods. Support of multi­
m ethods allows more flexibility in defining overloaded methods. The reference d a ta  model 
also explores the  use of covariance rule where the types of the argum ents of an overloaded 
m ethod defined in a  subclass do not need to  be more general than  th a t in the superclass. 
S tatic  type checking will make use of the least general m ethod while dynamic binding will 
pick the most specific m ethod 2. This enriches the inheritance mechanism by avoiding the 
blocking of more general m ethods by more specific methods.

In an environm ent supporting multiple inheritance, the ISA relationship alone cannot 
decide if one m ethod is more specific or general than  another. Inheritance ordering, which 
respects the ISA relationship, is introduced to  allow such comparison to  be made.

The next sections use the Z specification language [PST91, Spi92] to  specify the ref­
erence d a ta  model. Z has been used to  describe d a ta  models for example the relational 
model and its algebras [SH85, BH91, Bar93] and an object-oriented d a ta  model [MG93]. 
Z encourages a m odular approach to specification. A system can be specified in term s 
of a number of small “mini-specifications” which can then be combined easily using the 
schema calculus. The resultant specification is often more manageable, concise, readable, 
and comprehensible. Equally im portant, Z specifications are amenable to  formal reasoning 

as it has a formal semantics and a set of sound inference rules [Spi88]. In C hap ter 6 , a 
query algebra for the reference d a ta  model is defined similarly using Z; hence, provides a 
uniform framework for the reasoning of query expressions.

2.3 O bjects +  Base Values =  Values

The d a ta  domain of discourse consists of atom ic d a ta  drawn from a given set:

[VALUE]

Elements in VALUE  are referred to  as values and can be partitioned into two disjoint

2 The meanings of the two bounds differ from that used in [OBBT89] and are defined in the specification.
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subsets Object and BaseValue:

Object : F  VALUE  
BaseValue : P  VALUE

( Object, BaseValue) partitions VALUE

Object is a  set of object identifiers with which objects are represented in a  database. 
For this reason the elements in Object are referred to as objects. BaseValue contains data , 
like integers and strings, th a t are not represented by object identifiers. These elements 
are referred to  as base values. Values in Object can be compared for equality while base 
values are subject to  other operations, e.g. the “less th an ” operator. Object can be 
further divided into two disjoint subsets. The first subset, OCollection , contains objects 
representing groups of homogeneous elements th a t can be either base values or objects. 
The second subset, M onoObject, holds all non-collection objects.

OCollection : F Object 
MonoObject : F Object

{OCollection , MonoObject) partitions Object

The reference d a ta  model supports three kinds of collection. They are represented 
using three subsets of OCollection.

OSet : F OCollection 
OBag : F OCollection 
OList : F OCollection

{OSet, OBag, OList) partitions OCollection

2.4 Values and T ype Nam es

In this section, and indeed the next six sections, the them e of the discussion will be on 
database schem ata. In other words, the subject m atter is what a  generic database schema 
looks like and w hat the associated constraints are.

Types are identified by names which are drawn from a given set:

[TYP E -N A M E ]

The two kinds of values introduced in the previous section, base values and objects, 
belong to  different types. Base values belong to  base types while objects belong to  classes. 
It is therefore useful to  partition  T Y P E -N A M E  correspondingly into two disjoint subsets:
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BaseTypeName : F T Y P E -N A M E  
ClassName : F T Y P E -N A M E

{BaseTypeName, ClassName) partitions T Y P E -N A M E

Now the relationship between values and types can be defined using two to ta l functions 
as the following:

typeOf -  : VALUE  -> T Y P E -N A M E

Vu : VALUE  •
v E BaseValue -O- (typeO f i>) E BaseTypeName 
A
v E Object •<=> ( typeO f v) E ClassName

Applying typeO f to  an object returns its defining class name. Applying it to  a  base 
value returns its base type name. Since base types are well understood they will not be 
discussed in the thesis.

kindO f -  : OCollection —> ClassName

V c : OCollection •
c E OSet <$=> (kindO f c) =  A Set 
A
c E OBag (kindO f c) — A Bag 
A
c E OList (kindO f c) =  A L ist

Applying kindO f on a collection object reveals its collection kind: set, bag, or list. 
A Set, ABag, and A L ist are type names representing the collection kinds.

2.5 R ooted Class Graph

Before discussing classes which govern the behaviour of values in Object, the  ISA relation­
ship between classes is examined. Note th a t the relationship is defined over ClassName 
and not the classes themselves.

2.5.1 T he ISA  R elationsh ip

Classes in a  database are related to  one another via the ISA relationship ( -< ). The 
structure  formed by the ISA relationship among classes is called a class graph. The class 
graph is represented by a relation over class names.



2.5. Rooted Class Graph 11

I S A ____________________________
_ -< _ : ClassName ClassName

ClassName =  ( dom -<) U ( ran -<) 
V cn : ClassName •  -> (c n  cn )

The first constraint implies th a t all classes related by the ISA relationship have their 
names in the set ClassName and every class in ClassName is involved in the relationship. 
It also has the implication th a t the ISA relationship is finite. The second constraint asserts 
th a t  the ISA relationship does not relate directly or indirectly ( -<+ ) a  class to  itself: the 
class graph is directed acyclic.

2.5 .2  T he R o o t Class

The class graph has a  root class which is a subclass of no class and a direct or indirect 
superclass of all o ther classes.

R O O T ________________________________________________________________
ISA
root : ClassName

V cn : ClassName •  cn ^  root -o- cn -<+ root

R O O T  uses the ISA  specification given earlier. The constraint asserts th a t every class, 
except the root class, can be reached from the root class via the ISA relationship.

2 .5 .3  ^.he B o tto m  Class

In contrast to  the  root class, a bottom  class is defined as being a subclass of all classes. 

T he unique instance of this class is denoted as nil. The bottom  class is only used for the 
purpose of query processing and is therefore an internal object not accessible to  the  user.

B O T T O M ____________________________________________________________
ISA
bottom : ClassName 
nil : Object

V cn : ClassName •  cn ^  bottom  O  bottom -<+ cn 
typeO f nil = bottom

2 .5 .4  T yp e C onform ance

A class is said to  conform to  another class if they are related directly or indirectly by the 
ISA relationship or they are indeed the same class ( -<*) .  Since relationships between base
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types is not studied in the thesis, the conformance relation over base types degenerates to 
the  equality relation over base types.

C L A S S -G R A P H ______________________________________________________
R O O T
B O T T O M
_ : T Y P E -N A M E  ++ T Y P E -N A M E

V t u t2 : T Y P E -N A M E  •  

h  ^ t 2 ^>
{ h t h }  Q ClassName A t\ -<* t2 
V
{ h i h  } Q BaseTypeName A t\ =  t2

2.6 Classes

This section examines the definition of a class which is essentially a  tem plate for the s ta te  
of an object and contains operations th a t can be applied to  the  s ta te  of an object. The ISA 
relationship induces further constraints on class definition. The constraints are discussed 
in the  last subsection.

2 .6 .1  M eth od s

A m ethod is characterised by its name, signature, and semantics. M ethod names are 
draw n from a given set:

[M ETHO D-NAM E]

The signature of a  m ethod captures the types of the formal argum ents and of the 
result. Each m ethod receives a t least one argum ent object - the object on which the 
m ethod is called. Every m ethod must return  a value as its result. Therefore the signature 
of a  m ethod has a t least two type names, and usually more.

Note th a t seqx represents sequences with a t least one element, Ni represents the set 
of natural numbers w ithout zero, ( ) represents a sequence literal, ^  is a  Z operation 
performing sequence concatenation, and #  is another Z operation returning the number 

of elements in a  sequence.
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S IG N A T U R E ______________________
argumentTypes : seqj T Y P E -N A M E  
resultType : T Y P E -N A M E  
types : seqj T Y P E -N A M E  
length : Ni

types =  argumentTypes ^  (resultType) 
length =  #  argumentTypes

The semantics of a m ethod captures the meaning of the method (i.e. w hat the m ethod 
does). In practice, it captures the im plem entation of the m ethod. Here an extensional 
definition is given to  the semantics of a method which is represented as a partial function.

M E T H O D ____________________________________________________________
C L A SS-G R A P H
name : M E TH O D -N A M E
signature : S IG N A T U R E
selfType : ClassName
sem antics : seqj VALUE  -4- VALUE

selfType =  head signature.argumentTypes
V vs : seq VALUE \

# v s  =  signature .length A
( V * : 1 . .  i f  vs •  typeO f (vs i) signature. argumentTypes i ) •

typeO f (sem antics vs) signature .resultType

The first constraint establishes th a t the first type name in a  signature is the same as 
the  name of the class in which the m ethod is defined. The second constrain t ensures th a t 
sem antics  is correctly typed. In other words, if the types of the actual argum ents conform 
to  the formal argum ent types the m ethod will return a result conforming to  the result 
type.

2.6 .2  A ttr ib u tes

Every object has its own set of a ttribu tes to  capture the s ta te  of the object. A ttribu tes 
are not directly accessible. M ethods are the only means to  m anipulate them .

Assume a set for the names of attributes:

[A T T R IB  U TE-N A ME]

The types of the a ttribu tes of a class can be defined as a  finite partial function. The 
implications are: (1) there is a finite number of attribu tes; (2) a ttr ib u te  names are unique 
within a class, and (3) the value of an a ttribu te  can be an object or a base value. W hen 
an object is created, this function will be used to  create a set of named a ttr ib u te  values
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having the same names and value types as specified in this function. Class instantiation 
is not further discussed in the thesis.

■ A T T R IB U T E _______________________________________________________
attribu tes_ : A T T R IB U T E  J^fAM E T Y P E -N A M E

The symbol ■  is used as a naming convention to  identify the p a rt of a schema which 
is to be hidden from direct access. In this case, direct access to the a ttribu tes of an object 
is to  be prohibited.

2.6 .3  C lasses

C L A S S _______________________________________________________________
M A T T R IB U T E  
name : ClassName 
methods : ¥  M ETHO D  
directSuperclasses : seq ClassName 
applicableMethods : ¥  M ETHO D

V m i, m2 : methods | m\ ^  m2 •
m \.nam e = m 2 -name =>

m i.signature.argumentTypes ^  m 2 .signature.argumentTypes
V m : methods •  m.selfType = name

A class consists of a class name, a ttribu tes, methods, a sequence of direct superclass 
''ps, and a set of applicable methods. Superclasses are ordered as given in the class 

definition and this ordering will be used to  define the local inheritance ordering. Applicable 
m ethods include m ethods defined by the class itself as well as m ethods inherited from its 
superclasses. The first constraint asserts th a t m ethods having the same name m ust have 
different argum ent types. This allows m ethod overloading. The second constraint asserts 
th a t the m ethods must be correctly typed to  the class in which they are defined.

2.6 .4  C lass N am es, C lasses, and Inheritance

The relationship between the class names in a class graph and the classes themselves is 
defined next. Class is a set containing all classes in the database. The function, hasName, 
relates a  class name to its class.
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SC H E M A _____________________________________________________
C L A SS-G R A P H  
Class : F C L A SS
hasName _ : ClassName >—* Class

V cn : ClassName •  ( hasName cn ).nam e = cn
V c, csuper : Class •

csuper.name 6  ran( c.directSuperclasses) 
c.name -< csuper.name

V c : C7ass •
c.applicableMethods — c.methods U
( U  { csuper • Class | csuper.name G ran( c.directSuperclasses) •  

cauper .applicableMethods } )

The first constraint specifies th a t hasName takes a  class name and returns a  class with 
the same name. Being a to ta l bijective function implies tha t: (1) there are as many classes 
as there are class names; (2) every class name is associated with a unique class; and (3) all 
the  classes have unique names. The second constraint insists th a t superclasses named in 
a class definition are actually related to  the class in the class graph. The th ird  constraint 
specifies the set of applicable m ethods for a class. U  represents the d istributed union 
operation which takes a set of sets and returns a set containing all members in the original 
set elements. In this case, (J combines all m ethods inherited from the superclasses. U 
then combines this resultant set of m ethods with the set of m ethods defined in the  class 
to  give a set of all applicable methods.

2.7 ^lass Ordering

Inheritance perm its a  class to  have more than one superclass and requires it to  support 
all the m ethods of its superclasses. Since confusable m ethods may exist some way of 
choosing a m ethod for type checking and dynamic binding m ust be provided. This section 
examines the problems of type checking messages when method overloading is allowed and 
introduces the local inheritance ordering, which is the key to  the solution.

2.7 .1  S ingle Inheritance E nvironm ent

Figure 2.1 presents parts of a  database schema consisting of four classes: A , j5, C, and D , 
where B  < A  ( B  is a subclass of A) and D < C . A  has a  m ethod m, which takes two 
argum ents: an object of class A  and an object of class C , and returns an object of class C. 
B , being a subclass of >1, inherits this m ethod from A. However, B  also defines a  m ethod 
with the same name. Therefore B  has two m ethods of the same name a t its disposal.

Given this database schema, the effect on type checking can be studied using the 
application program  in Figure 2.1. Variables are declared in line (1) a t the  beginning of
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(I) var a: A;
b:B;
c:C;

(10) "a :=  b;
( I I )  ... a.m( c ); j

Application Program

Figure 2.1: Unsafe Static Type Checking.

the  program  fragm ent. The assignment statem ent in line (10) assigns the variable b to  
a  variable of its superclass. This is a valid statem ent and will pass type checking. In 
line (11) object a is passed the message m  with variable c as an argum ent whose sta tic  
type is C. O bject a has sta tic  type A  and therefore the message m  corresponds to  the 
only m ethod A  has. The message passes type checking; whereas w hat actually happens a t 
run-tim e is something quite different. A t run-time, variable a actually contains an object 
of class B . Using the simple selection scheme described in Section 2.2, the m ethod m  
defined in B  (i.e. m : B  x D —> D) will be selected. If c contains an object of class D, 
it will be accepted as a valid argum ent to  m. On the other hand, if c contains an object 
of class C , the same as its sta tic  type, it will be considered an invalid argum ent to  the 
m ethod m  selected a t run-tim e. To conclude, the program passes type checking but it 
may fail a t run-time!

2 .7 .2  M u ltip le  Inheritance E nvironm ent

(1) var b:B; c:C;

(10) b := c.m();

Application Program

m: A ->  A m: B ->  B

('a ') { B )a r
l \  >2I

wf  r  \  m: A - >  A 
m: B - >  B

Database Schema

v m: A x C  ->  C

Database Schema

Figure 2.2: Confusable M ethods from Incom parable Classes.
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M ultiple inheritance introduces further problems for type checking and dynamic binding. 
The database schema in Figure 2.2 dem onstrate the problems. In the schema, C  inherits 
two m ethods named m, one from A  and one from B . In the program  fragm ent, variable c, 
whose sta tic  type is C , is passed the message m. The question is which m ethod m  should 
be used. The answer does m atter because it determines the result type and consequently 
affects type checking. In the single inheritance environment, the m ethod defined for the 
subclass is chosen but here there is no ISA relationship between A  and B  where the 
overloaded m ethods are defined. In other words, classes are partially ordered and A  and 
B  are incomparable.

To enable a system atic selection scheme, a better ordering over m ethods is required. 
The only sensible way of ordering m ethods is to  use their signatures, which contains 
prim arily type names. An ordering over types, th a t should subsume the ISA relationship 
defined in the database schema, is therefore required and will form the base for ordering 
of m ethods. The next subsection introduces such an ordering.

2.7 .3  Local Inheritance O rdering

Various possible orderings and their effects on type checking overloaded m ethods are ex­
amined in [ADL91]. The reference d a ta  model adopts the local inheritance ordering. It is 
local because each ordering only relates a given class to  its superclasses; but not classes 
which are not related to the given class by the ISA relationship. Note th a t two classes 
which appear in two different local inheritance orderings may be ordered differently. When 
a class named cni is more specific than  a class named cn2 with respect to  another class 
named cn, it can be expressed using the local inheritance ordering as the following,

cni < cn cn2 I

The relation <Ccn Is obtained by applying the to ta l function <C on the class name cn.
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LO C A L -O R D E R IN G __________________________________
SCH EM A
_ < __ : ClassName —> ( ClassName f-> C lassN am e)

V c : Class’, cn , cni : ClassName \
cn =  c.name  A
cni =  c.directSuperclasses 1 •  

cn < cn cni

V c : Class’ cn, cnj, cnk : ClassName; j ,  k : Ni |
cn =  c.nam e  A
{ j\& }  <= c.directSuperclasses) A
j  -f 1 =  a

cnj = c.directSuperclasses j  A 
cnk = c.directSuperclasses k •  

cnj < Cfl+ cnk

V c : Class; cn, cnj, cn ji, cnj2, cn* : ClassName; j ,  k : Ni |
cn =  c.name  A
{.?>&} ^  1 • • # (  c.directSuperclasses) A 
j  +  1 =  fc A
cnj =  c.directSuperclasses j  A 
cn* =  c.directSuperclasses k A 
{ cnji, cnj2 } C 

( ran( {cj.nam e}<3 ) \
U { c, ; C/ass |

(3 * : (j +  1) . .  c.directSuperclasses) •  
c.directSuperclasses i = Ci.name ) •  

ran( {c{.name}< -<+ ) } ) A 
cnji < Cj cnj2 •

| cnj\ cnj2 A cnj2  cn*

The first constraint asserts th a t a class is more specific than  its first superclass. The 
second constraint says th a t superclasses are ordered according to  the order given in the 
class definition. This is the basis to  allow the comparison of classes th a t are not related 
by the ISA relationship. Note th a t the transitive closure ( <CCn+ ) implies th a t there 
can be other classes in between. Given a class and one of its superclasses, there can be 
more than  one way the two classes are connected by the ISA relationship, for instance, 
via different direct superclasses. The last constraint guarantees th a t  only one such con­
nection will be used in the ordering. The last connection as prescribed by the order of the 
direct superclasses will be used. In other words, a  m ethod from an indirect superclass is 
considered more general and is ordered after the last direct superclass th a t  is connected 
to  it. A part from this deviation, the local ordering with respect to  a  class agrees with the 

local inheritance orderings of its superclasses.
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C m : C - > X

Figure 2.3: M ethods Inherited via M ultiple Paths.

Given the schema in Figure 2.3 with four classes such th a t B  < A , C ^  A , D -< B , 
D -< C, and B  <C #  C  (it is denoted by labelling the D to  B  arc with 1 and the D  to  C  arc 
with 2), the local inheritance ordering will order them  in descending order of specificity 
as D, B , C , A. The choice of such an ordering is a compromise between being consistent 
w ith the substitution semantics among ISA-related classes and “localising” the restrictions 
caused by cycles among classes in the generalised inheritance ordering. The la tte r  issue is 
discussed in the second half of the next section.

There is however one problem with this schema. If message m  is passed to  a  variable 
of class A, m of A  will be used a t compile-time for type checking and class Y  will be 
its result type. Assuming th a t an object of class C  is actually assigned to the variable, 
naturally  m  of C  will be used a t run-tim e which produces a result of class X .  This is 
sim ilar to  the scenario described earlier in subsection 2.7.1. The two classes X  and Y  are 
unrelated classes and hence may cause a run-tim e error. New measures are required to 
remove ouis loophole and they are presented next.

2.8 M ethod C onsistency

The problem found in the previous section exposes a  more general fault in the development 
so far: argum ent types are used to  order m ethods but the result types have not been taken 
into account. W hat is lacking is a  concept of consistency between the ordering of argum ent 
types and the ordering of result types.

2.8 .1  M eth od  C onfusability

Consistency is essential only for confusable m ethods. It is not necessary to  consider con­
sistency when m ethods having the same name can never be applied to  the sam e set of 
argum ents; they are not confusable and can never be used in the  same context.
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C O N F U S A B IL IT Y ____________________________
SCH EM A
_ is Confusable With _ : M ETHO D  <->• M ETHO D

V m i, m2 : M E TH O D ; si, s2 : SIG N A T U R E  |
5! =  mi.signature  A S2 -  m 2 .signature •  

mi isConfusableWith m 2 <=> 
m \.nam e = m 2 .name A 
si.length = S2 .length A 
V i : 1 . .  s i . length •

3 t : T Y P E -N A M E  •
£ ( Si.argumentTypes i )  A
t ( s 2 -argumentTypes i )

The definition of confusability is given above in the form of a  relation. Two m ethods 
are confusable when: (1) they have the same name; (2) they take the same num ber of 
argum ents; and (3) for every argum ent position there is a type which conforms to  both 
argum ent types a t th a t position.

m: A ->  A m: B ->  B m: C ->  C

( a ) ( B ) ( C )
— V ✓ Y. ✓

( £ )
m: B ->  B 
m: C - >  C

Figure 2.4: Confusability is Not Transitive.

Confusability is not a transitive relation, for example, in Figure 2.4, m : A  —> A  and 
m : B  B  are confusable, m : B  B  and m : C  C  are confusable, bu t not m : A  —t A  

and m : C —> C.

2 .8 .2  P artition in g  C onfusable M eth od s

Consistency is im portant only for confusable m ethods, it is therefore sensible to  partition  
all m ethods into sets of confusable methods. F irstly m ethods can be partitioned by their 
names. Since overloading allows m ethods to  have the same name but different num bers of 
argum ents. Therefore a set of methods having the same name can be further partitioned 
according to the number of argum ents each method takes. The resultant sets can then be 
divided based on confusability.

( D )

m: A ->  A 
m: B ->  B
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P A R T IT IO N S ________________________________________________________
C O N F U SA B IL IT Y  
allMethods : F M ETH O D
methodPartitions : M E TH O D -N A M E  x Nj »  F F  M ETH O D  
allConfusableSets : F F  M ETH O D

allMethods =  U  { c : Class •  c.methods }

V m : allM ethods; mn : M E TH O D -N A M E \ n : Ni |
ran =  m.nam e  A n — m.signature.length

3X ms : F M ETH O D  •  m  £ ms A ms £ m ethodPartitions( mn, n )

allConfusableSets =  |J  ( ran methodPartitions )

allMethods = IJ allConfusableSets

V ms : allConfusableSets \ i f  ms > 1 •
V m i, m2 : ms | mi ^  m2 •

mi isConfusableWith+ m 2

Note th a t methodPartitions is a partial injective function. The second constraint as­
serts th a t a  method is contained in only one confusable set. The th ird  constraint gathers 
all confusable m ethod sets. The last constraint asserts th a t m ethods in a  confusable set 
are linked directly or indirectly by the confusability relation ( isConfusableW ith+ ) - recall 
th a t the relation itself is not transitive.

2.8 .3  G eneralised  Inheritance O rdering

The local inheritance ordering defined in the previous Subsection can be used to  order 
m ethods only when the sta tic  types of the actual argum ents are available. This inform ation 
is, however, not available during schema definition time. Therefore ordering of m ethods 
and hence the examination of consistency cannot be done during schema definition tim e 
using the local inheritance ordering. A generalised form of th is ordering is necessary and 
is specified below:

IN H E R IT A N C E -O R D E R IN G __________________________________________
LO C A L-O R D E R IN G  
-  <m: -  : ClassName <-)• ClassName

V cn\ > c n 2  ’• ClassName •  
cni cn2 &

3 cn : ClassName •  cni <Ccn+ cn2

Note th a t the generalised inheritance ordering neither relates classes w ithout subclasses 

to  one another nor a class to  itself.
The generalised inheritance ordering allows cycles. In the schema given in Figure 2.5, 

A  <Cc B  and B  <Cd A  hold. The generalised ordering gives both A  B  and B  A,
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Figure 2.5: Cycles in Generalised Inheritance Ordering.

resulting in a  cycle A B  A. To resolve this problem a stronger notion of consistency 
is required and is described next.

2 .8 .4  C on sisten cy  o f Schem a D efin ition

M ethods can now be ordered based on their argum ent types using the generalised inher­
itance ordering even w ithout any knowledge of the sta tic  types of the actual argum ents. 
A m ethod is more specific than  another one if a t the first position where their argum ent 
types differ the argum ent type of the former method is more specific than  the argum ent 
type of the la tte r method with respect to  the generalised inheritance ordering. M ethod 
specificity is captured using the relation C as follows,

O R D E R E D -SC H E M A _________________________________________________
IN H E R IT A N C E -O R D E R IN G  
-  C _ : M ETH O D  t*  M ETHO D

V mi, m2 : M E TH O D ; su  s2 : TIG  N A T U R E  \
si =  m i .signature A s2 =  m2-signature •

m i Q m2 •<=>•

3 j  : 1 . .  s i . length •
s\.argumentTypes j  $2-argumentTypes j
A
Vi  : 1 ..  ( j — 1) •

S\.argumentTypes i =  S2 -argumentTypes i

Two m ethods are consistent if the more specific method with respect to  m ethod speci­
ficity ( C ) also has a  more specific result type with respect to  type conformance ( ).
The specification for m ethod consistency is given below,
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C O N SIST E N T  S C H E M A _________________________
O R D ERED -SC H EM A
-isC o n s is te n tW ith - : M ETHO D  -B- M ETH O D

V mi, m2 : M E TH O D ; su s2 : S IG N A T U R E  \
Si = mi.signature A s2 = m2.signature •

mi isC onsistentW ith m2

(m i C m2 ) =>■ Si.resultType -« s2.resultType 
A
(m 2 C m i ) =>• s2.resultType Si.resultType

In D A T A B A S E S C H E M A  it is asserted th a t m ethods directly related in a confusable 
set m ust be consistent.

D A T A B A S E S C H E M A ________________________________________________
P A R T IT IO N S
C O N S IS T E N T S C H E M A

V ms : allConfusableSets | # m s  > 1 •

V m i, m2 : ms \ mi ^  m2 •
mi isConfusableWith m2 => mi isC onsistentW ith m2

The consistency of confusable m ethods ensures th a t all m ethods involved in a  cycle 
in the generalised inheritance ordering m ust have the same result type. A proof of this 
Theorem can be found in Appendix A.

2.9 D atabases

A database can be defined as a consistent database schema and a set of variable names 
to  which persistent objects are attached. Assume th a t all such variable names are drawn 

from a given set:

[V A R IA B LE -N A M E ]

Each variable name represents a  persistent object which can be a base value, mono­
object, or collection. Variable names m ust be unique and therefore the binding between 
variable names and values is defined as a  to ta l function.

D A T A B A S E __________________________________
D A T A B A S E S C H E M A
persistentRoot -  : V A R IA B L E -N A M E  —>■ VALUE
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2.10 S tatic T ype Checking

Type checking involves checking the sta tic  types of the actual argum ents of a message 
against m ethods collected in a confusable set. Given the message name and the number 
of argum ents, all the relevant confusable sets can be obtained using the methodPartitions 
function. These sets can then be searched for an applicable m ethod th a t m atches the 
given sta tic  argum ent types. Once a set with an applicable m ethod is found, the search 
can stop as it is the only set containing all the possible applicable m ethods. M ethods in 
this set are then sorted by method specificity before being compared with the argum ent 
types. The least general m ethod th a t is applicable to  the given argum ent types is selected 
and recorded. Its result type will then be used to  check against the context in which the 
message is used.

The situation where no error occurs during type checking is considered first. The 
first condition for successful type checking is th a t the message name and the num ber of 
argum ents do correspond to  some m ethod defined in the database schema.

R IG H T -A R G U M E N T -L E N G T H ______________________________________
E D A T A B A SE
messageName? : M E TH O D -N A M E  
argumentTypes? : seqj T Y P E -N A M E  
ms : F M ETH O D

( messageName?, # argumentTypes? ) £ dom methodPartitions 
ms £ methodPartitions (messageName?, # argum entTypes?)

T hr °cond condition for successful t y r c h e c k i n g  requires th a t  a t least one m ethod 
having the same name and taking the same number of argum ents can actually be applied 

on argum ents of the given types.

H A S -A P P L IC A B L E -M E T H O D _______________________________________
E D A T A B A SE
argumentTypes? : seqx T Y P E -N A M E  
ms : F  M ETH O D

3 m : M ETH O D  | m £ ms •
V i : 1 . .  # argumentTypes? •

argumentTypes? i m. signature. argumentTypes i

The set of confusable m ethods containing an applicable m ethod is represented by ms 
in the two specifications above. M ethods in ms th a t are confusable with the argum ent 
types of the message are then selected and sorted in descending order of m ethod specificity

(E) .
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SO R T -C O N F U SA B L E -M E T H O D S________________________
E D A T A B A SE
argumentTypes? : seqj T Y P E -N A M E  
ms : F M ETHO D  
oms ’. seqj M ETH O D

ran oms = { m : M ETH O D  | m £  ms •

V i : 1 .. # argumentTypes? •
3 t : T Y P E -N A M E  •

t -4< argumentTypes? i 
A
t m .signature.argumentTypes i }

\f j , k  : 1 ..  # o m s  | j  +  1 =  k •  
oms j  C oms k

The least general m ethod is defined as the most specific m ethod with respect to  m ethod 
specificity ( C ) th a t is applicable to argum ents of the given types.

L O C A T E -L E A S T -G E N E R A L -M E T H O D ______________________________
E D A T A B A SE
argumentTypes? : seqj T Y P E -N A M E
oms : seqj M ETH O D
9 - ^ 1
moreSpecificM ethodsl: seq M ETHO D  
resultTypel: T Y P E -N A M E

g G 1 . .  # o m s
V * : 1 ..  # argumentTypes? •

argumentTypes? i ( oms g).signature.argum entTypes i

$i : (g  +  1) . .  # o m s  •
oms g C oms i A oms i C oms g

3 i  : l  . . { g  - I )  •
( oms i C oms g A oms g C oms i )
V
3 j  : 1 . .  # argumentTypes? •

-i ( argumentTypes? j  -4< ( oms i ) .signature.argumentTypes j  )

moreSpecificMethodsl = { 1 . .  g } < oms
resultTypel =  ( moreSpecificMethodsl g).signature.resultType

The least general m ethod from oms is selected by identifying its position g in the 
sequence. The first constraint restricts g to  be a position in the sequence. The second 
constraint specifies th a t the  m ethod a t position g is applicable to  argum ents of the  given 
types. The th ird  constraint asserts th a t methods after position g can n ot form a cycle 
with the m ethod a t g in the m ethod specificity relation. The last constraint asserts
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th a t a m ethod before position g either forms a cycle with the m ethod a t g in the method 
specificity relation or is not applicable to  argum ents of the given types. Note th a t m ethods 
of the latter kind are confusable with the argum ent types. P a rt of the sequence om s , up 
to position g, is returned as a  sequence of potential applicable methods. The result type 
of the method a t position g becomes the result type of the message.

The above specifications can now be combined to  capture the error-free case of type 
checking. Note th a t a  message indicating successful type checking is also included.

P A SS-T Y P E -C H E C K IN G  =
R IG H T -A R G U M E N T -L E N G T H  A 
H A S-A  PPLIC A BLE -M ETH O D  A 
SO R T-C O F U SA B LE -M E TH O D S  A 
L O C A T E -L E A ST -G E N E R A L -M E T H O D  A 
[ rep\ : M E SSA G E  \ repl = Ok]

The domain of rep!, M ESSAG E, is defined below.

M ESSAG E ::= Ok | Wrong Argument Length \ NoApplicableMethod

There are two circumstances under which the result type of a message cannot be 
identified. The first case occurs when the message name does not correspond to  any 
method or the number of argum ents does not m atch th a t of any method with the same 
name.

W R O N G -A R G U M E N T -L E N G T H _____________________________________
E D A TA B A SE
messageName? : M E TH O D -N  i M E  
argumentTypes? : seqj T Y P E -N A M E

( messageName?, # argumentTypes? ) 4  dom methodPartitions

W hen an error occurs, an empty list of m ethods will be returned and the result type 
of the message will be set to  the root class. An error message is also produced.

 N O T H IN G ____________________________________________________________
E D A T A B A SE
moreSpecificM ethodsl: seq M ETHO D  
resultTypel: T Y P E -N A M E

moreSpecificMethodsl =  ()  
resultTypel =  root
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E R R O R -O N E  =
W R O N G -A R G U M E N T -L E N G T H  A 
N O TH IN G  A
[repl : M E SSA G E  | repl = WrongArgumentLength]

The second case occurs when no applicable m ethod can be found.

N O -A P P L IC A B L E -M E T H O D _________________________________________
E D A T A B A SE
messageName? : M E TH O D -N A M E  
argumentTypes? : seqj T Y P E -N A M E

$m s : F M E TH O D  \ ms £ methodPartitions( messageName?, # argumentTypes? ) •  
3 m : M ETH O D  | m £ ms •

V * : 1 . .  # argumentTypes? •
argumentTypes? i -4< m .signature.argumentTypes i

E R R O R -T W O  =
N O -A  PPLIC A BLE -M ETH O D  A  

N O TH IN G  A
[ r ep l : M E SSA G E  | repl =  No Applicable M ethod ]

The various cases can now be combined to  provide a full picture of type checking. The 
hiding operator \  is applied to  T YP E -C H E C K IN G  to  remove the variables g , om s, and 
ms from the declaration part and to existentially quantify them  in the predicate part. 
This signifies th a t the variables are used for interm ediate values generated during the 

com putation.

F A IL -T Y P E -C H E C K IN G  =
E R R O R -O N E  V E R R O R -T W O

T Y P E -C H E C K IN G  =
P A SS-T Y P E -C H E C K IN G  V F A IL -T Y P E -C H E C K IN G

S T A T IC -T Y P E -C H E C K IN G  =
T Y P E -C H E C K IN G  \  { g, om s, ms }

Consider the  schema given in Figure 2.1, m : A  x  C  —> C  and m : B  x D —> D are in 
the same confusable set and m  of B  is more specific ( C ) than  m  of A. The sta tic  types 
of the argum ents in the program  fragm ent are A  and C . Since B A  and D C , m  of 
B  is not applicable and therefore m  of A  is selected giving C  as the  result type.

In Figure 2.2, the static  type of the argum ent is C  and both m ethods m ’s are applicable. 
m  : A  -* A  will be selected as it is less general than  m  of B . Consequently type checking 
will fail because of the invalid assignment statem ent. It is because an object of class A  
cannot be assigned to  a  variable of class B  because A  is not a  subclass of B .
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2.11 D ynam ic Binding

At run-tim e the most specific method, with respect to  the actual argum ent types, is 
chosen. It is only necessary to check the sequence of m ethods recorded during sta tic  type 
checking. Applicable m ethods are examined and the m ost specific m ethod according to 
the local inheritance order as determined by the argum ent types is returned. Using this 
strategy, one can provide the flexibility of using the most specific m ethod during run-tim e 
whose argum ent types respect th a t of the least general m ethod used for type checking.

D ISP A T C H IN G _______________________________________________________
E D A T A B A SE
m ethodList? : seqx M ETHO D  
argumentTypes? : seqj T Y P E -N A M E  
oms : seqj M ETH O D  
g : ^ i
methodChosenl : M ETHO D

ran oms =  { m : M ETH O D  | m £ ran m ethodList? •
V * : 1 . .  # argumentTypes? •

argumentTypes? i -«< m. signature. argumentTypes i }
g £ 1 . .  i f  oms
V j, k : 1 . .  i f  oms | j  +  1 =  k •

3 i : 1 . .  i f  argumentTypes? •
( oms j).signature.argum entTypes i <Cargu m en tT ypes’! i 

( oms k).signature.argum entTypes i
V

( oms j  ) .signature.ar umentTypes I =
( oms k).signature.argum entTypes I

methodChosenl =  head oms

D Y N A M IC -B IN D IN G  =
D ISPATC H IN G  \  { g, oms }

The sequence of m ethods recorded during type checking is represented by methodList?. 
The actual argum ent types are represented by argumentTypes? as a  sequence of type 
names. The first constraint collects all the applicable m ethods from methodList?  into 
oms. The second constraint restricts g to  be a position of oms. The third constraint 
orders the m ethods in oms using the local inheritance orderings as determ ined by the 
actual argum ent types. The most specific m ethod which is placed a t the beginning the 

oms is returned.
In Figure 2.1, if variables a and c actually contain objects of class B  and D respectively, 

the m ethod m : B  X D —»• D will be chosen; otherwise, the m ethod m  of A  will be used.
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2.12 R easoning about Z Specifications

Properties of the specification, of the reference d a ta  model, and of the approach used for 
sta tic  type checking can be studied through formal reasoning. For example, the following 
properties have been proved formally from the Z specification,

•  The com putation of applicableMethods in SCH EM A  does term inate (proof by induc­

tion).

•  The search for an applicable set of confusable m ethods in P A SS-T Y P E -C H E C K IN G  
can stop once a set is found (proof by contradiction).

•  An object cannot simultaneously be an instance of two disjoint leaf classes according 
to  the function typeO f (proof by contradiction).

•  Local inheritance ordering is sufficient for ordering confusable m ethods in a  multiple 

inheritance environment.

•  M ethods forming a cycle under the method specificity relation do not affect sta tic  
type checking and will be correctly bound a t run-time.

The last property depends on the property th a t m ethods forming a cycle in the  m ethod 
specificity relation must have the same result type. A proof of the la tte r property is given 

in Appendix A.
Note th a t the specification defined so far captures only the essential parts of the  refer­

ence d a ta  model th a t are required for the study of query processing in the coming chapters.

2.13 The Running Exam ple

The example database is a simplified university adm inistration system  th a t records infor­
m ation about students and staff members of a university, its academic departm ents and 
courses. The relationships between classes defined in the schema are shown in Figure 2.6.

The class Person  has two subclasses: Student and Staff. V isitingStaff is a  subclass 
of Staff. Tutor inherits from both Student and S ta ff  to  represent students doing part- 
time teaching. Every person and academic departm ent is given an address which is an 
object of class Address. A student can have a principal supervisor, a second supervisor, 
and so forth. It is therefore modelled as a  list of staff members. Every staff mem ber and 
student are associated to an academic departm ent of class Department via department and 
major respectively. Courses given by each staff member and taken by each studen t are 
also recorded. They are represented by set-valued m ethods teaches and takes. A course 
may have a set of prerequisite courses (prerequisites) and is adm inistered by one or more 
academic departm ents (runBy). A course is an instance of the class Course.
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Figure 2.6: Simplified Schema Diagram .

The schema definition is given in Figure 2.7. In order to  keep it simple, only the relevant 
m ethod signatures are given, a ttribu tes and m ethod im plem entations are om itted. E ntity  
is the root class. The calculation of the salary of a tu to r is different from th a t of a  staff 
member. This variation is captured b> giving an overloaded m ethod salary to  Tutor. Also 
recorded is the  percentage weights of assessments given in each course and the num ber of 
credits each course is worth. It is assumed th a t the database contains six set collections: 
Persons, Departments, and Courses, containing instances of their corresponding classes 
th a t are members of the university; and StaffMembers, Students , and Tutors, containing 
instances of the corresponding classes th a t are members in the  Science Faculty.

2.14 D iscussion

D ata  models from four prominent object-oriented database system s are chosen to  compare 
with the reference d a ta  model. These models are selected because their query languages 
will be studied extensively later in the thesis. This comparison therefore serves as back­
ground information for later chapters. A sum m ary of the comparison is given in Table 
2 . 1 .

3 In [BDK92] set is the only collection class.
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Class Person  isa Entity Class Departm ent  isa Entity
methods methods

name  :—»• String, name  :—>• String,
address > Address, address ¥ Address.
age > Integer.

Class Course isa Entity
Class Staff  isa Person methods
methods code > String,

d e p a r t m e n t ¥ Department, runBy Y Set  of Department,
teaches > Set  of Course, prerequisites :—y Set of Course,
salary  >■ Integer. assessments  >■ Bag of Integer,

credits y Integer.
Class Student  isa Person
methods Class Address  isa Entity

major  :—>■ Department, methods
supervisedBy > List of Staff, street :—>• String,
takes Se t  of Course. city  > String.

Class Tutor isa Staff, Student Database is
methods Persons : Set of Person,

salary  :—)■ Integer. Departments : Set  of Department,
Courses : Set of Course,

Class VistingStaff isa Staff. Staff Members : Set of Staff,
Students : Set of Student,
Tutors : Set  of Tutor.

Figure 2.7: Simplified Schema Definition.

ONTOS and O 2 support extents as an option. IRIS and ORION provide an extent for 
each class. In ORION, the extent of a class does not include extents 01 its subclasses. The 
reference d a ta  model is the only d a ta  model supporting m ulti-m ethods and sta tic  type 
checking a t the same time. The combination of these two features is however supported 
to  various extents in some programming languages.

CLOS [BDG+88] introduces the notion of m ulti-m ethods. Its use of local inheritance 
ordering is very similar to  th a t of the reference d a ta  model. However, type checking in 
CLOS is done a t run-tim e and hence is easier as more information is available a t run-tim e. 
Kea [MHH91] uses the ISA relationship to determ ine m ethod specificity. In addition, 
the lexical order of method definitions is also taken into account. The combined resultant 
ordering is nevertheless only a partial ordering. In other words, multiple inheritance cannot 
be fully supported. Unlike other systems, Cecil [Cha92] orders m ulti-m ethods using all 
their argum ent types in its entirety. However, only a partial ordering based on the ISA 
relationship is used and consequently the order is rather restrictive.

A reference d a ta  model, which serves as the basis of the investigation, has been pre­
sented in this chapter. So far only the “structu ral” part of the reference d a ta  model has 
been described. The intention is to develop a high-level query language to  serve as the  “op-
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D ata  M od el ONTOS IRIS ORION 0 2 Reference
Base Values / / / / /
Tuples / /
Complex Objects / / / / /
Object Identity / / / / /
Encapsulation / /
Method Calling / / / / /
Overloaded Methods / / / / /
Multi-Methods /
Classes / / / / /
Class Extents optional / / optional
Class Hierarchy / / / / /
Multiple Inheritance / / / /
Static Type Checking / /
Dynamic Binding / / / /
Collection Classes set, list, others set, bag set set, bag, list3 set, bag, list

Table 2.1: Comparison of Object-oriented D ata  Models.

erational” part of the reference d a ta  model. The next chapter identifies the requirem ents 
of such an object-oriented query language.
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Query Language R equirem ents

M any object-oriented query languages [Ser87, CDV88, Bee88, DLR88, CDLR89, BM89, 
BCD90, Kim90, BTA90, 0n t91c, DGJ92, KKS92] have been implemented and proposed. 
Some of these query languages are designed particularly for object-oriented databases, 
e.g. LIFOO [BM89] and ORION [Kim90]. Many are, however, adapted from other areas: 
the relational da ta  model and its extensions, e.g. ONTOS SQL [Ont91c]; sem antic d a ta  
models, e.g. OSQL [Bee88]; and object-oriented programming languages, e.g. OPAL 
[Ser87]. All of them , however, could be improved in one way or another. This chapter 
establishes a set of functional requirements for object-oriented query languages which can 
be used to evaluate, compare, and improve existing query languages as well as to  direct 
the design of new languages.

The organisation of this chapter is as follows. Section 3.1 argues for the need for 
establishing a set of functional requirements for object-oriented query languages. Section
3.2 describes the requirements. Section 3.3 addresses related issues th a t are not included 
in the requirements. Section 3.4 presents a sum m ary of evaluating four query languages 
using the requirements. Section 3.5 concludes.

3.1 Introduction

Relational completeness was proposed in [Cod72] and since then it has served as the  yard­
stick for evaluating the expressive power of relational query languages. Later studies of 
the generalisation of the relational model extended the relational algebra with ex tra  op­
erations. For instance, replace (applying a function over the elements of a  collection), 
set-collapse (given a collection of collections return  all the elements contained in the 
“nested” collections), and powerset, were introduced in [AB93] to  characterise the  ex­
pressive power of query languages for nested-relational and complex-object models, such 
as -iIN F  [RKB87], NF2 [PD89], and VERSO [SAB+89]. W ith the advent of newer d a ta  
models supporting richer constructs, new definitions of completeness are constantly sought 
for.

33
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So far, no definition of completeness has been proposed for object-oriented d a ta  models. 
Worse still, the situation is unlikely to  change for some time. A ttem pts have been made 
to tackle the problem by using different notions of completeness which are independent 
of d a ta  models [ABGvG89], but interpreting them  in term s of query language operations 
is not a t all straight forward. Not having a formal definition of completeness makes it 
difficult to evaluate and compare object-oriented query languages objectively.

Many opinions have been expressed about the central and fundam ental issues of object- 
oriented query languages [Ban89, Kim89, Kim92, BNPS92]. Relevant inputs can also be 
found from sources taking a slightly different standpoint. For example, an evaluation 
framework for query algebras is proposed in [Y091] and many of the criteria are applicable 
to high-level query languages. Language facilities for m ultim edia d a ta  are studied in 
[Man91]. Almost all the requirements identified there are equally valid for object-oriented 
query languages in general. It is encouraging th a t there is a  consensus of opinions from 
these sources.

However, this pool of ideas has several lim itations. Firstly, collection operations are 
not sufficiently characterised nor is the usability aspect of high-level query languages. 
Secondly, the requirements are stated  in rather esoteric term s hence are open to  misun­
derstanding. Thirdly, some of the requirements cannot be measured objectively. Further 
discussion on collection operations and usability is given in Section 3.2 and Section 3.4. 
Examples of the second and third problems can be found in Section 3.3. The aim of in­
troducing a new set of requirements is to provide a set of direct and measurable criteria 
as well as to  make up for overlooked issues. The guideline adopted is to  include only fea­
tures th a t can be expressed a t the language level. This shift of emphasis can be compared 
with the development of database performance benchmarking where the TPC -A  bench­
mark was introduced to  replace the DebitCredit benchmark precisely because the la tte r 
is vulnerable to  interpretations by the im plem entator [DBCRW92].

3.2 Functional Requirem ents

The requirements can be classified into four dimensions: support o f object-orientation , 
expressive power, support o f collections, and usability. Each dimension is defined in term s 
of a number of criteria.

Support of object-orientation measures the support given to  the intrinsic properties of 
object-oriented da ta  models. There is an almost unanimous agreement in the literature 
about features under this category. They include
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•  object identifiers
•  m ethod calling
•  complex objects
•  class hierarchy
•  dynamic binding

In the object-oriented paradigm, objects are identified by unique and im m utable object 
identifiers which are independent of the “contents” or composition of the objects. To 
support objects, a query language needs to operate on object identifiers, for example, the 
equality over object identifiers.

Objects are encapsulated, meaning th a t their “contents” cannot be accessed directly 
and all accesses must be done via methods defined for the objects. The association of 
specific methods to objects is a  fundamental tenet of the paradigm , the use of m ethods in 
a  query should therefore be supported.

In contrast to the simple attribu tes of a tuple in the relational model, an object can be 
perceived as a complex entity. Applying a method on such a complex object can result in 
the return of a base value, an object, or a collection. A query language supporting m ethod 
calling should therefore also accommodate results of different types.

The class hierarchy defines a classification scheme based on specialisation over classes. 
This naturally leads to  the adoption of the substitutional semantics which conceals the 
differences of objects originated from different classes along the same specialisation chain. 
On the other hand, the class hierarchy contains useful information regarding the classifi­
cation of objects which may form the basis of a query. A query language should therefore 
provide a mechanism 'ith which 1’ e classification in for nation can b :ploited.

The class hierarchy also introduces the notion of inheritance where m ethods defined 
in a superclass are inherited by all its subclasses. Moreover, m ethod overloading allows 
different methods to be given the same name. Given the substitu tional semantics and 
the possibility of m ethod overloading, the selection of a m ethod can only be determ ined 
dynamically. A query language should therefore support dynamic binding of m ethods or 

behave as if methods were dynamically bound.
Expressive power examines the ability to explore and synthesize complex objects and 

collections. A ttention is mainly drawn to  the m anipulation of individual objects. There 
is quite a reasonable consensus in the literature regarding features in this category which 
are listed below,



Query Language Requirem ents 36

•  multiple generators
•  dependent generators
•  returning new objects
•  nested queries
•  quantifiers
•  relational completeness
•  nested relational extension

•  recursion

A query often involves one or more collections. The ability to  specify more than  one 
domain collection - using multiple generators - in a query is as natural and im portan t as in 
earlier d a ta  models. Not supporting multiple generators will result in a more procedural 
query language relying heavily on query nesting and query functions, if they are supported. 
Consequently queries are more difficult to express - a good example is LIFOO [BM89].

A collection can be returned as the result of a  method call. To query such a “nested” 
collection, a query language should be able to  express dependency between generators. 
Generally speaking, in the absence of dependent generators, the fact th a t an object is an 
element of a nested collection has to  be “re-established” resulting in more verbose queries, 
for example, see OSQL [Lyn91],

So far, there has been no convincing argum ent from the modelling perspective about 
restricting a query language to  return only existing objects. Here a query language is 
required to  allow new objects to  be created in a query. It is not required th a t the corre­
sponding classes are created along with the objects. In other words, closure a t the  instance 
level sY Id be respected while closure at th class level is not required. To be "oore precise, 
no operations for the creation of new classes or the m anipulation of the class hierarchy are 
required. It is so decided because dynamic class creation is still an outstanding problem 
with no satisfactory solution. Detailed discussion of this controversial issue is given in 
Chapter 8 where the support of views is discussed.

Nested queries are crucial in the construction of new objects especially complex objects. 
It has been shown th a t many nested queries which appear only in the where clause (the 
filters) can be eliminated from SQL queries [Kim82, GW87], In an object-oriented query 
language supporting free nesting of queries, it it not obvious how nested queries can be 
eliminated w ithout other language constructs such as query functions. Query nesting can 
also be considered as an issue of generality.

Quantifiers can simplify queries and provide optim isation opportunities. Quantifiers 
can be simulated in many query languages; however, their optim isation always involves 
matching of large patterns, e.g. [Klu82], which increases the search space for optim isation. 
Quantifiers can significantly simplify the m anipulation of different kinds of collections as 
shown in C hapter 4.
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Object-oriented d a ta  models subsume the relational model, so an object-oriented query 
language should similarly subsume relational completeness. One possible definition of this 
requirem ent is th a t if the d a ta  are relations, a query language should be able to  express 
all queries th a t can be expressed in the relational algebra. However, a  more general 
definition would be more appropriate for comparing query languages for object-oriented 
databases. Basically, the concept of a relation being a set of tuples can be replaced by a 
collection of objects. A query language should therefore be able to  express whatever can 
be expressed in the relational algebra for collections and objects. Inevitably, the relational 
algebra operations will be more restrictive if tuples are not supported and should behave 
differently for different collection kinds.

Studies of the generalisation of the relational model result in the introduction of three 
ex tra  operations: replace, set-collapse, and powerset. It has been shown th a t powerset in­
curs superexponential complexity [HS88] which justifies its omission from the requirem ent 
list. The other two operations should be supported and their definitions can be similarly 
generalised as the relational algebra operations.

In the  object-oriented paradigm, cyclic relationships can be defined via one or more 
m ethods. Some form of recursion, for instance, transitive closure, should be supported to  
enable cyclic relationships to  be explored.

M any object-oriented database systems support more than  one collection kind. New 
features are required to  m anipulate these collections. The accent is to  find a good set 
of generic operations th a t behave consistently for different collection classes. Equally 
im portan t is the mixing of and conversion between different collection classes. Support of 
collections looks into the following features:

•  collection literals
•  collection equality
•  aggregate functions
•  positioning h  ordering
•  occurrences & counting
•  converting collections
•  combining collections
•  mixing collections

In some d a ta  models including the reference d a ta  model, collections are represented 
as objects hence their comparison is based on object identifiers. However, collections are 
very often characterised by their contents and behave like base values. This suggests th a t 
collections should be allowed to  have dual behaviour. One aspect of this duality is to  
allow collection literals to  be expressed. Collection literals can be sim ulated in some query 
languages; however, providing direct support simplifies queries as has been shown in SQL
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[Dat87]. Using the same argum ent, it should be possible to  compare two collections based 
on their elements instead of their identifiers.

Aggregate functions return a value from a collection and have been shown very useful 
in earlier d a ta  models. W hen ordered collections are supported, a  query language should 
be able to express queries related to a position in the order and the ordering between two 
elements. W hen collections are allowed to  have duplicates, a query language should be 
able to return  objects with a particular number of occurrences and to  count the number 
of occurrences of an object. It is also im portant to  allow collections to  be combined, 
converted, and mixed within a query.

Usability focuses on the ease of use of a  query notation which is essential to  the success 
of a high-level query language. The criteria in this category are

•  local definitions
•  query functions

Long path  expressions are not uncommon in object-oriented query expressions. To 
avoid repeating long path expressions, “shorthands” can be introduced using local defini­
tions. Complicated queries are easier to  express in an incremental fashion. Query func­
tions allow a complicated query to  be broken down into smaller and more comprehensible 
subqueries.

3.3 R elated  Issues

The previous discussion focuses on que.y language features w ithout addressing the impact 
of da ta  model on query languages. There has been much discussion about the advan­
tages and disadvantages of supporting extents [Kim89, ABD+90]. Extents create security 
problem as all instances of a class can be accessed via the class extent and access control 
on individual objects is difficult and prohibitively expensive. Application modelling often 
does not require the use of class extents. The provision of class extents has a great impact 
on what a  query language can retrieve. Querying a database becomes easier as every 
class extent provides an entry point to  the database and every object is guaranteed to  be 
directly accessible from at least one class extent. The result is a simpler query language 
and more optim isation opportunities. Some object-oriented d a ta  models, including the 
reference d a ta  model, do not support class extents. To have a set of requirem ents th a t 
are generally applicable, the existence of class extents cannot be assumed. The require­
ments given in the previous section are derived with no assum ption of class extents. For 
da ta  models supporting class extents, some of the requirements will become superfluous. 
For example, using multiple generators together with the membership test on collections, 
dependent generators can be simulated and the class hierarchy can be supported.
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Different kinds of equality have been introduced for testing the equivalence of objects 
based on their contents so th a t optimisation can be done with more flexibility. The 
deep-sensitive equivalence rules described in [SZ89] are very complicated and significantly 
increase the search space of the optimiser. The essence is th a t these different kinds of 
equality may be useful in query algebras but their necessity in high-level query languages 
is questionable.

M any other features of object-oriented query languages have been suggested [Dat84, 
BZ87, Ban89, Y 091, Man91, US92]. They are useful guidelines for the design of query 
languages. However, using them as requirements for evaluating query languages is less 
effective and their assessment can be difficult.

•  Simple
•  General
•  Application Independent
•  Strong Typed
•  Optimisable
•  D ata  Adm inistration
•  Rules and Triggers

•  Consistent
•  Closed
•  Orthogonal
•  Formal Semantics
•  Null Values
•  Integrity C onstraints
•  Versions

•  Elegant
•  Adequate
•  Well Integrated
•  Efficient
•  Extended Facilities
•  Com putational Complete
•  Schema Evolution

A consistent notation encourages similar concepts or problems to  be expressed in sim­
ilar ways. A query language is general if it allows free composition of constructs and does 
not impose arb itrary  restrictions. Closure refers to  the  fact th a t the result of a  query can 
be similarly m anipulated by the query language. In a  m ono-type model, like the relational 
model, it is a  necessary and sufficient requirement. W hen multiple types are supported, 
like in object-oriented d a ta  models, closure becomes a necessary bu t not sufficient require­
ment. Adequacy provides the sufficiency by requiring a query language to  operate on all 
types supported in the d a ta  model. Orthogonality is usually used in discussing persistence 
meaning th a t a query language can work on both persistent as well as transient da ta .

3.4 An Evaluation of E xisting Query Languages

In this section four well-known query languages are evaluated using the proposed require­
ments. They are the IRIS [LK86, Bee88, FAC+89, Lyn91], ORION[Kim90], ONTOS 
[Ont91a, Ont91b, Ont91c], and 02[Alt89, BDK92] query languages. These query lan­
guages are chosen as representative languages mainly because they are well-reported and 
the most referenced in the literature. The result of the evaluation is summarised in Table 
3.1 to  Table 3.4.

M ethod calling is supported by all the four query languages. OSQL, ORION and 
O 2SQL also support direct access to a ttribu tes. OSQL supports the class hierarchy via
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ONTOS SQL OSQL ORION O2 SQL
Object Identifiers / / / /
Method Calling / / / /
Complex Objects / / / /
Class Hierarchy / / /
Dynamic Binding / / / /

Table 3.1: Support of O bject-O rientation.

class extents and membership test. ORION provides four constructs to  support the  class 
hierarchy: (1) class extents and the membership test operation is-in; (2) the  operations * 
(meaning including instances of all subclasses), union , and difference over class extents to 
form class extent expressions; (3) specifying the class of the object returned by a method 
call using c/ass, this specification can be sandwiched between method calls within the same 
path expression; and (4) specifying the class of objects used and returned in a recursive 
query using is-a. The ONTOS and O 2 d a ta  models support class extents only as an option. 
ONTOS SQL does not support the class hierarchy properly in its current form. In other 
words, support given to  the class hierarchy partly depends on how the schema is defined. 
It is however possible to extend ONTOS SQL to support the  class hierarchy using the 
available interfaces for collection classes and the database.

ONTOS SQL OSQL ORION O2 SQL
Multiple Generators / / / /
Dependent Generators / /
Returning New Objects
Nested Queries / /
Existential Quantifier / / /
Universal Quantifier / / /
Selection / / / /
Projection / / /
Cartesian Product / / /
Union / / /
Differ / / /
Set-collapse / / /
Replace / / / /
Recursion /

Table 3.2: Expressive Power.

IRIS supports class extents and hence as explained in Section 3.3 the  support of de­
pendent generators in OSQL is not strictly necessary. On the other hand, the  expressive 
power of ONTOS SQL suffers badly because class extents are optional and dependent 
generators are not supported. None of the query languages supports the  return  of new 
objects. It is a  result of the lim itation of current technology since creating new objects is
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such an expensive operation th a t can significantly slow down query processing. ONTOS 
SQL can only return  either a string or a list of strings, while OSQL and O 2SQL often use 

tuples to  return new “objects” . ORION does not seem to offer a solution in this aspect. 
Nested queries can only appear in filters of an OSQL query. Generally speaking a nested 
query in a generator can always be eliminated and hence a nested query is most useful 
when it is used in filters or the result expression.

Quantifiers can be simulated provided th a t membership test and the cardinality opera­
tions of collections are available, and nested queries are supported. ONTOS SQL does not 
support nested queries and hence cannot sim ulate quantifiers. OSQL can sim ulate the use 
of quantifiers in filters. If quantifiers are used elsewhere “foreign” functions - implemented 
in a  program m ing language - can be employed.

ONTOS SQL does not support union and differ. ORION does not seem to  support 
projection and the proposal [Kim90] did not make it clear. It cannot return  new objects or 
tuples (tuples are not supported by its d a ta  model) and therefore cannot express cartesian 
product. O 2SQL provides differ for sets bu t not lists. ONTOS SQL does not support set- 
collapse. For the other languages, set-collapse can be performed in various ways including 
implicit flattening.

The four query languages all support some form of replace. Functions can be used 
in ONTOS SQL, OSQL, and O2SQL while methods can be used in all of them . ORION 
supports traversal recursion th a t involves traversal of a  cyclic relationship; however, it 
does not support com putational recursion where com putation is done along the traversal 
of a cyclic relationship.

ONTOS SQL OSQL ORION 0 2SQL
Collection Literals / / / /
Collection Equality / / / /
Aggregate Functions /
Positioning / - - /
Ordering - - /
Occurrences / - /
Counting / - /
Converting Collections - /
Combining Collections / - /
Mixing Collections / / - /

Table 3.3: Support of Collections.

ONTOS SQL supports only set literals th a t can appear only in generators. OSQL does 
not support lists and ORION supports only sets, therefore some entries in the table are 
not applicable to  them . They are marked by a dash (-) in the table. Aggregate functions 
can be supported using foreign functions in the case of OSQL. O 2SQL can decide whether 
one element precedes another element in a list with the help of a  set literal containing all
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the positions of the list. It is possible for OSQL and O2SQL to return objects given the 
number of occurrence in a collection though in a rather distorted way. Nevertheless, it is 
simpler for them  to return the number of occurrence of a given object. ONTOS SQL does 
not support conversion between collection classes. The result of a  query is either a string 
or a list of strings. W ith OSQL the result of a query is always a bag but duplicates in a bag 
can be eliminated. For O2SQL, if all the generators are drawn from the same collection 
kind the result will be of the same kind; otherwise the result is a bag. The function magic 
can turn a set into a  list while the function listoset and the keyword distinct and unique 
turn a list into a set.

ONTOS SQL OSQL ORION O2 SQL
Local Definition /
Query Function / /

Table 3.4: Usability.

ONTOS SQL does not support local definitions or query functions. OSQL supports 
query functions th a t can appear only in generators and local definitions are not supported. 
ORION does not support query functions while O2SQL does not support local definitions.

3.5 Sum mary

Example queries of the four query languages evaluated can be found in [CHT92b, CHT93aj. 
Results of the evaluation of other query languages, e.g. EXCESS (EXODUS [CDV88]), 
C Q L + +  (ODE [DGJ92]), OQL[X] (Zeitgeist [BTA90]), and XSQL [KKS92], can be found 
in [CT93, CTW95]. The new SQL3 proposal [Kul93] also includes many of the  require­
ments. Existing object-oriented query languages can be improved along the directions 
suggested by the requirements. It is also hoped th a t new query language design can 

benefit from this set of requirements.
Comprehensions have been dem onstrated to  be well integrated with program m ing lan­

guages and to  have desirable features th a t are worth exploring in the object-oriented 
setting. The next chapter introduces a  new query language, object comprehensions, which 
is based on comprehensions and satisfies all the requirements presented in this chapter.
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O bject Com prehensions

A new query notation called object comprehensions is introduced in this chapter. It is 
based on list comprehensions [PJ87], which has been argued to  be a good query notation 
for being clear, concise, powerful, and optimisable [Tri91]. O bject comprehensions extend 
list comprehensions by combining and improving features found in existing object-oriented 
query languages so as to  provide a consistent and general query notation for object-oriented 
databases. Furtherm ore they incorporate new features th a t are missing from existing query 
languages: (1) treating  the class hierarchy as a classification scheme hence allowing selec­
tion to be based on such classification; (2) using quantifiers to  provide a consistent interface 
to collection classes hence reducing the syntactic complexity of collection operations; and 
(3) allowing the resultant collection class to be specified hence facilitating a “complete” 
specification and resulting in more comprehensible queries. Optim isation opportunities 
have been identified for some of the new features. Some optim isations allow syntax-level 
transform ation a t compile-time while others suggest simplification a t run-tim e. These 
optim isations not only subsume previous work of the same kind [Str90] but also include 
many new optim isations.

The organisation of this chapter is as follows. Section 4.1 describes the development 
of object comprehensions. Section 4.2 presents the syntax of object comprehensions. Sec­
tion 4.3 dem onstrates object comprehensions using a set of example queries. Section 4.4 
discusses optim isation of the new features. Section 4.5 concludes.

4.1 Comprehensions: Past &: Present

4.1.1 S et, L ist Sz C ollection  C om prehensions

In m athem atics the set of squares of all the odd num bers in a  set s is conventionally 
written:

{ square x | x £ s A odd X }

43
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This standard  m athem atical notation for sets was the inspiration for comprehensions. 
Comprehensions first appeared as set comprehensions in an early version of the program ­
ming language NPL. This language later evolved into Hope [BMS80] but w ithout com­
prehensions. Later list comprehensions were included in KRC [Tur81], which was also the 
first to  utilise the now familiar set-based syntax. List comprehensions have since been 
incorporated into several popular functional languages, e.g. M iranda [Tur85] and Haskell 
[HW90]. A full description of list comprehensions can be found in [PJ87].

Using list comprehensions the above m athem atical expression can be w ritten as

[square 2; | a; <— s; odd x ]

where s stands for a list instead of a  set.
Recently, list comprehensions have been generalised to  collection comprehensions, which 

provides a  uniform and extensible notation for expressing and optimising queries over many 
collection classes including sets, bags, lists, trees, ordered sets, and so forth [WT91]. The 
most significant benefit is th a t, although each primitive operation will require a separate 
definition for each collection class, only one query notation is needed for all these collec­
tion classes; besides, a single definition is all th a t is required for higher-level operations 
defined in term s of collection comprehensions. In other words, it significantly reduces the 
syntactic complexity of the query notation.

Using collection comprehensions the same query can be w ritten as

[square x | x  s; odd x ] set

and with object comprehensions the above query can be w ritten as

Set[x  <r- s; odd x \ square x]

Each collection comprehension query can only involve one kind of collections. O bject 
comprehensions generalise this to allow collections of different kinds to  appear in the same 
query.

The result of evaluating this object comprehension query is a new collection, precisely 
a set, computed from the existing collection s of class Set o f Integer. The elements of 
the new collection are determined by repeatedly evaluating square x, as controlled by the 
qualifier odd x. Since the result of square x is of type Integer the elements in the resultant 
set are therefore of the same type. The change of the position of the result expression in 
object comprehensions serves to  provide a simpler scoping rule.

In general, a qualifier can be a filter , generator, or local definition. A filter is ju st a 
boolean-valued expression expressing a condition th a t must be satisfied for an element to 
be included in the result. An example of a filter was odd x above, ensuing th a t  only odd 
values of x are used in com puting the result. A generator of the form V  £ , where 
E  is a collection-valued expression, makes the variable V  range over the elements of the 
collection. An example of a generator was x <— s above, making x range over the elements
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of the set s. A local definition of the form N  as E , introduces a  symbolic name N  for the 
value of the expression E.

The meaning of object comprehensions can be understood using nested loops. A good 
analogy is to think of generators as nested loops where outerm ost corresponds to  leftmost, 
filters as conditions of an if statem ent, and local definitions as assignment to  new variables. 
The previous query can be understood as resulting in the set r  computed as follows:

r  :=
for each x in s 

if odd x then
r := r union Set{ x }

It has to  be stressed th a t this analogy is to clarify scoping rules and the meaning of 
object comprehensions; it is not the way to implement object comprehensions efficiently.

4.1 .2  O ther E xtension s &: Im plem entations

An extension to  support local definitions in list comprehensions was suggested in [Ham90]. 
Side-effecting qualifiers were proposed in [GOPT92]. They perm it d a ta  to be m anipulated 
by side-effects in addition to  being queried. The strong point is th a t such queries can 
still be optimised. The advantage of comprehensions over SQL, on which many object- 
oriented query languages are based, becomes clear when side-effecting qualifiers are taken 
into consideration. It is difficult to see how SQL-based languages can be extended in a 
similar way to  cope with side-effects.

List comprehensions are also included in a new functional database language called 
PFL [SP91]. In P /F D M  [PG90], DAPLEX queries are translated  to  an abstract form 
of list comprehension* with which optim isation is carried out. The authors commented 
th a t list comprehensions allowed queries to be expressed declaratively while DAPLEX had 
a navigational style of querying. It is interesting th a t the optim isation rules which are 
similar to  those in [Tri89] are defined a t the abstract comprehension level.

List comprehensions have also been applied to  im perative languages such as an ex­
perim ental version of PS-algol [TCH90]. The AGNA database program ming language 
is evaluated on a dataflow multiprocessor and uses parallel list comprehensions to  pro­
cess database queries a t speeds comparable with other multiprocessor database machines 
[NH91]. SPL is a  language th a t uses comprehensions to  evaluate queries in parallel over a 
d istributed database [KMK90]. The new version of Napier [MBCD89] about to  be released 
supports collection comprehensions.

4 .1 .3  S im plicity , Power &: O ptim isation

It was argued in [Tri91] th a t comprehensions are a good query notation for being con­
cise, clear, expressive, and easily optimised. The essence of the argum ent is as follows.
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Comprehensions are concise because they are a declarative specification of query. Com­
prehensions are clear because they are composed of consistent and general constructs. 

In [PJ87] the  efficiency of list comprehensions was proved by showing th a t they perform 
the minimum num ber of cons operations required to  produce the result list. More im por­
tantly , for each of the well-known optim isation strategies on relational queries, there exists 
an equivalent list comprehension transform ation [TW89] and two of the transform ations 
were dem onstrated [TCH90].

4.2 Syntax of O bject Com prehensions

The syntax of object comprehensions is given below where term inal symbols are under­
lined.

Expression

Aggregation ::

Comprehensions ::

Collection ::

Qualifier ::

Generator ::

Expression union Expression
Expression differ Expression
Comprehensions
Literal
Path
Call
Aggregation Expression 

size

let Function in Expression 
Collection [ Qualifier | Expression ]

Sto
Bag
List

A
Generator
Filter
Definition
Qualifier Qualifier 

Identifier <— Expression

Table 4.1: A bstract Syntax of O bject Comprehensions.
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Filter ::= Filter and Filter 
| Filter or_ Filter 
| not Condition 
| Condition

Condition ::= ( Filter )
| Quantified Operator Quantified 
| Expression hasClass Tvpe 
| Expression hasClass Type with Filter

Quantified ::= Expression 
| Quantification Expression

Operator II
2 

III 
IV 

|V 
|A 

|A 
\l 

III
 

II 
II 

II 
II 

II 
1!

Quantification ::=  some 
| every
| ju s t Expression 
| atleast Expression 
| atmost Expression

Type ::= Identifier 
| Collection o f Type

Definition ::= Identifier as Expression

Function ::= Identifier be Expression 
| Identifier ( Parameter ) be Expression

Parameter ::= A 
| Identifier : Type 
| Parameter , Parameter

Table 4.1: A bstract Syntax of Object Comprehensions (continued).
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Literal ::= String  
| Integer
| Collection { Elem ent }

Element ::=  A 
| Expression 
| Elem ent , Elem ent 
| Expression „ Expression

Path ::=  Identifier 
| Identifier . Method

Method Identifier 
| Identifier  ( Argum ent )

Argument ::=  A 
| Expression 
| Argument , Argument

Call Identifier ( Argum ent )

Table 4.1: A bstract Syntax of Object Comprehensions (continued).

4.3 O bject Com prehensions

The following subsections dem onstrate object comprehensions using queries on the exam­
ple database described in Section 2.13. M ethods used in the examples are supposed to  be 
w ithout side-effects. Side-effecting methods can be dealt with as proposed in [GOPT92]. 
The focus of each query is underlined. A discussion is given after each query. Queries 
involving staff members, students, and tu to rs should be read as staff members, students, 
and tu to rs  of the Science Faculty, unless stated  otherwise.

4.3.1 Support o f O bject-O rientation  

M ethod Calling &; Dynamic Binding

Q l. Return staff members earning more than  .£1000 a month.

5ef[s  <— StajfMembers; s .salary > 1000 | s]

Encapsulation protects a ttribu tes of an object from being accessed directly. Such an 
access m ust be made via a method. In Q l, s.salary represents the calling of m ethod 
salary on a staff member object s drawn from the collection StajfMembers. Recall th a t  a
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tu to r  is a staff member whose salary is calculated differently using an overloaded m ethod. 
Since StajfM embers may contain tu to r objects, the m ethod to  be used will be dynamically 
determ ined depending on the type of s.

Complex Objects

Q2. Return tu to rs  living in Glasgow.

S e t[ t <r- Tutors; t.address.city = “Glasgow” \ t]

Support of complex objects implies th a t a m ethod call may return  an object. The 
returned object can, in tu rn , receive another method call. This can go on for several 
m ethod calls until, for instance, a  base value is returned. In Q2, t.address.city represents 
the  calling of m ethod city on the result returned by calling address on a tu to r  object t.

Object Identifiers

Q3. Return tu to rs  working and studying in the same departm ent.

Set[ t Tutors; t.department =  t.m ajor  | £]

In the object-oriented paradigm, objects are represented by object identifiers which 
are essential for object sharing and representing cyclic relationships. Equality between 
objects is defined by the equality between their identifiers. In Q3, the  equality operator, 
“= ” , compares two departm ent objects using their object identifiers.

Class Hierarchy

Q4. Return all visi .*g staff me. bers in the university.

Set[p  <r- Persons; p hasClass V isitingStajf \ p]

There is no collection in the database containing only objects of class VisitingStajf. 
StajfM embers contains only members in the Science Faculty. The only collection th a t 
contains all visiting staff members is Persons. It is the reason why the Persons collection 
is used in this query. Since a collection can contain heterogeneous elements belonging to 
different classes, elements of Persons can be of class Person  or its subclasses. One way of 
selecting elements from such a collection is to  specify the class of interest. In Q4, hasClass 
returns true if person object p  is indeed of class VisitingStajf. This operation is essential 
for d a ta  models not supporting class extents.

Q5. Return all visiting staff members in the university who earn more than  £1000 a 
month.

Set[p  f -  Persons; p hasClass V isitingStajf with p.salary > 1000 | p]
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The m ethod salary is defined for visiting staff members but not persons in general. 
Therefore calling salary on a person object may result in an error. To allow selection 
th a t is applicable only to  objects of a particular class, the hasClass & with construct can 
be used. The role of with is similar to  th a t of conjunction. The second condition (e.g. 
p.salary > 1000) is evaluated only if the first condition (e.g. p hasClass VisitingStajf) is 
true; however, the conditions around with cannot be swapped. In other words, with is a 
non-symmetric conjunction. This construct is essential for supporting sta tic  type checking 
in the absence of support for class extents.

Local Definitions

Q6. R eturn students whose m ajor departm ents are in either Hillhead Street or Uni­
versity Avenue.

S e t[s  f -  Students; a as s.m ajor.address.street',
a = “Hillhead Street” or a =  “University Avenue” | s]

Local definitions simplify queries by providing symbolic names to expressions. They 
are particularly useful when an expression is used in more than  one place. In Q6, 
s.major.address.street would have been written twice if local definitions were not sup­
ported. The use of the symbolic name a for the expression saves repeating the long 
expression twice.

4.3 .2  T he R esu lt E xpression  

Returning New Objects

Q7. Return students and the courses taken by them . The result is obtained by 
creating new objects using the student objects and the sets of courses.

S e t[s  f -  Students \ A C lass.new (s, s .takes)]

So far, only queries returning existing objects have been examined. To return  “new” 
information, the corresponding class has to  be defined beforehand and the query will create 
objects of this class as the result. In Q7, the method new, which takes two param eters: s
and s.takes , is called on the class AClass. If tuples were supported in the reference d a ta
model, the encoding of multiple results to  a tuple would be obvious.

Nested Queries

Q8. R eturn students and the courses taken by them  th a t have more than  one credit. 
The result is obtained by creating new objects using the student objects and the sets 

of courses.

S e t[s  <— Students \ A C lass.new ( s, Se t[c  <- s .takes ; c.credits > 1 | c ] ) ]



4.3. Object Comprehensions 51

Nested queries enable richer d a ta  structures to  be returned as well as complex selection 
conditions to  be expressed. In Q8, the inner query returns a  set of courses and is used as 
a param eter to  the method call in the result expression of the outer query. The generator 
used in the inner query is referred to as dependent generator and is explained in the next 
subsection.

4 .3 .3  G enerators  

M ultiple Generators

Q9. Return students studying in the same departm ent as Steve Johnson.

S e t[x <— Students : y Students '.; x.nam e = “Steve Johnson”;
x.m ajor  =  y.m ajor \ y]

M ultiple generators allow relationships th a t are not explicitly defined in the database 
schema to  be “re-constructed” . In Q9, x is ranged over Students  and y is ranged over 
the same set but independently. The missing relationship is established using the m ajor 
departm ents of x and y. Multiple generators are particularly useful in processing nested 
collections as shown in the next example.

Dependent Generators

Q10. Return courses taken by the students.

5 e i [ s  <r- Studen ts; c <— s.takes | c]

The result of a m ethod call can be a collection containing many elements. To facilitate 
querying over uiie elements in such a “nested” collection, a  dependent generator can be 
used. In Q10, c is ranged over the collection returned by calling takes on the current 
student object s (i.e. the element in Students th a t is currently bound to  s). The range of 
c changes whenever s is given a new object.

Literal Generators

Q l l .  Return those courses among DB4, AI4, HCI4, OS4, and PL4 which have more 
than  one credit.

Set[c  <- Courses', x <- Set { “DBA”, “A I4 ”, “H C I4”, “OS4”, “PL4”} ; 
c.code =  x; c.credits > 1 | c]

Collection literals can simplify queries by making them  more concise and arguably 
clearer. In Q l l ,  a set literal of strings is specified by listing the elements within curly 
brackets. They are, however, more often used in specifying filters as in the  next example.
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4 .3 .4  Quantifiers

In order to  provide a coherent notation for querying over different collection classes, object 
comprehensions rely on quantifiers to  express many collection operations. The quantifiers 
introduced in this subsection concern the occurrences of collection elements and they have 
the same semantics for sets, bags, and lists. Note th a t the semantics of a quantified 
expression is not compositional.

Existential Quantifiers

Q12. Return those courses among DB4, AI4, OS4, and PL4 which have more than  
one credit.

Set[c  <— Courses', c.code = some S e t{ “D B4”. “A /4 ” . “0 5 4 ” . “PL4”}: 
c.credits > 1 | c]

Q13. Return students taking a course given by Steve Johnson.

Set[l StajfMembers; l.name  =  “Steve Johnson”; s f -  Students; 
some s.takes = some I.teaches | 5 ]

A restricted form of existential quantification is provided by some, which can appear 
on either side of an operator. In Q12, the first filter succeeds if a  course code is one of the 
members listed in the set literal. T hat is,

3 x  •  x e  S e t{ “D B4”, “A /4 ” , “0 5 4 ” , “PL4”} A  x = c.code

In Q13, the filter returns true if there is a common element between the two sets: s.takes 
and l.teaches (i.e. an non-empty intersection). T h a t is

3 x 3  y •  x G s.takes A y € l.teaches A x =  y

Universal Quantifiers

Q14. Return students taking only courses given by Steve Johnson.

Set[l <— StajfMembers; l.nam e = “Steve Johnson”; s <— Students; 
every s.takes = some l.teaches | 5 ]

In Q14, the last filter succeeds if all the course elements in s.takes are also in the set 
l.teaches. T ha t is,

V x 3 y •  x E s.takes  A y E l.teaches A x = y

Actually it is the subset relation. Note th a t the universal quantifier is always bound first 
if used together with an existential quantifier.
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Numerical Quantifiers

Numerical quantifiers are based on numerical quantifiers used in logic [BB89]. They are 
very useful in dealing with duplicate elements in collections and the number of elements 
th a t are common between two collections (i.e. the size of the intersection).

Q15. Return students taking two or more courses given by Steve Johnson.

S e t[ l <— StajfMembers; l.nam e  =  “Steve Johnson”; s <— Students; 
some s.takes =  atleast 2 l.teaches | 5 ]

Q16. Return students taking exactly two courses given by Steve Johnson.

S e t[ l f -  StajfMembers; l.nam e = “Steve Johnson”; s <— Students; 
some s.takes =  ju st 2 l.teaches | 5 ]

Q17. Return students taking no more than  two courses given by Steve Johnson.

Set[ l  f -  StajfMembers; l.nam e = “Steve Johnson”; s Students; 
some s.takes =  atmost 2 l.teaches | s]

In Q15, the last filter becomes true if there are a t least two elements th a t are common 
between s.takes and l.teaches. T ha t is

3^2 x  3 y •  x (E l.teaches A y £ s.takes  A x =  y

where

3 }>n X P ( X ) =  " j n - l  X * ( F ( X ) A (3  - * P (y) A y  ;))

d>1 x •  P(x)  =  3 x •  P(x) .

In Q16, the last filter succeeds if there are exactly two elements th a t are common between 
the operand sets. T h a t is,

3=n x * P ( x )  = {3^n x m P { x ) )  A - .(3 ^ n+1 x m P ( x ) )

While in Q17, the number of common elements must be less than  or equal to  two. T hat 
is,

=  X » P ( X ) )

Quantifiers are bound in the following order: the universal quantifier then numerical 
quantifiers and followed by the existential quantifier.
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4.3 .5  Support o f C ollections  

Aggregate Functions

Q18. Return courses with less than  two assessments.

Set[c  4- Courses; (size c.assessments) <  2 | c]

The aggregate function size returns the number of elements in a collection. It is defined 
for all collection classes. For bags and lists duplicate elements are included in the counting.

Equality

Q19. Return courses requiring no prerequisite courses.

Set[c  4- Courses; c.prerequisites==Set{} | c]

In many occasions it is necessary to compare two collections based on the elements, 
their occurrences, and their order. Two bags are equal if for each element drawn from 
either collection there is equal number of occurrences in both bags. For lists, the number 
of occurrences and the positions must be the same. In Q19, the filter becomes true if 
c.prerequisites is an em pty set. Note th a t object comprehensions do not support equality 
on objects th a t are not collections.

Occurrences & Counting

Q20. Return courses with 4 assessments of the same percentage weight.

Set[c  4- Courses; i <— c.assessments; 
ju st 4 c.assessments = i | c]

Q21. Return the number of assessments worth 25% in the DB4 course.

Set[c  4- Courses; c.code = “DBA” ; 
i <— L ist{  1 ..{size c.assessments) }; 
ju s t i  c.assessments =  25 | z]

In Q20, the selection is based on the number of occurrences (i.e. 4) ° f  an element 
(i.e. i) in the  collection c.assessments. The use of numerical quantifiers simplifies retrieval 
based on occurrences. In Q21, the number of occurrences (i.e. t) of a  given element (i.e. 
25) in the collection c.assessments is returned. The possible number of occurrences are 
generated using a literal generator ranging from 1 to  (size c.assessm ents).
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Positioning & Ordering

Q22. Return the first and second supervisors of Steve Johnson.

Set[s  <— Studen ts ; s.nam e = “Steve Johnson” ; 
i <— L ist{  1..2 } | s.supervisedBy.[i] ]

Q23. Return students having Steve Johnson before Bob Campbell in their supervisor 
lists.

Set[s  4- Students; sup as L ist{  1 ..(size s.supervisedBy)}; 
i sup; s.supermsed£ty.[z].name =  “Steve Johnson” ; 
j  <— sup ; s.supem sedRt/.[7’].name =  “Bob Campbell”; z < j  | s]

A list allows duplicate elements and keeps track of the order of the elements. Naturally 
queries involving lists may question on the order or positions of elements-. In Q22, the 
first two elements of the list are returned using a literal generator. In Q23, a list literal is 
generated. Two generators are then ranged over it to  m atch the given names. The relative 
order is determined using the range variable i and j.

Union & Differ

Q24. Return students in the Com puting Science and Electrical Engineering D epart­
ments.

Set[s  <— S tudents ; s.m ajor.nam e = “Computing Science” | s]
union
Set[ s 4- Students ; s.m ajor.nam e = “ Electrical Engineering” | s]

The union  operator combines two collections to form a new collection of the  same class 
but having all the elements. If the two operand collections have different element classes, 
the least general unique common superclass of the original element classes becomes the 
element class of the resultant collection. The union of two bags contains all the  elements in 
the operand bags including all duplicates - additive union. The union of a  list to  another 
list appends the la tte r to  the former - list concatenation.

Q25. Return cities where students, but no staff, live.

Set[s  <— Students  | s.address.city]
differ
Set[s  <— StajfMembers \ s.address.city]

The difference between two collections can be expressed using differ as in Q25. The 
class of the resultant elements is determined in the same way as in union. The number 
of occurrences for an element in the resultant collection is the difference of those in the



O bject Comprehensions 56

operand collections. In the case of lists, differ removes elements in the second operand list 
from the first operand list. To be precise, given an element of the second operand list the 
last occurrence of it in the first operand list will be removed.

Converting Collections

Q26. Return the wages of tu tors and keep the possible duplicate values.

Bag[ t 4- Tutors \ t.wages]

This query is based on a set of tu to r objects and therefore the result is naturally  a 
set of integers containing no duplicate values. If duplicates are to  be kept the result can 
be specified to  be a bag. Explicitly specifying the resultant collection kind provides a 
high-level mechanism to  manage duplicates. Otherwise, implicit conversion rules have to 
be imposed or explicit conversion of all generators to  the resultant collection kind will be
required. Converting a collection into a set results in the elimination of duplicates and the
loss of the order between elements. Converting a collection into a bag keeps the num ber of 
elements unchanged - duplicates are not lost and no new elements are introduced - but the 
order between the elements is lost. Converting a collection into a list keeps the num ber of 
elements and an arb itrary  order is assigned to the elements.

Mixing Collections

Q27. Return courses taught by the supervisors of Steve Johnson.

5e£[s 4-  Students; s.nam e = “Steve Johnson”; 
sup <— s.supervisedBy; c 4- sup.teaches | c]

If an object-oriented d a ta  model supports more than  one collection kind, the corre­
sponding query notation should support not only different collection kinds but also the 
mixing of them  in the same query. In Q27, the first generator is drawn from the set 
Students , the second generator from the list s.supervisedBy, and the last generator from 
the  set sup.teaches. Knowing the resultant collection kind, object comprehensions can 
autom atically convert all generators into the resultant kind.

4 .3 .6  Q uery Functions &; R ecursion

Q28. Return all direct and indirect prerequisite courses for the “DB4” course.

let / (  cs : Set o f Course) be
cs union Set [x  4- cs; y <— f(x .prerequ isites)  | y]

in Set[c  <— Courses; c.code =  “DBA”; p i— f(c.prerequisites) | p]

In object-oriented d a ta  models, it is possible to find cyclic relationships involving one
or more classes. This suggests th a t recursive queries should be supported. W ith object



4.4. Semantic Optimisation  57

comprehensions, recursive queries can be expressed using query functions. In Q28, the 
result of the query is generated by retrieving elements, p, from a collection returned by a 
recursive function, f(c.prerequisites). Function /  takes a set of courses and returns a  set 
of courses. For each element x drawn from the input collection cs, /  is applied recursively 
on the prerequisite courses of x , x.prerequisites, and the result is then combined with the 
input collection. The recursion stops when /  is passed an em pty set.

4.4 Sem antic O ptim isation

Optim isations developed for list comprehensions, which includes all well-known relational 
optim isation transform ations, are also applicable to object comprehensions. Details of 
which are not repeated here and can be found in [TW89]. This section studies the op­
tim isation of the new features using semantic information. Semantic optim isation rules 
are meaning-preserving transform ation rules. They are used to  create equivalent expres­
sions based upon pattern  matching and textual substitution. In addition, they also use 
semantics of the database schema as given by the class definitions and the class hierarchy. 
The overall goal of expression transform ation is to reduce the cost of query evaluation. 
The focus of this section is on rule specification as opposed to  rule application for query 
optim isation as the la tte r has been shown to be viable [GD87, HFLP89].

The following tables show the transform ation rules for the new features in object 
comprehensions. The expressions th a t can be optimised are listed in the second column. 
The third column provides the equivalent expressions. The conditions under which a 
transform ation can be performed are given in the last column. Definitions of the functions, 
relations, and domains used in the last column can be found in C hapter 2.

4.4.1 C lass H ierarchy

Optimisable
Expression

Transformed
Expression

Conditions

1 x hasClass Entity true
2 x hasClass c true type0 fix )  -«  c

3.1
3.2
3.3

(x hasClass ci) and (x hasClass C2 ) x hasClass C2  

x hasClass c 
false

c2 -4< Ci
3j c : ClassNam e •  c ci A c C2  

-’ 3 c :  ClassNam e •  c -4< Ci A c C2

4.1
4.2

not (x hasClass ci) and (x hasClass C2 ) false
x hasClass C2

C2 Ci

-» 3 c : ClassNam e •  c -4< ci A c C2

5 (x hasClass ci) or (x hasClass C2 ) x hasClass ci C2 -«  Ci

Table 4.2: Optimising Class Testing.

All these transform ations can be applied a t compile-time. This set of sem antic optim i­
sation rules subsumes those found in [Str90]. An in terpretation of the rules is given below
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and followed by an example of the usage of one of the rules.

R u le  1 Every class is related directly or indirectly to  the root class by the ISA relation­
ship. E ntity  is the root class. Therefore every object is also of class Entity.

R u le  2 If the class of x is a subclass of c, then x is also of class c.

R u le  3.1 If C2 is a subclass of Ci, being of class C2 implies being of Ci. It is therefore 
sufficient to  check ju st C2.

R u le  3 .2  Let c be the unique common subclass of ci and C2. For any x to  be of both 
classes Ci and C2, it is possible only if x is of class c.

R u le  3 .3  If ci and C2 do not have a common subclass, no object can be of classes Ci and 
C2 a t the same time.

R u le  4.1 It is not possible for an object to  be of one class but not a superclass of this 
class.

R u le  4 .2  Given th a t ci and C2 do not have a common subclass. To check if an object is 
of class C2 but not c i , testing against C2 will be sufficient as no object can be of the 
two classes simultaneously.

R u le  5 For an object to  be of one class or a superclass of this class, it is sufficient ju s t to 
check against the superclass.

Q29. Return people in all faculties th a t are a staff member and a student a t the same 

time.

oet[p <— Persons; p hasClass p hasClass Student | p]
= >  Set[p 4— Persons; p hasClass Tutor \ p]

Using the database schema given in Section 2.13 and rule 3.2 in Table 4.2 above, it 
can be deduced th a t the two filters are true only if a person is a  tu to r. Applying the 
transform ation will tu rn  the original query from having two filters to  ju st one. Note th a t 

is semantically equivalent to  and.

4 .4 .2  Q uantifiers

In the following table, n stands for an integer expression, x represents an expression retu rn­
ing an object, and e represents any expression including quantified expression. O perators 
are represented by 9. The label quantifier stands for one of the three numerical quantifiers: 

atm ost, ju s t , or atleast.
These rules will be used mostly a t run-tim e. They can be applied a t compile-time if 

some of the operands are literal. An interpretation of the  rules is given below.
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Optimisable
Expression

Transformed
Expression

Conditions

7 every cs 9 x true s i z e  cs =  0
8 every cs =  x false k i n d O f i c s )  — A S e t  A { s i z e  cs) >  1
9 every csi =  every CS2 false ( k i n d O f i csi) =  A S e t  A ( s i z e  csi) >  1) V 

( k i n d O f i CS2 ) =  A S e t  A ( s i z e  CS2 ) >  1)
10 q u a n t i f i e r  n cs 6 e false n <  0
11.1
11.2

atmost n cs 6  e true
true

( s i z e  cs) =  0 
( s i z e  cs) ^ n

12 atmost ni csi =  some CS2 true k i n d O f i c si) =  A S e t  A 
k i n d O f ( c s 2 ) =  A S e t  A ( s i z e  CS2 ) <  m

13
14.1
14.2

just n cs =  x 
just n cs 0 e

false
true
false

k i n d O f ( cs) =  A S e t  A n > 1 
( s i z e  cs) =  0 A n =  0 
( s i z e  cs) <  n

15 just ni csi =  some CS2 false k i n d O f i csi) =  A S e t  A 
k i n d O f i c S i )  =  A S e t  A ( s i z e  cs?)  <  ni

16
17.1
17.2

atleast n cs =  x 
atleast n cs 6  e

false
true
false

k i n d O f i c s) =  A S e t  A n >  1 
n =  0
( s i z e  cs) <  n

18 atleast ni csi =  some CS2 false k i n d O f i c s i )  =  A S e t  A 
k i n d O f i c ^ )  =  A S e t  A ( s i z e  C S 2 )  <  n i

19 some cs 9 e false ( s i z e  cs) =  0

Table 4.3: Optimising Quantified Expressions.

R u le  7 Universal quantification over an empty collection is always true.

R u le  8 It is not possible for the elements of a non-singleton set to  be identical to  the 
same object as a set does not allow duplicates.

R u le  9 It is r t possible for the elements of a ncn-singleton set to  be identical with all 
the elements of another set.

R u le  10 A numerical quantifier only works with positive numbers.

R u le  11.1 An em pty collection will satisfy any limit of occurrence.

R u le  11 .2  If the  limit of occurrence is larger than  the size of the collection, it is always 
true regardless of the operator.

R u le  12 If the limit of occurrence for a set is larger than  the size of the set from which 
the comparing elements are drawn, it is always true with the equality operator.

R u le  13 It is not possible for an element to  occur more than  once in a set.

R u le  14.1 It is always true th a t no element occurs in an em pty collection.

R u le  14.2  It is not possible for the number of occurrences of an element to  be greater 
than the size of the collection from which it is drawn.



Object Comprehensions 60

R u le  15 If the number of occurrences for a  set is larger than  the size of the set from which 
the comparing elements are drawn, it is always false with the equality operator.

R u le  16 It is not possible for an element to  occur more than  once in a set.

R u le  17.1 Any object occurs a t least zero times in a collection.

R u le  17.2  It is not possible for the minimum number of occurrences of any element to  
be larger than  the size of the collection.

R u le  18 If the minimum number of occurrences in a set is larger than  the size of the 
set from which the comparing elements are drawn, then it is always false with the 
equality operator.

R u le  19 Existential quantification over an em pty collection is always false.

4.5 Sum m ary

The salient features of object comprehensions have been presented. The example queries 
dem onstrated th a t sophisticated queries can be expressed using object comprehensions 
in a clear and concise fashion. This is achieved via the support of a number of pow­
erful predicates, orthogonal composition of constructs, query functions, local definitions, 
manipulation of different collection classes, and recursion. Despite of being a powerful 
notation, object comprehensions can be optimised using existing optim isation techniques. 
Some optim isations for class testing and quantification were identified and presented. In 
the next chapter, the expressive power of object comprehensions is further dem onstrated 
by providing translation from other query languages to  object comprehensions.



C h ap ter  5

Translating Query Languages to  
O bject Com prehensions

M any query languages have been proposed for object-oriented databases. These query 
languages vary in expressive power and use different notations. Despite of all these ap­
parent dissimilarities, they share similar underlying semantics. This observation suggests 
th a t a  single unified scheme can be developed to support these languages. This chapter 
describes the use of object comprehensions to provide such multi-lingual support for the 
reference d a ta  model. A set of translation schemes from the query languages studied in 
C hapter 3 to  object comprehensions is presented. These translation schemes dem onstrate 
th a t object comprehensions are as powerful as any of these query languages with respect 
to  the reference d a ta  model and therefore can be used to  provide a platform  to support 
any or all of these query languages.

The organisation c*1 this chapter is as follows. Section 5.1 in tro d u ^ "  the queries used 
to dem onstrate the translation schemes. Section 5.2 explains the notations used in the 
translation schemes. Section 5.3 and 5.4 present the translation schemes for ONTOS 
SQL and ORION. An example is given in each section to  dem onstrate the  translation. 
Section 5.5 and 5.6 provide an example translation for OSQL and O2SQL (their translation 
schemes are given in Appendix C). Section 5.7 concludes.

5.1 Exam ple Queries

M ulti-lingual support allows a database to be queried using more than  one query lan­
guage. Different users can therefore query the same database using query languages th a t 
are familiar to  them  or more appropriate for the particular environm ents in which they op­
erate. M ulti-lingual query support for conventional databases was investigated in MLDS 
[DH87]. This chapter discusses multi-lingual support for object-oriented databases using 
object comprehensions.

61
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Four example queries are used to dem onstrate the translations from existing query 
languages to  object comprehensions. They are chosen to  dem onstrate the interesting 
features of these query languages. The queries are expressed as object comprehensions as 
follows.

Q30. Return courses co-run by the Computing Science departm ent and having be­
tween 1 and 3 credits.

List[ c Courses; d <— Departments; d.nam e  =  “Computing Science 
d = some c.runBy; 1 < =  c .credits; c.credits <=  3 | c ]

Q31. R eturn students taking some course given by their supervisors.

Bag[ s <— Studen ts; c <— Courses; c = some s Jakes;
c = some List[ x <— s.supervisedBy; y 4— x.teaches | y ] | s ]

Q32. Return students having no supervisors from their m ajor departm ents.

Set[ s f -  Students;
(let f ( x s  : L ist o f S ta ff ) be

Set[ x <— xs | x.department s.m ajor ]
in every / (  s.supervisedBy ) =  true) | s ]

Q33. R eturn courses requiring “Logicl” as a direct or indirect prerequisite.

Set[ c f -  Courses;
some( let codes( cs : Set o f Course ) be 

Set[ c ( -  cs ( c.code ] 
in

codes( let preqs( cs : Set o f bourse ) be
cs union Set[ c f -  cs; x preqs( c.prerequisites ) | x ]

in preqs( c.prerequisites ) ) ) =  “LogicV  \ c ]

This chapter focuses on the retrieval capability of query languages and hence d a ta  
m anagem ent functions, like update and delete, are not discussed. As a consequence, 
constructs providing such functions are not included in the translation schemes. Since 
this research is conducted in the context of the reference d a ta  model, modelling notions 
and their corresponding constructs not supported by the model are naturally  excluded 
from the translation. Discussion of some of the constructs th a t are left out can be found 
in Appendix B.

5.2 Translation N otation

The following sections describe the translation of four high-level query languages, namely 
ONTOS SQL, ORION, OSQL, and O2SQL into object comprehensions. The transla­
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tion schemes are presented in denotational style [Sto77]: using compositional translation 
functions and the argum ent to each translation function is put within [ J brackets.

5.2 .1  T ranslation Functions

Each translation is described in term s of a  number of translation functions each dealing 
with one syntactic category.

T Q  Translate a Query
T D  Translate a Domain (Generator)
T E  Translate an Expression
T O  Translate an Operation

For the sake of simplicity, it is assumed th a t a number of translation functions exist 
to  deal with types.

T T  E xtract the Type of an Expression
T M  E xtract the Element Type of Collection
T C  E xtract the Kind of a Collection
T X  E xtract the Collection Kind from a Type Expression

The translation functions of each query language are subscribed by ontos, orion, osql, 
and 0 2 sql.

5.2 .2  S yn tactic  C ategories

W ithin each la guage, different syntactic categories are given different symbols:

Q Query
D Domain (Generator)
E Expression
I Identifier
k C onstant

S Sort Order

<t> Operation
U) Relational Operation (Boolean)

Arithm etic Operation

£ Collection Kind

The four query languages are marginally simplified to  make the translation  more ele­
gant. The simplifications made are listed and discussed in Appendix B.
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5.3 Translating ONTOS SQL

5.3.1 O N T O S SQL A bstract Syntax

Q ::=  select E  from  Ds where E  
| select E  from  Ds

Ds ::=  D \ D, Ds

D ::=  E  I  \ {  E s }  I

Es ::=  A | E  \ E , Es

E ::=  E  and E  | E  or E  | not E

| E  is in E  | E  is not in E  
| E  between E  and E  | E  not between E  and E  
| E  u  E  | E  E

| E . E \ I ( E s ) \ ( E ) \ l \ k

u

* | /  | +  | -

Table 5.1: ONTOS SQL A bstract Syntax.

5.3.2 O N T O S SQL Translation R ules

Using ONTOS SQL, query Q30 can be expressed as follows.

Q30. R eturn courses co-run by the Computing Science departm ent and having be-
tween 1 and 3 credits.

select c
from Courses c, D epartm ents d
where d.nam e =  “Com puting Science”
and d is in c.runBy
and c.credits between 1 and 3

Translating Queries

The ONTOS SQL translation uses the T Q ontos function initially. Since an ONTOS SQL 
query always returns a list as the result, T Q ontos produces a list comprehension. In the
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list comprehension, all of the domains are translated  into generators by T D ontos [ D-]. 
Then the filters, if any, are translated into qualifiers by T E ontos [ E i ]. Finally the target 

is translated  by T E ontos [ E ].

TQontos |  select E from D where Ei J

=> L i s t [  TDontos [ D ]  ; TEontos I El ] I TEontos [ E J ] (ontos.l)

TQontos 1 select E from D ]

=> L i s t [  TDontos [ D ]  I TEontos [  E ] ] (ontos.2)

Translating Domains

Two domains are translated  individually using T D ontos and the resulting translations 
are composed with a semi-colon. A domain can be formed by either a  collection-valued 
expression or a  collection literal. In the case of a collection-valued expression, the function 
TEontos is used. For a  literal, the elements are translated using T E ontos and the results 
form the elements of the literal 5e i{T E ontos [ E ]}. Domain variables remain unchanged 
and are composed to  the new domains using <— .

TDontos [Dl ,D 2 ] =$► TDontos I Dl ] J TDontos [ D2 ]

T D ontos [  E  I |  I  <— T E ontos I  E  J

T D on tos [  {E} I  ]  = >  /  * -  S e t {  T E  ontos H  E ] |  }

Translating Expressions

A sequence of express is separate 1 by comma is transl ed as follov

TEontos [ El , E2 1 =*► TEontos [  El ]  , TEontos [  E2 |  ( o n tO S .6 )

Selection conditions can be composed using logical connectives. Both ONTOS SQL 
and object comprehensions support the same set of connectives except th a t  semi-colon can 
be used for and in object comprehensions. The operand expressions are translated  using 

TEontos-

TEontos [ Ei and E2 ] => T E ontos I Ei ] ; T E ontos I E2 |  (ontos.7)

TEontos I Ei or E2 ] => TEontos [  Ei ]  o r  T E ontos [  E2 ]  (ontos.8)

TEontos [  not E ] =!► n o t  T E ontos [  E J (ontos.9)

ONTOS SQL provides two membership test operations and they can be represented 
in object comprehensions using the existential quantifier, some. A  value is in a  collection

(ontos. 3) 

(ontos.4) 

(ontos.5)
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if it is equal (=) to  some element in the collection. The converse holds when no element 
(~ = )  equals th a t value. The operand expressions are translated  using T E ontos*

TEontos [E i  is in E2  J =>• T E ontos [  Ei ] =  s o m e  T E ontos [  E2  J (ontos. 10)

T E onto3 [  Ei is not in E2  ]  => T E ontos [ Ei ] ~ =  s o m e  T E ontos [  E2  ]  (ontos. 11)

A value can be tested to  see if it falls within or outside a given range using between 
in ONTOS SQL. In object comprehensions, range testing can be done by comparing the 
given value with the largest and smallest values in the given range.

TEontos [ E between Ei and E2 ]

=> TEontos [  El ] < =  TEontos [  E ] ; TEontos [  E ]  < =  TEontos [  E2 1 (ontos.12)

TEontos [  E not between Ei and E2  J

=$■ TEontos [ E  J <  TEontos [ E l  ] Or TEontos [ E2 I <  TEontos [ E ]  (ontos. 13)

Relational and arithm etic operations can be translated easily. For the rest of this 
chapter, the translation of common operations is captured using a generalised rule in 
which an operation is represented by <f>. An example of translating <f> is given below.

TEontos [  E l (f> E2 |  TEontos [ El J TOontos [  4* 3 TEontos [ E 2 J ( o n t O S .14)

TOontos [  < >  ] =>• ~ =  ( o n t o s .  15)

Both ONTOS SQL and object comprehensions use the dot notation for method calls 
whose : 0 uments are put within () bracket

TEontos [ E l  . E2 1 =*► TEontos [  Ei |  . T E ontos [  E2 ] (ontos. 16)

TEontos [ 1 ( E ) ]  =» I  ( TEontos [  E ]  ) (ontos. 17)

Brackets, identifiers, and constants are translated  as follows.

T E ontos [ ( E ) ]  =>• ( T E ontos [  E  ]  )

TE ontos [  E  ]  =$> E

(ontos. 18) 

(ontos. 19)
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5.3 .3  E xam ple O N T O S SQL Translation

As an example of the use of the translation rules, Query Q30 presented a t the beginning 
of this section can be translated  as follows. The numbers of the translation rules applied 
are listed after =>.

TQontos [ select c

from Courses c, Departments d 

where d.name =  “Computing Science” 

find d is in c.runBy 

and c.credits between 1 and 3 ]

=$■ (ontos.1), (ontos.7) twice

L i s t [  TDontos [ Courses c, Departments d ];

TEontos [ d.name =  “Computing Science” ];

TEontos [ d is in c.runBy ]; TEontos [ c.credits between 1 and 3 ] | T E ontos [ c ] ]

=>■ (ontos.3), (ontos.4) twice, (ontos. 19) twice 

L i s t [  c  4 —  C o u r s e s ;  d  4 -  D e p a r t m e n t s ;

TEontos [ d.name =  “Computing Science” ];

TEontos [ d is in c.runBy ]; T E ontos [ c.credits between 1 and 3 ]  | T E ontos [ c ] ]

=> TQontos, (ontos. 14), (ontos. 16), (ontos. 19) 3 times

L i s t [  c  4—  C o u r s e s ;  d  4 —  D e p a r t m e n t s ;  d . n a m e  =  “C o m p u t i n g  S c i e n c e ” ;

TEontos [ d is in c.runBy ]; TEontos [ c.credits between 1 and 3 ] | T E ontos [ c ] ]

=>■ (ontos. 10), (ontos. 16), (ontos. 19) 3 times

L i s t [  c  4—  C o u r s e s ;  d  4—  D e p a r t m e n t s ;  d . n a m e  =  “C o m p u t i n g  S c i e n c e ” ;

d  =  s o m e  c . r u n B y ;  T E ontos [ c.credits between 1 and 3 ] | T E ontos [ c ] ]

=> (ontos. 12), (ontos. 16) twice, (ontos. 19) 6 times

L i s t [  c  4—  C o u r s e s ;  d  4 —  D e p a r t m e n t s ;  d . n a m e  =  “C o m p u t i n g  S c i e n c e ” ; 

d  =  s o m e  c . r u n B y ;  1 < =  c . c r e d i t s ;  c . c r e d i t s  < =  3 | TEontos [ c ] ]

=>• (ontos. 19)

L i s t [  c  4—  C o u r s e s ;  d  4—  D e p a r t m e n t s ;  d . n a m e  =  “C o m p u t i n g  S c i e n c e ” ; 

d  =  s o m e  c . r u n B y ;  1 < =  c . c r e d i t s ;  c . c r e d i t s  < =  3 | c  ]
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5.4 Translating ORION

5.4.1 O R IO N  A bstract Syntax

Q ::= Q union Q | Q intersect Q | Q difference Q | ( Q )
| select E  from  Ds where E
| select E  from  Ds
| select E  where E
| select E

Ds D | Z), Ds

D I  : I  is-in  E  | : I  is E

Es ::=  E  \ E , Es

E  ::= E  and E  | E  or E

J E  class I  u> E  | E  class I  E  u  E
| each E  u  E  \ E  each E  u  E
| exists E  u> E  \ E  exists E  uj E
j  E  u  E  | E  ^  E

| E  se t-o f E  | seC of E  \ E  (recurse E)
| E  E  | /  | / (  Es ) | ( E  )
I : I  I '(  Es ) | k

u  = |  : = | > | > = | < | < = j

| equal \ string-equal \ string  =
| hassuhse t \ is-subset \ is-equal
| has-element \ -> : has-element \ is-in  \ -> : is-in

i> ”= * | /  | +  | -

Table 5.2: ORION A bstract Syntax.
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5.4 .2  O R IO N  Translation R ules

Using the ORION query language, query Q33 can be expressed as follows.

Q33. Return courses requiring “Logicl” as a direct or indirect prerequisite.

select :c
from :c is_in Courses
where :c exists (recurse set_of prerequisites) code =  “Logicl”

ORION allows the use of multi-valued methods, recursion, and quantifiers in path  
expressions. For example, the path expression :c set-o f prerequisites code returns the 
course codes of all the prerequisite courses of :c. The keyword set-o f indicates th a t a 
multi-valued m ethod prerequisites is used in the path expression. This path  expression 
can be enhanced to  return the course codes of all direct and indirect prerequisite courses 
as follows: :c (recurse set-of prerequisites) code. The existential quantifier exists in Q33 
tests the existence of a direct or indirect prerequisite course with the course code Logicl.

T ranslating Q ueries

The translation for ORION begins with the T Q orion function. ORION supports a group 
of set operations th a t are used only a t the top level of a query. The operation intersect is 
not directly supported in object comprehensions but can be expressed in term s of differ. 

All the operands are translated using T Q orion-

TQ orion J Q l UIUOIl Q 2 J TQorion I  Q l J UTlioTl TQ orion I Q 2 J (orion. 1)

TQorion I  Q l intersec ^2 J 3- Morion [  Q l |  d iffe r  ( T Q  rion [  Q l J d". TQorion I  Q 2 ]] )

(orion.2)

TQorion [ Q i difference Q 2 ] =£• T Q orion [ Q i ] d i f f e r  T Q orion I Q 2 1 (orion.3)

TQorion [  ( Q ) 1 =* ( TQorion I Q 1 ) (orion.4)

A query can be formulated in SQL-like syntax except th a t the domain and condition 
parts are optional. Set is the only collection kind supported in ORION, all queries are 

therefore translated  into set comprehensions.

TQorion [  select E from D where Ei ] => Set[ T D orion [  D ] ; T E orion |[ Ei J | T E orion I E ]  ]

(orion.5)

TQorion I select E from D ] ^  Sef[ T D orion I D ] | T E orion I E ] ]  (orion.6)

TQorion [  select E where Ei ] =>• 5et[ T E orion I Ei ] | T E orion I E ] ]  (orion.7)

TQorion I select E ] =*• Set[ | T E orion I E ] ]  (orion.8)
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T ranslating D om ains

M ultiple dom ains are separated by comma in ORION but semi-colon in object comprehen­
sions. Domain variables are prefixed with a colon which is removed during the translation.

TDorion I D l , D 2 ] => TDorion |[ D l ]  J TDorion [  D 2 ]  ( o r i o n .9 )

TDorion [  :I i s _ in  E ] =£■ I <— T E orion [  E ] ( o r i o n .  1 0 )

If an expression is used more than once in a query it is convenient to  give it a name so 
th a t further references to  the expression can be replaced by the name. In ORION, such a 
name can be specified in the domain part of a query and m ust s ta r t  with a  colon which is 
removed during the translation.

TDorion [  :I i s  E ]  =J> I  as T E orion [  E ] ( o r i o n . l l )

T ranslating E xpressions

A sequence of expressions separated by comma is translated as follows.

TEorion [ E l  , E2 ] =* TEorion [ El ]  , TEorion [ E2 ]  ( o r i o n .  1 2 )

Logical connectives are translated as follows.

TEorion [  El a n d  E2 ]  => TEorion [  Ei ]  ; TEorion [ E 2 I  ( o r i o n .  1 3 )

TEorion [ El o r  E2 ] =*► TEorion [ Ei ] Of TEorion [ E2 ] ( o r i o n .1 4 )

ORION supports c ^>s testing uoing class th a t can L: sandwiche ^etween method 
calls. This embedding of class testing within com putation requires a two-staged evaluation 
in object comprehensions: a class testing on the first part of the expression is carried out 
first and then the whole expression is evaluated. The translation of a  simpler case is given 
in Appendix C.

TEorion [  El c l a s s  I E2 u; E3 ]

=* TEorion [  El ] hasClass I  ; TEorion [ E l  E2 w E3 J ( o r i o n . 1 5 )

Existential and universal quantifiers are supported in ORION using exists and each 
respectively. A representative case is given below and other cases are considered in Ap­
pendix C. In the expression below, Ei E 2 is a  collection-valued expression and the exis­
tential quantifier is applied over the elements of it. The whole expression returns true  if 
any element x in the collection satisfies the condition (x E3 u  E4). The translation tu rns 
the expression on the left hand side of u  into an expression involving implicit join whose
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translation is given later in this subsection. The comparison operation u> and the expres­
sion E4 on its right hand side are translated using T O orion and T E orion- The application 
of this rule is dem onstrated in the translation example given in the next subsection.

T E orion  [  E l  e x i s t s  E 2 E3 W E 4 1

=>■ som e  T E orion  [E i  s e t _ o f  E2 E3 ]  T O orion [ w ]  T E orion  [  E4 ]  ( o r io n .1 6 )

O perations between two sets or a set and a value are translated  as follows. O ther 
operations use T O orion and the translation rules are given in Appendix C.

TEorion [  E i h a s - s u b s e t  E2 J =>■ s o m e  T E orion [  E i |  =  e v e r y  T E orion [  E2 J ( o r i o n .1 7 )

TEorion [  Ei i s _ s u b s e t  E2 ] =>• e v e r y  T E orion [ E i ] =  s o m e  T E orion [  E2 |  ( o r i o n .  1 8 )

TEorion [ E i h a s - e l e m e n t  E2 |  =» s o m e  T E orion [  Ei ] =  T E orion [ E2 ]  ( o r i o n .  1 9 )

TEorion [ Ei -> : h a s _ e le m e n t  E2 ] => n o t  ( s o m e  T E orion [ E i ]  =  T E orion [  E2 ]  ) ( o r i o n .2 0 )

TEorion [  E i i s _ in  E2 ] =>■ T E orion [ E i ] =  s o m e  T E orion [ E2 |  ( o r i o n . 2 1 )

TEorion [  Ei - i : i s J n  E2 1 => n o t  ( T E orion [ E i |  =  s o m e  T E orion [ E2 ]  ) ( o r i o n . 2 2 )

TEorion [  E i <f> E 2 J =>■ TEorion [  E i J TOorion [  0  J TEorion [  E2 J

( o r io n .2 3 )

If a  m ethod is called upon a collection and the method is applicable to  the elements in 
the  collection, the resultant set will contain the results obtained by calling the m ethod on 
the individual elements. The translation rules below show how such an implicit join can 
be translated . In the first rule, Ei E2 is a collection-valued expression and E3 represents 
a m ethod call applicable to the elements of the collection. Note th a t the keyword se t-o f 
provides syntactic support to  mark the location of the join. The translation generates 
a query iunction. The collection Ei E2 is x ssed as an argum ent to  the query function 
which applies the rest of the expression to  each element in the collection. The translation 
function T T orion returns the type of an expression and is used to  fill in the type information 
in the signature of the query function. In the second rule, E 2 represents a collection and 
E3 is a  m ethod call applicable to the elements of E 2. For other cases, se t-o f simply serves 
as an alternative form for m ethod calls.

TEorion [  El set_of F,2 E s ]  =}>• ( let / (  xs : T T 01i0n [  Ei E2 ] ) be

S e t [  X XS I TEorion [ x E3 ] ]

in  / (  TEorion [ E l  E2 ] )) (orion.24)

TEorion [  set_of E 2 E 3 ]  => (le t / (  xs : T T orion [  E 2 ]  ) be

Set[ X e -  XS | TEorion [  X E 3 ]  ] 

in  / (  TEorion [  E 2 ]  ) )  (orion.2 5 )
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TEorion [ Ei set_of E2 ] =>■ T E orion [ Ei E2 ] (orion.26)

TEorion [ set_of E2 ] TEorion [ E2 ] (orion.27)

Recursive queries can be formulated in ORION using recurse. A recursive query can 
involve one or more m ethod calls th a t can return either values or collections. The next rule 
deals with recursive queries involving no collection-valued method calls. In the expression, 
E 2 is repeatedly applied. Each time the result of the method is checked with the results 
collected so far. If it is already in the collection, the recursion will stop and the collection 
will be returned. If it is not in the collection, the results obtained so far will be updated
and the m ethod E 2 will be applied again.

TEorion [ Ei ( recurse E2) ]

= J >  ( l e t  f (  x s  : S e t  o f  T T orion [ Ei E2 ], y  : T T orion [ Ei E2 ]  )  be 

5 e i [  y  — s o m e  x s \  x  f -  x s  | x  ] 

u n i o n

Sei[ y  ~ =  s o m e  xs-, z  4 -  / (  (S effy ) u n i o n  z s ) ,  TEorion [  y  E2 ]  )  | z  ]  

in  f (  Se£{}, T E orion [ Ei E2 ] )) (orion.28)

Recursion involving collection-valued m ethod calls can be translated  using the next 
rule. In the expression, E2 returns a collection instead of a single value. Each application 
of E 2 term inates when an em pty set is returned. An example of its application can be 
found in the translation example.

TEorion [ Ei ( recurse set_of E2) ]
=*► ( l e t  / (  xs : TTorion [ Ei E2 ] ) be 

xs

u n io n

Sei[ x i -  xs; y  f- /(  TEorion [ x E2 ] ) | y ] 
in  f (  TEorion [El E2 ] )) (orion.29)

M ethod calls are delimited by space. Set literals are represented as ’(E). Their transla­
tions and those for brackets, domain variables, identifiers, and constants are given below.

TEorion [  El  E2 ] ^  TEorion [  El  ]  . TEorion [  E2 ]  ( o r i o n .3 0 )

TEorion [ 1 ( E ) ]  =► I ( TEorion [  E ] ) ( o r i o n . 3 l )

TEorion [ ( E ) ]  =* ( TEorion [  E ] ) ( o r i o n .3 2 )

TEorion [ :I ] =► I  ( o r i o n .3 3 )

TEorion [ ’( E ) ]  =* S e t {  TEorion [  E ] } ( o r i o n .3 4 )

TEorion [  E ] =J> E  ( o r i o n .3 5 )
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5.4 .3  E xam ple O R IO N  Translation

Query Q33 presented at the beginning of this subsection can be translated  to  object 
comprehensions as follows.

TQorion [ select :c

from :c isJn Courses

where :c exists (recurse set_of prerequisites) code =  “Logicl” ]

=>• (orion.5), (orion.10), (orion.35)

Set[ c  e- C o u r s e s ;

TEorion [ :c exists (recurse set_jof prerequisites) code =  “Logicl” ] | T E orion [ :c ] ]

=> (orion.16), T O orion, (orion.35)

Se£[ c <— C o u r s e s ;

s o m e  TEorion [ :c set_of (recurse set-of prerequisites) code ] ) =  “L o g i c l ” | T E orion [ :c ] ]

=>• (orion.24)

5 e £ [  c <—  C o u r s e s ;  

s o m e  (

le t  / (  x s  : T T o r i o n  [  :c (recurse set-jof prerequisites) ]  )  be 

Se£[ x  <— x s  | TEorion [ x code ] ] 

i n  / (  TEorion [  :c (recurse set-of prerequisites) ] )) =  “L o g ic  1” | T E orion [ :c ]  ]

=>• TTorion, (orion.30), (orion.35) twice 

S e t [  c C o u r s e s ;  

s o m e  (

l e t  f ( x s  : S e t  o f  C o u r s e  )  be 

S e t [  x  <— x s  | x . c o d e  ]  

i n  / (  TEorion [ :c (recurse set_of prerequisites) ] )) =  “L o g ic  1” | T E orion [ -c ] ]

=£■ (orion.29)

5e£[ c <— Courses; 

some (

l e t  f ( x s  : S e t  o f  C o u r s e  )  be 

S e t [ x  <— xs | x . c o d e ]

in

/ (  l e t  g (  x s  : T T orion [ -c prerequisites ] ) fee

x s  u n io n  5 e £ [  x  x s ;  y  < -  g (  TEorion [  x  p r e r e q u i s i t e s  ]  )  | y  ]  

in  g(  TEorion [  :c p r e r e q u i s i t e s  ]  )  )  )  =  “Logicl” | T E orion [  :c ]  ]



Translating Query Languages to Object Comprehensions 74

=>■ TTorion, (orion.30) twice, (orion.33) twice, (orion.35) 3 times 

5e£[ c C o u r s e s ; 

s o m e  (

l e t  / (  x s  : S e t  o f  C o u r s e  )  f e e  

5 e £ [  x  <—  x s  | x . c o d e ]

in

/ (  l e t  g (  x s  :  S e t  o f  C o u r s e  )  f e e

x s  u n i o n  5 e f [  x  <—  xs;  y 4- g (  x . p r e r e q u i s i t e s  )  |  y ]  

in g (  c . p r e r e q u i s i t e s  )  )  )  =  “L o g i c l "  \ c  ]

The abstract syntax and translation rules for OSQL and O2SQL are given in Appendix C 
and only an example translation is given in each of the next two sections.
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5.5 Translating OSQL

5.5.1 E xam p le OSQL Translation

Query Q31 can be expressed using OSQL as follows.

Q31. Return students taking some course given by their supervisors.

select s
for each Students s, Courses c
where c in takes (s)
and c in teaches(supervisedBy(s))

TQosqi [[ select s

for each Students s, Courses c

where c in takes( s )

and c in teaches( supervisedBy( s ) ) ]

=$>• (osql.5), (osql.20)

B a g [  TDoaqi [ Students s, Courses c ];

TEosqi [ c in takes( s ) ]; T E 03qi [ c m  teaches( supervisedBy( s ) ) ] | T E OSqi [ s ] ]

=>■ (osql.17), (osql.18) twice

B a g [  s 4 -  S t u d e n t s ; c 4 —  C o u r s e s ;

TEosqi [ c in takes( s ) ]; T E oaqi [ c in teaches( supervisedBy( s ) ) ] | T E oaqi [ s ] ]

=$■ (osql.22), (osql.24), (osql.34) twice

B a g [  s  4—  S t u d e n t s ; c 4 —  C o u r s e s ; c =  s o m e  s . t a k e s ;

TEosqi [ c in teaches( supervisedBy( s ) ) ] | T E oaqi [ s ] ]

(osql.22), (osql.28), (osql.34)

B a g [  s  4 —  S t u d e n t s ;  c 4 —  C o u r s e s ;  c =  s o m e  s . t a k e s ;

c =  s o m e  TCosqi [ supervisedBy( s ) ]

[ x  4 -  TEosqi [ supervisedBy( s ) ]; y  4 —  x . t e a c h e s  \ y ]

| TEosqi [ s ] ]

^•T C osqi, (osql.24), (osql.34) twice

B a g [  s 4 —  S t u d e n t s ;  c  4 —  C o u r s e s ;  c =  s o m e  s . t a k e s ;

c  =  s o m e  L i s t [  x  4 —  s . s u p e r v i s e d B y ;  y  4 —  x . t e a c h e s  |  y  ]  | s  ]
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5.6 Translating O2SQL

5.6.1 E xam ple O2 SQL Translation

Query Q32 can be expressed using O2SQL as follows.

Q32. Return students having no supervisors from their m ajor departm ents.

select s
from s in Students
where for all 1 in s.supervisedBy: (l.departm ent < >  s.m ajor)

T E  o2sqi [ select s

from s in Students

where for all 1 in s.supervisedBy:(l.department < >  s.major) ]

=> (o2sql.5)

TC o2aqi [ s in Students ] [ T D 023qi [ s in Students ];

TEo23qi [ for all 1 in s.supervisedBy: (1.department < >  s.major) ] | T E 023qi [[ s ] ]

=> T C 0 2 sqi, (o2sql.35), (o2 sql.2 0 )

S e t [  s  4 —  S t u d e n t s ;

T E 02sqi [ for all 1 in s.supervisedBy: (1 .department < >  s.major) ] | T E 023qi [ s ] ]

=£■ (o2sql.l5)

S e t [  - 4—  S t u d e n t s ;

l e t  f ( x s : T T 023qi [ s.supervisedBy ] ) be

T C 023qi [s.supervisedBy ] [ / 4— x s  |  T E 023qi [ 1 .department < >  s.major ] ) 

i n  e v e r y  / (  T E 023qi [ s.supervisedBy ] ) =  t r u e  | T E 023qi [ s ] ]

TTo 2 sql, TC o23ql 

S e t [  s  4 —  S t u d e n t s ;

l e t  f ( x s  : L i s t  o f  S t a f f  )  be

L i s t [ l  4—  xs  |  T E o 2 s q i  [  l . d e p a r t m e n t  < >  s . m a j o r  ]  ]

i n  e v e r y  / (  T E 023qi [  s . s u p e r v i s e d B y  ]  )  =  t r u e  \ T E 02sqi [  s  ]  ]

=?■ (o2sql.l7), (o2sql.l8) 3 times, (o2sql.20) 7 times 

5et[ s  4 —  S t u d e n t s ;

l e t  f ( x s  : L i s t  o f  S t a f f  ) be

L i s t [  I 4 —  x s  |  l . d e p a r t m e n t  ~ =  s . m a j o r  ]  

i n  e v e r y  / (  s . s u p e r v i s e d B y  )  =  t r u e  \ s  ]
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5.7 Sum mary

This chapter - and Appendix C - presented four schemes for translating ONTOS SQL, 
ORION, OSQL, and O2SQL queries into object comprehensions. An example translation 
of the interesting features of each query language was given. The translation schemes 
dem onstrated th a t object comprehensions are a t least as powerful as any of these languages 
with respect to  the reference d a ta  model. This claim on expressive power is confined to  the 
context of the reference d a ta  model because these query languages support features, mainly 
structural features, th a t are not supported in the reference d a ta  model. The omissions 
are discussed in Appendix B. To make the translation more elegant, the query languages 
were simplified. The simplifications and how they can be integrated into the translation 
schemes are discussed in Appendix B. It should be noted th a t the simplifications are 
mainly syntactic rather than computational.

The ability to  translate the four query languages into object comprehensions suggests 
th a t they can be supported using a single unified platform. The next chapter introduces 
the canonical algebra which can support object comprehensions and hence can serve as 
the unified platform.
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Canonical Algebra

One of the main reasons for designing.algebras for d a ta  models is to use them  as vehicles 
for query optim isation in systems supporting high-level interfaces such as query languages. 
A large number of algebras have been proposed for d a ta  models richer than  the relational 
model [Osb88, Day89, CDLR89, SZ89, SO90, VD90, DD91, W T91, Van92, Alh92, Nor92, 
AB93, Mit93, GM93, LW93]. Many of these algebras extend the relational algebra to 
m anipulate richer modelling constructs and object identifiers as well as to  provide more 
expressive and com putational powers. O thers take a fundam entally different approach 
and draw on the experience of functional programming languages. The canonical algebra 
presented in this chapter belongs to the functional category. It can m anipulate the rich 
constructs found in object-oriented d a ta  models and in fact all object comprehension 
queries can be expressed in the canonical algebra.

The organisation of this chapter is as follows. Section 6.1 presents informally the 
operations th a t constitute the canonical algebra. Section 6.2 describes how the Z specifi­
cation presented in C hapter 2 can be extended to include specifications of these operations. 
Section 6.3 shows how object comprehension queries can be translated  to  the canonical 
algebra. Section 6.4 presents some transform ation rules th a t can be used to  optimise 
canonical algebra expressions. Section 6.6 concludes.

6.1 O perations of the Canonical Algebra

The canonical algebra is designed to support object comprehensions. To provide such 
support, an algebra must be able to  express a wide variety of useful operations over 
different collection classes. Even better if it can be extended easily to  accom m odate new 
collection classes. However, the complexity of having a new ad hoc set of operations for 
each collection class would be a hindrance not only to  reasoning about the operations and 
their interaction, but also to  reliable implem entation. To alleviate such complexity, the 
similarities between collection classes should be exploited to  define operations th a t  have 
analogues from one collection class to  the next. In this way, transform ation rules for these

78
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operations can be shared among different collection classes.
The design of the canonical algebra aims for simplicity, regularity, and extensibility. 

The canonical algebra consists of a  small number of collection and non-collection opera­
tions. Some of the operations are param eterised with functional argum ents. This tre a t­
m ent makes the operations more regular as variations can be captured in the functional 
argum ents. Unlike m ethods found in the object-oriented paradigm, these functions are 
system-defined and hence amenable to  reasoning and therefore optim isation. An example 
optim isation is given in Section 6.4. The use of functional argum ents together with a 
regular set of collection operations makes the algebra more extensible as a  new collection 
can be integrated by providing a set of the regular operations. However, it should be 
noted th a t the canonical algebra is not a  minimal set of operations, some operations can 
be defined by others, for example, select is introduced to  capture well-known evaluation 
strategies.

Studies of query language expressive power suggest a set of operations [BBN91, GM93, 
LW93] very similar to  those of the canonical algebra. Many of the canonical algebra 
operations are also found in other algebras. The canonical algebra can therefore be seen 
as a  synthesis of other algebras.

The rest of the section begins with an explanation of the symbols used in describing 
the canonical algebra. The algebraic operations and the functional argum ents are then 
informally described. The semantics of the operations are formally defined in Section 6.2. 
Examples of the application of the algebraic operations can be found in Section 6.3 and 
6.4.

6.1 .1  S yn tactic  C ategories

Q Canonical Algebra Operation 
F  Function 
E Expression
C Collection-valued Expression 
I Identifier 
k C onstant

a  Logical Operation 
u  Relational Operation (Boolean)
(f) A rithm etic Operation 
£ Collection Kind

An operation th a t is subscripted with £ represents a  family of three operations one for 
each collection kind. A subscript indicates the collection kind of the  operand collection
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while a superscript represents the collection kind of the resultant collection.

6.1.2 O perations  

Binary Operations

The union  and differ operations take two operands of the same collection kind and return 
a resultant collection of th a t kind. The most specific unique common superclass of the 
operand element classes will become the class of the elements in the resultant collection.

Union^( C\, C2  )

The union  operations combine two collections. The cardinality of each resultant ele­
ment is the sum of its cardinalities in the operand collections except in the case of sets 
where all elements are unique. Ordering, if respected, will be preserved.

D iffe r ^  Ci, C2 ;

The differ operations form a collection by removing elements of the second operand 
collection from the first operand collection. The cardinality of each resultant element is 
the difference between its cardinality in the first operand collection and th a t in the second 
operand collection. Ordering, if respected, will be preserved.

Equal^( E i, E 2  )

The equal ooerations compare two collections of the  same kind and return  true if their 
elements are the same. Duplication and ordering, if respected, will be taken into account.

Unary Operations

The operations described below are unary in the sense th a t each takes a  collection as 
one of the operands. O ther operands include functions on the elements of the  operand 
collection and functions over results returned by other operand functions.

Reduce^ (  Eq, F \, Faggregate ) C )

The reduce operations are used to combine elements in a  collection. If the operand 
collection C  is empty, Eq is returned. When the operand collection is not empty, F\ is 
applied to  each element of C  and the results are supplied pairwise to  F aggregate which ac­
cumulates the results to  give a single value.
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M apz( F, C )

The map operations apply the operand function F  to  each element in the operand 
collection C  and form a collection containing the results. The resultant collection and 
operand collection are of the same collection kind.

S e le c t^  F, C  )

The select operation applies the operand boolean function F  to  each element of the 
operand collection C  and forms a collection of the elements for which F  returns true. The 
resultant collection is of the same kind as the operand collection.

M a k e f (  C  ), M ake\a9(  C  ), M a k e f 1 (  C  )

The make operations convert the operand collection from its original collection kind to 
one of the  three collection kinds. Conversion from bag or set to  list is non-determ inistic 
as an a rb itrary  order will be assigned to  the elements.

Index( C, E  )

The index operation takes a list C  and returns an element of the list a t position E. 

Simple Operations

The following operations take on argum ents which may or may not be a collection. 

Em ptyset (  E  ), Em ptybag ( E  ), Em ptyll$t (  E  )

The empty  operations take a value and return an em pty collection.

Singleset(  E  ), Single1™* ( E  ), Singlelist ( E  )

The single operations take a value and return a collection containing th a t value. 

f f (  E conditi0 n> E true, Efaise )

The i/operation  is a control operation. If E condition evaluates to  true, the  value of E trUe 
is returned, otherwise the value of Ejaise is returned.
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A n d ( E i, E 2  )

The and operation takes two boolean expressions and returns true if both of them  eval­
uate to  true. This is a non-commutative operation and the operands cannot be swapped.

Rangeset (  E \, E 2  ), Rangeb a 9  (  E \, E2  ), Rangellst (  E \, E 2 )

The range operations generate a collection containing integers within a given range. 
An em pty collection is returned if the first operand expression is less than  the second one.

Being( E \, E 2  )

The being operation checks if the expression denoted by E\ has type E 2  or is of a 
subclass of the class denoted by E2.

Function Arguments

The abstract syntax of functions passed as argum ents to  the canonical algebra operations 
is given below.

F ::=  A I .E

Es

S3kTII

E ::=  E .E  | I ( E s )
\ E a E \ E u } E \ E i p E  
! /  I * 1 ( £?) 1 Q

a ::=  A|V| -*

U) ::= = |~ = |> |> = |< |< =

" = * l / l + ! -

Table 6.1: A bstract Syntax of Function Argum ent.
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6.2 Specifications of the Operations

The Z specification of the reference d a ta  model given in C hapter 2 captures the generic 
definition of a database schema and refrains from discussing system-defined classes th a t 
are often used in a database schema. This section describes how the specification can be 
extended to  include the operations of the canonical algebra which are essentially operations 
on collection classes. A collection class is a system-defined param etric class which generates 
a proper collection class when given the element type of the collection. In order to  facilitate 
the discussion on collection operations, an abstract representation of collection classes is 
given next.

6.2 .1  A b stract R epresen tation  o f C ollections

C O LLE C TIO N  J IE P R E S E N T A T IO N __________________________________
representation _ : OCollection —> F VALUE  x bag VALUE  x seq VALUE
elementType _ : OCollection -* T Y P E -N A M E
elementsset _ : OSet —»■ F VALUE
elementskag -  ' OBag —» bag VALUE
elementsnst _ : OList —» seq VALUE
elements _ : OCollection —> F VALUE
_in_  : V A L U E D  OCollection
occurs _ _ : VALUE x  OCollection —» N

V o : OCollection; s : O Set; b : OBag ; I : OList", 
x : VALUE] xs : F VALU E ; n : N •

elem entsset s =  first (representation s) A

elementsbag b = second (representation b) A

elementsust I =  third (representation I) A

elements o = xs <=>
o € OSet => xs = elementsset o A 

o E OBag => xs =  dom (elementsbag o) A 
o E OList => xs = ran (elementsust o) A

x in o x E elements o A

occurs x o = n
-i (x in o) =$> n =  0 A
x in o A o E OSet = >n =  lA

x in o A o E OBag =$■ n =  count (elementsbag o) x A
x in o A o E OList => n =  #((e lem entsust o) \ {z}) A

x in o => (typeO f x) (elementType o)
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The abstract representation of collections captures both the extension and intension of 
collections. The extension of a collection is captured by a to ta l function, representation, 
from its object identifier to  a triple. Each slot of the triple is a group of values and can 
be projected out using the function first, second, and third. Each collection class uses one 
slot to  capture the elements in the collection; set uses the first slot, bag the second, and 
list the third. To simplify access to  the elements of a  collection, the function elementsset, 
elementsbag, and elementsust are introduced and defined in the first three constraints. The 
elements can also be obtained as a set of values using the function elements. Being a 
set, the result therefore does not reflect duplication and ordering th a t may exist in the 
original collection. Understanding how collections are represented in the Z m athem atical 
toolkit [Spi92] is im portant to  the understanding of the definition of this function. A Z 
bag is defined as a function from values to  natural numbers; the la tte r keeps track of the 
number of occurrences. A Z sequence is defined as a function from natural numbers to 
values; the former indicates the position in the sequence. The set of all elements in a Z bag 
can therefore be obtained by a projection on its domain using dom\ as for a  Z sequence 
a projection on its range using ran can be used. Two more functions are defined to  ease 
the m anipulation of collection objects. The relation in can be used to  test if a value is 
an element of a collection. The function occurs returns the number of occurrences of a 
value in a collection. In the case of bags, it is defined in term s of the Z operation count. 
For lists, it is defined as the cardinality (# )  of a sequence selected ([) from the original 
sequence.

The intension of a collection is captured by a to ta l function, elem entType, from its 
object identifier to a type name. All elements in a  collection must be of this type or its 
subclasses.

6 .2 .2  B inary  O perations

The evaluation of the two operations union and differ in the canonical algebra requires 
type inference for the elements of the resultant collection. This is achieved by finding the 
m ost specific unique common superclass of the operand element classes.

A class is a  common superclass to other classes if either they are the same type or the 
former is a direct or indirect superclass of all the other classes.

C O M M O N -SU P E R C L A SS____________________________________________
C L A SS-G R A P H
_ _ bothAre _ : T Y P E -N A M E  x T Y P E -N A M E  *-> T Y P E -N A M E

V<i,«2, k  : T Y P E -N A M E  •
( t i , t 2) bothAre £3 <=>■

h  A t2  £3

In the presence of multiple inheritance, there can be more than  one m ost specific com­
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mon superclass for two given classes. A class is said to  be a unique common superclass if it 
is connected to  all other common superclasses via the ISA relationship. Using unique com­
mon superclasses makes the type inference determ inistic even in the presence of multiple 
inheritance.

UNIQ U E S  UPER CL A S S ______________________________________________
CO M M ON S U P E R C L A S S
_ _ hasUnique _ : T Y P E  S A M E  x T Y P E -N A M E  T Y P E -N A M E

V£i,£2,£3 : T Y P E -N A M E  •
(£i,£2) hasUnique £3 ^

(£1, 22) bothAre £3 A
V £ : T Y P E -N A M E  | (£1, £2) bothAre £ •  £ -« £3 V £3 ^  £

The most specific unique common superclass is a unique common superclass th a t is a 
subclass of all o ther unique common superclasses.

U NIQ U E-CO M M O N S U P E R C L A S S __________________________________
UNIQ U E S U P E R C L A S S

-  n - : T Y P E -N A M E  x T Y P E -N A M E  -> T Y P E -N A M E

V £1, £2, £3 : T Y P E -N A M E  •
(£1 ff h )  =

( £ i ,£ 2) hasUnique £3  A
V £ : T Y P E -N A M E  \ (£1, £2) hasUnique t •  £3 £

The union  operations are defined using operations in the Z m athem atical toolkit, 
namely set union (U), bag additive union (l+J), and list concatenation (/"N). The most 
specific unique common superclass of the operand element classes becomes the class of the 

resultant elements.



Canonical Algebra  86

U N IO N _________________________________________________________
UNIQ UE-COM M O N S U P E R C L A S S  
C O LLE C TIO N  S E P R E S E N T A  TIO N  
unionset _ -  : OSet x OSet —> OSet
unionbag -  -  : OBag X OBag —> OBag
unionust _ _ : OList x OList —> OList

V s i ,  s 2 , s3 : 0 5 e £  •
unionset S\ s2  =  S3 =>■

elementType S3  = (elementType Si) ff (elementType s2) A 
elementsset S3  = (elementsset Si) U  (elem entsset s2)

V 61, 62, b3  : OBag •
unioniag b\ b2 =  63 =>

e lem en tT yp e  63 =  (e le m e n tT y p e  61) f |  ( e le m e n tT y p e  b2) A 
elementsbag  63 =  (elementsbag &i) W ( elementsbag 62)

V Zi, (2, fe : OList •
unionust h l2  — I3 =>

e lem en tT yp e  I3 =  (e le m e n tT y p e  l\ ) ft (e le m e n tT y p e  l2) A 

elementsust I3 =  (e lem en tsu st h )  ^  (e lem en tsu st l2)

Similarly, each collection kind is given a definition of the differ operation. In the case 
of sets, it is defined in term s of Z set difference ( \ ) .  For bags, the com putation is carried 
out directly on the representation of Z bag. An element in the first operand collection is 
included in the resultant collection if it has more occurrences in the first operand collection 
than in the second. Its number of occurrences in the resultant collection is the  difference 
of those in the operand collections. W hen differ is applied to  lists, the membership of the 
resultant collection is computed using a function on Z sequences (B).
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 D IFFER
UNIQ U E -C O M M O N -SU PER C LASS
C O LLE C TIO N  J tE P R E S E N T A  TIO N
dijferset _ _ : OSet x OSet —» OSet
differbag _ _ : OBag x OBag —> OBag
differust _ -  : OList x OList —> OList

V si, 52, s3  : OSet •
differset si s2  = s3  =>

elementType S3  = (elementType si) ff (elementType 52) A
elements set S3  = (elementsset 5i) \  (elementsset s2)

V 61, b2, h  : OBag •
differhag 61 b2  = b3

elementType 63 =  (elementType bf) | j  (elementType 62) A
elementsbag 3̂ =  { x '■ VALU E ; ni, n2 : N |

(£» ni) £ elementsbag &i A
(z, nf) E elementsbag b2 A
ni > n2 •

(x , ni -  n2)}

V/1,/2,/3 • OList •
differnst lx l2  = l3  =>

elementType I3 =  (elementType li) ft (elementType h) A
elementsust I3 =  (elementsu3t If) B (elementsust If)

The function B is defined recursively. When either of the operand sequences is empty, 
the first operand sequence is returned. Otherwise, the second operand sequence is scanned 
from t 1 last element to  the first, every t ' ne removing the last element br^ore the next 
recursive call is made. If the last element exists in the first operand sequence, its last 
occurrence in the  first operand sequence is removed before the next recursive call. In brief, 
elements of the second operand sequence are removed from the first operand sequence, if 
they exist, in a  last to  first basis. The Z sequence operation last  returns the  last element 
in a sequence and f r o n t  returns a list with its last element removed.

_B  _ : seq VALUE x seq VALUE —y seq VALUE 

V /i, I2,13 : seq VALUE •  

li B I2 =  I3 ^
fi =  (> V l2 =  ()  => k =  h A
-1 ( ( las t  If) € (ran /1)) I3 =  /1 B ( fro n t  l2) A

( last l2) € (ran l\) =>
3 la, lb : seq VALUE \

lx = /0 ~  ( last l2) ~  k  A -1 ( ( las t  l2) E (ran /&)) • 

k =  ( l a ' '  lb) & (fron t  l2)
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The equal operations compares the contents of two collections. As the operations can 
be defined in the same way only one specification is given below. The definition below 
relies on the Z equality operation (=) over Z collections which are essentially sets.

E Q U A L ______________________________________________________________
C O LLE C TIO N -R E P R E SE N TA  TIO N  
equalset _ _ : OSet x OSet —> B

V si, $2 : O Set; x : B •

equalset s2  O  (elementsset $i =  elementsset sf)

6.2 .3  U nary O perations

The reduce operations transform  and combine elements in the operand collection. It has a 
recursive definition. If the operand collection is empty the first operand value is returned. 
The second operand is a  transform ation function and is applied to  all elements in a  non­
empty collection. The third operand is an accumulation function combining results of 
the transform ation function. Except for the domain of the transform ation function, all 
domains and ranges are of the same type. The operation can be defined similarly for the 
three collection kinds; hence, one specification suffices.

RED U C E-SET_____________________________ !_________________________
COLLECTION-REPRESENTA TION
reduces e t _________ : VALUE x [VALUE  -> VALUE)x

(VALUE x VALUE VALUE)  x OSet  -> VALUE

V s  : OSet ; e0, x : VALUE; fi : VALUE -» VALUE;
f agg : VALUE x VALUE VALUE \

elements s C dom f i  A 
first (dom f agg) =  ran f agg A 
second (dom f agg) = ran f agg A 
ran f i  = ran f agg A 
e0 € ran f agg •

reduce eo f\  f agg s = x
x = foldSet e0  f i  f agg (elementset s)
A
x E OCollection

elementType x =  elementTypeOfResult f agg

The result of an reduce operation is produced by the function fold. If the result is a  col­
lection its element type must be inferred - here the function elementType O f Result is used. 
Generally speaking, argum ents to  this function can take two forms: (1) expressions includ­
ing m ethod calls and (2) nameless functions constructed during the translation of object 
comprehension queries to the canonical algebra. The keys of type inference on expressions
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have been covered in Chapter 2 and in the specification UNIQ UE-CO M M O N-CLASS. 
Constructed functions are limited to very simple forms and the result type can be inferred 
easily. The f o l d  operations are defined els follows.

folds e t  : VALUE x  (V A L U E -*  V A L U E )x
(VALU E x V A L U E -*  VALUE) x  F VALUE -* VALUE

V r , s : V  VALUE; eo, x , y :  VALU E ; A : V A L U E -*  VALU E ;
f agg : VALUE x  VALUE -* VALUE  | s  =  0 V s  =  { i } U r .

f o l d set €q f i  fagg S — V ^

s =  0  => y  =  e o A

S =  U  r  ^  y — fagg (fl  *̂ ) (foldSet eo f l  fagg ^ )

f o l d b a g __________: VALUE x  (VALU E -* VALUE) x
(VALU E x V A L U E -*  VALUE) x  bag VALUE -* VALUE

V r , b  : bag VALUE; e0,x , t / :  VALUE; A : V A L U E -*  VALU E ;
fagg : VALUE x VALUE -* VALUE  | 6 =  [ ]  V « =  [z] U r  •

foldbag &0 f l  fagg b — y  4=̂

b =  l }= >  y =  e0 A

b — [x] l±J V =£► y =  fagg ( f l  %) (fo ldbag  0̂ f l  fagg r )

foldii s t ___________: VALUE x  (VALU E -*  V A LU E )x
(VALU E x  VALUE -*  VALUE) x  seq VALUE -* VALUE

V I : seq VALU E ; e0 ,x ,  y : VALU E ; A : VALUE -*  VALU E ;
fagg : VALUE x  VALUE -* VALUE  •

foldiist ^0 f l  fagg I — V ^

I = ( ) = >  y  =  e0 A

I -f- ( )  —? y — fagg (fl (hcttd I)) (fold\ist Cq f \  fagg ( to i l  I))

A r e d u c e  operation is a homomorphism from u n i o n  to f agg , if fagg satisfies the  laws of 
u n i o n  for th a t collection kind and has eo as an identity element for f agg [WT91]. Since 
u n i o n  behaves differently for different collection kinds, f agg is therefore required to  possess 
different properties for different collection kinds. The various properties for f agg and eo 
are described next.

If a  collection combines itself with an em pty collection of the same kind, the same 
collection is returned. In other words, combining with ex tra  em pty collections will have 
no effect on a collection. In order to normalise the multiple forms of a  collection due to  
empty collection of the same kind, id en t i ty  requires th a t the accumulation function ignores 
the result returned by an em pty collection and uses only the other operand.
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 ID E N T IT Y
fagg -  - : VALUE x  VALUE  - 4  VALUE

o>

, X , 0 : V A L U E •
fagg x eo =  0  =>

0  £ OCollection => (equal (f agg x e0) {fagg e0  x)) A (equal
A

O £ Base Value (fagg % eo — fagg eo x) A 0  — x

A function is associative if the order of combination does not m atter. This property 
is essential to  the reasoning of all collection classes particularly when used together with 
the other properties.

A S S O C IA T IV IT Y ____________________________________________________
f agg _ _ : VALUE x  V A L U E -*  VALUE

V z, y, z , o : VALUE  •
fagg x (fagg V z)  =  O =$•

o £ 0 Collection =>• equal {fagg x (fagg y z )) (fagg (fagg x y) z)
A

O £  B a s e  V a lu e  -A  fagg x  {fagg y  — fagg (fagg  ® 2/) %

Since elements in a set or a bag are not ordered, the same collection can be constructed 
in many ways using different perm utations of the elements. To counter-balance this non­
determinism, the accumulation function must be com m utative - able to  take on argum ents 
in different orders but still delivering the same result.

C O M M U T A T IV IT Y __________________________________________________
f agg _ _ : i .-iL U E x  VAu UE -» VALUE

V A y ,o :  V A L U E •
fagg X y  =  0  =>

o £ OCollection => equal {fagg x y )  {fagg 2/ x )

A

o £ BaseValue => f agg x V =  fagg y x

A set can be constructed by combining two other sets. If the two sets have a common 
element, the construction has a  destructive effect of eliminating the duplicates leaving only 
one occurrence of th a t element in the resultant set. Idempotence captures this destructive 

effect by ignoring duplicates th a t may exist in the input.
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ID E M P O T E N C E ________________________
f agg _ _ : VALUE x  VALUE -A VALUE

V z ,o  : VALUE  •
o £ OCollection => equal (f agg x x) x 
A

o £ Base Value => f agg % x = x

The reduce operations are very powerful and many useful operations, e.g. powerset, 
can be expressed in term s of it. If they are used w ithout restriction the operations will 
take the canonical algebra out of polynomial time [BBN91]. However, in the context in 
which the canonical algebra is used, the reduce operations are used only in a restricted way 
to support object comprehensions. Therefore all the operand functions are system-defined 
and satisfy all the properties mentioned above. An example of the use of reduce to  define 
other operations can be found in Section 6.3. Since map, select, and make can be expressed 
using reduce, in order to  simplify the specification these unary operations are defined in 
term s of reduce in Subsection 6.2.5. Nevertheless, it does not suggest th a t they should be 
implemented using reduce. It is only the definitions of the operations th a t are of interest 
here.

The index operation is a fundam ental operation to  access the element of a list. It is 
defined only when the operand value corresponds to  a valid position in the operand list.

IN D E X _______________________________________________________________
C O LLE C TIO N  J tE P R E S E N T A  TIO N  
-  index _ : OList x  N -+* VALUE

V I : O L ist; n : N | 1 <  n A n < #1 •
I index n = (elementsnst /) n

6.2 .4  S im ple O perations

The empty  operations take an argum ent and return  an em pty collection. They get their 
element types from the argum ent. An em pty collection is represented by a triple of em pty 
Z set (0 ) , em pty Z bag ( [] ) , and em pty Z sequence ( () ) . Only one specification is given 
as others can be defined similarly.

E M P T Y ______________________________________________________________
C O LLE C TIO N  J tE P R E S E N T A  TIO N  
em ptyset _ : VALUE  —>■ OSet

Vx : VALUE- s : OSet •
em ptyset x =  s

elementType s = typeOf x A representation s =  (0 , [ ] , ( ) )
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The single operations are similar to the empty operations except th a t one slot in the 
triple contains a Z collection with one element.

S IN G L E ______________________________________________________________
C O LLE C TIO N  J tE P R E S E N T A  TIO N  
singleset _ : VALUE  -* OSet

V i : VALU E ; 5 : OSet •  
singleset x = s

elementType s = typeO f x A representation s =  ({z}, [ ] ,  ())

The operation i f  takes three expressions. If the first expression evaluates to  true the 
value of the second expression is returned. Otherwise, the value of the th ird  expression is 
returned. The second and the th ird  expressions must be of the  same type or one’s type 
must be a subclass of the other.

: B x VALUE  x VALUE  -> VALUE

The and operation takes two expressions. If the first expression evaluates to  true the 
value of the operation is determined by the second expression. Otherwise, false is returned. 
This is a non-com m utative operations and the operands cannot be swapped.

'— A N D
and _ _ : B x B -> B

V el5 e2, x : B •
and e\ e2 = x &

a  => x = e2  A
—i e\ => x =  false

The range operations construct an integer collection containing elements within the 
limits as specified by the operand values. No duplicate is introduced. In the case of lists, 
elements are arranged in ascending order.
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R A  N G E __________________________________________________
C O LLE C TIO N  J tE P R E S E N T A  TIO N  
rangeset _ _ : N X N —> OSet 
rangebag _ _ : N x N ^  OBag 
rangel%st _ _ : N x N - )  OList

V s : O Set; b : OBag; I : O L ist; ej, e2 : N •

rangeset e\ e2  = s
elementType s = IN TE G E R  A 

elementSset s — e\ . .  e2

rangehag e\ e2  = b =>
elementType b =  IN TE G E R  A 

e le m e n ts ^  b = {x  : N | x G e\ . .  e2 •  (x, 1)}

rangel%st e\ e2 = I =$■
elementType I =  IN TE G E R  A

elementsust I =  {x : N | x £ ei . .  e2 •  (x — e\ +  1, z)}

Each being operation checks if a given value is of the given type or of a  subclass of the 

given class.

. B E IN G _______________________________________________________________
C O LLE C TIO N  J tE P R E S E N T A  TIO N  
being _ _ : VALUE  x T Y P E .N A M E  E

Mx : VALU E ; t : T Y P E .N A M E  •  
being x t =  ( typeO f x) -4< t
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6.2.5 D erived  U nary O perations

The map operations apply the operand function to  all elements in the operand collection 
and return a collection containing the results returned by the function.

 M A P _________________________________________________________________
C O LLE C TIO N  R E P R E S E N T A T IO N
mapz _ _ : ( VALUE  —>■ VALUE) x OCollection —»■ OCollection

Mo : OCollection; /  : VALUE VALUE  •
map£ f  o =

reduce£ (emptyZ nil) f  union% o

The select operations filter a collection using the boolean operand function. Duplicate 
elements and their relative order are preserved.

S E L E C T _____________________________________________________________
C O LLE C TIO N  J tE P R E S E N T A  TIO N
select£ _ _ : {VALU E  —»■ B) x OCollection —> OCollection

V o : OCollection; /  : VALUE  —> B • 
select% f  o =

reduce£ (em ptyt nil) (Ax .i f  ( /  x) (singleZ x) (empty^ x)) union£ o

The make operations convert a collection from one kind to  another keeping the element 
type unchanged. Converting a collection into a set results in the elimination of duplicates 
and the loss of the order between elements. Converting a collection into a bag keeps 
the number of elements unchanged - duplicates are not lost and 110 new elements are 
introduced - but the order between the elements is lost. Converting a collection into a list 
keeps the number of elements and an arb itrary  order is assigned to  the elements. Only 
one specification is given below others can be defined similarly.

M A K E _______________________________________________________________
C O LLE C TIO N  J tE P R E S E N T A  TIO N  
make™ 1 _ : OCollection —> OSet

V o : OCollection •  

make™ 1 o =
reduce^ (empty™l nil) (A x.single™* x) unionset o
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6.3 Translating O bject Com prehensions

This section dem onstrates how object comprehension queries can be translated  to the 
canonical algebra. The presentation of the translation scheme is the same as in C hapter 
5.

6.3.1 Syn tactic  C ategories

E Expression 
X Qualifier 
D G enerator 
L Local Definition 
Y Quantifier 
A Aggregate Function 
I Identifier 
k C onstant

u  Relational Operation (Boolean) 
rp A rithm etic Operation 
£ Collection Kind

6.3.2 A b stract Syntax

Es E  \ E, Es

E  E  union E
| E  differ E
1 S [ X s  1 E ]

1 E  and E  1 E  or E  1 not  E
1 E has Class E  1 E  has Class E  with E
| Y E < j o Y E \ E i p E
j E. E  |  / (  Es ) 1 /
| k | Set{ Es } | Bag{ Es }  | L ist{  Es }
|  Set{ E ..E  } | Bag{ E ..E  } | List{  E ..E  }
j E . [ E ] \ A E
1 ( E )

Table 6.2: O bject Comprehensions A bstract Syntax.
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Xs A | X  | X; Xs

X D \ L \ E

D ::= I  4- E

L ;:= I  as E

Y ::= A | some \ atleast E  \ ju st E  \ atmost E  | every

A ::= size

Z Set | Bag \ List

10 = |~ = |> |> = |< |< = |= = |~ = =

tP * 1 /1  +  1 -

Table 6.2: O bject Comprehensions A bstract Syntax (continued).

The translation of query function is essentially the same as of an ordinary query. Query 
function is therefore not included in the abstract syntax and not covered in the translation.

6.3 .3  T ranslation Functions

T E  Translate an Expression 
T O  Translate an Operation 
T C  E xtract the Kind of a Collection

6.3 .4  T ranslation R ules

A sequence of expression separated by comma is translated  as follows.

T E  [ Ej , E2 ] => T E  [ Ei J , T E  [  E2 1 (comp.l)

The two infix collection operations - union  and differ - can be translated  as follows.
The subscript to  the algebraic operation is obtained using T C  [ Ei ].

T E  I  Ei union E2 ]  =» unionTC [ El j (  T E  [  Ei ] ,  T E  [  E2 J ) (comp.2)

T E  I Ei differ E2 J =>• differr c  [ j( T E  [ Ei ], T E  [ E2 ] ) (comp.3)
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A comprehension without any qualifier represents a singleton collection containing the 
value E  and has collection kind as specified by £.

T E  [ £ [ | E ] ] => single^  T E  [ E ] ) (comp.4)

A generator can be expressed in the algebra using map. The range of the generator 
is converted to  the resultant collection kind £ using make before becoming the operand 
collection of map. The rest of the comprehension expression becomes the operand function 
of map.

T E [ £ [  I <- Ei ;  Q | E  ] ]

=> m a p s  ( A / . T E [ £ [  Q | E  ] ], m a k e* .c  { j( T E  [ Ei ])) (comp.5)

A local definition introduces a new binding for the rest of the query. This effect 
can be captured using a generator ranging over a singleton collection. Note th a t it is 
a transform ation between comprehension expressions rather than a translation into the 
canonical algebra.

T E [ f [  I as Ei; Q | E  ] ]  =» T E  [ £[ I <- £{ Ei }; Q | E ] ] (comp.6)

A filter can be expressed using the i f  operation. The rest of the query is evaluated if 
the filter is true, otherwise an empty collection is returned.

T E  [ f[ E i; Q | E ] ] =► i f (  T E  [ Ei ], T E  [ £[ Q | E ] ], empty* ( n i l ) )  (comp.7)

Logical connectives can be translated as shown below.

T E  J Ei and E2 ] =$■ T E  |[ Ei ] A T E  [ E2 ] (comp.8)

T E  [ Ei or E2 ] T E  |  Ei ] V T E  [ E2 ] (comp.9)

T E  [ not E ] => -i T E  |[ E J (comp.10)

Class checking is performed using the being operation. The non-com m utative and is 
used to  capture the  conditional evaluation in the second translation rule.

T E  [ Ei hasClass E2 J =$>■ being( T E  f Ei ], T E  [ E2 J ) (comp.11)

T E  |[ Ei hasClass E2 with E3 ] =>• and( being( T E  |[ Ei ], T E  |[ E2 |) ,  T E  [ E3 1)

(comp. 12)

Filters involving quantifiers can be expressed using reduce. In the translation rules 
below, a quantifier is explicitly w ritten on one side of the  operator and the other side 
which is not elaborated may or may not contain a quantifier. When quantifiers are used
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on both sides on an operator, the binding order - universal then numerical followed by 
existential quantifier - determines the meaning of the filter.

T E  [ every Ei u> E2  J

=4> reduceTc  [ e x ]( true, A x .T E  |  x w E2  ], A, T E  [ Ei ] ) (comp.13)

T E  J atleast E Ei w E2  ]

reduceTC 0, A i .j /  ( T E  [ x  w E2  J, 1 , 0), + , m ake^ S  ( Ej j( T E  [ Ei ] )) > =  T E  [ E 1

(comp. 14)

T E  I just E Ei w E2  |

=» reduceTC [ El ]( 0, Xx. i f  ( T E  [ x  w E2  ], 1 , 0 ), + , m ak e^ g  Ej j( T E  [ Ei 1 )) =  T E  [ E ]

(comp. 15)

T E  J atmost E Ei w E2 ]

=*• reduceTC j El j( 0, A x .i/( T E  [ x  w E2  ], 1 , 0 ), + , m ake^ g  ( Ei j( T E  [ Ei ] )) < =  T E  [ E |

(comp. 16)

TE  [[ some Ei u> E2  ]

=> reduceTC lE i  false, A a r .T E |x  u> E2  | ,  V ,  T E  [ Ei J) (comp.17)

Instead of comparing two collections by their object identifiers, the equality operation
can be used to compare them based on their elements. The translation of other relational
and arithm etic operations is captured by a generalised rule.

T E  [ E i= =  E2  ]  => equalTC I Ei j( T E  I Ei !> T E  11 E2  ] ) (comp. 18)

T E  [ E i~ = =  E2  ] =>■ -> equal'ic [ j( T E  [ Ei J, T E  [ E2  ] ) (comp. 19)

T E  [ Ei u  E2  1 =* T E  [ Ei J T O [ « ]  T E  I E2  ] (comp.2 0 )

M ethod calls, identifiers, and constants are translated as follows.

T E  [ E i . E 2 J =» T E  [ Ei ] . T E  [ E2  ] (comp.2 1 )

T E  [ I ( E ) ] => /  ( T E  [ E ] ) (comp.2 2 )

TE  [ E |  => E  (comp.23)

The translation of collection literals is captured by the four operations: em pty , single, 
union, and range.

T E  [ £ {  } |  empty* ( nil ) (comp.24)

T E  [ £{ E } J =► single*( T E  [ E ] ) (comp.25)

T E  [ f  { Ei , E 2 } J =» union^  T E  [ £{ Ei } ], T E  [ £{ E2  } ]  ) (comp.26)

T E  [ £{ E i . . Ea } ] range*( T E  [ Ei ], T E  [ E 2  ] ) (comp.27)
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Elements in a list can be accessed using their position and is supported by the index 
operation.

TE  I Ei .[E2] J => index(  T E  |  Ei J, T E  [ E2  J ) (comp.28)

As an example of aggregate functions, the size of a  collection can be computed using 
reduce. The transform ation function is a constant function th a t always returns the number 
one. The accumulation function is addition (+ ). The operand collection is converted to 
a bag because addition is not idem potent and hence cannot be used on a set. An em pty 
collection naturally gets a zero as the answer.

T E  [ size E |  =>• reducebag( 0 , X x . l ,  + , make^f!^ E j( T E  [ E J ) ) (comp.29)

The translation rules from object comprehensions to  the canonical algebra can be seen 
as a definition of object comprehensions in term s of the canonical algebra. It is essentially 
a specification which enables formal reasoning. The im plem entation is not dictated by the 
specification and could be very different.

Note th a t the select operations do not appear as a ta rge t operation in any of the tran s­
lation rules from object comprehensions. It only comes into being through transform ation 
of the map operation which is described in the next section. As explained earlier, select 
is introduced to  capture well-known evaluation strategies, e.g. index scan, th a t deliver 
significant performance improvement.

Recursive functions are not supported by a specific algebraic operation. It is assumed 
th a t they are treated  by the run-tim e system ju st like any other ordinary functions. In 
other „^ids, no a ttem p t will be made to  timise them.
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6 .3 .5  E xam ple Translation

An example is given below to  show how Query Q30 used in C hapter 5 can be expressed 
in the canonical algebra using the translation rules.

T E  |  list[ c f -  Courses; d <— Departments;

d.name =  “Computing Science”; d =  some c.runBy;

1 < =  c.credits; c.credits < = 3  | c ] ]

=>• (comp.5) 

mapusti

A c.T E  |  Iist[ d <— Departments;

d.name =  “Computing Science”; d =  some c.runBy;

1  < =  c.credits; c.credits < =  3 | c ] J, 

mafcexc J C ours es  ]( T E  [ Courses |  ) )

=>• TC , (comp.5)

™<*Phst(

A c.mapiist(

A d.TE [ list[ d.name =  “Computing Science”; d =  some c.runBy;

1  < =  c.credits; c.credits < =  3 | c ] J, 

make t c  I D e p a r tm e n t s  |(  T E  [ Departments ] ) ), 

makelj f t (  Courses ) )

=>• T C , (comp.7) 

mapllst(

A c.mapiist(

A d . i f (  T E  [ d.name =  “Computing Science” ],

T E  [ list[ d =  some c.runBy; 1  < =  c.credits; c.credits < =  3 | c ] ], 

em p ty list( nil )), 

m akelf i t (  Departments  ) ), 

makelf£ t(  Courses ) )

(comp.20), (comp.21), (comp.23) 3 times

maPlist(

A c.mapiist(

\ d . i f (  d .name  =  “Computing Science”, 

i/(  T E  [ d =  some c.runBy ],

T E  [ list[ 1  < =  c.credits; c.credits < =  3 | c ] ], 

em p ty list( nil ) ), 

em pty l%st( nil ) ), 

m akelj e t (  Departments  ) ), 

makelf i t (  Courses ) )
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=> (comp.17)

maPlisti,

X c .m apHst{

Xd. i f (  d .name =  “Computing Science”,

i/(  red«ceTc  [ c . run B y  i(  false, Aar.TE [ d =  x ] ,  V ,  T E  |  c.runBy ] ) ,  

T E  [ list[ 1 < =  c.credits; c.credits < =  3 | c ] J, 

em pty l*st( nil ) ), 

em pty llst{ nil ) ), 

make^jti  Departments  ) ), 

m akelget( Courses ) )

=>■ T C , (comp.2 0 ), (comp.2 1 ), (comp.23) 4 times, (comp.7)

maPlist{

X c .mapiist(

X d. i f (  d .name =  “Computing Science”,

i/(  reduceset( fa lse , Xx . d  =  x , V, c.runBy  ), 

if(  T E  |  1  < =  c.credits J,
T E  [ list[ c.credits < =  3 | c ] J, 

em ptyhst( nil ) ), 

empty^st( nil ) ), 

em pty list( nil ) ), 

makel*et( Departments  ) ), 

makelj e t (  Courses ) )

=£■ (comp.7), (comp.20) twice, (comp.21) twice, (comp.4), (comp.23) 7 times 

™apiis t(

X c.mapiist(

Xd. i f (  d .name =  “Computing Science”,

if( reduceSet( false, X x . d =  x,  V, c.runBy  ),

»/( 1  < =  c.credits,  

if (  c.credits  < = 3 ,  

singlelist( c ), 

em pty lxsi{ nil ) ), 

em pty list( nil ) ), 

em pty list{ nil ) ),

e m p ty l%st( nil  ) ),

makejfeti  D ep a r tm en ts  ) ),

m a k e ls e t (  C ourses  ) )



Canonical Algebra 102

6.4 Transforming Canonical Algebra

This section introduces equivalence preserving transform ation rules for the canonical alge­
bra. Expression transform ation is often used during query optim isation to  study the cost 
of alternative evaluation plans and to search for more efficient evaluation. Here the focus 
is on rule specification as opposed to rule application. The la tter has been shown to  be 
feasible [GD87].

This section delves into the transform ation of operations th a t are not well studied. 
W ell-understood transform ation rules, e.g. com m utativity and associativity of A, V, and 
unionset , are not included. In other words, the transform ation rules presented in this 
section is not a complete set of transform ation rules. It is foreseeable th a t many other 
transform ation rules will be discovered.

Two notions of equivalence are used in the transform ation rules. For collection op­
erations, equivalence is defined over the elements of the collections as is supported by 
the equal operation in the canonical algebra. For non-collection operations, equivalence is 
defined over either object identifiers or base values. Note th a t all m ethods are assumed to 
have no side-effects otherwise the transform ation rules may not hold.

6.4.1 Transform ation R ules

By definition, a. select operation is just a special case of a reduce operation. The rules below 
follow directly from the definition of select Selection over an em pty collection returns an 
empty collection. Selection over a singleton collection is the same as using the operation 
on the element and returning either a singleton or an em pty collection. Selection can be 
distributed over unicr>.

selectA  F, empty* ( nil ) ) =>• empty* ( nil ) (algebra. 1 )

select (̂ F, single*( E ) ) =$■ if(  ( F E ), single*( E ), empty*( E ) ) (algebra.2)

select (̂ F, union (̂ E i, Ej ) ) =£• union^ select (̂ F, Ei ), select (̂ F, E 2  ) )(algebra.3)

The select operations can be expressed using map.

mapz( A x. i f (  ( F x ), single*( x ), empty*( nil ) ), E ) =4> selectA  F, E ) (algebra.4)

If a constant boolean function is passed as the function argum ent to  select, the result 
is either a collection with the same elements or an em pty collection.

selectd  A x. true,  E )  =S> E

select^( Xx.false,  E  ) =>• empty*( nil )

(algebra. 5) 

(algebra.6)
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Applying the select operations over the difference of two collections is equivalent to 
first restricting one collection and then taking the difference.

select.A F, differA  Ei, E2  ) ) =4> differA  se lec tA  F, Ei ), E2  ) (algebra.7)

Selection is not affected by conversion. Therefore it can be pushed inside the conver­
sion. The promoted select operation is applied to  E  whose collection kind (£’) may differ 
from the collection kind make produces (£).

se lec tA  F, make*(  E ) ) => make*( se lec ted  F, E ) ) (algebra.8 )

Nested selection can be reduced to a single application of the operation using the
conjunction of the original predicates. The property of conjunction also ensures th a t the 
order of selection does not m atter.

selectA F i, select (̂ F 2 , E ) ) =£• selectd  A 1 .F 1 x A F 2  x,  E ) (algebra.9)

Similarly, the map operations can be defined in term s of reduce.

reduce A  em pty*  ( nil ), F, u n i o n E ) => map A  F, E ) (algebra. 1 0 )

The result of applying empty and single to a collection can be easily shown using the 
properties of union  which constructs the results returned by them.

m a p A  em pty* ,  T ) em pty* (  nil  ) (algebra.ll)

m a p A  single*, E ) =£• E (algebra. 1 2 )

Again the rules below follow directly from the definition of the operation.

m ap A  F, empty*  ( nil  ) ) =$> em pty*  ( E ) (algebra. 13)

m a p A  F, single*(  E ) ) => single*(  F, E ) (algebra. 14)

m a p A  F, un ionA  E i , E2  ) ) =* un ionA  m a p A  F, Ei ), m a p A  F, E2  ) ) (algebra.15)

The order of the application of map and conversion does not m atter.

m a p A  F, make*(  E ) ) =>■ make*( m a p ^ (  F , E ) ) (algebra.16)

Nested application of map can be reduced to  a single application using the composition 
of the original functions. The composition of function F i then function F 2 is represented 

by F  2 o F 1.
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m apA  F i, mapA  F 2 , E ) )  =>• mapA  F 1 0 F 2 , E )  (algebra.17)

Accessing an element in the result of a concatenation of two list does not actually 
require the concatenation to  be performed if the sizes of the two operand lists are known. 
In the first translation rule below, the size operation is used to  represent the length of a 
list. Element in a list literal containing consecutive integers can be com puted easily.

index( unionnst( E i, E2  ), E3  ) =>• if( size( Ei ) > =  E3 ,

index ( E i, E3  ), 

index( E2 , E3  — size(  Ei ) ) (algebra. 18)

index( range{ E i, E2  ), E3  ) => Ei +  E3  — 1  (algebra.19)

The equal operation is reflexive, symmetric, and transitive while the and operation is
reflexive, asymm etric, and transitive. Only one rule is given to the if  operation as it is a
form th a t often occurs in the algebraic expressions.

i / (  El, if(  E2, E3, E4 ), E4  ) => if( El A E2, E3, E4 ) (algebra.2 0 )
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6.4.2 E xam ple Transform ation

The algebraic expression obtained from Query Q30 can be further simplified using trans­
formation rules on the canonical algebra. F irst the “nested” i f  expression is transform ed 
into a “flattened” i f  expression. Applying it to the algebraic expression obtained in the 
previous subsection gives

=> (algebra.20) twice

m a P l i s t (

A c .m a p Hst(

A d . i f (  d .n a m e  =  uC om putin g  S c ien ce”

A reduceSet( false,  A x .d  =  x,  V, c . runBy  )

A 1 < =  c. credits  

A c .credits  < =  3, 
s ing le list( c ), 

e m p t y l%st{ nil  ) ), 

m a k e lxst{ D e p a r tm en ts  ) ), 

m a k e lts t{ Courses  ) )

This simplified expression can be further transform ed by turning the inner map appli­
cation into a selection operation.

=>■ (algebra.4) 

m apiisA

A c.select[tst(

A d .d .n a m e  =  “C o m putin g  S c ien ce”

A reduce set( fa lse ,  A x .d  =  x ,  V, c . r u n B y )

A 1 < =  c.credits  

A c .cred its  <=3,  
m a k e lxst( D ep a r tm en ts  ) ), 

m a k e lis t{ Courses  ) )

6.5 R easoning about Transformation

The validity of the transform ation rules given in the previous subsection can be verified 
using the definitions of the algebraic operations. To verify a rule involves establishing the 
equivalence of the expressions on each side of the rule. A simple example showing how 
rule algebra.4 can be verified is given below.

The proof methodology uses a four-column form at. The first column is the line number. 
In the third column is the assertion th a t is proved based on the assum ption given in
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the second column. The last column explains the inference used in each step. When 
an assumption is made in a proof, it is introduced as an assertion having itself as the 
assumption.

Assumption Assertion Justification

( 1) 1 m a p F, E) «=>
reduce{(empty^(nil), F, union£, E)

Definition 
of Map

(2 ) 2 se/ec^(F, E)
reduce% (empty^ (nil),

Xx.if((F  x), single^(x), empty^(x)), 
union^,
E)

Definition 
of Select

(3) 1 mapz(F, E) =>
reduce,{(empty^(nil), F, union£, E)

Tautology 
(A & B )- -  
(A=>B) 
line 1

(4) 1 map^(Ar.i/((F i) , single^(x), empty^(x)), E) =i> (Implicit)
reduce^ (empty^ (nil), Universal

Xx.if((F  x), single^ (x), empty^(x)), Quantifier
union^, Elimination
E) line 3

(5) 2

(6 ) 1 , 2

reduce% (em~'*yt (nil) ,
Xx.if((F  x), single^(x), empty^(x)), 
union%,
E ) = >

select^(F, E)

map^(X x .if  ((F x), single^(x), empty^(x)), E) 
select^(F, E)

Tautology 
(A A (A => B)) 
=>B 
line 2

Tautology 
((A => B) A 
(B  => C)) 
=> (.4 =s- C) 
line 4,5

6.6 Summary

Conventional formal query languages are usually presented as either an algebra or a  cal­
culus. The canonical algebra described in this chapter mixes algebraic operations with
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functions where the la tte r are expressed in calculus form. In many conventional algebras, 
such functions appear as restrictions on individual operations. The canonical algebra pre­
sumes an approach where the algebraic operations capture the control structures required 
for m anipulating collections and the functions are left to deal with individual elements in 
the collection. The abstraction of control structures facilitates the combination of oper­
ations sharing the same control structure hence incurs a lower cost than  evaluating the 
operations individually. It can also be argued th a t the emphasis on control structures 
would benefit more in the object-oriented paradigm where navigation seems to  dom inate.

Different variations of reduce have been studied, for example, in [Van92]. It is a  very
powerful operation with which many useful operations can be expressed. For instance,
powerset can be expressed in term s of reduce.

p o w e r  A  E  )

=4> reduce A  single*  ( em pty*  ( nil  ) ),

X x .u n io n A  single*{ em pty*{  nil  ) ), single*( single*( x  ) ) ),

A a; y .m a p A  X m .m a p A  X n.single*( u n io n A  m > n ) )> V )> x  )t E  )

(algebra.21)

The select, map, and make operations can be defined using reduce. Despite being 
redundant they correspond to  well-known implem entations where significant performance 
gain could be obtained. Evaluating them using reduce incurs performance penalty.

Variation in d a ta  models is another factor which determines the minimal set of oper­
ations in an algebra. In the reference d a ta  model collections are objects with their own 
identifiers while in many d a ta  models they are ju st values where equality is determined 
using ~.ny elements in the collections. T! dual behaviour of collections in die reference 
d a ta  model requires a larger minimal set of operations and more complex definitions for 
the operations in the algebra.
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Conclusion

This chapter begins with a discussion summarising the contributions of the research re­
ported in this thesis. It then discusses the lim itations of the proposals and the approach 
taken. The chapter ends with some directions for future work.

7.1 Discussion

This thesis investigated the design and some aspects of the processing of query languages 
for object-oriented databases using a reference d a ta  model formally defined using the 
specification language Z.

The functional requirements for object-oriented query languages reported in C hapter 
3 were partly derived by comparing the similarities and contrasting the differences of 
existing object-oriented d a ta  models and query languages. To come up with a set of 
requirements th a t can be meaningfully applied to any object-oriented query language, it 
was obvious th a t the similarities should be captured and the differences should not appear 
in any assumption. For example, class extent is not supported in all models and therefore 
is not assumed during the study. On the other hand, it was the interest of this research to 
pursue a wider scope including useful features not yet well studied. Features to  support 
sta tic  type checking and multiple collection classes were therefore included.

The 23 functional requirements identified were classified into four categories: support 
of object-orientation, expressive power, support of collections, and usability. They were 
used to  evaluate and compare existing query languages and the results were summ arised in 
the thesis. The same evaluation also showed th a t none of the query languages of ONTOS, 
ORION, IRIS, and O 2 satisfies all the requirements. More im portantly, the requirem ents 
can be used to  improve existing query languages and direct the design of new query 
languages. The design of object comprehensions was driven by these requirements.

Object comprehensions were designed as a  high-level query language for object-oriented 
databases, particularly those supporting multiple collection classes and static  type check­
ing. The example queries given in C hapter 4 served to  illustrate th a t object comprehen­

108
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sions are concise, clear, and powerful enough to express recursive queries. The expressive 
power of object comprehensions was further dem onstrated by providing four translation 
schemes from the query languages of ONTOS, ORION, IRIS, and O2 to  object compre­
hensions in C hapter 5. The very existence of these translations substantiates the  claim 
th a t object comprehensions are at least as powerful as those four query languages with re­
spect to the reference da ta  model. Object comprehensions can be subject to  conventional 
optim isation techniques similar to  th a t reported in [Tri89, Pou89]. New optim isations for 
class testing and quantifiers were identified and reported. A procedural algebra was also 
developed to  support object comprehensions.

The canonical algebra is a simple procedural algebra supporting multiple collection 
classes and to which object comprehensions can be translated . A translation scheme was 
presented in C hapter 6. A set of transform ation rules th a t can be used for optim isation is 
also given. The canonical algebra essentially defines a platform for the support of object 
comprehensions.

All the languages mentioned above were studied in the context of a reference d a ta  model 
to  which a formal specification was given in Z in C hapter 2. Only features relevant to  the 
study of query language processing were identified and synthesised into the reference da ta  
model. Im portan t features of the da ta  model include m ulti-methods, multiple inheritance, 
dynamic binding, and static  type checking. The canonical algebra plays the role of the 
da ta  manipulation language of the reference d a ta  model. O perations th a t constitu te the 
algebra were similarly specified in Z. Some properties of the reference da ta  model were 
proved using the specification. The experience of using Z suggests th a t a more concise 
notation may be more appropriate for the purpose of this research.

To conclude, the functional requirements proposed are meaningful and constructive. 
They are meaningful because they can be used to  evaluate and compare existing object- 
oriented query languages. They are constructive because they can be used to  improve 
existing query languages and direct the design of new query languages of which object 
comprehensions are an example. Object comprehensions are powerful and optimisable. 
They are powerful because multiple collection classes can be dealt with, recursive queries 
can be expressed, and queries expressible in other query languages can be expressed. They 
are optimisable because some transform ation rules are available. The canonical algebra 
is simple and powerful. It is simple because it consists of a small set of operations. It is 
powerful because object comprehensions can be supported. In brief, the research described 
in this thesis represents a step toward a better understanding of the needs and support of 
object-oriented query languages.
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7.2 Lim itations

There are a number of lim itations to  the approach described in this thesis: (1) inadequate 
analysis on the completeness of object-oriented query languages; (2) inadequate analysis 
on the complexity of the algebraic operations; and (3) the lack of implementation evidence 
on optimisation; and (4) the reference da ta  model and query optim isation assume th a t all 
m ethod calls term inate.

The thesis began with the identification of a set of functional requirements for object- 
oriented databases. The research was carried out carefully but the requirements identified 
cannot be proved to be adequate and sufficient. A formal study of the completeness of 
object-oriented query languages would provide a definitive answer to  this question on 
expressive power.

Studies of formal query languages aim to strike a balance between expressive power and 
efficiency. One result of the study of nested relational algebras showed th a t the powerset 
operation is outside polynomial time [AB93]. Some attention has then been shifted to 
finding an algebra th a t delivers the maximum expressive power but having a polynomial­
time complexity. This involves studying the complexity of individual operations as in 
[LW93]. In object-oriented d a ta  models, this study would be significantly complicated by 
the presence of methods.

The optimisations proposed in this thesis represent a first step to optim isation. They 
represent a core set of rules th a t can be used in a rule-based optimiser. Search strategies 
and related issues in such an optimiser were studied in [Mit93]. Implementation-based 
optimisation techniques, such as use of indices, clustering, and cost models, are not covered 
in the thesis. Nor is the generation of execution plan, see [Str90]. Note th a t the two 
studies [Mit93, Str90j only consideied sets. Recursive queries can be c a re s se d  using query 
functions but their optim isation are not addressed in the thesis. The absence of a suitable 
platform has precluded the integration of the proposed languages and optim isations into 
a running system. However, a similar language and its optim isation were prototyped and 
reported at the early stage of this research [TCH90].

M ethods can be non-term inating and the safety of a query language cannot be guaran­
teed in general. A study of this issue has been recently reported in [PS94]. A consequence 
of the suggested approach is th a t a three-valued logic is used excluding some well-known 
properties of two-vaiued logics.

7.3 Future D irections

M any avenues of further research, both practical and theoretical, are possible and some 
are described in the next paragraphs.

Graph Comprehensions. Comprehensions are a promising query notation partly  be­
cause they are recursively defined and hence could possibly be applied to  all recursively
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defined collections such as lists and trees. In the object-oriented paradigm, an object can 
be perceived as a graph of heterogeneous objects - a sort of collection. Unfortunately, 
graphs cannot be defined recursively and hence do not have an intuitive m apping to  com­
prehensions. One challenge is to  extend comprehensions to capture graphs making it a 
“tru ly” generic query notation.

Completeness and Tractability. To study the expressive power of object-oriented query 
languages, it is necessary to  have a proper notion and definition of completeness. This is a 
research area actively pursued by workers on database theories. The development of graph 
comprehensions would facilitate the reasoning and definition of completeness. An equally 
actively researched area is the search for more expressive but tractab le query languages. 
This dem ands more understanding on the interaction of collections, the effect of nested 
queries, and the complexity of individual operations.

Query Optimisation. The optim isation of object-oriented query languages has been 
acknowledged as an extremely hard problem. The object-oriented paradigm emphasises 
extensibility and requires an open architecture for many components in an object-oriented 
database including the query optimiser. How to handle the extensibility of the paradigm, 
the richness of the d a ta  models in general, and the optim isation of object comprehensions 
in particular definitely require more research.

A Type System  Supporting Multi-Methods. Neither object comprehensions nor the 
canonical algebra have been given a complete type system . One extension is to  add a type 
system  so as to  make reasoning easier.

Generic Report Generator. A preliminary study of the development of a generic report 
generator is being carried out. The objective is to  develop a theoretical framework for 
report veneration th a t can be applied to  conventional as well as to advanced d a ta  models. 
The framework is expected to include a fo, mal report model which provides a conceptual 
representation of reports. Generating a report will then involve specifying it in term s of 
the  report model using a report specification language. Next, the report generator will 
autom atically generate queries over the corresponding database and perform com putation 
over the results returned by the queries. The da ta  retrieval part of the  report specification 
language is essentially a  query language. One of the challenges is to  incorporate object 
comprehensions into the report specification language so th a t it becomes generic across 
d a ta  models.

View Support. View mechanism is a classic database facility and is traditionally  sup­
ported using query languages. W hether this collaboration of view support and query 
languages would suffice in the new generation of object-oriented databases is open to 
question. The next chapter sets out to  answer this question with a  view to investigate the 
feasibility of supporting views using object comprehensions.
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V iew  Support

Views enrich a database with various perspectives through which different applications can 
access the same underlying database. The semantic complexity of an application is there­
fore significantly reduced as irrelevant details are hidden. Views have been dem onstrated 
to be a useful tool for managing relational database systems. Object-oriented database 
system s do not yet support any satisfactory view mechanism. This chapter examines ex­
isting proposals, reveals their advantages and disadvantages, and identifies the challenges 
involved in proposing a satisfactory solution.

The organisation of this chapter is as follows. Section 8.1 argues for the need of view 
support in object-oriented databases. Section 8.2 explains the nature and use of views in 
object-oriented databases. Section 8.3 describes and assesses current proposals for view 
mechanisms. Section 8.4 concludes.

8.1 R ationale

The ability to  define user views of a database is a basic requirement. Irrespective of the 
d a ta  model supported, e.g. relational, deductive, or tem poral, a database with a  schema 
th a t serves more than  one application program should provide a view mechanism. View 
mechanisms proposed for object-oriented databases do not em ulate those of earlier d a ta  
models. Such a short-com ing damages the usability of object-oriented databases and needs 
addressing.

Views have been a standard  and distinguishing characteristic of databases since the 
introduction of the ANSI/SPARC architecture [DAF86]. Views m ust be available in order 
to  make a true progression from file processing to  database [EN89]. W ithout views all 
applications of the same database use the same general schema; they become contorted 
by their accom modating the da ta  requirements of other applications which, in tu rn , leads 
to  inefficiency and error.

D a ta  models other than  object-oriented d a ta  models have given a higher priority to 
views. M any relational database m anagement system s facilitate views even when they

112
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have not implemented significant com ponents of the relational model. DB2, for example, 

does not support  referential integrity; da tabase  updates  and deletions have to  be executed 

carefully. Nevertheless, it does support  views. A d a tabase  with a  complex schema of 

normalised relations can be read by users as though it were application-specific. A ttr ibu tes  

or whole tables which are irrelevant to groups of users are hidden. D ata , for which users 

have no access authority, are also hidden.

The class hierarchy of an object-oriented d a tabase  is ju s t  as confusing to  a  reader 

as a large relational schema. Nor are object-oriented da tabases  designed to store small 

quantities  of d a ta  for single applications. The objects  and classes are ju s t  as num erous 

and are intended to be accessed by ju s t  as many applications.

However, proposals for support  for views in object-oriented d a tabases  are unsatisfac­

tory. This chapter explains their limitations and, in a t  least one case, a conspicuous error. 

One could argue th a t  they do not offer the limited su p p o r t  th a t  even D B ‘2 can. This can 

be rectified only by a proper identification of the problems, and, of course, fu ture research 

for their solutions.

8.2 V iew s  in O b jec t-O rien ted  D a ta b a ses

8 .2 .1  V ie w in g  O b j e c t - O r ie n t e d  D a ta b a s e s
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Figure 8.1: Elements of an Object-O riented  View.

Figure 8.1 depicts views in an object-oriented d a ta  model. T he lower half of the  figure 

depicts a (simplified) d a tabase  and the upper half depicts a view defined on the da tabase .  

A view contains a collection of instances th a t  are drawn from a source collection. T he  view
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instances are the source instances th a t satisfy a view-defining query. Type information is 
given on the right. For the example in Figure 8.1, both the view and the source collections 
are of class set. The source instances are of class X  and the applicable m ethods are called 
source instance methods. The view instances are of class Y  and the applicable m ethods 
are called view instance methods. The view instance m ethods can be derived from the 
source instance methods as will be shown in later sections. In the case of the relational 
model, only the elements in the left dotted rectangle are sufficient to  define a view. This is 
because the relational model is a structural model and all access m ethods are generic. For 
object-oriented databases, all the types must be specified or inferred since each class has 
its own m ethods and multiple collection classes are supported. Therefore the additional 

elements required are the ones in the right dotted rectangle.
In Section 2.14 it was m entioned th a t an ORION class extent does not include the 

extents of its subclasses. To define a view, say People, to return a class “extent” including 
instances of Person  and instances of its subclass Student, a query can be used as follows,

People =  Person union Student

The extents of Person and Student are the source collections from which the view 
collection People is generated. This is carried out by the view-defining query using the 
union  operation. The view instances, elements in People, consists of all the elements in 
the extents of Person and Student - the source instances. The source instances are of class 
Person  or Student, which are the source classes, and the view instances are of class Person  
- the  view class. Both the source collection classes and the view collection class are set.

3.2 .2  U se  o f v ie

M any suggestions have been made about and reasons given for the possible use of views 
in object-oriented databases [SS89, HZ90, SLT91, Bra92, Ber92, PMSL94, SAD94]. The 
ones suggested most often are,

•  Information Hiding
•  Information Restructuring
•  Query Shorthand
•  Defining Dynamic Collections
•  Testing Schema Changes

•  Support of Versions
•  Content-based Access Control
• Integrating Heterogeneous Systems
• D ata  Independence
•  Relational Com patibility

Inform ation hiding and restructuring refer to the am ount and presentation of infor­
m ation to  the  users. They focus on individual instances. Query shorthand refers to  the 
construction of a  collection th a t can be used for further querying. Dynamic collections are 
useful in partitioning an existing collection into smaller collections. They both focus on 
collections. The effects of schema changes can be studied by simulating the changes using 
views. If a database contains multiple versions of d a ta  a view can be defined to  provide
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uniform access to the different versions. Access control is usually done by authorisation 
on a collection of data . Since a view typically contains a  collection of elements th a t satisfy 
certain criteria, authorisation on such a view collection will effectively provide content- 
based access control. In a heterogeneous system, views can be used to  integrate d a ta  from 
individual systems. As in the relational model the use of views minimises the consequences 
of schem a changes and results in more maintainable systems. M any new object-oriented 
database users also require access to d a ta  stored in their relational systems. Views can be 
used to  provide a gateway between the two systems. This chapter is concerned with four 
uses of views, namely information hiding, information restructuring, query shorthand, and 
defining dynamic collections, as they are considered the most im portant.

8 .2 .3  T h e Principal R equirem ent

The object-oriented paradigm  emphasizes reusability. The principal requirem ent of a view 
mechanism is therefore to  maximise reusability. At the d a ta  level it means to  minimise 
the creation of new objects. At the schema level it means to minimise the creation of new 
classes, introduction of new methods, and the redefinition of existing methods.

8.3 Current Proposals

View
Class

View View
Class Class ^  ^
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method

Source
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Figure 8.2: The Methodological, Query-Driven, and Schema-Driven Approaches.

The proposals studied in this chapter can be categorised into three approaches. Each 
category is characterised by the relationship between a view class and a source class (Figure 
8.2). In the methodological approach, the relationship is modelled using a m ethod. In the 
query-driven approach, the relationship is captured by the ISA relationship. The schema- 
driven approach uses a two-layered structure  where a view class is related to  the source 
class not by a m ethod or the ISA relationship but a new derivation relationship th a t  is 
not in the “standard” object-oriented paradigm.
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8 .3 .1  M eth odolog ica l A pproach

A ttem pts have been made to  provide view support by simply applying a methodology th a t 
sim ulates the view mechanism. The m ajor advantage of this approach is th a t neither new 
concepts nor im plem entation are required. However, it is a self-disciplined approach and 
provides no system  support of any kind. The responsibilities for view support rest on the 
program m er. W ith the following proposal, for example, th a t burden eventually proves too 
great to  bear.

A single example of such a strategy suffices. The following discussion, then, is based 
on [BK93]. For the rest of the section one may equate the approach and this proposal.

Barclay &: K ennedy’s Proposal

In this proposal, a view is like a subschema which can contain more than  one view col­
lection. Using the example database described in Section 2.13, a view containing people 
under 65 in the set Persons and restricting access to the method get-name  can be defined 
as in Figure 8.3 (a hypothetical syntax is used).

C la ss  A -V iew -C lass /  * just an ordinary class * /
m ethods /  * contains only methods * /

young-people —> Set o f Person /  * returns the view collection * /
be s e l e c t  p /  * using a view-defining query * /

from  p  in  Persons /  * on Persons , i.e . the * /
where p.age < 65, /  * source collection * /

get-nam e(p  : Person) -» String /  * view instance method * /
be p.nam e.

Figure 8.3: A View Definition (Barclay & Kennedy).

The view is defined as a class, A-V iew -C lass , containing only m ethods. The view 
collection is defined by a query and returned by the m ethod young-people. In other words, 
a  view collection is populated by existing objects and no new objects are generated. The 
m ethod get-nam e , which takes a  Person object as argum ent, is defined to  m anipulate the 
view instances. Using a view involves creating an instance of the class defining the view, 
invoking the m ethod young-people to  return  the view instances, and applying the m ethod 
get-nam e  to  them  (Figure 8.4).
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A -V iew  = A-V iew -C lass.new  /  * a new view class object * /

s e l e c t  A -V iew  .get-name (x) /  * view instance method * /
from  x in  A -V iew  .young -peoplej * view collection * /

Figure 8.4: Using A View (Barclay & Kennedy).

Two benefits to  using this approach are revealed by the example. Query shorthand is 
supported, i.e. queries on the view instances of the example need not include the selection 
condition, age < 65. Also, the view is populated by existing objects rather than  newly 
created ones. This makes updating view instances easier.

There are however a number of serious problems. The use of existing objects may 
make updates straightforw ard, but it is not clear how to achieve restructuring. These 
views are based on collections rather than instances. As such, use of the whole collection, 
as in shorthand querying, will always be simple but use of individual view instances, 
such as writing m ethods with view instances as argum ents or results, is not. There is no 
information hiding. The view instances in the example given in Figure 8.4 are still clearly 
of class Person. Therefore, although only get-name is supposed to  be perm itted, any 
m ethod defined in Person may be invoked on a view instance. No new class is defined for 
the view instances. The instances of A-View -C lass  are complete views not view instances. 
Thus if a method is written and a view instance is an argum ent or result, the method writer 
is compelled to  write Person in the signature. It is due to the fact th a t the abstraction 
for a view is defined a t the collection 1 .vel rather than  a t the element level.

A further problem relates to  the class hierarchy. Since these views are ju st classes 
they can form hierarchies. However, a subclass could legally redefine the m ethod which 
returns the view collection. In the example, a  new view could be defined as a  subclass of 
A -V iew -C lass  with a definition of young-people which returns some objects whose age is 
greater than 65, th a t is, it is possible for a subview to  contain instances not in the super­
view. This violates the inclusion semantics of inheritance and hence creates a consistency 
problem.

In summary, the proposal introduces no new facilities to support views so defining a 
view is rather tedious. Dynamic collections and query shorthand are easily defined but 
inform ation hiding and restructuring are not provided. View interfaces are provided a t 
too high an abstraction level and view instance interface is distorted and unnatural. The 
semantics for many possible uses of views, such as consistency and constraints, are poor.
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8.3.2 Q uery-D riven  Approach

The query-driven approach covers the proposals in which the definition of a view is pri­
marily a  query. As in the relational model this provides a  simple mechanism for views 
but in the new context it becomes rather restrictive. Recall th a t instances of a class can 
only be m anipulated by m ethods defined for the class. If a view defined by a query is to 
be of any use, applicable methods must be defined on the view class. If the view class is 
going to be a proper class, it must be placed in the class hierarchy. To maximise reusabil­
ity a t the class definition level this often implies th a t a view class should be placed as 
close to the source class as possible. In addition, the ISA relationship also asserts th a t an 
instance of a subclass is also an instance of its superclasses. To maximise reusability a t 
the instance level, the generation of new instances should be minimised. The ability to 
maximise reusability is a determining factor for a good query language for view support. 
However, inserting the view class into the class hierarchy and preserving class instances 
are both problem atic as will be seen in the following proposals.

In describing different proposals, the term  “non-class-generating” refers to operations 
th a t do not result in the generation of a  new class, “class-generating” operations generate 
either a subclass or a  superclass of the source classes, while “new-class-generating” oper­
ations generate a direct subclass of the root class irrespective of the position of the source 
classes in the class hierarchy. A discussion of the various proposals in this approach is 
given a t the end of this subsection.

Davis Sz Delcambre’s Proposal

A query algebra which is formally defined using denotational semantics was proposed by 
Davis and Delcambre [DD91], Tne algebra contains five class-geneia,ung operations: U 
(union), D (intersection), — (difference), pj (select for all), <tj (select for some), and two 
new-class-generating operations: nj (project) and x (cross product).

The effect on the class hierarchy after executing the queries: Q1 {vage < 65 Person) 
and Q2 ( t name Person), where Person represents both a class and its extent, is shown in 

Figure 8.5.

Person
I

derivation I ' ISA
relationship I >

i
Young_People

Person
i

set

derivation
relationship source

Name

Figure 8.5: Ql: o age < 65 Person  and Q2: n name Person.
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Selection (<7/) results in the generation of a new class, Young_People, which is a sub­
class of the source class, Person. The extent of Young-People is formed by the elements of 
the extent of Person  whose age is less than  65. Subclass-generating selection is a widely 
adopted approach where the extent of a subclass is reversely populated according to  the ex­
ten t of its superclass. Such a derivation relationship violates the object-oriented principle 
of populating a superclass with its subclasses - paradigm  problem.

Reverse population is also used by the operations: D, —, and p j. Projection (ttj) 
generates a new class, in this case Nam e , which is a subclass of the root class. Instances of 
the new class are created by applying the projecting function /o n  the elements in the source 
extent, eliminating the duplicates, and then creating an object for each of them . There 
is also a system-defined m ethod th a t links a new object to  its source objects (represented 
by the m ethod source in Figure 8.5). Note th a t this is a set-valued m ethod implying th a t 
the one-to-one connection is lost which may cause problems in propagating updates from 
the view objects back to the source objects - propagation problem. Strictly speaking the 
generation of new objects is not necessary in some circumstances. The elimination of 
duplicates is a  result of forming tuples in the first step of a projection. This approach, 
however, allows the restructuring th a t the previous proposal does not.

S c h o ll’s P ro p o s a l

The algebra proposed in [SS90, SLT91] contains two non-class-generating operations: <7/ 
(select) and — (difference), and the following class-generating operations: t t j  (project), £/ 
(extend), U (union), and fl (intersection).

Selection (o/ )  creates a new collection whose elements satisfy the condition /. Pro­
jection '■ /) generates a superclass of the ource class and a view collects " containing 
the same elements as in the source collection. The rationale of this tactic  is th a t the 
ISA relationship can be used to  maximise reusability and minimise the generation of new 
classes.

Figure 8.6: Q3: 7rname,a<frfre5s,age,major S tudents , and Q4. 7Tname,major Students.
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The effect on the class hierarchy after executing Q3 {n name,address,age,major Students) is 
shown in Figure 8.6 where the new class is inserted between Person and Student. However, 
this tactic is not generally applicable as a  projection may result in a class th a t cannot be 
fitted as a superclass of the source class - class insertion problem. A case in hand is Q4 

name,major Students) in Figure 8.6.
This trea tm ent is unsatisfactory even if the new class can be fitted into the hierarchy. 

In the case of Q3, it is obvious th a t some kind of schema evolution is happening. The class 
definition of Student is factorised into two parts: one becomes part of the new definition 
of Name and the another becomes the new definition for Student. If th a t is allowed it is 
not unreasonable to  assume th a t the class definition of Person can be updated, say to  add 
the m ethod ss# .  Now, Name has one more m ethod inherited from Person  even though 
it is not specified in its view-defining query. This raises concern over equating the ISA 
relationship with the derivation relationship - evolution problem.

Extension (ej) adds derived functions to  a collection of objects. It essentially defines a 
subclass by extending the source class with derived methods. It is suggested th a t the effect 
of the “join” operation can be achieved by using ej on the source collections extending 
their elements with a multi-valued m ethod. This way a m any-to-m any relationship will 
be represented as two one-to-many relationships. The other operations: U, D, and — have 
similar semantics as Davis & Delcambre’s.

Alhajj’s Proposal

In this proposal [Alh92, AA92], there is one non-class-generating operation, ay (select), 
five class-generating operations, U (union), — (difference), 7ry (project), €y (extend), and 
X (cross prodi. .t), as well as two new-class-generating operations, ay (apply) and x (cross 
product).

Difference (—) has peculiar semantics. If the first source class is the same or a superclass 
of the  second source class, the view class will be the same as the first source class. Assuming 
Persons and Students are collections of Person  and Student objects respectively, Persons — 
Students  returns a view collection containing Person objects because Person  is a  superclass 
of Student. This part of the semantics is perfectly acceptable. However, if the condition is 
not true, the view class will be derived by removing all the m ethods of the second source 
class from the first source class. For example, Students — Persons will give a collection 
whose elements can be m anipulated by only three methods: major, supervisedBy, and 
takes, but not nam e , address, or age.

Application (ay) is a more general form of projection (7Ty). It applies the function /  
to  a source collection and generates a new collection containing the results returned by /. 

No connection from the view instances to  the source instances is m aintained.
Cross product (x ) may be class-generating or new-class-generating depending on the 

source classes. If they do not have any atomic-valued m ethods, it generates a subclass of
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the source classes. Otherwise, it behaves as Scholl’s e or Davis & Delcam bre’s x . Unlike 
the la tte r, no link to  the source instances is maintained. It was argued th a t this context 
dependent semantics makes X associative and its im plem entation efficient. However, when 
the subclass is generated the semantics is erroneous. It implies th a t an instance can be 
m igrated to  a subclass forming multiple instances of the subclass, each of them  sharing 
the same identifier. This is certainly impossible. Having said th a t it is believed th a t most 
of the  tim e the operation will be of the other kind. T h a t would make it practically the 
same as Davis & Delcam bre’s X.  O ther operations in the algebra are similar to  Scholl’s.

Discussion

O ther algebras have been proposed for querying object-oriented databases, many of them  
are however retrieval-based and are not designed to  support updateable views where max­
imum reusability and link to  the source are essential. S traube’s algebra [Str90] cannot 
generate new objects and does not maintain source links. Dayal’s algebra [Day89] and 
Shaw & Zdonik’s algebra [SZ90] rely on tuples and keep no source links. O sborn’s algebra 
[Osb88] and Vandenberg & D eW itt’s algebra [VD90] does not m aintain source links.

It was mentioned earlier th a t views can be used to restructure information. To support 
th a t  using a query-driven approach requires a powerful query language. As expressive 
power has been covered briefly in previous chapters, the centre of the following discussion 
is on information hiding and update propagation.

Scheme A 
Subclass & Extent

Scheme B 
Collection

create dynam ’ dynamic
insert must be an instance of 

the subclass and hence 
always satisfies the 
constraints

an instance is of the source 
class and therefore must 
be checked against the 
constraints and propagated 
to  the source collection

update
- meet constraints OK OK

- do not meet constraints insert to  the source class reject
delete remove from the database remove from the collection
schema update one subclass one collection

Table 8.1: A Comparison of the Subclass & E xtent Scheme and the Collection Scheme.

It is argued in [Day89] th a t selection should not result in the generation of a subclass 
and should be handled using collections. Figure 8.1 contrasts two schemes in term s of the 
different kinds of updates th a t can be performed on a view collection and the database



View Support 122

schema. W hether these operations should be supported a t all is debatable: Scholl [SLT91] 

and Abiteboul & Bonner [AB91] expressed very different opinions on the issue. The 
operations are included here mainly for the purpose of exposition. The semantics suggested 
for the operations is representative though not definitive, see also [SLT91].

Davis & Delcambre adopt scheme A while Scholl and Alhajj use scheme B. The inser­
tion semantics of scheme B is more complicated and requires constraint checking as well as 
some trigger mechanism to populate the source collection. U pdate in scheme A is in some 
sense information-preserving even though it means an inserted element may not appear 
in the  view collection. The notion of value-closure is advocated in [HZ90] meaning th a t 
only constraint satisfying updates should be allowed. Deletion in scheme A is difficult and 
requires an expensive com putation. On the contrary, deletion in scheme B is straightfor­
ward. Scheme A induces schema updates and an instance in a  source extent may end up in 
many view extents. In other words, the very same object can be of many disjoint classes. 
This is not supported in many d a ta  models. Scheme B generates a dynamic subset for 
each query on a source collection.

In general scheme B is more desirable as it decouples collections from the class hierarchy 
and hence minimises changes to  the hierarchy. On balance, it could be argued th a t scheme 
B is a  reasonable compromise between simplicity, flexibility, and functionality. Operations: 
U, D, and — can function in scheme B and take the unique common superclass of the source 
classes as the class for the elements in the resultant collection.

Person 
4  name, age, 

address

ISA

Person 
j  name, age,

address

Person’ 

>

Student major, takes, 
supervisedBy

Name 
j  major

Student takeSi
supervisedBy

Person

f  ‘address ^ amemajor

Student
supervisedBy

Figure 8.7: Q3: 7t name,address,age,major Students , and Q4. 7Tname,major Students.

Projection has been shown to  be rather problematic. Suggestions have been made to 
rectify the situation [MS89, Alh92, AD94]. For example, in [AD94] an algorithm  is given 
to  factorise the class hierarchy so th a t the view class can be properly placed to  inherit 
m ethods from existing or factorised classes. Figure 8.7 shows the result of the factorisation 
caused by the view definition defined by Q4 (n name,major Students). Note th a t the  resultant 
hierarchy is arranged in such a way th a t the view class is im m utable to  fu ture changes 
to  existing classes. In other words, the evolution problem is eliminated. Also note th a t
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such factorisation may result in change of signatures for m ethods “prom oted” to  a new 
superclass.

Application (a f ) can be used to express both selection and projection. The only con­
cern is how the connection between the source instances and view instances is m aintained. 
Losing this connection will prohibit updates to the view instances from being propagated 
back to  the source instances.

Cross product is used to  re-establish relationships not represented explicitly in the 
database schema. It generates a new object for each pair of source instances. So far the 
problem of generating new objects, as in ?r/, a / ,  and x,  has not been discussed. Imagine 
a view named Student-andLAdvisor defined using x over a set of Student objects and a set 
of S ta ff  objects. To return those pairs where the advisor is from the Com puting Science 
D epartm ent and the student is from the M athem atics D epartm ent, two possible queries 
can be used as shown in Figure 8.8.

Q 5 : s e le c t X

from x in  Student-and-Advisor
where x.advisor.departm ent.nam e — “Computing Science”
and x .student .major .name =  “M athematics”

Q6 : s e le c t X

from x in  Student-and-Advisor
where x.advisor.departm ent.nam e  =  “Computing Science”
and x in  ( s e le c t  y

from y in  Student-and-A dvisor
where y indent, m ajor.nam e =  “Mathem  ics” )

Figure 8.8: The View Freezing Problem.

The two queries appear to  be the same; however, they may return  different results 
depending on how new objects are generated for the view Student-andLAdvisor. If new 
objects are generated each tim e a view is accessed, two successive accesses to  the  same 
view will generate two sets with completely different elements. In query Q6, the  range 
of x and the range of y will be different even though their contents are the same. The 
fundam ental question is should the new identifiers, a t least within the same transaction, 
somehow depend on and freeze with the source objects from which the new objects are 
generated. A possible solution is to  specify some kind of key on the view objects which 
freezes their object identifiers.

Integrating the query-driven approach with the object-oriented paradigm  is not as 
sm ooth and easy as it may seem. Its integration does require ex tra  facilities th a t are 
not usually explicitly represented in object-oriented d a ta  models and, more often than
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not, may not be available a t all. These facilities include schema evolution operations, 
instance migration operations, triggers in the case of using the collection scheme, constrain t 
checking, and system-defined methods for the source link. The next section presents a more 
powerful approach in which a view is not only defined by a query but also augm ented with 
m ethod im plem entations and so forth.

8.3 .3  Schem a-D riven  A pproach

The schema-driven approach covers those proposals in which the derivation of a  view con­
sists of a  query and a schema-like definition. This approach results in very sophisticated 
view mechanisms th a t overcome many problems found in the previous approaches. Nev­
ertheless, this approach is rather verbose and therefore less convenient to  use. In order to 
facilitate comparison a non-specific syntax is used.

H e ile r  Sz Z d o n ik ’s P ro p o s a l

C la ss  A-V iew -C lass /  * ju st an ordinary class * /
a t t r i b u t e s

p : Person , /  * source instance h  class * /
m ethods

get-nam e  —* String /  * view instance method * /
be p.nam e. /  * uses the source instance * /

View Young-People — { ( /  * view collection * /
A-View -C lass, /  * view class * /
s e l e c t  p /  * view-defining query * /
from  p  in  Persons /  * source collection * /
where p.age < 65
) } .

Figure 8.9: A View Definition (Heiler & Zdonik).

In this proposal [HZ90], a view is defined by first declaring a class for the view instances 
and then populating a collection with objects of th a t  class using a query. In Figure 8.9 an 
ordinary class A-View -C lass  is defined whose only a ttribu te  is an object of class Person. 
The m ethod get-name  is implemented by calling name on the a ttribu te  p. The view 
collection Young-People is populated by a query using Persons as the source collection. 
The objects returned by the query are of class Person  and they are cast to  A-V iew -C lass  
before becoming members of Young-People. This casting occurs because selection (<t/) is 
used. Projection (7r/) and join (x ) will result in generation of new objects. This approach 
relies on the program m er to  ensure the consistency between the two parts of the  definition:
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the class definition and the population of the view collection. Namely, the source class 
m ust be the same as the class of the a ttribu te  and the selection predicate used in the 
view-defining query must be included in the appropriate m ethod implem entations. The 
view freezing problem is not addressed.

Saake &: Jungclaus’s Proposal

View Young-People j  * a view class * j
so u rce

Person p /  * source class & instance * /
query

p.age < 65 /  * view-defining query * /
m ethods /  * attributes can be defined * /

get-nam e  —>• String /  * view instance method * /
c o n s t r a in t s

age < 65. /  * satisfied by all instances * /

Figure 8.10: A View Definition (Saake Sz Jungclaus).

Using Saake Sz Jungclaus’s proposal [SJ92], the view Young-People will be defined as 
in Figure 8.10. Note th a t this proposal is designed for defining views on class extents. 
The source class is explicitly specified and the extent of the source class is used as the 
source collection. A label can be given to  the source class as a symbolic name for the 
source instance. This label can be used within the definition and is like self in many 
program ming systems. Unlike the previous proposal, methods th a t are simply named 
in the view definition will be inherited and no explicit im plem entation is required. A 
construct is provided to specify constraints th a t m ust be satisfied by all instances of the 
view class. Join views can be defined and their instances are values. A source link is 
m aintained in these views. The view freezing problem is not addressed.

Bertino’s Proposal

This proposal [Ber92] is very similar to  the last one. Both of them  are designed to  work 
on class extents. The source classes are inferred in this case and no label is provided to 
refer to  the source instance. The lack of such a label makes it difficult to  use view instances 
as the result of view methods - association problem. Special syntax is introduced in this 
proposal to  get around this problem. W hether a  view class will generate new objects can 
be decided by the user. Constraints are however not supported. Special syntax is provided 
to  make method inheritance easier to specify. Also introduced is the concept of key which 
controls duplicate elimination. For example, the “join” view used in Figure 8.8 can be 
defined as in Figure 8.11.
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View Student-and-Advisor /  * a jo in  view class * /
query

s e l e c t  s, I /  * view-defining query * /
from  s in  S tuden t, I in S ta ff
where s. advisor =  I
and s.m ajor.nam e = “M athematics”
and I. department, name = “Computing Science”

m ethods
AllM ethods o f S tuden t, S ta ff /  * view instance methods * /

g e n e ra tin g
true /  * i f  new objects are generated * /

i d e n t i t y
Studen t, Sta ff. /  * key * /

Figure 8.11: A View Definition (Bertino). 

A b i te b o u l’s P ro p o s a l

View Young-People(Ps Set o f Person)
query /  * a parameterised view class * /

s e l e c t  p /  * view-defining query * /
from  p  in  Ps /  * argument as source collection * /
where p.age < 65

m ethods
h id e  age /  * inherit all method* but age * /

g e n e ra tin g
false. /  * i f  new objects are generated * /

Figure 8.12: A View Definition (Abiteboul).

This proposal [AB91, SAD94] differs from the previous proposal primarily in the  sup­
port of param eterised views. As shown in Figure 8.12, the view Young-People can be 
materialised with different sets of Person objects on different activations. Syntactic sugar 
is provided for m ethod hiding. While Bertino’s proposal introduces special syntax to  deal 
with the association problem, Abiteboul’s proposal provides no support for th a t. The view 
freezing problem is fixed by freezing an identifier with the a ttribu te  values of a  tuple.

D isc u ss io n

Heiler & Zdonik’s proposal is compositional in nature (similar in spirit to  the m ethod­
ological approach) because view classes are defined as ordinary classes. Casting is used
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to tu rn  an a ttr ib u te  into a view instance and a t the same time keeps the object iden­

tifier. All projected m ethods have to  be redirected and hence explicitly specified. The 
program m er is required to  ensure consistency between the view-defining query and the 
view class definition, including the proper update semantics. This proposal also works 
with the collection scheme.

Saake & Jungclaus’s proposal takes a quite different perspective as views are defined 
on top of existing classes without resorting to  the ISA relationship and object composition 
mechanism. M ethods can be inherited from the source class easily. C onstraints can be 
specified and are m aintained by the system. Basically no new objects are generated and 
join views are populated with values.

In B ertino’s proposal it is even easier to inherit methods. Explicit control is given 
over the generation of new objects. Like in Heiler & Zdonik’s case, the program m er has 
more responsibility in maintaining the consistency of various parts of a view definition. 
It is suggested th a t views can form hierarchies but consistency between them is not dis­
cussed. A biteboul’s proposal allows param eterised views to  be defined and hence is more 
appropriate  for using with the collection scheme. The view freezing problem is addressed.

The query-driven approach aims to  define view classes th a t behave in the same way as 
ordinary classes. M ethods can be defined as in ordinary classes and overloaded m ethods 
are resolved by using the derivation relationship and in some cases, like B ertino’s and 
A biteboul’s, before extending it to  the ISA relationship. To support complex objects, a 
view m ethod should be allowed to return real as well as view instances as the result. This 
association problem is addressed inelegantly in Bertino’s approach and is not addressed 
in the other proposals. The support of object identifiers demands a solution to  the view 
freezin0- oroblem. A biteboul’s proposal seems to be too restrictive while B ertino’s may be 
non-determ inistic when two tuples have tne same key but otherwise differ in their non­
key attribu tes. A badly addressed area is the form ation of a class hierarchy from view 
classes. In all the proposals studied, a view consists of both a class and a collection. 
The ISA relationship between view classes does not seem to  create any problem. The 
corresponding view collections are expected to satisfy the subset relationship. However 
the  la tte r constraint is not imposed in any proposal. To check this constraint, subsum ption 
analysis [BJNS94] could be used but the problem in general is intractable.
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8.4 Sum mary

No object-oriented database system has yet provided a satisfactory view mechanism. M any 
of the existing proposals can only handle a  very small class of view definitions. Reusability 
is a key idea behind the object-oriented paradigm; however, how the view mechanism can 
take advantage of this aspect of the paradigm is not yet well understood. U pdates in 
object-oriented views should be more manageable than in the  relational model as propa­
gation becomes easier with objects. More research is definitely required in the different 
aspects of views and hopefully a useful mechanism will be available before long.
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R easoning about Z Specifications

This appendix shows how a property of the reference da ta  model can be studied using a 
formal proof methodology.

The object-oriented paradigm  emphasises reusability and one way to  support reusabil­
ity is to allow incremental development of classes including refinement of m ethods and 
m ethod overloading. Choosing between overloaded m ethods requires some kind of order­
ing to  be imposed on the methods. The local inheritance ordering is used as the basis 
of ordering in the reference d a ta  model. However, it can be applied only a t rum -tim e 
when the argum ent types are known. To suppoit sta tic  type checking, the generalised 
inheritance ordering is used a t compile-time. However this ordering may result in m eth­
ods forming a cycle under the m ethod specificity relation. To enable type checking to  be 
carried out a t compile-time, the consistency between such m ethods has to  be m aintained. 
The reference d a ta  model requires such methods to  have the same result type. To ensure 
th a t the reference d a ta  model actually has this property, a formal proof of a  theorem 
characterising this property is given in this appendix. Three lem m ata are used to  provide 
auxiliary results for the proof of the theorem.

129
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A .l  Lem m a 1

Lemma 1 deduces th a t if two methods are consistent and form a cycle under the method 
specificity relation (C), their result types will similarly form a cycle under the type con­

formance relation (-*<).

A ssum ption A ssertion Justification
(1) 1 V m i, m2 : M ETHOD] si, S2 : S IG N A T U R E  \ Consistent

=  m i.signature  A S2 = m2.signature •  Schema  
mi isConsistentW ith m2 O  

(mi C m2) =>
si.resultType S2 .resultType

A
(m2 C mi) O

S2 -resultType  -«< si.resultType

(2) 1 V m i , m2 : M E T H O D ; s i , s2 : SIG N  A TU R E  •
si =  m i.signature  A s2 =  m2.signature O  

mi isConsistentW ith m2 O’
(mi C m2) O

si.resultType  -«< S2 .resultType

A

(m2 C mi) =>
s2.resultType s i.resultType

(3) 1 si =  m i.signature  A s2 =  m2.signature O
mi isConsistentW ith m2 O  

(mi C m2) =>
si.resultType  - «  S2 -resultType

A
(m2 C mi) =>

S2 -result Type - «  si.resultType

(4) 4  s i  =  m i.signature A ssum ption

Universial 
Quantifier 
Elim ination  
line 2 
(4 tim es)

Definition o f \ 
line 1

(5) 5 s2 =  m2.signature Assum ption
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Assumption Assertion Justification
(6) 1 , 4 , 5 mi isC onsistentW ith m2 O  

(m i C  m 2) =>
51.resultType  -4< S2 .resultType

A

(m2 C mi) =>
52 .resultType si.resultType

Tautology 
{A A B  A 

( ( X A i ) = >  C ) )

=> c
/ m e  4,  5, 3

(7) 1 , 4 , 5 mi isC onsistentW ith m2 =>
(m i C m2) =>

si.resultType S2 -resultType

A

(m2 C mi) =>
S2 -resultType Si.resultType

Tautology
(A B ) => (A => B ) 
line 6

(8 ) 8 

(9 )  1 , 4 , 5 ,

mi isC onsistentW ith m2 

(m-i C m2) O
si.resultType S2 .resultType 

A

(m2 C mi) =>
S2 .resultType si.resultType

A ssum ption

Tautology
{A A { A=> B) )  o  B  
line 8, 7

( 10) 10 

(11) 11

m i C  m2 

m2 C m i

( i z j  1 , 4 , 5 , 8 , 1 0 , 1 1  s i . result Type _ result Type 

A

S2 -resultType - «  si.resultType

A ssum ption

Assum ption

Tautology 
{A A B  A

( ( x  => x )  a  (b  => y ) ) )  

=> p r  a  y )

line 1 0 , 1 1 ,  9
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A .2 Lem m a 2

Lem ma 2 deduces th a t if one type conforms to another under type conformance relation 
(-« ), the two types are either equal or transitively related under the ISA relationship (-<*).

A ssum ption Assertion Justification

( 1) 1 V ti, t2 : T Y P E -N A M E  •  

h ^ t 2 ^
{ h i k }  Q ClassName A t\ X* t2 
V
■Ui> £2} Q BaseTypeName A t\ =  t2

Class
Graph

(2 ) 1 t\ t2 o
{ h , t 2} Q ClassName A t\ -<* t2 
V
{Z]i h }  Q BaseTypeName A ti = t2

Universal 
Q uantifier 
Elim ination  
line 1 
(twice)

(3) 1 (j -« t2 =>
0 i> 2̂} Q ClassName A -<* t2 
V
{  ̂1» 2̂} ^  BaseTypeName A ti = t2

Tautology
( A ^ B ) ^ ( A ^ B )  
line 2

(4) 4 t\ f2 A ssum ption

(5) 1.4 { ,  t2} C ClassName A t\ -<* t2 
V
{£1, £2} C BaseTypeName A £1 =  t2

Tautology
(A  A (A  => B ))  O  5  
line 4 , 3
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A .3 Lem m a 3

Lemma 3 develops on Lemma 2 and proves th a t if two types form a cycle under the type 
conformance relation (-« ), they must be the same type.

A ssum ption Assertion Justification
( 1) 1

(2 ) 2

(3) 3

(4) 1,2

(5) 1,3

(6) 1,3

(7) 1,3

(8) 1, 2,3

(9 ) 1 , 2, 3

V£i,£2 : T Y P E -N A M E  •  

h  t2 O
{^i) 2̂} C ClassName A £1 -<* t2 
V

{ h , h }  ^  BaseTypeName  A t\ =  t2

t\ -« t2 

t2 -« £i

( { 5 2̂} Q ClassName A £1 -<* t2)
V
({^i, £2} C BaseTypeName A t\ — t2)

({^2,  ̂1} Q ClassName A t2 -<* £1)
V
{{ t 2, h}  C BaseTypeName A t2 =  £1)

({Zi, t2} C ClassName A t2 -<* £1)
V

( { h , h }  Q BaseTypeName A t2 — tfi)

({/i> h }  Q ClassName A t2 -<* £1)
V

({^ii h ]  Q BaseTypeName A £1 =  £2)

(({^i> 2̂} C ClassName A £1 -<* £2)
V ({£1, £2} C BaseTypeName A £1 =  £2))

A
(({ / i ,  2̂} Q ClassName A t2 -<* £1)

V ({£1, £2} C BaseTypeName A h  = t2))

( ( { ,  £2} C ClassName A £1 -<* £2)
A ({£1, £2} Q ClassName A t2 -<* £1))

V

( { 1 ,  £2} C BaseTypeName A £1 =  £2)

Class
Graph

Assum ption

Assum ption

Lem m a  2 
line 1, 2

Lem m a  2 
line 1, 3

Property o f Set 
line 5 
(twice)

Property o f Equality 
line 6

Tautology
(A A B ) => (A A B ) 
line 4 , 7

Tautology
((X  V A) A ( Y  V A)) 
O  ( (A  A Y )  V A) 
line 8
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Assumption Assertion Justification
(10) 1,2,3 ({£1 ,^2} Q ClassName 

A £1 -<* £2 

A £2 -<* £1 )
V

Tautology
(((A A X )  A {A A Y)) 
V B)=>
( ( 1 A I A 7 ) V  B )

({£1 , £2 } C BaseTypeName A £1 =  £2 ) line 9

(11) 11 {£1 , £2 } C ClassName
A £1 -<* £ 2  A £ 2  -<* £1

A ssum ption

(12) 11 {£1 , £2 } C ClassName Tautology
(A  A 5 )  => >4 /me 11

(13) 11 t\ -<* £ 2  A £ 2  -<* £1 Tautology
(A  A 5 )  =>- B  line 11

(14) 11 (£1 =  £2 V £1 -<+ £2 ) 
A
(£2 =  £i V £ 2  -<+ £1 )

Definition o f  * 
/me 13 
[twice)

(15) 11 (£1 =  £2 V £1 X+ £2 )
A
(£i =  £2 V £2 -<+ £1 )

Property o f Equality 
line 14

(16) 11 £1 =  £2 Tautology
V ((>4 V X )  A (i4 V Y))
(£i £2 A £2 -^+ £1 ) (A V (X  A Y))

/me 15

(17) 17 £1 -<+ £2 A £2 -<+ £1 Assum ption

(18) 17 £1 ~<+ £1 D efinition o f + line 17

(19) (£1 -< +  £2 A £2 -<+ £1) =>• £1 -<+ £1 Conditional Proof line IS

(20 ) 11 £1 — £2 V £1 -<■*■ £1 Tautology
{ { AV  X )  A { X  ^  Y)) = >  

{A V Y) line 16,19
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Assumption Assertion Justification
(21) 21

(2 2 ) 11

V cn : ClassName •  -> (cn -<+ cn )

£i G ClassName 
A
£2 €  ClassName

ISA

Property o f Set 
line 12

(23) 11 £1 G ClassName Tautology 
(A A B ) A 
line 22

(24) 11,21 (£1  -< +  £1 ) Universal 
Quantifier 
Elim ination  
line 21

(25) 11,21 £1 =  £2 Tautology
((A  V B ) A-* B ) => A  
line 20, 24

(26) 21 ({Z ii h ]  Q ClassName A 

£1 -<* £2 A 
h  <* £1) = *

£1 =  £2

Conditional Proof 
line 25

(27) 1 ,2 ,3 ,21  £1 =  £2

V
({/i> £2} C BaseTyi lame A £1 =  £2)

Tautology 
( ( X V B )  A ( X  
( Y  V B)  
line 1 0 , 26

Y) )

(28) 1 ,2 ,3 ,21  £1 =  £2 Tautology
( A V ( B  A i4))=>  A 
line 27
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A .4 Theorem

This Theorem proves that if two confusable and consistent m ethods form a cycle under 

the method specificity relation (C), their result types m ust be the same.

Assum ption Assertion Justification

( 1) 1 V ms : allConfusableSets | f f ms  >  1 •

V m i , m2 : ms \ m \ ^  m? •

mi is Confusable With m 2 => 
mi isC onsistentW ith m 2

Database
Schema

( 2 ) 1 V ms : allConfusableSets •
# m s  >  1 =>■

V m i , m 2 : ms | mi ^  m2 •
mi isConfusableW ith m 2 =£• 

mi isC onsistentW ith m 2

Definition o f 
line 1

(3) 1 # m s  >  1 =>
V m i,m 2 : ms | mi ^  m2 •

mi isConfusableW ith m 2 =J> 
mi isC onsistentW ith m 2

Universal 
Q uantifier 
Elim ination  
line 2

(4) 4

(5) 1,4

# m s  > 1

V m i, m 2 : ms \ m i ^  m 2 •
m \ isConfusableW ith  77; 2 =$■ 

mi isC onsistentW ith m 2

Assum ption

Tautology
( A A ( A = > B ) ) = > B  
line 4, 3

(6 ) 1,4 V m i , m2 : ms •  
mi m2 =>

mi isConfusableW ith m 2 =>■ 
mi isC onsistentW ith m 2

Definition o f 
line 5

(7) 1,4 mi ^  m2 =/
mi isConfusableW ith m 2 => 

mi isC onsistentW ith m 2

Universal 
Quantifier 
Elim ination  
line 6 

(twice)

(8) 8 mi ^  m2 Assumption
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Assumption Assertion Justification
(9) 1 ,4 ,8

( 10) 10

( 12) 12

(13) 13

(14) 14

(15) 15

(16) 16

(17) 14,15,16,  
1 ,4 ,8 ,10 ,
12,13

(18) 18

m i isConfusableW ith m 2 => 
m\ isConsistentW ith m 2

m i isConfusableW ith m 2

(11) 1 ,4 ,8 ,1 0  m i isC onsistentW ith m 2

mi  C m2 

m 2  C mi

Vmi, m2 : M E T H O D ; su  s2 : SIG N A T U R E  \ 
=  m i.signature  A s2 =  m 2 .signature 

mi isC onsistentW ith m 2 <=>
(mi C  m2) =>

si.resultType S2 .resultType

V
(m 2 C mi )  =>

S2 -resultType si.resultType

si =  m i.signature

s2 =  m 2 , signature

si.resultType  -«< S2 .resultType 

A
S2 .resultType si.resultType

Mti, t2 : T Y P E -N A M E  •
£1 - «  t2 <=>

{ î> 2̂} Q ClassName A ti -<* £2 

V
{ ,  ^2} Q BaseTypeNam e  A fi =  f2

Tautology 
( A A ( A = > B ) )  

=>B 
line 8 ,7

Assum ption

Tautology 
(A A (A => B ))  
=>B
on line 10, 9

Assum ption

Assum ption

Consistent
Schema

A ssum ption

Assum ption

Lem m a  1 
on line 
14,15,16,
11,12,13

Class
Graph
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Assumption Assertion
(19) 19 V cn : ClassName •  -> (cn cn)

(20) 14,15,16,  si.resultType =  S2 -resultType 

1,4,8,10 ,
12,13,
18.19

(21) 14,15,16,  (mi isConfusableW ith m 2 A
1,4,8,  mi C m2 A
18.19 m2 C mi) =>

si.resultType = S2 -result Type

(22) 14, (mi 7  ̂ m2 A si =  m i.signature  A
1.4, 52 =  m2 , signature) =$■

18.19 ((mi isConfusableW ith m 2 A 
mi C m2  A
m2 C mi) =>

si.resultType  =  S2 .resultType)

(23) 14, Vmi,  m2 : ms; si, S2 : SIGNATURE •
1.4, (mi ^  m2 A
18.19 si =  m i.signature  A 

s2 =  m 2 , signature) =>
((mi isConfusableW ith m 2 A 
mi C m2 A 
m2 C mi) =>■

Si.resultType  =  S2 . 1 z. suit Type)

(24) 14, V m i , m 2 : ms; s i ,S2 : SIGNATURE \

1.4, m i  ^  m 2 A

18.19 si =  m i.signature  A 
52 =  m 2 .signature •

mi isConfusableW ith m 2  

A mi C m2 

A m2 C mi ^
si.resultType =  S2 .resultType

Justification
IS A

Lem m a  3 
18,17,19

Conditional 
Proof 
line 20  

(3 times)

Conditional 
Proof 
line 21 

(3 tim es)

Universal 
Quantifier 
Introduction  
line 22  

(4 times)

Definiton

° f  I
line 23
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Assum ption Assertion

(25) 14, # m s  >  1 = >

1, Vmi,  m2 : ms; s i ,S2 : S IG N A T U R E  \
18,19 mi ^  m2 A

si =  m \.signature  A 
s2 =  m 2 , signature •

mi isConfusableW ith m 2 

A mi C m2 

A m2 C mi =>
s\ .resultType =  S2 . result Type

(26) 14, V ms : allConfusableSets •  # m s  >  1 =>•
1 , V mi, m2 : ms; si, S2 : SIG N A T U R E  |
18,19 mi ^  m2 A

si =  m i.signature  A 

S2 =  m 2 .signature •
mi isConfusableW ith m 2 

A mi C m2 
A m2 C mi ^

si.resultType = S2 .resultType

(27) 14 ,1 ,18 ,19  V ms : allConfusableSets \ # m s  >  1 •
V mi, m2 : ms; si, S2 : SIG N A T U R E  | 

mi ^  m2 A

51 =  m i.signature  A
52 =  m 2 .signature •

mi isConfusableW ith m 2 

A 77' I  m2 

A m2 C mi ^
si.resultType  =  S2 .resultType

Justification  

Conditional 
Proof 
line 24

Universal 
Q uantifier 
Introduction  
line 25

Definition o f  j 
line 26
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Sim plifications

B .l  Sim plifications of ONTOS SQL

Multiple Targets. A list of expressions and the wildcard character (*) can be used in the 
target of an ONTOS SQL query. Since the reference da ta  model does not support tuples 
therefore these features are excluded from the translation to  object comprehensions.

Implicit Domain Variable. When a domain is represented by an identifier, the domain 
variable can be om itted and the identifier can serve as the domain variable. W hereas object 
comprehensions require an explicit variable for each domain. One way to  deal with such 
a “shorthand” in the translation is to  introduce some resolution mechanism for m ethod 
calling. If an identifier representing a domain appears a t the beginning of an expression it 
can be replaced by the corresponding domain variable introduced by the translation. For 
the sake of simplicity and clarity, it is chosen not to  include such a resolution mechanism 
to  the translauon.

Im plicit Receiving Object. Another “shorthand” supported by ONTOS SQL is th a t  a 
m ethod can be called w ithout a  receiving object. The receiving object can be resolved 
among the domain classes. This can be dealt with in a similar way to  implicit domain 
variables.

B.2 Sim plifications of ORION

Value Equality. ORION supports two groups of operations. One group uses object iden­
tity  and the o ther group uses value equality to  eliminate duplicates. Value equality is 
considered a violation of the  object-oriented principle of encapsulation and is therefore 
not supported in the reference d a ta  model and therefore operations using value equality 
do not appear in the translation.

Class Extents. Class extents are supported by ORION and can form class expressions 
using the operations: * (meaning including all subclass extents), union , and difference. A 
domain ranged over a  class extent can be specified as I  :I where the first I  represents a

140
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class name and the second /  denotes an identifier. Class extents are not supported in the 
reference da ta  model and all these features therefore have no meaningful counterparts in 
object comprehensions.

Implicit Receiving Object. Similar to ONTOS SQL a m ethod can be called w ithout a 
receiving object. As discussed in the previous section, this is excluded from the translation.

B.3 Sim plifications of OSQL

Data Management. OSQL is designed as a completed d a ta  m anipulation language th a t 
can be used to define new classes, introduce a new method to  a class, create new objects, 
change the class of an object, and so forth. Only the retrieval part of OSQL is covered in 
the translation and the d a ta  management functions are therefore not included.

Multiple Targets. A list of expressions representing the a ttribu tes of a tuple can be 
used in the target of an OSQL query. Since the reference d a ta  model does not support 
tuples therefore this is excluded from the translation.

Grouping. OSQL supports group by and having as found in SQL which returns tuples 
rather than objects and therefore are not included in the translation. However, if tuples 
were supported in the reference da ta  model they could be expressed in object comprehen­
sions. Grouping could be achieved by projecting the grouping keys and then collecting 
the relevant objects for each key.

Query Functions. In OSQL, functions are used to represent both stored as well as de­
rived data . Derivation can be done in three ways: (1) using a foreign function implemented 
using a programming language; (2) using a procedural function implemented partly  using 
the control and update statem ents in OSQL; and (3) using a derived function whose body 
is pure querying code. Foreign functions have no counterpart in object comprehensions. 
Procedural functions are essentially used for their side-effects and hence are not considered 
a querying component for the purpose of this study. A derived function can be represented 
as a query function in object comprehensions. Translating a derived function is essentially 
the same as for an ordinary OSQL query and is therefore not covered.

B.4 Sim plifications of O2SQL

Grouping. O2SQL supports a very powerful grouping operation th a t  returns tuples as the 
result. If tuples were supported in the reference d a ta  model the  same operation could 
be expressed in object comprehensions. Grouping could be achieved by projecting the 
grouping keys, after com putation if necessary, and then collecting the relevant objects for 
each key.

Query Functions. Non-recursive query functions can be defined in O2SQL but there 
is no linking word between a query function and the query th a t uses it. To transla te  to
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object comprehensions the linking word in can be introduced to  put the query function 
in scope for the query in question. As in OSQL, the translation is essentially the same as  
for an ordinary O2SQL query and is therefore not covered.
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M ore Translation R ules

C .l ORIO N Translation Rules

The simplest case of class testing is translated as follows.

TEorion [  E l class I W E2 ]

TEorion I  E l ]  h d s C ld S S  I  J TEorion |[ E l <jJ E2 ] (orion.34)

The existential quantifier exists can be used a t the beginning of an expression. The 
translation is shown below.

TEorion [ exists E2 E3 W E4 ]

=> s o m e  TEorion [  set_of E 2 E 3 ]  T O orion IW  I  TEorion [  E 4 J (orion.35)

The universal quantifier each can be dealt with in a similar way and the translation of 
the  two possible forms are as follows.

TEorion [ Ei each E2 E3  w E4 1

=> e v e r y  T E orion [  E i set_of E2 E 3 ]  T O orion [  w ]  TEorion [  E4 1 (orion.36)

T E o rio n  [  each E 2 E 3 u  E 4 ]

e v e r y  T E orion [  set_of E 2 E 3 1 T O 0riOn [  w ]  T E orion I  E 4 ] (orion.37)

Specific relational operations between two collections or between a collection and a 
value are translated  as follows.

TOorion [  “<:= 1 = >  ~ = ( o r i o n . 3 8 )

TOorion [  e q u a l  ] = >  = ( o r i o n . 3 9 )

TOorion [  s t r i n g - e q u a l  ] = >  = ( o r i o n . 4 0 )

TOorion I  s t r i n g =  ] => = ( o r i o n . 4 1 )

TOorion [  i s - e q u a l  ] —>  = = ( o r i o n . 4 2 )

143
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C.2 OSQL Translation Rules

C .2 .1  O S Q L  A b s t r a c t  S y n ta x

Q ::= Q union all Q \ Q union Q \ Q order by Ss 
| select E  fo r  each Ds where E  
| select E  fo r each Ds 
| select E
| select distinct E  fo r  each Ds where E  
| select distinct E  fo r each Ds 
| select distinct E

Ss ::=  S \ S ,  Ss

s ::=  E  asc | E  desc

Ds ::= D \ D, Ds

D ::=  I  I

Es ::=  E  | E, Es

E E  and E  j E  or E  
| E  lj E  | E  ij) E
I / ( i & m i m
| { Es } 1 [ Es ] I [| Es |] 1 *
| sum{ E  ) | max{ E  ) | min{ E  ) | count( E  ) 
j occurs( E , E  ) \ head{ E  ) \ tail{ E  )

u = |< > |> |> = |< |< = |  in

::=  * | /  | +  | -

Table C .l: OSQL A bstract Syntax.

C .2 .2 O S Q L  T r a n s l a t i o n  R u le s

T ra n s la tin g  Q u e rie s

A bag is often used to  return  the result of an OSQL query. However, it is possible 
eliminate duplicates in a bag. The operation union all represents additive union on bags 
and union  behaves like set union. The former operation corresponds to  bag union in object 
comprehensions. The la tte r operation requires duplicate elimination and this effect can
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be achieved in object comprehensions by collecting the result in a set and then turning it 
into a  bag.

TQosqi [ Q i union all Q2 ]

=> TQosqi [ Qi 1 union T Q 03qi [ Q2 |  (osql.l)

TQosqi I Qi union Q2 1

=>• Bag[ x f -  Set[ y T Q osqi [ Qi J union T Q 03qi [ Q2 1 | y ] | x  ] (osql.2)

A collection can be sorted to ascending or descending order according to  the result 
returned by some m ethod call. The resultant collection is naturally a list. The next rule 
shows how sorting to  descending order involving a single key can be translated  into object 
comprehensions. The collection to be sorted is first turned into a list using the function 
tolist before the recursive function order is applied on it. The recursive function divides 
the  given list (zs) into two sublists: one containing the largest elements (top(xs)) and
another containing the rest of the list (rest(xs)). The result returned by the recursive call
on the rest of the list (order(rest(xs))) is then appended to  the first sublist (top(xs)). The
function keys projects the sort key from the given collection. T T osqi returns the type of
the input collection Q and T M osqi returns the type of its elements.

T Q 03qi [ Q order by E desc ]

=>• let keys( xs : List of  T M OBqi [  Q 1 ) be

SW[ X <— XS I TEoaql [ X E ] ]
in

let top( xs : List of  T M 03qi [ Q ] ) be

List[ x <— xs; TEoaql [ E ] > =  every keys( xs ) \ x ]

in

let rest( xs : List of  T M oaqi I Q ] ) be

List[ x xs; not(  x =  some top( xs ) ) | x ]

in

let order( xs : List of T M 03qi I Q 1 ) be

top( xs ) union List[ rest( xs ) ~ = =  Lis t{ } ;  y order( rest( xs ) ) | y  ]

in

let tolist( xs : TTosqi [ Q 1 ) be

List[ x f -  xs | x  ]

in order( tolist(  TQosqi I Q 1 ) ) (osql.3)

The translation rule for multiple sort keys is essentially the same. Each sort key can
be trea ted  as one level of sorting. Each sublist generated by top is sorted using the next
so rt key. This can be dealt with using T Q osqi recursively as shown below.
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TQ osql [ Q order by Eidesc, E2 desc J 

=$■ let keys( xs : List of T M mqi [ Q 1 ) be 

Set[  i  f- u  | TEosqi |  x E J ]
in

let top( xs : List of  T M 03qj [ Q ] ) be

List[ x  <— x s ; TEosqi [ x E |  > =  every keys( xs ) | x ]

in

let rest{ xs : List of T M 03qi [ Q ] ) be

List[ x <— xs; not{ x =  some top( xs ) ) | x ]

in

let order( xs : List of  T M 03qi I Q ] )  4e

List[ tops as top( xs ); x <- T Q 03qi [ tops order by E2  desc ] | x ] 

union List[ rest{ xs ) ~ = =  L is t{ } ;  y <— order( rest(  xs ) ) | y ]
in

let tolist( xs : T T OSqi [ Q 1 ) be 

List[ x 4 -  xs | x ]

in order( tolist( TQosqi |  Q 1 ) ) (osql.4)

O ther basic query forms are translated  to  bag comprehensions as follows.

TEosqi [ select E for each D where Ei ] => Bag[ TDoaqi [ D ]; T E oaqi I Ei ] | T E osqi ([ E J ]

(osql.5)

TEosqi [ select E for each D J =}► Bag[ T D 03qi |  D |  | T E 03qi [ E |  ] (osql.6)

J-Eosqi I select jd ] =$■ Bag[ \ T E 03qi u. E J ] (osql.7)

W hen the keyword distinct is specified duplicates in the resulting bag will be elimi­
nated. This is achieved in object comprehensions by producing the result as a  set and 
then turning it into a bag.

TEosqi [ select distinct E for each D where Ei J
=» Bag[ x <- Set[  T D 03qi [ D ]; T E 03qi I Ei J j T E 03qi [ E ] ] | x ] (osql.8)

TEosqi [  select distinct E for each D ]]

=*► Bag[ x Set[ T D osqi [  D ] | T E osqi [ E ] ] | x ] (osql.9)

TEosqi I select distinct E ]

=*• Bag[ | TEosqi [ E l ]  (osql. 10)

If the result of a  query is a  bag of collections, OSQL will combine elements in these 
collections and return instead a bag of objects. This flattening  effect is captured in the 
next three rules using a generator over the  individual result.
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TEosqi [ select E for each D where Ei ]

=>• Bag[ TDosqi [ D ]; TEosqi [ Ei ]; x 4 -  T E 03qi [ E ]  | a:] (osql.11)

TEosqi [ select E for each D J

=>• Bag[ TDosqi [ D J; x 4 -  T E 03qi [ E J | x ] (osql. 12)

TEosqi [ select E J

Bag[ x <— TEosqi [ E J | x ] (osql. 13)

If duplicates are to  be eliminated, sets will be used for the interm ediate results as 
shown below.

TEosqi [ select distinct E for each D where Ei J

=S> Bag[ x 4— Set[  T D OSqi [ D J; TEosqi [ Ei ]; y 4- T E 03qi [ E ] | y ] | x ] (osql.14)

TEosqi [ select distinct E for each D J

=J> Bag[ x 4 -  5ef[ TDosqi [ D ]; y  4 -  T E osqi [[ E ] | y ] \ x ]  (osql.15)

TEosqi [ select distinct E ]

=* Bag[ x 4- Set[ y 4- T E 03qi [ E |  | y ] | x ] (osql. 16)

Choosing among the four sets of translation rules presented above depends partly  on
the type of the resultant collection. This choice is not captured in the  rules themselves 
but can be enforced as a condition of application.

Translating Domains

TDosqi [ Di , D2  |  =£• TDosqi [ Di ] ; TDosqi [ D2  1 (osql.17)

TDosqi [ h  h  1 => 12 4— / 1  (osql. 18)

Translating Expressions

A sequence of expressions is translated as follows.

TEosqi [ Ei , E2  ] =>• TEosqi [ Ei ] , TEosqi [ E2  1 (osql.19)

Logical connectives and operations are dealt with as shown below.

TEosqi [ Ei and E2 1 =>• T E 03qi [ Ei ] ; TEosqi [ E2 1 (osql.20)

TEosqi [ Ei or E2  ] =$► TEosqi [ Ei |  or TEosqi [ E2  1 (osql.21)

TEosqi [ Ei in E2 |  =>■ TEosqi [ Ei J =  some  TEosqi [ E2 ]| (osql.22)

TEosqi [ El <f> E2 1 => TEosqi [ El ] T O 0s?| [ 0 1  TEosqi [ E2 1 (osql.23)

M ethod calling in OSQL has a functional style. The first argum ent of a m ethod call
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is the receiving object and the rest are the “actual” argum ents. This is captured by the 
next two rules below.

T E 03qi [ 1 ( E ) ]  =>■ TEosqi [ E ] . 7 (osql.24)

TEosqi [ I ( Ei , E2  ) ] => TEosqi [ Ei ] . 7 ( TEosqi [ E2  ] ) (osql.25)

Implicit join is supported in method calls. If the first argum ent is a collection and the 
m ethod is applicable to  its elements, the m ethod together with the “actual” argum ents 
will be applied to the elements of this collection. This is captured by the next two rules 
where T C osqi returns the collection kind of a collection-valued expression.

TEosqi [ 1 ( E ) ]  =*■ TCosqi [ E ] [ X  4- TEosqi [ E ]  | X . I ]  (osql.26)
TEosqi [ I ( Ei , E2 ) ] =>• TCosqi [ Ei ] [ x  4— TEosqi [ Ei ] | x . I {  TE [ E2 ] ) ](osql.27)

If in addition the method itself returns a collection, OSQL will combine elements of 
the collections returned from the successive calls of the m ethod.

TEosqi [ 1 ( E ) ]  =4- TCosqi [ E ] [ a; 4- TEosqi [ E ]; t/ 4- x .I  \ y ]  (osql.28)

TEosqi [ I ( Ei , E2  ) ] =>• TCosqi [ Ei ] [ x 4— T E 0sqi [  Ei ]; y 4— x.7( T E  [ E 2 ] ) | y ]

(osql.29)

Different notations are used to  represent different kinds of collection literals. Collection 
literals, brackets, constants, and identifiers are translated  by the following rules.

TEosqi [ { E } ] => S e t{  TEosqi [ E ] } (osql.30)

TEosqi [ [ E ] ] =£• B ag{  T E 03qi [ E ] } (osql.31)

TEosqi [  [| E |] ]  =» L ist{  TEosqi [ E ] } (osql.32)

TEosqi [ ( E ) ]  => ( TEosqi [ E ] ) (osql.33)

TEosqi [ E ] => E (osql.34)

Some examples of translating aggregate functions and collection kind specific opera­
tions are given below.

T E osqi [  count E  ]  =>• s i z e  T E 03qi [  E  ]  (osql.35)

T E osq i [  occurs E i E2 ]  =► s i z e  Bag[ x  4— T E 03qi [  E i  ]; x  =  T E osq i [  E2 ]  | x  ] (osql.36)

TEosqi [ h e a d E ]  =* T E 03qi [ E ].[1] (osql.37)

TEosqi [ tail E ] =$■ TEosqi [ E ].[stze T E 03qi [  E ]] (osql.38)
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C.3 O2SQL Translation Rules

C .3 .1  0 2S Q L  A b s t r a c t  S y n ta x

Es A \ E  \ E , Es

E ::=  E  union E  \ E  intersect E  | E  minus E  
| select E  from  Ds where E  
| select E  from  Ds 
| select distinct E  from Ds where E  
| sort all I  in E  on Es 
| fla tten  E  \ listtoset E  | magic{ E  )

| E  and E  \ E  or E  \ not( E  )

| fo r  all I  in E  : ( E  ) | there exists I  in E  : 
j E  lj E  \ E  tjj E

[ E )

| E .E  | / (  Es ) | /  | ( E  ) 
j set( Es ) | list{ Es ) | list( E ..E  ) | k

| concat( E , E  ) | sublist ( E, E , E  ) 

| head{ E , E  ) | tail( E , E  )

| ith{ E , E  ) | first( E  ) | last( E  ) J element{ E  )

| sum( E  ) | count{ E  ) | avg( E  ) | m m( E  ) | max( E  )

Ds D | D ,  Ds

D ::=  I  in E

hj = |< > |> |> = |< |<  =  | in

::= * | /  j +  | — | mod | div

Table C.2: 0 2SQL A bstract Syntax.

C .3 .2 0 2S Q L  T r a n s l a t i o n  R u le s

0 2SQL is functional in the sense th a t it allows free composition of constructs. A query is 
ju st an expression, therefore the translation begins with the function T E 02Sqi-
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Translating Expressions

A sequence of expressions is translated as follows.

T E 02sqi [ Ei , E2  J => T E 02sqi |[ Ei ] , TEo23qi [ E2  1 (o2sql.l)

Set operations are dealt with as in ORION.

T E 023qi [ Ei union E2  |  =>■ T E 023qi I Ei ] union T E 023qi [ E2 ] (o2sql.2)

T E 02sqi I Ei intersect E2  ] =*> T E 023qi [ Ei ] differ

( T E 023qi |[ Ei |  differ T E 0j3qi [ E2 |  ) (o2sql.3)

TEo23qi I Ei minus E2 ] =>• T E 023qi [ Ei J differ T E 023qi [ E2 |  (o2sql.4)

The following rules deal with the basic query forms. T C 02Sqi maps the collection kind 
of a  domain to  the range collection kind of the result. If all the domains are of the same 
kind, the collection kind of the result will be of the same collection kind. Otherwise it will 
be a bag.

TEo23qi [ select E from D where Ei ]

=> TCo23qi I D |  [ T D o23qi [ D ]; T E 023qi [ Ei ] | T E 023qi |  E ] ] (o2sql.5)

T E 0a3qi [ select E from D ]

=>• T C 023qi [ D |  [ T D o2sqi [ D ] | T E 023qi f  E ] ] (o2sql.6)

A set is represented as a bag without duplicates. The keywords distinct can be used 
*;o eliminate duplicat in the res ’t collection. The fir L rule below ’ used when all the 
dom ains are lists and the second rule covers all other cases. The first rule uses a recursive 
function /w h ich  takes two lists: the first list xs represents a sorted list while the second list 
ys represents an unsorted list. Effectively, the elements in ys are scanned and appended 
to  xs if they are not already in xs.

TEosqi [ select distinct E from D where Ei |

=>• let / (  xs : List o f  T T 02sqi [ E J, ys : List of T T 023qi |[ E ] ) be

List[ ys = =  L is t{ } ;  x <— xs \ x ] 

union

List[ t/s.[l] =  some xs; z  f -  / (  xs, ys differ L isf{ys.[l]}) | z  ] 

union

List[ ys.[l] ~ =  some xs; z <— / (  xs union L»st{ys.[l]}, ys differ L tst{ys.[l]}) | z ] 

in f {  L is tQ ,  List[ T D  [ D ]; T E  [ E2 1 | T E  [ Ei ] ] ) (o2sql.7)
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T E 02sqi [ select distinct E from D where Ei ]

=> Bag[ x <- Sef[ T D 023qi [[ D J; T E 023qi [ Ei ] | T E 023qi [ E J ] | x ] (o2sql.8)

Sorting is supported in O2SQL and can be translated  as in OSQL, hence is not given 
here.

Given a collection of collections, flatten  combines the collections and the class of the 
resultant collection will be the same as the original collection elements except th a t a  set is 
returned when given a set or a  bag of lists. The T X 02Sqi function ex tracts the collection 
kind from the type expression returned by T M 02Sq]. The operation listtoset tu rns a list 
into a set and magic tu rns a set into a list.

TEo23qi [ flatten( E ) ] => TX023qi I TM023qi [ E ] ] [ xs 4-  TE023qi [ E ]; x 4— xs \ x ]
(o2sql.9)

T E 023qi [listtoset( E ) ]  =>■ Set[ x <- T E 023qi [ E ] | x ] (o2sql.l0)

T E 023qi f magic( E ) ] =>• List[ x T E 023qi |  E |  | x ] (o2sql.ll)

Logical connectives are translated as follow.

T E 023qi I Ei and E2 J => T E 023qi [ Ei ] ; T E 023qi [ E2 ] (o2sql.l2)

T E 023qi [ Ei or E2 J => T E 023qi |  Ei |  or  T E 023qi |  E2 |  (o2sql.l3)

T E 023qi |  not ( E ) ] =*► not ( T E 023qi [ E ] ) (o2sql.l4)

O2SQL supports a  more general form of quantifiers. To express the equivalent form in 
object comprehensions involves the use of a query function. The next two rules transla te  
the universal and existential quantifiers.

TEo23qi [ for all I in E : ( Ei ) ]

=*► let / (  xs : TTo23qi I E J ) be

TCo23qi |  E |  [ /  <— xs | TEo23qi [ Ei ] ] 

in every  / (  T E 023qi [ E ] ) =  true (o2sql,15)

T E 023qi [ there exists I in E : ( Ei ) ]

=£■ let / (  xs : T T 023qi [ E J ) be

TCojsql [ E ] [ I 4 -  X S  | TEo2sql |[ El J ] 
in some  / (  T E 023qi [ E |  ) =  true  (o2sql.l6)

Relational and arithm etic operations are translated  as follows.

TEojsql [ El 0  E2 ] =$> TEojsql |[ El ] TOojaq] [ ^ ]  T E 0jSq] [ E2 1 (o2sql.l7)

M ethod calls, identifiers, constants, and brackets are translated  as shown below.
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T E 02sqi [ Ei . E2  J => T E 02sqi |  Ei |  . T E 02sqi [[ E2  ] (o2sql.l8)

TEo28ql I I ( E ) ] => I  ( TEo2sql [ E ] ) (o2sql.l9)

TEo23qi [ E |  =£• E  (o2sql.20)

TEo2sqi II ( E ) J => ( TEo28qi I E |  ) (o2sql.21)

Collection literals, list operations, choosing an element from a collection, and an ex­
ample aggregate function are translated  as follows.

T E o2sql I set( E ) ] Sef{ T E o2aql I E ] } (o2sql.22)

T E o 2sq] I list( E ) ] L is t{  T E o2aql I E ] } (o2sql.23)

T E o 23ql |[ list( E 1 ..E 2 ) ] L is t{  T E o2aql I El ]..T E o 2aql I E2 ] } (o2sql.24)

T E o23qi I concat( Ei , E2 ) ] T E o2aql I El ] union T E o 23ql I E2 ] (o2sql.25)

T E 023qi I sublist( Ei , E2 , E3 ) ] List[ I  <— L is t{  T E o2aql I E2 ] ..T E o 2aql I E3 ]  }

| T E o2aql I E l ].[ i ] ] (o2sql.26)

T E 02sqi I head( Ei , E2 ) ] =*■ List[ I  L is t {  l..T E o 2aql I E2 ] } I

T E o2aql I E l ] . [ * ' ]  ] (o2sql.27)

T E 02sqi I tail( Ei , E2 ) ] List[ I  L is t {  E*2 --{size T E 02aqi I Ei 1 )}

| T E o2aql [ E l ] . [ * ] ] (o2sql.28)

T E o2aql I ith( El , E2 ) ] T E o2sql I El ] . [TEo2aql I E2 ]] (o2sql.29)

T E o2aql [ first( E ) ] T E o2aql I E ] . [1] (o2sql.30)

T E 02sqi I last( E ) ] T E o2aqI I E ] .  [size T E o2aqI I E ] ] (o2sql.31)

T E o2aqi I element( E ) ] List[ X  <- TEoaaql I El ] I X  ] . [ 1 ] (o2sql.32)

T E o2aql I count( E ) ] size  T E o2aql I E ] (o2sql.33)

Translating Domains

TD o2sql [ Di , D 2  ] => TD o2sql [ Dl ] ; TD o2aq] [ D 2  1

TD o2aql I I in E J =£► /  <- TEo2sql f E ]

(o2sql.34)

(o2sql.35)
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