Object-Oriented Query Language
Design and Processing

Daniel Kim Chung CHAN

Computing Science Department
University of Glasgow

A Thesis submitted for the degree of Doctor of Philosophy
to
The University of Glasgow
in the month of September of the year
One Thousand Nine Hundred and Ninety Four

(©Daniel K.C. Chan, September 1994

ProQuest Number: 13818824

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13818824

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

GLASGOW
UNIVERSITY

LIEZRARY

it

Abstract

This thesis proposes an object-oriented query language that is more powerful than
many existing query languages. The language is formally specified and its expressive
power is demonstrated by giving four translation schemes from other prominent object-
oriented query languages. Further, this query language can be supported by a query
algebra and both the query language and query algebra can be optimised using meaning
preserving transformation rules.

Object-Oriented Query Languages. The functional requirements of high-level object-
oriented query languages are identified and they combine as well as supplement features
found in existing object-oriented query languages. Effectively they formulate a query
model against which existing query languages can be evaluated and compared. An evalua-
tion of four representative query languages chosen from research prototypes and commer-
cial products shows that none satisfies all the requirements. On the basis of the require-
ments a new query language, object comprehensions, is developed to provide a concise,
clear, powerful, and optimisable query language for object-oriented databases. Some op-
timisation opportunities for the novel features are identified. A set of translation schemes
from the query languages studied to object comprehensions is presented. Such translations
demonstrate that object comprehensions are at least as powerful as these query languages
and a system supporting object comprehensions can potentially support multiple query
languages by providing translations to object comprehensions.

Algebraic Support. The canonical algebra provides an abstract execution engine with
which object comprehension queries can be expressed using algebraic operations. The
translation scheme from object comprehensions to the canonical algebra is very simple
and is no ~ for supporting queries involving mixe” collection classes The canonical
algebra shares many operations with other query algebras and is formally specified. A set
of transformation rules that can be used for optimisation is presented whose validity can
be verified given the formal specification.

Formal Data Model. The data model which forms the basis of investigation is formally
defined using the specification language Z. This reference data model captures all the
essential features of existing object-oriented data models including multiple inheritance.
However, unlike existing data models, it also supports a generalised form of method over-

loading. Static type checking of such overloaded methods is studied in this thesis.

iii

Authorship

The material presented in the thesis is the product of the author’s own independent
research carried out at the Computing Science Department of Glasgow University under
the supervision of Phil Trinder, David Harper, and Ray Welland.

A fair amount of the materials presented in Chapter 2, 3, 4, and 8 of this thesis
has been published before in various technical reports, workshop proceedings, conference
proceedings, and the Computer Journal [TCH90, CHT92a, CHT92b, CT93, CHT93a,
CHT93b, CK9%4, CT94a, CT94b, CTW95]. All the papers involve more than one author
and the co-authors include Phil Trinder, David Harper, Ray Welland, and David Kerr.
However the author is responsible for the majority of the technical substance of these

papers and of this thesis.

iv

Acknowledgements

It is a great pleasure to acknowledge my debt to the many people involved, directly or
indirectly, in my research which led to the production of this thesis.

I am indebted to my supervisor David Harper for arousing my interest in object-
oriented database systems and for patiently encouraging me to pursue research on their
query languages. I am grateful to my second supervisor Phil Trinder for his willingness
to serve as the Polaris in my nomadic approach to conducting research, for going through
half-baked ideas and giving useful comments, and for providing guidance and support
throughout this work. I am deeply grateful to Ray Welland for being my teacher. As my
third supervisor, he painstakingly supervised my write-up. The shape of this thesis owes a
lot to the inspiring discussions I had with him. I would also like to thank my professorial
supervisor Malcolm Atkinson, since I benefited a great deal from his comments at the
early stage of my research.

Thanks also to the fellow members of the database and formal method research groups
and particularly members of the COMANDOS, FIDE, and Bulk Types projects for provid-
ing a stimulating working environment. Special thanks go to David Kerr, Roberto Barros,
and Alastair Reid.

It is also a real pleasure to express my appreciation of the friendliness, cooperation,
and professionalism shown by members in the Glasgow University Computing Science
Department throughout these memorable years. To all of them, who cannot all be named,
my heartfelt appreciation and thanks.

To my family and friends, thank you for your help, for your support, for sharing my
anxiety, for impatiently urging me to finish, and for never having doubted me - even when
I did myself. To them I dedicate this thesis.

Finally I am grateful to Glasgow University, the Committee of Chancellors and Vice-
Principals of the Universities of the United Kingdom, and the European Union for the
scholarships as well as Professor Keith van Rijsbergen and Professor Arthur Allison for

backing the applications that made this degree possible.

Contents

1 Introduction 1
1.1 Scopeof Thesis i e 1
1.2 Contributions L 3
1.3 Organisation i 4

2 The Reference Data Model 6
2.1 Informal Description, 6
2.2 Challenges e e e e e 7
2.3 Objects + Base Values = Values 8
2.4 Valuesand TypeNames 9
2.5 Rooted Class Graph i i, 10

2.5.1 ThelISA Relationship 10
252 TheRootClass, 11
253 TheBottomClass 11
2.5.4 Type Conformance 0., 11
2.6 Classes i i i e e e e e e e e e e e e e e e 12
26.1 Methods. e 12
26.2 Attributes L 13
2.6.3 Classes i e e e e e e e e e e e e e 14
2.6.4 Class Names, Classes, and Inheritance 14
2.7 Class Ordering o i i i e e e e e e 15
2.7.1 Single Inheritance Envirorment 15
2.7.2 Multiple Inheritance Environment 16
2.7.3 Local Inheritance Ordering 17
2.8 Method Consistency 19
2.8.1 Method Confusability 19
2.8.2 Partitioning Confusable Methods 20
2.8.3 Generalised Inheritance Ordering 21
2.8.4 Consistency of Schema Definition 22
2.9 Databases L. 23
2.10 Static Type Checking 24
2.11 Dynamic Binding e 28
2.12 Reasoning about Z Specifications 0. 29
2.13 The Running Example 29
2.14 DisCUSSION v v it e e e e e e e e e e e e e e e e 30

Contents Vi

3 Query Language Requirements 33
3.1 Imtroduction 33
3.2 Functional Requirements 34
33 RelatedIssues e 38
3.4 An Evaluation of Existing Query Languages 39
3.5 Summary e e e e e e e e e e e e e e e e e e e 42

4 Object Comprehensions 43
4.1 Comprehensions: Past & Present 43

4.1.1 Set, List & Collection Comprehensions 43
4.1.2 Other Extensions & Implementations 45
4.1.3 Simplicity, Power & Optimisation 45
4.2 Syntax of Object Comprehensions 46
4.3 Object Comprehensions 48
4.3.1 Support of Object-Orientation 48
4.3.2 The Result Expression 50
4.3.3 Generators e e e e e e e e e e 51
4.3.4 Quantifiers e e e 52
4.3.5 Support of Collections 54
4.3.6 Query Functions & Recursion 56
4.4 Semantic Optimisation 57
44.1 ClassHierarchy L ... 57
442 Quantifiers e 58
4.5 SUMMATY . . v v v v v e 60

5 Translating Query Languages to Object Comprehensions 61
5.1 Example Queries e 61
5.2 Translation Notation, 62

5.2.1 Translation Functions 63
“ 2.2 Syntactic Categories 63
5.3 Translating ONTOSSQL 64
5.3.1 ONTOS SQL Abstract Syntax 64
5.3.2 ONTOS SQL Translation Rules 64
5.3.3 Example ONTOS SQL Translation 67
5.4 Translating ORION 68
5.4.1 ORION Abstract Syntax 68
5.4.2 ORION Translation Rules 69
5.4.3 Example ORION Translation 73
5.5 Translating OSQL 75
5.5.1 Example OSQL Translation 75
5.6 Translating O2SQL e 76
5.6.1 Example O,SQL Translation 76

5.7 SUMMATY vt e 77

Contents vii

6 Canonical Algebra 78
6.1 Operations of the Canonical Algebra 78
6.1.1 Syntactic Categories 79

6.1.2 Operations e 80

6.2 Specifications of the Operations 83
6.2.1 Abstract Representation of Collections 83

6.2.2 Binary Operations 0., 84

6.2.3 Unary Operations e 88

6.2.4 Simple Operations 91

6.2.5 Derived Unary Operations 94

6.3 Translating Object Comprehensions 95
6.3.1 Syntactic Categories 95

6.3.2 Abstract Syntax 95

6.3.3 Translation Functions 96

6.3.4 Translation Rules 96

6.3.5 Example Translation 100

6.4 Transforming Canonical Algebra 102
6.4.1 TransformationRules 102

6.4.2 Example Transformation. 105

6.5 Reasoning about Transformation 105
6.6 SUMMATY it e e e e e e e e e e e e e e e e e e e 106

7 Conclusion 108
7.1 Discussion e e e 108
7.2 Limitations e e e e e e 110
7.3 FutureDirections e 110

8 View Support 112
8.1 Rationale e 112
8.2 Views in Object-Oriented Databases 113
8.2.1 Viewing Object-Oriented Databases 113

822 Useofviews. e 114

8.2.3 The Principal Requirement 115

8.3 Current Proposals e 115
8.3.1 Methodological Approach 116

8.3.2 Query-Driven Approach 118

8.3.3 Schema-Driven Approach 124

8.4 SUMMATY . . v v v v i v e e e e e e e et e e e e e e e e e e e e e 128
Appendices 129
A Reasoning about Z Specifications 129
Al Lemmal o e e e e e e e e e 130
A2 Lemma2 e e e e e 132
A3 Lemmad e e e 133

A4 Theorem i i i i i i i e e e e e e e 136

Contents viii

B Simplifications 140
B.1 Simplifications of ONTOSSQL 140
B.2 Simplifications of ORION 140
B.3 Simplifications of OSQL 141
B.4 Simplifications of O,SQL 141

C More Translation Rules 143
C.1 ORION Translation Rules 143
C.2 OSQL Translation Rules 144

C.2.1 OSQL Abstract Syntax 144
C.2.2 OSQL Translation Rules 144
C.3 O2SQL Translation Rules 149
C.3.1 O,SQL Abstract Syntax v v v i v v i i 149

C.3.2 O.SQL Translation Rules 149

List of Figures

1.1 Query Language Processing Framework. 2
1.2 Query Language Processing. 3
2.1 Unsafe Static Type Checking. 16
2.2 Confusable Methods from Incomparable Classes. 16
2.3 Methods Inherited via Multiple Paths. 19
2.4 Confusability is Not Transitive. 20
2.5 Cycles in Generalised Inheritance Ordering. 22
2.6 Simplified Schema Diagram. 30
2.7 Simplified Schema Definition. 31
8.1 Elements of an Object-Oriented View. 113
8.2 The Methodological, Query-Driven, and Schema-Driven Approaches. 115
8.3 A View Definition (Barclay & Kennedy).. 116
8.4 Using A View (Barclay & Kennedy). 117
8.5 QLl: 044 < 65 Person and Q2: mpome Person. 118
8.6 Q3: Tname,address,age,major Students, and Q4: Tpame,major Students. 119
237 Q3: Tname,address,age,major Students, and Q4: Tpame, major Students. 122
8.8 The View Freezing Problem.. 123
8.9 A View Definition (Heiler & Zdonik). 124
8.10 A View Definition (Saake & Jungclaus). 125
8.11 A View Definition (Bertino)., 126
8.12 A View Definition (Abiteboul)., . 126

ix

List of Tables

2.1

3.1
3.2
3.3
3.4

4.1
4.1
4.1
4.2
4.3

5.1
5.2

6.1
6.2
6.2

8.1

C.1
C.2

Comparison of Object-oriented Data Models. 32
Support of Object-Orientation. 40
Expressive Power. 40
Support of Collections. 41
Usability. o e e e 42
Abstract Syntax of Object Comprehensions. 46
Abstract Syntax of Object Comprehensions (continued). 47
Abstract Syntax of Object Comprehensions (continued). 48
Optimising Class Testing. PR 57
Optimising Quantified Expressions. 59
ONTOS SQL Abstract Syntax. 64
ORION Abstract Syntax. i 68
Abstract Syntax of Function Argument. 82
Object Comprehensions Abstract Syntax. 95
ubject Comprehensions Abstract Syntax (continued). 96
A Comparison of the Subclass & Extent Scheme and the Collection Scheme. 121

OSQL Abstract Syntax. i i i vt i e e 144
0,SQL Abstract Syntax. o e 149

Chapter 1
Introduction

Novel applications, such as computer-aided design, require data models that support com-
plex relationships and rich constructs. Object-oriented data models supporting complex
objects and operations have been developed to cope with the requirements of these novel
applications. To manipulate the rich structures found in these data models a query lan-
guage will require more constructs. Often this is resolved by merely extending a rela-
tional query language with ad hoc constructs. More understanding of the requirements of
object-oriented query languages is required before a general and consistent notation can
be designed.

Equally important is the provision of algebraic support of such a language and its
optimisation. Until now, the study of object-oriented query languages has been hampered
by the lack of a formal data model. Attempts have been made to resolve this but the
resultant data models are both simplistic and restrictive. What is required is a formal and
realistic data model which includes the essential features of existing data models.

The aim of the research reported in this thesis is to address the above-mentioned
shortcomings through the development of a new query language and a query algebra as
well as the use of formal specification technique. This thesis proposes a set of functional
requirements for object-oriented query languages. A new object-oriented query language
which satisfies the requirements identified is presented. Further, this query language
can be supported by a query algebra and both the query language and query algebra
can be logically optimised. A reference data model which is formally defined using the
specification language 7 forms the basis of the investigation.

1.1 Scope of Thesis

Experience with relational database systems has demonstrated that efficient and effective
query processing is a determining factor for system performance [JK84]. Relational query
languages allow the user to access the data in a declarative manner. That is, the user
only specifies what should be retrieved from the database. It is the responsibility of the

Introduction 2

e T T T T T T T T T T
' |
I Type [
i Checking |
| 1
' |
! l
| Declarative Que ;
ry Language Procedural | Execution ;
| Query —| toAlgebra — Query ——+—| Plan —_— g.ltecutzon
| Language Translation Algebra | Generation an
! |
| |
| |
|) |
| | Optimisation Optimisation | |
| !
- J

Figure 1.1: Query Language Processing Framework.

database system to determine how such a request should be evaluated against the database.
Therefore the database system has to generate a procedural query evaluation program,
also called an execution plan, from the declarative user query without changing the user’s
intention. This thesis examines how object-oriented query languages can be processed in
a framework similar to that of relational systems (Figure 1.1). Here, a query language
means a retrieval-based language not dealing with the manipulation of instances such as
updates.

The parts of the query processing framework this thesis investigates include: (1) design
of declarative user query language; (2) optimisation of user query language; (3) procedural
query algebra to support declarative query language; (4) optimisation of query algebra;
and (5) type checking of overloaded methods. They are contained in the rectangle with a
dotted boundary in Figure 1.1. These parts will be further explained in a later section.

This thesis differs from previous works primarily in the scope that is covered: (1)
a richer reference data model supporting multiple collection classes is introduced; (2)
the problem of statically type checking overloaded methods in the presence of multiple
inheritance is studied; (3) the interaction of different collection classes and other functional
requirements of object-oriented query languages are examined; and (4) a comparison of
the expressive power of object comprehensions with four well-known object-oriented query
languages is made.

A number of issues related to query processing are not studied in this thesis. The
study of optimisation generates a set of logical and semantic transformation rules. Search
strategies used for transformation are not covered but preliminary results for non-recursive
queries can be found in [Mit93]. Execution plan generation is studied in [SO90] but the
choice between generation plans is only very briefly discussed. The research reported in
this thesis is carried out in the context of a formal data model and has not been integrated

1.2. Contributions 3

into a running system. However given a suitable implementation platform, it is believed
that the query language and query algebra can be implemented since a similar language
and its optimisation was prototyped before [TCH90).

1.2 Contributions

ONTOS SQL\
AN
\
ORION
14
.
Object Comprehensions > optimisation
\
0250L //7 ~—
Object SQL~ .
Canonical Algebra \) optimisation

Figure 1.2: Query Language Processing.

The specific contributions documented in this thesis are listed below and the inter-relationship
between the parts of the work is depicted in Figure 1.2.

e An object-oriented query model manifested as functional requirements that can be

used to evaluate, compare, improve, and design query languages, is proposed.

e A new high-level object-oriented query language, object comprehensions, is shown to
satisfy the object-oriented query model, and new optimisation rules are developed
to improve queries involving class testing and quantifiers.

e The expressive power of object comprehensions is demonstrated by showing that
any query expressed in four prominent query languages can be expressed in object
comprehensions; hence the latter notation is at least as powerful as the four query
languages.

e A new object-oriented query algebra, the canonical algebra, which supports three
collection classes, set, bag, and list, is proposed together with a set of transformation
rules that can be used for optimisation.

Introduction 4

e An object-oriented data model called the reference data model, which features mul-
tiple inheritance, a generalised form of method overloading, dynamic binding and

- static type checking, is specified using the specification language Z and several useful
properties of the data model have been proved.

e Challenges involved in proposing a satisfactory solution for view support using query

language are identified.

1.3 Organisation

Chapter 2 covers the reference data model. A formal specification of the reference data
model is given in the specification language Z. Some properties of the reference data model
are proved using the specification. A running example database is described and defined
in terms of the reference data model. A comparison of four prominent object-oriented
data models and the reference data model is summarised.

Chapter 3 studies the requirements for object-oriented query languages. A list of
functional requirements is presented. A summary evaluation of four prominent object-
oriented query languages is reported. The query languages are chosen as representative
languages mainly because they are well-reported and the most referenced in the literature.
Non-functional requirements are briefly discussed.

Chapter 4 introduces object comprehensions beginning with a history of their develop-
ment. It is followed by a set of example queries that illustrate object comprehensions and
demonstrate that they satisfy the requirements identified in Chapter 3. Query optimisa-
tions are presented as meaning-preserving transformation rules together with conditions
for their application.

Chapter 5 addresses the expressive power of object corﬁprehensions. A suite of transla-
tion schemes from four prominent query languages to object comprehensions is developed.
The four translation schemes demonstrate that object comprehensions are at least as pow-
erful as the four query languages with respect to the reference data model and can provide
support for these query languages.

Chapter 6 introduces the canonical algebra and its support for object comprehensions.
The canonical algebra is introduced, illustrated, and formally defined using Z. A transla-
tion between object comprehensions and the canonical algebra is given. The translation
scheme demonstrates that the algebra is canonical in the sense that it can express and -
hence support queries expressed in object comprehensions and hence in the other four
query languages.

Chapter 7 summarises the results presented in the thesis and concludes that object
comprehensions are a good query language for object-oriented databases and can be sup-
ported using the canonical algebra. Limitations of the approach taken in this thesis are

discussed. Directions for future work are described.

1.3. Organisation 5

Chapter 8 investigates one possible avenue of further research in detail. The difficulties
of supporting views in object-oriented databases are revealed. Existing proposals are
examined and their advantages and disadvantages are discussed. The problems to be

overcome by a satisfactory solution are identified.

Chapter 2

The Reference Data Model

Many object-oriented data models have been introduced in various systems and pro-
posals. Despite their apparent diversity, these models share many common features.
These features have been acknowledged as the essence of any object-oriented data model
[ABD*89, Ban89, Dit91]. The reference data model presented in this chapter includes the
significant features found in most object-oriented data models, for example, TRIS [LK86],
GemStone [Ser87], ORION [Kim90], ONTOS [Ont91a), and O, [BDK92], to name but
a few. A number of object-oriented data models have been given a formal specification
[MH87, Wol87, SO90, DD91, BDK92, Nor92]; however, the various features of object-
orientation are studied separately. The reference data model provides a uniform frame-
work for the study of their interaction. In particular, it supports a generalised form of
method overloading and addresses the problem of statically type checking such overloaded
methods.

I'hie organisation of the chapter is as follows. Section 2.1 provides an informal descrip-
tion of the reference data model. Section 2.2 discusses the challenges of statically type
checking overloaded methods in an environment supporting multiple inheritance. Section
2.3 to 2.11 specify the reference data model formally using the specification language Z.
Section 2.12 touches on reasoning about the specification. Section 2.13 presents an ex-
ample database that will be used throughout the thesis. Section 2.14 concludes with a
discussion of related works including a comparison of the reference data model with the
data models of IRIS, ORION, ONTOS, and O,.

2.1 Informal Description

The reference data model supports both objects and base values. Objects are identified by
object identifiers. Base values, like integers and strings, do not carry an object identifier.
Object identifiers and base values are collectively called values. Every base value belongs

to a system-defined base type which defines the operations that can be performed on

2.2. Challenges 7

it. Similarly, an object belongs to a class !, which can be either system-defined or user-
defined. A class uses attributes and methods to model a concept or a phenomenon in
the application world. Attributes can be accessed only via methods defined in the class.
A method is called when an object receives a message. This dispatching mechanism is
generally referred to as message passing.

Classes can be related to one another using the ISA relationship. If a class is related
to another class by the ISA relationship, the former class is called a subclass of the latter
class while the latter class is referred to as the superclass of the former one. A class can
have more than one superclass and should inherit and support all methods defined in its
superclasses. As a consequence of inheritance, an object can be used wherever an object
of its superclass is expected. There is a root class in the model which is a subclass of no
class and a direct or indirect superclass of all other classes. In contrast to the root class, a
bottom class is defined as being a subclass of all classes. The unique instance of this class
is denoted as nil. The bottom class is only used for the purpose of query processing and is
therefore an internal object not accessible to the user. The structure formed by the ISA
relationship among classes is called a class graph, sometimes mis-called a class hierarchy.

In some models [LK86, Kim90], every class is associated with a set containing all ob-
jects of that class, usually called a class extent. The reference data model does not support

class extents. In brief, the reference data model supports the following features

e base values e complex objects e object identity

e encapsulation e message passing e method overloading
e multi-methods o classes e class hierarchy

e multiple inheritance e static type checking e dynamic binding

2.2 Challenges

Inheritance requires a subclass to support all methods defined in its superclasses in addi-
tion to its own methods. If every method is given a unique name, statically type checking
messages will be straightforward regardless of the kind of inheritance supported. How-
ever, such uniqueness hinders extensibility - one primary strength of the object-oriented
paradigm. Hence, many data models, including the reference data model, support method
overloading where the same method name can be given to different methods defined in the
same class or in different classes. This complicates static type checking as a method name
can now represent many different methods. Many data models, but not the reference data
model, resolve this problem by using only the type of the receiving object to determine
the method corresponding to a message at both compile-time and run-time. However this
simple selection scheme has limitations (one limitation is illustrated in Subsection 2.7.1).

'In this thesis, types include both base types and classes as defined in the specification. Types and
classes are therefore synonyms in most cases.

The Reference Data Model 8

To enable static type checking some restrictions must be imposed on overloaded methods
that can be applied to the same set of arguments (hereafter called confusable methods).
A well known proposal [Car84] suggested the contravariance rule requiring an overloaded
method defined in a subclass to take on more general arguments and returning more spe-
cific result. The use of more general arguments in an overloaded method could be argued
as “unnatural” [DT88, Mey88, MHH91, Cha92]. In a multiple inheritance environment, a
more general rule allowing the ordering of overloaded methods from different superclasses
is required.

The selection scheme of the reference data model uses the type of the receiving object
together with the types of the arguments for the matching at compile-time and run-time.
Following [BDG*88], such overloaded methods are called multi-methods. Support of multi-
methods allows more flexibility in defining overloaded methods. The reference data model
also explores the use of covariance rule where the types of the arguments of an overloaded
method defined in a subclass do not need to be more general than that in the superclass.
Static type checking will make use of the least general method while dynamic binding will
pick the most specific method 2. This enriches the inheritance mechanism by avoiding the
blocking of more general methods by more specific methods.

In an environment supporting multiple inheritance, the ISA relationship alone cannot
decide if one method is more specific or general than another. Inheritance ordering, which
respects the ISA relationship, is introduced to allow such comparison to be made.

The next sections use the Z specification language [PST91, Spi92] to specify the ref-
erence data model. Z has been used to describe data models for example the relational
model and its algebras [SH85, BH91, Bar93] and an object-oriented data model [MG93].
Z encourages a modular approach to specification. A system can be specified in terms
of a number of small “mini-specifications” which can then be combined easily using the
schema calculus. The resultant specification is often more manageable, concise, readable,
and comprehensible. Equally important, Z specifications are amenable to formal reasoning
as it has a formal semantics and a set of sound inference rules [Spi88]. In Chapter 6, a
query algebra for the reference data model is defined similarly using Z; hence, provides a

uniform framework for the reasoning of query expressions.

2.3 Objects + Base Values = Values
The data domain of discourse consists of atomic data drawn from a given set:

[VALUE)]

Elements in VALUE are referred to as values and can be partitioned into two disjoint

2Th2 meanings of the two bounds differ from that used in [OBBT89] and are defined in the specification.

2.4. Values and Type Names 9

subsets Object and Base Value:

Object : F VALUE
BaseValue : P VALUE

' | (Object, Base Value) partitions VALUE

Object is a set of object identifiers with which objects are represented in a database.
For this reason the elements in Object are referred to as objects. Base Value contains data,
like integers and strings, that are not represented by object identifiers. These elements
are referred to as base values. Values in Object can be compared for equality while base
values are subject to other operations, e.g. the “less than” operator. Object can be
further divided into two disjoint subsets. The first subset, OCollection, contains objects
representing groups of homogeneous elements that can be either base values or objects.
The second subset, MonoObject, holds all non-collection objects.

OCollection : F Object
MonoObject : F Object

| (OCollection, MonoQObject) partitions Object

The reference data model supports three kinds of collection. They are represented
using three subsets of OCollection.

OSet : F OCollection
OBayg : F OCollection
OList : F OCollection

I (OSet, OBag, OList) partitions OCollection

2.4 Values and Type Names

In this section, and indeed the next six sections, the theme of the discussion will be on
database schemata. In other words, the subject matter is what a generic database schema
looks like and what the associated constraints are.

Types are identified by names which are drawn from a given set:

[TYPE_NAME]

The two kinds of values introduced in the previous section, base values and objects,
belong to different types. Base values belong to base types while objects belong to classes.
It is therefore useful to partition TYPE_NAME correspondingly into two disjoint subsets:

The Reference Data Model 10

BaseTypeName : F TYPE_NAMFE
ClassName : F TYPE_NAMFE

(BaseTypeName, ClassName) partitions TYPE_NAME

Now the relationship between values and types can be defined using two total functions

as the following:

typeOf _: VALUE — TYPE_NAME

Vv: VALUE o
v € BaseValue < (typeOf v) € BaseTypeName
A
v € Object & (typeOf v) € ClassName

Applying typeOf to an object returns its defining class name. Applying it to a base
value returns its base type name. Since base types are well understood they will not be

discussed in the thesis.

kindOf _: OCollection — ClassName

VY ¢ : OCollection
¢ € OSet & (kindOf ¢) = ASet
A
¢ € OBag & (kindOf ¢) = ABag
A
¢ € OList & (kindOf ¢) = AList

 Applying kindOf on a collection object reveals its collection kind: set, bag, or list.
ASet, ABag, and AList are type names representing the collection kinds.

2.5 Rooted Class Graph

Before discussing classes which govern the behaviour of values in Object, the ISA relation-
ship between classes is examined. Note that the relationship is defined over ClassName

and not the classes themselves.

2.5.1 The ISA Relationship

Classes in a database are related to one another via the ISA relationship (<). The
structure formed by the ISA relationship among classes is called a class graph. The class

graph is represented by a relation over class names.

2.5. Rooted Class Graph 11

__ISA
_ =< _: ClassName < ClassName

ClassName = (dom <) U (ran <)
Y cn : ClassName o = (cn <% cn)

The first constraint implies that all classes related by the ISA relationship have their
names in the set ClassName and every class in ClassName is involved in the relationship.
It also has the implication that the ISA relationship is finite. The second constraint asserts
that the ISA relationship does not relate directly or indirectly (<t) a class to itself: the

class graph is directed acyclic.

2.5.2 The Root Class

The class graph has a root class which is a subclass of no class and a direct or indirect

superclass of all other classes.

__ROOT
ISA
root : ClassName

¥ cn : ClassName e cn # root < cn <% root

ROOT uses the ISA specification given earlier. The constraint asserts that every class,
except the root class, can be reached from the root class via the ISA relationship.

2.5.3 _.he Bottom Class

In contrast to the root class, a bottom class is defined as being a subclass of all classes.
The unique instance of this class is denoted as nil. The bottom class is only used for the
purpose of query processing and is therefore an internal object not accessible to the user.

__BOTTOM
ISA
bottom : ClassName
nil : Object

Y cn : ClassName o cn # bottom < bottom <% cn
typeOf nil = bottom

2.5.4 Type Conformance

A class is said to conform to another class if they are related directly or indirectly by the
ISA relationship or they are indeed the same class (<*). Since relationships between base

The Reference Data Model 12

types is not studied in the thesis, the conformance relation over base types degenerates to

the equality relation over base types.

— CLASS_GRAPH
ROOT
BOTTOM

- < _: TYPE_NAME + TYPE_NAMFE

Vi, tp: TYPE_NAME e
h <K&
{t1,t2} C ClassName A t; <* t;

\Y
{t1,t2} C BaseTypeName A t; = t,

2.6 Classes

This section examines the definition of a class which is essentially a template for the state
of an object and contains operations that can be applied to the state of an object. The ISA
relationship induces further constraints on class definition. The constraints are discussed

in the last subsection.

2.6.1 Methods

A method is characterised by its name, signature, and semantics. Method names are

drawn from a given set:

[METHOD_NAME]

The signature of a method captures the types of the formal arguments and of the
result. Each method receives at least one argument object - the object on which the
method is called. Every method must return a value as its result. Therefore the signature
of a method has at least two type names, and usually more.

Note that seq; represents sequences with at least one element, N; represents the set
of natural numbers without zero, () represents a sequence literal, ™ is a Z operation
performing sequence concatenation, and # is another Z operation returning the number

of elements in a sequence.

2.6. Classes 13

— SIGNATURE
argumentTypes : seq; TYPE_NAME
resultType : TYPE_NAME

types : seq; TYPE_NAME

length : Ny

types = argumentTypes ~ (result Type)
length = #argumentTypes

The semantics of a method captures the meaning of the method (i.e. what the method
does). In practice, it captures the implementation of the method. Here an extensional
definition is given to the semantics of a method which is represented as a partial function.

— METHOD
CLASS_GRAPH

name : METHOD_NAME
signature : SIGNATURE

selfType : ClassName

semantics : seq; VALUE + VALUE

self Type = head signature.argumentTypes

Vs :seq VALUE |
#uvs = signature.length A
(Vi:1..#vs e typeOf (vs i) <« signature.argumentTypes i) o
typeOf (semantics vs) <K signature.result Type

The first constraint establishes that the first type name in a signature is the same as
the name of the class in which the method is defined. The second constraint ensures that
semantics is correctly typed. In other words, if the types of the actual arguments conform

to the formal argument types the method will return a result conforming to the result

type.

2.6.2 Attributes

Every object has its own set of attributes to capture the state of the object. Attributes
are not directly accessible. Methods are the only means to manipulate them.

Assume a set for the names of attributes:

[ATTRIBUTE_NAME]

The types of the attributes of a class can be defined as a finite partial function. The
implications are: (1) there is a finite number of attributes; (2) attribute names are unique
within a class; and (3) the value of an attribute can be an object or a base value. When
an object is created, this function will be used to create a set of named attribute values

The Reference Data Model 14

having the same names and value types as specified in this function. Class instantiation

is not further discussed in the thesis.

BATTRIBUTE
rattributes_ : ATTRIBUTE_NAMFE + TYPE_NAME

The symbol W is used as a naming convention to identify the part of a schema which
is to be hidden from direct access. In this case, direct access to the attributes of an object
is to be prohibited.

2.6.3 Classes

—_CLASS
WATTRIBUTE
name : ClassName
methods : F METHOD
directSuperclasses : seq ClassName
applicableMethods : F METHOD

V my, my : methods | my # my @
mj.name = my.name =
my.signature.argument Types # mgy.signature.argument Types

V' m : methods e m.selfType = name

A class consists of a class name, attributes, methods, a sequence of direct superclass

_ nes, and a set of applicable methcds. Superclasses are ordered as given in the class

definition and this ordering will be used to define the local inheritance ordering. Applicable

methods include methods defined by the class itself as well as methods inherited from its

superclasses. The first constraint asserts that methods having the same name must have

different argument types. This allows method overloading. The second constraint asserts
that the methods must be correctly typed to the class in which they are defined.

2.6.4 Class Names, Classes, and Inheritance

The relationship between the class names in a class graph and the classes themselves is
defined next. Class is a set containing all classes in the database. The function, hasName,

relates a class name to its class.

2.7. Class Ordering 15

__SCHEMA
CLASS_GRAPH
Class : F CLASS
hasName _ : ClassName s Class

Ven : ClassName o (hasName cn).name = cn
V¢, Csuper : Class ®
Csuper-name € ran(c.directSuperclasses) <
c.name < Cyyper.nAME
Ve: Class o
c.applicableMethods = c.methods U
(U { csuper : Class | csuper-name € ran(c.directSuperclasses) o
Csuper -applicableMethods })

The first constraint specifies that hasName takes a class name and returns a class with
the same name. Being a total bijective function implies that: (1) there are as many classes
as there are class names; (2) every class name is associated with a unique class; and (3) all
the classes have unique names. The second constraint insists that superclasses named in
a class definition are actually related to the class in the class graph. The third constraint
specifies the set of applicable methods for a class. |J represents the distributed union
operation which takes a set of sets and returns a set containing all members in the original
set elements. In this case, |J combines all methods inherited from the superclasses. U
then combines this resultant set of methods with the set of methods defined in the class

to give a set of all applicable methods.

2.7 _lass Ordering

Inheritance permits a class to have more than one superclass and requires it to support
all the methods of its superclasses. Since confusable methods may exist some way of
choosing a method for type checking and dynamic binding must be provided. This section
examines the problems of type checking messages when method overloading is allowed and
introduces the local inheritance ordering, which is the key to the solution.

2.7.1 Single Inheritance Environment

Figure 2.1 presents parts of a database schema consisting of four classes: A, B, C, and D,
where B < A (B is a subclass of A) and D < C. A has a method m, which takes two
arguments: an object of class A and an object of class C, and returns an object of class C.
B, being a subclass of A, inherits this method from A. However, B also defines a method
with the same name. Therefore B has two methods of the same name at its disposal.
Given this database schema, the effect on type checking can be studied using the
application program in Figure 2.1. Variables are declared in line (1) at the beginning of

The Reference Data Model 16

—
(C C\\ mAxC->C
:) (1) var aA;
/ C."C:'
\
(10) a:=b;
//\ L (11) ...am(c),
D) (B‘\’m:AxC—>C
" "B)m:BxD->D
Database Schema Application Program

Figure 2.1: Unsafe Static Type Checking.

the program fragment. The assignment statement in line (10) assigns the variable b to
a variable of its superclass. This is a valid statement and will pass type checking. In
line (11) object a is passed the message m with variable ¢ as an argument whose static
type is C. Object a has static type A and therefore the message m corresponds to the
only method A has. The message passes type checking; whereas what actually happens at
run-time is something quite differeat. At run-time, variable a actually contains an object
of class B. Using the simple selection scheme described in Section 2.2, the method m
defined in B (i.e. m : B x D — D) will be selected. If ¢ contains an object of class D,
it will be accepted as a valid argument to m. On the other hand, if ¢ contains an object
of class C, the same as its static type, it will be considered an invalid argument to the
method m selected at run-time. To conclude, the program passes type checking but it

may fail at run-time!

2.7.2 Multiple Inheritance Environment

m:A-—> m:B->B (1) var b:B;c:C;
(A) [B)
\1\ /‘\,
I\\ /’ i
K /2 (10) b:=cm();

.
"y
Ay mEA->A
(\C/) m:B->B

Database Schema Application Program

Figure 2.2: Confusable Methods from Incomparable Classes.

2.7. Class Ordering 17

Multiple inheritance introduces further problems for type checking and dynamic binding.
The database schema in Figure 2.2 demonstrate the problems. In the schema, C inherits
two methods named m, one from A and one from B. In the program fragment, variable c,
whose static type is C, is passed the message m. The question is which method m should
be used. The answer does matter because it determines the result type and consequently
affects type checking. In the single inheritance environment, the method defined for the
subclass is chosen but here there is no ISA relationship between 4 and B where the
overloaded methods are defined. In other words, classes are partially ordered and A and
B are incomparable.

To enable a systematic selection scheme, a better ordering over methods is required.
The only sensible way of ordering methods is to use their signatures, which contains
primarily type names. An ordering over types, that should subsume the ISA relationship
defined in the database schema, is therefore required and will form the base for ordering
of methods. The next subsection introduces such an ordering.

2.7.3 Local Inheritance Ordering

Various possible orderings and their effects on type checking overloaded methods are ex-
amined in [ADL91]. The reference data model adopts the local inheritance ordering. It is
local because each ordering only relates a given class to its superclasses; but not classes
which are not related to the given class by the ISA relationship. Note that two classes
which appear in two different local inheritance orderings may be ordered differently. When
a class named cn; is more specific than a class named cns with respect to another class

named cn, it can be expressed using the local inheritance ordering as the following,

l cny Len CNg I

The relation <., is obtained by applying the total function < on the class name cn.

The Reference Data Model 18

— LOCAL_ORDERING
SCHEMA
- & _ _: ClassName — (ClassName < ClassName)

V¢ : Class; cn, cny : ClassName |
cn = c.name A
cny = c.directSuperclasses 1 e
cn L. €M

V¢ : Class; cn,cnj, cny : ClassName; 3,k : Ny |
cn = c.name A
{j, k} C1..#(c.directSuperclasses) N
j+1l=kA
cn; = c.directSuperclasses j A
cny = c.directSuperclasses k o
enj Lot oony

Y ¢ : Class; cn, cnj, cnj1, cnja, cng : ClassName; j, k : Ny |
cn = c.name A
{j,k} C1..#(c.directSuperclasses) A
J+1=kA
cn; = c.directSuperclasses j A
cng = c.directSuperclasses k A
{ Cnjy, an2} -
(ran({cj.name}<a <*) \
U {ci: Class |
(3i:(j+1)..#(c.directSuperclasses) o
c.directSuperclasses 1 = c;.name) o
ran({c;.name}< <*t)}) A
cnjy K¢ Cnjz @
(41731 <Len Cnjo A Ccn;2 <<cn+ cng

The first constraint asserts that a class is more specific than its first superclass. The
second constraint says that superclasses are ordered according to the order given in the
class definition. This is the basis to allow the comparison of classes that are not related
by the ISA relationship. Note that the transitive closure (<., %) implies that there
can be other classes in between. Given a class and one of its superclasses, there can be
more than one way the two classes are connected by the ISA relationship, for instance,
via different direct superclasses. The last constraint guarantees that only one such con-
nection will be used in the ordering. The last connection as prescribed by the order of the
direct superclasses will be used. In other words, a method from an indirect superclass is
considered more general and is ordered after the last direct superclass that is connected
to it. Apart from this deviation, the local ordering with respect to a class agrees with the

local inheritance orderings of its superclasses.

2.8. Method Consistency 19

@ mA->Y
% >
.// \\\,

(x) (\Y/) (B) (Cim:C=->x
1 . 2

(D)

Figure 2.3: Methods Inherited via Multiple Paths.

Given the schema in Figure 2.3 with four classes such that B < A, C < A, D < B,
D < C,and B «p C (it is denoted by labelling the D to B arc with 1 and the D to C arc
with 2), the local inheritance ordering will order them in descending order of specificity
as D, B, C, A. The choice of such an ordering is a compromise between being consistent
with the substitution semantics among ISA-related classes and “localising” the restrictions
caused by cycles among classes in the generalised inheritance ordering. The latter issue is
discussed in the second half of the next section.

There is however one problem with this schema. If message m is passed to a variable
of class A, m of A will be used at compile-time for type checking and class Y will be
its result type. Assuming that an object of class C is actually assigned to the variable,
naturally m of C will be used at run-time which produces a result of class X. This is
similar to the scenario described earlier in subsection 2.7.1. The two classes X and Y are
unrelated classes and hence may cause a rurn-time error. New measures are required to

remove wuis loophole and they are presented next.

2.8 Method Consistency

The problem found in the previous section exposes a more general fault in the devélopment
so far: argument types are used to order methods but the result types have not been taken
into account. What is lacking is a concept of consistency between the ordering of argument
types and the ordering of result types.

2.8.1 Method Confusability

Consistency is essential only for confusable methods. It is not necessary to consider con-
sistency when methods having the same name can never be applied to the same set of

arguments; they are not confusable and can never be used in the same context.

The Reference Data Model

20

— CONFUSABILITY

SCHEMA
—tsConfusableWith_: METHOD + METHOD

V' my, mg: METHOD; sy, s; : SIGNATURE |
8 = my.signature A sy = mg.signature
my isConfusable With my &

mp.name = my.name A

s1.length = sy.length A

Vi:l..s.lengthe

dt: TYPE_NAME e

t <« (si.argumentTypes i) A
t <« (sg.argumentTypes i)

The definition of confusability is given above in the form of a relation. Two methods

are confusable when: (1) they have the same name; (2) they take the same number of

arguments; and (3) for every argument position there is a type which conforms to both

argument types at that position.

mA->A m:B->B
(A) [B)
—% Raa
"(B:Y (E)
m. A -> A : B -> B
m:B->B Z:C—>C

Figure 2.4: Confusability is Not Transitive.

Confusability is not a transitive relation, for example, in Figure 2.4, m : A — A and
m : B — B are confusable, m : B — Band m : C — C are confusable, butnot m: 4 — A

and m: C = C.

2.8.2 Partitioning Confusable Methods

Consistency is important only for confusable methods, it is therefore sensible to partition .

all methods into sets of confusable methods. Firstly methods can be partitioned by their

names. Since overloading allows methods to have the same name but different numbers of

arguments. Therefore a set of methods having the same name can be further partitioned

according to the number of arguments each method takes. The resultant sets can then be

divided based on confusability.

2.8. Method Consistency 21

__PARTITIONS
CONFUSABILITY

allMethods : F METHOD

methodPartitions : METHOD_NAME x Ny »» FFMETHOD
allConfusableSets : FF METHOD

allMethods = U { ¢ : Class ® c.methods }

V m : allMethods; mn : METHOD_NAME; n : N |
mn = m.name A n = m.signature.length &
3, ms :FMETHOD e m € ms A ms € methodPartitions(mn,n)

allConfusableSets = |J (ran methodPartitions)
allMethods = | allConfusableSets

V ms : allConfusableSets | #ms > 1 o
le,mgzms | my #m20
my isConfusable Witht my

Note that methodPartitions is a partial injective function. The second constraint as-
serts that a method is contained in only one confusable set. The third constraint gathers
all confusable method sets. The last constraint asserts that methods in a confusable set
are linked directly or indirectly by the confusability relation (isConfusable With™) - recall

that the relation itself is not transitive.

2.8.3 Generalised Inheritance Ordering

The local inheritance ordering defined in the previous Subsection can be used to order
methods only when the static types of the actual arguments are available. This information
is, however, not available during schema definition time. Therefore ordering of methods
and hence the examination of consistency cannot be done during schema definition time
using the local inheritance ordering. A generalised form of this ordering is necessary and

is specified below:

_ INHERITANCE_ORDERING
LOCAL_ORDERING
_ & _:ClassName < ClassName

Y cny, cng : ClassName o
cn K cng &
Jen : ClassName o cny Len T cng

Note that the generalised inheritance ordering neither relates classes without subclasses
to one another nor a class to itself.

The generalised inheritance ordering allows cycles. In the schema given in Figure 2.5,
A €¢ B and B <p A hold. The generalised ordering gives both A <€ B and B K A,

The Reference Data Model 22

(4

14/)\ <<c <<<

i (a) (B)||(A) (B)
, \ —N»___ i g

- -2 2° LT << <L

(C) (D) D

Figure 2.5: Cycles in Generalised Inheritance Ordering.

resulting in a cycle A <€ B <« A. To resolve this problem a stronger notion of consistency
is required and is described next.

2.8.4 Consistency of Schema Definition

Methods can now be ordered based on their argument types using the generalised inher-
itance ordering even without any knowledge of the static types of the actual arguments.
A method is more specific than another one if at the first position where their argument
types differ the argument type of the former method is more specific than the argument
type of the latter method with respect to the generalised inheritance ordering. Method

specificity is captured using the relation C as follows,

— ORDERED_SCHEMA
INHERITANCE_ORDERING
- _:METHOD < METHOD

Vmy,mg: METHOD; 81,8 : "IGNATURE |
§1 = my.signature A sy = my.signature

my E my <~

Jj:1..81.length e
sy.argumentTypes j < sy.argumentTypes j
A
Vi:l..(j—1)e
sy.argumentTypes i = sy.argumentTypes i

Two methods are consistent if the more specific method with respect to method speci-
ficity (C) also has a more specific result type with respect to type conformance (<«).

The specification for method consistency is given below,

2.9. Databases 23

— CONSISTENT_SCHEMA
ORDERED_SCHEMA
—isConsistentWith_: METHOD < METHOD

V' my, mg : METHOD; sy,s; : SIGNATUREFE |
81 = my.signature A S; = my.signature @

my isConsistent With mqy &

(my C mg) = sy.resultType < s;.resultType
A
(mg C my) = sp.resultType < s;.resultType

In DATABASE_SCHEMA it is asserted that methods directly related in a confusable
set must be consistent. -

— DATABASE SCHEMA
PARTITIONS
CONSISTENT_SCHEMA

V ms : allConfusableSets | #ms > 1

Vmy,my:ms|my # mye
my isConfusable With mq = m, isConsistent With mq

The consistency of confusable methods ensures that all methods involved in a cycle
in the generalised inheritance ordering must have the same result type. A proof of this
Theorem can be found in Appendix A.

2.9 Databases

A database can be defined as a consistent database schema and a set of variable names
to which persistent objects are attached. Assume that all such variable names are drawn
from a given set;:

[VARIABLE_NAME)]

Each variable name represents a persistent object which can be a base value, mono-
object, or collection. Variable names must be unique and therefore the binding between

variable names and values is defined as a total function.

DATABASFE
DATABASE_SCHEMA
persistentRoot _ : VARIABLE_NAME — VALUE

The Reference Data Model 24

2.10 Static Type Checking

Type checking involves checking the static types of the actual arguments of a message
against methods collected in a confusable set. Given the message name and the number
of arguments, all the relevant confusable sets can be obtained using the methodPartitions
function. These sets can then be searched for an applicable method that matches the
given static argument types. Once a set with an applicable method is found, the search
can stop as it is the only set containing all the possible applicable methods. Methods in
this set are then sorted by method specificity before being compared with the argument
types. The least general method that is applicable to the given argument types is selected
and recorded. Its result type will then be used to check against the context in which the
message is used.

The situation where no error occurs during type checking is considered first. The
first condition for successful type checking is that the message name and the number of

arguments do correspond to some method defined in the database schema.

— RIGHT_ARGUMENT_LENGTH
=DATABASE

messageName? : METHOD_NAME
argumentTypes? : seq; TYPE_NAME
ms : F METHOD '

(messageName?, #argumentTypes?) € dom methodPartitions
ms € methodPartitions(messageName?, #argumentTypes?)

The ~cond condition for successful tyr > checking requires that at least nne method
having the same name and taking the same number of arguments can actually be applied

on arguments of the given types.

—_HAS_APPLICABLE_METHOD
=ZDATABASE

argumentTypes? : seq; TYPE_NAME
ms : F METHOD

Am: METHOD | m € ms e
Vi:l..#argumentTypes? o
argumentTypes? i « m.signature.argumentTypes 1

The set of confusable methods containing an applicable method is represented by ms
in the two specifications above. Methods in ms that are confusable with the argument
types of the message are then selected and sorted in descending order of method specificity

(E)

2.10. Static Type Checking 25

— SORT_CONFUSABLE_METHODS
=ZDATABASE

argumentTypes? : seq; TYPE_NAME
ms : F METHOD

oms :seq; METHOD

ranoms = {m: METHOD | m € ms e
Vi:l..#argumentTypes? e
3t: TYPE_NAME e

t « argumentTypes? i

A

t « m.signature.argumentTypes i }
Vik:1..#oms|j+1=ke

oms j C oms k

The least general method is defined as the most specific method with respect to method
specificity (€) that is applicable to arguments of the given types.

— LOCATE_LEAST_GENERAL_METHOD
=DATABASE

argumentTypes? : seq; TYPE_NAME

oms :seq METHOD

g: Ny

moreSpecificMethods! : seq METHOD
resultType! : TYPE_NAME

g€l..#oms
Vi:1l..#argumentTypes? o

aryumentTypes? 1 « (oms g).signature.argumentTypes i
i : (g+1)..#oms e

oms gC oms i Aoms i C oms g
Ji:1..(g-1)e

(oms i C oms g A oms g C oms 1)

\

3j:1..#argumentTypes? o

- (argument Types? j <« (oms 1).signature.argumentTypes j)

moreSpecificMethods! = {1..g } < oms
result Type! = (moreSpecificMethods! g).signature.result Type

The least general method from oms is selected by identifying its position g in the
sequence. The first constraint restricts g to be a position in the sequence. The second
constraint specifies that the method at position g is applicable to arguments of the given
types. The third constraint asserts that methods after position g cannot form a cycle
with the method at ¢ in the method specificity relation. The last constraint asserts

The Reference Data Model 26

that a method before position g either forms a cycle with the method at g in the method
specificity relation or is not applicable to arguments of the given types. Note that methods
of the latter kind are confusable with the argument types. Part of the sequence oms, up
to position g, is returned as a sequence of potential applicable methods. The result type
of the method at position g becomes the result type of the message.

The above specifications can now be combined to capture the error-free case of type

checking. Note that a message indicating successful type checking is also included.

PASS_TYPE_CHECKING =
RIGHT_ARGUMENT_LENGTH A
HAS_APPLICABLE_METHOD A
SORT_COFUSABLE_METHODS A
LOCATE_LEAST_-GENERAL_METHOD A
[rep!: MESSAGEF | rep! = Ok]

The domain of rep!, MESSAGE, is defined below.

MESSAGE ::= Ok | WrongArgumentLength | NoApplicableMethod

There are two circumstances under which the result type of a message cannot be
identified. The first case occurs when the message name does not correspond to any
method or the number of arguments does not match that of any method with the same

name.

— WRONG_ARGUMENT_LENGTH
ZDATABASE

messageName? : METHOD_N iMFE
argumentTypes? : seq, TYPE_NAME

(messageName?, #argumentTypes?) ¢ dom methodPartitions

When an error occurs, an empty list of methods will be returned and the result type

of the message will be set to the root class. An error message is also produced.

__NOTHING
=Z=DATABASE

moreSpecificMethods! : seq METHOD
resultType! : TYPE_NAME

moreSpecificMethods! = ()
result Type! = root

2.10. Static Type Chnecking 27

FERROR_ONE =
WRONG_ARGUMENT_LENGTH A
NOTHING A
[rep!: MESSAGE | rep! = WrongArgumentLength]

The second case occurs when no applicable method can be found.

__NO_APPLICABLE_METHOD
=DATABASE

messageName? : METHOD_NAME
argumentTypes? : seq; TYPE_NAME

fms : F METHOD | ms € methodPartitions(messageName?, #argumentTypes?) o
3m: METHOD | m € ms e
Vi:1..#argumentTypes? o
argumentTypes? 1 « m.signature.argumentTypes i

ERROR_TWO =
NO_APPLICABLE_METHOD A
NOTHING A
[rep!: MESSAGE | rep! = NoApplicableMethod |

The various cases can now be combined to provide a full picture of type checking. The
hiding operator \ is applied to TYPE_CHECKING to remove the variables g, oms, and
ms from the declaration part and to existentially quantify them in the predicate part.
This signifies that the variables are used for intermediate values generated during the

computation.

FAIL_.TYPE_CHECKING =
ERROR_ONE V ERROR_-TWO

TYPE_CHECKING =
PASS_TYPE_CHECKING V FAIL_.TYPL_CHECKING

STATIC_TYPE_CHECKING =
TYPE_CHECKING\ { g, oms, ms}

Consider the schema given in Figure 2.1, m: Ax C - Cand m: Bx D — D arein
the same confusable set and m of B is more specific (C) than m of A. The static types
of the arguments in the program fragment are A and C. Since B « A and D « C, m of
B is not applicable and therefore m of A is selected giving C as the result type.

In Figure 2.2, the static type of the argument is C and both methods m’s are applicable.
m : A — A will be selected as it is less general than m of B. Consequently type checking
will fail because of the invalid assignment statement. It is because an object of class A
cannot be assigned to a variable of class B because A is not a subclass of B.

The Reference Data Model 28

2.11 Dynamic Binding

At run-time the most specific method, with respect to the actual argument types, is
chosen. It is only necessary to check the sequence of methods recorded during static type
checking. Applicable methods are examined and the most specific method according to
the local inheritance order as determined by the argument types is returned. Using this
strategy, one can provide the flexibility of using the most specific method during run-time
whose argument types respect that of the least general method used for type checking.

— DISPATCHING
=Z=DATABASE
methodList? : seq METHOD
argumentTypes? : seq; TYPE_NAME
oms :seq METHOD

g: N

methodChosen! : METHOD

ran oms = { m : METHOD | m € ran methodList? e
Vi:l..#argumentTypes? o
argumentTypes? i « m.signature.argumentTypes i }

g€l..#oms
Vik:1..#oms |j+1=ke
Ji:1..#argumentTypes? o
(oms j).signature.argumentTypes i <K argument Types? i
(oms k).signature.argumentTypes i
\%
Vi:1l..(i—=1)e
(oms j).signature.ar ‘umentTypes | =
(oms k).signature.argumentTypes [

methodChosen! = head oms

DYNAMIC_BINDING =
DISPATCHING \ { g, oms }

The sequence of methods recorded during type checking is represented by methodList?.
The actual argument types are represented by argumentTypes? as a sequence of type
names. The first constraint collects all the applicable methods from methodList? into
oms. The second constraint restricts g to be a position of oms. The third constraint
orders the methods in oms using the local inheritance orderings as determined by the
actual argument types. The most specific method which is placed at the beginning the
oms is returned.

In Figure 2.1, if variables a and ¢ actually contain objects of class B and D respectively,
the method m : B x D — D will be chosen; otherwise, the method m of A will be used.

2.12. Reasoning about Z Specifications 29

2.12 Reasoning about Z Specifications

Properties of the specification, of the reference data model, and of the approach used for
static type checking can be studied through formal reasoning. For example, the following

properties have been proved formally from the Z specification,

e The computation of applicableMethodsin SCHEMA does terminate (proof by induc-

tion).

e The search for an applicable set of confusable methods in PASS_TYPE_CHECKING

can stop once a set is found (proof by contradiction).

e An object cannot simultaneously be an instance of two disjoint leaf classes according
to the function typeOf (proof by contradiction).

e Local inheritance ordering is sufficient for ordering confusable methods in a multiple

inheritance environment.

e Methods forming a cycle under the method specificity relation do not affect static
type checking and will be correctly bound at run-time.

The last property depends on the property that methods forming a cycle in the method
specificity relation must have the same result type. A proof of the latter property is given
in Appendix A.

Note that the specification defined so far captures only the essential parts of the refer-
ence data model that are required for the study of query processing in the coming chapters.

2.13 The Running Example

The example database is a simplified university administration system that records infor-
mation about students and staff members of a university, its academic departments and
courses. The relationships between classes defined in the schema are shown in Figure 2.6.

The class Person has two subclasses: Student and Staff. VisitingStaff is a subclass
of Staff. Tutor inherits from both Student and Staff to represent students doing part-
time teaching. Every person and academic department is given an address which is an
object of class Address. A student can have a principal supervisor, a second supervisor,
and so forth. It is therefore modelled as a list of staff members. Every staff member and
student are associated to an academic department of class Department via department and
major respectively. Courses given by each staff member and taken by each student are
also recorded. They are represented by set-valued methods teaches and takes. A course
may have a set of prerequisite courses (prerequisites) and is administered by’ one or more
academic departments (runBy). A course is an instance of the class Course.

The Reference Data Model 30

address | porson

Address

Type
——
is—a
relationship

Visiting
Staff

(Set;) prerequisites Single—valued
- Method

—Cr

¥Department 4—@)&3)’ Course \)
Multi-valued

\\/‘Seﬁ/ Method

Figure 2.6: Simplified Schema Diagram.

The schema definition is given in Figure 2.7. In order to keep it simple, only the relevant
method signatures are given, attributes and method implementations are omitted. Entity
is the root class. The calculation of the salary of a tutor is different from that of a staff
member. This variation is captured by giving an overloaded method salary to Tutor. Also
recorded is the percentage weights of assessments given in each course and the number of
credits each course is worth. It is assumed that the database contains six set collections:

Persons, Departments, and Courses, containing instances of their corresponding classes
that are members of the university; and StaffMembers, Students, and Tutors, containing

instances of the corresponding classes that are members in the Science Faculty.

2.14 Discussion

Data models from four prominent object-oriented database systems are chosen to compare
with the reference data model. These models are selected because their query languages
will be studied extensively later in the thesis. This comparison therefore serves as back-
ground information for later chapters. A summary of the comparison is given in Table

2.1.

In [BDK92] set is the only collection class.

2.14. Discussion

31

Class Person isa Entily
methods
name :— String,
address :— Address,
age :— Integer.

Class Staff isa Person
methods
department :— Department,
teaches :— Set of Course,
salary :— Integer.

Class Student isa Person
methods
major :— Department,

takes :— Set of Course.
Class Tutor isa Staff, Student
methods

salary :— Integer.

Class VistingStaff isa Staff.

supervisedBy :— List of Staff,”

Class Department isa Entity
methods

name :— String,

address :— Address.

Class Course isa FEntity
methods
code :— String,
runBy :— Set of Department,
prerequisites :— Set of Course,
assessments :— Bag of Integer,
credits :— Integer.

Class Address isa Entity
methods

street :— String,

city :— String.

Database is
Persons : Set of Person,
Departments : Set of Department,
Courses : Set of Course,
StaffMembers : Set of Staff,
Students : Set of Student,
Tutors : Set of Tutor.

Figure 2.7: Simplified Schema Definition.

ONTOS and O, support extents as an option. IRIS and ORION provide an extent for
each class. In ORION, the extent of a class does not include extents o1 1ts subclasses. The
reference data model is the only data model supporting multi-methods and static type
checking at the same time. The combination of these two features is however supported
to various extents in some programming languages.

CLOS [BDG*88] introduces the notion of multi-methods. Its use of local inheritance
ordering is very similar to that of the reference data model. However, type checking in
CLOS is done at run-time and hence is easier as more information is available at run-time.
Kea [MHHO91] uses the ISA relationship to determine method specificity. In addition,
the lexical order of method definitions is also taken into account. The combined resultant
ordering is nevertheless only a partial ordering. In other words, multiple inheritance cannot
be fully supported. Unlike other systems, Cecil [Cha92] orders multi-methods using all
their argument types in its entirety. However, only a partial ordering based on the ISA
relationship is used and consequently the order is rather restrictive.

A reference data model, which serves as the basis of the investigation, has been pre-
sented in this chapter. So far only the “structural” part of the reference data model has
been described. The intention is to develop a high-level query language to serve as the “op-

The Reference Data Model 32

| Data Model [ONTOS [IRIS] ORION]| (02} | Reference |
Base Values v v v v v
Tuples v v
Complex Objects v v v v v
Object Identity v v v v v
Encapsulation v v
Method Calling v v v v v
Overloaded Methods v v v v v
Multi-Methods v
Classes v v v v v
Class Extents optional v v optional
Class Hierarchy v v v v v
Multiple Inheritance v v v v
Static Type Checking v v
Dynamic Binding v v v v
Collection Classes set, list, others | set, bag set, set, bag, list® | set, bag, list

Table 2.1: Comparison of Object-oriented Data Models.

erational” part of the reference data model. The next chapter identifies the requirements
of such an object-oriented query language.

Chapter 3
Query Language Requirements

Many object-oriented query languages [Ser87, CDV88, Bee88, DLR88, CDLR89, BM89,
BCD90, Kim90, BTA90, Ont91c, DGJ92, KKS92] have been implemented and proposed.
Some of these query languages are designed particularly for object-oriented databases,
e.g. LIFOO [BM89] and ORION [Kim90]. Many are, however, adapted from other areas:
the relational data model and its extensions, e.g. ONTOS SQL [Ont91c]; semantic data
models, e.g. OSQL [Bee88]; and object-oriented programming languages, e.g. OPAL
[Ser87]. All of them, howéver, could be improved in one way or another. This chapter
establishes a set of functional requirements for object-oriented query languages which can
be used to evaluate, compare, and improve existing query languages as well as to direct
the design of new languages.

The organisation of this chapter is as follows. Section 3.1 argues for the need for
establishing a set of functional requirements for object-oriented query languages. Section
3.2 describes the requirements. Section 3.3 addresses related issues that are not included
in the requirements. Section 3.4 presents a summary of evaluating four query languages
using the requirements. Section 3.5 concludes.

3.1 Introduction

Relational completeness was proposed in [Cod72] and since then it has served as the yard-
stick for evaluating the expressive power of relational query languages. Later studies of
the generalisation of the relational model extended the relational algebra with extra op-
erations. For instance, replace (applying a function over the elements of a collection),
set-collapse (given a collection of collections return all the elements contained in the
“nested” collections), and powerset, were introduced in [AB93] to characterise the ex-
pressive power of query languages for nested-relational and complex-object models, such
as —=1NF [RKB87], NF? [PD89], and VERSO [SAB*89]. With the advent of newer data
models supporting richer constructs, new definitions of completeness are constantly sought

for.

33

Query Language Requirements 34

So far, no definition of completeness has been proposed for object-oriented data models.
Worse still, the situation is unlikely to change for some time. Attempts have been made
to tackle the problem by using different notions of completeness which are independent
of data models [ABGvG89], but interpreting them in terms of query language operations
‘is not at all straight forward. Not having a formal definition of completeness makes it
difficult to evaluate and compare object-oriented query languages objectively.

Many opinions have been expressed about the central and fundamental issues of object-
oriented query languages [Ban89, Kim89, Kim92, BNPS92]. Relevant inputs can also be
found from sources taking a slightly different standpoint. For example, an evaluation
framework for query algebras is proposed in [YO91] and many of the criteria are applicable
to high-level query languages. Language facilities for multimedia data are studied in
[Man91]. Almost all the requirements identified there are equally valid for object-oriented
query languages in general. It is encouraging that there is a consensus of opinions from
these sources.

However, this pool of ideas has several limitations. Firstly, collection operations are
not sufficiently characterised nor is the usability aspect of high-level query languages.
Secondly, the requirements are stated in rather esoteric terms hence are open to misun-
derstanding. Thirdly, some of the requirements cannot be measured objectively. Further
discussion on collection operations and usability is given in Section 3.2 and Section 3.4.
Examples of the second and third problems can be found in Section 3.3. The aim of in-
troducing a new set of requirements is to provide a set of direct and measurable criteria
as well as to make up for overlooked issues. The guideline adopted is to include only fea-
tures that can be expressed at the language level. This shift of emphasis can be compared
with the development of database perforinance benchmarking where the TPC-A bench-
mark was introduced to replace the DebitCredit benchmark precisely because the latter

is vulnerable to interpretations by the implementator [DBCRW92].

3.2 Functional Requirements

The requirements can be classified into four dimensions: support of object-orientation,
ezpressive power, support of collections, and usability. Each dimension is defined in terms
of a number of criteria.

Support of object-orientation measures the support given to the intrinsic properties of
object-oriented data models. There is an almost unanimous agreement in the literature
about features under this category. They include

3.2. Functional Requirements 35

e object identifiers
e method calling
e complex objects
o class hierarchy

e dynamic binding

In the object-oriented paradigm, objects are identified by unique and immutable object
identifiers which are independent of the “contents” or composition of the objects. To
support objects, a query language needs to operate on object identifiers, for example, the
equality over object identifiers.

Objects are encapsulated, meaning that their “contents” cannot be accessed directly
and all accesses must be done via methods defined for the objects. The association of
specific methods to objects is a fundamental tenet of the paradigm, the use of methods in
a query should therefore be supported.

In contrast to the simple attributes of a tuple in the relational model, an object can be
perceived as a complex entity. Applying a method on such a complex object can result in
the return of a base value, an object, or a collection. A query language supporting method
calling should therefore also accommodate results of different types.

The class hierarchy defines a classification scheme based on specialisation over classes.
This naturally leads to the adoption of the substitutional semantics which conceals the
differences of objects originated from different classes along the same specialisation chain.
On the other hand, the class hierarchy contains useful information regarding the classifi-
cation of objects which may form the basis of a query. A query language should therefore
provide a mechanism -ith which 1"e classification infor-:ation can b . “zploited.

The class hierarchy also introduces the notion of inheritance where methods defined
in a superclass are inherited by all its subclasses. Moreover, method overloading allows
different methods to be given the same name. Given the substitutional semantics and
the possibility of method overloading, the selection of a method can only be determined
dynamically. A query language should therefore support dynamic binding of methods or
behave as if methods were dynamically bound.

Expressive power examines the ability to explore and synthesize complex objects and
collections. Attention is mainly drawn to the manipulation of individual objects. There
is quite a reasonable consensus in the literature regarding features in this category which

are listed below,

Query Language Requirements 36

e multiple generators

e dependent generators

e returning new objects

e nested queries

e quantifiers

o relational completeness

e nested relational extension

e recursion

A query often involves one or more collections. The ability to specify more than one
domain collection - using multiple generators - in a query is as natural and important as in
earlier data models. Not supporting multiple generators will result in a more procedural
query language relying heavily on query nesting and query functions, if they are supported.
Consequently queries are more difficult to express - a good example is LIFOO [BM89].

A collection can be returned as the result of a method call. To query such a “nested”
collection, a query language should be able to express dependency between generators.
Generally speaking, in the absence of dependent generators, the fact that an object is an
element of a nested collection has to be “re-established” resulting in more verbose queries,
for example, see OSQL [Lyn91]. :

So far, there has been no convincing argument from the modelling perspective about
restricting a query language to return only existing objects. Here a query language is
required to allow new objects to be created in a query. It is not required that the corre-
sponding classes are created along with the objects. In other words, closure at the instance
level st !d be respected while closure at th class level is not required. To be ~ore precise,
no operations for the creation of new classes or the manipulation of the class hierarchy are
required. It is so decided because dynamic class creation is still an outstanding problem
with no satisfactory solution. Detailed discussion of this controversial issue is given in
Chapter 8 where the support of views is discussed.

Nested queries are crucial in the construction of new objects especially complex objects.
It has been shown that many nested queries which appear only in the where clause (the
filters) can be eliminated from SQL queries [Kim82, GW87]. In an object-oriented query
language supporting free nesting of queries, it it not obvious how nested queries can be
eliminated without other language constructs such as query functions. Query nesting can
also be considered as an issue of generality.

Quantifiers can simplify queries and provide optimisation opportunities. Quantifiers
can be simulated in many query languages; however, their optimisation always involves
matching of large patterns, e.g. [Klu82], which increases the search space for optimisation.
Quantifiers can significantly simplify the manipulation of different kinds of collections as
shown in Chapter 4.

3.2. Functional Requirements 37

Object-oriented data models subsume the relational model, so an object-oriented query
language should similarly subsume relational completeness. One possible definition of this
requirement is that if the data are relations, a query language should be able to express
all queries that can be expressed in the relational algebra. However, a more general
definition would be more appropriate for comparing query languages for object-oriented
databases. Basically, the concept of a relation being a set of tuples can be replaced by a
collection of objects. A query language should therefore be able to express whatever can
be expressed in the relational algebra for collections and objects. Inevitably, the relational
algebra operations will be more restrictive if tuples are not supported and should behave
differently for different collection kinds.

Studies of the generalisation of the relational model result in the introduction of three
extra operations: replace, set-collapse, and powerset. It has been shown that powerset in-
curs superexponential complexity [HS88] which justifies its omission from the requirement
list. The other two operations should be supported and their definitions can be similarly
generalised as the relational algebra operations.

In the object-oriented paradigm, cyclic relationships can be defined via one or more
methods. Some form of recursion, for instance, transitive closure, should be supported to
enable cyclic relationships to be explored.

Many object-oriented database systems support more than one collection kind. New
features are required to manipulate these collections. The accent is to find a good set
of generic operations that behave consistently for different collection classes. Equally
important is the mixing of and conversion between different collection classes. Support of
collections looks into the following features:

o collection literals

e collection equality

e aggregate functions

e positioning & ordering
e occurrences & counting
e converting collections

e combining collections

e mixing collections

In some data models including the reference data model, collections are represented
as objects hence their comparison is based on object identifiers. However, collections are
very often characterised by their contents and behave like base values. This suggests that
collections should be allowed to have dual behaviour. One aspect of this duality is to
allow collection literals to be expressed. Collection literals can be simulated in some query
languages; however, providing direct support simplifies queries as has been shown in SQL

Query Language Requirements 38

[Dat87]. Using the same argument, it should be possible to compare two collections based
on their elements instead of their identifiers.

Aggregate functions return a value from a collection and have been shown very useful
in earlier data models. When ordered collections are supported, a query language should
be able to express queries related to a position in the order and the ordering between two
elements. When collections are allowed to have duplicates, a query language should be
able to return objects with a particular number of occurrences and to count the number
of occurrences of an object. It is also important to allow collections to be combined,
converted, and mixed within a query.

Usability focuses on the ease of use of a query notation which is essential to the success

of a high-level query language. The criteria in this category are

e local definitions

e query functions

Long path expressions are not uncommon in object-oriented query expressions. To
avoid repeating long path expressions, “shorthands” can be introduced using local defini-
tions. Complicated queries are easier to express in an incremental fashion. Query func-
tions allow a complicated query to be broken down into smaller and more comprehensible

subqueries.

3.3 Related Issues

The previous discussion focuses on que.y language features without addressing the impact
of data model on query languages. There has been much discussion about the advan-
tages and disadvantages of supporting extents [Kim89, ABD*90]. Extents create security
problem as all instances of a class can be accessed via the class extent and access control
on individual objects is difficult and prohibitively expensive. Application modelling often
does not require the use of class extents. The provision of class extents has a great impact
on what a query language can retrieve. Querying a database becomes easier as every
class extent provides an entry point to the database and every object is guaranteed to be
directly accessible from at least one class extent. The result is a simpler query language
and more optimisation opportunities. Some object-oriented data models, including the
reference data model, do not support class extents. To have a set of requirements that
are generally applicable, the existence of class extents cannot be assumed. The require-
ments given in the previous section are derived with no assumption of class extents. For
data models supporting class extents, some of the requirements will become superfluous.
For example, using multiple generators together with the membership test on collections,
dependent generators can be simulated and the class hierarchy can be supported.

3.4. An Evaluation of Existing Query Languages 39

Different kinds of equality have been introduced for testing the equivalence of objects
based on their contents so that optimisation can be done with more flexibility. The
deep-sensitive equivalence rules described in [SZ89] are very complicated and significantly
increase the search space of the optimiser. The essence is that these different kinds of
equality may be useful in query algebras but their necessity in high-level query languages
is questionable.

Many other features of object-oriented query languages have been suggested [Dat84,
BZ87, Ban89, YO91, Man91, US92]. They are useful guidelines for the design of query
languages. However, using them as requirements for evaluating query languages is less

effective and their assessment can be difficult.

e Simple e Consistent e Elegant

e General e Closed e Adequate

o Application Independent e Orthogonal e Well Integrated

e Strong Typed e Formal Semantics e Efficient

e Optimisable e Null Values e Extended Facilities

e Data Administration e Integrity Constraints e Computational Complete
e Rules and Triggers e Versions e Schema Evolution

A consistent notation encourages similar concepts or problems to be expressed in sim-
ilar ways. A query language is general if it allows free composition of constructs and does
not impose arbitrary restrictions. Closure refers to the fact that the result of a query can
be similarly manipulated by the query language. In a mono-type model. like the relational
model, it is a necessary and sufficient requirement. When multiple types are supported,
like in object-oriented data models, closure becomes a necessary but not sufficient require-
ment. Adequacy provides the sufficiency by requiring a query language to operate on all
types supported in the data model. Orthogonality is usually used in discussing persistence
meaning that a query language can work on both persistent as well as transient data.

3.4 An Evaluation of Existing Query Languages

In this section four well-known query languages are evaluated using the proposed require-
ments. They are the IRIS [LK86, Bee88, FAC*89, Lyn91], ORION[Kim90], ONTOS
[Ont91a, Ont91b, Ont91c], and O2[Alt89, BDK92] query languages. These query lan-
guages are chosen as representative languages mainly because they are well-reported and
the most referenced in the literature. The result of the evaluation is summarised in Table
3.1 to Table 3.4.

Method calling is supported by all the four query languages. OSQL, ORION and
02SQL also support direct access to attributes. OSQL supports the class hierarchy via

Query Language Requirements 40

| [ONTOS SQL | OSQL | ORION | 0,5QL |

Object Identifiers v v v v
Method Calling v v v v
Complex Objects v v v v
Class Hierarchy v v v
Dynamic Binding v v v v

Table 3.1: Support of Object-Orientation.

class extents and membership test. ORION provides four constructs to support the class
hierarchy: (1) class extents and the membership test operation is-in; (2) the operations *
(meaning including instances of all subclasses), union, and difference over class extents to
form class extent expressions; (3) specifying the class of the object returned by a method
call using class, this specification can be sandwiched between method calls within the same
path expression; and (4) specifying the class of objects used and returned in a recursive
query using is-a. The ONTOS and O; data models support class extents only as an option.
ONTOS SQL does not support the class hierarchy properly in its current form. In other
words, support given to the class hierarchy partly depends on how the schema is defined.
It is however possible to extend ONTOS SQL to support the class hierarchy using the
available interfaces for collection classes and the database.

| | ONTOS SQL | OSQL | ORION | 0,SQL |
Multiple Generators v v v
Dependent Generators v
Returning New Objects
Nested Queries
Existential Quantifier
Universal Quantifier
Selection

Projection

Cartesian Product
Union

Differ

Set-collapse

Replace v
Recursion

ANENEN

ANENEN
ENENENENENENENENENEN

ANENANAN

ANENENENENENENENENENENERENEN

Table 3.2: Expressive Power.

IRIS supports class extents and hence as explained in Section 3.3 the support of de-
pendent generators in OSQL is not strictly necessary. On the other hand, the expressive
power of ONTOS SQL suffers badly because class extents are optional and dependent
generators are not supported. None of the query languages supports the return of new

objects. It is a result of the limitation of current technology since creating new objects is

3.4. An Evaluation of Existing Query Languages 41

such an expensive operation that can significantly slow down query processing. ONTOS
SQL can only return either a string or a list of strings, while OSQL and O,SQL often use
tuples to return new “objects”. ORION does not seem to offer a solution in this aspect.
Nested queries can only appear in filters of an OSQL query. Generally speaking a nested
query in a generator can always be eliminated and hence a nested query is most useful
when it is used in filters or the result expression.

Quantifiers can be simulated provided that membership test and the cardinality opera-
tions of collections are available, and nested queries are supported. ONTOS SQL does not
support nested queries and hence cannot simulate quantifiers. OSQL can simulate the use
of quantifiers in filters. If quantifiers are used elsewhere “foreign” functions - implemented
in a programming language - can be employed.

ONTOS SQL does not support union and differ. ORION does not seem to support
projection and the proposal [Kim90] did not make it clear. It cannot return new objects or
tuples (tuples are not supported by its data model) and therefore cannot express cartesian
product. O3SQL provides differ for sets but not lists. ONTOS SQL does not support set-
collapse. For the other languages, set-collapse can be performed in various ways including
implicit flattening.

The four query languages all support some form of replace. Functions can be used
in ONTOS SQL, OSQL, and O,SQL while methods can be used in all of them. ORION
supports traversal recursion that involves traversal of a cyclic relationship; however, it
does not support computational recursion where computation is done along the traversal

of a cyclic relationship.

L | ONTOS SQL | OSQL | ORION | 0.SQL |
Collection Literals v v v v
Collection Equality v v v v
Aggregate Functions v
Positioning v - - v
Ordering - - v
Occurrences v - v
Counting v - v
Converting Collections - v
Combining Collections v - v
Mixing Collections v v - v

Table 3.3: Support of Collections.

ONTOS SQL supports only set literals that can appear only in generators. OSQL does
not support lists and ORION supports only sets, therefore some entries in the table are
not applicable to them. They are marked by a dash (-) in the table. Aggregate functions
can be supported using foreign functions in the case of OSQL. O2SQL can decide whether
one element precedes another element in a list with the help of a set literal containing all

Query Language Requirements 42

the positions of the list. It is possible for OSQL and O2SQL to return objects given the
number of occurrence in a collection though in a rather distorted way. Nevertheless, it is
simpler for them to return the number of occurrence of a given object. ONTOS SQL does
not support conversion between collection classes. The result of a query is either a string
or a list of strings. With OSQL the result of a query is always a bag but duplicates in a bag
can be eliminated. For O;SQL, if all the generators are drawn from the same collection
kind the result will be of the same kind; otherwise the result is a bag. The function magic
can turn a set into a list while the function listoset and the keyword distinct and unique

turn a list into a set.

| T ONTOS SQL | OSQL | ORION | 0,5QL |

Local Definition v
Query Function v v

Table 3.4: Usability.

ONTOS SQL does not support local definitions or query functions. OSQL supports
query functions that can appear only in generators and local definitions are not supported.

ORION does not support query functions while O2SQL does not support local definitions.

3.5 Summary

Example queries of the four query languages evaluated can be found in [CHT92b, CHT93a).
Results of the evaluation of other query languages, e.g. EXCESS (EXODUS [CDV3g]),
CQL++ (ODE [DGJ92]), OQL[X] (Zeitgeist [BTA90]), and XSQL [KKS92], can be found
in [CT93, CTW95]. The new SQL3 proposal [Kul93] also includes many of the require-
ments. Existing object-oriented query languages can be improved along the directions
suggested by the requirements. It is also hoped that new query language design can
benefit from this set of requirements.

Comprehensions have been demonstrated to be well integrated with programming lan-
guages and to have desirable features that are worth exploring in the object-oriented
setting. The next chapter introduces a new query language, object comprehensions, which
is based on comprehensions and satisfies all the requirements presented in this chapter.

Chapter 4

Object Comprehensions

A new query notation called object comprehensions is introduced in this chapter. It is
based on list comprehensions [PJ87], which has been argued to be a good query notation
for being clear, concise, powerful, and optimisable [Tri91]. Object comprehensions extend
list comprehensions by combining and improving features found in existing object-oriented
query languages so as to provide a consistent and general query notation for object-oriented
databases. Furthermore they incorporate new features that are missing from existing query
languages: (1) treating the class hierarchy as a classification scheme hence allowing selec-
tion to be based on such classification; (2) using quantifiers to provide a consistent interface
to collection classes hence reducing the syntactic complexity of collection operations; and
(3) allowing the resultant ccllection class to be specified hence facilitating a “complete”
specification and resulting in more comprehensible queries. Optimisation opportunities
have been identified for some of the new features. Some optimisations allow syntax-level
transformatior at compile-time while others suggest simplification at run-time. These
optimisations not only subsume previous work of the same kind [Str90] but also include
many new optimisations.

The organisation of this chapter is as follows. Section 4.1 describes the development
of object comprehensions. Section 4.2 presents the syntax of object comprehensions. Sec-
tion 4.3 demonstrates object comprehensions using a set of example queries. Section 4.4

discusses optimisation of the new features. Section 4.5 concludes.

4.1 Comprehensions: Past & Present

4.1.1 Set, List & Collection Comprehensions

In mathematics the set of équares of all the odd numbers in a set s is conventionally

written:

{squarez | £ € s A odd z}

43

Object Comprehensions 44

This standard mathematical notation for sets was the inspiration for comprehensions.
Comprehensions first appeared as set comprehensions in an early version of the program-
ming language NPL. This language later evolved into Hope [BMS80] but without com-
prehensions. Later list comprehensions were included in KRC [Tur81], which was also the
first to utilise the now familiar set-based syntax. List comprehensions have since been
incorporated into several popular functional languages, e.g. Miranda [Tur85] and Haskell
[HW90]. A full description of list comprehensions can be found in [PJ87].

Using list comprehensions the above mathematical expression can be written as
[square z | z « s; odd z]

where s stands for a list instead of a set.

Recently, list comprehensions have been generalised to collection comprehensions, which
provides a uniform and extensible notation for expressing and optimising queries over many
collection classes including sets, bags, lists, trees, ordered sets, and so forth [WT91]. The
most significant benefit is that, although each primitive operation will require a separate
definition for each collection class, only one query notation is needed for all these collec-
tion classes; besides, a single definition is all that is required for higher-level operations
defined in terms of collection comprehensions. In other words, it significantly reduces the
syntactic complexity of the query notation.

Using collection comprehensions the same query can be written as
[square z | z « s; odd z]se
and with object comprehensions the above query can be written as
Set[z ¢« s; odd z | square z]

Each collection comprehension query can only involve one kind of collections. Object
comprehensions generalise this to allow collections of different kinds to appear in the same
query.

The result of evaluating this object comprehension query is a new collection, precisely
a set, computed from the existing collection s of class Set of Integer. The elements of
the new collection are determined by repeatedly evaluating square z, as controlled by the
qualifier odd z. Since the result of square z is of type Integer the elements in the resultant
set are therefore of the same type. The change of the position of the result expression in
object comprehensions serves to provide a simpler scoping rule.

In general, a qualifier can be a filter, generator, or local definition. A filter is just a
boolean-valued expression expressing a condition that must be satisfied for an element to
be included in the result. An example of a filter was odd z above, ensuing that only odd
values of z are used in computing the result. A generator of the form V <« E, where
E is a collection-valued expression, makes the variable V range over the elements of the

collection. An example of a generator was z + sabove, making z range over the elements

4.1. Comprehensions: Past & Present 45

of the set s. A local definition of the form N as E, introduces a symbolic name N for the
value of the expression E.

The meaning of object comprehensions can be understood using nested loops. A good
analogy is to think of generators as nested loops where outermost corresponds to leftmost,
filters as conditions of an if statement, and local definitions as assignment to new variables.

The previous query can be understood as resulting in the set » computed as follows:

r:= Set{}
for each zin s
if odd z then

r:= r union Set{ x }

It has to be stressed that this analogy is to clarify scoping rules and the meaning of

object comprehensions; it is not the way to implement object comprehensions efficiently.

4.1.2 Other Extensions & Implementations

An extension to support local definitions in list comprehensions was suggested in [Ham90].
Side-effecting qualifiers were proposed in [GOPT92]. They permit data to be manipulated
by side-effects in addition to being queried. The strong point is that such queries can
still be optimised. The advantage of comprehensions over SQL, on which many object-
oriented query languages are based, becomes clear when side-effecting qualifiers are taken
into consideration. It is difficult to see how SQL-based languages can be extended in a
similar way to cope with side-effects.

List comprehensions are also included in a new functional database language called
PFL [SP91]. In P/FDM [PG90], DAPLEX queries are translated to an abstract form
of list comprehensions with which optimisation is carried out. The authors commented
that list comprehensions allowed queries to be expressed declaratively while DAPLEX had
a navigational style of querying. It is interesting that the optimisation rules which are
similar to those in [Tri89] are defined at the abstract comprehension level.

List comprehensions have also been applied to imperative languages such as an ex-
perimental version of PS-algol [TCH90]. The AGNA database programming language
is evaluated on a dataflow multiprocessor and uses parallel list comprehensions to pro-
cess database queries at speeds comparable with other multiprocessor database machines
[NH91). SPL is a language that uses comprehensions to evaluate queries in parallel over a
distributed database [KMK90]. The new version of Napier [MBCD89] about to be released

supports collection comprehensions.

4.1.3 Simplicity, Power & Optimisation

It was argued in [Tri91] that comprehensions are a good query notation for being con-

cise, clear, expressive, and easily optimised. The essence of the argument is as follows.

Object Comprehensions 46

Comprehensions are concise because they are a declarative specification of query. Com-
prehensions are clear because they are composed of consistent and general constructs.
In [PJ87] the efficiency of list comprehensions was proved by showing that they perform
the minimum number of cons operations required to produce the result list. More impor-
tantly, for each of the well-known optimisation strategies on relational queries, there exists
an equivalent list comprehension transformation [TW89] and two of the transformations
were demonstrated [TCH90].

4.2 Syntax of Object Comprehensions

The syntax of object comprehensions is given below where terminal symbols are under-

lined.

Ezpression = FEzpression union Frpression
| Ezpression differ Ezpression
| Comprehensions
| Literal
| Path
| Call
| Aggregation Ezpression

Aggregation = size

Comprehensions ::= let Function in Fzpression
| Collection [Qualifier | Ezpression]

Collection = Se.
| Bag
| List

Qualifier u= A
| Generator
| Filter
| Definition
| Qualifier ; Qualifier

Generator = Identifier « FEzpression

Table 4.1: Abstract Syntax of Object Comprehensions.

4.2. Syntax of Object Comprehensions

47

Filter

Condition

Quantified

Operator

Type

Definition

Function

Parameter

Quantification ::

oo —
e —

Filter and Filter
Filter or Filter
not Condition
Condition

(Filter)
Quantified Operator Quantified
Ezpression hasClass Type

Ezpression hasClass Type with Filter

Ezpression
Quantification Ezpression

Collection of Type
Identifier as Expression

Identifier be Ezpression
Identifier g Parameter 2 be Ezxpression

A
Identifier ;: Type
Parameter , Parameter

Table 4.1: Abstract Syntax of Object Comprehensions (continued).

Object Comprehensions 48

Literal = String

| Integer

| Collection { Element }
FElement := A

| Ezpression

| Element , Element

| Ezpression .. Ezpression
Path = Identifier

| Identifier . Method
Method = Identifier

| Identifier (Argument)
Argument = A

| Ezpression

| Argument , Argument
Call := Identifier (Argument)

Table 4.1: Abstract Syntax of Object Comprehensions (continued).

4.3 Object Comprehensions

The following subsections demonstrate object comprehensions using queries on the exam-
ple database described in Section 2.13. Methods used in the examples are supposed to be
without side-effects. Side-effecting methods can be dealt with as proposed in [GOPT92).
The focus of each query is underlined. A discussion is given after each query. Queries
involving stafl members, students, and tutors should be read as staff members, students,

and tutors of the Science Faculty, unless stated otherwise.

4.3.1 Support of Object-Orientation

Method Calling & Dynamic Binding

Q1. Return staff members earning more than £1000 a month.

Set[s « StaffMembers; s.salary > 1000 | s]

Encapsulation protects attributes of an object from being accessed directly. Such an
access must be made via a method. In QI, s.salary represents the calling of method
salary on a staff member object s drawn from the collection StaffMembers. Recall that a

4.3. Object Comprehensions 49

tutor is a staff member whose salary is calculated differently using an overloaded method.
Since StaffMembers may contain tutor objects, the method to be used will be dynamically
determined depending on the type of s.

Complex Objects

Q2. Return tutors living in Glasgow.

Set[t « Tutors; t.address.city = “Glasgow” | t]

Support of complex objects implies that a method call may return an object. The
returned object can, in turn, receive another method call. This can go on for several
method calls until, for instance, a base value is returned. In Q2, t.address.city represents

the calling of method city on the result returned by calling address on a tutor object .

Object Identifiers

Q3. Return tutors working and studying in the same department.

Set[t « Tutors; t.department = t.major | t] i

In the object-oriented paradigm, objects are represented by object identifiers which
are essential for object sharing and representing cyclic relationships. Equality between
objects is defined by the equality between their identifiers. In Q3, the equality operator,

«_»

=", compares two department objects using their object identifiers.

Class Hierarchy

. Q4. Return all visi ..g staff me. bers in the universit, .

Set[p « Persons; p hasClass VisitingStaff | p]

There is no collection in the database containing only objects of class VisitingStaff.
StaffMembers contains only members in the Science Faculty. The only collection that
contains all visiting staff members is Persons. It is the reason why the Persons collection
is used in this query. Since a collection can contain heterogeneous elements beionging to
different classes, elements of Persons can be of class Person or its subclasses. One way of
selecting elements from such a collection is to specify the class of interest. In Q4, hasClass
returns true if person object p is indeed of class VisitingStaff. This operation is essential
for data models not supporting class extents.

Q5. Return all visiting staff members in the university who earn more than £1000 a
month.

Set[p ¢ Persons; p hasClass VisitingStaff with p.salary > 1000 | p]

Object Comprehensions 50

The method salary is defined for visiting staff members but not persons in general.
Therefore calling salary on a person object may result in an error. To allow selection
that is applicable only to objects of a particular class, the hasClass é with construct can
be used. The role of with is similar to that of conjunction. The second condition (e.g.
p.salary > 1000) is evaluated only if the first condition (e.g. p hasClass VisitingStaff) is
true; however, the conditions around with cannot be swapped. In other words, with is a
non-symmetric conjunction. This construct is essential for supporting static type checking

in the absence of support for class extents.

Local Definitions

Q6. Return students whose major departments are in either Hillhead Street or Uni-

versity Avenue.

Set[s « Students; a as s.major.address.street;
a = “Hillhead Street” or a = “University Avenue” | s]

Local definitions simplify queries by providing symbolic names to expressions. They
are particularly useful when an expression is used in more than one place. In Q6,
s.major.address.street would have been written twice if local definitions were not sup-
ported. The use of the symbolic name a for the expression saves repeating the long

expression twice.

4.3.2 The Result Expression

Returning New Objects

Q7. Return students and the courses taken by them. The result is obtained by
creating new objects using the student ¢. jects and the sets of courses.

Set[s « Students| AClass.new(s, s.takes)]

So far, only queries returning existing objects have been examined. To return “new”
information, the corresponding class has to be defined beforehand and the query will create
objects of this class as the result. In Q7, the method new, which takes two parameters: s
and s.takes, is called on the class AClass. If tuples were supported in the reference data
model, the encoding of multiple results to a tuple would be obvious.

Nested Queries

Q8. Return students and the courses taken by them that have more than one credit.
The result is obtained by creating new objects using the student objects and the sets

of courses.

Set[s < Students | AClass.new(s, Set[c « s.takes; c.credits > 1| c])]

4.3. Object Compreh.ensions 51

Nested queries enable richer data structures to be returned as well as complex selection
conditions to be expressed. In Q8, the inner query réturns a set of courses and is used as
a parameter to the method call in the result expression of the outer query. The generator
used in the inner query is referred to as dependent generator and is explained in the next

subsection.

4.3.3 Generators

Multiple Generators

Q9. Return students studying in the same department as Steve Johnson.

Set[z _« Students; y « Students; z.name = “Steve Johnson”;
z.major = y.major | y]

Multiple generators allow relationships that are not explicitly defined in the database
schema to be “re-constructed”. In Q9, z is ranged over Students and y is ranged over
the same set but independently. The missing relationship is established using the major
departments of z and y. Multiple generators are particularly useful in processing nested

collections as shown in the next example.

Dependent Generators

Q10. Return courses taken by the students.

Set[s « Students; ¢ « s.takes| c]

The result of a method call can be a collection containing many elements. To facilitate
querying over une elements in such a “nested” coilection, a dependent generator can be
used. In QI10, c is ranged over the collection returned by calling takes on the current
student object s (i.e. the element in Students that is currently bound to s). The range of

¢ changes whenever s is given a new object.

Literal Generators

Q11. Return those courses among DB4, Al4, HCI4, OS4, and PL4 which have more

than one credit.

Set[c + Courses; ¢ « Set{“DB4”,“AI4”,“HCI4”, “0S4”,“PL4" };
c.code = z; c.credits > 1| c]

Collection literals can simplify queries by making them more concise and arguably
clearer. In Q11, a set literal of strings is specified by listing the elements within curly
brackets. They are, however, more often used in specifying filters as in the next example.

Object Comprehensions 52

4.3.4 Quantifiers

In order to provide a coherent notation for querying over different collection classes, object
comprehensions rely on quantifiers to express many collection operations. The quantifiers
introduced in this subsection concern the occurrences of collection elements and they have
the same semantics for sets, bags, and lists. Note that the semantics of a quantified

expression is not compositional.

Existential Quantifiers

Q12. Return those courses among DB4, Al4, OS4, and PL4 which have more than

one credit.

Set[c¢ « Courses; c.code = some Set{“DB4”,“AI4”,“054”,“PL4"};
c.credits > 1| ¢]

Q13. Return students taking a course given by Steve Johnson.

Set[l « StaffMembers; l.name = “Steve Johnson”; s ¢« Students;
some s.takes = some l.teaches | s]

A restricted form of existential quantification is provided by some, which can appear
on either side of an operator. In Q12, the first filter succeeds if a course code is one of the

members listed in the set literal. That is,
drez € Set{“'DB4”, “AI4”,“0S4”,“PIA”} A z = c.code

In Q13, the filter returns true if there is a common element between the two sets: s.takes

and l.teaches (i.e. an non-empty interscction). That is

Jz3y ez € s.takes N y € l.teaches N z =1y

Universal Quantifiers

Q14. Return students taking only courses given by Steve Johnson.

Set[l « StaffMembers; l.name = “Steve Johnson”; s « Students;
every s.takes = some l.teaches | s]

In Q14, the last filter succeeds if all the course elements in s.takes are also in the set
l.teaches. That is,

Vzdyez € s.takes A y € l.teaches N z =1y

Actually it is the subset relation. Note that the universal quantifier is always bound first

if used together with an existential quantifier.

4.3. Object Comprehensions 53

Numerical Quantifiers

Numerical quantifiers are based on numerical quantifiers used in logic [BB89]. They are
very useful in dealing with duplicate elements in collections and the number of elements

that are common between two collections (i.e. the size of the intersection).

Q15. Return students taking two or more courses given by Steve Johnson.

Set[l + StaffMembers; l.name = “Steve Johnson”; s « Students;
some s.takes = atleast 2 l.teaches | s]

Q16. Return students taking exactly two courses given by Steve Johnson.

Set[l « StaffMembers; l.name = “Steve Johnson”; s « Students;
some s.takes = just 2 l.teaches | s]

Q17. Return students taking no more than two courses given by Steve Johnson.

Set[l < StaffMembers; l.name = “Steve Johnson”; s + Students;
some s.takes = atmost 2 l.teaches | s]

In Q15, the last filter becomes true if there are at least two elements that are common
between s.takes and l.teaches. That is

322 zdy ez € l.teaches N y € s.takes A z =1y
where

3,2 Pr) = T, e (P@AG. «PG)AY)

2n-

dz e P(z).

L
vV
-
8
[]
v
—
8
~
il

In Q16, the last filter succeeds if there are exactly two elements that are common between

the operand sets. That is,

3_, zeP(z)=(3,, ve P(2))A-(3y,41 z @ P(2))

n

While in Q17, the number of common elements must be less than or equal to two. That
is,

J¢n T P(2) =~(35,4q z 0 P(z))

n

Quantifiers are bound in the following order: the universal quantifier then numerical

quantifiers and followed by the existential quantifier.

Object Comprehensions 54

4.3.5 Support of Collections

Aggregate Functions

Q18. Return courses with less than two assessments.

Set[c¢ + Courses; (size c.assessments) < 2 | c]

The aggregate function size returns the number of elements in a collection. It is defined

for all collection classes. For bags and lists duplicate elements are included in the counting.

Equality

Q19. Return courses requiring no prerequisite courses.

Set[¢ « Courses; c.prerequisites==Set{} | c]

In many occasions it is necessary to compare two collections based on the elements,
their occurrences, and their order. Two bags are equal if for each element drawn from
either collection there is equal number of occurrences in both bags. For lists, the number
of occurrences and the positions must be the same. In Q19, the filter becomes true if
c.prerequisites is an empty set. Note that object comprehensions do not support equality

on objects that are not collections.

Occurrences & Counting

Q20. Return courses with 4 assessments of the same percentage weight.

Set[c + Courses; i « c.assessments;
Just 4 c.assessments =1 | c]

Q21. Return the number of assessments worth 25% in the DB4 course.

Set[¢ « Courses; c.code = “DB4”;
i < List{1..(size c.assessments) };
just i c.assessments =25 | i]

In Q20, the selection is based on the number of occurrences (i.e. 4) of an element
(i.e. 1) in the collection c.assessments. The use of numerical quantifiers simplifies retrieval
based on occurrences. In Q21, the number of occurrences (i.e. i) of a given element (i.e.
25) in the collection c.assessments is returned. The possible number of occurrences are

generated using a literal generator ranging from 1 to (size c.assessments).

4.3. Object Comprehensions 55

Positioning & Ordering

Q22. Return the first and second supervisors of Steve Johnson.

Set[s « Students; s.name = “Steve Johnson”;
i « List{ 1.2} | s.supervisedBy.[1]]

Q23. Return students having Steve Johnson before Bob Campbell in their supervisor

lists.

Set[s <« Students; sup as List{ 1..(size s.supervisedBy)};
i + sup; s.supervisedBy.[i].name = “Steve Johnson”;
j sup; s.supervisedBy.[j].name = “Bob Campbell”; i < j | s]

A list allows duplicate elements and keeps track of the order of the elements. Naturally
queries involving lists may question on the order or positions of elements: In Q22, the
first two elements of the list are returned using a literal generator. In Q23, a list literal is
generated. Two generators are then ranged over it to match the given names. The relative

order is determined using the range variable ¢ and j.

Union & Differ

Q24. Return students in the Computing Science and Electrical Engineering Depart-
ments.

Set[s + Students; s.major.name = “Computing Science” | s]

union

Set[s ¢« Students; s.major.name = “Electrical Engineering” | s]

The union operator combines two collections to form a new collection of the same class
but having all the elements. If the two operand collections have different element classes,
the least general unique common superclass of the original element classes becomes the
element class of the resultant collection. The union of two bags contains all the elements in
the operand bags including all duplicates - additive union. The union of a list to another
list appends the latter to the former - list concatenation.

Q25. Return cities where students, but no staff, live.

Set[s « Students | s.address.city]
differ
Set[s + StaffMembers | s.address.city]

The difference between two collections can be expressed using differ as in Q25. The
class of the resultant elements is determined in the same way as in union. The number

of occurrences for an element in the resultant collection is the difference of those in the

Object Comprehensions 56

operand collections. In the case of lists, differ removes elements in the second operand list
from the first operand list. To be precise, given an element of the second operand list the

last occurrence of it in the first operand list will be removed.

Converting Collections

Q26. Return the wages of tutors and keep the possible duplicate values.

Bag[t < Tutors | t.wages]

This query is based on a set of tutor objects and therefore the result is naturally a
set of integers containing no duplicate values. If duplicates are to be kept the result can
be specified to be a bag. Explicitly specifying the resultant collection kind provides a
high-level mechanism to manage duplicates. Otherwise, implicit conversion rules have to
be imposed or explicit conversion of all generators to the resultant collection kind will be
required. Converting a collection into a set results in the elimination of duplicates and the
loss of the order between elements. Converting a collection into a bag keeps the number of
elements unchanged - duplicates are not lost and no new elements are introduced - but the
order between the elements is lost. Convertiné a collection into a list keeps the number of

elements and an arbitrary order is assigned to the elements.

Mixing Collections

Q27. Return courses taught by the supervisors of Steve Johnson.

Set[s « Students; s.name = “Steve Johnson”;
sup ¢+ s.supervisedBy; ¢ « sup.teaches | c]

If an object-oriented data model supports more than one collection kind, the corre-
sponding query notation should support not only different collection kinds but also the
mixing of them in the same query. In Q27, the first generator is drawn from the set
Students, the second generator from the list s.supervisedBy, and the last generator from
the set sup.teaches. Knowing the resultant collection kind, object comprehensions can

automatically convert all generators into the resultant kind.

4.3.6 Query Functions & Recursion

Q28. Return all direct and indirect prerequisite courses for the “DB4” course.

let f(cs : Setof Course) be
cs union Set[z ¢ cs; y « f(z.prerequisites) | y]
in Set[c « Courses; c.code = “DB4”; p « f(c.prerequisites) | p]

In object-oriented data models, it is possible to find cyclic relationships involving one
or more classes. This suggests that recursive queries should be supported. With object

4.4. Semantic Optimisation 57

comprehensions, recursive queries can be expressed using query functions. In Q28, the
result of the query is generated by retrieving elements, p, from a collection returned by a
recursive function, f(c.prerequisites). Function f takes a set of courses and returns a set
of courses. For each element z drawn from the input collection cs, fis applied recursively
on the prerequisite courses of z, z.prerequisites, and the result is then combined with the

input collection. The recursion stops when fis passed an empty set.

4.4 Semantic Optimisation

Optimisations developed for list comprehensions, which includes all well-known relational
optimisation transformations, are also applicable to object comprehensions. Details of
which are not repeated here and can be found in [TW89]. This section studies the op-
timisation of the new features using semantic information. Semantic optimisation rules
are meaning-preserving transformation rules. They are used to create equivalent expres-
sions based upon pattern matching and textual substitution. In addition, they also use
semantics of the database schema as given by the class definitions and the class hierarchy.
The overall goal of expression transformation is to reduce the cost of query evaluation.
The focus of this section is on rule specification as opposed to rule application for quecry
optimisation as the latter has been shown to be viable [GD87, HFLP89].

The following tables show the transformation rules for the new features in object
comprehensions. The expressions that can be optimised are listed in the second column.
The third column provides the equivalent expressions. The conditions under which a
transformation can be performed are given in the last column. Definitions of the functions,

relations, and domains used in the last column can be found in Chapter 2.

4.4.1 Class Hierarchy

Optimisable Transformed | Conditions
Expression Expression
1 x hasClass Entity true
2 x hasClass c true typeOf(x) « ¢
3.1 | (x hasClass c;) and (x hasClass c;) x hasClass c2 | c2 € 1
3.2 x hasClass ¢ 3, c: ClassNamee c < c1 Ac < c2
33 false ~ 3 c: ClassNameeo c € cy Ac «KcC2
4.1 | not (x hasClass c;) and (x hasClass cz) | false 2 ¥
4.2 x hasClass c2 | -~ 3 c: ClassNameeo c € c; Ac K2
[5 T (x hasClass c;) or (x hasClass c2) | x hasClass ¢, | c2 < |

Table 4.2: Optimising Class Testing.

All these transformations can be applied at compile-time. This set of semantic optimi-

sation rules subsumes those found in [Str90]. An interpretation of the rules is given below

Object Comprehensions 58

and followed by an example of the usage of one of the rules.

Rule 1 Every class is related directly or indirectly to the root class by the ISA relation-

ship. Fntity is the root class. Therefore every object is also of class Entity.
Rule 2 If the class of z is a subclass of ¢, then z is also of class c.

Rule 3.1 If ¢, is a subclass of cy, being of class ¢y implies being of c;. It is therefore

sufficient to check just c,.

Rule 3.2 Let ¢ be the unique common subclass of ¢; and ¢;. For any z to be of both

classes ¢; and cg, it is possible only if z is of class c.

Rule 3.3 If ¢; and ¢y do not have a common subclass, no object can be of classes ¢; and

co at the same time.

Rule 4.1 It is not possible for an object to be of one class but not a superclass of this

class.

Rule 4.2 Given that ¢; and c; do not have a common subclass. To check if an object is
of class ¢, but not c;, testing against cy will be sufficient as no object can be of the

two classes simultaneously.

Rule 5 For an object to be of one class or a superclass of this class, it is sufficient just to

check against the superclass.

Q29. Return people in all faculties that are a staff member and a student at the same

time.

set[p < Persons; p hasClass S...f; p hasClass Student | p]
=3 Set[p « Persons; p hasClass Tutor | p]

Using the database schema given in Section 2.13 and rule 3.2 in Table 4.2 above, it
can be deduced that the two filters are true only if a person is a tutor. Applying the
transformation will turn the original query from having two filters to just one. Note that

“” is semantically equivalent to and.

4.4.2 Quantifiers

In the following table, n stands for an integer expression, z represents an expression return-
ing an object, and e represents any expression including quantified expression. Operators
are represented by #. The label quantifier stands for one of the three numerical quantifiers:
atmost, just, or atleast.

These rules will be used mostly at run-time. They can be applied at compile-time if
some of the operands are literal. An interpretation of the rules is given below.

4.4. Semantic Optirﬁisation 59

Optimisable Transformed | Conditions
Expression Expression
7 every cs 8 x true sizecs =0
8 every ¢s = x false kindOf(cs) = ASet A (sizecs) > 1
9 every cs; = every csz false (kindOf(cs1) = ASet A (sizecsy) > 1) V
(kindOf(cs2) = ASet A (size csz) > 1)
{ 10 | quantifierncsfe | false [n<o j
11.1 | atmost ncs f e true (sizecs) =0
11.2 true (sizecs) < n
12 atmost n; cs; = some csy | true kindOf(cs1) = ASet A
kindOf(csz) = ASet A (size cs2) < my
13 justncs =x false kindOf(cs) = ASet An > 1
14.1 [justncsf e true (sizeecs)=0ARDn=0
14.2 false (sizecs) < n
15 Jjust n; cs; = some csz false kindOf(cs1) = ASet A
kindOf(cs2) = ASet A (size csy) < my
16 atleast n cs = x false kindOf(cs) = ASet An > 1
17.1 | atleast ncs f e true n=0
17.2 false (size cs) < n
18 atleast n; cs; = some cs, | false kindOf(cs1) = ASet A
kindOf(cs2) = ASet A (size csz) < m
[19] somecsfe [false [(sizecs) =0

Table 4.3: Optimising Quantified Expressions.

Rule 7 Universal quantification over an empty collection is always true.

Rule 8 It is not possible for the elements of a non-singleton set to be identical to the

same object as a set does not allow duplicates.

Rule 9 It is -t possible for the elements of a ncn-singleton set to be identical with all

the elements of another set.
Rule 10 A numerical quantifier only works with positive numbers.
Rule 11.1 An empty collection will satisfy any limit of occurrence.

Rule 11.2 If the limit of occurrence is larger than the size of the collection, it is always

true regardless of the operator.

Rule 12 If the limit of occurrence for a set is larger than the size of the set from which

the comparing elements are drawn, it is always true with the equality operator.
Rule 13 It is not possible for an element to occur more than once in a set.
Rule 14.1 It is always true that no element occurs in an empty collection.

Rule 14.2 It is not possible for the number of occurrences of an element to be greater

than the size of the collection from which it is drawn.

Object Comprehensions 60

Rule 15 If the number of occurrences for a set is larger than the size of the set from which

the comparing elements are drawn, it is always false with the equality operator.
Rule 16 It is not possible for an element to occur more than once in a set.
Rule 17.1 Any object occurs at least zero times in a collection.

Rule 17.2 It is not possible for the minimum number of occurrences of any element to

be larger than the size of the collection.

Rule 18 If the minimum number of occurrences in a set is larger than the size of the
set from which the comparing elements are drawn, then it is always false with the

equality operator.

Rule 19 Existential quantification over an empty collection is always false.

4.5 Summary

The salient features of object comprehensions have been presented. The example queries
demonstrated that sophisticated queries can be expressed using object comprehensions
in a clear and concise fashion. This is achieved via the support of a number of pow-
erful predicates, orthogonal composition of constructs, query functions, local definitions,
manipulation of different collection classes, and recursion. Despite of being a powerful
notation, object comprehensions can be optimised using existing optimisation techniques.
Some optimisations for class testing and quantification were identified and presented. In
the next chapter, the expressive power of object comprehensions is further demonstrated
by providing translation from other query languages to object comprehensions.

Chapter 5

Translating Query Languages to

Object Comprehensions

Many query languages have been proposed for object-oriented databases. These query
languages vary in expressive power and use different notations. Despite of all these ap-
parent dissimilarities, they share similar underlying semantics. This observation suggests
that a single unified scheme can be developed to support these languages. This chapter
describes the use of object comprehensions to provide such multi-lingual support for the
reference data model. A set of translation schemes from the query languages studied in
Chapter 3 to object comprehensions is presented. These translation schemes demonstrate
that object comprehensions are as powerful as any of these query languages with respect
to the reference data model and therefore can be used to provide a platform to support
any or all of these query languages.

The organisation c¥ this chapter is as follows. Sectio~ 5.1 introdu~~~ the queries used
to demonstrate the translation schemes. Section 5.2 explains the notations used in the
translation schemes. Section 5.3 and 5.4 present the translation schemes for ONTOS
SQL and ORION. An example is given in each section to demonstrate the translation.
Section 5.5 and 5.6 provide an example translation for OSQL and O;SQL (their translation
schemes are given in Appendix C). Section 5.7 concludes.

5.1 Example Queries

Multi-lingual support allows a database to be queried using more than one query lan-
guage. Different users can therefore query the same database using query languages that
are familiar to them or more appropriate for the particular environments in which they op-
erate. Multi-lingual query support for conventional databases was investigated in MLDS
[DHS87]. This chapter discusses multi-lingual support for object-oriented databases using

object comprehensions.

61

Translating Query Languages to Object Comprehensions 62

Four example queries are used to demonstrate the translations from existing query
languages to object comprehensions. They are chosen to demonstrate the interesting
features of these query languages. The queries are expressed as object comprehensions as
follows.

Q30. Return courses co-run by the Computing Science department and having be-
tween 1 and 3 credits.

List[¢ « Courses; d < Departments; d.name = “Computing Science”;
d = some c.runBy; 1 <= c.credits; c.credits <=3 | c]

Q31. Return students taking some course given by their supervisors.

Bag[s « Students; ¢ + Courses; ¢ = some s.takes;
c = some List[z + s.supervisedBy; y < z.teaches | y] | s]

Q32. Return students having no supervisors from their major departments.

Set[s + Students;
(let f(zs: List of Staff) be
Set[&+ « zs | z.department ~= s.major]
in every f(s.supervisedBy) = true) | s]

Q33. Return courses requiring “Logicl” as a direct or indirect prerequisite.

Set[¢ + Courses;
some(let codes(cs : Set of Course) be
Set[¢ « e¢s | c.code]
in
codes(let pregs(cs: Set of Course) be
cs union Set[¢ « cs; = « preqs(c.prerequisites) | z]
in preqs(c.prerequisites))) = “Logicl” | ¢]

This chapter focuses on the retrieval capability of query languages and hence data
management functions, like update and delete, are not discussed. As a consequence,
constructs providing such functions are not included in the translation schemes. Since
this research is conducted in the context of the reference data model, modelling notions
and their corresponding constructs not supported by the model are naturally excluded
from the translation. Discussion of some of the constructs that are left out can be found

in Appendix B.

5.2 Translation Notation

The following sections describe the translation of four high-level query languages, namely
ONTOS SQL, ORION, OSQL, and O,SQL into object comprehensions. The transla-

5.2. Translation Notation 63

tion schemes are presented in denotational style [Sto77]: using compositional translation

functions and the argument to each translation function is put within [] brackets.

5.2.1 Translation Functions

Each translation is describ

ed in terms of a number of translation functions each dealing

with one syntactic category.

TQ
TD
TE
TO

For the sake of simplici
to deal with types.

TT

Translate a Query

Translate a Domain (Generator)
Translate an Expression
Translate an Operation

ty, it is assumed that a number of translation functions exist

Extract the Type of an Expression

TM Extract the Element Type of Collection

TC
TX

Extract the Kind of a Collection
Extract the Collection Kind from a Type Expression

The translation functions of each query language are subscribed by ontos, orion, osql,

and oysql.

5.2.2 Syntactic Categories

Within each la zuage, diffe

= mgo

m e € oo

rent syntactic categories are given different symbols:

Query

Domain (Generator)
Expression

Identifier

Constant

Sort Order

Operation

Relational Operation (Boolean)
Arithmetic Operation
Collection Kind

The four query languages are marginally simplified to make the translation more ele-
gant. The simplifications made are listed and discussed in Appendix B.

Translating Query Languages to Object Comprehensions 64

5.3 Translating ONTOS SQL

5.3.1 ONTOS SQL Abstract Syntax

Q ::= select E from Ds where E
| select E from Ds

Ds == D|D, Ds
D ==FI|{Es}I
Es := A|E|E, Es
F u= Fand E|E or E|not E
| Eisin E|E is notin E
| E between E and E | E not between E and E
| EwE|EBE
| B.E|I(Es)|(E)|I]k

w = =< >e=lk]k=

p w=al/1+]-

Table 5.1: ONTOS SQL Abstract Syntax.

5.3.2 ONTOS SQL Translation Rules
Using ONTOS SQL, query Q30 can be expressed as follows.

Q30. Return courses co-run by the Computing Science department and having be-

tween 1 and 3 credits.

select ¢

from Courses ¢, Departments d
where d.name = “Computing Science”
and d is in c.runBy

and c.credits between 1 and 3

Translating Queries

The ONTOS SQL translation uses the TQopntos function initially. Since an ONTOS SQL

query always returns a list as the result, TQqntos produces a list comprehension. In the

5.3. Translating ONTOS SQL 65

list comprehension, all of the domains are translated into generators by TDontos [D-]-
Then the filters, if any, are translated into qualifiers by TE,p0s [E;] Finally the target
is translated by TEoptos [E]

T Qontos [select E from D where E;]
= List[TDontos [D]; TEontos [E1] | TEontos [E]] (ontos.1)

T Qontos [select E from D]
= List] TDontos [D] | TEontos [E]] (ontos.2)

Translating Domains

Two domains are translated individually using TDgptos and the resulting translations
are composed with a semi-colon. A domain can be formed by either a collection-valued
expression or a collection literal. In the case of a collection-valued expression, the function
TEontos is used. For a literal, the elements are translated using TE,nt0s and the results
form the elements of the literal Set{TEqntos [E]}. Domain variables remain unchanged

and are composed to the new domains using « .

TDontos [D1 ,D2] = TDontos [D1]; TDontos [Dz] (ontos.3)
TDontos I[E I]' = I « TEonatos [[E]] (ontos.4)
TDonwos [{E} 1] = [« Set{ TEont: [E]} (ontos.5)

Translating Expressions

2. sequence of express 18 separate ' by comma is transl “ed as follow

TEontos l[E] y E2] = TEom,og [El]] 3 TEom,os [[Ez :ﬂ (ontos.6)

Selection conditions can be composed using logical connectives. Both ONTOS SQL
and object comprehensions support the same set of connectives except that semi-colon can
be used for and in object comprehensions. The operand expressions are translated using
TEontos-

TEomos lI E1 and E2]l = TEom.os [[E]] ; TEom,os [Ez]I (ontos.7)
TEontos [E1 or E2] = TEontos [E1] or TEcntes [E2] (ontos.8)
TEontos [n0ot E] = not TEonws [E] (ontos.9)

ONTOS SQL provides two membership test operations and they can be represented
in object comprehensions using the existential quantifier, some. A value is in a collection

Translating Query Languages to Object Comprehensions 66

if it is equal (=) to some element in the collection. The converse holds when no element

(~=) equals that value. The operand expressions are translated using TEgntos.
TEontos [E1isin E2] = TEontos [E1] = some TEontos [E2] (ontos.10)
TEontos [E1isnotin E2] = TEontes [E1] ~= some TEonos [E2] (ontos.11)

A value can be tested to see if it falls within or outside a given range using between
in ONTOS SQL. In object comprehensions, range testing can be done by comparing the

given value with the largest and smallest values in the given range.

TEontos [E between E; and E;]
= TEontos l[El]] <= TEontos ﬂ:E:ﬂ H TEontos [[E]l <= TEom,os I[Ez]l (ontos.l?)

TEontos [E not between E; and E;]
= TEontos [E] < TEontes [E1] or TEontos [E2] < TEontos [E] (ontos.13)

Relational and arithmetic operations can be translated easily. For the rest of this
chapter, the translation of common operations is captured using a generalised rule in

which an operation is represented by ¢. An example of translating ¢ is given below.

TEontos I[El ¢ E;]I = TEontos ﬂ:El]l TOontos |[¢]] TEonuos I[Ez]] (0nt05-14)

TOonios [<>] = ~= (ontos.15)
Both ONTOS SQL and object comprehensions use the dot notation for method calls
whose . _uments are put within () bracket
TEontos I[El . EZ]I = TEontos I[E1 l] . TEom,os |[E2]] (ontos.lﬁ)
TEontos [1 (E)] = I(TEomes [E]) (ontos.17)
Brackets, identifiers, and constants are translated as follows.

TEontos [E)] = (TEonws [E]) (ontos.18)
TEontos l[E]] = F (Ol’ltOS.lg)

5.3. Translating ONTOS SQL 67

5.3.3 Example ONTOS SQL Translation

As an example of the use of the translation rules, Query Q30 presented at the beginning
of this section can be translated as follows. The numbers of the translation rules applied

are listed after =.

TQontos [select ¢
from Courses ¢, Departments d
where d.name = “Computing Science”
and d is in c.runBy

and c.credits between 1 and 3]

= (ontos.1), (ontos.7) twice
List] TDontos [Courses c, Departments d J;
TEontos [d.name = “Computing Science” J;

TEontos [d is in c.runBy J; TEontos [c.credits between 1 and 3] | TEontos [¢]]

= (ontos.3), (ontos.4) twice, (ontos.19) twice
List[¢ « Courses; d « Departments;
TEontos [d-name = “Computing Science” ;
TEontos [d is in c.runBy J; TEoptos [c.credits between 1 and 3] | TEontos [¢ 1]

= TQontos, (ontos.14), (ontos.16), (ontos.19) 3 times
List] ¢ + Courses; d « Departments; d.name = “Computing Science”;

TEontos [dis in c.runBy }; TEontos [c.credits between 1 and 3] | TEontos [¢]]

= (ontos.10), (ontos.16), (ontos.19) 3 times
List[¢ « Courses; d < Departments; d.name = “Computing Science”;

d = some c.runBy; TEontos [[c.cr_edit;s between 1 and 3] I TEontos [c])

= (ontos.12), (ontos.16) twice, (ontos.19) 6 times
List[¢ + Courses; d + Departments; d.name = “Computing Science”;

d = some c.runBy; 1 <= c.credits; c.credits <=3 | TEontos [c]]

= (ontos.19)
List[¢ « Courses; d « Departments; d.name = “Computing Science”;

d = some c.runBy; 1 <= c.credits; c.credits <=3 | ¢

Translating Query Languages to Object Comprehensions

68

5.4 Translating ORION

5.4.1

ORION Abstract Syntax

Ds ::

Es ::

Q union Q | Q intersect Q | Q difference Q | (Q)
select E from Ds where E

select E from Ds
select F where F
select F

D| D, Ds
I:TissinE|:IisE

E|E, Es

Eand E|E or E
EclassIwE|Eclass EwE
each Ew E | E each Ew E

exists Ew E | E exists Ew E
FwE|EyE

E set_of E | set_of E | E (recurse E)
EE|IT|I(Es)|(E)
:I| '(Es)|k

=[= =>>=|<[<=]

equal | string_equal | string =

has_subset | is_subset | is-equal

has_element | = : has_element | is_in | - : is_in

#|/1+]-

Table 5.2: ORION Abstract Syntax.

5.4. Translating ORION 69

5.4.2 ORION Translation Rules

Using the ORION query language, query Q33 can be expressed as follows.

Q33. Return courses requiring “Logicl” as a direct or indirect prerequisite.

select :c
from :c is_in Courses

where :c exists (recurse set_of prerequisites) code = “Logicl”

ORION allows the use of multi-valued methods, recursion, and quantifiers in path
expressions. For example, the path expression :c set-of prerequisites code returns the
course codes of all the prerequisite courses of :c. The keyword set-of indicates that a
multi-valued method prerequisites is used in the path expression. This path expression
can be enhanced to return the course codes of all direct and indirect prerequisite courses
as follows: :c (recurse set-of prerequisites) code. The existential quantifier exists in Q33

tests the existence of a direct or indirect prerequisite course with the course code Logicl.

Translating Queries

The translation for ORION begins with the TQorion function. ORION supports a group
of set operations that are used only at the top level of a query. The operation intersect is
not directly supported in object comprehensions but can be expressed in terms of differ.
All the operands are translated using TQorion-

TQorion [Q1 union Q2] = TQorion [Q1] union TQorion [Q2] (orion.1)
TQorion [Qi intersec 2] = T dorion [Q1] differ (TC rion [Q1] df TQorion [Q21])

(orion.2)

TQorion [Q1 difference Q2] = TQorion [Q1] differ TQorion [Q2] (orion.3)

TQorion [(Q)] = (TQorion [Q1]) (orion.4)

A query can be formulated in SQL-like syntax except that the domain and condition
parts are optional. Set is the only collection kind supported in ORION, all queries are

therefore translated into set comprehensions.

TQorion [select E from D where E;] = Set[TDorion [D]; TEorion [E1] | TEorion [E 1]

(orion.5)
TQorion [select Efrom D] = Set[TDosion [D] | TEorion [E]] (orion.6)
TQorion [select E where E;] = Set[TEorion [E1] | TEorion [E 1] (orion.7)

TQorion [select E] = Set[| TEorion [E 1] (orion.8)

Translating Query Languages to Object Comprehensions 70

Translating Domains

Multiple domains are separated by comma in ORION but semi-colon in object comprehen-

sions. Domain variables are prefixed with a colon which is removed during the translation.

TDorion I[Dl) D2]l = TDorion I[Dl.]] H TDorion I[DZ]] (OI'iOIl.Q)
TDorion [1 isin E] = I ¢« TEosion [E] (orion.10)

If an expression is used more than once in a query it is convenient to give it a name so
that further references to the expression can be replaced by the name. In ORION, such a
name can be specified in the domain part of a query and must start with a colon which is
removed during the translation.

TDorion [:1isE] = I a5 TEorion [E] (orion.11)

Translating Expressions

A sequence of expressions separated by comma is translated as follows.

TEorion [El ’ E: I| = TEorion II E, n) TEorion I[EZ] (Ol'ion-lz)

Logical connectives are translated as follows.

TEorion I[El and E2]I = TEorion I[El H H TEorion “:EQ] (O!’iOl’l.13)
TEorion |[E; or E;]I = TEosrion |[E1]] or TEorion [[EQ]I (OI‘iOIl.14)

ORION supports ¢ .ss testing ..ing class that can L> sandwiche _etween method
calls. This embedding of class testing within computation requires a two-staged evaluation
in object comprehensions: a class testing on the first part of the expression is carried out
first and then the whole expression is evaluated. The translation of a simpler case is given
in Appendix C.

TEorion [E1 class | E; w Es]
= TEorion [E1] hasClass I ; TEorion [E1 E2 wEs] (orion.15)

Existential and universal quantifiers are supported in ORION using ezists and each
respectively. A representative case is given below and other cases are considered in Ap-
pendix C. In the expression below, E; E; is a collection-valued expression and the exis-
tential quantifier is applied over the elements of it. The whole expression returns true if
any element z in the collection satisfies the condition (z E3 w E4). The translation turns

the expression on the left hand side of w into an expression involving implicit join whose

5.4. Translating ORION 71

translation is given later in this subsection. The comparison operation w and the expres-
sion E4 on its right hand side are translated using TOgyion and TEqgon. The application

of this rule is demonstrated in the translation example given in the next subsection.
TEorion I[E1 exists E; Ez w E4]]
= some TEqrion [E1 set_of E2 E3] TOoqrion [w] TEorion [E4] (orion.16)

Operations between two sets or a set and a value are translated as follows. Other

operations use TOgon and the translation rules are given in Appendix C.

TEorion I[E] —:is_in E'z]]
TEorion IIEI ¢ EZ]l

1ot { TEorion [E1] = some TEqrion [E2]) (orion.22)
TEorion IIEI]I TOorion I[d’]l TEorion |[E2]]
(orion.23)

TEorion [E1 has_subset E2] = some TEorion [E1 | = every TEorion [E2] (orion.17)
TEorion [E1 issubset E2] = every TEorion [Ex] = some TEcjion [E2] (orion.18)
TEorion [E1 has_element E2] = some TEorion [E1] = TEorion [Ez] (orion.19)
TEorion [E1 —:has_element E2] = not (some TEorion [E1] = TEorion [E2]) (orion.20)
TEorion [E1isin E2] = TEcrion [E1]| = some TEqrion [E2] (orion.21)

=

=

If a method is called upon a collection and the method is applicable to the elements in
the collection, the resultant set will contain the results obtained by calling the method on
the individual elements. The translation rules below show how such an implicit join can
be translated. In the first rule, E; E; is a collection-valued expression and Ej represents
a method call applicable to the elements of the collection. Note that the keyword set_of
provides syntactic support to mark the location of the join. The translation generates
a query :unction. The collection E; E; is , ssed as an argument to the query function
which applies the rest of the expression to each element in the collection. The translation
function TTyrjon returns the type of an expression and is used to fill in the type information
in the signature of the query function. In the second rule, E2 represents a collection and
Ej3 is a method call applicable to the elements of E,. For other cases, set_of simply serves
as an alternative form for method calls.

TEorion [E1 setof E2 Es] = (let f(28: TTosion [E1 E2]) be
Set[z « 25 | TEorion [x Es]]
in f(TEorion [E1 E21)) (orion.24)

TEotion [setof E2 Ea] = (let f(2s: TTorion [E2]) be
Set{z « 28 | TEorion [x Es]]
in f(TEorion IIEQ]I)) (01’i01’l.25)

Translating Query Languages to Object Comprehensions 72

TEorion [E1 setof E2] = TEeion [Ei Ez] (orion.26)
TEorion [Iset-Of E2]] = TEorion I[E2]I (orion.27)

Recursive queries can be formulated in ORION using recurse. A recursive query can
involve one or more method calls that can return either values or collections. The next rule
deals with recursive queries involving no collection-valued method calls. In the expression,
E, is repeatedly applied. Each time the result of the method is checked with the results
collected so far. If it is already in the collection, the recursion will stop and the collection
will be returned. If it is not in the collection, the results obtained so far will be updated
and the method E; will be applied again.

TEorion [E1 (recurse Ez)]
= (let f(zs:Set of TTorion [E1 E2], y: TTorion [E1 E2]) be

Set[y = somews; T « x5 |]
union
Set[y ~= some zs; z « f((Set{y} unior z3), TEorion [y E2]) | 2]
in f(Set{}, TEorion [E1 E21)) (orion.28)

Recursion involving collection-valued method calls can be translated using the next
rule. In the expression, E; returns a collection instead of a single value. Each application
of E; terminates when an empty set is returned. An example of its application can be

found in the translation example.

TEorion I[El (I'ECUI'SC set_of Ez)}]
= (let f(2s:TTorion [E1 E2]) be

zs

union
Set[z « 28 y — f(TEosion [x E20) | v]
in f(TEorion I[E1 E2]l)) (orion.29)

Method calls are delimited by space. Set literals are represented as ’(E). Their transla-
tions and those for brackets, domain variables, identifiers, and constants are given below.

TEorion [Et E2]1 = TEorion [Ei |- TEorion [E2] (orion.30)
TEotion [I(E)] = I(TEuo [E]) (orion.31)
TEcrion [E)] = (TEorion [E]) (orion.32)
TEorion [:I] = [(orion.33)
TEorion [E)] = Set{TEoion [E]} (orion.34)
TEorion [E] = E (orion.35)

5.4. Translating ORION 73

5.4.3 Example ORION Translation

Query Q33 presented at the beginning of this subsection can be translated to object

comprehensions as follows.

T Qorion [select :c
from :c is_in Courses

where :c exists (recurse set_of prerequisites) code = “Logicl”]

= (orion.5), (orion.10), (orion.35)
Set[¢ « Courses;

TEorion [:c exists (recurse set_of prerequisites) code = “Logicl”] | TEorion [:c]]

= (orion.16), TOoqrion, (orion.35)
Set[¢ « Courses; ’

some TEqrion [:c set_of (recurse set_of prerequisites) code]) = “Logic1” | TEorion [:c]]

= (orion.24)
Set[¢ « Courses;
some (
let f(zs : TTorion [:c (recurse set_of prerequisites)]) be
Set[z « 5 | TEorion [x code]]
in f(TEorion [:c (recurse set_of prerequisites)])) = “Logicl” | TEorion [:c]]

= T'Torion, (orion.30), (orion.35) twice
Set[¢ « Courses;
some (
let f(zs : Set of Course) be
Set[z zs | z.code]

in f(TEorion [:c (recurse set_of prerequisites)])) = “Logicl” | TEorion [:c]]

= (orion.29)
Set[¢ « Courses;

some (

let f(zs : Set of Course‘) be
Set[z « zs | z.code]

in

f(let g(28 : TTorion [:c prerequisites |)} be
zs union Set[z + z3; y « g(TEorion [x prerequisites]) | y]

in g(TEorion [:c prerequisites]))) = “Logic1l” | TEorion [:c]]

Translating Query Languages to Object Comprehensions 74

= TTorion, (orion.30) twice, (orion.33) twice, (orion.35) 3 times
Set[¢ « Courses;
some (
let f(zs : Set of Course) be
Set[z ¢+ zs | z.code]
in
f(let g(zs : Set of Course) be
" 23 union Set[z « z8; y « g(z.prerequisites) | y]

in g(c.prerequisites))) = “Logicl” | ¢

The abstract syntax and translation rules for OSQL and O;SQL are given in Appendix C
and only an example translation is given in each of the next two sections.

5.5. Translating OSQL 75

5.5 Translating OSQL

5.5.1 Example OSQL Translation

Query Q31 can be expressed using OSQL as follows.

Q31. Return students taking some course given by their supervisors.

select s

for each Students s, Courses c

where ¢ in takes(s)

and c in teaches(supervisedBy(s))

TQosq [select s
for each Students s, Courses ¢
where c in takes(s)

and c in teaches(supervisedBy(s))]

= (osql.5), (o0sql.20)
Bag[TDosq [Students s, Courses c J;
TEosq [cin takes(s)]; TEosq [cin teaches(supervisedBy(s))] | TEosq [s]]

= (0sql.17), (0sql.18) twice
Bag[s « Students; ¢ « Courses;
TEosq [cin takes(s)]; TEosq [c in teaches(supervisedBy(s))] | TEosq [s]]

= (osql.22), (osql.24), (osql.34) twice
Bag[s + Students; ¢ « Courses; c = some s.takes;

TEosq [¢ in teaches(supervisedBy(s))] | TEosq [s1]

= (0sql.22), (osql.28), (osql.34)
Bag[s + Students; ¢ « Courses; c¢ = some s.takes;
¢ = some TCosq [supervisedBy(s)]
[z & TEosq [supervisedBy(s)]; y ¢ z.teaches | y]
| TEosa [s]]

= TCosq, (0sql.24), (0sql.34) twice
Bag[s + Students; ¢ « Courses; c¢ = some $.takes;

¢ = some List[¢ < s.supervisedBy; y < z.teaches | y] |s]

Translating Query Languages to Object Comprehensions 76

5.6 Translating O,SQL

5.6.1 Example O,SQL Translation

Query Q32 can be expressed using O;SQL as follows.

Q32. Return students having no supervisors from their major departments.

select s
from s in Students

where for all 1 in s.supervisedBy: (l.department <> s.major)

TEo,sq [select s
from s in Students

where for all 1 in s.supervisedBy:(l.department <> s.major)]

= (02sql.5)
TCo,sq [sin Students] [TDo,sq [s in Students J;
TEo,sq [for all | in s.supervisedBy: (l.department <> s.major)] | TEo,sq [s]]

= TCo,sq, (02sql.35), (02sql.20)
Set[s + Students;
TEo,sq [for all 1 in s.supervisedBy: (l.department <> s.major)] | TEqsq [s]]

= (02sql.15)
Set[- ~ Students;
let f(28 : TTossq [s.supervisedBy]) be
TCo,sq [s.supervisedBy] [{ « s | TEosq [l.department <> s.major]]
in cvery f(TEoysq [s-supervisedBy]) = true | TEqsq [s]]

= TTogsq1, TCoyzsqt
Set{ s « Students;
let f(zs: List of Staff) be
List[l « 15 | TEoyq [ldepartment <> s.major]]
in every f(TEopsq [s.supervisedBy]) = true | TEousq [s]]

= (02sql.17), (02sql.18) 3 times, (02sql.20) 7 times
Set[s « Students;
let f(zs : List of Staff) be
List[1 « zs | l.department ~= s.major)

in every f(s.supervisedBy) = true | s]

5.7. Summary 77

5.7 Summary

This chapter - and Appendix C - presented four schemes for translating ONTOS SQL,
ORION, OSQL, and O2SQL queries into object comprehensions. An example translation
of the interesting features of each query language was given. The translation schemes
demonstrated that object comprehensions are at least as powerful as any of these languages
with respect to the reference data model. This claim on expressive power is confined to the
context of the reference data model because these query languages support features, mainly
structural features, that are not supported in the reference data model. The omissions
are discussed in Appendix B. To make the translation more elegant, the query languages
were simplified. The simplifications and how they can be integrated into the translation
schemes are discussed in Appendix B. It should be noted that the simplifications are
mainly syntactic rather than computational.

The ability to translate the four query languages into object comprehensions suggests
that they can be supported using a single unified platform. The next chapter introduces
the canonical algebra which can support object comprehensions and hence can serve as

the unified platform.

Chapter 6
Canonical Algebra

One of the main reasons for designing.algebras for data models is to use them as vehicles
for query optimisation in systems supporting high-level interfaces such as query languages.
A large number of algebras have been proposed for data models richer than the relational
model [Osb88, Day89, CDLR89, SZ89, SO90, VD90, DD91, WT91, Van92, Alh92, Nor92,
AB93, Mit93, GM93, LW93]. Many of these algebras extend the relational algebra to
manipulate richer modelling constructs and object identifiers as well as to provide more
expressive and computational powers. Others take a fundamentally different approach
and draw on the experience of functional programming languages. The canonical algebra
presented in this chapter belongs to the functional category. It can manipulate the rich
constructs found in object-oriented data models and in fact all object comprehension
queries can be expressed in the canonical algebra.

The organisation of this chapter is as follows. Section 6.1 presents informally the
operations that constitute the canonical algebra. Section 6.2 describes how the Z specifi-
cation presented in Chapter 2 can be extended to include specifications ot these operations.
Section 6.3 shows how object comprehension queries can be translated to the canonical
algebra. Section 6.4 presents some transformation rules that can be used to optimise
canonical algebra expressions. Section 6.6 concludes.

6.1 Operations of the Canonical Algebra

The canonical algebra is designed to support object comprehensions. To provide such
support, an algebra must be able to express a wide variety of useful operations over
different collection classes. Even better if it can be extended easily to accommodate new
collection classes. However, the complexity of having a new ad hoc set of operations for
each collection class would be a hindrance not only to reasoning about the operations and
their interaction, but also to reliable implementation. To alleviate such complexity, the
similarities between collection classes should be exploited to define operations that have

analogues from one collection class to the next. In this way, transformation rules for these

78

6.1. Operations of the Canonical Algebra 79

operations can be shared among different collection classes.

The design of the canonical algebra aims for simplicity, regularity, and extensibility.
The canonical algebra consists of a small number of collection and non-collection opera-
tions. Some of the operations are parameterised with functional arguments. This treat-
ment makes the operations more regular as variations can be captured in the functional
arguments. Unlike methods found in the object-oriented paradigm, these functions are
system-defined and hence amenable to reasoning and therefore optimisation. An example
optimisation is given in Section 6.4. The use of functional arguments together with a
regular set of collection operations makes the algebra more extensible as a new collection
can be integrated by providing a set of the regular operations. However, it should be
noted that the canonical algebra is not a minimal set of operations, some operations can
be defined by others, for example, select is introduced to capture well-known evaluation
strategies.

Studies of query language expressive power suggest a set of operations [BBN91, GM93,
LW93] very similar to those of the canonical algebra. Many of the canonical algebra
operations are also found in other algebras. The canonical algebra can therefore be seen
as a synthesis of other algebras.

The rest of the section begins with an explanation of the symbols used in describing
the canonical algebra. The algebraic operations and the functional arguments are then
informally described. The semantics of the operations are formally defined in Section 6.2.
Examples of the application of the algebraic operations can be found in Section 6.3 and
6.4.

6.1.1 Syntactic Categories

Canonical Algebra Operation

Function

Expression .
Collection-valued Expression

Identifier

Constant

== o\ =30

Logical Operation

Relational Operation (Boolean)
Arithmetic Operation
Collection Kind

Mmoo € R

An operation that is subscripted with £ represents a family of three operations one for
each collection kind. A subscript indicates the collection kind of the operand collection

Canonical Alge bra 80

while a superscript represents the collection kind of the resultant collection.

6.1.2 Operations
Binary Operations

The union and differ operations take two operands of the same collection kind and return
a resultant collection of that kind. The most specific unique common superclass of the

operand element classes will become the class of the elements in the resultant collection.
Uniong(Cy, Cs)

The union operations combine two collections. The cardinality of each resultant ele-
ment is the sum of its cardinalities in the operand collections except in the case of sets

where all elements are unique. Ordering, if respected, will be preserved.
Differe(Gy, Cy)

The differ operations form a collection by removing elements of the second operand
collection from the first operand collection. The cardinality of each resultant element is
the difference between its cardinality in the first operand collection and that in the second

operand collection. Ordering, if respected, will be preserved.
Equal(By, E;)

The equal onerations compare two collections of the same kind and return true if their

elements are the same. Duplication and ordering, if respected, will be taken into account.

Unary Operations

The operations described below are unary in the sense that each takes a collection as
one of the operands. Other operands include functions on the elements of the operand
collection and functions over results returned by other operand functions.

Reduceg(E'o, Fl; Faggregate; C)

The reduce operations are used to combine elements in a collection. If the operand
collection C is empty, Ey is returned. When the operand collection is not empty, F} is
applied to each element of C and the results are supplied pairwise to Fgggregaze Which ac-

cumulates the results to give a single value.

6.1. Operations of the Canonical Algebra 81

Mape(F, C)

The map operations apply the operand function F to each element in the operand
collection C and form a collection containing the results. The resultant collection and

operand collection are of the same collection kind.

Selecte(F, C')

The select operation applies the operand boolean function F to each element of the
operand collection C and forms a collection of the elements for which F returns true. The
resultant collection is of the same kind as the operand collection.

b i

Makei® (C), Make,™ (C), Makel*'(C')

The make operations convert the operand collection from its original collection kind to
one of the three collection kinds. Conversion from bag or set to list is non-deterministic
as an arbitrary order will be assigned to the elements.

Indez(C, E)

The indez operation takes a list C and returns an element of the list at position F.

Simple Operations

The following operations take on argl..ments which may or may not be a collection.
Empty*®*(E), Empty*®? (E), Empty"* (E)
The empty operations take a value and return an empty collection.
Single**t(E), Single®® (E), Single"*(E)
The single operations take a value and return a collection containing that value.

If(Econdition; Etrue, Efalse)

The if operation is a control operation. If E.,,4iti0n €valuates to true, the value of Fiye

is returned, otherwise the value of Ejq. is returned.

Canonical Algebra 82

And(El; Eg)

The and operation takes two boolean expressions and returns true if both of them eval-

uate to true. This is a non-commutative operation and the operands cannot be swapped.
Range***(Ey, E;), Range®™ (Ey, E,), Range!'(E, E;)

The range operations generate a collection containing integers within a given range.

An empty collection is returned if the first operand expression is less than the second one.
Being(Ey, E»)

The being operation checks if the expression denoted by F; has type F, or is of a
subclass of the class denoted by Fj.

Function Arguments

The abstract syntax of functions passed as arguments to the canonical algebra operations

is given below.

F =)MLE

Es == E|E, Es

E == EE|I(Es)
| FaE|EFEwEEYE
| TIk[(E)]|Q

a u= AV|-=

w n= =l~=l>>=lk|k=

¥ o=/ 041

Table 6.1: Abstract Syntax of Function Argument.

6.2. Specifications of the Operations 83

6.2 Specifications of the Operations

The Z specification of the reference data model given in Chapter 2 captures the generic
definition of a database schema and refrains from discussing system-defined classes that
are often used in a database schema. This section describes how the specification can be
extended to include the operations of the canonical algebra which are essentially operations
on collection classes. A collection class is a system-defined parametric class which generates
a proper collection class when given the element type of the collection. In order to facilitate
the discussion on collection operations, an abstract representation of collection classes is

given next.

6.2.1 Abstract Representation of Collections

—_COLLECTION_REPRESENTATION
representation _ : OCollection — F VALUE X bag VALUE x seq VALUFE
elementType _ : OCollection — TYPE_NAME

elements,e; — : OSet - FVALUE

elementsy,, - : OBag — bag VALUE

elementsy,y — : OList — seq VALUE

elements _ : OCollection - F VALUFE

-in_ : VALUE & OCollection

occurs — _— : VALUE x OCollection — N

Y o : OCollection; s : OSet; b: OBag; | : OList,
z: VALUE; zs : F VALUE; n:Ne

elements,ey s = first (representation s) A
elementsy,, b = second (representation b) A
elementsyss | = third (representation 1) A

elements o0 = zs &
0 € OSet = zs = elements;es 0 A
¢ € OBag = zs = dom (elementsyy 0) A
o € OList = zs = ran (elementsjisy 0) A

zin o & z € elements o A

occurs T o=n<
- (zino) =>n=0A
zinoANo€ OSet=>n=1A
zino A o € OBag = n = count (elementsyy, 0) z A
zino A o € OList = n = #((elementsyse 0) [{z}) A

zin o = (typeOf z) <« (elementType o)

Canonical Algebra 84

The abstract representation of collections captures both the extension and intension of
collections. The extension of a collection is captured by a total function, representation,
from its object identifier to a triple. Each slot of the triple is a group of values and can
be projected out using the function first, second, and third. Each collection class uses one
slot to capture the elements in the collection; set uses the first slot, bag the second, and
list the third. To simplify access to the elements of a collection, the function elements,.:,
elementsy,y, and elements;y; are introduced and defined in the first three constraints. The
elements can also be obtained as a set of values using the function elements. Being a
set, the result therefore does not reflect duplication and ordering that may exist in the
original collection. Understanding how collections are represented in the Z mathematical
toolkit [Spi92] is important to the understanding of the definition of this function. A Z
bag is defined as a function from values to natural numbers; the latter keeps track of the
number of occurrences. A Z sequence is defined as a function from natural numbers to
values; the former indicates the position in the sequence. The set of all elements in a Z bag
can therefore be obtained by a projection on its domain using dom; as for a Z sequence
a projection on its range using ran can be used. Two more functions are defined to ease
the manipulation of collection objects. The relation in can be used to test if a value is
an element of a collection. The function occurs returns the number of occurrences of a
value in a collection. In the case of bags, it is defined in terms of the Z operation count.
For lists, it is defined as the cardinality (#) of a sequence selected (]) from the original
sequence.

The intension of a collection is captured by a total function, elementType, from its
object identifier to a type name. All elements in a collection must be of this type or its

subclasses.

6.2.2 Binary Operations

The evaluation of the two operations union and differ in the canonical algebra requires
type inference for the elements of the resultant collection. This is achieved by finding the
most specific unique common superclass of the operand element classes.

A class is a common superclass to other classes if either they are the same type or the

former is a direct or indirect superclass of all the other classes.

— COMMON_SUPERCLASS
CLASS_GRAPH
— — bothAre _ : TYPE_NAME x TYPE_NAME < TYPE_NAME

Yi,ty,t3: TYPE_NAME e
(tl,tg) bothAre i3 &
thh €taNty K13

In the presence of multiple inheritance, there can be more than one most specific com-

6.2. Specifications of the Operations 85

mon superclass for two given classes. A class is said to be a unique common superclass if it
is connected to all other common superclasses via the ISA relationship. Using unique com-
mon superclasses makes the type inference deterministic even in the presence of multiple

inheritance.

— UNIQUE_SUPERCLASS
COMMON_SUPERCLASS
- - hasUnique _ : TYPE_NAME x TYPE_NAME <+ TYPE_NAME

Vi, ty,t3: TYPE_NAME e
(t1,t2) hasUnique t3 &
(t1,t2) bothAre t3 A
Vt: TYPE_NAME | (t1,t;) bothAre tet K t3V 13 <t

The most specific unique common superclass is a unique common superclass that is a

subclass of all other unique common superclasses.

— UNIQUE_COMMON _SUPERCLASS
UNIQUE_SUPERCLASS
M- :TYPE_NAME x TYPE_NAME — TYPE_NAME

th, t2, t3 : TYPE_NAME o
(LMb)=t&
(t1,t2) hasUnique t3 A
Vt: TYPE_NAME | (t;,t2) hasUnique tets <t

The union operations are defined using operations in the Z mathematical toolkit,
namely set union (U), bag additive union (¥), and list concatenation (7). The most
specific unique common superclass of the operand element classes becomes the class of the

resultant elements.

Canonical Algebra 86

— UNION
UNIQUE_COMMON_SUPERCLASS
COLLECTION _REPRESENTATION

unionge — — : OSet x OSet — OSet
unionpy — — : OBag X OBag — OBag
uniongss — — - OList x OList — OList

V s1, 82,83 : OSet o
UNIONge; 81 Sy = S3 =
elementType s3 = (elementType s;1) 11 (elementType s3) A
elementsses s3 = (elementsser 1) U (elementsses s2)

YV by, by, b3: OBag e
unionpeg by by = b3 =
elementType bs = (elementType b;) 11 (elementType by) A
elementsyy, b3 = (elementsyyy b1) W (elementsyyy bs)

Vi, l5: OList e
uniongg W L=5L=
elementType I3 = (elementType L) 11 (elementType k) A
elementsyy; Iz = (elementsyse L) ~ (elementsys 1)

Similarly, each collection kind is given a definition of the differ operation. In the case
of sets, it is defined in terms of Z set difference (\). For bags, the computation is carried
out directly on the representation of Z bag. An element in the first operand collection is
included in the resultant collection if it has more occurrences in the first operand collection
than in the second. Its number of occurrences in the resultant collection is the difference
of those in the operand collections. When differ is applied to lists, the membership of the

resultant collection is computed using a function on Z sequences (B).

6.2. Specifications of the Operations 87

— DIFFER
UNIQUE_COMMON_SUPERCLASS
COLLECTION _REPRESENTATION

differsee — - : OSet x OSet — OSet
differsag - - : OBag x OBag — OBag
differijss - - : OList x OList — OList

Y 81, 82,83 : OSet @
differses 81 S2 = 53 =
elementType s3 = (elementType s1) [T (elementType s3) A
elementsse; s3 = (elementsse; $1) \ (elementsses s2)

Y by, by, b3 : OBag e
differpsg by by = b3 =
elementType bs = (elementType b)) 11 (elementType by) A
elementsy,y, b3 = {z : VALUE; ny,ny: N|
(z,m) € elementspeg b1 A
(z,n2) € elementsyeg ba A
n>nge
(z,m — ng)}
v ll, 12, l3 : OList o
differiige ly b=k =

elementType I3 = (elementType L) 11 (elementType L) A
elementsisy I3 = (elements;s: 1) B (elementsiy: b)

The function B is defined recursively. When either of the operand sequences is empty,
the first operand sequence is returned. Otherwise, the second operand sequence is scanned
from t' last element to the first, every t" ne removing the last element before the next
recursive call is made. If the last element exists in the first operand sequence, its last
occurrence in the first operand sequence is removed before the next recursive call. In brief,
elements of the second operand sequence are removed from the first operand sequence, if
they exist, in a last to first basis. The Z sequence operation last returns the last element

in a sequence and front returns a list with its last element removed.

B:seq VALUE x seq VALUE — seq VALUE

Vi,l,l3:seq VALUE o
hBL=Le
h=Vvh=)=>b=4LA i
- ((last k) € (ran 4)) = =L B (front k) A
(last k) € (ran L) =
31,1l :seq VALUF | :
Lh=0L" (last lg) A ((last lz) € (ran lb)) .

L= (l,")8 (front b)

Canonical Algebra, 88

The equal operations compares the contents of two collections. As the operations can
be defined in the same way only one specification is given below. The definition below

relies on the Z equality operation (=) over Z collections which are essentially sets.

__EQUAL
COLLECTION_REPRESENTATION
equalses - — : OSet x OSet -+ B

Vs1,8:08et; z:Be

equalse; $1 52 < (elementsser s1 = elements;e; $2)

6.2.3 Unary Operations

The reduce operations transform and combine elements in the operand collection. It has a
recursive definition. If the operand collection is empty the first operand value is returned.
The second operand is a transformation function and is applied to all elements in a non-
empty collection. The third operand is an accumulation function combining results of
the transformation function. Except for the domain of the transformation function, all
domains and ranges are of the same type. The operation can be defined similarly for the

three collection kinds; hence, one specification suffices.

REDUCE_SET
COLLECTION _REPRESENTATION
reduceses — - — - : VALUE x (VALUE — VALUEFE)X

(VALUE x VALUE — VALUE) x OSet — VALUE

Vs: OSet; eg,z : VALUE; f : VALUE — VALUEFE,
fagg : VALUE x VALUE — VALUE |

elements s Cdom fi A
first (dom fagg) =ran foge A
second (dom fygo) =ran fog A
ran fiy =ran fo, A
eg €ran fog, ®

reduce ey fi fagg S=1T =

T = foldser € f1 fagg (element,et s)
A
z € OCollection =
elementType z = elementTypeOfResult fqq4q

The result of an reduce operation is produced by the function fold. If the result is a col-
lection its element type must be inferred - here the function elementTypeOfResultis used.
Generally speaking, arguments to this function can take two forms: (1) expressions includ-
ing method calls and (2) nameless functions constructed during the translation of object
comprehension queries to the canonical algebra. The keys of type inference on expressions

6.2. Specifications of the Operations 89

have been covered in Chapter 2 and in the specification UNIQUE_COMMON_CLASS.
Constructed functions are limited to very simple forms and the result type can be inferred

easily. The fold operations are defined as follows.

foldsee - - _ _ : VALUE x (VALUE — VALUE)x
(VALUE x VALUE — VALUE) x F VALUE — VALUE

Vr,s: FVALUE; e, z,y: VALUFE; f, : VALUE — VALUF;
fagg : VALUE x VALUE — VALUE |s =03V s={z}Ure

fOldset e fi fagg Ss=YyY <
s=F=>y=¢eAN
s:{:c}Ur:)y:fagg (fl x) (fOIdset €o fl fagg 7')

foldyyy - - — _ : VALUE x (VALUE — VALUE)X
(VALUE x VALUE — VALUEF) x bag VALUE — VALUFE

Vr,b:bag VALUFE; ey, z,y: VALUF; f, : VALUFE — VALUE;
Jagg : VALUE x VALUE — VALUE |b=[]Vs=[z]wre

foldbag €o fl fagg b=y &
b=[l=y=eA
b= |[17]] Wr=y =fagg (fl Z) (fozdbag €o fl fagg 7')

foldyye — — _ _ : VALUE x (VALUE — VALUE)x
(VALUE x VALUE — VALUE) x seq VALUE — VALUE

V1:seq VALUE; ey, 2,y : VALUE; f, : VALUE — VALUE;
agg - VALUE X VALUE — VALUE o

foldiiss e fi fagg l=y+

I=()=>y=eA
1 £ () = y=fug (i (head 1)) (foldi €0 fi fapg (tail 1))

A reduce operation is a homomorphism from union to fug, if sy, satisfies the laws of
union for that collection kind and has eg as an identity element for f,o, [WT91]. Since
union behaves differently for different collection kinds, f,44 is therefore required to possess
different properties for different collection kinds. The various properties for f,,, and e
are described next.

If a collection combines itself with an empty collection of the same kind, the same
collection is returned. In other words, combining with extra empty collections will have
no effect on a collection. In order to normalise the multiple forms of a collection due to
empty collection of the same kind, identity requires that the accumulation function ignores
the result returned by an empty collection and uses only the other operand.

Canonical Algebra 90

— IDENTITY
fagg - - : VALUE X VALUE — VALUE

Ve, z,0: VALUE o

fagg T @@ =0=

o € OCollection = (equal (fogy = €0) (fagg € z)) A (equal o z)

A
0 € BaseValue = (fogg = €0 =foagy €) N 0=2

A function is associative if the order of combination does not matter. This property
is essential to the reasoning of all collection classes particularly when used together with

the other properties.

__ASSOCIATIVITY
fug — - : VALUE x VALUE — VALUE

Vz,y,z,0: VALUE o
fagg = (fagg ¥ 2)=0=
o € OCollection = equal (fogg = (fagg Y 2)) (fagg (fagg = ¥) 2)

A
0 € BaseValue = fogg & (fagg Y 2) = fagg (fagg T ¥) 2

Since elements in a set or a bag are not ordered, the same collection can be constructed
in many ways using different permutations of the elements. To counter-balance this non-
determinism, the accumulation function must be commutative - able to take on arguments

in different orders but still delivering the same result.

r__C'OMMUTATIVITY
VALUE x VAo, UE — VALUFE

fagg - -
Vz,y,0: VALUE o

fogg T y=o0=
o0 € OCollection = equal (fogg = y) (fagy ¥ %)

A
0 € BaseValue = fogg * y=fogg y 2

A set can be constructed by combining two other sets. If the two sets have a common
element, the construction has a destructive effect of eliminating the duplicates leaving only
one occurrence of that element in the resultant set. Idempotence captures this destructive

effect by ignoring duplicates that may exist in the input.

6.2. Specifications of the Operations 91

__IDEMPOTENCE
fage — — : VALUE x VALUE — VALUE

Vz,0: VALUE o
o € OCollection = equal (foqy = z) z
A
0 € BaseValue = fo9g z z=12

The reduce operations are very powerful and many useful operations, e.g. powerset,
can be expressed in terms of it. If they are used without restriction the operations will
take the canonical algebra out of polynomial time [BBN91]. However, in the context in
which the canonical algebra is used, the reduce operations are used only in a restricted way
to support object comprehensions. Therefore all the operand functions are system-defined
and satisfy all the properties mentioned above. An example of the use of reduce to define
other operations can be found in Section 6.3. Since map, select, and make can be expressed
using reduce, in order to simplify the specification these unary operations are defined in
terms of reduce in Subsection 6.2.5. Nevertheless, it does not suggest that they should be
implemented using reduce. It is only the definitions of the operations that are of interest
here.

The indezr operation is a fundamental operation to access the element of a list. It is
defined only when the operand value corresponds to a valid position in the operand list.

__INDEX
COLLECTION_REPRESENTATION
_ index _ :OListx N+ VALUFE

VI:OList; n:N|1<nAn<#le
I index n = (elements;y) n

6.2.4 Simple Operations

The empty operations take an argument and return an empty collection. They get their
element types from the argument. An empty collection is represented by a triple of empty
Z set (@), empty Z bag ([]), and empty Z sequence (()). Only one specification is given
as others can be defined similarly.

__EMPTY
COLLECTION_REPRESENTATION
empty*®t _ : VALUE — OSet

Vz:VALUE; s: OSet e
empty®® z=s&
elementType s = typeOf =z A representation s = (J,[],())

Canonical Algebra 92

The single operations are similar to the empty operations except that one slot in the

triple contains a Z collection with one element.

__SINGLFE
COLLECTION_REPRESENTATION
single*® _ : VALUE — OSet

Vz: VALUE; s: OSet o

set

single’® z =s&
elementType s = typeOf = A representation s = ({z},[],())

The operation if takes three expressions. If the first expression evaluates to true the
value of the second expression is returned. Otherwise, the value of the third expression is
returned. The second and the third expressions must be of the same type or one’s type
must be a subclass of the other.

—IF
if - - - :Bx VALUE x VALUE - VALUE

Ve :B; eef,z: VALUE |e; K e V e < e @
if e e eg=z&
ec=>r=¢ A
e =T =¢f

The and operation takes two expressions. If the first expression evaluates to true the
value of the operation is determined by the second expression. Otherwise, false is returned.
This is a non-commutative operations and the operands cannot be swapped.

__AND
and _ - :BxB—>B

Ve,e,z:Be
and e e =&
e =>T=eA
- ey = z = false

The range operations construct an integer collection containing elements within the
limits as specified by the operand values. No duplicate is introduced. In the case of lists,

elements are arranged in ascending order.

6.2. Specifications of the Operations 93

RANGE

F—COLLECTI ON_REPRESENTATION
range*® _ _ :Nx N — OSet
range®® _ _ :Nx N— OBag
range"™t _ _ :Nx N — OList

Vs: OSet; b: OBag; | : OList; e;,e2: Ne
range®® e, ey = s =
elementType s = INTEGER A
elements,,; s=¢€;..6€
range® e e = b=
elementType b = INTEGER A
elementspsy b={z:N|z€e;..ep0(z,1)}
range't e, e =1=>
elementType | = INTEGER A

elements;y |={z:N|z€e..e0(z~€e1+1,2)}

Each being operation checks if a given value is of the given type or of a subclass of the

given class.

— BEING
COLLECTION_REPRESENTATION

being - - : VALUE x TYPE_NAME —+ B
Ve:VALUE; t: TYPE_NAME o

being z t = (typeOf z) Kt

Canonical Algebra 94

6.2.5 Derived Unary Operations

The map operations apply the operand function to all elements in the operand collection

and return a collection containing the results returned by the function.

— MAP
COLLECTION _REPRESENTATION
maps - — :(VALUE — VALUE) x OCollection — OCollection

VYo : OCollection; f: VALUE — VALUFE e

mape [o=
reduces (empty® nil) f union; o

The select operations filter a collection using the boolean operand function. Duplicate

elements and their relative order are preserved.

— SELECT
COLLECTION_REPRESENTATION
selecte _ _ : (VALUE — B) x OCollection — OCollection

Yo : OCollection; f : VALUE — B e

selecty f o=
reduces (empty® nil) (Az.if (f z) (single® z) (empty® z)) uniong o

The make operations convert a collection from one kind to another keeping the element
type unchanged. Converting a collection into a set results in the elimination of duplicates
and the loss of the order between elements. Converting a coilection into a bag keeps
the number of elements unchanged - duplicates are not lost and no new elements are
introduced - but the order between the elements is lost. Converting a collection into a list
keeps the number of elements and an arbitrary order is assigned to the elements. Only
one specification is given below others can be defined similarly.

__ MAKE
COLLECTION_REPRESENTATION
makege‘ - : OCollection — OSet

Y o : OCollection e

makeg"‘ 0=

reduces (empty*®t nil) (Az.single®® z) unions, o

6.3. Translating Object Comprehensions 95

6.3 Translating Object Comprehensions

This section demonstrates how object comprehension queries can be translated to the
canonical algebra. The presentation of the translation scheme is the same as in Chapter
5.

6.3.1 Syntactic Categories

Expression
Qualifier

Generator

Local Definition
Quantifier
Aggregate Function
Identifier

Constant

O N o S

€

Relational Operation (Boolean)
Arithmetic Operation
Collection Kind

MmO

6.3.2 Abstract Syntax

Es := E | FE, Es

F = F union E
| E differ E
| & Xs | E]

| Eand E|E or E|not E

| E hasClass E | E hasClass E with E

| YEWYE|EYE

| E.E|I(Bs)|I

| k| Set{ Es} | Bag{ Es }| List{ Es }

| Set{ E..E}|Bag{ E.E }| List{ E..E }
| (B)

Table 6.2: Object Comprehensions Abstract Syntax.

Canonical Algebra 95

Xs u= A| X | X; Xs

X == D|L|FE

D :=1I1+F

L =1TasFE

Y u= A|some | atleast E | just E | atmost E | every
A = size

& == Set| Bag | List

R N P P R v

v o= l/14]-

Table 6.2: Object Comprehensions Abstract Syntax (continued).

The translation of query function is essentially the same as of an ordinary query. Query

function is therefore not included in the abstract syntax and not covered in the translation.

6.3.3 Translation Functions

TE Translate an Expression
TO Translate an Operation
TC Extract the Kind of a Collection

6.3.4 Translation Rules

A sequence of expression separated by comma is translated as follows.

TE[E,, E.] = TE[E:], TE [E;] (comp.1)
The two infix collection operations - union and differ - can be translated as follows.

The subscript to the algebraic operation is obtained using TC [E;].

TE [E; union E2] = wnionrcre,)(TE[E1], TE[E:]) (comp.2)
TE |IE1 differ E; I| = diﬂer'rc {E,](TE IIEI], TE I[Ez]]) (comp.3)

6.3. Translating Object Comprehensions 97

A comprehension without any qualifier represents a singleton collection containing the

value E and has collection kind as specified by &.

TE[¢[|E]] = single’(TE[E]) (comp.4)

A generator can be expressed in the algebra using map. The range of the generator
is converted to the resultant collection kind £ using make before becoming the operand
collection of map. The rest of the comprehension expression becomes the operand function

of map.

TE[¢ 1 «E; Q |E]]
= mape M. TE[¢ Q |E]1], make.i‘c[El j(TE[Ei])) (comp.5)

A local definition introduces a new binding for the rest of the query. This effect
can be captured using a generator ranging over a singleton collection. Note that it is
a transformation between comprehension expressions rather than a translation into the

canonical algebra.

TE[{[T as E; QIE]] = TE[{[I «¢{ Ea}; Q |E]] (comp.6)

A filter can be expressed using the if operation. The rest of the query is evaluated if

the filter is true, otherwise an empty collection is returned.

TE[¢ E; Q IE]] = #(TE[E:] TE[E Q |E |1 empty’(nil)) (comp.7)

Logical connectives can be translated as shown below.

TE[Eiand E;] = TE[E;] A TE[E:] (comp.8)
TE l{E1 or E;]] = TE I[E1]] v TE U:Ez]] (comp.9)
TE[notE] = - TE[E] (comp.10)

Class checking is performed using the being operation. The non-commutative and is
used to capture the conditional evaluation in the second translation rule.

TE [E; hasClass E;] = being(TE[E:], TE[E:z]) (comp.11)
TE [E; hasClass E; with E3] = and(being(TE[E,], TE[E:]), TE[Es])
(comp.12)

Filters involving quantifiers can be expressed using reduce. In the translation rules
below, a quantifier is explicitly written on one side of the operator and the other side

which is not elaborated may or may not contain a quantifier. When quantifiers are used

Canonical Algebra 98

on both sides on an operator, the binding order - universal then numerical followed by

existential quantifier - determines the meaning of the filter.

TE [every E; w E;]
= reducerc g, j(true, A TE[x w E2], A, TE[E:]) (comp.13)

TE [atleast E E; w E;]
= reducercg, j(0, Az.if (TE[x w E2], 1, 0), +, make,?fg[El j(TE[E]))>=TE[E]
{comp.14)
TE [just E E; w E;]
= reducercyr, 1(0, Az.if (TE[x w Ez], 1, 0), +, makeldd o J(TE[E:]))=TE[E]
: (comp.15)
TE [atmost E E; w E;]
= reducerc e, 1 0, Azif(TE[x w B2], 1, 0), +, makesd s 1(TE [E1]))<=TE [E]
(comp.16)
TE [some E, w E;]
= reducerc g, }(false, Az.TE[x w E2], v, TE[E:]) (comp.17)

Instead of comparing two collections by their object identifiers, the equality operation
can be used to compare them based on their elements. The translation of other relational
and arithmetic operations is captured by a generalised rule.

TE [Ei==E:] = equalrcge,)(TE[E:1], TE[E:]) (comp.18)
TE [Ei~==E;] = - equalrcyge,)(TE[E], TE[E:]) {comp.19)
TE[Eiw E2] = TE[E] TO[w] TE[E:] (comp.20)

Method calls, identifiers, and constants are translated as follows.

TE[E:.E:] = TE[E].TE[E:] (comp.21)
TE[I(E)] = I(TE[E]) (comp.22)
TE[E] = F (comp.23)

The translation of collection literals is captured by the four operations: empty, single,

union, and range.

TE[¢{}] = empty*(nil) (comp.24)

TE [¢{E}] = single’(TE[E]) (comp.25)

TE [¢{E1, E2}] = wuniong(TE[¢({E1}], TE[¢{E2}1) {comp.26)
TE [¢{Ei..E;}] = range*(TE[E:], TE[E.]) (comp.27)

6.3. Translating Object Comprehensions 99

Elements in a list can be accessed using their position and is supported by the indez

operation.

TE [E:.[E:]] = indez(TE[E;], TE[E;]) {comp.28)

As an examnple of aggregate functions, the size of a collection can be computed using
reduce. The transformation function is a constant function that always returns the number
one. The accumulation function is addition (+). The operand collection is converted to
a bag because addition is not idempotent and hence cannot be used on a set. An empty

collection naturally gets a zero as the answer.

TE [sizeE] = reducepqy(0, Az.1, +, makefl’fg['E (TE[E])) (comp.29)

The translation rules from object comprehensions to the canonical algebra can be seen
as a definition of object comprehensions in terms of the canonical algebra. It is essentially
a specification which enables formal reasoning. The implementation is not dictated by the
specification and could be very different.

Note that the select operations do not appear as a target operation in any of the trans-
lation rules from object comprehensions. It only comes into being through transformation
of the map operation which is described in the next section. As explained earlier, select
is introduced to capture well-known evaluation strategies, e.g. index scan, that deliver
significant performance improvement.

Recursive functions are not supported by a specific algebraic operation. It is assumed
that they are treated by the run-time system just like any other ordinary functions. In

other ..urds, no attempt will be made to timise them.

Canonical Algebra 100

6.3.5 Example Translation

An example is given below to show how Query Q30 used in Chapter 5 can be expressed

in the canonical algebra using the translation rules.

TE [list[¢ + Courses; d + Departments;
d.name = “Computing Science”; d = some c.runBy;
1 <= c.credits; c.credits <=3 | c]]
= (comp.5)
mapise (
Ac.TE [listf{ d « Departments;
d.name = “Computing Science”; d = some c.runBy;
1 <= c.credits; c.credits <=3 |c]],
makerd { Gourses 3(TE [Courses 1))
= TC, (comp.5)
mapiise (
A c.mapyige(
Ad.TE [list[d.name = “Computing Science”; d = some c.runBy;
1 <= c.credits; c.credits <=3 [c]],
makest [Departments }(TE [Departments])),
makel'$H(Courses))
= TC, (comp.7)
map;se (
X c.mapy;se(
Ad.if(TE [d.name = “Computing Science”],
TE [list[d = some c.runBy; 1 <= c.credits; c.credits <=3 | c]],
empty"*t(nil)),
makeii’f(Departments)),
makeﬁff(Courses))
= (comp.20), (comp.21), (comp.23) 3 times
mapy;st (
A c.mapyist(
Ad.if(d.name = “Computing Science”,
if(TE [d = some c.runBy],
TE [list[1 <= c.credits; c.credits <=3 | c]],
empty"*(nil)),
empty"t(nil)),
make!Sf(Departments)),

makei':tt(Courses))

6.3. Translating Object Comprehensions 101

= (comp.17)
maplist(
A c.mapy;s(
Ad.if(d.name = “Computing Science”,
if(reducerc [c.runby J(false, Az TE[d=x], v, TE { c.runBy]),
TE [list[1 <= c.credits; c.credits <=3 | c]],
emptylm(nil)),
empty“”(nil)),
makei?tt(Departments)),
makei':tt(Courses))
= TC, (comp.20), (comp.21), (comp.23) 4 times, (comp.7)
mapi;se(
A c.mapyise(
Ad.if(d.name = “Computing Science”,
if (reduceset(false, Az.d =z, V, c.runBy),
if(TE [1 <= c.credits],
TE [list[c.credits <=3 | c]],
empty‘i’t(nil)),
empty““(nil)),
empty““(nil)),
makeﬁ;g(Departments)),
make5f(Courses))
= (comp.7), (comp.20) twice, (comp.21) twice, (comp.4), (comp.23) 7 times
map;se(
A c.mappige(
Ad.if(d.name = “Computing Science”,
if (reduceset(false, Az.d =z, V, c.runBy),
if (1 <= c.credits,
if (c.credits <= 3,
single“”(c),
empty"™*!(nil)),
empty™*(nil)),
empty"St(nil)),
empty“’t(nil)),

makel(Departments)),

makei?tt(Courses))

Canonical Algebra 102

6.4 Transforming Canonical Algebra

This section introduces equivalence preserving transformation rules for the canonical alge-
bra. Expression transformation is often used during query optimisation to study the cost
of alternative evaluation plans and to search for more efficient evaluation. Here the focus
is on rule specification as opposed to rule application. The latter has been shown to be
feasible [GD8T7)].

This section delves into the transformation of operations that are not well studied.
Well-understood transformation rules, e.g. commutativity and associativity of A, Vv, and
unionse;, are not included. In other words, the transformation rules presented in this
section is not a complete set of transformation rules. It is foreseeable that many other
transformation rules will be discovered.

Two notions of equivalence are used in the transformation rules. For collection op-
erations, equivalence is defined over the elements of the collections as is supported by
the equal operation in the canonical algebra. For non-collection operations, equivalence is
defined over either object identifiers or base values. Note that all methods are assumed to

have no side-effects otherwise the transformation rules may not hold.

6.4.1 Transformation Rules

By definition, a select operation is just a special case of a reduce operation. The rules below
follow directly from the definition of select. Selection over an empty collection returns an
empty collection. Selection over a singleton collection is the same as using the if operation
on the element and returning either a singleton or an empty collection. Selection can be

distributed over unicn.
selecte(F, empty*(nil)) = empty®(nil) (algebra.1l)
selecte(F, single!(E)) = if((F E), single'(E), empty*(E)) (algebra.2)

selecte(F, uniong(E1, E2)) = uniong(selecte(F, E;), selecte(F, E:))(algebra.3)

The select operations can be expressed using map.

mape(Az.if((F z), single’(z), empty’(nil)), E) = selecte(F, E) (algebra.4)
If a constant boolean function is passed as the function argument to select, the result

is either a collection with the same elements or an empty collection.

selecte(Az.true, E) = E (algebra.5)
selecte(Az.false, E) = empty*(nil) (algebra.6)

6.4. Transforming Canonical Algebra 103

Applying the select operations over the difference of two collections is equivalent to
first restricting one collection and then taking the difference.
selecte(F, differe(E1, E2)) = differe(selecte(F, E1), Ez) (algebra.7)

Selection is not affected by conversion. Therefore it can be pushed inside the conver-
sion. The promoted select operation is applied to E whose collection kind (£’) may differ
from the collection kind make produces (§).

selecte(F, make*(E)) = make’(selecty(F, E)) (algebra.8)

Nested selection can be reduced to a single application of the operation using the
conjunction of the original predicates. The property of conjunction also ensures that the
order of selection does not matter.

selecte(Fi, selecte(F2, E)) = selects(Az.Fiz A F2z, E) (algebra.9)

Similarly, the map operations can be defined in terms of reduce.

reduce¢(empty*(nil), F, uniong, E) = mape(F, E) (algebra.10)

The result of applying empty and single to a collection can be easily shown using the
properties of union which constructs the results returned by them.

mape(empty®, T 1 = empty®(nil) (algebra.11)

mape(single’, E) = E (algebra.12)

Again the rules below follow directly from the definition of the operation.

mape(F, empty*(nil)) = empty’(E) (algebra.13)
mape(F, single(E)) = single’(F, E) (algebra.14)
mape(F, uniong(E1, E2)) = uniong(mape(F, Ei), maps(F, E2)) (algebra.15)

The order of the application of map and conversion does not matter.

mape(F, make’(E)) = make’(mapg(F, E)) (algebra.16)

Nested application of map can be reduced to a single application using the composition
of the original functions. The composition of function F; then function F; is represented
by Fz o Fl.

Canonical Algebra 104

mape(F1,mape(F2, E)) = mape(FioF;, E) (algebra.17)

Accessing an element in the result of a concatenation of two list does not actually
require the concatenation to be performed if the sizes of the two operand lists are known.
In the first translation rule below, the size operation is used to represent the length of a

list. Element in a list literal containing consecutive integers can be computed easily.

indez(unionye(E1, E2), Es) = if(size(E1) >=Es,
indez(Ey, E3),
indez(E2, Es — size(E;)) (algebra.18)

indez(range(Ey, E2), Ea) = E +Es—1 (algebra.19)

The equal operation is reflexive, symmetric, and transitive while the and operation is
reflexive, asymmetric, and transitive. Only one rule is given to the if operation as it is a

form that ofter occurs in the algebraic expressions.

tf(Ei, if(Ez, Es, Eg), Es) = ¢(E1 A E;, Es, Eg) (algebra.20)

6.5. Reasoning about Transformation 105

6.4.2 Example Transformation

The algebraic expression obtained from Query Q30 can be further simplified using trans-
formation rules on the canonical algebra. First the “nested” if expression is transformed
into a “flattened” if expression. Applying it to the algebraic expression obtained in the

previous subsection gives

= (algebra.20) twice
maplist(
X c.mapyis(
Ad.if(d.name = “Computing Science”

A reduceset(false, Az.d=3z, V, c.runBy)
A 1 <= c.credits
A c.credits <=3,
sz'ngle“"(c),

emptylm(nil)),

list

make ""(Departments)),

list

make " (Courses))

This simplified expression can be further transformed by turning the inner map appli-

cation into a selection operation.

= (algebra.4)
maplist(
A c.selecty s
Ad.d.name = “Computing Science”
A reducesee(false, Az.d=z, V, c.runBy)
A 1 <= c.credits
A c.credits <= 3,
h‘st(

make Departments)),

make““(Courses))

6.5 Reasoning about Transformation

The validity of the transformation rules given in the previous subsection can be verified
using the definitions of the algebraic operations. To verify a rule involves establishing the
equivalence of the expressions on each side of the rule. A simple example showing how
rule algebra.4 can be verified is given below.

The proof methodology uses a four-column format. The first column is the line number.
In the third column is the assertion that is proved based on the assumption given in

Canonical Aigebra 106

the second column. The last column expiains the inference used in each step. When

an assumption is made in a proof, it is introduced as an assertion having itself as the

assumption.

Assumption Assertion Justification
(1) 1 mape (F, E) & Definition
reduceg (empty® (nil), F, uniong, E) of Map
(2) 2 select¢(F, E) < Definition
reduceg (empty® (nil), of Select
A z.if ((F z), single®(z), emptyé(z)),
untong,
)
3) 1 mape (F, E) = Tautology
reduceg (empty® (nil), F, uniong, E) (A& B)=>
(A= B)
line 1
(4) 1 mapg (A z.if ((F «), singleé(z), emptyé(z)), E) = (Implicit)
reduceg(emptyf(nil), Universal
Mz.if((F z), singlet(z), emptyé(z)), Quantifier
uniong, Elimination
E) line3
(5) 2 reduceg (em~*y¢ (nil), Tautology
Mz.if((F z), singleé(z), emptyt(z)), (AN (A= B))
uniong, =B
E) = line 2
select¢(F, E)
(6) 1,2 mapg (Az.if ((F z), single®(z), empiy*(z)), E) = Tautology
select¢(F, E) (A= B) A
(B=10))
=>(A=0)
line4,b

6.6 Summary

Conventional formal query languages are usually presented as either an algebra or a cal-

culus. The canonical algebra described in this chapter mixes algebraic operations with

6.6. Summary 107

functions where the latter are expressed in calculus form. In many conventional algebras,
such functions appear as restrictions on individual operations. The canonical algebra pre-
sumes an approach where the algebraic operations capture the control structures required
for manipulating collections and the functions are left to deal with individual elements in
the collection. The abstraction of control structures facilitates the combination of oper-
ations sharing the same control structure hence incurs a lower cost than evaluating the
operations individually. It can also be argued that the emphasis on control structures
would benefit more in the object-oriented paradigm where navigation seems to dominate.

Different variations of reduce have been studied, for example, in [Van92). It is a very
powerful operation with which many useful operations can be expressed. For instance,

powerset can be expressed in terms of reduce.

power¢(E)
= reduceg(single’(empty*(nil)),
X z.uniong(single’(empty®(nil)), single*(single’(z))),
Az y.mape(A m.mape(A n.single*(uniong(m, n)), y), z), E)
(algebra.21)

The select, map, and make operations can be defined using reduce. Despite being
redundant they correspond to well-known implementations where significant performance
gain could be obtained. Evaluating them using reduce incurs performance penalty.

Variation in data models is another factor which determines the minimal set of oper-
ations in an algebra. In the reference data model collections are objects with their own
identifiers while in many data models they are just values where equality is determined
using ...y elements in the collections. T} dual behaviour of collections in .ne reference
data model requires a larger minimal set of operations and more complex definitions for

the operations in the algebra.

Chapter 7
Conclusion

This chapter begins with a discussion summarising the contributions of the research re-
ported in this thesis. It then discusses the limitations of the proposals and the approach
taken. The chapter ends with some directions for future work.

7.1 Discussion

This thesis investigated the design and some aspects of the processing of query languages
for object-oriented databases using a reference data model formally defined using the
specification language Z.

The functional requirements for object-oriented query languages reported in Chapter
3 were partly derived by comparing the similarities and contrasting the differences of
existing object-oriented data models and query languages. To come up with a set of
requirements that can be meaningfully applied to any object-oriented query language, it
was obvious that the similarities should be captured and the differences should not appear
in any assumption. For example, class extent is not supported in all models and therefore
is not assumed during the study. On the other hand, it was the interest of this research to
pursue a wider scope including useful features not yet well studied. Features to support
static type checking and multiple collection classes were therefore included.

The 23 functional requirements identified were classified into four categories: support
of object-orientation, expressive power, support of collections, and usability. They were
used to evaluate and compare existing query languages and the results were summarised in
the thesis. The same evaluation also showed that none of the query languages of ONTOS,
ORION, IRIS, and O, satisfies all the requirements. More importantly, the requirements
can be used to improve existing query languages and direct the design of new query
languages. The design of object comprehensions was driven by these requirements.

Object comprehensions were designed as a high-level query language for object-oriented
databases, particularly those supporting multiple collection classes and static type check-
ing. The example queries given in Chapter 4 served to illustrate that object comprehen-

108

7.1. Discussion 109

sions are concise, clear, and powerful enough to express recursive queries. The expressive
power of object comprehensions was further demonstrated by providing four translation
schemes from the query languages of ONTOS, ORION, IRIS, and O3 to object compre-
hensions in Chapter 5. The very existence of these translations substantiates the claim
that object comprehensions are at least as powerful as those four query languages with re-
spect to the reference data model. Object comprehensions can be subject to conventional
optimisation techniques similar to that reported in [Tri89, Pou89]. New optimisations for
class testing and quantifiers were identified and reported. A procedural algebra was also
developed to support object comprehensions.

The canonical algebra is a simple procedural algebra supporting multiple collection
classes and to which object comprehensions can be translated. A translation scheme was
presented in Chapter 6. A set of transformation rules that can be used for optimisation is
also given. The canonical algebra essentially defines a platform for the support of object
comprehensions.

All the languages mentioned above were studied in the context of a reference data model
to which a formal specification was given in Z in Chapter 2. Only features relevant to the
study of query language processing were identified and synthesised into the reference data
model. Important features of the data model include multi-methods, multiple inheritance,
dynamic binding, and static type checking. The canonical algebra plays the role of the
data manipulation language of the reference data model. Operations that constitute the
algebra were similarly specified in Z. Some properties of the reference data model were
proved using the specification. The experience of using Z suggests that a more concise
notation may be more appropriate for the purpose of this research.

To conclude, the functional requirements proposed are meaningful and constructive.
They are meaningful because they can be used to evaluate and compare existing object-
oriented query languages. They are constructive because they can be used to improve
existing query languages and direct the design of new query languages of which object
comprehensions are an example. Object comprehensions are powerful and optimisable.
They are powerful because multiple collection classes can be dealt with, recursive queries
can be expressed, and queries expressible in other query languages can be expressed. They
are optimisable because some transformation rules are available. The canonical algebra
is simple and powerful. It is simple because it consists of a small set of operations. It is
powerful because object comprehensions can be supported. In brief, the research described
in this thesis represents a step toward a better understanding of the needs and support of

object-oriented query languages.

Conclusion 110

7.2 Limitations

There are a number of limitations to the approach described in this thesis: (1) inadequate
analysis on the completeness of object-oriented query languages; (2) inadequate analysis
on the complexity of the algebraic operations; and (3) the lack of implementation evidence
on optimisation; and (4) the reference data model and query optimisation assume that all
method calls terminate.

The thesis began with the identification of a set of functional requirements for object-
oriented databases. The research was carried out carefully but the requirements identified
cannot be proved to be adequate and sufficient. A formal study of the completeness of
object-oriented query languages would provide a definitive answer to this question on
expressive power. v

Studies of formal query languages aim to strike a balance between expressive power and
efficiency. One result of the study of nested relational algebras showed that the powerset
operation is outside polynomial time [AB93]. Some attention has then been shifted to
finding an algebra that delivers the maximum expressive power but having a polynomial-
time complexity. This involves studying the complexity of individual operations as in
[LW93]. In object-oriented data models, this study would be significantly complicated by
the presence of methods.

The optimisations proposed in this thesis represent a first step to optimisation. They
represent a core set of rules that can be used in a rule-based optimiser. Search strategies
and related issues in such an optimiser were studied in [Mit93]. Implementation-based
optimisation techniques, such as use of indices, clustering, and cost models, are not covered
in the thesis. Nor is the generation of execution plan, see [Str90]. Note that the two
studies [Mit93, Str90, unly conside.ed sets. Recursive queries can be c.pressed using query
functions but their optimisation are not addressed in the thesis. The absence of a suitable
platform has precluded the integration of the proposed languages and optimisations into
a running system. However, a similar ianguage and its optimisation were prototyped and
reported at the early stage of this research [TCH90].

Methods can be non-terminating and the safety of a query language cannot be guaran-
teed in general. A study of this issue has been recently reported in [PS94]. A consequence
of the suggested approach is that a three-valued logic is used excluding some well-known

properties of two-valued logics.

7.3 Future Directions

Many avenues of further research, both practical and theoretical, are possible and some
are described in the next paragraphs.
Graph Comprehensions. Comprehensions are a promising query notation partly be-

cause they are recursively defined and hence could possibly be applied to all recursively

7.3. Future Directions 111

defined collections such as lists and trees. In the object-oriented paradigm, an object can
be perceived as a graph of heterogeneous objects - a sort of collection. Unfortunately,
graphs cannot be defined recursively and hence do not have an intuitive mapping to com-
prehensions. One challenge is to extend comprehensions to capture graphs making it a
“truly” generic query notation.

Completeness and Tractability. To study the expressive power of object-oriented query
languages, it is necessary to have a proper notion and definition of completeness. This is a
research area actively pursued by workers on database theories. The development of graph
comprehensions would facilitate the reasoning and definition of completeness. An equally
actively researched area is the search for more expressive but tractable query languages.
This demands more understanding on the interaction of collections, the effect of nested
queries, and the complexity of individual operations.

Query Optimisation. The optimisation of object-oriented query languages has been
acknowledged as an extremely hard problem. The object-oriented paradigm emphasises
extensibility and requires an open architecture for many components in an object-oriented
database including the query optimiser. How to handle the extensibility of the paradigm,
the richness of the data models in general, and the optimisation of object comprehensions
in particular definitely require more research.

A Type System Supporting Multi-Methods. Neither object comprehensions nor the
canonical algebra have been given a complete type system. One extension is to add a type
system so as to make reasoning easier.

Generic Report Generator. A preliminary study of the development of a generic report
generator is being carried out. The objective is to develop a theoretical framework for
report eeneration that can be applied to conventional as well as to advanced data models.
The framework is expected to include a fu. mal report model which provides a conceptual
representation of reports. Generating a report will then involve specifying it in terms of
the report model using a report specification language. Next, the report generator will
automatically generate queries over the corresponding database and perform computation
over the results returned by the queries. The data retrieval part of the report specification
language is essentially a query language. One of the challenges is to incorporate object
comprehensions into thev report specification language so that it becomes generic across
data models.

View Support. View mechanism is a classic database facility and is traditionally sup-
ported using query languages. Whether this collaboration of view support and query
languages would suffice in the new generation of object-oriented databases is open to
question. The next chapter sets out to answer this question with a view to investigate the

feasibility of supporting views using object comprehensions.

Chapter 8
View Support

Views enrich a database with various perspectives through which different applications can
access the same underlying database. The semantic complexity of an application is there-
fore significantly reduced as irrelevant details are hidden. Views have been demonstrated
to be a useful tool for managing relational database systems. Object-oriented database
systems do not yet support any satisfactory view mechanism. This chapter examines ex-
isting proposals, reveals their advantages and disadvantages, and identifies the challenges
involved in proposing a satisfactory solution.

The organisation of this chapter is as follows. Section 8.1 argues for the need of view
support in object-oriented databases. Section 8.2 explains the nature and use of views in
object-oriented databases. Section 8.3 describes and assesses current proposals for view

mechanisms. Section 8.4 concludes.

8.1 Rationale

The ability to define user views of a database is a basic requirement. Irrespective of the
data model supported, e.g. relational, deductive, or temporal, a database with a schema
that serves more than one application program should provide a view mechanism. View
mechanisms proposed for object-oriented databases do not emulate those of earlier data
models. Such a short-coming damages the usability of object-oriented databases and needs
addressing.

Views have been a standard and distinguishing characteristic of databases since the
introduction of the ANSI/SPARC architecture [DAF86]. Views must be available in order
to make a true progression from file processing to database [EN89]. Without views all
applications of the same database use the same general schema; they become contorted
by their accommodating the data requirements of other applications which, in turn, leads
to inefficiency and error.

Data models other than object-oriented data models have given a higher priority to
views. Many relational database management systems facilitate views even when they

112

8.2. Views in Object-Oriented Databases 113

have not implemented significant components of the relational model. DB2, for example,
does not support referential integrity; database updates and deletions have to be executed
carefully. Nevertheless, it does support views. A database with a complex schema of
normalised relations can be read by users as though it were application-specific. Attributes
or whole tables which are irrelevant to groups of users are hidden. Data, for which users
have no access authority, are also hidden.

The class hierarchy of an object-oriented database is just as confusing to a reader
as a large relational schema. Nor are object-oriented databases designed to store small
quantities of data for single applications. The objects and classes are just as numerous
and are intended to be accessed by just as many applications.

However, proposals for support for views in object-oriented databases are unsatisfac-
tory. This chapter explains their limitations and, in at least one case, a conspicuous error.
One could argue that they do not offer the limited support that even DB2 can. This can
be rectified only by a proper identification of the problems, and, of course, future research

for their solutions.

8.2 Views in Object-Oriented Databases

8.2.1 Viewing Object-Oriented Databases

view instances view view
collection class
class
F »— 7 ¢ view
VI o o f e Set of Y instance
collection 1 1+ 1 1 methods
. - interface
view—defining derivation
query
Set of X , source
& 1 Vv instance
methods
5 source source
collection class
R class
source instances
Data Schema

Figure 8.1: Elements of an Object-Oriented View.

Figure 8.1 depicts views in an object-oriented data model. The lower half of the figure
depicts a (simplified) database and the upper half depicts a view defined on the database.

A view contains a collection of instances that are drawn from a source collection. The view

View Support 114

instances are the source instances that satisfy a view-defining query. Type information is
given on the right. For the example in Figure 8.1, both the view and the source collections
are of class set. The source instances are of class X and the applicable methods are called
source instance methods. The view instances are of class Y and the applicable methods
are called view instance methods. The view instance methods can be derived from the
source instance methods as will be shown in later sections. In the case of the relational
model, only the elements in the left dotted rectangle are sufficient to define a view. This is
because the relational model is a structural model and all access methods are generic. For
object-oriented databases, all the types must be specified or inferred since each class has
its own methods and multiple collection classes are supported. Therefore the additional
elements required are the ones in the right dotted rectangle.

In Section 2.14 it was mentioned that an ORION class extent does not include the
extents of its subclasses. To define a view, say People, to return a class “extent” including

instances of Person and instances of its subclass Student, a query can be used as follows,
People = Person union Student

The extents of Person and Student are the source collections from which the view
collection People is generated. This is carried out by the view-defining query using the
union operation. The view instances, elements in People, consists of all the elements in
the extents of Person and Student - the source instances. The source instances are of class
Person or Student, which are the source classes, and the view instances are of class Person

- the view class. Both the source collection classes and the view collection class are set.

3.2.2 Use of vie s

Many suggestions have been made about and reasons given for the possible use of views
in object-oriented databases [SS89, HZ90, SLT91, Bra92, Ber92, PMSL94, SAD94]. The

ones suggested most often are,

e Information Hiding e Support of Versions
o Information Restructuring e Content-based Access Control
e Query Shorthand o Integrating Heterogeneous Systems

e Defining Dynamic Collections e Data Independence
e Testing Schema Changes e Relational Compatibility

Information hiding and restructuring refer to the amount and presentation of infor-
mation to the users. They focus on individual instances. Query shorthand refers to the
construction of a collection that can be used for further querying. Dynamic collections are
useful in partitioning an existing collection into smaller collections. They both focus on
collections. The effects of schema changes can be studied by simulating the changes using

views. If a database contains multiple versions of data a view can be defined to provide

8.3. Current Proposals 115

uniform access to the different versions. Access control is usually done by authorisation
on a collection of data. Since a view typically contains a collection of elements that satisfy
certain criteria, authorisation on such a view collection will effectively provide content-
based access control. In a heterogeneous system, views can be used to integrate data from
individual systems. Asin the relational model the use of views minimises the consequences
of schema changes and results in more maintainable systems. Many new object-oriented
database users also require access to data stored in their relational systems. Views can be
used to provide a gateway between the two systems. This chapter is concerned with four
uses of views, namely information hiding, information restructuring, query shorthand, and

defining dynamic collections, as they are considered the most important.

8.2.3 The Principal Requirement

The object-oriented paradigm emphasizes reusability. The principal requirement of a view
mechanism is therefore to maximise reusability. At the data level it means to minimise
the creation of new objects. At the schema level it means to minimise the creation of new

classes, introduction of new methods, and the redefinition of existing methods.

8.3 Current Proposals

View ~w— __ View
Class Class ~—_ -

4

View !
|
method Co ISA ! devivation
!
;
|

Class

'f re.ationship
b =~ Source

Class
~

Source
Class

Source
Class

i

i

Figure 8.2: The Methodological, Query-Driven, and Schema-Driven Approaches.

The proposals studied in this chapter can be categorised into three approaches. Each
category is characterised by the relationship between a view class and a source class (Figure
8.2). In the methodological approach, the relationship is modelled using a method. In the
query-driven approach, the relationship is captured by the ISA relationship. The schema-
driven approach uses a two-layered structure where a view class is related to the source
class not by a method or the ISA relationship but a new derivation relationship that is
not in the “standard” object-oriented paradigm.

View Support 116

8.3.1 Methodological Approach

Attempts have been made to provide view support by simply applying a methodology that
simulates the view mechanism. The major advantage of this approach is that neither new
concepts nor implementation are required. However, it is a self-disciplined approach and
provides no system support of any kind. The responsibilities for view support rest on the
programmer. With the following proposal, for example, that burden eventually proves too
great to bear.

A single example of such a strategy suffices. The following discussion, then, is based
on [BK93]. For the rest of the section one may equate the approach and this proposal.

Barclay & Kennedy’s Proposal

In this proposal, a view is like a subschema which can contain more than one view col-
lection. Using the example database described in Section 2.13, a view containing people
under 65 in the set Persons and restricting access to the method get_name can be defined

as in Figure 8.3 (a hypothetical syntax is used).

Class A_View_Class / * just an ordinary class x /
methods / * contains only methods x /
young_people — Set of Person [* returns the view collection x /
be select p / * using a view_defining query x /
from p in Persons /% on Persons, i.e. the x /
where p.age < 65, / * source collection * /

get_name(p : Person) — String /% view instance method * /
be p.name.

Figure 8.3: A View Definition (Barclay & Kennedy).

The view is defined as a class, A_View_Class, containing only methods. The view
collection is defined by a query and returned by the method young_people. In other words,
a view collection is populated by existing objects and no new objects are generated. The
method get_name, which takes a Person object as argument, is defined to maripulate the
view instances. Using a view involves creating an instance of the class defining the view,
invoking the method young_people to return the view instances, and applying the method

get_name to them (Figure 8.4).

8.3. Current Proposals 117

A_View = A_View_Class.new / * a new view class object x /

select A_View.get_name(z) / * view instance method * /
from 2z in A_View.young_people/ x view collection x /

Figure 8.4: Using A View (Barclay & Kennedy).

Two benefits to using this approach are revealed by the example. Query shorthand is
supported, i.e. queries on the view instances of the example need not include the selection
condition, age < 65. Also, the view is populated by existing objects rather than newly
created ones. This makes updating view instances easier.

There are however a number of serious problems. The use of existing objects may
make updates straightforward, but it is not clear how to achieve restructuring. These
views are based on collections rather than instances. As such, use of the whole collection,
as in shorthand querying, will always be simple but use of individual view instances,
such as writing methods with view instances as arguments or results, is not. There is no
information hiding. The view instances in the example given in Figure 8.4 are still clearly
of class Person. Therefore, although only get_name is supposed to be permitted, any
method defined in Person may be invoked on a view instance. No new class is defined for
the view instances. The instances of A_View_Class are complete views not view instances.
Thus if a method is written and a view instance is an argument or result, the method writer
is compelled to write Person in the signature. It is due to the fact that the abstraction
for a view is defined at the collection ' .vel rather than at the element level.

A further problem relates to the class hierarchy. Since these views are just classes
they can form hierarchies. However, a subclass could legally redefine the method which
returns the view collection. In the example, a new view could be defined as a subclass of
A_View_Class with a definition of young_people which returns some objects whose age is
greater than 65, that is, it is possible for a subview to contain instances not in the super-
view. This violates the inclusion semantics of inheritance and hence creates a consistency
problem.

In summary, the proposal introduces no new facilities to support views so defining a
view is rather tedious. Dynamic collections and query shorthand are easily defined but
information hiding and restructuring are not provided. View interfaces are provided at
too high an abstraction level and view instance interface is distorted and unnatural. The

semantics for many possible uses of views, such as consistency and constraints, are poor.

View Support 118

8.3.2 Query-Driven Approach

The query-driven approach covers the proposals in which the definition of a view is pri-
marily a query. As in the relational model this provides a simple mechanism for views
but in the new context it becomes rather restrictive. Recall that instances of a class can
only be manipulated by methods defined for the class. If a view defined by a query is to
be of any use, applicable methods must be defined on the view class. If the view class is
going to be a proper class, it must be placed in the class hierarchy. To maximise reusabil-
ity at the class definition level this often implies that a view class should be placed as
close to the source class as possible. In addition, the ISA relationship also asserts that an
instance of a subclass is also an instance of its superclasses. To maximise reusability at
the instance level, the generation of new instances should be minimised. The ability to
maximise reusability is a determining factor for a good query language for view support.
However, inserting the view class into the class hierarchy and preserving class instances
are both problematic as will be seen in the following proposals.

In describing different proposals, the term “non-class-generating” refers to operations
that do not result in the generation of a new class, “class-generating” operations generate
either a subclass or a superclass of the source classes, while “new-class-generating” oper-
ations generate a direct subclass of the root class irrespective of the position of the source
classes in the class hierarchy. A discussion of the various proposals in this approach is
given at the end of this subsection.

Davis & Delcambre’s Proposal

A query algebra which is formally defined using denotational semantics was proposed by
Davis and Delcambre [DD91]. Tue algebra contains five class-gene.aung operations: U
(union), N (intersection), — (difference), p; (select for all), oy (select for some), and two
new-class-generating operations: m; (project) and X (cross product).

The effect on the class hierarchy after executing the queries: Q1 (044 < 65 Person)
and Q2 (mpame Person), where Person represents both a class and its extent, is shown in

Figure 8.5.
|

__» Person i Person -—___
‘ ' A P 4 —
j ; ! ' set |
. derivation | \\ ISA | derivation | —~
: relattonshtp\\ \‘ E relationship | source

\ | : /
“~—a Young_People | | ~~—» Name ¢
.

Figure 8.5: Ql: 044e < 65 Person and Q2: Tpame Person.

8.3. Current Proposals 119

Selection (oy) results in the generation of a new class, Young_People, which is a sub-
class of the source class, Person. The extent of Young_People is formed by the elements of
the extent of Person whose age is less than 65. Subclass-generating selection is a widely
adopted approach where the extent of a subclass is reversely populated according to the ex-
tent of its superclass. Such a derivation relationship violates the object-oriented principle
of populating a superclass with its subclasses - paradigm problem.

Reverse population is also used by the operations: N, —, and p;. Projection (my)
generates a new class, in this case Name, which is a subclass of the root class. Instances of
the new class are created by applying the projecting function fon the elements in the source
extent, eliminating the duplicates, and then creating an object for each of them. There
is also a system-defined method that links a new object to its source objects (represented
by the method source in Figure 8.5). Note that this is a set-valued method implying that
the one-to-one connection is lost which may cause problems in propagating updates from
the view objects back to the source objects - propagation problem. Strictly speaking the
generation of new objects is not necessary in same circumstances. The elimination of
duplicates is a result of forming tuples in the first step of a projection. This approach,

however, allows the restructuring that the previous proposal does not.

Scholl’s Proposal

The algebra proposed in [SS90, SLT91] contains two non-class-generating operations: oy
(select) and — (difference), and the following class-generating operations: 7 (project), ¢
(extend), U (union), and N (intersection).

Selection (oy) creates a new collection whose elements satisfy the condition f. Pro-
jection “-y) generates a superclass of the :ource class and a view collectic ~ containing
the same elements as in the source collection. The rationale of this tactic is that the

ISA relationship can be used to maximise reusability and minimise the generation of new

classes.
i !
i
Person i
j Person (name age, | Name |, e, major ?
! 4 Name age, 7 address |
[address
ISA N. ' ! Person
_ ame major } 4 name, age,
: 4 | 4 address
: ! | /
. ! I :
- Student major, takes, . . . ,
supervisedB Student . ' .
P y ! takes, L Student major, takes,
ﬁ supervisedBy supervisedBy B
]

Figure 8.6: Q3: Tname,address,age,major Students, and Q4: Tpame major Students.

View Support 120

The effect on the class hierarchy after executing Q3 (Tname,address,age,major Students) is
shown in Figure 8.6 where the new class is inserted between Person and Student. However,
this tactic is not generally applicable as a projection may result in a class that cannot be
fitted as a superclass of the source class - class insertion problem. A case in hand is Q4
(T name,major Students) in Figure 8.6.

This treatment is unsatisfactory even if the new class can be fitted into the hierarchy.
In the case of Q3, it is obvious that some kind of schema evolution is happening. The class
definition of Student is factorised into two parts: one becomes part of the new definition
of Name and the another becomes the new definition for Student. If that is allowed it is
not unreasonable to assume that the class definition of Person can be updated, say to add
the method ss#. Now, Name has one more method inherited from Person even though
it is not specified in its view-defining query. This raises concern over equating the ISA
relationship with the derivation relationship - evolution problem.

Extension (¢;) adds derived functions to a collection of objects. It essentially defines a
subclass by extending the source class with derived methods. It is suggested that the effect
of the “join” operation can be achieved by using €¢; on the source collections extending
their elements with a multi-valued method. This way a many-to-many relationship will
be represented as two one-to-many relationships. The other operations: U, N, and — have

similar semantics as Davis & Delcambre’s.

Alhajj’s Proposal

In this proposal [Alh92, AA92)], there is one non-class-generating operation, oy (select),
five class-generating operations, U (union), — (difference), n; (project), ¢; (extend), and
X (cross produ. .t), as well as two new-class-generating operations, ay (apply) and x (cross
product).

Difference (—) has peculiar semantics. If the first source class is the same or a superclass
of the second source class, the view class will be the same as the first source class. Assuming
Persons and Students are collections of Person and Student objects respectively, Persons —
Students returns a view collection containing Person objects because Personis a superclass
of Student. This part of the semantics is perfectly acceptable. However, if the condition is
not true, the view class will be derived by removing all the methods of the second source
class from the first source class. For example, Students — Persons will give a collection
whose elements can be manipulated by only three methods: major, supervisedBy, and
takes, but not name, address, or age.

Application (oy) is a more general form of projection (7). It applies the function f
to a source collection and generates a new collection containing the results returned by f.
No connection from the view instances to the source instances is maintained.

Cross product (x) may be class-generating or new-class-generating depending on the

source classes. If they do not have any atomic-valued methods, it generates a subclass of

8.3. Current Proposals 121

the source classes. Otherwise, it behaves as Scholl’s € or Davis & Delcambre’s x. Unlike
the latter, no link to the source instances is maintained. It was argued that this context
dependent semantics makes X associative and its implementation efficient. However, when
the subclass is generated the semantics is erroneous. It implies that an instance can be
migrated to a subclass forming multiple instances of the subclass, each of them sharing
the same identifier. This is certainly impossible. Having said that it is believed that most
of the time the operation will be of the other kind. That would make it practically the

same as Davis & Delcambre’s X. Other operations in the algebra are similar to Scholl’s.

Discussion

Other algebras have been proposed for querying object-oriented databases, many of them
are however retrieval-based and are not designed to support updateable views where max-
imum reusability and link to the source are essential. Straube’s algebra [Str90] cannot
generate new objects and does not maintain source links. Dayal’s algebra [Day89] and
Shaw & Zdonik’s algebra [SZ90] rely on tuples and keep no source links. Osborn’s algebra
[Osb88] and Vandenberg & DeWitt’s algebra [VD90] does not maintain source links.

It was mentioned earlier that views can be used to restructure information. To support
that using a query-driven approach requires a powerful query language. As expressive
power has been covered briefly in previous chapters, the centre of the following discussion

is on information hiding and update propagation.

Scheme A Scheme B
Subclass & Extent Collection

create dynam”- dynamic

insert must be an instance of an instance is of the source
the subclass and hence class and therefore must
always satisfies the be checked against the
constraints constraints and propagated

to the source collection
update
- meet constraints OK OK

- do not meet constraints | insert to the source class | reject
delete remove from the database | remove from the collection
schema update one subclass one collection

Table 8.1: A Comparison of the Subclass & Extent Scheme and the Collection Scheme.

It is argued in [Day89] that selection should not result in the generation of a subclass
and should be handled using collections. Figure 8.1 contrasts two schemes in terms of the
different kinds of updates that can be performed on a view collection and the database

View Support 122

schema. Whether these operations should be supported at all is debatable: Scholl [SLT91]
and Abiteboul & Bonner [AB91] expressed very different opinions on the issue. The
operations are included here mainly for the purpose of exposition. The semantics suggested
for the operations is representative though not definitive, see also [SLT91].

Davis & Delcambre adopt scheme A while Scholl and Alhajj use scheme B. The inser-
tion semantics of scheme B is more complicated and requires constraint checking as well as
some trigger mechanism to populate the source collection. Update in scheme A is in some
sense information-preserving even though it means an inserted element may not appear
in the view collection. The notion of value-closure is advocated in [HZ90] meaning that
only constraint satisfying updates should be allowed. Deletion in scheme A is difficult and
requires an expensive computation. On the contrary, deletion in scheme B is straightfor-
ward. Scheme A induces schema updates and an instance in a source extent may end up in
many view extents. In other words, the very same object can be of many disjoint classes.
This is not supported in many data models. Scheme B generates a dynamic subset for
each query on a source collection.

In general scheme B is more desirable as it decouples collections from the class hierarchy
and hence minimises changes to the hierarchy. On balance, it could be argued that scheme
B is a reasonable compromise between simplicity, flexibility, and functionality. Operations:
U, N, and — can function in scheme B and take the unique common superclass of the source
classes as the class for the elements in the resultant collection.

] !
|
. Person | Person’ i
: Person 4 hame, age, '(*
{ name, age, /" address g |
address ’ ' \
! g ! \
154 , Person \
Name | d 988 Nome
i { major B] address/ v major
L i T "
Student major, takes, i [; b i I
' supervisedBy E Student y X Student y o5
l supervisedBy , ! supervisedBy

Figure 8.7: Q3: Tname,address,age,major Students, and Q4: Toame,major Students.

Projection has been shown to be rather problematic. Suggestions have been made to
rectify the situation [MS89, Alh92, AD94]. For example, in [AD94] an algorithm is given
to factorise the class hierarchy so that the view class can be properly placed to inherit
methods from existing or factorised classes. Figure 8.7 shows the result of the factorisation
caused by the view definition defined by Q4 (Tname,major Students). Note that the resultant
hierarchy is arranged in such a way that the view class is immutable to future changes

to existing classes. In other words, the evolution problem is eliminated. Also note that

8.3. Current Proposals 123

such factorisation may result in change of signatures for methods “promoted” to a new
superclass.

Application (a;) can be used to express both selection and projection. The only con-
cern is how the connection between the source instances and view instances is maintained.
Losing this connection will prohibit updates to the view instances from being propagated
back to the source instances.

Cross product is used to re-establish relationships not represented explicitly in the
database schema. It generates a new object for each pair of source instances. So far the
problem of generating new objects, as in 7y, ay, and X, has not been discussed. Imagine
a view named Student_and_Advisor defined using X over a set of Student objects and a set
of Staff objects. To return those pairs where the advisor is from the Computing Science
Department and the student is from the Mathematics Department, two possible queries

can be used as shown in Figure 8.8.

Q5 : select z
from =z in Student_and_Advisor
where z.advisor.department.name = “Computing Science”
and z.student.major.name = “Mathematics”
Q6 : select z
from <z in Student_and_Advisor
where z.advisor.department.name = “Computing Science”
and z in (select y
from y in Student_and_Advisor
where v tudent.major.name = “Mathem “ics”)

Figure 8.8: The View Freezing Problem.

The two queries appear to be the same; however, they may return different results
depending on how new objects are generated for the view Student_and Advisor. If new
objects are generated each time a view is accessed, two successive accesses to the same
view will generate two sets with completely different elements. In query Q6, the range
of z and the range of y will be different even though their contents are the same. The
fundamental question is should the new identifiers, at least within the same transaction,
somehow depend on and freeze with the source objects from which the new objects are
generated. A possible solution is to specify some kind of key on the view objects which
freezes their object identifiers.

Integrating the query-driven approach with the object-oriented paradigm is not as
smooth and easy as it may seem. Its integration does require extra facilities that are
not usually explicitly represented in object-oriented data models and, more often than

View Support 124

not, may not be available at all. These facilities include schema evolution operations,
instance migration operations, triggers in the case of using the collection scheme, constraint
checking, and system-defined methods for the source link. The next section presents a more
powerful approach in which a view is not only defined by a query but also augmented with
method implementations and so forth.

8.3.3 Schema-Driven Approach

The schema-driven approach covers those proposals in which the derivation of a view con-
sists of a query and a schema-like definition. This approach results in very sophisticated
view mechanisms that overcome many problems found in the previous approaches. Nev-
ertheless, this approach is rather verbose and therefore less convenient to use. In order to
facilitate comparison a non-specific syntax is used.

Heiler & Zdonik’s Proposal

Class A_View_Class / * just an ordinary class % /
attributes
p : Person, / * source instance & class x [
methods
get_name — String / * view instance method * /
be p.name. / * uses the source instance x /
View Young_People = { (/ * view collection * /
A_View_Class, / * view class * /
select p / * view_defining query * /
from p in Persons / * source collection x /
where p.age < 65
)}

Figure 8.9: A View Definition (Heiler & Zdonik).

In this proposal [HZ90], a view is defined by first declaring a class for the view instances
and then populating a collection with objects of that class using a query. In Figure 8.9 an
ordinary class A_View_Class is defined whose only attribute is an object of class Person.
The method get_name is implemented by calling name on the attribute p. The view
collection Young_People is populated by a query using Persons as the source collection.
The objects returned by the query are of class Person and they are cast to A_View_Class
before becoming members of Young_People. This casting occurs because selection (oy) is
used. Projection (7y) and join (X) will result in generation of new objects. This approach

relies on the programmer to ensure the consistency between the two parts of the definition:

8.3. Current Proposals 125

the class definition and the population of the view collection. Namely, the source class
must be the same as the class of the attribute and the selection predicate used in the
view-defining query must be included in the appropriate method implementations. The

view freezing problem is not addressed.

Saake & Jungclaus’s Proposal

View Young_People ./ *a view class x /
source

Person p / * source class & instance * /
query

p.age < 65 / * view_defining query x /
methods / * attributes can be defined * /

get_name — String / * view instance method * /
constraints

age < 65. / * satisfied by all instances x /

Figure 8.10: A View Definition (Saake & Jungclaus).

Using Saake & Jungclaus’s proposal [SJ92], the view Young_People will be defined as
in Figure 8.10. Note that this proposal is designed for defining views on class extents.
The source class is explicitly specified and the extent of the source class is used as the
source collection. A label can be given to the source class as a symbolic name for the
source instance. This label can be used within the definition and is like self in many
programming systems. Unlike the p.zavious proposal, methods that are simply named
in the view definition will be inherited and no explicit implementation is required. A
construct is provided to specify constraints that must be satisfied by all instances of the
view class. Join views can be defined and their instances are values. A source link is

maintained in these views. The view freezing problem is not addressed.

Bertino’s Proposal

This proposal [Ber92] is very similar to the last one. Both of them are designed to work
on class extents. The source classes are inferred in this case and no label is provided to
refer to the source instance. The lack of such a label makes it difficult to use view instances
as the result of view methods - association problem. Special syntax is introduced in this
proposal to get around this problem. Whether a view class will generate new objects can
be decided by the user. Constraints are however not supported. Special syntax is provided
to make method inheritance easier to specify. Also introduced is the concept of key which
controls duplicate elimination. For example, the “join” view used in Figure 8.8 can be

defined as in Figure 8.11.

View Support

126

View Student_and_Advisor / * a join view class x /
query

select s,! / * view_defining query * /

from s in Student, | in Staff

where s.advisor = |

and s.major.name = “Mathematics”

and l.department.name = “Computing Science”
methods

AllMethods of Student, Staff / * view instance methods * /
generating

true / * if new objects are generated x /
identity

Student, Staff. / * key x /

Figure 8.11: A View Definition (Bertino).

Abiteboul’s Proposal

/ * a parameterised view class * /
/ * view_defining query x /
/ * argument as source collection x /

/ ® inherit all methods hut age * /

View Young_People(Ps : Set of Person)
query
select p
from p in Ps
where p.age < 65
methods
hide ape
generating
false.

/ *if new objects are generated x /

Figure 8.12: A View Definition (Abiteboul).

This proposal [AB91, SAD94] differs from the previous proposal primarily in the sup-

port of parameterised views. As shown in Figure 8.12, the view Young_People can be

materialised with different sets of Person objects on different activations. Syntactic sugar

is provided for method hiding. While Bertino’s proposal introduces special syntax to deal

with the association problem, Abiteboul’s proposal provides no support for that. The view

freezing problem is fixed by freezing an identifier with the attribute values of a tuple.

Discussion

Heiler & Zdonik’s proposal is compositional in nature (similar in spirit to the method-

ological approach) because view classes are defined as ordinary classes. Casting is used

8.3. Current Proposals 127

to turn an attribute into a view instance and at the same time keeps the object iden-
tifier. All projected methods have to be redirected and hence explicitly specified. The
programmer is required to ensure consistency between the view-defining query and the
view class definition, including the proper update semantics. This proposal also works
with the collection scheme.

Saake & Jungclaus’s proposal takes a quite different perspective as views are defined
on top of existing classes without resorting to the ISA relationship and object composition
mechanism. Methods can be inherited from the source class easily. Constraints can be
specified and are maintained by the system. Basically no new objects are generated and
join views are populated with values.

In Bertino’s proposal it is even easier to inherit methods. Explicit control is given
over the generation of new objects. Like in Heiler & Zdonik’s case, the programmer has
more responsibility in maintaining the consistency of various parts of a view definition.
It is suggested that views can form hierarchies but consistency between them is not dis-
cussed. Abiteboul’s proposal allows parameterised views to be defined and hence is more
appropriate for using with the collection scheme. The view freezing problem is addressed.

The query-driven approach aims to define view classes that behave in the same way as
ordinary classes. Methods can be defined as in ordinary classes and overloaded methods
are resolved by using the derivation relationship and in some cases, like Bertino’s and
Abiteboul’s, before extending it to the ISA relationship. To support complex objects, a
view method should be allowed to return real as well as view instances as the result. This
association problem is addressed inelegantly in Bertino’s approach and is not addressed
in the other proposals. The support of object identifiers demands a solution to the view
freezine nroblem. Abiteboul’s proposal seems to be too restrictive while Bertino’s may be
non-deterministic when two tuples have tue same key but otherwise differ in their non-
key attributes. A badly addressed area is the formation of a class hierarchy from view
classes. In all the proposals studied, a view consists of both a class and a collection.
The ISA relationship between view classes does not seem to create any problem. The
corresponding view collections are expected to satisfy the subset relationship. However
the latter constraint is not imposed in any proposal. To check this constraint, subsumption
analysis [BJNS94] could be used but the problem in general is intractable.

View Support 128

8.4 Summary

No object-oriented database system has yet provided a satisfactory view mechanism. Many
of the existing proposals can only handle a very small class of view definitions. Reusability
is a key idea behind the object-oriented paradigm; however, how the view mechanism can
take advantage of this aspect of the paradigm is not yet well understood. Updates in
object-oriented views should be more manageable than in the relational model as propa-
gation becomes easier with objects. More research is definitely required in the different
aspects of views and hopefully a useful mechanism will be available before long.

Appendix A

Reasoning about Z Specifications

This appendix shows how a property of the reference data model can be studied using a
formal proof methodology.

The object-oriented paradigm emphasises reusability and one way to support reusabil-
ity is to allow incremental development of classes including refinement of methods and
method overloading. Choosing between overloaded methods requires some kind of order-
ing to be imposed on the methods. The local inheritance ordering is used as the basis
of ordering in the reference data model. However, it can be applied only at rum-time
when the argument types are known. To suppo:t static type checking, the generalised
inheritance ordering is used at compile-time. However this ordering may result in meth-
ods forming a cycle under the method specificity relation. To enable type checking to be
carried out at compile-time, the consistency between such methods has to be maintained.
The reference data model requires such methods to have the same result type. To ensure
that the reference data model actuauy has this property, a formal proof of a theorem
characterising this property is given in this appendix. Three lemmata are used to provide

auxiliary results for the proof of the theorem.

129

Reasoning about Z Specifications 130

A.1 Lemmal

Lemma 1 deduces that if two methods are consistent and form a cycle under the method

specificity relation (C), their result types will similarly form a cycle under the type con-

formance relation (<).

Assumption Assertion Justification
(1) 1 Ymy, my: METHOD; sy, 89 : SIGNATURE | Consistent
§1 = my.signature A\ s = mgy.signature o Schema
my isConsistent With my &
(m € my) =
s1.result Type <« sy.result Type
N
(mg & my) =
so.result Type < s;.result Type
(2) 1 Ymy,mg: METHOD; s1,89 : SIGNATURE e Definition of |
s1 = my.signature A s; = my.stgnature => linel
m; 1sConsistent With my &
(m1 C mg) =
s1.result Type < sz.result Type
A
(mEm) =
sy.result Type <« s;.result Type
3) 1 $1 = my.signature A s; = my.signature = - Universial
my isConsistent With m, & Quantifier
(m1 CE my) = Elimination
s1.result Type < sy.result Type line2
A (4 times)
(m2 C my) =
sy.result Type <« s51.result Type
(4) 4 $1 = my.signature Assumption
Assumption

(5) 5 $9 = my.signature

A.l. Lemmal 131

Assumption Assertion Justification
(6) 1,4,5 my isConsistent With my & Tautology
(m1 C mp) = (ANBA
sy.resultType < so.result Type ((AAB)= ()
A =C
(me E my) = line4,5,3
so.result Type < sy.result Type
(7Y 1,4,5 my isConsistent With my = Tautology
(m1 C mp) = (A B)=> (A= B)
sy.result Type <K s5.result Type line6
A
(me & my) =
sqo.result Type < sy.result Type
(8) 8 my 1sConsistent With my Assumption
(9) 1,4,5,8 (m1 C mg) = Tautology
s1.result Type <« so.result Type (AN(A=>B))=>B
A line8,7
(m2 C my) =

sy.result Type < s1.result Type
(10) 10 my C mg
(11) 11 my C my
(14}1 1,4,5,8,10,11 s;.resultType « ._.resultType

A
so.result Type <« s1.result Type

Assumption
Assumption

Tautology

(AANBA

(A= X)A (B = Y))
=>(XAY)
line10,11,9

Reasoning about Z Specifications 132

A.2 Lemma 2

Lemma 2 deduces that if one type conforms to another under type conformance relation
(<), the two types are either equal or transitively related under the ISA relationship (<*).

Assumption Assertion Justification
(1) 1 Vi, ts: TYPE_NAME o Class
h €t & Graph
{t1,t2} C ClassName A t; <* t,
\

{t1,t2} C BaseTypeName A t; = t,

(2) 1 Hh <t Universal
{ti,t2} C ClassName A t; <* t; Quantifier
\Y Elimination
{t1, t2} C BaseTypeName A t; = t; line l
(twice)
3) 1 t <ty = Tautology
{t1, t2} C ClassName A t; <* 1, (A& B)=> (A= B)
\ line 2

{t1,t2} C BaseTypeName A t; = t;

(4) 4 Hh <t Assumption
5) 1.4 {t1,t2} C ClassName A t; <* & Tautology
Y (AN(A=>B)=>B

{t1,ta} C BaseTypeName A t, = t; lined,3

A.3. Lemma3 133

A.3 Lemma 3

Lemma 3 develops on Lemma 2 and proves that if two types form a cycle under the type

conformance relation (<), they must be the same type.

Assumption Assertion Justification
(1 1 Vi,to: TYPE_NAME o Class
h <ty & Graph
{t1,t:} C ClassName A t; <* t;
\
{t1,t2} C BaseTypeName A t; = &,
(2) 2 b <tz Assumption
(3) 3 ty Kty Assumption
(4) 1,2 ({t1, &2} C ClassName A t; <* t3) Lemma 2
vV linel,?2
({t1, t2} C BaseTypeName A t; = t3)
(5) 1,3 ({t2, 1} C ClassName A ty <* t;) Lemma 2
\ linel,3
({t2, t1} C BaseTypeName A t; = t;)
(6) 1,3 ({#1, t2} C ClassName A ty <* 1) Property of Set
\Y% lineb
({t1, ta} C Base typeName A t; = t;) (twice)
(7 1,3 ({t1, t2} C ClassName A t; <* t;) Property of Equality
\% line6
({t1, t2} C BaseTypeName A t; = t3)
(8) 1,2,3 (({t1, t2} C ClassName A t; <* t2) Tautology
V ({1, t2} C BaseTypeName A t; = t3)) (AAB) = (AN B)
A lined,7
(({t1, 2} C ClassName A t <* t;)
V ({t1, t2} C BaseTypeName A t; = t3))
(9) 1,2,3 (({t1, t2} C ClassName A t; <* t2) Tautology

A ({t1, t2} C ClassName A t; <* t1))
\%
({t1, t2} C BaseTypeName A t; = t3)

(XVAYA(Y VA)
=>(XAY)VA
line8

134

Reasoning about Z Specifications
Assumption Assertion Justification
(10) 1,2,3 ({t1, ta} C ClassName Tautology
At <*ts ((AANX)AN(ANY))
Aty <* tl) \Y B) =
\Y ((AANXAY)VB)
({t1, t2} C BaseTypeName A t; = t3) line 9
(11) 11 {t1, t2} C ClassName Assumption
AN <*bLAty<*Hh
(12) 11 {t1, &2} C ClassName Tautology
(AN B) = Alinell
(13) 11 <"t Aty <"t Tautology
(AN B) = Blinell
(14) 1 (th = 2Vt <t t) Definition of *
A line 13
(=t Vig<tt) (twice)
(15) 11 (=t Vit <t t) Property of Equality
A line 14
(t1 =t Viy <t t)
(16) 11 th =t Tautology
\Y (AVX)A(AVY))=>
(<t ta Atz <t ty) (AV (X AY))
line 15
(17) 17 t<ttAtb<ty Assumption
(18) 17 t <t & Definition of * line 17
(19) (h<T oAt <t)=t <t 4 Conditional Proof line 18
(20) 11 =tV <ty Tautology

(AVX)A (X = Y)) =

(AV Y)line16,19

A.3. Lemma3 135

Assumption Assertion Justification
(21) 21 Yen : ClassName @ = (cn <% cn) ISA
(22) 11 t; € ClassName Property of Set
A \ line 12

ty € ClassName

(23) 11 t; € ClassName Tautology
(ANB)=> A
line 22
(24) 11,21 = (t <t 4) Universal
Quantifier
Elimination
line21
(25) 11,21 th =ty Tautology
(AVB)A-B)= 4
line 20,24
(26) 21 ({#1, t2} C ClassName A Conditional Proof
t <t A line 25
th <*t) =
t1 = to
(27) 1,2,3,21 th =t Tautology
\% (XVB)A(X=>Y))=>
({t1, &2} C BaseTyy Jame A t; = t3) (YVvB)
line 10, 26
(28) 1,2,3,21 t=t Tautology

(AV(BAA)=>A
line 27

Reasoning about Z Specifications 136

A.4 Theorem

This Theorem proves that if two confusable and consistent methods form a cycle under

the method specificity relation (C), their result types must be the same.

Assumption Assertion Justification
() 1 YV ms : allConfusableSets | #ms > 1 o Database
Schema

Vmy,mg:ms|my #£ mge
my tsConfusable With my =
my isConsistent With my

(2) 1 V ms : allConfusableSets o Definition of |
#ms>1=> linel
Vmy, me:ms|m # mye
my isConfusable With my =
my isConsistent With my

(3) 1 #ms>1=> Universal
Vmy,mg:ms|my# mge Quantifier
my isConfusable With my = Elimination
m, tsConsistent With mq line2
4) 4 #ms > 1 Assumption
(5) 1,4 Vmy, mg:ms|my # mge Tautology
my isConfusable With m.5 = (AN(A=>B))=>B
my isConsistent With mo line4,3
(6) 1,4 Vmy,my:mse Definition of |
my # my = lined

my isConfusable With mq =
my isConsistent With mq

(M 1,4 my # mg = Universal
my isConfusable With my = Quantifier
my 1sConsistent With mq Elimination
line 6
(twice)

(8) 8 my # my Assumption

A.4. Theorem 137

Assumption Assertion Justification
(9) 1,4,8 my isConfusable With my = Tautology
my isConsistent With my (AN (A= B))
= B
line8,7
(10) 10 my isConfusable With m, Assumption
(11) 1,4,8,10 my isConsistent With mo Tautology
(AN (A= B))
= B
online 10,9
(12) 12 my C my Assumption
(13) 13 my C my Assumption
(14) 14 Vmy, mg : METHOD; 1,82 : SIGNATURE | Consistent
sy = my.signature A\ sy = mo.signature Schema
my isConsistent With my; <
(m1 C my) =
s1.result Type < sz.result Type
\Y%
(m2 & my) =
sg.result Type <« sy.result Type
(15) 15 51 = my.signature Assumption
(16) 16 . S92 = mgy.signature Assumption
(17) 14,15,16, s1.result Type < so.result Type Lemma 1
1,4,8,10, A on line
12,13 so.result Type < s1.resultType 14,15, 16,
11,12,13
(18) 18 Vi, ty: TYPE_NAME o Class
h <t & Graph
{t1,ta} C ClassName A t; <* t;
\Y

{t1,t2} C BaseTypeName A t; = t;

Reasoning about Z Specifications

138

Assumption Assertion Justification
(19) 19 Ven : ClassName o = (cn <% cn) ISA
(20) 14,15,16, si.resultType = sy.result Type Lemma 3
1,4,8,10, 18,17, 19
12,13,
18,19
(21) 14,15,16, (my isConfusable With mgy A Conditional
1,4,8, my C my A Proof
18,19 my C ml) = line 20
s1.result Type = sy.result Type (3 times)
(22) 14, (m1 # ma A s1 = my.signature A Conditional
1,4, S2 = mgy.signature) = Proof
18,19 ((my isConfusable With may A line21
my Cmg A (3 times)
my C my) =
s1.result Type = sq.result Type)
(23) 14, Vmy, mg: ms; s1,8: SIGNATURE e Universal
1,4, (m1 # ma A Quantifier
18,19 §1 = my.signature A Introduction
s2 = my.signature) = line 22
((myq isConfusable With my A (4 times)
m) C mg A
my C my) =
s1.result Type = sq.1csult Type)
(24) 14, VY my, mg : ms; s1,80: SIGNATURE | Definiton
1,4, my # mg A of |
18,19 sy = my.signature A line 23

$9 = my.signature o

m; isConfusable With m,

A my C my
AmeaEm =

s1.result Type = sy.result Type

A.4. Theorem 139

Assumption Assertion . Justification

(25) 14, #ms>1= Conditional
1, VY my1, mg : ms; s1,82: SIGNATURE | Proof
18,19 my # mg A line 24

sy = my.signature A
S92 = my.signature o
my tsConfusable With my
A my £ my
Ames C m =
s1.result Type = sq.result Type

(26) 14, V ms : allConfusableSets o #ms > 1 = Universal
1, YV my, mg : ms; 1,80 : SIGNATURE | Quantifier
18,19 my # mg A Introduction
s1 = my.signature A line 25

$9 = my.signature o
my isConfusable With my
A my C my
Amp Cm =
sy.result Type = so.result Type

(27) 14,1,18,19 Vms: allConfusableSets | #ms > 1 @ Definition of |
VY my, my : ms; 81,82 : SIGNATURE | line 26
my # mg A

$1 = my.signature A
$9 = mgy.signature o
my isConfusable With my
Am Zmy
AmaEmy =
s1.result Type = so.result Type

Appendix B

Simplifications

B.1 Simplifications of ONTOS SQL

Multiple Targets. A list of expressions and the wildcard character (*) can be used in the
target of an ONTOS SQL query. Since the reference data model does not support tuples
therefore these features are excluded from the translation to object comprehensions.

Implicit Domain Variable. When a domain is represented by an identifier, the domain
variable can be omitted and the identifier can serve as the domain variable. Whereas object
comprehensions require an explicit variable for each domain. One way to deal with such
a “shorthand” in the translation is to introduce some resolution mechanism for method
calling. If an identifier representing a domain appears at the beginning of an expression it
can be replaced by the corresponding domain variable introduced by the translation. For
the sake of simplicity and clarity, it is chosen not to include such a resolution mechanism
to the translaiion.

Implicit Receiving Object. Another “shorthand” supported by ONTOS SQL is that a
method can be called without a receiving object. The receiving object can be resolved
among the domain classes. This can be dealt with in a similar way to implicit domain

variables.

B.2 Simplifications of ORION

Value Equality. ORION supports two groups of operations. One group uses object iden-
tity and the other group uses value equality to eliminate duplicates. Value equaiity is
considered a violation of the object-oriented principle of encapsulation and is therefore
not supported in the reference data model and therefore operations using value equality
do not appear in the translation.

Class Extents. Class extents are supported by ORION and can form class expressions
using the operations: * (meaning including all subclass extents), union, anu difference. A

domain ranged over a class extent can be specified as I :I where the first I represents a

140

B.3. Simplifications of OSQL 141

class name and the second I denotes an identifier. Class extents are not supported in the
reference data model and all these features therefore have no meaningful counterparts in
object comprehensions.

Implicit Receiving Object. Similar to ONTOS SQL a method can be called without a

receiving object. As discussed in the previous section, this is excluded from the translation.

B.3 Simplifications of OSQL

Data Management. OSQL is designed as a completed data manipulation language that
can be used to define new classes, introduce a new method to a class, create new objects,
change the class of an object, and so forth. Only the retrieval part of OSQL is covered in
the translation and the data management functions are therefore not included.

Multiple Targets. A list of expressions representing the attributes of a tuple can be
used in the target of an OSQL query. Since the reference data model does not support
tuples therefore this is excluded from the translation.

Grouping. OSQL supports group by and having as found in SQL which returns tuples
rather than objects and therefore are not included in the translation. However, if tuples
were supported in the reference data model they could be expressed in object comprehen-
sions. Grouping could be achieved by projecting the grouping keys and then collecting
the relevant objects for each key.

Query Functions. In OSQL, functions are used to represent both stored as well as de-
rived data. Derivation can be done in three ways: (1) using a foreign function implemented
using a programming language; (2) using a procedural function implemented partly using
* the control and update statements in OSQL; and (3) using a derived function whose body
is pure querying code. Foreign functiuns have no counterpart in object comprehensions.
Procedural functions are essentially used for their side-effects and hence are not considered
a querying component for the purpose of this study. A derived function can be represented
as a query function in object comprehensions. Translating a derived function is essentially
the same as for an ordinary OSQL query and is therefore not covered.

B.4 Simplifications of O,SQL

Grouping. O,SQL supports a very powerful grouping operation that returns tuples as the
result. If tuples were supported in the reference data model the same operation could
be expressed in object comprehensions. Grouping could be achieved by projecting the
grouping keys, after computation if necessary, and then collecting the relevant objects for
each key.

Query Functions. Non-recursive query functions can be defined in 0,SQL but there

is no linking word between a query function and the query that uses it. To translate to

Simplifications 142

object comprehensions the linking word in can be introduced to put the query function
in scope for the query in question. As in OSQL, the translation is essentially the same as

for an ordinary O2;SQL query and is therefore not covered.

Appendix C

More Translation Rules

C.1 ORION Translation Rules

The simplest case of class testing is translated as follows.

TEorion [E1 class I w E2]
= TEorion I[El]] hasClass I; TEorion I[El w E,]l (OI‘iOl’l.34)

"The existential quantifier exists can be used at the beginning of an expression. The
translation is shown below.

TEorion I[exists E Eaw E4]l
= some TEorion [set—of E2 Es] TOorion [w] TEorion [E4] (orion.35)

The universal quantifier each can be dealt with in a similar way and the translation of
the two possible forms are as follows.

TEorion [E1 each E2 Esw E4]

= every TEorion [E1 setof E2 E3] TOorion [w] TEorion [Ea] (orion.36)
TEorion [each E; Ezw E4]

= every TEorion [set-of E2 Es] TOqrion [w] TEosion [Es] (orion.37)

Specific relational operations between two collections or between a collection and a
value are translated as follows.

TOotion [=] = ~= (orion.38)
TOorion [equal] = = (orion.39)
TOorion [string-equal] = (orion.40)
TOorion [string=] = = (orion.41)
TOorion [is-equal] = == (orion.42)

143

More Translation Rules 144

C.2 OSQL Translation Rules

C.2.1 OSQL Abstract Syntax

@ == Q union all Q| Q union Q| Q order by Ss
| select E for each Ds where E

select E for ecach Ds

select E

select distinet E for each Ds where E

select distinct E for each Ds

select distinct E

Ss == S§|S, Ss

S u= F asc| E desc

Ds == D|D, Ds

D =11

Es == E|E, Es

= Eand E|E or E

| EwE|EyE

| I(Es)|I|(E)

| {Es}|[Es]|[l Es 1]k

| sum(E)|maz(E)|min(E) | count(E)
| occurs(E, E) | head(E) | tail(E)

w o= =< >>=|<|<=] in

Y= |/ 4] -

Table C.1: OSQL Abstract Syntax.

C.2.2 OSQL Translation Rules
Translating Queries

A bag is often used to return the result of an OSQL query. However, it is possible
eliminate duplicates in a bag. The operation union all represents additive union on bags
and union behaves like set union. The former operation corresponds to bag union in object

comprehensions. The latter operation requires duplicate elimination and chis effect can

C.2. OSQL Translation Rules 145

be achieved in object comprehensions by collecting the result in a set and then turning it

into a bag,.

TQosq] I[Ql un-ion a'll Q2]]

= TQosql [[Ql]] union TQoaql I[Q2 Il (osqll)
TQosql IIQI union Q2]]
= Bag[z « Set[y ¢ TQosa [Qi] union TQosq [Q2] |] | =] (0sql.2)

A collection can be sorted to ascending or descending order according to the result
returned by some method call. The resultant collection is naturally a list. The next rule
shows how sorting to descending order involving a single key can be translated into object
comprehensions. The collection to be sorted is first turned into a list using the function
tolist before the recursive function order is applied on it. The recursive function divides
the given list (zs) into two sublists: one containing the largest elements (top(zs)) and
another containing the rest of the list {rest(zs)). The result returned by the recursive call
on the rest of the list (order(rest(zs))) is then appended to the first sublist (top(zs)). The
function keys projects the sort key from the given collection. TTysq returns the type of
the input collection ¢ and TMosq returns the type of its elements.

TQosq [Q order by E desc]
= let keys(zs: List of TMosq [Q]) be
Set[z « 25 | TEoq [xE]]
in
let top(zs: List of TMosq [Q]) be
List[z ¢ z8; TEosq [<E] >= every keys(zs) | z]
in
let rest(zs: List of TMosq [Q]) be
List[z « zs; not(= some top(zs)) | z]
in
let order(zs: List of TMosq [Q]) be
top(zs) union List{ rest(zs) ~== List{}; y « order(rest(zs)) | y]
in
let tolist(zs: TTosqp [Q]) be
List[z « zs | 2]
in order(tolist(TQosq [Q])) (0sql.3)

The translation rule for multiple sort keys is essentially the same. Each sort key can
be treated as one level of sorting. Each sublist generated by top is sorted using the next
sort key. This can be dealt with using TQsql recursively as shown below.

More Translation Rules 146

TQosq [Q order by Ejdesc, Ezdesc]
= let keys(zs: List of TMosq [Q]) be

Set[z + z8 | TEosq [xE]]

in

let top(zs: List of TMosq [Q]) be
List{z + z8; TEoq [XxE] >= every keys(zs) | =]

in

let rest(zs: List of TMosq [Q]) be
List{z ¢ =zs; not(z = some top(zs)) | z]

tn

let order(zs: List of TMosq [Q]) be
List[tops as top(zs); T « TQosq [tops order by E; desc] | =]
union List[rest(zs) ~== List{}; y « order(rest(zs)) | y]

in

let tolist(zs: TTosq [Q]) be
Listfz « zs | z]

in order(tolist{ TQosq [Q])) (osql.4)

Other basic query forms are translated to bag comprehensions as follows.

TEosq [select E for each D where E;] = Bag[TDoeq [D]; TEosq [E1] | TEosq [E]]

(osql.5)
TEosq [select Eforeach D] = Bag[TDosq [D] | TEosqa [E]] (osql.6)
+B0sq [select =] = Bag[| TEosq E]]) (o0sql.7)

When the keyword distinct is specified duplicates in the resulting bag will be elimi-
nated. This is achieved in object comprehensions by producing the result as a set and
then turning it into a bag.

TEosq [select distinct E for each D where E;]

= Bag[z + Set[TDosq [D]; TEosq [E1] | TEesqa [E]] | =] (0sql.8)
TEosq [select distinct E for each D]

= Bag[z < Set[TDosq [D] | TEceq [E]] | =1 (0sql.9)
TEosq [select distinct E]

= Bag[| TEosq [E]1] (osql.10)

If the result of a query is a bag of collections, OSQL will combine elements in these
collections and return instead a bag of objects. This flattening effect is captured in the

next three rules using a generator over the individual result.

C.2. OSQL Translation Rules 147

TEosq [select E for each D where E;]

= Bag[TDosq [D]; TEosq [E1]} 2 + TEoq [E] | =] (osql.11)
TEosq [select E for each D]

= Bag[TDosq [D]; = & TEoq [E] | 2] (osql.12)
TEqsq [select E]

= Bag[rt + TEeq [E] | =] (0sqgl.13)

If duplicates are to be eliminated, sets will be used for the intermediate results as

shown below.

TEosq [select distinct E for each D where E;]
= Bag[z « Set[TDosq [D]; TEosqt [E1]; ¥ & TEcsq [E] | y] | 2] (osql.14)
TEosq [select distinct E for each D]

= Baglz « Set[TDosq [D]; ¥ « TEosq [E] | ¥v] | =] (0sql.15)
TEqsq [select distinct E]
= Bag[z « Setly + TEwq [E] | y] | =] (0sql.16)

Choosing among the four sets of translation rules presented above depends partly on
the type of the resultant collection. This choice is not captured in the rules themselves
but can be enforced as a condition of application.

Translating Domains

TDosqt [D1,D2] = ™Dosq [D1]; TDosq [D2] (0sql.17)
TDosq [L 2] = £ « 5L (osql.18)

Translating Expressions

A sequence of expressions is translated as follows.

TEosq [Ei ,E2] = TEosq [E1], TEosq [E2] (0sql.19)

Logical connectives and operations are dealt with as shown below.

TEosq [Eirand E2] = TEosq [E1]; TEeaq [E2] (osql.20)
TEosq [EiorE2] = TEoq [E1] or TEsq [E:] (0sql.21)
TEosq [EtinE2] = TEuq [Ei]=some TEqq [E2] (0sql.22)
TEosq [E1 #E2] = TEosq [E1] TOoq [¢#] TEosq [E2 1] (osql.23)

Method caliing in OSQL has a functional style. The first argument of a method call

More Translation Rules 148

is the receiving object and the rest are the “actual” arguments. This is captured by the

next two rules below.

TEosq [(E)] = TEoq [E]. T (osql.24)
TEosq [1 (Ei1,E2)] = TEewq [E1].1(TEwq [E21) (osql.25)

Implicit join is supported in method calls. If the first argument is a collection and the
method is applicable to its elements, the method together with the “actual” arguments
will be applied to the elements of this collection. This is captured by the next two rules

where TCggq returns the collection kind of a collection-valued expression.
TEoq [(E)] = TCoq [E][z < TEwsq [E] | z.7] (osql.26)
TEosq [(E1,E2)] = TCosq [Ei]}[7 < TEcsq [E1] | z./(TE [E2]) J(0sql.27)

If in addition the method itself returns a collection, OSQL will combine elements of

the collections returned from the successive calls of the method.

TEosqt [(E)] = TCosq [E][z « TEwa [E]} v « z.1 | y] (0sql.28)
TEosq [1 (E1,E2)] = TCoq [Ei][2z ¢+ TEoq [E1]; v « zJ(TE[E2]) | y]
(0sql.29)

Different notations are used to represent different kinds of collection literals. Collection

literals, brackets, constants, and identifiers are translated by the following rules.

TEoiq [{E}] = Set . TEwq [E]} (0sql.30)
TEosq [[E]] = Bag{TEwq [E]} (osql.31)
TEosq [{E|] 1 = List{ TEewq [E]} (0sql.32)
TEoa [(E)}] = (TEeq [E]) (05al.33)
TEowq [E] = E (osql.34)

Some examples of translating aggregate functions and collection kind specific opera-

tions are given below.

TEosq [count E] = size TEqq [E] {0sql.35)
TEosq [occurs E; E;] = size Bag[z «— TEoq [E1]; 2 = TEosq [E2] | z](o0sql.36)
TEosq [head E] = TEesqa [E 1] (05q1.37)
TEoq [tail E] = TEoq [E }Msize TEosq [E] (0sql.38)

C.3. O2SQL Translation Rules 149

C.3 O0O,SQL Translation Rules

C.3.1 O,SQL Abstract Syntax

Es := A|E|FE, Es

= E union E | E intersect E | E minus E
| select E from Ds where E

| select E from Ds

| select distinct E from Ds where E

| sortallIin F on Es

| flatten E | listtoset E | magic(E)

| Eand E|E or E|not(E)

| for allIin E: (E) | there ezists in E: (E)
| EwE|EYE

| EE|I(Es)|I|(E)
| set(Es)|list(Es)|list(E.E) |k

| concat(E, E) | sublist(E, F, FE)
| head(E, E) | tail(E, F)

| dth(E, E)| first(E) | last(E) | element(E)
| sum(E)|count(E)|avg(E)|min(E) | maz(E)

Ds == D|D, Ds

D =1TinkE
w = =|<>>>=l<|<=] in
Y u= x|/ 14|~ | mod | div

Table C.2: O,SQL Abstract Syntax.

C.3.2 0,SQL Translation Rules

0,SQL is functional in the sense that it allows free composition of constructs. A query is

just an expression, therefore the translation begins with the function TE,,q1.

More Translation Rules 150

Translating Expressions

A sequence of expressions is translated as follows.

TEoysqt [E1 ,E2] = TEousq [Ei1], TEopq [Ez2] (02sql.1)

Set operations are dealt with as in ORION.

TEo,sq [E1 union E2] = TE,,:q [E:] urion TE,sq [E2] (02sql.2)
TEo,sq [E1 intersect E2] = TEo,sq [Ei] differ

(TEoysq [Ei1] differ TEoysq [E2) (02sql.3)

TEosq [Ey minus E2] = TE,,.q [E:i] differ TEoysq [E2] (02sql.4)

The following rules deal with the basic query forms. TC,,sq maps the collection kind
of a domain to the range collection kind of the result. If all the domains are of the same
kind, the collection kind of the result will be of the same collection kind. Otherwise it will

be a bag.

TEo,sq [select E from D where E;]
= Tcozzsql I[D B [TD°25q| IID]], TEo;sql EE]]] | Tqusql |IE]]] (O2Sql5)

TE.,sq [select E from D |
= TCouq [D][TDogsq [D] | TEorst [E]] (02sql.6)

A set is represented as a bag without duplicates. The keywords distinct can be used
o eliminate duplicat - in the res 't collection. The fir * rule below *~ 1sed when all the
domains are lists and the second rule covers all other cases. The first rule uses a recursive
function fwhich takes two lists: the first list zs represents a sorted list while the second list
ys represents an unsorted list. Effectively, the elements in ys are scanned and appended

to zs if they are not already in zs.

TEosq [select distinct E from D where E;]
= let f(zs: List of TTopsq [E, ys: List of TTopeq [E]) be
List[ys == List{}; 5 ¢« zs | =]
union
List[ys.[1] = some zs; z « f(zs, ys differ List{ys.[1]}) | z]
union
List[ys.[1] ~= some z3; z < f(zs union List{ys.[1]}, ys differ List{ys.[1]}) | z]
in f(List{}, List{ TD[DJ]; TE[E:] | TE[E:1}) (02sql.7)

C.3. O,SQL Translation Rules 151

TE,,sq [select distinct E from D where E;]
= Bag[z ¢ Set[TDosq [D]; TEossqt [Ei] | TEopst [E]] | 2] (02sql.8)

Sorting is supported in O2SQL and can be translated as in OSQL, hence is not given
here.

Given a collection of collections, flatten combines the collections and the class of the
resultant collection will be the same as the original collection elements except that a set is
returned when given a set or a bag of lists. The TX,,sq function extracts the collection
kind from the type expression returned by TM,,sq. The operation listtoset turns a list

into a set and magic turns a set into a list.

TEo,q [flatten(E)] = TXoysqt [TMogsq [E]][2s + TEousq [E]; z « 25 | 2]

(02sql.9)

TEo,sq [listtoset(E)] = Set[z « TEouq [E] | z] (02sql.10)

TEo,sq [magic(E)] = Listfz + TE.sq [E] | 2] {02sql.11)
Logical connectives are translated as follow.

TEopsq [Erand E2] = TEosq [E1]; TEousq [E:2] (02sql.12)

TEousq [ErorE2] = TEouq [Ei1] or TEgsq [E2] (02sql.13)

TEoysq [not (E)] = not (TEo,sq [E]) (o2sql.14)

02SQL supports a more general form of quantifiers. To express the equivalent form in
object comprehensions involves the use of a query function. The next two rules translate

the universal and existential quantifiers.

TEo,sq [forall IInE: (E;)]
= let f(zs:TTopq [E]) be
TCosal [EJ[/ ¢ 25 | TEopa [E1]]
in every f(TEousq [E]) = true {02sql.15)

TE,,sq [there exists [iInE: (Ey)]
= let f(z3:TTopq [E]) bde
TCossqt [E][I « 25 | TEopsq [E1]]
in some f(TEo,sq [E]) = true (02sql.186)

Relational and arithmetic operations are translated as follows.

TEoyusq [E1 ¢ E2] = TEouq [Ei] TOouq [¢] TEoq [E2] (02sql.17)

Method calls, identifiers, constants, and brackets are translated as shown below.

More Translation Rules 152

TEO?Sq] I[El . E2]] = TEO?Sql [[El]i . TEozsql IIE2]] (o2sq118)
TEoysa [1 (E)] = I (TEoua [E]) (02sql.19)
TEo,sq [E] = E (02sql.20)
TEoa [(E)] = (TEoua [E]) (02sql.21)

Collection literals, list operations, choosing an element from a collection, and an ex-

ample aggregate function are translated as follows.

TEo,sq [set(E)]

TEopq [list(E)]

TEo,sq [list(E1..E2)]

TEo,sq [concat(Ey , E2)]
TEo,sq [sublist(E; , E2 ,E3)]

TEogsq] ‘[hea»d(E1 s E2)]]
TEo;sql I[tail(El , E2)]I
TEo;sq] |[lt:h(E] y Ez)]]

TEo sq [first(E)]
TEogeq [last(E)]
TEo;sql I[element(E)]I

TEozsql [[Count'(E)]

Translating Domains

TDOQSql I[Dl) D2]! = TDo;sql I[Dl]]) TDozsql lID2]l
TD°23q1 I[Iin E]] = | ¢« TEOzsql |[EI|

A

4

Y

$ 48 4808

Set{ TEo;sq [E] } (02sql.22)
List{ TEopsq [E] } (02sql.23)
List{ TEojsq [E1]..TEo,sq [E21} (02sql.24)
TEo,sq [E1] union TEo,sq [E2] (o02sql.25)

List[I « List{ TEopsq [E2].TEoysq [Es]}

| TEogsq [E1 J.Li]] (02sql.26)
List{ I « List{ 1. TEouq [E2]} |

TEo,sq [E1].[4]] (02sql.27)
List[I « List{ E;..(size TEo,aq [E1]) }

| TEopsqt [E1].[7]] (02sql.28)
TEo,sq [E1] - [TEeusq [E2 T (02sql.29)
TE.,sa [E].[1] (02sql.30)
TEo,sq [E] . [size TEq,sq [E J] (02sql.31)
List{z « TEopq [Ex1] | 21.[1] (02sql.32)
size TEouq [E] (02sql.33)

(02sql.34)
(02sql.35)

Bibliography

[AA92]

[AB91]

[AB93]

[ABD+89]

[ABD*90]

[ABGvGSY]

[AD94]

[ADL91]

R. Alhajjand M.E. Arkun. Queries in Object-Oriented Database Systems. In
Proceedings of the International Conference on Information and Knowledge
Management, volume 752 of Lecture Notes in Computer Science, pages 36—
52. Springer-Verlag, 1992.

S. Abiteboul and A. Bonner. Objects and Views. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 238-247.
ACM Press, 1991.

S. Abiteboul and C. Beeri. On the Power of Languages for the Manipulation
of Complex Objects. Technical report, INRIA, France, January 1993.

M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik.
The Object-Oriented Database System Manifesto. In Proceedings of the
International Conference on Deductive and Object-Oriented Databases, pages
40-57. Elsevier, 1989.

S. Abiteboul, P. Bunema.i, C. Delobel, R. Hull, P. Kanellakis, and V. Vianu.
New Hope on Data Models and Types: Report of an NSF-INRIA Workshop.
ACM SIGMOD Record, 19(4):41-48, December 1990.

S. Abiteboul, C. Beeri, M. Gyssens, and D. van Gucht. An Introduction to
the Completeness of Languages for Complex Objects and Nested Relations.
In Abiteboul et al. [AFS89], pages 117-138.

R. Agrawal and L.G. DeMichiel. Type Derivation Using the Projection Op-
eration. Information Systems, 19(1):55-68, 1994.

R. Agrawal, L.G. DeMichiel, and B.G. Lindsay. Static Type Checking
of Multi-Methods. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 113-128. ACM
Press, 1991.

153

Bibliography 154

[AFS89)]

[Alh92]

[A1t89]

[Ban89]

[Bar93]

[BB8Y]

[BBN91]

[BCDY0]

'BDG*88]

[BDK92]

[Bee88]

[Ber92]

S. Abiteboul, P.C. Fischer, and H.-J. Schek, editors. Nested Relations and
Complex Objects in Databases, volume 361 of Lecture Notes in Computer
Science. Springer-Verlag, 1989.

R. Alhajj. A Query Model and an Object Algebra for Object-Oriented
Databases. PhD thesis, Bilkent University, Turkey, February 1992.

Altair, France. The Oy Query Language User’s Manual, December 1989.

F. Bancilhon. Query Languages for Object-Oriented Database Systems:
Analysis and a Proposal. In Proceedings of the GI Conference on Database
Systems for Office, Engineering, and Scientific Applications, pages 1-18.
Springer-Verlag, 1989.

R.S.M. Barros. Formal Specification of Relational Database Applications: A
Method and an Example. Technical Report GE-93-02, University of Glasgow,
U.K., September 1993.

E.J. Borowski and J.M. Borwein. Dictionary of Mathematics. Collins, 1989.

V. Breazu-Tannen, P. Buneman, and S. Nagiv. Structural Recursion as a
Query Language. In Proceedings of the International Workshop on Database
Programming Languages, pages 9-19. Morgan Kaufmann, 1991.

F. Bancilhon, S. Cluet, and C. Delobel. The O; Query Language Syntax
and Semantics. Technical Report 45-90, Altair, France, May 1990.

D.G. B~brow, L.G. DeMichiel, R.P. Gabriel, S.E. Kee~~ and G. Kiczales.
Common Lisp Object System Specification X3JI3 Document 88-002R. ACM
SIGPLAN Notices, 23(special issue), September 1988.

F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building An Object-
Oriented Database System - The Story of O;. Morgan Kaufmann, 1992.

D. Beech. A Foundation for Evolution from Relational to Object Databases.
In Proceedings of the International Conference on Extending Database Tech-
nology, volume 303 of Lecture Notes in Computer Science, pages 251-270.
Springer-Verlag, 1988.

E. Bertino. A View Mechanism for Object-Oriented Databases. In Pro-
ceedings of the International Conference on Eztending Database Technology,
volume 580 of Lecture Notes in Computer Science, pages 136-151. Springer-
Verlag, 1992.

Bibliography 155

[BH91]

[BINS94]

[BK93]

[BMS9)

[BMS80]

[BNPS92]

(Bra92]

[BTA90]

[BZ87]

[Car84]

[CDLR89]

R.S.M. Barros and D.J. Harper. A Method for the Specification of Rela-
tional Database Applications. In Proceedings of the Sizth Z User Meeting,
Workshops in Computing Series, pages 261-286. Springer-Verlag, 1991.

M. Buchheit, M.A. Jeusfeld, W. Nutt, and M. Staudt. Subsumption between
Queries to Object-Oriented Databases. Information Systems, 19(1):33-54,
1994.

P.J. Barclay and J.B. Kennedy. Viewing Objects. In Proceedings of the
British National Conference on Databases, volume 696 of Lecture Notes in

Computer Science, pages 93-110. Springer-Verlag, 1993.

O. Boucelma and J.L. Maitre. Querying Complex-Object Databases: the LI-
FOO Functional Language. Technical report, Université de Provence, France,
1989.

R.M. Burstall, D.B. MacQueen, and D.T. Sanella. Hope: an Experimental
Applicative Language. In Proceedings of the 1st ACM Lisp Conference, pages
136-143. ACM Press, 1980.

E. Bertino, M. Nagri, G. Pelagatti, and L. Sbattella. Object-Oriented Query
Languages: The Notion and the Issues. IEEE Transactions on Knowledge
and Data Engineering, 4(3):223-237, June 1992.

S.E. Bratsberg. Unified Class Evolution by Object-Oriented Views. In 11th
International Conference on the Entity-Relationship Approach, volume 645
of Lecture Notes in Computer Science, pages 423—-439. Springer-Verlag, 1992.

J.A. Blakeley, C.W. Thompson, and A.M. Alashqur. OQL[X]: Extending
a Programming Language X with a Query Capability. Technical Report
90-07-01, Texas Instruments Incorporated, U.S.A., November 1990.

T. Bloom and S.B. Zdonik. Issues in the Design of Object-Oriented Database
Programming Languages. In Proceedings of the Conference on QObject-
Oriented Programming Systems, Languages, and Applications, pages 441-
451. ACM Press, October 1987.

L. Cardelli. Semantics of Multiple Inheritance. In Semantics of Data Types,
volume 173 of Lecture Notes in Computer Science, pages 51-68. Springer-
Verlag, 1984.

S. Cluet, C. Delobel, C. Lécluse, and P. Richard. Reloop, An Algebra Based
Query Language for an Object-Oriented Database System. Technical Report
36-89, Altair, France, October 1989.

Bibliography 156

[CDV8S8]

[Cha92]

[CHT92a)

[CHT92b]

[CHT932]

[CHT93b]

[CK94]

[Cod72]

[CT93]

[CT94a)

[CT94b]

M.J. Carey, D.J. DeWitt, and S.L. Vandenberg. A Data Model and Query
Language for EXODUS. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 413-422. ACM Press, 1988.

C. Chambers. Object-Oriented Multi-Methods in Cecil. In Furopean Con-
ference on Object-Oriented Programming, volume 615 of Lecture Notes in
Computer Science, pages 33-56. Springer-Verlag, 1992.

D.K.C. Chan, D.J. Harper, and P.W. Trinder. A Reference Object-Oriented
Data Model Specification. Technical Report DB-92-2, University of Glasgow,
U.K., November 1992.

D.K.C. Chan, D.J. Harper, and P.W. Trinder. Object-Oriented Query Lan-
guages: Data Model Issues, Survey, Comparison, and Analysis. Technical
Report DB-92-1, University of Glasgow, U.K., November 1992.

D.K.C. Chan, D.J. Harper, and P.W. Trinder. A Case Study of Object-
Oriented Query Languages. In Proceedings of the International Conference
on Information Systems and Management of Data, pages 63-86. Indian Na-
tional Scientific Documentation Centre (INSDOC), 1993.

D.K.C. Chan, D.J. Harper, and P.W. Trinder. An Object-Oriented Data
Model Specification. In Proceedings of the 5th International Conference on
Computing and Information, pages 453-457. IEEE Press, 1993.

D.K.C. Chan and D.A. Kerr. Improving One’s Views of Object-Oriented
Databases. In Proceedings of the Colloguium on Object-Orientation in
vatabases and Software Engineering. Elsevier, 1994.

E.F. Codd. Relational Completeness of Database Sublanguages. In Data
Base Systems. Prentice-Hall, 1972.

D.K.C. Chan and P.W. Trinder. An Evaluation Framework for Object-
Oriented Query Languages. Technical Report DB-93-3, University of Glas-
gow, UK., April 1993. '

D.K.C. Chan and P.W. Trinder. An Object-Oriented Data Model Supporting
Multi-methods, Multiple Inheritance, and Static Type Checking: A Specifi-
cation in Z. In Proceedings of the 8th Z User Meeting, Workshops in Com-
puting Series, pages 297-315. Springer-Verlag, 1994.

D.K.C. Chan and P.W. Trinder. Object Comprehensions: A Query Nota-
tion for Object-Oriented Databases. In Proceedings of the British National
Conference on Databases, volume 826 of Lecture Notes in Con.puter Science,
pages 55—72. Springer-Verlag, 1994.

Bibliography 157

[CTW95]

[DAFS6)]

[Dat84]

[Dat87]

[Day89]

[DBCRW92]

[DDY1]

[DGJ92]

[DHS7]

[Dit91]

[DLRSS]

[DT88]

D.K.C. Chan, P.W. Trinder, and R.C. Welland. Evaluating Object-Oriented
Query Languages. The Computer Journal, 38(2), February 1995.

DAFTG. Database Architecture Framework Task Group (DAFTG) of the
ANSI/X3/SPARC Database System Study Group: Reference Model for
DBMS Standardization. ACM SIGMOD Records, 15(1):19-58, 1986.

C.J. Date. Some Principles of Good Language Design. ACM SIGMOD
Record, pages 1-7, January 1984.

C.J. Date. A Guide to INGRES. Addison-Wesley, 1987.

U. Dayal. Queries and Views in an Object-Oriented Data Model. In Proceed-
ings of the International Workshop on Database Programming Languages,
pages 80-102. Morgan Kaufmann, 1989.

S.W. Dietrich, M. Brown, E. Cortes-Rello, and S. Wunderlin. A Partitioner’s
Introduction to Database Performance Benchmarks and Measurements. The
Computer Journal, 35(4):322-331, August 1992.

K.C. Davis and L.M.L. Delcambre. A Denotational Approach to Object-
Oriented Query Language Definition. In Proceedings of the International
Workshop on Specifications of Database Systems, Workshops in Computing
Series, pages 88-105. Springer-Verlag, 1991.

S. Dar, N.H. Gehani, and H.V. Jagadish. CQL++: A SQL for the ODE
Object-Oriented DBMS. In Proceedings of the International Conference on
Eztending Database Tec..nology, volume 580 of Lecture Notes in Computer
Science, pages 201-216. Springer-Verlag, 1992.

S.A. Demurjian and D.K. Hsiao. The Multi-lingual Database System. In
Proceedings of the IEEE Data Engineering Conference, pages 44-51. IEEE
Press, 1987.

K.R. Dittrich. Object-Oriented Database Systems: The Notion and the Is-
sues. In On Object-Oriented Database Systems, pages 3—10. Springer-Verlag,
1991.

C. Delobel, C. Lécluse, and P. Richard. LOOQ: A Query Language for
Object-Oriented Databases, Informal Presentation. Technical Report 22-88,
Altair, France, October 1988.

S. Danforth and C. Tomlinson. Type Theories and Object-Oriented Pro-
gramming. ACM Computing Surveys, 20(1):29-72, March 1985.

Bibliopraphy 158

[EN8Y]

[FAC*89]

[GD87]

[GMO3]

[GOPT92]

[GWST]

[Ham90]

[HFLPS9]

[HS88]

[HW90]

[HZ90]

[JK84]

R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. The
Benjamin/Cummings Publishing Company, Inc., 1989.

D.H. Fishman, J. Annevelink, E. Chow, T. Connors, J.W. Davis, W. Hasan,
C.G. Hoch, W.Kent, S. Leichner, P. Lyngbaek, B. Mahbod, M.A. Neimat,
T. risch, M.C. Shan, and W.K. Wilkinson. Overview of the Iris DBMS. In
W. Kim and F.H. Lochovsky, editors, Object-Oriented Concepts, Databases,
and Applications, pages 219-250. ACM Press, 1989.

G. Graefe and D. DeWitt. The EXODUS Optimizer Generator. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data, pages 160-172. ACM Press, 1987.

S. Grumbach and T. Milo. Towards Tractable Algebras for Bags. In Pro-
ceedings of the Principles of Database Systems, pages 49-58. ACM Press,
1993.

G. Ghelli, R. Orsini, A. Pereira Paz, and P.W. Trinder. Design of an Inte-
grated Query and Manipulation Notation for Database Languages. Technical
Report FIDE/92/41, University of Glasgow, U.K., 1992.

R.A. Ganski and H.K.T. Wong. Optimization of Nested SQL Queries Revis-
ited. Proceedings of the ACM SIGMQOD International Conference on Man-
agement of Data, pages 23-33, 1987.

K. Hammond. Definitional List Comprehensions. Technical Report 90/R3,
University of Glasgow, U.K., January 1990.

L. Hass, J. Freytag, G. Lohman, and H. Pirahesh. Extensible Query Pro-
cessing in Starburst. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 377-388. ACM Press, June 1989.

R. Hull and J. Su. On the Expressive Power of Database Queries with In-
termediate Types. Proceedings of the Principles of Database Systems, pages
39-51, 1988.

P. Hudak and P. Wadler. Report on the Functional Programming Language
Haskell. Technical Report 89/R5, University of Glasgow, U.K., February
1990.

S. Heiler and S. Zdonik. Object Views: Extending the Vision. In Proceedings
of the IEEFE Data Engineering Conference, pages 86-93. IEEE Press, 1990.

M. Jarke and J. Koch. Query Optimization in Database Systems. ACM
Computing Surveys, 16(2):111-152, 1984.

Bibliography 159

[Kim82]

[Kim89]

[Kim90)

[Kim92]

[KKS92]

[Klu82]

[KMK90]

[Kul93]

[LK86]

[LW93]

[Lyn91]

[Man91]

W. Kim. On Optimizing an SQL-like Nested Query. ACM Transactions on
Database Systems, 7(3):443-469, 1982.

W. Kim. Object-Oriented Databases: Definition and Research Directions,.
IEEE Transactions on Knowledge and Data Engineering, 4(3):327-341,
September 1989.

W. Kim. Introduction to Object-Oriented Databases. MIT Press, 1990.

W. Kim. On Unifying Relational and Object-Oriented Database Systems.
In Furopean Conference on Object-Oriented Programming, volume 615 of
Lecture Notes in Computer Science, pages 1-18. Springer-Verlag, 1992.

M. Kifer, W. Kim, and Y. Sagiv. Querying Object-Oriented Databases. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 393-402. ACM Press, 1992.

A. Klug. Equivalence of Relational Algebra and Relational Calculus Query
Languages Having Aggregate Functions. Journal of the Association of Com-
puting Machinery, 29(3):699-717, 1982.

K. Kato, K. Masuda, and Y. Kiyoki. A Comprehension-based Database Lan-
guage and its Distributed Execution. In Proceedings of Distributed Computer
System, 1990.

K.G. Kulkarni. Object-Orientation and the SQL-Standard. Computer Stan-
dards & Interfaces, 15:287-300, 1993.

P. Lyngbaek and W. Kent. A Data Modelling Methodology for the Design
and Implementation of Information Systems. In Proceedings of the Inter-
national Workshop on Object-Oriented Database Systems, pages 6-17. IEEE
Press, 1986.

L. Libkin and L. Wong. Some Properties of Query Languages for Bags.
In Proceedings of the International Workshop on Database Programming
Languages, Workshops in Computing Series, pages 97-114. Springer-Verlag,
1993.

P. Lyngbaek. OSQL: A Language for Object Databases. Technical Report
HPL-DTD-91-4, Hewlett-Packard Company, U.S.A., January 1991.

F. Manola. Object Data Language Facilities for Multimedia Data Types.
Technical Report TR-0169-12-91-165, GTE Laboratories Incorporated,
U.S.A., December 1991.

Bibliography 160

[MBCDS89]

[Mey88]

[MG93]

[MHS7]

[MHH91]

[Mit93]

[MS89]

[NHO1]

[Nor92]

[OBBT89]

[Ont91a)
[Ont91b]

[Ont91c]

R. Morrison, A.L. Brown, R.C.H. Connor, and A. Dearle. The Napier88
Reference Manual. Technical Report PPRR-77-89, University of Glasgow &
University of St. Andrews, U.K., 1989.

B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.

J. Murphy and J. Grimson. Formal Specification of a Persistent Object
Management System. Information and Software Technology, 35(5):277-286,
1993.

C. Minkowitz and P. Henderson. A Formal Description of Object-Oriented
Programming using VDM. In VDM’87 - A Formal Method at Work, volume
252 of Lecture Notes in Computer Science, pages 237-259. Springer-Verlag,
1987.

W. Mugridge, J. Hamer, and J. Hosking. Multi-Methods in a Statically-
Typed Programming Languages. In Furopean Conference on Object-Oriented
Programming, volume 512 of Lecture Notes in Computer Science, pages 307-
324. Springer-Verlag, 1991.

G. Mitchell. FEztensible Query Processing in an Object-Oriented Database.
PhD thesis, Brown University, U.S.A., May 1993.

M. Missikoff and M. Scholl. An Algorithm for Insertion into a Lattice: Ap-
plication to Type Classification. In Proceedings of the 3rd International Con-
ference on Foundations of Data Organisation and Algorithms, volume 367 of

TLecture Notes in Computer Science, pages 64-82. Springer-Verlag, 1989.

R.S. Nikhil and M.L. Heytens. List Comprehensions in AGNA, a Parallel
Persistent Object System. In Proceedings of the Conference on Functional
Programming and Computer Architecture. ACM Press, 1991.

M.C. Norrie. A Collection Model for Data Management in Object-Oriented
Systems. PhD thesis, University of Glasgow, United Kingdom, 1992.

A. Ohori, P. Buneman, and V. Breazu-Tannen. Database Programming
in Machiavelli - a Polymorphic Language with Static Type Inference. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 46-57. ACM Press, 1989.

Ontologic Inc., U.S.A. ONTOS Developer’s Guide, 1991.
Ontologic Inc., U.S.A. ONTOS Reference Manual, 1991.

Ontologic Inc., U.S.A. ONTOS SQL Guide, 1991.

Bibliography 161

[Osb88]

[PD8Y]

[PG90]

[PI87]

[PMSL94]

[Poug9]

[PS94]

[PST91]

[RKBS7]

[SAB+89)

[SAD94]

[Ser87]

S.L. Osborn. Identity, Equality and Query Optimization. In Proceedings of
the International Workshop on Object-Oriented Database Systems, volume
334 of Lecture Notes in Computer Science, pages 346-351. Springer-Verlag,
1988.

P. Pistor and P. Dadam. The Advanced Information Management Prototype.
In Abiteboul et al. [AFS89], pages 3-26.

N.W. Paton and P.M.D. Gray. Optimising and Executing DAPLEX Queries
using Prolog. The Computer Journal, 33(6):547-555, 1990.

S. Peyton-Jones. The Implementation of Functional Programming Lan-
guages, chapter 7, pages 127-138. Prentice-Hall, 1987.

H. Pirahesh, B. Mitschang, N. Sidkamp, and B. Lindsay. Composite-Object
Views in Relational DBMS: An Implementation Perspective. Information
Systems, 19(1):69-88, 1994.

A. Poulovassilis. The Design and Implementation of FDL, a Functional
Database Language. PhD thesis, Birkbeck College, University of London,
1989.

A. Poulovassilis and Carol Small. Investigation of Algebraic Query Optimisa-
tion for Database Programming Languages. In Proceedings of the Conference
on Very Large Data Bases, 1994.

B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Specification
and Z. Prentice-Hall, 19.1.

M. Roth, H. Korth, and D. Batory. SQL/NF: A Query Language for =NF
Relational Databases. Information Systems, 12(1):99-114, 1987.

M. Scholl, S. Abiteboul, F. Bancilhon, N. Bidoit, S. Gamerman, D. Plateau,
P. Richard, and A. Veroust. VERSO: A Database Machine Based on Nested
Relations. In Abiteboul et al. [AFS89], pages 27-49.

C.S. Santos, S. Abiteboul, and C. Delobel. Virtual Schemas and Bases. In
Proceedings of the International Conference on Eztending Database Tech-
nology, volume 779 of Lecture Notes in Computer Science, pages 81-94.
Springer-Verlag, 1994.

Servio Logic Development Corporation, U.S.A. Programming in OPAL, Ver-
ston 1.8, 1987.

Bibliography 162

[SH85]

[S192]

[SLT91]

[SO90]

[SP91]

[Spi8s]

[Spi92]

1SS89]

[SS90]

[Sto77]

[Str90]

[SZ89]

B. Surfin and J. Hughes. A Tutorial Introduction to Relational Algebra.
Technical report, Oxford University Programming Research Group, July
1985.

G. Saake and R. Jungclaus. Views and Formal Implementation in a Three-
level Schema Architecture for Dynamic Objects. In Proceedings of the British
National Conference on Databases, volume 618 of Lecture Notes in Computer

Science, pages 78-95. Springer-Verlag, 1992.
M. Scholl, C. Laasch, and M. Tresch. Updatable Views in Object-Oriented

Databases. In Proceedings of the International Conference on Deductive
and Object-Oriented Databases, volume 566 of Lecture Notes in Computer
Science, pages 189-207. Springer-Verlag, 1991.

D. Straube and T. Ozsu. Queries and Query Processing in Object-Oriented
Database Systems. ACM Transactions on Office Information Systems,
8(4):387-430, 1990.

C. Small and A. Poulovassilis. An Overview of PFL. In Proceedings of the
International Workshop on Database Programming Languages, pages 89-103.
Morgan Kaufmann, 1991.

J.M. Spivey. Understanding Z - A Spectfication Language and its Formal
Semantics. Cambridge University Press, 1988.

J.M. Spivey. The Z Notation - A Reference Manual. Prentice-Hall, second
edition, 1992.

J.J. Shiuing and P.F. sweeney. Three Steps to Views: Eawending the Object-
Oriented Paradigm. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, ACM Press, pages 353~
361, 1989.

M.H. Scholl and H.J. Schek. A Relational Object Model. In Proceedings
of the International Conference on Database Theory, volume 470 of Lecture
Notes in Computer Science, pages 89-105. Springer-Verlag, 1990.

J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press, 1977.

D.D. Straube. Queries and Query Processing in Object-Oriented Database
Systems. PhD thesis, University of Alberta, Canada, 1990.

G.M. Shaw and S.B. Zdonik. Object-Oriented Queries: Equivalence and
Optimization. In Proceedings of the International Conference on Deductive
and Object-Oriented Databases, pages 264-278. Elsevier, 1989.

Bibliography 163

[SZ90]

[TCH90]

[Tri89)]

[Tri91]

[Tur81]

[Tur85]

[TW89]

[US92]

[Van92]

[VD90]

[Wol87]

(WT91)

G.M. Shaw and S.B. Zdonik. A Query Algebra for Object-Oriented
Databases. In Proceedings of the IEEFE Data Engineering Conference. IEEE
Press, 1990.

P.W. Trinder, D.K.C. Chan, and D.J. Harper. Improving Comprehension
Queries in PS-algol. In Proceedings of the 1990 Glasgow Database Workshop,
pages 103-119, U.K., 1990. University of Glasgow.

P.W. Trinder. A Functional Database. D.Phil thesis, Oxford University,
December 1989.

P.W. Trinder. Comprehensions: a Query Notation for DBPLs. In Proceedings
of the 3rd International Workshop on Database Programming Languages,
pages 55-70. Morgan Kaufmann, 1991.

D.A. Turner. Recursion Equations as a Programming Language. In Dar-
lington, Henderson, and Turner, editors, Functional Programming and its

Application. Cambridge University Press, 1981.

D.A. Turner. Miranda: a Non-strict Functional Language with Polymor-
phic Types. In Proceedings of the 2nd Conference on Functional Program-
ming Languages and Computer Architectures, volume 201 of Lecture Notes
in Computer Science, pages 1-16. Springer-Verlag, 1985.

P.W. Trinder and P.L. Wadler. Improving List Comprehensions Database
Queries. In Proceedings of the TENCON’89, pages 186-192. IEEE Press,
1989.

R. Unland and G. Schlageter. Object-Oriented Database Systems: State
of the Art and Research Problems. In K. Jeffery, editor, Ezpert Database
Systems, chapter 5, pages 117-222. Academic Press, 1992.

B. Vance. Towards an Object-Oriented Query Algebra. Technical Report
CS/E 91-008, Oregon Graduate Institute, U.S.A., January 1992.

S.L. Vandenberg and D.J. DeWitt. Algebraic Support for Complex Objects
with Arrays, Identity, and Inheritance. Technical Report 987, University of
Wisconsin - Madison, U.S.A., December 1990.

M. Wolczko. Semantics of Smalltalk-80. In European Conference on Object-
Oriented Programming, volume 276 of Lecture Notes in Computer Science,
pages 108-120. Springer-Verlag, 1987.

D. Watt and P.W. Trinder. Towards a Theory of Bulk Types. Technical
Report FIDE/91/26, University of Glasgow, U.K., July 1991.

Bibliography 164

[YO91] L. Yu and S.L. Osborn. An Evaluation Framework for Algebraic Object-
Oriented Data Models. In Proceedings of the IFEE Data Engineering Con-
ference, pages 670-677. IEEE Press, 1991.

