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Abstract

In 2000, the final year of LEP running, the LEP accelerator produced its high-
est ever collision energies with centre of mass energies reaching 210 GeV. In total
217 pb~! of integrated luminosity were collected by the ALEPH detector. The
collected data have been analysed using cuts based analyses for evidence of Stan-
dard Model Higgs boson production. An excess of high mass candidate events
is observed, corresponding to a significance of 3.1c above the standard model
background expectation, with much of this excess originating in the four jets final
state. The production of a Higgs boson with a mass of ~ 115 GeV /c” is favoured
if the observed excess is attributed to the production of a Standard Model Higgs

boson.
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Chapter 1

Introduction

The nature of the universe has intrigued mankind for many centuries. In ancient
Greece natural philosophers such as Democritus laid the foundations of modern
particle physics with their postulations that the universe is simply a void filled
with an almost infinite number of invisible particles [1]. These particles were
called "atoms", originating from the Greek word meaning indivisible. Thus be-
gan our search for the fundamental building blocks of the universe. Today we
find ourselves much progressed with the observation of atomic phenomena and
the discovery of quantum mechanics leading to new and unexpected heights.
However many questions remained to be answered and our present models of
the universe are far from completion. This thesis describes the search for one of
the fundamental particles which we currently believe to make up our universe,
the Higgs boson. The observation of the Higgs boson would further bind our
observations to the theoretical model currently held to describe our universe and
represent a major triumph for modern particle physics.

This thesis presents an overview of modern particle physics and the Higgs
boson in chapter 2 while a description of the apparatus used to search for its
existence is given in chapter 3. Chapter 4 describes the four jets cuts based anal-
ysis, produced prior to the authors work, and chapter 5 describes the application
of this analysis by the author to the 2000 data set complete with a treatment of
the statistical uncertainties associated with the analysis. Chapter 6 provides a

summary of the observed results from the described analysis and the combined




Introduction 2

Higgs boson searches results at ALEPH when analyses other than the authors are
combined.

Chapter 7 Presents a detailed description of the author’s work on the devel-
opment of a cleaning algorithm to reduce beam induced noise.

Finally a summary with outlook for future Higgs boson searches is presented
in chapter 8.

There also exist an extensive set of appendices to provide further informa-
tion on specific aspects of the presented analysis and other relevant information
which is not extensively covered in the main body of the thesis. In particular the

author’s work on jet pairing studies is presented in appendix A.
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Chapter 2

Theoretical overview

...you can hardly ever simplify and unify something just because
somebody wants you to.
- The Catcher in the Rye, J.D Salinger

2.1 Introduction

This chapter presents a theoretical overview of the Standard Model (SM), the
Higgs mechanism therein and a phenomenological discussion of the Higgs boson
and backgrounds relevant to searches at LEP. More detailed information about
the SM and underlying Quantum Field Theory may be found in references [2—4]
while the physics of the Higgs boson is discussed in depth in [5].

2.2 The Standard Model

The behaviour of the fundamental particles and their interactions is described in
terms of Quantum Field Theory (QFT). The SM, developed by Glashow [6], Wein-
berg [7] and Salam [8] is based on QFT and describes the interaction of fermionic
fields representing quarks and leptons via the exchange of gauge bosons. Quarks
and leptons are thought to be the fundamental constituents of matter and are
grouped together into three generations or families. The properties of the known

quarks and leptons are summarised in table 2.1.
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The interactions of the fermions is governed by three fundamental forces known
as the strong, weak and electromagnetic interactions!. Quarks are observed to
interact through all three forces while the leptons interact through the electro-

magnetic and weak force for the charged leptons and the weak force only for the

neutrinos.
| Leptons | Quarks |
Flavour | Q m; Flavour [ Q | my (bare)
(9e) | (MeV/c?) (3e) | (GeV/c?)
e -1 0.510999 || down |-1/3 ~0.006
Ve 0 | <0.000003 || up 2/3 ~0.003
U -1 | 105.65836 | strange | -1/3 ~0.13
vy 0| <0.19 charm | 2/3 ~1.3
T -1 1777 bottom | -1/3 4
Vr 0| <182 top 2/3 174

Table 2.1: The Standard Model fermions [9].

Each interaction has an associated set of bosonic fields which represent the
fundamental force-carrying particles. The properties of these force-carrying bosons
are summarised in table 2.2. Original successes in QFT came through the devel-
opment of Quantum Electro Dynamics (QED). QED describes the interactions of
charged particles via the exchange of gauge bosons, in this case the photon, and
has been successfully tested within experiments to very high precision.

The development of the weak force as a Quantum Field Theory and its unifi-
cation with the electromagnetic force to form the electroweak force proved to be
a great step forward in the construction of the SM.

Finally the introduction of the colour force mediated by gluons in the form
of Quantum Chromo Dynamics (QCD) completes the SM as it is implemented
today.

2.2.1 Fundamental particles and gauge symmetries

The identification of conserved quantities in the interactions of fundamental par-

ticles and the association of these quantities with space-time or internal symme-

!The fourth force, gravity, has yet to be satisfactorily described at the quantum level and is
omitted from the discussion presented here.
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| Bosons |
Interaction Q M
(4e) | (GeV/c?)
v | Electro(weak) 0 0
Z | (Electro)weak 0 91.19
W | (Electro)weak | +1 80.4
g Strong 0 0

Table 2.2: The Standard Model Interactions [9].

tries forms the basis of the SM.

When considering a space-time independent transformation of a fermion field

P — % (2.1)

where « is a real constant, it is found that the Lagrangian for the free propagation

of a field with mass m,

L =19 (iv*e, —m) y, (22)

is invariant under such a transform by considering that
a"l[J — eiaa’;lp, (2'3)

and

§ - e, @4
Such an invariance is known as a “global gauge” invariance. Noether’s theo-
rem [10] implies the existence of a conserved current for every continuous sym-
metry of a Lagrangian. Following from this the fundamental particles are said

to possess “conserved gauge charges”. By introducing locality and allowing & to

vary from space-time point to space-time point, that is « — a(x), we find that

P(x) — €*Oy(x), (2.5)

where «a(x) is now dependent on space-time in a completely arbitrary manner.
This type of transformation is known as a “local gauge” transform. The La-

grangian

L =P (iv’o, —m) ¢, (2.6)
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is however not invariant under such a transform. Considering ¢ — e~*(*)¢ the
last term of the Lagrangian is indeed invariant yet the invariance of the derivative

term does not follow since
0P — ei“(")aytp + e () paa, (2.7)

with the second term breaking the invariance of the Lagrangian.
The gauge invariance of the Lagrangian may be recovered by replacing the

derivative with the covariant derivative where
Dy — 2D, (2.8)

To form a covariant derivative such that the unwanted terms from the local gauge
transform are cancelled, and the gauge symmetry revived, we must introduce a
vector field A, with the appropriate transformation properties. The covariant

derivative D, is thus constructed as
D, = 9, — ieA, (2.9)
where the vector field A, transforms as
Ay — Ay + %aya. (2.10)

The invariance of the Lagrangian is now satisfied since replacing d,, with D, gives

L = ipy*Dyyp — mopy
=P (iv"0y —m) ¥ + ey p A,

Thus to maintain the gauge invariance of the system we have been forced to in-

2.11)

troduce a vector field A, called a gauge field, which couples to the fermion fields
.

The interpretation of this new field as a physical particle requires the ad-
dition of the corresponding kinetic energy term to the Lagrangian. To remain
gauge invariant this kinematic term must be formed from the gauge invariant

field strength tensor

F’n/ = ayAy - aVAF (2.12)
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This leads to the Lagrangian
- - 1
L =p(iry'oy —m)p +epy* Ay — ZFWF#W (2.13)

This Lagrangian is that of Quantum Electro Dynamics (QED) in which the
electrically charged fermions interact via the exchange of photons.

In summary: By imposing the requirement of local gauge invariance on the
free fermion field Lagrangian we are led to the introduction of a vector field and
finally to the theory of QED.

Note that the introduction of a mass term for the gauge boson (3mA,A¥) vi-
olates the gauge invariance which we have sought to achieve. Thus the gauge

particle, in this case the photon, must remain massless.

2.2.2 The Higgs Mechanism

Quantum Field Theories based upon local gauge invariance are desirable not only
due to their aesthetic beauty but also since they present us with renormalisable
theories which avoid infinite divergences and are thus predictive. The flip side of
the coin however, is their lack of accommodation for massive gauge bosons. The
explicit introduction of mass terms for gauge boson fields not only destroys the
gauge invariance of the Lagrangian, as noted above, but also leads to the loss of
renormalisability.

The problem we now face is how to reconcile the requirement of gauge invari-
ance, which requires massless gauge bosons, with the observations of massive
weak gauge bosons, i.e. the W* and Z°.

The weak gauge bosons must be massive since they are observed to operate
on extremely short distance scales and their masses have indeed been measured
to be of the order 80-90 GeV/ ¢ [9].

A solution to this apparent dichotomy is found in the Higgs Mechanism [11-
14]. The Higgs mechanism provides a way to generate masses for the gauge
bosons while retaining the local gauge invariance which is central to the theory.

The Higgs mechanism generates mass for the gauge bosons by means of spon-
taneous symmetry breaking. A given symmetry is said to be spontaneously bro-

ken if the vacuum does not possess the same symmetry as the Lagrangian. To
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(a) L V@) (b)

V(o)

Im(d) Re(9)
Im(¢) Re(¢)

Figure 2.1: The potential V(¢) = y2¢+¢ + A(¢t¢)? for (a) 42 > 0 and (b)
u* <0.

illustrate this we consider the case of a U(1) locally gauge invariant Lagrangian

describing the interaction of a scalar field ¢(x) with a gauge field A,(x)

£ = (Dup)! (Dup) ~ V($) — gFwF" 214)

where ¢ = %(4}1 +i¢p), D¥ = o + igA¥ and the scalar potential V(¢) is de-
scribed by V(¢) = u2¢t¢ + A(¢t¢)? with A > 0.

Two possible solutions exist to the form of the scalar potential V(¢). Choosing
#? > 0 gives a minimum at ¢; = ¢ = 0, illustrated in figure 2.1a, and returns the
original QED Lagrangian plus a ¢* self-interaction term.

The choice of 42 < 0, see figure 2.1b, however defines a ring of minima situ-
ated at

2
o = 23 +gi= S =2 215)
The symmetry is broken by a specific choice of minimum (eg, ¢1 = %, ¢ =
0). Thus the vacuum does not exhibit the gauge invariance which the Lagrangian
possesses.
By translating the field ¢ to a true ground state and expanding about the vac-

uum in terms of the fields 7, § according to

¢(x) = \/g[v +1(x) +i8(x)] (2.16)
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the Lagrangian becomes

1 1 1
L = 5(6,5)2 + 5(8,,77)2 —*An? + EezvayA"

1
—evA,0¥E — ZFWF”" + Interaction terms...

2.17)

The particle spectrum belonging to the Lagrangian £’ appears to be composed
of a massless Goldstone boson? (£), a massive scalar (1) and the long sought-after

massive vector boson A, with the following mass spectrum

m§ = 0,
my = V202, (2.18)
maq = ev.

However, although we appear to have generated a mass for the gauge boson,
we now encounter the problem of the occurrence of a massless Goldstone boson.
The problem lies in the interpretation of the Lagrangian £'. By producing a mas-
sive vector boson, Ay, we have raised the number of degrees of freedom by one.

Now consider the alternate substitution of a set of real fields h, § and A u Where
¢ — \/% (v + h(x))e 0/ (2.19)
and
A, - A, + la 0 (2.20)
[ I ev K :

With ¢ chosen such that h is real we find

L' = %(a,,h)2 — Av*h? + %ezva’% — Auh® — ;—:/\h"
; , (2.21)
+ 5 ALl + ve? AGh — 1Fw "

In this interpretation the Goldstone boson does not appear. The Lagrangian
describes two interacting massive particles, a vector boson (Ap) and a scalar h,

which is known as the Higgs particle.

2Goldstone’s theorem [15,16] states that the spontaneous breaking of a continuous global sym-
metry is always accompanied by one or more massless scalar particles which are thus referred to
as “Goldstone bosons”.
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2.2.3 The electroweak interaction

The electroweak model of Glashow, Salam and Weinberg [6-8]is based on the
symmetry group SU(2); ® U(1)y. Following from the case of electromagnetism

in which
—iej;'"A" = —ie(q_z'nygb)A" (2.22)

where Q is the electric charge operator and j;" represents the conserved electro-
magnetic current, we find that the electroweak process requires two basic inter-
actions, firstly an iso-triplet of weak currents ], coupled to three vector bosons
WH

—8JuWF = —igXLr TW¥xL (2:23)
and secondly a weak hypercharge current coupled to a fourth vector boson B¥

—ig’ - Y

VB = —g Py (224)

The operators T and Y are the generators of the SU(2); and U(1)y groups of
gauge transforms respectively, while g and g’ represent the two coupling con-
stants. |

Taken together the transformations of the left handed and right handed com-

ponents of i are

XL — X,L — eia(x)T+iﬁ(x)YXL (225)

and
YR — Pk = eiﬁ(x)Y¢R (2.26)

where left handed fermions form isospin doublets x; and right handed fermions
form iso-singlets yr.

For example, in the first generation we have

L= ( ve ) with T=1,Y = -1 (2.27)
e L 2
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yr=ez with T=0,Y=-2 (2.28)

XL = ( Z > ,  WYr=ugordgr (2.29)
L

Imposing SU(2);, ® U(1)y invariance results in a Lagrangian of the form

- , 1 -1
L1 = X1r*[ioy — §5TWy — 8/(—2'—)B;¢]XL

+ erY*[idy — §'(—1)Byler (2.30)
1 1
- ZWFVWPW - ZBVVB’“/

where 7 are the Pauli spin matrices and we have inserted the hypercharge
values Y} =-1, Yg=-2. £1 embodies both the weak isospin and hypercharge inter-
actions. The final two terms represent the kinematic energy and self coupling of
the W), fields and the kinetic energy of the B, field where

B’u/ = aVBU - ayBV (2.31)
and
Wy‘y = aywl/ - ayWy - ngXanu (2.32)

with the last term in 2.32 arrises due to the non-abelian nature of the W field.
The gauge symmetry of £, is broken if we attempt to directly introduce a mass
term for the boson or the fermion fields. To generate mass within the electroweak
sector we again turn to the Higgs mechanism. The Higgs mechanism is here
formulated such that the W* and Z° bosons become massive while the photon
remains massless. To achieve this, four real scalar fields ¢; are introduced by

adding the gauge invariant Lagrangian for these fields
. Y
L2 = (0 — gTWu — &' 5Bu)9l* — V(9) (233)

to the electroweak Lagrangian L1, where the fields ¢ belong to a SU(2). ®
U(1)y multiplet and |x|2 = x*tx.
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The minimal choice is to arrange the four fields in an isospin doublet with

weak hypercharge Y=+1:

_ ¢+>:L(4’1+i4’2) 2.34
¢ ( ¢° V2 \ $3 +igs (234
The Higgs potential is chosen such that

V(g) = 12¢'o + A(pT9)> (2.35)

where, in the case of 4> < 0 and A > 0, this has a minimum at a finite value of
|¢| defined by

2 _ =¥
9l = 5= #0 (2.36)

The ground state we have chosen is degenerate and has no preferred direction
in weak isospin space as a consequence of the SU(2);, symmetry. We are thus free
to chose the value of the phase ¢.

By choosing

b= ( ) 237)

we leave the U(1).r, symmetry unbroken. That is Q¢o = 0 such that

Po — ¢p = *P%q = ¢y (2.38)

for any value of a(x).

The vacuum remains invariant under a U(1)ey, transform and the gauge boson
associated with the electromagnetic force, the photon, remains massless. Now by
expanding ¢(x) about the chosen vacuum we find that ¢ may be expressed in
terms of the one remaining scalar field, which is here denoted as the Higgs field
h:

1 0
4)(X) = '\/—5 ( v+h(x) ) (239)

The massive gauge bosons are identified by substituting the vacuum expecta-

tion value ¢ for ¢(x) into the Lagrangian £, giving:

1 1 2 _oot\ [ WK
(308)2 Wi W +§02(w3,3,4)(_5; g g%’zg )( B ) (2.40)
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where W* = 71—§(W1 F+ W2). The comparison of the first term with the ex-

pected form of a mass term for a charged boson, m%, W+W~, leads to the identifi-
cation of the W boson mass as
1
my = 508 (2.41)

The second term is off diagonal in the (W}?, B,) basis. Diagonalisation of the

2x2 mass matrix yields
2 1 2
0 (g'W3 +gByu) + =0 (W2 - ¢'By) (2.42)
These two orthogonal terms represent the physical fields A, and Z, with their

respective masses m,4 and mz given by comparison of the expected mass terms

for neutral vector bosons %miAz and %m%Zz
3
_ 8'Wi + 8By

SRSyl
_ gWﬁ —&'By v S s
Wi T aVE e 240

This result may be recast in terms of 6 by considering
/

A=0, (2.43)

tan 6y = %. (2.45)
Thus we find
Ay = cosbw By, + sin()wWﬁ’ (2.46)
and
Zy = —sinfyBy + cosOw Wy (2.47)
and we have
:nn—‘;] = cosfw (2.48)

The inequality mz # my originates from the mixing between the Wﬁ and B,
fields. The application of the Higgs mechanism to the electroweak sector of the
Standard Model has led to the generation of a massless photon, A, and massive
Z, and W= fields with mz > my. The relationship between mz and my is a
prediction of the Standard Model and the Higgs sector as we have described it.
Tests of this relationship form an indirect probe into the exact nature of the Higgs

mechanism which is at work in the electroweak sector.




Theoretical overview 14

2.24 The Generation of Fermion Masses

It was previously noted that the direct introduction of a fermion mass term,
—mipy, into the electroweak Lagrangian (2.30) leads to the loss of gauge invari-
ance. One of the most attractive features of the Higgs mechanism, as we have
applied it, is that the same Higgs doublet which generates mass for the W and Z
bosons is also sufficient to give mass to the leptons and quarks.

As an example we will consider the case of the electron. To generate the elec-
tron mass the following SU(2); ® U(1)y gauge invariant term is added to the

Lagrangian,
_ 7 5 ¢+ ~ (1~ 0 Ve
L3 = -G, |(78)L cpo er +€r(¢~, ¢Y) . , (2.49)
L

here the Higgs doublet is found to have the exact SU(2);, ® U(1)y quantum
numbers to couple to é7eg.

Once spontaneous symmetry breaking takes place we find

1 0
‘P(x) - ﬁ ( v+h(x) ) (2-50)
and, on substituting for ¢ in equation (2.49), we obtain
L ——&v(e’e + €re )——G—ev(e’e + €rep)h (2.51)
3 /o \CLER T EREL /3 LER + EREL .
now choosing m, such that
Gev
Me = —= 2.52
e \/2 ( )
the Lagrangian may be recast in the form
L3 = —meee — %éeh. (2.53)

Here G, is arbitrary and so the mass of the electron is not predicted in the
model we present. In addition to the desired mass term the Lagrangian includes
an interaction term which couples the Higgs to the electron. The small size of this
coupling term, m./v = m./246 GeV, however means that any effects produced
by this term are very small and as yet no detectable effect has been observed in

electroweak interactions.
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We now turn our attention to the generation of mass for the quarks. Although
the quark masses are generated in the same manner as the lepton masses the
generation of mass for the upper member of a quark doublet requires the con-
struction of a new Higgs doublet from ¢.

The new Higgs doublet is

e = iTP* = ( ;‘?ﬁo )M% ( ”+é‘(x) ) (2.54)

where ¢, transforms identically to ¢ but has the opposite weak hypercharge
(ie, ¢ = Y=1, ¢ = Y=-1).

This new Higgs doublet may then be used to construct a further gauge invari-

ant term which is added to the Lagrangian,

L4 =—Gy(u,d)L ( o7 ) dr — Gu(,d)L ( ¢ ) UR

¢° ¢~ (2.55)
+ hermitian conjugate...
L4 = —madd — myau — Z4ddh - Zhauh (2.56)

The above Lagrangian is formulated in terms of the (1, d), quark doublet. The
weak interaction however operates on (u,d'), (¢,s') and (¢, V'), doublets where
the primed states are linear combinations of the flavour eigenstates. Once this is
taken into account the Lagrangian becomes

. _ + . - _ 40
Ly=~G](m;,d))1L ( (f;)o ) dir — Gil (i, d})L ( 4:’3 ) UiR

+ hermitian conjugate...

(2.57)

where i,j = 1,..N and N is the number of quark doublets. The Lagrangian

may be written in the diagonal form,
i 7 h i h
Lg=-mydid; [ 1+ o) my,iu; {1+ o (2.58)

again we find that the mass terms depend upon the arbitrary parameter G, 4
and as such the quark masses remain free parameters in the SM. One desirable
outcome of the Lagrangian in this form is that the Higgs coupling is flavour con-

serving.
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The minimal choice of a single Higgs doublet, as applied above, is sufficient
to generate the masses of both the gauge bosons and the fermions. However the
fermion masses are not predicted by the theory and remain as free parameters
which must be input into the SM.

The Higgs coupling to fermions is proportional to their mass and provides
a testable prediction of the Higgs mechanism as applied here. The mass of the
Higgs boson itself is also a free parameter which may be searched for experimen-
tally.

From the effective potential

V(p) =p2ptp+A(pte) (2.59)
it is found that
m2 = 2v°A (2.60)

and since v is fixed, larger values of m), will lead to correspondingly large
values of A, thus increasing the self coupling term and eventually leading to the
failure of perturbative QFT.

2.3 The MSSM and associated Higgs sector

In addition to the SM interpretation of the Higgs sector, as discussed above, the
Higgs may also be defined in the context of the Minimal Supersymmetric Model
(MSSM) [17]. Supersymmetry is an attractive extension to the SM which has been
extensively studied theoretically although no experimental evidence has yet been
forthcoming. In supersymmetric models each matter fermion has a scalar “susy”
partner (e.g. quark < squark) and each gauge boson has a fermionic “susy” part-
ner (e.g. photon < photino). Supersymmetry cannot be an exact symmetry since
it predicts that the supersymmetric particles have the same mass as their SM part-
ners. The lack of observation of any such supersymmetric particles means that if
supersymmetry exists it must be a broken symmetry. The MSSM interpretation
of supersymmetry presents the minimal form of the supersymmetric extension to

the SM. In the MSSM the Higgs sector requires two Higgs doublets to give mass
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to the up-type and down-type quarks separately [5]. In this model the Higgs sec-
tor thus consists of five physical states with three being neutral, two CP-even (h
and H) and one CP-odd (A), and a pair of charged bosons (H).

The form of the Higgs potential is

V(®1,®8) =A1 (8381 — v2)2 4 Ap(838, — 03)2
+A3[((21%1 — v}) + (8382 — 03)]
+Aq[(2]91)(858;) — (2]92)(8531)] (2.61)
+As5[Re(218,) — v102)?
+Ag[Im(818,))2.

where A; are real parameters and ¢; and ®, denote two complex fields

(4]
<9 >= (:’}J , Y=-1

<@2>=($§>, Y=1,

that each form a doublet under SU(2);, with opposite hypercharge.

(2.62)

If the parameters A; are not negative then the following minima for the poten-

0 0
<® >= (01) , < P >= (Uz) , (2.63)

where v1 and v, are the vacuum expectation values® of the Higgs fields.

tials are found

Once the Goldstone bosons have been gauged away the five physical states
arise. The MSSM Higgs sector is described by six independent parameters: The
four Higgs boson masses, the ratio of vacuum expectation values v, /v; = tan
and «, the mixing angle in the CP-even sector, described below.

The physical Higgs states in the charged sector are
H* = ¢ sin B + &5 cos B (2.64)

with a mass m2;, = A4(v? +v3).

In the CP-odd sector we have one boson A,

A = V2(—Im(%9) sin B + Im(®3) cos B) (2.65)

3The vacuum expectation values v; and v; are related to the W mass via m%,v = gz(v§ + v%) /2.




Theoretical overview 18

with a mass m3 = Ag(v? + v3)
In the CP-even sector two physical Higgs scalars mix through the following mass-

squared matrix

_ (403 (M +A3) + 0275 (473 + As)v102
M = ( (4A3 + As)v102 4v%(A2 +A3) + U%AS , (2.66)

with the physical mass eigenstates

H® =v2[(Re(#?) — v1) cosa + (Re(?9) — v;) sin ],

(2.67)
h® =v2[—(Re(#)) — v1) sina + (Re(3) — v2) cos a]
and the corresponding masses
1
M0 po = E[Mn + Mp + \/ (M11 — Mp2)? + 4M3,]. (2.68)
The sixth free parameter, the mixing angle of the CP-even fields « is obtained
from
sin(2a) = 2Ma2 ,
V(M1 — M) + 4M3,
Mar — M (2.69)
cos(2a) = 11 2

\/(Mu — Mp)? +4M3,

The couplings of the Higgs bosons to gauge bosons and fermions determine
production cross sections as well as decay rates.
The production cross sections for the processes ete™ — Zh and ete™ — hA
are
o(ete™ — hZ) =sin*(B — a)osm

B (2.70)
c(ete™ — hA) =cos?(B — a)Aosp.

The factor A is defined as /\3A/}f / [Alz/hz (12m2 /s + Azy)] with the 2-particle phase
space factor Ajj = (1 — (m; +m;)?/s)(1 — (m; — m;)%/s). ogm is the cross section

for the hZ process within the minimal Standard Model.

2.4 Higgs boson phenomenology

This section presents the phenomenological issues relevant to the Higgs boson

searches at LEP2. The interaction of the Higgs boson with the other particles
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of the Standard Model may be described fully as a function of the Higgs boson
mass. Therefore, for a given Higgs boson mass, all relevant processes(e.g. , pro-
duction cross sections and decay branching ratios) of the Higgs boson may be
determined. The results of these calculations may be used to provide a frame-
work for developing direct Higgs boson searches and interpreting the results of

such searches.

24.1 Constraints on the Higgs boson mass

The Higgs boson mass, although a free parameter in the SM, can be constrained
by both theoretical and experimental methods. Theoretical arguments based on
the self consistency of the Standard Model may be used to derive upper bounds
on the mass of the Higgs boson while experimental results from electroweak data
and direct searches may be used to set indirect and direct mass bounds respec-
tively.

Theoretical arguments based on unitarity may be used to place upper bounds
on the mass of the Higgs boson. The absence of a fundamental scalar field, the
Higgs field, causes the amplitude for longitudinally polarised WW scattering to
diverge quadratically in energy when calculated perturbatively [18]. This ulti-
mately leads to the violation of unitarity. The inclusion of the Higgs boson in the
theory suppresses this behaviour and unitarity remains unviolated provided that
the Higgs boson has a mass less than ~ 1 TeV /c?.

The Higgs boson mass may also be constrained by precision measurements
of electroweak data [19]. Electroweak processes are sensitive to the mass of the
Higgs boson due to its contribution to radiative corrections through loop dia-
grams. The mass of the Higgs boson may be constrained by comparing the ex-
perimental measurements from electroweak data to the predictions given for var-
ious Higgs boson masses. Similar methods were successfully used to constrain
the mass of the top quark before its discovery in 1995. Precision electroweak mea-
surements have been combined by the LEP Electroweak Working Group with a
global fit to these data being performed as a function of the Higgs boson mass.
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The results to the fit, expressed in the form 4%2 = —Xmin' are shown in fig-
ure 2.2 [19,20]. The resulting fit determines the mass of the Higgs boson to be in
the range [19]

98+gGeV/c2 (2.71)

while masses above 212 GeV/¢ are excluded at the 95% confidence level.

6
theory uncertainty
— 0.02761 £0.00036
- 0.02738+0.00020
4
M
<
2
Excluded \ £/  Preliminary
0
10
Figure 2.2: The distribution of Ax2 = —X2un for a global fit to electroweak

data as a function of m/. The shaded bands around the curve indicates the
theoretical uncertainty while the solid yellow region represents the masses
excluded at 95% confidence level by direct searches.

Direct searches for the Higgs boson by the four experiments at the LEP collider
provide stringent lower bounds on the mass of the Higgs boson. The combination

of the data from all four LEP experiments with centre of mass energies up to
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Figure 2.3: Higgs boson production mechanisms at LEP 2.(a) Higgsstrahlung,
(b) WHW~ fusion and (c) ZZ fusion.

202 GeV by the LEP Higgs Working Group leads to an exclusion of a Higgs boson
with mass below 107.9 GeV/ ¢? at the 95% confidence level [21].

2.4.2 Higgs boson production at LEP

The dominant production mechanisms for the Higgs boson at the LEP accelera-
tor are the so called Higgsstrahlung and boson-fusion processes, figure 2.3. Di-
rect Higgs production via ete™ — h is suppressed due to the very small electron
mass and thus small eeh coupling term. The Higgsstrahlung process in which the
Higgs boson is radiated from a virtual Z with the Z returning to a value close to its
mass shell provides the majority of the Higgs production cross section. However
the cross section for the Higgsstrahlung process falls sharply as the hypothetical
Higgs mass reaches and exceeds threshold, m;, > /s — mz, in which case the fi-
nal state Z boson is required to be off shell. In the region of kinematic threshold
the WW and ZZ fusion processes, figure 2.3, contribute a much more significant
fraction of the total Higgs boson production cross section [22]. The Higgs pro-
duction cross section for /s=206 GeV is shown in figure 2.4. A centre of mass
energy of 206 GeV represents the luminosity-weighted LEP average for the data
taken in 2000 and corresponds to a kinematic threshold for the Higgs mass of
114.8 GeV/c>.
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< s boson production cross section
——————— Vs = 206 GeV j

Higgsstrahlung, hZ

Figure 2.4: The Higgs production cross section for the three possible pro-

duction mechanisms shown in figure 2.3 both individually and as a com-

bined total.The cross sections are calculated at y/s = 206 GeV using the
HZHAO3 [23] [24] generator.

22
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2.4.3 Higgs boson decay and detection

The detection of the Higgs boson at LEP is directly related to the decay of the
Higgs system and signatures from this decay.

The Higgs decay width is predicted to be very narrow, ~3 MeV, for a Higgs
boson of mass ~ 114 GeV/c? [5]. The width of the Higgs boson is, as such, too
small to be resolved experimentally. The main decay modes of the Higgs in the

mass ranges relevant to LEP2 are shown in table 2.3.

Decay Mode | Branching
Mode Fraction (%)

bb 74.78
Tt~ 7.33
WW 6.90

Table 2.3: The main decay modes of the Higgs boson of mass 114 GeV /c?.

The partial decay width of the Higgs to fermions is given by [5]

N,g?m?
o (o) 2.72)
w

I'(h— ff) =

where N, = 1 for leptons and 3 for quarks and p* = 1 —4m%/m}. Higher
order QCD corrections produce the branching ratios shown in table 2.3. The par-
tial width is proportional to the square of the fermion mass when my, >> my and
so in the LEP 2 region we expect the Higgs boson to decay most strongly to the
heaviest kinematically available fermion, in this case the b quark.

The partial width of the decay to gauge bosons is suppressed for Higgs bo-
son masses in the range my, < 2my and as such the fermionic decay h — bb
dominates.

The Higgs branching ratios for each final state as a function of Higgs mass are
shown in figure 2.5.

The bb decay channel is clearly dominant while 7+t~ and WW final states
contribute roughly equal amounts for a Higgs boson of mass ~ 114 GeV /c?.

The Higgs boson search strategy at LEP is to focus on distinctive final state
topologies which may be defined by considering the decay mechanisms of the




Theoretical overview

_

Higgs boson branching fraction

102Illlllll T RS llllillll

80 85 90 95 100 105 110 115 120

ma(Gev/c?)

Figure 2.5: The branching fractions of the Higgs boson to the decay modes
searched for at LEP 2, expressed as a function of the Higgs boson mass. The
fractions are calculated using the HZHAO3 [23] [24] generator.
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Higgs in the relevant mass range. The channels used, in decreasing order of
power, are hqq, hvv, h¢t ¢~ (where £ = ¢, y) and qqt* 7.

These channels are described in more detail in appendix C.

2.5 Background processes

There exist several processes within the Standard Model which may mimic a
Higgs boson event and, as such, these processes present a background for any
search for a possible Higgs boson signal. It is imperative that the backgrounds
are correctly understood and minimised within each individual search channel.

The backgrounds originate from numerous processes each of which mimics
a true Higgs decay in a given channel to a greater or lesser extent depending
on the similarities between the signal and background topologies. The SM back-
ground processes can be broken down into two distinct groups, the two fermion
(section 2.5.1) and four fermion processes (section 2.5.2- 2.5.5).

The decay channels treated at LEP, with the exception of T+T=¢*¢~, are all
multi-hadronic in nature and as such only multi-hadronic background processes
are relevant.

There follows a brief description of the background processes which are rele-

vant to the Higgs searches performed at LEP2.

2.5.1 Two fermion processes

The relevant background from the two fermion process may be split into two
components.

Firstly, the major contribution is from the production of a qq pair from a Z or
virtual photon with an associated Initial State Radiation (ISR) photon, ete~™ —
Z*[v* — qq(7), figure 2.6b. The ISR photon escapes detection down the beam
pipe leading to a visible energy below +/s. It is possible for one of the final state
quarks to radiate a hard gluon thus forming an event with more than two jets (eg,
q98- 9988, 94q9)- This allows the two fermion process to mimic a four jet final

state, especially in cases where two of the final jets are b quarks.
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A smaller contribution to the two fermion final state arises from hard e*e~
annihilation to qg. In this process no ISR photon is radiated and the visible mass

is closer to the centre of mass energy.

2.5.2 Two photon process

The two photon or 7y process refers to events in which virtual photons from the
initial state e*e~ form a fermion/antifermion pair. This process, shown in figure
2.6a, represents a four fermion final state as the original ete™ are still present.
The majority of these events are however classed as “untagged” where the final
state e*e” escape detection by continuing on their path down the beam pipe.
This process is relevant in the case where the fermion pair produced is qq or
tt1~. The high production cross section for this process is countered by the
low visible mass and particle multiplicity which make it easy to distinguish as
background and remove in the early stages of analysis. This process does not
contribute significantly to the backgrounds for the Higgs search analyses but is

considered for the hvv analysis.

2.5.3 The WtW~ process

The pair production of W* bosons can occur via one of three possible processes,
depicted in figures 2.6c. As the W can decay to qq’ or fv these processes can
produce final states with leptons and jets and is a source of ¢ quark jets which
may be misidentified as b jets in Higgs searches. The inability of these processes
to produce real b jets does however present a method of suppressing the majority

of this background and thus reduces its impact on the Higgs bosons searches.

2.5.4 The ZZ process

The ZZ process actually refers to numerous processes ( ete™ — y*7*, ZM %,
Z™)Z(*)) and produces four fermion final states. The possible decay modes of the
Z boson qq(70%), £*£~(10%), vi/(20%) allow this decay process to form multiple
final states which overlap with different Higgs boson signals. The ZZ background
process, depicted in figure 2.6d, presents a major challenge for the Higgs boson
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searches since it may produce final states with bb and T+7~ pairs which are ef-
fectively indistinguishable from true Higgsstrahlung final states. As a result of

this, the ZZ process is often referred to as an irreducible source of background.

2.5.5 Thesingle W and Z processes

The production of a single W* via ete~ — Wev, (denoted Wev) and single Z
bosons via ete™ — Zete™ (denoted as Zee) contribute to the four fermion final
state. Examples of their production processes are shown in figures 2.6e and 2.6f
respectively. In reality the Z in the Zee process represents either Z(*) or v* as is
the case in ZZ processes discussed earlier.

A characteristic which is common to both the Zee and Wev processes is the
typical escape of one of the initial ete™ pair down the beam pipe. The events
therefore have a large component of missing longitudinal momentum which may
be used to identify them as background events. The events are also characterised
by possessing a visible mass which is near that of the produced W or Z boson
rather than at the centre of mass energy as would be expected for the production
of a Higgs boson in most channels.

The production of single Z bosons is also possible via the ete~ — Zv¥ process
which follows exactly that of Higgs production via WW fusion but with a Z bo-
son produced in the final state rather than a Higgs boson. This process however
has a very low cross section and so does not contribute significantly*. The cross
sections of the associated background processes at /s = 206 GeV are summarised
in table 2.4

Each background process will contribute with a different degree of signifi-
cance to each of the search analyses. The significance of the background is deter-
mined by the production cross section and the overlap of the event characteristics
between the given background and the Higgs signal hypothesis for that specific
channel.

At LEP each search channel first applies a loose pre-selection to the data to

eliminate unmodelled backgrounds and the majority of the most distinguishable

4Single Z production is however considered as a source of background for the hvv search
channel, as described in appendix C.
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| Background Process | Cross-Section( pb™") |

77 2.81
WW 17.54

qq 80.61

Zee 7.18
Wev 0.884
Zvi 0.0183

Table 2.4: The production cross-sections of various background processes.

background sources. The production of pre-selection cuts also allows a compar-
ison of data and the Monte Carlo simulation to determine the accuracy of the
simulation. There then follows a tighter selection (eg, optimised cuts, Neural
Network, Likelihood) in which the power of the analysis is optimised to increase
the possibility of observing a Higgs boson signal. The selection analysis is de-
signed to reduce the more difficult background sources and lead to an optimal

analysis.
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Figure 2.6: Standard Model background processes relevant to the Higgs

searches at LEP. (a) two photon(y7), (b)qq() ,(c) W pair production (WW),

(d) Zz™ /7* pair production (ZZ), (e) example of single W production (Wev),
(f) example of single Z production (Zee).
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Chapter 3
LEP and The ALEPH detector

3.1 Introduction

The Large Electron Positron (LEP) [25] collider at CERN, the European Labora-
tory for Particle Physics, is the end product of an ambitious project to extend our
knowledge of the fundamental particles which make up our universe. The LEP
collider is situated underground at an average depth of ~100 m and is formed
from eight straight and eight curved sections which together form a ring mea-
suring 26.7 km in circumference. The ALEPH detector [26-29], described below,
is one of four multi-purpose particle detectors which are located at the four in-
teraction points on the ring, the other detectors being DELPHI [30], L3 [31] and
OPAL [32]. The purpose of the LEP collider and the detectors situated there, is to
explore the physics of the SM and to search for any signs of physics beyond this
model. This exploration involves both the study of known particles such as the
massive Z and W bosons of the electroweak sector and the search for any signs of
the existence of yet unseen particles such as the Higgs boson. The initial part of
this chapter describes the LEP accelerator and its performance. The latter part of
the chapter describes the ALEPH detector which was used to collect the data for

the analysis described within this thesis.

3.2 The LEP collider

The LEP collider shown in figure 3.1 collects and accelerates counter-rotating high

energy bunches of electrons and positrons, finally colliding them at four equidis-
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Figure 3.1: A schematic view of the LEP accelerator showing the four experi-
ments placed at the interaction points.

tant interaction points (IP's) located on the straight sections of the storage ring.
The electrons and positrons are accelerated by radio frequency cavities in-
stalled on the straight sections and are guided around the arcs by dipole bending
magnets. The beams are contained in an evacuated pipe with a vacuum main-
tained at the order of 10-9 torr with the integrity of the beam being maintained
by a complex system of quadruples, sextupoles and correcting magnets. The di-
ameter of the LEP collider is large to reduce the effect of energy loss due to syn-
chrotron radiation. Any charged particle moving along a curved path will radiate
photons and thus lose energy, this is known as synchrotron radiation. The energy
loss for each revolution of the storage ring is proportional to p where E and m
are the energy and mass of the particle and p is the bending radius of the ring.
For beam energies of 100 GeV, the theoretical maximum for which LEP was de-
signed, the energy loss for each electron or positron is approximately 3 GeV per

rotation. This lost energy must be replenished by the accelerating RF cavities to



LEP and The ALEPH detector 32

maintain the beam energy.
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Figure 3.2: Schematic overview of the machines used in the acceleration pro-
cess. As the beams accelerate they are focused and injected into increasingly
larger accelerators until they reach the energy needed to enter the LEP ring.

A series of smaller accelerators and storage rings are used to accelerate and
finally inject the electrons and positrons into the LEP ring, see figure 3.2. Ini-
tially electrons are produced by a pulsed electron gun and then are accelerated
to 200 MeV by a linear accelerator (LINAC). A fraction of these accelerated elec-
trons are then collided with a fixed tungsten target, known as the e~ — e* con-
verter, to produce positrons via the pair production process. A second linac is
then used to accelerate the electrons and positrons to 600 MeV. Both the elec-
trons and positrons are then fed into the Electron Positron Accumulator (EPA).
The EPA is a 0.12 km storage ring which separates the particles into bunches
and stores them until an intensity of approximately 10'° particles is achieved.

The EPA acts as a buffer between the dedicated LEP pre-injectors and the multi-
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purpose CERN Proton-Synchrotron (PS). Once a sufficient intensity of electrons
and positrons has been accumulated in the EPA the particles are injected into the
PS where they are accelerated to 3.5 GeV. The bunches are then fed into the Su-
per Proton Synchrotron(SPS) in which they are accelerated to their final pre-LEP
injection energy of 22 GeV. Once injected into LEP the particle bunches are then
accelerated to the LEP collision energy through a series of steps. The beams of
electrons and positrons in LEP circulate at a frequency of approximately 11,000
Hz which corresponds to a time of around 90us per revolution. The particles are
typically collected into four bunches of each type with approximately 22us be-
tween the circulating bunches. Each bunch is approximately 2.0 cm long, 0.1 cm
wide in the vertical direction and 0.4 cm wide in the horizontal direction when
not in collision and is focused down to 190um wide and 4um tall when the beams
are brought into collision. Typical beam currents are of the order of 2.5 mA which
corresponds to approximately 1x10'2 particles [33]. The instantaneous event rate
for the colliding beams at a given IP is

— =L (3.1)

here o refers to the cross-section of the process of interest and L is the instan-
taneous luminosity given by:

Ne+ Ne“ Nbunch]:

L= 470,40y

(3.2)

where N,: is the number of e* per bunch, Ny, is the number of bunches ,
F is the revolution frequency and oy and oy, are the RMS beam sizes in the x and
y directions at the interaction point. Typical instantaneous luminosities in 2000
were of the order of 103! cm =251,

The LEP project was split into two data taking stages 1989-1995 (LEP 1) and
1995-2000 (LEP 2). These two stages were separated by a shutdown period in
which the LEP accelerator was upgraded to provide higher energies and increased
luminosities with some components of the detectors also upgraded. During the
LEP 1 stage, LEP accelerated et and e~ beams to energies of approximately 45

GeV thus allowing collisions at centre of mass energies at or near to the Z peak.
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In this first phase an integrated luminosity of approximately 200 pb~' was de-
livered to each of the four experiments. The first phase of LEP allowed many de-
tailed studies to be performed including precision measurements of electroweak
parameters and investigations into aspects of QCD including the production and
decay of hadrons containing heavy b and ¢ quarks.

In the second phase, LEP 2, increasing centre of mass energies allowed further
tests of the Standard Model to be performed and the search for heavier undiscov-
ered particles to be undertaken. In 1997 the achievement of 161 GeV centre of
mass energy allowed the production of WYW™ pairs and the study of the triple
gauge coupling mechanism via Z — W*TW~. Increases in the centre of mass
energy above 161 GeV allowed increasing reach in the search for new particles,
including Supersymmetric particles and the Higgs boson.

The nature of the data set recorded in 2000 is quite different from those recorded
in previous years. In previous years the LEP 2 accelerator was operated at one set
centre of mass energy or in the case of 1999 at four specific centre of mass energies.
The change in the operating procedure during 1999 was an attempt to gain the
highest possible centre of mass energy thus aiding the search for new particles.
This goal was continued in 2000 with a slight difference in the operation of the
LEP accelerator in that no specific preferred centre of mass energies were chosen.
The goal during 2000 was to gain a large amount of integrated luminosity at the
highest possible centre of mass energy [34]. During 2000 the run procedure was
to initiate physics runs at the highest possible energy with 2 RF cavities in reserve
to ensure that the circulating beams were not lost in the case of an RF trip. After a
stable period of running, (e.g. ~ lhour), the energy of the accelerated beams was
raised to its maximum with no RF cavities left in reserve, thus the beams were
lost at the first RF trip after this so called “mini-ramp”.

The resulting performance of the LEP accelerator in 2000 may be shown by
considering the distribution of the collected luminosity versus the centre of mass
energy in figure 5.1. This clearly shows that, unlike the previous years, the data

obtained in 2000 is recorded over a continuous range of centre of mass energies.
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Figure 3.3: The distribution of luminosity collected in 2000 as a function of
centre of mass energy.

3.3 The ALEPH detector

The ALEPH (Apparatus for LEp PHysics) detector was designed to study all
types of SM processes accessible at LEP and to search for any new phenomena
which may arise. To meet these goals ALEPH was designed to gather as much in-
formation as possible from each e*e™ interaction which it observed. ALEPH was
thus designed to cover as much solid angle as possible with a high degree of her-
meticity and granularity. A near full coverage of ~ 3.9 7Sr was finally achieved.
The ALEPH detector consists of several sub-detectors which are shown in the cut
away view in figure 3.4.

The major sub-detectors are arranged in six cylindrical layers situated around

the IP. Radially outwards from the IP the first three detectors are charged particle
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Figure 3.4: A cut away view of the ALEPH detector with the different sub-
detectors highlighted and people added for scale.
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