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Abstract



Abstract ii

The path of ions traversing the sheath region of a radio frequency plasma is modelled 

using the Child-Langmuir approximation to the full sheath equation. The collective 

characteristics of many ions is obtained by Monte Carlo simulation, revealing structure 

in the relationship between many parameters. By performing a systematic calculation 

of ion impact energy versus initial energy and phase, a distinctive spiral shape has 

been observed. This provides additional insight into the mechanism that underlies the 

bimodal ion energy distributions that axe widely reported in plasma processing systems.

A further step has been taken from this observation, to see if it can be used to provide 

an analytic method for constructing ion energy distributions. A spiral shape that varies 

continuously across phase and initial ion energy space has been created, replicating that 

seen in Monte Carlo simulation. By sampling the result across the appropriate initial 

conditions, an ion energy distribution can be generated.

A numerical solution to the full sheath equation has been implemented. This allows 

the inclusion of electrons into the area where the sheath region meets the plasma. It 

has been shown that this causes ions to follow a significantly different path through the 

sheath region. When an ion first enters the sheath region, it experiences a smaller force 

due to the reduction in electric field because of the presence of electrons. The effect of 

this propagates through to the ion energy distribution.

Effects due to the high electric fields that are present in etched substrate features 

have been considered. Particles with an electric dipole moment axe attracted along 

lines of increasing electric field strength under a mechanism called dielectrophoresis. 

An assessment of the significance of this force on neutral transport in substrate features 

has been made. It is found that particles with a typical dielectric moment axe accelerated 

towards the central region of a trench and accelerated out of the trench in a fraction of 

time that it would take without a force due to dielectrophoresis.
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Chapter 1. Introduction

1.1 Development of Electronic Devices

2

The basic building blocks of electronic circuits have changed beyond recognition over 

the course of the last century. In order to create the electronic circuits which are 

ubiquitous in all aspects of modern life, it is necessary to utilize an element which can 

amplify electrical signals. Thomas Edison made the first step toward achieving this 

when he inserted a metal plate into one of his incandescent bulbs, finding that a current 

would only flow if the plate was positive with respect to the filament. John Ambrose 

Fleming was given some of these bulbs by Edison in 1889, yet it wasn’t until 1904 that 

he appreciated the usefulness of this rectifying property. He was able to measure the 

strength of radio signals by using Edison’s valve as what is now know as a diode, to 

rectify the signal, thus allowing it to be measured on a galvanometer. Lee De Forest 

added a metal grid to the valve in 1906 which could be used to control the flow of 

current between the main electrodes in the tube. This device is the triode valve pnd is 

an amplifying device which was used by AT&T in their coast to coast phone system of 

1914. The development of these devices has had a huge influence on many aspects of 

the twentieth century [1 ; 2 ].

A new amplifying device began to replace the thermionic valve during the 1950’s. 

Although the valve had obviated most problems relating to the crystals used for radio 

sets, a number of people continued research into understanding and improving the qual­

ity of these crystals. In 1948 while working for Bell Labs, William Shockley understood 

enough to be able to devise the junction transistor. Having established his ideas, the 

first functional device was produced in 1950. The advent of ‘solid state’, transistor- 

based circuits provided many benefits over the valve equivalents by ultimately reducing 

cost, power consumption, complexity and size, while also increasing reliability.

Taking a step back from the transistor for a moment, the simplest useful semicon­

ducting component is the diode. If crystalline silicon or germanium has small amounts 

of impurities added to them they form the basic p-type and n-type materials which con­

stitute all semiconducting devices. A simple interfane between p- and n-type material 

forms a diode; this will allow current to pass in one direction, but not the other. A junc­

tion between n- p- and n-type or p- n- and p-type material forms the transistor, which 

is the amplifying device crucial to all microelectronic products today. Initial production 

of components relied purely upon chemical techniques to dope silicon or germanium to 

form these junctions.
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F igure 1.1: Comparing anisotropic (left) and isotropic (right) etching.

Integrated circuits consist of a great number of transistors and other devices, all con­

structed and interconnected on one substrate. The first working examples were produced 

independently by Jack Kilby at Texas Instruments and Robert Noyce at Fairchild Semi­

conductor in 1958 and 1959 respectively. When integrated circuits were first produced 

and for many years subsequently, the requisite etch and growth stages were achieved 

chemically. Chemical processes are characterised by a uniform rate on all exposed sur­

faces. This isotropic manner of progress impedes the ability to form steep-sided high 

aspect-ratio features, instead rounded substrate features are formed (figure 1.1). In 

order to fabricate silicon chips with higher densities of transistors it is necessary to 

produce substrate features that are as sharply defined as possible.

Although not a primary motive for developing plasma processing methods, it is noted 

that chemical treatments also consume and result in undesirable toxic materials.

1.2 Defining a Plasma

Before examining plasmas used for the processing of materials, it is useful to look at 

what characterises a plasma. There are two concepts which provide a definition of a 

plasma, these are quasineutrality and collective behaviour.

1.2.1 Collective Behaviour

In a gas with insignificant ionisation, molecular motion is governed by interactions 

which take place during collisions. As the level of ionisation increases, forces due to the 

presence of charged particles become significant and then dominate.

The Coulomb force between two regions of charge separated by r  decreases as 1 /r2,
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Figure 1.2: Influence of long range forces in a plasma.

this alone would mean that forces are not experienced at great distances. However, the 

volume of a region of charge in a solid angle at distance r increases as r 3, which allows 

elements of a plasma to affect each other at great distances (figure 1.2). This leads to 

the collective behaviour which is responsible for some of the interesting properties of 

plasmas.

1.2.2 Quasineutrality

While long range forces exist in a plasma, it is not possible to set up any static electric 

fields beyond a certain distance from an electric charge perturbation. This distance is 

the length in which electrons can shield the charge from the plasma bulk and is known 

as the Debye radius. Note that electrons carry out the shielding as ions are too massive 

to move in the necessary timescales.

In order to approximate a value for the Debye length we use Poisson’s equation 

in one dimension,
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Since the ions axe stationary with respect to the timescale here, n* =  n ^ ,  where n ^  is 

the density of the plasma bulk.

Prom the Boltzmann collision integral, the electron distribution function can be de­

termined,

f (u)  = Aexp[—(^m u 2 +  q<f>)/kBTe], (1.2)

where the q<f> term arises from the potential energy of the charge. For a finite plasma 

bounded by a vessel, there is not complete charge neutrality in the plasma bulk. How­

ever, consider that when <f) —> 0 , ne =  Uqo and that q = — e, then integrate f (u)  over

u ,

ne = n oo exp(e0/&BTe). (1.3)

Putting this into (1.1),

< ■ - * >

The potential falls very rapidly adjacent to the charge and so this region contributes 

a negligible thickness to the shielding. Elsewhere it is the case that \e<j)/kBTe\ 1, 

allowing the exponential to be expanded in a Taylor series

d 2<f> erioo
d r 2 eo

e<t> +  1 (  e<t> V + (1.5)

Taking the linear term &om (1.5)

d2<t> enoo e<f>
(1.6 )dx2 e0 ksTe 

From this we define the Debye length as the e-folding distance

Ad" ( ^ ) 1/2’ <L7> 
where n =  noo, the bulk plasma density.

In order to be considered a plasma, an ionised gas must satisfy the requirement 

of quasineutrality. To be quasineutral, the volume that the gas occupies must have 

dimensions (L ) much greater than the Debye length, ie. Ad ^  L.

1.2.3 Plasma Frequency

Another important plasma parameter is the electron plasma frequency, often simply 

called the plasma frequency, up. If electrons in a plasma are displaced, the resulting
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charge imbalance sets up an electric field that acts to restore the electrons to their 

original position. Because of their inertia the electrons overshoot this position, again 

setting up an electric field and so on. The characteristic frequency at which this occurs 

can be written:
(  e2np \  
\eom ey

This parameter is solely dependent on plasma density, no-

It is important in the context of the work that follows that the frequency that the 

plasma is driven at is less than the plasma frequency. If this condition is obeyed, then 

the electrons in the plasma can respond to an imposed potential and shield the plasma 

bulk. This allows the formation of sheaths, which are crucial to the following work and 

will be discussed in due course.

1.3 Plasma Processing

1.3.1 Plasma Processing as a Tool

Plasma processing methods have provided the means to address the need to fabricate 

substrate features on an increasingly small scale by acting on a substrate in a funda­

mentally different way to preexisting material processing techniques. Steep sided (often 

referred to as anisotropic) features can readily be formed.

In order to explain the advantages of plasma processing let us consider the system as 

having two main features. Firstly, a supply of ionised molecules or atoms and secondly, 

an electric field across which the ions can be accelerated. Ions are available within a 

vessel and the substrate to be worked is at the vessel wall. The electric field is perpen­

dicular to the substrate, with the polarity of the field such that ions axe accelerated from 

the edge of the plasma toward the substrate (figure 1.3). This situation will result in a 

flux of ions striking the substrate, with individual energies that depend on a number of 

parameters in the system.

The stream of ions impinging upon the substrate can have a range of effects when 

they strike the surface. This will depend upon both the energy of the ion and the 

chemical properties of the system. The substrate may be unaffected, layers of incoming 

ions could build up onto the substrate, ions can be implanted into the crystal lattice or 

material may be removed from the substrate. Extreme ion energies may actually cause
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Figure 1.3: Simple representation of plasma processing system: a vessel contain­
ing ions and electrons and a substrate with an electric field directed 
perpendicularly to it.

undesirable damage to the substrate [3]. Control of the ion energy is crucial to a plasma 

processing system, so that consistent and desirable results may be achieved. A great 

deal of experimental [4; 5; 6; 7; 8; 9] and theoretical [10; 11; 12; 13; 14; 15; 16] work has 

been carried out to this end. When a silicon wafer is produced with many integrated 

circuits upon it, the vast majority are unusable. Improvement of ion control is one way 

to improve this situation.

The crucial difference between this operating regime and a chemical process is that 

the ions are striking the substrate perpendicularly rather than a process taking place 

on all exposed surfaces. This means that as (for example) a trench develops, it is the 

bottom that continues to be etched and not the walls.

1.3.2 Plasma Characteristics

To sustain a plasma, energy must be put into the reactor vessel. In many cases the radio 

frequency electric field is coupled to the plasma by either inductive or capacitive means. 

Some additional heating can be supplied by exploiting electron cyclotron resonance 

(ECR) and magnets can provide additional confinement. The proportion of ions created 

is around 1 in 10~4, other particles remaining uncharged. This partial ionisation means 

that the plasma is not in thermal equilibrium, but three distinct groups of particles 

exist.

Most of the energy put into the vessel causes the heating of electrons, while the ions 

gain a little energy and the neutrals stay close to ambient temperature. If we consider
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Figure 1.4: Substrate can be (left to right) floating, grounded or externally driven.

a stationary singly-charged particle with mass m  in an electric field E , it can be shown 

that in time t the particle gains energy [17]

Energy =  (L9)

Given that mi rae, most of the energy will be given to the electrons. Three separate 

energy distributions then exist in the plasma, one for electrons at around 2eV, one for 

ions a little above ambient («  l / ‘20eV) and neutrals remain around l/40eV  (290K).

When the energetic electrons have inelastic collisions with atoms, electron impact 

ionisation takes place which makes a major contribution to sustaining the plasma.

1.3.3 Sheath Characteristics

Surfaces around the vessel can be in three different electrical conditions, one of floating, 

grounded or externally driven (figure 1.4). In either case a region will form between 

the plasma bulk and the surface, where the flux of ions and electrons and any current 

through the surface must balance. This is referred to as a Sheath Region.

Each condition can be examined if we consider that the electrons have a much greater 

energy than ions and consequently a correspondingly higher flux to any surface bounding 

the plasma.

• An initially uncharged floating surface will collect electron charge and begin to 

repel the incoming electron flux. This creates a space charge between the plasma 

bulk and the surface.

• There will initially be a higher flux of electrons to a grounded surface. The 

electrons will flow to ground until the plasma cannot sustain any further outward 

electron current. The reduction of electron density in the plasma results in a space 

charge between the plasma and the surface.
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Figure 1.5: Generalised particle motion and charge distribution. In the left panel 
it is shown that ions move more slowly than electrons. In the right 
panel, the reduction in the number density of electrons at the vessel 
walls is shown.

• Applying a voltage to a surface will modify the balance between the electron 

current from the plasma and the current resulting from the applied voltage. A 

schematic description of these conditions is given in figure 1.5.

In any case the plasma will adjust to keep the system in equilibrium and a space charge 

will form between the plasma and the surface. Poisson’s equation relates the variation 

of potential, (f) with distance x  across a space charge density p. In one dimension this 

is:
d 2(b p
a x z eo

further,

E = ~ ~ -  (Ml)ax

so

= (L12) ax  eo

In the absence of any perturbations such as that produced by a surface in the plasma, 

there are no variations in the electric field within the plasma. Relative to a surface in 

any electrical configuration, the plasma bulk can be assigned a potential which is more 

positive than the surface. This is called the plasma potential and can only be measured 

relative to parts of the vessel under different electrical conditions.

1.3.4 Reactor Operational Summary

The substrate which is to be worked is placed on a plinth in the reactor chamber. A 

plasma is induced in the chamber and sustained by some input of power, depending
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upon the reactor type. The process is allowed to continue until some pre-determined 

end point is reached.

Reactor vessels are arranged so that feedstock gases can flow into the chamber as 

exhaust gases are pumped out. Controlled pumping allows the pressure in the chamber 

to be reduced to the appropriate operating conditions. This flow of gases constitutes a 

macroscopic flow which can be of importance to the uniformity of the process. This is 

particularly the case when working on substrates with a large surface area. There can 

be implications on the macroscopic flow due to the geometry of the reactor vessel.

1.3.5 Types of Reactor

There are many types of reactor for generating a plasma [18], but two basic types of 

plasma are generated for plasma processing. Presently the most widely used is a high 

pressure (1-103 Pa) low density (1015-1016 m-3) plasma produced by a capacitively 

coupled (rf diode) type reactor. A pair of parallel electrodes are driven at a radio 

frequency of typically 13.56MHz to sustain the plasma. There is no technical reason for 

the use of this particular frequency, but it is allocated for this purpose by international 

electromagnetic interference regulatory authorities. The other type is a low pressure 

(0.1 Pa), high density (1018-1019 m~3) plasma which is becoming increasingly popular 

due to the higher degree of control that can be exercised over the plasma. A number 

of different reactor configurations can produce this type of plasma, electron-cyclotron 

resonance (ECR); helicon; helical resonance and inductively coupled.

Capacitively Coupled Reactors

Capacitively coupled reactors have the advantage of being simpler to understand and 

implement than other types, making them a good starting point for study. It is also for 

this reason that they gained a strong foothold as practical machines for industrial use.

These reactors are characterised by a relatively low plasma density and high pressure. 

Low density means that there may be a shortage of the ionised particles necessary for 

the progression of the process in question. A high pressure will result in an increased 

probability of collisions, which will lead to a less anisotropic process.

The area of the electrodes in the reactor has an important effect upon the character­

istics of the discharge. If symmetrical, there will be roughly half of the driving voltage
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dropped across the sheath at each electrode. If the electrodes are made to be different 

sizes, then the relative voltage across each sheath will change in relation to this. The in­

terrelated nature of geometry and electrical properties highlights some of the difficulties 

which axe experienced with this type of reactor.

Since the ion impact energy is so important to the effect an ion has on the substrate, 

independent control of this parameter from other parameters is highly desirable. One 

method of achieving this is to apply a biasing voltage to the substrate, in order to 

manipulate the potential difference across the sheath region.

Other Reactor Types

Further developments have led to reactors which give considerably more independent 

control over the plasma parameters. The plasma density can be improved by using 

measures that provide more effective confinement or providing additional heating to the 

electrons via ECR [19].

1.3.6 Plasma Chemistry

The importance of the actual gases that are used in plasma processing systems can be 

vitally important to developing a useful system. In reactive ion etching (RIE) systems, 

a feedstock gas (for example CF4 ) chemically activates the substrate surface so that the 

atoms are loosened and etching can progress at a lower ion impact energies. Other gases 

are added to moderate the process or to assist in the conversion of removed material 

into molecules that can easily pass through the reactor. The gas composition is adjusted 

to yield the best results; this knowledge will be a closely guarded industrial secret.

The precise nature of the removed particles is difficult to determine and various studies 

have tried to address issues around this topic. A review by Hancock [20] discusses the 

diagnostics of active species in plasmas. Laser induced fluorescence is used in [21; 22; 23; 

24] to examine fluorine and chlorine product lifetimes and density. Etching yields and 

product formation measurements are reported by Kubota(1998) and Kroesen(1998) [25; 

26]. Theoretical models of reaction products and rates have been made by Lagana(1997) 

and Martisovits(1997) [27; 28]. These articles show that the environment in which 

plasma processing takes place is not sympathetic to developing a clear understanding 

of the chemical processes that happen.
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Sheath edge

F igure 1.6: Coordinate system for sheath description, x = 0 is defined as the 
sheath edge and u0  is the speed of an ion when it enters the sheath 
region.

1.4 Planar Sheath Representation

So some basic knowledge about plasmas and plasma processing has been introduced. A 

large part of this thesis is concerned with how particles behave when they interact with 

the sheath region between the plasma bulk and the vessel walls. The sheath region will 

be the focus of interest from this point forward.

1.4.1 Describing the Sheath Region

To start an investigation of the plasma sheath we must make some assumptions which 

allow us to express the problem more simply. A schematic representation of the coordi­

nate system in use is shown in figure 1.6. Firstly we assume that there are no collisions 

in the sheath, so we can give ion energy conservation as [29]:

where uq is the velocity at the sheath edge. Secondly, if there is no ionisation in the 

sheath, the continuity of ion flux is:

where no is the ion density at the sheath edge.

From these basic equations we see in the next section how we can begin to express 

properties of the sheath.

(1.13)

rii(x)u(x) = (1.14)
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1.4.2 General Sheath Representation
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To describe the sheath a similar process is followed as for deriving the the Debye length, 

A£>. The Debye radius defines the sheath for a point charge, expressing a planar sheath 

is not entirely dissimilar.

Rearranging (1.13)

«  =  («o  -  . (115)

and inserting this into (1.14)

- 1/2

rii{x) = n0 ( 1 -  £ ^ 0  , (1.16)

gives the ion density through the sheath region rii(x) in terms of the density in the main 

plasma no-

The electron density ne(x) can be expressed as in (1.3)

ne(x) =  noexp(e0/fcsTe). (1-17)

Substituting (1.16) and (1.17) into the Poisson equation (1.10)

exp _  ( i  _  »
\kBTeJ \  mul)

d2<b e , . en-o
o =  ~ i ne ~ ni) ~  ----da^ eo eo

- 1/ 2 '

(1.18)

Changing the notation more clearly reveals the structure of this equation

_  x _  (  n0e2 \ 1/2 u0 . .
X _  kBTe ~  \ D X {e0kBT j  (kBTe/ m i ) W  ( '  1

This allows (1.18) to be written

where the prime denotes d /d£ .

1.4.3 Bohm Sheath Criterion

In order to satisfy the equations that follow, ions must be travelling at a velocity above 

their thermal velocity as they enter the sheath region. This criterion was recognised by 

Bohm [30] and in view of more recent ideas is given thorough treatment in [31]. In a 

simple sheath model the wall disturbance is said to have been shielded by the sheath, so 

the electric field in the plasma at the edge of the sheath is zero. With no electric field
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there is no mechanism to accelerate ions to the necessary velocity to allow a sheath to 

form consistently. It can be shown how this problem arises by integrating (1.20)

f  " ‘c  -  f  ( ■  -  -  f  ' - v i e  (■•>■>

Since x =  0 at £  =  0 

1
§(X,2 -X ? )  =  x 2 (i + ^ y / 2 - iM 2 )

+  e x — 1 (1.22)

and since E  =  0 in the plasma, Xo =  0 at £  =  0.

In order to make sense physically, the right hand side of (1.22) must be positive for all 

£. Looking at the plasma-sheath interface, where x <  1, the right hand side of (1.22) 

can be Taylor expanded

M 4 1 + 1 x"
M 2 2 M 4 + +  l -  X + 2 * 2 +  1 > 0 (1.23)

M - i  +  1) > 0  (L24)

For this inequality to hold, it must be the case that

M 2 > 1  or un > ( ^B^ e\
1/2

UQ > I I (1.25)
\  m i J

This result proves to be a difficulty because the requirement that ions are accelerated 

before reaching the sheath region contradicts the assumption that x ’ =  0 £  =  0.

Although this needs to be borne in mind when justifying assumptions and results, the 

work in this thesis does not tackle this problem.

1.5 Ion Dynamics

Here the necessary components of what has been discussed will be put into the specific 

context of ion dynamics in the sheath of a processing plasma. The Monte Carlo approach 

to modelling will also be introduced.

1.5.1 Child-Langmuir Sheath Representation

When the electrodes are driven by an external voltage, the sheath potential is often con­

siderably higher than the electron energy Te. In these conditions there are no electrons
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in the sheath and the ion energy at the sheath edge is small compared to the sheath 

potential. The latter allows simplification of equations (1.13) and (1.14):

i rriiU2(x) =  —e<j)(x) (1.26)

en(x)u(x) =  Jo- (1-27)

where Jo is the ion current. Rearranging (1.26) and substituting for u(x) in (1.27):

^ = v ( ~ r /2

Using this in Poisson’s equation (1.10):

ax1 eo \  rrii J 

Multiplying both sides by (f/ and integrating

r ^ dx = ( 1 .3 0 )
Jo dx* da; J0 da; e0 \  m* )

t  - - e n £ r >
Integrating once more and rearranging

r f  dx =  - * ( * ) *  ( * ) - *  r  ^  (,32)
Jo da; \ e 0J Vmi /  Jo

1.5.2 Time-Dependent Child-Langmuir Representation

The Child-Langmuir Law is derived for a DC sheath, so is a steady state solution. Since 

processing plasmas are largely AC, operating at 13.56MHz, is this sheath equation of 

any relevance to the plasmas which are being discussed here? The Child-Langmuir Law 

has been widely applied to AC sheaths, which requires some justification. If the sheath 

were to be looked at in a snapshot of time, the question is, are the particles in this 

snapshot behaving as they would if this were the steady state DC sheath? It is argued 

that the electrons are so mobile as to follow the potential variations instantaneously 

and the ions are so slow to respond that their paths continue as normal.
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Since the advent of the first electronic computer in the 1940’s it became possible to carry 

out large numbers of calculations with comparative ease. Stanislaw Ulam had been 

considering how to evaluate the chances of different outcomes occurring in a system, 

for example will a game of solitaire be successful or not? It was apparent that it would 

be more efficient to play the game a sufficient number of times to have a confident 

prediction of the chance of success, rather than to try to devise and solve a series of 

equations describing the game. This example highlights the origins of the name which 

is due to the connection with games of chance that can be found in the casinos of which 

Monte Carlo is renowned. While working on The Manhattan Project at Los Alamos, 

Stanislaw Ulam and John von Neumann were aware of the ENIAC electronic computer 

and understood its potential to perform the necessary calculations for a Monte-Carlo- 

based experiment [32].

It is recognised that Enrico Fermi was using the Monte Carlo technique to predict 

experimental results with uncanny accuracy up to fifteen years before it was given a 

name and published by Ulam and von Neumann.

To carry out a Monte Carlo simulation in an experiment, such as understanding 

neutron diffusion in fissionable material, von Neumann’s originally proposed application, 

a single entity is followed during the time of interest. Equations are applied during the 

lifetime and a history of the entity’s behaviour is established. This is repeated with as 

many entities as required to provide a reliable representation of the real system.

For at least one point in the experiment a number will need to be drawn from a 

distribution, for example an energy from a Maxwellian temperature distribution. This 

leads to a crucial aspect of the Monte Carlo Method, which is the need to produce 

random numbers. More accurately, it is necessary to produce a sequence of numbers 

which appear random in the context of the experiment which is being performed. The 

random number sequence must introduce no bias to the results. The production of 

truly random numbers is invariably very difficult and time consuming. Typical starting 

points for this task are radioactive sources or electrical noise. Two techniques axe much 

more readily applied to computer-based problems, the generation of pseudo-random and 

quasi-random number sequences.

Pseudo-random sequences are commonly generated using the recmsive linear-
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congruential or Lehmer generator [33]. A simple formula is used to calculate the next 

integer in the sequence,

xn+i = A xn +  C (mod M), (1-34)

where xn is the nth number in the sequence and A , C  and M  are integers which are 

chosen to suit the particular application. Usually this means maximising the number of 

calls before the sequence repeats itself, which in the best case will be M  calls. To obtain 

real numbers in the range 0 to 1, x n+i /M  is returned. This method is quick, but the 

sequence will repeat itself and in any case this method is frequently poorly implemented. 

With a numerical recipes [34] library available, this is a preferable option.

In reality quasi-random sequences are anything but random, they are carefully struc­

tured to obey certain rules. When wanting to ‘randomly’ sample points on a grid, a 

truly random generator will tend to provide numbers that bunch together until a suffi­

ciently high quantity of numbers has been generated. In order to reduce the quantity, 

a pre-determined sequence of numbers that appear random to the problem in hand yet 

also realistically cover the whole parameter space is used. Quasi-random sequences are 

applied when using the Monte Carlo Methods to numerically evaluate integrals.

A random number generator returns uniform deviates, that is to say numbers evenly 

distributed, usually between 0 and 1. Often a different distribution, such as binomial, 

Poisson or Gaussian will be required. A rejection method can be used to provide these 

alternative deviates. The procedure for this is as follows (refer to figure 1.7):

• A uniform deviate x , is generated by the selected method. For this example the 

range would be 0 to 3.

• A distribution function f ( x)  is evaluated.

• A second uniform deviate j , is generated, this time in the range 0 to 1, and is 

compared with f{x).

• If  j  > f (x)  then it is rejected and the process is repeated, otherwise x  is returned.

As this process is repeated the desired distribution will be produced.
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reject0.8
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0.2

0.0
0 1 2 3

x

Figure 1.7: Generating non-uniform deviates by drawing two random numbers, 
x and j.  The distribution function is evaluated at x and the result is 
compared with j . If j  is less than /(#), then x is accepted.

1.6 IMon-lonised Components in Reactor Gases

It has been pointed out that there is only a small degree of ionisation in a processing 

plasma. This means that there is a large proportion of neutral particles contributing 

to the total volume. Although the ionised component of the gas is clearly crucial to 

the progress of material processing, what influence do the neutral particles have in the 

system?

In reactive ion etching (RIE) systems, the composition of the gas is selected to opti­

mise the chemical activity in the system.

The macroscopic flow of the neutral gas through the system is determined by the 

geometry and pumping arrangement in the vessel. The macroscopic flow is important 

as this carries with it the ionised portion of the gas. The delivery of ions to the edge of 

the sheath region is reliant on a steady and uniform circulation of the reactor gas.

A further mechanism for the transport of neutral particles is explored in depth in 

this thesis. Due to the sharply angled shapes on a substrate surface, large electric field 

gradients are found around these features. Molecules which are asymmetric in structure 

exhibit an electric dipole due to the distribution of charge across the molecule. If a 

dipole is placed in an electric field it will become aligned with the field lines. Further, 

if there is a gradient in the field, one end of the dipole will have a greater force exerted
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upon it than the other, causing a molecule to move toward regions of increasing electric 

field. This phenomenon and the implications are discussed in §4.
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The Child-Langmuir expression for space-charge-limited current in a plane diode pro­

vides useful insight for DC sheaths. It would be useful if we were able to apply this 

to a time-evolving AC sheath. Techniques have been applied which include the time- 

dependency in the driving voltage of the system [35; 36]. This results in a Child- 

Langmuir equation of the form

<p(r,t) = (f)p(t) -  %/A(eni/€q)2!z(ZkBTilne)llz [l{t) -  r]4/3. (2.1)

In this expression r  =  0 is at the electrode, (j>p{t) is the time-varying plasma potential, 

rii the ion density, Tj the ion temperature and l(t) the time-varying sheath thickness.

A few steps are required to describe l(t). Firstly the potential difference between the 

plasma and the electrode, (f>pe is given in terms of the plasma potential, (f>p and the 

electrode potential, <fre

$pe{t) =  (grounded electrode) (2.2)

<f>pe(t) = <f>p(t) — (f>e(t). (driven electrode) (2.3)

In the case of the driven electrode, (j>e is a simple combination of the driving potential 

and a self-bias DC voltage <̂ dc arising due to unevenly-sized electrodes. Note that a 

small natural self-bias also occurs due to the the current-voltage characteristic of the 

plasma, see Sugawara [37] for an explanation of this.

(f>e(t) =  <f>o sm{ut + 6) -  <f>dc, (2.4)

4>dc -  4>o sin [ | ( ^ a  -  A c)/(A a +  A c)j , (2.5)

where A a and A c are the anode and cathode surface areas respectively.

The plasma potential, <f)p is given by [35]

4>p(t) = (kBTe/e) ln{[l -I- (Ac/A a)

x exp{e<j>e(t)/kBTe)]/[l +  (Ac/A a)]} +  </£, (2.6)

<jPp =  (kBTel2e)\n({ve)l(vi)) (2.7)
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With the quantities above it is then possible to express the sheath extent, l(t),

m  =  w Pe(t)]3/4, (2 .8 )

where, Iq =  Imax /  [fipe ,max]3/4. (2.9)

This covers all the quantities that axe used in equation [2.1] which can then be used

to calculate the motion of ions when they come into the influence of the sheath region

by using the equation of motion:

2.2 Trajectories

Once this series of equations has been established, it is possible to follow the path of 

an ion through the sheath region. Following the trajectories of ions provides insight 

into their interaction with the acceleration mechanism they encounter in the sheath 

region. By changing initial parameters an understanding of the conditions that result 

in particular final energy levels can be achieved.

Two ion trajectories can be seen in figure 2.1. Two quantities are recorded as time 

progresses. The oscillating solid curve marks the extent to which the sheath penetrates 

into the plasma. The dot dash curve gives the distance of the ion from the substrate. 

Distance is expressed relative to the substrate.

During the periods of time that an ion is not under the sheath extent curve, there 

is no force on the ion so it continues to move with uniform speed. During the periods 

that the ion is under the sheath extent curve, acceleration is experienced. It is noted 

that the acceleration while under the curve is not constant, but depends upon both the 

extent of the sheath and the position of the ion within it.

The two distinct cases of trajectory in figure 2.1 show the extreme variations in 

energy acquisition for an ion. To understand how this comes about, observe where the 

ion strikes the substrate relative to the final sheath oscillation. In the case where a 

high impact energy is achieved, the ion strikes the substrate immediately prior to the 

collapse of the sheath. For a low impact energy the ion strikes immediately prior to the 

growth of the sheath.
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Minimum Energy = \ l \ e V  (E0 = 0.036eV)
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Figure 2.1: Contrasting ion trajectories. Minimum ion impact energy is achieved 
when the ion strikes the substrate just before the sheath begins to 
extend. This contrasts with maximum ion impact energy, which oc­
curs when the ion strikes the substrate just as the sheath reduces to 
its minimum value. On the time scale of the driving voltage period 
the plasma does not become extinguished, so the plasma potential 
sustains a small sheath region during the sheath extent minimum.
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Figure 2.2: Effect of sheath shape on the number of ions entering at different 
sheath extents. If the same number of ions enter the sheath in each 
period At, the ions will be distributed across a greater range of sheath 
extent in case A than in case B.

As an ion approaches the substrate, the width of the sheath which the ion interacts 

with increases. Therefore the contribution from an individual sheath interaction to the 

total energy increase is higher when the ion is closer to the substrate surface. By spend­

ing the maximum amount of time being accelerated in the final part of the trajectory, the 

maximum overall energy acquisition is attained. Conversely, if an ion is drifting for the 

final stage of the trajectory, then the minimum impact energy is achieved. Intermediate 

values for ion impact energy are seen for cases between these two extremes.

So this accounts for the extremes of energy which can be attained. An appreciation 

of how these energies shift can also be acquired by considering a single trajectory. The 

number of sheath oscillation cycles before impact can be different for any combination 

of a number of reasons; driving frequency, initial ion velocity, ion mass, potential across 

sheath and sheath width. If an ion encounters a large number of sheath cycles before 

impact, the last sheath interaction will play a small part in the total energy gain across 

the whole sheath. All ions will therefore arrive with similar final energies. Where a small 

number of sheath cycles are encountered, the last encounter will account for practically 

the whole energy gain and this will be reflected in a broad range of possible energies. 

Ions whose characteristics fall between these two extremes will achieve an intermediate 

energy gain.

Some information about the number of ions terminating at each energy can also be 

seen, giving a qualitative prediction of the ion energy distribution. Since the sheath



Chapter 2. Ion Dynamics I 25

potential (approxim ately) follows the shape of a  half wave rectified sinusoid, there are 

steep rising and falling sides w ith a  more slowly turn ing  crest. Assum ing th a t ions axe 

delivered to  the  sheath  edge a t a  constant ra te  in tim e, more ions will enter the  sheath  

where the potential is changing more slowly, so tending to  group the  ions a t one or two 

energies. Looking a t figure 2.2 it can be seen th a t for two equally sized tim e periods 

(A t)  there is a  greater range of sheath  extent th a t can be entered on the  steep slope of 

rising curve, labeled A. Conversely the segment labelled B has the  same num ber of ions 

entering a t a  relatively small range of sheath  extent.

2.3 Monte Carlo Method

A large num ber of particle trajectories are followed in a  M onte Carlo sim ulation. This 

provides a  statistically  robust representation of how the process would progress in reality.

S tarting  conditions for an ion are random ly selected. The ion speed is selected from a 

one-dim ensional Gaussian d istribu tion  and the  sheath  phase from a  linear d istribution. 

Using the equation of m otion (2.10) and the  Child law equation (2.1) the  m otion of an 

ion to  the  next tim e point can be calculated. As the sim ulation progresses inform ation 

on the  position and speed of an  ion is updated.

Several pieces of inform ation are collected from each trajectory, in itial energy Eo , 

in itial phase 0q, im pact energy Ei and tim e of im pact

T he sim plest way to  analyse a sim ulation is to  plot a  histogram  of Ei (figure 2.3). 

This is the m ost im portan t result and yields the  ion energy d istribu tion  function (IEDF 

or simply IED ).

2.3.1 Further Results

I t has been s ta ted  th a t the  num ber of sheath  interactions during the  tran sit of an ion 

across the sheath  region controls the  range of final energies th a t is obtained. Also, there 

are a  num ber of factors th a t affect the  num ber of sheath  interactions, driving frequency 

a;o, sheath w idth  Iq, in itial ion velocity vo. These are related  as follows

r, = fa m .  (2 .1 1 )
uo

In  order to investigate param eter space it is only necessary to  vary the  overall value of 

V-
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Figure 2.3: IED of Argon in reactor at 13.56MHz.

Results axe presented for three regions of rj. The relationships between initial energy 

Eo, final (im pact) energy E i, in itial phase 6q and  the num ber of sheath  cycles encoun­

tered are described. The first series of plots contain six plots for each of the  conditions 

77 1 (figure 2.4), 77 =  1 (figure 2.5) and 77 1 (figure 2.6). T he plots show the

following information:

1. In itia l energy distribu tion  of the  ions.

2. IED (histogram  of final ion energies).

3. N um ber of cycles of the  oscillating sheath  encountered before im pact w ith the 

substrate.

4. Energy gain, E i/E o  versus in itial ion energy.

5. F inal ion energy versus in itial ion energy.

6 . N um ber of cycles encountered versus in itial ion energy.

Looking a t these plots enables the  identification of several trends as 77 is varied. 

Looking a t each plot in tu rn  the findings are described:

1. The m ost im portan t of these is the variation in the  shape and  energy range of the 

IE D ’s. The IE D ’s can be characterised as follows:

77 1 broad IED w ith single peak a t even higher energy.

77 =  1 wider IED, one dom inant peak a t higher energy.
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F igure  2.4: Ion energy characteristics when rj -C 1. Sheath modelled by using 
Child-Langmuir representation. IED is bimodal with a large high 
energy peak and a small low energy peak.
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F igure  2.5: Ion energy characteristics when 77 =  1. Sheath modelled by using 
Child-Langmuir representation. IED is bimodal with a large high 
energy peak and a medium low energy peak, the energy range is 
smaller than in the previous case.
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F igure  2.6: Ion energy characteristics when tj >■ 1. Sheath modelled by using 
Child-Langmuir representation. IED is bimodal with equal high and 
low energy peaks, the energy range is very small.
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77 >• 1 narrow IED with symmetric peaks.

2. The number of cycles traversed approximately increases by an order of magnitude 

in each case:

77 1 centred about 2  cycles, varies from twice this to less than 1 .

77 =  1 centered about 18, varies from 13 to 30.

77 1 centered about 175, varies from 130 to 330 cycles.

3. E 0 distribution same in each case, 1-D Gaussian.

4. Energy gain versus Eo follows a similar shape in each case, ions starting with low 

energy have the highest gain, emphasising the point that an ion starting out with 

low energy can still attain a high energy state. It can be seen in the 77 <C 1 case 

that for a particular initial energy a wider range of gain is available than in the 

other two cases.

5. Ei versus Eo displays how the final energy is largely independent of initial energy. 

In the case that 77 »  1 an upward trend in E{ with increasing Eo is visible, 

reflecting a dependence on Eo not previously seen.

6 . Number of cycles traversed versus Eo shows how as 77 increases the number of 

cycles traversed becomes very closely related to Eo. Bearing in mind that it was 

shown in the previous plot that the full range of possible Ei is available, it can be 

seen that however many cycles are traversed, the full range of Ei remains available.

2.3.2 Polar Contours of Impact Energy

A further series of plots relate phase information about the interaction of the ion with 

the oscillating sheath region. Figure 2.7 shows the IED in each previously identified 

77 regime and also a corresponding plot giving information about the phase of the ion. 

The phase at the point that an ion first encounters the accelerating influence of the 

oscillating sheath is used as the angular ordinate and initial energy (Eo) as the radial 

ordinate in a polar contour plot of ion impact energy (Ei).

The information in the polar contour plots of figure 2.7 needs to be carefully inter­

preted. No indication is given of the number density of points across the plot, the 

plotting routine merely interpolates between the available data. The plots are most
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Figure 2.7: IEDs and final energy versus initial energy and phase for three values 
of 77. For colour maps please refer to figures 2.9-2.11. When 77 1 no
phase relation is apparent. For 77 = 1 phase has a strong relationship 
with the other parameters. In the case 77 1 phase dominates the
resulting final energy.
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Polar Plot of Initial Energy
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Figure 2.8: Distribution of data points in figure 2.7, showing high coverage in 
the central region. This yields a well defined centre, with resolution 
decreasing outwards.

defined in the central region because the one-dimensional Gaussian distribution from 

which the particles are drawn yields the majority of particles at lower energies. For 

the same reason, there is a smaller contribution to the energy distribution from ions 

at greater radial positions. The positions of the points used to create these plots are 

shown in figure 2 .8 .

For the case of Medium rj a spiral shape can clearly be distinguished. Reducing rj 

yields a looser spiral and increasing rj produces a tighter spiral. It is shown in the next 

section how a clearer plot of this phase relationship can be obtained. Suffice to say, 

from these results it is clear that any initial energy can result in any final energy, if the 

appropriate phase is chosen.

2.4 Phase Dependence

All of the above work looks at single trajectories or many trajectories with random 

starting conditions. In order to gain a deeper understanding of ion impact energies, 

a systematic record of initial conditions has been undertaken. By setting ions of the 

same energy off at small and equal steps across all phase and then repeating this for 

many initial energies a picture of impact energy versus initial phase and energy can be 

constructed. This has been carried out using the same parameters as have been used 

in the Monte Carlo simulation, to allow a direct comparison. Low, medium and high r]
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Polar Contour of Impact Energy
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Figure 2.9: Systematically obtained ion energy with same parameters as fig­
ure 2.7, r? <C 1.

are shown in figures 2.9, 2.10 and 2.11 respectively. Note that this provides an evenly 

spaced grid, unlike the Monte Carlo results in figure 2.7, which accounts for the clearer 

picture.

There are a few main points to notice about this result:

1. Contours of constant final ion energy follow a spiral shape.

2. The full range of final ion energies is available to ions with any initial phase or 

energy.

3. A final energy is recorded for a range of starting conditions, which may or may 

not be appropriate to any specific processing system.

Point (1) is significant because a spiral shape is very easy to describe mathematically 

and as shown later can lead to an analytic description of ion energy characteristics.

The second point highlights the non-obvious behaviour of the acceleration mechanism 

that acts upon an ion in an oscillating sheath. There is no indication of the change in 

final ion energy given by a known change in the initial energy of an incoming ion. The 

dependence on phase has to be taken into account at the same time.

The appropriateness mentioned in point (3) addresses the need to select data which 

reflects the actual initial conditions at the sheath edge. For instance one might consider
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Figure 2.11: Systematically obtained ion energy with same parameters as 2.7,
f] »  1.
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0
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Figure 2.12: Example spiral plot.

a Bohm speed appropriate, so only consider a concentric circle of data to reflect the 

final ion energies.

Consider this scenario: Due to some mechanism, ions are biased toward entering the 

sheath region only at a certain range of phase. Now the ions will impact with an altered 

distribution of final energies.

If energy and phase distributions are involved then the interpretation of figures 2.9- 

2.11 becomes difficult to comprehend.

2.5 Spiral Description

Given that numerical simulation of ions accelerating in an oscillating sheath has pro­

duced the result in the previous section, an analytic approach to generating IED’s has 

been undertaken. This works backwards from the premise that ion impact energies form 

a spiral shape when plotted versus initial energy and phase.

A spiral is essentially a sinusoidal shape with an amplitude that increases with time, 

plotted in polar coordinates. This is most clearly written in exponential terms:

* =  (2.12)

where A  and A are scaling factors. In equation (2.12), the spiral is growing exponen­

tially since the At term is in the exponential. This is plotted in figure (2.12):
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If we take \z\ as the argument of a periodic function

Q =  cos(7r log |z|) (2.13)

this gives the intensity Q , which when plotted can replicate the numerical result shown 

in figures 2.9-2.11.

2.5.1 Implementation

In order to produce this computationally the following method has been used.

1. Generate an n x n array with values increasing on concentric circles from the 

centre in the range [0..1] (figure 2.13a). Call this array A

2. Similarly, let array B  have values that increase radially, in the range [0..27r] (fig­

ure 2.13b).

3. The sum of these arrays is an array which has values increasing by 2n around 

concentric circles and the absolute value increases radially outwards. The ra­

dial dimension increases exponentially, so the required operation actually is 

C = log {A) +  B.

4. To create the polar plot of initial energy and phase versus final energy, take the 

cosine of C  (figure 2.13c).

D  =  cos(log A + B) (2.14)

In order to generate an IED, it is necessary to add some information about the initial 

conditions. The energy distribution needs to be addressed, since there are not an equal 

number of particles at all energies. To represent this graphically, it is necessary to add 

the extra dimension of number density to the plot. This is achieved by changing the 

final energy representation to a colour depth and introducing the number density as an 

intensity. As a starting point, a linear distribution can be defined (figure 2.13d).

Generation of a IED is now a case of producing a histogram of the number of particles 

at each intensity, biased by the number density (figure 2.14).

2.5.2 Variation with Sheath Parameters

Looking back to figure (2.7) it can be seen how the results of a Monte Carlo numerical 

simulation vary with the rj parameter. Bearing in mind that only the central part of the
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Figure 2.13: Development of the analytic spiral.
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Figure 2.14: Extracted IED, the symmetry is discussed in section 2.5.3.
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Figure 2.15: Analytic spiral when n = 2. Characterised by open shape.

Figure 2.16: Analytic spiral when n = 5. Several turns of the spiral are made.

contour is well defined, medium 77 completes two or three spirals in the energy range 

examined. Moving to high 77 results in a tighter spiral, such that there are effectively 

a series of concentric circles. At low 77, not even one spiral is completed and the final 

energy mainly sits near one higher energy.

So in order to incorporate variations of 77 into this representation, the tightness of the 

spiral must be adjusted accordingly. This is accomplished by a slight modification to

(2.14)

D = cos(7ilog A  +  B)  (2.15)

where n controls the tightness of the spiral. Figures 2.15, 2.16 and 2.17 show this.
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F igure 2.17: Analytic spiral when n = 5. Spiral approaches a series of concentric 
circles.

2.5.3 Spiral Function Shape

The cosine used in the formulation of the spiral is a symmetrical function. This means 

that the spiral is rotationally symmetrical and the histogram that results from using all 

the data in figure 2.14 is also symmetrical.

Particularly looking at the low value of r] in figure 2.7, the need to define an appro­

priate function around the spiral is apparent. Most of the spiral occupies a high energy 

level so a sinusoidal function does not satisfactorily describe the shape of the contour. 

This can be implemented by a generalisation in (2.15) by using an alternative function 

to the cosine.

A function that moves slowly from maximum to minimum and spends more time 

at the maximum than the minimum will produce an asymmetric bimodal distribution 

similar to that seen in figure 2.5.

2.5 .4  Selection of Initial Phase

In section 2.4 it was stated that if ions were only entering the sheath region at a partic­

ular range of phase, then this would have an effect on the ion energy distribution. This 

can be investigated by making a histogram from a selected region of phase in the spiral 

function. This can be thought of as taking a wedge from the spiral.

The result of this is shown in figure 2.18 for different values of n. Firstly only consider 

the solid blue line and compare with tha t in figure 2.14 (all the data).
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Figure 2.18: IED’s at different values of n, with a reduced phase acceptance angle.
The dashed line is an indication of the narrowing of ion energies with 
increasing rj.
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n=15 A selected region of phase from figure 2.17. Many cycles of the spiral axe made 

and the result is similar to the full data set.

n=5 A selected region of phase from figure 2.16. Now it is possible to select a region 

of phase that results in a bimodal distribution, with a larger high energy peak.

n=2 A selected region of phase from figure 2.15. A more extreme high energy peak is 

produced.

In these spiral plots intensity represents ion energy, but does not give a direct measure 

of the ion energy. The dashed line is the same as the solid blue line, but has been scaled 

to indicate the effect of increasing 77. That is, a narrowing of the energy range. To 

obtain absolute rather than relative values for ion energy, a attempt to characterise a 

particular processing system must be made.
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Work in the previous chapter was based on the Child-Langmuir equation for space 

charge limited current. The formulation of this equation requires that only one charge 

carrier is considered, so that the energy conservation equation can be used. This means 

that electrons are not considered when evaluating the electric field across the sheath 

region. It can be argued that this is a reasonable approximation since any electron 

influence is only at the very edge of the sheath-plasma interface.

Reflecting on the last chapter, it has been shown that the initial conditions as an ion 

enters the sheath region have a coherent relationship with the final impact energy. If the 

conditions at the sheath interface are modified, then this may propagate an appreciable 

effect to the ion energy distribution at the substrate surface.

Given the effect of adjusting the initial conditions it is also interesting to consider 

variations in initial conditions along a spatial dimension parallel to the substrate. Do 

spatial variations lead to nonuniform energy distributions?

3.2 Full Non-Linear Solution

Recall that the full non-linear sheath equation is

where

_  e<j> x  _  /  n0e2 \ 1/2 u0
X kBTe Ad  *  V - a k s T j  (kBTe/ m i)V2 ( ' )

and the prime denotes d/dC.

Instead of approximating the sheath description a numerical routine has been em­

ployed to solve the full non-linear sheath equation (3.1).

The first integration of (3.1) is possible by multiplying by d \ /d C  and integrating over

C
Hv rl /rWX rla/ /  9v” \

-  e~* dC (3.3)/*£ d x _ d _ / d x \  [ c &x A  2 x Y  
J  d C d C \ d C j  J  dC [ \  M 2)

Obtaining

( g ) 2 =  /(x ) . (3.4)
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where

f i x )  = 4M -
( » s r -

+  2{e~x -  1) (3.5)

This can be integrated numerically using a standard Romberg integration routine 

supplied from the Numerical Recipes library[34]. Some rearrangement is required first:

dX 
d £

dC 
<*X

= V f i x )  

1

V f i x )

f f r  - / *

P
C = I —r=7=rdX 

Jy

V f i x )
*Xw ^

'x V f i x )

(3.6)

(3.7)

(3.8)

(3-9)

where Xw is the potential at the electrode. This allows the calculation of the distance 

ordinate £ , by the numerical integration of the potential ordinate x*

In order to provide a non-oscillatory solution to this equation, the Bohm criterion 

must be satisfied.

M 2 > 1

2 ^ kBTe 
U0 > 771*

(3.10)

(3.11)

Some thought has to be given to the topology of this representation, to be clear on 

firstly the position of the wall and sheath edge and secondly the direction of ion motion 

and potential gradient. These matters are quite trivial, except for the location of the 

sheath edge.

3.3 Sheath Extent

In a plasma with no externally applied potential, sheath formation is determined by 

the thermal motion of the ions and electrons. The Debye length describes the sheath 

region under these conditions. When an external potential is applied this causes an 

extension of the sheath region. This situation is described by (3.1) and simplified in the 

Child-Langmuir approximation.

Under the Child-Langmuir Law, the sheath edge was clearly prescribed by artificial 

means. Observations and measurements provide reasonable estimates of the sheath
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Figure 3.1: Sheath extent at a range of wall potentials for two sheath represen­
tations (x ordinate is potential, C ordinate is distance). The Child- 
Langmuir sheath edge (x =  0) occurs at a defined point, whereas the
full equation produces a solution asymptotic with x = 0 .

thickness that can be fed into the Child-Langmuir Law as a parameter. When solving the 

full equation the sheath edge is not well defined as the sheath potential asymptotically 

approaches the plasma potential. Consequently the sheath extends on a length scale 

one or two orders of magnitude greater than the Child-Langmuir thickness.

Consider that the full sheath equation is valid for all space (in a collisionless plasma),

but the Child-Langmuir Law is only valid where no electrons are present, ie. away

from the sheath edge. It follows then that the two descriptions will match at the vessel 

wall where the electrons are completely expelled. The gradient of both representations 

can be matched at the wall to show how the Child-Langmuir Law deviates from the full 

equation. This comparison is made in figure 3.1. The Child-Langmuir sheath terminates 

at a distinct distance in the C dimension. This contrasts with the full equation which 

asymptotically approaches x =  0  as C becomes progressively more negative.
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A different approach is taken to model the system made using the full equation. Because 

there is no longer a simple analytic solution to the sheath equation, a relatively intensive 

computation is required to perform the integration. To obtain IED’s many particle 

simulations axe required and if an integration were performed at each step, the time 

to complete the simulation would become large. To alleviate this problem, the sheath 

equation can be evaluated for all necessary values of potential and then stored in an 

array to be used in the simulations. This array only needs to be updated if a change in 

the resolution or a fundamental parameter is required.

In order to search the array quickly a bisection approach has been adopted, providing 

an exponential speed increase when compared to a linear search method. This means 

that doubling the resolution of the array only requires one more iteration of the search 

loop. A bisection algorithm can only be applied to an array where the values are 

monotonic. The target value is compared with the central value of the array, if this is 

higher than the target then the higher half of the array is discarded, or vice versa. The 

remaining array is processed in the same way and again until a single value is arrived 

at.

Once the above issues have been addressed, individual ion trajectories can be fol­

lowed from when an ion enters the sheath region until it impacts upon the electrode. 

Many trajectories are followed in a Monte Carlo simulation to build up an Ion Energy 

Distribution.

3.4.1 Program Description

• Array of potential on wall as a function of phase created. Equation 2.3 and 

associated equations are implemented for this purpose.

• The Romberg integration routine mentioned previously is used to solve equa­

tion 3.9. The wall potential Xw is set at the maximum value found in the above 

calculation of wall potential, the choice of x  decides to what distance from the 

substrate is being considered. For the purposes of this simulation, this point is 

where the field is judged to be reduced to such a small level that the effect it has 

is negligible.
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• These two results are used to produce an array which gives the maximum sheath 

extent at each point in phase. This can be used in the main program to determine 

if a calculation has to be made involving the sheath, or if the ion should continue 

at the same speed.

• There are three possible ways the program can now progress depending upon 

whether a trajectory, IED or systematic study is to be obtained. These options 

determine how initial conditions are chosen and what information is recorded.

T ra jec to ry  Initial conditions chosen once. Record of sheath extent, ion position 

and sheath phase at each point in phase. One ion followed.

IE D  Initial conditions chosen randomly, from appropriate distribution. Record 

of initial energy, final energy and number of sheath cycles encountered, phase 

information may also be recorded. Many ions followed.

System atic  S tudy  Initial conditions selected to cover all phase and initial en­

ergy parameters uniformly. Initial phase, initial energy and final energy 

recorded. Many ions followed.

•  Whatever conditions are being used, the main program follows the progress of the 

ion, updating position and speed at each time step.

3.5 Results

To try to provide a close comparison with the Child-Langmuir sheath results, the same 

initial conditions as in those experiments were retained for these simulations.

3.5.1 Ion Trajectories

Looking at the trajectory that an ion follows through the sheath region shows up the 

fundamental effect of considering electrons in the sheath.

Two lines are shown on the trajectory plots. The periodic line shows the furthest 

extent of the influence of the sheath. Note that the sheath is not ‘on’ or ‘off’, but the 

force acting on the ion is a function of sheath extent and the position of the ion within 

it. The other line shows the position of the ion as the simulation progresses.
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Figure 3.2: Ion trajectory, i ) « l .  Sheath modelled using numerical solution of 
the full non-linear sheath equation. Extent = x/Xd -

Figures 3.2, 3.3 and 3.4 show trajectories when 77 1,= 1 and 1 respectively.

For the first two cases the whole of the simulation is plotted, the last condition causes 

the ion to traverse so many sheath cycles that only the last portion of the trajectory is 

shown.

It is apparent in each case that the ion encounters more sheath cycles than in the 

Child-Langmuir sheath. The electric field strength has been reduced by the addition of 

electrons at the outer edge of the sheath region. Because of this the force on the ion 

as it first encounters the oscillating sheath is much smaller than previously. Gradually 

the ion travels further into the sheath region and the force experienced returns to that 

of the Child-Langmuir sheath.

3.5.2 Ion Energy Distributions

Although ion trajectories help understand what is happening to an individual ion, the 

collective behaviour of the ions can be seen by generating ion energy distributions.

Three results are presented. One for each of 77 -C 1 (figure 3.5), 77 =  1 (figure 3.6) and 

77 »  1 (figure 3.7).

Six plots are presented for each value of 77. Left to right, top to bottom these are as 

follows.
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Figure 3.3: Ion trajectory, rj = 1. Sheath modelled using numerical solution of 
the full non-linear sheath equation. Extent = x/Xd -
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Figure 3.4: Ion trajectory r\ 1. Sheath modelled using numerical solution of 
the full non-linear sheath equation. Extent = x/Xd -
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1. Initial energy distribution of the ions.

2. IED, histogram of final ion energies.

3. Number of cycles of the oscillating sheath encountered before impact with the 

substrate.

4. Energy gain (Ei/Eo) versus the initial ion energy.

5. Final ion energy versus initial ion energy.

6. Number of cycles encountered versus initial ion energy.

It is interesting to note the similarities and differences in these plots when compared 

with the results obtained in the case with no electron influence at the sheath edge.

3.5.3 Polar Plots of Parameter Space

To complete the results, phase, initial energy and final energy are recorded in a system­

atic study. Again results are presented for each of the three cases that has been looked 

at (figure 3.8, 3.9 and 3.10).

3.6 Discussion

Recall the motivation for improving on the Child-Langmuir sheath approximation. The 

full non-linear sheath equation has been numerically solved in order to include the 

influence of electrons. The effect of this is seen near the plasma-sheath boundary, where 

the electric field is insufficient to completely deplete the region of electrons. Although 

the overall potential drop is still the same, the sheath influence is considered further 

into the plasma. A more gentle acceleration is experienced by the ions until the full 

non-linear and Child-Langmuir sheaths converge.

The modification of the initial acceleration properties of the sheath has a profound 

effect on the trajectory of an ion. Since the acceleration of the ion when it first enters 

the region is small, it is not rapidly accelerated into the region of higher electric field. 

As a consequence, more time is spent in the sheath region and so more sheath cycles 

are traversed. As was seen in the previous chapter, the number of cycles encountered 

has a strong impact upon the influence of the initial phase on the resulting IED. In this
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Figure 3.5: Ion energy characteristics when 77 1. Sheath modelled by numerical
solution of full non-linear sheath equation. IED has a broad energy
distribution and a large high energy peak.
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Figure 3.6: Ion energy characteristics when rj =  1. Sheath modelled by numerical
solution of full non-linear sheath equation. IED is bimodal, with a
larger high energy peak.
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Figure 3.7: Ion energy characteristics when rj 1. Sheath modelled by numerical
solution of full non-linear sheath equation. IED has a narrow, bimodal
energy distribution with a slightly larger high energy peak.
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simulation the phase distribution of the ions as they enter the electron-free region of the 

sheath will already have been altered by the sheath cycles that have been encountered 

in the reduced field that was not previously included.

This leads to a number of differences in the ion energy distribution. Each case is 

looked at in turn.

In the case that 77 1, the low energy spike previously seen under these conditions has

been all but removed. As discussed above, the increased number of sheath encounters 

has caused the ions to follow a more uniform path to the substrate. This is also reflected 

in the polar plot, where, while still showing the characteristic spiral shape, the plot is 

dominated by the high energy ions with only a small region available to a low energy 

route. The maximum energy that can be attained is reduced. This is related to the 

distance from the substrate that an ion enters the last sheath cycle prior to impact. For 

an ion to gain the most energy possible it spends all of its time under the extent of the 

sheath. During any time not under the sheath extent, the ion is in free fall and does not 

gain any energy from the sheath. When more sheath cycles are traversed the time an 

ion spends between sheath cycles (when it is not being accelerated) is more significant. 

During this period the ion is getting closer to the substrate, but not gaining energy.
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The ion will enter the last sheath cycle before impact closer to the substrate, so the 

final energy gain is lower.

Phase effects axe more dominant in the case rj =  1. As in the previous case, a route to 

low energies is more difficult to come by. The range of available energy has increased, 

because the modification of initial phase has made a greater variety of trajectories 

available to each ion.

Lastly for the case rj 1, the large number of sheath encounters produces a narrow 

band of final energies. A wider range is available than in the Child-Langmuir case, again 

reflecting the phase modification. The polar plot shows concentric circles which reflects 

the breakdown in relationship between phase and final energy at any particular initial 

energy.

3.7 Outstanding Issues

It is difficult to produce a clear comparison between the two sheath definitions, since 

some fundamental conditions are addressed differently in each case. To provide a non- 

oscillatory solution to the full equation, the initial ion speed has to satisfy the Bohm 

Criterion, which is to say that uq > (A^Te/rai)1/2. Although this has been adhered to 

in order to obtain the sheath potential, when using the potential in the model, ions can 

have initial conditions freely imposed.

The inclusion of the electron influence introduces an extended sheath region, with a 

reduced electric field at the plasma side of the region. It could be argued that this is 

a step closer to including a pre-sheath that accelerates ions before entering the main 

(electron free) sheath region. Unfortunately this still doesn’t strictly address the Bohm 

speed criterion, it would be of value to investigate this issue further.
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As etching progresses in a plasma processing system, particles axe removed from the 

substrate and must therefore be present immediately above it. This poses the question 

- how are the particles then removed from the vicinity of the substrate? A macroscopic 

flow exists within the processing chamber due to the pumping of feedstock gases through 

the vessel. It is not necessarily the case that this flow will greatly affect particles 

everywhere and in particular close to the surface or within surface features. Please note 

that for the sake of brevity, the term ’particle’ refers to a neutral molecule or atom.

As a trench is etched, the aspect ratio (depth : width) will gradually increase. If a 

deep trench is required, at some point the depth will be significantly greater than the 

width and the aspect ratio will be regarded as high. This chapter looks at this extreme 

case where a high aspect ratio feature has formed on a substrate.

4.2 Dielectrophoresis

Dielectrophoresis (DEP) refers to the motion produced by the action of a nonuniform 

electric field upon neutral matter [38]. This is important in the characterisation of 

varieties of biological cells, and in the manipulation of sub-micrometer latex spheres [39; 

40]. A similar effect for magnetic dipoles and strong magnetic fields is exploited in 

ferrofluids [41]. It is required that an electric dipole moment must exist in the neutral 

matter, this may be either permanent, or induced by the electric field in question. To be 

clear, in this work DEP is taken to mean the force exerted upon neutral, non-interacting 

particles with a permanent dipole moment by an externally imposed non-uniform electric 

field. This is consistent with Jones’ phenomenological definition [42]. In simple terms, 

DEP causes affected particles to drift to the region of strongest electric field, irrespective 

of the polarity of the field.

Let a particle have electric dipole moment p, and suppose that there is a non-uniform 

electric field E  present. Then the force F  acting on the particle is given by [43]

F  = (p • V)E. (4.1)
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4.3 Application to Plasma Processing
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Suppose a particle with an electric dipole moment is ejected into the sheath region 

directly above the substrate surface. This molecule will be exposed to a strong sheath 

electric field that is spatially non-uniform (and usually varying in time). Setting aside 

the temporal variation, the sheath electric field will be directed from the plasma to 

the substrate, with intensity decreasing towards the sheath edge nearest the plasma. 

The DEP effect will tend to force the particle back on to the surface, where the field 

intensity is greatest. This may be an important consideration in analysing redeposition 

mechanisms and the associated sticking factor (see [44] for a discussion of these effects). 

However these systems are pumped, and eventually waste material is exhausted. Where 

the etched surface is not a level plane, the efficiency of the system pumping may be 

less effective at extracting etching by-products, particularly where etching takes place 

in very narrow (0.2 fim) and deep (4 fim) channels. It is in this specific situation that 

the DEP effect may be most significant. In such a deep channel, the electric field at the 

opening must have a large spatial rate of change because of the boundary shape and 

the associated dimensions.

It is proposed that the strong, spatially non-uniform plasma sheath electric field allows 

neutral dielectric atoms or molecules to be extracted from etched trenches via the DEP 

effect.

4.4 Model trench calculation

As a trial calculation, consider the potential of a rectangular well, representing a trench 

feature on a substrate (see Figure 4.1). Assume that the potential in the main sheath is 

0 1  at the opening of the trench, and that the potential on the whole substrate, including 

the interior boundary of the well, is 0 2 - We can solve Laplace’s equation to find the 

potential in the interior of the model trench, and thereby calculate the electric field 

intensity as a function of position. This is an idealised calculation (for example, there 

is no time dependence), but it does give some useful insight.

Since the absolute value of the potential is not crucial in this calculation (only the 

electric field is important for the dielectrophoresis effect) we can arbitrarily set the 

potential of the trench boundary to 0 , and the potential at the mouth (supplied by the
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Figure 4.1: Diagram showing the geometry of a large aspect ratio trench. The 
axis indicate the coordinate orientation and model dimensions.

main plasma sheath) as (po =  (p\ — (p2• This makes the handling of boundary conditions 

simpler by eliminating constants.

Given that the geometry is rectangular, we can find a general solution for cp{x,z), 

from Laplace’s equation

V 20 =  0. (4.2)

This equation is separable and in two dimensions becomes

JL d20X ,  ̂ d2(f)z _ n , A ox
da;2 dz2 ~  (4-3)

and dividing through by cpx(p

1 d 2(bx 1  d 2d>z , x
9 + ^ S =  0 (4-4)<px dx2 4>z dz2

These two terms must sum to zero at all points. Since the second term is independent 

of x , the first must also be independent of x  and so constant. By similar reasoning, the 

second term is also constant.

1  d2(f>x
(fix dx2 

1 d2<f>z

= CU (4.5)

=  C2, (4.6)
(pz dz2

also, Ci +  C2 = 0  (4.7)

The above differential equations can be solved to give a general solution to (f>(x, z) of 

the form:

<f>(x, z) = [Ci cosh(A;2 ) +  C2 sinh(/cz)][C3  cos(kx)  +  C4  sin(A;ar)]. (4.8)
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The boundary conditions for the problem are as follows. The trench width is a and 

its depth is d. The bottom of the trench (z = 0, 0 < x  < a) is at zero potential, as 

is each of the top corners ( (x, z) =  (0, d) and (x,z) =  (a,d)); the open mouth of the 

trench is at potential <po (z = d, 0 < x < a). This gives a rectangular box with three 

sides at one potential and the remaining side at a different potential. Applying these 

boundary conditions yields

A  sinh(fcnz) .

n  o d d

where kn = mr/a and A is a constant. For large aspect ratio a = d/a  1, the first 

term in the sum dominates and a good approximation to <p is

* * ’ z) *  ■»"(«/«)• (4.10)

Taking the gradient of (4.10) to get the x  and z components of the electric field E  in 

the trench yields

(4,2,

where (po = A /  sinh(7rd/a). Using (4.1) we can find the force acting upon the particle. 

The field magnitude as a function of position in the large aspect ratio trench interior is 

readily determined:
.„ .o  s in h 2(7r z /a )
l£ l -  ■ v.2 !, ■ (4-13)sinh (7ra/a)

showing that the electric field is predominantly aligned with the long axis of the trench, 

and is concentrated at the trench opening. The longitudinal electric field has an expo­

nential fall-off with e-folding distance equal to the trench width a, so that a particle at 

the bottom of the trench sees an electric field which increases exponentially with height. 

There is also a horizontal component of electric field, which has peak magnitude in the 

centre.

For large aspect ratio trenches, it is the exponential behaviour which dominates. This 

is a satisfactory result for two reasons: it shows that there is negligible lateral electric 

field, consistent with no under-cutting in plasma etching. Also, the field distribution 

can draw particles with a dipole moment up from the trench bottom, and away from the 

walls, as argued qualitatively in the previous section. In fact, modest charge build-up at 

the top corners of large aspect ratio trenches can induce an additional DEP effect, but
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at the expense of causing under-cutting [45]. Note also that as the aspect ratio reduces, 

the lateral variation in electric field strength becomes relatively more significant.

4.5 Numerical Simulation

4.5.1 Equation of Motion

The components of electric field in x  and z directions, Ex and Ez are given in (4.11) 

and (4.12) respectively. Equation (4.1) is used to express the acceleration acting on a 

particle. In two dimensions:

(p V ) B  = (pxdx + p zdz)E (4.14)

— ® IPx&X^x +  PxdxEx] "I" Z \px&xEz 4" PzdxEx] (4.15)

(4.16)

Since it is assumed that the electric dipole moment and the electric field axe aligned 

p  =  e, where e =  pE/\E\.

E  _  x s in h (^ )c o s (^ )  +  z c o s h (y )s in (^ )
(4.17)

1̂ 1 ^/sinh2( ^ )  cos2( ^ )  +  cosh2( ^ )  sin2( ^ )

so

sin h (^ ) co s(^ )
(4.18)

coshf2̂ )  s in (^ )
(4.19)

Considering that p  = pe

(p • V ) E  = p(e • V E ) (4.20)

p^<f>o ( x  \ex sinh(— ) sin(— ) -  e* cosh(— ) cos(— )1 
a - ^ V L  a a a a J

(4.21)
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Substituting (4.18) and (4.19) in the above and simplifying

m r  =  p(e • V E )

r  =
s in (^ )c o s (^ )

y sinh2( f )  +  Sin2(^ )_

+z
sinh(gf)cosh(*g)

A/sinh2( s ) + sin2(? )_

(4.22)

(4.23)

4.5.2 Non-dimensional Representation

Once normalised to the trench width a, £ = x /a  and (  = z /a  are the non-dimensional 

spatial coordinates. Time is normalised to the ion transit time without DEP effect, 

to = d/vo, yielding non-dimensional time r  = t/to. The acceleration of the particle can 

now be expressed as:

d2j  = l p sin(27rQ

^ 7 ^ yjsinh2(7r£) +  sin2(7r£)

sinh(27rC)

^ ^ s in h 2(7r£) +  sin2(7r£)

(4.24)

(4.25)

where ^  is a fundamental parameter which incorporates the dipole moment p, particle 

mass m, aspect ratio a , launch velocity vq, potential at the top of the trench 0o and 

trench width a:
2 p a2 (f)0/3 = tt"

mug a
(4.26)

Typically p — 10 30 Cm, a = 4, m = 4.68 x 10 26 kg (silicon), a = 10 6m and 

wo =  102 ms-1 , yielding

/? ~ 0 ( 1 )  if <f>o — 0(3). (4.27)

4.6 Results

4.6.1 At Aspect Ratio of 4

The consequences of the DEP effect are computed using the above normalised coordi­

nates and illustrated in the following figures.
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F igure  4.2: Particles ejected perpendicular to the bottom of the trench, (3 =  1.
Particles are centred in the trench and exit in less time than without 
the DEP effect.

The first series of plots shows particles leaving from five positions equally spaced 

across the bottom of a trench with an aspect ratio of 4. The particles have no horizontal 

velocity component so are initially moving parallel to the trench walls. They have an 

initial velocity such that they would exit the trench at time t  =  1, so the time shown 

in the plots indicates the reduced exit time relative to unity. Three plots are shown, for 

values of f3 =  1 (figure 4.2), /3 =  10 (figure 4.3) and /3 =  100 (figure 4.4).

There are several points to notice about these plots.

• The particles are ejected in a fraction of the time that it would have taken without 

a dielectrophoretic force. This ranges from 0.7 for a particle in the centre of the 

trench with = 1 to 0.045 when a particle is ejected from the side of the trench 

with conditions which give /? =  100. Note that the particles are accelerated more 

when they approach the upper part of the trench.
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F igure  4.3: Particles ejected perpendicular to the bottom of the trench, /3 =  10.
A strong centring force causes the particles to overshoot the centre 
line. Exit time is much less than that without the DEP effect.
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F igure  4.4: Particles ejected perpendicular to the bottom of the trench, (3 =  100.
A very strong centring force causes the particles to nearly overshoot 
into the opposite wall. Exit time is a small fraction of that without 
the DEP effect.



Chapter 4. Neutral Dynamics: Dielectrophoresis (DEP) 67

£ VS. T

0.8

g 0.6
W
cl 0.4 
*

0.2

0.0
0.00 0.05 0.10 0.15 0.20

4 vs. C

time t 

£ VS. T
4

3

2
Q.

1

0 L-~tttTT. . .. . i .....  „ ..........
0.00 0.05 0.10 0.15 0.20

c o '•*—> w0
CL1
N

4

3

1

0 L j  \ i i- 'i ' I i ^  i*"l i i I i_\S \

0.0 0.2 0.4 0.6 0.8 1.0
time x x-position £

F igure  4.5: Particles ejected at 45° to the bottom of the trench, /? =  1. The 
centring force is not sufficient to prevent the particles from striking 
the side wall.

• The particles are deflected towards the centre of the trench. This effect is most 

dominant in the lower portion of the trench. The centring of particles is greater 

with increasing value of /3. Because the effect is stronger towards the bottom of 

the trench, a particle may be strongly deflected when it is initially ejected into 

the trench, then as it moves upwards the centring force is reduced so the particle 

overshoots the centre line and heads towards the opposite wall. This can be seen 

in the case f3 =  100 (figure 4.4).

The second series of plots are similar to those above. They differ in the initial velocity 

of the particles, now they are ejected at 45° to the trench walls. Plots for f3 =  1, 10 & 

100 are given in figures 4.5, 4.6 & 4.7 respectively.

Immediately after the particles are liberated from the substrate, they are in the region 

subject to the most significant centring force. As they move upwards, the centring force
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Figure  4.6: Particles ejected at 45° to the bottom of the trench, 0 = 10. All but 
the closest particles are centred enough to prevent them from striking 
the side wall.
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becomes considerably less dominant. This can result in a situation where a particle is 

far off the centre line, so a force acts on it as it is liberated from the substrate to move 

it towards the centre. In the time it takes for this to happen the particle has moved 

into a region with relatively little centring force, so the particle overshoots the centre 

and heads towards the opposite wall. In many cases the now increasing vertical force 

ejects the particle before it has time to strike the wall.

4.6.2 Variation in Aspect Ratio

The following plots show only £ versus r  and £ versus r  in the interests of compactness. 

On each page, plots for £ — 1, 10 and 100 are shown from top to bottom. Aspect 

ratios of 2, 8 and 16 axe presented, with particles leaving the trench under a range of 

conditions.

The first three series of plots show particles leaving perpendicular to the bottom of the 

trench, aspect ratio 2 in figure 4.8, 8 in figure 4.9 and 16 in figure 4.10. With particles 

leaving at 45° to the bottom of the trench, the results can be seen for an aspect ratio 

of 2 in figure 4.11, 8 in figure 4.12 and 16 in figure 4.13. All the plots shown prior to 

these were for an aspect ratio of 4, so can also be used in comparison.

Two observations are made about these results:

• Increasing the aspect ratio causes a proportionate reduction in the time taken to 

exit the trench. In summary:

Aspect Ratio T

£ = 1 £ =  10 £ =  100

2 0.43 0.21 0.90

4 0.23 0.11 0.047

8 0.11 0.055 0.024

16 0.057 0.027 0.012

This is a result of the increase in the vertical field gradient as trench aspect ratio 

increases.

• Regardless of the aspect ratio, the motion in the £ direction looks the same simply 

scaling to the new time to exit. Take as an example a particle that initially heads 

towards a wall but is centered, so exits without touching a wall in a trench with
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Figure 4.8: Particles ejected perpendicular to the bottom of a trench with aspect
ratio = 2. Position of particles in £ and £ direction with respect to
r, for three values of 13.
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Figure 4.10: Particles ejected perpendicular to the bottom of a trench with aspect
ratio = 16. Position of particles in £ and £ direction with respect to
r, for three values of /?.
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Figure 4.11: Particles ejected at 45° to the bottom of a trench with aspect ratio
= 2. Position of particles in £ and £ direction with respect to r, for
three values of /?.
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Figure 4.12: Particles ejected at 45° to the bottom of a trench with aspect ratio
= 8. Position of particles in £ and £ direction with respect to r, for
three values of



x-
po

sit
ion

 
£ 

x-
po

sit
ion

 
£ 

x-
po

sit
ion

 
£

Chapter 4. Neutral Dynamics: Dielectrophoresis (DEP) 76

£ vs. x, p = 1
1.0

0.8

0.6

0.4

0.2

00    .........
0.00 0.01 0.02 0.03 0.04 0.05

timex

% VS. T, p = 10

0.8

0.6

0.4

0.2

0 - 0  . . . .  i . . . .  i ■ . . .  i ■ . . .  i ..............................

0.000 0.005 0.010 0.015 0.020 0.025 0.030
timex

5 VS. X, 100
1.0

0.8

0.6

0.4

0.2

0 .0 L
0.000 0.010 0.0150.005

timex

5 VS. T, p = 1
161  ..................

12 -

C

0l 111111 — i  ....................
0.00 0.01 0.02 0.03 0.04 0.05

timex

£ VS. T, p = 10
16

12

8

4

• i i i i .t i1. . . . iTT............
0.000 0.005 0.010 0.015 0.020 0.025 0.030

time x

£ vs. t, p =  100
16

12

8

4

o L
0.000 0.005 0.010 0.015

timex

Figure 4.13: Particles ejected at 45° to the bottom of a trench with aspect ratio
=  16. Position of particles in £ and £ direction with respect to r,
for three values of /?.
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aspect ratio 2. In the aspect ratio 16 trench, the field gradient is increased so as 

to centre the particle sooner, still exiting without striking the wall.

4.7 Discussion

The simple idea that neutral molecules can be extracted from deeply etched trenches 

via the force exerted by the non-uniform sheath field on their electric dipole moment is 

an attractive one, with genuine application in realistic situations.

A typical etch product when etching SiC>2 in a CF4 plasma is SiF2 [2 2 ], which has 

a permanent dipole moment of 4.1 x 10-30Cm [46]. There are many other particles 

present immediately above the substrate which may or may not have a permanent 

dipole moment. The work presented here deals only with permanent dipole moments, 

but molecules such as SiF4 which are symmetrical and therefore carry no permanent 

dipole moment may become polarised in the strong electric field. This would result in 

an induced dipole moment which would be a function of position.

Moreover, there is the possibility of a further effect if the force on N  particles acting 

under the influence of (4.1) is considered. The force per unit volume on N  such particles 

is ( P 'V ) E  where P  = N p , and where N  is the particle number density. The total fluid 

consists of a particle fluid, in this case the neutral particles under the DEP force and a 

carrier fluid, here the remaining gas without the neutral particles under the DEP force. 

Given that P  = (ep — ec)eoE , where ep is the relative permittivity of the particle fluid 

and ec is the relative permittivity of the carrier fluid, the force per unit volume exerted 

on the fluid in the presence of the non-uniform electric field in a plasma can be written 

as [43]

F to ta l  =  (ep — ^r)^o(-®' ' V)£? =  — (ep ~  er)eoVF7 . (4.28)

The relative permittivity of a plasma is a function of frequency: er =  1 — ojp/[uj((jj — 

iv)] [47] where v is the electron-neutral collision frequency. This raises the possibility 

of manipulating the frequency of the applied AC field in the plasma reactor to change 

the bulk force on the neutral component in the plasma mixture, so changing the neutral 

transport.
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4.8 More Complete Potential Calculation

78

The above calculations depend upon the simplification of the potential to the first 

term in the series derived from Laplace’s equation. This section develops a method to 

numerically solve the DEP equations, starting from an arbitrary potential definition. 

This allows the DEP effect to be examined for a region of interest where the potential 

is defined by a separate routine. Existing potential solving routines can provide input 

which describes any required feature shape.

As a first step, the potential for the previously used trench can be calculated more 

accurately by increasing the number of terms taken from (4.9). A routine can iteratively 

calculate the sum across a suitable grid, to the required accuracy.

Potential Calculation

A program subroutine evaluates equation (4.9) on a square grid for £ =  0 to 1 and 

£ =  0 to ar, where or is the aspect ratio. A fine grid is required to provide the necessary 

resolution at the bottom of the trench, where the particle will be moving slowly, relative 

to its final velocity.

Although in this example the same boundary conditions axe being used as in the 

previous section, it is possible to specify any shaped potential across the grid. This 

allows for any geometrical configuration that might be of interest.

The summing of many terms from equation (4.9) results in a function which ap­

proaches a square wave evaluated from 0 to 7r. In a 32-bit floating point representation 

numbers up to 1038 can be used, a 64-bit double precision representation will allow up to 

10308. Either way an upper limit is present and since the hyperbolic functions sinh(n7r£) 

and cosh(n7r£) axe being evaluated, this limit will be rapidly reached. Because it is not 

feasible to evaluate this function to infinity, a well defined square wave will only be 

approximated. This is illustrated in figure 4.14 which shows cross-sections of potential 

across the trench at different positions in £, for three values of n.

The case n =  1 is equivalent to the analytic approximation, where only the first 

term in the series describing the potential was taken. The case n = 27 approaches 

the originally defined boundary condition where the top of the trench was at a single 

potential. At the top of the trench the effect of taking more terms is clearly evident.
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Figure 4.14: Cross-section of potential across the top of the trench and two points 
in the interior. 1,7 and 27 terms in the series that describes the 
potential axe used. Note that it is only at the top of the trench 
that a high number of terms axe xequired to represent the potential 
accurately.

Moving down the trench, the potential profile rapidly becomes similar for all values of

Potential Field

A subroutine takes the potential and finds the gradient at each point in the grid. This is 

performed by a centre averaging method, finding the gradient at a half grid step before 

and after the point in question and averaging it. In the £ direction this is written:

Ep- =
d0
d£

0i—l _j_ 0i+1 0
d£

0i+l 0 i—1
2d£

d£ /2

(4.29)

The same applies in the £ direction.

The £ and £ components of E  axe now available, but all that is required is the modulus
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field strength |J57| at each point. This is readily obtained:

\e \ = J e * + e *

80

(4.30)

Some care should be taken at the boundaries since at * =  1 and i = imax one of 

the neighbouring values will be absent (from the opposite side in each case). For this 

simulation the boundaries are not really of any concern because if a particle reaches 

a boundary then the simulation ends there, with no need to consider the effect of the
4

boundary on the particle. It is satisfactory to copy the value of £* (in the £ direction) 

into the missing data point.

The number of terms summed in the series defining the potential has a definite effect 

on the resulting field. This can be seen for n =  1 in figure 4.15 and n =  27 in figure 4.16.

DEP force

The DEP force is found from the gradient of \E\, calculated by adopting a similar 

strategy to that of (4.29). As has already been seen above, different choices for n 

provide a change in the resulting force. Figure 4.17 results when n  =  1, figure 4.18 

when n  =  27.

4.8.1 Discussion of Graphical Results

The reader is asked to consider these results for a moment, in order to understand the 

features that arise due to the formulation of this model.

Most importantly, it is observed that the potential and everything that follows from 

it is the same away from the top corners of the trench for both n =  1 and n 1. 

Comparing the contour labels on figures 4.15 and 4.16 shows this most clearly. When 

a particle has reached the upper region of the trench it will have been acted on by 

the DEP force for some time, so a very local large force will not greatly affect the 

outcome. Firstly, because the force is local the particle is not likely to encounter it at 

all. Secondly, if the force is encountered, the integral force over the whole trajectory 

will not be dominated by the last portion.

The reason for the departure from the result seen for n  =  1 as n  becomes 1 can 

be readily explained. In the case n =  27, the potential across the top of the trench
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Figure 4.15: Electric field strength in the whole trench and in selected regions 
when n = l.
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Figure 4.16: Electric field strength in the whole trench and in selected regions 
when n = 27.
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(figure 4.14) is beginning to approach a square wave. This leads to a sharp change 

in potential at the corner between the trench and the opening. A steep gradient in 

potential means a rapidly changing electric field strength around the corner region. 

This accounts for the very high value for the DEP force at each top corner seen in 

figure 4.18. Because the force at the top corners is so large it completely dominates the 

plot showing the whole trench. Although this is the case, away from the top corners 

remains similar to the case that n = 1.

4.8.2 Simulation Results

All that remains is to carry out a series of simulations to ascertain how a particle 

responds to the DEP force that has been evaluated and stored in an array. The same 

series of simulations as with the analytic model has been performed. Because the results 

are very similar, a reduced number are presented here. Particles ejected parallel to the 

trench walls with =  1 and 100 are shown in figures 4.19 and 4.20 respectively.

Particles ejected at 45° for =  1 and 100 are shown in figures 4.21 and 4.22 respec­

tively.

It is shown in figure 4.14 that the difference between the n =  1 and n = 27 case is 

only present at the top of the trench. It follows that the particle trajectory away from 

the trench opening will be the same in each case. Some slight differences can be seen 

between the analytic and numerical results. This is due to the error which is introduced 

when dealing with discretised data. Steps could be taken to reduce this error, such as 

increasing the resolution of the grid which is being used. However, this would be at the 

cost of increased computation time and is not deemed necessary in this instance.

4.9 Change in Electric Field with Aspect Ratio

The results presented for the numerical model of the DEP force axe all for a trench 

of aspect ratio 4. This is because the results shown for variations in aspect ratio via 

the analytic model cover this topic adequately in this context. However, it is worth 

illustrating how the electric field changes with aspect ratio using the numerical model, 

in order to highlight possible areas for future study.

Two aspect ratios axe presented. Figures 4.23 and 4.24 show the whole and regions
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f i =  1. Position of particles in £ and £ directions in respect to r  and
each other. Centring force is seen as in analytic case.
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Figure 4.20: Numerical model, particles ejected perpendicular to trench bottom,
P  =  100. Position of particles in £ and C directions in respect to r
and each other. Centring force is seen as in analytic case.
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Figure 4.21: Numerical model, particles ejected at 45° to trench bottom, f t  =  1.
Position of particles in £ and £ directions in respect to r  and each
other. Centring force is seen as in analytic case.
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Figure 4.22: Numerical model, particles ejected at 45° to trench bottom, f t  =  100.
Position of particles in £ and £ directions in respect to r  and each
other. Centring force is seen as in analytic case.



Chapter 4. Neutral Dynamics: Dielectrophoresis (DEP) 90

Issue A naly tic  M odel N um erical M odel
Computation Time Very quick Slow

Accuracy To first order To high order
Adaptability Not adaptable Adaptable to different 

boundary conditions

Table 4.1: Differences between the analytic and numerical DEP models.

of a trench with aspect ratio 2. Similar plots are given in figures 4.25 and 4.26 for 

aspect ratio 8. These results axe presented with the correct aspect ratio in order to be 

as informative as possible.

Attention is drawn to the similarity in the top region of the trench in both cases. The 

strong electric field around the top corners is also noted. By comparing the values in 

the middle and bottom of the trench between the two aspect ratios, it can be seen that 

the field gradient is much greater in the high aspect ratio case.

The contrast with the analytic result is due to the boundary conditions. In the 

numerical case the top of the trench approaches a step change in potential from the 

walls, causing a strong electric field. In the analytic case there is a smooth transition 

in potential from the walls to the centre at the top of the trench. The electric field is 

correspondingly smooth.

4.10 Comparison of Analytic and Numerical Approaches to 

DEP model

The differences between the two models that have been examined can be clearly iden­

tified. Table 4.1 presents relative merits of an analytic or numerical approach.

For a simulation using the boundary condition presented on page 61 and implemented 

in the preceding simulations, the analytic method provides the most satisfactory route 

to a solution. This is because of the nature of the problem to which it is being applied. 

One factor dominates in why the analytic solution is so appropriate:

The area of interest is the interior of a high aspect ratio trench.

This was made clear in (4.10) while justifying proceeding with an expansion of only the 

first order at the beginning of this chapter.
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Figure 4.23: Electric field strength in whole trench when aspect ratio = 2. The 
field is concentrated at the top of the trench, particularly around 
the sharp corner features.
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Figure 4.24: Electric field strength in trench when aspect ratio = 2. Selected 
regions of the trench are shown to expose field variations that cannot 
be seen in the plot of the whole trench. The reason for the centring 
force can be seen at the bottom of the trench.
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Figure 4.25: Electric field strength in whole trench when aspect ratio = 8. Similar 
to previous case, but the electric field is concentrated in the upper 
portion of the trench.
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The development of a numerical method which can be given any potential as a starting 

point provides a useful tool for two reasons:

1. Non-trivial boundary conditions may be implemented.

2. Study of small scale features not represented in the analytic formulation can be 

performed.

The second point would, for example, allow the top corner features to be examined, 

because at this point particles are strongly attracted back to the substrate. The impli­

cations of this have not been addressed here, but a mechanism is now in place to allow 

this to be considered.
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The path of ions traversing the sheath region of an rf plasma is modelled using the 

Child-Langmuir analytic approximation to the full sheath equation. The collective 

characteristics of many ions is obtained by Monte Carlo simulation, revealing structure 

in the relationship between many parameters. The structure of the relationship between 

the initial ion energy, the phase at which an ion enters the sheath region and the ion 

energy on impact with a substrate has been extensively explored. By performing a 

systematic calculation of ion impact energy versus initial energy and phase, a distinctive 

spiral shape has been observed. This provides additional insight into the mechanism 

that underlies the bimodal ion energy distributions that are widely reported in plasma 

processing systems.

A further step has been taken from this observation, to see if it can be used to provide 

an analytic method for constructing ion energy distributions. A spiral shape that varies 

continuously across phase and initial ion energy space has been created, replicating that 

seen in Monte Carlo simulation. By sampling the result across the appropriate initial 

conditions, an ion energy distribution can be generated.

An investigation of the shortcomings of the Child-Langmuir sheath representation 

has been made. In the Child-Langmuir equation, electrons are dismissed from the full 

non-linear equation order to permit an analytic solution. As a result, the assumption 

that electrons have a negligible effect is forced upon this representation. A numerical 

solution to the full sheath equation has been implemented, reintroducing electrons into 

the area where the sheath region meets the plasma. It has been shown that this causes 

the ions to follow a significantly different path through the sheath region, spending 

more time being acted on by the oscillating sheath. When an ion first enters the sheath 

region, a smaller force is experienced due to the reduction in electric field because of the 

presence of electrons. These effects propagate through to the ion energy distribution, 

reducing the low energy tail and affecting the attainable energy range.

Effects due to the high electric fields that are present in etched substrate features have 

been considered. Particles subject to an electric dipole moment are attracted along 

lines of increasing electric field strength under a mechanism called dielectrophoresis. 

An assessment of the significance of this force on neutral transport in the region of the 

substrate has been made. It is found that particles with a typical dielectric moment 

are accelerated towards the central region of a trench and accelerated out of the trench
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in a fraction of time that it would take without a force due to dielectrophoresis. Two 

methods have been implemented, one analytic and one numerical. An analytic approach 

is found to be favourable when looking at the overall effect in a rectangular trench. The 

numerical method needs to be invoked when looking at features towards the top of the 

trench or if considering a non-rectangular geometry.

5.2 Future Work

5.2.1 Ion Dynamics

1. Collisional effects have not been looked at in the work presented here. If the mean 

free path of an ion is less than the characteristic dimension of the sheath, then 

it has to be considered to be collisional. This means that the energy conserva­

tion equation used (page 12) no longer applies, this term has to be modified to 

incorporate collisional behaviour. Collisions will have a tendency to reduce the 

impact ion energy through losses that occur during a collision. Whether this de­

stroys the phase relationship or not would be useful to find out. Perhaps noise 

would be introduced into the relationship, or a more complicated structure could 

emerge. It is likely that the number of collisions will have a strong influence on 

these questions.

2. Deriving ion energy distributions from an analytic spiral description is presently 

disconnected from real parameters. It seems reasonable that if the sheath condi­

tions are characterised appropriately then real parameters can be formulated for 

the model. It will then be possible to directly produce ion energy distributions 

for real systems. The key to this lies in defining the function used to control the 

shape across the spiral. If this was achieved it would provide a very efficient model 

of IED’s.

5.2.2 Dielectrophoresis

1. The attraction of particles to the corner features of trenches has implications for 

the transport of neutral particles. Looking at a substrate as a whole, each feature 

on the surface will deform the electric field and attract neutral particles. The 

increased concentration of particles could lead to formation of dust and alter the 

behaviour the system in other ways.
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2. Using the numerical model of dielectrophoresis, a much larger region of a substrate 

can be examined. This will allow the inclusion of the sheath region and a variety 

of different shaped features.

3. The flux of particles in each direction should be considered to see if collisional 

effects are significant. If collisions are found to occur then this raises the question 

of whether ejected neutral particles cause ionisation of fast moving ions in the 

sheath region.

4. The work presented on dielectrophoresis was limited to molecules that exhibit a 

permanent dipole moment. A symmetrical molecule such as CF4 has no perma­

nent electric dipole moment, but if placed in a strong electric field, an electric 

dipole moment may be induced. An induced dipole will not be as significant as 

a permanent dipole, but considering the magnitude of the effect that has been 

found, a molecule with a reduced dipole moment is likely to be of interest.

5. As seen in the work on ion dynamics, the sheath potential is time dependent. 

Time dependence should be incorporated into this model to give a more realistic 

representation of the system.

5.3 Speculation

5.3.1 General Application of Spiral Observation

Spiral work could be applied to any situation in which a charged particle interacts with 

an oscillating field.

5.3.2 Non-Sinusoidal Driving Voltages

Some investigations have been made into the effect of driving the electrodes of a reactor 

with a frequency-modulated signal rather than a sinusoid. In practice this would prob­

ably be achieved by separate rf biasing of the substrate [48]. By changing the shape of 

the oscillating sheath it appears possible to manipulate ion energy distributions, which 

is in line with results showing the importance of phase in the final ion energy. In ef­

fect it may be possible to disguise the influence of phase by jumbling the initial phase 

encounters of ions.
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